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ABSTRACT 

Efficient methods are needed in the search for novel biologically active components 

from natural sources. Bacterial whole-cell biosensors offer a less-examined 

alternative with high sensitivity. In this thesis, forest-derived extracts were screened 

for their bioactivity with bacterial whole-cell biosensors and complementary 

measures, such as antioxidant microplate tests. The main metabolites were also 

identified from endophytic fungi extracts using liquid chromatography-mass 

spectrometry (LC-MS).  

Two novel applications of biosensors are described for Escherichia coli whole-cell 

biosensors. The first application provides an improved antioxidant method via 

increased high-throughput screening potential and the other describes a method for 

measuring the UV protection capacity for both the biological and absorbance-based 

shield. There is also an opportunity to obtain simultaneous information of the 

genotoxicity of the sample. The methodologies were validated using reference 

compounds and were found to be usable in the field of forest-derived extracts with 

certain limitations. The bacterial biosensors were used in an activity/inactivity type 

of screening. By using small concentrations of forest-derived extracts or fractionated 

samples, the limitations, such as possible sample matrix masking effect and induction 

delay phenomenon, can be reduced. 

Endophytic fungi live asymptomatically inside a plant host and are often 

beneficial for the host plant growth and stress resistance. They comprise a large 

untapped source of potential bioactive compounds to be utilized for different 

purposes. Many metabolites (318) were discovered using an LC-MS methodology 

from Acephala applanata, Phialocephala fortinii and Humicolopsis cephalosporioides/ 

Coniochaeta mutabilis isolated from the roots of Scots pine seedlings. Out of the 

metabolites, 220 were identified with varying degree of certainty. The antioxidant 

and antimicrobial potential of the extracts and fractions were screened with the 

biosensors and complementary methods and various bioactivities were discovered.  

In conclusion, endophytic fungi are a rich source of potential functional 

metabolites and whole-cell biosensor methodologies are usable for nature-based 

samples and provide valuable insights into both the bioactivity and bioavailability of 

the material, if their limitations are also considered. 
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TIIVISTELMÄ 

Luonnonmateriaalien sisältämien biologisesti aktiivisten komponenttien seulontaan 

tarvitaan uusia tehokkaita menetelmiä. Tässä tutkimuksessa metsästä saatavien 

uutteiden bioaktiivisuuden määrittämiseen käytettiin kokosolubiosensoreita. Tätä 

vaihtoehtoista seulontamenetelmää on tutkittu tarkoituksessa vain vähän, mutta 

herkkyytensä vuoksi se on varteenotettava. Tutkimuksessa aktiivisuushavaintoja 

täydentämään käytettiin myös perinteisempiä menetelmiä kuten antioksidanttikuop-

palevytestejä. Lisäksi aineenvaihduntatuotteet määritettiin bioaktiivisiksi havaituista 

endofyyttisieniuutteista nestekromatografia-massaspektrometriaa (LC-MS) käyttäen.  

Tutkimuksen osana kehitettiin kaksi biosensorimenetelmää Escherichia coli -

kokosolubiosensoreille. Ensimmäinen sovellus parantaa aiemmin kuvattua 

antioksidanttisuuden mittaamisen menetelmää sen seulonnan tehopotentiaalia 

lisäämällä. Toinen esittelee menetelmän UV-säteilysuojan mittaamiseksi määrittäen 

sekä biologista että absorbanssipohjaista suojauskykyä. Menetelmällä voidaan saada 

samalla tietoa myös näytteen genotoksisuudesta. Kehitettyjen menetelmien 

toimivuus vahvistettiin malliyhdisteitä käyttäen, ja ne todettiin toimiviksi myös 

luonnonaineuutteilla joillakin rajoituksilla. Bakteeribiosensoreita voidaan käyttää 

etenkin konsentraatioltaan pienien näytteiden ja fraktioiden aktiivisuus- tai 

inaktiivisuusseulonnoissa, jolloin minimoidaan rajoitukset, kuten näytematriisin 

signaalin peittovaikutus ja induktioviive. 

Endofyyttisienet elävät kasvien sisällä aiheuttamatta oireilua isäntäkasvissa, ja ne 

voivat lisätä esimerkiksi isäntien kasvua ja stressinsietokykyä. Endofyyttisienet 

sisältävät suuren määrän toistaiseksi hyödyntämättömiä bioaktiivisia yhdisteitä, joita 

voidaan käyttää erilaisiin tarkoituksiin. Tutkimuksessa männyn taimien juurista 

eristettiin Acephala applanata, Philocephala fortinii ja Humicolopsis cephalosporioides/ 

Coniochaeta mutabilis -endofyyttisienilajit, ja niistä löydettiin suuri määrä yhdisteitä LC-

MS:lla (yht. 318 kpl). Yhdisteistä tunnistettiin eri varmuusasteilla 220 kpl. Sienilajien 

uutteiden ja fraktioiden antioksidantti- ja antibakteerisuuspotentiaali seulottiin 

käyttäen E. coli -biosensorimenetelmiä sekä täydentäviä menetelmiä ja havaittiin 

useita aktiivisuuksia. 

Johtopäätöksenä endofyyttisienet sisältävät valtavan määrän mahdollisesti 

toiminnallisia aineenvaihduntatuotteita, ja kokosolubiosensorimenetelmät soveltuvat 
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erilaisten luontopohjaisten näytteiden tutkimiseen antaen samanaikaisesti tietoa sekä 

näytteen bioaktiivisuudesta että biosaatavuudesta, mikäli myös niiden heikkoudet 

huomioidaan mittausasettelussa. 
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1 INTRODUCTION 

Finnish nature provides vast potential to provide beneficial natural products. The 

boreal region poses numerous challenges to the organisms to survive in the growing 

conditions and consequently these organisms have developed a wide range of 

strategies for survival including various beneficial metabolites with bioactive 

features. Biological activity or bioactivity is determined as a dose-dependent 

beneficial (for example antioxidant activity) or detrimental (for example 

antimicrobial activity) effect of a substance on living tissues, cells or organisms 

(Jackson et al., 2007). On the other hand, bioavailability describes the extent and 

ability of a substance to cross the cellular membrane of an organism and, thus, enter 

their target in the cells (Chow, 2014). Both factors are fundamentally necessary for 

medicinal products and are desired for certain products in dermatology, cosmetics 

and fortified or functional foods. Additionally, such products could be used for 

applications such as antimicrobial packaging materials for the replacement of plastic 

products. 

In fact, nature has already provided different bioactive substances for the use in 

fields such as pharmaceuticals, cosmetics and nutraceuticals for thousands of years. 

While estimates vary, it is safe to say that from 25 to 50% of prescription drugs are 

natural substance derivatives, semi-synthetic natural products or directly of natural 

origin (Kingston, 2011). Out of 1562 approved drugs during years 1981–2014, 23% 

are biological macromolecules, unaltered natural products, botanical drugs or natural 

product derivatives (Newman & Cragg, 2016). If synthetic products mimicking 

natural products are also considered, the share increases to 44% (Newman & Cragg, 

2016). Nature is still the single most important source for finding new mechanisms 

of action for use of medicine. In addition, the dermatology and functional foods 

industries rely on beneficial substances that can enter tissues and cells. As an 

example, different parts of plants and plant extracts have been used as 

cosmeceuticals in skincare and hair care products, antioxidants and fragrances for 

decades (Yahya et al., 2018). Furthermore, functional or fortified foods or herbal 

medicines draw benefit from phytochemicals and bioactive animal products such as 

phenolic and polyphenolic compounds and omega-3 fatty acids from marine oils. 
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Microorganisms, such as fungi and bacteria, are a diverse source of bioactive 

metabolites and have yielded some of the most important products of the 

pharmaceutical industry, such as penicillin and tetracycline (Cragg & Newman, 

2013). It has been estimated that out of up to 1.5 to 5.1 million fungal species living 

on earth no more than 5% have been studied for their health promoting or bioactive 

properties (Hawksworth, 2001; O'Brien et al., 2005). In a recently published study, it 

was found that with regard of the contained functional groups, plant products were 

least diverse when compared to molecules obtained from bacteria, animals and fungi 

(Ertl & Schuhmann, 2019). This is interesting because it is by far the most thoroughly 

investigated and largest group. However, the plants produce most complex scaffolds 

out of the investigated organisms (Ertl & Schuhmann, 2020). Less examined fungal 

species could, thus, offer an enormous bioactive and medicinal product potential. In 

fact, six of the 20 most commonly prescribed commercial drugs are of fungal origin 

(Schulz et al., 2002). Metabolites produced by fungi have also been found to contain 

a large range of biological activities for example in the antimicrobial, antiviral, 

insecticidal, antioxidant and anticancer fields (Strobel et al., 2004; Zhao et al., 2010). 

In this thesis bacterial whole-cell biosensors are used in the screening of 

bioactivity of forest-derived plant and fungi extracts. With these bacterial biosensors, 

in order to show bioactivity, the sample needs to also be able to enter the bacterial 

cell and therefore pose bioavailability as well. Two novel applications of biosensor 

methodologies are described in Papers I and II. Paper I introduces a microplate 

technique of an antioxidant screening method with improved high throughput 

screening potential whereas Paper II shows a new method of screening the 

ultraviolet (UV) radiation protection capacity of samples. In Paper IV, the search for 

antioxidant and antibacterial properties from endophytic fungi is described using 

whole-cell bacterial biosensors. This information is combined with the metabolite 

identification obtained in Paper III. To my knowledge, this is the first time that the 

water-extractable metabolites of Scots pine roots associated endophytes are 

described and combined with bioactivity information. 
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2 BACKGROUND 

This chapter introduces endophytic fungi, which are used as forest-derived sample 

material. Bioluminescent bacterial biosensors are also introduced as well as the 

functional properties sought for: antioxidant activity, UV radiation protection and 

antibacterial activity. 

2.1 Endophytes 

Endophyte, from Greek ‘endon’, meaning within, and ‘phyton’, meaning a plant, is 

a term literally referring to an organism living inside a plant host (Figure 1). The 

most common endophytes are fungi or bacteria and the term usually refers to these 

microbial species (Wilson, 1995). Endophytic infections are inconspicuous, and an 

endophyte must live asymptomatically inside the plant host for at least some part of 

its lifecycle (Stone et al., 2000). The host plant benefits from the infection through 

enhanced growth, nutrient intake and various stress tolerance improvements, 

whereas the endophyte can access the nutrients from the plant apoplastic space and 

benefits from being able to spread asexually via vertical transmission through the 

seed (Scott, 2001; Tanaka et al., 2006). What is more, endophytic microorganisms 

can live inside every plant tissue and may be both intracellular and intercellular. 

Endophytes have been found in all plant species growing all over the world, and 

each and every plant acts as a host to one or more endophytic species (Arnold, 2007). 

The growth habitat and environmental conditions of the host plant affect the 

diversity and size of the endophytic populations and unique or extreme growth 

conditions may yield novel endophytic leads with interesting properties (Firáková et 

al., 2007). 

Dark septate endophytic fungi (DSE) are often found to be dominant in the roots 

of boreal forest tree species (Grünig et al., 2008). They are characterized by melanized 

and septate hyphae and are extensively distributed in the coniferous forests of the 

northern hemisphere (Jumpponen & Trappe, 1998). The most frequent DSE in 

forest ecosystems belong to the Philocephala fortinii s.l. – Acephala applanata species 

complex (PAC) as up to 80% of fine roots in forest stands can be colonized by them 
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(Grünig et al., 2008). Many of the DSE and PAC species have been shown to 

suppress root pathogens, accelerate root turnover and mineralization and to induce 

resistance to abiotic stress (Mandyam & Jumpponen, 2005; Schulz, 2006; Grünig et 

al., 2008; Tellenbach et al., 2013). 

A good example of symbionts in extreme growth habitats are the endophytic 

fungi of Scots pine (Pinus sylvestris L.) seedlings in drained peatlands. Drained 

peatlands are harsh environments where seedlings grow under intense abiotic stress 

caused by high variability in the levels of temperature and soil water content as well 

as solar radiation. There is evidence that endophytes affect the growth and survival 

of the host plant by enhancing their tolerance towards biotic and abiotic stress 

(Waller et al., 2005; Rodriguez et al., 2009; Nagabhyru et al., 2013). Many of the 

bioactive metabolites generated by endophytes have antimicrobial activity, thus 

protecting the host plant from phytopathogenic microorganisms (Aly et al., 2010) 

and additionally, the secondary metabolites produced by endophytic fungi may offer 

potential for fields such as pharmacology and medicine (Gutierrez et al., 2012). The 

endophytes isolated from the roots of Scots pine seedlings in extreme habitats could 

potentially contain compounds with interesting functional properties. 

The produced bioactive metabolites could be utilized in many fields and their 

variety is vast. The compounds isolated from endophytic fungi belong to diverse 

chemical groups, which include the Amadori compounds, peptides, opine amino 

acids, alkaloids, phenols, steroids, isocoumarins, benzopyranones, terpenoids, 

xanthones and quinones (Tan & Zou, 2001; Schulz et al., 2002; Tienaho et al., 2019). 

Endophytic organisms can also produce the same therapeutic compounds as the 

host plant (Aly et al., 2010; Zhao et al., 2010), which is especially useful in the case of 

slow growing and rare plants in extreme environments. The therapeutic potential 

could be antibiotic, antifungal, anti-algal and antiviral (Strobel et al., 2004; Dai et al., 

2009). Metabolites have also been found to act as antidiabetic and 

immunosuppressive agents and in some cases also as insecticides (Strobel et al., 

2004). Additionally, endophytes provide cytotoxic, chemo-preventive, anti-

metastatic and antitumor properties for the treatment of various types of cancer 

(Strobel et al., 2004; Gutierrez et al., 2012). 

Antioxidant or free radical scavenging compounds have also been found in 

endophytic fungi. For example, pestacin and isopestacin have been found in cultures 

of Pestalotiopsis microspora (Strobel et al., 2004) and graphislactone A has been isolated 

from Cephalosporium sp. (Gunatilaka, 2006). Isopestacin has been found to scavenge 

superoxide and hydroxyl radicals in solutions using electron spin resonance 

measurements (Strobel et al., 2002). Pestacin has been analyzed using a total 
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oxyradical scavenging capacity (TOSC) assay and has been found to have 11 times 

greater antioxidant activity than the vitamin E derivative trolox (Harper et al., 2003). 

For graphislactone A, free radical scavenging was studied using DPPH and hydroxyl 

radical assays and antioxidant activities were established using linoleic acid and 

human low-density lipoprotein models (Song et al., 2005). However, a literature 

review showed that the full potential of endophytes as a source of antioxidant species 

for therapeutic purposes has not been utilized even though oxidative stress is 

involved in the pathogenic processes of many diseases (see Chapter 2.3). 

 

Figure 1.  Endophytic fungi live inside the Scots pine roots. After isolation, the endophyte emerges 
from the cut and surface sterilized root tip on a growth medium. Mycorrhizas in 
comparison can exist outside the plant host and often form fruiting bodies.  



 

6 

2.2 Bioluminescent bacterial biosensors 

A biosensor is described as an analytical device with a biological element connected 

to a physical device which generates a measurable signal proportional to the 

concentration of the investigated analyte (Su et al., 2010). This produced signal can 

be monitored in numerable ways, including electrochemical, optical, acoustical, 

mechanical, calorimetric and electronic detection. 

Optical detection is usually based on fluorescent, luminescent or colorimetric 

signals, which are produced as a response of microorganisms to a target compound 

in a dose-dependent manner. Optical detection is widely used with whole-cell 

microbial biosensors which have been genetically modified by fusing a genetic 

regulatory element (promoter) with a reporter gene from another organism. Due to 

environmental stimuli, the inducible gene activates, which results in a reporter gene 

expression by increasing (lights on) or decreasing (lights off) the monitored signal 

(Elad et al., 2008). For the induction, the analyte of interest must be able to enter the 

microbial cell. All organisms have survival mechanisms to overcome and cope with 

stress situations induced by damaging material inside the cells and on cell 

membranes. The control elements of these mechanisms can be transferred from one 

cell to another to create living microbial biosensors with a combination of reporter 

genes, which leads to sensitive, real-time reporting of the cell environment. Such 

sensors can be used for example in the detection of antimicrobial agents, heavy 

metals, oxidants, such as reactive oxygen species (ROS) and endocrine disruptors 

(Galluzzi & Karp, 2006; Belkin et al., 1996a).  

In a toxic environment, bacterial cells react with several defense mechanisms by 

initiating gene transcriptions at specific promoter DNA sites. These promoter 

regulons respond to different stress situations and therefore the activation of a 

certain regulon can provide information about the current environmental hazards of 

the cell (Demple, 1991). By fusing bioluminescent reporter genes from 

bioluminescent organisms such as marine bacteria or fireflies with the desired 

promoter regulons of the bacteria, a stress-specific luminescent light signal can be 

observed (Gui et al., 2017). In order to detect the luminescent light signal, the 

examined substance or sample material must be able to enter the bacterial cell, thus, 

the method provides information on the bioavailability as well as bioactivity of the 

tested material. This light signal is also easy to measure and quantify automatically in 

a continuous manner (Michelini et al., 2005).  

Recombinant Escherichia coli strains DPD2511 (katG’::lux) (Belkin et al., 1996a) 

and DPD2794 (recA’::lux) (Vollmer et al., 1997) can be utilized in the search of 
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bioactive and bioavailable products. The katG regulon is activated due to oxidative 

stress whereas recA responds to DNA damage in the bacteria. The E. coli DPD2511 

strain (Belkin et al., 1996a) has been constructed by fusing the katG (catalase) gene 

of the strain with the luminescence (lux) genes from marine Aliivibrio fischeri (former 

Vibrio fischeri) bacteria. The bioavailable oxidant can enter through the E. coli cell 

membrane and bind to the regulatory protein OxyR, which promotes the 

transcription and translation of the reporter genes. With the lux gene expression, this 

produces an increase in the emission of luminescent light. The schematic model of 

the function is shown in Figure 2. Thus, the normal defense mechanism against 

oxidizing agents produces an easily monitored response. When using intact living 

biosensors, the bioactivity and bioavailability of a chosen sample material can be 

detected simultaneously in a simple, cost-effective and rapid manner, which makes 

the assays more suitable for high-throughput screening (HTS) (Galluzzi & Karp, 

2006). 

 

Figure 2.  The schematic model of the function of E. coli DPD2511 biosensor. Reactive oxygen 
species (ROS) induce a luminescent light signal. 

When antioxidant activity is measured, the bacterial cells are exposed to an oxidant 

such as hydrogen peroxide (H2O2), and the experiment is set to measure whether 

samples prevent the stress reaction. In other words, the method measures the in vivo 

inhibition capacity of the antioxidant against H2O2. The E. coli DPD2511 strain has 
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been previously used to screen the antioxidant properties of the medicinal plants of 

Philippines and validated against the l,l-diphenyl-2-picrylhydrazyl (DPPH) radical 

scavenging assay by Bartolome et al., (2006).  

The E. coli DPD2794 biosensor is similar except that it responds to the multiple 

mechanisms of genotoxicity via SOS responsive recA region. The term SOS is used 

because the response indicates cellular reaction to DNA damage induced distress. 

These mechanisms include UV radiation induced stress and other direct DNA 

damaging mutagens, as well as indirect DNA damaging agents such as ROS 

producing oxidants (Min et al., 1999). Watt et al., (2007) used the E. coli DPD2794 

sensor to screen for antibacterial activity in herbal tinctures and they concluded that 

the method was usable in the field of natural substance extracts.  

Kim et al., (2019) used a panel of stress-responsive recombinant luminescent 

bacteria to detect the cytotoxicity of natural compounds to utilize in the prescreening 

for drug discovery. Each strain responded to a different type of cellular damage and 

therefore could provide an insight into the damaging mechanism. They proposed 

that these methods could be used as a substitution for human cell cytotoxicity tests, 

which often require special handling. Although a few reports exist, where these 

sensors have been utilized in screening the biological activity of natural substances 

and extracts, comprehensive analyses have not been established on the usability of 

these methods. With nature-derived extracts, features such as the color or turbidity 

could compromise the reliability of the results when using traditional microbial 

growth inhibition assays relying on absorbance screening. Additionally, conventional 

often tedious and time-consuming antibacterial assays are usually not sensitive 

enough to be used to detect the bioactivity of fractionated nature-derived extracts 

with the very low concentrations of active substances. 

2.3 Antioxidants against oxidative stress 

Among oxidants, the reactive oxygen species (ROS), which are often free radicals or 

peroxides, can exist in ionic (such as hydroxyl radicals, superoxide anions) or 

molecular (such as hydrogen peroxide (H2O2) or singlet oxygen) states in biological 

systems (Huang et al., 2019). During normal metabolic processes, such as cellular 

respiration, the cells of aerobic organisms produce ROS as a by-product. However, 

ROS can cause destructive damage of DNA, proteins, carbohydrates and lipids and 

are thus major contributors to the process of aging and age-related degenerative 



 

9 

diseases such as cancer, mutagenesis, atherosclerosis, hypertension and ischemia-

reperfusion as well as overall inflammation (Ames et al., 1993; Liguori et al., 2018). 

Antioxidants are substances, which significantly reduce or prevent oxidation even 

in low concentrations (Co et al., 2012). Some compounds that enhance endogenous 

activity instead of neutralizing free radicals are also called antioxidants (Kurutas, 

2016). Then again, antioxidants in food systems are used to maintain the nutrient 

level, texture, color, taste, freshness, functionality, aroma and appeal by retarding 

lipid peroxidation and the production of secondary products relating to it 

(Samaranayaka & Li-Chan, 2011; Wilson et al., 2017). In dermatology, topical 

antioxidants are used because of their broad biological activity. They might also 

possess anti-inflammatory, UV protective and anti-carcinogenic activities, which 

increase their beneficial potential (Poljsak et al., 2013). Antioxidants often play an 

important role in preventing or alleviating chronic diseases caused by oxidants. 

Metabolites with antioxidant activity are therefore interesting for the perspective of 

numerous fields. 

Antioxidants act through different chemical mechanisms: hydrogen atom transfer 

(HAT), single electron transfer (SET) and the ability to chelate transition metals 

(Apak et al., 2013; Santos-Sánchez et al., 2019). Several tests have been developed for 

these measurements. For example, the oxygen radical absorbance capacity (ORAC-

FL) assay is based on the inhibition of peroxyl radical (ROO•) induced oxidation of 

a fluorescent molecule and the reaction mechanism is based on HAT (Santos-

Sánchez et al., 2019). In the ferrous oxidation in the xylenol orange (FOX) reagent 

method, the antioxidant needs to inhibit the Fenton reaction, where H2O2 oxidizes 

Fe(II) into Fe(III) and yields highly oxidizing hydroxyl radicals or oxidoiron(IV)-

compounds (FeO2+) (Koppenol & Hider, 2019). The ferric iron forms a colored 

complex causing a change in the sample absorbance. The antioxidant therefore acts 

as a transition metal chelator and inhibits the Fenton reaction (Apak et al., 2013).  

With endophytes, the levels of ROS produced by the host plant have been shown 

to affect the relationship between the host and the endophyte (Tanaka et al., 2006). 

This interaction can vary from mutualistic to exploitative or from saprobic to 

parasitic (Hyde & Soytong, 2008). ROS production is one of the initial defense 

mechanisms for the plant host cells against microbial infection, thus, the successful 

colonization by an endophyte requires defeating them (Koskimäki et al., 2016). It can 

therefore be suggested that endophytes produce secondary metabolites which are 

specifically effective towards oxidative stress. 

In plants and other aerobic organisms, ROS production is caused by biotic and 

abiotic stress conditions or other circumstances, where the redox homeostasis is 
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disrupted, inducing oxidative stress damage (Grene, 2002). However, ROS also 

function as signaling molecules in regulating the normal growth and adaptation to 

stress. The balance and mechanisms behind these contrasting roles of ROS in plants 

are not fully known (Krishnamurthy & Rathinasabapathi, 2013). It is known that low 

ROS levels are necessary for basic biological processes in the cells, but higher levels 

lead to irreversible DNA damage and prolonged exposure eventually leads to 

programmed cell death (Huang et al., 2019). For example, hydrogen peroxide is an 

uncharged molecule, which is capable of diffusing across biological membranes and 

therefore has a signaling function in the cells (Mullineaux et al., 2000; Grene, 2002). 

In small concentrations, it plays an important role in response to biotic and abiotic 

stresses by reinforcing the plant cell wall, phytoalexin production and enhancement 

of resistance (Quan et al., 2008). In high concentrations, hydrogen peroxide acts as 

an oxidizing agent, which can damage enzymes and proteins with active thiol groups 

(Engwa, 2018). Peroxyl radicals then again cause the peroxidation of unsaturated 

lipids in the membranes of biological systems (Engwa, 2018). 

In normal conditions, excessive ROS in plants and the human body can be 

scavenged by various antioxidant defense mechanisms, which can be divided into 

enzymatic (specific) and non-enzymatic (non-specific) defense systems (Apel & Hirt, 

2004; Demidchik, 2015). Superoxide dismutase (SOD), catalase, ascorbate 

peroxidase and glutathione peroxidases belong to the enzymatic systems, whereas 

the non-enzymatic systems primarily consist of low molecular weight antioxidants. 

