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Abstract
Increasing the on-time rate of bus service can prompt the people’s willingness to travel by bus, which is an effective

measure to mitigate the city traffic congestion. Performing queries on the bus arrival can be used to identify and analyze

various kinds of non-on-time events that happened during the bus journey, which is helpful for detecting the factors of

delaying events, and providing decision support for optimizing the bus schedules. We propose a data management model,

called Bus-OLAP, for querying bus journey data, considering the characteristics of bus running and the scenarios of non-

on-time analysis. While fulfilling typical requirements of bus journey data queries, Bus-OLAP not only provides a flexible

way to manage the data and to implement multiple granularity data query and update, but it also supports distributed

queries and computation. The experiments on real-world bus journey data verify that Bus-OLAP is effective and efficient.

Keywords Data management � OLAP � Parallel computing

1 Introduction

Public bus service plays an important and irreplaceable role

in the traffic system of a city. On one hand, public bus is

one of the most convenient and cost-efficient ways for

people to travel. On the other hand, public bus service, as

an alternative to the use of private cars, is an effective way

to reduce carbon dioxide emissions. Promoting the bus

service not only provides convenience for people but it also

improves the urban living conditions and helps in the fight

against the climate change. On-time bus is an emerging bus

running mode where the bus arrives at each bus stop

according to the time table strictly, which is helpful for

passengers to avoid wasting too much time at bus stops.

There are several countries, e.g., the USA, Finland, and

Japan, where efforts have been made to implement on-time

bus running mode to improve the bus service quality.

Clearly, a reasonable design of bus running routes and

time tables is the key to carry out the on-time bus running

mode. To initiate this development, practical bus journey

data including the arrival information of a bus at every stop

should be collected at first. The developments of sensors

and Internet of Things enable the automatic collection of

bus journey data. For example, the local government of

Tampere, Finland, started in 2015 to record and publish as

open data the location information of each running bus
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real-time every second. Particularly, the essential bus

journey data include information on, for each running bus

at each bus stop location, whether the bus was on schedule

at a stop and how long was the delay if it was not on time.

Table 1 lists several samples of Tampere bus journey data.

There, each record contains the information of a bus

arriving at a bus stop.

Example 1 In Table 1, ‘‘Stop’’ represents the bus stop ID,

‘‘Name’’ is the name of the bus stop, ‘‘Latitude’’ and

‘‘Longitude’’ indicate the location of a bus stop, ‘‘Line’’ is

the bus line number, ‘‘Date’’ and ‘‘Arrival’’ are the date and

time of bus arrival, respectively, and ‘‘Delay’’ is the dif-

ference between the arrival time and the scheduled time

(‘-’ indicates that bus arrives ahead of scheduled time).

For instance, from the first record in Table 1, we can see

that a bus on Line 13 arrived at Stop Ammattikoulu (ID:

1500, location: 61.498600N, 23.735500E) at 16:40:15 PM on

August 3, 2016, being 210 s behind the schedule.

A bus non-on-time query provides statistics on the non-

on-time arrivals of buses that happened under given con-

ditions. Bus non-on-time queries are useful for the bus

route design, online information systems on bus trans-

portation, and the bus running schedule optimization. In

general, the non-on-time events can be divided into the

early case (the arrival time is ahead of the scheduled time)

and the delaying case (the arrival time is later than the

scheduled time). Please note that the main concern of bus

non-on-time query is the delaying case, since (i) the early

case can be easily avoided by slowing or stopping buses in

the real-life situation, and (ii) the techniques supporting the

query for delaying cases can be used for early cases. Thus,

for the sake of simplicity, we just discuss the delaying case

hereafter. However, the results generalize to the early case.

Typical bus non-on-time queries [15, 18] include: ‘‘How

many bus delaying events happened over a given time

period?’’, ‘‘Which are the routes where most delaying

events happen?’’, and ‘‘Do the bus delaying events aggre-

gate and where?’’, etc. Based on the query conditions, there

are three kinds of bus non-on-time queries:

– Temporal queries, in which the query conditions are

related to bus running time. For example, how many

buses were delayed during 17 : 00� 19 : 00?

– Spatial queries, in which the query conditions are

related to bus stop locations. For example, given a bus

stop ID ‘‘560’’, which are the nearest neighboring bus

stops where delaying events happen?

– Spatial–temporal queries, in which the query conditions

are related to both bus running time and bus stop

locations. For example, which are the spatial–temporal

zones with significant aggregation of delaying events?

To the best of our knowledge, there is no data management

model dealing with the bus non-on-time queries.1

Since non-on-time query over bus journey data can be

used to improve bus service, thus improving comfort-

able travel experience, we should provide an efficient

model to manage bus journey data. However, there are

some challenges that we need to address: (i) How to

manage the bus journey data? (ii) How to fuse data from

different sources? (iii) How to perform queries efficiently?

In this paper, to tackle these challenges related to non-on-

time queries, we propose a model named Bus-OLAP to

manage bus journey data.

In this paper, we make the following concrete contri-

butions: (i) We build indexes of bus journey data by bit-

vectors according to the application scenarios, taking into

account particularly the temporal and spatial factors. (ii)

We introduce efficient index operations to support the non-

on-time queries on bus journey data. (iii) We implement

the related computations on Spark to support distributed

computing for the processing of the queries, thus enabling

real-time response for the analysis for massive datasets.

The rest of the paper is organized as follows. We review

the related work in Sect. 2 and present the critical tech-

niques of Bus-OLAP in Sect. 3. In Sect. 4, we report a

systematic empirical study using real-world bus data and

we conclude the paper in Sect. 5.

2 Related Work

Our study is related to previous studies on urban traffic

analysis, spatial–temporal data management, and parallel

computing.

