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Multiple object tracking, a middle-level task, is a critical foundation to support advanced research 

activities, like pose analysis or motion recognition. In this thesis, the relationship between object 

detection, single-object tracking, and multiple object tracking was explored and discussed. 

On this basis, the Single Shot MultiBox Detector (SSD) [27], SiamMask [26] network, and 

Detect and Track (D&T) model [22] have been utilized, modified and evaluated.   

D&T model is the offline Detection Based Tracking (DBT) network. We had observed the ben-

efits of this correlation loss application via researching on D&T model, and we trained the D&T 

network on the dataset combination containing the person objects so as to make it useful in reality. 

In addition, SSD had been applied as the detector with the same tracking methods, during which 

process the effect of the diverse detectors on the MOT experiments could be figured out. The last 

experiment was executed on the Single Object Tracking (SOT) model-SiamMask. The original 

SiamMask network is an online Detection Free Tracking (DFT) network.  In order to adapt to the 

situation of multi-target tracking, it had been modified to initialize multiple target objects with an 

SSD detector at every specific interval. 

Having prepared all the multiple object tracking models, we carried out the evaluation with the 

MOT17DET dataset. The evaluation metrics for multiple object tracking provided us with a stand-

ard view of their performance. In this procedure, we also obtained some helpful knowledge and 

experience for future MOT improvement. 
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1. Introduction 

 

1.1. Overview 

 

 

 

Figure 1. The ground-truth MOT result from MOT17DET [21]. They are selected as 

the five subsequent frames and organized following the time stamp. 

 

Multiple Object Tracking (MOT) is also called Multiple Target Tracking (MTT). In gen-

eral, MOT can be considered as the estimation of various variables. From its name, we 

can infer that its main task is to locate and identify moving objects in a frame sequence 

and then output trajectories for diverse purposes. In [12], the author mentioned that mul-

tiple targets could be explained as objects belonging to distinct categories. In other cases, 

numerous objects can state the different parts of a single object. We tended to interpret 

multiple objects as divergent class objects in this thesis.  

As the medium level of computer vision, MOT supports advanced tasks such as pose 

recognition, motion analysis, etc. Referring to the application in real life, the main direc-

tions of MOT could cover our usual activities and ensure our security, comfortability, 

health, and convenience. For example, video monitoring could adopt MOT to detect 

strange actions. Hence, it contributed to saving a large amount of labor and property. In 

addition, MOT could be implemented to identify and deal with object interaction in com-

plex scenes. Furthermore, AR and VR would be equipped with MOT to add more details, 
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such as the in-game character action settings. Most importantly, MOT could enhance the 

medical image. 

Distinct from Single Object Tracking (SOT), MOT is facing more and more hardships. 

Besides the SOT issues, such as illumination, deformation, occlusion, and so on, MOT 

has to cope with the data association for the target objects. And MOT might deal with 

diverse problems, like the frequent object occlusion, the unknown beginning and ending 

time for trajectories, the different motions, the similar object appearance, the interaction 

among objects, etc. 

For an MOT model, the general input is the detection response generated by the de-

tector. Detection responses are referred to as detection hypothesis or detection observa-

tion describing the position and confidence of the target object in each frame.  Most MOT 

models adopt the data association methods to match the target detection response or track-

lets and then output the trajectories. Several tracklets belonging to the same object con-

tributed to one trajectory, which corresponded to the movement sequence of this object 

during one time period.    

Having got the basic concept of MOT tracking, we would dive into more specific 

categories in this field. In Chapter 3, partitioning standards are described: initialization, 

processing format, and output type. Detection-Based Tracking (DBT) and Detection-Free 

Tracking (DFT) are identified through the initializing approaches like Figure 2. As one 

DFT model, the SiamMask network [26] states the presentative sample as [40]. After 

manually initializing the bounding box of the target object in the first frame, the DFT 

model would detect and locate in the subsequent frames following the plotted boxes. In 

this thesis, we mainly researched and developed DBT models, presenting the correspond-

ing video [41]. This type of network at first detected the targeted and then linked these 

detection responses into trajectories according to either on object features or probabilistic 

movement characteristics. We selected these models since they could deal with the new 

existence of the target objects in relatively long-term videos.  

Processing mode would also decide the MOT categories. The difference between 

online tracking and offline tracking lies in whether the target observation for the next few 

frames is adopted when processing the current frame. Considering the processing format, 

the Detect and Track (D&T) model [22] and modified Single Shot MultiBox Detector 

(SSD) [27] method are the offline networks while the fast-online object tracking and seg-

mentation (SiamMask) [26] executes the frames online. 
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Figure 2. Procedure flow of two prominent tracking methods [12]. Top: Detection-

Based Tracking (DBT), bottom: Detection-Free Tracking (DFT).  

 

1.2. Motivation 

From the previous part, it is easy to infer that the MOT model relies on the detector since 

it needs the detection response as the input. Therefore, the target objects used in the de-

tector would limit the selection of tracking objects.  

Considering the target object in MOT, the pedestrian is the significant object that 

shall be involved in our experiments. Firstly, it is typically a non-rigid object and an ideal 

example for MOT compared with other items. Secondly, the number of videos involved 

pedestrians exceeds other videos. It means the relevant applications would be more ac-

cessible and profitable than others. Finally, at least seventy percent of MOT research aims 

at pedestrians [12]. In short, tracing object classes and even detecting object classes 

should be made up of the person class.   

Since the detector applied in MOT would affect the MOT output, changing the detec-

tion observation by replacing the detector could help us to compare and analyze the fac-

tors determining the performance of the MOT network.  

In the overview, we discussed the application, requirements, and categories of MOT. 

Despite the high speed, some typical SOT models can achieve good results.  It inspires 

us to modify the SOT model to accept multiple objects. Such that we can avoid designing 

the MOT network from the beginning and adopt the advantages of the SOT model. 

Based on these three purposes, the corresponding experiments had been organized 

and conducted in chapter 4. 

 

1.3. Summary 

As has been described in the last section, we aim at building the MOT models which 

detect and track multiple common objects. To this end, our contribution is threefold.  
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Firstly, we modified the MOT model - Detect and Track (D&T) [22]. One of the 

drawbacks of D&T is that its tracking object classes do not involve pedestrians. Therefore, 

we reorganized the training dataset to add new converted videos and images about the 

person. After the training process, the D&T model could be utilized to detect and track 

the diverse class objects included people. Prior to retraining the D&T model on the 

MOT17DET dataset, it scores the mAP of 0.5765, with the baseline result reaching 0.687. 

This gap led by the hardware limitation and the large imbalanced training dataset combi-

nation.   

Secondly, it is found that tracking outputs fail to satisfy our requirements. According 

to the analysis from [12], the detection response would be the core factor when we refer 

to DBT networks. At this prompt, the detector in the D&T network was changed from the 

R-FCN model [13] to the SSD model [27]. The tracking part is kept the same for com-

parison. Through experiments and ablation studies, we found that the SSD tracking model 

performed better in observing large-scale test results.  

Lastly, the SiamMask network [26] had been modified for tracking multiple objects 

without plotting manually in the first frame. Its initialization part is responsible for the 

SSD model. Therefore, the performance of the SSD detector would influence the modi-

fied SiamMask model. 

According to this sequence, the next section mainly explains object detection and 

tracking. The third chapter focuses on the description of the MOT categories, D&T net-

work, SSD model, and SiamMask architecture. The experiments section details the pro-

cessing steps as well as the evaluation. Specifically, the processes introduce how we pre-

pared the new dataset, applied the SSD model with the tracking method, and modified the 

SiamMask. The same MOT dataset is evaluated to give a standard result for comparison. 

The last parts are the future work and conclusion as the expectation for high-quality MOT 

networks with their advanced functions to end this thesis. 
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2. Detection and Tracking 

 

This section illustrates the literature review around object objection and tracking. The 

object detection chapter covers the one- and two-stage object detection algorithms. And 

the object-tracking section first introduces visual object tracking categories and then steps 

into the details of correlation filters and deep learning models. 

2.1. Object Detection 

 

Definition 

As a cornerstone for multiple object tracking, we shall first explain object detection, 

which is the fundamental branch in computer vision. [1] defines object detection as “seek-

ing to locate object instances from a large number of predefined categories in natural 

images.”. Typically, almost object detection networks pursue high accuracy and effi-

ciency. Detection accuracy concerns the location and recognition accuracies, while effi-

ciency cares about the time, memory, and storage efficiencies. 

 

Milestones in computer vision 

In recent years, there are some significant breakthroughs about feature representations, 

detection frameworks, and datasets happening in the computer vision, containing object 

detection, as Figure 3 below describes.  

As the critical feature presentation, Scale Invariant Feature Transform (SIFT) feature 

[31] starts the era of converting the global features to the local features, which corre-

sponds to the variances in translation, scale, rotation, illumination, viewpoint, and occlu-

sion. After SIFT was released, some innovative features were followingly proposed, such 

as the Histogram of Gradients (HOG) [61], Local Binary Patterns (LBP) [60], region co-

variances [59], Speeded-Up Robust Features (SURF) [62], etc. To combine these local 

features, some light concatenation and feature pooling encoders do a favor. The typical 

cases contain the Bag of Visual Words [63], Spatial Pyramid Matching of BoW models 

(SPM) [64], and Fisher Vector [65]. 

For object detection methods, the spirit of Deformable Part based Models (DPMs) 

[66] and the Cascades [67] brought great influence in the generic object detection before 

deep learning.  DPM outperforms other conventional detectors for representing by com-

ponents deployed in a deformable structure. The highlight of Cascades is to compute 

Haar-like [68] features from ‘Integral Image’ and to merge the classifiers yielded by Ada-

Boost algorithms in a cascade. 

Besides the feature presentation and detectors, the picture below also illustrated some 

common datasets, such as PASCAL VOC [42], ILSVRC [69], and MS COCO [19].  
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Figure 3. Milestones of object detection and recognition, including feature representa-

tions, detection framework, and datasets [1]. The listed milestones before 2012 are al-

most handcrafted features, while the approaches after 2012 are relevant to deep net-

works. 

 

Milestones in object detection 

This section mainly describes the object detection framework following the timeline in 

Figure 4.  From 2012, DCNN [73] successfully revealed the starting time for deep detec-

tors. After its birth, more advanced object detection models had been developed and pub-

lished in Figure 4. As the CNN features are introduced into object detection, it is worth 

mentioning that DetectorNet [70], OverFeat [71], MultiBox [72], and RCNN [7] used 

CNN for their improvement at the same time. Furthermore, the convolutional frameworks 

having a great depth, such as AlexNet [73], VGGNet [74], GoogLeNet [75], ResNet [76], 

and DenseNet [77], are proposed. Considering their representative power, these models 

always perform as the backbone. 

 

Figure 4. Milestones in generic object detection [1]. Landmark methods have 

emerged since deep learning entered the field, and they can be divided into two main 

categories.  

 

These milestone approaches listed in Figure 4 can be divided into two typical catego-

ries: two-stage and one-stage detection frameworks. The two-stage network performs ob-

ject detection through the proposed regions. In detail, the two-stage model firstly proposes 
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a set of regions of interest to avoid the infinite potential bounding box candidates. Ac-

cording to these region candidates, the two-stage model extracts the CNN features and 

then classifies them to computes results. In contrast, the one-stage algorithm establishes 

a unified framework to conduct object detection in a simple and efficient way. 

R-CNN algorithms emerge as the popular two-stage networks for object detection, 

such as R-CNN [7], Fast R-CNN [43], Faster R-CNN [6], etc. They first adopt heuristic 

approaches, like selective search or CNN network, like RPN, to generate region proposals. 

Then, classification and regression can be performed based on region proposal. The typ-

ical one-stage algorithms, such as Yolo [2] and SSD [27], use only one CNN network to 

estimate the class and location for different target objects directly.  