In plants, these include compounds such as glutathione, proline, ascorbic acid, α-

tocopherols, carotenoids, flavonoids, tannins and polyamines (Apel & Hirt, 2004; 

Engwa, 2018; Huang et al., 2019; Dumont & Rivoal, 2019). Superoxide and H2O2 

can be broken down by SOD, catalase and peroxidases but not the hydroxyl radical, 

which is extremely reactive. However, low molecular weight antioxidants, such as 

myo-inositol, sorbitol, mannitol and proline have been shown to be able to scavenge 

hydroxyl radicals, at least in vitro (Bohnert & Jensen, 1996). 

2.4 Biological UV protection 

Ultraviolet radiation (UV-R) is a part of the electromagnetic spectrum with 

wavelengths from 10 to 400 nm. Thus, it is below the visible region of light (400-

780 nm) but above X-rays. UV-R is often divided into three ranges according to their 

wavelength: UV-C, UV-B and UV-A (Figure 3). Out of these, UV-C radiation has 

the shortest wavelength and highest energy making it germicidal but on the other 
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hand it is completely absorbed by the ozone layer of the atmosphere. UV-B and UV-

A can enter through the layer and all organisms and sensitive surfaces require 

protection from excess amounts of these radiation ranges. 

While plants need solar radiation for photosynthesis, both chlorophyll and DNA 

are easily damaged by high intensities of direct sunlight (Glime, 2017). Consequently, 

plants have developed multiple defense mechanisms against excess radiation. For 

example, flavonoid and other polyphenolic compound accumulation, development 

of a thick cuticle and reflective wax production in conifers prevent or alleviate the 

harming physiological effects of the radiation (Kinnunen et al., 2001). Out of these, 

polyphenols protect the plant from solar radiation and additionally scavenge UV-R 

generated ROS (Stevanato et al., 2014). The protection capacity is linked to the 

absorption wavelengths of the polyphenols as well as antioxidant properties 

(Stevanato et al., 2014). UV-R induced skin damage can be alleviated with 

antioxidants when they are present in relevant concentrations at the site of the 

damage and during the exposure causing oxidative stress (Poljsak et al., 2013). The 

effect of UV damage can be monitored with a bacterial biosensor E. coli DPD2794, 

which has been shown to react to both direct and indirect DNA damaging agents 

including ROS producing oxidative species (Min et al., 1999). Plants also protect 

chlorophylls and DNA through pigmentation, which acts as a filter that absorbs light 

(Glime, 2017). These usually red or dark pigments are caused by compounds such 

as anthocyanins, which are a form of flavonoids (Glime, 2017). 

Sunscreen products can be divided into chemical or physical products according 

to the mode of action. Chemical sunscreens are usually synthetic aromatic 

compounds conjugated with a carbonyl group. They protect the skin from the 

damaging effect of UV radiation by absorbing high energy UV rays and releasing 

lower energy rays. However, UV absorption may activate the cosmetic sunscreens 

and they can consequently interact with the molecules of the skin, causing adverse 

reactions, such as dermatitis or photosensitivity reactions (Stevanato et al., 2014). 

Chemical sunscreens have also been shown to cause adverse environmental impacts. 

For example, oxybenzone was found to be genotoxic towards coral planulae and, 

thus, the sale of sunscreen products containing it was recently banned in Hawaii 

(Downs et al., 2016). The maximum amount of oxybenzone in sunscreen products 

is also restricted in Europe (the European Commission published Regulation (EU) 

2017/238). Sunscreen components have also been demonstrated to induce coral 

bleaching by promoting viral infections in hard coral and their symbiotic algae 

(Danovaro et al., 2008). The other mode of action, physical sunscreens, are used as 

topical physical barriers and can have a visible white appearance. This visible 
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whiteness of the skin can be minimized by reducing the particle size of the screening 

compounds, but there has also been discussion about nanoparticle accumulation in 

the environment (Kockler et al., 2014; Lu et al., 2018).  

These factors indicate an urgent need for safer, broad-spectrum, UV protection 

compounds derived from natural sources for use in the dermatology, cosmetics and 

coating industries. Natural sources could offer environmentally safer and anti-

inflammatory compounds with UV inhibitory and antioxidant activities. 

 

Figure 3.  The light electromagnetic spectrum. With shorter wavelengths, the frequency and energy 
are higher. Thus, UV-C is particularly harming towards living beings.  

2.5 Antibacterial agents and antibiotics 

Antibiotics and antibacterial agents are sometimes referred to as synonyms used to 

describe agents that kill or inhibit bacteria. However, antibiotics are often considered 

more potent and can additionally be effective in killing or inhibiting fungi 

(microorganisms as a whole). Whereas antibacterial compounds kill, slowdown and 

inhibit the growth of bacteria alone. Generally, all antibiotics are antibacterial but 

not all antibacterial agents are antibiotic.  

Natural products produced by bacteria and fungi have traditionally been the 

dominant source of clinically used antibiotics and antibacterials (Wright, 2014). The 

reason for this is that bacteria and fungi as well as their metabolites have evolved in 

such a way that they are able to enter the cells of other competitive microorganisms. 

Thus, they bear the desired bioavailability as well as bioactivity. Additionally, 

antibacterial compounds derived from microbial sources are likely to be able to 

modulate multiple virulence factors simultaneously. These virulence factors contain 

toxin and siderophore production, biofilm secretion and other such properties, 
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which are not essential to the cell growth but required to accomplish infection 

(Wright, 2014). 

The modern era of antibiotics started when Sir Alexander Fleming discovered 

penicillin from mold in 1928 (Ventola, 2015). Since then the effectiveness of 

antibiotics has risen and fallen due to increased resistance in the bacteria. It has been 

suggested that inappropriate over-prescriptions of antibiotics as well as their 

extensive use in agriculture has been a major influence in the phenomenon (Ventola, 

2015). However, even without considering the increased resistance, current 

antibiotics often have adverse effects and difficulties with dosing as well as 

restrictions of use for children, for example (Payne et al., 2007). Consequently, there 

is a large need for new antibacterial and antibiotic substances that are effective, have 

minor environmental impacts and have low toxicity for surface coatings and 

medicines. For example, endophytic fungi have been found to produce metabolites 

that are able to kill or inhibit the action of a wide variety of microorganisms such as 

phytopathogens but also fungi and bacteria that are harmful to human beings 

(Strobel et al., 2004).  
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3 RESEARCH OBJECTIVES  

The main goal of this work was to screen for antioxidant and antibacterial 

bioactivities and UV protection potential from the forest-derived plant and fungus 

extracts. This was done by establishing biosensor methods using bacterial E. coli 

biosensors DPD2511 and DPD2794. We also used other methodologies, such as 

antioxidant tests and human cell models for a more diverse understanding of the 

activities. Additionally, the identification of the relevant metabolites found in 

bioactive extracts was carried out for endophytic fungi extracts. The identification 

process is needed in order to gain concrete benefits from the obtained bioactivities 

for potential future commercial applications. The specific objectives are summarized 

below: 

 

• To study whether the stress-responsive luminescent E. coli biosensors 

are usable in the screening for bioactivities and UV protection 

potential in forest-derived extracts. (Papers I, II and IV) 

 

• To assess whether it is possible to improve the antioxidant screening 

method published by Bartolome et al., (2006) through enhanced HTS-

potential. (Paper I) 

 

• To investigate if E. coli biosensors can be used in the screening for 

UV protection. (Paper II) 

 

• To characterize the metabolites or main metabolite groups 

responsible for potential bioactivities found in Scots pine root-

associated endophytic fungi extracts. (Papers III and IV) 
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4 MATERIALS AND METHODS 

For detailed information, see Papers I-IV. The different analyses and methods used 

are shown in Table 1 and a general workflow chart of forest-derived extract 

screening is presented in Figure 4.  

Table 1.  Summary of the analyzed properties and methods used to investigate them. In 
addition, the forest-derived biomass tested with the methodology is shown. 

Analysis Method used  Forest-derived biomass Paper 

Antioxidant 

activity 

E. coli DPD2511; H2O2 

inhibition (Chapter 4.5 

and 4.6.1) 

Spruce inner bark; 

Endophytic fungi  

I, IV 

SCAV (Chapter 4.7.1) Endophytic fungi  IV 

ORAC (Chapter 4.7.2) Endophytic fungi  IV 

Cell model tests (Chapter 

4.7.3) 

Endophytic fungi  IV 

UV 

protection 

E. coli DPD2794; 

biological or physical 

protection (Chapter 4.5 

and 4.6.2) 

Pine needles  II 

Absorbance screening 

(Chapter 4.6.2.1) 

Pine needles  II 

Antibacterial 

activity 

E. coli DPD2511; 

oxidative stress (Chapter 

4.5 and 4.6.3) 

Endophytic fungi  IV 

E. coli DPD2794; 

genotoxic effects 

(Chapter 4.5 and 4.6.3) 

Endophytic fungi  IV 

Metabolite 

identification 

LC-MS; Data bases, 

literature (Chapter 4.4) 

Endophytic fungi  III, 

IV 
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Figure 4.  The workflow of this study. Bioactivity is either UV protection potential or antioxidant or 
antibacterial activity. 



 

17 

4.1 Sample pre-handling 

The forest-derived sample material used in this study were the inner bark of Norway 

spruce (Picea abies (L.) Karst.) (Latva-Mäenpää et al., 2013; Paper I), Scots pine (Pinus 

sylvestris L.) needles (Paper II) and endophytic fungi species isolated from the roots 

of 8-year-old Scots pine seedlings (Papers III and IV). The fungal species were 

identified using molecular methods and will be stored in the microbe and yeast 

library collection of Natural Resources Institute Finland. The species used in this 

study are Acephala applanata (A) and Philocephala fortinii (R) as well as Humicolopsis 

cephalosporioides/Coniochaeta mutabilis (S16). The identification of PAC species using 

the ITS region is challenging (Grünig et al., 2008) and S16 identification has some 

uncertainty with two equally possible matches. The pure cultures of the fungus 

mycelium were cultivated on a solid Hagem agar above a cellophane membrane on 

Petri dishes (Figure 5). 

 

Figure 5.  The pure cultures of endophytic fungi growing on a cellophane membrane on Petri dishes.  

4.2 Extraction 

Endophytic fungal mycelium and spruce inner bark were extracted with hot water 

(Table 2). Water extraction is generally considered a green extraction methodology 

which is both environmentally friendly and safe to handle, as water is nonpoisonous 

and nonflammable (Chemat et al., 2019). Water has been used in the extraction of 

food and natural products for centuries despite that it is known to be a poor solvent 
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for nonpolar and in some cases semi-polar compounds (Chemat et al., 2019). Other 

advantages of using water are that it leaves no harmful residues to the extraction 

material and therefore the need for harsh solvent removal techniques possibly 

causing chemical transformations in the extract is removed (Ollanketo et al., 2002). 

We used elevated temperature to improve the efficiency of extraction process. 

Higher temperatures have shown to decrease the polarity by disintegrating the 

hydrogen bond network (Chemat et al., 2019). One disadvantage is the possible 

effects on heat-sensitive compounds. Ethanol and methanol are examples of 

alternatives that could have been used for extractions. In a study comparing the 

compounds extracted from sage (Salvia officinalis) with water (hydrodistillation), 

ethanol and methanol, it was concluded that because water is the most polar solvent, 

it extracted the most polar compounds (Ollanketo et al., 2002). Methanol is the least 

polar out of these and it extracted the least polar compounds as expected, whereas 

ethanol (70%) extracted the polar compounds and some of the less polar ones 

(Ollanketo et al., 2002). However, the highest antioxidant activity was measured with 

samples extracted with ethanol (Ollanketo et al., 2002). One interesting perspective 

for future investigations could also be the use of water–organic solvent mixtures and 

pressurization. For example, Co et al. (2012) found that pressurized fluid extraction 

with ethanol and water gave higher antioxidant capacity from spruce bark (Picea abies) 

samples than obtained with water or ethanol separately. The solvent choice should 

always be pondered through the extracted material, target molecules and the 

intended future application area.  

Table 2.  The used extraction methods. 

Extraction Biomass Paper 

Hot-water extraction 
Spruce inner bark I (supplementary) 

Endophytic fungi III, IV 

Methanol extraction (100%) Pine needles II 

Fresh frozen pine needles were ground with the help of liquid nitrogen and extracted 

with 100% methanol (Table 2). Here, pure methanol extraction was preferred over 

water extraction because it results in high polyphenol contents and primary 

metabolites such as amino acids and sugars are not present to the same extent in 

methanol extracts. The dried extraction products were dissolved in methanol and 

water so that the highest methanol concentrations for the tested extracts were 1.4% 

(an absorbance-based protection) and 0.9% (a bioactivity-based protection). 
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4.3 Fractionation of the fungal extracts 

Fractionation is a process in which a sample mixture is divided into smaller quantities 

(fractions) according to their physical or chemical characteristics. Fractionation was 

performed with a semi-preparative Shimadzu Prominence high-performance liquid 

chromatography system using polarity to separate the fractions with a Waters 

XBridge reverse phase C18 column. The purpose was to focus on the bioactive 

fractions and identify their potentially bioactive metabolites. 

4.4 LC-MS and identification 

In Papers III and IV samples were analyzed using an ultra-high-performance liquid 

chromatograph coupled to a photodiode array detector and a hybrid quadrupole-

Orbitrap mass spectrometer. Masses were scanned at the mass to charge ratio (m/z) 

150-2000 and abundances over 1×107 were considered. The data was analyzed using 

Thermo Xcalibur Qual Browser software and processed using Compound 

Discoverer 2.1 SP1. The processing flow ‘Untargeted Metabolomics Workflow’ was 

applied with maximum element counts of 100 × C, 200 × H, 100 × O, 10 × N (10 

× S, 10 × P). ChemSpider and KEGG databases were chosen for the identification. 

In addition, the SciFinder Scholar database was used with the Occurrence substance 

role and the highest number of references to scale down possible compound hits.  

4.5 Bacterial strains and cultivation 

Two genetically modified E. coli bacterial strains were used: E. coli DPD2511 (Belkin 

et al., 1996a) and E. coli DPD2794 (Vollmer et al., 1997). They are both stress-

responsive strains, for which exposure to stimuli generates a measurable increase in 

luminescent light production, which can be monitored optically. An example of the 

luminescence signal is shown in Figure 6 with a Trifolium sp. leaf over Lysogeny agar 

(LA) with a bacterial culture of E. coli DPD2794. Figure 6a shows the luminescence 

produced using a Xenogen IVIS imaging device after 16 hours of incubation at 30°C. 

The scale on the right shows the intensity of luminescence production with red 

meaning the highest and purple meaning the lowest stress-induced signal. Figure 6b 

shows a normal photograph of the same plate.  
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Figure 6.  Trifolium sp. leaf on the same Petri dish as E. coli DPD2794 bacteria. The luminescence 
light production is shown after 16 hours of incubation using a Xenogen IVIS imaging 
device. 

Both strains were used for two different biosensor methodologies, which are 

summarized in Table 3. LA growth plates supplemented with ampicillin and a 

potassium phosphate buffer were used. For antioxidant and antibacterial bioactivity 

testing, a single colony of the strain was inoculated into a liquid Lysogeny Broth (LB) 

medium supplemented with ampicillin and a potassium phosphate buffer. For UV 

protection testing, a single colony of the strain was inoculated into a liquid glucose-

enriched M9 minimal medium supplemented with ampicillin. The growth medium 

was changed because LB was found to absorb UV radiation and interfered with the 

measurements. The inoculations were then incubated for approximately 16 h 

(overnight) in a shaker at 30°C at 300 rpm, after which the luminescence was 

measured with a microplate reader. The cell culture producing the highest signal was 

chosen for the measurements. The optical density at 600 nm was measured to be 

approximately 0.1 for the bacterial suspensions corresponding to 1×108 colony 

forming units/mL. 

Table 3.  Bacterial strains and the biosensor methodologies used. 

Bacterial strain Method Paper 

E. coli DPD2511 
H2O2 inhibition (antioxidant) I, IV 

Oxidative stress (antibacterial) (I,) IV 

E. coli DPD2794 
Genotoxicity (antibacterial) IV 

UV protection: biological and physical shield II 
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4.6 Biosensor measurements 

All the luminescence measurements were conducted using a Chameleon multilabel 

reader. The luminescence was measured in counts per second (CPS) 20 times every 

5 min, and between the screens the plate was kept at 30°C and shaken. The results 

are expressed in induction factors (IF) calculated by dividing the CPS values of the 

samples by the value of the negative control (water). The abbreviation IF is used in 

this thesis, but both FI (fold induction) and IF (induction factor) abbreviations can 

be used to describe the induction compared with water blank. Coefficient of 

variation (CV%) was calculated for the three replicates and expressed as the error 

bars in the figures. 

4.6.1 Antioxidant screening using E. coli DPD2511 

Hydrogen peroxide (H2O2) was chosen as the oxidant for the antioxidant 

measurements (Paper I). It is a well-known producer of harmful hydroxyl radicals 

and has been reported to work well with this biosensor (Belkin et al., 1996a; Belkin 

et al., 1996b; Min & Gu, 2004). The optimum concentration was determined in Paper 

I by comparing the induced signal of concentrations from 0.25 mM to 4 mM and 

the concentration of 4 mM H2O2 was found to be optimal. The IF values of the 

samples were compared to those for H2O2 and lower values at the same time point 

were considered an indication of activity. Ascorbic acid (C-vitamin) was chosen for 

the reference antioxidant. The antioxidant effect is dose-dependent and 5-10 mg/mL 

of ascorbic acid provides approximately the same inhibition-% above 70. The 

constant concentration of H2O2 (oxidant) was added into each well with ascorbic 

acid (positive control, antioxidant) in a potassium phosphate buffer. Finally, the 

chosen cell culture was added to each well of an opaque white microplate. Sterile 

water in a phosphate buffer was used as the negative control. 

4.6.2 UV protection screening using E. coli DPD2794 

The bacterial strain E. coli DPD2794 has been found to be sensitive towards 

ultraviolet radiation and to give a dose-dependent luminescent signal in response to 

it in previous studies (Belkin et al., 1996b; Vollmer et al., 1997). However, a novel 

methodology to screen the UV protection potential of reference substances and 

forest-derived samples using this biosensor is described in Paper II. There are two 
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possible modes of use: (i) for biological protection, in which the sample substance is 

placed in direct contact with the biosensor cells and (ii) for physical protection, in 

which the sample substance is placed on a separate microplate. The biological 

protection method also provides simultaneous information about the sample 

substance cytotoxicity. 

The validation of the method was conducted using several reference compounds 

as positive controls. Water and appropriate solvents were used as negative controls. 

TiO2 (<5 µm particle size and predominantly rutile) was chosen to act as a known 

UV shield control because it is extensively used in sunscreen products worldwide. 

An LB growth medium was used as the positive control when in direct contact with 

the cells because it absorbs UV wavelengths. To verify the effectiveness of the UV-

R dose used, the induced signals of UV-R were compared to signals induced using a 

known antibiotic ciprofloxacin, which specifically targets bacterial DNA. It is also 

widely known that antioxidants can prevent damage induced by UV-R by targeting 

the induced production of ROS in the cell. Therefore, the known antioxidants L-

ascorbic acid and astaxanthin were used to test this protection mechanism. 

Additionally, because oxybenzone was found to be harmful for coral planulae and 

its effect further to be increased by the exposure to UV light (Downs et al., 2016), it 

was tested as well. Oxybenzone has adverse effects towards coral and fish (Downs 

et al., 2016; Danovaro et al., 2008; Dinardo & Downs, 2017). Oxybenzone has also 

been shown to cause contact or photo contact allergies or even urticarial reactions 

in humans (Dinardo & Downs, 2017).  

4.6.2.1 Absorbance measurements  

Absorbance screening measurements were used as a complementary method (Paper 

II). The absorbance of 100 µL sample substance triplicates in translucent microplates 

was evaluated. Thermo Scientific Varioskan Flash Reader in its absorbance scan 

mode at 5 nm intervals for the wavelength area of 200-900 nm was used. Absorbance 

value averages were calculated and error bars show the standard deviations of the 

sample triplicates (Paper II). The extraction liquids methanol and water were used 

as negative controls. 
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4.6.3 Antibacterial screening with biosensors 

Antibacterial screening with biosensors was conducted using E. coli DPD2511 to 

screen for oxidative stress and E. coli DPD2794 for DNA damage. For the oxidative 

stress assay (Paper I and IV), the chosen cell culture was added to each well of an 

opaque white microplate containing the dilutions of the H2O2 (positive control) or 

sample or sterile water (negative control). Instead, ciprofloxacin was used as a 

positive control for the bacterial DNA damaging agent measurements. The 

luminescence was measured as described before.  

4.7 Other bioactivity measurements 

Other bioactivity measurements were used as a complement and comparison to the 

biosensor methodologies in Paper IV. These included two microplate 

methodologies for antioxidant screening (hydrogen peroxide scavenging (SCAV) 

and oxygen radical absorbance capacity (ORAC)) and two human cell line tests (PD= 

Parkinson’s disease and AMD= age-related macular degeneration). 

4.7.1 Hydrogen peroxide scavenging, SCAV 

The SCAV method sets out to measure the H2O2 scavenging capacity of a sample 

substance before it oxidizes an iron complex (Figure 7). It provides colorimetric 

results, which can be measured through the absorbance of the solution. A SCAV 

test was performed using the FOX reagent method by Hazra et al., (2008) and Jiang 

et al., (1990) with minor modifications in Paper IV. The sample absorbance values 

are compared with the control figure drawn with the sodium pyruvate (positive 

control) and the results are expressed as %-inhibition.  

4.7.2 Oxygen radical absorbance capacity, ORAC 

The oxygen radical absorbance capacity (ORAC) assay measures the oxidative 

dissociation of fluorescein in the presence of peroxyl radicals (ROO•), which causes 

a reduction in the fluorescence signal. The antioxidant’s protective ability is based 

on the inhibition of the breakdown of fluorescein caused by the peroxyl radicals 

(Figure 7). The assay was modified from the method described by Huang et al., 
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(2002) and Prior et al., (2003) and carried out in a 96-well format with two technical 

replicates of each sample on a plate (Paper IV). The results are expressed as Trolox 

(positive control) equivalents (µmol TE/L). 

 

Figure 7.  Schematic model of function for the hydrogen peroxide scavenging (SCAV also the ferrous 
oxidation in xylenol orange (FOX) reagent method) and oxygen radical absorbance 
capacity (ORAC) tests 

4.7.3 Oxidative stress related diseases 

Among reactive oxygen species (ROS) related diseases, age-related macular 

degeneration (AMD) is a major cause of vision impairment in elderly people 

worldwide. It is characterized by a progressive loss of vision due to the degenerative 

and neovascular changes in the central region of the retina, the macula (Kaarniranta 

et al., 2005). Chronic oxidative stress and inflammation are strongly linked to AMD 

pathogenesis. In the oxidative stress reaction, the ROS primarily attack the retinal 

pigment epithelium (RPE) and can eventually damage the photoreceptors of the 

RPE layer leading to a permanent loss of vision (Klimanskaya et al., 2004). 

Additionally, oxidative stress and aging play a major role in the neuron degeneration 

in the Parkinson’s disease (PD) leading to mitochondrial dysfunction and even cell 

death (Dias et al., 2013). Given the severity and socio-economic impact of these 

widely spread diseases, there is an enormous need for the development of new 

therapeutics for oxidative stress related diseases. These human cell line test protocols 

are described in Paper IV.  
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4.8 Statistical methods 

In paper II, the statistical significance of the results was measured using a two-tailed 

t-test using Microsoft Office Excel 2016. The principal component analysis (PCA) 

and clustering analysis in Paper IV were performed with the SAS Enterprise Guide 

7.4. (SAS). 
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5 RESULTS AND DISCUSSION 

The focus of this study is on screening antioxidant and antibacterial bioactivities and 

examining the UV protection potential of forest-derived extracts. This was done 

using bacterial E. coli biosensors DPD2511 and DPD2794. Additionally, the relevant 

metabolites found in bioactive endophytic fungal extracts were identified using LC-

MS. This section focuses on the results of forest-derived extract and fraction 

screening and metabolite identification. Detailed results can be found in Papers I-

IV. 

5.1 Bacterial biosensor results 

Two stress-responsive bacterial biosensors were used to investigate their suitability 

for screening antioxidant, antibacterial and UV protective activities from forest-

derived extracts and fractions.  

5.1.1 Antioxidant and antibacterial activity, E. coli DPD2511 

E. coli DPD2511 sensor was used for detecting two bioactivity types: oxidative stress 

towards bacteria (antibacterial activity) and the H2O2 inhibition potential 

(antioxidant activity) (Table 3). From these, the antioxidant activity methodology 

was developed in Paper I, whereas the oxidative stress methodology has been 

reported in the literature (Belkin et al., 1996a; Belkin et al., 1996b).  

