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ABSTRACT

Wenzhu Xing: Joint image demosaicing, denoising and super-resolution
Master of Science Thesis
Tampere University
Master’s Degree Programme
April 2020

Denoising, demosaicing and super-resolution (SR) are three important cores of image pro-
cessing and these three ill-posed problems have been separately well studied in the passed
decades. However, in practical applications, these three well defined problems appear simulta-
neously, which greatly increase the complexity of the problem. Recently, joint solution of multiple
IR tasks has just begun to attract some attention. There are two types of strategies in existing
joint solutions: sequential and combined. In sequential methods, a combination of existing or new
denoising, demosaicing and SR methods in sequential order is used. In contrast, the combined
methods mostly apply an end-to-end manner directly from the input noisy low-resolution mosaic
to the final high-resolution color image.

In this thesis, first an overview of the research on image denoising, demosaicing and single
image super-resolution (SISR), and their combination is given. Then, we mainly propose three
joint solutions of multiple image restoration tasks, and compare these joint solutions with different
metrics on two commonly used datasets. The comparison results show that the fully combined
joint solution is the best selection to solve the mixture problem of multiple image restoration tasks.

Keywords: Denoising, demosaicing, single image super-resolution, convolutional neural networks
(CNN), joint solutions

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1 INTRODUCTION

Because of the limitation of hardware conditions, most mobile devices, for example, digital
cameras, generate degraded images rather than high quality high resolution images.
The limitations comes from three design issues. Firstly, the sensor arrays contained in
most digital cameras are covered by color filter arrays (CFAs, e.g. Bayer pattern), which
capture only one color of red, green and blue instead of the full visible spectrum (RGB)
at each pixel. Secondly, image noise is inevitable during imaging and the noise is directly
proportional to pixel density of sensor. Last but not least, the size of the photon wells
limits the resolution of images. Small photon wells have a low well capacity, which limits
the dynamic range of the image capture. Large photon wells limit the number of pixels
and thus resolution.

In order to break through the above hardware limitations, many image restoration meth-
ods are introduced to enhance the images in recent years. The goal of Image Restoration
(IR) is to reconstruct a high resolution image from its degraded image. The IR tasks corre-
sponding to above degradation forms are demosaicing, denoising, and super-resolution.
As ill-posed inverse problems, above mentioned independent IR tasks have been thor-
oughly studied with some insurmountable problems. For denoising, most denoising algo-
rithms smooth the high-frequency detail and texture while eliminating noise in the image.
Generally, demosaicing algorithms are always unavoidable to generate some noticeable
color artifacts in the high-frequency texture regions and strong edges. Since human eyes
are more sensitive to luminance changes, most modern super-resolution methods only
increase the resolution of the luminance channel in the YCbCr color space.

However, in practical application, the above well defined problems need to be solved
simultaneously. A combination of two or more IR tasks has received much less attention
in literature. Recently, joint solution of multiple IR tasks has just begun to attract some
attention. These methods can be classified into two broad categories: model-based and
learning-based. Learning-based approaches consider different combinations of IR tasks,
such as joint demosaicing and super-resolution [1], joint demosaicing and denoising [2,
3, 4], and TENet [5]. On the other hand, ADMM is a popular method in the class of
model-based methods. For example, [6] describes a unified object feature with hidden
priors and the variant of ADMM to recover high-resolution color images from its noisy
Bayer input.

Here we use another way to sort the research of joint inverse methods: sequential and
combined. In sequential methods, a combination of existed or new denoising, demosaic-
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ing and SR methods in sequential order is used. In this thesis, two kinds of sequential
joint solutions are proposed, we joint existing SOTA methods in sequence, or specifically
train these networks step by step. For the specific training, except for the first network, the
training data are generated by the previous trained model, i.e. the output of one network
is the input of its subsequent network. Therefore, the back networks not only perform
its own image processing, but also fix the error of previous network. For the combined
version, an end-to-end structure will be proposed for multiple tasks.

In this thesis, we mainly focus on the mixture problem of denoising, demosaicing and
super-resolution. The techniques that perform these steps sequentially usually start with
denoising [7], because noise will impact demosaicing and super-resolution and lead to
noticeable artifacts. On the other hand, the super-resolution should be the last step. In
reality, because of having bigger size, the super-resolved image will occupy more memory
inside the device. Therefore, for the sequential version joint solutions, the execution order
of three tasks is denoising, demosaicing and super-resolution.

We start our investigation from finding the joint solutions of two IR tasks. In order to
support sufficient data to compare different joint solutions, we investigate two mixture
problems: denoising and demosaicing, and joint demosaicing and SR. There are three
joint solutions of the mixture problems of two tasks. The first joint solution is to apply
suitable SOTA methods to combine two image processing in the sequential order. The
trained models of DnCNN [8], DJDD [2], and VDSR [9] are adopted for denoising, demo-
saicing and SR, respectively. Unlike model-based methods, which have the flexibility to
handle a variety of IR tasks with a particular degradation matrix, learning-based method
need to use a specific training dataset with some degradation matrices to learn the model
[10]. As a consequence, it is difficult to create one model for joint problems by a direct
combination of two different learning models. To address this problem, the second joint
solution is to train these networks specifically, and then exploit the specific trained mod-
els one by one. Although these two joint solutions can solve multiple tasks step by step,
the defects generated by the previous image processing will affect the subsequent ones
and lead to performance drop. Building on the success of deep learning based methods,
we are able to solve complicated multi-task image processing problems in an end-to-end
manner, which is regard as a combined network. When jointly performed, if one task pro-
duces the result that is difficult to process directly, the followed task will compensate for
the middle state, and provide better final results. Thus, we suggest to perform denoising,
demosaicing and SR in such a combined scheme for the mixture problem.

For the joint solutions of three tasks, in addition to the joint solutions mentioned above,
we can also combine tasks partially by the combined network proposed for two tasks. In
other words, we can combine denoising and demosaicing first, and sequential perform
super-resolution, or execute denoising first, and process demosaicing and SR jointly.

The theoretical basics about CNN based image restoration methods are discussed in
Chapter 2. To explain denoising, demosaicing and SR, general theories on Gaussian
noise, Bayer mosaic, and down-sampling and up-sampling are outlined first. Then differ-
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ent criterias of image quality are introduced. The last part of this chapter is the theoretical
foundations of CNN.

Chapter 3 discusses related works of denoising, demosaicing and SR, and the joint solu-
tions proposed in recent years. Chapter 4 introduces the different kinds of joint solutions
of mixture problem of two or three image restoration tasks. The network for joint denois-
ing, demosaicing and SR is proposed in this chapter, as well. The summary of exper-
iments and the analysis of results are shown in Chapter 5 and Chapter 6, respectively.
Findings are concluded in Chapter 7, which also discusses the potential applications and
future research.
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2 THEORETICAL BASICS

In this chapter, the theoretical basics used in this thesis are described. A brief intro-
duction of white Gaussian noise, Bayer mosaic and down/up-sampling theory is given in
2.1. Section 2.2 explains the basics of convolutional neural networks. The image quality
metrics are described in Section 2.3.

2.1 Image restoration

Image noise. Image noise is inevitable during imaging and it may heavily degrade the
visual quality. It can be generated by the image sensor and the circuit of the scanner or
digital camera. In this thesis, we only focus on image denoising beyond additive white
Gaussian noise (AWGN). Gaussian noise is a statistical noise, whose probability density
function (PDF) is equal to that of Gaussian distribution (normal distribution). In other
words, the noise values of the image are Gaussian-distributed. The probability density
function p of a Gaussian random variable z is given by:

pG(z) =
1

σ
√
2π

e−
(z−µ)2

2σ2 .

where z is the gray level, µ means the mean value and σ means the standard deviation.
This normal distribution can also be regard as N (µ, σ2).

A special case of Gaussian noise is a white Gaussian noise, in which the values at any
pair of times are identically distributed and uncorrelated. If a noise has a Gaussian dis-
tribution and its power spectral density is evenly distributed, it is called white Gaussian
noise. For additive white Gaussian noise, the noise N is independent and identically dis-
tributed and drawn from a zero-mean normal distribution with variance σ2. Then, noise
N is computed as:

N ∼ N (0, σ2).

Figure 2.1 shows the clean image and noisy images of image ’butterfly’. The far left image
is the ground truth image, and the other four images are noisy images with noise levels
5, 15, 25 and 50, respectively. We can find that the noise level is higher, the image is
corrupted more seriously. More information about denoising will be discussed in Section
3.1.

Bayer mosaic. In recent years, digital cameras become more and more popular, and
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Ground-truth. Noise level is 5. Noise level is 15. Noise level is 25. Noise level is 50.

Figure 2.1. The butterfly image and its corresponding noisy images. The noise level is 5,
15, 25 and 50, separately.

have replaced traditional film-based cameras in most applications. In order to produce a
color digital image, there should be at least three color components at each pixel loca-
tion. This can be achieved by three CCD (Charge-Coupled Devices) or CMOS (Comple-
mentary Metal-Oxide Semiconductor) sensors, each of which receives a specific primary
color. However, the limitations of space and cost cause that most digital cameras on the
market use a single sensor. The sensor arrays are covered by color filter arrays (CFAs),
which capture only one color of red, green and blue instead of the full visible spectrum
(RGB) at each pixel. By this CFAs the associated cost and size are reduced greatly.

The left part of Figure 2.2 shows a single CCD sensor covered by a CFA. CFA con-
sists of a set of spectral selection filters, which are arranged in a staggered pattern, so
that each sensor pixel samples only one of the three primary color components. These
sparsely sampled color values are called mosaic or CFA images. In order to recover a
full-color image from a CFA sample, an image reconstruction process (commonly called
CFA demosaicing) is needed to estimate the other two missing color values for each pixel.
Among many possible CFA patterns, we focus on the widely used Bayer CFA pattern (the
right part of Figure 2.2). The Bayer pattern samples the green band using a quincunx
grid, while red and blue are obtained by a rectangular grid. Since green approximates the
brightness perceived by the human eye, green pixels are sampled at a higher rate. More
information about demosaicing is discussed in Section 3.2.