Table 1 Instances of bus

journey record
Stop Name Lat. Long. Line Date Arrival Delay

1500 Ammattikoulu 61.4986 23.7355 13 2016-08-03 16:40:15 210

3084 Kuoppamaentie 61.4799 23.8046 560 2016-08-04 17:20:09 610

3084 Kuoppamaentie 61.4799 23.8046 560 2016-08-05 00:09:48 - 34

0098 Savilinna 61.5000 23.7374 28 2016-08-06 16:55:12 340

1 We tackled the problem of bus non-on-time query in Pang et al

[11], a preliminary version of this paper. The difference between

these two works is presented in related works. We will review the

related works in Sect. 2.
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2.1 Urban Traffic Analysis

The analysis on urban traffic plays an important role and

attracts extensive attention from public [25]. Traffic anal-

ysis helps to alleviate urban traffic congestion thereby

improving environmentally friendly traffic for people to

travel. Traffic analysis has been recently under active

research. Yuan et al. [22] analyze the movements of taxis

and passengers and provide an easy way for passengers to

pick taxis. Pang et al. [10] detect the anomalous behavior

of taxis in Beijing metropolitan area. Chen et al. [2] pro-

pose a model given the past trajectories and predict the

next station of an object. Kong et al. [8] aim to deal with

the problem of traffic congestion and propose a method to

predict the traffic congestion using the floating car trajec-

tories data. Han and Moutarde [6] focus on traffic dynamic

prediction in urban transportation network and find out the

evolution of traffic states, which contributes to the adjust-

ment of traffic management. Zhang et al. [24] apply deep

learning to predict the traffic of crowds in different regions

of a city. Bao et al. [1] propose a data-driven approach to

develop bike lane construction plans satisfying the con-

straints and objectives requested by the user. There are

several works on predicting the urban traffic flow by the

traffic state [4, 13, 17]. Wu et al. [18] detect the temporal–

spatial aggregation of bus delay but do not consider the

management of bus data.

To the best of our knowledge, the existing work about

traffic analysis concentrates on the problems with vehicles

with stochastic trajectories. However, the analysis on bus

data is essentially different from on other vehicles. On one

hand, the trajectory and schedule of each bus are fixed. On

the other hand, the main concern on bus journey data is

non-on-time analysis. Clearly, the existing methods pro-

posed by previous work on traffic analysis are not appli-

cable to online bus journey data analysis, and, in particular,

they do not give an efficient method to manage large bus

data sets for efficient online analysis.

We tackled the problem of bus journey data manage-

ment in Pang et al. [11], a preliminary version of this

paper. In comparison with that work, we have now

extended the paper in the following aspects: (i) adding

more introduction to the background of the research on bus

journey data collection and analysis; (ii) including the

necessary background knowledge about bus journey data

preprocessing in Sect. 3.1; (iii) presenting a method of

querying data from different sources; (iv) providing a more

detailed description of key techniques for bus non-on-time

query in Bus-OLAP; and (v) performing more extensive

empirical evaluations.

2.2 Spatial–Temporal Data Management

Urban traffic data have spatial–temporal characteristics.

The bus data management can improve the efficiency of

storage, indexing, and querying of the data. Sistla

et al. [12] propose a model, called MOST, to model the

moving object with a time-related function, which

improves the efficiency of storage and querying of moving

objects in a database. Ting et al. [16] present a simplistic

network model for moving objects. Some index structures

such as R-tree [5] and Bþ-tree [7] are also used to optimize

spatial–temporal queries. Yu et al. [21] propose an algo-

rithm, named YPK-CNN, to monitor KNN queries.

The works discussed above can improve the query

efficiency by different ways. However, we want to provide

a model by which all bus running related factors can be

considered. For example, besides the factors listed in

Table 1, some external factors, such as weather activity

and temperature, also affect the on-time rate of bus service.

In particular, we need a data management model that is

suitable for a distributed computing environment.

2.3 Parallel Computing

Considering the requirement of analyzing large-scale bus

journey data, parallel computing techniques are necessary

to speed up the efficiency of spatial–temporal analysis [9].

A lot of work has been done on adapting parallel com-

puting methods to support efficient queries over large-scale

data. Xia et al. [19] design a method to conduct KNN

queries based on Map-Reduce and apply it to real-time

prediction of traffic flow. Eldawy et al. [3] have built a

system, named GeoSpark, based on Spark to improve the

efficiency of spatial–temporal data analysis. Xie et al. [20]

apply R-tree indexing to parallel queries based on Spark, to

deal with the efficiency issues of large-scale data.

In this work, we use Spark to build a parallel processing

model based on bit-vector operations to conduct bus non-

on-time queries.

3 Design of Bus-OLAP

In this section, we present our Bus-OLAP data manage-

ment model for bus non-on-time queries. The framework of

Bus-OLAP (Fig. 1) consists of data cleaning, transforming,

loading, and querying. The preprocessing of bus journey

data has been well studied in [14]. However, for the sake of

self-completeness of our presentation, we briefly present

the key points for data preprocessing here. Then, we dis-

cuss the most important techniques used in Bus-OLAP:
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(i) data indexing, (ii) index operations, and (iii) parallel

query computation.

3.1 Data Preprocessing

The raw bus journey data suffer from noise, inconsisten-

cies, and missing observations [15]. This is due to the real-

world situations, such as the location measurement inac-

curacies of the global navigation satellite system, imprecise

knowledge of the real observation time, and errors in data

identification. Several methods had been used to clean the

data. The noisy data can be identified as outliers by com-

paring with other data. The inconsistent data can be dis-

carded with the help of known scheduled bus stop

sequences. The missing data can be ignored, since there is

typically enough data available for the analysis purposes.

Millions of observations are stored every day. However,

the observations are not useful as such for statistical

analysis. As a result, they are grouped into journeys, so that

the essential bus running information, e.g., the bus route

and the arrival time at each bus stop during one journey,

can be studied. Furthermore, all bus journeys are seg-

mented into links between subsequent bus stops, since the

bus stop sequences and the location of each bus stop are

available, and the segments between every two bus stops

are useful for bus traffic analysis.

