

Matti Panula

A DOMAIN SPECIFIC GRAPHICAL USER
INTERFACE FRAMEWORK

Faculty of Engineering and Natural Sciences
Master of Science Thesis

December 2019

i

ABSTRACT

Matti Panula: A Domain Specific Graphical User Interface Framework
Master of Science Thesis
Tampere University
Master’s degree Programme in Management and Information Technology
December 2019

Since the early days of software development, there has been an ongoing trend towards higher-
order or higher level abstractions in programming languages, software libraries and application
frameworks. Some of the arguments for software development tools with higher levels of abstrac-
tion include simpler software development, improved portability and better maintainability. Higher
level abstractions can however lead to reduced performance. This thesis presents an innovative
graphical user interface software solution that mixes high-level and low-level approaches to
achieve acceptable performance while retaining good maintainability. The solution is an extension
to a graphical application framework called JavaFX.

The scope of this thesis is defined by a software development project which goal is to create a
graphical user interface framework. The framework is used in the creation of customer specific
user interfaces for an accompanying intralogistics system. The resulting user interfaces must be
able to visualize possibly thousands of objects moving on a factory floor. The views must simul-
taneously support user-initiated zooming, panning, and tilting of the two-dimensional view. Meet-
ing these requirements while maintaining acceptable performance, requires an unconventional
solution and a deviation from idiomatic JavaFX.

The user interface framework in question is developed using a high-level graphical user interface
application framework called JavaFX. JavaFX is the most recent graphical user interface toolkit
included in the official Java Development Kit. It has many reactive traits and other modern high-
level properties. Overcoming performance challenges with JavaFX when producing views with
thousands of animated items was the key research challenge in this research. Some attention is
also given to replacing JavaFX built-in dependency injection system with Spring framework to
improve JavaFX suitability to the task at hand.

This thesis presents a hybrid solution that overcomes JavaFX’s performance challenges in the
problem domain, while retaining as much as possible of the usefulness of the high-level features
present in the JavaFX framework. The key innovation is a mechanism that enables automated
rendering of sprite-bitmaps from JavaFX scene-graph nodes. The solution includes a system that
draws the automatically generated bitmaps to a lower-level JavaFX component called Canvas.
The solution enables layered mixing of regular JavaFX views with the custom high-performance
views, including seamless resizing and event handling between the two types of views. The so-
lution enables the developers of customer specific user interfaces to choose an appropriate
graphics rendering type, such that only objects that cause performance issues, typically items
which number exceeds dozens, need to use the more complex high-performance system.

Keywords: GUI framework, JavaFX, Spring, Canvas

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Matti Panula: A Domain Specific Graphical User Interface Framework
Diplomityö
Tampereen yliopisto
Johtamisen ja tietotekniikan DI-ohjelma
Joulukuu 2019

Korkeamman abstraktiotason ohjelmointikieliä, koodikirjastoja sekä sovelluskehyksiä on kehitetty
kautta tietokoneohjelmoinnin historian. Korkeamman tason abstraktioiden kehittämistä tukee
pyrkimys helppokäyttöisempiin ohjelmointityökaluihin. Korkeaan abstraktioasteeseen liittyviä
ominaisuuksia ovat myös muun muassa alustariippumaton koodi ja ohjelmistojen parempi
ylläpidettävyys. Korkeamman abstraktiotason kääntöpuolena saattaa olla heikko suorituskyky.
Tämä diplomityö esittelee innovatiivisen, graafisten käyttöliittymien tuottamiseen kehitetyn,
ohjelmistokehyksen joka hyödyntää matalan abstraktiotason ratkaisuja suorituskyvyn
parantamiseksi. Kehitetty ohjelmisto on laajennus korkean abstraktiotason sovelluskehykseen
nimeltä JavaFX, jota käytetään graafisten käyttöliittymien toteuttamiseen.

Työn rajausta määrittää ohjelmistoprojekti, jonka tavoite on kehittää sovelluskehys jota käytetään
graafisten käyttöliittymien luomiseen. Sovelluskehyksen avulla tuotettuja, asiakkaan tarpeisiin
räätälöityjä, käyttöliittymiä käytetään sisälogistiikkajärjestelmissä. Käyttöliittymien pitää pystyä
visualisoimaan kerrallaan jopa tuhansia sisälogistiikkajärjestelmän kuljettamia tuotteita.
Näkymässä pitää pystyä myös navigoimaan sivusuunnissa ja zoomaamaan. Tuhansien liikkuvien
tuotteiden visualisointi navigoitavassa näkymässä luo suorituskykyongelman, jonka ratkaisu
vaatii tavanomaisesta JavaFX:stä poikkeavan räätälöidyn ratkaisun.

Työn kuvaama sovelluskehys on kehitetty laajentamalla korkean abstraktiotason kehystä nimeltä
JavaFX. JavaFX on uusin virallisen Java Development Kit -ympäristön tarjoama
käyttöliittymäkirjasto. Se sisältää useita reaktiivista ohjelmointiparadigmaa mukailevia sekä muita
korkean abstraktiotason ohjelmointiin liitettyjä ominaisuuksia. JavaFX:n suorituskykyongelmat,
jotka johtuvat piirrettävien asioiden suuresta lukumäärästä, määrittävät tämän työn
tutkimusongelman. Diplomityö kuvaa myös miten JavaFX:n soveltuvuutta tehtävään parannettiin
korvaamalla JavaFX:n riippuvuusinjektiomekanismi (eng. Dependency Injection) Spring-
sovelluskehyksellä.

Tämä diplomityö esittelee innovatiivisen ohjelmiston, joka mahdollistaa hyvän suorituskyvyn
ongelmakentässä. Ratkaisu perustuu JavaFX:n graafinoodien automaattiseen renderöintiin
bittikartoiksi ja piirtämiseen eräänlaiseen hybridinäkymään. Se sisältää myös mekanismin, joka
mahdollistaa hybridinäkymän käyttämisen päällekkäin tavallisten JavaFX-näkymien kanssa.
Muun muassa näkymän koon muuttaminen ja käyttäjätoiminnot kuten klikkaukset hiirellä toimivat
saumattomasti tavallisten JavaFX-näkymien ja hybridinäkymien välillä. Kehitetty sovelluskehys
antaa asiakasprojekteja toteuttaville sovelluskehittäjille mahdollisuuden luoda räätälöityjä
käyttöliittymiä siten, että ainoastaan asiat jotka saattavat aiheuttaa suorituskykyongelmia
piirretään käyttäen uuttaa korkean suorituskyvyn hybridinäkymää ja käyttöliittymän muut osat
voidaan toteuttaa käyttäen tavanomaisia JavaFX:n menetelmiä.

Avainsanat: Graafinen käyttöliittymä, JavaFX, Spring, Canvas

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

When this thesis was started, I was acting as an architect and a lead developer in a

software development project that had certain challenges that seemed suitable as a sub-

ject for a thesis. I began this thesis as a simple description of a software development

project, but sourcing and digesting the existing knowledge turned out to be a much bigger

task than anticipated. In addition to a piece of working software and this thesis, the re-

sults of this process include a true learning experience in both research methodology

and software engineering theory.

I’d like to thank the Finnish education system, the Employment Fund and the faculty for

enabling my studies. A special thank you is deserved by my wife Elli who supported me

throughout my studies.

Seinäjoki, 16 December 2019

Matti Panula

iv

CONTENTS

ABSTRACT ... I

TIIVISTELMÄ .. II

PREFACE.. III

CONTENTS ... IV

LIST OF ABBREVIATIONS ... VI

1. INTRODUCTION .. 1

1.1 Efficiency .. 2

1.2 Maintainability ... 3

1.3 Research goals... 4

2. BACKGROUND .. 6

2.1 Programming language paradigms ... 7

2.1.1 Reactive programming .. 8

2.1.2 Functional programming ... 10

2.2 Design and architectural patterns ... 12

2.2.1 Dependency Injection ... 12

2.2.2 Model View Controller ... 13

2.2.3 Observer ... 14

2.2.4 Actor ... 14

2.3 Frameworks and libraries ... 15

2.3.1 JavaFX ... 15

2.3.2 Spring framework .. 16

2.4 Summary .. 17

3. RESEARCH METHODOLOGY .. 18

3.1 Engineering Design .. 18

3.2 Design Science... 19

3.3 Design in Software Development .. 20

v

3.4 The research process used in this thesis .. 21

4. REQUIREMENTS AND PRECONDITIONS .. 23

4.1 Quality requirements .. 23

4.2 The factory-view ... 24

4.3 Scaling and translation ... 26

4.4 JavaFX Scene Graph ... 27

4.5 JavaFX Canvas .. 28

4.6 Snapshotting JavaFX Nodes .. 29

4.7 Dynamic configurability and maintainability ... 30

5. IMPLEMENTATION DETAILS .. 32

5.1 Object lifecycle ... 32

5.2 The Drawable interface ... 33

5.3 Scale manager ... 34

5.4 Snapshotting nodes .. 35

5.5 Pixel perfect alignment of bitmaps and nodes ... 36

5.6 Event handlers ... 37

6. ANALYSIS .. 39

6.1 Performance charasteristics ... 39

6.2 Maintainability aspects .. 42

6.3 Limitations and future work ... 44

7. CONCLUSIONS .. 46

8. REFERENCES ... 48

APPENDIX A: JAVAFX NODE PERFORMANCE EXAMPLE...................................... 54

vi

LIST OF ABBREVIATIONS

AoP Aspect Oriented Programming
API Application Programming Interface
AWT Abstract Window Toolkit
CPU Central Processing Unit
CSS Cascading Style Sheet
DI Dependency Injection
DOM Document Object Model
GPU Graphics Processing Unit
GoF Gang of Four Design Patterns
GUI Graphical User Interface
HDL Hardware Description Language
HMI Human Machine Interface
HTML Hyper Text Markup Language
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IoC Inversion of Control
ISO International Organization for Standardization
JDK Java Development Kit
JRE Java Runtime Environment
MVC Model View Controller
OCP Open-Closed Principle
OOP Object Oriented Programming
POJO Plain Old Java Object
REPL Read-Evaluate-Print Loop
RIA Rich Internet Application
SQL Structured Query Language
UI User Interface
URL Uniform Resource Locator
WCS Warehouse Control System
WYSIWYG What You See Is What You Get
XML Extensible Markup Language

1

1. INTRODUCTION

This thesis describes methods that augment a graphical user interface (GUI) framework

called JavaFX to improve its suitability for a specific use. The work is related to a software

development project which goal is to create a domain specific in-house GUI framework

and an accompanying reference implementation of the GUI. The resulting user interface

(UI) is a cross-platform Java desktop application.

Implementations of the UI are used for monitoring and manipulating an accompanying

automation system running on a Linux server. The automation system is typically utilized

in warehouse automation. In the scope of this thesis the automation system, acting as a

backend for the UI, shall be called a warehouse control system (WCS). The UI shall be

referred to as WCS UI or simply the GUI. At the time of writing, the author’s employer is

rewriting the in-house software platform for creating tailored WCSs. The author of this

thesis is in charge of designing and implementing many fundamental aspects of the new

GUI for the WCS platform, including the bulk of the solutions described in this thesis.

A key requirement for the new UI is that it should leverage the JavaFX GUI framework.

The decision to use JavaFX is likely related to a desire to focus all software development

efforts on the Java language. JavaFX was included in Java 8 Runtime Environment

(JRE) and Java Development Kit (JDK) released in 2014. It being the most modern GUI

framework in the JDK likely influenced the decision to use JavaFX for the new WCS UI.

The research goals for this thesis are related to finding, evaluating and implementing

ways that make JavaFX more suitable for the task defined in the scope of this thesis.

An international standard, regarding the quality of software systems, highlights 13 quality

aspects [25]. This thesis uses two of them, performance efficiency and product maintain-

ability, as metrics in the analysis of the resulting software artifact. Most of the 13 aspects,

the author has little or no control over. Usability, for example, is dictated mostly by a UI

specification, though performance does have an effect on usability too. Other things, like

security and reliability, are heavily related to interaction with the backend WCS system

and are omitted from this thesis. Therefore, the quality of the resulting software is eval-

uated focusing only on efficiency and maintainability.

2

Software efficiency is related to resource utilization. Factors such as processing times

and throughput are often considered as variables of efficiency. When evaluating software

quality from an efficiency viewpoint, things like throughput need to be considered in re-

lation to the target hardware, and also through predefined efficiency requirements.

The maintainability of a piece of software depends heavily on its complexity. Extending,

or adding new features, is often required during program lifecycle. If a piece of software

is difficult to understand, it is also difficult to extend.

1.1 Efficiency

The frame rate of movies has traditionally been 24 Hz. This means that a new image is

projected on a screen twenty-four times every second. To reduce flicker, even in early

projectors, the single image was displayed multiple times resulting in typical refresh rates

ranging from 48 to 72 Hz. Modern computers usually use a frame rate of 60 Hz, though

many computer gamers use much higher frame rates supported by special hardware.

Too low frame rates can be perceived as choppy or in other ways unpleasant.

An acceptable frame rate is a key quality metric related to the performance efficiency of

the WCS UI. The requirement is not merely visual. JavaFX’s default frame rate is 60 Hz.

Observed frame rates less than 60 Hz are indicative of a bottleneck, likely a full utilization

of a physical Central Processing Unit (CPU) core. This is unacceptable if constant, es-

pecially in multitasking environments such as modern desktop operating systems. Log-

ging the frame rate in JavaFX is trivial and can be performed using a class called Ani-

mationTimer.

