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ABSTRACT 
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Networks 
Bachelor’s Thesis 
Tampere University 
Automation Engineering 
January 2020 
 

Deep neural networks are nowadays state-of-the-art method for many pattern recognition prob-
lems. As the performance grows, the robustness of them cannot be ignored. Specifically, the lack 
of robustness against slightly perturbated inputs called adversarial examples has been a hot topic 
for the last years. The main reason behind this is safety because if one can easily generate an 
adversarial example that can efficiently “fool” a neural network, it cannot be trusted in a real-life 
system where safety is an issue. 
 
The goal of this thesis is to better understand deep neural networks, their robustness and tools 
to test their robustness. One tool called genetic algorithm is further studied and implemented with 
python to fool an example neural network VGG16 to misclassify images. VGG16 and its prediction 
probabilities being the fitness function, the algorithm uses crossover, mutation and elitism among 
other things to find the best adversarial solution. Three types of tests are conducted. First, a false 
positive randomly generated adversarial example is created. Second, example image is evolved 
to a false negative adversarial example with perturbation L∞ limited to 5. And finally, example 
image is evolved to a false positive adversarial example with perturbation L∞ limited to 5. When 
the perturbation is L∞ limited to 5, the difference between the original image and adversarial im-
age is unnoticeable to the human eye. The tests show that even a rather simple genetic algorithm 
can make VGG16 misclassify images with high confidence. It seems that deep neural networks 
without any safety measures are not very robust against adversarial examples. 
 
Keywords: adversarial examples, robustness, genetic algorithm, neural networks 
 
The originality of this thesis has been checked using the Turnitin OriginalityCheck service. 
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1. INTRODUCTION 

Deep neural networks (DNN) and convolutional neural networks (CNN) are nowa-

days a state-of-the-art method for many image recognition problems. As the perfor-

mance grows, the robustness of them cannot be ignored. Specifically, the lack of 

robustness against slightly perturbated inputs called adversarial examples has been 

a hot topic for the last years [17, p. 1]. The main reason behind this is safety because 

if one can easily generate an adversarial example that can efficiently “fool” a neural 

network, it cannot be trusted in a real-life system where safety is an issue.  

This thesis is divided into three different sections. In the first section, the basic prin-

ciple and structure of DNN/CNN are introduced. The first section also deals with the 

concept of robustness and adversarial examples and how they are linked to neural 

networks. The second section is about genetic algorithms (GA), how they function 

and how can they be used as a tool for robustness testing of neural networks. The 

last section is about the actual robustness analysis for image recognizing CNN. CNN 

used in the analysis is called VGG16, which is introduced at the beginning of the 

section. Then, a GA for constructing adversarial examples is implemented with py-

thon. Finally, three tests are made towards the VGG16 and the results are analyzed 

to gain insight into the robustness of the example network. 
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2. DEEP NEURAL NETWORKS 

To understand how to measure the robustness of a neural network, one must first know 

what a neural network is and how it works. This chapter introduces the fundamentals of 

feedforward deep neural networks and their subtype convolutional neural networks. After 

the basic have been gone through, it is discussed what the robustness of neural networks 

means and how it can be evaluated. 

2.1 Structure of neural networks 

A neural network is a statistical model which tries to find relationships between input data 

and output data. According to Abdi & al [1, p. 1], they are said to be adaptive, because 

they can learn to adjust their parameters with the help of known examples. The network 

consists of layers which can have multiple neurons. The neurons are building blocks of 

the network which are connected to the adjacent layers’ neurons, see Figure 2.1. 

 

 

Figure 2.1  Example structure of a feedforward neural network including an input layer, 
two hidden layers and an output layer. Circles represent neurons. 

 

From Figure 2.1 it can also be seen that the inputs are fed to the neurons of the first layer 

which is called an input layer. The information is then propagated forward to the next 
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layer which is called a hidden layer. This continues until the final layer called an output 

layer is reached, which produces some desired output for the information. [1, p. 2] The 

term deep neural network (DNN) is used to describe a neural network that contains many 

layers in it. 

 

The connections of the neurons have weights which determine how powerful the con-

nections between the two neurons are. Neurons also have a bias term and activation 

functions which determine if the neuron is being activated. 

 

 
Figure 2.2  Neuron of a basic neural network including inputs x, weights w, bias b, sum 

∑, activation function f and output y 

 
 

In Figure 2.2, an example neuron can be seen. First, the inputs 𝑥 = [𝑥0, 𝑥𝑛] gain their 

weights via weight factors 𝑤 = [𝑤0, 𝑤𝑛], this happens by a dot product between inputs 

and weights. The weights exist to determine how powerful the connection is. After inputs 

have their weights, they are summed together with bias term b. This sum will go through 

the activation function f, which determines the output of the neuron. The output from the 

activation function has some lower and upper limit depending on its type. There exist 

many different types of activation functions, and the following ones are the most common 

today: 

  

Rectified Linear Unit (ReLU), 

 

𝑓(𝑥) = max⁡(0, 𝑥)          (2.1) 

 

With an output range of [0, ∞), ReLu is the most commonly used activation function, 
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because it reduces the vanishing gradients problem and has a great performance. [9, 

pp. 8–9] 

 

Logistic sigmoid function, 

  

𝑓(𝑥) = 𝜎(𝑥) =
1

1+𝑒−𝑥
         (2.2) 

 

 It has an output range of (0, 1) and is used mostly on the output layer of binary classifi-

cation models. [9, p. 5]  

 

Softmax, 

 

𝑥𝑖 =
𝑒𝑥𝑖

∑ 𝑥𝑗
𝐽
𝑗

           (2.3) 

 

With an output range of (0, 1) for each probability and sum of them equal to 1. Softmax 

is used on output layers of multiclass problems. [9, p. 8] For comparison of different 

activation functions see the paper [9] from Nwankpa & al. They go through and test many 

different activation functions such as LReLU, PReLU and RReLU, which seem to have 

a great performance. 

 

When considering the training of a DNN, there exists a forward pass and a backward 

pass. A forward pass is equivalent to the operations seen in Figure 2.1, where the train-

ing samples have passed to the end of the network. In the backward pass, the network 

output is fed to a cost function C, which gives the mean difference of all the actual and 

predicted values.  

