
Incremental Blocking for Entity Resolution over Web Streaming
Data

Tiago Brasileiro Araújo
Tampere University
Tampere, Finland

Federal University of Campina
Grande

Campina Grande, Brazil
tiago.brasileiroaraujo@tuni.fi

Kostas Stefanidis
Tampere University
Tampere, Finland

konstantinos.stefanidis@tuni.fi

Carlos Eduardo Santos Pires
Federal University of Campina

Grande
Campina Grande, Brazil
cesp@dsc.ufcg.edu.br

Jyrki Nummenmaa
Tampere University
Tampere, Finland

jyrki.nummenmaa@tuni.fi

Thiago Pereira da Nóbrega
State University of Paraíba
Campina Grande, Brazil

thiagonobrega@uepb.edu.br

ABSTRACT
The widespread use of information systems has become a valuable
source of semi-structured data. In this context, Entity Resolution
(ER) emerges as a fundamental task to integrate multiple knowl-
edge bases or identify similarities between data items (i.e., entities).
Since ER is an inherently quadratic task, blocking techniques are
often used to improve efficiency. Beyond the challenges related to
the data volume and heterogeneity, blocking techniques also face
two other challenges: streaming data and incremental processing.
To address these challenges, we propose PRIME, a novel incremen-
tal schema-agnostic blocking technique that utilizes parallelism to
enhance blocking efficiency. The proposed technique deals with
streaming and incremental data using a distributed computational
infrastructure. To improve efficiency, the technique avoids unnec-
essary comparisons and applies a time window strategy to prevent
excessive memory consumption.

CCS CONCEPTS
• Information systems → Entity resolution; Semi-structured
data.

KEYWORDS
entity resolution, heterogeneous data, incremental processing

1 INTRODUCTION
Nowadays, numerous information systems produce a large amount
of data continuously, and have become a valuable source of het-
erogeneous data. Such data provided by different data sources may
have overlapping knowledge. A fundamental step to integrate mul-
tiple knowledge bases or identify similarities between entities is
Entity Resolution (ER) [2, 3, 10]. ER identifies records (the entities)
from several data sources (the entity collections) that refer to the
same real-world entity. In the context of Web and heterogeneous
data, ER faces with two Vs: volume, as it handles a growing number
of entities; and variety, since different formats and schemes are used
to represent the entity profiles [3]. To deal with volume, blocking
and parallel computing are applied [6, 9]. Blocking groups similar
entities into blocks and perform comparisons within each block. ER
in parallel aims to minimize the overall execution time of the task by
distributing the computational cost (i.e., the comparisons between
entities) among the resources of a computational infrastructure [1].
Regarding variety, schema-agnostic blocking techniques are applied
[2, 3]. Schema-agnostic techniques ignore the schemas and perform
the blocking based on the data provided by entities. Among the ex-
isting schema-agnostic blocking techniques, Metablocking emerges
as the most promising approach [11]: blocks form a weighted graph
and pruning criteria are applied to remove edges with weight below
a threshold, aiming to discard comparisons between entities with
few chances of being considered a match.

Beyond the two Vs, we can detach two additional problems tack-
led by the ER task: streaming data and incremental processing
[4, 7, 8, 12]. Processing of streaming data is commonly related to dy-
namic data sources (e.g., from Web Systems, Social Media, sensors),
which are continuously updated. Incremental ER introduces new
challenges, such as i) how to manage the entities already processed
since they can be infinitely? and ii) how to execute efficiently the ER
task considering the whole stream of entities? [7]. To handle hetero-
geneous streaming data, we propose the PaRallel-based Incremental
MEtablocking (PRIME) technique, a promising schema-agnostic
blocking technique capable to incrementally process entity pro-
files. To our knowledge, there is a lack of blocking techniques for
addressing all challenges emerged in this scenario.