After two algorithm architectures, we next discuss their differences. When comparing 

the one-stage and two-stage algorithms, we concentrate on the result accuracy and com-

putational efficiency. The two-stage algorithm produces more precise outputs, while these 

algorithms sometimes cannot affordable for real-time applications. On the opposite side, 

the one-stage algorithm results in significantly faster detections while deployable on 

lighter hardware. However, their output accuracy does not satisfy us as that of the two-

stage methods. 

2.1.1. One-stage algorithm 

There are some typical one-stage networks, assembling both the detection and classifica-

tion, like DetectorNet [70], OverFeat [71], CornerNet [78], SSD [27], and so on. As one 

of the popular one-stage algorithms, the Yolo network uses only one CNN to provide an 

end-to-end prediction in real-time. To dive into basic knowledge, we paid more attention 

to the initial Yolo architecture rather than the Yolo9000 model.  

Yolo architecture uses a convolutional network to extract features and then employs 

a fully connected layer to derive predictions. It adopts the GooLeNet model as the back-

bone. As shown in Figure 5 below, Yolo contains 24 convolutional layers and 2 fully 

connected layers, For the convolutional layer, the  (1 ∗ 1) convolution is mainly used for 

channel reduction, followed by the (3 ∗ 3) convolution. The convolutional layer and the 

fully connected layer use the Leaky ReLU activation function, and the last layer adopts a 

linear activation function. 

To achieve the high speed, Yolo splits the resized images to (7*7)   cells after it re-

ceives the raw images as input. According to these cells, the output layer directly produces 

the bounding box location and the corresponding category. To be specific, the author 

feeds the network with the entire graph and transforms object detection into a regression 

mission for reducing time. For the training, the loss function is defined to achieve a per-

fect balance among three aspects: coordinates in the form of (x,y,w,h), confidence, and 
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classification. Before evaluating Yolo, the outputs require being filtered through ap-

proaches like dropping the boxes with a low class-specific confidence score, non-maxi-

mum suppression (NMS), etc. 

 

Figure 5. Yolo architecture, whose detection network contains 24 convolutional lay-

ers followed by 2 fully connected layers [2]. 

2.1.2. Two-stage algorithm 

Among the two-stage algorithms, almost attention has been paid to the R-CNN series, 

including R-CNN [7], Fast RC-NN [43], Faster R-CNN [6], R-FCN [13], Mask R-CNN 

[79], Cascade R-CNN [80], and Light Head R-CNN [81]. Since RCNN, Fast RCNN, and 

Faster RCNN are widely used, we would discuss their differences and distinct features in 

this section. 

For two-stage algorithms, the region-proposal design applied will decide their perfor-

mance. So, we first present the diverse solutions about region-proposal extraction. 

 

Selective search 

[3] offers the introduction and implementation of the selective search. Compared with 

exhaustive search, segmentation, and other sampling strategies, selective search outstands 

since it can capture all scales, quickly compute and provide diversification directly. Spe-

cifically, it calculates the division and clusters similar regions based on features, like color, 

texture, size, and shape compatibility. Notedly, the hierarchical grouping algorithm and 

the diversified strategy contribute to the selective search algorithm 

The hierarchical grouping algorithm was proposed since the region-based features of 

the image are more representative than image pixels. The author implemented the Effi-

cient Graph-Based Image Segmentation [4] method invented by Felzenszwalb and Hut-

tenlocher to generate the first region and iteratively groups the areas using the greedy 

algorithm: In the beginning, calculate the similarity between all adjacent regions. Next, 

combine the two most similar regions. Then calculate the similarity between the merged 

region and the adjacent region. The rest work is to repeat the second and third steps until 
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the entire image becomes a single region. In each iteration, the more significant regions 

are formed and added to the region proposal list. In short, they create a regional proposal 

from a smaller segment to a broader segment following the bottom-up principle. 

The author released the diversification strategies using a variety of color spaces with 

diverse invariant attributes, different similarity measures, and distinct starting regions. 

The color spaces which had been tested with multiple alternatives, including RGB, the 

intensity of the grey-scale image, Lab, the rg channels of normalized RGB with intensity 

called rgI, HSV, RGB which is normalized RGB, the opponent color space exclude in-

tensity denoted as C and the Hue channel H from HSV.  

As a weighted function, the final similarity measure combines color similarity, texture 

similarity, size similarity, and appropriate similarity measures. In addition, the approach 

mentioned in [4] is the best option for proposing starting regions considering computa-

tional efficiency.  

 

RPN 

As the main component in Faster RCNN [6], Region Proposal Network (RPN) accelerates 

and optimizes the generation of proposals, which takes an image as input and outputs a 

set of rectangular object proposals with a score.  

We will illustrate the PRN process in the following content. The first step is to gen-

erate anchor boxes of diverse sizes and length-to-width ratios with a sliding window. The 

multi-scale anchors support the detection network to compute as many scale features as 

possible efficiently. The typical anchor implementation has three shapes and three ratios. 

Hence, a total of nine anchors for one feature can initialize the bounding boxes. Then 

intersection-over-Union (IoU), which presents the overlap between the anchor and the 

ground-truth, is used to separate the positive anchor boxes from the negative anchor boxes. 

Softmax and reshape operations aid the positive anchor candidate extraction.  

After the procedures above, the input data had been converted into anchor boxes co-

ordinates and the probability of object existence in each anchor box. In detail, the RPN 

network maps each sample into four coordinate values and one probability value. The 

four coordinate values are applied in regression to locate the object with the help of the 

feature map. The probability value reflects the probability that the specified anchor box 

includes objects. For training, the RPN network adopts the losses of the binary classifi-

cation and coordinates regression.  

The region proposals are generated by RPN and filtered according to the probability 

value. Furthermore, they are fed into the R-CNN subnet for multi-classification and co-

ordinate regression. Thereby, the multi-task loss is contributed by these two branch per-

formances. 
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R-CNN network family 

After discussing the region proposal strategies, we will introduce the R-CNN network 

family. It worths us to research three key roles: R-CNN [7], Fast R-CNN [43], and Faster 

R-CNN [6]. Region-based Convolution Neural Networks (R-CNN) [7] is the ancestor of 

the other two networks. Namely, its creative framework provides Fast R-CNN [43] and 

Faster R-CNN [6] with cornerstone. It made a breakthrough by improving the mAP on 

Pascal VOC [42] while DPMs [66] were at the bottleneck.  

In Figure 6, the regions exacted by the selective search are warped into a square and 

then fed to a subsequent convolutional neural network for classification and regression. 

In the classification, the support vector machine (SVM) exams whether the objects pre-

sented in the region proposal. Besides, the regression network assists R-CNN architecture 

in predicting four offset values to achieve high-precision results. 

 

 

Figure 6. R-CNN architecture [7]. Firstly, the R-CNN model feeds the image as input. 

Secondly, approximately two thousand region proposals would be extracted. A power-

ful convolutional network converts the proposals to features. Finally, the category spe-

cific linear SVMs classifies the regions.  

Through previous content, we have observed several downsides of R-CNN. Most ob-

viously, the training steps are cumbersome, including CNN fine-tuning, SVM detector 

training, and bounding box regressor training. These complex steps and plenty of pro-

posals constraint R-CNN to perform in real-time. Moreover, the selective search algo-

rithm limits the self-learning of the region proposal generator, and therefore cannot be 

iteratively improved to reject erroneous candidate region proposals. 

The shortcomings of R-CNN motivated a lot of creation. As one of them, Fast RCNN 

inspired by SSPnet architecture [8] benefits in high-quality results and high efficiency. 

Shown in Figure 7, it first normalizes the raw images and feeds them with corresponding 

object proposals to the CNN network. The convolutional layer does not perform feature 

extraction on the region proposals from selective search directly. The highlight point is 

that the author uses the ROI pooling layers to exact and form feature vectors from Conv 

features map according to object proposals. These designs avoid the extra calculation for 
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generating features on a large number of candidate proposals. As a result, it reduces train-

ing and testing time. Besides these advantages, the space requirement of Fast R-CNN [43] 

is not as crucial as that of R-CNN [7]. Since object classification and bounding box re-

gression in R-CNN [7] work independently, these operations shall be supported by ade-

quate features as training samples. On the contrary, Fast R-CNN [43] unifies these sibling 

layers with the full-connected layer in the CNN network to reduce the storage for redun-

dant features. However, the selective search in R-CNN slows down the process, prevent-

ing users from performing real-time detection. 

 

Figure 7. Fast R-CNN architecture [43]. Firstly, the convolutional network computes 

the feature map for the whole image. Then the corresponding part is extracted from the 

feature map for each region proposal. Regions of interests (RoI) pooling layer resizes 

the RoIs. And the fully connected layers (FCs) layers flatten the fixed-size region pro-

posal feature maps into feature vectors. Finally, the softmax layer classifies objects. The 

bounding box regressor outputs the bounding box coordinates for each object class. 

As one of the most popular object detection models, Faster R-CNN [6] outperforms 

Fast R-CNN [43] on speed and space. Compared with R-CNN [7] and Fast R-CNN [43], 

it implements the end-to-end object detection framework and compresses the time of re-

gion proposal generation. The innovation which Fast R-CNN [43] creates is to train a 

Region Proposal Network (RPN) on a convolutional feature map rather than adopting a 

certain region proposal method for region proposal generation. The afore-mentioned RPN 

computes the feature maps to output region proposals. Then, the predicted region pro-

posals are reshaped by an RoI pooling layer to classify the images within the proposed 

region and to predict the offset values for the bounding boxes. 
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Figure 8. Faster R-CNN architecture [6]. Initially, an image is convolved into feature 

maps. Then RPN network generates the candidate regions considering their feature 

maps in the corresponding anchors. Finally, RoI pooling layers take the feature map for 

each region proposal, flattens it, and passes it through the classifiers to calculate the cat-

egory and location for the proposal regions. 

2.2. Object tracking  

Object tracking shall be explained before we start introducing multiple object tracking. 

[9] defined object tracking as “to estimate the states of the target in the subsequent frames, 

given the initial state of a target object in the first image.”  

In general, object tracking faces several obstacles, like deformation, illumination var-

iation, blur or fast motion, background clutter, out-of-plane rotation, in-plane rotation, 

scale variation, occlusion, and out-of-view. Due to these, it is not easy to invent and op-

timize object tracking algorithms. OBT and VOT datasets, introduced in the experiment 

section, are the most common data source for object tracking training and evaluation. 

 

Visual object tracking categories 

Developing generative and discriminative models are two main trends for visual object 

tracking. Generative methods model the target region in the current frame and search the 

most similar region in the next frame. This type of algorithm focuses on the features of 

the target objects without the context information. Thereby, the generation method works 

well under normal circumstances but always fails when the target object changes drasti-

cally or is occluded. The most popular generative approaches are Kalman filter [50], par-

ticle filter [48], and mean-shift [49]. Robust Scale-Adaptive Mean-Shift (ASMS) for 

tracking [5], based on the mean-shift algorithm, is recommended as the real-time tracking 

model by VOT2015. Since the mean-shift is applied to track the object by minimizing a 
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distance between two probability density functions, which are represented by a reference 

and candidate histograms. However, we could not cope well with the variant scale objects 

using the fixed search window. ASMS method solves this problem by adopting a robust 

scale estimation. 

Referring to discriminative methods, they usually distinguish the target and context 

region as the positive and negative samples in the first frame. And then, train the classifier 

on features extracted from samples. Once the classifier fits the training dataset, it is time 

to discriminate against the next frame. Compared with generative methods, most of them 

perform better because they can classify the foreground and background region with the 

context features.[51] 

Before the correlation filter and deep learning method appear, Structured Output 

Tracking with Kernels (Struck) [10] and Tracking-Learning-Detection (TLD) [44] are 

competitive among the visual object tracking methods. TLD shown in Figure 9 is a long-

term object tracking method that consists of a tracking module, a detection module, and 

a learning module. In detail, the tracking module observes the target object movements 

between frames. The detection module locates target objects for each picture inde-

pendently. The learning module evaluates the detecting results by checking the tracking 

module outputs. Then, it supplies training samples to the detection module for iterative 

optimization. 