Another efficiency metric in user interfaces is latency. Latency is the time interval be-

tween an action and a response. For example, when the user starts panning the view,

it should not take too long for the user to see the view move. Many anecdotal sources

cite 100 ms as a general limit for immediate UI actions [22], [46]. Much lower latencies

are required in applications such as musical instruments or motion control. UI latency

can be measured by analysing a video recording depicting the action and the response.

The perceived latency challenges during the development of the WCS UI were all ob-

served to be related to issues also causing poor framerate. No further attention on la-

tency is therefore given in this thesis, as focusing on frame rate seems to cover all of the

issues.

3

A customer project that implements the WCS UI may contain hundreds of conveyors that

each contain dozens of moving items. This raises some software efficiency considera-

tions. The GUI must be able to visualize possibly thousands of moving artefacts on the

factory floor, while simultaneously enabling the panning and zooming of the view in ques-

tion.

JavaFX employs a reactive programming paradigm and implements a scene graph that

resembles the document object model (DOM) familiar from web browsers. Much like the

DOM has its limitations, so does JavaFX’s scene graph. Overcoming performance effi-

ciency challenges inherent in approaches based on a DOM like scene graph is a top

concern in this thesis. The aim is to achieve acceptable performance by augmenting the

JavaFX framework using tried and true software engineering approaches.

1.2 Maintainability

Chapter 2 argues that high level code is more maintainable than low-level “bare metal”

code. Often the maintainability advantages come at the cost of performance. The perfor-

mance efficiency aspect in this thesis is related to finding a balance between a low-level

programming approach and the benefits provided by the utilization of a high-level GUI

framework such as JavaFX. Maintainability in this research is therefore tightly coupled

with efficiency. Other maintainability aspects include the software architecture, agile cod-

ing practices and code modularity.

There are certain ground rules related to the maintainability of the WCS GUI. For any

given customer project, the bulk of the programming and customization happens in the

server-side WCS. The GUI should be usable with minimal configuration. In fact, there

are two distinct types of projects with different use cases for the GUI framework. Projects

that create new UI functionality, and projects that only use the existing functionality pro-

vided by the reference implementation of the WCS UI.

A project that requires no new UI functionality should be able to utilize the reference GUI

without any customer specific extensions on the client side. This enables project teams

to focus on the server side WCS codebase. The GUI framework should therefore allow

sufficient run-time customizability. In other words, the reference implementation should

be usable in typical small projects without any modifications to the WCS UI codebase.

If a project does require new UI functionality, the new functionality should be as straight-

forward as possible to implement. A well-structured system for extending the framework

also simplifies the creation of new features. If the new UI functionality produced by a

4

project team is seen as reusable, it can be merged back to the reference implementation

codebase. In accordance to Meyer’s Open-Closed principle (OCP) [44, p. 54], it is a good

practice to implement the new GUI functionality without modifying the existing code in

the reference implementation. A structured extension is also easier to merge back to the

framework codebase. The merge can be performed at a later time by GUI experts who

do not suffer from the pressure of a project deadline.

The maintainability of a piece of software is influenced by software architecture. A clean

architecture makes software easier to understand and makes it easier to extend and

debug. Some of the conventions in the JavaFX GUI framework were deemed not suitable

for the WCS UI. For example, instead of using JavaFX’s XML-based views and depend-

ency injection concepts, a custom implementation using Spring Framework was devel-

oped. Spring Framework is in a key role in most of the solutions related to maintainability

and in making the system run-time customizable and extendable. The use of Spring in

augmenting JavaFX is a major factor forming the architecture of the WCS UI and the

GUI framework. The software architecture forms a backbone for the maintainability of

the GUI.

1.3 Research goals

The goal for this research is to create a domain specific UI framework. The key concept

is related to the augmentation of a Java UI framework called JavaFX. This thesis de-

scribes the software artefacts that were developed during this research. Full source code

is omitted, but the software concepts are presented in a level that enables the reproduc-

tion of the results. The software artefacts are evaluated on criterions that are mostly

related to performance efficiency and software maintainability.

Chapter 2 will present the scientific background related to the architectural concepts and

software tools that are relevant to this research. These include the functional and reactive

programming paradigms, and the division of programming concepts to declarative and

imperative styles in Section 2.1. Section 2.2 presents common programming concepts

with an emphasis to UI programming. The software tools, JavaFX and Spring Frame-

work, are reviewed in Section 2.3.

Chapter 3 describes the study’s research methodology. It discusses traditional engineer-

ing science and how Design Science and agile software development practices deviate

from it. It also highlights the similarities between Design Science and agile software de-

velopment practices. The evolution of empirical agile practices from Engineering Science

5

is also discussed. Additional attention is given to software quality as measure used in

the analysis of the resulting software artefacts.

Chapter 4 presents the software tools that define the scope for this research. It focuses

on the challenges related to using the specific tools in the given problem domain. It dis-

cusses both challenges stemming from functional requirements, and challenges caused

by the requirement to use a specific software tool, the JavaFX GUI framework. The chap-

ter mostly discusses the functional requirements in the context of JavaFX.

Chapter 5 introduces, in detail, the technical solutions or software artefacts that, along

with this paper, form the primary outcome of this research. This Chapter mostly contains

descriptions of actual software artefacts. Using the descriptions from Chapter 5, it should

be possible for a developer with some familiarity with JavaFX to reproduce similar func-

tionality to that what is described in this thesis.

Chapter 6 analyses the software artefacts that were developed during this research. It

focuses on evaluating the performance efficiency and software maintainability of the re-

sulting software artefacts. The final chapter concludes the thesis with a summary of re-

sults.

6

2. BACKGROUND

Software is seldom developed from scratch and GUIs are no exception. Usually a soft-

ware framework or other types of existing components, such as a software library, pro-

vide common functionality to an application. This chapter presents the tools and con-

cepts related to the development of the WCS UI. Section 2.1 about programming lan-

guages introduces the concepts and history related to JavaFX’s functional and reactive

nature. Section 2.2 about design patterns and software architecture presents the rele-

vant concepts and patterns related to UI programming and software maintainability.

GUI software presents special challenges to the developer. According to Myers [45], UIs

that are easier to use, are harder to create. Myers also claims that in general UI software

is considered to be difficult to debug, modify and implement [45]. There is a trend of web-

and other network-backed applications becoming more popular than traditional device

specific software [59]. Such network-backed or cloud applications impose additional

challenges to UI development. UIs that utilize network services, must be implemented

asynchronously and are typically event driven in nature [31]. The reactive programming

paradigm is gaining popularity. It is trying to alleviate the problems faced in the develop-

ment of interactive and event-driven applications [5]. Reactive programming enables the

creation of interactive systems without the difficulties present in typical concurrent solu-

tions in imperative languages [52].

The WCS UI is developed using the JavaFX GUI framework. Section 2.3.1 presents Ja-

vaFX’s core concepts. Spring Framework is an inversion of control (IoC) container that

is used in to satisfy the maintainability and configurability requirements in the WCS UI.

Spring Framework is presented in Section 2.3.2. JavaFX contains some reactive pro-

gramming concepts. Reactive programming is discussed in Section 2.1.1. Each of the

sections in this chapters are also somehow related to software maintainability. Section

2.1.2 about functional programming describes how functional programming concepts

can improve software maintainability.

Due to their pervasive nature in the field, basic descriptions of procedural and object-

oriented programming (OOP) concepts are omitted. Readers interested in procedural

programming are referred to Kernighan and Ritchie’s classic book on the C programming

language [32]. To learn advanced object oriented design, one could consider reading

7

Design Patterns [19]. The book is often called Gang of Four (GoF) after its four authors.

Some of the GoF book’s patterns are presented in Section 2.2.

2.1 Programming language paradigms

This section presents the concepts of imperative and declarative programming and pro-

vides a glimpse to the history leading to JavaFX and reactive programming. Early pro-

gramming languages were modelled after the underlying hardware they were run on. As

more computers were developed, it became necessary to develop a language that was

portable. Portable languages could be compiled to run on different types of computers.

The story of higher level languages began in the 1950 with Fortran that gained popularity

not least due to its portability [24]. Another milestone in higher level language develop-

ment is ALGOL which introduces Structured Programming concepts that are still widely

used today. These include code blocks, loop statements and conditionals [65]. The term

“Structured programming” was coined by Edsger W. Dijkstra. Dijkstra also wrote the fa-

mous open letter titled "Go To Statement Considered Harmful" promoting the structured

approach to programming [12].

Programming languages can be classified into families based on their model of compu-

tation. Scott divides programming languages into two top-level classes, imperative and

declarative [55]. Declarative languages focus on what the computer should do, whereas

imperative languages focus on how the computer should do it. It has been argued that

algorithms can generally be described as consisting of logic and control [34]. Declarative

programming is focused on presenting the logic of the computation [38]. Imperative pro-

gramming on the other hand focuses on manipulating state using statements that form

the control flow [24]. JavaFX is related to reactive and functional programming styles,

both of which are declarative approaches. These are discussed in more detail in sections

2.1.1 and 2.1.2.

The most widely used declarative language today is arguably Structured Query Lan-

guage (SQL) that is used to interface relational databases. When issuing a declarative

SQL query, the database management system typically uses a query optimizer that gen-

erates an imperative query plan that is used to access the data. Another example of

language that supports declarative programming is Lisp. Lisp is a language invented in

the late 1950s. After Fortran, it is the second oldest language still in widespread use

[1],[60]. A more tangible examples of declarative programming are perhaps hardware

description languages (HDL). HDLs emphasize logic over control flow [21]. Many HDLs

8

can be synthesized to form a physical implementation with programmable logic gates

[33]. In such cases, the HDL defines the logic formed by the physical gate network. The

circuit then continuously reacts to external input. In practice constructs like a main-loop

or a state machine are often manually added to HDL designs for handling the control

flow.

Imperative languages are based on John von Neumann’s model of machine execution

[27]. Fortran and ALGOL are both imperative languages. C is an example of a basic

imperative language that is widely used today. Imperative languages remain more pop-

ular than declarative, not least due to performance reasons [55].

Object orientation is probably the most common programming language paradigm in use.

According to TIOBE’s programming language popularity ranking, Java and C++ have

been part of the top three of most popular languages since the turn of the millennium

[60]. Despite their structured and distributed model of memory and computation, object

oriented languages such as Java, C++, C# and Python, are classified as imperative lan-

guages [55]. The first object orientated language was SIMULA 67 [55]. It was developed

in the University of Oslo by Ole-Johan Dahl and Kristen Nygaard and published in 1967.

The developers of Smalltalk from 1970s and C++ from 1980, which are more recent and

popular object oriented languages, both cite SIMULA as a major influence [10].

Java 8, published in 2014, introduced declarative concepts such as lambda-expressions

and streams that are generally labelled under the functional programming paradigm. Due

to challenges posed by distributed and parallel computing among other things, declara-

tive and functional programming concepts are gaining popularity in both server [63] and

GUI programming. Microsoft’s C# introduced lambda expression in 2007 [61], and Ap-

ple’s Swift from 2014 contains many functional aspects such as the read-evaluate-print-

loop (REPL) [67]. JavaScript, the language of the web, is also related to Scheme which

is a dialect of the functional language Lisp [53].

2.1.1 Reactive programming

JavaFX GUI framework employs a reactive programming paradigm. JavaFX is included

in the standard JDK since Java 8. Reactive programming is closely related to the con-

cepts of dataflow programming. Various applications, such as music production soft-

ware, video games and web-pages employ an embedded dataflow-like language [7].

Reactive and dataflow programming are, like functional programming, classified as

members of the declarative programming paradigms.

9

Much like electronic circuits, reactive programs operate with continuous values that vary

over time. Reactive programming is focused on the propagation of change [5]. Reactive

programming simplifies the creation and maintainability of declarative event-driven soft-

ware. It allows the programmer to express what the UI should do and let the reactive

extension or language runtime mange the implementation.

The reactive JavaFX example below creates a text-field that displays a sum of two inte-

ger properties. As long as the text-field is visible, whenever either of the integer proper-

ties value changes, the summation and string conversion is recomputed and the resulting

string is displayed by the text-field:

 TextField txt = new TextField();
 IntegerProperty int1 = new SimpleIntegerProperty(2);
 IntegerProperty int2 = new SimpleIntegerProperty(2);
 txt.textProperty().bind(int1.add(int2).asString());

The API document on JavaFX bindings [49] states that bindings are calculated lazily.

When dependencies change, the binding’s result is not recalculated, but it is marked as

invalid. When the invalid value of a binding is requested, only then is the value recalcu-

lated. If the text-field in the example above would not be visible the binding would remain

invalidated until its value is requested.

Bainomugisha describes the reactive paradigm as being spreadsheet-like [5]. To em-

phasize the similarity with spreadsheets, the two integer properties in the example above

could be exchanged for TextField objects. The three text-fields would then form a kind

of three cell spreadsheet with the summation function applied.

To replace the summation with subtraction, for example the following is possible:

 NumberBinding subtr = Bindings.subtract(int1, int2);
 lbl.textProperty().bind(subtr.asString());

Implementing a spreadsheet-like application with JavaFX’s bindable properties would be

quite straightforward compared to many traditional approaches involving callbacks or the

observer-pattern. The more traditional approaches are discussed in Section 2.2.3.

The dependencies in a reactive program form a directed graph called a dependency

graph. The propagation of change throughout the dependency graph is called data flow.

Reactive programming utilizes the synchronous dataflow programming paradigm [37]

without the strict real-time requirements. Continuous time-varying values are repre-

sented as behaviours and discrete values by events. Unlike in synchronous dataflow,

the reactive paradigm also allows for the structure of the dataflow to change over time

[9], [56]. Much of the research on reactive programming is based on Fran, a functional

10

reactive animation extension to the Haskell programming language [5]. Hudak and Elliot

published their paper on Fran [15] in the year 1997.