Example 2 In Fig. 2, there are two buses v1 and v2, three

bus stops and four observations. Bus v1 arrived at the bus

stop ‘‘Rautatieasema’’ at 12:00 and then arrived at ‘‘Tam-

melan puistokatu’’ 3 min later. Thus, we grouped the first

and third observation together because they are in the same

journey of bus v1. Similarly, the second and last observa-

tions in Fig. 2 belong to a journey of bus v2. Furthermore,

the link between bus stops ‘‘Rautatieasema’’ and ‘‘Tam-

melan puistokatu’’ is a segment of v1’s journey.

3.2 Data Indexing

To support efficient bus non-on-time queries, we imple-

ment an index based on attribute domain partition in Bus-

OLAP. Specifically, we divide the domain of each attribute

into several disjoint partitions. Then, for each attribute

value of a record, we build a bit-vector to indicate the

partition it belongs to. Thus, we can apply bit operations to

perform bus non-on-time queries, which improves the

query efficiency.

Next, we introduce the details of the index building. For

attribute A, the domain of A, denoted by DðAÞ, is the set of

all available values on attribute A. A partition of DðAÞ,
denoted by PDðAÞ, is a collection of non-empty subsets of

DðAÞ such that (i) DðAÞ ¼
S

di2PDðAÞ di, and (ii) for

8di; dj 2 PDðAÞ, i 6¼ j, di \ dj ¼ ;. Please note that, in Bus-

OLAP, the order of elements in PDðAÞ is predetermined

and fixed during performing queries. We denote by

PDðAÞ½i� the ith element in PDðAÞ. Furthermore, there may

be several different partitions for an attribute. For example,

the partitioning of Dð‘‘Date’’Þ can be by month or by

season.

For a record r, we denote by r.A the value of r on

attribute A. Given a partition PDðAÞ on attribute A, the

index of r.A is a bit-vector \b1; b2; . . .; bjPDðAÞj [
satisfying

bi ¼
1; r:A 2 PDðAÞ½i�
0; r:A 62 PDðAÞ½i�

(

ð1Þ

Example 3 A partition on attribute ‘‘Date’’ according to

day of the week is illustrated in Fig. 3. The domain of

‘‘Date’’ is partitioned into seven subdomains,

Bus
Running

Bus
Stop

Bus
Line

DataBus Record Spark

Event

Data Source

User

Transform Load Query

Clean

Fig. 1 Framework of Bus-OLAP

ID Bus Arrival Stop

1 v1 12:00 Rauta�easema

2 v2 12:01 Rauta�easema

3 v1 12:03 Tammelan puistokatu

4 v2 12:04 Itsenäisyydenkatu

List of bus observa�ons

Fig. 2 An example of bus journey
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corresponding to the seven days of a week. The day ‘‘2016-

08-03’’ in Table 1 represents August 3, 2016, and it is

Wednesday. Therefore, the index of first record in Table 1

is \0; 0; 1; 0; 0; 0; 0[ under partition PDð‘‘Date’’Þ.

In Bus-OLAP, the selection of attribute partitions

depends on:

– The query requirements. For example, we partition the

domain of ‘‘Date’’ by day of the week and the domain

of ‘‘Arrival’’ by time interval, so that we can find stops

where most delaying events occur during the morning

rush hour on Monday.

– The partition size. For example, we do not divide the

domain of ‘‘Date’’ by date because the statistics on the

non-on-time events within one day has little signifi-

cance, and the space requirement following from the

amount of subdomains (i.e., jPDð‘‘Date’’Þj) would be

large.

Table 2 lists the domain partition criteria for the main

attributes listed in Table 1 by considering the application

requirements.

For a partition PDðAÞ on attribute A, the index of all

records is the set VA ¼ fv1; v2; . . .; vjPDðAÞjg, where vi 2 VA

(1� i� n) is the column vector with respect to PDðAÞ½i�. If

the value of the kth element of vi is 1, the value of the kth

record on attribute A belongs to PDðAÞ½i�.

Example 4 In Fig. 3, the column vector corresponding to

‘‘Wed’’ is v ¼ ð1; 0; 0; 0ÞT
. The first element of v (i.e., 1)

means that the value of the first record in Table 1 on

attribute ‘‘Date’’ belongs to ‘‘Wed’’.

As discussed above, the non-on-time query over bus

journey data can be easily implemented by vector opera-

tions. For a bitmap VA ¼ fv1; v2; . . .; vng, we store vi 2 VA

as a bit-vector. However, instead of loading all indexes,

Bus-OLAP only loads the indexes (i.e., bit-vectors) of

query-concerned attributes into memory. Then, a query can

be converted into bit-vector operations.

For a new bus journey record, the index can be effi-

ciently updated by appending a new bit at the end of each

bit-vector.

3.3 Index Operations

For the sake of efficiency, we introduce some operations on

indexes (bit-vectors) in Bus-OLAP. For a partition PDðAÞ,
we define the subpartition of PDðAÞ as P̂DðAÞ, where

P̂DðAÞ � PDðAÞ. The set of bit-vectors corresponding to

P̂DðAÞ is V̂A ¼ fvi 2 VA j P̂DðAÞ½i� 2 PDðAÞg. We define

the OR operation on V̂A as

ORðV̂AÞ ¼ v01 j v02 j . . . j v0m;

where v0i 2 V̂A (1� i�m) and ‘‘j’’ denotes the bitwise OR

operation between every two bit-vectors.

Clearly, the result of ORðV̂AÞ is also a bit-vector. The

records satisfying subpartition P̂DðAÞ can be obtained by

index operations.