 

One example of the cost function is mean squared error (MSE), which is commonly 

known as 

 

𝑀𝑆𝐸 =⁡
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 ,        (2.4) 

 

Where n is the number of inputs, 𝑦̂ is the predicted value and y is the true value. As the 

name states, it calculates the mean squared difference between predicted and true val-

ues. 
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Another commonly used cost function is called Cross-entropy which is used in classifi-

cation problems. It measures how similar the probability distributions are. 

 

𝐿𝑠 = −∑ log
𝑒
𝑊𝑦𝑖
𝑇 𝑥𝑖+𝑏𝑦𝑖

∑ 𝑒
𝑊𝑗
𝑇𝑥𝑖+𝑏𝑗𝑛

𝑗=1

𝑚
𝑖=1 ,        (2.5) 

 

Where xi is a feature of ith sample, yi is the class of xi, Wj is the parameter vector of j and 

bj is the bias. [3, p. 2028] 

 

The goal of the whole training is to minimize the loss function, and this is done during 

the backward pass by adjusting the weights and biases. This adjustment is done by 

backpropagating the gradients of the cost function backwards on the net to adjust the 

weights and biases one by one. [1, p. 74–82] In other words, this process is an imple-

mentation of gradient descent into a DNN. Even a simple backpropagation can be quite 

laborious by hand, therefore today with DNNs where there can be hundreds of layers, 

backpropagation is done with the help of computers. 

 

When the network has seen all the input data and used them to update the weights once, 

one Epoch has passed. This means that the network has now taken one step towards 

the negative gradient and another cycle can begin. After the network is trained with a 

suitable amount of training samples, it can be used to predict for example a class for the 

input. When predicting, the network similarly does the forward pass, and, in the end, 

activation functions of the output layer give the probability of input belonging into each 

class. The changes in the loss function are the key element to keep in mind when con-

sidering the robustness of neural networks, which will be discussed in later chapters. 

 

Convolutional neural networks (CNN), see LeCun & al [6], are a subtype of DNN that are 

state of the art at image classification tasks. Typically, CNN consists of sets of convolu-

tional layers followed by a pooling layer and at the end of the net a few dense layers. A 

convolutional layer has many filters or “convolutional kernels” just like basic feedforward 

DNN has neurons. However, they differ from each other in such manner that in the CNN 

the weights are convolutional operations. The kernels filter the data by performing a dot 

product between the kernel and corresponding kernel sized area while sliding through 

the whole input resulting in a feature map. The idea is to extract different features for the 

next layers so they can concentrate on more detailed features of the data than the first 

layers. Convolutional layers would shrink the size of the inputs if no padding is added. 
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Usually, zero-padding is added to preserve the input size for the next layers, so they 

don’t miss any important areas of the input. Zero padding simply means that zeros are 

added to the input matrix. An example of convolution with zero padding can be seen in 

Figure 2.3. 

 

 

Figure 2.3   2d convolution operation with 3x3 filter and max-pooling with 2x2 filter 

 

Pooling layers are another important layer type in CNNs, their function is to reduce the 

spatial size of the data which reduces the parameters and therefore reduces the needed 

computing power and the possibility of overfitting. Today mostly max pooling is used 

which returns the maximum value from each window sized block. Note, that the max-

pooling layers always stay the same through the training since they don’t have any type 

of weights to alter. An example of max pooling can be seen in Figure 2.3. 

 

After convolutional layers have extracted the features, and max-pooling layers prevented 

overfitting, the feature maps are then fed to the dense layers at the end of the network. 

The dense layers calculate the actual predictions based on the feature maps the convo-

lutional layers have generated. 

2.2 Robustness of deep neural networks 

The robustness of a DNN can be described as how well the trained model predicts new 

unseen data and how it reacts to small changes in the input data. A common way to test 

the robustness is to measure how well the model fairs against adversarial examples 
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while preserving the ability to handle the task it is designed for. Adversarial examples 

introduced by Szegedy & al [14] are model inputs that have been designed solely to 

make the model do a mistake while predicting the output. 

  

It is hard to give any real value to the robustness of DNN. However, Weng & al [16] 

propose a method to measure the robustness of DNNs called CLEVER, short for Cross 

Lipschitz Extreme Value for nEtwork Robustness. In [16 p. 2] Weng & al state that: 

“CLEVER is the first attack-independent robustness metric that can be applied to any 

neural network classifier.” Since state-of-the-art robustness determination methods are 

quite complex, to keep this thesis simple and short enough, robustness is estimated only 

via the effectiveness of adversarial examples compared to the perturbation amount. 

2.2.1 Threat model and perturbation 
 

To define how the adversarial should work and what type of information it has access to, 

a threat model is needed. Yuan & al [17] introduce a way to construct an efficient threat 

model containing four aspects. 

 

The first one is called adversarial falsification, which describes the type of adversarial 

example attack. It can be either false positive attack or false negative attack. [17, p. 4] 

False positive meaning the model gives high confidence for input that humans don’t rec-

ognize, and false negative meaning human can recognize the input, but the model gives 

low confidence. 

  

The second aspect is the adversary’s knowledge. The adversary can know only the out-

put of the model, having no other access to the model. This is called a black-box attack. 

On the other hand, when the adversary has access to everything in the model it is con-

sidered as a white-box attack. [17, p. 4] White-box attacks are usually more effective, 

but when the model structure or training data isn’t accessible it forces one to use a black-

box attack. 

 

The third aspect is called Adversarial specificity. The attack can either target a certain 

class or target any class except the original one. The final aspect is attack frequency 

describing one-time attacks and iterative attacks. One-time attacks can interact only 

once with the model. Iterative attacks can interact many times with the model, performing 

better, however with a bigger cost of computational power. [17, p. 4] These aspects de-
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fined are a great tool when defining an adversarial example attack against a DNN be-

cause they help to further plan what type of an algorithm to choose and how to construct 

it. 