The reactive terminology is not limited to GUI programming. A recent and general de-

scription of reactive systems is provided in The Reactive Manifesto [6] which discusses

reactive systems in a broader sense for example in the context of distributed server sys-

tems and distributed applications.

2.1.2 Functional programming

Imperative languages have implicit state that is modified by commands such as variable

assignment or the while loop. Functional languages in contrast have no implicit state and

the computation is carried out solely through the evaluation of expressions [24]. Func-

tional languages are considered more “high-level”, which refers to the origins in mathe-

matical notation.

The mathematical style entails the notion of immutability, or the lack of side effects. Pure

functions must always return the same results with the same parameters. The lack of

side effects can be seen as a discipline for good programming [24] much like the avoid-

ance of goto-statements [12]. However, like the spirit of the goto-statement still lives in

the break-statement, even pure-functional languages must deal with some side effects

and state. Input and output, for example, require both state and side-effects. The func-

tional approach to dealing with state is explicit rather than implicit like in imperative lan-

guages [24].

Functional programs’ syntax can be very similar to mathematical notation. For example,

the factorial of a positive integer n can be presented in recursive mathematical notation

such that n! = fact(n) where:

 fact(n) = {
1 if n = 0

fact(n – 1) * n if n > 0

The same recursive approach can be implemented in Java 8 using a functional program-

ming style. The function is marked final to reflect the important functional concept of

immutability:

 final Function<Integer, Integer> fact = n -> {
 if (n==0) return 1;
 else return this.fact.apply(n-1)*n;
 };

11

The previous code example could have been written as a regular method. However, the

example presents, in quite an unpractical way, the Java 8 syntax for both the lambda-

expression and a first-class function. Java 8 introduced higher-order functions [62]. Such

functions can take functions as parameters and return a function as a result. A function

that can be assigned to a variable is called a first-class function. In addition to lambda

expressions, like in the previous example, regular methods can also be used as first

class functions in Java 8.

A more graceful way for calculating factorials using functional Java would be the follow-

ing, where the rangeClosed -method creates a stream, or a sequence, of numbers (1…n).

The stream is consumed by the reduce function:

 IntStream.rangeClosed(1, n).reduce(1, (int a, int b) -> a * b);

This approach is identical with the more common mathematical definition of a factorial:

 n! = 1 * 2 * 3 * … (n-2) * (n-1) * n

The benefit of reduce, compared to mutating a running product in a loop, is the more

graceful parallelization without the need of additional synchronization [49]. Both the

stream and reduce are traditional functional programming concepts. Streams can be

used to generate infinite sequences, for example the set of all positive integers can be

generated with Java 8’s IntStream as follows:

 IntStream.iterate(0, i -> i + 1);

Obviously generating an infinite sequence is impossible. The above example is also lim-

ited by the size of a 32bit integer. The items in the stream are actually calculated only

when they are needed. Such deferred computation style is called lazy or non-strict eval-

uation. A similar concept is present also in JavaFX’s lazy evaluation of bound values,

and in Spring-framework where it is possible to annotate beans with @Lazy to defer ini-

tialization.

Distributed software systems and efficient utilization of modern multi-core central pro-

cessing units (CPU) require concurrent computing. Concurrent programming is challeng-

ing. Race conditions, deadlocks and concurrent update problems are caused by mutable

variables. As variables in functional languages are immutable, functional programming

is a good solution to many concurrent problems [39, p. 70]. Functional programs also

have less overhead or “boiler plate”-code than their object-oriented counterparts. Such

shorter programs are cheaper to maintain, build and deploy [43].

12

2.2 Design and architectural patterns

This section presents the relevant design patterns and architectural concepts in JavaFX

and the WCS UI. Architecture is a term that many people associate with plans used in

building houses or machinery. Software architecture can be analogously thought of a

plan that is used in software development. Even though it is possible to write a piece of

software in a single file without functions or classes, such a program would arguably be

difficult to maintain. Unlike the building blocks of houses, the components defined by

software architecture are abstract, immaterial and often difficult to conceptualize. Martin

describes software architecture as a tool for planning appropriate boundaries between

software components [39]. The components defined by software architecture may reflect

the boundaries between real-world objects but they can also be much more abstract.

Design patterns is a term that was popularized in computer science context by the pop-

ular GoF-book [19]. The book presents 23 object-oriented design patterns in C++ and

Smalltalk. One of them, the observer is discussed in Section 2.2.3 as an essential built-

in feature of JavaFX. There exists a vast number of anecdotal commentaries for and

against the usage of design patterns in the web. Zhang and Budgen argue that there’s

no proof on the effectiveness of OOP design patterns from the GoF book, but they do

suggest that the patterns are sometimes useful in improving software maintainability

when the use of patterns is documented appropriately [66]. Norvig suggests that the

patterns in the GoF-book are mostly limitations in C++ and Smalltalk and shows that

most of the patterns can be greatly simplified by using a more capable language like

Lisp [47].

Recurring design does exist in non-OOP contexts. One could conclude that concepts

like data hiding via encapsulation or inheritance are design patterns. However, the term

“design pattern” seems to generally imply an OOP context. Both the GoF-book and most

of Martin’s work are related to OOP. The patterns in software design are empirically

derived generalizations and seldom without drawbacks. Choosing the most suitable pat-

tern or abstraction is often non-trivial. Data hiding, for example, generally makes the

code more maintainable, but global state is still often favored due to other aspects or

constraints such as performance efficiency.

2.2.1 Dependency Injection

Martin proposes that to achieve a clean object-oriented architecture, classes should

strive to depend solely on abstract declarations [39, p. 100]. In Java this means that only

13

abstract classes or interfaces should be used as dependencies in the source code. This

is of course impractical as one must typically depend on concrete implementations of

classes such as the Java String. A developer can however rely that the String class, or

more specifically the interface and visible behaviour of it, will not change. Martin calls

such classes stable. Stable classes can be referred to directly, but volatile classes should

be abstracted behind stable interfaces.

When class A depends on interface B and class C implements B, the dependency is

inverted. Both A and C have a dependency on B but not each other. Dependency Injec-

tion (DI) and Inversion of Control (IoC) are techniques used in OOP, that enable the

injection of object dependencies via an external service. According to Fowler [16], the

term DI was initially used in a 1988 article titled “Designing reusable Classes” [28]. Martin

states that the concept was already present Xerox’s internal functional specifications in

1980 named as “Don‘t call us, we’ll call you (Hollywood’s Law)” [58]. Later literature often

refers to it as the “Hollywood principle”. Martin’s 1996 article introduces a related concept

as “The Dependency Inversion Principle” [40].

Java Platform, Enterprise Edition (Java EE) specification defines “lifecycle contexts” and

“dependency injection” among other things. DI frameworks, such as Spring, are abun-

dant in the Java ecosystem. DI-frameworks simplify the handling of the object instantia-

tion and lifecycle. Similar concepts can be found in UI development. The views in JavaFX

can be defined in code, or by using an XML-based notation FXML [68]. Elements defined

in the FXML-file can be accessed in Java code by marking an undefined variable with a

specific annotation. The JavaFX context will then inject the dependencies defined in the

FXML to the annotated variables.

2.2.2 Model View Controller

Model View Controller (MVC) is a well-known GUI programming phrase, but the MVC

architecture may be less known. Like many other GUI programming concepts, it has its

roots in Smalltalk, one of the first OOP-languages. Fowler highlights two aspects of MVC

that are still relevant today, Separated Presentation and Observer Synchronization [17].

Separated presentation is the emphasis on the separation of data or model, and the

presentation which includes the view and controller components. Observer Synchroni-

zation is related to the way a presentation layer reacts to the changes in a model.

14

Reenskaug, the original developer of MVC, describes MVC as mental model or a Pattern

Language that helps developers to discuss about the business domain in terms of ob-

jects [54]. This is related to the GoF-book’s behavioural patterns that “… shift your focus

away from flow of control to let you concentrate just on the way objects are intercon-

nected [19, p. 245]”. Components that handle user input, such as buttons or text boxes,

are called controllers in JavaFX. JavaFX also inherits much from MVC, for example, in

the way objects in the presentation layer can be wired to observe values in the model.

2.2.3 Observer

The Observer is a behavioural design pattern presented in the GoF-book. Behavioural

patterns model the run-time behaviour of objects. Java has a build-in support for Observ-

ables and JavaFX extends the GUI centric Observer-functionality even further [49]. For

example, a spreadsheet can present the same data with different kinds of charts. The

charts may be independent of each other but have subscribed to observe the same data.

The Observer pattern implements the publish-subscribe model with plain objects [19].

JavaFX has a vast array of tools that implement concepts that are based on MVC and

the observer pattern.

2.2.4 Actor

The Actor Model is a mathematical model for concurrent computation, that is character-

ized by concurrency, resilience and fault tolerance [4]. This section presents the Actor

Model as an alternative point of view to help the reader evaluate the limitations of MVC

and Observer based approaches such as JavaFX. JavaFX is heavily influenced by Re-

active concepts, but as the presentation always happens in a single thread, it cannot be

considered as a pure concurrent reactive framework.

Callbacks are a concept that aim to solve the same problems as the Observer pattern.

They offer a solution to the problem when, for example, a view has two values that are

dependent on each other. In such cases it is possible to defer the checking of the con-

straint using a callback. JavaFX’s lazy evaluation of bound observables can be seen as

a related concept using a simpler syntax, but with a limited functionality as a drawback.

Heavy use of callbacks can lead to a situation called Callback Hell [14]. The Actor Model,

which is closely related to Reactive and Dataflow programming, offers a solution for such

problems. Commonly used Actor Model implementations in the Java ecosystem are the

Akka-framework and the Scala programming language. JavaFX’s thread-model makes

15

callback handling simpler, but many practical JavaFX applications still use callbacks and

require writing additional multi-threaded code that may cause maintainability challenges.

2.3 Frameworks and libraries

This section presents the two main pre-existing components or frameworks in the WCS

UI, JavaFX and Spring Framework. The GoF uses the term “inversion of control” (IoC)

when describing software frameworks as a defining factor for software architecture [19,

pp. 26–27]. When a framework is employed, the flow of control is inverted. The developer

is writing code that is called by the framework. JavaFX applications, for example, are

started by instantiating an implementation of an abstract class called Application [69].

Similarly the Spring Framework is launched by instantiating an implementation of an in-

terface called ApplicationContext [70]. In both JavaFX and Spring, it is the framework

that calls code written by the developer.

GUIs are seldom developed without utilizing existing functionality such as a GUI frame-

work [45]. Despite the ubiquity of high-performance graphics processing units (GPU) in

modern hardware, many games are still developed in low-level, imperative languages

with manual memory management. Most GUIs, GUI-frameworks and web browsers cur-

rently utilize hardware accelerated graphics. Regardless of the available GPU resources,

one should use consideration when choosing a convention, style or approach that best

suits the task at hand. Creating forms with a game engine or developing games with a

form-oriented widget toolkit can be possible, but it is likely impractical. GUI frameworks,

and software frameworks in general, impose conventions and canonical ways for doing

things. When high performance efficiency is a key requirement, high level abstractions

are typically less suitable for the task.

Rich Internet Applications (RIA) developed using Adobe Flash, Microsoft Silverlight or

Java’s “Applets” web browser plugins can be used for embedding content into webpages.

Before web browsers became more capable, RIAs were the preferred solution for many

things such as a business-oriented Java Applet GUIs or games based on Flash.

2.3.1 JavaFX

JavaFX was introduced by Sun Microsystems in 2008. It was initially targeted for the

creation of RIAs and mobile applications [48]. Early JavaFX applications were written

using a declarative scripting language called JavaFX Script instead of the Java language.

JavaFX Script could be compiled to Java bytecode and run as a Java Applet in the

16

browser. Using a new scripting language instead of Java was likely intended to attract

content creators familiar with JavaScript and Flash. JavaFX did not become a popular

mobile framework or a serious competitor to Flash. In 2011 Oracle, who had acquired

Sun, introduced JavaFX 2.0 that dropped JavaFX Mobile and enabled the creation of

JavaFX applications using the Java language. With the introduction of JavaFX 2.0, Ora-

cle also announced its intentions on open-sourcing JavaFX. The future of JavaFX seems

to be tied to OpenJDK as Oracle has hinted that JDK 11 will no longer ship with JavaFX.

At the time of writing, JavaFX seems to be mostly used for creating business applications

for the desktop. Considering its impact on the industry, JavaFX can be seen merely as

a modernized alternative to older Java graphics toolkits such as Swing and Abstract

Windows Toolkit (AWT). Some of the features that distinguish JavaFX from its prede-

cessors include the declarative programming approach, similarities with web-develop-

ment and improved touch-screen support.

One of JavaFX's basic concepts is the scene graph which resembles the Document Ob-

ject Model (DOM) standard used in web browsers. JavaFX provides common compo-

nents, such as text input, buttons and tables, that are present in web browsers and typical

desktop widget toolkits. Much like most web browsers, JavaFX has an element called

Canvas that can be used for developing more efficient graphics. Such feature is required

to enable the implementation of many types of games for example. The Canvas provides

low level abstractions that enable direct manipulation of pixels, and efficient drawing util-

ities for two-dimensional graphics including bitmaps, text and polygons.

2.3.2 Spring framework

Spring is an open source IoC framework for the Java ecosystem. It is based on 30,000

lines of sample code from Rod Johnson’s book “J2EE Design and Development” [64].

The book presents good practices and example implementations for the predecessor of

JavaEE, the Java 2 Enterprise Edition (J2EE) [29]. Spring was released less than a year

after the book as an open source project led by Juergen Hoeller and Yann Caroff [30].

Spring is a serious alternative for the Java Platform Enterprise Edition (JavaEE) standard

[2]. Google trends indicates that Spring is more popular than JavaEE [20].