Example 5 Consider Fig. 3, and suppose the query target

is finding the records generated in weekdays (from Monday

to Friday). Firstly, we fetch the subpartition P̂Dð‘‘Date’’Þ
¼ fMon;Tue;Wed;Thu; Frig from PDð‘‘Date’’Þ. As a

result, the bit-vector set with respect to P̂Dð‘‘Date’’Þ is

V̂‘‘Date00 ¼ fv1; v2; v3; v4; v5g, where v1 ¼ ð0; 0; 0; 0ÞT
, v2 ¼

ð0; 0; 0; 0ÞT
, v3 ¼ ð1; 0; 0; 0ÞT

, v4 ¼ ð0; 1; 0; 0ÞT
, and v5 ¼

ð0; 0; 1; 0ÞT
. Then, ORðV‘‘Date00 Þ ¼ v1 j v2 j v3 j v4 j v5 ¼

ð1; 1; 1; 0ÞT
. Thus, the records satisfying the query condi-

tions are the first three records in Table 1.

In addition, we define the bitwise AND operation (de-

noted by&) for two bit-vectors belonging to different

subpartitions, so that the query involving conditions on

different attributes can be performed by index operations.

Example 6 Consider the example in Fig. 4. Suppose that

the query target is the set of records whose ‘‘Longitude’’

ranges from 23.73 to 23.74, ‘‘Latitude’’ ranges from 61.48

to 61.50, and ‘‘Date’’ is Wednesday or Thursday. Then, the

subpartitions of ‘‘Longitude,’’ ‘‘Latitude,’’ and ‘‘Date’’ are

fo1g, fa3; a4g, and fWed;Thug, respectively. The query

result illustrated as the red area in Fig. 4 can be obtained by

the following index operation: ORðfa3; a4gÞ&ORðfo1gÞ
&ORðfWed;ThugÞ.

3.4 Parallel Query Computation

Bus non-on-time query is computation intensive and

response time sensitive. Figure 5 shows the framework of

parallel query computation by bit-vectors using Spark [23].

Week

Mon Tue Wed Thu Fri Sat Sun
2016-08-03 0 0 1 0 0 0 0
2016-08-04 0 0 0 1 0 0 0
2016-08-05 0 0 0 0 1 0 0
2016-08-06 0 0 0 0 0 1 0

Date

Month Season

Fig. 3 An example of a partition on attribute ‘‘Date’’
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Next, we introduce the details of parallel query computa-

tion by three typical kinds of queries. Please note that the

queries to be discussed below are typical application sce-

narios for Bus-OLAP. However, it is easy to perform more

complex queries using index operations with Spark. All bus

non-on-time queries are performed using the framework

shown in Fig. 5. Specifically, Bus-OLAP takes the query

condition as input. In the query process, Bus-OLAP firstly

maps the conditions into tuples. Secondly, for each con-

dition tuple, Bus-OLAP conducts the bit operations on

vectors using parallel computation with Spark. Finally,

Bus-OLAP returns the results that satisfy the query

conditions.

3.4.1 Temporal Queries

The typical temporal queries include querying the number

of non-on-time events over a period of time and querying

the routes that have the most non-on-time events over a

period of time.

Consider a query on the number of non-on-time events

over a period of time, given time interval t, and non-on-

time condition z (ahead of time, on-time, or delayed). The

corresponding condition tuple in Fig. 5 is \t; z[ . Please

note that there may be many condition tuples due to the

number of time intervals. We compute each condition tuple

in a parallel, using the computational model of Spark. For

each condition tuple, the query result is obtained by index

operations on bit-vectors. The number of non-on-time

events equals the number of bits set to 1 in the result

vector.

Similarly, the query on the route that has the most non-

on-time events over a period of time can be easily imple-

mented. Given query conditions with respect to time

interval t, non-on-time condition z, and bus line l, the

computation on each condition tuple \t; z; l[ returns the

number of delaying events. Then, the query result is the bus

line that has the maximum number of delaying events over

all tuple results.

3.4.2 Spatial Queries

There are some typical spatial queries, such as KNN and

RKNN, that can be applied in the bus data in the following

way. Given a bus stop q with a number of delaying events,

Lat

Lon

Week

Mon

Tue

Wed

Thu

a1a2a3a4

o1
o2

o3
o4

Fig. 4 An example of attribute combination query

Load vectors Map conditions to 
tuples <c1, c2…cn>

Spark actionsOutput

Start

End

Fig. 5 Framework of distributed query and computing. There are four

steps: � loading vectors into memory according to the query

conditions; ` mapping the conditions into tuples \c1; c2; . . .; cn [ ;
where ci, 0� i� n, is the query condition; ´ partitioning the data into

nodes and performing the bit operations on vectors by Spark; ˆ

writing the output of the query result

Table 2 Attribute domain partitions in Bus-OLAP

Attribute Criterion Explanation

Latitude,

Longitude

Distance The geographic space of Tampere city is divided into a grid of 2000 � 1000 equal-sized rectangles. Each bus

stop location is associated with a unique rectangle in the grid

Date Week, Month,

Season

The date granularity concerned by bus non-on-time query includes the day of the week ({Mon, Tue, ...,

Sun}), month ({Jan, Feb, ..., Dec}), and season ({Spring, Autumn, Fall, Winter})

Arrival Minute Instead of the whole day, the non-on-time query may focus on a certain time period within a day. The

domain of ‘‘Arrival’’ is partitioned by minute. Thus, there are 1440 (24 � 60) subdomains in total for

‘‘Arrival’’

Delay Time interval Non-serious delay can be allowed, and meaningful thresholds for the partitioning values need to be selected.

The domain of ‘‘Delay’’ is partitioned into 10 one-minute partitions plus one extra partition for delays

exceeding 10 min (e.g., {(0, 1), [1, 2), ..., [9, 10), ½10;1Þ})

Non-on-Time Events Query Over Bus Journey Data 57
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the analyst may want to know the bus stops close to q and

analyze the factors related to the delays.