In order to test the suitability of the methodology for forest-derived materials, 

spruce inner bark (Paper I) and endophytic fungal extracts and fractions (Paper IV) 

were used. Figure 8a shows the dose-dependent antioxidant effect obtained from 

spruce inner bark extract.  
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Figure 8.  (a) Example data obtained from Norway spruce (Picea abies [L.] Karst) inner bark extract. 
Dilutions are dry weights of the extract in water. H2O2 (shown in the figure as 0 mg/mL) 
was used as the negative control. The error bars are the CV% of the sample triplicates in 
the microplate. (b) shows the resulting diagram when induction factors of the fungus R 
fraction 2 dilutions are drawn against time when measured with the E. coli DPD2511 
biosensor responding to oxidative stress. The error bars are the CV% of the sample 
triplicates in the microplate. H2O2 was used as the negative control. IF = induction factor 
compared with water blank. 

Repeatable and reliable results were obtained from the assay in a microplate format. 

Thus, it can be concluded that it was possible to improve the antioxidant 

methodology published by Bartolome et al., (2006) via enhanced HTS potential. 

H2O2 was used as the negative and ascorbic acid as the positive controls. 

For the antibacterial activity measurements (Paper IV), the same sensor was used 

for screening the oxidative stress production of endophytic fungi fractions with 

H2O2 as a positive control and water as a negative control. An example is shown in 

Figure 8b. It was found that even though the fractionated samples have extremely 

low concentrations, the sensor was sensitive enough to detect antibacterial oxidative 

effects. However, the signal magnitudes were reduced as well.  

5.1.2 UV protective and antibacterial activity, E. coli DPD2794 

E. coli DPD2794 sensor was used for detecting two bioactivity types: distress or SOS-

reaction dependent genotoxicity to the bacteria (antibacterial activity) and UV 

protection potential (Table 3). Out of these, the UV protection methodology was 

developed in Paper II, whereas the genotoxicity methodology has been reported in 

the literature (Belkin et al., 1996b; Vollmer et al., 1997).  
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One potential source of safe and sustainable UV protective compounds are 

nature-derived substances. The UV protection test methodology developed in Paper 

II was tested using a Pinus sylvestris L. needle methanol extract (PiNe) and the results 

are shown in Paper II, Figure 5. Pine needles are exposed to the UV-R from the sun 

and therefore, they are expected to possess UV protective activity as also 

demonstrated with this technique. The PiNe at a concentration of 5.0 mg/mL 

protects the biosensor cells from the adverse effects of the UV-R, as its IF in 100 

min measurement is lower than that of the unprotected sample (Figure 5a and b 

(Paper II)). In addition, this protective capacity is almost equal to that of TiO2 

concentration of 0.80 mg/mL, which was used as a positive control. Methanol 

extractable polyphenols are known for their antioxidant activities, which can 

correspond to the biological shielding potential shown in Figure 5c, Paper II. The 

highest content of PiNe (3.3 mg/mL) exhibits biological UV-R protective properties 

for the biosensor cells. This is demonstrated in the 100 min measurement results, 

where the IF for the PiNe is lower than that for the unprotected cells. However, the 

IF of the PiNe is higher than that of the positive LB control, which indicates that it 

is not as effective in the protection as the LB control. Forest-derived substances are 

potentially less harmful to the environment. In addition, they pose no similar risk of 

accumulation as mineral-based physical sunscreen nanoparticles because they are 

degradable and as in this case of pine needles, sustainably derived from a waste-

stream of forestry. Although the biological shielding in this technique was not as 

high as with LB control substance, the methanol extracts are likely to be rich in 

polyphenols and flavonoids, which have been widely reported to have antioxidant 

properties (Sowndhararajan & Kang, 2012).  

For antibacterial activity measurements (Paper IV), the same sensor was used for 

screening genotoxicity or DNA damage caused to the biosensor cells by endophytic 

fungal fractions with ciprofloxacin as a positive control and water as negative control 

(for results, see Chapter 5.2.1). 

5.1.3 Color effect of berry extracts  

Bacterial stress-responsive biosensors were also used to investigate berry water-

extracts (unpublished data) with the same procedures which were discussed in 

Chapter 4.5. The berry extracts used were bilberry, lingonberry, blackcurrant, 

cranberry and cloudberry extracts (Figure 9a).  
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Figure 9.  (a) The original berry extract content of 0.1 g/mL is strongly colored in majority of the 
extracts. Thus, the extracts are diluted to obtain 1:10, 1:20 and 1:40 (v/v) of the original 
solution. From left to right: bilberry, lingonberry, black currant, cranberry and cloudberry 
extracts. (b) The antioxidant test results with 1:10 dilution are shown. Extract is considered 
an antioxidant if it produces lower IF signals than H2O2 (negative) control in a given 
measurement time point. C-vitamin was used as positive control. For example, with 
bilberry, blackcurrant and cranberry all of the used dilutions of berry extracts the H2O2 
oxidative effect seems to be inhibited at time point 50 minutes. (c) Cloudberry extract 1:10 
dilution seems to induce highest luminescence signals with bacterial DNA damage 
responsive biosensor. Ciprofloxacin (positive control) content of 1 mg/mL is highly toxic to 
the cells. The error bars are the CV% of the sample triplicates in the microplate. 
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Because some of the extracts are strongly colored and therefore likely to interfere 

with the luminescence emission, the original stock content of 0.1 g/L was diluted 

1:10, 1:20 and 1:40 (v/v) fold for each extract. However, the dilutions were not 

sufficient to remove the effect of the color completely. The berry extracts indicated 

low oxidative stress, with maximum IF values between 1.6 and 2.0 (data not shown). 

Antioxidant results showed that the highest effects, meaning that even the smallest 

content used (2.5 mg/mL) gave IF values below that of the H2O2 control, were 

obtained with the bilberry, blackcurrant and cranberry extracts (Figure 9b). 

However, these are also the most strongly colored extracts (see Figure 9a), which is 

important to consider when analyzing the results. The highest DNA damage test IF 

values were obtained using a cloudberry extract (Figure 9c). The color may affect 

the results and suppress the obtained signals of strongly colored extracts. Preferably, 

the absorbance of the extracts should be measured as suggested by Bartolome et al., 

(2006). Another solution is suggested by Lappalainen et al., (2001), where automatic 

color correction is achieved by using each sample as a reference for itself. 

The bilberry, blackcurrant and cranberry extracts are rich in plant flavonoids. 

Bilberry and blackcurrant extracts are rich in anthocyanins, whereas cranberries are 

known to contain quercetin derivatives (Häkkinen et al., 1999). Quercetin derivatives 

and anthocyanins are known antioxidants (Zhang et al., 2011a; Martín et al., 2017). 

Cloudberries contain many ellagitannin compounds, which are polymeric esters of 

glucose with ellagic acid (Puupponen-Pimiä et al., 2016). Ellagitannins have been 

shown to act as antioxidants and to cause antimicrobial effects (Yoshida et al., 2010; 

Puupponen-Pimiä et al., 2016). 

5.1.4 Bacterial biosensor discussion 

The results obtained show that bacterial biosensor methodologies are usable in 

screening the bioactivities from forest-derived extracts, as expected. Similar results 

were obtained by Kim et al., (2019). They concluded that the use of stress-responsive 

biosensor methodologies could be utilized for nature-derived drug screening and this 

could particularly be of use in the prescreening for drug discovery. They proposed 

that the prescreening response of a bacterial strain could be used to indicate 

cytotoxicity, which would reduce the need for resources compared to costly and 

rather laborious human cell line screening. Previously, Kim et al., (2000) used the 

stress-responsive strain panel to screen for endocrine disturbing chemicals and even 

though the sensors are not designed to be responsive to these agents, they could be 
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used to study the cellular mechanisms of their toxicity. In addition, Hartono et al., 

(2014) showed that toxicity of the endocrine disruptor bisphenol A could be detected 

from wastewater even if adsorbed into carbon nanotube beads, which emphasizes 

the sensitivity of the methodologies. 

 Belkin et al., (1996a) constructed the E. coli DPD2511 strain and they proposed 

that it could be used to monitor cellular mechanisms in response to oxidative stress 

in vivo and in real-time. This methodology could be used in assaying the oxidant and 

antioxidant properties of food additives and other chemicals of interest as well as 

screening for environmental hazards of different media. They validated the sensor 

using organic peroxides, redox cycling agents, alcohols, cigarette smoke and 

hydrogen peroxide. E. coli DPD2794 has been shown to be effective in detecting 

various types of DNA damaging agents. These include direct DNA damaging agents 

such as mitomycin C, which inhibits DNA synthesis, and UV irradiation, which 

destroys nucleic acids by removing oxygen-containing groups, and indirect DNA 

damaging agents such as oxidants (Min et al., 1999; Belkin et al., 1996b; Vollmer et al., 

1997). Quite recently, the same biosensor was also used in a biosensor panel to 

model the harmful effects of artificial sweeteners on the gut microbiota by Harpaz 

et al., (2018). They found that two toxicity response patterns could be detected with 

high enough concentrations. These were the induction or inhibition of the 

luminescent signal. Inhibition was only detected with exposure to sucralose but the 

E. coli DPD2794 responded to acesulfame K with an induced luminescence signal, 

which supports the earlier reports of the genotoxicity of this most used artificial 

sweetener. The similar luminescence signal quenching effect with higher 

concentrations of toxins was earlier discussed by Ismailov & Aleskerova, (2015) in 

their review paper. They offer an explanation that the screened stress-response 

induced effect is overlapped by the cytotoxicity of the sample and, thus, the 

magnitude of the signal is suppressed.  

It was observed in Paper I that an increase in the sample concentration increases 

the lag time before the response peak maximum is reached. Therefore, with higher 

concentrations the required measurement time is also increased. According to Gu & 

Choi, (2001) the phenomenon may be linked to growth rate retardation. 

Stress-responsive recombinant biosensors can be used for sensitive and selective 

toxicity screening of various sample types from different sources. For example, they 

have been used to screen toxic agents from industrial wastewater and river water to 

act as early-warning indicators of environmental pollution (Belkin et al., 1996b; 

Vollmer et al., 1997; Gu & Choi, 2001). Additionally, other environmental pollutants, 
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such as nanoparticles and pesticides have been investigated using these sensors 

(Pham et al., 2004; Li et al., 2013). 

The obtained results are likely to be of interest in the fields of natural product 

utilization, such as dermatology, cosmetics and fortified or functional foods, for 

example. However, in order to gain the full potential from the antioxidant 

methodology in HTS format, it should be transferred into 384-, 1536-, 3456- or 

9600-well format with automatic liquid handling. The biosensor E. coli DPD2511 

seems to suffer from occasional instability in the luminescence production. In fact, 

whole-cell biosensors can become unstable over time due to the cell leakage or 

diffusion (Gui et al., 2017). Thus, they could require reconstruction or improvement 

using synthetic biology after a period of use. Additionally, Min & Gu, (2004) found 

that the damage caused by H2O2 is very promptly repaired in E. coli bacteria, which 

can suggest the potential adaptability of the strain. Thus, other compounds or higher 

concentrations of the oxidant could be experimented with to see if the problem is 

due to cell mutation or resistance towards a certain oxidative agent. Additionally, it 

could be examined if addition of small volumes of ethanol with H2O2, could be used 

to increase the light production (Belkin et al., 1996a). With the E. coli DPD2794 

strain, the inhibition and induction effects should both be considered as shown by 

Harpaz et al., (2018), thus, further emphasizing the need for both positive and 

negative control sample usage in the measurement. 

 The instability of the biosensors could result in the signals not being directly 

comparable between the measurements. The same effect was discovered by Watt et 

al., (2007) with the E. coli DPD2794 strain. They propose that the block effect of 

each plate could be reduced by changing the experimental set-up in a way that one 

microplate would have one replicate of a sample and a number of microplates would 

be measured and then compared. One additional limitation is that a dark, reddish 

coloring of the samples, such as with berry extracts (Chapter 5.1.3), could reduce 

the luminescent signal results and the extracts and samples should therefore be 

diluted. This is caused by the fact that luminescence is produced within the 

wavelength of 493 nm, which corresponds to the visible region of the 

electromagnetic spectrum. The same effect was identified by Bartolome et al., (2006) 

and they proposed that sample absorbance should be investigated to minimize the 

opportunity for its interference with the signals. Lappalainen et al., (2001) suggest an 

alternative methodology, where color correction is achieved by using each sample as 

a reference for itself. Although these sensors have high sensitivity and selectivity, 

complex sample matrices could also mask the signal coming from the analyte or 

metabolite of interest (Gui et al., 2017).  
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In Paper II, two methodologies were established for UV protection screening 

using E. coli DPD2794 bacterial biosensor. These methodologies could be utilized 

for example in the fields of dermatology and cosmetics. With the polymerase chain 

reaction cabinet (PCR) as the UV irradiation source (Paper II), the UV radiation was 

254 nm, which corresponds to the UV-C region of UV light. It is completely shielded 

out of sunlight by the atmosphere. However, it was concluded that this methodology 

is easily transferrable from the PCR-cabinet to any standard UV-R emitting setting. 

Nevertheless, it should be tested and optimized for other settings separately. This is 

because the sensitivity of the bacterial strain could also be affected when changing 

radiation wavelengths. The E. coli DPD2794 strain is constructed so that it is 

sensitive to genotoxicity, and UV radiation damages the DNA of living beings by 

removing oxygen groups. The shorter the wavelength of the radiation, the higher 

frequency and energy it carries. While the E. coli biosensors have been found to be 

extremely sensitive, it is likely that by using longer wavelengths (UV-B and UV-A 

region) the irradiation time needs to be increased. However, as the irradiation time 

in Paper II was the most suitable at 30 seconds, the total measurement time is not 

likely to exceed critical limits for usability. The biological shield methodology is more 

sensitive to the solvent used and bacterial cells should always be tested with the used 

solvent concentration as a control. It is also important to notice that special and 

rather expensive UV-transparent microplates have to be used in the physical shield 

method because most of the radiation is otherwise blocked by the microplate itself. 

The irradiation source also needs to be placed directly above the microplates, to 

ensure the even distribution of the radiation in the microplate wells. 

In many of the referred articles, the biosensors have been used together as a panel 

of multiple biosensors. The advantages of this technique include that toxicity 

towards bacteria can be detected and the induction of a certain strain or multiple 

strains can provide information about the type of damage caused (Gu & Choi, 2001). 

When using the same species, such as two E. coli strains here, the effect of the input 

cell concentration is not relevant, but if several bacterial or microbial species are used 

this needs to be acknowledged (Wolfe, 2018). Furthermore, the competition over 

the nutritional sources and possible inhibition effects, which could lead to the 

suppression of the signal produced, need to be considered when using a mixture of 

microbial species together.  
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Table 4.  Summary of advantages and disadvantages of stress-responsive bacterial biosensors 
in forest-derived sample screening. 

Advantages 

• Sensitivity – can be used for small concentration samples 

• Selectivity but also multiple possible fields of use 

• Easy and cost-effective measurements 

• Rapid real-time response 

• Simultaneous information about the bioavailability and bioactivity of the 

sample. 

• Usable as panels of biosensors to obtain information about multiple 

stressors and the mechanisms of action simultaneously. 

• Can be used to obtain information about the cytotoxicity as well as 

antibacterial effects depending on the use. 

Disadvantages 

• Complex samples can cause matrix effect and cause signal ambiguity. 

• High concentration of toxins can interfere with the signal induction via 

quenching effect or inhibition as well as increase the required 

measurement time. 

• Strong colored sample can interfere with the luminescent signal. 

• Comparability between measurements should be ensured with statistically 

significant amount of repetitions. 

• Inhibition and induction effects should both be considered – verification 

with positive and negative controls is important. 

• Possible instability caused over time by cell leaking or diffusion of the 

whole-cell biosensor. 

In conclusion, it is proposed that these bacterial stress-responsive sensors are the 

most usable in activity/inactivity screening with small concentration of forest-

derived extracts, or preferably fractionated samples to reduce the possible sample 

matrix effect and induction delay phenomenon. Additionally, the comparison 

between sample activities should only be done within the same measurement 

samples or after a statistically significant number of measurement replications. While 

bacterial biosensors are concluded usable in the context of forest-derived extracts, it 

is important to regard that they only depict a part of the bioactivity spectrum and 

some important activities can only be detected using mammalian or human cell lines. 

Therefore, the biosensor methodologies should be considered merely indicative of 

the interesting features that should be further verified with cell lines prior to use in 
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various applications. Additionally, biosensors produce a change in the luminescence 

production as a response to a stimulus, and the results are always interpretations of 

the cause of reaction. This causes a completely different degree of certainty of the 

results when compared with standard analytical techniques, such as liquid 

chromatography with tandem mass spectrometry (LC-MS/MS), which can be used 

to verify metabolite identities. The advantages and disadvantages of the used stress-

responsive bacterial biosensors are summarized in Table 4. 

5.2 Bioactive metabolites of endophytic fungi 

In order to describe the bioactive metabolites, the information gained from the 

bioactivity tests and LC-MS identification results for the active fractions were 

combined. These two results will be first presented separately and then combined 

using statistical methods. Finally, the results will be discussed and summarized. 

5.2.1 Bioactivities of endophytic fungi extracts and fractions 

Seven different bioactivity tests were conducted for endophytic fungi extracts and 

five of these tests additionally for their fractions. All the bioactivity test results are 

summarized in Table 5. Biosensor tests were introduced in Chapters 4.5, 4.6 and 

5.1 and other bioactivity measurements in Chapter 4.7. The cultivation codes of the 

fungi are used in the table and the fungal species were identified using the closest 

GenBank matches of the ITS-regions which were A= Acephala applanata, R= 

Phialocephala fortinii and S16= Humicolopsis cephalosporioides/Coniochaeta mutabilis (see 

Paper III). First two are common dark septate endophytic (DSE) species found in 

boreal forest tree roots. The S16 identification is slightly uncertain and two possible 

matches are equal: H. cephalosporioides has been classified as a DSE-like fungi and C. 

mutabilis has been found in plants but also to act as a human and animal pathogen. 

Only the active fractions are shown in Table 5. 
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Table 5.  The bioactivities of endophytic fungi extracts and fractions. Human cell line tests were 
only conducted for the fungal extracts. PD= Parkinson’s Disease and AMD=Age 
related Macular Degeneration. Endophytic fungi are shown with their cultivation codes: 
A= Acephala applanata, R= Phialocephala fortinii, S16= Humicolopsis 
cephalosporioides/Coniochaeta mutabilis. Only the active preparative HPLC fractions 
(F1–F15) are shown below each extract (19 out of 42 fractions). The observed 
bioactivity is indicated with + and inactivity with –. Cells are left empty when the 
fraction was not tested. For the biosensor tests the samples were considered active if 
IF>1 or a %-inhibition rise during 10-50 minutes of measurement. SCAV= Hydrogen 
peroxide scavenging, 0.62-2.1 mg/mL sodium pyruvate equivalent = active. ORAC = 
Oxygen radical absorbance capacity, >500 µmol TE/L = active. The samples were 
tested in triplicates except in ORAC, where duplicates were used 

 Oxidative 
stress with 

E. coli 
DPD2511 

Antioxidant 
activity with 

E. coli 
DPD2511 

DNA damage 
with E. coli 
DPD2794 

SCAV ORAC PD AMD 

A - + + + + + - 
F2 + - + + -   
F3 + + + + -   
F5 - + + + -   

F13 - + - - -   
R - + + + + - - 
F2 + - + + -   
F3 + + + - -   
F4 - + + + -   
F7 + - - + -   

F10 - + + + -   
F11 + - - - -   
F13 - + - - -   
F14 - + + + -   
F15 - + - + -   
S16 + + + + + - - 
F1 - + - + -   
F2 + - + - +   
F3 + + - - +   
F7 + - - - +   

F13 - + + + +   
F14 + - - + +   

In the whole-cell bacterial biosensor tests, the fractions were considered active if the 

induction factors (an induction increase compared with water blank) (IF>1) of the 
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fraction rose above one in a dose responsive manner. In the case of antioxidant 

activities, a rise in the %-inhibition was considered to indicate activity when it 

occurred during 10 to 50 minutes of the measurement because before 10 minutes 

the temperature is not fully stabilized and it was concluded in Paper I that the 

differences between sample triplicates started to increase significantly after 50 

minutes in Paper I (Tienaho et al., 2015). 

The fractions active in the SCAV test gave values between 0.62 to 2.1 mg/mL of 

sodium pyruvate equivalents. These correspond to approximately 1–10%-inhibition 

of H2O2. The ORAC test of the fractions gave values ranging from less than 10 to 

over 2000 µmol TE/L and here the values over 500 were considered active. 

Cell model tests were conducted for the extracts alone and no activity was 

detected in the case of AMD, whereas the A. applanata extract (cultivation code A) 

showed activity in the PD cell model test (max inhibition activity-% 40).  

5.2.2 Bioactive metabolites from endophytic fungi 

In Paper III, endophytic fungal extract metabolites are shown, and the 

identifications are justified with different confidence levels. The retention order of 

the identified compounds was also compared with the literature when appropriate. 

The number of identified metabolites was 220 (Paper III, Table 2) and 98 were left 

unidentified (Paper III, Supplementary Table S1). In addition to the main 

metabolites, minor ones were also present, however, the intensity limit was set at 

1×107, and the peaks with lower intensities were not included. Among the identified 

metabolites, the majority were amino acids, peptides or their derivatives. In fact, 55% 

of all the identified compounds were dipeptides. Additionally, amino acid quinones 

and Amadori compounds were tentatively identified. Amadori compounds are 

Maillard reaction products where an amino acid is attached to a pentose or hexose 

sugar group. Nucleobases, nucleosides, nucleotides and their derivatives were also 

detected, and these are all well-known primary metabolites. Cholines, siderophores, 

sugars, sugar alcohols and disaccharides as well as some common metabolites were 

identified among with few matches of known endophyte or plant metabolites. 

Because all the peptides and some other compounds could not be verified using 

reference compounds, they are shown with all the potential options shown in the 

table footnotes (Paper III, Table 2). Some ionization induced fragmentation 

occurred at the ion source, but fragmentation was not used. The discovered 

fragments are described in detail in Paper III. 
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The confidence of the identification was divided into four levels according to the 

metabolomics standards initiative (MSI) (Sumner et al., 2007; Dunn et al., 2013). Level 

1 is for confidently identified compounds, where an authentic chemical standard was 

analyzed under the same analysis conditions. Level 2 is for putatively annotated 

compounds, where physicochemical properties and spectral similarities with public 

spectral libraries as well as listed references (in Paper III, Table 2) were used. Level 

3 is for putatively annotated compound classes, where characteristic physicochemical 

properties or spectral similarities of compound classes are used to confirm identity. 

Unidentified compounds are classified as level 4 compounds, which are unidentified 

and unclassified but can be differentiated based upon spectral data. 

In Paper IV, the metabolites found in the bioactive fractions are shown (Paper 

IV, Supplementary Table S2) and these are combined with the bioactivity 

information in Table 2 of Paper IV, which shows the metabolites found in either 

active or inactive fractions and extracts. Of the initial 330 compounds, 177 (54%) 

are shown in Table 2 (paper IV). The unidentified metabolites are shown with their 

exact measured masses. Most of the metabolites are the same as in Paper III. Some 

of the compounds from the extracts were potentially concentrated during the 

fractionation and drying process and therefore the contents of the compounds can 

be higher than found in the extracts.  

Most of the identified metabolites in the bioactive fractions belong to the 

compound group peptides with 83 dipeptide or peptide matches and 9 derivatives 

such as acetyl- or phenylacetylamino acids. This group therefore represents 52% of 

the 177 metabolites. Additionally, a further 51 unidentified compounds, which 

represent 29% of the metabolites, potentially influence the bioactivity of the fungal 

fractions. Other compounds such as nucleosides and nucleotides, Amadori 

compounds and sugars were also found to be among the compounds of potential 

bioactive interest, representing 19% of the metabolites. 

In order to combine the bioactivity and metabolome results, three methodologies 

were used. First, the grouping of the metabolites and activities from Paper IV Table 

2 into a visual form was done using Venn diagrams (Figure 10). Compound groups 

are presented as P= peptide, O= other and U= unknown. However, because there 

were five bioactivity tests and they are all presented with activity and inactivity, it is 

impossible to draw a comprehensive single Venn diagram without ambiguities. 
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Figure 10.  The Venn diagrams about the metabolite distribution to the different fractions and extracts 
with bioactivities and inactivities. (a) Organized according to the ORAC and SCAV and cell 
model for Parkinson’s disease (PD) activities and inactivities. (b) Organized according to 
the biosensor tests with E. coli DPD2511 oxidative stress (ox) and antioxidant (antiox) as 
well as E. coli DPD2794 DNA damage (DNA). (c) Organized according to the E. coli 
DPD2511 oxidative stress (ox), SCAV and ORAC. (d) Organized according to the 
metabolites found only in inactive fractions and extracts. The pie charts show roughly the 
type of metabolites that were found: P= peptides, O= other and U= unknown. 