Today Spring is a broad collection of different extensions called projects, but the Spring

Framework remains in the core. It emphasizes the concept of “convention over configu-

ration” and claims to be an “opinionated framework”. This means for example, that cre-

ating a database backed web application can be done with a few lines of code. Extending

17

and overriding the default configurations enable the creation of more complex custom

systems. Spring’s project description defines Spring framework as a “programming and

configuration model for Java-based enterprise applications” [51]. Spring framework is

based on the concept of “coding to interfaces” [64]. This enables a loose coupling be-

tween the caller and the implementation. Spring’s application context handles the instan-

tiation of classes that implement the interfaces. Spring is an IoC container where the

context handles dependency injection (DI) and aspect oriented programming (AoP) as

the core functionalities [30]. AoP enables instrumenting methods with, for example, log-

ging or testing related code without adding code to the instrumented class. This provides

means for defining component boundaries based on aspects such as logging or testing.

2.4 Summary

This chapter presented the history and the evolution leading to tools such as JavaFX

and Spring Framework. Dependency injection was presented as a part of JavaFX. It was

suggested that as an independent component in JavaFX, the DI functionality can be

replaced with other DI frameworks such as the Spring Framework.

A gradual paradigm shift from imperative languages towards declarative languages was

argued to be in progress. The shift seems to correlate with constantly increasing compu-

ting power. Both JavaFX and Spring Framework were examined from a declarative and

functional programming viewpoint. It was noted that many functional concepts such as

streams or lazy initialization are common in many of the components in contemporary

Java ecosystem. Some attention was given to the increased application of reactive pro-

gramming and the relation of the reactive approach to the pervasiveness of distributed

computing.

This chapter presented the balancing act between the declarative and imperative ap-

proaches, and the challenges related to producing maintainable code. This, in the WCS

UI problem domain, forms the research question for this thesis. The declarative JavaFX’s

performance challenges in this domain may be related to the intended use of JavaFX

being forms, and other simpler UIs. The lack of sufficient computing power in modern

computers is likely an insignificant factor. Falling back to a more imperative style of pro-

gramming using a Canvas was hinted as a solution to the performance challenges faced

with idiomatic JavaFX. This will be discussed with more detail in later chapters.

18

3. RESEARCH METHODOLOGY

This chapter presents Design Science as the primary research methodology employed

in this research. Other concepts related to research in both engineering and software

development are also presented in this chapter. Some practical aspects related to em-

ploying design in software development contexts, such as Agile and Lean, are touched

in Section 3.3.

The goal of this research is to generate a solution concept, implement it in software, and

evaluate the implementation of the new software artefact. The software in question is

part of the WCS UI framework called factory-view. As the study is related to creating a

man-made artefact, a natural science approach to research could be considered sub-

optimal. Natural Science is mentioned here as an example of traditional science, in con-

trast to Design Science.

3.1 Engineering Design

Software development is related to engineering, but also design. Asimow portrays the

engineering design process as a sequential feedback loop [3]. Each design operation’s

outcome is evaluated, and based on the results of the evaluation, the operation is either

repeated or the process continues to the next step. New information is acquired on each

evaluation round. It is essentially a knowledge gathering process.

Dieter and Schmidt use the terms synthesis and analysis to describe the implementation

and evaluation phases in engineering. They also emphasize the process of decomposing

complex problems to more manageable parts as part of the analysis [11, p. 2]. The soft-

ware development process used during this research used a similar iterative model.

Each iteration or version of the software created also new information and insight regard-

ing the inner workings of the JavaFX framework and the way it could be utilized in the

problem domain.

Natural sciences are focused on natural things. Engineering, as well as any other pro-

fession, is focused on the artificial. Work that aims to change an existing situation in to a

more preferred one is commonplace. Such work happens when doctors prescribe med-

ication, or when new policies are devised by the state. According to Herbert Simon, all

such activities can be thought of as design. Simon defines design as “… the principal

19

mark that distinguishes the professions from the sciences.” [57, p. 111]. Dresch et al.

propose that Simon “inspired the distinction between exploratory sciences (traditional

science) and the sciences of the artificial - Design Science “ [13]. Software development

patterns regarding zoomable high performance views using JavaFX do not exists. There-

fore, instead of purely using traditional engineering methodologies, the process of design

needed to be employed in the development of the novel solution used in the factory-view

component.

3.2 Design Science

Dresch et al. [13] describe Design Science as “… a form of scientific knowledge produc-

tion that involves the development of innovative constructions …” with the intention to

solve real world problems while producing a scientific contribution. The outcome can be

“… an artefact that solves a domain problem, also known as solution concept, which

must be assessed against criteria of value or utility”. Chapter 4 presents the criteria for

the artefact produced during this research. Chapter 5 presents the actual artefact and

Chapter 6 assesses the artefact in relation to the criteria presented in Chapter 4. The

criteria can be summarized as forming of two quality metrics, efficiency and maintaina-

bility. Both of these are however entwined with domain requirements and cannot be as-

sessed independently.

Software efficiency is often quantizable. Metrics such as the number of instructions per

second, or the memory consumed on the target hardware are generally trivially measur-

able. The maintainability of a software system is however much less tangible. Both goals

can however be promoted by utilizing the process of design. Design is also vital to the

process of creating new artefacts, such as software. Much of the value and utility pro-

vided by the solution concept are related to technical aspects. The software development

process is however a vital part of the design process. When software is being developed,

knowledge about software design is generated simultaneously.

The process in design science can be seen as consisting of three parts, the relevance

cycle that relates to defining requirements and acceptance criteria, the rigor cycle that is

related to past knowledge, and finally the central design cycle that is related to building

and evaluating the innovative artefacts [23]. Figure 1 demonstrates the three cycles.

20

 Design Science Research Cycles, adapted from [23]

3.3 Design in Software Development

The iterative process of synthesis and analysis in engineering design resembles Fowlers

characterization that typical software development uses a “code and fix” approach. The

difference is that traditional engineering design is based on standardised components

and accurate calculations. Fowler states that the “chaotic” “code and fix” software devel-

opment process only works for small projects [18]. He continues to describe that tradi-

tional engineering methodologies were initially used to try to make software development

more predictable and efficient.

The use of traditional engineering methodologies with software development is however

often critiqued as being bureaucratic. Agile methodologies were developed as a way to

add just the right amount of bureaucracy or “process” to gain a reasonable payoff [18].

There are similarities between Agile and Design Science approaches, and studies that

aim to unify the Agile and Design Science approaches as a scientific method ex-

ist [8], [50].

The WCS UI software has been developed utilizing an adaptation of an Agile software

development framework called Scrum. Agile is an umbrella term that covers a number

of lightweight software development methods including Scrum and Extreme Program-

ming. The Manifesto for Agile Software Development, signed in 2001 by many influential

industry professionals, is often mentioned as a key milestone in the history of Agile soft-

ware Development [41]. Scrum allowed the inclusion of design as part of the software

development process. This led to an iterative development process that, in the spirit of

Design Science, creates new knowledge on each iteration.

Agile shares with software quality research, the sentiment that people are the biggest

influence in the quality of software systems [36]. Design Science and Engineering Design

Application Domain
• People
• Organizational

Systems
• Technical

Systems
• Propblems &

Opportunities

Build Design
Artifacts &
Processes

Evaluate

Foundations
• Scientific Theories

& Methods
• Experience &

Expertise
• Meta-Artifacts

(Design Product &
Design Processes)

Relevance Cycle
• Requirements
• Field Testing Design

Cycle

Rigor Cycle
• Grounding
• Additions to KB

Environment Design Science Research Knowledge Base

21

on the other hand focus less on people and interactions. Design Science can be thought

of as an attempt in gaining scientific knowledge from studying crafts such as engineering.

The agile movement, on the other hand, often advocates software craftmanship. Soft-

ware craftmanship extends the concepts from Agile by for example, emphasizing devel-

oper professionalism, accountability and the growth from an apprentice to a master.

Agile software development shares alikeness with Design Science and Lean manufac-

turing. Lean focuses on reducing waste and gathering information in the entire supply

chain. In agile software development, knowledge can be gathered by, for example deliv-

ering the customer a very early version of the software. The customer can then provide

early feedback. This reduces waste as early feedback makes software design more effi-

cient. In this project, the performance limits of the JavaFX framework were communi-

cated to stakeholders in an early stage of the project. This affected the scope of the

project and led to the development of the custom, high performance solution described

in this thesis.

3.4 The research process used in this thesis

This thesis presents the results of a research that is a part of an agile software develop-

ment project in the field of human machine interface (HMI) software development. The

principles of design science constraint the scope of this thesis. As such, attention is only

given to parts of the software development project that generate JavaFX HMI related

knowledge that can be useful to other professionals in the field.

The research began with a design science concept that Hevner calls the relevance cycle

[23] in which the requirements and acceptance criteria were defined. These quality re-

lated aspects are discussed thoroughly in Section 4.1. Once the requirements were de-

fined, the research proceeded to the design cycle [23] that begun with the study of the

features and limitations of the JavaFX framework.

In the design cycle, many unsuccessful implementations were developed and with each

iteration the performance of the developed artefact was evaluated. Each iteration re-

vealed limitations, but also gained insight on the inner workings of JavaFX. This process

paved the way for the key innovation presented in this thesis. Once the pros and cons of

both the reactive node-based approach and the low-level Canvas in JavaFX had been

sufficiently studied, the resulting hybrid solution was discovered.

22

The rigor cycle [23] in design science is related to making use of existing knowledge.

The new innovative artefact is also evaluated in the light of the existing knowledge. Dis-

covery of the concept that high-level nodes could be used to generate bitmaps likely

resulted from studying JavaFX but also from earlier graphics software development ex-

perience with environments using for example, low-level C or high-level JavaScript. Such

use of existing knowledge is key in design science [23]. Existing solutions were re-

searched, and many related concepts and implementations are presented in this thesis

[26], [42], [35]. Building on existing research is crucial in the sense of maintaining high

scientific standards and rigor in design science research.

23

4. REQUIREMENTS AND PRECONDITIONS

This thesis is focused on a specific part of the WCS UI, namely the factory-view. The aim

is to implement a solution that provides both sufficient performance and maintainability

while utilizing the JavaFX framework. This chapter introduces the factory-view and the

technical aspects related to implementing it. Overcoming performance challenges with-

out deviating too far from idiomatic JavaFX is the top concerns of the research.

4.1 Quality requirements

This research evaluates the factory-view implementation from two viewpoints, perfor-

mance efficiency and software maintainability as defined by ISO/IEC 25010 [25]. The

quality of a piece of software is mostly related to its fitness for the purpose it was devel-

oped for. Therefore, the fitness to purpose cannot be defined unless the purpose has

been appropriately specified.

The efficiency requirement in this research is related to achieving a sufficient screen

refresh rate. In JavaFX this is typically 60 Hz as it is JavaFX’s default refresh rate. Idio-

matic JavaFX with separated presentation sets a good benchmark for the maintainability.

Later sections of this thesis show that performance reasons dictate a deviation from idi-

omatic JavaFX and that the balancing act between maintainability and performance can

be far from trivial.

Screen refresh rates below 60 Hz may look unpleasant and in JavaFX are indicative of

a performance problem. It is a safe guess to say that using JavaFX’s Canvas would likely

provide good enough performance. The Canvas provides high-performance low-level

drawing primitives. Such an approach, while performant, would however likely lead to

poor maintainability. The sub-par maintainability of close-to-the-metal graphics frame-

works is surely one of the reasons why higher-level UI frameworks and toolkits, such as

JavaFX, exist.

The level of maintainability required is not easy to define. As using JavaFX was a prede-

fined requirement, it is safe to assume that idiomatic JavaFX provides a sufficient level

of maintainability, and as such a level of maintainability to aim for. Using JavaFX Nodes

24

in separate views with injected controllers provides a clean architecture that should pro-

vide good enough maintainability. New custom solutions should not increase the com-

plexity experienced by a developer using the WCS UI framework in customer projects.

The quality viewpoints from ISO/IEC 25010 [25] that are omitted from this thesis include

any metrics regarding reliability, security or code quality for example. The software de-

velopment process, described in Section 3.3, about agile software development pro-

cesses, is however also related to software quality as defined by ISO/IEC 25010 [25].

4.2 The factory-view

This section introduces the factory-view and presents many of the requirements related

to the drawing of the items visualized by it. A high-level description of some of the solu-

tions are also provided in this section. The factory-view is the most important part of the

UI and also the most complex. The factory-view is a two-dimensional blueprint-like top-

down view of the actual factory or warehouse. It is a zoomable view that contains several

layers of information. Many of the layers can be either hidden or visible at a certain time

depending on the zoom level and other factors.

One of the most fundamental tasks of the factory-view is to visualize the material flow in

the conveyors of a factory or an automated storage. An implementation of the factory-

view may have to visualize dozens of conveyors spanning several kilometers. The con-

veyors combined may carry thousands of transportation units (TU) that must occasion-

ally be visualized simultaneously.

Figure 2 illustrates a simplified conveyor carrying two pallets. The leftmost pallet in Figure

2 contains 4 stacks and each of the stacks contains two boxes. The number of boxes i.e.

stack height is indicated with a label containing a number (the actual height of the stack

is not relevant in the scope of drawing the factory-view).

25

 Simplified illustration of a conveyor transporting two pallets

In an actual implementation, several interconnected conveyors in different orientations

are present, and the view is typically decorated with status colors, direction arrows and

other helpful visual cues for the factory operators. Still, even the example in Figure 2 can

be extrapolated to reveal several design challenges. The illustration presents 4 layers of

information, the conveyor device, the pallet, the stacks and the labels that indicate the

number of boxes in the stack. Visualizing such tree-like information, while simultaneously

maintaining layer abstractions, requires a separate mechanism that keeps track of the

layer or z-axis depth of a node.

