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Abstract

Motivation: An intuitive graphical interface that allows statistical analyses and visualizations

of extensive data without any knowledge of dedicated statistical software or programming.
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Implementation: EpiMetal is a single-page web application written in JavaScript, to be

used via a modern desktop web browser.

General features: Standard epidemiological analyses and self-organizing maps for data-

driven metabolic profiling are included. Multiple extensive datasets with an arbitrary

number of continuous and category variables can be integrated with the software. Any

snapshot of the analyses can be saved and shared with others via a www-link. We dem-

onstrate the usage of EpiMetal using pilot data with over 500 quantitative molecular

measures for each sample as well as in two large-scale epidemiological cohorts

(N>10 000).

Availability: The software usage exemplar and the pilot data are open access online at

[http://EpiMetal.computationalmedicine.fi]. MIT licensed source code is available at the

Github repository at [https://github.com/amergin/epimetal].

Introduction

We are living in a multi-omics era of systems epidemiol-

ogy.1,2 Quantitative high-throughput metabolomics3–6 and

lipidomics7,8 have resulted in hundreds of molecular meas-

ures for up to tens of thousands of people in multiple

cohorts and biobanks. Extensive and complex data create

significant challenges for statistical analyses. It would

therefore be beneficial, not only for omics beginners but

for all epidemiologists, to have a simple visual tool for

rapid exploratory analyses of these kinds of modern data-

sets without the immediate need of bioinformaticians flu-

ent with currently available professional statistical analysis

tools as, for example, the R software.9

To this end, we developed a web browser-based

graphical software—EpiMetal—for standard statistical

epidemiological analyses as well as for multivariate self-

organizing maps (SOMs) for data-driven analyses,

metabolic profiling and potentially for clinical sub-

grouping.10–15 EpiMetal is versatile and any dataset

with an arbitrary number of continuous and categorical

variables can be easily integrated with the software.

Data from multiple cohorts can be imported for com-

parative analyses. The original datasets can be divided

into subgroups via multiple ways, for example based on

SOMs, histograms or scatterplots; the created sub-

groups can be saved and analysed separately or in com-

parison with any other dataset. Regression analyses

with covariate adjustments are available with graphical

visualization of the results. Publication quality visual-

izations can be made and exported. Any snapshot of the

analyses pipeline can be saved and shared with others

via a www-link. Though it might not be an optimal

choice to use EpiMetal for final publishable results, an

additional good usage might be to use it as a bench-

marking tool for newly written scripts and functions in

another software.

As a usage exemplar, we present explorative analyses in

a pilot cohort of 190 samples16–18 for which serum nuclear

magnetic resonance (NMR) metabolomics3–6 and mass

spectrometry (MS) lipidomics8,19 data are available. The

data include over 500 quantitative molecular measures for

each individual from these complementary methodologies

that are getting increasingly popular in epidemiological

applications. This is apparently the first time these compre-

hensive data are combined in an epidemiological setting.

The data are made public along with the software (https://

github.com/amergin/epimetal/blob/master/python-api/api-

docker/samples.tsv). The exemplar demonstrates how the

graphical interface of EpiMetal can be used to visualize ex-

tensive data, select subgroups and ultimately gain epidemi-

ological insights via a combination of various statistical

analysis options. In the supplement we also illustrate com-

parative analyses for two large-scale epidemiological

cohorts.