After partitioning attributes ‘‘Longitude’’ and ‘‘Lati-

tude,’’ we get a division of space into a grid. Each bus stop

is located in a grid. For a bus stop q, the main steps to find

the k nearest bus stops are: (i) search the candidate bus

stops by extending a q-centered rectangular space that

consists of grids; (ii) once there are at least k bus stops

contained in the rectangular space, calculate the distance

from q to the kth nearest stop p (denoted by disðq; pÞ); (iii)

find k nearest neighboring stops within a q-centered circle

space with radius disðp; qÞ.

Example 7 Consider bus stop q in Fig. 6. To find five bus

stops nearest to q, the first step is extending the q-centered

rectangle. As R1 is the first (smallest) rectangle containing

5 bus stops, and p5 is the fifth nearest bus stop to q within

R1, stops located in the q-centered circle with radius

disðq; p5Þ are the candidates for the query results (5 nearest

neighboring stops to q).

Considering the characteristics of index operations, it is

easy to find bus stops located within a rectangle area

compared to a circle one. Thus, in Bus-OLAP, for stop q in

Fig. 6, we find the KNN stops of q by checking the stops

located within the smallest rectangle containing the q-

centered circle with radius disðq; p5Þ, i.e., R2. Please note

that it is easy to find stops located in R2 by index operations

based on R1. For rectangle R1 in Fig. 6, the index operation

on Longitude oplon ¼ ORðfo2; o3; o4; o5; o6gÞ and on Lat-

itude oplat ¼ ORðfa2; a3; a4; a5; a6gÞ. After extending the

rectangular area from R1 to R2, two partitions o1 and o7 are

added into the Longitude of R1. Similarly, the two parti-

tions a1 and a7 are added into the Latitude of R1. Conse-

quently, the new result on Longitude is calculated as

oplon j ORðfo1; o7gÞ and the new result on Latitude is

calculated as oplat j ORðfa1; a7gÞ, respectively. Obviously,

the search area can be efficiently extended by performing

index operations on bit-vectors iteratively.

The RKNN query can be used to find all bus stops

whose KNN stops include the given bus stop q. We

implement the query using parallel computation on Spark.

In the framework of Fig. 5, the condition tuple is

\q; p; k[ ; where q is the given bus stop. Spark is used to

compute each tuple, returning the result indicating whether

q is one of the KNN stops of p. The RKNN query result is a

set of bus stops that satisfy the query condition.

3.4.3 Spatial–Temporal Queries

Detecting the spatial–temporal zone of bus delay aggre-

gation can be done by querying the zone where delay

aggregation occurs in a period of time. We measure the

significance of spatial–temporal aggregation delay by log-

likelihood ratio (LLR). Given a zone S and a time interval

T, the log-likelihood of bus delay taking place, denoted as

LðS; TÞ, is

LðS; TÞ ¼

DðS; TÞ � logðr1Þ þ ðDðeS; eT Þ � DðS; TÞÞ � logðr2Þ

�DðeS; eT Þ � log
DðeS; eT Þ
N ðeS; eT Þ

; r1 [ r2

0; r1 � r2

8
>>>><

>>>>:

ð2Þ

where

r1 ¼ DðS; TÞ
N ðS; TÞ ; r2 ¼ DðeS; eT Þ � DðS; TÞ

N ðeS; eT Þ � N ðS; TÞ

where eS and eT are the maximal zone and maximal time

interval, respectively; S and T are the observed zone and

time interval, respectively; NðS; TÞ denotes the total

number of bus arrivals within S and T; and DðS; TÞ denotes

the number of delaying events within S and T.

Our target is to find the zone during a time interval that has

maximal LLR in bus delay aggregation analysis. Figure 7

illustrates the processing of the delay aggregation query with

Spark. Step 1 in Fig. 7 corresponds to Step 2 in Fig. 5, and

Steps 2 and 3 in Fig. 7 correspond to Step 3 in Fig. 5. Bus-

OLAP takes query conditions as input. Firstly, Step 1 joins

the query conditions into condition tuples \o; a; d; t; de[ ,

where the variables denote ‘‘Longitude,’’ ‘‘Latitude,’’ ‘‘Date,’’

‘‘Time,’’ and ‘‘Delay,’’ respectively. Secondly, Step 2 parti-

tions tuples to nodes of the Spark cluster and gets the new

tuples of LLR. Finally, Step 3 searches the tuple with maxi-

mal LLR, which is the query result.

3.5 Query with Data from Different Sources

The on-time rate of bus service is vulnerable to the impact

of external factors. For example, the delaying events hap-

pen more frequently in rainy days and foggy days. Clearly,

q

p1p2

p7

p6

p7p4
p5

p3 r

r

R1

R2

o1 o2 o3 o4 o5 o6 o7

a1

a2

a3

a4

a5

a6

a7

Fig. 6 An example of KNN query
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it is interesting and useful to consider various external

factors, e.g., weather, when performing bus non-on-time

analysis. To this end, we introduce a flexible implemen-

tation in Bus-OLAP such that queries containing conditions

on external factors can be efficiently performed.

It is challenging to query with external factors, since the

external factors are extracted from different sources of

data. For example, the bus journey records shown in

Table 1 do not contain any weather information. If users

want to investigate the impact of weather on bus delay,

weather information should be collected at first. Techni-

cally, there are two steps to support queries containing data

from different sources.

– The first step is fusing external factors with bus journey

records. In other words, more attributes with respect to

external factors are added to bus journey records.

– The second step is building indexes for the external

factors in order to support efficient query.

Considering that changes in weather may significantly

impact the bus on-time rate, we collect weather data from

Weather Underground, which is a Web site sharing

weather information of global cities.2 Next, we introduce

our method to fuse external factors with bus journey

records for bus non-on-time queries by taking weather data

as an example.

