

Jukka Ahonen

ROBUSTNESS ANALYSIS OF HIGH-
CONFIDENCE IMAGE PERCEPTION BY

DEEP NEURAL NETWORKS

Faculty of Engineering and Natural Sciences
Bachelor’s Thesis

January 2020

i

ABSTRACT

Jukka Ahonen: Robustness Analysis of High-Confidence Image Perception by Deep Neural
Networks
Bachelor’s Thesis
Tampere University
Automation Engineering
January 2020

Deep neural networks are nowadays state-of-the-art method for many pattern recognition prob-
lems. As the performance grows, the robustness of them cannot be ignored. Specifically, the lack
of robustness against slightly perturbated inputs called adversarial examples has been a hot topic
for the last years. The main reason behind this is safety because if one can easily generate an
adversarial example that can efficiently “fool” a neural network, it cannot be trusted in a real-life
system where safety is an issue.

The goal of this thesis is to better understand deep neural networks, their robustness and tools
to test their robustness. One tool called genetic algorithm is further studied and implemented with
python to fool an example neural network VGG16 to misclassify images. VGG16 and its prediction
probabilities being the fitness function, the algorithm uses crossover, mutation and elitism among
other things to find the best adversarial solution. Three types of tests are conducted. First, a false
positive randomly generated adversarial example is created. Second, example image is evolved
to a false negative adversarial example with perturbation L∞ limited to 5. And finally, example
image is evolved to a false positive adversarial example with perturbation L∞ limited to 5. When
the perturbation is L∞ limited to 5, the difference between the original image and adversarial im-
age is unnoticeable to the human eye. The tests show that even a rather simple genetic algorithm
can make VGG16 misclassify images with high confidence. It seems that deep neural networks
without any safety measures are not very robust against adversarial examples.

Keywords: adversarial examples, robustness, genetic algorithm, neural networks

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

CONTENTS

1. INTRODUCTION .. 1

2. DEEP NEURAL NETWORKS ... 2

2.1 Structure of neural networks ... 2

2.2 Robustness of deep neural networks .. 6

2.2.1 Threat model and perturbation .. 7
2.2.2 Different ways to generate adversarial examples 8
2.2.3 Defence against adversarial examples .. 9

3. GENETIC ALGORITHMS TO HELP ROBUSTNESS TESTING 11

3.1 Principle of genetic algorithms .. 11

3.2 Adversarial examples for neural networks using genetic algorithms 13

4. ROBUSTNESS ANALYSIS OF VGG16 .. 16

4.1 VGG16 ... 16

4.2 Implementation of the algorithm .. 18

4.2.1 Creating the genetic algorithm .. 18
4.3 Test results ... 19

4.4 Analysis of the results ... 22

5. CONCLUSION AND FURTHER WORK .. 24

BIBLIOGRAPHY ... 25

APPENDIX A: CODE SNIPPETS ... 26

iii

LIST OF SYMBOLS AND ABBREVIATIONS

GA Genetic Algorithm
DNN Deep Neural Network
CNN Convolutional Neural Network
ILSVRC-2014 ImageNet Large Scale Visual Recognition Challenge 2014

1

1. INTRODUCTION

Deep neural networks (DNN) and convolutional neural networks (CNN) are nowa-

days a state-of-the-art method for many image recognition problems. As the perfor-

mance grows, the robustness of them cannot be ignored. Specifically, the lack of

robustness against slightly perturbated inputs called adversarial examples has been

a hot topic for the last years [17, p. 1]. The main reason behind this is safety because

if one can easily generate an adversarial example that can efficiently “fool” a neural

network, it cannot be trusted in a real-life system where safety is an issue.

This thesis is divided into three different sections. In the first section, the basic prin-

ciple and structure of DNN/CNN are introduced. The first section also deals with the

concept of robustness and adversarial examples and how they are linked to neural

networks. The second section is about genetic algorithms (GA), how they function

and how can they be used as a tool for robustness testing of neural networks. The

last section is about the actual robustness analysis for image recognizing CNN. CNN

used in the analysis is called VGG16, which is introduced at the beginning of the

section. Then, a GA for constructing adversarial examples is implemented with py-

thon. Finally, three tests are made towards the VGG16 and the results are analyzed

to gain insight into the robustness of the example network.

2

2. DEEP NEURAL NETWORKS

To understand how to measure the robustness of a neural network, one must first know

what a neural network is and how it works. This chapter introduces the fundamentals of

feedforward deep neural networks and their subtype convolutional neural networks. After

the basic have been gone through, it is discussed what the robustness of neural networks

means and how it can be evaluated.

2.1 Structure of neural networks

A neural network is a statistical model which tries to find relationships between input data

and output data. According to Abdi & al [1, p. 1], they are said to be adaptive, because

they can learn to adjust their parameters with the help of known examples. The network

consists of layers which can have multiple neurons. The neurons are building blocks of

the network which are connected to the adjacent layers’ neurons, see Figure 2.1.

Figure 2.1 Example structure of a feedforward neural network including an input layer,
two hidden layers and an output layer. Circles represent neurons.

From Figure 2.1 it can also be seen that the inputs are fed to the neurons of the first layer

which is called an input layer. The information is then propagated forward to the next

3

layer which is called a hidden layer. This continues until the final layer called an output

layer is reached, which produces some desired output for the information. [1, p. 2] The

term deep neural network (DNN) is used to describe a neural network that contains many

layers in it.

The connections of the neurons have weights which determine how powerful the con-

nections between the two neurons are. Neurons also have a bias term and activation

functions which determine if the neuron is being activated.

Figure 2.2 Neuron of a basic neural network including inputs x, weights w, bias b, sum

∑, activation function f and output y

In Figure 2.2, an example neuron can be seen. First, the inputs 𝑥 = [𝑥0, 𝑥𝑛] gain their

weights via weight factors 𝑤 = [𝑤0, 𝑤𝑛], this happens by a dot product between inputs

and weights. The weights exist to determine how powerful the connection is. After inputs

have their weights, they are summed together with bias term b. This sum will go through

the activation function f, which determines the output of the neuron. The output from the

activation function has some lower and upper limit depending on its type. There exist

many different types of activation functions, and the following ones are the most common

today:

Rectified Linear Unit (ReLU),

𝑓(𝑥) = max⁡(0, 𝑥) (2.1)

With an output range of [0, ∞), ReLu is the most commonly used activation function,

4

because it reduces the vanishing gradients problem and has a great performance. [9,

pp. 8–9]

Logistic sigmoid function,

𝑓(𝑥) = 𝜎(𝑥) =
1

1+𝑒−𝑥
 (2.2)

 It has an output range of (0, 1) and is used mostly on the output layer of binary classifi-

cation models. [9, p. 5]

Softmax,

𝑥𝑖 =
𝑒𝑥𝑖

∑ 𝑥𝑗
𝐽
𝑗

 (2.3)

With an output range of (0, 1) for each probability and sum of them equal to 1. Softmax

is used on output layers of multiclass problems. [9, p. 8] For comparison of different

activation functions see the paper [9] from Nwankpa & al. They go through and test many

different activation functions such as LReLU, PReLU and RReLU, which seem to have

a great performance.