 

Another important part of adversarial examples is the perturbation. Essentially, it means 

the alteration to the model input to make it an adversarial example. [14, p. 2] Perturbation 

can also be limited. While limiting the perturbation, it must be determined which is more 

important, minimize the perturbation to fool a human eye or have a more perturbated 

input which fools the model better [17, p. 5]. 

  

A common way to constrain or measure the perturbation of an adversarial image is with 

p-norm distance. 

  

‖𝑥 − 𝑥𝐴‖𝑝 = (∑ ‖𝑥𝑖 − 𝑥𝐴𝑖‖
𝑝𝑛

𝑖=1 )
1

𝑝       (2.7) 

 

Where x is the original input, xA is adversarial input and p is defined by the Lp norm used. 

Norms mostly used are L0, L2 and L∞. Where L0 measures the numbers of modified 

pixels in the xA, L2 measures the Euclidean distance of x and xA, and L∞ measures the 

maximum change in any pixel of the x. Carlini & Wagner [4, p. 3–4] and Sharif & al [11, 

p. 2–3] In short, the concept of perturbation limitation is needed to define what type of 

modifications are allowed for the input. For example, when L0 is limited to one pixel, it 

means the adversarial example must be constructed by modifying only one pixel of the 

input image. 

 

Adversarial examples can also be generated from scratch, with this method there exists 

no perturbation since there is no original input defined. Lp limitation enables one way to 

describe the actual robustness of a DNN by comparing the amount of Lp limitation 

against the effectiveness of the adversarial example.  

 

2.2.2 Different ways to generate adversarial examples 
 
 

Now that the concept of adversarial examples is familiar, this chapter introduces some 

of the common methods to generate those examples. It is noteworthy that there is a 

substantial number of different algorithms and styles to generate adversarial examples. 
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The first method introduced is Fast gradient sign method proposed by Goodfellow & al 

in [7]. It is a white box attack method that uses the signs of the gradients of a loss function 

respect to the input to modify the input data into an adversarial example. When this is 

stated as a formula we get 𝑥𝐴 = 𝑥 + 𝜀 ∗ 𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥, 𝑦)), where xA is the adversarial 

example, x is the original input, ε is the multiplier for the perturbation, θ is models param-

eters, and y is targets of the x. [7, p. 3] In short, this method adds perturbation to the 

input data which has the same direction that the gradient of the loss function has respect 

to the input data. 

 

Another method called Genetic algorithm (GA) is also one great way to generate black-

box adversarial examples. This method is discussed more thoroughly in chapter 3 since 

it has been chosen as the tool to use in this thesis implementation part. For more meth-

ods such as Carlini & Wagner attack, DeepFool, Zeroth Order Optimization and Feature 

Adversary see [4,5,17]. 

 

All the attacks should work at some level if there are no defensive measures in the tar-

geted model, the attack method one would choose depends highly on the situation 

(threat model discussed in chapter 2.2.1). The attacks may seem different but the goal 

of them all is the same, they try to affect the models cost function in a way that the output 

layers activation functions yield desired confidences for desired classes. 

2.2.3 Defence against adversarial examples 
 

This chapter briefly introduces some defensive methods to enhance the robustness of 

DNNs. Defensive methods against adversarial examples have become an increasingly 

studied subject in the last years, and just as there are many different attack methods, 

there are defensive methods as well. 

 

One defensive method against adversarial images is called adversarial training intro-

duced by Huang & al in [8], which means that DNN is trained with adversarial images 

included in the training set. This teaches the model to ignore those types of adversarial 

examples. However, it seems to only defend well against adversarial images constructed 

with the algorithm it has also been trained on. [11, p. 3–4] If one would train the model 

with all different kinds of adversarial examples constructed with different algorithms, 

there would be too much fake data on the model, and it would become ineffective.  
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Another type of defence are autoencoders to DNN, they are in fact their own type of 

neural network which reduce the dimensions of the inputs and then expand them back 

to the original dimension size. While doing this, they should remove the perturbations 

before the inputs are fed to the other network. However, according to Gu & Rigazio [6, 

pp. 4–5], new adversarial examples can easily be constructed with a new model where 

an autoencoder is involved.  

 

There are also number of different defensive methods such as network verification, re-

construction of input, network distillation, ensembling defences, etc. For more methods 

see [5,17]. Many of these defensive methods work only against adversarial examples 

generated in a certain way. Therefore, when choosing a defensive method, one should 

think about what kind of attacks could be introduced to the given model. There also exists 

python libraries for testing the robustness of the adversarial inputs, most popular ones 

seem to be CleverHans, IBM Adversarial Robustness Toolbox and Foolbox. 
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3. GENETIC ALGORITHMS TO HELP ROBUST-
NESS TESTING 

When it comes to analyzing the robustness of DNN and generating adversarial examples 

there are multiple ways to tackle the problem as discussed in the previous chapters. In 

their research, Nguyen & al [10] have used an approach called genetic algorithms. In-

spired by their impressive results to “fool” a deep neural network with GA, it has been 

chosen as the method for this bachelor’s further analysis. This chapter introduces the 

basic principle behind the genetic algorithms and how they are used to generate adver-

sarial inputs for a DNN.    

3.1 Principle of genetic algorithms 

A genetic algorithm can be described as a method to solve problems using similar prin-

ciples as genetics, this also means there are similar concepts such as chromosome and 

gene involved. In this context, chromosome means a solution to the given problem e.g. 

an image, and gene is a building block of the chromosome, e.g. a pixel of an image. GAs 

have been widely used in many problems that include optimization or search. 

 

 

Figure 3.1   Basic principle of genetic algorithm  
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Figure 3.1 represents the basic principle of genetic algorithm. GA can be said to consist 

of four parts: initialization, selection, genetic operations and replacement. Each of them 

has an important role for the algorithm to be successful.  

 

The first part of the initialization consists of defining the search space. The algorithm 

must have a search space, so it knows what type of solutions to look for and where to 

search them [13, p. 20]. 

 

The second part of the initialization is to define the initial population. The initial population 

consists of chromosomes which are just some solutions to the given problem. In their 

book, Sivanandam & Deepa [13, p. 30] tell that it is recommended for the initial popula-

tion to have a good mixture of different types of chromosomes and they are often ran-

domly generated. This allows the GA to have different types of solutions ready from the 

beginning. 

