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Background: Mendelian randomization studies in adults suggest that abdominal adiposity is causally 118 

associated with increased risk of type 2 diabetes and coronary heart disease in adults, but its causal 119 

effect on cardiometabolic risk in children remains unclear. 120 

Objective: To study the causal relationship of abdominal adiposity with cardiometabolic risk factors 121 

in children by applying Mendelian randomization. 122 

Design: We constructed a genetic risk score using variants previously associated with waist-hip ratio 123 

adjusted for BMI (WHRadjBMI) and examined its associations with cardiometabolic factors by linear 124 

regression and Mendelian Randomization in a meta-analysis of six cohorts, including 9,895 European 125 

children and adolescents aged 3-17 years. 126 

Results: WHRadjBMI genetic risk score was associated with higher WHRadjBMI (beta=0.021 SD/allele, 127 

CI95% 0.016, 0.026, P=3×10-15) and with unfavorable concentrations of blood lipids (higher LDL 128 

cholesterol: beta=0.006 SD/allele, 95% 0.001, 0.011, P=0.025; lower HDL cholesterol: beta=-0.007 129 

SD/allele, CI95% -0.012, -0.002, P=0.009; higher triglycerides: beta=0.007 SD/allele, CI95% 0.002, 130 

0.012, P=0.006). No differences were detected between pre-pubertal and pubertal/post-pubertal 131 

children. The WHRadjBMI genetic risk score had a stronger association with fasting insulin in children 132 

and adolescents with overweight/obesity (beta=0.016 SD/allele, CI95% 0.001, 0.032, P=0.037) than 133 

in those with normal weight (beta=-0.002 SD/allele, CI95% -0.010, 0.006, P=0.605) (P for 134 

difference=0.034). In a two-stage least-squares regression analysis, each genetically instrumented one 135 

SD increase in WHRadjBMI increased circulating triglycerides by 0.17 mmol/l (0.35 SD, P=0.040), 136 

suggesting that the relationship between abdominal adiposity and circulating triglycerides may be 137 

causal. 138 

Conclusions: Abdominal adiposity may have a causal, unfavorable effect on plasma triglycerides 139 

and potentially other cardiometabolic risk factors starting in childhood. The results highlight the 140 

importance of early weight management through healthy dietary habits and physically active 141 

lifestyle among children with tendency for abdominal adiposity. 142 
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Introduction 143 

Childhood obesity has increased worldwide during the last four decades (1) and is associated with 144 

cardiometabolic impairments, including insulin resistance, dyslipidemia, and hypertension in young 145 

age (2). Obesity during childhood often tracks into adulthood where it is associated with an increased 146 

risk and earlier onset of type 2 diabetes and cardiovascular disease (3). It is crucial to fully understand 147 

the factors that contribute to increased cardiometabolic risk starting in childhood, in order to develop 148 

early interventions and treatment strategies to risk groups. 149 

 Observational studies in adults suggest that obesity is a heterogeneous condition and 150 

that for any given amount of body fat, its regional distribution, particularly when located within the 151 

abdominal cavity, is an independent risk factor of cardiometabolic disease (4).  In this regard, waist 152 

circumference has been shown to add to BMI in risk assessment. A study implementing a Mendelian 153 

randomization approach suggested that the link between abdominal adiposity and cardiometabolic 154 

risk may be causal (5). Mendelian randomization utilizes the random assortment of genetic variants 155 

at conception to reduce and limit confounding and reverse causality (6). When using a genetic risk 156 

score (GRS) comprising 48 known variants for waist-hip ratio (WHR) adjusted for BMI (WHRadjBMI) 157 