Down-sampling and up-sampling. Down-sampling and up-sampling are two funda-
mental and widely used image operations, which are used in image display, compres-
sion, and progressive transmission. Down-sampling is a reduction in spatial resolution
while maintaining the same two-dimensional (2D) representation. It is typically used to
reduce image storage and / or transmission requirements. Up-sampling is to increase
the spatial resolution while maintaining a 2D representation of the image. It is usually
used to zoom in on a small portion of an image, and to eliminate pixelation effects that
occur when displaying low-resolution images on relatively large frames. More recently,
down-sampling and up-sampling have been used in combination: in lossy compression
[11], multiresolution lossless compression [12], and progressive transmission [11, 13].

Recently, some deep learning based super-resolution methods [8, 9, 14, 15] apply up-
sampling before performing super-resolution. Among them, the methods [8, 9, 15] exploit
residual learning, which only learn the differences between the up-sampled input and
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Figure 2.2. Left: Single CCD sensor covered by a CFA. Right: Bayer CFA.

the ground truth image. The standard methods for down/up-sampling are BICUBIC and
bilinear interpolation. The up-sampled images in Figures 2.3(b)–2.3(c) have all been
produced by first down-sampling the original image (Figure 2.3(a)) by a factor of 4 and
then up-sampled using the corresponding interpolation methods and scaling factor of
4. In this thesis, the BICUBIC interpolation is used for up-sampling processing. More
information about super-resolution is discussed in Section 3.3.

Ground-truth. (a) Bilinear. (b) BICUBIC.

Figure 2.3. Example images produced by up-sampling with different interpolation meth-
ods. The ground truth image has been first down-sampled by a scaling factor of 1/4 to
produce a low resolution input. Images b–c have been up-sampled from that LR image
by a factor of 4 using the corresponding interpolation method.

2.2 Convolutional neural network

Convolutional neural network (CNN) is a feed-forward neural network. Its artificial neu-
rons can respond to a part of the surrounding cells in the coverage area, and it has ex-
cellent performance for large image processing. A simple CNN is a sequence of layers,
which are introduced below. Figure 2.4 shows an example of CNN architecture, which is
a super-resolution network ESCPN[16].
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Figure 2.4. An example of CNN illustration (ESCPN[16]) for SR.

Convolutional layer. Each convolutional layer in a convolutional neural network consists
of a number of convolutional units, and the parameters of each convolutional unit are op-
timized through a back-propagation algorithm. The purpose of the convolution operation
is to extract different features of the input. The first convolutional layer may only extract
some low-level features such as edges, lines, and corners. More layers of the network
can iteratively extract more complex features from low-level features.

RELU layer. The Rectified Linear Units layer (ReLU layer) uses Rectified Linear Units
(ReLU) f(x) = max(0, x) as the activation function of this layer of neurons. It can en-
hance the non-linear characteristics of the decision function and the entire neural network
without changing the convolutional layer itself. In fact, some other functions can also be
used to enhance the non-linear characteristics of the network, such as hyperbolic tangent
function f(x) = thnh(x), f(x) = |thnh(x)|, and Sigmoid function f(x) = (1+ e−x)−1. The
ReLU function is more popular than other functions because it can speed up the neural
network several times without significantly affecting the generalization accuracy of the
model.

Loss layer. The loss function layer is used to decide how the training process penalizes
the difference between the predicted result and the actual result of the network. It is
usually the last layer of the network. Various loss functions are suitable for different types
of tasks. For example, the Softmax cross-entropy loss function is often used to select one
of K categories, and the Sigmoid cross-entropy loss function is often used for multiple
independent binary classification problems. Euclidean loss function is often used in the
problem that the value range of the label is arbitrary real number.

For an error function ε, the loss for a patch P can be written as :

Lε(P ) =
1

N

∑︂
p∈P

ε(p). (2.1)

where N is the number of pixels in the patch.

The most common loss function used in image processing tasks like SR, is the l2 loss,
which is defined as the square of l2 norm of the difference between the processed patch
and the ground truth. Equation 2.1 for l2 is simply:

Ll2(P ) =
1

N

∑︂
p∈P

|x(p)− y(p)|2. (2.2)
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where p is the index of the pixel and P is the patch; x(p) and y(p) are the values of the
pixels in the processed patch and the ground truth, respectively.

There are CNN based methods [17] applying l1 error instead of l2. Then, Equation 2.1 for
l1 is simply:

Ll1(P ) =
1

N

∑︂
p∈P

|x(p)− y(p)|. (2.3)

SSIM (structural similarity index measure) is used to measure the structural similarity
between two images. SSIM for pixel p is defined as:

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C1
= l(p) · cs(p). (2.4)

Means and standard deviations are computed with a Gaussian filter GσG , whose standard
deviation is σG. The loss function for SSIM can be then written as:

LSSIM (P ) =
1

N

∑︂
p∈P

1− SSIM(p). (2.5)

Since the choice of σG influences the quality of the performance of a network that is
trained with SSIM, an advanced form of SSIM is proposed, MS-SSIM. Given a dyadic
pyramid of M levels, MS-SSIM is defined as:

MS-SSIM(p) = lαM (p) ·
M∏︂
j=1

cs
βj

j (p). (2.6)

where lM and csj are the terms defined in Equation 2.4, at scale M and j, respectively.
The MS-SSIM loss for patch p IS computed as:

LMS-SSIM (P ) =
1

N

∑︂
p∈P

1−MS-SSIM(p). (2.7)

Zhao et al. proposed a combination loss Mix1 [17], which captures both MS-SSIM error
and l1 error:

LMix1(P ) = α · LMS-SSIM + (1− α) ·GσM
G

· Ll1. (2.8)

Similarly to Equation 2.8, another mix loss function which combines MS-SSIM error and
l2 error is:

LMix2(P ) = α · LMS-SSIM + (1− α) ·GσM
G

· Ll2. (2.9)

where the parameter α need to be tuned by experiments.

In this thesis, all methods we applied or designed are convolutional neural networks.
More examples of CNN based methods are showed in Chapter 3. We will train our final
network with all above cost functions in Section.
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2.3 Image quality metrics

There are various image quality metrics to evaluate the performance of networks. In
this thesis, we use four metrics, PSNR (peak-signal-to-noise ratio), SSIM, MS-SSIM and
CSSIM [18].

PSNR is based on MSE (mean square error), which is calculated as:

MSE(G,T ) =
1

HW

H∑︂
h=1

W∑︂
w=1

(Gh,w − Th,w)
2. (2.10)

where G is reference (i.e. ground truth image) and T is test image, whose size is h× w.
PSNR can be then written as:

PSNR(G,T ) = 10 log10(
(MaxG)

2

MSE(G,T )
). (2.11)

where MaxG is the highest possible brightness value for G. For a 8-bit image, the value
of MaxG is 255.

SSIM and MS-SSIM are defined in Equation 2.4 and Equation 2.6, respectively. CSSIM
is also a modification of SSIM. However, compared with other metrics which work only
on gray-scale images, CSSIM can work on color images by the different weights of color
components (Cb and Cr channels) and intensity component (Y channel). More details of
CSSIM can be found in [18]. For PSNR, SSIM and MS-SSIM, we average the values of
three color channels to obtain the final values of color images.

The theoretical concepts described above will be used in later chapters. More application
examples of CNN are given in Chapter 3. The brief introduction of white Gaussian noise,
Bayer mosaic and down/up-sampling theory helps to understand the content of Chapter
4. Different loss functions are applied in Chapter 5 and the evaluation metrics are used
in Chapter 6.
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3 RELATED WORK

In this Chapter, firstly, related works of denoising, demosaicing and super-resolution are
presented. Then, the literature of mixture problems of above three tasks is reviewed
briefly.

3.1 Denoising

Image noise is inevitable during imaging and it may heavily degrade the visual quality.
There have been several attempts to handle the denoising problem. Early methods [19,
20, 21] apply hand-craft features and algorithms to eliminate noise. Advance methods
usually use effective image priors such as self-similarity [22, 23, 24] and sparse repre-
sentation [25]. Among them, BM3D [23] is one of state-of-the-art methods, and is always
used as a benchmark in the comparison of denosing methods. However, in recent years,
more and more machine-learning based methods [8, 26, 27, 28, 29] successfully used in
denoising, consisting of CNNs trained with noisy data and clean data. We select DnCNN
[8] for further experiments and comparative analysis.

DnCNN. The denoising CNN model, DnCNN [8], is proposed in 2017 by Zhang et al.
DnCNN uses the same model for three different tasks: multiscale SR, Gaussian denoising
and JPEG deblocking. The network structure is almost identical to VDSR [9], with the
exception of added batch normalization layers in the hidden layers. In SR task it performs
almost identically with VDSR, while still performing well in the denoising and deblocking
tasks.

For model learning, Zhang et al. adopt the residual learning formulation, and incorporate
it with batch normalization for fast training and improved denoising performance. The
input of our DnCNN is a noisy observation y = x + v. The network target is to train a
residual mapping R(y) ≈ v, then attaining the clean image x = y −R(y).

Figure 3.1. The architecture of the proposed DnCNN network.
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Figure 3.1 illustrates the architecture of the proposed DnCNN for learning R(y). The
DnCNN model has two main features: the residual learning formulation is adopted to
learn R(y), and batch normalization is incorporated to speed up training as well as to
boost the denoising performance. By incorporating convolution with ReLU, DnCNN can
gradually separate image structure from the noisy observation through the hidden layers.

3.2 Demosaicing

To reduce manufacturing costs, most digital camera sensors capture only one color (red,
green and blue) at each pixel. The camera sensor is covered by color filter arrays (CFAs).
The Bayer filter is the most popular CFA. Demosaicing is the process of interpolating full-
resolution color image from incomplete color samples output by this kind of image sensor.
Most demosaicing are designed specifically for the Bayer CFA. Existing algorithms can
be mainly classified into two categories: model-based methods [30, 31, 32, 33, 34], which
recovery images mathematical models and image priors in the spatial-spectral domain;
and learning-based methods [34, 35], which are based on process mapping learned from
abundant training data. Recently, deep learning is more and more popular in image
restoration tasks. There are some deep learning methods [36, 37, 38] of demosaicing at-
taining competitive performance. Among them, DMCNN [38] is one of SOTA demosaicing
algorithm.

DMCNN. Syu et al. [38] propose two networks for demosaicing: DMCNN which has a
structure inspired by SRCNN [39], and DMCNN-VD, a deeper network inspired by VDSR
[9]. The input Bayer mosaic is converted into 3-channel images before processing. For
DMCNN they extend the Bayer CFA to 3 channels without any interpolation and replace
the missing values with zeros. For DMCNN-VD they used the zero-filled image as network
input but utilize a bilinear interpolated image for the residual connection. Figure 3.2 gives
the network architectures of DMCNN and DMCNN-VD.

