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ABSTRACT

3D printing has emerged as a popular technology in vari-
ous biomedical applications. Physical models of anatomi-
cal structures concretize the digital representations and can
be used for teaching and analysis. In this study we com-
bine 3D histology with 3D printing, creating realistic phys-
ical models of tissues with hotspots of interest. As an ex-
ample we use mouse prostates containing tumors. Surface
meshes are created from binary masks of HE-stained serial
sections of mouse prostates and manually annotated tumor ar-
eas. Sections are interpolated to expand sparse image stacks
for smoother results. Fiji, Meshlab and Tinkercad are used for
mesh creation and processing. Objects are printed with Prusa-
based dual-extruder printer enabling different colors for tu-
mors and the surrounding prostate tissue. Our 3D-printed
mouse prostates appear realistic and tumors located at the
edges of the organ are clearly visible. When transparent fila-
ment is used, the tumor hotspots are visible even when they
are inside the prostate.

Index Terms— Models of organ physiology; Organ mod-
eling

1. INTRODUCTION

3D printing is a technology for making physical models from
three-dimensional representations of objects. Basically any
model can be printed, with certain limitations for size and ma-
terial when using printers for consumer use. In recent years,
3D printing technology has become a popular tool in biomed-
ical research. Printing applications in medicine include, but
are not limited to, printing tissues and organs with bioprinting
systems, printing customized implants and prostheses with
biocompatible materials, and printing anatomical models for
surgical preparation [1, 2, 3]. 3D printing can also be used to
visualize complex molecular structures for better understand-
ing of underlying features [4]. In addition, printed models of
anatomical and molecular structures are a novel resource for
teaching of biomedicine and related fields [5, 6].

The most common imaging modality for acquiring anatom-
ical data for 3D printing is computed tomography (CT),
producing datasets in Digital Imaging and Communications

in Medicine (DICOM) format [7]. DICOM data for mod-
els can also be acquired with magnetic resonance imaging
(MRI), positron emission tomography (PET) and ultrasonog-
raphy (US), to name a few [1]. However, to the best of our
knowledge, 3D printing has not yet emerged as a tool for
3D histology with whole slide image (WSI) data. Sparse 3D
histology data introduces new challenges for 3D modeling
and printing when compared to e.g. CT or MRI data, where
image stacks are more dense and natively aligned.

3D histology is a novel approach for digital pathology.
In 3D histology, volumetric reconstructions are created from
images of serial tissue sections [8]. Commonly, sections are
hematoxylin-eosin (HE)-stained and imaged with light mi-
croscopy, producing a sequential stack of WSIs. 3D recon-
struction techniques are then used to align image stacks for
3D representations [9].

In this study, we create models of mouse prostates from
serial sectioned tissue. In addition, we model tumors in the
tissue and combine this information to create a dual-color
printed model. These physical models concretizing tumor lo-
cations and prostate anatomical shape can be used for e.g.
teaching purposes and to provide complementary insight to
quantitative analysis [10]. Even though anatomical models
can be visualized and examined digitally, an actual physical
model can still give an enhanced understanding of how the
organ is formed and how the pathological lesions are situated.
In addition, the model can be studied when powerful com-
puters are not available, which can be the case in class room
situations or when traveling.

2. MATERIALS AND METHODS

2.1. Histology data

Mouse prostates were fixed in PAXgeneTM (PreAnalytiX
GmbH, Hombrechtikon, Switzerland) and formalin, followed
by enclosing in paraffin and cutting into 5 µm thick serial
sections. The sections were placed on glass slides and HE-
stained. The slides were scanned with a pixel size of 0.46 µm
and stored in JPEG2000 format [11]. Tumors were annotated
manually using the freehand tool in ImageJ [12]. One speci-
men consists of roughly 300 sections, with 1/10 sections used

This is the accepted manuscript of the article, which has been published in 2019 41st Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. ISBN:  978-1-5386-1311-5. ISSN:  1557-170X. 
https://doi.org/10.1109/EMBC.2019.8857068



Fig. 1. Every second prostate section illustrated with tumor hotspots delineated in blue.

for HE staining and subsequent imaging. Thus, each of our
image stacks has roughly 30 HE stained sections scanned into
WSIs, with a physical section-to-section distance of 50 µm.
Use of mouse tissues in the research has been approved by the
board of laboratory animal work of the State Provincial Of-
fices of South Finland (licences ESAVI/6271/04.10.03/2011
and ESAVI/5147/04.10.07/2015).