(7), a genetically instrumented increase in WHRadjBMI was associated with higher levels of 158 

triglycerides, 2-hour glucose, and systolic blood pressure, as well as an increased risk of type 2 159 

diabetes and coronary heart disease, suggesting that the relationship between abdominal adiposity 160 

and cardiometabolic risk may be causal in adults (5). Similar to adults, increased WHR indicates 161 

abdominal adiposity in childhood (8), and gene variants increasing WHRadjBMI have been associated 162 

with a higher ratio of visceral to subcutaneous fat in children and adolescents (9). However, it remains 163 

unclear whether abdominal adiposity is causally linked to increased levels of blood lipids, insulin 164 

resistance, and blood pressure among children and adolescents (10-13). 165 
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In the present study, we aimed to examine the causal relationships of abdominal 166 

adiposity with cardiometabolic risk factors by applying Mendelian randomization in a meta-analysis 167 

of 9,895 children and adolescents from the United Kingdom, Finland, and Denmark.  168 

 169 

Methods 170 

Study populations 171 

The present study includes i) 5,474 children 8-11 years of age from the Avon Longitudinal Study of 172 

Parents and Children (ALSPAC) (14, 15); ii) 2,099 Finnish children and adolescents 3-18 years of 173 

age from the Cardiovascular risk in Young Finns Study (YFS) (16); iii) 705 Danish children and 174 

adolescents 3-18 years of age with overweight or obesity as well as a population-based control sample 175 

consisting of 361 Danish children and adolescents 6-17 years of age from The Danish Childhood 176 

Obesity Biobank (17); hereafter named TDCOB cases and controls, respectively; iv) 470 Finnish 177 

adolescents 14-15 years of age from the Special Turku Coronary Risk Factor Intervention Project 178 

(STRIP) (18); v) 460 Finnish children 6-9 years of age from the Physical Activity and Nutrition in 179 

Children (PANIC) study (19) and vi) 326 Danish children 3 years of age from the Småbørns Kost Og 180 

Trivsel (SKOT) I and II studies (20). (Supplemental Figure 1). Details on the recruitment, inclusion 181 

criteria and ethical approvals of the participating studies are presented in Supplemental Methods. 182 

Children with a history of type 1 or type 2 diabetes, mental or developmental disorders, 183 

or monogenic obesity; children with medication for hypercholesterolemia or hypertension; children 184 

of non-European genetic ancestry based on genome-wide principal component analysis (YFS, 185 

TDCOB, STRIP and SKOT) or self-reported ethnicity (ALSPAC, PANIC), were excluded. For twin-186 

pairs, one twin was excluded. The categories of self-reported ethnicity in the ALSPAC cohort were 187 

“black”, “yellow”, and “white”. The categories of self-reported ethnicity in the PANIC cohort were 188 

“Caucasian” and “non-Caucasian”. We excluded all ALSPAC participants whose self-reported 189 

ethnicity was “black” or “yellow”, and PANIC participants whose self-reported ethnicity was “non-190 
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Caucasian”, due to these ethnicities being considered to represent non-European genetic ancestry for 191 

whom the genetic architecture (allele frequencies, effect sizes) differ from European genetic ancestry. 192 

The analytic codes for the exclusion of participants in the ALSPAC and PANIC cohorts based on 193 

self-reported ethnicity are provided in the Supplemental Methods.  194 

 195 

Measurements of body size and composition, cardiometabolic risk factors, and pubertal status  196 

Body height and body weight were measured in all studies, and BMI was calculated as body weight 197 

(kg) divided by height squared (m2). BMI-SDS was calculated according to UK (ALSPAC) (21), 198 

Finnish (PANIC, STRIP and YFS) (22) and Danish (SKOT, TDCOB cases and TDCOB controls) 199 

(23) national reference values. Waist circumference was measured at mid-distance between the 200 

bottom of the rib cage and the top of the iliac crest. Hip circumference was measured at the level of 201 

the greater trochanters. Body fat mass, body lean mass, and body fat percentage were measured using 202 

bioimpedance analysis (STRIP, SKOT) or dual-energy X-ray absorptiometry (PANIC, ALSPAC, 203 

TDCOB). Blood pressure was measured manually using calibrated sphygmomanometers (PANIC, 204 

YFS) or an oscillometric device (ALSPAC, TDCOB, STRIP, SKOT). Blood samples were taken after 205 

an overnight fast in ALSPAC, YFS, TDCOB, STRIP and PANIC studies and after >2h fasting in 206 