 

Once the search space and initial population are defined, the next step is selection, 

meaning that some individuals from the population need to be selected as parents. For 

selection, a way to describe the fitness of each individual chromosome is needed, this is 

called a fitness function. A fitness function is always problem-specific, it gives a fit for 

each chromosome to the defined problem. Defining the fitness function is said to be the 

most difficult and important part when creating a GA. [13, p. 148] After the fitness function 

has evaluated the chromosomes, usually the ones with higher fit have a greater possi-

bility to be selected as parents. There are multiple different methods to select the parents 

based on their fitnesses, see [13, pp. 46–50]. 

 

For GA to produce new solutions to the given problem, genetic operations must occur. 

The most important genetic operation is the crossover, which is applied by choosing half 

of the genes from two different parent chromosomes and combining those parts into a 

new child chromosome. These crossovers happen until a desired amount of child chro-

mosomes have been produced. Usually, the number of children equals the size of the 

population [13, p. 6]. Without the crossover, the algorithm would just reproduce the same 

answers to the problem all over again and thus wouldn’t solve the problem. For a number 

of different crossover techniques see [13, pp. 51–56]. 

 

The second genetic operation is called mutation which happens in the child chromo-

somes. In the mutation, a small number of genes in child chromosomes will be changed. 

Mutations must occur to make sure that the variation in solutions is preserved over the 
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generations [13, p. 56]. In his book, Bäck [2, p. 197] tells that it is generally a good idea 

to keep the mutations rather small compared to the unmutated chromosome since bigger 

changes often seem to lower the fitness of the chromosome. 

 

The last part of the GA is called replacement. Replacement means that the old population 

of chromosomes are replaced with the newly produced children. The replacement can 

be done in several ways, one option is to replace everyone in the old population. [13, pp. 

58–59] Then there is a concept of elitism, which means that some of the best fitting 

chromosomes are preserved after the cycle despite them being parent chromosomes 

[13, p. 49]. This ensures that the fitness never goes downwards over the generation. 

 

After one generation the process starts all over again with the newly generated popula-

tion, these cycles or generations are continued until one of the chromosomes has a high 

enough fitness value, meaning a good enough solution has been found. 

 

3.2 Adversarial examples for neural networks using genetic al-
gorithms 

According to Sivanandam & Deepa [13, p. 5], GAs have been used mostly on complex 

non-deterministic problems and machine-learning. This reflects nicely to the subject of 

generating adversarial examples for DNNs, which has all those features. 

 

Taking the terms in use discussed in the chapter 2.2.1 following things can be said from 

GA as a tool to generate adversarial inputs. They can produce both false positive and 

false negative attacks and are used as black-box models. They must be used as iterative 

attacks since it is required by the iterative nature of the algorithm. The main drawback 

with genetic algorithms is that they require many queries to the model they are trying to 

produce the adversarial examples to. 

    

As mentioned in chapter 2.1, DNN predicts the output probabilities from inputs with help 

of weights/convolutional filters, biases and activation functions. When creating an adver-

sarial example with GA as well as with any adversarial example algorithm, the input must 

be perturbated in such a manner that it has an impact to the loss function resulting the 

output layer of the network to give some desired confidence. 

  

GA tries to search for the input areas which affect the most to the loss function/output 

activations and once these areas are found, they are further evolved towards the best 
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fitting solution. The important thing to note is that now the fitness function of the GA is 

the whole DNN model, therefore the actual fitness of an individual is measured by the 

probabilities of the DNN predictions. There are many ways how a GA can be constructed 

to generate adversarial inputs to DNNs, but the threat model mentioned in chapter 2.2 

ultimately determines what type of output it tries to generate. However, the basic principle 

of the GA described in chapter 3.1 still stays the same regardless of the threat model.  

 

Genetic algorithm generated adversarial inputs should be hard to defend against, be-

cause of their random nature and the fact that the search space stays diverse because 

of the crossover and mutation. Every time an adversarial example is generated with a 

GA it is probably different from the next one. Following Figure 3.2 from Nguyen & al [10, 

p. 5] is a good example of the diversity of images GAs can produce.  

 

 

 

Figure 3.2  Generated pictures showcasing the diversity GAs can produce, mean DNN 
confidence score of 99.12%. [10, p. 5]  

 

It can also be seen that the model confidence achieved by the GA is very high even 

though the initial population is generated randomly. This is a promising result towards 
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being able to implement a working GA that generates high confidence adversarial exam-

ples in this bachelor. 
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4. ROBUSTNESS ANALYSIS OF VGG16 

This chapter is the actual implementation part of the thesis. First, an example network 

VGG16 is introduced, then a genetic algorithm is implemented with python to generate 

adversarial inputs to this network. Next, different kinds of adversarial based tests are 

made with this algorithm towards the example network. Finally, the results are analyzed 

to gain information about the robustness of the example network. 

4.1 VGG16 

For robustness analysis, an example neural network is required. A deep CNN model 

called VGG16 introduced by Simonyan & Zisserman in [12] has been chosen for this. 

VGG16 was chosen because of its good merits in ImageNet Large Scale Visual Recog-

nition Challenge 2014 (ILSVRC-2014) achieving top-5 test error (%) of 7.3 with 1000 

different classes [12, p. 8]. Top-5 test error is measured in such a way that the target 

label must be in one of the top 5 predictions. 

 

As can be seen from Figure 4.1, VGG16 is designed to take 224x224x3 RGB pictures 

as it’s input. It consists of five blocks each having a couple of convolutional layers fol-

lowed by a max pooling layer. The size of a single convolutional kernel is 3x3. This was 

the main difference between VGG16 and other CNNs at the time of ILSVRC-2014 since 

before this the kernels had been significantly larger [12, p. 2]. The max pooling layers 

have a window size of 2x2 with a stride of 2. The filter amount starts from 64 and is 

doubled after every max pooling layer. After the fifth block, there is a flattening layer, 

which flattens the feature maps into a 1-dimensional vector. In the end-part of the net, 

there are three dense layers, first two having 4096 neurons each and the last one 1000. 

