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Abstract

We consider the general linear model y = Xβ + ε supplemented with the new
(future) unobservable random vector y∗, coming from y∗ = X∗β + ε∗, where the
expectation of y∗ is X∗β and the covariance matrix of y∗ is known as well as the
cross-covariance matrix between y∗ and y. We denote the supplemented model as
M∗. The misspecified supplemented model is denoted as

¯
M∗, and the misspecifica-

tion concerns the covariance part of the setup. Suppose that Fy is linearly sufficient
for estimable parametric function X∗β under M∗. We give necessary and sufficient
conditions that Fy continues to be linearly sufficient for X∗β under the model

¯
M∗.

The corresponding properties regarding the linear prediction sufficiency with respect
to ε∗ and y∗ are also studied.
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1 Introduction

Let us start with the notation. The symbol Rm×n denotes the set of m×n real ma-
trices, while A′, A−, A+, C (A), and C (A)⊥, denote, respectively, the transpose, a
generalized inverse, the Moore–Penrose inverse, the column space, and the orthogo-
nal complement of the column space of the matrix A. By (A : B) we denote the par-
titioned matrix with Aa×b and Ba×c as submatrices. By A⊥ we denote any matrix
satisfying C (A⊥) = C (A)⊥. Furthermore, we will write PA = AA+ = A(A′A)−A′

to denote the orthogonal projector (with respect to the standard inner product) onto
C (A). The orthogonal projector onto C (A)⊥ is denoted as QA = Ia − PA, where
Ia refers to the a× a identity matrix and a is the number of rows of A. It appears
handy to use the short notation

M = In −PX , (1.1)

where Xn×p refers to the model matrix; see (1.2) below. One choice for X⊥ is of
course M.

Our focus lies in the general linear model

y = Xβ + ε , or shortly M = {y,Xβ,V} , (1.2)

where Xn×p is a known model matrix, the vector y is an observable n-dimensional
random vector, β is a p×1 vector of unknown parameters, and ε is an unobservable
vector of random errors with expectation E(ε) = 0, and covariance matrix cov(ε) =
V. The nonnegative definite matrix V is known and can be singular.

Let y∗ denote a q × 1 unobservable random vector containing new observations.
The new observations are assumed to be generated from

y∗ = X∗β + ε∗ , (1.3)

where X∗ is a known q×p matrix, β is the same vector of fixed (unknown) parameters
as in M , and ε∗ is a q-dimensional random error vector. We further have

E

(
y
y∗

)
=

(
X
X∗

)
β , cov

(
y
y∗

)
=

(
V V12

V21 V22

)
= Γ, (1.4)

where the covariance matrix Γ is known. We denote this setup shortly as

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
. (1.5)

We call M∗ “the linear model with new observations”.
A parametric function µ∗ = X∗β is said to be estimable if it has a linear un-

biased estimator Cy. Such a matrix C ∈ Rq×n exists only when C (X′∗) ⊆ C (X′).
The linear unbiased estimator Cy is the best linear unbiased estimator, BLUE, of
estimable X∗β if Cy has the smallest covariance matrix in the Löwner sense among
all linear unbiased estimators of X∗β:

cov(Cy) ≤L cov(C#y) for all C# : C#X = X∗ . (1.6)
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Correspondingly, the linear predictor By is said to be unbiased for y∗ if the
expected prediction error is zero, i.e., E(y∗−By) = 0 for all β ∈ Rp, which happens
if and only if X′∗ = X′B′. When C (X′∗) ⊆ C (X′) holds, we will say that y∗ is
predictable under M∗, that is, y∗ is predictable whenever X∗β is estimable. Now a
linear unbiased predictor By is the best linear unbiased predictor, BLUP, for y∗, if
we have the Löwner ordering

cov(y∗ −By) ≤L cov(y∗ −B#y) for all B# : B#X = X∗ . (1.7)

Consider then the BLUP of ε∗. Obviously Dy is an unbiased predictor for ε∗ if and
only if DX = 0, i.e., D = LM for some L. Thus Dy is the BLUP for ε∗ if and only
if

cov(ε∗ −Dy) ≤L cov(ε∗ −D#y) for all D# : D#X = 0 . (1.8)

For Lemma 1.1, characterizing the BLUE, see, e.g., Rao (1973, p. 282), and the
BLUP, see, e.g., Christensen (2011, p. 294), Isotalo & Puntanen (2006b, p. 1015),
and Haslett & Puntanen (2017).