(a) DMCNN
(b) DMCNN-VD

Figure 3.2. The network architectures.

DMCNN consists of three convolutional layers: feature extraction layer, non-linear map-
ping layer and reconstruction layer. However, DMCNN-VD is a very deep convolutional
network, which includes 20 layers and applies the residual learning strategy. In both
quantitative comparison and qualitative comparison, it is obvious that the deeper network
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DMCNN-VD performs better than DMCNN. The resulting images of DMCNN-VD have
less artifacts than the ones of DMCNN.

Although DMCNN-VD outperforms many existing demosaicing algorithms, we do not use
it in further experiments. For demosaicing, a simpler deep network DJDD [2] is exploited,
which performs good enough and can demosaic not only a noise-free image but also a
noisy image.

3.3 Super-Resolution

Super-resolution aims to recover a high-resolution image from its corresponding low-
resolution images. According to the number of low-resolution input images, the meth-
ods of super-resolution can be classified to multi-image SR (MISR) and single-image
SR (SISR). In this thesis, we mainly concern about single-image super-resolution. Tra-
ditional methods utilize interpolation approaches based on sampling theory. Recently,
learning methods [40, 41, 42] model a mapping from low-resolution to high-resolution by
embedding prior knowledge from large datasets. Lately, CNN was applied to improve
the accuracy and quality of resulting images. Inspired by the success of CNN in image
classification tasks, there are more and more CNN methods [9, 14, 15, 43, 44, 45, 46]
proposed for SISR. In our experiments, VDSR [9] is one selection of SOTA methods to
solve the mixture problems. On the other hand, the network structure of ESRGAN [46]
inspires the design of our comprehensive network for mixture problems.

SOTA method VDSR. Kim et al. [9] introduced the single image super-resolution method
using very deep convolutional networks (VDSR) in 2016. As the first deep CNN based
SISR, the VDSR made some improvements on SRCNN structure [14]. Inspired by the
very deep convolutional network for image recognition in [47], the authors proved that the
addition of the depth of network improved the accuracy of the model. Therefore, instead
of only 3 convolutional layers in SRCNN, VDSR has 20 convolutional layers. Since the
number of the network layers increased, the receptive field changed to 41 × 41 with the
same filter size 3 × 3 in each layer. The bigger receptive field size means more image
information is contained, which is helpful to image reconstruction. In order to keep the
size of the feature map of each layer identical, VDSR applied zero-padding before con-
volutions. For SRCNN, the network kept all contents of the input image and through all
values in the whole network, which required long-term memory. VDSR uses only the
residual image, defined as the difference between desired high resolution image and the
interpolated low resolution image. Figure 3.3 shows the VDSR network structure.

SOTA method ESRGAN. Various SISR networks attained great success, which are fo-
cus on improving Peak Signal-to-Noise Ratio (PSNR). However, these PSNR-oriented
networks perform excellently at the expense of over-smoothed resulting images. Several
perceptual-driven methods apply Generative Adversarial Network (GAN) to improve the
visual quality of resulting images. In 2017, Ledig wt al. [45] propose SRGAN model that
uses perceptual loss and adversarial loss to favor outputs residing on the manifold of
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Figure 3.3. VDSR Network Structure

natural images.

Based on SRGAN, Wang et al. [46] enhanced the basic network architecture by replacing
the original residual blocks with the Residual-in-Residual Dense Block (RRDB), which re-
moves the batch normalization. Meanwhile, Wang et al. improve the discriminator using
Relativistic average GAN (RaGAN) [48], which leads to sharper edges and more de-
tailed textures. Compared with PSNR-oriented methods, perceptual-driven approaches
improve the visual quality by minimizing the error in a feature space rather than pixel
space. In order to be closer to perceptual similarity, perceptual loss [49] is proposed.
Contrary to the convention, Wang et al. propose a more effective perceptual loss, which
use the VGG features before the activation layers instead of after activation as in SRGAN.
In addition, the network interpolation strategy is used to balance perceptual quality and
PSNR.

ESRGAN keeps the high-level architecture design of SRGAN (see Figure 3.4), and use
a novel basic block namely RRDB as depicted in Figure 3.5. The proposed Residual-in-
Residual Dense Block (RRDB) combines multi-level residual network and dense connec-
tions, i.e. residual learning in different levels. The RRDB is exploited in our proposed
network architecture (Section 4.1 and Section 4.2).

Figure 3.4. The basic architecture of ESRGAN [46], where most computation is done
in the LR feature space. The “basic blocks” (e.g., residual block [50], dense block [51],
RRDB) can be selected or designed for better performance
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Figure 3.5. Left: The BN layers in residual block in SRGAN are removed. Right: RRDB
block is used in ESRGAN deeper model and β is the residual scaling parameter.

3.4 Mixture problems

In reality, the above well defined problems appear simultaneously, and it is the combined
problems that we need to solve. In last few decades, denoising, demosaicing and super-
resolution have been independently studied and applied in sequential steps. However,
there are some limitations and problems for each task. For denoising, most denoising
algorithms smooth the high-frequency detail and texture while eliminating noise in the
image. Generally, demosaicing algorithms are always unavoidable to generate some no-
ticeable color artifacts in the high-frequency texture regions and strong edges. Since hu-
man eyes are more sensitive to luminance changes, almost all modern super-resolution
methods only increase the resolution of the luminance channel in the YCbCr color space.

Therefore, these errors are accumulated when these algorithms are separately applied.
When we process super-resolution on the denoised images, the blur effect will be mag-
nified and reduce the quality of resulting images (Figure 4.1). Sequential application
of super-resolution algorithms after demosaicing algorithms leads to visually disturbing
artifacts in the final output (the second row in Figure 6.2). This is because the super-
resolution algorithms regards the artifacts such as color zippering caused by demosaic-
ing algorithms as a valid signal of the input image. And the super-resolution algorithms
only processes monochromatic image, and ignores the artifacts in chroma channels. In
addition, SR algorithms not only enhance the image details and texture, but also enlarge
the unexpected noise, blur and artifacts produced by a previous processing. For joint
denoising and demosaicing, the complexity of demosaicing is increased by the presence
of noise. The estimation of the edge direction in the noisy data is not reliable, which will
cause obvious artifacts in the demosaic image. And some information is removed with
the elimination of noise by denoising processing, the demosaicing algorithm sequential
performs on denoised images may lead to color deviation and blur (Figure 6.1).

In recent years, the mixture problem of multiple image distortion is concerned, such
as joint denoising and super-resolution [2, 4, 52, 53, 54], joint demosaicing and super-
resolution [1, 55, 56], and joint denosing and SR [57]. But the research on the mixture
problem of denosing, demosaicing and SR is lacking special attention. In 2019, Qian et al.
[5] proposed a trinity network to solve this composite problem jointly. Among them, DJDD
[2] is selected in our comparison experiments (see Section 5.2). The network structures
of [1] and [5] inspire the design of our comprehensive network for mixture problems.
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Joint demosaicing and denosing. In 2016 Gharbi et al. [2] proposed a standard
feed-forward network architecture for demosaicing and denoising. Instead of using hand-
crafted filters depended on hard-code heuristics, the authors trained a deep convolutional
neural network (CNN) on both standard datasets and a new dataset composed of patches
with artifacts. The proposed network is capable of handling a wide range of noise levels
and removing the artifacts, such as luminance artifacts and color moiré, i.e. joint de-
mosaicing and denoising. The quantitatively experimental results demonstrate that this
network generates state-of-the-art performance both on noisy and noise-free data.

The proposed network architecture is showed in Figure 3.6, the mosaiced array M with
the estimated noise level σ are the input of the network, and the output is a RGB image
O with the same size of the input. This network is composed with 16 convolutional layers,
with 64 feature maps and 3×3 kernel size for each layer. To correct the artifacts produced
on some hard cases, the authors built a new dataset which contains more challenging
patches, to fine-tune the parameters of the model in order to improve the performance on
reducing artifacts.

Figure 3.6. Proposed network architecture.

Joint demosaicing and super-Resolution. Zhou et al. [1] introduced the joint de-
mosaicing and super-resolution method using a deep residual network in 2018. This
network has a mono-channel Bayer image with low-resolution as input and outputs a
high-resolution RGB image. In order to solve super-resolution, 24 residual blocks were
used for feature extraction and non-linear mapping. The authors removed the batch nor-
malization layers in the original residual blocks [50] and replaced ReLU with PReLU. The
architecture of residual block is showed in Figure 3.7 and the network structure is given
in Figure 3.8.

Figure 3.7. Illustration of the architecture of residual blocks.

These two networks JDD (Figure 3.6) and JDSR (Figure 3.8), are both based on deep
CNN and with the mosaiced array as input and RGB image as output. The size of input
and output of the network for joint demosaicing and denoising is identical. However, the
later network has a bigger size output, i.e. super-resolution. In addition to this, first struc-
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Figure 3.8. Illustration of the deep residual network architecture.

ture is composed of 15 convolutional layers. In contrast, the later one contains 24 residual
blocks, which used more convolutional layers but just learned residual information only.

Joint demosaicing, denoising and Super-Resolution. TENet [5] is the newest joint
solution for Demosaicking, Denoising and Super-Resolution, which is proposed by Qian
et al. in 2019. They first decided the order of execution tasks, i.e. denoising, super-
resolution and demosaicing. Then, the network is divided to two parts: the mapping of
joint denoising and super-resolution, and the demosaic mapping. In order to optimize
the performance of the network, the middle state of the network should be concerned.
After the first mapping, the SR loss on raw image is calculated. The architecture of the
network is inspired by the deep network ESRGAN [46]. Meanwhile, they contributed a
novel dataset PixelFhift200, which applies advanced pixel shift technology to perform a
full color sampling of the image. These artifacts-free images lead to better training results
for demosaicing related tasks. The structure of Trinity Enhancement Network is shown in
Figure 3.9.