To give an example, we collect Tampere’s local average

daily temperature and daily weather activity from Weather

Underground. The reasons we collect these two factors are

that (i) average daily temperature and daily weather

activity are two main features of weather status, and (ii) the

data types of these two factors are typical. The domain of

average daily temperature is continuous, while the domain

of daily weather activity containing ‘‘rain,’’ ‘‘fog,’’ and

‘‘thunder’’ is enumerable. (Here, we only consider the

weather activities that affect the bus on-time rate

negatively.)

Please recall that, as listed in Table 1, the bus journey

records contain temporal information (i.e., date and bus

arrival time). As both average daily temperature and daily

weather activity are time related, it is easy to associate each

bus journey record with the average temperature and

weather activity in that moment.

Example 8 On August 5, 2015, at Tampere city, the

average daily temperature was 15 	C and the weather was

rainy. Then, for the 3rd record listed in Table 1, we fuse it

with weather factors (in bold font) as follows.

For the sake of query efficiency, it is necessary to build

indexes for the external factors. Similar to building indexes

for bus journey data (Sect. 3.2), for each external factor,

we build corresponding indexes based on the domain par-

tition. For an external factor whose data type is continuous

(e.g., average daily temperature), the index is built like

building the index on ‘‘Delay’’. Specifically, for each bus

journey record, we construct a bit-vector indicating the

interval that the value of average daily temperature locates

in. For an external factor whose data type is enumerable

(e.g., daily weather activity), the index is built like building

the index on ‘‘day of the week’’. Specifically, we use a set

of bit-vectors to indicate the values of daily weather for all

bus journey records.

Longitude
Latitude

Date
Time

Delay

<o1, a1, d1, t1, de1>

<o2, a2, d2, t2, de2>

…
<o3, a3, d3, t3, de3>

<llr1, o1, a1, d1, t1>

<llr2, o2, a2, d2, t2>

…
<llr3, o3, a3, d3, t3>

<llr, o, a, d, t>

Join Map Max

Fig. 7 Spark process of delay aggregation query

2 https://www.wunderground.com.

Stop Name Lat. Long. Line Date Arrival Delay Temp Activity

3084 Kuoppa maentie 61.4799 23.8046 560 2016-08-05 00:09:48 -34 15 Rain
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4 Empirical Evaluation

In this section, we report a systematic empirical study on a

real-world bus data set from Tampere city.3 The data set

includes the bus stop information of Tampere, 43 bus

routes, 75 bus stops of a line on average, and 6,297,520

records generated from all weekdays from August 1, 2015,

to October 30, 2015. We also collected daily weather

activity and average daily temperature for each record from

Weather Underground Web site.

All algorithms are implemented in Java and compiled

using JDK 7. The distributed environment is built using

Spark 1.6.2 and includes eight nodes. Each node is a

computer with an Intel Core i7-6700 3.40 GHz CPU, and

64 GB main memory, running Ubuntu 14.04 operating

system.

Figure 8 illustrates the quantitative relationships

between the numbers of non-on-time arrivals with different

time intervals (measured in minutes) ahead or delayed.

From Fig. 8, it is interesting to see that most (over 75%) of

non-on-time arrivals happened within 
 3 min compared to

the scheduled time. Specifically, for the early case, there

are over 87% arrivals arriving slightly ahead of schedule.

And for the delaying case, there are 77% arrivals arriving

slightly behind the schedule. Considering the complex

situations in the real world, it is impractical to expect that

every bus arrives on-time exactly. Naturally, we treat bus

arrivals with slight time ahead or delayed as normal (on-

time) cases. Thus, in our empirical study, we label each bus

arrival as a non-on-time event including ‘‘early case’’ or

‘‘delaying case’’, if the value of ‘‘Delay’’ is \� 3 min

(‘‘early case’’) or [ 3 min (‘‘delaying case’’).

Figure 9a illustrates the number of days with respect to

certain weather. The daily weather contained in weather

data include: rain, fog, and thunder. We can see that the

rainy weather is more frequent than other weather activi-

ties. As the number of days with thunder (i.e., 3) is too

small, we only consider rain and fog in this empirical

study. Figure 9b shows the change of daily temperature.

The highest temperature is 19 	C on August 15, and the

lowest temperature is � 2 	C on October 9, 28, and 30.

There are 51 such days that the average daily temperature

is above 10 	C.

4.1 Effectiveness

We verify the effectiveness of Bus-OLAP using three kinds

of typical queries: temporal queries, spatial queries, and

spatial–temporal queries. For the temporal queries, there

are two frequent queries: (1) What is the number of

delaying events in every weekday? (2) Which are the

routes that have the most delaying events?

Figure 10 illustrates the numbers of non-on-time arrival

events on weekdays in August, September, and October,

respectively. As we stated in Sect. 1, the main concern of

bus non-on-time query is the delaying case, and in Fig. 10,

Fig. 8 Distributions of the delay (minutes) of non-on-time arrivals, a early case, b delaying case
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Fig. 9 Statistics on daily weather activities and average daily

temperature change a weather activities and b temperature change

3 http://trafficdata.sis.uta.fi.
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Fig. 10 Number of non-on-time events a Aug, b Sept, and c Oct