Lemma 1.1. Consider the linear model with new observations defined as M∗ in
(1.5), where C (X′∗) ⊆ C (X′), i.e., y∗ is predictable. Then the following statements
hold.

(a) Ay is the BLUP for y∗ if and only if

A(X : VX⊥) = (X∗ : V21X
⊥) . (1.9)

(b) By is the BLUE of µ∗ = X∗β if and only if

B(X : VX⊥) = (X∗ : 0) . (1.10)

In particular, Cy is the BLUE for µ = Xβ if and only if

C(X : VX⊥) = (X : 0) . (1.11)

(c) Dy is the BLUP for ε∗ if and only if

D(X : VX⊥) = (0 : V21X
⊥) . (1.12)

Lemma 2.2.4 of Rao & Mitra (1971) gives the condition under which the matrix
product AB−C is invariant with respect to the choice of B−. It says that for nonnull
matrices A and C the following holds:

AB−C = AB+C ⇐⇒ C (C) ⊆ C (B) & C (A′) ⊆ C (B′) . (1.13)

Some (not necessarily unique) solutions to A, B,C and D in Lemma 1.1 are the
following:

B = X∗(X
′W−X)−X′W− := PX∗;W− , (1.14a)

C = X(X′W−X)−X′W− := PX;W− , (1.14b)

D = V21M(MVM)−M , (1.14c)

A = B + D , (1.14d)



Linear sufficiency and misspecified model: 14 Feb 2019 4

where W is a matrix belonging to the setW of nonnegative definite matrices defined
as

W =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
. (1.15)

In (1.15) U can be any matrix comprising p rows as long as C (W) = C (X : V) is
satisfied. One obvious choice is U = Ip. . For a review of the properties of W, see,
e.g., Puntanen et al. (2011, Sec. 12.3).

We assume the model M to be consistent in the sense that y lies in C (X : V)
with probability 1. Hence we assume that the observed y satisfies

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X)⊕ C (VM) . (1.16)

For the equality C (X : V) = C (X : VM), we refer to Rao (1974, Lemma 2.1).
There is a related decomposition, see, e.g., Puntanen et al. (2011, Th. 8), that is
worth mentioning in this context: for any conformable matrices A and B we have

C (A : B) = C (A : QAB) . (1.17)

Let A and B be arbitrary k × n matrices (for some k). Then, in the consistent
model M , the estimators Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) . (1.18)

In light of (1.14c) we have

BLUP(ε∗) = V21M(MVM)−My, (1.19)

which under the consistent model is invariant for any choice of (MVM)−, because
for any y ∈ C (X : V), My ∈ C (MV) = C (MVM). The corresponding unique-
ness with respect to all generalized inverses involved holds also for BLUE(Xβ) and
BLUE(X∗β).

As regards the structure of this paper, in Section 2 we recall some known con-
ditions for the linear sufficiency. In Section 3 we give necessary and sufficient con-
ditions that Fy continues to be linearly sufficient for X∗β under the misspecified
model

¯
M . The misspecification concerns the covariance part of the setup. Baksalary

& Mathew (1986) considered the invariance of the linear sufficiency with respect to
Xβ and they also allowed misspecification in the X-part. In Section 4 we do some
particular considerations on linear sufficiency regarding estimable parametric func-
tions, and in Section 5 we give necessary and sufficient conditions that Fy continues
to be linearly prediction sufficient for ε∗ under the misspecified model

¯
M .

2 Conditions for linear sufficiency

A linear statistic Fy, where F ∈ Rf×n, is called linearly sufficient for estimable
µ∗ = X∗β, where X∗ ∈ Rq×p, if there exists a matrix A ∈ Rq×f such that AFy is
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the BLUE for X∗β. Sometimes we will use the phrase “BLUE-sufficient” and the
notation Fy ∈ S(X∗β).

The concept of linear prediction sufficiency with respect to y∗ and ε∗ is defined
analogically. Corresponding to the phrase “BLUE-sufficient”, we may use the term
“BLUP-sufficient”.