 

Figure 9. The block diagram of the TLD framework [44]. Under the proposal that mo-

tion is restricted among frames, the tracker predicts the object movements between the 

continuous frames. Detector processes every frame independently and determines the 

appearance location through fully scanning the image. Finally, observing the perfor-

mance of the tracker and detector, learning estimates the error caused by the detector. In 

addition, it produces training examples to prevent failing. 

Generally, traditional methods (such as adaptive tracking detection) train binary clas-

sifiers online to identify target objects from the background. Unlike them, Struck adopts 

a distinct method to generate structured output predictions. Its implementation operates 
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with the subsequent frames and then predicts the variances of object configuration be-

tween frames. Figure 10 presents the difference between Struck and other traditional mod-

els. It shows that Struck skipped the following steps: generating a set of samples and 

creating training labels with the help of estimated object positions and the learner. 

 

 

Figure 10. Different adaptive tracking-by-detection paradigms [10]. The struck ap-

proach on the left-hand side avoids the steps of traditional methods shown on the right-

hand side.  

 

Correlation filters 

Correlation filter (CF), also named discriminative correlation filter (DCF), is a standard 

and straightforward classification algorithm. It is proposed from the signal processing and 

contributed by the Fourier principles.  CF has drawn public attention due to its computa-

tional efficiency. 

The essential procedure likes the following steps: In the case of a given template, the 

higher the response generated by the cross-correlation between the search area and the 

target object, the higher the correlation between them. Therefore, the user could carry out 

the object tracking by observing the response values. 

The Minimum Output Sum of Squared Error (MOSSE) [56] is the first model that 

introduces the correlation filtering into object tracking. As a correlation filter of single-

channel gray features, it lacks the characteristic feature and acts insensitive to scale vari-

ant objects. 

The advanced CF has been improved by being plug-in with multi-channel formula-

tions, spatial constraints, and in-depth features. On the basis of MOSSE, the circulant 

structure of Tracking-by-Detection with Kernels (CSK) [54] expands with dense sam-

pling, padding, and kernel-trick. And then, the Kernel Correlation Filter (KCF) [55] 
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adopts the HOG [61] feature of multi-channel gradients after the CSK implementation. 

Color visual tracking [53] has been optimized with multi-channel color names (CN) based 

on CSK architecture.  HOG [61] is a gradient feature, while CN is a color feature. Inter-

estingly, they are complementary to each other. For the past two years, these two features 

have been adopted as the standard handcraft tracking features. Although the correlation 

filter has plenty of alternative features to choose from, it was at the bottleneck when deal-

ing with the scale variance. The discriminative scale-space tracker (DSST) [52] gave a 

solution using the scale filter based on MOSSE. Motivated by its high calculation cost, 

[57] designed a Fast-Discriminative Scale Space Tracker (fDSST) to accelerate the com-

putation by simplifying the dimensions. As a fusion of Distractor-Aware Tracker (DAT) 

[58]and DSST models, Staple [34] is achieved by combining HOG [61] and color histo-

gram features. 

 

Deep learning models 

Most deep learning models are recommended because they have powerful learning capa-

bilities. In other words, they can effectively grasp valuable clues from a large amount of 

labeled training data. However, the object tracking task only provides the bounding box 

of the first frame as a labeled sample. It restricts the training of deep learning models for 

object tracking. 

When we lack enough training samples, one solution is to use auxiliary non-tracking 

training data for pre-training. It allows us to obtain a general representation of object 

features. During real-time tracking, we use the limited labeled data of the target object to 

fine-tune the pre-trained model. The fine-tuning enables the model specific to the labeled 

data of target objects. This transfer learning strategy requires less labeled data, but it could 

improve the performance of tracking models dramatically. It advances the object tracking 

and benefits the networks, such as DLT [32] and SO-DLT [33]. 

With the popularity of the classification competition, there is a trend to extract fea-

tures using pre-trained CNN classification networks of existing large-scale classification 

datasets. Some object tracking models employ this feature extraction approach, and then 

they perform classification and compute tracking outputs with the extracted features. 

These networks not only avoid the dilemma where the shortage of tracking samples leaves 

but also make full use of the dominant representation of Conv features. As one of the 

representative models, a Fully Convolutional Network-based Tracker (FCNT) [45] con-

structs feature extraction networks and two complementary heat-map prediction networks 

according to the different characteristics of distinct CNN layers. In this way, it prevents 

the tracker from drifting by effectively suppressing the distractor. At the same time, the 

network operates robustly to the deformation of target objects. 
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Figure 11. The pipeline of the FCNT tracking method [45]. The most relevant feature 

maps with the given target are chosen on the VGG layers (b). A general network (GNet) 

(d) and a specific network (SNet) (c) capture the category information and discriminate 

the target from the neighboring on the selected conv5-3 and con4-3 feature maps, re-

spectively. Using GNet and SNet, the heatmap regression is computed in the first frame. 

For each of the remaining frames, the region of interest (RoI) (a) centered on the target 

position is fed into the network as input. Finally, a distracter detection scheme figures 

out the final target (e) based on the heatmap generated from (c) or (d). 

While the image classification identifies which objects are in the same class, object 

tracking searches the same object between the sibling frames. Inspired by this difference, 

a Multi-Domain Convolutional Neural Network (MDNet) [35] proposes to pre-train 

CNNs with the frames from tracking videos to get general representation for target objects. 

As Figure 12 displays, the multi-domain network is divided into the sharing layer and the 

domain-specific layer. Each training sequence is treated as a separate domain, and each 

domain would be executed through a binary classification layer (fc6), which is used to 

distinguish the foreground from the background in the specified frame sequence. In the 

other networks, the shared layer can learn the generic feature presentation of the target 

objects in the tracking sequence. In addition, the domain-specific layer can solve the prob-

lem of inconsistent classification objects in different training sequences. 

 

Figure 12. The architecture of Multi-Domain Network consists of shared layers and K 

branch of domain-specific layers [35]. 
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In recent years, the RNN network, such as LSTM and GRU, accomplish quite a few 

excellent applications related to time-series. Recurrently Target-Attending Tracking 

(RTT) [36] is the first tracking algorithm that adopts RNN to model complex, large-scale 

associations for part-based tracking tasks. As Figure 13 presents, the RTT architecture 

uses a multi-directional recurrent neural network to simulate and to mine the reliable part 

that determines the overall tracking. And this network models on a two-dimensional plane, 

solving the tracking drift caused by prediction error accumulation and propagation.  

 

Figure 13. The architecture of the RTT Network [36]. When training and updating 

model, RTT learns discriminative correlation filters through adaptively regularizing the 

filters with confidence maps, which are estimated by multi-directional RNNs. 

 

Deep learning supports building an end-to-end output tracking framework to meet 

real-time requirements. GOTURN [37] and SiameFC [11] are two typical object tracking 

models with high processing speed. As shown in the figure below, GOTURN has estab-

lished a new tracking framework that learns the relationship between appearance and mo-

tion offline. 

 

Figure 14. GOTURN network architecture for tracking [37]. A search region and 

target are cropped from the current frame and the previous frames and fed into convolu-
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tional layers. Then, the target location within the search region is estimated by compar-

ing the features from the target object to the features in the search region through the 

fully connected layers. 

 

SiameFC [11] is proposed as a creative, fully convolutional twin network. As Figure 

15, the author trained the SiameFC network end-to-end on ILSVRC15 [69]. Although 

SiameFC operates in a simple way, it achieves the best performance on multiple bench-

marks. 

 

Figure 15. Fully convolutional Siamese architecture [11]. As the input to SiameFC, 

an exemplar image z and a candidate image x is fed to a deep convolutional network. 

With a convolutional embedding function φ and a cross-correlation layer, feature maps 

are converted and combined for similarity computation. The red and blue color points in 

the final score map hint similar degrees in sub-windows within the search image.  
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3. Multiple-Object Tracking Methodologies 

 

Besides the knowledge about detection and tracking, key points of Multiple Object 

Tracking (MOT) also need to be well-understood and mastered, with its categorization 

being introduced in the first section. As described in the experimental section, we had 

applied the D&T [22] model on the dataset combination to obtain an acceptable MOT 

network. SSD [27] would be taken as the detector for the MOT model.  SiamMask model 

[26] would be modified from an online SOT model into MOT architecture. Thus, the 

interpretation of D&T, SSD, and SiamMask model would be provided for the 

implementation of MOT in chapter 4. 

 

3.1. MOT Categorization 

According to [12], there are three standards for selecting and classifying multiple object 

tracking methods. They are initialization, processing format, and output type, all of which 

are playing the key role during the workflow of an MOT task. Differences in initialization 

allow us to infer whether the specified method is Detection-Based Tracking (DBT) or 

Detection-Free Tracking (DFT).   

The DBT model first detects the target objects and then links them with tubes. This 

strategy can also be called "tracking-by-detection." The DBT models perform the partic-

ular type of object detection or motion detection on each frame of the given video se-

quence. After getting the object hypothesis, these methods would track objects according 

to their frame order or bench. Finally, this tracking hypothesizes would be plunged into 

trajectories.   

DFT performs against DBT since it needs manual initialization. In other words, the 

researchers shall plot the target objects in the first frame of the given video. The DFT 

network then locates the tracking objects in the subsequent frames after initialization. As 

shown in Figure 16, the DBT model is more popular than the DFT model because of its 

capacity to discover new objects and to automatically cancel the disappearing objects. 

However, in the practical application of the DBT model, the detector needs to be trained 

in advance. In addition, it is necessary to consider that the DBT network depends on its 

detector.   
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Figure 16. Comparison between DBT and DFT [12]. The differences are depicted 

from their initialization, the number of objects, applications, advantages, and draw-

backs. 

  

With the purpose of implementing the MOT, we focus on data associations based on 

detected or drawn boxes. These related approaches are divided into online ones and of-

fline ones. In the "Detect to track and track to detect," the offline method is adopted, 

which means that the object detections should be collected in advance and calculated 

according to the results. In contrast, online tracking is a frame-by-frame analysis of 

observations. Therefore, it can be called sequential tracking. 

 

 

Figure 17. Description of online and offline tracking [12]. Top: online tracking 

method; bottom: offline tracking principle. 

 

The last criterion is set up regarding the type of output. The randomness of output 

decided the MOT strategies belong to the probabilistic group or deterministic group. 
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3.2. Detect to Track and Track to Detect 

 

Objective 

Detect and Track (D&T) model [22] is proposed to solve the high-precision detection and 

tracking with a simple and effective method. The multi-task objection is used for frame-

based object detection and cross-frame tracking regression, and the convolutional net-

work structure is established, as shown in Figure 18. The following describes its detection 

and tracking principles. 

 

. 

 

Figure 18. The architecture of the Detect and Track (D&T) model [22]. Two frames 

are input into convolutional layers. Based on their feature maps, RPN and RoI Pooling 

corporate to get the position-sensitive scores and regression maps. An RoI tracking op-

erates position-sensitive regression maps from both frames with correlation maps and 

outputs the box transformation between two frames. When training the D&T model, its 

multi-task loss is applied with a combination of classification loss, regression loss, and 

tracking loss. 

 

Detection Architecture 

This D&T model provides region classification and regression with the region-based 

fully convolutional network (R-FCN) [13]. According to [13], R-FCN processes 

much faster than Faster R-CNN [6], while R-FCN still maintains competitive accu-

racy. Faster R-CNN [6] detector inserts the pooling layer into convolutions to keep 

translation invariance, which requires a tradeoff between accuracy and speed. To op-

timize this architecture, R-FCN was invented with its creative components: position-

sensitive score maps and position-sensitive RoI pooling. In the position-sensitive 

score map, each ROI is divided into bins to encode position information. If C category 

objects are applied to classify, we will get (C + 1) ∗ 𝑘2 ROIs. For each category, the 
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ROI is voted on separately using the fractional mapping calculated with the pooled 

response from the raw image. Finally, the classification scores can be obtained 

through the SoftMax response.   