This means the VGG16 gives a probability for 1000 different classes. The activation 

functions of the hidden layers are all ReLU (2.1) and the output layer is softmax (2.3). 

The cost function used in training is cross-entropy (2.5).  
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Figure 4.1   Layer types, output shapes and parameters of the VGG16 
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4.2 Implementation of the algorithm 

The tests were made with Python3 Anaconda distribution, which contains all the needed 

tools to work with neural networks and manipulate the data. The editor used was Spyder 

and computer specs were: Intel i5 6600k, Nvidia gtx980 and 16gb of ram. Python libraries 

used can be seen in Program 1. 

 

Rather than using some predetermined library for robustness testing, the idea was to 

generate a GA from scratch. Also, there actually wasn’t an existing implementation of 

GA in the most common robustness testing libraries. The goal of the GA was to generate 

adversarial examples to the VGG16. Data was represented as 224x224x3 RGB-pictures 

and the initial population was defined by either generating or downloading a set of im-

ages that size. VGG16 model and its predictions worked as the fitness function and the 

objective was to evolve the pictures in such manner that the network would be “fooled” 

to classify the picture differently than humans. 

4.2.1 Creating the genetic algorithm 

 

First part of the algorithm was to import the VGG16 to python with Keras library and save 

it as a model, no further modifications to the network was needed since by default the 

network is pre-trained with ImageNet weights and it takes 224x224x3 RGB-images with 

extra dimension as an input. After the VGG16 was saved as a model it looked just like  

Figure 4.1 when shown on the Spyder interface. 

 

The implementation of the actual genetic algorithm was started by defining the initial 

population, this was done by creating a function “generate_initial_population”, which 

downloads a desired number of images into an array from a given path and returns the 

array as the initial population. See Program 2. Depending on the desired result, these 

pictures can be either randomly generated or real images downloaded from some path. 

The number of images, path and randomness are given as parameters. 

 

After the initial population function, a fitness function was needed to tell the fitness of the 

population. A function called “fitness” was created to achieve this. See Program 3. The 

function goes through the given population (224x224x3) RGB-images and reshapes the 

images into a format that VGG16 can read by adding an extra dimension into the images 

resulting (1x224x224x3) images. Then, the images are fed to the VGG16 model which 

predicts the probability of the images to belong to each class. I.e. It works as the real 
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fitness function. Probability of each image to belong in predetermined ImageNet class is 

saved as fitness of that image. After everyone in the population is evaluated, the fitness’s 

of them are returned as numpy array. 

 

After evaluating the fitness of the population, the next step was to choose the fittest 

amongst the population. This was achieved by a function “select_fittest”, which searches 

the desired amount of minimum or maximum fitness’s from the fitness’s array and returns 

their indices. See Program 4. The minimum or maximum choice is given as parameter 

and depends on whether one needs to minimize or maximize the ImageNet class fitness. 

 

Then, the next step was to create a “crossover” function to produce children for the fittest 

population. See Program 7. First, the function modifies the fittest population images into 

1d-form, by in order, taking each of the colour channels values from left to right, top to 

bottom, resulting in a one-dimensional array. This modification is done with a helper 

function called “image_to_chromosome”, this helper function can also modify 1d array 

back to an image form. See Program 5. Next, the crossover function selects a predefined 

number of parent pairs amongst all the possible permutations of two parents from the 

fittest population. After all the parent pairs are selected, half of each parent pairs genes 

are concatenated randomly resulting in a new child chromosome from each of the pairs.  

 

To achieve efficient results, mutations must occur in the newly created child chromo-

somes. This was achieved by “mutation” function. See Program 6. It takes the newly 

created children and inflects mutation to every child by modifying a given factor amount 

of their genome by a random value from zero to ten to a random direction. If mutation 

limit (L∞ limitation) is given as parameter, the mutations will stay in the range of that 

limitation. 

 

After the needed functions were defined, they could be called from the main program. 

See Program 8. One key thing to notice is that the algorithm uses elitism to always carry 

the defined number of fittest individuals over to the next generation. 

4.3 Test results 

In the first test, the idea was to generate the initial population images from random pixels 

and try to get a high fit for a predetermined ImageNet class. The parameters were set to 

produce a false positive result and the iterations to stop after the probability of 0.99 is 

achieved. Parameters used in the test can be seen from Table 1 in the section “Test1”. 
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Table 1  Parameters used in the tests 

Parameter name Test1 Test2 Test3 

false_positive True False True 

imagenet_object See Figure 4.2 “sea_lion” “chimpanzee” 

generation_limit 5000 5000 10000 

population_amount 25 25 25 

parent_amount 10 10 10 

elite_amount 4 4 4 

children_amount 21 21 21 

mutation_factor 0.02 0.02 0.02 

perturbation_limit “none” 5 5 

randomImages True False False 

stopprobability 0.99 0.01 0.95 

 

 

Initial and resulting adversarial images for a couple of different classes can be seen from 

Figure 4.2. It also includes the generation amounts and initial probabilities.  

 

 

 

Figure 4.2  Randomly generated initial images and evolved adversarial images for dif-
ferent ImageNet classes including their initial accuracies and generation amounts 
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As could be expected from a random input, these images don’t really resemble anything. 

Note that the generation amount needed changes drastically if the initial fit is different. 

The first test was successful enough to confirm that the algorithm works and gives inter-

esting high-confidence results. 

 

In the second test, the purpose was to generate false negative adversarial example (Low 

accuracy for positive class). The perturbation limitation used was L∞ and it was limited 

to 5, meaning each pixel’s colour channel value could change only by a maximum of ±5. 

This limitation should result in an adversarial picture that seems basically unmodified to 

a human eye compared to the initial image. For the initial image, a sea lion was chosen. 

The vgg16 gives this example sea lion a probability of 0.893 for belonging into the class 

“sea_lion”. The parameters were set to produce a false negative result and the iterations 

to stop after the probability of 0.01 was reached for the adversarial image to belong in a 

“sea_lion” class. Parameters used in the second test can be seen from Table 1 in the 

section “Test2”. 