SKOT.  Plasma glucose was measured using the hexokinase method, and serum insulin was analyzed 207 

by immunoassays. Triglycerides, total, LDL, and HDL cholesterol were measured enzymatically. 208 

Overweight and obesity were defined using the age- and sex-specific BMI cut-offs of the International 209 

Obesity Task Force (IOTF) (24). In YFS, TDCOB cases, STRIP, and PANIC studies, the research 210 

physician or the study nurse assessed pubertal status using the 5-stage criteria described by Tanner 211 

(25, 26).  Boys were defined as having entered clinical puberty if their testicular volume assessed by 212 

an orchidometer was ≥4 ml (Tanner Stage ≥2). Girls were defined as having entered clinical puberty 213 

if their breast development had started (Tanner Stage ≥2). Among TDCOB controls, pubertal staging 214 

was obtained via a questionnaire with picture pattern recognition of the five different Tanner stages 215 
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accompanied by a text describing each category. To divide children and adolescents into pre-puberty-216 

onset and onset/ post-onset groups, children with Tanner Stage 1 were considered pre-onset, and all 217 

others were considered onset/post-onset. Children in the SKOT study (aged 3 years) were all 218 

considered pre-onset. Children 8-11 years of age in the ALSPAC were excluded from analyses using 219 

puberty stratification due to insufficient information on puberty. These assessments have been 220 

previously described in detail for each study population (18, 27-31). 221 

Genotyping, imputation and genetic risk score construction 222 

Children in YFS, TDCOB, and SKOT were genotyped using the Illumina Infinium 223 

HumanCoreExome BeadChip (Illumina, San Diego, CA, USA) (32). Children in STRIP were 224 

genotyped using the Illumina Cardio-MetaboChip (33).  Children in PANIC were genotyped using 225 

the Illumina HumanCoreExome Beadchip and the Illumina Cardio-MetaboChip, and the genotypes 226 

from the two arrays were combined. Children in ALSPAC were genotyped using the Illumina 227 

HumanHap550 Quad chip. In all studies, genotype imputation was performed using the 1000 228 

Genomes reference panel (34).  229 

To construct the WHRadjBMI GRS, we used 49 single nucleotide polymorphisms (SNPs) known 230 

to associate with WHRadjBMI in the largest available genome-wide association study (GWAS) 231 

published at the time of the present analyses, including up to 224,459 adults from the Genetic 232 

Investigation of Anthropometric Traits (GIANT) consortium (7)  (Supplemental Table 1). One of 233 

the SNPs, rs7759742, was not available in all six studies of the present meta-analysis and was 234 

therefore excluded from the final GRS. The established WHRadjBMI variants were extracted either as 235 

alleles from the genotyped datasets or dosages from the imputed datasets of each cohort. The GRS 236 

was then calculated as the sum of the number of WHRadjBMI - increasing number of alleles or dosages: 237 

WHRadjBMI genetic risk score = SNP1 + SNP2 + SNP3 + …. SNPn; where SNP is the number of alleles 238 

or dosage of the WHRadjBMI-raising allele (i.e. ranging from 0-2 WHRadjBMI-raising alleles per locus). 239 
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Statistical methods 240 

All statistical analyses and construction of GRS were performed using R software, version 3.3.1. 241 

Linear regression models for inverse normally transformed residuals, adjusted for age, sex, puberty 242 

(YFS, TDCOB, STRIP, PANIC), and study group, if needed (SKOT, STRIP), and first three genome-243 

wide principal components were used to examine the associations of WHRadjBMI GRS with 244 

cardiometabolic risk factors. For WHR, we additionally adjusted the residuals for BMI. For systolic 245 

and diastolic blood pressure, we additionally adjusted the residuals for height. Variables were rank 246 

inverse normally transformed to approximate normal distribution with a mean of 0 and a standard 247 

deviation (SD) of 1. Thus, the effect sizes are reported in SD units of the inverse normally transformed 248 

traits. We also studied the associations of WHRadjBMI GRS with cardiometabolic risk factors stratified 249 