Additionally, principal component analysis (PCA) and component clustering were 

used. PCA was found to be effective with four factors explaining 79% of the total 

variance (See Paper IV, Supplementary table S3B). The first principal component 

(PC) linked together metabolites from ORAC and SCAV active fractions. 

Additionally, metabolites from DNA damage biosensor fractions seem to be linked 

to this PC (with a semi-strong loading of 0.43). The second PC linked together 

metabolites from antioxidant biosensor test active fractions and DNA damage 

biosensor test active fractions. Principal components PC3 and PC4 were formed 

with the oxidative stress biosensor test and the Parkinson’s disease (PD) cell model 

test, respectively.  
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The activities were divided into 19 clusters containing from one to 52 metabolites 

with different bioactivities and intensities of the metabolites (see Paper IV, Table 2). 

The most informative content was achieved in clusters with bioactivity in only one 

of the antioxidant test methods (Figure 11). Three clusters contained 13 metabolites 

which were found only in the SCAV test active fractions. The other three clusters 

contained 16 metabolites exclusively from the antioxidant active biosensor test 

(antioxact) fractions and one cluster contained ten metabolites found only from the 

ORAC active fractions (Paper IV, Table 2). These antioxidant active clusters all had 

tentative identifications of dipeptides with Leu or Ile amino acid residues. SCAV test 

active clusters potentially contained six of these dipeptides (Leu or Ile and Thr, Ser, 

Gln, Met, Ala, or Glu). Biosensor antioxidant test active clusters potentially 

contained four dipeptides with Leu or Ile (Leu or Ile and Glu, Val, Leu, or Asp) and 

ORAC test active cluster contained three (Leu or Ile and Asp, Arg or Lys) (Figure 

11).  

When considering these tentative identifications, all the active clusters potentially 

contain Leu or Ile amino acids with negatively charged side chains (Asp and Glu), 

although differences can also be seen. The SCAV test active clusters potentially 

contained Leu or Ile amino acids with polar uncharged (Thr, Ser, Gln) and 

hydrophobic (Met and Ala) side chains. Biosensor antioxact potential Leu or Ile 

dipeptide identifications suggest hydrophobic (Val and Leu) side chains, and ORAC 

active fractions suggest positively charged (Arg and Lys) side chains. Both SCAV 

and biosensor antioxidant test active fractions were, thus suggesting hydrophobic 

side chains. Both tests measure the inhibition of the H2O2. However, the difference 

between them is that the SCAV test measures the ability of a compound to scavenge 

the H2O2 before it oxidizes an iron complex (Figure 7), and in the biosensor test, 

the active compound must be able to protect the bacterial biosensor strain from the 

harmful effects of H2O2 in vivo.  

The compound groups found in the active and inactive fractions and their 

reported bioactivities are introduced next. Compared with the number of secondary 

metabolites, the number of identified primary metabolites was large. 
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Figure 11.  The clusters with compounds found from fractions with only one activity: DNAact, ORACact, 
SCAVact or antioxact are shown, compound numbers, clusters and activities are shown in 
Table 2, Paper IV. See also Table 2, Paper IV footnotes for the identities of peptides. The 
framed compounds have potential Leu or Ile containing dipeptide matches in common, 
which are shown on the right. The side chain properties vary with these potential matches. 

5.2.2.1 Amino acids and peptides 

Five m/z values corresponding to free amino acids were detected: arginine, valine, 

tyrosine, phenylalanine and tryptophan (Paper III and IV). Large amounts of 

arginine were detected in the endophytic fungi extracts and fractions and it could be 

identified in different peaks of the chromatogram. This indicates that it is bound to 

many of the metabolites. Arginine is commonly used as a nitrogen storage because 

it has the highest nitrogen to carbon ratio out of all 22 proteinogenic amino acids 

(Figure 12) (Winter et al., 2015). Nitrogen is often a limiting resource for plant 

growth since it is needed for nucleic acid and protein synthesis. Additionally, arginine 

is used in the production of nitric oxide and polyamines in plants and both nitric 
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oxide and polyamines play a crucial role in the responses to abiotic and biotic stress 

(Winter et al., 2015). 

The free amino acid valine (Val) was detected by the [2M+H]+ ion and found in 

the PD inactive extracts (Paper IV, Table 2). Unlike humans, plants and fungi are 

able to synthesize branched amino acids, such as valine, leucine and isoleucine, and 

valine is catabolized into several important molecules in fungi, such as pyruvate, 

propionate and succinate (Gupta & Pramer, 1970; Binder, 2010). Hydrophobic 

amino acids (Val, Leu and Ile, Figure 12) at the N terminus of peptides show 

antioxidant properties by increasing the interaction between peptides and fatty acids 

(Chen et al., 1995). 

 Fungi and plants also synthesize phenylalanine through the shikimic acid 

pathway (Hyun et al., 2011). Phenylalanine is used as a source of carbon and nitrogen, 

but some fungal species have also been shown to be able to degrade it into cinnamic 

acids, which are important intermediates in the formation of a variation of phenolic 

compounds with antimicrobial activities (Hyun et al., 2011; Guzman, 2014). Tyrosine 

(Tyr) was detected in SCAV active fractions and extracts (Paper IV, Table 2). 

Tyrosine has been previously found to have antioxidant activity in the ORAC assay 

and this activity could be explained by the capacity of the phenolic groups to serve 

as hydrogen donors (Hernández-Ledesma et al., 2005). The oxygen radical captures 

phenolic hydrogen resulting in the formation of a more stable phenoxyl radical. In 

fact, nucleophilic sulfur-containing side chains (Cys and Met) and aromatic side 

chains (Trp, Tyr and Phe) donate their hydrogen easily and are therefore potential 

antioxidants, but they can also all have pro-oxidative properties in certain conditions 

(Figure 12) (Carrasco-Castilla et al., 2012). Additionally, histidine (His) is susceptible 

to oxidative reactions and has metal chelating properties because of its imidazole 

group, which is susceptible to oxidative reactions (Carrasco-Castilla et al., 2012). 

Histidine-containing peptides have even been reported with higher antioxidant 

activity than histidine itself because of the increase in hydrophobicity and resulting 

higher interaction between peptides and fatty acids (Chen et al., 1995). Especially 

acidic (Asp, Glu) but also basic (Arg, His, Lys) amino acid residues have been 

proposed to play a significant role in metal chelation and, thus, provide protection 

from lipid peroxidation (Saiga et al., 2003).  

Interestingly in our study, tryptophan was found to be active in SCAV and ORAC 

tests as an authentic standard compound, but it was found in both active and inactive 

fractions of the bioactivity tests (Paper IV, Supplementary Table S2). This could be 

because tryptophan and compounds including it have been found to contain 

interesting curative properties, but some are toxic instead or have been found to 
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increase oxidative stress in certain conditions (Le Floc’h et al., 2011; Carrasco-Castilla 

et al., 2012; Nongonierma et al., 2015). Peptides containing antioxidant amino acids 

Trp, Tyr, Phe, Cys, Met, Asp, Glu, Val, Leu, Ile, Arg, Lys or His were commonly 

found in SCAVact, ORACact, DNAact and/or antioxact fractions in Paper IV (Table 

2). Only three potential and tentative matches for peptides containing antioxidant 

counterparts were found in fractions with oxidative activities (Paper IV, Table 2). 

#14 (Ala-Glu or Glu-Ala or Heliopine) was found in oxact fractions; #42 

(Di/tripeptideh: potentially contains Leu, Ile, Val or Lys but also, the ethyl ester of 

Ala-Ala-Ala is possible) was found in oxact, antioxinact and DNAinact fractions and #59 

(Acetylglutamic acid) was found in oxact fractions. These three identifications are 

tentative and could thus be explained by other compound matches. 

Dipeptides were the most abundant class of compounds in the endophytic fungi 

extracts and fractions. Plant associated microorganisms have been reported to 

produce a variety of nitrogen containing compounds, such as cyclic peptides and 

peptides (Zhang et al., 2006; Gunatilaka, 2006; Wang et al., 2017a; Li et al., 2018a). In 

Paper IV, the different peptides and peptide derivatives also formed a majority of 

the compounds only found in the antioxidant fractions and extracts (Figure 10). 

Indeed, peptides with antioxidant and other bioactivities have also been quite widely 

discussed in the literature (Chen et al., 1996; Hernández-Ledesma et al., 2005; Wang 

et al., 2016a; Dang & Süssmuth, 2017; Sánchez & Vásquez, 2017). The antioxidant 

activity of peptides is usually caused by the chelation of transition metals and 

scavenging of free radicals (Carrasco-Castilla et al., 2012). Antimicrobial peptides 

have been found to be active against both Gram-positive and Gram-negative 

bacteria and they can possess other benefits for health such as anti-inflammatory 

properties (Hilchie et al., 2013; Chen et al., 2019). Glutathione (Table 2, Paper IV) is 

an antioxidant peptide with sulfur-containing side chains, which is used in the non-

enzymatic antioxidant defense mechanism of plants and is known to be present in 

high concentrations in fungi (Pocsi et al., 2004). Endophytes also use antioxidant 

substances such as glutathione to overcome reactive oxygen species (ROS) 

production, which is the initial protection method of a plant against microbial 

invasion (Hilchie et al., 2013; Koskimäki et al., 2016). In Paper IV, glutathione was 

found in the fractions which were active in the biosensor antioxidant test and the 

SCAV test (antioxact and SCAVact). 
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Figure 12.  Amino acid side chain properties; out of the 22 proteinogenic amino acids, selenocysteine 
(Sec) and pyrrolysine (Pyl) have been omitted from the figure because masses suitable for 
peptides containing them were not discovered. 

Many peptides have also been reported showing antimicrobial and antiviral 

properties (Salas et al., 2015; Bondaryk et al., 2017; Dang & Süssmuth, 2017; Sánchez 

& Vásquez, 2017; Kombrink et al., 2018). Additionally, cyclo(3-OH-Pro-Tyr) (see 

Paper III and IV) was also found to have toxicity against the pest mite Tetranychus 
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urticae by Li et al., (2018a). In Paper IV, cyclo(3-OH-Pro-Tyr) is one possible 

identification (MSI3) for Peptide type compounds (#130), which have been found 

in fractions which were active in the biosensor antioxidant test. Then again, Kang et 

al., (2011) found dipeptide Leu-Glu to have protective activity against UV-B induced 

photoinflammation. In this study, Leu-Glu is one potential compound explaining 

Dipeptidej (see Table 2, Paper IV), which was found in fractions with antioxidant 

activities (antioxact, SCAVact, ORACact and antioxact+DNAact). Protection from ROS, 

which are produced by UV radiation in the skin, is one property which increases the 

protective capacity of sunscreen products (Poljsak et al., 2013). This was verified 

using ascorbic acid and astaxanthin in the biological UV protection test in Paper II 

(Tienaho et al., 2018). 

5.2.2.2 Osmolytes and siderophores 

Free amino acids and dipeptides can also act as signaling molecules and have 

antioxidant and buffering properties in human body (Fonteh et al., 2007). Whereas 

plants accumulate compounds such as proline (Pro), glycine betaine and choline-O-

sulfate in their cells, as a response to different abiotic stress situations (Ozden et al., 

2009). These are known as osmolytes, which accumulate in the cells as a response to 

osmotic stress to protect proteins from destruction (Hagihara et al., 2012). Amino 

acid Pro, for example, is one of the most common compatible osmolytes in plants 

suffering from dehydration caused stress (Yoshiba et al., 1997). Whereas, choline-O-

sulfate is synthesized widely in nature by plants, lichens, algae, fungi and even some 

bacterial species (Hagihara et al., 2012), it has been shown to accumulate in plant cells 

under saline stress (Rivoal & Hanson, 1994) and it provides a source of sulfur and 

choline, which is essential nutrient with vitamin-like effects (Hagihara et al., 2012). 

In fungi, choline-O-sulfate acts as the storage of sulfur, which is an essential 

metabolite for the growth of filamentous fungi (Spencer et al., 1968; Markham et al., 

1993). In Paper IV, proline was found mainly linked in peptides and choline-O-

sulfate was found in both active and inactive fractions. Proline-containing peptides 

were found in antioxact, DNAact, SCAVact and/or ORACact fractions and some were 

found also in oxact and some in oxinact fractions. In fact, dehydration can cause 

oxidative stress and the free-radical damage is often targeted at the DNA of the 

organism (Franca et al., 2007). Proline has also been shown to scavenge OH-radicals 

in vitro (Bohnert & Jensen, 1996). 

One exact mass and molecular formula corresponding to cis- and/or trans-

fusarinine siderophore was found with two retention times in Paper III. The cis- and 
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trans-fusarinine backbones are very common in many fungal siderophores 

(Holinsworth & Martin, 2009; Bertrand et al., 2010). Siderophores are low molecular 

weight compounds that are used for iron uptake and storage and they have been 

found to be important in the maintenance of plant–fungi symbioses and for the 

establishment of virulence (Haas et al., 2008; Kajula et al., 2010; Wright, 2014). Fungi 

and other microorganisms have been found to produce siderophores in aerobic 

growth conditions during periods of iron limitation (Holinsworth & Martin, 2009). 

Iron is essentially required for the growth and proliferation in both bacteria and 

fungi, and siderophores provide cells with nutritional iron (Abdalla & Matasyoh, 

2014). In DSE fungi, it was found that these species can acidify their growth 

environment and produce siderophores to increase the micronutrient uptake to both 

members of the symbiont, indicating the association to be mutualistic rather than 

pathogenic (Bartholdy et al., 2001). In Paper IV, siderophores were found in both 

active and inactive fractions and therefore can be found from the supplementary 

material. 

5.2.2.3 Amadori compounds, amino acid quinones and opine amino acids 

Amadori compounds are formed in the Maillard reaction, where naturally occurring 

reducing sugars and amino acids are joined nonenzymatically (Ryu et al., 2001). 

Hexosearginine, hexosevaline, pentoseproline, hexoseaminobutyric acid and 

deoxyhexosethreonine were among the tentative identifications in Paper III. 

Amadori compounds have also been previously found in fungal species (Yoshida et 

al., 2005). Hexosearginine and specifically fructosylarginine has been identified in 

aged garlic and red ginseng and it has been shown to act as an effective antioxidant 

(Ide et al., 1999; Ryu et al., 2001; Joo et al., 2008). The presence of fructosylarginine 

in the endophytic fungal extracts and fractions was verified using a synthesized 

reference compound. However, the antioxidant activity could not be verified in 

SCAV and antioxidant biosensor tests (data not shown, the synthesis route of 

fructosylarginine and results will be published elsewhere). Because of their ability to 

bind iron and other heavy metals, Amadori compounds in general have been 

proposed to contain antioxidant properties (Gill et al., 1996). These Maillard reaction 

products have also proven antimicrobial properties and fructose-amino acids have 

indicated more biological activity compared to glucose-amino acids (Wu et al., 2014). 

Hexoseaminobutyric acid has the same molecular formula as hexoseaminoisobutyric 

acid and both are thus possible identifications. Aminoisobutyric acids are rare in 

nature and can only be found in peptaibols, which are antibiotic antifungal peptides 
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produced by soil fungi (Huang et al., 1995). Additionally, aminobutyric acid has a 

somewhat similar structure to hydroxybutyric acid, which has been reported with 

hydroxyl radical scavenging activity. Methyl esterified dimers and trimers of 

hydroxybutyric acid were found to protect bacteria from hydroxyl radicals 

(Koskimäki et al., 2016). In Paper IV, hexosearginine was identified in the fractions 

which wereactive in the biosensor antioxidant test (antioxact). Hexosevaline was 

tentatively identified in antioxact, DNAact and SCAVact fractions and 

deoxyhexosethreonine and pentoseproline were tentatively identified in oxinact, 

antioxact, DNAact and SCAVact fractions.  

Abenquines are simple aminobenzoquinones substituted with different amino 

acids. Quinones have been reported in endophytic fungi (Gouda et al., 2016). Schulz 

et al., (2011) stated that aminobenzoquinones are widely distributed in nature but 

abenquines are rare. However, their structure is related to fungal pigments 

lepiotaquinone and lilacinone (Schulz et al., 2011). Because more than one possible 

amino acid quinone masses were detected in Paper III and they have been isolated 

from the rhizosphere bacteria, there is a possibility that root-colonizing fungi of the 

rhizosphere could produce these metabolites. However, the confidence level is 

putative identification (MSI2). Abenquine C or N-[4-(acetylamino)-3,6-dioxo-1,4-

cyclo-hexa-dien-1-yl]-l-valine and N-[4-(acetylamino)-3,6-dioxo-1,4-cyclohexadien-

1-yl]-leucine (abenquine B1) and -isoleucine (abenquine B2) have been isolated from 

the Streptomyces sp. bacteria (Schulz et al., 2011; Nain-Perez et al., 2017). Abenquines 

have been found to contain weak activity against bacteria and fungi (E. coli, 

Lactobacillus casei, Bacillus subtilis, Trichophyton rubrum, T. mentagrophytes and Microsporum 

canis), and stronger activity against bloom-forming cyanobacteria (Synechococcus 

elongatus) (Schulz et al., 2011; Nain-Perez et al., 2017). In Paper IV, abenquine C was 

found in both active and inactive fractions (found from the supplementary material) 

but abenquine B1 and B2 are among the tentatively identified matches of Peptide 

type compoundy, which was found in SCAV test active fractions.  

Opines were among the tentatively identified metabolites in the fungal extracts 

and fractions. They are conjugates of amino acids and common carbonyl compounds 

of primary metabolism, such as pyruvate, α-ketoglutarate or glucose (Chilton et al., 

2001). They are formed by crown gall tumors caused by various rhizosphere bacteria 

of Rhizobiaceae sp. in a wide variety of hosts, including Pinus sp. (Kemp, 1978; Stomp 

et al., 1990). It has been shown that other soil bacteria and even fungi can also utilize 

opines as their sole source of carbon and energy (Beauchamp et al., 1990; Savka et al., 

1996). Heliopine is a conjugate of glutamine and pyruvate, whereas rideopine is 

derived from polyamine putrescine (Chilton et al., 2001). Lysopine is a condensation 
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product of lysine and pyruvate (Kemp, 1978). However, valinopine has been 

detected from the poisonous mushroom Clitocybe acromelalga and is suggested to be a 

fungal toxin (Fushiya et al., 1996). Saccharopine has also been isolated from different 

mushroom species and is a precursor of lysine in the fungal α-aminoadipate pathway 

(Fushiya et al., 1996; Xu et al., 2006). Savka et al., (1996) showed that opines can move 

through the plant and even spread to the soil as exudates and thus affect the 

microbial growth around the plant. Some opines have been shown to pose 

antagonistic effects on herbivorous larvae and cause allelopathy against weed seeds, 

which suggests that they are beneficial to the plant hosts (Savka et al., 1996). Gall 

formation and opine synthesis were studied in co-cultivation experiments with Pinus 

species and Agrobacterium tumefaciens (Stomp et al., 1990). It was found that bacteria 

were able to transfer DNA into pine species (including Scots pine) but the number 

of gall tumors decreased over time. The authors also stated that the formation of 

opines should not be taken as the sole evidence of transformation by Agrobacterium 

as some opine species have been identified from uncolonized plants with arginine 

feeding (Stomp et al., 1990). In Paper IV, saccharopine was found in oxact, antioxinact 

and DNAact fractions and heliopine was found in oxact fractions. Lysopine or 

rideopine were found in antioxact, DNAact and SCAVact fractions and valinopine was 

tentatively identified in oxinact, antioxact, DNAact and SCAVact fractions. It seems that 

all potential identifications possess some antibacterial activity, which could be caused 

by the antagonism between microbial species in the soil environment, where the 

amount of nutrients is limited.  

5.2.2.4 Common metabolites 

Some common metabolites were identified from the extracts and fractions. 

Glycerophosphoinositol is found in both plants and fungi and it is a major 

deacylation product of lipid metabolism (Prior et al., 1993; van der Rest et al., 2002). 

Most commonly, the inositol is in its myo-D-inositol chemical form, which has been 

shown to scavenge hydroxyl radicals, in vitro (Bohnert & Jensen, 1996). 

Glycerophosphorylcholine is a part of phosphatidylcholine, which is a type of 

phospholipid in lecithin. Lecithin is a major component of the phospholipid 

membrane which is also found in plant tissue (Markham et al., 1993). These 

compounds are closely related to each other and in Paper IV, these were found in 

both active and inactive fractions. Methylcitric acid was also found in both active 

and inactive fractions (Paper IV) but it was found to have ORAC activity by 

Jayaprakasha et al., (2007). 
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Of the nucleobases, guanine and isoguanine or oxyadenine were detected, which 

are the only ones with a molecular mass above the detection limit of 150 Da. 

Isoguanine is a purine analog, which is formed in the direct oxidation of adenine 

(Cheng et al., 2012; Karalkar et al., 2017). Guanine was found in SCAVact and PDinact 

fractions and Isoguanine or Oxyadenine as identified in PDinact fractions in Paper 

IV. Of the DNA bases, guanine is most easily oxidized and the presence of 8-

hydroxydeoxyguanosine has been considered a marker of hydroxyl radical induced 

oxidative damage to DNA (Wang et al., 2014). The mass of this compound responds 

to that of the guanosine isomer in Paper III and IV. Dinesh et al., (2012) reviewed 

activities of purine analogues and many derivatives of adenine and guanine have been 

found to contain antimicrobial and antiviral properties. 

Nucleosides were also detected, and they contain a nucleobase with a pentose 

sugar unit: ribose or deoxyribose. Cytidine, pseudouridine, uridine, adenosine, 

guanosine isomer, deoxyguanosine, methylthymidine, and deoxythymidine were 

tentatively identified in Paper III, and the presence of cytidine, uridine and 

adenosine were verified with authentic standards. Methylthymidine has been used as 

an indicator of microbial presence in wastewater (Rublee et al., 1984). In the parasitic 

fungus Cordyceps sinensis found in caterpillars, the most bioactive principles were 

found to be water-soluble nucleosides, exo-polysaccharides, sterols and proteins 

(Shashidhar et al., 2013). For example, adenosine, guanosine and cordycepin were 

detected and found to contain pharmacological activities such as anti-cancer and 

pharmacokinetic effects (Shashidhar et al., 2013). Adenosine is an adenine riboside, 

which has also been shown to induce growth in plant meristem cultures (Ries et al., 

1990; Pirttilä, 2011). Additionally, cytokinins are adenine derivative plant hormones, 

which are known to induce plant growth (Osugi & Sakakibara, 2015). Adenosine was 

found in this study to be abundant in the fungal extracts. It was found in both 

inactive and active fractions with high intensities (Paper IV, Supplementary Table 

S2). However, the mass of adenine is 135 Da, which is too low for detection in the 

used methodology. Nucleosides and nucleotides are vital for all living cells and are 

involved in many key biological processes (Huang et al., 2014). Different derivatives 

of nucleosides and nucleotides have been found to have antimicrobial, herbicidal 

and insecticidal properties (Isono, 1988). Especially marine-derived nucleosides have 

been investigated widely because of their unique and biologically active properties, 

and these include marine fungi derived molecules (Huang et al., 2014). Pseudouridine 

was found in oxact, antioxact and SCAVinact fractions and uridine in antioxact, DNAact 

and SCAVact fractions in Paper IV. Deoxyguanosine (whose mass and formula 

correspond to 8-hydroxydeoxyguanosine, which is an oxidation product of guanine) 
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was found in antioxact fractions and deoxythymidine in ORACact fractions in Paper 

IV. Tentatively identified uridine analogue, 5-methoxycarbonylmethyluridine was 

found in the oxinact, antioxact, DNAact, SCAVact and PDact fractions. 

Nucleotides are nucleosides joined with at least one phosphate group and they 

were tentatively identified in the extracts and fractions. Nucleotides have both 

antioxidant and pro-oxidative properties (Richter & Fischer, 2006). In fact, purine 

adenine nucleotides were concluded to have biphasic effects (including first pro-

oxidant and then antioxidant phases) in the Fenton reaction, where iron is oxidized 

in the presence of hydrogen peroxide and forms highly reactive hydroxyl radicals 

(Richter & Fischer, 2006). The order of inhibitory or antioxidant potency was found 

to be adenosine diphosphate (ADP) > adenosine monophosphate (AMP) > 

adenosine triphosphate (ATP) > adenosine, whereas phosphates are generally 

considered pro-oxidants (Richter & Fischer, 2006). Adenosine monophosphate 

(AMP) or deoxyguanosine monophosphate (dGMP), cyclic uridine monophosphate 

(cUMP), deoxyribose adenosine monophosphate (dAMP), cyclic adenosine 

diphosphate ribose (cADPR), cyclic guanosine monophosphate (cGMP) and two 

exact masses and molecular formulae corresponding to dinucleotides were identified 

in Paper III. AMP or dGMP was found in PDinact fractions whereas dAMP was 

found in SCAVact and PDinact fractions in Paper IV. Dinucleosides were found in 

oxinact, antioxact, DNAact and SCAVact fractions.  