When considering the training of a DNN, there exists a forward pass and a backward

pass. A forward pass is equivalent to the operations seen in Figure 2.1, where the train-

ing samples have passed to the end of the network. In the backward pass, the network

output is fed to a cost function C, which gives the mean difference of all the actual and

predicted values.

One example of the cost function is mean squared error (MSE), which is commonly

known as

𝑀𝑆𝐸 =⁡
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 , (2.4)

Where n is the number of inputs, 𝑦̂ is the predicted value and y is the true value. As the

name states, it calculates the mean squared difference between predicted and true val-

ues.

5

Another commonly used cost function is called Cross-entropy which is used in classifi-

cation problems. It measures how similar the probability distributions are.

𝐿𝑠 = −∑ log
𝑒
𝑊𝑦𝑖
𝑇 𝑥𝑖+𝑏𝑦𝑖

∑ 𝑒
𝑊𝑗
𝑇𝑥𝑖+𝑏𝑗𝑛

𝑗=1

𝑚
𝑖=1 , (2.5)

Where xi is a feature of ith sample, yi is the class of xi, Wj is the parameter vector of j and

bj is the bias. [3, p. 2028]

The goal of the whole training is to minimize the loss function, and this is done during

the backward pass by adjusting the weights and biases. This adjustment is done by

backpropagating the gradients of the cost function backwards on the net to adjust the

weights and biases one by one. [1, p. 74–82] In other words, this process is an imple-

mentation of gradient descent into a DNN. Even a simple backpropagation can be quite

laborious by hand, therefore today with DNNs where there can be hundreds of layers,

backpropagation is done with the help of computers.

When the network has seen all the input data and used them to update the weights once,

one Epoch has passed. This means that the network has now taken one step towards

the negative gradient and another cycle can begin. After the network is trained with a

suitable amount of training samples, it can be used to predict for example a class for the

input. When predicting, the network similarly does the forward pass, and, in the end,

activation functions of the output layer give the probability of input belonging into each

class. The changes in the loss function are the key element to keep in mind when con-

sidering the robustness of neural networks, which will be discussed in later chapters.

Convolutional neural networks (CNN), see LeCun & al [6], are a subtype of DNN that are

state of the art at image classification tasks. Typically, CNN consists of sets of convolu-

tional layers followed by a pooling layer and at the end of the net a few dense layers. A

convolutional layer has many filters or “convolutional kernels” just like basic feedforward

DNN has neurons. However, they differ from each other in such manner that in the CNN

the weights are convolutional operations. The kernels filter the data by performing a dot

product between the kernel and corresponding kernel sized area while sliding through

the whole input resulting in a feature map. The idea is to extract different features for the

next layers so they can concentrate on more detailed features of the data than the first

layers. Convolutional layers would shrink the size of the inputs if no padding is added.

6

Usually, zero-padding is added to preserve the input size for the next layers, so they

don’t miss any important areas of the input. Zero padding simply means that zeros are

added to the input matrix. An example of convolution with zero padding can be seen in

Figure 2.3.

Figure 2.3 2d convolution operation with 3x3 filter and max-pooling with 2x2 filter

Pooling layers are another important layer type in CNNs, their function is to reduce the

spatial size of the data which reduces the parameters and therefore reduces the needed

computing power and the possibility of overfitting. Today mostly max pooling is used

which returns the maximum value from each window sized block. Note, that the max-

pooling layers always stay the same through the training since they don’t have any type

of weights to alter. An example of max pooling can be seen in Figure 2.3.

After convolutional layers have extracted the features, and max-pooling layers prevented

overfitting, the feature maps are then fed to the dense layers at the end of the network.

The dense layers calculate the actual predictions based on the feature maps the convo-

lutional layers have generated.

2.2 Robustness of deep neural networks

The robustness of a DNN can be described as how well the trained model predicts new

unseen data and how it reacts to small changes in the input data. A common way to test

the robustness is to measure how well the model fairs against adversarial examples

7

while preserving the ability to handle the task it is designed for. Adversarial examples

introduced by Szegedy & al [14] are model inputs that have been designed solely to

make the model do a mistake while predicting the output.

It is hard to give any real value to the robustness of DNN. However, Weng & al [16]

propose a method to measure the robustness of DNNs called CLEVER, short for Cross

Lipschitz Extreme Value for nEtwork Robustness. In [16 p. 2] Weng & al state that:

“CLEVER is the first attack-independent robustness metric that can be applied to any

neural network classifier.” Since state-of-the-art robustness determination methods are

quite complex, to keep this thesis simple and short enough, robustness is estimated only

via the effectiveness of adversarial examples compared to the perturbation amount.

2.2.1 Threat model and perturbation

To define how the adversarial should work and what type of information it has access to,

a threat model is needed. Yuan & al [17] introduce a way to construct an efficient threat

model containing four aspects.

The first one is called adversarial falsification, which describes the type of adversarial

example attack. It can be either false positive attack or false negative attack. [17, p. 4]

False positive meaning the model gives high confidence for input that humans don’t rec-

ognize, and false negative meaning human can recognize the input, but the model gives

low confidence.

The second aspect is the adversary’s knowledge. The adversary can know only the out-

put of the model, having no other access to the model. This is called a black-box attack.

On the other hand, when the adversary has access to everything in the model it is con-

sidered as a white-box attack. [17, p. 4] White-box attacks are usually more effective,

but when the model structure or training data isn’t accessible it forces one to use a black-

box attack.

The third aspect is called Adversarial specificity. The attack can either target a certain

class or target any class except the original one. The final aspect is attack frequency

describing one-time attacks and iterative attacks. One-time attacks can interact only

once with the model. Iterative attacks can interact many times with the model, performing

better, however with a bigger cost of computational power. [17, p. 4] These aspects de-

8

fined are a great tool when defining an adversarial example attack against a DNN be-

cause they help to further plan what type of an algorithm to choose and how to construct

it.