Figure 3.9. The proposed Trinity Enhancement Network.
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Based on these existing methods, we tentatively proposed some joint solutions for the
mixture problem in Chapter 4.
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4 JOINT SOLUTIONS OF IMAGE RESTORATION
TASKS

In this chapter, we generate joint solutions of multiple image restoration tasks by applying
directly or modifying the existing SOTA methods introduced in Chapter 3. In total, there
are three types of joint solutions to solve the mixture problem. The first joint solution is
selecting one existed state-of-the-art (SOTA) CNN based method for each task, and then
applying the trained models to solve the problems one by one. In this solution, for a given
corrupted input image IInput, its corresponding output image IOutput can be written as a
composite function:

IOutput = MC(MB(MA(IInput))). (4.1)

where M is the selected SOTA method, A,B and C are image restoration tasks, i.e. MA

means the SOTA method for task A.

The second joint solution solves the problems in sequential order as well. In contrast, this
joint solution trains a specific CNN for each image restoration task, instead of using the
trained model directly. Similarly, the integrated function for this solution is expressed as:

IOutput = FC(FB(FA(IInput))). (4.2)

where F denotes the mapping implemented by a deep convolutional neural network.

Although these two joint solutions can solve multiple tasks step by step, the defects gen-
erated by the previous image processing will affect the subsequent ones and lead to
performance drop. For example, denoising algorithms not only eliminate noise, but also
smooth details and texture in the image. When we process super-resolution on the de-
noised images, the blur effect will be magnified and reduce the quality of resulting images,
as shown in Figure 4.1.

In order to minimize the effects caused by task interaction, the last joint solution exploits
only one end-to-end network to solve multiple of problems at once. Therefore, this convo-
lutional neural network is a combined version of all specific ones. Then, the synthesized
function is:

IOutput = F(IInput). (4.3)

In this thesis, we mainly focus on the mixture problem of denoising, demosaicing and
super-resolution. We propose to process denoising before other two tasks like in the
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(a) Ground-truth image from
Urban100.

(b) SR result of denoised LR
image.

(c) SR result of clean LR im-
age.

Figure 4.1. The interactions between denoising and super-resolution. The denoising
process leads to smooth the high frequency details. The selected denosing model is
DnCNN [8] (color version) with σ = 25, and VDSR [9] for super-resolution with scale
factor 2.

existing method [5], because a noise will impact demosaicing and super-resolution and
lead to noticeable artifacts. On the other hand, the super-resolution should be the last
step. In reality, because of having bigger size, the super-resolved image will occupy
more memory inside the device. Therefore, for the sequential version joint solutions, the
execution order of three tasks is denoising, demosaicing and super-resolution.

In this Chapter, the joint solutions of two tasks, joint denoising and demosaicing, and joint
demosaicing and super-resolution, are first described in Section 4.1. Continuously, the
joint solutions of denoising, demosaicing and super-resolution are presented in Section
4.2.

4.1 Joint Solutions of Two Tasks

We first start from finding the joint solutions of two image restoration (IR) tasks. As men-
tioned above, the order of processing of three IR tasks is denoising and demosaicing and
super-resolution. Denoising and demosaicing can be processed on the mobile devices,
then super-resolved images on the picture viewer. Or, digital cameras only generate de-
noised images and demosaicing and super-resolution is executed by a external image
processor. Under this premise, the joint solutions of denoising and demosaicing (DnDm)
and joint solutions of demosaicing and super-resolution (DmSR) are discussed in this
part.

4.1.1 Joint Solutions of Denoising and Demosaicing

In the blend problem of denoising and demosaicing, for a given color image I, its noisy
raw mosaic image INM is the input, and the desired output shold be a clean color image Ĩ.

Apply existing SOTA methods. The SOTA methods selected for denosing and demo-
saicing are DnCNN [8] and DJDD [2], respectively. Both two SOTA methods publicly
provide implementation code and trained models. We input noisy mosaic images into
DnCNN first, and exploit DJDD to demosaic the noise removed images. As the compos-
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ite function presented in equation (4.1), this formula can be materialized as:

Ĩ = DJDD(DnCNN(INM )), (4.4)

where DnCNN trained model is a gray scale version, because the raw input has only one
color channel. And the DJDD model used in this joint solution is a noise-free version,
which attains better performance than noisy version without noise input.

Train specific CNNs. Considering the published models of SOTA methods are only
trained for single task, the specific networks are trained with specific data in this joint
solution. In order to solve denosing and demosaicing in sequence, a denoise network
DN is trained first to generate denoised raw images, which are the input data of the
following demosaic network DM . Therefore, the compound equation (4.2) is transferred
to:

Ĩ = FDM
(FDN

(INM )). (4.5)

For fair comparison, the structures of networks are same with the SOTA methods (DnCNN
and DJDD). Since the output of previous network (DN ) is the input of back network (DM ),
these two convolutional networks must be trained separately, and the previous one should
be trained first. The denoising is first performed to produce noise-free mosaic image˜︂IM = FDN

(INM ), i.e. the training target of DN is corresponding raw mosaic image IM .
Then, the mapping of DM network directly works on the denoised raw image ˜︂IM , the
output of DN . So, the loss functions of networks DN and DM are computed as:

LDN
= L(FDN

(INM )− IM ),

LDM
= L(FDM

(FDN
(INM ))− I).

(4.6)

where L is the loss function, such as the ℓ1-norm loss and ℓ2-norm loss.

Combined CNN. Even though training specific CNN for each task can solve the mix-
ture problem of two tasks, it is complex in operation and redundant in network structure.
Some layers in these two networks are doing same thing and can be combined together.
It makes sense to merge two networks into an end-to-end CNN. According to equation
(4.3), the noise-free color image Ĩ can be obtained directly by the joint network for de-
noising and demosaicing:

Ĩ = FJDNDM
(INM )). (4.7)

The structure of network JDNDM is identical to the structure of DJDD [2]. Although
there is a public trained DJDD model, we have trained another specific model with our
databases for comparison with other joint solutions fairly. The joint denoising and demo-
saicing mapping is performed directly on the noisy mosaic images to obtain noise-free
color images. The loss function of network JDNDM is computed as:

LJDNDM
= L(FJDMDN

(INM )− I). (4.8)
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4.1.2 Joint Solutions of Demosaicing and Super-Resolution

For joint demosaicing and super-resolution, we have to convert the low-resolution (LR)
mosaic image ILRM into high-resolution (HR) color image IHR, i.e. Ĩ.

Applying existing SOTA methods. Similar to joint denoising and demosaicing, we
choose two SOTA methods to process demosaicing and super-resolution separately. For
demosaicing, the selection of trained model is still DJDD [2] noise-free version. For super-
resolution, we apply VDSR [9], which only works on luminance channel (y channel) and
adopts BICUBIC interpolation on chroma channels. Then, for a given low-resolution (LR)
mosaic image ILRM , its corresponding HR color image IHR is computed as:

Ĩ = IHR = V DSR(BI(DJDD(ILRM ))). (4.9)

where BI means BICUBIC interpolation. VDSR only learns residual image between
BICUBIC scaled input and desired HR output, i.e. residual learning. Therefore, before
super-resolution, the demosaiced LR image generated by DJDD need to be up-sampled
to the desired resolution first.

Training specific CNNs. In this joint solution, the demosaicing CNN network (DM ) and
the SR CNN network (SR) are trained in a sequence and separately. The output image
can be computed as:

Ĩ = IHR = FSR(FDM
(ILRM )). (4.10)

In order to compare fairly, for demosaicing, the structure of CNN is similar to DJDD, and
for SR, a modified VDSR model is trained. Since VDSR only works on luminance channel
of YCbCr color space, we need to train a VDSR model with RGB input instead of single
channel input. The mosaic low-resolution input ILRM first processed by DM network to
produce corresponding color LR image (˜︃ILR). Before performing the modified VDSR, the
output of the demosaicing network should be up-scaled by BICUBIC Interpolation. The
specific loss functions of two CNNs are:

LDM
= L(˜︃ILR − ILR) = L(FDM

(ILRM )− ILR),

LSR = L(FSR(˜︃ILR)− I) = L(FSR(FDM
(ILRM ))− I).

(4.11)

where ILR is the low-resolution image of corresponding ground-truth I.

Combined CNN. Our combined CNN of joint demosaicing and super-resolution (JDMSR)
is illustrated in Figure 4.2. The network structure is inspired by another deep joint demo-
saicing and SR network [1], but we have replaced the 24 residual blocks (RB) [50] in
original network with 6 residual-in-residual dense blocks (RRDB) [46]. The details of RB
and RRDB are described in Section 3.3 and Figure 3.5. Similar to [1], the network ar-
chitecture consists of three parts: color extraction, feature extraction and reconstruction.
The Bayer input is first down-sampled by a convolutional layer with 2× 2 kernel size and
2×2 stride size, resulting in a quarter-resolution multi-channel image. The color extraction
step includes one convolutional layer with big filter (256), and one deconvolutional layer
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with 2× 2 stride size to upscale the feature maps to the prime resolution. Feature extrac-
tion stage applies 6 RRDBs and a big filter (256) convolution, which is prepared for the
upsampling. In the reconstruction part, the deconvolutional layer is used again to convert
the extracted features into full resolution features. The stride size of this deconvolutional
layer should be equal to the scale factor. The following is the final convolutional layer to
generate the desired resolution color image. The summary of the network architecture is
shown in Table 4.1.

Figure 4.2. Illustration of our deep joint demosaicing and super-resolution network ar-
chitecture. The network is a feed-forward fully-convolutional network that maps a low-
resolution Bayer image to a high-resolution color image. Conceptually the network has
three components: color extraction of Bayer image, non-linear mapping from Bayer image
representation to color image representation with feature extraction, and high-resolution
color image reconstruction. In this figure, the scale factor is 2.

Table 4.1. The summary of our network architecture. The number of RRDBs is 6 and we
set the number of filters C = 256 and W = 64.

Stage Layer Output Shape

Input Input (Bayer image) h× w × 1

Color Extraction
Down-sampling h

2 × w
2 × 4

Conv h
2 × w

2 × C

Up-sampling h× w × C
4

Feature Extraction

RRDB h× w ×W

... ...