The concept of linear minimal sufficiency, introduced by Drygas (1983), is defined
as follows. A linear statistic Fy is called linearly minimal sufficient if for any other
linearly sufficient statistics Sy, there exists a matrix A such that Fy = ASy almost
surely. Notation Fy ∈ S0(X∗β) indicates that Fy is linearly minimal sufficient for
X∗β.

For the following Lemma, see, e.g., Baksalary & Kala (1981, 1986), Drygas
(1983), Tian & Puntanen (2009, Th. 2.8), Kala, Puntanen & Tian (2017, Th. 2),
Isotalo & Puntanen (2006b), and Isotalo et al. (2018).

Lemma 2.1. Consider the linear model with new observations defined as M∗ in
(1.5), where C (X′∗) ⊆ C (X′), i.e., y∗ is predictable, and let W ∈ W.

(a) Fy ∈ S(X∗β) if and only if any of the following equivalent conditions holds:

(i) C

(
X′∗
0

)
⊆ C

(
X′F′

MVF′

)
, (ii) C [X(X′W−X)−X′∗] ⊆ C (WF′).

(b) Fy ∈ S(Xβ) if and only if any of the following equivalent statements holds:

(iii) C

(
X′

0

)
⊆ C

(
X′F′

MVF′

)
, (iv) C (X) ⊆ C (WF′).

(c) Fy ∈ S(ε∗) if and only if any of the following equivalent conditions holds:

(v) C

(
0

MV12

)
⊆ C

(
X′F′

MVF′

)
, (vi) C (MV12) ⊆ C (MVF′QFX).

(d) Fy ∈ S(y∗) if and only if

(vii) C

(
X′∗

MV12

)
⊆ C

(
X′F′

MVF′

)
.

Moreover, the linear minimal sufficiency above is obtained if and only if the
corresponding inclusion is equality.

Condition (vi) of Lemma 2.1, in particular the matrix F′QFX, requires some
further comments. It appears that

C (F′QFX) = C (F′) ∩ C (M) , (2.1)

and denoting
N = PF′QFX

= PC (F′)∩C (M) , (2.2)
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we see that
MF′QFX = F′QFX , and MN = N . (2.3)

For properties like (2.1)–(2.3), see Markiewicz & Puntanen (2018b, Sec. 2).
The following lemma characterizes the mutual relations of the linear sufficiency

of Fy for X∗β, ε∗, and y∗.

Lemma 2.2. Consider the following three statements:

(a) Fy is BLUE-sufficient for X∗β.

(b) Fy is BLUP-sufficient for ε∗.

(c) Fy is BLUP-sufficient for y∗.

Then above, any two conditions together imply the third one.

We may mention that a necessary and sufficient condition for the implication
(c) =⇒ (a) & (b) can be introduced; see Markiewicz & Puntanen (2018a, Th. 5).

3 Linear sufficiency in the misspecified linear model

Consider the models M∗ and
¯
M∗, where C (X′∗) ⊆ C (X′) (this assumption is holding

in all our considerations):

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
, (3.1a)

¯
M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
¯
V

¯
V12

¯
V21 ¯

V22

)}
. (3.1b)

Thus the difference appears only in the covariance matrices

Γ =

(
V V12

V21 V22

)
,

¯
Γ =

(
¯
V

¯
V12

¯
V21 ¯

V22

)
. (3.2)

By M and
¯
M we mean the models M = {y,Xβ,V} and

¯
M = {y,Xβ,

¯
V}.

Suppose that Fy is linearly sufficient for X∗β under M∗, i.e.,

Fy ∈ S(X∗β |M∗) . (3.3)

Notice that obviously
S(X∗β |M∗) = S(X∗β |M ) . (3.4)

We can now pose the following question: what is the condition that the same Fy
continues to be linearly sufficient under the misspecified model

¯
M∗, i.e.,

S(X∗β |M ) ⊆ S(X∗β |
¯
M ) ? (3.5)
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Observe that in view of (3.4) we have above dropped off the subscript ∗ from M
and

¯
M .