This is the accepted manuscript of the article, which has been published in Barnaghi, Payam et al (eds) WI '19 IEEE/WIC/ACM
International Conference on Web Intelligence : Thessaloniki, Greece — October 14 - 17, 2019. ACM, New York, NY, USA, 332-336.
ISBN: 978-1-4503-6934-3.
https://doi.org/10.1145/3350546.3352542

https://doi.org/10.1145/3350546.3352542
https://doi.org/10.1145/3350546.3352542
https://doi.org/10.1145/3350546.3352542

2 STREAMING METABLOCKING
The state-of-the-art blocking techniques do not work properly in
scenarios involving incremental and streaming data since they were
not conceived to deal with these situations. In this sense, we de-
veloped three blocking techniques capable to deal with streaming
and incremental data: Streaming Metablocking, PRIME, and PRIME-
windowed. The Streaming Metablocking technique is based on
the same state-of-the-art parallel workflow proposed in [5]. How-
ever, Streaming Metablocking was adapted to take into account
challenges involving streaming and incremental data. Since the
technique considers the incremental behavior, we need to update
the blocks in order to consider the new entities that are coming.
Using a brute force strategy, after the arrival of a new increment,
Streaming Metablocking needs to rearrange all blocks, including
blocks that did not suffer any update. Clearly, this strategy is costly
in terms of efficiency since it performs a huge number of unnec-
essary comparisons that have already been performed. To avoid
this kind of unnecessary comparisons, Streaming Metablocking ap-
plies a store structure provided by Spark Streaming that considers
only the data being updated in the current increment. Therefore,
Streaming Metablocking only considers the blocks that suffered at
least one update for the current increment. The reduction on the
number of comparisons helps to minimize the computational cost
of generating the blocking graph and performing the pruning step
since the technique evaluates fewer number of entity pairs.

3 PRIME TECHNIQUE
Figure 1 is used to illustrate the PRIME workflow, which is divided
into three steps: token extraction, blocking generation, and pruning.
Token Extraction Step. In this step, tokens are extracted from
data. Each token is used as a blocking key. Initially, for each incre-
ment, blocking receives a pair of entity collections ED1 and ED2
provided by the data sources D1 and D2. Tokens are extracted from
the attribute values of each entity. For each entity e , all tokens Λe
associated with e are extracted and stored. This set of tokensΛe will
be used in the following step to determine the similarity between
the entities. Each token in Λe will be used as a blocking key and
included in the map of blocks B following the format ⟨t , ⟨e,Λe ,D⟩⟩,
such that t is the blocking key, e represents the entity, Λe the set of
tokens (i.e., blocking keys) and D the data source that provided e .

In Figure 1, there are two sets of data that represent the entities
provided by two distinct increments. For the first increment (top of
the figure),D1 provides entities e1 and e2, whileD2 provides entities
e3 and e4. In the token extraction step, the tokens A, B and C are
extracted from entity e1. For example, in a real-world scenario,
the entity e1 can be represented by e1 = {⟨name,Alan Turinд⟩
⟨nationality,British⟩}. Thus, the tokens A, B and C represent the
attribute values “Alan”, “Turing” and “British”, respectively. From
the extracted tokens, all entities sharing the same token are grouped
in the same block. Thus, each token is used as a blocking key. For
instance, block b1 is related to token A and contains entities e1 and
e4 since both entities share the token A. Moreover, in this step, the
entities are arranged in the format ⟨e,B⟩ such that e represents a
specific entity and B denotes the set of blocks that contain entity e .
Blocking Generation Step. In this step, the weight graph is gen-
erated to define the level of similarity between entities. Initially, the

blocks B generated in the previous step are received as input. For
each blocking key k in B, the entities stored in the same block are
compared. Thus, the entities provided from different data sources
are compared to define the similarity ρ between them. The simi-
larity is defined based on the number of co-occurring blocks (i.e.,
similar blocking keys) between the entities. After defining the simi-
larity between entities, the entity pairs are inserted into the graph
G , such that the similarity ρ represents the weight of the edge that
links the entity pair. The blocks generated in this step are stored in
memory to maintain them available for the next increments. In this
sense, new entity blocks will be included or merged with the entity
blocks previously stored. The blocking generation step is the most
costly (in terms of computational costs) in the workflow since the
comparison between the entities is performed in this step.