In addition to simple conveyors, a typical factory floor can contain intersections, stackers,

gantry robot storages and many other things. The details of the various devices will be

omitted for brevity. It should be noted however that, even though the conveyors are used

as an example, the requirement to support various different devices with TUs drawn over

them in varying patterns is a requirement affecting the design.

Additional requirements include the possibility to rotate the contents of the factory-view

in 90-degree increments to reflect the orientation of the desktop computer in the factory

floor. The orientation of the labels must however always remain horizontal and remain

positioned to the centre of the labeled item. The labels that indicate the stack heights are

only drawn at appropriate zoom levels. If the user zooms closer, even more information

is drawn over the TUs. All of the text-labels are omitted entirely if the zoom-level would

make them too small to be readable. Such requirements present some implementation

challenges, especially regarding performance efficiency. Efficient visualization of the

thousands of TUs along with the maintainability aspects provide the scope for this re-

search.

26

4.3 Scaling and translation

Scaling and translation are geometric transformations. Scaling is visually similar to zoom-

ing with a camera, and translation has similarities with panning and tilting. This section

presents the basic concepts of such calculations as implemented in the factory-view.

Scaling and translation do not involve the perspective changes that are present when

zooming and panning using a real camera. Though not entirely accurate without explicitly

specifying an orthographic projection, this thesis uses the terms zoom, tilt and pan to

describe what the user of the UI is either seeing or doing.

The WCS UI may visualize factories spanning several kilometres. The user of the UI may

at times wish to view the entire factory, for example to easily spot a device in an error

state. The user may also wish to view the contents of a single pallet on a conveyor. To

facilitate the visualization of items with vast differences in sizes, the factory-view can be

zoomed in and out.

A single decimal variable can be used to represent the zoom-value, or scale. The coor-

dinates and dimensions of all drawables can simply be multiplied with the scale-variable.

This is enough to make the view scalable, but such scaling happens around the origin

point. When zooming in using a scroll-wheel on a mouse, or a zoom-gesture on a touch

screen, it is common that the mouse pointer or the central point of the zoom gesture

defines a kind of a pivot point for the zoom action. This makes it possible to directly zoom

in to an area of interest without the need of a separate panning operation.

It is possible implement the zooming and the panning in such a way that both the pivot

of the zoom, and the translation operate using the same two translation variables, we

shall call them x and y offset. When the user pans the view to the left by dragging with a

mouse, the x-offset variable can simply be subtracted by the number of pixels the mouse

pointer is traveling. In JavaFX, the x-offset can be a property bound to the scaled x-

coordinate property. This would enable visualizing the panning operation while it is hap-

pening and would not require any additional draw operations. Such thing is relatively

simple to implement in JavaFX when using nodes, as the framebuffer is refreshed auto-

matically and the programmer needs not to worry about, for example, manually calling

draw after every operation.

When the user zooms to an area of interest, it is required that the entire selected area

remains visible even when factory-view component gets resized. The resize is a common

occurrence, that happens when another component of the WCS UI grows, and steals

27

screen real estate from the factory-view. To facilitate keeping the selected area visible,

the scale and translate operate on a rectangle instead of just a single point describing

the x and y offsets. The selected-area-rectangle is changed whenever the user zooms

or translates. The pivot point for the scaling is the in middle point of the rectangle. Zoom-

ing in shrinks the selected-area-rectangle and zooming out grows it. The draw calcula-

tions are then implemented so that the real-world area defined by the selected-area-

rectangle is always zoomed in the centre of the factory-view. The scale is then defined

by either the horizontal or the vertical dimension of the rectangle, whichever is the limiting

dimension, depending also on the aspect ratio of the factory-view.

4.4 JavaFX Scene Graph

JavaFX’s Node-based scene graph is well suited for many tasks. A graph-based ap-

proach feels natural for developing forms and documents that may contain images, text

input, buttons and sub-forms for example. The scene graph is very similar with the Doc-

ument Object Model (DOM), a tree-like data structure used in web browsers to represent

HTML nodes.

JavaFX contains many different layout container classes. Their super class is called a

Pane. Pane is subclassed by classes such as GridPane and VBox for instance. As the

names might suggest, the GridPane helps in positioning nodes to a grid and the VBox

allows positioning nodes next to each other vertically. Such layout containers can be very

useful in typical form-like applications. However a top-down view similar to a blueprint,

like the factory-view, can not utilize such automatic layout. The drawables of the factory-

view must be drawn on specific coordinates that depend on the current panning and

zooming, and also map to real-world coordinates of the object that the drawable items

represent.

To position nodes to specific coordinates, one can use JavaFX’s top-level layout con-

tainer called Pane. The Pane does not perform layout on its children. The position of a

node that is a child of a Pane-object, is determined solely by the translate and other

transformations of the child-node in question. Even though JavaFX provides much flexi-

bility in the way transformations such as translation, scaling and rotate can be applied to

nodes, much of the calculations related to drawables’ coordinates in the factory-view

were eventually hand coded. JavaFX’s powerful transformation features, including trans-

late, rotate and scale, are however very convenient for placing and sizing various objects

on the Pane.

28

JavaFX scene graph combined with the reactive binding using properties, is also well

suited for creating simple custom graphics that compose of other simpler shapes, text or

even images. To implement a circle contained within a rectangle, for example, one could

bind the dimensions and coordinates appropriately. It would then be possible to freely

adjust the width and height properties of the rectangle and the circle would always be

nicely centred and resized within the rectangle regardless of the dimensions of the rec-

tangle.

The following snippet presents an example code for the circle centred within a rectangle.

Variable r represents the rectangle node and variable c the circle node.

 c.centerXProperty().bind(
 r.xProperty().add(r.widthProperty().divide(2)));
 c.centerYProperty().bind(
 r.yProperty().add(r.heightProperty().divide(2)));
 c.radiusProperty().bind(
 Bindings.min(r.widthProperty(),r.heightProperty()).divide(2));

To implement the pallet with stacks from Figure 2, it is quite straightforward to have the

pallet be a container. Then the stack of boxes on the pallet can be a child of the pallet in

the scene graph. Then when the pallet is moved, its children are moved also. In other

words, the coordinates of the children are bound to the coordinates of the parent. This is

a very simple way for drawing pallets and many other things in JavaFX, but it has its

drawbacks.

The initial factory-view implementation was simply placing JavaFX nodes to a layout

container Pane. However, it soon became apparent that such an approach would lead

to performance problems. The findings are in line with the findings of Connors [26]. Con-

nors recommends that keeping the scene graph as small as possible helps JavaFX per-

formance.

4.5 JavaFX Canvas

This section introduces the JavaFX preconditions for the solution that was eventually

developed to enable the drawing of thousands of TUs while keeping the scene graph

size, and resulting performance, at an acceptable level. As described in the previous

sections, JavaFX’s scene graph and reactive property binding are powerful tools that

both simplify and provide flexibility for the process of generating simple custom graphics.

29

On the other hand, the performance efficiency starts do degrade when the scene graph

contains too many nodes. The factory-view is required to visualize possibly thousands

of items simultaneously. Additionally, if all of the graphics would be developed using

JavaFX nodes, one drawable item could be composed of dozens of nodes themselves.

It is now clear that this would result in a scene graph containing possibly tens of thou-

sands of nodes, which is unacceptable and not something JavaFX was designed for.

JavaFX’s Canvas enables low-level drawing primitives that do not suffer from perfor-

mance problems related to the number of nodes in the scene graph. In fact, the canvas

has nothing to do with nodes, except that it is a JavaFX node itself. The drawback of

using such low-level drawing utilities is that it requires more complex code. Animating a

circle with a number in the centre is in many ways much simpler with basic JavaFX where

the framework handles the imperative “how” and the developer can focus on the declar-

ative “what”. When operating with the low-level Canvas, one must for example write code

that handles both the drawing and clearing of the framebuffer whenever something new

needs to be drawn.

Bitmaps used in graphics display as part of a larger scene, are sometimes called sprites.

The use of sprites dates back to early computer games and can often be implemented

with low resources. Drawing sprites on the Canvas requires just a single method call.

However, the WCS UI must support zooming in the factory view. This means that to use

sprites, one should either have pre-calculated bitmaps for every possible zoom-level or

tolerate, likely severe, resampling artefacts in scaled bitmaps.

4.6 Snapshotting JavaFX Nodes

The decision to use JavaFX was likely related to a desire to reduce the diversity in inter-

nal tools and to focus on the Java ecosystem. As described in the previous section, using

bitmaps in JavaFX’s canvas could likely solve the performance problems related to a too

high number of nodes in the scene graph. There are likely many good options for auto-

matically generating sprites for different zoom levels. These include vector graphics ed-

itors which could be scripted to produce the bitmaps for different zoom-levels. Such an

approach would however require tooling and expertise outside of the Java ecosystem. It

would also lead to losing the previously discussed power and flexibility present in using

JavaFX to generate the required graphics. The factory-view is also a part of the WCS UI,

with the rest of the application being mostly form-like. As creating the form-like parts

30

using idiomatic JavaFX is something that the developers will eventually do anyway, it is

natural to have the factory-view developed using an approach as similar as possible.

Luckily the Node class provides a method called snapshot which enables the rendering

of the node into a bitmap. Using the snapshot functionality, it is possible to find a balance

between idiomatic JavaFX and low-level graphics involving frame buffers and the Can-

vas. The drawables can be entire developed using JavaFX nodes, but drawn in the fac-

tory-view as bitmaps on the Canvas.

4.7 Dynamic configurability and maintainability

As described in Section 2.2.1, JavaFX’s views can optionally be developed using an

XML-based notation called FXML. JavaFX’s use of FXML is somewhat comparable to

HTML in web browsers and much like web pages, the views can be styled using Ja-

vaFX’s implementation of cascading style sheets (CSS). The scene graph can also be

defined entirely in Java-code without using any FXML or annotations.

The JavaFX ecosystem includes a GUI editor called Scene Builder. Scene Builder ena-

bles a what you see is what you get (WYSIWYG) style development of FXML views.

Using custom components in Scene Builder requires that the custom components are

built separately and then imported to Scene Builder manually. This can be a laborious

task.

The users of the WCS GUI framework, the Java-developers working with customer pro-

jects with a backend emphasis, may not be familiar with web technologies. Mostly due

to this, and the challenges related to the use of Scene Builder, it was decided to favor

Java-code over FXML. The use of FXML injection in JavaFX enforces separation of con-

cerns and certain architectural component boundaries. JavaFX views written in plain

Java have no such restrictions. This means that more of the responsibilities related to

having clean component boundaries and keeping the codebase maintainable lie on the

developer.

To keep the codebase uncoupled, new object instantiation in WCS UI is handled by

Spring Framework. As the vanilla GUI should work as is in simple customer projects, it

needs to be dynamically configurable. To achieve this, the backend provides class

names that are used by Spring to instantiate objects and inject them to the UI.

31

Spring also provides many useful tools and best practices. Spring handles most of the

WCS UI’s object graph, not just the factory-view, and defines many aspects of the archi-

tecture. Springs philosophy of “convention over configuration” means that sane defaults

for most common tasks are provided by the framework. Spring’s networking components,

for example, were used for the backend communication as is without much deviation

from Spring’s defaults.

32

5. IMPLEMENTATION DETAILS

This section presents in detail the technical solutions that aim to solve the performance

challenges described in previous sections. Attention is also given to architectural aspects

that define the maintainability of the software.

Figure 3 presents the basic drawing flow. FactoryView extends Pane and is the scene

graph node that contains the various layers for bitmap drawing, regular nodes, and for

event handling. The different layers are, in applicable sections, opaque in colour, and

transparent to user events such as mouse clicks.

 Sequence diagram visualizing the program flow in drawing the devices in

the factory-view.

A WCS UI running on a client can have several factory-view instances open simultane-

ously. As a result, the FactoryView and FactoryDrawManager objects are specific to a

single factory-view. The other classes in Figure 3 are singletons representing global

shared state. Everything that is visualized in a single factory-view should be stored in

FactoryViewData. The data is visualized by the view instances. The FactoryDrawer class

contains no state, only static methods that generate bitmaps from instances of JavaFX

Nodes that implement the Drawable interface that is described in Section 5.2.

5.1 Object lifecycle

The object lifecycle in the WCS UI is mostly handled by Spring Framework’s IoC con-

tainer. Objects managed by the IoC container are called beans. The instantiation and

dependencies between beans are handled by the container. The WCS UI uses Spring’s

33

Java based configuration for configuring the IoC container. The configuration files are

Java classes with methods returning the bean instances. The configuration classes have

annotations that are used to define the beans. The following defines a singleton bean

called conveyor:

 @Bean
 public Drawable conveyor(){
 return new DrawableConveyor();
 }

Spring beans are singletons by default. This means that only one instance of a class is

used during the program lifecycle. The Java based bean definitions, like the one above,

must be a part of Java class annotated with the @Configuration annotation. Also, the

Spring Context must be made aware of the particular configuration class by registering

it to the context.

The factory-view, and the entire WCS UI codebase can be used as is in simple projects,

but the framework must be easily extendable to cater projects that require for example

new drawables. Both of these viewpoints have implications on the object lifecycle.

Spring Framework enables run-time instantiation of classes that are defined as beans in

the Spring Context. The backend system provides, for example, a type, size, position

and orientation of a drawable. Here the type can be a bean name registered to Spring

Context. A drawable can be instantiated at runtime as follows:

 Drawable cnv = (Drawable) springContext.getBean(“conveyor”);

When a customer project extends the WCS UI framework, they create a new Spring

Framework based Java-project. The new project will have the existing WCS UI codebase

as a library dependency. This way, the project can reuse, override and extend whatever

they want. If a project develops, for example, a drawable that is seen as reusable, it is

trivial to pick that bean to be merged in the reference implementation.