In addition to classification, bounding box regression will be processed in a similar 

manner. The regression score graph with 4𝑘2 dimension is calculated as a position-sen-

sitive score graph. In this way, each ROI will get 4-d vector parameters as a translation 

of its position coordinates, width, and length after the position-sensitive ROI pool. 

This detector takes ResNet-101 as the backbone network and filters the input samples 

through online hard cases [14] to generate hard cases. These hard examples will be fed 

for training, with a profound impact on classification and regression quality. At the same 

time, the author also modifies the backbone network, using the dilated convolution in 

conv5 to prevent the pooling from shrinking the heat map.  

 

 

 

Figure 19. The overall architecture of R-FCN [13]. In it, RPN generates candidate 

ROIs which are used on the score maps.  
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Figure 20. The core solution of R-FCN for object detection [13]. A fully convolu-

tional network computes k × k position-sensitive score maps for the input image. The 

author applies the pooling one of the 𝑘2 maps for each of the k × k bins within an RoI. 

 

 

Tracking Architecture 

The Detect and Track (D&T) model [22] is designed to improve the tracking quality ac-

cording to the adjacent frames. Two points attract our attention: Correlation features rep-

resenting object co-occurrence across time were calculated to aid the ConvNet during 

tracking; On the other hand, the frame-level detections based on the cross-frame tracklets 

had been linked to high-precision detection at the video level.  

During the single object tracking, the correlation tracker focuses on the single target 

templates and the search image. Since the objective of the D&T model is to track multiple 

objects of videos simultaneously, the correlation feature map should cover all the posi-

tions. As all possible circular shifts in a feature map will yield the large output dimensions, 

correlation operates within a local neighborhood for output dimensionality reduction.  In 

more detail, the restricted window would be utilized to perform a correlation between the 

sibling frames to reduce the computation. Moreover, the correlation features come from 

the con3, conv4, and conv5 layers of the detection architecture-R-FCN network [13]. The 

heatmap through the correlation process exacts the box regression transformation [△x, 

△y, △w, △h] between the sibling frames in order to correct the predictive results. The 

end-to-end training process had been achieved through the additional tracking loss over 

these transformations. 

One advantage of this model is that the target object bounding boxes in the output 

video move smoothly. [15] adopted a unique solution for trajectory generation in order to 

overcome the challenge of filtering related data and maintaining detection quality. The 

detailed solution is described as following: For the establishment of a scoring function 

combining detection and tracking time, the best matching path will be computed through 
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the Viterbi algorithm meaning dynamic programming. Its principle is relevant to the so-

lution of multi-step and multi-selective scenes. During the generation of tracklets, the 

detection of each frame can be considered as a step, and multiple bounding boxes in the 

detection are used as multiple selections. After building optimal paths, smooth path la-

beling and temporal trimming are required to complete the tracking. During iterating each 

frame for the obtained paths, the max detection score would be assigned and stored for 

each class. Furthermore, this score is subject to a penalty for discontinuous marking. It is 

then determined as the final path by examining the labels of the class-specific path, and 

the score on that path is calculated to illustrate the average accuracy. As a result, filtering 

paths with poor performance become increasingly convenient. 

 

Future implementation 

Although the original D&T model can perform multiple object tracking smoothly, its 

tracking targets are unfamiliar in standard life. In chapter 4, how to organize a dataset 

combination and train the D&T model on this plug-in dataset is described. In the end, we 

will implement a model that can detect and track a set of common objects, such as people, 

vehicles, and so on. 

3.3. PyTorch-SSD -to-Object-Detection 

 

Objective 

To build a model capable of detecting and locating specific objects in images, [27] in-

vented the Single Shot MultiBox Detector (SSD) as a one-stage object-detection algo-

rithm. This approach is based on a feed-forward convolutional network, which produces 

a fixed-size collection of bounding boxes and scores for the presence of object class in-

stances, followed by a non-maximum suppression (NMS) step to obtain the final filtered 

detections.  

SSD emerges to make up for the downsides of the other one-stage detectors, like Yolo 

[2]. Yolo is neither sensitive to the sizes of the target objects nor robust to objects with 

scale changes and fractures. In contrast, the SSD network [27] incorporates the anchors' 

idea in Faster R-CNN [6], performing feature layer extraction, calculating the frame re-

gression and classification operations in turn, which can adapt to the training and detec-

tion tasks of multiple scale targets. Once SSD was created, everyone has seen the feasi-

bility of real-time high-precision target detection. 
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Architecture 

The main design of the SSD network is feature layer extraction, which starts the SSD 

network. Then the frame regression and classification are performed in turn.  

Since different levels of feature maps can represent different levels of semantic infor-

mation, the SSD model operating on multi-layer features is suitable for target detection 

at different scales. For example, the low-level feature maps can represent more detailed 

semantic information so that they can improve the quality of semantic segmentation and 

are suitable for small-scale target learning. On the other hand, high-level feature maps 

can represent senior-stage semantic information of the high-level stage, thus producing 

smooth segmentation results. Furthermore, they are suitable for in-depth learning of 

large-scale goals.  

SSD architecture contains six stages. Each stage can learn a feature map and then 

carries out bounding box regression and classification. First, a five-block convolutional 

network of VGG16 is used as the first stage in the SDD model, and then the fc6 and fc7 

in VGG16 were converted into two convolutional layers, with conv6 and conv7 being as 

the second and third stages. On this basis, the SSD network continues to add conv8, conv9, 

conv10, and conv11 four-block networks to extract higher-level semantic information, 

with its structure of the SSD being shown in Figure 21 below. In each stage operation, 

the network contains multiple convolutional layer operations, each of which is essentially 

a small convolution. 

 

Figure 21. The architecture of the SSD detection model [27]. Multiple feature layers 

are attached to the end of a base network. Using them, SSD estimates the transformation 

to default boxes with different scales and aspect ratios and their corresponding confi-

dences. In addition, the width and length of rectangular present the size of the feature map, 

and thickness presents the channel of the feature map. 

  

In the design of the target detection network, the default box generation should be 

assigned with priority, which directly determines the type of target task and detection 

performance. In SSD, the author learned the Anchors mechanism from Faster R-CNN [6]. 

In each stage, the distinct number of default boxes with specific aspect ratios and scales 

are generated according to the size of the feature map. These pre-calculated, fixed boxes 
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that collectively represent this universe of probable and approximate box predictions can 

also be called priors. 

Figure 22 describes the details of these priors applied to various low-level and high-

level feature maps from conv4_3, conv7, conv8_2, conv9_2, conv10_2, and conv11_2. 

If the prior scale is s, then its area is going to be equal to the area of the square of length 

s. A larger feature graph has a smaller scale prior and is therefore ideal for detecting 

smaller objects. All feature maps will have priors with ratios 1:1, 2:1, 1:2. The interme-

diate feature maps of conv7, conv8_2, and conv9_2 will also have priors with ratios 3:1, 

1:3. Moreover, all feature maps will have one additional prior with an aspect ratio of 1:1, 

and its scale is the geometric mean of the current and subsequent feature map scales. 

 

 

Figure 22. The details of these priors applied to various low-level and high-level 

feature maps of SSD from conv4_3, conv7, conv8_2, conv9_2, conv10_2, and 

conv11_2 [46]. 

 

Once producing the default boxes on each feature map, SSD could generate the fea-

ture vectors corresponding to the bounding box regression and classification. For bound-

ing box regression, only a 4-dimensional vector is needed, which represents the scale of 

the border (two directions of the coordinate axis) and the translation vector (two direc-

tions of the coordinate axis). For classification, the SSD network adopts a strategy for 

scoring each category. Assuming the number of categories in the dataset as C, and the 

total number of categories is (C + 1) class, which involves background categories. So 

that SSD network uses (C + 1 + 4)-dimensional vectors to represent the final scores that 

combines the bounding box regression and classification. For instance, given a VOC da-

taset (including 20 categories) as an experimental dataset, each default box generates a 

(20 + 1 + 4 = 25) dimensional eigenvector. Therefore, there will be 8732 predicted 

boxes in the encoded-offset pattern and 8732 sets of class scores.    

After the prior preparation is completed, the loss function is applied to train and cor-

rect the SSD model on the specified dataset. In this paper [27], the weighted sum of po-

sition loss and confidence loss constitutes the objective loss function. Specifically, the 

localization loss is the averaged smooth L1 loss between the encoded offsets of positively 
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matched localization boxes and their ground truths. Furthermore, the confidence loss is 

simply the sum of the cross-entropy losses among the positive and hard negative matches. 

Positive and negative matches are identified by checking whether the overlap of Jaccard 

with prior and ground truth values exceeds 0.5. Moreover, the hard-negative mining prin-

ciple, which keeps the number of hard negative overwhelm the positive ones, is adopted 

to accelerate the training of classification.  

In order to obtain the final labelled boundary boxes that can be interpreted by humans, 

their respective prior offset results are decoded to obtain the boundary coordinates. For 

each non-background class, candidate boxes for the particular class of objects would be 

obtained through being filtered with a score. On the basis of these candidate tests, non-

maximal suppression (NMS) is quite essential to obtain quality tests. 

 

Future implementation 

Among diverse multi-target tracking methods, we prefer detection-based tracking, which 

relies on high-quality detectors to implement. Therefore, in chapter 4.2.2, how we replace 

the detector in the D&T detector with the SSD model to observe its varying performance 

is expounded in detail. 

 

3.4. Fast Online Object Tracking and Segmentation: A Unifying Approach 

 

Objective 

For real-time visual object tracking and semi-supervised video object segmentation, a 

simple method was developed: SiamMask [26]. It is designed to eliminate the gap be-

tween arbitrary object tracking and VOS for the purposes of retaining the offline traina-

bility, online speed of these methods, and refining their representation of the target object. 

In the VOS field, SiamMask wins for its high speed. Compared with other VOT ap-

proached, the upper limit of target positioning accuracy is reached by SiamMask.  

In general, the DFT model starts at the target position in the first frame and then 

predicts the target position in the next frame. Hence, how to define and locate the target 

object in the subsequent frames directly affects the performance of tracking approaches. 

Initially, the object tracking algorithms mark the targets using the axial rectangles. The 

accuracy of the tracking algorithms required to be improved, with the difficulty of object 

tracking competition. VOT2015 annotates the target object with a rotated rectangular. 

After that, VOT2016 proposes to create a mask through a bounding box. Actually, this 

rotated rectangle can be regarded as an approximation of the mask. More specifically, 

using masks is one way to get an upper limit on accuracy. 
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It is expensive to prepare the masks and to perform the training process for conven-

tional tracking algorithms. Almost these algorithms use the semantic segmentation net-

work to perform a two-category training online and then perform subsequent frame pre-

diction, which takes a few minutes during the training process. Recently, more and more 

algorithms that do not require online finetune have been proposed. However, their speeds 

are still not satisfactory. For example, FAVOS [38] and OSMN [39] require 1s and 120ms 

every frame, respectively, which is still a specific difference from the real real-time op-

eration. On the other hand, the first frame of the VOS algorithm requires a given target's 

mask, which is hard in human-computer interaction scenarios.   

 

Methods 

Visual object tracking can be divided into diverse categories according to the calculating 

methods of target object locations. The first category contains approaches of predicting 

scores, mainly including correlation filtering and SiamFC models. SiamFC, a fully con-

voluted Siamese network of offline training that compares an exemplar image against a 

(larger) search image x to obtain a dense response map. The object position and size are 

obtained by predicting the score map of the candidate region and computing the image 

pyramid. However, we cannot get the aspect ratio of the object through SiamFC.    

The second category contains the bounding box regression methods represented by 

GOTURN and SiamRPN. SiamRPN, being the network that improves the performance 

of SiamFC by RPN, allows the use of a boundary box with a variable aspect ratio to 

estimate the target position. That is the reason why the output of SiamRPN, without the 

guarantee of prediction stability, can make the more accurate bounding boxes generated 

from the positive SiamRPN prediction and satisfies the researchers. The decisive point 

revealed by the SiamRPN is that the predicted aspect ratio from the network can adjust 

the bounding boxes. 