For instance, in Figure 1, block b1 contains entities e1 and e4.
Therefore, these entities must be compared to determine the simi-
larity between them. The similarity between them is 1 since they
co-occur in all blocks in which each one is contained. On the other
hand, in the second increment (bottom of the figure), block b1 re-
ceives entities e5 and e7. Thus, in the second increment, block b1
contains entities e1, e4, e5 and e7 since all of them share token A.
For this reason, entities e1, e4, e5 and e7 must be compared1 with
each other to determine the similarity between them.
Pruning Step. After the comparison between entities, the pruning
criterion is applied to discard entity pairs with low similarity values.
In the pruning step, a pruning criterion is applied to generate the
set of high-quality blocks B′. Regarding the pruning criterion, the
works [5, 11] propose different pruning algorithms that can be
applied in this step. Particularly, in this work, we apply the WNP-
based pruning algorithm [11] since it has achieved better results
than its competitors [5, 11]. The WNP algorithm applies the vertex-
centric pruning algorithm with a local weight threshold that is
given by the average edge weight of each neighborhood. Thus, for
each vertex inG , the WNP algorithm calculates the sum of the edge
weights and the average of the edge weights. The average of the
edge weights is applied as the local pruning threshold. Therefore,
the neighborhood entities whose edge weight is greater than the
local threshold are inserted in B′. The other entities (i.e., edge
weight is lower than the local threshold) are discarded.

4 PRIME-WINDOWED TECHNIQUE
Considering the incremental challenges, PRIME faces limitations re-
lated to resource consumption (e.g., memory). Since PRIME stores
the blocks previously generated to block the entities incremen-
tally, the consumption of memory may increase infinitely as the
increments are processed. This behavior directly results in memory-
intensive consumption or problems related to memory overflow.
The time window strategy is applied during the blocking genera-
tion step since in this step the generated blocks are stored in a data
structure, to be used during the next increments. Therefore, the
proposed strategy applies a time window to maintain the entities
in the data structure for a certain time interval, preventing exces-
sive memory consumption. However, it is worth mentioning that
the application of a time window may affect negatively the effec-
tiveness results since this strategy discards entities which exceed

1Following the restriction that only entities from different sources are compared.

Figure 1: PRIME workflow.

Figure 2: The time window strategy applied to PRIME.

the window time interval. Consequently, similar entities cannot be
compared because they are not sent at the same time interval.

We will describe the PRIME-windowed technique by means
of Figure 2. In this example, three increments are sent at three
different times (i.e., T1, T2 and T3). Moreover, the size of the time
window (i.e., the time threshold) is given by the time interval of two
increments. In the first increment (i.e., T1), PRIME receives entities
e1 and e3. After the blocking generation, blocks b1, b2, b3, b4 and b5
are generated. For the second increment (i.e., T2), PRIME receives
entities e2 and e4. Considering the blocks already stored, the entity
e2 is added to blocks b3 and b4 and the entity e4 is added to b1,
b2 and b3. Since the time threshold is two increments, the entities
provided by the first increment should be discarded. Therefore, for
the third increment (i.e.,T3), the entities e1 and e3 are removed from
the blocks. Furthermore, it is important to detach that block b5 is
discarded since all entities contained in this block were removed.
Finally, entities e5 and e7 are inserted into block b1 and a new block
b6 is generated with the entities e5 and e7.

5 EXPERIMENTS
In this section, we evaluate PRIME2 and Streaming Metablocking
in terms of effectiveness and efficiency. We run our experiments on

2https://github.com/brasileiroaraujo/Streaming

a cluster infrastructure with 13 nodes (one master and 12 slaves),
each one with one core. Each node has an Intel(R) Xeon(R) 1.0GHz
CPU, 6GB memory, runs the 64-bit Debian GNU/Linux OS with a
64-bit JVM and Apache Spark 2.0.1. We used the IMDB (27,615 enti-
ties, four attributes) vs. DBpedia (23,182 entities, seven attributes)
datasets [13] with movies by imdb.com and dbpedia.org. To simu-
late the streaming behavior on the data, a data streaming sender
was implemented. This data streaming sender reads the entities
from the data sources and sends the entities to the Kafka producer.
The Kafka producer provides the data, in a continuous way, to be
consumed by PRIME for each τ time interval (i.e., increment).