by puberty (pre-onset vs. onset/post-onset). The results from the different studies were pooled by 250 

fixed effect meta-analyses using the ‘meta’ package of the R software, version 4.6.0 (35). Independent 251 

samples t-test was used to compare differences in the effects of the GRS for cardiometabolic risk 252 

factors between groups. The associations of the WHRadjBMI GRS with potential confounding lifestyle 253 

factors were examined by linear regression adjusted for age and sex in ALSPAC. We estimated the 254 

causal effects of WHRadjBMI on cardiometabolic risk factors using two-staged least-squares regression 255 

analyses, implemented in the ’AER’ R-package (v1.2-6) including all studies from which information 256 

on WHR was available (ALSPAC, TDCOB, STRIP, PANIC). We tested for differences between the 257 

estimates from linear regression and instrumental variable analyses using the Durbin-Wu-Hausman 258 

test and assessed the strength of the genetic instrument by calculating the F-statistic (36). We tested 259 

for potential directional pleiotropy in the genetic instrument using the intercept from Egger regression 260 

implemented in the ‘MendelianRandomization’ R-package (v0.3.0). Hereby, deviation of the Egger 261 

intercept from zero provides evidence for pleiotropy (37). Using the same package we performed 262 

additional sensitivity analyses to confirm that the direction of effect that we observed in least squares 263 
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regression analysis was consistent with effect estimates based on multiple genetic variants derived 264 

from Egger regression and weighted median methods. 265 

 266 

Results 267 

Characteristics 268 

Of the 9,895 children and adolescents, 50% were girls and 22% exhibited overweight or obesity 269 

(Table 1). The mean age was 10.0 years (range 2.7-18.0 years). Altogether, 54% of the children and 270 

adolescents were defined as pre-pubertal after excluding participants of the ALSPAC study due to 271 

lack of information on their pubertal status. 272 

Association of the WHRadjBMI GRS with cardiometabolic risk factors in children and adolescents 273 

A key assumption of the Mendelian randomization approach is that genetic variants used as an 274 

instrument are associated with the exposure variable. In a meta-analysis of all 9,895 children and 275 

adolescents from the six studies, we found that the WHRadjBMI GRS, calculated as the unweighted 276 

sum of the number of WHRadjBMI-raising alleles (7), was robustly associated with higher WHRadjBMI 277 

(beta=0.021 SD/allele, CI95% 0.016, 0.026, P=3×10-15) (Supplemental Table 2).  278 

The primary outcome variables of the present analyses were circulating LDL 279 

cholesterol, HDL cholesterol and triglycerides, fasting glucose, fasting insulin, systolic blood 280 

pressure, and diastolic blood pressure. We found that the WHRadjBMI-increasing GRS was associated 281 

with unfavorable concentrations of blood lipids (higher LDL cholesterol: beta=0.006 SD/allele, CI 282 

95% 0.001, 0.011, P=0.025; lower HDL cholesterol: beta=-0.007 SD/allele, CI95% -0.012, -0.002, 283 

P=0.009; higher triglycerides: beta=0.007 SD/allele, CI95% 0.002, 0.012, P=0.006). There were no 284 

associations between the WHRadjBMI GRS and fasting glucose, fasting insulin, systolic blood pressure 285 

or diastolic blood pressure (P>0.05) (Figure 1, Supplemental Table 2, Supplemental Figure 2). 286 
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In the original GWAS for WHRadjBMI in adults, 20 of the 49 WHRadjBMI loci showed 287 

sexual dimorphism, 19 of which displayed a stronger effect in women (7). In sex-stratified analyses, 288 

we found that the WHRadjBMI GRS had a comparable effect on WHRadjBMI in boys and girls but the 289 

effect on waist circumference was found only in girls (beta=0.013 SD/allele, CI95% 0.005, 0.020, 290 

P=0.001) and not in boys (beta=-0.002 SD/allele, CI 95% -0.009, 0.005, P=0.599) (P for 291 

difference=0.006). The WHRadjBMI GRS was also associated with decreased BMI-SDS in boys 292 