 

Architecture 

Based on the objectives and background of the Siamese network mentioned above, the 

architectures of SiamFC and SiamRPN are augmented with the seg-mentation branch and 

the loss mask, obtaining the two-branch and three-branch variants of SiamMask. With 

these variances, the corresponding losses can be optimized to obtain the improved model, 

as shown in Figure 23. 

However, mask predictions are much more complex than score and box predictions. 

The representation method in [26] is to use a vector to encode a RoW mask. The RoW is 

the response map that presents the similarity between the template and the search area. 

The vector transformation utilizes a neural network that convolves two layers: one with 

256 and the other with (63 ∗ 63) channels.  This transformation enables each prediction 
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position to be equipped with a fairly high output dimension, which can encode a large 

amount of information. Furthermore, the depth-wise convolution is employed to concat-

enate the convolution to achieve efficient operation. The loss for two-branch variants of 

SiamMask is a weighted function which consists of the losses of mask prediction and 

SiamFC score map. While the loss for three-branch variants of SiamMask is a weighted 

function composed of the losses of mask prediction, SiamFC score map, and SiamRPN 

prediction. In all, these components constitute the main model framework of SiamMask.  

 

Figure 23. The architecture of SiamMask [26]. The left-side section presents the 

three-branch architecture, while the right-side section states two-branch architecture. 

Convolutional layers of ResNet-50 𝑓𝜃 computes the features with the input search image 

(bottom) and examplar (top). Using depth-wise correlation ∗𝑑, responses of a candidate 

window (RoWs) are generated to feed several branch models. Two branch architecture, 

like SiamFC, contains the ℎ∅ and  𝑝𝑤 networks for processing masks and scores. Three 

branch architecture, similar to SiamMask, includes ℎ∅ , 𝑏𝜎 and 𝑠𝜑 networks for final 

masks, boxes, and scores. Their training losses correspond to two and three variants, re-

spectively. 

 

Although the Mask branch had been established, the accuracy of the prediction output 

generated directly from the Mask branch has not reached the author's expectation. There-

fore, the refine module [16] shown in the figure below is used to improve the accuracy of 

the segmentation by combining the low- and high-resolution features. In addition, the 

refine module adopts a top-down structure, which decreases the spatial resolution. At the 

same time, the number of channels increases with rising depth. In this way, rich infor-

mation can be grasped without exceeding the amount of computation. In order to maintain 

sufficient inverse probability and high efficiency, convolution, ReLU, bilinear up-sam-

pling, and concatenation are utilized in the refine module. This part draws on the idea of 

sharpmask, together with which deepmask is the objection segmentation proposal frame-

work proposed by Facebook in 2015-2016. 
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Figure 24. Schematic illustration of the stacked refinement modules in SiamMask 

[26].  Multiple refinement modules are contributed by upsampling layers and skip con-

nections. They merge low- and high-resolution features for outputs more accurate object 

masks. 

 

Compared with VOS, the VOT always requires a bounding box rather than a binary 

mask. There are several options (Min-max, MBR, and Opt) to convert the output mask to 

a boundary box.  Min-max represents the axial bounding rectangle generated based on 

the mask; MBR represents the minimum bounding rectangle that is rotated according to 

the mask; Opt is an optimization strategy for automatic boundary box generation pro-

posed in VOT-2016. And the author of [26] uses the MBR, which is convenient to gen-

erate. The box generated by the VOT optimization method is of good quality, while the 

box generated by the optimization algorithm is slow.  

 

Future implementation 

As has been mentioned, SiamMask is the Single Object Tracking (SOT) approach, as well 

as the approach of detection-free tracking. Through the implementation described in the 

next chapter, we modify it as a detection-based tracking way for multiple objects. 
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4. Experiments 

 

Experiments were conducted around the following four topics: dataset, implementation, 

evaluation, and discussion. The dataset section begins with standard datasets, and then it 

explains how we organized a new dataset combination. The implementation section de-

scribes the processes of training and modifying three existing MOT models. In order to 

compare our networks fairly, we employed multiple evaluation metrics. Finally, the dis-

cussion section summarizes the disadvantages of these experiments and suggests possible 

future improvements. 

4.1. Dataset 

With the popularity of multi-object tracking increasing, it has inspired us to explore and 

develop MOT applications. Considering the target objects of MOT, both researchers and 

investors are interested in people, animals, and vehicles. Unfortunately, common datasets 

cannot meet our requirements. For example, the ImageNet dataset used in the D&T model 

does not include person videos, although it has a wide variety of categories. Besides that, 

some unfamiliar objects in ImageNet (such as turtles or foxes) are unnecessary because 

they rarely appear in our daily lives. To this end, we prepared the dataset combination 

based on the standard datasets. 

In detail, we organized the next section around two subjects: a standard dataset and a 

new dataset combination. The standard dataset contains training and evaluation datasets 

used in D & T models, SSD detectors, and SiamMask networks. The dataset combination 

is used to fine-tune D & T and SSD models. It was contributed by the new videos and 

images of the person. 

4.1.1. Standard dataset 

 

ILSVRC2015 

LSVRC is the ImageNet large scale visual recognition challenge. ILSVRC2015 includes 

not only the regular object detection competition for labeled images but also the taster 

object detection competition for annotated videos. The paper [22] mentioned that 

ILSVRC2015 contains 30 classes in 3862 training videos and 555 validation videos. Re-

ferring to the image dataset, at most 2k images per class for 30 categories are publicly 

available. 

Since Detect and Track (D&T) model [22] adopts the ILSVRC2015 dataset for train-

ing and evaluation, we organized the newly collected dataset into a tree structure of 

ILSVRC2015. As shown in Figure 25 below, its architecture has three main directories 



-32- 

 

under the ImageNet dataset: "Data," "Annotations," and "ImageSets," which are respon-

sible for storing, annotating, and listing the image and video data respectively. Their sub-

folders "VID" and "DET" store the materials related to the videos and images separately. 

Finally, the “train” and “val” directories on the leaves of this tree structure split the whole 

images, videos, and their corresponding annotation files into training and validation sets. 

 

 

Figure 25. The tree structure of the ImageNet directory. ‘DET’ and ’VID’ present 

the images and videos, respectively. ‘train’ and ‘val’ state the training and validation 

sets. 

 

Pascal VOC 

Pascal VOC [42] is a series of bench datasets used for object classification and location. 

It starts introducing an annual competition to perform the standard evaluation on the ob-

ject detection algorithms. In 2005, Pascal VOC had only four-category objects. After this 

year, the number of standard dataset classes has increased to 20. Since 2009, the dataset 

collection not only retains the previous dataset but also adds a newly collected dataset.  

The dataset used in the SSD experiment consists of Pascal VOC data from 2007 and 

2012. The following two figures describe the objects and images of VOCs in 2007 and 

2012.  
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Figure 26. Summary of the entire VOC2007 dataset [42]. This histogram describes 

the class distribution of objects and images in the entire VOC2007 dataset. The vertical 

axis adopts the log scale. 

 

 

Figure 27. Summary of the main VOC2012 dataset [47]. This histogram describes 

the class distribution of objects and images in the training and validation VOC2012 da-

taset. The vertical axis adopts the log scale. 

 

VOT 

[17] Starting in 2013, the Visual Object Tracking (VOT) Challenge has been held to com-

pare tracker performances. The dataset VOT is a color video sequence that benefits the 

performances of the color feature algorithms. Compared to the Visual Tracker Benchmark 

(OTB) dataset similar to the VOT dataset, its sequence is accurately labeled, and the eval-

uation index is easier to check. Notedly, almost the VOT video datasets are short-term.  

 

Youtube-VOS 

[18] Youtube-VOS is a large-scale video object segmentation dataset containing 4453 

YouTube video clips and 94 object categories. It collects high-resolution videos contain-

ing the specified-class objects from YouTube-8M, which is a large-scale video classifi-

cation dataset that includes millions of YouTube videos.  

 

MS COCO 

[19] MS COCO contains large-scale object detection, segmentation, and subtitle datasets. 

The creation of MS COCO makes up for the shortcomings of ImageNet. Objects in 

ImageNet are mostly large-scale and well-centered. However, the actual situation always 

opposite to it. Therefore, the MS COCO dataset includes complex scenes containing or-

dinary objects. This means that the MS COCO dataset contains occlusive objects and a 

large number of small objects that are difficult to label. 
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MOT 

MOT is the dataset used in pedestrian detection challenges. In its subset- MOT17DET, 

there are seven training videos filmed in different situations. Since the resolutions of 

MOT17DET, excluding MOT17-05, are the same as 1920 × 1080. They range from 14 

to 30 frames per second and range from 600 to 1050 in length. The total time and target 

frame of these videos are 215 seconds and 112297, respectively. The average density (the 

average number of pedestrians per frame) has reached 21.1. For more details, see Figure 

28. 

 

 

Figure 28. Details of the entire training dataset from MOT17 DET [21]. ‘Name,’’ 

frames by second,’’ resolution,’’ length,’’ boxes,’ ‘density,’ and ‘description’ of seven 

training MOT17DET videos are listed. 

 

For each video, there are two folders: "gt" and "img1" in this directory. The "im1" 

includes all the frames of this video. Their names mean themselves order, and their for-

mats are "jpg." The "gt" folder stores a file recording the ground truth information. 

Ground truth information consists of frame id, tracking id, coordinates of the top-left 

corner, the width and height of the bounding box, flag for evaluation, the type of object, 

and the visibility ratio of each bounding box. 

To compare the experimental results with the ground truths, we formed our result 

records similar to the ground truth files. Notedly, the tracking id, the type of object, and 

the visibility ratio of each bounding box shall be set -1 in the result files. In addition, 

detecting confidence replaces the evaluation flag. 
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4.1.2. Dataset Combination 

 

Overview  

As we mentioned before, our dataset should contain common objects, especially the per-

son. Thereby we established a new dataset combination based on the standard datasets, 

such as ILSVRC2015, Pascal VOC, and MOT.  And the new video and image dataset of 

the person introduced later joined our dataset combination. Since building a new dataset 

combination is to train the D&T and SSD detector, we converted the format of all datasets 

to the format of ILSVRC2015. 

After collection, transformation, and calculation, we obtained 114057 training frames 

and images containing a total of 270097 objects. There are 107046 validation frames and 

images, including a total of 242639 objects.  These objects belong to eight classes: bird, 

bus, car, dog, domestic cat, bicycle, motorcycle, and person. Figure 29 below shows the 

class distribution over the entire new dataset combination. 

 

 

Figure 29. Class distribution of a new dataset. This pie chart states the class distribution 

with colorful slices. The proportion of each slice shows as the class percentage over the 

entire dataset. 

 

For more details, table 1 and table 4 display class distributions of training and valida-

tion datasets.  And table 2 and table 3 present the video and the image class distributions 

in the training dataset. Table 5 and table 6 state the video and the image class distributions 

in the validation dataset. 

 
 

 
 

Class Bird Bus Car Dog Domestic Cat Bicycle Motorcycle Person
Number 7987 4214 12891 9330 5469 6310 5662 218234

Table 1. The class distribution of the training dataset. 
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New video dataset 

Since the AVA and ActEV / VIRAT datasets have target objects of different sizes, they 

were selected as the people video sources in the new dataset combination.  
 

AVA  

The AVA project [82] provides audiovisual annotations of videos to enhance our under-

standing of human activities. All annotated videos are 15-minute movie clips. Human 

annotators have exhaustively labeled each of the clips, and the use of movie clips in the 

dataset is expected to enable a wider variety of recording conditions and representations 

of human activity. 

We adopted the AVA Action dataset as the new video source. It is sourced from the 

15th to 30th minute time intervals of 430 different movies, given a sampling frequency 

of 1 Hz. It gives us nearly 900 keyframes for each movie. In each keyframe, each person 

is marked with (possibly multiple) bounding boxes and tracking identification. 