2.2. 3D reconstruction

Initially, the sections have different relative orientations and
locations in the WSIs, and a 3D reconstruction step is thus re-
quired to co-register all the images. This is accomplished by
computing and applying a series of pairwise transformations
estimated in a feature-based manner. We compute Scale In-
variant Feature Transform (SIFT) [13] keypoints for each im-
age pair and robustly fit affine transformations to the resulting
point pairs [14]. We use an implementation of this algorithm
provided in the TrakEM2 package [15] in Fiji [16]. The re-
sulting transformations were also applied to binary masks in-
dicating the tissue region and annotated tumors. In Figure 1,
we show every second section from the reconstructed stack
with tumor hotspots.

2.3. Interpolation of virtual sections

For constructing the 3D model, we use binary masks cre-
ated from the registered sections. Since the image stacks are
sparse with only 30 sections per stack, we interpolate virtual
sections between the original sections using an iterative algo-
rithm implemented in Python. To interpolate a new section
between a pair of existing sections, we first perform an XOR

operation between the two masks to obtain a new mask repre-
senting boundary regions only present on one of the original
masks. We skeletonize this mask to get a new tissue bound-
ary approximately equidistant from the two original bound-
aries. The region delineated by this boundary is then filled
and any remaining branches are removed with binary erosion.
The process is performed for all pairs of sections, and the
resulting binary masks for new virtual sections are added to
the stack. We performed the entire interpolation process three
times, and applied it to both tissue and tumor masks, to obtain
an equal number of sections for both models.

2.4. Model creation and processing

We create two separate triangular surface meshes, one for tis-
sue (single object) and one for tumors (multiple objects). We
import interpolated sections into Fiji as an image sequence,
followed by conversion to binary format.

The height of the model is defined by changing the voxel
depth parameter in the image properties. This value is cal-
culated to approximately match the known aspect ratio of the
data, taking into account the number of sections. At this point,
the model size is also reduced so that it would fit better on the
printing plate. We create a surface model using a resampling
factor of 3 for tumors and 4 for tissue, and export it to a binary
stereolithography (STL) model.

Meshlab is used to further process the STL files [17]. The
number of faces is reduced with quadratic edge collapse dec-
imation to make the model more manageable for 3D print-
ing software. We apply various smoothing filters to get a
smoother and, thus, a more realistic looking result.

Meshes are combined in Autodesk R© TinkercadTM online
service (https://www.tinkercad.com). First, a mouse identifi-



Fig. 2. Example illustration of finalized tumor (a) and tissue
(b) models in Tinkercad.

cation number is added to the bottom of the tumor mesh, to
be printed with the same color as the tumors. Then, to make
the models fit together, the tumor mesh is subtracted from
the prostate mesh to create holes at the locations of the tu-
mors and the identification numbers. Example illustration of
finalized tumor and tissue models in Tinkercad are shown in
Figure 2. Finally, both meshes are repaired and imported to
printing software which automatically combines the meshes.

2.5. Printing the model

We use a Prusa-based dual-extruder 3D printer and PLA and
PETG filaments for printing. The model is transformed to
g-code with Slic3r, and Repetier software is used to control
the printer (https://www.repetier.com). Since we are dealing
with a model of a biological origin, the shape is far from op-
timal for 3D printing. Thus, multiple parameters for infill and
vertical shells (perimeter lines) were experimented with.

The models are printed with 25 to 100 percent infill and 2
to 7 vertical shells, depending on the size of the model and the
filaments used. With solid colored filament we use low infill
and just a few vertical cells. With transparent and translu-
cent filaments 100 percent infill and high number of vertical
shells are used for better transparency. The models are scaled
between 20 to 60 percent of the original size to produce ver-
sions with different dimensions. However, the details of the
tumors fade away in smaller sizes. It takes approximately one
hour to print a small 4 cm long prostate, and three to four
hours to print a large 7 cm long prostate. We use a 0.25 mm
nozzle for tumors, and a 0.4 mm nozzle for the bulk of the
tissue. A smaller nozzle is used for tumors to prevent leaking
and to acquire a higher level of detail. Layer height was set to
0.2 mm for the first layer and 0.15 mm for other layers.