RRDB h× w ×W

Conv h× w × C

Reconstruction
Up-sampling (sf × h)× (sf × w)×W

Conv (sf × h)× (sf × w)× 3

Output Output (color image) (sf × h)× (sf × w)× 3

According to equation (4.3), the high-resolution color output IHR is generated by the
following function:

Ĩ = IHR = FJDMSR(I
LR
M )), (4.12)

and its loss function is:

LJDMSR = L(FJDMSR(I
LR
M )− I). (4.13)
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4.2 Joint Solutions of Denoising, Demosaicing and
Super-Resolution

Since the joint solutions of two tasks are investigated in Section 4.1, we cannot only apply
the joint solutions proposed in equations (4.1-4.3), but also exploit new joint solutions to
solve the mixture problems of three kinds of image processing. The new joint solution
combines two tasks first, then sequentially process another task. And there are two
versions of this new joint solution, which we call here ’existing methods’ and ’specific
training’. For the ’existing methods’ version, the function is computed as:

IOutput = MC(MAB(IInput)),

or

IOutput = MBC(MA(IInput)).

(4.14)

where M is an existing method, A,B and C are image restoration tasks. MAB means the
method that processes A and B jointly. Similarly, the function of a ’specific training’ is:

IOutput = FC(FAB(IInput)),

or

IOutput = FBC(FA(IInput)).

(4.15)

where F denotes the specific trained mapping.

This kind of joint strategy is meaningful and helpful in realistic applications. Considering
the limitation of storage of digital cameras, it is sensible to process denoising and demo-
saicing on the digital cameras first and super-resolve the low resolution images on the
external image viewer. Therefore, for the mixture problem of denoising, demosaicing and
super-resolution, the SR processing may be performed separately (or demosaicing and
SR).

Base on this, we can solve the joint problem of denoising, demosaicing and SR with more
joint solutions. For a given noisy low resolution raw mosaic image LRN

M , its corresponding
HR color image IHR can be computed by several ways.

Applying existing methods. First processing three tasks separately, the selections of
SOTA methods are DnCNN [8] for denoising, DJDD [2] for demosaicing, and VDSR [9]
for SR. The DJDD model used here is the noise-free version, and the VDSR only works
on luminance channel (y channel in YCbCR color space). The execution order has been
discussed above: denosing first, demosaicing next, and SR at last. Then, the methods in
equation (4.1) are replaced by specific methods:

Ĩ = IHR = V DSR(BI(DJDD(DnCNN(LRN
M )))). (4.16)

where Ĩ is the desired output, and BI means BICUBIC interpolation (see also equation
(4.9)).
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Applying existing methods and combined CNN. We can also process denoising and
demosaicing together, and then sequentially process super-resolution. The selection of
joint network of denoising and demosaicing is DJDD [2], and the selection of SR methods
is VDSR [9]. The composite function can be written as:

Ĩ = IHR = V DSR(BI(DJDD(LRN
M ))). (4.17)

Similarly, denoising can be performed separately, and then jointly demosaicing and SR.
We have chosen SOTA method DnCNN [8] for denoising. Since there is no public trained
model for joint demosaicing and SR, we adopt our own JDMSR model, which is de-
scribed in Section 4.1.2. An equation (4.14) is converted to:

Ĩ = IHR = JDMSR(DnCNN(LRN
M )). (4.18)

Training specific CNNs. In addition to applying existing methods, we can also specifi-
cally train these networks in a sequence to solve the compound problem of joint denois-
ing, demosaicing and SR. Same with ’existing methods’, we apply DnCNN [8] for denos-
ing, DJDD [2] noise-free version for demosaicing, and VDSR [9] for super-resolution.
These specific networks are referred to as DN , DM and SR. Then, the HR color image
is computed as:

Ĩ = IHR = FSR(FDM
(FDN

(LRN
M ))). (4.19)

The loss functions of three networks are:

LDN
= L(˜︃ILRM − ILRM ) = L(FDN

(LRN
M )− ILRM ),

LDM
= L(FDM

(˜︃ILRM )− ILR) = L(FDM
(FDN

(LRN
M ))− ILR),

LSR = L(FSR(˜︃ILR)− I) = L(FSR(FDM
(FDN

(LRN
M )))− I).

(4.20)

where ILRM , ILR regards to mosaic LR image and LR image of ground-truth I.

Training a specific CNN and combined CNN. In addition, the partial combining strategy
can be used in this joint solution. We have replaced denoising and demosaicing models
with the specifically trained DJDD [2], which is a SOTA method of joint denoising and
demosaicing. The composite function is:

Ĩ = IHR = FSR(FDNDM
(LRN

M )). (4.21)

where FDNDM
is the feature mapping of trained DJDD model. Its loss functions are:

LDNDM
= L(˜︃ILR − ILR) = L(FDNDM

(LRN
M )− ILR),

LSR = L(FSR(˜︃ILR)− I) = L(FSR(FDNDM
(LRN

M ))− I).
(4.22)

On the other hand, we sequentially train joint demosaicing and super-resolution model
after a specific DnCNN model. The description of joint demosaicing and SR network is
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given in Section 4.1.2. Equation (4.15) is then transferred to:

Ĩ = IHR = FJDMSR(FDN
(LRN

M )). (4.23)

where FJDMSR is the feature mapping of a trained JDMSR model. The loss functions
are computed by:

LDN
= L(˜︃ILRM − ILRM ) = L(FDN

(LRN
M )− ILRM ),

LJDMSR = L(FJDMSR(
˜︃ILRM )− I) = L(FJDMSR(FDN

(LRN
M ))− I).

(4.24)

Combined CNN. We propose a deep CNN for joint denosing, demosaicing and super-
resolution, regarded as JDNDMSR. The structure of JDNDMSR network combines
the architecture of JDMSR and the denoising strategy of DJDD [2]. Figure 4.3 shows
the denoising strategy of DJDD. Because the noise level is known in advance, we can
parametrize a network with this. The simplest way is to add a noise level input σ, and
replicate it spatially and concatenating it with the packed mosaic vector. Through this
noise vector, we will argument every pixel with the same noise value. Therefore, every
layer downstream depends on it, which effectively parametrizes the learned filters.

Figure 4.3. The denosing strategy of DJDD [2] network.

Inspired by this, the denoising processing of JDNDMSR is enable to implement easily
by just adding a noise estimation input. The network architecture of JDNDMSR is il-
lustrated in Figure 4.4. In addition to the noisy input, all layers are identical to the ones
of JDMSR. The mosaic input is first down-sampled into a 4D vector, and is concate-
nated with the noise input vector to form 5D vectors. After color extraction, a series of
residual-in-residual-dense-blocks filter the image to interpolate the missing color values.
We perform last group of convolutions to reconstruct the full resolution image. The sum-
mary of the network architecture is provided in Table 4.2.

According to equation (4.3), the high-resolution color output IHR is generated by the
following function:

Ĩ = IHR = FJDNDMSR(LR
N
M )), (4.25)

and its loss function by:

LJDNDMSR = L(FJDNDMSR(LR
N
M )− I). (4.26)
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Figure 4.4. Illustration of our deep joint denoising, demosaicing and super-resolution
network JDNDMSR.

Table 4.2. The summary of our JDNDMSR network architecture. The number of RRDBs
is 6 and we set the number of filters C = 256 and W = 64.

Stage Layer Output Shape

Input
Input (Bayer image) h× w × 1

Input (noise estimate) h
2 × w

2 × 1

Color Extraction
Down-sampling Bayer input h

2 × w
2 × 4

Concatenate with noise input h
2 × w

2 × (4 + 1)

Conv h
2 × w

2 × C

Up-sampling h× w × C
4

Feature Extraction

RRDB h× w ×W

... ...

RRDB h× w ×W

Conv h× w × C

Reconstruction
Up-sampling (sf × h)× (sf × w)×W

Conv (sf × h)× (sf × w)× 3

Output Output (color image) (sf × h)× (sf × w)× 3

In the next Chapter 5, all above joint solutions will be arranged in the comparison experi-
ments.
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5 EXPERIMENTAL FRAMEWORK

5.1 Experimental setup

For the training, we have applied Nvidia Tesla P100 GPU with 16 GB memory from the
TUT TCSC Narvi computing cluster. All testing experiments run on a Linux desktop
computer, with 3.4 GHz Intel i7-3770 CPU, 32 GB of RAM, and Nvidia GTX 1050Ti GPU
with 4GB of memory.

Training data. For training and validation of the network, we used publicly available
dataset DIV2K [58] which contains 900 2K resolution images (800 for training, 100 for
validation) for image restoration tasks.

Data preprocessing. To create simulated input images IInput, we corrupt the GT images
I by preprocessing. For different mixture problems, the input data is processed by dif-
ferent kinds of distortions in a certain sequence. Figure 5.1 shows how the input image
IInput is generated sequentially from the ground-truth image IGT . For data preprocess-
ing of denoising, noisy input image is generated by adding Gaussian noise (the orange
blocks in Figure 5.1) with the noise levels (σ) 10, 20 and 30. For data preprocessing of
demosaicing, we mosaic the color image to a single-channel image in the Bayer CFA
pattern. In this thesis, all experiments adopt ’rggb’ Bayer pattern order (the green blocks
in Figure 5.1). For data preprocessing of super-resolution, the HR image is BICUBIC
down scaled (the yellow blocks in Figure 5.1) with the scale factors (SF) 2, 3 and 4. The
down-sampling is processed in MATLAB with imresize function.

Figure 5.1. Data preprocessing of different mixture problems. Dn, Dm and SR denote
denoising, demosaicing and super-resolution, respectively.

For each training epoch, the mini-batch size is 64, and the patch size is 64×64. However,
for the training of models of super-resolution, we use smaller patch size to speed up
the training when the scale factors are 3 and 4. In addition, we randomly augment the
patches by flipping horizontally or vertically and rotating 90◦.
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Training details. All models are implemented in Python with Keras. For the optimization
of network parameters, we use Adam [59] with β1 = 0.9, β2 = 0.999 and the learning rate
is initialized to 0.001. All training continue 100 epochs. There are 2000 training steps and
200 validation steps in each epoch. For the first 40 epochs, the learning rate is constant,
then linearly declines to 0 in the remaining 60 epochs. Except for DnCNN [8], which uses
a sum of squares error as a loss function, the loss function applied during training is mean
square error (MSE). Only the model with the smallest validation loss is saved.

5.2 Experiments on different test datasets

Test dataset. We compare different joint solutions on several public benchmark datasets,
such as McMaster [60], Kodak, B100 [61] and Urban100 [62]. Among them, McMaster
and Kodak are often used for benchmark in demosaicing work, and B100 and Urban100
are often applied in super-resolution methods. Dataset B100 contains 100 human seg-
mented natural images, and dataset Urban100 is a dataset of 100 urban images with
many similar structures. These four datasets are widely used in other image restoration
works [2, 5, 8, 9, 63, 64].