By processing the AVA data source in CSV files, we could transform their format 

into the ImageNet form. In the AVA files, each row contains an annotation for one person 

performing an action in an interval, where that annotation is associated with a certain 

frame. Different persons and multiple action labels are described in separate rows. The 

format of a row is the following: “video_id,” “middle_frame_timestamp,” “person_box,” 

“action_id,” “person_id.”  

 

⚫ video_id: YouTube identifier 

Class Bird Bus Car Dog Domestic Cat Bicycle Motorcycle Person
Number 3852 749 5719 5036 1701 3153 1805 94070

Class Bird Bus Car Dog Domestic Cat Bicycle Motorcycle Person
Number 4135 3465 7172 4294 3768 3157 3857 124164

Class Bird Bus Car Dog Domestic Cat Bicycle Motorcycle Person
Number 13748 6785 29443 25055 12185 9526 1775 144122

Class Bird Bus Car Dog Domestic Cat Bicycle Motorcycle Person
Number 9862 6313 26690 20237 11629 8854 1139 111733

Class Bird Bus Car Dog Domestic Cat Bicycle Motorcycle Person
Number 3886 472 2753 4818 556 672 636 32389

Table 2. The video class distribution in training dataset 

Table 3. The image class distribution in training dataset 

Table 4. The class distribution in the validation dataset 

Table 5. The video class distribution in the validation dataset 

Table 6. The image class distribution in the validation dataset 
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⚫ middle_frame_timestamp: from the start of YouTube in seconds. 

⚫ person_box: top-left (x1, y1) and bottom-right (x2, y2) normalized with respect 

to frame size, where (0.0, 0.0) corresponds to the top left, while (1.0, 1.0) corre-

sponds to bottom right. 

⚫ person_id: a distinct integer allowing this box to be connected to other boxes 

corresponding to the same person in adjacent frames of this video. 

 

According to the YouTube identifier, we downloaded 40 and 10 high-quality videos 

and saved them for further transformation. Then, by converting the downloaded videos 

into frames, we could store the frames under the “Data” folder. If there is not enough 

storage space, we shall retain only the frame corresponding to "mid-

dle_frame_timestamp”.   The "person box" records the normalized coordinates of the per-

son bounding boxes. When transforming is ongoing, the annotation file records the 

ground truth objects with the product of the "person box" and the frame size and "person 

id" in XML. Since we utilized the "train.txt" and "val.txt" under the "ImageSets" folder 

to list the frame file paths for training and evaluation, the frame file and XML file should 

be renamed as the frame order for the convenience. 

The averaged time length of ImageNet videos is around 10 seconds. The author of 

[22] subsampled ten frames per video. Thus, the real fps can be regarded as 1. In this way, 

we sampled every annotated frame of the AVA dataset. 

 

ActEV/VIRAT 

From [24], we know that ActEV/VIRAT [23] establishes for activity detection research 

in streaming video [20]. This dataset is an improved version of VIRAT, with more videos 

and annotations. It includes 455 videos at 30 fps from 12 scenes, more than 12 hours of 

recordings. Most videos own high resolution as (1920 ∗ 1080).  

32 and 4 videos from ActEV/VIRAT are utilized as our training and validation da-

tasets, respectively. “Data” folder stores these videos and processed frames. Moreover, 

coordinates and tracking identifications from the processed dataset in [24] should be or-

ganized and written in an XML file under the “Annotation” folder. Since the frequency 

of the ActEV/VIRAT dataset differs from that of the AVA dataset, we subsampled 100 

frames per ActEV/VIRAT video when recording the frame file paths for training and 

evaluation  

 

 
New image dataset  

Besides the video data source, the Figure Eight dataset [25] has been converted as a part 

of our new dataset combination. 
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Figure Eight 

As a data-annotated platform, the Figure Eight dataset contains 9 million images that have 

been annotated with image-level labels and bounding boxes spanning thousands of clas-

ses. We adopted its person images and put the chosen images under the “DET” of the 

“DATA” folder. Moreover, the bounding box coordinates are transformed from CSV for-

mat into XML format and saved under the “Annotation” folder. 

4.2. Implementation 

4.2.1. Detect to Track and Track to Detect 

[22] notes that the original dataset for D&T training and validation comes from the 

ImageNet. The author decided to adopt it since this data source contains not only the 

image but also the video source.  

As we mentioned earlier, we cannot employ the pretrained D&T model since it cannot 

detect and track the common object, especially the person. Due to this, we trained the 

D&T model on the new dataset combination described in 4.1.2.  

 

Training and Testing of the original version 

For paper [22], training D&T architecture starts with the R-FCN model [13] and fine-

tunes it on the ImageNet VID training set with randomly sampling a set of two adjacent 

frames from a different video in each iteration. 

In the Pytorch implementation, the author employed the common heuristic of passing 

alternating samples from VID and DET of ImageNet for training. Additionally, ten-

frames are sampled per video snippet as the training input. It avoids biasing the training 

towards longer snippets.  

The following tables report the training and evaluation details of the baseline single-

frame R-FCN [13] and D & T models. The trained single-frame RFCN initialized the 

weights of the D & T network. However, since the author evaluated the model on each 

frame instead of multiple adjacent frames, we cannot treat the verification results as fair. 

 

 

 

 

 

 

Table 7: Baseline single-frame R-FCN 

Table 8: D&T network 
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Training and Testing of our models 

We trained the D&T model one the new dataset combination. However, the experimental 

results present not as well as the previous work. We infer there are three reasons. 

Firstly, we cannot implement the pretrained model, like D&T and R-FCN models. 

Author [22] trained them on ImageNet rather than our dataset combination, so they con-

tain different checkpoints  

Secondly, we are not able to train the D&T model with the great backbone network, 

such as resnet101. Due to the memory limitations in GPU hardware, our D&T model used 

resnet50 or resnet18 as a backbone. For training, we applied a learning rate of 1e-4, learn-

ing decay of 5, and max epoch of 11. The table below shows that our D&T architecture 

is evaluated on the single frame of the validation sequence. And it scores the mAP of 

0.5765. 

Last but not least, the imbalanced dataset combination slowed down the training pro-

cess. To be specific, we cannot use a learning rate of 1e-3 to accelerate and optimize our 

training.  

 

  

 

Notedly, we would evaluate the D&T network on the MOT dataset. After this com-

parison (table 9), our model is fine-tuned with images, videos, and their corresponding 

annotations from 2DMOT2015 and Pascal VOC datasets. 

4.2.2. SSD to Object Detection 

Inspired by detection-based tracking, we released the second experiment by replacing the 

R-FCN detector with the SSD model on the D&T architecture. Since the high-precision 

detector, like SSD, can get the precise bounding boxes for each frame of the testing video.  

And the tracking approach, which links the frame-level detection [22], can produce high-

precision detections at the video level. 

The tracking approach of the D&T model could cope with the detection responses 

simply and effectively. It is essential to explain the tracking procedure. The author in [22] 

defined a class link score that combines detection and tracking. It determines whether the 

tracklets should be linked to the object tube. With the Viterbi algorithm, we can figure 

out the best path to maximize the score for a given video duration. In order to make the 

tracker robust, the tracking approach adopts the highest-scoring re-weighting with a non-

maximum suppression effect.  

model batch size lr lr_decay max_epoch dataset Map
Res-50 1 1.00E-04 3 6 imagenet_vid+imagenet_det(1) 0.4064 (1)
Res-50 1 1.00E-03 5 11 imagenet_vid+imagenet_det(1) 0.6015 (2)
Res-50 1 1.00E-04 5 11 imagenet_vid+imagenet_det(2) 0.5765 (3)
Res-18 1 1.00E-04 3 10 imagenet_vid+imagenet_det(1) 0.2783(4)

Table 9: Comparison of different models  
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In short, the second implementation focuses on improving detection accuracy. 

 

Training and Testing of the original version 

In the paper [27] and its Pytorch implement, we found an SSD detector using VGG16 as 

the backbone. In addition, the author fine-tuned the model by using a batch size of 32, a 

learning rate of 1e-3, a momentum of 0.9, and a weight decay of 5e-4 in stochastic gradi-

ent descent (SGD) training.  

For a fair comparison, the author filtered the output boxes by setting the minimum 

score to 0.01, NMS overlap to 0.45, and top k to 200. Parsed predictions are evaluated 

against the ground truth objects with the evaluation metric as the mean average precision 

(mAP). The best checkpoint of the SSD model scores the mAPs across 20 classes as 0.771. 

It came from epoch 186 with a validation loss of 2.515.  

 

Training and Testing of our models 

In this experiment, we trained the SSD detector on our dataset combination instead of on 

the Pascal VOC. For training parameters, we adopted a batch size of 8 images, a learning 

rate of 1e-3, a momentum of 0.9, and a weight decay of 5e-4. Then we could get the best 

model with a loss of 3.040 at the 55th epoch.  With the same testing method, our SSD 

network achieves the mean average precision (mAP) spanning nine classes as 0.551. 

After changing the batch size of pictures from 8 to 32 and retaining other parameters, 

we retrained the SSD model for 95 epochs. When evaluating the best model with a loss 

of 2.870, the mAP across the nine categories rose to 0.614. 

Since our mAPs are less than the original experimental results. We decided to fine-

tune the pretrained SSD detector on our dataset combination.  The pretrained model had 

been generated through the 186-epoch training on Pascal VOC.  After fine-tuning this 

model on the dataset combination for 328 epochs, we got the best checkpoint with a val-

idation loss of 2.730. For a fair comparison, the fine-tuned SSD model would be assessed 

with MOT17DET in evaluation. 

4.2.3. Fast Online Object Tracking and Segmentation 

In [26], the author trained the SiamMask model on the pre-processed datasets of Youtube-

VOS, COCO, ImageNet-DET, and ImageNet-VID. And, he evaluated the SiamMask on 

VOT, DAVIS, and Youtube-VOS. 

Our third implementation aims at achieving multiple-object detection and tracking 

jointly and automatically with the single-object-tracking model, SiamMask network. The 

content below details the experimental steps. 
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The first step is to convert the testing video into individual frames. Since the trained 

SiamMask operates online, producing class-agnostic object segmentation masks and ro-

tated bounding boxes at 55 frames per second.  We converted the input videos into frames 

at the same frequency as 55 frames per second. 

Secondly, we modified the relevant codes, such as” demo.py,” “test.py” (in “tools” 

folder) and “custom.py” (in “experiments/siammask_sharp” folder) for the tolerance of 

multiple-object tracking, 

Thirdly, the SSD detector is imported for classification and initialization automati-

cally. Specifically, the SSD model initializes objects on the input frame every 30 frames 

to keep detection accurate. We stored the bounding boxes and labels of the target objects 

to reduce the execution time. During this initialization, our programs would compute the 

IOU that the tracking bounding boxes overlap with adjacent SSD outputs. According to 

IOU, the "target" list, which stores the tracking object information, would delete or add 

the SSD detections every certain interval. In detail, if the IOU is below the specified 

threshold, our program will remove the corresponding tracking boxes. And SSD model 

detections would be appended if their IOU with the previous tracking boxes exceeds the 

threshold. For correcting the results, the "target" list would be cleared and reinitialized 

with the SSD detections every 60 frames.  

By converting the plotted subsequent frames, the final video presents to end this ex-

periment  

4.3. Evaluation 

The evaluation of multiple object tracking is hard to be defined and carried out with the 

right mothed. Like original PyTorch testing on the D&T model, it measures the detection 

performance rather than the MOT performance. When we evaluated the D&T model on 

each snippet of validation sets, the evaluation script operates each frame instead of mul-

tiple adjacent frames. 

Thence, it is desirable to test three models on the same dataset and to compare the 

results processed by the same multiple object tracking metrics.  

4.3.1.  Evaluation dataset 

Due to the heavy workload of tagging the tracking ID, the evaluation video was chosen 

as the MOT17DET described in Section 4.1.1. In this way, we do not need to copy with 

the tracking ID. And annotations are only prepared for pedestrians in MOT17DET [28]. 