To measure the effectiveness of blocking, three quality metrics
have been applied: i) Pair Completeness (PC) - similar to recall -
estimates the portion of matches that were identified, denoted by
PC = |M (B′) |

|M (D1,D2) |
, where |M(B′)| is the amount of duplicate enti-

ties in the set of pruned blocks B′ and |M(D1,D2)| is the amount
of duplicate entities between the data sources D1 and D2; ii) Pair
Quality (PQ) - similar to precision - estimates the portion of exe-
cuted comparisons that result in matches, denoted by PQ = |M (B′) |

| |B′ | |
,

where | |B′ | | is the amount of comparisons to be performed in the
pruned blocks; iii) Reduction Ratio (RR) - estimates the portion
of comparisons that are avoided in B′ (i.e., | |B′ | |) with respect to
the comparisons guided by Cartesian product (i.e., |D1 | · |D2 |) - is
defined by RR = 1 − | |B′ | |

|D1 | · |D2 |
. PC, PQ and RR take values in the

interval [0, 1], with higher values indicating a better result. In terms
of efficiency, we measure the whole execution time (i.e., including
all steps) of PRIME considering the execution of all increments. In
addition, we evaluate the memory consumption of the distributed
infrastructure. Thus, we calculate the average of memory consumed
(in percentage) by the nodes that compose the cluster.

To compare PRIME against StreamingMetablocking, we evaluate
both techniques in a scenario where the increment size is the same
for all increments. To this end, we set the number of entities per
increment as 10% of the whole data source. Thus, for each data
source, there are 10 increments containing 10% of entities from the

Table 1: Effectiveness results of PRIME, PRIME-windowed and Metablocking techniques.

PRIME-windowed PRIME/Metablocking
2·τ 4·τ 6·τ 8·τ -

Data Sources PC PQ RR PC PQ RR PC PQ RR PC PQ RR PC PQ RR
IMDB-DBpedia 0.27 3·10−4 0.96 0.58 3·10−4 0.93 0.85 3·10−4 0.92 0.95 3·10−4 0.91 0.98 3·10−4 0,89

Figure 3: (a) Execution time of PRIME, PRIME-windowed
and Metablocking techniques. (b) Memory consumption of
PRIME, PRIME-windowed andMetablocking techniques for
IMDB-DBpedia data sources.

data source. For PRIME-windowed, we vary the size of the time
window in order to evaluate the impact of the window size on the
PRIME technique. Thus, we apply the notation α ·τ to determine the
window size, such that α determines the number of time intervals
τ (i.e., increments) covered by the window.

Efficiency. In this experiment, we evaluate the efficiency of the
PRIME, PRIME-windowed and Streaming Metablocking techniques.
The execution times are given by the average of five executions of
each blocking technique. The Figure 3 (a) illustrates the results of
the comparative analysis between the PRIME, PRIME-windowed
and Metablocking techniques. We evaluate the execution time (in
seconds) varying the number of nodes (one up to 12 nodes) in the
distributed infrastructure. It is possible to detach that both PRIME
techniques (with and without the time window strategy) outper-
formed the Metablocking. By comparing the PRIME-windowed
technique against the PRIME one, it is possible to notice a small
decreasing in the execution time, since the former applies the time
window strategy (described in Section 5) and, therefore, takes into
account a fewer number of entities to be compared.

In this experiment, PRIME (without timewindow) andMetablock-
ing are not able to be executed when less than 12 nodes are used
by the distributed infrastructure. It occurs since these techniques
consider all the entities sent in all increments. Therefore, the data
structure that stores the blocks previously generated requires a
large amount of memory of the distributed infrastructure. For this
reason, PRIME and Metablocking have enough memory to be ex-
ecuted only when 12 nodes are used. This limitation leads us to
propose the PRIME-windowed technique which handles a higher
amount of entities efficiently. The maximum window size applied
was 4 · τ since the application of bigger window sizes exceeds the
memory consumption for one node.

We also evaluate the memory consumption. We vary the num-
ber of nodes used by the distributed infrastructure, as depicted in
Figure 3 (b). The memory consumption for PRIME and Metablock-
ing achieve (on average) around 95% of all available memory in

the nodes, when 12 nodes are applied. On the other hand, PRIME-
windowed (with a window size of 4 · τ) consumes around 47% of all
available memory in the nodes. However, as the number of nodes
decreases (consequently, the amount of total memory available
decreases), the average memory consumption increases.

Effectiveness. Regarding effectiveness results, Table 1 illus-
trates the PC, PQ and RR metrics for PRIME, PRIME-windowed
and Streaming Metablocking techniques. For the PRIME-windowed
technique, the effectiveness results are shown for different window
sizes, 2 · τ to 8 · τ . If PRIME and Metablocking techniques receive
the same input and apply the same pruning criterion, they will gen-
erate the same output. For this reason, notice that the effectiveness
results are also the same for both techniques.