Another important part of adversarial examples is the perturbation. Essentially, it means

the alteration to the model input to make it an adversarial example. [14, p. 2] Perturbation

can also be limited. While limiting the perturbation, it must be determined which is more

important, minimize the perturbation to fool a human eye or have a more perturbated

input which fools the model better [17, p. 5].

A common way to constrain or measure the perturbation of an adversarial image is with

p-norm distance.

‖𝑥 − 𝑥𝐴‖𝑝 = (∑ ‖𝑥𝑖 − 𝑥𝐴𝑖‖
𝑝𝑛

𝑖=1)
1

𝑝 (2.7)

Where x is the original input, xA is adversarial input and p is defined by the Lp norm used.

Norms mostly used are L0, L2 and L∞. Where L0 measures the numbers of modified

pixels in the xA, L2 measures the Euclidean distance of x and xA, and L∞ measures the

maximum change in any pixel of the x. Carlini & Wagner [4, p. 3–4] and Sharif & al [11,

p. 2–3] In short, the concept of perturbation limitation is needed to define what type of

modifications are allowed for the input. For example, when L0 is limited to one pixel, it

means the adversarial example must be constructed by modifying only one pixel of the

input image.

Adversarial examples can also be generated from scratch, with this method there exists

no perturbation since there is no original input defined. Lp limitation enables one way to

describe the actual robustness of a DNN by comparing the amount of Lp limitation

against the effectiveness of the adversarial example.

2.2.2 Different ways to generate adversarial examples

Now that the concept of adversarial examples is familiar, this chapter introduces some

of the common methods to generate those examples. It is noteworthy that there is a

substantial number of different algorithms and styles to generate adversarial examples.

9

The first method introduced is Fast gradient sign method proposed by Goodfellow & al

in [7]. It is a white box attack method that uses the signs of the gradients of a loss function

respect to the input to modify the input data into an adversarial example. When this is

stated as a formula we get 𝑥𝐴 = 𝑥 + 𝜀 ∗ 𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥, 𝑦)), where xA is the adversarial

example, x is the original input, ε is the multiplier for the perturbation, θ is models param-

eters, and y is targets of the x. [7, p. 3] In short, this method adds perturbation to the

input data which has the same direction that the gradient of the loss function has respect

to the input data.

Another method called Genetic algorithm (GA) is also one great way to generate black-

box adversarial examples. This method is discussed more thoroughly in chapter 3 since

it has been chosen as the tool to use in this thesis implementation part. For more meth-

ods such as Carlini & Wagner attack, DeepFool, Zeroth Order Optimization and Feature

Adversary see [4,5,17].

All the attacks should work at some level if there are no defensive measures in the tar-

geted model, the attack method one would choose depends highly on the situation

(threat model discussed in chapter 2.2.1). The attacks may seem different but the goal

of them all is the same, they try to affect the models cost function in a way that the output

layers activation functions yield desired confidences for desired classes.

2.2.3 Defence against adversarial examples

This chapter briefly introduces some defensive methods to enhance the robustness of

DNNs. Defensive methods against adversarial examples have become an increasingly

studied subject in the last years, and just as there are many different attack methods,

there are defensive methods as well.

One defensive method against adversarial images is called adversarial training intro-

duced by Huang & al in [8], which means that DNN is trained with adversarial images

included in the training set. This teaches the model to ignore those types of adversarial

examples. However, it seems to only defend well against adversarial images constructed

with the algorithm it has also been trained on. [11, p. 3–4] If one would train the model

with all different kinds of adversarial examples constructed with different algorithms,

there would be too much fake data on the model, and it would become ineffective.

10

Another type of defence are autoencoders to DNN, they are in fact their own type of

neural network which reduce the dimensions of the inputs and then expand them back

to the original dimension size. While doing this, they should remove the perturbations

before the inputs are fed to the other network. However, according to Gu & Rigazio [6,

pp. 4–5], new adversarial examples can easily be constructed with a new model where

an autoencoder is involved.

There are also number of different defensive methods such as network verification, re-

construction of input, network distillation, ensembling defences, etc. For more methods

see [5,17]. Many of these defensive methods work only against adversarial examples

generated in a certain way. Therefore, when choosing a defensive method, one should

think about what kind of attacks could be introduced to the given model. There also exists

python libraries for testing the robustness of the adversarial inputs, most popular ones

seem to be CleverHans, IBM Adversarial Robustness Toolbox and Foolbox.

11

3. GENETIC ALGORITHMS TO HELP ROBUST-
NESS TESTING

When it comes to analyzing the robustness of DNN and generating adversarial examples

there are multiple ways to tackle the problem as discussed in the previous chapters. In

their research, Nguyen & al [10] have used an approach called genetic algorithms. In-

spired by their impressive results to “fool” a deep neural network with GA, it has been

chosen as the method for this bachelor’s further analysis. This chapter introduces the

basic principle behind the genetic algorithms and how they are used to generate adver-

sarial inputs for a DNN.

3.1 Principle of genetic algorithms

A genetic algorithm can be described as a method to solve problems using similar prin-

ciples as genetics, this also means there are similar concepts such as chromosome and

gene involved. In this context, chromosome means a solution to the given problem e.g.

an image, and gene is a building block of the chromosome, e.g. a pixel of an image. GAs

have been widely used in many problems that include optimization or search.

Figure 3.1 Basic principle of genetic algorithm

12

Figure 3.1 represents the basic principle of genetic algorithm. GA can be said to consist

of four parts: initialization, selection, genetic operations and replacement. Each of them

has an important role for the algorithm to be successful.

The first part of the initialization consists of defining the search space. The algorithm

must have a search space, so it knows what type of solutions to look for and where to

search them [13, p. 20].

The second part of the initialization is to define the initial population. The initial population

consists of chromosomes which are just some solutions to the given problem. In their

book, Sivanandam & Deepa [13, p. 30] tell that it is recommended for the initial popula-

tion to have a good mixture of different types of chromosomes and they are often ran-

domly generated. This allows the GA to have different types of solutions ready from the

beginning.