Table 3 Bus lines with the

largest number of delaying

events during different time

intervals

Month Time interval Bus line # Of arrival events # Of delaying events Rank

August [6:00, 10:00) 13 32,626 6373 1

28 21,539 4335 2

29 25,682 2788 3

[10:00, 14:00) 13 31,952 6050 1

28 19,882 3691 2

3 37,188 3532 3

[14:00, 18:00) 13 37,530 12,041 1

3 44,279 7989 2

8 36,115 7775 3

[18:00, 22:00) 13 30,953 5367 1

3 29,992 4598 2

28 19,522 2684 3

September [6:00, 10:00) 13 34,921 6158 1

28 19,124 5457 2

29 30,467 4732 3

[10:00, 14:00) 13 31,660 5662 1

8 29,489 4043 2

11 14,940 3636 3

[14:00, 18:00) 13 37,817 12,186 1

8 39,397 9151 2

3 43,333 7885 3

[18:00, 22:00) 13 30,328 6577 1

3 30,831 5458 2

17 20,973 2658 3

October [6:00, 10:00) 3 39,093 4886 1

28 15,134 4214 2

13 31,022 4166 3

[10:00, 14:00) 8 33,193 5907 1

3 43,794 4341 2

13 28,877 4080 3

[14:00, 18:00) 8 44,679 11,490 1

13 35,443 10,165 2

3 48,568 9529 3

[18:00, 22:00) 3 33,152 7019 1

13 25,796 4831 2

8 18,234 3976 3
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we can see that the number of delaying cases is much larger

than the number of early cases. It is interesting to see that

the weekday with the maximum number of non-on-time

events keeps changing from August to October. For

example, in August, the number of delaying cases on

Monday is the largest, in September, the largest number is

on Tuesday, while in October, the largest one is on

Thursday.

Table 3 lists the top 3 routes where delaying events

occur frequently during different time intervals. It is

interesting to see that Lines 13, 8, and 3 are the routes with

the largest numbers of delaying events, especially in time

interval [14:00, 18:00), over the three months. We also find

that the lines that have frequently delaying events during

different periods are different. One possible explanation is

that the direction of crowd flow in the morning rush hour is

different from that in the evening rush hour. The buses

were delayed due to the getting in and getting off time by

large numbers of passengers.

Figures 11 and 12 illustrate the query results of spatial

queries, i.e., KNN and RKNN, on two bus stops, respec-

tively. The two target bus stops are ‘‘Yliopistonkatu’’(ID:

560) and ‘‘Villa Viola’’ (ID: 700). In Fig. 11, the red points

are the query bus stops, while the blue points are the eight

bus stops nearest to the query stops. Similarly, in Fig. 12,

the red points are the query bus stops, while the blue points

are the RKNN bus stops for the query stops.

One typical bus non-on-time query is detecting bus

delay aggregation. Please recall that, as listed in Table 2,

we partitioned the space of Tampere city into 2000 � 1000

equal-sized grids in Bus-OLAP. Let the maximum search

range be 100 � 100 grids. Then, by Bus-OLAP, we can

answer following questions with different given time

intervals: (1) ‘‘On which weekday the most significant

delay aggregations took place?’’, (2) ‘‘In which time

interval the most significant delay aggregation occur?’’, (3)

‘‘Which day and time interval has the most significant bus

delay aggregations.’’

Fig. 11 Illustration of KNN queries (k ¼ 8), a stop ‘‘Yliopistonkatu’’, b stop ‘‘Villa Viola’’

Fig. 12 Illustration of RKNN queries (k ¼ 8), a stop ‘‘Yliopistonkatu’’, b Stop ‘‘Villa Viola’’
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Table 4 lists the zones of spatial–temporal delay

aggregation with different time intervals. We present a

zone in the form of (minLon, maxLon, minLat, maxLat),

where minLon and maxLon denote, respectively, the min-

imal and maximal longitude of a zone, minLat and maxLat

denote, respectively, the minimal and maximal latitude of a

zone. As listed in Table 4, there are more significant delay

aggregations during [14:00, 18:00) compared to other time

intervals. Furthermore, period [14:00, 18:00) on Friday is

the worst time interval as it has the largest number of

significant delay aggregations. We guess it is because the

traffic flow is heavy in the afternoon rush hour of Friday.

Figure 13 shows the zones with significant bus delay

aggregation in the morning (a) and in the afternoon (b),

respectively. We find that the zones where bus delay

aggregations happened are non-overlapping. We think one

possible reason is that the zones where buses are full of

people are different in the morning and afternoon. To

verify the correctness of the detected zones with bus delay

aggregation, we consider the heat delaying cases in Fig. 14.

It is easy to see that the detected zones are consistent with

the heat distributions.

Intuitively, the bus delay aggregation is closely related to

the traffic flow, detecting the zones with significant bus delay

Table 4 Zone with spatial–

temporal delay aggregation of

every weekday

Weekday Time interval Zone (minLon, maxLon, minLat, maxLat) LLR

Mon [6:00, 10:00) (23.810540, 23.844397, 61.503022, 61.517329) 185.55

[10:00, 14:00) (23.675500, 23.713204, 61.531799, 61.547732) 94.24

[14:00, 18:00) (23.592783, 23.630487, 61.502534, 61.518467) 1264.80

[18:00, 22:00) (23.597015, 23.632410, 61.515378, 61.530336) 285.78

Tue [6:00, 10:00) (23.752831, 23.791304, 61.474408, 61.490666) 279.73

[10:00, 14:00) (23.709356, 23.713973, 61.503672, 61.505623) 89.35

[14:00, 18:00) (23.592399, 23.630872, 61.502209, 61.518467) 896.02

[18:00, 22:00) (23.597015, 23.631641, 61.515541, 61.530173) 285.07

Wed [6:00, 10:00) (23.752831, 23.791304, 61.474571, 61.490829) 325.94

[10:00, 14:00) (23.675500, 23.707048, 61.531799, 61.545130) 86.39

[14:00, 18:00) (23.761680, 23.800153, 61.476847, 61.493105) 1338.30

[18:00, 22:00) (23.597015, 23.632410, 61.515378, 61.530336) 300.43

Thu [6:00, 10:00) (23.752062, 23.788996, 61.472620, 61.488227) 226.48

[10:00, 14:00) (23.675500, 23.707048, 61.531799, 61.545130) 127.99

[14:00, 18:00) (23.761680, 23.800153, 61.476847, 61.493105) 1024.59

[18:00, 22:00) (23.597015, 23.632410, 61.515378, 61.530336) 331.23

Fri [6:00, 10:00) (23.812079, 23.844397, 61.503022, 61.516679) 125.07

[10:00, 14:00) (23.595861, 23.628948, 61.504485, 61.518467) 167.20

[14:00, 18:00) (23.761680, 23.800153, 61.476847, 61.493105) 1914.59

[18:00, 22:00) (23.604710, 23.643183, 61.496356, 61.512614) 397.30

Fig. 13 Illustration of zones with significant bus delay aggregation, a morning, b afternoon
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aggregation can reflect the change of traffic flow. In addition,