We use the following notations:

W =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
, (3.6a)

¯
W =

{
¯
W ∈ Rn×n : W =

¯
V + X

¯
U

¯
U′X′, C (

¯
W) = C (X :

¯
V)

}
. (3.6b)

Thus, in light of part (ii) of Lemma 2.1, the claim (3.5) above can be expressed as

C (Z) ⊆ C (WF′) =⇒ C (
¯
Z) ⊆ C (

¯
WF′) , (3.7)

where W ∈ W,
¯
W ∈

¯
W, and

Z = X(X′W−X)−X′∗ , ¯
Z = X(X′

¯
W−X)−X′∗ . (3.8)

Correspondingly, in view of part (vi) of Lemma 2.1, S(ε∗ |M ) ⊆ S(ε∗ |
¯
M ) can be

expressed as

C (MV12) ⊆ C (MVF′QFX) =⇒ C (M
¯
V12) ⊆ C (M

¯
VF′QFX) . (3.9)

In this section we present a solution to implication (3.7) and in Section 5 we
deal with (3.9). Baksalary & Mathew (1986) considered the inclusion S(Xβ |M ) ⊂
S(

¯
Xβ |

¯
M ), where

¯
M = {y,

¯
Xβ,

¯
V} and thus they allowed misspecification also in

the X-part.
We begin with three preliminary lemmas. First, using (1.16) and (1.17), it is

straightforward to prove the following.

Lemma 3.1. Let W ∈ W,
¯
W ∈

¯
W, and let M be defined as earlier. Then the

following results hold:

(a) C (
¯
W) ⊆ C (W) ⇐⇒ C (

¯
VM) ⊆ C (X : VM) ,

(b) C (
¯
W) ⊆ C (W) ⇐⇒ C (M

¯
V) ⊆ C (X : MV) ,

(c) C (
¯
W) ⊆ C (W) ⇐⇒ C (M

¯
V) ⊆ C (MV) ,

(d) C (
¯
VM) ⊆ C (VM) =⇒ C (

¯
W) ⊆ C (W) ,

(e) for any conformable matrices A and B,

C (MA) ⊆ C (MB) ⇐⇒ C (A) ⊆ C (X : B) .

The following two lemmas due to Baksalary & Mathew (1986) are crucial for our
main results.

Lemma 3.2. [Baksalary & Mathew (1986, Lemma 3)]
Let A,B,C, and D be conformable matrices such that C (C) ⊆ C (B) and C (D) ⊆
C (A), and C 6= 0,D 6= 0. Then the inclusion

C (D) ⊆ C (AB−C) (3.10)

is satisfied irrespective of the choice of a generalized inverse B− if and only if the
following two conditions hold:
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(a) C (D) ⊆ C (AB+C) ,

(b) C (A′) ⊆ C (B′) .

Lemma 3.3. [Baksalary & Mathew (1986, Lemma 5)] Let W be a matrix belonging
to the set W of nonnegative definite matrices defined as in (1.15). Then

(a) C (W+X) = C (VM)⊥ ∩ C (W) = C (QVMX) ,

(b) C (W+X)⊥ = C (VM : QW) ,

(c) C (VM)⊥ = C (QVMX)⊕ C (W)⊥.

For Lemma 3.3, see also Markiewicz & Puntanen (2018b, Lemma 4).
Now we are ready to present the main result of our paper.

Theorem 3.1. Consider the linear models M = {y,Xβ,V} and
¯
M = {y,Xβ,

¯
V},

let C (X′∗) ⊆ C (X′), and denote

Z = X(X′W−X)−X′∗ , ¯
Z = X(X′

¯
W−X)−X′∗ . (3.11)

Then the inclusion
S(X∗β |M ) ⊆ S(X∗β |

¯
M ) (3.12)

holds if and only if the following two conditions hold:

(a) C (
¯
Z) ⊆ C (

¯
WW+Z) , i.e., (W+Z)′y ∈ S(X∗β |

¯
M ) ,

(b) C (
¯
W) ⊆ C (W) ,

where the first inclusion can be equivalently expressed as

(c) C (
¯
W+

¯
Z) ⊆ C (P

¯
WW+Z) ,

and the second one as

(d) C (
¯
V) ⊆ C (W), or equivalently as C (M

¯
V) ⊆ C (MV).