On the official website [21], the ground truths of the testing set are not publicly avail-

able. Consequently, the experimental results are obtained through computing the training 

set and the corresponding ground truth. Although our models can detect and track multi-

class objects, few datasets contain multiple category objects for multi-object tracking 
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evaluation. Thereby, we blocked our models from dealing with other class objects other 

than pedestrians when we evaluated networks on MOT17DET. 

4.3.2. Evaluation metric 

Evaluation metric of multiple object tracking is so significant that it offers criteria for the 

fair comparison between MOT models. Almost MOT implementations adopt the ‘track-

ing-by-detection’ strategy. Therefore, we can divide MOT evaluation metrics into two 

groups: detection and tracking evaluation metrics. 

In MOT17DET, its evaluation scripts employ the MATLAB to produce the detection 

measures, such as recall, precision, FAR, GT, TP, FP, FN, MODA, and MODP. True 

positives and false positives present a total number of true positives and the number of 

false positives separately. In other words, the true positives count the outputs which match 

annotated targets, and the number of the rest outputs is a false positive. The target objects 

which are not identified as the positive would be collected as missed targets or false neg-

atives. This distinguishing process is executed considering the dissimilarity calculation. 

In general, we value dissimilarity through measuring the IOU between the ground truth 

bounding and the rectangle outputs. 

Recall and precision indicate the percentages of detected targets over ground-truth 

detections and correctly detect targets over total result detections respectively. FAR states 

the number of false alarms per frame. And GT describes the total number of ground truth 

boxes in the testing dataset. 

MOTA and MOTP belong to the tracking evaluation metrics. MOTA to evaluate a 

tracker’s performance with false negatives, false positives, and mismatch rates while 

MOTP states the average dissimilarity between all true positives and their corresponding 

ground truth targets.  

Since our evaluation does not use tracking identifiers, we have skipped the interpre-

tation of ID-related evaluation indicators such as ID F1 score, ID precision, ID call, and 

ID switching. Moreover, without regard to identity, MODA / MODP is almost the same 

as MOTA / MOTP. 

4.3.3. Testing results 

4.3.3.1. The first evaluation 

Before fine-tuning the models like the second evaluation, we evaluated D&T, the unifying 

SSD tracking network, and the modified SiamMask architecture directly on MOT17DET. 

The evaluation resulted in the tables below. 

Adjusting the parameters could decide the performance of MOT models. The jump 

gap indicates the threshold for the stale tube. We set the longest gap to 100 or 25 during 
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the evaluation of the D & T model. The gap in SSD detection and tracking implement 

was limited as 15. Moreover, in the SiamMask experiments, the minimal score of SSD 

detection was adjusted as 0.45 to get relatively better results. 

Recently, the mean average precision emerges as one of the most popular evaluation 

metrics. When we compared the corresponding mAPs, the D&T model outperformed the 

other two models. Since the current results have not reached our requirement, the models 

were retrained before the second evaluation. 

 

 

 

 

 

 

 

 

4.3.3.2. The second evaluation 

After retraining the D&T model on the dataset combination of Pascal VOC and 

MOT2D2015, we obtained the fine-tuned D&T network. In addition, the SSD detector 

had been retrained across the entire new data set. With these fine-tuned models, we exe-

cuted the evaluation of MOT17DET videos again. The following tables report the second 

evaluation results. 

Considering the parameter settings, they had been adjusted and optimized for differ-

ent models. In the evaluations of D&T architecture and SSD tracking implement, the jump 

gaps for filtering tubes were set as 200. Furthermore, in the SiamMask experiments, the 

minimal score of SSD detection was set as 0.3 to get more detection. 

Average precision Rcll Prcn FAR GT TP FP FN MOTA MOTP num_frames
MOT17-02 0.3315 33.00% 58.50% 2.84 7273 2398 1703 4875 9.60% 74.30% 600
MOT17-04 0.1639 15.50% 75.30% 1.4 28909 4486 1473 24423 10.40% 70.60% 1050
MOT17-05 0.3486 57.00% 40.90% 3.6 3659 2086 3011 1573 -25.30% 75.30% 837
MOT17-09 0.5159 53.70% 70.40% 1.35 3148 1691 710 1457 31.20% 77.30% 525
MOT17-10 0.1571 15.60% 46.10% 2.55 9159 1425 1669 7734 -2.70% 68.80% 654
MOT17-11 0.2658 25.90% 79.80% 0.44 6122 1585 400 4537 19.40% 79.60% 900
MOT17-13 0.0909 2.80% 33.50% 0.6 8033 225 447 7808 -2.80% 69.40% 750

Overall 0.2258 20.90% 59.60% 1.77 66387 13896 9413 52491 6.80% 73.60% 5316

Average Precision Rcll Prcn FAR GT TP FP FN MOTA MOTP num_frames
MOT17-02 0.1351 17.20% 20.30% 8.21 7273 1251 4924 6022 -50.05% 69.40% 600
MOT17-04 0.0909 6.70% 84.90% 0.29 25451 1696 301 23755 5.50% 69.30% 1050
MOT17-05 0.2697 42.40% 57.00% 0.73 1904 807 610 1097 10.30% 71.90% 837
MOT17-09 0.4391 47.90% 69.10% 1.29 3148 1507 675 1641 26.40% 72.00% 525
MOT17-10 0.0909 9.40% 59.00% 0.53 5280 498 346 4782 2.90% 68.90% 654
MOT17-11 0.1781 29.80% 72.80% 0.33 2644 787 294 1857 18.60% 76.10% 900
MOT17-13 0.0909 8.00% 44.30% 0.38 2835 227 285 2608 -2.00% 60.20% 750

Overall 0.1408 11.10% 47.70% 1.4 61189 6773 7435 54416 -1.10% 70.70% 5316

Average Precision Rcll Prcn FAR GT TP FP FN MOTA MOTP num_frames
MOT17-02 0.2124 20.70% 62.50% 1.51 7288 1506 904 5782 8.30% 75.80% 600
MOT17-04 0.1736 11.50% 87.40% 0.46 28936 3336 480 25600 9.90% 78% 1050
MOT17-05 0.4801 54.70% 65.70% 1.25 3667 2006 1047 1661 26.20% 72% 837
MOT17-09 0.5097 51.40% 83.60% 0.61 3154 1622 319 1532 41.30% 72% 525
MOT17-10 0.0741 16.30% 66.80% 1.14 9172 1498 744 7674 8.20% 75% 654
MOT17-11 0.389 47.30% 67.10% 1.58 6137 2900 1424 3237 24.10% 75% 900
MOT17-13 0.0909 4.20% 70.80% 0.15 6698 279 4 0 2.40% 73% 750

Overall 0.1675 20.20% 72.30% 0.95 65052 13147 5033 51905 12.50% 75% 5316

Table 10: The testing result of D&T network  

Table 11: The testing result of SSD detection and tracking implement 

Table 12: The testing result of SiamMask 
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After being retrained, the D&T model contained more checkpoints. Due to the 

memory limitations in GPU hardware, it cannot perform the multiple objects tracking 

with the jump gap of 200 on MOT17-04 and MOT17-13 videos. Moreover, the video 

platforms of these two videos are not commonly available. MOT17-04 is filmed from an 

elevated place, while MOT17-13 is recorded in a car. Based on these factors, we skipped 

the experiments on the MOT17-04 and MOT17-13 videos. Using the rest five videos, we 

completed the second experiment. 

 

Analysis of improvement 

Through the second evaluation, we observe the fine-tuned models achieved better results. 

To identify on which video the improvement was relatively significant, we made a com-

parison between the six tables. From tables 10 and 13, it can be found that the D&T model 

outputted higher quality results on MOT17-10 and MOT17-11 videos. These two videos 

were all taken from the moving platforms. The recall result of MOT17-10 grew from 15.6% 

to 33.40%. While the recall result of MOT17-11 grew from 25.90% to 54.60%. The dif-

ferent growths caught our attention. We deduced that this might be released by illumina-

tion. In detail, MOT17-11 is filmed indoor while MOT17-10 is logged outdoor at night. 

From the table 11 and 14, we can see that the fine-tuned SSD detector benefits all the 

MOT17 videos, especially the MOT17-11. The average precision on MOT17-11 had in-

creased and reached the same stage as the average precision on MOT17-05 and MOT17-

09. Unfortunately, the average precisions on MOT17-02 and MOT17-10 were kept under 

thirty percent. The unsatisfying results might be caused by the dim light and the crowd 

density in the MOT17-02 and MOT17-10 videos. 

Since our SiamMask model employed the SSD detector to initialize the target object 

location, its output was influenced by the performance of the detector. Through the com-

parison between tables 12 and 15, we noticed the recall on MOT17-10 had been raised 

by using the fine-tuned detector. 

 

Table 13: The testing result of D&T network 

 

 

Table 14: The testing result of SSD detection and tracking implement 

 

Average Precision Rcll Prcn FAR GT TP FP FN MOTA MOTP num_frames
MOT17-02 0.3458 35.10% 61.00% 2.72 7273 2551 1632 4722 12.60% 75.80% 600
MOT17-05 0.4861 59.60% 46.80% 2.95 3659 2179 2473 1480 -8.00% 75.30% 837
MOT17-09 0.5119 50.20% 71.50% 1.2 3148 1579 628 1569 30.20% 78.50% 525
MOT17-10 0.3306 33.40% 71.00% 1.92 9159 3062 1253 6097 19.80% 72.70% 654
MOT17-11 0.4735 54.60% 58.80% 2.61 6122 3344 2347 2778 16.30% 80.70% 900

Overall 0.4091 43.20% 60.40% 2.37 29403 12715 8333 16688 14.90% 76.60% 5316

Average Precision Rcll Prcn FAR GT TP FP FN MOTA MOTP num_frames
MOT17-02 0.23 24.10% 41.00% 4.21 7273 1752 2517 5521 -10.50% 69.80% 600
MOT17-05 0.5703 60.50% 39.00% 4.14 3659 2213 3467 1446 -34.30% 72.20% 837
MOT17-09 0.5195 53.60% 55.80% 2.55 3148 1688 1338 1460 11.10% 72.60% 525
MOT17-10 0.1613 19.60% 46.90% 3.1 9159 1791 2026 7368 -2.60% 68.90% 654
MOT17-11 0.5096 55.80% 54.50% 3.17 6122 3418 2851 2704 9.30% 74.40% 900

Overall 0.3294 36.90% 47.10% 3.47 29403 10862 12199 18541 -4.50% 72.00% 3516
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Table 15: The testing result of SiamMask 

 

 

Comparison among models 

According to the average precisions in tables 13, 14, and 15, the winner is the D&T net-

work. When we concentrate on recall and MOTP, the D&T network also outperforms 

among models. These competitive metrics results state that the predictions from the D&T 

model are most similar to the ground truth target objects. However, the SiamMask model 

has its advantage when we compare their precision, false alarm, and MOTA.  

Although the annotated video cannot be displayed, we can display some frame detec-

tion. The D & T model operates on the MOT17-02, MOT17-09, and MOT17-05 datasets 

and outputs the following pictures. The retrained network produces more accurate results 

than the model originally evaluated. As a consequence, more bounding boxes with class 

labels and prediction confidence appear in the generated image. 

 

 

Figure 30. D&T model predicted frame from MOT17-02 video 

 

  

Average Precision Rcll Prcn FAR GT TP FP FN MOTA MOTP num_frames
MOT17-02 0.2503 20.80% 83.30% 0.51 7288 1516 305 5772 16.60% 75.80% 600
MOT17-05 0.4731 53.40% 68.80% 1.06 3667 1957 886 1710 29.20% 72.80% 837
MOT17-09 0.394 46.50% 79.40% 0.72 3154 1466 380 1688 34.40% 76.60% 525
MOT17-10 0.2476 20.90% 80.20% 0.73 9172 1921 475 7251 15.80% 75.70% 654
MOT17-11 0.4248 40.40% 82.30% 0.59 6137 2480 532 3657 31.70% 75.60% 900

Overall 0.329 31.70% 78.40% 0.73 29418 9340 2578 20078 23.00% 75.20% 3516
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Figure 31. D&T model predicted frame from MOT17-09 video 

 

 

Figure 32. D&T model predicted frame from MOT17-05 video 

 

SSD tracking model processes the MOT17-11 and MOT17-09 datasets and outputs 

the pictures below. The bounding boxes with predicted labels and confidences are plotted 

for target objects in these figures. 