it is interesting to investigate the impacts of weather condi-

tions on the bus delay aggregation. To this end, we perform

queries taking weather factor into consideration over morning

and evening rush hours, respectively.

In Fig. 15, we use rectangles with red solid line, blue dot

line, and dark dash line to indicate the zones where sig-

nificant bus delay aggregation happened in normal weather,

rainy weather, and foggy weather, respectively. We can

observe the flow of traffic changes from the east side of

Fig. 14 Bus delay heat map, a morning, b afternoon

Fig. 15 Zones with the most significant busy delay aggregation w.r.t.

weather activity in morning and evening rush hours. (The detected

zones in normal weather, rainy weather, and foggy weather are,

respectively, indicated by rectangles with red solid line, blue dot line,

and dark dash line.), a [07:00, 08:00), b [08:00, 09:00), c [16:00,

17:00), d [17:00, 18:00)
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Tampere city to the west side in both normal weather and

foggy weather from 16:00 to 18:00. We also see that the

zone with the most significant bus delay aggregation in

foggy weather is clearly different from the ones in normal

and rainy weather during 8:00 � 9:00 am. In addition, we

can see that the zone with the most significant bus delay

aggregation in rainy weather is clearly different from the

ones in normal and foggy weather during 17:00 � 18:00.

We guess the reason lies in that, firstly, the impact of fog

on bus delay aggregation mainly exists in the morning,

since fog disperses in the afternoon, and secondly, the

impact of rain mainly exists in the evening due to the

accumulation of rainwater on the road surface.

In Fig. 16, we illustrate the zones with the most sig-

nificant busy delay aggregations when the average daily

temperature is above 10 	C (rectangle with red solid line)

and is not above 10 	C (rectangle with blue dash line),

respectively. Clearly, the zones detected under different

temperature ranges are different. As shown in Figs. 15

and 16, taking weather factors into bus non-on-time anal-

ysis is necessary and reasonable.

4.2 Efficiency

In Bus-OLAP, we build the indexes based on bit-vectors

and perform bus non-on-time queries by index operations.

In order to verify the effectiveness of the index building,

we first test the runtime for building the indexes with

respect to the number of records in Bus-OLAP. Then, we

compare the query efficiency using Bus-OLAP against the

query using relational database MySQL 5.5. The results of

efficiency test are shown in Fig. 17. We test the efficiency

by three most frequently used queries, querying the time

interval with the most delaying events for temporal query

shown in Fig. 17b, searching the RKNN bus stops for

spatial query illustrated in Fig. 17c and finding the zones

with significant bus delay aggregation from Monday to

Friday for temporal–spatial query shown in Fig. 17d.

Clearly, as shown in Fig. 17a, we can see that the index

Fig. 16 Zones with the most significant busy delay aggregation w.r.t.

average daily temperature in morning and evening rush hours.

(Rectangles with red solid line are the zones when the average daily

temperature [ 10 	C, and rectangles with blue dash line are the zones

when the average daily temperature � 10 	C.), a [07:00, 08:00),

b [08:00, 09:00), c [16:00, 17:00), d [17:00, 18:00)
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building in Bus-OLAP is efficient, and the building time

increases linearly with the size of bus journey records.

Moreover, performing bus non-on-time query by Bus-

OLAP is significantly more efficient than by MySQL.

To satisfy the requirement of large number of queries,

we have implement Bus-OLAP on Spark, so that parallel

query computation can be supported. Again, we test the

query efficiency with respect to the number of computing

nodes by finding the zones with significant bus delay

aggregation during a certain time interval in weekday.

Figure 18a shows the runtime for computing the LLR of

every grid with respect to the number of computing nodes.

Figure 18b shows the runtime for querying delay aggre-

gation zones during time interval [16:00, 17:00) on

weekdays. It is clear that in both LLR computation and

aggregation queries, the runtime of Bus-OLAP decreases

when more computing nodes are used.
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In summary, by our proposed index building method and

the parallel query framework, Bus-OLAP is efficient for

bus non-on-time query.

5 Conclusions

In this paper, we tackled the novel and interesting problem

of non-on-time query over bus journey data. We designed a

model, named Bus-OLAP, to support non-on-time queries

over the data. For the sake of efficiency, we built the index

of bus journey data using bit-vectors and introduced index

operations to convert the queries into bitwise operations. In

addition, we implemented the distributed query computa-

tion based on the Spark framework. Our experiments ver-

ified the effectiveness and efficiency of Bus-OLAP.

There are several interesting issues that deserve research

effort in the future. First, we will consider more complex

scenario applications of non-on-time analysis and fuse

some implicit factors (e.g., road conditions, number of

passengers) that affect the bus. Second, there are large bus

data sets in reality, and we try to apply the Bus-OLAP to

more real data and more data sources of other cities. Then,

we will continue on optimizing the frequently used non-on-

time queries. It is also interesting to consider dynamic

computation of the current traffic situation, that is, ana-

lyzing if the current situation is different from ‘‘normal.’’

Moreover, we plan to combine the bus data analysis with

the management of urban traffic and study the relationships

between them.
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