Proof. By part (ii) of Lemma 2.1, we know the following:

Fy ∈ S(X∗β |M ) ⇐⇒ C (Z) ⊆ C (WF′) , (3.13a)

Fy ∈ S(X∗β |
¯
M ) ⇐⇒ C (

¯
Z) ⊆ C (

¯
WF′) . (3.13b)

Assume now that the inclusion

S(X∗β |M ) ⊆ S(X∗β |
¯
M ) (3.14)

holds, i.e.,
C (Z) ⊆ C (WF′) (3.15)

implies
C (

¯
Z) ⊆ C (

¯
WF′) . (3.16)
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We know that
X∗(X

′W−X)−X′W−y = Z′W−y (3.17)

is one representation for the BLUE of X∗β. The representation (3.17) is invariant
with respect to the choice of all generalized inverses involved. Notice that in (3.17)
we have used the properties

Z′ = [X(X′W−X)−X′∗]
′ = X∗[(X

′W−X)−]′X′ = X∗(X
′W−X)−X′, (3.18a)

(W−Z)′y = Z′W−y , (3.18b)

which hold in view of (1.13) and the consistency of the model.
Now trivially Z′W−y is linearly sufficient for X∗β under M for any choice of

W−; in other words, choosing F′ = W−Z, the condition (3.15) is satisfied. Actually
Z′W−y is linearly minimal sufficient because with this choice of F we have the
equality

C (Z) = C (WF′) , (3.19)

and thus we can denote Z′W−y ∈ S0(X∗β |M ). By assumption (3.14), this same
Fy (for any W−) now belongs to S(X∗β |

¯
M ), which means that we must have

C (
¯
Z) ⊆ C (

¯
WW−Z) . (3.20)

On account of Lemma 3.2, the inclusion (3.20) is satisfied for every generalized
inverse W− if and only if the following two conditions hold:

C (
¯
Z) ⊆ C (

¯
WW+Z) , (3.21a)

C (
¯
W) ⊆ C (W) . (3.21b)

Thus we have shown that (3.14) implies (3.21a) and (3.21b).
Conversely, suppose that (3.21a) and (3.21b) hold and Fy ∈ S(X∗β |M ). Then

C (
¯
Z) ⊆ C (

¯
WW+Z) ⊆ C (

¯
WW+WF′)

= C (
¯
WPWF′) = C (

¯
WF′) , (3.22)

where the second inclusion follows from (3.15) and the last equality comes from
(3.21b). Now (3.22) means that Fy ∈ S(X∗β |

¯
M ). Thus we have shown that

(3.21a) and (3.21b) are also sufficient for

S(X∗β |M ) ⊆ S(X∗β |
¯
M ) . (3.23)

Notice that premultiplying (3.21a) by
¯
W+ yields claim (c) of Theorem 3.1, i.e.,

C (
¯
W+

¯
Z) ⊆ C (P

¯
WW+Z) . (3.24)

On the other hand, premultiplying (3.24) by
¯
W and using C (

¯
Z) ⊆ C (

¯
W) and

(3.21b) gives (3.21a). The equivalence of (c) and (d) follows from Lemma 3.3. Thus
the proof is completed.
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The following corollary gives the condition under which the equality in (3.12)
holds.

Corollary 3.1. The equality in (3.12) in Theorem 3.1

S(X∗β |M ) = S(X∗β |
¯
M ) (3.25)

holds if and only if the following two conditions hold:

(a) C (W+Z) = C (
¯
W+

¯
Z) ,

(b) C (
¯
W) = C (W) .

Proof. In view of Theorem 3.1, the equality (3.25) holds if and only if the following
three conditions hold:

C (
¯
Z) ⊆ C (

¯
WW+Z) , (3.26a)

C (Z) ⊆ C (W
¯
W+

¯
Z) , (3.26b)

C (
¯
W) = C (W) . (3.26c)

Premultiplying (a) by
¯
W and using (b) yields (3.26a) and premultiplying (a) by W

yields (3.26b). Similarly, premultiplying (3.26a) by
¯
W+ gives

C (
¯
W+

¯
Z) ⊆ C (P

¯
WW+Z) = C (W+Z) . (3.27)

Correspondingly, (3.26b) implies C (W+Z) ⊆ C (
¯
W+

¯
Z) and thus the proof is com-

pleted.