Once the search space and initial population are defined, the next step is selection,

meaning that some individuals from the population need to be selected as parents. For

selection, a way to describe the fitness of each individual chromosome is needed, this is

called a fitness function. A fitness function is always problem-specific, it gives a fit for

each chromosome to the defined problem. Defining the fitness function is said to be the

most difficult and important part when creating a GA. [13, p. 148] After the fitness function

has evaluated the chromosomes, usually the ones with higher fit have a greater possi-

bility to be selected as parents. There are multiple different methods to select the parents

based on their fitnesses, see [13, pp. 46–50].

For GA to produce new solutions to the given problem, genetic operations must occur.

The most important genetic operation is the crossover, which is applied by choosing half

of the genes from two different parent chromosomes and combining those parts into a

new child chromosome. These crossovers happen until a desired amount of child chro-

mosomes have been produced. Usually, the number of children equals the size of the

population [13, p. 6]. Without the crossover, the algorithm would just reproduce the same

answers to the problem all over again and thus wouldn’t solve the problem. For a number

of different crossover techniques see [13, pp. 51–56].

The second genetic operation is called mutation which happens in the child chromo-

somes. In the mutation, a small number of genes in child chromosomes will be changed.

Mutations must occur to make sure that the variation in solutions is preserved over the

13

generations [13, p. 56]. In his book, Bäck [2, p. 197] tells that it is generally a good idea

to keep the mutations rather small compared to the unmutated chromosome since bigger

changes often seem to lower the fitness of the chromosome.

The last part of the GA is called replacement. Replacement means that the old population

of chromosomes are replaced with the newly produced children. The replacement can

be done in several ways, one option is to replace everyone in the old population. [13, pp.

58–59] Then there is a concept of elitism, which means that some of the best fitting

chromosomes are preserved after the cycle despite them being parent chromosomes

[13, p. 49]. This ensures that the fitness never goes downwards over the generation.

After one generation the process starts all over again with the newly generated popula-

tion, these cycles or generations are continued until one of the chromosomes has a high

enough fitness value, meaning a good enough solution has been found.

3.2 Adversarial examples for neural networks using genetic al-
gorithms

According to Sivanandam & Deepa [13, p. 5], GAs have been used mostly on complex

non-deterministic problems and machine-learning. This reflects nicely to the subject of

generating adversarial examples for DNNs, which has all those features.

Taking the terms in use discussed in the chapter 2.2.1 following things can be said from

GA as a tool to generate adversarial inputs. They can produce both false positive and

false negative attacks and are used as black-box models. They must be used as iterative

attacks since it is required by the iterative nature of the algorithm. The main drawback

with genetic algorithms is that they require many queries to the model they are trying to

produce the adversarial examples to.

As mentioned in chapter 2.1, DNN predicts the output probabilities from inputs with help

of weights/convolutional filters, biases and activation functions. When creating an adver-

sarial example with GA as well as with any adversarial example algorithm, the input must

be perturbated in such a manner that it has an impact to the loss function resulting the

output layer of the network to give some desired confidence.

GA tries to search for the input areas which affect the most to the loss function/output

activations and once these areas are found, they are further evolved towards the best

14

fitting solution. The important thing to note is that now the fitness function of the GA is

the whole DNN model, therefore the actual fitness of an individual is measured by the

probabilities of the DNN predictions. There are many ways how a GA can be constructed

to generate adversarial inputs to DNNs, but the threat model mentioned in chapter 2.2

ultimately determines what type of output it tries to generate. However, the basic principle

of the GA described in chapter 3.1 still stays the same regardless of the threat model.

Genetic algorithm generated adversarial inputs should be hard to defend against, be-

cause of their random nature and the fact that the search space stays diverse because

of the crossover and mutation. Every time an adversarial example is generated with a

GA it is probably different from the next one. Following Figure 3.2 from Nguyen & al [10,

p. 5] is a good example of the diversity of images GAs can produce.

Figure 3.2 Generated pictures showcasing the diversity GAs can produce, mean DNN
confidence score of 99.12%. [10, p. 5]

It can also be seen that the model confidence achieved by the GA is very high even

though the initial population is generated randomly. This is a promising result towards

15

being able to implement a working GA that generates high confidence adversarial exam-

ples in this bachelor.

16

4. ROBUSTNESS ANALYSIS OF VGG16

This chapter is the actual implementation part of the thesis. First, an example network

VGG16 is introduced, then a genetic algorithm is implemented with python to generate

adversarial inputs to this network. Next, different kinds of adversarial based tests are

made with this algorithm towards the example network. Finally, the results are analyzed

to gain information about the robustness of the example network.

4.1 VGG16

For robustness analysis, an example neural network is required. A deep CNN model

called VGG16 introduced by Simonyan & Zisserman in [12] has been chosen for this.

VGG16 was chosen because of its good merits in ImageNet Large Scale Visual Recog-

nition Challenge 2014 (ILSVRC-2014) achieving top-5 test error (%) of 7.3 with 1000

different classes [12, p. 8]. Top-5 test error is measured in such a way that the target

label must be in one of the top 5 predictions.

As can be seen from Figure 4.1, VGG16 is designed to take 224x224x3 RGB pictures

as it’s input. It consists of five blocks each having a couple of convolutional layers fol-

lowed by a max pooling layer. The size of a single convolutional kernel is 3x3. This was

the main difference between VGG16 and other CNNs at the time of ILSVRC-2014 since

before this the kernels had been significantly larger [12, p. 2]. The max pooling layers

have a window size of 2x2 with a stride of 2. The filter amount starts from 64 and is

doubled after every max pooling layer. After the fifth block, there is a flattening layer,

which flattens the feature maps into a 1-dimensional vector. In the end-part of the net,

there are three dense layers, first two having 4096 neurons each and the last one 1000.

This means the VGG16 gives a probability for 1000 different classes. The activation

functions of the hidden layers are all ReLU (2.1) and the output layer is softmax (2.3).

The cost function used in training is cross-entropy (2.5).

17

Figure 4.1 Layer types, output shapes and parameters of the VGG16

18

4.2 Implementation of the algorithm

The tests were made with Python3 Anaconda distribution, which contains all the needed

tools to work with neural networks and manipulate the data. The editor used was Spyder

and computer specs were: Intel i5 6600k, Nvidia gtx980 and 16gb of ram. Python libraries

used can be seen in Program 1.

Rather than using some predetermined library for robustness testing, the idea was to

generate a GA from scratch. Also, there actually wasn’t an existing implementation of

GA in the most common robustness testing libraries. The goal of the GA was to generate

adversarial examples to the VGG16. Data was represented as 224x224x3 RGB-pictures

and the initial population was defined by either generating or downloading a set of im-

ages that size. VGG16 model and its predictions worked as the fitness function and the

objective was to evolve the pictures in such manner that the network would be “fooled”

to classify the picture differently than humans.