(beta=-0.008 SD/allele, CI95% -0.015, -0.002, P=0.016) but had no effect on BMI-SDS in girls 293 

(beta=0.002 SD/allele, CI95% -0.004, 0.009, P=0.450) (P for difference=0.022). Finally, we also 294 

found a difference between sexes (P for difference=3×10-4) in the effect of the WHRadjBMI GRS on 295 

diastolic blood pressure; the WHRadjBMI GRS had a blood pressure-increasing effect in girls 296 

(beta=0.0109 SD/allele, CI95% 0.005, 0.017, P=0.001) but not in boys (beta=-0.006, 95% CI -0.013, 297 

0.001, P=0.072). No differences were found in other cardiometabolic risk factors between girls and 298 

boys (p>0.05). 299 

A previous mendelian randomization study in adults (5) found a significant inverse 300 

association between the WHRadjBMI GRS and BMI and thus performed sensitivity analyses using a 301 

WHRadjBMI GRS where all variants associated with BMI (P<0.05) were excluded. We only found a 302 

significant inverse association between the WHRadjBMI GRS and BMI in boys, and thus performed 303 

boys-specific sensitivity analyses using a GRS constructed of only those 19 WHRadjBMI SNPs that 304 

have not been associated with BMI in the largest GWAS thus far published in adults (P>0.05) (38). 305 

Comparing the results between the 19 SNP GRS and the full 48 SNP GRS in boys (Supplemental 306 

Table 3), we found very similar effect sizes in the associations of the two scores with cardiometabolic 307 

risk traits, except for the expected differences in BMI and related adiposity measures. The results 308 

were similar when comparing effect sizes between the 19 SNP GRS and the 48 SNP GRS in all 309 

children (Supplemental Table 4). 310 



14 

Puberty has a major effect on body fat distribution (39). We performed additional analyses 311 

stratified by puberty status to test whether the relationship between WHRadjBMI GRS and 312 

cardiometabolic risk factors is established before puberty, but no differences were found (P>0.05).  313 

A previous study in the TDCOB cohort suggested that there may be differences in genetic 314 

influences on body fat distribution between children who are overweight/obese and those who are 315 

normal-weight (40). We performed analyses stratified by weight status to test whether the effect of 316 

the WHRadjBMI GRS on body fat distribution and cardiometabolic risk is modified by 317 

overweight/obesity. The WHRadjBMI GRS was associated with fasting insulin in children and 318 

adolescents with overweight/obesity (beta=0.016 SD/allele, CI95% 0.001, 0.032, P=0.037) but not in 319 

those with normal weight (beta=-0.002 SD/allele, CI95% -0.010, 0.006, P=0.564) (P for 320 

difference=0.034). Furthermore, the WHRadjBMI GRS was also associated with HDL cholesterol in 321 

children with overweight and obesity (beta=-0.018 SD/allele, CI95% -0.030, -0.006, P=0.036) but 322 

not in children with normal body weight (beta=-0.004 SD/allele CI95% -0.010, 0.001, P=0.121) (P 323 

for difference=0.036). No differences were found in other cardiometabolic risk factors between 324 

children with overweight/obesity and those with normal body weight (p>0.05). 325 

Instrumental variable analyses 326 

We estimated the causal effects of WHRadjBMI on the three traits that the WHRadjBMI GRS was 327 

significantly associated with (triglycerides, HDL cholesterol, and LDL cholesterol) (Supplemental 328 

Table 2) using two-staged least-squares regression analyses. The observational associations of 329 

WHRadjBMI with cardiometabolic risk factors are shown in Supplemental Table 5. In two-stage least-330 

squares regression analysis, each genetically instrumented one SD increase in WHRadjBMI increased 331 

circulating triglycerides by 0.17 mmol/l (0.35 SD per allele, P=0.040, Figure 2, Supplemental 332 