Cyclic nucleotides are used as signaling metabolites in almost all organisms and 

they regulate a vast number of cellular processes (Bähre & Kaever, 2014; Dittmar et 

al., 2015; Seifert, 2016; Swiezawska et al., 2018). Cyclic-GMP and cUMP were found 

in ORACact fractions and other possible cUMP isomer in antioxact, DNAact and 

SCAVact fractions. Cyclic nucleotides have been proposed to be among potential 

contributors towards the antioxidant nature of Ziziphus jujuba fruits (Wang et al., 

2016b). ADP-ribosyl groups are formed on target proteins as a response to DNA 

damage and poly(ADPR) polymerase enzyme homologs, which catalyze the reaction, 

have also been found in fungi (Semighini et al., 2006). Cyclic ADPR was found in 

oxinact, antioxact, DNAact and SCAVact fractions in Paper IV. The intracellular 

signaling responses of plants to nitric oxide (NO) have been shown to generate 

cGMP and cADPR (Neill et al., 2003). NO induces stress-related processes in plants, 

such as defense mechanisms’ gene induction and programmed cell death but also 

stomatal closure, seed germination and root development (Neill et al., 2003).  

In addition, nicotinamide riboside (NR) and nicotinamide adenine dinucleotide 

(NAD) were tentatively identified. NR was found in the antioxact, DNAact and 

SCAVact fractions whereas NAD was found in the oxact and ORACact fractions in 
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Paper IV. NR is a naturally occurring form of vitamin B3 (niacin) and its amide-form 

(nicotinamide), which is a key component in the production of NAD (Conze et al., 

2016; Fricker et al., 2018). NAD either exists in its oxidized (NAD+) or reduced 

(NADH) form and can also be synthesized from tryptophan in prokaryotic and 

eukaryotic organisms (Lin & Guarente, 2003). NAD has been thought to have 

signaling and transcriptional regulator roles in ageing and some human diseases, such 

as Parkinson’s disease (Lin & Guarente, 2003). In fact, NAD+ is essential for all 

organisms because of the redox maintenance and as a source of ADP-ribosyl groups, 

which retard aging, for example (Bieganowski & Brenner, 2004).  

Sugar-nucleotides, such as uridine diphosphate (UDP)-glucose and UDP-

galactose as well as UDP-galactosamine and UDP-glucosamine were also discovered 

in Paper III. UDP-glucosamines and UDP-galactosamines are important precursors 

of the bacterial and fungal cell wall (Maruyama et al., 2007). Sugar nucleotides are 

donors of sugar groups in the biosynthesis of glycosides, polysaccharides and 

glycoconjugates and they are abundant in microorganisms and plants (Kariya & 

Namiki, 1997). They also play many important roles in fungi (El-Ganiny et al., 2010; 

Li et al., 2015). UDP-galactose was found in DNAact fractions and UDP-

galactosamine and UDP-glucosamine were found in oxact and antioxact fractions in 

Paper IV. Sugar-nucleotides are formed by sugars or sugar derivatives and nucleoside 

mono- or diphosphates and they are essential intermediates in carbohydrate 

metabolism and glycoconjugate biosynthesis (Wagner et al., 2009). 

The presence of mannitol and fucose was confirmed using authentic standards in 

Paper III. Mannitol is widely distributed in filamentous fungi and it is stored in the 

fungal hyphae as a carbon source (Landi et al., 2017). Mannitol is sugar alcohol, which 

can be oxidized to form mannose, and polysaccharides which are rich in mannose 

have been proposed to increase the antioxidant capacity of fungal species, such as 

Inonotus obliquus, Pleurotus eryngii and Hirsutella sp. (including C. sinensis) (Wang et al., 

2017b). Additionally, mannitol itself has been shown to scavenge OH-radicals in vitro 

(Bohnert & Jensen, 1996). Fucose appears to represent a prominent feature in 

protein-linked glycans in the fungal kingdom (Grass et al., 2010). Fucose-enriched 

exopolysaccharides exhibit anticancer and anti-inflammatory activities and are used 

in the cosmetic industry as skin moisturizers (Cescutti et al., 2005).  

Furthermore, disaccharides were tentatively identified. Mass and molecular 

formula responds tor example to the one isolated from pathogenic fungal species 

Claviceps africans, with fructofuranose and arabinose backbones (Bogo et al., 2006) 

were tentatively identified in the fungal extracts and fractions. Some polysaccharides 

of fungal species have been found to have antioxidant activity, such as a 
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heteropolysaccharide isolated from the fruiting bodies of C. sinensis (Zhang et al., 

2011b). Additionally, Fusarium sp. has yielded water-extractable polysaccharides with 

antioxidant activity (Li et al., 2012). Deoxyhexoses are produced in fungi by pyranose 

oxidases, which have been reported among lignin-degrading fungi (Giffhorn, 2000), 

for example. Pyranose oxidases provide H2O2 for the lignin-decomposing 

peroxidases in white rot fungi (Giffhorn, 2000). Dehydrohexose has also been 

previously reported in evergreen Carob trees (Ceratonia siliqua) (Farag et al., 2019). 

Disaccharides were found in DNAact fractions and dehydrohexose was tentatively 

identified in oxact and antioxact fractions in Paper IV. Deoxyhexose was found in 

oxinact, antioxact, DNAact and SCAVact fractions. 

5.2.2.5 Specialized metabolites 

Among the tentatively identified compounds, phomone A and B are enantiometric 

α-pyrone dimers isolated from the endophytic fungus Phoma sp. YN02-p-3 and have 

showed no activity against three human cell lines (Hill & Sutherland, 2017; Sang et 

al., 2017). Blumeoside C, which is an iridoid glucoside isolated from Fagraea blumei 

(Cuendet et al., 1997) has the same molecular formula. Cuendet et al., (1997) 

discovered that blumeoside A elutes later than blumeoside C, which is in accordance 

with the findings in Paper III, Table 2. Blumeoside A displayed antioxidant activity 

in a DPPH test by Cuendet et al. (1997). In Paper IV, phomone A or B or blumeoside 

C were found in PDinact fractions. 

Asperulosidic acid and its stereoisomer were tentatively identified (MSI2) from 

the extracts and fractions and they have been isolated from the plant Hedyotis diffusa 

using water extraction (Li et al., 2008). According to Friscic et al., (2016), asperulosidic 

acid elutes later than mannitol using reversed-phase liquid chromatography as in our 

study. Asperulosidic acid has also been isolated from Vernonia cinerea with ethanol 

(Alara et al., 2018) and its structural isomers have been isolated from Morinda coreia 

and Saprosma scortechinii with methanol (Kanchanapoom et al., 2002; Ling et al., 2002). 

Asperulosidic acid or isomer was found in the SCAVact fractions (Paper IV). 

Furthermore, exact masses corresponding to orsellinic acid esters were found, 

which have been isolated from the endophytic Chaetomium sp. fungus (Bashyal et al., 

2005; Schlörke & Zeeck, 2006; Gutierrez et al., 2012; Xu et al., 2014). However, 

orsellinic acid ester globosumone B was not included in Table 2 (Paper III) because 

of the chosen intensity limit of 1 × 107. It was found in R fungus fractions with 

higher intensities and therefore it was included in Supplementary Table S2 of Paper 

IV. Globosumone B has been found found to be moderately active against four 



 

53 

human cancer lines (Bashyal et al., 2005). Orsellinic acid esters have been found to 

have cytotoxic, antibacterial and antiviral activities (Xu et al., 2014).  

Two tentative identifications (MSI3) with possible triterpene saponin structures 

were obtained with the molecular formula C35H50O12. Such triterpene saponins, 

could for example be Dianthosaponin F, which has been isolated from Dianthus 

japonicus with methanol (Nakano et al., 2011), and Celosin F, which has been isolated 

from Celosia argentea with 50% ethanol (Wu et al., 2011). Celosin F has been reported 

to have anti-inflammatory activity by inhibiting NO production (Wu et al., 2011). 

Saponins have been reported with wide pharmacological bioactivities and 

antioxidant activity (Desai et al., 2009). They also act as antifungal, antimicrobial and 

antiviral agents (Desai et al., 2009). Saponins were found in oxact, SCAVact and 

ORACact fractions in Paper IV. 

Linamarin is a toxic cyanogenic glucoside isolated from cassava (Manihot esculenta) 

roots (Sulyok et al., 2015). Ramulosin derivatives have been previously isolated from 

the endophytic fungi Nigrospora sp. which is present in the branches of the Garcinia 

nigrolineata tree (Gutierrez et al., 2012). A ramulosin derivative was found to have mild 

antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus 

(MRSA) by Sommart et al., (2008). In Paper IV, the tentative identification of a 

ramulosin derivative was found in antioxact and SCAVact fractions and potential 

Linamarin was identified in antioxact, DNAact and SCAVact fractions and there was 

another match in the oxinact fractions. 

5.2.3 Bioactive metabolites of endophytic fungi discussion 

Various compounds and compound groups with bioactivities were found in 

endophytic fungal extracts. Endophytes have indeed been studied widely for their 

bioactive metabolites and many reviews have been published concerning the issue 

(Tan & Zou, 2001; Schulz et al., 2002; Strobel, 2003; Strobel et al., 2004; Gunatilaka, 

2006; Zhang et al., 2006; Firáková et al., 2007; Aly et al., 2010; Gutierrez et al., 2012; 

Mousa & Raizada, 2013; Nisa et al., 2015; Strobel, 2018, for example). Less examined 

water extracts were chosen as the subject of this study. Endophytic fungi species 

were identified according to their GenBank matches of ITS-regions and were A= 

Acephala applanata, R= Phialocephala fortinii and S16= Humicolopsis cephalosporioides/ 

Coniochaeta mutabilis. The first two are dark, septate endophytic (DSE) species 

belonging to the PAC species complex commonly occurring in boreal forest tree 

roots. The identification of PAC species using the ITS region is challenging (Grünig 
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et al., 2008) and S16 identification has some uncertainty with two equally possible 

matches: H. cephalosporioides has been classified a DSE-like fungi and C. mutabilis has 

been found in plants but also to act as a human and animal pathogen.  

Sterile fungal mycelia were grown on a Hagem agar growth medium, which was 

suitable for the growth of the selected fungus species and was simple to prepare. The 

same growth medium was used for all fungus species, without species-specific 

optimization because all of the fungal species grew well on the medium. This is 

reasonable for the screening of the metabolites and comparison of the fungal species. 

For potential further applications, the optimization of the growth conditions and 

nutrition should be considered due to factors that affect the metabolism in microbes: 

i.e. the pH, temperature, incubation period, type of microbe used, growth dynamics, 

and microbial internal physiology (Waqas et al., 2014; Gonzáles-Menéndez et al., 

2018). Additionally, it should be acknowledged that the sterile mycelium outside the 

host and without induced stress conditions is likely to behave differently than in 

natural growth conditions. For affirmation of the effect on the host plant survival, 

co-cultivation studies should be conducted.  

Water extraction was chosen in this study, because of the ease of its usability for 

the biosensor tests with minimal solvent effects, as well as the fact that water is a 

green solvent with minimal environmental and human health risks. While this proved 

to be favorable in the context of bioactivity tests, it complicated the identification 

process. This is because water extracts include all water-soluble organic molecules, 

such as sugars, nucleosides and peptides. For example, peptides are generally not 

visible in UV detection, which was used for the fractionation of the extracts. In order 

to make peptides and amino acids visible in a photo diode array (PDA) detector, 

they should be chemically modified or derivatized into fluorescent or 

electrochemically active products (Walker & Mills, 1995). However, factors such as 

the unstableness, expensiveness and toxicity of derivatives, incomplete derivatization 

reactions and inadequate chromatographic separations complicate the amino acid 

analysis (Kambhampati et al., 2019). Additionally, as the bioactivities of the collected 

fractions were to be tested, the derivatization would have likely altered the 

bioactivities and complicated the identification process. Extraction solutions with 

varying polarities could also be tested for differences in functional properties. In 

addition, filtering or other separation methods could be utilized for the purification 

of the samples. 

The drying process can also alter the metabolic profile and biological activities of 

the extracts and fractions. For example, freeze-drying among other drying methods 

was shown to affect the antioxidant activity, phenolic contents and number of 
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volatiles and cyclic nucleotides of Ziziphus jujube fruits (Wang et al., 2016b). The 

metabolite profile can also be affected by seasonal, climatic and geographical factors 

(Gouda et al., 2016). These factors were minimized in this study by using sterile 

mycelium. The fungal species were handled, extracted and examined similarly and 

therefore differences in the metabolome and bioactivity were caused by the fungi 

themselves. 

The biological activity of the extracts and fractions were assessed with biosensor 

methodologies, which have limitations listed in Table 4. Additionally, the ORAC 

and SCAV methods have their limitations. For example, the ORAC method 

repeatability was questioned by Thaipong et al., (2006). Additionally, the FOX 

reagent method has been criticized for its narrow linear range and low reproducibility 

(Meisner & Gebicki, 2009). By combining and comparing the results from several 

tests with different mechanisms, it was hypothesized that a broader view of the 

antioxidant and bioactive potential could be obtained. However, the used 

methodologies are set to measure only two of three antioxidant mechanisms: 

hydrogen atom transfer (HAT) by ORAC and transition metal chelation ability by 

SCAV. The single electron transfer (SET) mechanism is not covered. This could 

have been tested by choosing a test mechanism, such as the ferric reducing 

absorbance capacity (FRAP), which measures the antioxidant’s ability to reduce iron 

in a colorimetric manner (Benzie & Strain, 1996; Thaipong et al., 2006). In addition, 

in this study, all the methods were only used for activity/inactivity screening and 

fingerprint analysis. In order to be able to compare the signal magnitudes and activity 

levels, the assays should be repeated a statistically significant number of times. 

Additionally, different strains of the fungal species should be investigated before 

discussing species-specific characteristics. 

The identification process also has uncertainties. The mass to charge ratio (m/z) 

range of 150-1000 Da was chosen for device calibration and predicted metabolite 

masses. For the identification of amino acids and other primary metabolites the 

minimum m/z value was, however, too low for the detection of many common low 

molecular weight compounds. The use of fragmentation or tandem mass 

spectrometry could have eased the identification process and verified the amino acid 

order of the peptide identifications. Desportes et al., (2000) discussed these aspects 

from the perspective of wine but the same implies for the fungal species of this study: 

the peptides occur in an extremely complex mixture together with proteins, amino 

acids and a multitude of peptide-unrelated substances such as phenolic compounds, 

which are likely to interfere with the peptide isolation. These factors make it difficult 

to isolate and identify the peptides in complex solutions. Even with tandem mass 
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techniques (MS/MS), the number of fragment peaks with short peptide sequences 

make it problematic to use protein databases because the short peptides can 

correspond to a number of potential sequences with the same molecular mass (Le 

Maux et al., 2015). In order to confirm that the identified metabolites are not formed 

during handling and testing, it was verified that the metabolites found in the active 

fractions were also present in the extracts. The use of a more comprehensive product 

library could also reduce the large number of unidentified metabolites in the 

identification process.  

The detection limit of the mass spectrometric data was chosen to be 1×107 of 

intensity with the maximum intensities >1×109 in the total ion chromatograms. This 

limits the number of metabolites detected, which was also necessary because of their 

vast quantities. However, the bioactive metabolites are not always the most abundant 

ones, and this could lead to losing the metabolites of interest. For example, in Hoodia 

gordonii the pregnane glycoside P57, which has been thought to be responsible for 

anti-obesity effects, has been found to be only a very small portion of the 

administrated extract and various other potentially active glycosides have later been 

identified from it (Vermaak et al., 2011). 

Various studies have shown a connection between oxidative stress and drought 

in plants (Jaleel et al., 2007; Miller et al., 2010; Obata & Fernie, 2012). Endophytic 

fungi and DSE species are known to improve the host plant’s stress tolerance and 

growth and to increase the water and nutrient intake (Terhonen et al., 2014; Surono 

et al., 2017; Surono et al., 2018; Vergara et al., 2018; Li et al., 2018b) but less is known 

about the mechanism behind the phenomenon. The effects of the DSE on 

phytohormone production or the root biomass extension resulting in increased 

water and nutrient intake have been proposed as the answers (Li et al., 2018b; White 

et al., 2019). We were not able to elucidate any separate compounds which could be 

responsible for the found bioactivities. Additionally, it was found that the fungal 

extracts and fractions contain a plethora of metabolites, which may have synergistic 

effects. For example, Willför et al., (2003) found that in conifer knotwood extracts, 

the antioxidant potency was higher than that of the predominant pure compounds. 

Similar findings about the additive and synergetic effects of phytochemicals have 

also been noted by others (Boik et al., 2009; Zhu et al., 2018). Thus, likewise there is 

a high possibility that synergetic effects of the compounds could be responsible for 

the antioxidant and antibacterial activities found in this study. In conclusion, the 

synergetic effects of various bioactive metabolites produced by the endophytic 

symbionts could offer an additional explanation to the mechanism behind the 

increasing stress tolerance of the host plant. 
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6 CONCLUSIONS 

The antioxidant and antibacterial properties as well as UV protection potential of 

forest-derived extracts were investigated using genetically modified bacterial E. coli 

biosensors. In addition, the bioactivities of endophytic fungi extracts and fractions 

were screened and the metabolites found in bioactive extracts and fractions were 

identified using LC-MS. The following conclusions can be drawn: 

 

• Two new methodologies were introduced using E. coli biosensors 

DPD2511 and DPD2794. The methodologies were validated using 

reference compounds as well as found usable in forest-derived extract 

screening. 

 

• A previously described antioxidant method was improved with HTS 

potential in a microplate format. 

 

•  A UV protection test for both physical and biological shielding potential 

was developed. 

 

• Stress-responsive bacterial biosensors are usable in the screening of 

forest-derived extract bioactivities with certain limitations. 

 

• A major proportion of the metabolome of three endophytic fungi species 

isolated at the same time and from the same ecological niche and host, 

were similar. The small differences in the metabolome could indicate that 

the metabolite production variance is limited when using sterile mycelium 

under steady nutrient supply. 

 

• Endophytes produce a wide variety of antioxidant and antibacterial 

metabolites. The synergetic, additional or antagonistic effects of these 

various metabolites produced by the endophytic symbionts could 

potentially contribute to enhanced stress-resistance, survival and growth 

of the host plant.  
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Based on the obtained results, bacterial biosensors could be used in 

activity/inactivity type of screening with small concentrations of forest-derived 

extracts or preferably fractionated samples to reduce the possible complex sample 

matrix signal ambiguity effect and induction delay phenomenon. Additionally, the 

comparison between sample activities should only be done within measurements or 

after a statistically significant number of measurement replications. 

The acquired results support the previous information about the endophytic 

fungi producing various bioactive metabolites. Endophytes are known to increase 

plant growth and stress resistance, while the underlying mechanism has not been 

fully established. The production of antioxidant and antimicrobial metabolites by the 

endophyte may partly contribute to the enhanced survival of the host. However, this 

proposition can only be established via co-cultivation studies with the symbiont and 

the host plant. With the vast number of metabolites which are present in the plant 

or fungus extracts, all compounds may synergistically affect the bioactive properties. 

Therefore, bioactivity cannot be attributed to only one effective compound even if 

it is found in high amounts in the extract. 

Several ideas for future perspectives arise from the results of this study. Firstly, 

the growth media and nutrition sources were not optimized for the endophytic fungi 

used in this study. This optimization could increase bioactive metabolite production 

and even result in completely novel metabolites with interesting properties. The 

optimization process is often laborious and time consuming, but the benefits prevail 

these challenges. Secondly, extraction liquid should be evaluated for future 

applications. In order to obtain secondary and novel metabolites, ethanol could be 

evaluated as a reasonably safe alternative for water. This change should, however, be 

pondered thoroughly from the view of the subsequent test methodologies. For 

example, in the case of biosensor methodologies, the use of ethanol would create a 

need for further dilution of already small concentration samples when using 

fractionated extracts. Furthermore, the identification process would have been eased 

with the use of fragmentation and different m/z range parameters. This and the use 

of more comprehensive product libraries would have increased the number of 

identified metabolites as well as added confidence to the identified ones. Finally, in 

order to be able to say that the metabolite production in fact increases the host plant 

stress-resistance, co-cultivation studies should be conducted instead of using sterile 

mycelium. 

The tremendous potential of bioactive metabolites produced by endophytic fungi 

is demonstrated in this thesis. However, the large-scale production of biomass and 

component purification are challenges, which need to be solved before the efficient 
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commercial scale use of bioactive compounds from endophytes is possible. Thus, 

future research on bioactive compound utilization could additionally lean towards 

molecular biology tools for determining the biological mechanisms behind bioactive 

metabolite production. These mechanisms could be transferred to fast-growing 

microbes that can be grown in large-scale reactors. For example, bioactive peptides 

could be produced using biotechnological tools and processes to meet increasing 

needs for various purposes in environmental, cosmetic, health and food industry 

applications. 
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A new method is described for the rapid real-time screening of antioxidative properties using a recombinant

Escherichia coli DPD2511 biosensor. This microplate technique, without time-consuming pre-incubations and

handling, has potential for a high-throughput search of bioactive compounds. Special emphasis was given to

obtaining highly reliable and repeatable results.

© 2015 Elsevier B.V. All rights reserved.

When using intact living biosensors, both bioactivity and bioavail-

ability of a chosen sample material can be detected simultaneously in

a simple, cost-effective and rapid manner, which makes the assays

more suitable for high-throughput screening (HTS) (Galluzzi and

Karp, 2006). These effects can be monitored continuously and without

long incubation or handling times. The Escherichia coli strain DPD2511

(Belkin et al., 1996) has been constructed by fusing the katG (catalase)

genes of the strain to the luminescence (lux) genes from the Vibrio

fischeri bacteria. The bioavailable oxidant is able to enter through the

E. coli cell membrane and bind to the regulatory protein OxyR which

promotes the transcription and translation of the reporter genes. With

the lux gene fusion this produces an increase in luminescent light emis-

sion, which can be measured and quantified in a continuous manner

(Michelini et al., 2005). Thus, the normal defense mechanism signaling

against oxidizing agents produces an easily monitored response. When

antioxidative activity is measured, the bacteria are exposed to an oxi-

dant such as hydrogen peroxide (H2O2), and the experiment is set to

measure whether samples prevent the stress reaction. In other words

the method measures the inhibition capacity of the antioxidant against

H2O2. The strain was used to screen antioxidative properties of medici-

nal plants used in the Philippines and validated against the DPPH assay

by Bartolome et al. (2006). We describe a microplate technique of the

screening method with an improved HTS potential.

The bacteria were preserved in 15% glycerol at −80 °C. Working

stock was prepared by inoculating Luria Agar growth-plates supple-

mented with 100 μg/ml of ampicillin and 10 vol.% of 1 M potassium

phosphate buffer. The plates were cultivated overnight at 30 °C before

storing in 4 °C. Cultivations were discarded after a week from inocula-

tion as they lose their sensitivity during prolonged storing (Kim and

Gu, 2003). A single colony of the strainwas inoculated into 5ml of liquid

Luria Broth medium supplemented with 100 μg/ml of ampicillin and

10 vol.% of 1 M potassium phosphate buffer and incubated for approxi-

mately 16 h in a shaker at 30 °C and 300 rpm, after which the lumines-

cence was measured with a Chameleon Multilabel (Hidex Oy, Finland)

microplate reader. The cell culture producing the highest signal was

chosen for the measurement.

For the assay with H2O2, 100 μl of the chosen cell culture was added

to each well of an opaque white microplate (Thermo Electron Corpora-

tion, Finland) containing 50 μl of fourfold dilutions of the H2O2 and 50 μl

of sterile water. Sterile water was also used as a negative control. Lumi-

nescence was measured in counts per seconds (CPS) 20 times every

5 min and between the screenings the plate was shaken and kept at

30 °C. CPS values vary depending on the date and chosen culture.

Thus, the results are expressed in induction factors (FI) calculated by

dividing the CPS values of the samples by the value of the negative

control. For the ascorbic acid (AA)measurements, a constant concentra-

tion of 4 mM of H2O2 was used in each well and 50 μl of sterile water

was replaced with AA concentrations in the 1 M potassium phosphate

buffer. Sterile water with the phosphate buffer was used as the negative

control.

Tryptone, yeast extract and agar were obtained from Lab M Limited,

UK. Sodium salt of ampicillin was obtained from Sigma-Aldrich, USA.
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Sodium chloride, KH2PO4 and H2O2 were from Merck KGaA, Germany

and L-ascorbic acid and K2HPO4 were from VWR International, USA.

The results of the H2O2 assay are shown in Fig. 1a. The FI values were

directly proportional to the sample concentration used but also the

lag time before the FI maximum increased with the concentration

(Fig. 1b). For this reason the experiment was continued for 100 min

even though the rise in signal could be detected in less than 20 min.