Implementation

EpiMetal consists of three major components: (i) the data-

base (MongoDB) is the long-term store for dataset sam-

ples, computational results and stored sessions; (ii) a

single-page web application written in JavaScript (JS) that

is accessed by users via a web browser; and (iii) a back-end

software written in Python that serves as an intermediary

between the web application and the database to retrieve

data and record user sessions. The application uses third-

party open-source libraries (versions and licensing

information is available at Github). The software is encap-

sulated inside Docker containers to facilitate easy deploy-

ment across server platforms and to isolate the software

from host system. Several Plotter instances can be run in

parallel with differing configurations and data. The overall

architecture of the software is presented in Supplementary
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Figure 1. Key data handling, visualization and statistical analyses features of the EpiMetal software illustrated using real epidemiological data (Northern

Finland Birth Cohort 1966; N¼ 5713). A generalized flow of analysis begins by choosing a dataset(s) from user-uploaded options. This can be, for exam-

ple, one population cohort but also a combination of many. Main analysis options are located in the top of the graphical interface and divided into three

categories: ‘Explore and filter’, ‘Regression analysis’ and ‘SOM’. Under ‘Explore and filter’, the user can quickly generate basic plots to gain an overview

of the data structure. Variables can be plotted and compared using histograms, scatterplots and boxplots. Heatmaps can also be created for an overall vi-

sualization of variable Spearman’s rank correlations. Active filters can also be applied to select subsets of the data. For example, one can choose to ana-

lyse only individuals with HDL-C<1.0mmol/L in a given population cohort. The main category ‘Regression analysis’ allows the user to choose an

outcome and exposure variables with an optional number of covariates and to generate a forest plot displaying the point estimate and 95% confidence

intervals. Under ‘SOM’, the user can calculate a self-organizing map trained according to selected variables. The map can then be used to choose a subset

of the entire dataset on the basis of this metabolic profiling. It should be noted that the analyses made in the ‘Explore and filter’ and ‘SOM’ sections are

fully compatible with each other, enabling, for example, the SOM-based subgroups to be analysed via histograms and vice versa.
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Figure S1, available as Supplementary data at IJE online.

Key data handling, visualization and statistical analyses

features are summarized in Figure 1.

Installation

A step-by-step installation guide is provided in the

EpiMetal software user guide. The source data are

imported from a machine-readable format file (usually a

tab-separated .tsv- or comma-separated values .csv-files)

where each row corresponds to an individual sample.

These samples have a unique identifier and usually belong

to a single dataset. An import configuration file defines the

column names and the column separator. A metadata file

is needed for the source data to indicate variable name,

free description, unit of measurement (e.g. mmol/L) and

the group name for each variable. For variables that follow

a common pattern, a regular expression pattern can be

employed. Imported variable types are either numerical or

categorical. Example files for the sample data are provided

in the Github repository. There is no hard limit for the

number of samples or variables that can be imported to the

software, but the larger the dataset, the longer the down-

load and processing times. The software has been tested

with over 500 variables and some 30 000 samples, which

present a realistic upper bound for current usage.

During the installation phase, a Docker container is set up

that initializes the database from the source data file, along

with the metadata descriptions. A second container is used

for compiling the front-end application from the JS source

files, forming a bundle. This container contains an http server

to serve the bundle to user’s web browser. A third container

runs the back end and its application programmatic interface

(API). Using the Docker system, the EpiMetal software can

be set up to serve an individual user locally, or to allow the

software to be accessed by the public. An example configura-

tion on how to limit the access to the software instance with

a user name and a password is provided.

Architecture

The separation of concerns in EpiMetal is achieved by the

common distinction between the presentation layer (front

end) and the data access layer (back end). Modern desktop

computers have considerable computing resources available,

and thanks to the developments in web browser JS engines

and web technologies, those resources can be fully appreci-

ated in web applications. The philosophy of EpiMetal is to

perform these calculations on the client side and store them

to the database for later retrieval. This is achieved by asyn-

chronously downloading chunks of the sample data and then

performing the computations as requested by the user.

Computationally heavy actions are processed in parallel using

Web Workers, if supported by the browser.

AngularJS was chosen as the front-end web framework

as it was popular at the time of starting the project, it had

an active user base and several useful libraries, and its two-

way data binding feature was appropriate considering the

interactive nature of the application.