Figure 3) indicating a causal relationship. No difference was found between the observational results 333 

and genetically instrumented results in the Durbin-Wu Hausman test (PALSPAC>0.05). There was no 334 

evidence of pleiotropy in the genetic instrument using the Egger intercept test (Estimate= -0.001, 335 
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CI95% -0.011, 0.009, Pintercept for triglycerides=0.841). The estimates from Egger regression and 336 

weighted median regression were directionally consistent with those derived from the two-stage least 337 

squares method. The two-stage least-squares regression analyses did not suggest that a genetically 338 

instrumented increase in WHRadjBMI has a causal effect on HDL cholesterol (0.24 SD per allele, 339 

P=0.138) or LDL cholesterol (0.19 SD per allele, P=0.259) (Figure 2).  340 

To conduct a valid Mendelian randomization analysis, the instrumental variable must 341 

not be associated with possible confounders that could bias the relationship between the exposure and 342 

the outcome, and it must relate to the outcome phenotype only through its association with the 343 

exposure and not through pleiotropy (6). Some lifestyle and environmental factors, for example 344 

physical activity and dietary habits, have been associated with body fat distribution (4) and 345 

cardiometabolic risk, and could therefore confound the association between WHRadjBMI and 346 

cardiometabolic risk factors. However, we did not find an association between the WHRadjBMI GRS 347 

and any of the potential confounders we tested in the ALSPAC cohort, including objectively 348 

measured physical activity (p=0.508) sedentary time (p=0.580), family socioeconomic status 349 

(p=0.676), total energy intake (p=0.744), and dietary intakes (E%) of protein (p=0.661), total fat 350 

(p=0.193), saturated fat (p=0.413), monounsaturated fat (p=0.168), polyunsaturated fat (p=0.306), 351 

carbohydrates (p=0.467), and added sugar (p=0.201). We acknowledge that unobserved confounders 352 

could still be present that we were not able to control for.  353 

354 

Discussion 355 

In the present study, genetic predisposition to higher WHRadjBMI was associated with higher 356 

triglycerides, lower HDL cholesterol, and higher LDL cholesterol in children and adolescents. The 357 

associations of the WHRadjBMI GRS with lipids were similar between prepubertal and pubertal/post-358 

pubertal children and adolescents, indicating that this relationship is established already before 359 
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puberty. Instrumental variable analyses indicated that higher WHRadjBMI may be causally associated 360 

with higher triglycerides. 361 

Sex and age have major effects on WHRadjBMI (39). Sexual dimorphism in body 362 

composition emerges primarily during pubertal development and is driven by the action of sex 363 

steroids (41). Women typically have overall higher body fat content, whereas men have a more central 364 

body fat distribution. The WHRadjBMI GRS, constructed of the 49 loci, also shows a stronger effect 365 

on WHRadjBMI in women than in men (7). In contrast to adults, we observed that the WHRadjBMI GRS 366 

had a comparable effect on WHRadjBMI in children regardless of sex. However, the effect on waist 367 

circumference was higher in girls than in boys. Previous studies have shown that sexual dimorphism 368 

in body fat distribution is distinct already in the first six years of age, characterized by an average 369 

smaller waist and larger hip circumference in girls (42). However, unlike in adulthood, the difference 370 

in this age is more pronounced for waist circumference than for hip circumference (42), which could 371 

partly explain why the genetic influences on waist circumference seem more pronounced in girls than 372 

in boys during childhood but not in adulthood.  373 

The effects of the WHRadjBMI GRS on fasting insulin and HDL cholesterol were more 374 

pronounced among children and adolescents with overweight/obesity than among those with normal 375 

body weight, indicating that higher overall adiposity may enhance the harmful effect of genetic 376 

predisposition to abdominal adiposity on insulin resistance and dyslipidemia. Although the biological 377 

mechanisms for this enhancement are uncertain, we speculate that higher overall adiposity may lead 378 

to a suppressed capacity of subcutaneous fat tissue to store additional fat and a higher deposition of 379 

fat in visceral and other ectopic storage sites. The metabolically active visceral fat releases a number 380 

of inflammatory cytokines as well as a flux of free fatty acids into portal circulation. This may, in 381 

turn, impair hepatic metabolism, thereby leading to reduced hepatic insulin clearance, increased 382 