The temperature stabilized at 30 °C after the first 10–15 min and there-

fore the error before this time can give higher values. The coefficient of

variation (CV%) of the four parallel concentrations on the plate was con-

stantly under 10%. Repeatability of themethod is also high as the CV% of

the results between 5 alternate measurements gave no higher values

than 10%. Because the concentration of 4 mM of H2O2 gave the highest

factor of induction values, this concentration was selected for the

antioxidative activity measurements.

The results for the first 50min of the experimentwith AA are shown

in Fig. 2a. All of the AA concentrations were able to inhibit some of the

light induction produced by the H2O2 concentration of 4 mM for

50 min. After this time the signals began to rise exponentially, which

is probably due to the toxic effects of H2O2 overcoming the inhibition ef-

fect of the AA concentrations. In Fig. 2b the %inhibition (Eq. (1))

(Bartolome et al., 2006) of the AA concentrations is shown at the time

point 25 min. The CV% of the sample quadruplicates in the microplate

was not higher than 11% from 10 to 45 min. The highest value of error

was produced by three of the highest concentrations at the time point

20 or 25 min. Otherwise it was well over 10% between the same time

limits. At 50 min as the signal starts to rise, the error also rises.

%inhibition ¼
Lsolvent − Lascorbic acid

Lsolvent
 100 ð1Þ

The method was also used to screen antioxidative activities from

various extracts (fungal mycelium extracts, Scots pine and Norway

spruce tissue extracts and pure stilbene compounds) from Finnish

forests and the example figure is presented in the supplementary figure.

In conclusion, the results obtained in this study show that the developed

method using recombinant E. coli harboring katG′::lux fusion is suitable

Fig. 2. (a) The antioxidative activity of the AAconcentrationsmeasuredwith the E. coli sensor. The error bars are the CV% of the sample quadruplicates in themicroplate. (b) The %inhibition

of AA shown at 25 min. The error bars are calculated from the standard deviation of the sample quadruplicates in the microplate.

Fig. 1. (a) Luminescence produced by the H2O2 concentrations (mM) in FI representedwith a 5measurement averagewith CV% betweenmeasurements as the error bars. (b) The lag time

before thepeakmaximum increases as the concentration increases. As the reading devicemeasures the luminescence emitted every 5min, the error bars are a constant±2.5min for every

peakmax time value.
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to screen for the antioxidative properties of samplematerial in a simple,

rapid and reliable manner, and it embodies real HTS potential.
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Appendix A. Supplementary data

Supplementary figure. Example data obtained from Norway spruce (Picea abies [L.]
Karst) inner bark extract with water as the extraction solvent. Concentrations are dry
weights of the extract in water. As the extract is likely to contain many compounds
with different mechanisms of antioxidative activity, the figure produced varies from
pure substances such as H2O2 (shown in the figure with 0 mg/ml). Also multiple peak
maxima were detected, which supports the idea of several antioxidative substances
within the extract. The error bars are the CV% of the sample triplicates in the
microplate.
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ABSTRACT 15 

 16 

Ultraviolet radiation (UV-R) has genotoxic and aging effects on skin, and sunscreens are used to 17 

alleviate the damage. However, sunscreens contain synthetic shielding agents that can cause harmful 18 

effects in the environment. Nature-derived substances may have potential as replacement materials for 19 

the harmful sunscreen chemicals. However, screening of a broad range of samples is tedious, and often 20 

requires a separate genotoxicity assessment. We describe a simple microplate technique for the 21 

screening of UV protective substances using a recombinant Escherichia coli biosensor. We can detect 22 

both absorbance-based and bioactivity-based shields with simultaneous information about the sample 23 

genotoxicity. With this technique, a controversial sunscreen compound, oxybenzone offers physical or 24 

absorbance-based shield but appears genotoxic at higher concentrations (3.3 mg/ml). We also 25 

demonstrate that pine needle extract (PiNe) shields the biosensor from UV-R in a dose-dependent manner 26 

without showing genotoxicity. The physical shield of 5 mg/ml PiNe is similar to that of one of the most 27 

common UV-shielding compound TiO2 concentration 0.80 mg/ml. The bioactivity-based shield of PiNe 28 

also reaches the extent of the physical shield with the highest concentration (3.3 mg/ml). To conclude, 29 

our technique is suitable in detecting the UV-shielding potential of natural substances, and gives 30 

simultaneous information on genotoxicity.  31 
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INTRODUCTION 32 

 33 

Ultraviolet radiation (UV-R) is the main environmental cause of photo induced skin aging by the 34 

process of producing free radicals, such as reactive oxygen species (ROS) in the skin cells. ROS 35 

stimulate inflammatory process, initiate DNA damage and cause oxidative damage to cellular lipids, 36 

proteins and carbohydrates [1]. UV-R can also cause skin cancer by inducing carcinogenic effects. To 37 

alleviate these adverse consequences, sunscreen use is widely encouraged. Based on their mechanism 38 

of action, most sunscreen compounds used today can be separated into “physical sunscreens” or 39 

minerals, and “chemical sunscreens”. Physical shielding compounds, such as titanium dioxide (TiO2) 40 

and zinc oxide (ZnO), reflect, scatter and absorb UV-R. Chemical sunscreen compounds, such as 41 

oxybenzone, octinoxate, avobenzone or para-amino benzoic acid (PABA), contain alternating single 42 

and double bonds in their structure, which allows them to absorb the high energy UV-R and release 43 

UV-R with lower energy [2]. This process makes the radiation less damaging. 44 

Both of these shielding compound groups have been found to have disadvantages. Physical sunscreens 45 

can cause a bleaching effect, which is unsightly but can be reduced by decreasing the particle size of 46 

the mineral used [3]. However, the use of non-degradable and accumulating nanoparticles are causing 47 

emerging concern among the environmental scientists [4]. Chemical UV filters also possess harmful 48 

environmental impacts. For example, (2-hydroxy-4-methoxyphenyl)-phenylmethanone (oxybenzone) 49 

has been shown to be genotoxic to coral planulae [5]. Sunscreen components have also been 50 

demonstrated to induce coral bleaching by promoting viral infections to hard coral and their symbiotic 51 

algae [6]. There is therefore an urgent need to replace sunscreen chemicals with more environmentally 52 

friendly options. This could be achieved by using nature-derived substances with UV inhibition or 53 

shielding properties. The screening of vast amount of substances is, however, tedious and often requires 54 

a separate evaluation of the genotoxicity. 55 

For the simultaneous assessment of genotoxicity, living whole-cell microbial biosensors have been 56 

proven to be useful. Living whole-cell microbial biosensors can detect both bioactivity and 57 

bioavailability of a selected sample material simultaneously, and the produced real-time response can 58 
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be quantified and monitored in a continuous manner. For example, the Escherichia coli (E.coli) strain 59 

DPD2794 [7] has been constructed by fusing the SOS-responsive recA gene promoter of the bacteria 60 

with the luminescent luxCDABE genes of marine Vibrio fischeri bacteria. The resulting recA’::lux 61 

reporter plasmid produces an increase in the luminescent light emission in the presence of bioavailable 62 

genotoxic DNA damaging agents.  63 

Sassanfar et al. [8] concluded that UV-R induces about 10-fold transcription of recA. This was later 64 

confirmed by Vollmer et al. [7] using the E.coli DPD2794 biosensor. They also found that the sensor 65 

was extremely sensitive and effective when compared to the conventional methodologies, such as the 66 

Ames test. Here, we have applied the biosensor to develop a microplate technique with high-throughput 67 

screening (HTS) potential, which can be easily used with any laboratory equipment emitting continuous 68 

UV-R, such as a standard Polymerase Chain Reaction (PCR) cabinet. PCR cabinets are designed for 69 

nucleic acid amplification and UV-R is used to prevent sample contamination. 70 

Synthesis of UV-absorbing compounds in epidermal layers of plant leaves are one of the several 71 

mechanisms in plants to protect themselves against UV radiation. Needles of conifer species are known 72 

to be well protected from UV radiation [9, 10]. For example, Scots pine needles have been reported to 73 

accumulate UV-B inducible flavonoids for shielding the inner cell layers [11]. Scots pine needles also 74 

comprise a vast resource of renewable side stream biomass in forestry to be utilized for novel purposes, 75 

and therefore, were selected as a suitable testing material for the method development.  76 

Some nature-derived UV filters are already in use. The mechanism by which many of these work is 77 

based on secondary metabolites acting as antioxidant or anti-inflammatory agents, thereby alleviating 78 

the harmful effects of UV radiation [12]. One commercially used example of a nature-derived chemical 79 

sunscreen compound is PABA, which can be found in yeast, bacteria and plants. However, its use has 80 

been banned in many countries as it can cause allergic reactions and irritation [13]. This highlights the 81 

need for simultaneous genotoxicity assessment. 82 

Current testing models for sunscreen products can be divided into in vivo and in vitro models, from 83 

which only in vivo testing involving irradiation of human subjects have been validated and is currently 84 
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in use for the official solar protection factor (SPF) testing [14]. In addition to spectrophotometric in 85 

vitro methods, approaches with simultaneous information on sample genotoxicity have also been 86 

developed with human cell cultivations [15]. However, the use of bacterial biosensor cells increases the 87 

HTS potential of the developed technique for a wide range of sample material with regard to time- and 88 

cost efficiency. 89 

In this study, we introduce a microplate technique with improved HTS potential for the UV-shield 90 

detection of various sample material using the E.coli DPD2794 biosensor. With the developed and 91 

optimized technique, both physical shielding and biological shielding – where the UV shielding effect 92 

of sample material is measured in contact with biosensor cells – can be detected and compared simply 93 

and rapidly, without any need for a separate genotoxicity assessment. We also demonstrate that the 94 

technique is suitable for the screening of natural product extracts in order to replace the harmful 95 

chemicals used in the sunscreen products with natural, sustainable and less damaging biochemical UV 96 

protectants. 97 

MATERIALS AND METHODS 98 

 99 

Chemicals and samples: Tryptone, yeast extract, and agar were obtained from Labema, Finland; NaCl, 100 

KH2PO4 and dimethyl sulfoxide (DMSO) from Merck KGaA, Germany; Sodium salt of ampicillin, 101 

TiO2 (< 5µm particle size and predominantly rutile), astaxanthin and CaCl2 were from Sigma-Aldrich, 102 

USA; and K2HPO4 from VWR International, USA. M9 Minimal Salts mixture (containing Na2HPO4•7 103 

H2O, KH2PO4, NaCl and NH4Cl) has been purchased from Sigma LifeSciences, Sigma-Aldrich, USA. 104 

MgSO4 and L-ascorbic acid were obtained from J.T. Baker, USA, and D-glucose was from Amresco, 105 

USA. Ethanol was obtained from Altia, Finland and ciprofloxacin from Bayer, Germany. Finally, 106 

oxybenzone was obtained from TCI, Japan. 107 

 108 

Bacterial strains and cultivation: Recombinant bacterial strain E. coli DPD2794 (recA’::lux) 109 

previously described by Vollmer et al. [7] was used in this study (a kind gift by Dr. Robert A. LaRossa 110 

from DuPont Company Central Research and Development, Wilmington, USA). The bacteria were 111 
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preserved in 15-% glycerol at -80 °C. The working stock was prepared by inoculation in Lysogeny Agar 112 

(LA) (tryptone 10 g/L; yeast extract 5 g/L; NaCl 10 g/L and agar 15 g/L) growth-plates supplemented 113 

with 100 µg/ml of ampicillin and 100 mM of sterile and filtered potassium phosphate buffer, pH 7.0. 114 

The plates were cultivated overnight at 30 °C before being stored at 4 °C. A single colony of the strain 115 

was inoculated into 5 ml of liquid glucose-enriched M9 minimal medium (11.3 g/liter M9 salts, 0.1 mM 116 

CaCl2, 1 mM MgSO4, and 0.2 % (w/v) anhydrous D-Glucose) supplemented with 100 µg/ml of 117 

ampicillin. It was then incubated for approximately 16 hours in a shaker at 30 °C and 300 rpm, after 118 

which the luminescence was measured with a Chameleon Multilabel (Hidex Oy, Finland) microplate 119 

reader to verify the activity of the biosensor. Optical density at 600 nm was measured to be 120 

approximately 0.1 for the bacterial suspensions corresponding to 1 × 108 CFU/ml.  121 

 122 

Sample preparation: The needle samples of Scots pine (Pinus sylvestris L.) were collected from a 123 

mature living pine from the western Finland during late June 2013. The needles of the previous of the 124 

current (c+1) growing seasons were separated and weighed. Needles were frozen at -80 °C and ground 125 

in a mortar with the help of liquid nitrogen before adding to sealed and previously weighed 126 

polypropylene test tubes. Pure methanol extraction was chosen, because it has been reported to give 127 

high polyphenol content [16] and primary metabolites such as amino acids and sugars are not present 128 

in methanol extracts. For the extraction procedure 27 ml of methanol (Methanol for liquid 129 

chromatography, LiChrosolv®, Merck KgaA, Germany) was mixed to 1.75 g of the needle powder by 130 

vortexing. Extraction tube was then put to the rotamixer (Rotamixer, Type MMVI4, Heto-Holten A/S, 131 

Denmark) at full power (30 rpm) for 60 minutes. Extraction tube was then centrifuged at +4 ºC and 132 

8200 g for 10 minutes after which the supernatant was collected to a new polypropylene tube and finally 133 

filtered through nylon syringe filter (0.20 μm, Nylon 66 Filter Membrane from Supelco by Sigma-134 

Aldrich Co, USA) to a previously weighed and sterile polypropylene test tube. Aliquot of methanol 135 

without needle material went through the same extraction procedure simultaneously as control sample. 136 

Finally, the extraction product was dried using a vacuum centrifuge with a cooling unit (Rotational-137 

Vacuum-Concentrator RVC 2-18, Cold Trap CT 02-50 SR, Martin Christ Gefriertrocknungsanlagen 138 

GmbH, Germany) before storing at -80 °C. 139 
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 140 

The dry and frozen methanol extract of pine needles was dissolved into methanol and double distilled 141 

water (DDW) (1:2.7) to achieve a stock solution of 100 mg/ml of dried extraction product. This stock 142 

solution was further diluted in DDW to achieve concentrations of 0.1; 0.5; 1.0 and 5.0 mg/ml for the 143 

physical shield testing and 0.17; 0.33; 1.7 and 3.3 mg/ml per microplate well for the biological shield 144 

tests. The difference in the concentrations chosen for the physical and biological shield tests is due to 145 

the stronger effect of the sample material when in direct contact with the bacterial biosensor cells. 146 

Hence, the sample concentrations for the biological test were kept slightly lower. The maximum 147 

concentration of the UV filters allowed in cosmetic products according to the EU Cosmetics Regulation 148 

list (Regulation (EC) 1223/2009) goes from 2 % to 25 % of the cosmetic product mass. We use a 149 

concentration maximum of 1 % for the potential UV protective samples, which lays below these 150 

regulated maximum values. The highest methanol concentrations for the extracts were 1.4 % for 5 151 

mg/ml and 0.9 % for 3.3 mg/ml. The sample solutions were stored in -20 °C and covered from the light. 152 

 153 

Irradiation source: DNA/RNA UV-cleaner cabinet (UVC/T-AR DNA/RNA UV-CLEANER BOX, 154 

BIOSAN company, Latvia) was used as the irradiation source for the experiments. This equipment was 155 

chosen because it is widely available in laboratories, and so requires no expensive investments. 156 

However, the developed technique can be adapted to any other continuous UV-R emitting setting and 157 

is therefore highly modifiable. The distance between the bottom of the microplate and the UV source 158 

was 48.5 cm for all of the measurements. The wavelength of the UV irradiation was validated using 159 

AvaSpec – ULS2048L StarLine Versatile Fiber-optic Spectrometer (Avantes, Apeldoorn, Netherlands), 160 

and it was that of a normal mercury UV lamp with a maximum wavelength of approximately 254 nm. 161 

Irradiation dose of the used cabinet was also measured using Ophir Laser thermal sensor 3A-PF-12 162 

detector (Ophir Optronics Solutions Ltd, Jerusalem, Israel) with a 12 mm aperture. 163 

 164 

Biological protection and bioactivity: With this technique, the sample volume of 50 µl of the potential 165 

UV protective substance concentrations were pipetted in triplicates into an opaque white 96 well 166 

microplates (Greiner Bio-one GmbH, Austria). The volume of 100 µl of the bacterial inoculation in M9 167 



8 
 

minimal media was then pipetted into the same microplate wells. For the sake of comparability a clear 168 

UV-transparent microplate (Corning® 96 well plates, half-area, polystyrene flat bottom, UV-Vis-169 

transparent between 220 and 1600 nm, Corning Inc., USA) containing 100 µl of water was added above 170 

the plate before irradiation. In order to stabilize the UV-R dose, the lamp, acting as a UV source, was 171 

left on for approximately 30 minutes before irradiation. The plates were then moved to a DNA/RNA 172 

UV-cleaner cabinet into a previously optimized place, and irradiated for 30 seconds with direct UV 173 

light. Some wells of the plate covered with aluminum foil sheet, for the negative control signals. After 174 

the irradiation period 100 µl of Lysogeny Broth (LB) medium was added into the wells for nutrition 175 

and the luminescent light signal was measured in counts per second (CPS) using a Chameleon 176 

Multilabel (Hidex Oy, Finland) microplate reader in 10-minute intervals for a total of 180 minutes with 177 

a shaking between the measurements. 178 

 179 

Physical protection and absorbance: This technique was otherwise similar to that of biological 180 

protection except that 100 µl of the different concentrations of the potential UV protective substances 181 

were pipetted in triplicates into clear UV transparent microplates in a way that the total liquid volume 182 

of the microplate wells remained the same. The 100 µl of bacterial inoculation in M9 minimal media 183 

was then added similarly into another separate opaque white microplate and the plates were then 184 

handled and irradiated as above. 185 

 186 

Absorbance measurements: The absorbance of 100 µl of sample substance triplicates in translucent 187 

microplate (Sarstedt AG & Co, Germany) was evaluated using Thermo Scientific Varioskan Flash 188 

Reader (Thermo Fischer Scientific, Thermo Electron Co. USA) in the absorbance scan mode with 5 nm 189 

intervals for the wavelength area of 200-900 nm. Absorbance value averages were calculated and error 190 

bars are the standard deviations of the sample triplicates.  191 

 192 

Result analysis: All figures have been drawn using Origin 8 data analysis and graphic workspace 193 

(OriginLab Corp., USA). Because CPS values can vary depending on the date and chosen culture, all 194 

of the results, except for the absorbance measurements, are expressed in induction factors (IF), which 195 
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have been calculated by dividing the sample triplicate CPS values averages with those of negative 196 

controls. Error bars have been calculated from the standard deviations of the sample IF triplicates. A 197 

two-tailed t-test was also conducted to confirm the statistical significance of the results within the 198 

measurement plates using Microsoft Office Excel 2016 (Microsoft Co., USA). 199 

 200 

RESULTS AND DISCUSSION 201 

The wavelength of the UV irradiation was that of normal mercury lamp with a maximum in the 254 nm 202 

UV wavelength area and the irradiation dose rate was found to be approximately 190 µW/cm2. The 203 

place of the microplate was optimized in the UV-cleaner cabinet to give the highest signal to 204 

background ratio and lowest errors between sample triplicates. The place was obtained when the plate 205 

was situated at 20 cm from the opening and 26 cm from the left face of the cabinet (see Figure 1a). It 206 

was also found that the best irradiation time giving the maximum signal was 30 seconds and this time 207 

was used for the measurements throughout (Figure 1b), making the irradiation dose 5.7 mJ/cm2. The 208 

Standard Erythema Dose (SED) has been proposed by Commission Internationale de l’Eclairage [17] 209 

as UV-R dose equivalent of 100 J/m2 or 10 mJ/cm2 [18], and the used irradiation dose in this study is 210 

57 % of this. The incubation time is the time after exposure at which the luminescence signals were 211 

monitored every 10 minutes for 180 minutes, whereas the exposure time is the seconds of UV-R 212 

exposure. We can see that 30 seconds of irradiation gives the highest signal in the higher measurement 213 

times, and therefore, it has been chosen for the measurements. From the Figure 1c, we can see how the 214 

UV transparent clear microplate is put directly on top of the white opaque microplate with biosensor 215 

cells for the time of the UV exposure. The sample is placed into the clear plate above, for the physical 216 

measurements, and into the white microplate below, for the biological shield measurements. 217 

<Figure1> 218 

 219 

We also tested to see whether the distance from the lamp height of the plate would affect the signal. We 220 

used a standard adjustable laboratory equipment jack (Lab Jack Swiss Boy 110 MR, Rudolf Grauer AG, 221 

Degersheim, Switzerland) for this. We found that the height of the plate was approximately directly 222 

proportional to the signal (See Supporting materials, Figure S1). However, the normal table height was 223 



10 
 

chosen for the measurements because it was the easiest to maintain, and the luminescent light signal 224 

produced was not efficiently lower than that of the highest setting.  225 

TiO2 (< 5µm particle size and predominantly rutile) was chosen to act as a known UV-shield control, 226 

because it is extensively used in sunscreen products worldwide. However, TiO2 is insoluble in water, 227 

and was dissolved into 96 % ethanol to prepare 1 M solution and further diluted with DDW for 228 

concentrations of 0.80; 8.0; 80 and 800 µg/ml. The ethanol percentages of the final solutions were 229 

0.00032 % to 3.2 %. TiO2 has been shown to possess antimicrobial effects [19] and also the uneven 230 

distribution of small insoluble particles could affect the microbial cell functions. Therefore, among cells 231 

the control used was LB growth medium, because it absorbs the UV-R wavelengths. The LB was diluted 232 

with DDW to get dry matter concentrations of 0.01; 0.09; 0.93 and 9.3 mg/ml per microplate well. The 233 

results obtained from these standard substances are shown in the Figure 2a (TiO2) and 2b (LB) from 234 

where we can see that they provide UV protection in a dose dependent manner with all of the LB 235 

concentrations except the lowest of 0.01 mg/ml of dry matter concentration and with the highest 800 236 

and 80 µg/ml of TiO2. 237 

<Figure2> 238 

 239 

To verify the effectiveness of the UV-R dose used, we also compared the induced signals of UV-R to 240 

that induced with a known antibiotic ciprofloxacin (50 mg/ml stock solution was diluted to DDW to 241 

achieve concentrations of 0.001; 1.0; 3.8; 5.5 and 7.5 mg/ml per microplate well). Ciprofloxacin 242 

specifically targets the bacterial DNA and the obtained results can be seen in the Figure 3a. From the 243 

figure, we can see that the exposure time of 30 seconds gives approximately the same luminescence 244 

light signal induction factor at the time point of 100 minutes after exposure time with the ciprofloxacin 245 

concentration of 0.001 mg/ml. With higher concentrations of ciprofloxacin, it seems that the light signal 246 

produced starts to decrease, which is probably due to cell death, and therefore reduction in the sum of 247 

the luminescent light signal produced by the bacteria in the microplate well. These results show that the 248 

UV-R dose chosen is effective enough to be comparable with the genotoxic effects towards the bacteria 249 

caused by a known antibiotic.   250 



11 
 

<Figure3> 251 

 252 

It is also widely known that antioxidants can prevent the damage induced by UV-R by targeting the 253 

induced production of ROS in the cell. The known antioxidants L-ascorbic acid (0.17; 0.33; 0.83; 1.7 254 

and 3.3 mg/ml per microplate well in DDW) and astaxanthin (5 mg/ml solution was prepared in DMSO, 255 

and DDW was used to achieve concentrations of 0.017; 0.17; 1.7; 17 and 170 µg/ml per microplate 256 

well) were used to test this protection mechanism in the developed methodologies. From the Figure 3b 257 

can be seen, that ascorbic acid seems to give biological shield against UV light in a dose-dependent 258 

manner and Figure 3c shows that ascorbic acid concentrations also absorb the UV wavelengths under 259 

300 nm. However, the shielding effect is not as clear in the case of astaxanthin (Figure 3d). Astaxanthin 260 

also seems to induce the luminescence production with all but the lowest concentrations (0.017 and 261 

0.17 µg/ml per microplate well) implying genotoxic properties. However, as astaxanthin stock was 262 

dissolved into DMSO, the solvent used most likely causes this observation. The astaxanthin 263 

concentrations used were from 1.7 x 10-5 mg/ml to 0.17 mg/ml, and they consequently contain from 264 

0.0003 % to 3.3 % DMSO, and this could produce enough toxicity in the higher concentrations. In fact, 265 

due to this result, we tested that the biosensor can stand no larger concentrations than 2 % of DMSO 266 

without it effecting the cells (data not shown). DMSO has also previously been found to possess 267 

bacteriostatic properties [20]. From the absorbance of these substances, we can see that DMSO itself 268 

absorbs in the UV area (Figure 3e) but in the biological shield technique (Figure 3d), the shielding 269 

effect is lost due to genotoxicity. The sample with the highest concentration of astaxanthin (170 µg/ml) 270 

at 100 min of the measurement gave better shield for the biosensor than the LB control, as the IF of the 271 

astaxanthin sample was smaller than the unprotected cells (0 µg/ml) and the LB control (p-values < 272 