Comparisons of joint solutions. In this thesis, there are three mixture problems dis-
cussed, denoising and demosaicing (DnDm), demosaicing and super-resolution (DmSR),
and denoising, demosaicing and super-resolution (DnDmSR). For each synthesis prob-
lem, we propose several joint solutions, whose main features are described below.

Table 5.1 shows details of the joint solutions of denoising and demosaicing. The second
and third columns are the execution order and the CNN networks used in each joint
solution. DnCNN represents the deep denoising network proposed by Zhang et al. [8],
and DJDD regards to the deep joint denoising and demosaicing network [2]. Since DJDD
is an existing SOTA method that combines denoising and demosaicing, its joint solution
type is existing combined CNN. The DJDD model used for demosaicing only is a noise-
free version of the model. The last columns show what CNN library is applied and the
number of convolutional layers in every joint solution.

Table 5.1. Summary of the compared joint solutions of Denoising (Dn) and Demosaic-
ing (Dm). JDnDm denotes that denoising and demosaicing are processed together. The
networks marked by ∗ are re-implemented and trained.

Joint Solution Sequence Network Platform Layers

Existing Method Dn→Dm DnCNN→DJDD MatConvNet→CAFFE 17+15

Specific CNNs Dn→Dm DnCNN∗ →DJDD∗ Keras→Keras 17+15

Combined CNN JDnDm DJDD∗ Keras 15

Existing Combined CNN JDnDm DJDD CAFFE 15

The summary table of joint solutions of demosaicing and super-resolution is showed in
Table 5.2. For each solution, the solution type, processing sequence, exploited networks,
platform and amount of layers are listed clearly. DJDD and VDSR are selected SOTA
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methods for demosaicing and super-resolution, respectively. In addition to apply directly,
these two networks are also specific trained, which marked with ∗. For the combined
CNN, the network JDMSR is used, which is proposed in Section 4.1.2.

Table 5.2. Summary of the compared joint solutions of Demosaicing (Dm) and Super-
Resolution (SR). JDmSR denotes that demosaicing and super-resolution are processed
together. The networks marked by ∗ are re-implemented and trained.

Joint Solution Sequence Network Platform Layers

Existing Method Dm→SR DJDD→VDSR CAFFE→MatConvNet 15+20

Specific CNNs Dm→SR DJDD∗ →VDSR∗ Keras→Keras 15+20

Combined CNN JDmSR JDMSR Keras 6 RRDBs

For the mixture problem of denoising, demosaicing and super-resolution, Table 5.3 presents
the summary of comparison of different joint solutions. There are five types of joint so-
lutions. For ’Existing Method’ and ’Specific CNNs’, tasks can be combined partial, for
example, combine denoising and demosaicing first, or combine demosaicing and SR.
So, DJDD∗ (Table 5.1) and JDMSR (Table 5.2), the ’Combined CNN’ joint solutions for
two tasks, are exploited in this comparison. The second column is the sequence of
processing. As it was mentioned above, the execution order of the mixture problem is
denoising followed by demosaicing, and SR at the end. In the third column are the mod-
els we adopted, pre-trained models are not marked. The JDMSR model in third row
denotes the trained model in previous comparison, joint demosaicing and SR. The last
two columns are the platform of implementation and the number of convolutional layers,
respectively.

Table 5.3. Summary of the compared joint solutions of Denoising (Dn), Demosaicing
(Dm) and Super-Resolution (SR). JDnDm denotes that denoising and demosaicing are
processed together. JDmSR combines demosaicing and super-resolution. JDnDmSR
is joint denoising, demosaicing and super-resolution. The networks marked by ∗ are
re-implemented and trained.

Joint Solution Sequence Network Platform Layers

Existing Method
Dn→Dm DnCNN→DJDD MatConvNet→CAFFE

17+15+20
→SR →VDSR →MatConvNet

Existing Method + Dn→JDmSR DnCNN→ JDMSR MatConvNet→Keras 17+6RRDBs

Combined CNN JDnDm→SR DJDD→VDSR CAFFE→MatConvNet 15+20

Specific CNNs
Dn∗ → DnCNN∗ → Keras→

17+15+20
Dm∗ →SR∗ DJDD∗ →VDSR∗ Keras→Keras

Specific CNN + Dn∗ →JDmSR∗ DnCNN∗ → JDMSR∗ Keras→Keras 17+6RRDBs

Combined CNN JDnDm∗ →SR∗ DJDD∗ →VDSR∗ Keras→Keras 15+20

Combined CNN JDnDmSR JDNDMSR Keras 6 RRDBs

This chapter shows the framework of experiments and the details of comparisons be-
tween joint solutions. Both numerical results and visualize results with the analysis will
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be given in next Chapter 6.
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6 ANALYSIS OF EXPERIMENTAL RESULTS

This chapter includes both the quantitative analysis and the qualitative analysis of exper-
imental results, in Section 6.1 and Section 6.2, respectively.

6.1 Quantitative analysis

Evaluation metrics. Quantitative analysis was performed with cPSNR and SSIM met-
rics, by calculating them on full RGB image. The results are averaged over whole dataset.
For super-resolved image, the borders of the image are shaved off, with the scaling factor
as the width of the shaved border.

Quantitative analysis of joint denoising and demosaicing. Table 6.1 shows the cP-
SNR and SSIM results for noise levels 10, 20 and 30, respectively. Higher values indicate
better performance, and in each column the best values for each noise level are high-
lighted with red color, the second best with blue and the third best with green. In this
table, the joint solution ’Specific CNNs’ obtains best performance for all noise levels. Be-
cause our combined network DJDD∗ is re-implemented from original DJDD [2], and the
model is specifically trained with the fix noise level. However, the original DJDD is trained
with a continuous range of noise levels, and the noise level is randomly sampled from 0 to
20. When the noise level is set to 10, the original DJDD trained model attains higher val-
ues than our specific trained DJDD∗ model. As the noise increases to 20, the cPSNR of
DJDD∗ model is improved by at least 0.37dB than the original DJDD model. In contrast,
applying SOTA methods get worst performance. It should be caused by the interactions
between two processing. The denoising processing eliminates not only noise, but details
in the image, which affects demosaicing processing. Although training specific models for
each IR task can generate best result, the computational complexity and structural redun-
dancy are more serious than the combined version, as well. This is a trade-off between
high performance and complexity.

It should be noted that we connect the trained DnCNN∗ model with DJDD∗ network in the
’Specific CNNs’ joint solution. Due to the limitation of the memory space, image patches
are first creates from trained DnCNN∗, then directly input into DJDD∗ without storage.
But the parameters of DnCNN∗ part are not trainable, i.e. transferring the well trained
denoising mapping. In addition to this transfer learning version, we also train a substan-
tive DJDD∗ for demosaicing. The noise level is 10 and the training set and validation set
are first added Gaussian noise, then denoised by trained denosing model DnCNN∗. The
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Table 6.1. Quantitative comparison of different approaches on the mixture problem of
joint denoising and demosaicing using dataset Kodak, McMaster [60]. The noise level is
set to 10, 20 and 30. DJDD [2] do not provide the model for noise level more than 20.

Method
Joint Noise McMaster Kodak
solution level cPSNR SSIM cPSNR SSIM

DnCNN→DJDD Existing Method 28.65 0.8999 29.44 0.8691

DnCNN∗ →DJDD∗ Specific CNNs 33.39 0.9658 33.60 0.9585

DJDD∗ Combined CNN 32.74 0.9622 33.07 0.9535

DJDD Existing Combined CNN

10

33.14 0.9629 33.22 0.9537

DnCNN→DJDD Existing Method 24.48 0.7693 25.89 0.7218

DnCNN∗ →DJDD∗ Specific CNNs 30.70 0.9399 30.65 0.9231

DJDD∗ Combined CNN 30.52 0.9391 30.45 0.9220

DJDD Existing Combined CNN

20

30.15 0.9313 30.00 0.9101

DnCNN→DJDD Existing Method 21.58 0.6313 23.71 0.5897

DnCNN∗ →DJDD∗ Specific CNNs 28.96 0.9184 28.91 0.8945

DJDD∗ Combined CNN

30

28.82 0.9163 28.81 0.8927

input patches of DJDD∗ are generated from these images. The cPSNR values of this
model (without transfer) are even higher, 33.49dB on McMaster and 33.71dB on Kodak,
improved by 0.1dB than the transfer version.

Quantitative analysis of joint demosaicing and super-resolution. The cPSNR and
SSIM values for scale factor 2, 3 and 4 are described in Table 6.2. Same as before, for
each scale factor, in one column the best values are highlight with red, the second best
and the third best ones are highlight with blue and green, respectively. From this table, we
can find that the ’Combined CNNs’ attains highest values for all scale factors. For cPSNR,
the results of ’Combined CNNs’ joint solution on McMaster dataset over the second place
by at least 0.66 dB, and the values on Kodak dataset at least 0.27 dB beyond other joint
solutions. For other joint solutions, directly applying the trained models perform better
than specific trained models. We thought training a three-channel VDSR is more com-
plex and harder than training a single-channel one. Although we would like to train both
luminance channel and chroma channels together to improve the performance, the com-
putational complexity increases in geometric progression. Therefore, the modification of
VDSR needs deeper learning to surpass the original version.

Different to the experiments of joint denoising and demosaicing, we use transfer learn-
ing in ’Combined CNN’ instead of ’Specific CNNs’, and only for scale factor 4. For the
’Specific CNNs’, the training image set of the later network is generated by the previous
trained model. But for scale factor 4, in addition to a direct expansion, we train an upsam-
pling twice model, i.e. add another 2×2 upscale after the model for scale factor 2. So the
learned parameters for scale factor 2 can be transferred to the deeper model JDMSR

for scale factor 4. This kind of ’easy-hard’ transfer learning has been pointed out in an-
other low-level vision problem, compression artifacts reduction [65]. In this experiment,
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Table 6.2. Quantitative comparison of different approaches on the mixture problem of
joint demosaicing and super-resolution using dataset Kodak, McMaster [60]. The scale
factor is set to 2, 3 and 4.