 

 

Figure 33. SSD tracking model predicted frame from MOT17-11 video 

 

Figure 34. SSD tracking model predicted frame from MOT17-09 video 
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Modified SiamMask model copes with the MOT17-05, MOT17-11and MOT17-10 

datasets and produces the following images. For each detected object, a bounding box 

with the class label is plotted based on its corresponding masks as figures show. 

 

  

Figure 35. Modified SiamMask model predicted frame from MOT17-05 video 

 

 

Figure 36. Modified SiamMask model predicted frame from MOT17-11 video 

 

 

Figure 37. Modified SiamMask model predicted frame from MOT17-10 video 

 

According to these predicted frames, we found the D&T and SSD models detect more 

target objects than the SiamMask network. Moreover, the D&T model supplies more 
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smooth tracking trajectories when compared with SSD tracking models. For the detected 

object, SiamMask produces segments and then builds the rotated bounding boxes from 

the binary masks. If we concentrate on the detected objects, SiamMask can achieve better 

results through outputting more accurate bounding boxes. 

4.3.3.3. Further analysis 

Regarding the influence of the width and height for the bounding boxes, the ground truth 

and the corresponding predicted bounding boxes have been divided into small- and large-

scale groups. Therefore, we can conduct an evaluation and produce the results, such as 

the precision, recall, and average precision for the small- and large-scale groups, respec-

tively. 

When we discuss grouping details, it is necessary to discuss the scale unit, the clus-

tering strategy, and the number of clusters. Since the resolutions of MOT17DET, exclud-

ing 'MOT17-05, are the same as 1920 × 1080. As the figure below shows, K-means 

clustering approach partitions ground truth bounding boxes of ‘MOT17-02', 'MOT17-05', 

'MOT17-09', 'MOT17-10', and 'MOT17-11' datasets into small- and large-scale groups 

according to their resolutions. The purple and yellow points belong to the small- and 

large-scale groups separately. Dividing the datasets into three groups:' small,'' medium,' 

and' large' could lead to more precise results. However, if we split the dataset into three 

groups, some groups will be empty due to the few datasets. 

 

 

Figure 38. Kmeans cluster presentation distributed on the datasets of 'MOT17-02', 

'MOT17-05', 'MOT17-09', 'MOT17-10' and 'MOT17-11'. Each point stands for a ground 

truth bounding box. By clustering based on the box scale, the points are grouped as 

small- and large-scale sets, correspondingly colored as purple and yellow. Two black 

points show the centers of large- and small- scale groups. 
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After dividing the bounding boxes from the ground-truth datasets as the small- and 

large-scale groups, we plotted the bounding boxes belonging to two groups on the same 

frame to state their differences. The plotted images are presented as the figures below. In 

each pair of images, the left-side image presents the specified frame with the large-scale 

bounding boxes, while the right-side picture shows the same frame with the small-scale 

bounding boxes. 

 

  

  

Figure 39. The large-scale and small-scale bounding boxes plotted on the 267th 

frame from 'MOT17-02' dataset 

 

  

Figure 40. The large-scale and small-scale bounding boxes plotted on the 292nd 

frame from 'MOT17-05' dataset 
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Figure 41. The large-scale and small-scale bounding boxes plotted on the 453rd 

frame from 'MOT17-09' dataset 

 

 

   

Figure 42. The large-scale and small-scale bounding boxes plotted on the 196th 

frame from 'MOT17-10' dataset 

 

  

Figure 43. The large-scale and small-scale bounding boxes plotted on the 255th 

frame from 'MOT17-11' dataset 
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After clustering all bounding boxes from ground truth files, we applied a fitted K-

means model to predict the labels for the detection boxes and then to group boxes. De-

pending on the labels, we matched and compared the boxes in the same clusters. To be 

specific, a small-scale detection box is evaluated with the small-scale ground truth bound-

ing box. At the same time, the large-scale detection results are compared with correspond-

ing ground truth datasets. 

For the small-scale group, the results do not reflect well as we expect. The D&T 

model achieves the best average precision as 0.3093. For more details, see Tables 16, 17, 

and 18. 

Table 16: Small-scale testing result of D&T network 

 

 

Table 17: Small-scale testing result of SSD detection and tracking implement 

 

 

 

Table 18: Small-scale testing result of SiamMask 

 

 

For large groups, the results of Tables 19, 20, and 21 meet our requirements. The SSD 

detection with tracking function can realize the best average accuracy of 0.6725. Simul-

taneously, the average accuracy obtained by D & T network is 0.5798, while the average 

accuracy of SiamMask is 0.5831. 

 

 

Average Precision Rcll Prcn
MOT17-02 0.237 22.00% 49.80%
MOT17-05 0.4249 51.50% 39.50%
MOT17-09 0.308 33.90% 53.30%
MOT17-10 0.3341 34.70% 71.60%
MOT17-11 0.2576 27.50% 36.60%

Overall 0.3093 32.10% 52.70%

Average Precision Rcll Prcn
MOT17-02 0.1413 13.50% 29.90%
MOT17-05 0.3959 44.50% 27.10%
MOT17-09 0.3865 40.70% 43.90%
MOT17-10 0.149 15.00% 40.90%
MOT17-11 0.0515 16.30% 36.10%

Overall 0.1976 20.30% 34.10%

Average Precision Rcll Prcn
MOT17-02 0.0673 10.30% 70.30%
MOT17-05 0.295 37.60% 59.60%
MOT17-09 0.2153 23.40% 70.40%
MOT17-10 0.1692 17.40% 78.30%
MOT17-11 0.0909 0.20% 21.40%

Overall 0.0712 16.70% 69.90%
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Table 19: the large-scale testing result of D&T network 

 

 

Table 20: Large-scale testing result of SSD detection and tracking implement 

 

 

Table 21: Large-scale testing result of SiamMask 

 

 

From experiments, we could see that our models work better on the large-scale dataset 

than on the small-scale dataset. This phenomenon hints for us to improve the MOT per-

formance on small-scale objects to optimize our network. 

4.4. Discussion 

The previous content reflects the advantages and disadvantages of our network. It worths 

us to explore and to analyze these experiments.  Furthermore, we received a memorable 

lesson from the weakness of our models.  

Three shortcomings related to the training process of the D & T model should be 

addressed. First, the pre-trained model R-FCN [13] provided by the author is not suitable 

for the desired target object. As such, either training or evaluation did not involve the 

pretrained model.  And we used ResNet50 as the backbone to train the D&T network. In 

future work, the new D&T model could start with the pretrained R-FCN model, including 

suitable objects. The second weakness is the unbalanced class datasets. Though we opti-

mized the batch scheme, there was no obvious improvement in results. It left us to adjust 

the loss function and to regulate the batch plan. The last but least, the gap parameter needs 

Average Precision Rcll Prcn
MOT17-02 0.7792 87.20% 73.90%
MOT17-05 0.655 70.70% 57.90%
MOT17-09 0.6273 68.80% 86.20%
MOT17-10 0.1681 17.20% 50.80%
MOT17-11 0.5564 69.30% 65.60%

Overall 0.5798 67.40% 67.90%

Average Precision Rcll Prcn
MOT17-02 0.5698 64.60% 53.80%
MOT17-05 0.7647 87.10% 62.10%
MOT17-09 0.6198 68.50% 66.80%
MOT17-10 0.6257 65.00% 67.80%
MOT17-11 0.6848 77.70% 56.40%

Overall 0.6725 74.40% 59.10%

Average Precision Rcll Prcn
MOT17-02 0.6128 63.70% 88.80%
MOT17-05 0.657 79.70% 74.40%
MOT17-09 0.6406 71.70% 77.30%
MOT17-10 0.506 55.30% 82.20%
MOT17-11 0.5932 64.10% 81.40%

Overall 0.5831 66.70% 80.40%
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careful selection when performing an evaluation. This parameter determines the length 

of trajectories. If we set the gap too long, some vanishing object bounding boxes will 

remain in the tracking tube. In contrast, short-gap tubes cannot help us to grasp many 

target objects like long-gap tubes. Therefore, short-gap tubes will result in lower recalls. 

For long-term video detection, its algorithm needs to be explored and developed. 

In the second experiment, the SSD detector took the place of the R-FCN detection 

model. Although its average accuracy in MOT evaluation of some videos, such as 

MOT17-05, MOT17-09, and MOT17-11, satisfies the users. However, the target objects 

don not move smoothly on the trajectories as on the D&T trajectories. In my view, it is 

because its training process lacks correlation loss. Adding a correlation loss and training 

the SSD detector with the weighted loss is an innovative solution. 

To modify SiamMask to accept multiple objects, we initialized the bounding box for 

each target object with SSD. In this way, the model will reinitialize these objects when a 

certain interval comes. Specifically, at certain moments, bounding boxes with high con-

fidences in the detection of specific frames should be retained or added. Otherwise, the 

tracklets will cancel them. As the tracker is trained on a short-term video dataset and lacks 

a correction mechanism for a long-term tracking tube, it is difficult to determine the length 

of the interval. Therefore, improving the video adaptability of existing SiamMask models 

requires us to explore. 

Furthermore, the section- ‘Further analysis’ reminds us to improve the MOT accuracy 

on the small-scale objects to improve the overview performances for our networks.  
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5. Conclusion and future work 

We split this section into two parts: conclusion and future work. The conclusion presents 

our proposal, approaches, process, and evaluation results. Future work discusses the pos-

sible MOT directions. 

5.1. Conclusion  

It is easy to reveal that MOT relies on two basic bench works: object detection and single 

object tracking. Therefore, the typical object detection model-SSD, single-object tracking 

network-SiamMask, and the multiple-object tracking architecture D&T model had been 

researched and used. 

To apply MOT on the required target objects, we firstly retrained the D&T model on 

the appropriate dataset combination. In the second experiment, we considered the influ-

ences on MOT due to the varying detector.  So, the SSD detector takes the place of the 

R-FCN detector. And it cooperates with the Viterbi tracking approach to achieve multiple 

object tracking. Although the modified SSD method produces accurate results with short-

term videos, the generated tubes are not as smooth as the previous work. In the third 

experiment, we transformed the SiamMask into a multiple-object tracking method. Fur-

thermore, it is developed from detection-free tracking to detection-based tracking with 

the support of an SSD detector. Because it was originally designed for short-term video, 

there is a lack of proper data association methods for video adaptation. 

In the experiment, we performed three models on MOT17 videos. Then evaluation 

metrics are calculated for the standard results. Moreover, the plotted frames produced 

from each model present together to show the specific performance.  

 

5.2. Future directions 

In the future, we could optimize the MOT model in terms of video adaptation, crowd 

density, and completeness of objection representation, as well as implementation under 

multiple cameras. 

In previous experiments, we have discussed the problem that short-term tracking 

models do not operate well with long-term videos. Therefore, designing algorithms to 

extend the trajectory is a crucial issue. 

Detection is always affected by small-scale objects in the crowd. For traditional object 

detection methods, a trade-off needs to be made between crowd density and completeness 

of object representation. Although some creative methods have been invented, such as 

"finding small faces" [29], how to combine them with MOT models is still our concern. 

The evaluation dataset (MOT17DET) was taken from multiple viewpoints. Correlat-

ing multi-view data of the same video can restore stereo vision, which makes us feel real. 
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Referring to forward-looking projects, MOT cooperates with the 3D scene under-

standing, other computer vision tasks, such as pose analysis and the next action prediction. 
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