Consider then the linear minimal sufficiency. Following the proof of Theorem 3.1,
assume that the inclusion

S0(X∗β |M ) ⊆ S0(X∗β |
¯
M ) (3.28)

holds, i.e.,
C (Z) = C (WF′) =⇒ C (

¯
Z) = C (

¯
WF′) . (3.29)

We know that
X∗(X

′W−X)−X′W−y = Z′W−y (3.30)

is one representation for the BLUE of X∗β. Now Z′W−y is minimally linearly
sufficient for X∗β under M for any choice of W−; in other words, choosing F′ =
W−Z, gives C (Z) = C (WF′). The same Fy should be minimally linearly sufficient
under

¯
M , that is, we should have

C (
¯
Z) = C (

¯
WW−Z) for every W−. (3.31)

In view of Lemma 3.2, the equality (3.31) is satisfied for every generalized inverse
W− if and only if

C (
¯
Z) = C (

¯
WW+Z) , and C (

¯
W) ⊆ C (W) . (3.32)

Thus we have obtained the following corollary.
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Corollary 3.2. The inclusion

S0(X∗β |M ) ⊆ S0(X∗β |
¯
M ) (3.33)

holds if and only if the following two conditions hold:

(a) C (
¯
Z) = C (

¯
WW+Z) ,

(b) C (
¯
W) ⊆ C (W) .

Consider the special case when

C (
¯
W) = C (W) . (3.34)

Then

rank(Z′W+

¯
W) = rank(Z′W+W) = rank(Z′PW) = rank(Z′) , (3.35)

i.e., rank(
¯
Z) = rank(

¯
WW+Z) is always valid when (3.34) holds. This means that

under (3.34), C (
¯
Z) cannot be a proper subspace of C (

¯
WW+Z), i.e., under (3.34),

the inclusion
C (

¯
Z) ⊆ C (

¯
WW+Z) (3.36)

is equivalent to the equality

C (
¯
Z) = C (

¯
WW+Z) . (3.37)

We can thus conclude that under (3.34), the linear minimal sufficiency continues in
the misspecified model precisely when the linear (ordinary) sufficiency continues in
the misspecified model.

Corollary 3.3. Suppose that C (
¯
W) = C (W). Then the inclusion

S0(X∗β |M ) ⊆ S0(X∗β |
¯
M ) (3.38)

holds if and only if
S(X∗β |M ) ⊆ S(X∗β |

¯
M ) . (3.39)

Let us see how Theorem 3.1 changes when we put X∗ = X. Using

C [X(X′W−X)−X′] = C [X(X′
¯
W−X)−X′] = C (X) , (3.40)

the statement (a) in Theorem 3.1 becomes

C (X) ⊆ C (
¯
WW+X) . (3.41)

Obviously rank(X) ≥ rank(
¯
WW+X) and hence (3.41) becomes equality:

C (X) = C (
¯
WW+X) . (3.42)

Using part (a) of Lemma 3.3 and part (c) of Theorem 3.1, we obtain the following
corollary.
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Corollary 3.4. [Baksalary & Mathew (1986, Th. 1)] The inclusion

S(Xβ |M ) ⊆ S(Xβ |
¯
M ) (3.43)

holds if and only if the following two conditions hold:

(a) C (X) = C (
¯
WW+X), i.e., (W+X)′y ∈ S(Xβ |

¯
M ) ,

(b) C (
¯
W) ⊆ C (W) ,

where the part (a) can be replaced with any of the following equivalent conditions:

(c) C (
¯
W+X) = C (P

¯
WW+X) ,

(d) C (Q
¯
VMX) = C (P

¯
WQVMX) .

Corresponding to Corollary 3.4, Baksalary & Mathew (1986, Th. 1) considered
the inclusion S(Xβ |M ) ⊆ S(

¯
Xβ |

¯
M ), where

¯
M = {y,

¯
Xβ,

¯
V}.

The following corollary collects together some related equivalent statements.

Corollary 3.5. Consider the linear models M and
¯
M . Then the inclusion

S(Xβ |M ) ⊆ S(Xβ |
¯
M ) (3.44)

holds if and only if any of the following equivalent conditions holds:

(a) C (X) = C (
¯
WW+X) and C (

¯
W) ⊆ C (W),

(b) X′W+

¯
VM = 0 and C (

¯
W) ⊆ C (W),

(c) C (
¯
VM) ⊆ C (W+X)⊥ = C (VM : QW) and C (

¯
W) ⊆ C (W),

(d) C (
¯
VW+X) ⊆ C (X) and C (

¯
W) ⊆ C (W),

(e) X′W−
¯
VM = 0 for all W−,

(f) X(X′W−X)−X′W+y = BLUE(Xβ |
¯
M ) and C (

¯
W) ⊆ C (W),

(g) X(X′W−X)−X′W−y = BLUE(Xβ |
¯
M ) for all W−.