0.0001). According to the results, also the sample with 3.3 mg/ml ascorbic acid shields the biosensor 273 

from the UV-R better than the LB control. The lower IF of the ascorbic acid sample than that of LB or 274 

non-shielded biosensor cells (p-values < 0.0001) indicates statistically significant shielding. This 275 

observation of antioxidants causing UV shielding effects is not surprising as UV-R causes ROS 276 

formation. Astaxanthin has been referred as the most effective antioxidant but unfortunately the 277 



12 
 

insolubility to water causes it to be not as preferable source of shield according to our technique. By 278 

adding antioxidant material into sunscreens the risks caused by UV-R can, however, be alleviated. 279 

 280 

Because oxybenzone has been found to be harmful towards coral planulae and its effect was found to 281 

be increased by the exposure to UV light [5], we were curious on finding out, how it would affect our 282 

genotoxicity sensitive biosensor. The oxybenzone stock of 50 mg/ml was prepared by dissolving 283 

oxybenzone into 96 % ethanol. Further dilutions of 10 and 0.1 mg/ml were prepared into DDW for the 284 

physical shield testing whereas concentrations of 0.03 and 3.33 mg/ml per microplate well were used 285 

for the biological activity test (consequently they contained 0.63 to 6.3 % of ethanol). As expected, we 286 

found that oxybenzone possesses physical UV-shield (Figure 4a) whereas biological shielding effect 287 

(Figure 4b) is overtaken by the genotoxicity of the chemical and the ethanol concentrations do not 288 

explain these observations, when biosensor cells are exposed to both oxybenzone and UV-R. In the 289 

Figure 4c the physical and biological shield from Figures 4a and 4b of the sample are drawn at the 290 

time point 100 min. From Figure 4c we can see that the physical shield shows dose-dependent behavior, 291 

but as the bacterial cells are already harmed by the oxybenzone itself (dark biological effect shows dose 292 

dependent rise in luminescence signal levels), adding UV exposure significantly increases the 293 

luminescent light signal production indicating severe DNA damage instead of shielding effect. At 100 294 

min of the measurement, the UV exposed oxybenzone (3.3 mg/ml) caused more DNA damage to the 295 

biosensor cells than the unexposed oxybenzone with same concentration, as its signal is higher than that 296 

of the unexposed (p-value < 0.0001). This 3.3 mg/ml oxybenzone concentration at 100 min 297 

measurement time also caused more damage to the biosensor cells than the mere UV exposure (p-value 298 

= 0.002). This information indicates that these results represent statistical significance. The results 299 

underline that, while oxybenzone has physical UV-shielding effect, it is also harmful to the biosensor 300 

cells and similar adverse results have been previously reported in the case of coral and fish [5, 6, 21]. 301 

Oxybenzone has also been shown to cause contact or photocontact allergy or even urticarial reactions 302 

with humans [21].  303 

<Figure4> 304 

 305 
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A potential source to obtain safe and sustainable UV-shielding compounds is nature-derived substances. 306 

The methodology was tested using Pinus sylvestris L. needle extract (PiNe) and the results are shown in 307 

the Figure 5. Pine needles are exposed to the UV-R from the sun and therefore, they are expected to 308 

possess UV inhibitory activity, which we were able to demonstrate with our technique. Figure 5a and 309 

5b correspond to the physical absorbance based shield, and we can see that they absorb in the UV area. 310 

The PiNe with concentration 5.0 mg/ml protects the biosensor cells from adverse effects of the UV-R, 311 

as its IF in 100 min measurement is lower than that of the unprotected sample (p-value < 0.0001). In 312 

addition, this protective capacity is similar to that of a commercially used sunscreen chemical TiO2 313 

concentration 0.80 mg/ml, which was used as a control (p-value = 0.1683, tested for difference in 314 

means). Methanol extractable polyphenols are known for their antioxidant activities, which can 315 

correspond to the biological shielding potential shown in the Figure 5c. The highest concentration of 316 

PiNe (3.3 mg/ml) exhibits biological UV-R protective properties for the biosensor cells. This is 317 

demonstrated in the 100 min measurement results, where the IF for the PiNe is lower than that for the 318 

unprotected cells (p-value = 0.001). However, the IF of the PiNe is higher than that of the LB control (p-319 

value < 0.0001), which indicates that it is not as effective in the protection as the LB control. In the 320 

Figure 5d, the comparison of the effectiveness of the physical and biological shielding mechanisms 321 

show that the absorbance based (physical) shield is the main factor corresponding to the UV inhibition 322 

of the used extract concentrations whereas we cannot detect any genotoxicity. Nature-derived 323 

substances are therefore potentially less harmful to the environment and they also pose no similar risk 324 

of accumulation to the environment as mineral based physical sunscreen nanoparticles because they are 325 

degradable and, as in this case of needles, sustainably derived from a waste-stream of forestry. Although 326 

the biological shielding in our technique was not as high as with control substance LB, the methanol 327 

extracts are most likely rich in polyphenols and flavonoids, which have been widely reported to have 328 

antioxidant properties [16]. These results should, however, be considered to be merely indicative of the 329 

applicability of the technique developed. For a more comprehensive analysis of the UV protection 330 

capacity of the selected needle material, test should be performed with a broad range of needle material 331 

samples gathered from various environments and at different times of year. 332 

<Figure5> 333 
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 334 

In conclusion, it is important to obtain safe, sustainable and environmentally friendly UV-shielding 335 

compounds. Our methodology can be utilized and is also highly modifiable to be used in the high-336 

throughput screening of various natural products for UV-R induced damage preventive substances and 337 

it gives simultaneous information about the genotoxic effects of the sample substance. 338 
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Abstract: Endophytes are microorganisms living inside plant hosts and are known to be beneficial
for the host plant vitality. In this study, we isolated three endophytic fungus species from the
roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi
belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of
the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode
Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer
(UPLC–DAD–ESI–MS–Orbitrap). Out of 318 metabolites, we were able to identify 220, of which
a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones,
Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar
alcohols and disaccharides were found, as well as other previously reported metabolites from plants
or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the
found metabolites, were observed even though the fungi were isolated from the same host. Many
of the discovered metabolites have been described possessing biological activities and properties,
which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic
stress tolerance.

Keywords: endophytes; endophytic fungi; Acephala applanata; Phialocephala fortinii; Humicolopsis

cephalosporioides; Coniochaeta mutabilis; Scots pine; metabolites; UPLC–MS; peptides

1. Introduction

Endophytes are bacterial or fungal microorganisms that colonize a wide variety of plant tissues
during at least some period of their lifecycle. Endophytic infection is considered inconspicuous, the
infected host tissues are at least transiently symptomless, and the microbial colonization is internal [1,2].
Endophytes have been isolated from all of the studied plant species [3]. However, it has been
estimated that only 1–2% of the known 300,000 plant species have been studied for their endophytes [4].

Molecules 2019, 24, 2330; doi:10.3390/molecules24122330 www.mdpi.com/journal/molecules
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The relationship between the host and the endophyte can have many forms ranging from saprobic
to parasitic and from exploitative to mutualistic. Endophytic fungi and bacteria have been shown
to improve the health of the host plant by improving the biotic and abiotic stress tolerance due to
phytohormone production, and host’s nutrient uptake [5–8]. The endophytes have also been shown to
produce toxic chemicals preventing attacks by insects and herbivores [9,10].

Dark septate endophytic fungi (DSE) are often dominant in the roots of tree species [11] and
characterized with melanized and septate hyphae. These Ascomycetous conidial or sterile endophytic
fungi colonize the roots of many higher plant species widely in the northern hemisphere and are
extensively distributed in coniferous boreal forests [12]. The most frequent DSE in natural forest
ecosystems in the northern hemisphere belong to the Phialocephala fortinii s.l.–Acephala applanata species
complex (PAC) and up to 80% of fine roots in forest stands can be colonized by them [11]. Studies
have shown that DSE and PAC species induce resistance to abiotic stress, accelerate root turnover and
mineralization, and suppress root pathogens [11,13–15].

The metabolic profiling of endophytes has revealed novel compounds possessing interesting
bioactive properties to be utilized in future. For example, during the years 1995 to 2011, at least 313 novel
compounds were isolated and identified from bacterial and fungal endophytic microorganisms [16].
These were found possessing interesting properties, for example as agrochemicals, antiparasitics and in
the field of pharmacology. Additionally, in the previous studies of Scots pine bacterial endophytes, they
have been shown to produce efficient antioxidant and antimicrobial compounds [17]. Water extraction
has been previously found effective in yielding bioactive principles frommicroorganisms. For example,
water-soluble nucleosides, exopolysaccharides, peptides, proteins and sterols showed also bioactive
properties in the caterpillar parasitic fungus Cordyceps sinensis [18].

In this study, we explored three common endophytic fungal isolates from conifer roots and their
aqueous extracts using LC–MS methodologies. The endophytic fungal species used in this study were
isolated from the roots of eight-year-old Scots pine seedlings growing in a Finnish drained peatland
setting. The growth conditions for trees and especially young seedlings in drained peatlands are harsh
due to the extreme variability in temperature, solar radiation, variability in soil ground water level
(drought/flood) and poor nutrition. The northern peatlands are rather unexplored environments as
regards their endophytes. Scots pine is one of the most economically important and common tree
species in Finland and the boreal zone in general. In spite of that, a limited number of studies has
been published about its endophytic symbionts. In fact, to our knowledge, this is the first time that
the metabolic profile of water extracted Scots pine root associated endophytic fungi belonging to
DSE is investigated. However, under this kind of continuously strenuous growth conditions, the
associated endophytes may play a role in enhancing the survival of the host trees by producing
effective metabolites with interesting bioactivities. Moreover, we decided to use UPLC–Orbitrap–MS
as UPLC enables fast and sensitive analyses with ultra-high performance for complex samples, and
Orbitrap has a high resolving power and is thereby suitable for the accurate mass measurements and
characterization of compounds.

2. Results and Discussion

2.1. Identification of the Endophytic Fungal Isolates

The taxonomic identification of the isolated fungal strains (A, R, and S16) was made by comparing
the ITS (Internal Transcribed Spacer) region with the best GenBank Blast matches (Table 1). According
to the DNA sequencing of ITS1, 5.8S and ITS2 rDNA regions, A and R strains belong to PAC. ITS
region of the S16 strain matched with the two species Humicolopsis cephalosporioides and Coniochaeta

mutabilis. The alignments of the S16 strain together with its best GenBank matches are presented in
Supplementary Figure S1. PAC species cannot be reliably separated using only the ITS regions which
emphasizes the need for complementing sequencing methods in order to validate the results [11].
However, the strain A had 100% identity together with Acephala applanata strain (AY078147.1), whereas
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strain R was more similar with Phialocephala fortinii strains (see alignments in Supplementary Figure
S2). Humicolopsis cephalosporioides and Coniochaeta mutabilis can be considered as DSE-like fungi [19].
Previously, Coniochaeta were considered as Lecytophora sp. [20]. The phylogenetic tree (Figure 1) is
rooted with Coniochaeta mutabilis. Fungal species used in this study are to be joined into the microbe
and yeast library collection of Natural Resources Institute Finland.

Table 1. The endophytic fungus isolates and NCBI information about the best match and our identification.

Strain
(GenBank

Accession NO.)

GenBank
Accession NO. for
the Best Match

Max Identity
(%)/Query

Coverage (%)

Our Description for
the Strain

Order Class Phylum

A (KM068384) AY078147.1 100/98 Acephala applanata Helotiales Leotiomycetes Ascomycota
R (KJ649992) AB671499.2 100/100 Phialocephala fortinii Helotiales Leotiomycetes Ascomycota

S16 (KJ649998) KC128659 99/98
Humicolopsis

cephalosporioides
Ascomycota

DQ93680 99/98 Coniochaeta mutabilis Coniochaetales Sordariomycetes Ascomycota

 

Figure 1. The Neighbor-Joining topology of ITS1, 5.8S and ITS2 rDNA sequences of root endophyte
strains A, R and S16 from Scots pine and those obtained from GenBank. The phylogenetic tree was
rooted with the Coniochaeta mutabilis.

2.2. Identification of the Metabolites

We were able to identify 220 metabolites from three fungal extracts (Table 2) and 98 compounds
were left unidentified (Supplementary Table S1). Identification was mainly based on the exact masses
and the molecular formula observed. It was performed with Thermo Compound Discoverer software
and SciFinder Scholar databasewith the substance role Occurrence and the highest number of references
to scale down possible compound hits. Compound Discoverer hits were also run through SciFinder
database to verify that the identified products have been found in natural sources. The references
shown in Table 2 were used to complement the identification and additionally 39 authentic standards
were examined. Metabolites, whose presence and identity were verified with authentic standards, are
marked with the reliability of three stars. The majority of the identified metabolites belonged to the
group of amino acids, dipeptides and peptides. In addition to the main metabolites, minor ones were
also present but the intensity limit of the peaks in the ion chromatogram was set at 1 × 107, and the
peaks with intensities lower than that were not included.
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2.2.1. Amino Acids, Dipeptides and Peptides

Amino acids, dipeptides and tripeptides are the most abundant group of identified metabolites in
Table 2, as can be expected with water extraction. With the used m/z range 150–2000, we were able to
detect five amino acids: arginine, valine, tyrosine, phenylalanine and tryptophan (Figure 2). All except
valine were verified with authentic standards and their retention time order is similar to that found in
the literature [23,24,55]. Valine was detected by the [2M +H]+ ion as its molecular weight is too low for
the scan range used. Arginine was found to be the most dominant compound and it was detected with
multiple retention times and the intensities up to 1 × 109 in the mass spectrum. It was also detected as
a degradation product of many peptides or other structures with arginine backbone, which explains
the multiple retention times. Amino acids formed potassium adducts and [2M + H]+ and [2M − H]−

ions were also observed for them. In addition, arginine was detected by [3M + H]+ and [3M − H]−

ions and tryptophan with ammonium fragment ions.

Figure 2. Structures of some of the identified compounds with #ID from Table 2.

Dipeptides were the most abundant class of compounds in our samples (Table 2) with 122 possible
identifications, which represents 55% of the identified metabolites. Out of the dipeptides, 16 were
verifiedwith autentic standards (Figure 3). In addition, three tentative identifications of cyclic dipeptides
were made using databases and listed references in Table 2: Cyclo(Glu-Tyr); Cyclo(3-OH-Pro-Tyr) and
Cyclo(Glu-Leu) or Cyclo(Glu-Ile). Plant associated microorganisms are known to produce a variety of
N-containing compounds, such as cyclic peptides and peptides [6,83,84,101].
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Figure 3. Dipeptides, whose presence was verified with authentic standards and #ID from Table 2.

Furthermore, 29 tripeptides and other oligopeptides were tentatively identified in our samples
(Table 2) together with 14 amino acid derivatives. Small peptides and amino acids have also been
identified from the tubers ofPinellia ternate roots [26] and someof the findings confirm the retention order
of the compounds identified by databases and literature in our study. For some compounds, additional
ions were detected. Ammonium adducts were typical for aceglutamide and acetylcitrulline type
compounds and the sodium adduct was detected for acetylleucine and acetylisoleucine. Glutathione
yielded an additional doubly charged ion. It is a peptide produced in response to several stress
situations in endophytic microbes [17,65]. Its retention order in comparison to acetylcarnitine, tyrosine,
adenosine, phenylalanine and tryptophan is the same as reported by Ibanez et al. [55]. Additional ions of
tryptophan and its ammonium fragment were detected for acetyltryptophan and for Trp-Ala dipeptide,
which strengthens the tentative identifications. The retention order of arginine, dimethylarginine,
tyrosine and tryptophan was similar to that found in Liang et al. [25]. Dimethylarginine was also
detected with ESI–MS by Gamal–Eldin et al. [33]. In addition, methionine and its derivatives, such as
acetylmethionine have an important role in the biochemistry of plan tissues [86].

The proteins and enzymes produced by the endophytes have been reported to increase
thermostability, pH-stability, UV tolerance and products with activity against pathogenic
microorganisms [6]. Peptides produced by the endophytes have also been searched for new antibiotic
compounds and other bioactive properties [102,103]. Antimicrobial peptides and proteins have been
found to be biosynthesized immediately in response to pathogenic microorganism assault [104–106].
In this study, we detected large amounts of arginine, which is commonly used as nitrogen storage
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because it has the highest nitrogen to carbon ratio out of all 21 proteinogenic amino acids [107].
Nitrogen is often a limiting resource for the plant growth since it is needed for nucleic acid and protein
synthesis. Arginine is used in the production of nitric oxide and polyamines in plants as well and
both play a crucial role in the responses to abiotic and biotic stress [107]. One of the cyclic dipeptides
found, Cyclo(3-OH-Pro-Tyr) was reported with acaricidal activity against Tetranychus urticae and cyclic
dipeptides have been described being active towards plant pathogens [84,108].

2.2.2. Opine Amino Acids

Four possible identifications in Table 2 were opines or N2-(1-carboxyethyl)-amino acids. Heliopine
is a conjugate of glutamine and pyruvate, whereas rideopine is a product of the reductive amination
of polyamine putrescine with α-ketoglutaric acid [34]. Lysopine is a condensation product of lysine
and pyruvate [43]. Heliopine, rideopine and lysopine have all been detected from crown gall tumours
produced by rhizosphere bacteria Agrobacterium tumefaciens [34,43]. Valinopine has been detected from
a poisonous mushroom Clitocybe acromelalga and is suggested being a fungal toxin [92]. In addition, we
were able to observe a compound tentatively identified as saccharopine, which is a precursor of lysine
in the fungal α-aminoadipate pathway [109]. However, the intensities were under 1 × 107 and, thus, it
was not included in Table 2.

2.2.3. Amino Acid Quinones and Amadori Compounds

Abenquine C or its enantiomer and Abenquine B1 and B2 are tentatively identified amino
acid quinone derivatives in Table 2. Abenquine C or N-[4-(acetylamino)-3,6-dioxo-1,4-cyclo-hexa-
dien-1-yl]-l-valine and N-[4-(acetylamino)-3,6-dioxo-1,4-cyclohexadien-1-yl]-leucine (Abenquine B1)
and -isoleucine (Abenquine B2) have been isolated from the rhizosphere bacteria Streptomyces sp.
strain DB634 [69,70]. Because more than one possible amino acid quinone masses were detected and
they have been isolated from the rhizosphere, there is a possibility that root-colonizing fungi of the
rhizosphere could produce these metabolites. However, the confidence level is putative identification.

Furthermore, Amadori compounds were detected. They are Maillard reaction products where
amino acid is attached to a pentose or hexose sugar. Namely, hexosearginine, hexosevaline,
pentoseproline, hexoseaminobutyric acid and deoxyhexosethreonine were among the tentatively
identified compounds in Table 2. Out of these, the presence of hexosearginine (Figure 2) was verified
with a synthetic reference compound (purity 99%) [110]. Additionally, hexosearginine’s fragmentation
into arginine was detected in UPLC-MS. Amadori compounds have previously been identified from
fungal cultures [28] and characteristic ions similar to our findings have also been detected by Davidek
et al. [93] and Wang et al. [29]. Hexoseaminobutyric acid was detected with a shorter retention time
than the hexose sugar structure as also shown by Lamberts et al. [42]. Additionally, deoxyhexose
amino acids have been previously detected from eukaryotic cells [79].

2.2.4. Cholines

Discovered cholines presented in Table 2 are choline-O-sulphate and glycerophosphorylcholine
(Figure 2). Choline-O-sulphate has been found in relatively large amounts in fungal mycelia and
has been suggested to act as a storage of sulphur, which is an essential metabolite for growth in
filamentous fungi [41,44]. Glycerophosphorylcholine is a part of phosphatidylcholine, which is a type
of phospholipid in lecithin. Lecithin is a major component of the phospholipid membrane also found in
plant tissues [41]. The occurrence of both of these compounds was confirmed with authentic standards
and they were observed as potassium adducts in the positive ionization. Glycerophosphorylcholine
retention time with respect to arginine, tyrosine, adenosine and tryptophan was same as found by
Liang et al. [25].
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2.2.5. Nucleobases, Nucleosides, Nucleotides, and their Derivatives

Out of nucleobases, we were able to detect guanine and isoguanine or oxyadenine, which are the
only ones with molecular mass over 150 Da (Table 2). The identification of guanine was confirmed by
an authentic standard (Figure 2). Isoguanine is a purine analog, which is formed as a result of direct
oxidation of adenine [71,72].

Nucleosides contain a nucleobase with a pentose sugar unit: ribose or deoxyribose. Cytidine,
pseudouridine, uridine, adenosine, guanosine isomer, deoxyguanosine, methylthymidine, and
deoxythymidine (Table 2) were tentatively identified, and the presence of cytidine, uridine and
adenosine was verified with authentic standards (Figure 2). Nucleosides were discovered to form
formate adducts and [2M − H]− cluster ions in negative ESI, and guanosine isomer also yielded a
fragment ion responding to the detachment of pentose sugar unit. Methylthymidine has been used as
an indicator of microbial presence in wastewaters [78].

Nucleotides are nucleosides joined with at least one phosphate group. We were able to tentatively
identify adenosine monophosphate (AMP) or deoxyguanosine monophosphate (dGMP), cyclic
uridine monophosphate (cUMP), deoxyribose adenosine monophosphate (dAMP), cyclic adenosine
diphosphate ribose (cyclic ADP-ribose), cyclic guanosine monophosphate (cGMP) and two exact
masses and molecular formulae corresponding to dinucleotides (Table 2). The dinucleotides exhibited
a UV maximum at 258–261 nm, which in addition to the shape of the UV spectrum correlates with
the literature [111]. The absorption maximum in our study was, however, broader and continued
until 300 nm, which is likely caused by other compounds eluting simultaneously. Cyclic nucleotides
are used as signaling metabolites in almost all organisms and they regulate a vast number of cellular
processes [59–62]. The presence of the main fragment ion at m/z 152.1 was also detected with cGMP
as reported in the literature [59]. ADP-ribosyl groups are formed on target proteins as a response
to DNA damage and poly(ADP-ribose) polymerase enzyme homologs, which catalyze the reaction,
have also been found in fungi [66]. In addition, nicotinamide riboside and nicotinamide adenine
dinucleotide (NAD) were tentatively identified. NAD produced a fragment ion at m/z 540.1 in the
negative ESI mode corresponding to the cleavage of nicotinamide. The retention order of the above
mentioned metabolites was similar to that found in the literature [25,26,36–40,48,51–53,55,63,64,85].
Shiao et al. [35] detected nucleosides and nucleobases from the pathogenic fungus Cordyceps sinensis

and their retention order is same as ours.
Additionally, sugar-nucleotides, such as uridine diphosphate (UDP)-glucose and UDP-galactose

as well as UDP-galactosamine and UDP-glucosamine, were discovered (Table 2). UDP-glucosamines
and UDP-galactosamines are important precursors of the bacterial and fungal cell wall [49]. Sugar
nucleotides are donors of sugar groups in the biosynthesis of glycosides, polysaccharides and
glycoconjugates, and they are abundant in microorganisms and plants [46]. They also possess many
important roles in fungi [47,54].

2.2.6. Siderophores

One exact mass corresponding to cis- and/or trans-fusarinine siderophore was found with two
retention times (Table 2). The cis- and trans-fusarinine backbones are very common in many fungal
siderophores [75,76]. Siderophores are low molecular weight compounds that are used for iron
uptake and storage and they have, for example, been found to have importance in the maintenance
of plant–fungi symbioses [74,77]. Fungi and other microorganisms have been found to produce
siderophores under aerobic growth conditions, where low iron availability is detected [75]. Iron is
essentially required for the growth and proliferation in both bacteria and fungi and siderophores
provide cells with nutritional iron [102]. In DSE fungi, it was found that these species have the ability
to acidify the environment and produce siderophores to increase the micronutrient uptake to both
members of the symbiont, indicating the association to be mutualistic rather than pathogenic [73].
Fusarinine monomers where also discovered with characteristic formic acid and water fragment ions.
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2.2.7. Other Common Metabolites

Pentonic and hexonic acids in Table 2 were identified by their exact masses andmolecular formulae
according to Sun et al. [26], where they had further identified the species being ribonic and gulonic
acids using MS/MS data. Glycerophosphoinositol is closely related to glycerophosphorylcholine. It is
found in both plants and fungi and is a major deacylation product of lipid metabolism [30,31,55].
In addition, as with cholines, the potassium adduct was observed for it.

Acetyl coenzyme A is a central carbon and energy cycle metabolite, which is bulky and amphibilic
and, thus, cannot readily transverse biological membranes. Acetylcarnitine is used in fungi to transport
the acetyl unit [50]. The retention order of acetylcarnitine in relation to tyrosine, glutathione dimer,
adenosine, phenylalanine and tryptophan is also similar to that found by Ibanez et al. [55].