For PC, PRIME and Metablocking present promising results for
both incremental size scenarios, achieving more than 96%. However,
since PRIME-windowed considers only the entities sent between a
time interval according to the window size, PC is directly affected.
Intuitively, the larger the window size, the better the PC value.
Therefore, PC tends to be low for small window sizes and higher for
large window sizes. Since PQ is different from Precision, commonly
used to evaluate the results of ER. PQ evaluates the accuracy of
generated blocks. Thus, PQ values achieved by the PRIME and
Metablocking techniques, as depicted in Table 1, are satisfactory
results for blocking [1, 5, 11].

RR estimates the relative decrease in the number of comparisons
conveyed by blocking techniques. RR is fundamental for measuring
the efficiency gains of ER since it directly estimates the percentage
of comparisons that are avoided after blocking. PRIME presents
promising results in terms of RR, achieving RR values higher than
0.89. Therefore, PRIME is able to enhance the efficiency of ER since
it reduces up to 90% the number of comparisons to be executed in
the ER task.

6 SUMMARY
In this work, we propose PRIME, a novel incremental schema-
agnostic blocking technique that utilizes parallelism to enhance
blocking efficiency. PRIME is able to deal with streaming and in-
cremental scenarios as well as minimize the challenges related to
both scenarios. Based on the experimental results, we can highlight
that PRIME presents better results regarding efficiency than the
state-of-the-art technique (i.e., Streaming Metablocking) without
negative impacts on the effectiveness.

ACKNOWLEDGMENT
Thiswork has been supported byCAPES-Brazil (grant 88881.187788/2018-
01) and Virpa D project funded by Business Finland.

REFERENCES
[1] Tiago Brasileiro Araújo, Carlos Eduardo Santos Pires, and Thiago Pereira da

Nóbrega. 2017. Spark-based Streamlined Metablocking. In ISCC.

[2] Peter Christen. 2012. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer Science & Business Media.

[3] Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. 2015. Entity
Resolution in the Web of Data. Synthesis Lectures on the Semantic Web (2015).

[4] Dimas Cassimiro do Nascimento, Carlos Eduardo Santos Pires, and
Demetrio Gomes Mestre. 2018. Heuristic-based approaches for speeding
up incremental record linkage. Journal of Systems and Software 137 (2018),
335–354.

[5] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,
and Themis Palpanas. 2017. Parallel meta-blocking for scaling entity resolution
over big heterogeneous data. Information Systems 65 (2017), 137–157.

[6] V. Efthymiou, G. Papadakis, K. Stefanidis, and V. Christophides. 2019. MinoanER:
Schema-Agnostic, Non-Iterative, Massively Parallel Resolution of Web Entities.
In EDBT.

[7] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. 2014. Incremental record
linkage. Proceedings of the VLDB Endowment 7, 9 (2014), 697–708.

[8] Kun Ma and Bo Yang. 2017. Stream-based live entity resolution approach with
adaptive duplicate count strategy. International Journal of Web and Grid Services
13, 3 (2017), 351–373.

[9] Demetrio Gomes Mestre, Carlos Eduardo Santos Pires, Dimas Cassimiro Nasci-
mento, Andreza Raquel Monteiro de Queiroz, Veruska Borges Santos, and
Tiago Brasileiro Araujo. 2017. An efficient spark-based adaptive windowing
for entity matching. Journal of Systems and Software 128 (2017), 1–10.

[10] Felix Naumann andMelanie Herschel. 2010. An Introduction to Duplicate Detection.
Morgan & Claypool Publishers.

[11] George Papadakis, George Papastefanatos, Themis Palpanas, and Manolis
Koubarakis. 2016. Scaling entity resolution to large, heterogeneous data with
enhanced meta-blocking. EDBT.

[12] Xiangnan Ren and Olivier Curé. 2017. Strider: A hybrid adaptive distributed RDF
stream processing engine. In International Semantic Web Conference.

[13] Giovanni Simonini, Sonia Bergamaschi, and HV Jagadish. 2016. BLAST: a loosely
schema-aware meta-blocking approach for entity resolution. PVLDB 9, 12 (2016),
1173–1184.

	Abstract
	1 Introduction
	2 Streaming Metablocking
	3 PRIME Technique
	4 PRIME-windowed Technique
	5 Experiments
	6 Summary
	References