4.2.1 Creating the genetic algorithm

First part of the algorithm was to import the VGG16 to python with Keras library and save

it as a model, no further modifications to the network was needed since by default the

network is pre-trained with ImageNet weights and it takes 224x224x3 RGB-images with

extra dimension as an input. After the VGG16 was saved as a model it looked just like

Figure 4.1 when shown on the Spyder interface.

The implementation of the actual genetic algorithm was started by defining the initial

population, this was done by creating a function “generate_initial_population”, which

downloads a desired number of images into an array from a given path and returns the

array as the initial population. See Program 2. Depending on the desired result, these

pictures can be either randomly generated or real images downloaded from some path.

The number of images, path and randomness are given as parameters.

After the initial population function, a fitness function was needed to tell the fitness of the

population. A function called “fitness” was created to achieve this. See Program 3. The

function goes through the given population (224x224x3) RGB-images and reshapes the

images into a format that VGG16 can read by adding an extra dimension into the images

resulting (1x224x224x3) images. Then, the images are fed to the VGG16 model which

predicts the probability of the images to belong to each class. I.e. It works as the real

19

fitness function. Probability of each image to belong in predetermined ImageNet class is

saved as fitness of that image. After everyone in the population is evaluated, the fitness’s

of them are returned as numpy array.

After evaluating the fitness of the population, the next step was to choose the fittest

amongst the population. This was achieved by a function “select_fittest”, which searches

the desired amount of minimum or maximum fitness’s from the fitness’s array and returns

their indices. See Program 4. The minimum or maximum choice is given as parameter

and depends on whether one needs to minimize or maximize the ImageNet class fitness.

Then, the next step was to create a “crossover” function to produce children for the fittest

population. See Program 7. First, the function modifies the fittest population images into

1d-form, by in order, taking each of the colour channels values from left to right, top to

bottom, resulting in a one-dimensional array. This modification is done with a helper

function called “image_to_chromosome”, this helper function can also modify 1d array

back to an image form. See Program 5. Next, the crossover function selects a predefined

number of parent pairs amongst all the possible permutations of two parents from the

fittest population. After all the parent pairs are selected, half of each parent pairs genes

are concatenated randomly resulting in a new child chromosome from each of the pairs.

To achieve efficient results, mutations must occur in the newly created child chromo-

somes. This was achieved by “mutation” function. See Program 6. It takes the newly

created children and inflects mutation to every child by modifying a given factor amount

of their genome by a random value from zero to ten to a random direction. If mutation

limit (L∞ limitation) is given as parameter, the mutations will stay in the range of that

limitation.

After the needed functions were defined, they could be called from the main program.

See Program 8. One key thing to notice is that the algorithm uses elitism to always carry

the defined number of fittest individuals over to the next generation.

4.3 Test results

In the first test, the idea was to generate the initial population images from random pixels

and try to get a high fit for a predetermined ImageNet class. The parameters were set to

produce a false positive result and the iterations to stop after the probability of 0.99 is

achieved. Parameters used in the test can be seen from Table 1 in the section “Test1”.

20

Table 1 Parameters used in the tests

Parameter name Test1 Test2 Test3

false_positive True False True

imagenet_object See Figure 4.2 “sea_lion” “chimpanzee”

generation_limit 5000 5000 10000

population_amount 25 25 25

parent_amount 10 10 10

elite_amount 4 4 4

children_amount 21 21 21

mutation_factor 0.02 0.02 0.02

perturbation_limit “none” 5 5

randomImages True False False

stopprobability 0.99 0.01 0.95

Initial and resulting adversarial images for a couple of different classes can be seen from

Figure 4.2. It also includes the generation amounts and initial probabilities.

Figure 4.2 Randomly generated initial images and evolved adversarial images for dif-
ferent ImageNet classes including their initial accuracies and generation amounts

21

As could be expected from a random input, these images don’t really resemble anything.

Note that the generation amount needed changes drastically if the initial fit is different.

The first test was successful enough to confirm that the algorithm works and gives inter-

esting high-confidence results.

In the second test, the purpose was to generate false negative adversarial example (Low

accuracy for positive class). The perturbation limitation used was L∞ and it was limited

to 5, meaning each pixel’s colour channel value could change only by a maximum of ±5.

This limitation should result in an adversarial picture that seems basically unmodified to

a human eye compared to the initial image. For the initial image, a sea lion was chosen.

The vgg16 gives this example sea lion a probability of 0.893 for belonging into the class

“sea_lion”. The parameters were set to produce a false negative result and the iterations

to stop after the probability of 0.01 was reached for the adversarial image to belong in a

“sea_lion” class. Parameters used in the second test can be seen from Table 1 in the

section “Test2”.

The script stopped after 672 generations when the “sea_lion” class probability had

dropped to 0.01 and the highest accuracy was for class “toilet_tissue” which was roughly

0.57. It is noteworthy that after 100 and 300 generations the probabilities for “sea_lion”

class were already at 0.28 and 0.05.

Figure 4.3 Initial sea-lion with a probability of 0.893 and adversarial image with a prob-
ability of 0.01 for belonging into ImageNet class “sea_lion”. Initial image from [18].

The same test with same parameters was also performed with different images, most

notable one was the class “hatchet”, which had a quite high 0.999 initial probability to

22

belong into an ImageNet “hatchet” class. The generations needed for probability to drop

under 0.01 was roughly 1000.

The final and the hardest test for the algorithm was about creating false positive adver-

sarial images to a predetermined class. I.e. Try to maximize the confidence into some

predetermined class other than the initial maximum class. The hardness comes from the

fact that now it was needed to maximize just one other chosen class which had quite low

initial probability while minimizing the probability of all the other classes. The L∞ limit was

5 which was same as in the third test. Basically, this test was the same as the first one,

but with initial images not being random and having the L∞ limitation. Image of a lion was

chosen for this test, for which VGG16 gave an accuracy of 0.75 to belong to ImageNet

class “lion”. The object class was “chimpanzee” and the other parameters for the test

can be found from Table 1 in the section “Test3”.