Method
Joint Scale McMaster Kodak
solution factor cPSNR SSIM cPSNR SSIM

DJDD→VDSR Existing Method

2

31.67 0.9590 31.08 0.9404

DJDD∗ →VDSR∗ Specific CNNs 31.37 0.9562 30.91 0.9395

JDMSR Combined CNN 32.46 0.9643 31.44 0.9445

DJDD→VDSR Existing Method
3

28.52 0.9234 28.02 0.8870

DJDD∗ →VDSR∗ Specific CNNs 28.53 0.9219 28.02 0.8870

JDMSR Combined CNN 29.19 0.9317 28.29 0.8929

DJDD→VDSR Existing Method

4

26.64 0.8908 26.53 0.8477

DJDD∗ →VDSR∗ Specific CNNs 26.59 0.8877 26.40 0.8435

JDMSR Combined CNN 27.24 0.8996 26.83 0.8556

JDMSRT Combined CNN 27.32 0.9018 26.88 0.8566

the model used transfer learning regard as JDMSRT . Since the training bases on a well-
trained one, the training only continue 40 epochs with a lower initial learning rate 0.0001,
which linearly decreases to 0. In Table 5.2, the model with transfer learning (JDMSRT )
gets better performance than the one without transfer learning (JDMSR), because the
features learned from relatively easier task support a good starting point, which is bene-
ficial to converge. Therefore, this kind of ’easy-hard’ transfer is very helpful, and we also
utilize this strategy in the further experiments.

Quantitative analysis of joint denoising, demosaicing and super-resolution. For
the comparison of joint solutions of denoising, demosaicing and SR, we fixed the noise
level to 10 and the scale factor to 2. Table 6.3 compares 8 joint solutions. For our joint
solutions, the highest three numbers in each column are highlighted with red, blue and
red, respectively.

First, in Table 5.3, it is obvious that the performances of the ’Existing Methods’ type of
joint solutions are significantly worse than the performance of their specifically trained
ones. For the fully sequential joint solutions, the specific trained models improves the
cPSNR values at least by 2.3 dB. For partial combined joint solutions, both cPSNR and
SSIM values are improved by the specific training.

Second, the combined version networks attain best results. Compared to JDMSR,
JDNDMSR only concatenates a noise input vector with the mosaic vectors and ob-
tains the third best result. JDNDMSRT transfers the learned parameters of pre-trained
JDMSR model with scale factor 2 in Table 6.2. This ’easy-hard’ transfer strategy raise
the values a little.

Third, the sequential joint of DnCNN∗ and JDMSR becomes the second best joint so-



34

Table 6.3. Quantitative comparison of different approaches on the mixture problem of
joint denoising, demosaicing and super-resolution using dataset Kodak, McMaster [60].
The noise level is 10 and the scale factor is set to 2.

Joint
Method

McMaster Kodak
solution cPSNR SSIM cPSNR SSIM

Existing Method
DnCNN

25.99 0.8522 26.18 0.7868
→DJDD→VDSR

Existing Method + DnCNN→ JDMSR 26.03 0.8546 26.19 0.7839

Combined CNN DJDD→VDSR 28.40 0.9248 28.13 0.8812

Specific CNNs
DnCNN∗ →

29.14 0.9248 28.53 0.8913
DJDD∗ →VDSR∗

Specific CNN + DnCNN∗ → JDMSR∗ 29.46 0.9288 28.73 0.8953

Combined CNN DJDD∗ →VDSR∗ 28.88 0.9212 28.43 0.8887

Combined CNN
JDNDMSR 29.38 0.9268 28.72 0.8951

JDNDMSRT 29.48 0.9290 28.75 0.8959

lution in this comparison. And its values are very close to the best ones and higher
than the combined CNN JDNDMSR. As mentioned in Section 4.1.2 and Section 4.2,
the structures of JDMSR and JDNDMSR are almost identical. Therefore, even though
the quantitative performances are similar, JDNDMSR attains a comparable result with
less complexity. In addition, the little better performance of JDNDMSRT proves that the
DnCNN processing can be replaced by applying the denoising strategy (Figure 4.3).

In Table 5.3, there is an interesting phenomenon is that the performance of directly ap-
plying trained models of DnCNN and JDNDMSR (the second method) is lower than the
specific trained ones (the fifth method) at least by 2.54 dB on cPSNR. In this experiment,
we performed DnCNN trained model on raw image. Since DnCNN model is trained for
gray-scale image, we reproduce the denoised raw image by processing denoising for
each color channel (R, G, B). Then we apply JDNDMSR on the denoised images, and
get the test results in Table 6.4. We can find that the cPSNR and SSIM values are worse
than the ones in Table 5.3. Thus, we think the JDNDMSR network is very sensitive to
the input, that is the reason why the specific trained models attain better performance
significantly.

Table 6.4. Test a new DnCNN→ JDMSR on dataset Kodak, McMaster [60]. The noise
level is 10 and the scale factor is set to 2.

McM Kodak

cPSNR SSIM cPSNR SSIM

25.51 0.8142 24.79 0.7216

More experiments on JDNDMSRT . Since the combined network JDNDMSRT attains
the best performance in above comparison of different joint solutions of denoising, demo-
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saicing, and SR, we have tested it on more datasets with more noise levels. Table 6.5
shows the average cPSNR and SSIM results of JDNDMSRT on four different datasets,
McMaster [60], Kodak, B100 [61] and Urban100 [62]. The scale factor is 2 and the noise
levels are 10, 20 and 30. It is obvious that the noise affects the performance directly. As
the noise level increasing, the qualities of JDNDMSRT on all datasets are dropped. In
addition, the values of two challenging datasets B100 and Urban100 are conspicuously
lower than the ones of McMaster and Kodak.

Table 6.5. The average cPSNR and SSIM results of JDNDMSRT on different datasets.
The scale factor is 2 and the noise levels are 10, 20 and 30.

Noise McMaster Kodak B100 Urban100
level cPSNR SSIM cPSNR SSIM cPSNR SSIM cPSNR SSIM

10 29.48 0.9290 28.75 0.8959 27.31 0.8708 26.73 0.8885

20 27.49 0.8978 27.12 0.8578 25.67 0.8243 25.18 0.8504

30 26.17 0.8728 26.06 0.8303 24.61 0.7907 24.06 0.8177

Since JDNDMSRT surpasses other joint solutions in the quantitative comparison, we
re-train it with some other cost functions besides MSE. Inspired by [17], we train the
network with six different cost functions: MSE, MAE, SSIM, MS-SSIM, Mix1 and Mix2,
which are introduced in 2.2. For the parameter α of Mix1 and Mix2, we test a few different
values to balance the contribution of the two losses. We empirically set α = 0.84, which is
also recommended by the authors of [17]. Then, the resulting images of trained models
are compared by four image quality metrics: cPSNR, SSIM, MS-SSIM and CSSIM [18].
Because of the limitation of GPU, the patch size is 32 × 32 during training. We still fix
the scale factor to 2 and the noise level to 10. The comparisons results on McMaster
and Kodak datasets are shown in Table 6.6 and Table 6.7, respectively. It is obvious that
the model trained with MAE cost function obtains best performance for all image quality
metrics and on all datasets. Compared with the model trained with MSE, the cPSNR
values of MAE version is improved by at least 0.24dB.

Table 6.6. Average value of different image quality metrics on the McMaster testing
dataset for JDNDMSRT trained with different cost functions. The noise level is 10 and
the sale factor is 2. For cPSNR, SSIM, MS-SSIM, and cSSIM the value reported here
has been obtained as an average of the three color channels. Best results are shown in
bold.

McMaster Training cost function

Image quality metric MSE MAE SSIM MS-SSIM Mix1 Mix2

cPSNR 29.22 29.48 28.70 28.54 28.81 28.80

SSIM 0.9245 0.9288 0.9213 0.9174 0.9223 0.9228

MS-SSIM 0.9545 0.9575 0.9535 0.9512 0.9533 0.9536

CSSIM 0.9782 0.9799 0.9770 0.9760 0.9769 0.9771

Summary. First, whether for mixture problem of two or three tasks, the combined CNN
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Table 6.7. Average value of different image quality metrics on the Kodak testing dataset
for JDNDMSRT trained with different cost functions. The noise level is 10 and the sale
factor is 2. For cPSNR, SSIM, MS-SSIM, and cSSIM the value reported here has been
obtained as an average of the three color channels. Best results are shown in bold.

Kodak Training cost function

Image quality metric MSE MAE SSIM MS-SSIM Mix1 Mix2

cPSNR 28.50 28.74 28.09 28.00 28.13 28.11

SSIM 0.8890 0.8953 0.8870 0.8800 0.8861 0.8838

MS-SSIM 0.9401 0.9442 0.9406 0.9394 0.9406 0.9406

CSSIM 0.9711 0.9732 0.9696 0.9691 0.9699 0.9698

joint solution is the best selection, which attains best performance with minimal complex-
ity and simplest network. Second, specific training the models with specific data can get
better results than using trained models directly. Third, the ’easy-hard’ transfer strategy
[65] helps the high-level network to start from a good point by the features from well-
trained low-level network. Another helpful strategy is the denoising strategy [2], which
only inputs a noise estimation vector. In summary, the JDNDMSRT model trained with
MAE loss gets best performance of the mixture problem of denoising, demosaicing and
SR.

6.2 Qualitative analysis

Qualitative analysis of joint denoising and demosaicing. Figure 6.1 compares three
joint solutions of denoising and demosaicing, DnCNN→DJDD, DnCNN∗ →DJDD∗ and
DJDD∗. We selected one image from each of the two test datasets, McMaster and Kodak.
It is obvious that the resulting images (the third column) of exploiting existing methods
contain residual noise (the top image) and color deviation (the bottom image). For the
resulting images of other joint solutions, the noise is eliminated enough. However, for the
resulting images of DJDD∗, there are some false color artifacts in McMaster image13.
And compared to the image01 of DnCNN∗ →DJDD∗, more textures on wooden doors
and windows are removed (we recommend zoom in the images to observe).