5.2 The Drawable interface

Most things that are drawn to the factory-view implement the Drawable interface listed in

Program 1. Specifically, things that need to be drawn in numbers exceeding dozens, are

required to be drawn as bitmaps to enable keeping the scene graph node count as small

as possible.

34

public interface Drawable{
 /** CenterX, CenterY, Width, Height, Angle */
 XYWHA xywha();
 /** zoom */
 DoubleProperty scaleProperty();
 /** unique key for bitmap-caching */
 Object getCacheKey();
}

Program 1. The Drawable interface.

The interface dictates that all instances of Drawable implement a method called xywha()

that returns an object of type XYWHA. The XYWHA class defines essentially a rectangle

that can be rotated around the centre point. It contains five DoubleProperty-fields for the

centre point, size and angle and their getters and setters. It also contains some helper

methods for cloning and setting values. XYWHA combined with a type, for example a

conveyor or a crate, form the basic metadata required for drawing the real-world objects.

Even though most coordinates in JavaFX operate on the top left point, the centre point

was chosen for everything to simplify the bitmap handling. The top left coordinate of a

bitmap visualizing a circle, for example, is not contained within the circle. Doing all rota-

tions around the centre points was also seen as the simplest solution.

The XYWHA describes the position, size and orientation in real world coordinates. To

support zooming, the drawables must support scaling. The scaleProperty() method in

the Drawable interface is intended to be bound to a global scale value. Classes that

implement the Drawable interface bind the scale property via multiplication to the centre

point and width and height properties.

The purpose of the Drawable interface is to provide metadata for the mechanisms that

renders bitmaps from the nodes. The getCacheKey() method returns an object intended

to be used as a key in a HashMap that stores already rendered bitmaps. It is not typed

to provide maximum flexibility. As an example, a circle requires only a scaled radius as

a cache key, whereas a rectangle would also require the angle. Returning an Object

instead of just a hashKey enables to also provide a custom equals() method which pro-

vides more control over the HashMap lookup operations.

5.3 Scale manager

All of the transformations in JavaFX operate on floating point values. When storing bit-

maps, a more granular approach is required. It seems that about a hundred distinct zoom

values is enough to provide a visually pleasing zooming experience when the distinct

35

zoom values are selected appropriately and the visualized things’ size ranges from 1m

to 1km.

A class called ScaleManager was developed to provide quantized scale values. Program

2 presents the main calculation from the class. The listing demonstrates how an estheti-

cally pleasing exponential curve for the zoom values can be calculated. The constant

NBR_OF_SCALE_VALUES defines how many distinct zoom levels are required, typically val-

ues ranging from 50 to 200 depending on the size of the layout. The min and max scales

can range from 0.01 to 0.2 depending on the layout. These are values that are configured

by project developers.

scaleValuesArray = new double[NBR_OF_SCALE_VALUES];
final double minScaleExp = Math.log(MIN_SCALE);
final double maxScaleExp = Math.log(MAX_SCALE);
final double step = (maxScaleExp - minScaleExp) / (NBR_OF_SCALE_VALUES - 1);

for (int i = 0; i < scaleValuesArray.length; i++) {
 double exponent = minScaleExp + i * step;
 double value = Math.exp(exponent);
 scaleValuesArray[i] = value;
}

Program 2. Calculating suitable scale values for different zoom levels.

Program 2 is run when the UI starts. The FactoryViewManager selects a suitable scale

that fits the entire factory to the screen, typically a value near the MIN_SCALE constant.

The scale manager contains a helper method that fetches the scale index that points to

a nearest scale value that is smaller than the one given as a parameter. This is useful,

for example, in fitting the view contents to the view when the window is resized.

5.4 Snapshotting nodes

The FactoryDrawManager handles the communication between the view, event handlers

and the model stored in FactoryDrawData. When a websocket message or a user oper-

ation triggers a draw operation, the whole view is re-drawn. The list of drawables in Fac-

toryDrawData is looped through. Before any drawing is performed, the bounds including

the rotation are calculated. This involves some trigonometry. The calculated bounds are

then compared to the visible area in the factory-view, and if the bounds of the Drawable

are outside of the visible area, the loop continues to handle the next Drawable from the

list.

36

If the drawable needs to be drawn, the FactoryDrawManager compares the bounds, cal-

culated in the previous step, to predefined size limits. If the Drawable is too big, Facto-

ryView’s method viewPortOnlyDraw() is called. The special view-port-draw generates a

suitable SnapshotParameter object for Node’s snapshot method. This way only the visible

parts are handled in the snapshot. Without such mechanisms, the GPUs texture size

limit can easily be exceeded. For example, a long conveyor zoomed close could amount

to tens of thousands of pixels. In cases where the drawable is only partially rendered to

a bitmap, the bitmaps are always excluded from caching. When zoomed very close, there

cannot be that many drawables visible. Therefore, the lack of caching in such cases

causes no performance issues.

When a Drawable needs to be drawn, the FactoryDrawer queries the cache using the

Drawable’s cache-key. If a bitmap is found, it draws that on the specific Canvas within the

FactoryView instance. If not, a new bitmap is rendered. The Drawable is scaled and

translated using the methods defined in the interface. It is then passed along with the

cache and the FactoryView instance to the FactoryDrawer’s draw() method.

As the bitmaps are rendered only when needed, the process can be characterized as

lazy. This has the drawback that the first zoom operation can feel sluggish. If this is seen

as unacceptable, it should be feasible to render the required bitmaps beforehand when

the UI starts.

5.5 Pixel perfect alignment of bitmaps and nodes

Large parts of the factory-view are developed using JavaFX’s regular scene graph-based

approach. Due to performance reasons, some utilize a Canvas based approach. As the

Canvas operates with integer pixels, and the scene graph with floating point values, it

requires some fine tuning to seamlessly mix bitmaps drawn on a Canvas with nodes

drawn on a Pane.

The process of rendering a Drawable Node to a bitmap, begins with generating a Writ-

ableImage object that will hold the bitmap. The required size for the bitmap is calculated

as follows. The rotated bounds are calculated and multiplied with the scale value. A small

padding to hold drop shadows or other decorations are added to the dimensions. If either

width or height dimension is odd, one pixel is added to make the dimensions even. Even

dimensions are required for an accurate centre point.

37

Program 3 demonstrates the way the Drawable is rendered on the prepared Writea-

bleImage. When tested with Oracle’s JDK 8 on Windows 7, the calculation produces

visually identical results when compared to Nodes on a Pane.

int minX = (int)(scaledCenterX + 0.5 – img.getWidth() / 2);
int minY = (int)(scaledCenterY + 0.5 – img.getHeight() / 2);
SnapshotParameters ssp = new SnapshotParameters();
ssp.setViewport(new Rectangle2D(minX, minY,
 (int)img.getWidth(), (int)img.getHeight()));
ssp.setFill(Color.TRANSPARENT);
((Node) drawable).snapshot(ssp, img);

Program 3. Rendering a Drawable to a WritableImage represented by img variable.

5.6 Event handlers

Much like web browsers, JavaFX handles user events, like mouse input, via bubbling

and capturing mechanisms. In the capturing phase the event is passed from the root to

the event target, and in the bubbling phase it returns from the target back to the root

node. The tree in this bubbling metaphor is inverted, as the “bubbles” travel from

branches towards the root.

The FactoryView class contains various layers. Only the layers that contain too many

nodes, need to utilize the bitmap snapshotting mechanism. When working with the Can-

vas based bitmap layers in the FactoryView, only the layer and the mouse coordinates

are provided by JavaFX’s event handlers. As we are dealing with a Canvas, determining

the target Drawable that was clicked, needs to be calculated manually. This is a common

requirement in computer graphics and is called the point-in-polygon problem.

To find a click target, first all possible targets can be looped through, and their rectangular

bounding boxes are checked for intersection with the clicked point. If only a single match

is found, that is determined to be the target. If there are several matches, all of the

matches can be instantiated as nodes of their specific type. JavaFX nodes implement a

method called contains. The contains method can be finally used to accurately check

whether a point is contained within the shape of a node.

To handle a click which target is a Canvas, a separate class called the EventHandlerPane

was developed. The EventHandlerPane initializes and sets a handler on most touch ges-

tures and, for example, mouse and keyboard events. The class handles only input re-

lated things. Zooming, panning and tilting is forwarded to the FactoryDrawManager class.

38

If an event it is a click on a device, the handler loops through all devices from Facto-

ryViewData and checks whether the mouse click coordinate is contained within one of

them. To do this, the mouse click coordinate must first be transformed to real world co-

ordinates by undoing the scaling and translating operations. If no match is found, the

event is forwarded to items beneath the current Canvas. The EventHandlerPane turned

out to become quite complex and as such highlights the downsides of creating UIs with

low level tools.

39

6. ANALYSIS

This chapter evaluates the software artefact produced during this research. As described

in earlier chapters, the focus of this research is twofold. First the problem domain and

the software solution that was developed along this research are presented. Secondly

the quality of the resulting software artefact is evaluated. The quality metrics used in the

evaluation, can be narrowed down to cover performance efficiency and software main-

tainability. As the lead developer and architect of the software solution in question, the

author of this thesis was mainly concerned with these aspects and had little control over

other quality factors.

As described in Chapter 4, performance efficiency presents a key challenge in the de-

velopment of the factory-view-component when using the JavaFX UI framework. Section

6.1 presents statistics that compare the performance efficiency of the chosen approach

to an idiomatic JavaFX implementation. It verifies the assumption that the bitmap-based

approach offers superior performance characteristics when compared to node-based ap-

proaches.

Chapter 2 argued that high performance efficiency often requires low-level or bare-metal

coding approaches such as using imperative languages with manual memory manage-

ment like C/C++ or even assembler. When used in conjunction with high performance

graphics, such approaches can utilize low level application programming interfaces (API)

such as OpenGL or DirectX that can interact with a GPU directly. In contrast, higher-

level languages and approaches are often considered more maintainable. Deviating from

idiomatic JavaFX, made certain compromises regarding maintainability inevitable. Sec-

tion 6.2 evaluates the maintainability of the factory-view component developed during

this research.

6.1 Performance characteristics

As described in Chapter 4 and Chapter 5, refresh rates below 60 Hz are generally indic-

ative of a sub-par graphics performance in JavaFX. The refresh rate is trivially measur-

able using a JavaFX component called the AnimationTimer. A refresh rate of 60 Hz was

recorded on most workloads on the final iterations of the WCS UI and the factory-view

40

during this research. As such it can be stated that the quality requirements regarding

performance efficiency were met.

The refresh rate of the WCS-UI, and especially the factory-view, is highly dependent on

different workloads. Both user actions, such as zooming, and the state of the WCS

backend system have an effect on the perceived performance. To demonstrate the po-

tential performance gains, a minimal reproducible example was developed. The com-

plete code, excluding fairly obvious import statements, can be found from Appendix A.

Table 1 presents numbers generated using the JavaFX application from Appendix A.

The application was developed for the purpose of demonstrating the benefits of using

low-level rendering in JavaFX when there is a risk of the scene-graph becoming too big.

The tests were run with Oracle JDK 8 on a MacBook Pro (15-inch, 2019).

It is clear by looking at the numbers from Table 1 that rendering more than one hundred

nodes is on the edge of acceptable performance. As 16 ms equates to the 60 Hz limit

discussed in earlier sections, it is safe to assume that exceeding this with the hardware

used for running the tests will lead to reduced frame rate and is indicative of a full utili-

zation of a one or more CPU core causing a bottleneck. By running the code, one can

also observe that rendering even hundreds of nodes causes severe memory consump-

tion and increasing the drawable count will, eventually depending on the hardware, crash

the test application.

Table 1. Performance comparison results from a program listed in Appendix A

Nbr of Bitmap rendering duration, ms Node rendering duation, ms

drawables Run 1 Run 2 Run 3 Avg. Run 1 Run 2 Run 3 Avg.

10 1 1 1 1,0 2 2 2 2,0

100 2 2 2 2,0 16 16 16 16,0

250 1 0 1 0,7 26 30 27 27,7

500 1 0 1 0,7 27 26 25 26,0

1000 0 1 0 0,3 31 29 29 29,7

2500 1 1 1 1,0 62 71 57 63,3

5000 2 2 2 2,0 80 85 85 83,3

10000 5 4 3 4,0 96 116 96 102,7

20000 28 25 21 24,7 159 156 149 154,7

41

The somewhat naive example from Appendix A and Table 1 omits some aspects.

Though the numbers regarding bitmaps are good when compared to nodes, it seems

that the example represents bitmap-performance in a bad light. It is likely that such a

short-lived test application suffers from overhead not present in actual application, as 25

ms with 20 000 bitmaps seems slower than what is experienced with the actual applica-

tion and more complex tests. Table 1 does not fail to show that the bitmap-based drawing

method is significantly faster.

The test also omits performance measurements related to animating the nodes. By mod-

ifying the code from Appendix A, it is possible to verify that animation performance starts

to degrade when the number of animated nodes increases. When the code is modified

so that only a single iteration of nodes is added using the measure-method, and the

Canvas related parts are removed, what is left is a view containing a random pattern of

nodes.