Figure 4.4 Initial lion with a probability of 0.75 for belonging into ImageNet class “lion”
and adversarial lion with a probability of 0.95 for belonging into ImageNet class “chim-
panzee” Initial image from [19]

This time the script took 6000 generations to reach the desired accuracy of 0.95 for

“chimpanzee class”, which is quite high as expected. Second highest accuracy of 0.013

was for the class “siamang”.

4.4 Analysis of the results

The first test was about proofing that the algorithm works and can produce random ad-

versarial images from scratch. This was proven right since the algorithm was able to

23

generate random high confidence false positive images. Creating a false positive image,

in this case, is a much harder task than false negative, because one must maximize

certain predetermined class instead of minimizing just one. Now, because the initial pop-

ulation of the GA was generated randomly, there is no concept of perturbation involved,

thus it cannot be restricted. However, it can be said that the robustness of VGG16 against

GA generated false positive images with a random initial population is not very high,

because the generated images eventually achieved high confidence. Although, from Fig-

ure 4.2 can be seen that with very low initial accuracy the generations needed are quite

high. The parameters could be better optimized to achieve smaller generation number

needed. The main factor to reduce the number of generations is the size of the initial

population which was just 25 in this test. On the other hand, increasing the initial popu-

lation increases the computational cost.

The second test was the false negative test with L∞ norm of 5. During the testing, it was

notable that increasing the restriction of L∞ norm would lower the generations needed

drastically. Another factor was the initial accuracy of the object. For objects that had initial

accuracy of roughly 1, it took a lot more generations than for the sea lion which had an

initial accuracy of 0.893. Overall, the false negative test was a success and it can be said

that against false negative adversarial examples the VGG16 is quite vulnerable without

any defences, even when the L∞ limit is as low as 5.

The final test was the hardest one for the algorithm, maximize predetermined class while

having an L∞ limit of 5. Even though it took 6000 generations to achieve the accuracy of

0.95, the algorithm still converged and didn’t stop at some probability. Again, the resulting

image seen in Figure 4.4 looks unmodified to the human eye and increasing the L∞ limit

and population size reduced the needed iterations. Especially in this test the increase in

L∞ was very effective in decreasing the generation amount.

All the tests made clear that against VGG16 it takes much higher generation amount

from GA to achieve the desired accuracy for certain class if the initial accuracy of that

class is very low. However, the GA is still able to produce a high confidence adversarial

example no matter the initial accuracy. The results of second and third tests are interest-

ing in a sense that GA could evolve working adversarial examples even with low L∞ limit,

which resulted in images that had small enough perturbation to not to be noticed by the

human eye. With these results can be said that an image classifying DNN is not very

robust against adversarial examples without any defensive methods, even though the

iteration amount needed is sometimes rather high.

24

5. CONCLUSION AND FURTHER WORK

In this thesis the main goal was to gain insight about the robustness of image classifying

DNNs, this was achieved with the help of theory and adversarial examples generated by

the GA. From the test results, it can be said that the example network VGG16 is relatively

easy to fool with genetic algorithm generated adversarial examples which are L∞ limited.

Especially false positive adversarial examples seem to be easy to generate. Thus, can

be said that a high confidence image classifying DNN without any defences is not very

robust against adversarial examples. To enhance the robustness of a DNN against ad-

versarial examples one would need to use some defensive methods discussed in 2.2.3.

The need for measuring and enhancing the robustness of neural networks is a crucial

subject of neural networks research. If one can easily introduce a working adversarial

example into a DNN, the network cannot be used in a place where safety is an issue.

If considering the actual GA implemented, the main drawback of it was the iteration

amount needed, especially with small L∞ limitation and low initial accuracy to the target

class. The algorithm could be better optimized, moreover the crossover and mutation

part. However, the iteration amount could also be lowered just by increasing the size of

the population, which would also increase the computational cost. Considering the time

in hand and the fact that this is a bachelor thesis, the current solution was sufficient.

This thesis has many aspects which could be taken further. First, some actual descriptive

robustness metric system could be taken into use e.g. CLEVER briefly mentioned in

chapter 2.2, instead of relying just on the insight gained from GAs effectiveness. Second,

it could be analyzed how different structures of networks affect to their robustness and

compare their robustness against each other. Third, different methods than GA could be

used for generating adversarial examples (some of them mentioned in 2.2.2) to find

which types of attacks work best against certain types of neural networks. Finally, the

most important part. Different types of defensive methods could be tested and evaluated

against adversarial examples generated in different styles, and ultimately try to find some

new way which could boost the robustness against adversarial examples.

25

BIBLIOGRAPHY

[1] H. Abdi, D. Valentin & B. Edelman, Quantitative Applications in the Social Sci-
ences: Neural networks. Thousand Oaks, CA: SAGE Publications, 1999, pp. 1–
2, 74–82, Available from: http://methods.sagepub.com/book/neural-networks
[cited 20.12.2019].

[2] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press, 1996,
p. 197.

[3] J. Cao, Z. Su, L. Yu, D. Chang, X. Li and Z. Ma, Softmax Cross Entropy Loss
with Unbiased Decision Boundary for Image Classification, Chinese Automation
Congress (CAC), 2018, pp. 2028-2032, DOI 10.1109/CAC.2018.8623242, [cited
20.12.2019].

[4] N. Carlini, D. Wagner, Towards Evaluating the Robustness of Neural Networks,
Cornell University, 2017, pp. 4–5, Available from:
https://arxiv.org/abs/1608.04644 [cited 20.12.2019].

[5] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay, Adver-
sarial Attacks and Defences: A Survey, Cornell University, 2018, Available from:
https://arxiv.org/abs/1810.00069 [cited 20.12.2019].

[6] S. Gu, L. Rigazio, Towards deep neural network architectures robust to adver-
sarial examples, Cornell University, 2015, pp. 1–9, Available from:
https://arxiv.org/abs/1412.5068 [cited 20.12.2019].

[7] I.J. Goodfellow, J. Shlens, Christian Szegedy, Explaining and Harnessing Ad-
versarial Examples, Cornell University, 2015, Available from
https://arxiv.org/abs/1412.6572 [cited 20.12.2019].

[8] R. Huang, B. Xu, D. Schuurmans, C. Szepesvári, Learning with a strong adver-
sary, Cornell university, 2015, Available from: https://arxiv.org/abs/1511.03034
[cited 20.12.2019].

[9] C. Nwankpa, W. Ijomah, A. Gachagan & Stephen Marshall, Activation Func-
tions: Comparison of trends in Practice and Research for Deep Learning, Cor-
nell University, 2018, p. 5–9. Available from: https://arxiv.org/abs/1811.03378
[cited 20.12.2019].