 

The script stopped after 672 generations when the “sea_lion” class probability had 

dropped to 0.01 and the highest accuracy was for class “toilet_tissue” which was roughly 

0.57. It is noteworthy that after 100 and 300 generations the probabilities for “sea_lion” 

class were already at 0.28 and 0.05.  

 

 

Figure 4.3   Initial sea-lion with a probability of 0.893 and adversarial image with a prob-
ability of 0.01 for belonging into ImageNet class “sea_lion”. Initial image from [18]. 

 

The same test with same parameters was also performed with different images, most 

notable one was the class “hatchet”, which had a quite high 0.999 initial probability to 
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belong into an ImageNet “hatchet” class. The generations needed for probability to drop 

under 0.01 was roughly 1000.  

 

The final and the hardest test for the algorithm was about creating false positive adver-

sarial images to a predetermined class. I.e. Try to maximize the confidence into some 

predetermined class other than the initial maximum class. The hardness comes from the 

fact that now it was needed to maximize just one other chosen class which had quite low 

initial probability while minimizing the probability of all the other classes. The L∞ limit was 

5 which was same as in the third test. Basically, this test was the same as the first one, 

but with initial images not being random and having the L∞ limitation. Image of a lion was 

chosen for this test, for which VGG16 gave an accuracy of 0.75 to belong to ImageNet 

class “lion”. The object class was “chimpanzee” and the other parameters for the test 

can be found from Table 1 in the section “Test3”. 

 

 
 

Figure 4.4  Initial lion with a probability of 0.75 for belonging into ImageNet class “lion” 
and adversarial lion with a probability of 0.95 for belonging into ImageNet class “chim-
panzee” Initial image from [19] 

 

This time the script took 6000 generations to reach the desired accuracy of 0.95 for 

“chimpanzee class”, which is quite high as expected. Second highest accuracy of 0.013 

was for the class “siamang”.  

 

4.4 Analysis of the results 

The first test was about proofing that the algorithm works and can produce random ad-

versarial images from scratch. This was proven right since the algorithm was able to 
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generate random high confidence false positive images. Creating a false positive image, 

in this case, is a much harder task than false negative, because one must maximize 

certain predetermined class instead of minimizing just one. Now, because the initial pop-

ulation of the GA was generated randomly, there is no concept of perturbation involved, 

thus it cannot be restricted. However, it can be said that the robustness of VGG16 against 

GA generated false positive images with a random initial population is not very high, 

because the generated images eventually achieved high confidence. Although, from Fig-

ure 4.2 can be seen that with very low initial accuracy the generations needed are quite 

high. The parameters could be better optimized to achieve smaller generation number 

needed. The main factor to reduce the number of generations is the size of the initial 

population which was just 25 in this test. On the other hand, increasing the initial popu-

lation increases the computational cost.  

 

The second test was the false negative test with L∞ norm of 5. During the testing, it was 

notable that increasing the restriction of L∞ norm would lower the generations needed 

drastically. Another factor was the initial accuracy of the object. For objects that had initial 

accuracy of roughly 1, it took a lot more generations than for the sea lion which had an 

initial accuracy of 0.893. Overall, the false negative test was a success and it can be said 

that against false negative adversarial examples the VGG16 is quite vulnerable without 

any defences, even when the L∞ limit is as low as 5. 

 

The final test was the hardest one for the algorithm, maximize predetermined class while 

having an L∞ limit of 5. Even though it took 6000 generations to achieve the accuracy of 

0.95, the algorithm still converged and didn’t stop at some probability. Again, the resulting 

image seen in Figure 4.4 looks unmodified to the human eye and increasing the L∞ limit 

and population size reduced the needed iterations. Especially in this test the increase in 

L∞ was very effective in decreasing the generation amount.  

 

All the tests made clear that against VGG16 it takes much higher generation amount 

from GA to achieve the desired accuracy for certain class if the initial accuracy of that 

class is very low. However, the GA is still able to produce a high confidence adversarial 

example no matter the initial accuracy. The results of second and third tests are interest-

ing in a sense that GA could evolve working adversarial examples even with low L∞ limit, 

which resulted in images that had small enough perturbation to not to be noticed by the 

human eye. With these results can be said that an image classifying DNN is not very 

robust against adversarial examples without any defensive methods, even though the 

iteration amount needed is sometimes rather high.  
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5. CONCLUSION AND FURTHER WORK 

In this thesis the main goal was to gain insight about the robustness of image classifying 

DNNs, this was achieved with the help of theory and adversarial examples generated by 

the GA. From the test results, it can be said that the example network VGG16 is relatively 

easy to fool with genetic algorithm generated adversarial examples which are L∞ limited. 

Especially false positive adversarial examples seem to be easy to generate. Thus, can 

be said that a high confidence image classifying DNN without any defences is not very 

robust against adversarial examples. To enhance the robustness of a DNN against ad-

versarial examples one would need to use some defensive methods discussed in 2.2.3. 

The need for measuring and enhancing the robustness of neural networks is a crucial 

subject of neural networks research. If one can easily introduce a working adversarial 

example into a DNN, the network cannot be used in a place where safety is an issue.  

 

If considering the actual GA implemented, the main drawback of it was the iteration 

amount needed, especially with small L∞ limitation and low initial accuracy to the target 

class. The algorithm could be better optimized, moreover the crossover and mutation 

part. However, the iteration amount could also be lowered just by increasing the size of 

the population, which would also increase the computational cost. Considering the time 

in hand and the fact that this is a bachelor thesis, the current solution was sufficient. 