3. RESULTS AND DISCUSSION

Visualizations of 3D models in Meshlab, generated from the
serial tissue sections with and without interpolation, are pre-

Fig. 3. Unprocessed prostate models in Meshlab after each
iteration of interpolation. Only the original sections are used
in the model at the top left.

sented in Figure 3. The models are triangular surface meshes
that can be used in various applications. In this study, we used
the models as designs for 3D printing, but the models could
also be used as objects in 3D games or virtual reality. New
sections were interpolated first between the original 30 sec-
tions and then iteratively between original and interpolated
sections, resulting in approximately eight times as many sec-
tions as initially after the final iteration. With interpolation,
we achieve a considerably more natural model when com-
pared to using only the original 30 sections. We can see that
without any interpolation the model would be very bulky, with
blocklike shapes along the z-direction. With interpolation, the
transition between sections becomes smoother. Furthermore,
a larger number of interpolation iterations results in smoother
models.

The sparsity of the data makes the models more prone to
errors caused by e.g. distortions of individual physical sec-
tions. These errors might even be enhanced by interpolation,
when the borders of one distorted section are far from sur-
rounding sections. These distortions can be minimized with
elastic transformation based 3D reconstruction methods that
can fix the deformations. However, since tumor annotations
were available for data reconstructed with SIFT keypoints,
improving the reconstruction step was left out of the scope
of this article. Quantitative error estimation of the SIFT key-
point based 3D reconstruction is presented by Kartasalo et al.
[9]. Without native 3D imaging like µCT, quantitative error
estimation between 3D models and actual organ is non-trivial
and out of the scope of this article.

In Figure 4 we show examples of 3D-printed mouse
prostates with tumors, in different colors and sizes, represent-
ing two different specimens. We experimented with different
filament types and colors. In the right column of Figure 4,



Fig. 4. 3D-printed models with solid color filament (left)
and transparent (clear) filament (right). The tumor color
shines through transparent models due to lighting conditions,
slightly changing the otherwise clear color. The model on the
bottom right represents a different specimen than the others.

prostate was printed with transparent filament and the tumors
are clearly distinguishable. The visibility of the tumors is
inferior in images on the left but prostate shape is more clear,
especially with non-glossy filament (top left). Since the tu-
mors are partly inside the tissue, there is a trade-off between
good visibility of the tumors and the bulk tissue shape. When
using transparent or translucent filaments for the tissue, the
details of the tissue shape somewhat disappear due to missing
shadows. On the other hand, if the tissue is printed with solid
filament, the tumors inside the tissue cannot be seen. Fortu-
nately, printing is low-cost and quite fast (0.5 to 4 hours per
print, depending on printing parameters and size of the print),
allowing several objects to be easily produced to highlight the
morphological features of interest.

4. CONCLUSIONS

In this study, we created 3D-printed models of mouse prostates,
including tumor hotspots. By applying section interpolation
and mesh manipulations we succeeded in creating realistic
and smooth prostate models based on only 30 tissue sections
per prostate. We used a dual-extruder 3D printer, enabling
the use of different filaments for prostatic tissue and tumors.
With suitable colors and printing parameter optimization, we
achieved clearly visible tumors within the prostate models.

5. FUTURE WORK

Further optimization is still required in order to produce the
most informative and visually pleasant physical models of
mouse prostates. Most tumors in the prostates used in this
study lay on the outer edges of the prostate and, thus, are

visible even without full transparency of the tissue model.
However, tumors can be located inside the organ, and thus
require transparency of the surrounding material to be visi-
ble. Achieving proper transparency for a 3D-printed model
is possible, yet requires a lot of experimenting, since optimal
parameters depend on the printer and filaments used.

In addition to tumors, we can model the inner structures of
the tissue. In the case of prostate, these can be e.g. prostatic
urethra and glands, highlighted with HE-staining. These
structures can be manually annotated, but annotating multiple
sections of many prostates would require considerable effort.
Thus, automated methods for segmenting these structures
will be studied. In addition, intelligent interpolation of vir-
tual sections with generative adversial networks (GANs), for
example, would provide more anatomically accurate mod-
els. After segmentation, a separate mesh for each structure
of interest can be created similarly to the tumor meshes in
this study. With a set of meshes representing tumors or any
other pathological alterations, the normal anatomical struc-
tures, and the whole tissue, we can print very realistic organ
models. We can also visualize specific properties computed
from data. For example, we can model and print quantified
features describing spatial heterogeneity [10]. All of the
abovementioned models could also be imported to virtual
reality environments to create an immersive experience of
walking inside the tissue and viewing pathological lesions
and computed features from a new perspective.