[10] A. Nguyen, J. Yosinski, J. Clune, Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images. In Computer Vision and
Pattern Recognition (CVPR ’15), IEEE, 2015, Available from:
https://arxiv.org/abs/1412.1897, [cited 20.12.2019].

[11] M. Sharif, L. Bauer, M. K. Reiter, On the Suitability of Lp-norms for Creating and
Preventing Adversarial Examples, Cornell University, 2018, p. 2–4, Available
from: https://arxiv.org/abs/1802.09653, [cited 20.12.2019].

26

[12] K. Simonyan & A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition, ICLR, 2015, Available from:
https://arxiv.org/abs/1409.1556, [cited 20.12.2019].

[13] S.N. Sivanandam and S.N. Deepa, Introduction to genetic algorithms, Springer,
2007, pp. 5–6, 20, 30, 46–56, 58–59, 148

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, Intriguing properties of neural networks, International Conference on
Learning Representations, 2014, Available from: https://arxiv.org/abs/1312.6199
[Cited 20.12.2019].

[15] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L.
Wang, G. Wang, J. Cai and T. Chen, Recent advances in convolutional neural
networks, v6, Cornell University, 2017, pp. 354–377.

[16] T. Weng, H. Zhang, P. Chen, J. Yi, D. Su, Y. Gao, C. Hsieh, L. Daniel, Evaluat-
ing the Robustness of Neural Networks: An Extreme Value Theory Approach,
ICLR, 2018, Available from: https://arxiv.org/abs/1801.10578 [cited 20.12.2019].

[17] X. Yuan, P. He, Q. Zhu and X. Li, Adversarial Examples: Attacks and Defenses
for Deep Learning, IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 30, no. 9, 2019, pp. 2805–2824. Available from:
https://arxiv.org/abs/1712.07107 [Cited 20.12.2019].

[18] S. Seitamaa, Black sea lion, Unsplash, https://unsplash.com/pho-
tos/BqX2laVn2cQ [Cited 20.12.2019].

[19] F. Berger, Lion lying on a grass, Unsplash, https://unsplash.com/photos/PY-
BiF96syK8 [Cited 20.12.2019].

27

APPENDIX A: CODE SNIPPETS

1. import warnings
2. warnings.filterwarnings("ignore")
3. from keras.applications.vgg16 import decode_predictions
4. from keras.applications.vgg16 import VGG16
5. from copy import deepcopy
6. import itertools
7. import random as stdlib_random
8. from PIL import Image
9. import numpy as np
10. import matplotlib.pyplot as plt
11. from keras.preprocessing.image import load_img
12. from keras.preprocessing.image import img_to_array
13. import time

Program 1 Imports of required python libraries

1. def generate_initial_population(amount, path, random=True):
2. """
3. Generates "amount" number of initial population (224x224x3)RGB array.
4. If "random"==True generates random images
5. If "random"==False downloads the image from "path"
6. returns the population as numpy array
7. """
8.
9. population = []
10. for i in range(0,amount):
11. if random:
12. img = (np.random.standard_normal([224, 224, 3]) * 255).astype(
13. np.uint8)
14. else:
15. img = load_img(path, target_size=(224, 224))
16. img = img_to_array(img)
17. population.append(img)
18. return np.asarray(population)

Program 2 “generate_initial_population” -function

1. def fitness(population, model, class_name):
2. """
3. Uses the neural network classifier "model" to predict the
4. fitness of each individual ((224x224x3)RGB array) in
5. "population" to belong in the class "class_name"
6. returns the fitnesses as numpy array
7. """
8.
9. labels = [decode_predictions(model.predict(member.reshape(
10. (1,224,224,3))),1000) for member in population]
11.
12. fitnesses = np.asarray([obj[2] for label in labels for obj in label[0]
13. if obj[1]==class_name])
14. return fitnesses

Program 3 ”fitness” -function

28

1. def select_fittest(fitnesses, amount, maximum=True):
2. """
3. If "maximum"==True, finds the "amount" number of maximum fitnesses
4. from "fitnesses" array.
5. If "maximum"==False, finds the minimum fitnesses
6. returns the indexes of the found fitnesses as list.
7. """
8.
9. # Takes a deepcopy of fitnesses so the original values won’t be altered
10. tempfit = deepcopy(fitnesses)
11. elite_indexes = []
12. for i in range(0,amount): # Loops for the amount of elites desired
13. if maximum == True:
14. index = np.argmax(tempfit) # Finds the maximum fitness
15. #Replaces the found max value as zero so the next iteration
16. #gives second highest value etc..
17. tempfit[index] = 0
18. else:
19. index = np.argmin(tempfit)
20. # Replaces the found min value as two so the next iteration
21. # gives second lowest value etc..
22. tempfit[index] = 2
23. elite_indexes.append(index)
24.
25. return elite_indexes

Program 4 ”select_fittest” -function

1. def image_to_chromosome(images, reverse=False):
2. """
3. Reshapes all the individuals from array "images"
4. if "reverse"==True reshapes 1d array to (224,224,3)
5. if "reverse"==False reshapes (224,224,3) array to 1d
6. returns the reshaped individuals as list of numpy arrays
7. """
8.
9. if reverse: # If reverse is set to True makes images from chromosomes
10. chromosomes=[image.reshape(224,224,3) for image in images]
11. else: # If reverse is set to False makes chromosomes from images
12. chromosomes=[image.reshape(-1) for image in images]
13. return chromosomes

Program 5 ”image_to_chromosome -function”

1. def mutation(chromosomes, mutation_factor, limit):
2. """
3. Mutates the 1d numpy array "chromosomes" by changing the
4. "mutation_factor" determined amount of genes from each chromosome.
5. If "limit"==0, changes the genes value by 10 to a random direction
6. If "limit" > 0, changes the genes value by limit to a random direction
7. """
8.
9. if limit==0:
10. for chromosome in chromosomes:
11. indecies = [np.random.randint(0, chromosome.size)
12. for p in range(0, int(mutation_factor*chromosome.size))]
13.
14. for index in indecies:
15. value = chromosome[index]
16. if value > 9 and value < 246:

29

17. color = range(int(value)-10, int(value)+10)
18. elif value < 10:
19. color = range(int(value), int(value)+10)
20. else:
21. color = range(int(value)-10, int(value))
22. chromosome[index] = stdlib_random.choice(color)
23. else:
24. for chromosome in chromosomes:
25. indecies = [np.random.randint(0, chromosome.size)
26. for p in range(0, int(mutation_factor*chromosome.size))]
27.
28. for index in indecies:
29. initvalue = initchromosome[index]
30. low=0
31. high=0
32. if initvalue-limit<0:
33. low=0
34. else:
35. low=initvalue-limit
36. if initvalue+limit > 255:
37. high = 255
38. else:
39. high = initvalue+limit
40. color = range(int(low),int(high))
41. chromosome[index] = stdlib_random.choice(color)

Program 6 ”mutation” -function

1. def crossover(parent_candidates, how_many_childs):
2. """
3. Chooses "children_amount" of parent pairs amongst "parent_candidates"
4. and for every parent pair produces a new child
5. by randomly combining genes from both parents.
6. returns the newly produced children as list of numpy arrays
7. """
8.
9. # Modify each image in parent_candidates to 1d array
10. parent_candidates = image_to_chromosome(parent_candidates)
11. # Chooses k number of r=2 permutation from 1d elites as parents
12. selected_parents = stdlib_random.choices(list(itertools.permutations(
13. parent_candidates, r=2)), k=how_many_childs)
14. # Loops through each of the parent pairs
15. # takes half of genes from each parent and concatenates them
16. # resulting an array of new children
17. arraylen = int(parent_candidates[0].shape[0])
18. n = int(arraylen/2)
19. children = []
20. temparr = np.zeros(arraylen,int)
21. for parents in selected_parents:
22. arrayman= deepcopy(temparr)
23. indecies1 = np.random.choice(parents[0].shape[0], n, replace=False)
24. indecies2 = np.setxor1d(np.indices(parents[1].shape), indecies1)
25. arrayman[indecies1] = parents[0][indecies1]
26. arrayman[indecies2] = parents[1][indecies2]
27. children.append(arrayman)
28. return children

Program 7 ”crossover” -function

30

1. if __name__ == "__main__":
2. start_time = time.time() # start time for the script
3. model = VGG16() # neural network model used
4.
5. # if true -> false positive, if False -> false negative
6. false_positive = True
7. # imagenet object, whose fitness we are interested
8. imagenet_object = "some_imagenet_class"
9. generation_amount = 10000
10. population_amount = 25
11. parent_amount = 10
12. # if other than 0, uses elitism
13. elite_amount = 4
14. children_amount = population_amount-elite_amount
15. # Factor that determines how many genes from children are mutated.
16. mutation_factor = 0.02
17. # Amount of how much each gene is allowed to change
18. perturbation_limit = 5
19. # True -> generate random images. False -> download image from path
20. randomImages = False
21. # desired probability of the adversarial image to the imagenet_object
22. stopprobability = 0.95
23. # path to the initial image, only used if randomImages = False
24. imagepath = "some/path"
25.
26.
27. population = generate_initial_population(population_amount,
28. imagepath, randomImages)
29.
30. stop=False # Loop stopper
31. for i in range(0,generation_amount):
32. fitnesses = fitness(population, model, imagenet_object)
33. fittest_indexes = select_fittest(fitnesses,
34. parent_amount, false_positive)
35. fittest_population = population[fittest_indexes]
36.
37. # save the best fitting initial image, its fitness and 1d form
38. if i==0:
39. initpic = population[0].astype(np.uint8)
40. initchromosome = image_to_chromosome(population)[0]
41. initfitness=str(fitnesses[fittest_indexes[0]])
42. print("Fitness of the initial image: {}".format(initfitness))
43. labels = decode_predictions(model.predict(initpic.reshape(
44. (1,224,224,3))),3)
45. print("\nTop 3 initial accuracies:\n {} \n {} \n {} \n"
46. .format(': '.join(map(str, labels[0][0][1:3])),
47. ': '.join(map(str, labels[0][1][1:3])),
48. ': '.join(map(str, labels[0][2][1:3]))))
49.
50. # make children with the crossover function
51. children = crossover(fittest_population,children_amount)
52. # Mutates the newly created children
53. mutation(children,mutation_factor,perturbation_limit)
54. # Children back to image shape
55. children = image_to_chromosome(children,True)
56. # replace the old population with children and elites
57. population = np.concatenate((fittest_population[0:elite_amount],
58. children), axis=0)
59. # false positive case
60. if false_positive and fitnesses[fittest_indexes[0]
61.] > stopprobability:
62. stop=True
63. # false negative case
64. if not false_positive and fitnesses[fittest_indexes[0]
65.] < stopprobability:
66. stop=True

31

67.
68. # Plot the situation after every 100 generations
69. # and when the desired probability is achieved
70. if (i+1)%100==0 or stop:
71. print("\n\n{} generations have passed in {} seconds.".format(
72. i+1,time.time() - start_time))
73. fig = plt.figure()
74. ax1 = fig.add_subplot(1,2,1)
75. plt.imshow(initpic)
76. ax2 = fig.add_subplot(1,2,2)
77. plt.imshow(fittest_population[0].astype(np.uint8))
78. ax1.title.set_text('Initial lion')
79. ax2.title.set_text('Adversarial lion')
80. plt.show(block=True)
81. print("Fitness to a '{}' class for the best generated image: "
82. .format(imagenet_object) + str(fitnesses[fittest_indexes[0]]))
83. # break the loop when desired probability achieved
84. if stop:
85. break
86.
87. # Print the three best initial accuracies
88. labels = decode_predictions(model.predict(initpic.reshape(
89. (1,224,224,3))),1000)
90. print("\nTop 3 initial accuracies:\n {} \n {} \n {} \n"
91. .format(': '.join(map(str, labels[0][0][1:3])),
92. ': '.join(map(str, labels[0][1][1:3])),
93. ': '.join(map(str, labels[0][2][1:3]))))
94.
95. # Print the three best adversarial accuracies
96. labels = decode_predictions(model.predict(
97. fittest_population[0].reshape((1,224,224,3))),3)
98. print("\nTop 3 adversarial accuracies:\n {} \n {} \n {} \n"
99. .format(': '.join(map(str, labels[0][0][1:3])),
100. ': '.join(map(str, labels[0][1][1:3])),
101. ': '.join(map(str, labels[0][2][1:3]))))
102.
103.
104. # save the adversarial image
105. best_answer = fittest_population[0].astype(np.uint8)
106. im = Image.fromarray(best_answer)
107. im.save("fooling_{}.jpg".format(imagenet_object))

Program 8 The main program