When the code from Appendix A is modified as described above, it can be augmented

with the following loop to add a separate rotate animation to each node:

 for(Node n : p.getChildren()){
 RotateTransition rt = new RotateTransition();
 rt.setNode(n);
 rt.setByAngle(360);
 rt.setDuration(Duration.millis(10000));
 rt.setCycleCount(Animation.INDEFINITE);
 rt.play();
 }

When the above example is run with even 250 nodes on the relatively powerful hardware

described above, it can be seen by using the htop command, for example, that one or

two CPU threads are being constantly fully utilized, the fans of the MacBook become

loud, and JavaFX frames are being dropped. At around 1,000 nodes, JavaFX starts out-

putting internal errors. As the factory-view is required to animate possibly thousands of

items, and taking into consideration the test results from this section, it is fair to assume

that using idiomatic JavaFX as such would not have worked in this problem domain.

This section does not prove that the novel approach presented by this thesis is better.

Including a self-contained example that draws animated bitmaps using Canvas would

likely require several pages of code, and as such is omitted for brevity. Tests performed

during the development, and experiences from using the final solution, indicate that ani-

mating several thousands of nodes using the solution developed during this thesis works

very well with minimal CPU load and no frames dropped. The following section suggests

42

that the domain specific solution that was developed during this research, in addition to

providing adequate performance, causes only a minor reduction in maintainability.

6.2 Maintainability aspects

As described in Chapter 4, expendability is an important variable when evaluating the

maintainability of the WCS UI. Meyer’s Open-Closed principle (OCP) [44, p. 54], is an

object-oriented principle that, when applied to this context, states that it should be pos-

sible to develop new GUI functionality without modifying existing code. As the WCS UI

needs to be usable as a library, adhering to the OCP is also a functional requirement.

The WCS UI uses Spring Framework to replace JavaFX’s dependency injection mecha-

nism. Spring includes functionality that enables the extension and replacement of parts

of the program, for example in customer projects. Spring also provides useful tools and

conventions especially related to the network-client nature of the application, but this

design decision has its drawbacks.

Spring operates with Plain Old Java Objects (POJO). These are regular java classes

with typical getter and setter naming conventions. The Spring Context maintains the ob-

ject-graph composed of POJOs and handles POJO instantiation and lifecycle. As de-

scribed in Chapter 2, this provides many benefits regarding testability and configurability.

Every POJO requires a piece of configuration that brings it to the knowledge of Spring.

Spring does not prevent circumventing the DI mechanism in any way, and in many cases,

it is totally acceptable to instantiate non-fundamental objects directly from Java code.

When the resulting WCS UI software codebase is inspected, it seems that only some of

the objects in the application are handled by Spring. Many, even large, object hierarchies

are instantiated without using Spring. It is likely that such an approach will lead to project

teams having to tamper with upstream code. This can cause problems with maintaina-

bility.

Earliest iterations of the factory-view did not use Spring. The architecture was also not

sufficiently documented and communicated in the project team. These reasons are likely

candidates for the causes resulting in the situation that Spring is not utilized accordingly.

Luckily, while tedious, making regular objects Spring-managed is trivial and the situation

will likely improve naturally while the software is being used and further developed.

Using Spring Framework to replace JavaFX’s DI mechanism has another bigger draw-

back. With idiomatic JavaFX’s FXML-views and injected controllers, the MVC-like style

43

is heavily enforced. With JavaFX mixed with Spring, and without FXML, nothing is pre-

venting developers from interleaving presentation code with the data and business logic.

This turned out to be a bigger problem than anticipated. In general, it is difficult to know

how to separate business logic from the presentation. Possibly partly due to the general

difficulties in separating presentation from business logic, merely communicating the im-

portance of separating views and controllers, and providing good examples seems

sometimes not to be enough. In retrospect, it might have been worthwhile to develop an

abstraction that mimics the JavaFX DI as much as possible. If the views and controllers

would always be instantiated by the Spring context, it could be less tempting to develop

ad-hoc solutions that can lead to reduced maintainability.

The resulting factory-view component has one fly in the ointment that seemed to be im-

possible to fish out. The snapshotting mechanism does not perfectly fit in the JavaFX’s

object-oriented class hierarchy. As described in section 5.2, the Drawable interface is in

key role when working with the snapshottable nodes. Everything that is drawn on as

bitmap on the factory-view, is a subclass of Node that implements Drawable. Nodes that

implement Drawable are however problematic. Node is an abstract class, not an interface.

In Java, multiple inheritance is only possible using interfaces. In WCS UI, classes imple-

menting Drawable are always subclasses of Node. When snapshotting instances of Draw-

able, an explicit typecast to Node is always required. This limitation may be due to Ja-

vaFX’s history with JavaFX Script that supported mixins, a form of multiple inheritance.

The typecasts could be avoided by overriding all nodes used in the factory-view to im-

plement the Drawable interface, but few explicit typecasts here and there are likely still

more maintainable.

Additionally, there exists many other DI tools in the Java ecosystem. Spring was selected

because the project team had some familiarity with it, and Spring provided many useful

components, such as networking and authentication, that worked well enough with the

default configuration. In retrospective, other DI frameworks could have been more suit-

able for the task at hand. There even exists a project called Afterburner that provides

JavaFX specific IoC. Using Afterburner could have possibly helped in enforcing the MVC-

like division of components in JavaFX while providing all the benefits of DI.

Event handling, such as mouse clicks, zooming and panning, was quite challenging to

implement and the result is not overly impressive when inspected from the aspect of

maintainability. This is reflective of the challenges generally present in using low-level

techniques in UI development. Quite a lot of work would be required to clean up the event

44

handling code. For bitmaps, all the event handling and target searching had to be imple-

mented manually, and it needed to be interoperative with native JavaFX components.

The result is a set of classes that work but are difficult to maintain. Luckily the event

handling implementation has worked well enough and new requirements that would re-

quire refactoring are currently not in sight.

The maintainability of the system where the JavaFX nodes are rendered into bitmaps

and viewed on canvas, is likely to cause only minor maintainability challenges for future

developers. Apart from the event handling, and especially selecting the click target from

the correct layer, the system just works. When new drawables are developed for the

factory-view, the developers only need to adhere to the few rules posed by the Drawable

interface described in Section 5.2. This is not much different from developing pure Ja-

vaFX nodes. As such, it can be concluded that, apart from the current complex state of

the event handling system, the maintainability of the resulting factory-view is acceptable.

6.3 Limitations and future work

The resulting software framework provides a means to an end, a framework that serves

its purpose in the context of the WCS UI. This means that as such, the scope of the

research is limited by the domain of the WCS UI. While the resulting solution is quite

flexible, no attempt was made in making it general purpose. Although this research pro-

vides most of the building blocks for a general-purpose solution, the many domain spe-

cific parts limit the usefulness of this research. These include functionality related to ex-

ceptions developed for supporting different layers in the WCS UI. These are also related

to the maintainability issues with the domain specific event handling described in Section

5.6. and Section 6.2.

The node bitmap hybrid solution seems to be a novel idea in the context of JavaFX. It

could be possible to develop an entirely encapsulated JavaFX layout container that

would accept regular nodes as its children and would handle the snapshot rendering and

altered node-object lifecycle behind the scenes while conforming to all JavaFX conven-

tions like layout, resizing and event handling. As such, the mechanism of using JavaFX

nodes as source material for automatic bitmap rendering, and the accompanying

zoomable and pannable views, could be a good candidate for further research.

Instead of developing a general-purpose JavaFX layout container, it could be possible

to use this research as a foundation for developing a general-purpose drag and drop

style GUI builder. Such a thing could be useful in applications that need to visualize

45

things that do not fit on a single screen, that is, views that need to support scaling or

translation, or both. Applications involving blueprints are an obvious candidate, as the

software was developed for visualizing factories in a blueprint like manner. Home auto-

mation, or things like smaller heating, ventilation, and air conditioning control systems

like the ones used in farms, could be a possible application area. Creating programmable

graphics in a drag and drop manner could be useful in other contexts too. A utility for

teaching programming or for making simple games are other possible options, especially

when considering the popularity of the Java programming language.

46

7. CONCLUSIONS

This thesis presented a novel approach for creating maintainable code that produces

high performance 2D graphics using JavaFX and no additional graphics toolkits. A re-

lated solution for performance improvement, but with a different technology stack, has

been presented by Marx et al. [42] who explore 3D texture creation using web technolo-

gies. Kruk et al. present JavaFX best practices and tools including the usage of Spring

Framework [35]. The paper by Kruk et al. [35] is related to more conventional form-based

GUIs but can serve as a good starting point for readers interested in extending JavaFX’s

IoC functionalities.

The biggest contribution of this research is likely the mechanism that uses JavaFX scene

graph nodes in the creation of sprites and the related functionality that allows the interop-

erability of sprites and nodes in a zoomable view. This thesis presents the solution at a

level that should enable a developer with some familiarity with JavaFX to implement an

application with comparable functionality. Most of the actual code from the resulting ap-

plication is omitted, but the snippets that are presented, were carefully selected to cover

the most relevant and the most challenging aspects related to the solution.

The resulting software artefact provides a means for using JavaFX for creating complex

user interfaces without sacrificing much of the benefits that reactive JavaFX provides for

the domain in question. The snapshot mechanisms and the views related to it also allow

the developer to freely mix idiomatic scene graph-based JavaFX with the high-perfor-

mance Canvas based implementations in relevant parts of the WCS UI.

It can be argued that instead of using JavaFX, it would have been a better alternative to

use a game engine or even the older, and more low-level, Java GUI toolkit Swing. The

solution that was implemented as part of this research does have some advantages. It

does not introduce any additional tools that require learning. The viewpoint favouring

small domain specific in-house frameworks is however rather subjective. It is likely that

at least for some developers, it would be easier to work with a well-documented and

feature rich framework. This may be especially true if the UI framework needs to be

extended to meet unanticipated requirements. Three dimensional views, for example,

are not supported by the implemented solution.

There are several deficiencies int the final solution when compared to more mature

frameworks. The end result is not particularly well documented and the architectural

47

component bounds are not as strict as they could be. On the other hand, the core classes

in the factory-view amount to around a thousand lines of code, so the system is small

enough to be understood by experts in the field. The small size reflects the domain spe-

cific nature of the framework and may be seen as an advantage when compared to more

complete external frameworks or toolkits.

JavaFX is a modern GUI framework with many similarities with contemporary web tech-

nologies. It provides features, such as transformations on nodes, that are not available

in web, but the downside of the high-level approach in some applications is performance.

This thesis demonstrates that it is feasible to implement complex zoomable views using

JavaFX while still utilizing much of the modern reactive tools that JavaFX offers.

It was concluded that there is room for improvement regarding the maintainability of the

developed solution. Replacing JavaFX’s FXML based injection with the Spring Frame-

work provided flexibility. Keeping the views and controllers separate, however requires

more discipline from the developers as the separation is not in any way enforced. In

conclusion it can be stated that the solution serves its purpose. At the time of writing this

thesis, the performance of the WCS UI is more than adequate but there is room for im-

provement regarding software maintainability.

48

8. REFERENCES

[1] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of

Computer Programs. 2nd. MIT Press. Full text available on-line. http://mitpress.

mit. edu/sicp/full~…, 1996.

[2] J. Arthur and S. Azadegan, Spring framework for rapid open source J2EE web

application development: A case study, Proc. - Sixth Int. Conf. Softw. Eng., Artif.

Intell. Netw. Parallel/Distributed Comput. First ACIS Int. Work. Self-Assembling

Wirel. Netw., SNPD/SAWN 2005, 2005, pp. 90–95, vol. 2005.

[3] M. Asimow, Introduction to design. Prentice-Hall, 1962.

[4] M. Autili, A. Di Salle, F. Gallo, A. Perucci, and M. Tivoli, Biological Immunity and

Software Resilience: Two Faces of the Same Coin?, in International Workshop on

Software Engineering for Resilient Systems, 2015, pp. 1–15.

[5] E. Bainomugisha, A. L. Carreton, T. van Cutsem, S. Mostinckx, and W. de Meuter,

A Survey on Reactive Programming, ACM Comput. Surv., 2013, pp. 52:1--52:34,

vol. 45, no. 4.

[6] J. Bonér, F. Dave, K. Roland, and T. Martin, The Reactive Manifesto, 2014. .

[7] M. Carkci, Dataflow and Reactive Programming Systems: A Practical Guide, 1st

ed. USA: CreateSpace Independent Publishing Platform, 2014.

[8] K. Conboy, R. Gleasure, and E. Cullina, Agile Design Science Research, in

Proceedings of the 10th International Conference on New Horizons in Design

Science: Broadening the Research Agenda - Volume 9073, 2015, pp. 168–180.

[9] G. H. Cooper, Integrating dataflow evaluation into a practical higher-order call-by-

value language, Brown Univ. Provid. RI, 2008.

[10] O.-J. Dahl and K. Nygaard, How Object-Oriented Programming Started. [Online].

Available:

http://kristennygaard.org/FORSKNINGSDOK_MAPPE/F_OO_start.html.

[Accessed: 03-Dec-2018].

49

[11] G. E. Dieter and L. C. Schmidt, Engineering design/George E. Dieter, Linda C.

Schmidt. Boston: McGraw-Hill Higher Education, 2009.

[12] E. W. Dijkstra and E. W., Letters to the editor: go to statement considered harmful,

Commun. ACM, 1968, pp. 147–148, vol. 11, no. 3.

[13] A. Dresch, D. P. Lacerda, and J. A. V. Antunes, Design science research: A

Method for Science and Technology Advancement. Springer, 2015.

[14] J. Edwards and Jonathan, Coherent reaction, in Proceeding of the 24th ACM

SIGPLAN conference companion on Object oriented programming systems

languages and applications - OOPSLA ’09, 2009, p. 925.

[15] C. Elliott and P. Hudak, Functional Reactive Animation, in International

Conference on Functional Programming, 1997.

[16] M. Fowler, InversionOfControl, 2005. [Online]. Available:

http://martinfowler.com/bliki/InversionOfControl.html. [Accessed: 15-Aug-2016].