Qualitative analysis of joint demosaicing and super-resolution. The resulting im-
ages of joint demosaicing and SR are showed in Figure 6.2. The scale factor is 2 and the
Bayer pattern is ’rggb’. From left to right, there are ground-truth images and the resulting
images of three joint solutions: ’Existing Method’, ’Specific CNNs’ and ’Combined CNN’.
The test images still are selected from datasets McMaster and Kodak. In this compari-
son, it is obvious that the images produced by the combined CNN JDMSR keep more
details (image1 of McMaster) and eliminate more color artifacts caused by demosaicing
(image05 of Kodak). However, although DJDD→VDSR performs better than the specific
trained version DJDD∗ →VDSR∗ on quantitative comparison, none of the resulting im-
ages of these two joint solutions are more outstanding. The serious problems caused by
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Ground Truth Noisy mosaic DnCNN→DJDD DnCNN∗ →DJDD∗ DJDD∗

Figure 6.1. Comparison of the joint solutions of denoising and demosaicing. The first row
is image13 of McMaster dataset, and the second row is image01 from Kodak dataset. The
noise level of Gaussian noise is 10 and Bayer pattern is ’rggb’.

task interaction, such as blurring and error color artifacts, are not solved by the specific
training. In contrast, the combination of two networks not only recover more details for
super-resolution, but correct error color artifacts for demosaicing.

Ground Truth DJDD→VDSR DJDD∗ →VDSR∗ JDMSR

Figure 6.2. Comparison of the joint solutions of demosaicing and super-resolution. The
first row is image1 of McMaster dataset, and the second row is image05 from Kodak
dataset. The scale factor is 2 and Bayer pattern is ’rggb’.

Qualitative analysis of joint denoising, demosaicing and super-resolution. For com-
parison, we selected image08 from McMaster dataset, which is a sewing machine with
a yellow trademark ’SINGER’. Figure 6.3 compares all joint solutions of denoising, de-
mosaicing and SR tested on image08. For ’Existing Method’ type joint solutions (three
images on first row), the edges of the letters are not clear, such as, the bottom of letter
’S’ and letter ’G’ seems like ’C’. The ’Specific CNNs’ joint solutions (second row) recover
the letters edges but there are errors in the letters. There is discontinuity in letter ’S’ of
DnCNN∗ →DJDD∗ →VDSR and DnCNN∗ → JDMSR∗, and the same problem happens
in letter ’N’ of DJDD∗ →VDSR∗. And these three joint solutions generates color arti-
facts (in letter ’G’). Compared with the ground-truth image, our two combined networks
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(JDNDMSR and JDNDMSRT ) successfully restored the trademark with clear and clean
edges and without artifacts.

DnCNN→DJDD→VDSR DnCNN→ JDMSR DJDD→VDSR

DnCNN∗ →DJDD∗ →VDSR DnCNN∗ → JDMSR∗ DJDD∗ →VDSR∗

JDNDMSR JDNDMSRT Ground Truth

Figure 6.3. Comparison of the joint solutions of denoising, demosaicing and super-
resolution. Image08 from McMaster dataset. Noise level is 10, and scale factor is 2.
Bayer pattern is ’rggb’.

Another example image is image05 from Kodak dataset, used as an example in the com-
parison of joint demosaicing and SR. The high-frequency details of image05 is a good
tester for demosaicing. Because demosaicing algorithms are always unavoidable to gen-
erate some noticeable color artifacts in the high-frequency texture regions and strong
edges. Figure 6.4 shows the test results of 8 joint solutions on image05. The hard region
is marked with rectangle and zoomed at the right bottom corner of the image. For first
three rows, left is the ’Existing Method’ type joint solutions and right three images are
results of their specific version joint solutions. We can find that these six images include
serious and noticeable color artifacts. There are checkerboard artifacts in the resulting
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images of DnCNN→DJDD→VDSR and DnCNN→ JDMSR two joint solutions. On the
other hand, the specific trained CNNs cause error color artifacts. There are less artifacts
in the test image of DJDD→VDSR because the original DJDD [2] model is trained with
abundant challenging patches to improve the performance of demosaicing. However, too
much details and textures are removed with noise and error color artifacts, i.e. it intro-
duces a blur. In contrast, there are less color artifacts in the resulting images of our two
combined networks JDNDMSR and JDNDMSRT . JDNDMSRT even tried to restore
some texture, although the texture is not correct.
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DnCNN→DJDD→VDSR DnCNN∗ →DJDD∗ →VDSR

DnCNN→ JDMSR DnCNN∗ → JDMSR∗

DJDD→VDSR DJDD∗ →VDSR∗

JDNDMSR JDNDMSRT

Ground Truth

Figure 6.4. Comparison of the joint solutions of denoising, demosaicing and super-
resolution. Image05 from Kodak dataset. Noise level is 10, and scale factor is 2. Bayer
pattern is ’rggb’.
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7 CONCLUSION

In this thesis, a comparative analysis on joint solutions of the mixture problems of multiple
image restoration (IR) tasks is performed. These joint solutions are mainly focus on deep
convolutional neural network (CNN) methods, whose theoretical basics are discussed in
Chapter 2. The IR tasks we concerned in this thesis are denoising, demosaicing and
super-resolution (SR). The general theory about these ill-posed problems are also intro-
duced in Chapter 2, and their recently related works are presented in Chapter 3.

The joint solutions of the mixture problems can be categorised to five groups, which are
discussed in Chapter 4. The first kind of joint solution is applying suitable existing SOTA
methods to solve multiple tasks in sequence. However, there is a challenge is that deep
learning often requires to train a new network or to fine-tune an existing one for even
slightly different instances of a problem. Thus, these well-trained networks need to be
specifically trained for the specific input and output. This is the second joint solution. The
third one is exploiting the existed or creating a combined network, which are able to solve
complicated multi-task image processing problems in an end-to-end manner. The last two
kinds of joint solutions include both sequential processing and combined processing. It
means that the multiple tasks can be solved by pair of tasks with a single task, or a single
task with the combination of two tasks. The existing methods version and the specific
trained version are the fourth and fifth joint solution, respectively.

We suggested the execution order of the mixture problem, to perform a denoising first,
demosaicing next, and SR last. This is done because noise will impact demosaicing and
super-resolution and lead to noticeable artifacts, and the processing of super-resolution
will magnify the errors in the image and increase task’s difficulty. Our investigation starts
from finding the joint solutions of two IR tasks. In order to support sufficient values to
compare different joint solutions, we investigated the mixture problem of denoising and
demosaicing, and joint of demosaicing and SR. After the joint two tasks, we compare the
joint solutions of denoising, demosaicing and SR, based on the results of joint two tasks.

In this thesis, we proposed a combined network for joint demosaicing and SR, JDMSR.
For a given low resolution mosaic raw image, JDMSR can generated the high resolution
color RGB image directly. The structure of JDMSR is inspired by an existing network [1].
We have replaced 24 residual blocks (RB) [50] in original network by 6 residual-in-residual
dense blocks (RRDB) [46]. The network architecture consists of three parts: color extrac-
tion, feature extraction and reconstruction. The network framework and architecture in
details is separately described in Figure 4.2 and 4.1. Built on JDMSR, we developed the
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JDNDMSR network, which is a combined CNN network for joint of denoising, demosaic-
ing and SR. We have only added a noise estimation input for the denoising part, which is
shown in Figure 4.4.

For training and validation of the network, we used the publicly available dataset DIV2K
[58] which contains 900 2K resolution images (800 for training, 100 for validation) for
image restoration tasks. We generated the simulated corrupted data by adding white
Gaussian noise, Bayer mosaic and BICUBIC down-sampling. The details of data prepro-
cessing are given in Chapter 5. The training details are included in this chapter, as well.
We tested all joint solutions on McMaster [60] and Kodak public benchmark datasets. We
compared the joint solutions of three mixture problems based on three experiments, joint
denoising and demosaicing, joint demosaicing and SR, and joint denoising, demosaicing
and SR. The summary table of the comparison for each mixture problem is shown in
Table 5.1-5.3.

Quantitative analysis was performed with cPSNR and SSIM metrics, by calculating them
on full RGB image. Results are averaged over the whole dataset. For super-resolved
image, the borders of the image are shaved off, with the scaling factor as the width of the
shaved border.

There is an important strategy used in our experiments, ’easy-hard’ transfer learning. We
transfer the features learned from well trained models, to a deeper model. This kind of
’easy-hard’ transfer learning has been pointed out in another low-level vision problem,
compression artifacts reduction [65]. And it is beneficial for convergence, because the
features learned from relatively easier task support a good starting point. For each ex-
periment, the details of the transfer learning are described in Chapter 6.

The numerical results are recorded in Table 6.1-6.3. There are three main points that can
be summarized. First, whether for mixture problem of two or three tasks, the combined
CNN joint solution is the best selection, which attains best performance with minimal
complexity and simplest network. Second, specific training the models with specific data
can get better results than using trained models directly. Third, the ’easy-hard’ transfer
strategy [65] helps the high-level network to start at a good point by the features from well-
trained low-level network. Another helpful strategy is the denoising strategy [2], which
only inputs a noise estimation vector.

Table 6.4 proves that our JDMSR network is very sensitive to the input. To process the
noise corrupted images, the model of JDMSR should be trained specifically, otherwise,
the performance will drop significantly.

We also tested the JDNDMSR network with a wider range of noise and more datasets.
In addition to McMaster and Kodak, B100 [61] and Urban100 [62] are adopted. Datasets
B100 and Urban100 are often applied in super-resolution methods, where they are chal-
lenging datasets. The results are shown in Table 6.5. It is obvious that the noise affects
the performance directly.

The comparisons are also been made by qualitative analysis. For each mixture problem,
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we selected an image from McMaster dataset and an image from Kodak dataset. Figure
6.1 compares the joint solutions of denoising and demosaicing. The joint solution exploit-
ing existing methods fails on eliminating noise and causes color distortions. The other
joint solutions can not only remove the noise, but save more textures. The comparison of
joint demosaicing and SR is shown in Figure 6.2. Compared with others, the combined
version joint solution not only recovers more details for super-resolution, but also corrects
color artifacts for demosaicing. For the qualitative comparison of joint solutions of joint
denoising, demosaicing and SR, the transferred combined version network JDNDMSRT

outperforms all joint solutions (Figure 6.3 and Figure 6.4). JDNDMSRT can reconstruct
the image with clearer texture and less color artifacts. For the high-frequency region, we
also find that JDNDMSRT generates some seemingly reasonable but incorrect texture
to recover the image.

In the future works, we will apply more abundant image datasets including real-world
images. Moreover, we will concern about adding the reduction of compression artifacts
task in our mixture problem in future, as well.
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