 

This thesis has many aspects which could be taken further. First, some actual descriptive 

robustness metric system could be taken into use e.g. CLEVER briefly mentioned in 

chapter 2.2, instead of relying just on the insight gained from GAs effectiveness. Second, 

it could be analyzed how different structures of networks affect to their robustness and 

compare their robustness against each other. Third, different methods than GA could be 

used for generating adversarial examples (some of them mentioned in 2.2.2) to find 

which types of attacks work best against certain types of neural networks. Finally, the 

most important part. Different types of defensive methods could be tested and evaluated 

against adversarial examples generated in different styles, and ultimately try to find some 

new way which could boost the robustness against adversarial examples. 
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APPENDIX A: CODE SNIPPETS 

 

1. import warnings   
2. warnings.filterwarnings("ignore")   
3. from keras.applications.vgg16 import decode_predictions   
4. from keras.applications.vgg16 import VGG16   
5. from copy import deepcopy   
6. import itertools   
7. import random as stdlib_random    
8. from PIL import Image   
9. import numpy as np   
10. import matplotlib.pyplot as plt     
11. from keras.preprocessing.image import load_img   
12. from keras.preprocessing.image import img_to_array   
13. import time  

Program 1  Imports of required python libraries 

 

1. def generate_initial_population(amount, path, random=True):   
2.     """  
3.     Generates "amount" number of initial population (224x224x3)RGB array.  
4.     If "random"==True generates random images  
5.     If "random"==False downloads the image from "path"  
6.     returns the population as numpy array  
7.     """   
8.        
9.     population = []   
10.     for i in range(0,amount):   
11.         if random:   
12.             img = (np.random.standard_normal([224, 224, 3]) * 255).astype(   
13.                    np.uint8)   
14.         else:   
15.             img = load_img(path, target_size=(224, 224))   
16.             img = img_to_array(img)   
17.         population.append(img)   
18.     return np.asarray(population)  

Program 2  “generate_initial_population” -function 

 

1. def fitness(population, model, class_name):   
2.     """  
3.     Uses the neural network classifier "model" to predict the   
4.     fitness of each individual ( (224x224x3)RGB array ) in  
5.     "population" to belong in the class "class_name"  
6.     returns the fitnesses as numpy array  
7.     """   
8.        
9.     labels = [decode_predictions(model.predict(member.reshape(   
10.                 (1,224,224,3))),1000) for member in population]    
11.    
12.     fitnesses = np.asarray([obj[2] for label in labels for obj in label[0]   
13.                 if obj[1]==class_name ])   
14.     return fitnesses  

Program 3  ”fitness” -function 
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1. def select_fittest(fitnesses, amount, maximum=True):   
2.     """  
3.     If "maximum"==True, finds the "amount" number of maximum fitnesses  
4.     from "fitnesses" array.  
5.     If "maximum"==False, finds the minimum fitnesses  
6.     returns the indexes of the found fitnesses as list.  
7.     """   
8.        
9.     # Takes a deepcopy of fitnesses so the original values won’t be altered   
10.     tempfit = deepcopy(fitnesses)    
11.     elite_indexes = []   
12.     for i in range(0,amount): # Loops for the amount of elites desired   
13.         if maximum == True:   
14.             index = np.argmax(tempfit) # Finds the maximum fitness   
15.             #Replaces the found max value as zero so the next iteration    
16.             #gives second highest value etc..   
17.             tempfit[index] = 0    
18.         else:   
19.             index = np.argmin(tempfit)   
20.             # Replaces the found min value as two so the next iteration    
21.             # gives second lowest value etc..   
22.             tempfit[index] = 2     
23.         elite_indexes.append(index)    
24.            
25.     return elite_indexes  

Program 4  ”select_fittest” -function 

 

1. def image_to_chromosome(images, reverse=False):   
2.     """  
3.     Reshapes all the individuals from array "images"  
4.     if "reverse"==True reshapes 1d array to (224,224,3)  
5.     if "reverse"==False reshapes (224,224,3) array to 1d  
6.     returns the reshaped individuals as list of numpy arrays  
7.     """   
8.        
9.     if reverse: # If reverse is set to True makes images from chromosomes    
10.         chromosomes=[image.reshape(224,224,3) for image in images]   
11.     else: # If reverse is set to False makes chromosomes from images   
12.         chromosomes=[image.reshape(-1) for image in images]   
13.     return chromosomes  

Program 5  ”image_to_chromosome -function” 

 

1. def mutation(chromosomes, mutation_factor, limit):   
2.     """  
3.     Mutates the 1d numpy array "chromosomes" by changing the  
4.     "mutation_factor" determined amount of genes from each chromosome.  
5.     If "limit"==0, changes the genes value by 10 to a random direction  
6.     If "limit" > 0, changes the genes value by limit to a random direction  
7.     """   
8.        
9.     if limit==0:   
10.         for chromosome in chromosomes:   
11.             indecies = [np.random.randint(0, chromosome.size)    
12.                 for p in range(0, int(mutation_factor*chromosome.size))]   
13.                
14.             for index in indecies:   
15.                 value = chromosome[index]   
16.                 if value > 9 and value < 246:   
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17.                     color = range(int(value)-10, int(value)+10)   
18.                 elif value < 10:   
19.                     color = range(int(value), int(value)+10)   
20.                 else:   
21.                     color = range(int(value)-10, int(value))   
22.                 chromosome[index] = stdlib_random.choice(color)   
23.     else:    
24.         for chromosome in chromosomes:   
25.             indecies = [np.random.randint(0, chromosome.size)    
26.                 for p in range(0, int(mutation_factor*chromosome.size))]   
27.                
28.             for index in indecies:   
29.                 initvalue = initchromosome[index]   
30.                 low=0   
31.                 high=0   
32.                 if initvalue-limit<0:   
33.                     low=0   
34.                 else:   
35.                     low=initvalue-limit   
36.                 if initvalue+limit > 255:   
37.                     high = 255   
38.                 else:   
39.                     high = initvalue+limit            
40.                 color = range(int(low),int(high))   
41.                 chromosome[index] = stdlib_random.choice(color)   

Program 6  ”mutation” -function 

 