[17] M. Fowler, GUI Architectures. [Online]. Available:

https://www.martinfowler.com/eaaDev/uiArchs.html. [Accessed: 20-Jan-2019].

[18] M. Fowler, The New Methodology, 2005. [Online]. Available:

https://www.martinfowler.com/articles/newMethodology.html.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. 1995.

Reading, Massachusetts: Addison-Wesley., 1995.

[20] Google Trends, Google Trends - Spring Framework vs. Java Platform, Enterprise

Edition, 2016. [Online]. Available:

https://www.google.com/trends/explore?date=all&q=%2Fm%2F0dhx5b,%2Fm%

2F0bs6x. [Accessed: 05-Aug-2016].

[21] T. Hawkins, Declarative programming language simplifies hardware design | EE

Times, EE Times, 2003.

[22] S. Henty, UI Response Times, 2015. [Online]. Available:

https://medium.com/@slhenty/ui-response-times-acec744f3157. [Accessed: 09-

Dec-2019].

50

[23] A. R. Hevner, A three cycle view of design science research, Scand. J. Inf. Syst.,

2007, p. 4, vol. 19, no. 2.

[24] P. Hudak, Conception, evolution, and application of functional programming

languages, ACM Comput. Surv., 1989, pp. 359–411, vol. 21, no. 3.

[25] IEC and ISO, 25010 (2011). Systems and software engineering--Systems and

software Quality Requirements and Evaluation (SQuaRE)--System and software

quality models, International Organization for Standardization, Geneva,

Switzerland. .

[26] James Connors, Node Count and JavaFX Performance, Oracle Jim Connors’

Blog, 2009. [Online]. Available: https://blogs.oracle.com/jtc/node-count-and-

javafx-performance. [Accessed: 17-Oct-2018].

[27] M. J. Jipping and K. Bruce, Imperative Language Paradigm, in Computer science

handbook, Chapman & Hall/CRC, 2004.

[28] R. E. Johnson and B. Foote, Designing Reusable Classes, J. Object-Oriented

Program., 1988, pp. 22–35, vol. 1, no. 2.

[29] R. Johnson, Expert one-on-one J2EE design and development. John Wiley &

Sons, 2004.

[30] R. Johnson, Spring Framework: The Origins of a Project and a Name, 2006.

[Online]. Available: https://spring.io/blog/2006/11/09/spring-framework-the-

origins-of-a-project-and-a-name. [Accessed: 15-Aug-2016].

[31] K. Kambona, E. G. Boix, and W. De Meuter, An Evaluation of Reactive

Programming and Promises for Structuring Collaborative Web Applications, in

Proceedings of the 7th Workshop on Dynamic Languages and Applications, 2013,

pp. 3:1--3:9.

[32] B. W. Kernighan, D. Ritchie, and others, The C programming language. Prentice-

Hall Englewood Cliffs, 1988.

[33] S. P. Khatri, N. V Shenoy, J.-C. Giomi, and A. Khouja, Logic synthesis, in

Electronic Design Automation for IC Implementation, Circuit Design, and Process

Technology: Circuit Design, and Process Technology, CRC Press, 2016, p. 27.

51

[34] R. Kowalski, Algorithm= logic+ control, Commun. ACM, 1979, pp. 424–436, vol.

22, no. 7.

[35] G. Kruk, O. Da Silva Alves, E. Roux, and L. Molinari, Best practices for efficient

development of JavaFX applications, 2018.

[36] C. Larman, Agile and iterative development: a manager’s guide. Addison-Wesley

Professional, 2004.

[37] E. A. Lee and D. G. Messerschmitt, Synchronous data flow, Proc. IEEE, 1987, pp.

1235–1245, vol. 75, no. 9.

[38] J. W. Lloyd, Practical advantages of declarative programming, in Unknown, 1994,

pp. 3–17.

[39] R. C. Martin, Clean architecture: a craftsman’s guide to software structure and

design. Prentice Hall Press, 2017.

[40] R. C. Martin, The dependency inversion principle, C++ Rep., 1996, pp. 61–66, vol.

8, no. 6.

[41] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices.

Pearson Education, Inc., 2003.

[42] R. Marx, S. Vanhove, W. Vanmontfort, P. Quax, and W. Lamotte, DOM2AFrame:

Putting the Web back in WebVR, 2017.

[43] S. McConnell, Software estimation: demystifying the black art. Microsoft press,

2006.

[44] B. Meyer, Object-oriented Software Construction (2Nd Ed.). Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 1997.

[45] B. a. Myers, Graphical User Interface Programming, in chapter 48 of Computer

Science Handbook -- Second Edition, 2004, pp. 48-1-48–29.

[46] J. Nielsen, Usability Engineering. Elsevier Science, 1994.

[47] P. Norvig, Design Patterns in Dynamic Languages. 1998.

[48] L. T. O’Neil, The Latest Innovation: JavaFX, 2007. [Online]. Available:

52

https://web.archive.org/web/20071023073844/http://www.sun.com/featured-

articles/2007-0508/javafx/index.jsp. [Accessed: 10-Oct-2019].

[49] Oracle, JavaTM Platform, Standard Edition 8 API Specification, 2018. [Online].

Available: https://docs.oracle.com/javase/8/docs/api/.

[50] J. C. Pereira and R. de F.S.M. Russo, Design Thinking Integrated in Agile

Software Development: A Systematic Literature Review, Procedia Comput. Sci.,

2018, pp. 775–782, vol. 138.

[51] Pivotal Software Inc., Spring Framework, 2016. [Online]. Available:

http://projects.spring.io/spring-framework/. [Accessed: 15-Aug-2016].

[52] R. R. Pucella, Reactive programming in Standard ML, in Computer Languages,

1998. Proceedings. 1998 International Conference on, 1998, pp. 48–57.

[53] A. Rauschmayer, Speaking javascript: An in-depth guide for programmers.

O’Reilly Media, Inc., 2014.

[54] T. Reenskaug, The Model-View-Controller (MVC) - Its Past and Present, in JAOO

Conference, Aarhus, Denmark, 2003.

[55] M. L. Scott, Programming language pragmatics, 4th ed. Morgan Kaufmann, 2015.

[56] N. Sculthorpe, Towards safe and efficient functional reactive programming,

University of Nottingham, 2011.

[57] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[58] R. E. Sweet, The Mesa programming environment, in ACM SIGPLAN Notices,

1985, vol. 20, no. 7, pp. 216–229.

[59] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen, The death of binary

software: End user software moves to the web, Proc. - 9th Int. Conf. Creat.

Connect. Collab. through Comput. C5 2011, 2011, pp. 17–23, no. 978.

[60] TIOBE Software BV, TIOBE Index | TIOBE - The Software Quality Company,

2016. [Online]. Available: http://www.tiobe.com/tiobe-index/. [Accessed: 22-Aug-

2016].

53

[61] A. Troelsen, Pro C# 2008 and the. NET 3.5 Platform. Apress, 2008.

[62] R.-G. Urma, M. Fusco, and A. Mycroft, Java 8 in action : lambdas, streams, and

functional-style programming. Manning Publications Co.

[63] I. Valkov, N. Chechina, and P. Trinder, Comparing Languages for Engineering

Server Software: Erlang, Go, and Scala with Akka, 2018.

[64] G. Walls, Spring in Action, Third Edition. Manning Publications Co., 2011.

[65] L. B. Wilson and R. G. Clark, Comparative programming languages. Addison-

Wesley, 2001.

[66] C. Zhang and D. Budgen, What Do We Know about the Effectiveness of Software

Design Patterns?, IEEE Trans. Softw. Eng., 2012, pp. 1213–1231, vol. 38, no. 5.

[67] Chris Lattner’s Homepage. [Online]. Available: http://nondot.org/sabre/.

[Accessed: 10-Oct-2019].

[68] Using FXML to Create a User Interface. [Online]. Available:

https://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm. [Accessed: 19-

Feb-2019].

[69] Hello World, JavaFX Style. [Online]. Available:

https://docs.oracle.com/javase/8/javafx/get-started-tutorial/hello_world.htm.

[Accessed: 10-Dec-2018].

[70] Spring Framework Documentation. [Online]. Available:

https://docs.spring.io/spring/docs/current/spring-framework-reference/index.html.

[Accessed: 10-Dec-2018].

54

APPENDIX A: JAVAFX NODE PERFORMANCE

EXAMPLE

The following presents a minimal reproducible example on the benefits of using low-level

bitmap drawing over JavaFX nodes in cases where the scene-graph contains too many

nodes. The applications performs test runs by drawing the letter P on two different ways.

It outputs three columns of data, 1. the number of items drawn, 2. time it took to draw

the bitmaps in ms, and 3. time it took to draw the nodes in ms. The code uses Plat-

form.runLater quite heavily. This is required to make sure that JavaFX performs the

drawing, applies Cascading Style Sheet (CSS) and finishes everything before moving to

the next step.

public class Main extends Application {
 private WritableImage img;
 private GraphicsContext gc;
 private Pane p;
 @Override
 public void start(Stage primaryStage) throws Exception{
 Parent root = perfTest();
 primaryStage.setScene(new Scene(root, WIDTH, HEIGHT));
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
 private Pane perfTest(){
 Pane root = new Pane();
 Canvas c = new Canvas(WIDTH, HEIGHT);
 this.p = new Pane();
 this.gc = c.getGraphicsContext2D();
 root.getChildren().addAll(c, p);
 Label pLabel = newNode();
 pLabel.setTextFill(Color.GREEN);
 root.getChildren().add(pLabel);
 // workaround to force layout before snapshot
 Platform.runLater(() -> {
 img = snapshot(pLabel);
 root.getChildren().remove(pLabel);
 startTest();
 });
 return root;
 }

Code continues on the next page …

55

… continued from the previous page.

 final static int WIDTH = 1600;
 final static int HEIGHT = 800;
 final static int BMAP_TEST = 1;
 final static int NODE_TEST = 2;
 private void startTest(){
 List<Long> bmapResults = new ArrayList<>();
 List<Long> nodeResults = new ArrayList<>();
 List<Integer> iterationsList = new ArrayList<>();
 iterationsList.add(10);
 iterationsList.add(100);
 iterationsList.add(250);
 iterationsList.add(500);
 iterationsList.add(1000);
 iterationsList.add(2500);
 iterationsList.add(5000);
 iterationsList.add(10000);
 iterationsList.add(20000);
 for(int iterations : iterationsList) {
 Platform.runLater(()->bmapResults.add(measure(iterations, BMAP_TEST)));
 Platform.runLater(()->nodeResults.add(measure(iterations, NODE_TEST)));
 Platform.runLater(()->p.getChildren().clear());
 }
 Platform.runLater(()->printResults(iterationsList, bmapResults, nodeResults));
 Platform.runLater(()->System.exit(0));
 }
 private long measure(int count, int testType){
 long start = System.currentTimeMillis();
 for(int i = 0; i < count; i++){
 double x = Math.random() * WIDTH;
 double y = Math.random() * HEIGHT;
 if(testType == NODE_TEST) drawTo(p, newNode(), x, y);
 if(testType == BMAP_TEST) drawTo(gc, img, x, y);
 }
 long finish = System.currentTimeMillis();
 return finish - start;
 }
 private Label newNode(){
 Label l = new Label("P");
 l.setFont(new Font(100));
 return l;
 }
 private void drawTo(GraphicsContext gc, Image img, double x, double y){
 gc.drawImage(img, x, y);
 }
 private void drawTo(Pane p, Node n, double x, double y){
 n.setTranslateX(x);
 n.setTranslateY(y);
 p.getChildren().add(n);
 }
 private WritableImage snapshot(Node n){
 SnapshotParameters ssp = new SnapshotParameters();
 ssp.setFill(Color.TRANSPARENT);
 return n.snapshot(ssp,null);
 }
 private void printResults(List<Integer> iterationsList,
 List<Long> bmapResults,
 List<Long> nodeResults) {
 for(int i = 0; i < iterationsList.size(); i++){
 System.out.print(iterationsList.get(i) + "\t");
 System.out.print(bmapResults.get(i) + "\t");
 System.out.print(nodeResults.get(i) + "\t");
 System.out.print("\n");
 }
 }
}

	ABSTRACT
	TIIVISTELMÄ
	Preface
	Contents
	List of abbreviations
	1. Introduction
	1.1 Efficiency
	1.2 Maintainability
	1.3 Research goals

	2. Background
	2.1 Programming language paradigms
	2.1.1 Reactive programming
	2.1.2 Functional programming

	2.2 Design and architectural patterns
	2.2.1 Dependency Injection
	2.2.2 Model View Controller
	2.2.3 Observer
	2.2.4 Actor

	2.3 Frameworks and libraries
	2.3.1 JavaFX
	2.3.2 Spring framework

	2.4 Summary

	3. Research methodology
	3.1 Engineering Design
	3.2 Design Science
	3.3 Design in Software Development
	3.4 The research process used in this thesis

	4. Requirements and preconditions
	4.1 Quality requirements
	4.2 The factory-view
	4.3 Scaling and translation
	4.4 JavaFX Scene Graph
	4.5 JavaFX Canvas
	4.6 Snapshotting JavaFX Nodes
	4.7 Dynamic configurability and maintainability

	5. Implementation details
	5.1 Object lifecycle
	5.2 The Drawable interface
	5.3 Scale manager
	5.4 Snapshotting nodes
	5.5 Pixel perfect alignment of bitmaps and nodes
	5.6 Event handlers

	6. Analysis
	6.1 Performance characteristics
	6.2 Maintainability aspects
	6.3 Limitations and future work

	7. Conclusions
	8. REFERENCES
	APPENDIX A: JavaFX Node Performance example