production of triglyceride-rich lipoproteins, and increased hepatic glucose production (43, 44). Thus, 383 

increased visceral fat has a central role in the development of insulin resistance. Higher overall 384 
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adiposity also results in greater storage of abdominal subcutaneous fat which has a high lipolytic 385 

activity and increases the flux of free fatty acids, contributing to insulin resistance and cardiovascular 386 

risk (45). This impact may be particularly relevant in children who have a relatively large volume of 387 

abdominal subcutaneous fat compared to visceral fat (12, 13). 388 

Previous studies in adults support the role for gradually increasing visceral fat as a 389 

determinant of unfavorable changes in plasma lipid concentrations with advancing age (46). Although 390 

the effect sizes of the GRS for WHRadjBMI on WHRadjBMI and cardiometabolic risk factors in children 391 

and adolescents in the present study were generally weaker than in adults (7), it remains unclear how 392 

age plays into the observed causal relationships as partly different variants may associate with 393 

WHRadjBMI in different ages.  394 

The strength of the present study is the comprehensive data on anthropometry, 395 

cardiometabolic risk factors, and genetic variation from several European child cohorts. To our 396 

knowledge, this is the first study investigating the causal associations of abdominal adiposity on 397 

cardiometabolic risk factors by Mendelian Randomization in children. Limitations of the study are 398 

the use of adult GWAS-based variants for WHRadjBMI, which may not all be associated with 399 

abdominal adiposity in children. Furthermore, we did not address the possibility of bi-directional 400 

relationships between WHRadjBMI and cardiometabolic risk factors in children. Despite the large 401 

sample size, our study may have been underpowered to detect a difference for the studied outcome 402 

traits. In the present analysis, we did not correct for multiple testing due to many of the outcome traits 403 

being correlated, and we acknowledge that adjustment of the significance threshold could reduce the 404 

statistical power further. Finally, as our study only included children of European genetic ancestry, 405 

the results cannot be generalized to other ethnic groups.  406 

407 

Conclusions 408 
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Our results suggest that there may be a causal, unfavorable effect of abdominal adiposity on plasma 409 

triglycerides in childhood, providing new insights into the relationship between body fat distribution 410 

and cardiometabolic risk in young age. The results underscore the importance of early weight 411 

management through healthy dietary habits and physically active lifestyle among children with 412 

tendency for abdominal fat accumulation. 413 
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Table 1. Characteristics of children and adolescents in the studies included in the present meta-analyses. 