1. def crossover(parent_candidates, how_many_childs):   
2.     """  
3.     Chooses "children_amount" of parent pairs amongst "parent_candidates"  
4.     and for every parent pair produces a new child  
5.     by randomly combining genes from both parents.   
6.     returns the newly produced children as list of numpy arrays  
7.     """   
8.        
9.     # Modify each image in parent_candidates to 1d array   
10.     parent_candidates = image_to_chromosome(parent_candidates)   
11.     # Chooses k number of r=2 permutation from 1d elites as parents   
12.     selected_parents = stdlib_random.choices(list(itertools.permutations(   
13.                        parent_candidates, r=2)), k=how_many_childs)   
14.     # Loops through each of the parent pairs   
15.     # takes half of genes from each parent and concatenates them    
16.     # resulting an array of new children   
17.     arraylen = int(parent_candidates[0].shape[0])   
18.     n = int(arraylen/2)   
19.     children = []   
20.     temparr = np.zeros(arraylen,int)   
21.     for parents in selected_parents:   
22.         arrayman= deepcopy(temparr)   
23.         indecies1 = np.random.choice(parents[0].shape[0], n, replace=False)    
24.         indecies2 = np.setxor1d(np.indices(parents[1].shape), indecies1)   
25.         arrayman[indecies1] = parents[0][indecies1]   
26.         arrayman[indecies2] = parents[1][indecies2]   
27.         children.append(arrayman)    
28.     return children   

Program 7  ”crossover” -function 
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1. if __name__ == "__main__":   
2.     start_time = time.time()    # start time for the script   
3.     model = VGG16()             # neural network model used   
4.        
5.     # if true -> false positive, if False -> false negative   
6.     false_positive = True   
7.     # imagenet object, whose fitness we are interested   
8.     imagenet_object = "some_imagenet_class"   
9.     generation_amount = 10000   
10.     population_amount = 25   
11.     parent_amount = 10   
12.     # if other than 0, uses elitism   
13.     elite_amount = 4               
14.     children_amount = population_amount-elite_amount   
15.     # Factor that determines how many genes from children are mutated.   
16.     mutation_factor = 0.02   
17.      # Amount of how much each gene is allowed to change   
18.     perturbation_limit = 5   
19.      # True -> generate random images. False -> download image from path   
20.     randomImages = False   
21.     # desired probability of the adversarial image to the imagenet_object   
22.     stopprobability = 0.95    
23.     # path to the initial image, only used if randomImages = False   
24.     imagepath = "some/path"   
25.        
26.        
27.     population = generate_initial_population(population_amount,   
28.                                              imagepath, randomImages)   
29.        
30.     stop=False # Loop stopper   
31.     for i in range(0,generation_amount):   
32.         fitnesses = fitness(population, model, imagenet_object)   
33.         fittest_indexes = select_fittest(fitnesses,    
34.                                          parent_amount, false_positive)   
35.         fittest_population = population[fittest_indexes]   
36.            
37.         # save the best fitting initial image, its fitness and 1d form   
38.         if i==0:    
39.             initpic = population[0].astype(np.uint8)   
40.             initchromosome = image_to_chromosome(population)[0]   
41.             initfitness=str(fitnesses[fittest_indexes[0]])   
42.             print("Fitness of the initial image: {}".format(initfitness))   
43.             labels = decode_predictions(model.predict(initpic.reshape(   
44.                     (1,224,224,3))),3)   
45.             print("\nTop 3 initial accuracies:\n   {} \n   {} \n   {} \n"   
46.           .format(': '.join(map(str, labels[0][0][1:3])),   
47.           ': '.join(map(str, labels[0][1][1:3])),   
48.           ': '.join(map(str, labels[0][2][1:3]))))   
49.        
50.         # make children with the crossover function   
51.         children = crossover(fittest_population,children_amount)   
52.         # Mutates the newly created children   
53.         mutation(children,mutation_factor,perturbation_limit)   
54.         # Children back to image shape   
55.         children = image_to_chromosome(children,True)   
56.         # replace the old population with children and elites   
57.         population = np.concatenate((fittest_population[0:elite_amount],   
58.                                      children), axis=0)   
59.         # false positive case   
60.         if false_positive and fitnesses[fittest_indexes[0]   
61.                                         ] > stopprobability:   
62.             stop=True   
63.         # false negative case   
64.         if not false_positive and fitnesses[fittest_indexes[0]   
65.                                             ] < stopprobability:   
66.             stop=True   
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67.                
68.         # Plot the situation after every 100 generations    
69.         # and when the desired probability is achieved   
70.         if (i+1)%100==0 or stop:   
71.             print("\n\n{} generations have passed in {} seconds.".format(   
72.                     i+1,time.time() - start_time))   
73.             fig = plt.figure()   
74.             ax1 = fig.add_subplot(1,2,1)   
75.             plt.imshow(initpic)   
76.             ax2 = fig.add_subplot(1,2,2)   
77.             plt.imshow(fittest_population[0].astype(np.uint8))   
78.             ax1.title.set_text('Initial lion')   
79.             ax2.title.set_text('Adversarial lion')   
80.             plt.show(block=True)   
81.             print("Fitness to a '{}' class for the best generated image: "   
82.             .format(imagenet_object) + str(fitnesses[fittest_indexes[0]]))   
83.             # break the loop when desired probability achieved   
84.             if stop:   
85.                 break   
86.             
87.     # Print the three best initial accuracies   
88.     labels = decode_predictions(model.predict(initpic.reshape(   
89.             (1,224,224,3))),1000)   
90.     print("\nTop 3 initial accuracies:\n   {} \n   {} \n   {} \n"   
91.           .format(': '.join(map(str, labels[0][0][1:3])),   
92.           ': '.join(map(str, labels[0][1][1:3])),   
93.           ': '.join(map(str, labels[0][2][1:3]))))   
94.        
95.     # Print the three best adversarial accuracies   
96.     labels = decode_predictions(model.predict(   
97.             fittest_population[0].reshape((1,224,224,3))),3)   
98.     print("\nTop 3 adversarial accuracies:\n   {} \n   {} \n   {} \n"   
99.           .format(': '.join(map(str, labels[0][0][1:3])),   
100.           ': '.join(map(str, labels[0][1][1:3])),   
101.           ': '.join(map(str, labels[0][2][1:3]))))   
102.        
103.        
104.     # save the adversarial image   
105.     best_answer = fittest_population[0].astype(np.uint8)   
106.     im = Image.fromarray(best_answer)   
107.     im.save("fooling_{}.jpg".format(imagenet_object))   

Program 8  The main program 