Back and front ends

The back end is a Python script developed with a Flask

framework using Mongo Engine for object data mapping

and served with Gunicorn HTTP server. The back end

defines actions for retrieving the settings for the software,

the metadata for variables, and samples for the requested

variables. In addition, the back end is called to request pre-

viously stored SOM computations and SOM planes, and

to store new ones.

The front end is a single-page application written in JS

using AngularJS framework. Several open-source auxiliary

JS libraries are employed, most notably DC.js for interac-

tive charting throughout the application and Data-Driven

Documents (D3.js) as a dependency for DC.js and for

SOM planes and other chart types. Visual appearance and

user interface (UI) stylings depend on Bootstrap framework

and Angular-strap library. The UI allows the user to freely

create, resize, move and close window-like objects contain-

ing figures. The front end fetches necessary data samples

by querying the back end asynchronously as the user navi-

gates on the page.

Figures produced with EpiMetal can be exported either

in SVG or in PNG format. A particular state of the applica-

tion can always be saved by creating a link to it and shar-

ing the link with collaborators.

Usage exemplar: combined comprehensive
metabolomics and lipidomics data

We present here explorative analyses in a unique pilot co-

hort of 190 blood samples16–18 for which serum NMR

metabolomics3–6 and MS lipidomics8,19 data are available.

All these molecular data, including basic clinical character-

istics (age, sex, systolic and diastolic blood pressure, body

mass index and height) have been made open access along

with the EpiMetal software. The NMR metabolomics data

comprise over 200 metabolic measures, including standard

lipids, lipoprotein subclass and composition data, fatty

acids, amino acids, ketones, glycolysis and

gluconeogenesis-related substrates and an inflammatory

marker, glycoprotein acetyls.3–6 The MS lipidomics data
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consist of over 350 individual lipid concentrations in 20

lipid classes including, for example, ceramides, sphingo-

myelins, phosphatidylcholines, phosphatidylinositols, cho-

lesteryl esters and triacylglycerols.7,8,19 We used EpiMetal

to conduct a multifaceted exploratory analysis of this pilot

dataset. We sought to demonstrate some commonly known

epidemiological and molecular features of these types of

data.

First, we plotted the distribution of high-density lipo-

protein cholesterol (HDL-C) and the correlation of HDL-C

with triglycerides (TG) in the entire dataset (Figure 2B). As

expected, the histogram follows roughly a normal distribu-

tion. The scatterplot for HDL-C and TG association

reveals the well-known negative population-level

correlation.20

Figure 2. Explorative analysis of a cohort of 190 samples with serum NMR metabolomics and mass spectrometry lipidomics measures available. A:

The control panel of EpiMetal that contains clickable buttons for generating graphs and selecting, naming and generating subgroups. Colours indi-

cate the entire cohort (cyan) and selected subgroups based on the self-organizing map (SOM) analysis. B: The histograms of HDL-C in the entire co-

hort and in the subgroups and the scatterplot of HDL-C vs triglycerides. C: The SOM component planes for serum triglycerides, HDL-C and LDL-C

(note that the individuals in the entire cohort are identically distributed in each plane). Colours indicate high (red) and low (blue) concentration values

of the variable in each plane. Individuals with similar metabolic profiles cluster close to each other in the SOM component planes. The user can spec-

ify and select different subgroups via the circular selection tools. D: A box plot for LDL-C in the entire cohort and in the two subgroups. E: Regression

analyses with a forest plot showing standardized regression coefficients. Standardization means, that prior to analyses, all continuous, non-binary

variables are normalized to zero mean and unit standard deviation. Point estimates are indicated by a dot surrounded by 95% confidence interval (CI).

Plotting HDL-C as the outcome and triglycerides as an exposure illustrates the same negative association as already indicated via the scatterplot in B.
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We then applied the SOM analysis to organize the sam-

ples in the dataset via their systemic metabolic profiles.