 ALSPAC YFS TDCOB cases TDCOB 
controls 

STRIP PANIC SKOT 

N (total) 5474 2099 705 361 470 460 326 
Girls (%) 2754 (50%) 1139 (54%) 415 (59%) 238 (66%) 227 (48%) 219 (48%) 154 (47%) 
Prepubertal (%)1 NA 1244 (51%) 314 (45%) 73 (22%) 0 (0%) 448 (97%) 326 (100%) 
Overweight/obese2 1088 (20%) 161 (8%) 699 (99%) 46 (13%) 54 (12%) 56 (12%) 34 (10%) 
Age (years) 9.9 (0.32) 9.8 (4.0) 11.5 (2.9) 13.0 (3.1) 15.0 (0.0) 7.6 (0.4) 3.0 (0.1) 
Body height (cm) 139.6 (6.3) 137 (25) 152 (16) 157 (16) 170 (8) 129 (6) 96.2 (3.6) 
Body weight (kg) 34.7 (7.3) 35.1 (16.5) 64.9 (23.9) 48.4 (15.3) 61.3 (6.9) 26.7 (4.8) 14.9 (1.7) 
BMI (kg/cm2) 17.7 (2.8) 17.4 (2.8) 27.0 (5.3) 19.1 (3.2) 20.5 (3.3) 16.1 (2.0) 16.1 (1.2) 
BMI-SDS 0.29 (1.11) -0.29 (1.00) 2.90 (0.66) 0.31 (1.05) -0.08 (0.97) -0.20 (1.1) 0.43 (0.92) 
Waist circumference (cm) 62.9 (7.7) NA 93 (15) 70 (9) 73 (8) 57 (5) 47 (4) 
Waist-hip-ratio 0.85 (0.0) NA 0.97 (0.07) 0.82 (0.1) 0.80 (0.05) 0.85 (0.0) NA 
Total body lean mass (kg) 24.6 (3.2) NA NA NA 45 (9) 21 (2) NA 
Total body fat mass (kg) 8.5 (5.0) NA 28.0 (12.2) NA 12.7 (7.5) 5.6 (3.3) 2.6 (0.8) 
Body fat percentage (%) 23.2 (9.0) NA 43.6 (5.2) NA 20.9 (9.3) 20 (8) 17.4 (4.3) 
Insulin (mU/l) NA 9.2 (5.8) 6.9 (7.2) 4.5 (2.2) 8.3 (3.5) 4.5 (2.5) 3.2 (3.5) 
Glucose (mmol/l) NA NA 5.2 (0.6) 5.4 (1.1) 4.9 (0.3) 4.8 (0.4) 4.8 (0.6) 
LDL cholesterol (mmol/l) 2.3 (0.6) 3.5 (0.8) 2.5 (0.8) 2.2 (0.5) 2.4 (0.7) 2.3 (0.5) 2.5 (0.6) 
HDL cholesterol (mmol/l) 1.4 (0.3) 1.6 (0.3) 1.2 (0.3) 1.5 (0.3) 1.2 (0.2) 1.6 (0.3) 1.2 (0.2) 
Triglycerides (mmol/l) 1.1 (0.6) 0.65 (0.29) 1.1 (0.6) 0.7 (0.3) 0.85 (0.42) 0.60 (0.25) 1.1 (0.6) 
Systolic blood pressure (mmHg) 103 (9) 111 (12) 114 (12) 114 (10) 117 /12) 100 (7) 96 (8) 
Diastolic blood pressure (mmHg) 57 (6) 68 (9) 65 (8) 62 (7) 61 (9) 61 (7) 61 (7) 
GRSWHRadjBMI, 48 SNPs (number 
of WHRadjBMI increasing risk 
alleles) 

46.1 (4.3) 47.8 (4.4) 46.4 (4.3) 46.2 (4.3) 46.6 (4.8) 48.2 (4.2) 46.5 (4.4) 

Values are mean (SD) or n (%). BMI-SDS= body mass index standard deviation score; GRS= genetic rik score, WHRadjBMI= waist hip ratio adjusted BMI 

1 Children with Tanner Stage 1 were considered pre-onset and all others were considered onset/post-onset (25, 26). 

2 Overweight and obesity were defined using the age and sex-specific BMI cut-offs of the International Obesity Task Force (IOTF) (24).
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Figure 1. 

Linear regression analysis to test the association of the WHRadjBMI-increasing genetic score with 

cardiometabolic variables in all children and adolescents (n=9,895). The results are expressed as beta 

values (confidence intervals) of the inverse-normally transformed traits and are aligned according to 

the WHRadjBM-increasing allele of the genetic score. All analyses are adjusted for age, puberty, and 

first three genome-wide principal components. The effects were pooled using fixed effects models 

meta-analyses. *P-values <0.05. [beta in SD/allele = effect on the inverse-normally transformed trait 

per allele increase]. The numerical values for betas, standard errors, P-values, and sample sizes are 

presented in Supplemental Table 2. 

Figure 2. Mendelian randomization analysis to test the causal effect of childhood abdominal 

adiposity on LDL cholesterol, HDL cholesterol and triglycerides. The figure shows associations of 

the WHRadjBMI genetic risk score with LDL cholesterol, HDL cholesterol, triglycerides and 

observational WHRadjBMI, as well as the associations of the observational WHRadjBMI with LDL 

cholesterol, HDL cholesterol and triglycerides. The results of instrumental analysis are obtained 

from two-staged least-squares regression analyses. Beta values are expressed as units of standard 

deviation (SD) of the inverse-normally transformed traits. [beta in SD/allele = effect on the inverse-

normally transformed trait per allele increase]. P-values <0.05 are shown in bold. 
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