6. ACKNOWLEDGEMENTS

We thank Jukka Lehtiniemi and Iiro Leino for technical assis-
tance.

7. REFERENCES

[1] F. Rengier et al., “3d printing based on imaging data:
review of medical applications,” Int. J. of Comput. As-
sisted Radiology and Surgery, vol. 5, no. 4, pp. 335–341,
Jul 2010.

[2] C. Lee Ventola, “Medical applications for 3d printing:
Current and projected uses,” Pharmacy and Therapeu-
tics, vol. 39, no. 10, pp. 704–711, 2014.

[3] P. Tack, J. Victor, P. Gemmel, and L. Annemans, “3d-
printing techniques in a medical setting: a systematic
literature review,” BioMedical Engineering OnLine, vol.
15, no. 1, pp. 115, Oct 2016.

[4] MF. Coakley et al., “The nih 3d print exchange: A pub-
lic resource for bioscientific and biomedical 3d prints,”
3D Printing and Additive Manufacturing, vol. 1, no. 3,
2014.



[5] PG. McMenamin, MR. Quayle, CR. McHenry, and JW.
Adams, “The production of anatomical teaching re-
sources using threedimensional (3d) printing technol-
ogy,” Anatomical Sciences Edu., vol. 7, no. 6, pp. 479–
486, 2014.

[6] M. Kolitsky, “Reshaping teaching and learning with 3d
printing technologies,” e-mentor, vol. 4, no. 56, pp. 84–
94, 2014.

[7] D. Mitsouras et al., “Medical 3d printing for the radiol-
ogist,” RadioGraphics, vol. 35, no. 7, 2015.

[8] D. Magee, Y. Song, S. Gilbert, N. Roberts, N. Wi-
jayathunga, R. Wilcox, A. Bulpitt, and D. Treanor,
“Histopathology in 3d: From three-dimensional recon-
struction to multi-stain and multi-modal analysis,” J. of
Pathology Informatics, vol. 6, no. 6, 2015.

[9] K. Kartasalo, L. Latonen, J. Vihinen, T. Visakorpi,
M. Nykter, and P. Ruusuvuori, “Comparative analy-
sis of tissue reconstruction algorithms for 3d histology,”
Bioinformatics, vol. 34, no. 17, pp. 30133021, 2018.

[10] M. Valkonen, P. Ruusuvuori, K. Kartasalo, M. Nykter,
T. Visakorpi, and L. Latonen, “Analysis of spatial het-
erogeneity in normal epithelium and preneoplastic al-
terations in mouse prostate tumor models,” Scientific
reports, vol. 7, pp. 44831, 2017.

[11] V. Tuominen and J. Isola, “Linking whole-slide micro-
scope images with dicom by using jpeg2000 interactive
protocol,” J. Digit. Imaging., vol. 23, no. 4, pp. 454–
462, 2010.

[12] CA. Schneider, WS. Rasband, and KW. Eliceiri, “Nih
image to imagej: 25 years of image analysis,” Nature
methods, vol. 9, no. 7, pp. 671, 2012.

[13] DG. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. of Comput. Vision, vol. 60,
no. 2, pp. 91–110, Nov 2004.

[14] MA. Fischler and RC. Bolles, “Random sample consen-
sus: A paradigm for model fitting with applications to
image analysis and automated cartography,” Commun.
ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[15] A. Cardona et al., “Trakem2 software for neural circuit
reconstruction,” PLoS ONE, vol. 7, no. 6, 2012.

[16] J. Schindelin et al., “Fiji: an open-source platform for
biological-image analysis,” Nature methods, vol. 9, no.
7, pp. 676, 2012.

[17] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane,
F. Ganovelli, and G. Ranzuglia, “MeshLab: an Open-
Source Mesh Processing Tool,” in Eurographics Italian
Chapter Conf., Vittorio Scarano, Rosario De Chiara, and
Ugo Erra, Eds. 2008, The Eurographics Assoc.