Isocitrate and citric acid are isomers with the same molecular formula as well as methylisocitric
acid and methylcitric acid. Citric acid and isocitrate are both important intermediates in the Krebs
cycle, which is the metabolic route to produce energy to the eukaryotic cells, such as in plants
and fungi. The presence of citric acid was confirmed with an authentic standard (Figure 2). In
addition, we observed potassium adducts with both citric acid and isocitrate, which strengthened the
tentative identification of isocitrate. Methylcitrate cycle catabolizes propionate in yeast and filamentous
fungi [57]. Propionate is produced during the catabolism of amino acids and fatty acid oxidation in
higher eukaryotes and is toxic, thus, inhibiting the cell growth [112]. Methylcitrate cycle metabolizes it
into pyruvate, which can be used as a source of carbon [58]. Methylcitric acid and methylisocitric acid
are important intermediates in this cycle.

2.2.8. Sugars, Sugar Alcohols, Disaccharides

The presence of mannitol and fucose (Table 2) was confirmed using authentic standards (Figure 2).
Mannitol is widely distributed in filamentous fungi and stored in the fungal hyphae as a carbon
source [32]. Fucose appears to represent a prominent feature in protein-linked glycans in the fungal
kingdom [45]. Additionally, disaccharides, such as the one isolated from pathogenic fungal species
Claviceps africans, with fructofuranose and arabinose backbone [56] were found. Deoxyhexoses, then
again, are produced in fungi by pyranose oxidases, which have been reported among lignin-degrading
fungi [68] for example. Deoxyhexose yielded fragment ions corresponding to the cleavage of water,
whereas dehydrohexose structure was detected by its sodium and ammonium adducts and by [2M +
H]+ and [2M − H]− ions. Dehydrohexose has also been previously reported from evergreen trees [67].

2.2.9. Endophyte or Plant Metabolites

Phomone A and B are enantiometric α-pyrone dimers isolated from the endophytic fungus Phoma

sp. YN02-p-3 [81,82]. Blumeoside C, which is an iridoid glucoside isolated from Fagraea blumei [80]
has the same molecular formula. Cuendet et al. [80] discovered that Blumeoside A elutes later than
Blumeoside C, which is in accordance with our findings (Table 2).

Asperulosidic acid and its stereoisomer were isolated from the plant Hedyotis diffusa using water
extraction [89]. According to Friscic et al. [90], asperulosidic acid elutes later than mannitol using
reversed-phase liquid chromatography as in our study (Table 2). Asperulosidic acid has also been
isolated from Vernonia cinerea with ethanol [91] and its structural isomers from Morinda coreia and
Saprosma scortechinii with methanol [87,88].

Furthermore, we were able to find exact masses corresponding to orsellinic acid esters, which
have been isolated from the endophytic Chaetomium sp. fungus [16,95–97]. However, orsellinic acid
ester Globosumone B was not included in the Table 2 because of the chosen intensity limit 1 × 107.

Two possible triterpene saponin structures were obtained with the molecular formula C35H50O12,
one could be Dianthosaponin F, which has been isolated from Dianthus japonicus with methanol [98],
and the other Celosin F, which has been isolated from Celosia argentea with 50% ethanol [99].
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Linamarin is a cyanogenic glucoside isolated from the cassava (Manihot esculenta) roots [94].
Ramulosin derivatives have been previously isolated from endophytic fungi Nigrospora sp. Present in
the branches of Garcinia nigrolineata tree [16,100].

2.3. Metabolites in Fungal Extracts

We conducted a qualitative study on the screening and identification of the water-soluble
metabolites from the endophytic fungi extracts. There was a high number of primary metabolites in
the aqueous extracts as expected. The number of identified metabolites was almost the same with all
of the fungal species, and a majority of the metabolites, 141 compounds, were detected from all of the
fungal extracts (Figure 4). From the extract A (A. applanata), we identified 177 metabolites and out of
these 12 metabolites were exclusively found in fungus A (Figure 4). These twelve were all dipeptides
or peptides except the nucleoside derivative 5-methoxycarbonylmethyluridine (Table 2). From the
extract of fungus R (P. fortinii) 184 metabolites were identified and 15 of the metabolites were found
only in this extract. These included fucose, guanine, acetylcitrulline, disaccharides, dinucleotides,
acetylleucine or acetylisoleucine, the endophytic fungi metabolite orsellinic acid ester and the plant
metabolites blumeoside A and asperulosidic acid as well as dipeptides and peptides. From the extract
of fungus S16 (H. cephalosporioides or C. mutabilis) we identified 177 metabolites and 16 of these were
found in the S16 extract only. These included hexosevaline, pseudouridine, acetylglutamic acid, cUMP,
NAD and saponin as well as Ala-Glu or Glu-Ala or heliopine and other dipeptides and peptides.

Figure 4. A Venn diagram of the 220 identified metabolites and how they are distributed among the
fungal species A (A. applanata), R (P. fortinii) and S16 (H. cephalosporioides or C. mutabilis).

In this study, we identified a large number of water-soluble metabolites that may make a
contribution to nutrient intake or stress-resistance of the host plant. Many of the identified compounds
have been previously reported possessing interesting bioactivities. Thus, the bioactive properties of
the fungal isolates and their sub-fractions are to be investigated in the future for their antimicrobial
and antioxidant properties to evaluate their potential for the host plant vitality and other applications.
To our knowledge, this is the first time that metabolic profiling is conducted on these Scots pine
associated endophytic fungi species using water extracts. Thus, this work offers valuable reference
about the metabolites of similar endophytes, which are to be discovered in the future.
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3. Materials and Methods

3.1. Reagents

Ala-Phe, Ala-Tyr, Asp-Phe (methyl ester), Leu-Leu (acetate), Leu-Pro (hydrochloride),
Phe-Ala, Pro-Gly, Pro-Leu, Tyr-Ala, Val-Tyr, guanine, cytidine, uridine, guanosine (hydrate),
β-(–)-adenosine, d-mannitol, l-tyrosine, l-arginine (hydrochloride), l-phenylalanine, l-(–)-fucose
and trans-3-indoleacrylic acid were obtained from Sigma-Aldrich (Saint Louis, MO, USA) each with
purity ≥98%. l-α-Glycerophosphorylcholine (purity 99%) and Choline-O-sulphate (D13, purity
98%) were purchased from Carbosynth Limited, Compton, UK. DL-Ala-DL-Leu (purity ≥95%),
DL-Ala-DL-Met, DL-Ala-DL-Val, l-Ala-l-Gln (HPLC grade), l-Ala-l-Trp, l-Ala-l-Pro (purity >96%),
Gly-l-Ile (purity >99%), Gly-DL-Leu, Gly-l-Phe (HPLC grade), Gly-l-Pro (HPLC grade), DL-Leu-Gly,
l-Leu-l-Tyr, DL-Leu-DL-Val, l-Leu-l-Ala (hydrate), and Salicin (HPLC grade) were obtained from TCI
Europe, Zwijndrecht, Belgium, with purity >98% unless specified. l-(–)-tryptophan (purity >99%) was
purchased from Acros Organics/Thermo Fisher Scientific, Waltham, MA, USA. Hydrogen peroxide
and citric acid (monohydrate, purity >99%) were obtained from Merck KGaA, Darmstadt, Germany,
and ethanol from Altia, Helsinki, Finland.

3.2. Endophytic Fungi Isolation and Identification

The fungal endophytes were originally isolated from the roots of eight-year-old Scots pine (Pinus

sylvestris L.) trees grown on a drained peatland forest site in western Finland. Scots pine roots were
washed and the root tips were examined under a dissecting microscope. The root tips showing signs of
potential fungal association or mycorrhizal features were selected for surface sterilization with a short
bath in 70% ethanol and 30% H2O2 and followed by laying on sterile Petri dishes on agar. The pure
cultures of the fungus mycelium were cultivated on a solid Hagem agar [113] on Petri dishes.

The species of the fungus isolates were identified with molecular methods. DNA from the
fungus mycelium was extracted using E.Z.N.A. Fungal DNA Mini Kit (Omega bio-tek, Norcross,
GA, USA) according to the manufacturer’s instructions. The nucleotide sequence of the Internal
Transcribed Spacer (ITS) region of fungal ribosomal DNA (rDNA) was analysed in Macrogen Inc.
(Amsterdam) from polymerase chain reaction (PCR) product amplified with ITS1 and ITS4 primer
pair [114]. The reaction mixture of 50 µL included, 10x enzyme buffer (Biotools B&M Labs, S.A. Madrid,
Spain), 0.5 µM each primers, 0.2 µM dNTP mix, DNA Polymerase (5 U/µL) (Biotools B&M Labs, S.A.
Madrid, Spain) and 1 µL DNA template. The PCR were performed with the following conditions:
initial incubation at 94 ◦C for 5 min followed by 25 cycles of 1 min at 94 ◦C, 1 min at 58 ◦C and 1.5 min
at 72 ◦C. Sequences with a similarity of >99% to ITS1, 5.8S and ITS2 rDNA regions were considered as
identical species [115]. ITS1, 5.8S and ITS2 regions were extracted from the fungal ITS sequences and
the cleaned sequences were used for BLAST searches against GenBank/NCBI to provide taxonomic
identification. The best matches from GenBank were aligned and a phylogenetic tree was generated
in Geneious 6.0.6 using the Neighbor-Joining analysis (Figure 1). The sequences were deposited in
GenBank with accession numbers KM068384, KJ649992 and KJ649998.

3.3. Fungal Extract Preparation

The fungal mass was collected from the surface of a cellophane membrane on agar [113] with a
scalpel, stored at−80 ◦C, and ground in amortar before adding to sealed, sterile and previouslyweighed
polypropylene test tubes (BD Falcon™, VWR International Oy, Helsinki, Finland). The extraction was
executed with boiling deionized and filtered (0.2 µm, Nylon 66 Filter Membrane from Supelco by
Sigma–Aldrich Co, Saint Louis, MO, USA) water. The fungal mass was mixed with equal amount of
boiling deionized and filtered (0.45 µm Nylon membrane, Supelco Analytical/Sigma Aldrich, Saint
Louis, MO, USA) water (1 mL = 1 g) by vortexing. Extraction tubes were then shaken in +95–100 ◦C
water bath (SW22, JULABO Labortechnik GmbH, Seelbach, Germany) for 15 minutes after which the
tubes were cooled in an ice bath before vortexing again. Extraction tubes were then centrifuged at
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+4 ◦C and 8200 g for 10 minutes (Eppendorf Centrifuge 5804R, Hamburg, Germany). The supernatants
were collected into new polypropylene tubes and centrifuged again with the same settings. Finally, the
supernatants were filtered through nylon syringe filters (0.2 µm, Cronus Filter from SMI–LabHut Ltd.,
Gloucester, UK) to new polypropylene tubes. Aliquots of water without fungal material were extracted
simultaneously as control samples. The pH of the extracts was measured with indicator paper (scale
1–14) and it ranged from 5.5 to 7. Extracts were dried with freeze-drying equipment (VirTis BenchTop
6K with Trivac E2, D 2,5E Vacuum pump, SP Industries, Warminster, PA, USA) before storing at −80 ◦C.
The dried extracts were dissolved in sterile purified water before analysis.

3.4. UHPLC-DAD-ESI-Orbitrap-MS

After vacuumdrying, 20µL of ethanol and 980µL ofwaterwere added to the samples. The samples
were then mixed with a vortex and filtered using 0.2 µm PTFE syringe filter prior to analyses.
The samples were analyzed using an ultra-high performance liquid chromatograph coupled to a
photodiode array detector (UHPLC–DAD, Acquity UPLC, Waters Corporation, Milford, MA, USA)
and a hybrid quadrupole-Orbitrap mass spectrometer (Q Exactive™, Thermo Fisher Scientific GmbH,
Bremen, Germany). The column was Acquity UPLC® BEH Phenyl (100 × 2.1 mm i.d.; 1.7 µm; Waters
Corporation, Wexford, Ireland). The mobile phase consisted of (A) acetonitrile and (B) water and
formic acid (99.9:0.1, The elution profile was as follows: 0–0.5 min, 0.1% A; 0.5–5.0 min, 0.1–30% A
(linear gradient); 5.0–5.1 min, 30–90% A (linear gradient); 5.1–7.1 min, 90% A; 7.1–7.2 min, 90–0.1% A
(linear gradient); 7.2–8.5 min, 0.1% A. The injection volume was 5 µL and flow rate 0.5 mL/min. The UV
data was collected at 190–500 nm. The heated ESI source (H–ESI II, Thermo Fisher Scientific GmbH,
Bremen, Germany) was operated both in negative and positive ion modes. The parameters for negative
ionization were as follows: spray voltage was set at –3.0 kV, sheath gas (N2) flow rate at 60 (arbitrary
units), aux gas (N2) flow rate at 20 (arbitrary units), sweep gas flow rate at 0 (arbitrary units), capillary
temperature at +380 ◦C and S-lens RF level at 60. The parameters for positive ionization were similar,
except that spray voltage was set at 3.8 kV. Orbitrap was set at a resolution of 70,000 and an automatic
gain of 3 × 106 was used. Masses were scanned at m/z 150–2000. Pierce ESI Negative Ion Calibration
Solution (Thermo Fischer Scientific Inc., Waltham, MA, USA) was used to for the calibration. The data
was processed with Thermo Xcalibur Qual Browser software (Version 3.0.63, Thermo Fisher Scientific
Inc., Waltham, MA, USA).

3.5. Identification

Orbitrap data was processed using Compound Discoverer 2.1 SP1 (Thermo-Fisher Scientific,
Waltham, MA, USA). The processing flow ‘Untargeted Metabolomics Workflow’ was utilized.
The following general settings were used for the workflow: mass tolerance = 5 ppm, intensity
threshold = 30%, S/N threshold = 3, minimum peak intensity = 1 × 106, maximum element counts =
100 × C, 200 × H, 10 × N, 100 × O, 10 × S and 10 × P. The following settings were used for the peak
detection: filter peaks = true, maximum peak width = 0.5 min, remove singlets = true, minimum #
scans per peak = 5 and minimum # isotopes = 1. ChemSpider and KEGG databases were used for
the identification. In addition, we used SciFinder Scholar database (American Chemical Society, CAS,
Columbus, OH, USA) with substance role Occurrence and highest number of references to scale down
possible compound hits.

Supplementary Materials: The following are available online. Supplementary Figure S1: Alignment of ITS
region of S16 strain (KJ649998) with its best GenBank matches Coniochaeta mutabilis (DQ93680) and Humicolopsis
cephalosporioides (KC128659). Supplementary Figure S2: Alignment of ITS region of A (KM068384) and R (KJ649992)
strains with their best GenBank matches Acephala applanata (AY078147) and Phialocephala fortinii (AB671499.2 and
AY033087), respectively. Supplementary Table S1: The unidentified metabolites.
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able S1. The unidentified metabolites. The intensity of the metabolite in the corresponding fungi 

extract is shown under the fungal species codes. Intensities over 1×107 are shown in black whereas 

lower intensities with a grey color. Other ions are also shown if detected. * = Was also detected but 

not identified by Sun et al. [26]. nd = not detected. 

# rt [M + H]+ [M – H]⁻ Exact Mass Measured A R S16 Other Ions 

1 0.40 274 272 273.96623* 5×107 8×106 8×106  

2 0.40 388 386 387.94673* 3×107 2×106 3×105  

3 0.40 518 516 517.90331 5×106 2×105 nd  

4 0.41 218 216 217.97572* 1×107 1×106 1×107  

5 0.46 nd 257 258.07335 6×106 1×107 3×106  

6 0.46 387 385 386.18007 7×105 7×106 7×105  

7 0.47 251 249 250.02328 1×107 3×107 1×107  

8 0.49 308 306 307.21086 6×104 2×105 7×104  

9 0.50 nd 194 195.95317 6×106 5×106 1×107  

10 0.53 219 nd 218.01907 2×107 2×107 7×107  

11 0.53 329 327 328.14845 4×107 6×107 1×107  

12 0.53 nd 371 372.14400 1×107 5×107 9×106  

13 0.53 nd 396 397.13561 2×106 2×106 8×106  

14 0.54 nd 217 218.05522 8×108 8×108 6×108  

15 0.54 221 219 220.03447 2×107 2×108 2×108  

16 0.54 281 279 280.05580 1×108 1×108 1×108  

17 0.55 441 439 440.09453 1×108 7×107 7×106  

18 0.56 353 351 352.14891 4×105 7×105 9×105  

19 0.58 358 nd 357.16752 4×108 4×108 3×108  

20 0.60 nd 194 195.95305 4×107 4×107 9×107  

21 0.61 353 351 352.14790 7×105 1×106 1×106  

22 0.70 nd 238 239.89826 2×107 1×107 6×104  

23 0.70 323 321 322.13713 2×105 2×106 4×105  

24 0.71 265 263 264.11391 9×105 2×106 4×105  

25 0.73 286 284 287.15767 2×108 2×108 3×107  

26 0.74 240 238 239.89876 2×107 1×107 1×105  

27 0.81 409 407 408.17357 1×106 4×106 1×106  

28 0.87 274 272 273.08436 3×106 1×107 6×106  

29 0.96 274 272 273.08439 3×106 8×106 4×106  

30 0.98 nd 522 523.13210 3×105 6×106 5×104  

31 1.05 nd 675 676.20680 9×105 nd nd  

32 1.19 409 407 408.17412 1×106 1×106 8×105  

33 1.21 409 407 408.17412 5×105 3×106 6×105  

34 1.28 588 586 587.10512 nd nd 9×105  

35 1.35 240 238 239.89890 2×106 9×105 2×105  

36 1.74 280 278 279.13032 4×106 3×106 8×106  

37 1.75 714 712 713.21584 1×105 nd nd  

38 1.78 239 237 238.10523 1×108 3×107 3×105  

39 1.78 550 548 549.11226 1×107 3×107 3×107  1099.22937 [2M + H]+; 1097.34277 [2M – H]- 

40 1.78 621 619 620.11598 8×106 2×107 2×107  

41 1.79 221 219 220.09434 8×106 2×106 6×105  

42 1.85 501 499 500.02419 3×107 5×107 6×107  

43 1.90 430 nd 429.10509 4×105 5×106 6×105  

44 1.93 219 nd 218.10373 1×107 nd 1×106  

45 1.98 nd 287 288.09615 1×107 2×107 8×106  

46 1.98 428 426 427.56868 7×106 2×107 7×106  

47 1.99 551 549 550.09609 6×107 3×108 2×108  

48 2.02 430 nd 429.10518 7×106 2×107 7×106  

49 2.04 2630 2628 2629.83072 1×105 2×105 6×105 1315.92264 [M + 2H]2+; 1313.90808 [M – 2H]2- 

50 2.04 nd 2674 2675.83414 3×104 9×104 2×105 1336.90979 [M – 2H]2- 

51 2.05 636 634 635.11345 1×107 3×107 9×106  

52 2.05 557 555 556.14305 5×106 6×106 7×106  

53 2.06 284 282 283.11683 6×106 5×106 5×107  

54 2.06 430 428 429.10496 3×106 1×107 3×106  

55 2.09 521 519 520.22252 nd nd 5×106  

56 2.12 283 nd 282.07945 1×107 3×107 1×107 565.16650 [2M + H]+; 563.15295 [2M – H]- 

57 2.12 398 396 397.13389 8×107 7×107 4×107  

58 2.12 532 530 531.13646 3×106 1×107 3×106  

59 2.15 280 278 279.12977 2×107 2×107 5×106  



60 2.15 379 377 378.10960 nd 7×106 nd  

61 2.19 232 nd 231.14696 2×108 2×108 1×109  

62 2.19 429 427 428.06072 3×106 3×107 2×107 857.12567 [2M + H]+; 855.11475 [2M – H]- 

63 2.29 532 530 531.13615 7×106 2×107 9×106  

64 2.32 556 554 555.14738 3×107 5×107 2×107  

65 2.34 627 625 626.10191 4×107 2×108 4×107  

66 2.35 572 570 571.14232 1×107 1×107 1×107 1143.28784 [2M + H]+; 1141.27905 [2M – H]- 

67 2.38 435 433 434.10237 1×106 7×105 1×106  

68 2.40 458 456 457.57568 1×107 2×107 1×107  

69 2.49 418 416 417.59318 1×106 3×106 2×106 836.18762 [2M + H]+; 834.17896 [2M – H]- 

70 2.50 217 215 216.08989 nd 5×105 nd  

71 2.61 1149 1147 1148.24490 3×105 1×105 2×106 575.12973 [M + 2H]2+; 573.11517 [M – 2H]2- 

72 2.62 860 858 859.19628 1×106 1×106 2×106  

73 2.63 1125 1123 1124.23156 4×105 3×105 1×106 563.12306 [M + 2H]2+; 561.10850 [M –2H]2- 

74 2.64 1173 1171 1172.25456 nd nd 4×105 587.13456 [M + 2H]2+; 585.12000 [M –2H]2- 

75 2.67 836 834 835.18477 1×106 3×106 3×106  

76 2.74 289 287 288.12139 5×105 2×107 2×105  

77 2.84 430 428 429.59822 3×104 5×104 nd  

78 2.92 297 295 296.14736 2×108 5×107 2×107 314.18057 [M + NH3 + H]+ 

79 2.92 1440 1438 1439.71760 5×105 3×107 1×106 720.86316 [M + 2H]2+; 718.84860 [M–2H]2- 

80 2.98 311 309 310.12599 2×108 2×108 5×107 328.15967 [M + NH3 + H]+ 

81 3.03 217 215 216.09007 2×107 1×107 8×106  

82 3.03 273 271 272.12620 2×106 6×106 nd  

83 3.21 341 339 340.17302 4×108 2×108 3×107 358.20670 [M + NH3 + H]+ 

84 3.28 355 353 354.15187 4×108 4×108 7×107 372.18558 [M + NH3 + H]+ 

85 3.29 nd 815 816.24794 3×105 nd nd  

86 3.30 386 nd 385.12025 1×106 5×106 3×107 771.24628 [2M + H]+; 769.23413 [2M – H]- 

87 3.46 385 383 384.19998 3×108 1×108 3×107 402.23282 [M + NH3 + H]+ 

88 3.53 544 542 543.19283 6×106 2×106 9×105  

89 3.54 399 397 398.17891 4×108 4×108 1×108 416.21155 [M + NH3 + H]+ 

90 3.66 219 217 218.11531 8×106 5×107 9×104  

91 3.69 429 427 428.22640 1×108 8×107 2×107  

92 3.77 443 441 442.20564 2×108 2×108 1×108 460.23773 [M + NH3 + H]+ 

93 3.80 406 404 405.19078 6×105 nd nd  

94 3.90 473 471 472.25292 3×107 5×107 nd 490.28571 [M + NH3 + H]+ 

95 4.03 883 881 882.45986 3×106 2×107 nd 1765.91760 [2M + H]+; 1763.91077 [2M – H]- 

96 4.08 1085 1083 1084.04655 nd 7×105 nd  

97 4.09 534 nd 533.30479 2×107 8×107 3×107  

98 4.96 395 393 394.19960 nd 3×107 nd   

 

  



 

 

Figure S1. Alignment of ITS region of S16 strain (KJ649998) with its best GenBank matches Coniochaeta 

mutabilis (DQ93680) and Humicolopsis cephalosporioides (KC128659). 

  



 

 
Figure S2. Alignment of ITS region of A (KM068384) and R (KJ649992) strains with their best GenBank 

matches Acephala applanata (AY078147) and Phialocephala fortinii (AB671499.2 and AY033087), 

respectively. 
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The authors wish to make the following corrections to this paper published in Molecules. Two 

inadvertent errors were found from Table 2 footnotes section: 

Footnote k states that “k = Tripeptide containing Arg, Glu and Val; or Arg, Asp and Leu or Ile; 

or Gln, Gln and Lys or a tetrapeptide containing Ala, Ala, Asp and Lys; or Ala, Gln, Gly and Lys or 

a pentapeptide containing Ala, Ala, Gly, Gly and Lys”.  

However, it should be “k = Tripeptide containing Arg, Glu and Val; or Arg, Asp and Leu or Ile; 

or Gln, Gln and Lys or a tetrapeptide containing Ala, Ala, Asn and Lys; or Ala, Gln, Gly and Lys or 

a pentapeptide containing Ala, Ala, Gly, Gly and Lys”. 

Footnote n states that “n = Tripeptide containing Ala, Glu and Val; or Glu, Glu and Leu or Ile; 

or Pro, Thr and Thr; or Ala, Asp and Leu or Ile; or an acetylated tripeptide containing Gly, Ser and 

Leu and Ile; or Gly, Thr and Val; or the methyl ester of a tripeptide containing Ala, Asp and Val or 

Asp, Gly and Leu or Ile”.  

However, it should be “n = Tripeptide containing Ala, Glu and Val; or Glu, Gly and Leu or Ile; 

or Pro, Thr and Thr; or Ala, Asp and Leu or Ile; or an acetylated tripeptide containing Gly, Ser and 

Leu or Ile; or Gly, Thr and Val; or the methyl ester of a tripeptide containing Ala, Asp and Val or 

Asp, Gly and Leu or Ile”. 
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These changes have no material impact on the conclusions of our paper. We apologize for any 

inconvenience to our readers. 

 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 
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