Proof. It is clear by Corollary 3.5 that (3.44) and claim (a) are equivalent. The
equality

C (X) = C (
¯
WW+X) (3.45)

holds if and only if

C (
¯
WW+X) ⊆ C (X) , i.e., M

¯
WW+X = M

¯
VW+X = 0 , (3.46)

and
rank(X) = rank(

¯
WW+X) . (3.47)
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We observe that (3.46) implies the following:

rank(X′W+

¯
W) = rank[X′W+(X :

¯
VM)]

= rank(X′W+X)

= rank(X) . (3.48)

This means that statements (3.45) and (3.46) are equivalent, i.e., (a) and (b) are
equivalent. The equivalence of (b), (c) and (d) is obvious. For the equality

C (W+X)⊥ = C (VM : QW) , (3.49)

we refer to Lemma 3.3. Consider then claim (e). On account of (1.13), we observe
that

X′W−
¯
VM = 0 for all W− (3.50)

is satisfied if and only if
X′W+

¯
VM = 0 (3.51)

holds along with

C (
¯
VM) ⊆ C (W) , i.e., C (

¯
W) ⊆ C (W) . (3.52)

This confirms that (d) and (e) are equivalent.
Denoting

PX;W− = X(X′W−X)−X′W−, PX;W+ = X(X′W−X)−X′W+, (3.53)

where W− is an arbitrary but fixed generalized inverse of W, we know that PX;W−y
and PX;W+y are representations for the BLUE of Xβ under M . They continue to
be representations for the BLUE under

¯
M if and only if

PX;W−
¯
VM = X(X′W−X)−X′W−

¯
VM = 0 , (3.54a)

PX;W+

¯
VM = X(X′W−X)−X′W+

¯
VM = 0 , (3.54b)

respectively. Premultiplying (3.54a) and (3.54b) by X′W− yields the following con-
clusions:

PX;W−y = BLUE(Xβ |
¯
M ) ⇐⇒ X′W−

¯
VM = 0 , (3.55a)

PX;W+y = BLUE(Xβ |
¯
M ) ⇐⇒ X′W+

¯
VM = 0 . (3.55b)

Thus we can conclude that (f) and (g) are equivalent to other claims (a)– (e). For
the properties related to (3.55b), see, e.g., Mitra & Moore (1973, Th. 2.1, Th. 2.2,
Note 1), and Hauke et al. (2012, 2013).

Because the property S(Xβ |M ) ⊆ S(Xβ |
¯
M ) is so strongly related to certain

BLUE-properties, one may wonder whether the corresponding property for estimable
parametric function X∗β would hold, i.e., whether the inclusion S(X∗β | M ) ⊆
S(X∗β |

¯
M ) could be described as in (f) and (g) Corollary 3.5.
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We know that
X∗(X

′W−X)−X′W−y = Z′W−y (3.56)

is one representation for the BLUE(X∗β |
¯
M ) if and only if

Z′W−(X :
¯
VM) = (X∗ : 0) . (3.57)

The X-part in (3.57) is obviously holding and hence it only remains to check

Z′W−
¯
VM = 0 . (3.58)

Thus it can be seen at once that the following result holds:

Corollary 3.6. The following statements are equivalent:

(a) X∗(X
′W−X)−X′W−y = BLUE(X∗β |

¯
M ) for all W−,

(b) C (
¯
WW+Z) ⊆ C (X) and C (

¯
W) ⊆ C (W).

Corresponding to (3.53) we may denote

PX∗;W+ = X∗(X
′W−X)−X′W+ = Z′W+. (3.59)

The estimator PX∗;W+y continues to be BLUE under
¯
M if and only if

PX∗;W+(X :
¯
VM) = Z′W+(X :

¯
VM) = (X∗ : 0) . (3.60)

If Fy ∈ S(X∗β |M ), then by part (ii) of Lemma 2.1, there exists a matrix C such
that Z = WF′C′. Hence in this case (3.60) becomes

CFPW(X :
¯
VM) = (X∗ : 0) . (3.61)

Now if C (X :
¯
VM) = C (

¯
W) ⊆ C (W), (3.61) can be written as

CF(X :
¯
VM) = (X∗ : 0) , (3.62)

which guarantees that Fy ∈ S(X∗β |
¯
M ). Thus we can conclude the following.