Readers interested in the comparison of the SOM method-

ology with other subgrouping methods in epidemiology are

referred to a recent Software Application Profile in the

IJE.14 Additional details of the statistical issues in SOM

analyses can be found in references.10–13 We based the

SOM profiling on 26 metabolic measures including multi-

ple amino acids, 14 lipoprotein subclasses, standard

cholesterol measures, glycoprotein acetyls and glycolysis-

related measures. It should be noted that users could freely

modify the initial SOM training data according to their

preferences and data characteristics. The SOM planes for

low-density lipoprotein cholesterol (LDL-C), HDL-C and

TG are shown in Figure 2C. These planes reveal, on aver-

age, that people with high circulating HDL-C (circle A in

the SOM; subgroup marked lowest TG) are indeed those

that have low TG and vice versa (area marked B in the

SOM; subgroup marked lowest HDL), as expected by the

previous scatter plot. The SOM analysis also reveals that

circulating LDL-C concentrations are rather indifferent re-

garding HDL-C and TG in this pilot dataset; this is also

emphasized in Figure 2D by the box plot for LDL-C. These

associations can also be illustrated via formal regression

analyses; we considered HDL-C as an outcome variable

and LDL-C or TG as an exposure with age and sex as

covariates. The results are given in Figure 2E for the entire

cohort and the above-mentioned SOM-derived subgroups.

The negative association between HDL-C and TG,

depicted in Figure 2B, is well replicated in the formal re-

gression analysis. These demonstrations indicate the inter-

nal consistency of various software functions and illustrate

that the pilot cohort represents well-known features of li-

poprotein metabolism with respect to lipoprotein lipid

measures.

Exploration of associations between the NMR

metabolomics and MS lipidomics data can be found in

Supplementary Figure S2, available as Supplementary

data at IJE online, which shows a heatmap of

Spearman’s rank correlation coefficients between se-

lected lipoprotein (NMR) and lipid variables (MS).

Overall the correlations are very well in line with the

known molecular characteristics of lipoprotein sub-

classes and their lipid compositions21 and demonstrate

robust agreement between the NMR metabolomics and

MS lipidomics platforms.

To additionally demonstrate the properties of

EpiMetal, we performed an additional set of analyses using

data from two large-scale population-based epidemiologi-

cal cohorts including over 10 000 individuals (see the

Supplement, available as Supplementary data at IJE

online).

Conclusion

The new EpiMetal software is used via a modern web

browser and it provides an intuitive easy-to-use graphical

interphase for multiple statistical methods relevant in epi-

demiological analyses. It easily handles data for tens of

thousands of people and for hundreds of measures—num-

bers that are a reality nowadays in many metabolomics

applications. It provides instant data visualizations and

allows convenient sharing of results and data via data cap-

tures accessible via an automatically created www-link.

The datasets can be fully customized by the users. We illus-

trated the usage and opportunities of EpiMetal in real

large-scale epidemiological datasets (Figure 1; and the

Supplement, available as Supplementary data at IJE on-

line). In addition, we provide an open access usage exem-

plar of EpiMetal for a pilot cohort in which over 500

quantitative molecular measures are available from each

sample.

With increasing amounts of complex molecular data in

epidemiology, sophisticated software is required for both

convenient data handling and statistical analyses.

Without statistical or programming expertise, the learn-

ing curve to conveniently use typical modern data analy-

sis software, for example R,9 can be steep. From the

epidemiology perspective, extensive molecular data may

challenge traditional hypothesis-driven data analyses.

These are common situations in which the EpiMetal soft-

ware can help researchers. First, by enabling instant

graphical exploration and analyses of a (new) dataset

without the hurdles of programming-based data analyses;

and second, by also allowing data-driven options to find

unknown relations in the data without pre-existing hy-

potheses. As far as we are aware, the EpiMetal software

is a first-of-a-kind versatile tool for both traditional and

data-driven analyses of extensive large-scale epidemiolog-

ical datasets.

Supplementary data

Supplementary data are available at IJE online.
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