Corollary 3.7. Statement (a) implies (b), where

(a) X∗(X
′W−X)−X′W+y = BLUE(X∗β |

¯
M ) and C (

¯
W) ⊆ C (W),

(b) {S(X∗β |M )} ⊆ {S(X∗β |
¯
M )}.

In Corollary 3.5 we have considered two particular representations of BLUE
under M , PX;W+y and PX;W−y, and characterized the inclusion S(Xβ | M ) ⊆
S(Xβ |

¯
M ) via claims (f) and (g). What happens if we request that every repre-

sentations of BLUE of Xβ under M continues to be BLUE under
¯
M ? Let a short

notation for this be

{BLUE(Xβ |M ) } ⊆ {BLUE(Xβ |
¯
M ) } . (3.63)
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It is well known that (3.63) holds if and only if

C (
¯
VM) ⊆ C (VM) . (3.64)

For the relation between (3.63) and (3.64), see, e.g., Mitra & Moore (1973, Th. 4.1–
4.2), Rao (1971, Th. 5.2, Th. 5.5), and Tian (2009). If (3.64) holds, then C (

¯
W) ⊆

C (W), and we observe immediately that the conditions (a)–(g) of Corollary 3.5
hold. Thus (3.64) is a sufficient condition for (3.44). This conclusion could also be
drawn by noting that if there exists a matrix A such that

AF(X : VM) = (X : 0) , (3.65)

then by (3.63),
AF(X :

¯
VM) = (X : 0) , (3.66)

indicating that (3.44) holds. For clarity, we may write the following:

Corollary 3.8. If every representations of BLUE of Xβ under M continues to be
BLUE under

¯
M , then Fy ∈ S(Xβ |M ) =⇒ Fy ∈ S(Xβ |

¯
M ).

4 Some particular considerations on linear sufficiency
regarding estimable parametric functions

Case 4.1. [Full rank X and C (X) ⊆ C (V) = C (
¯
V).] Let us consider the special

case when β itself is estimable and the covariance matrices V and
¯
V have property

C (V) = C (
¯
V), and moreover,

C (X) ⊆ C (V) = C (
¯
V) . (4.1)

Assumption (4.1) means that both M and
¯
M are so-called weakly singular linear

models; see Zyskind & Martin (1969). In this situation we can choose W = V and

¯
W =

¯
V. Now X has full column rank, X∗ = Ip, and C (Z) = C (

¯
Z) = C (X), and

thus Theorem 3.1 gives the following corollary.

Corollary 4.1. Let V and
¯
V satisfy C (X) ⊆ C (V) = C (

¯
V) and let β be estimable.

Then
Fy ∈ S(β |M ) ⇐⇒ Fy ∈ S(β |

¯
M ) (4.2)

holds if and only if

C (X) = C (
¯
VV+X) , i.e., (V+X)′y ∈ S(β |

¯
M ) , (4.3)

which can be equivalently expressed as

C (
¯
V+X) = C (V+X) . (4.4)
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Markiewicz (1998, Prop. 2) proved Corollary 4.1 assuming that V and
¯
V are

positive definite. As one referee pointed out, as a closely related example, we might
consider models M and

¯
M , where 1 ∈ C (X) and the positive definite covariance

matrices V and
¯
V have intraclass correlation structures. Then it is well known,

see Puntanen & Styan (1989), that the BLUE(Xβ) equals OLSE(Xβ), the ordinary
least squares estimator. This further means that the linear sufficiency considerations
can be based simply on models where V and

¯
V would be replaced with In. As a

result we would have {S(Xβ |M )} = {S(Xβ |
¯
M )}.

Case 4.2. [Partitioned linear model.] Consider then the estimation of µ1 =
X1β1 under the partitioned model

M12 = {y, X1β1 + X2β2, V} , (4.5)

where C (X1) ∩ C (X2) = {0}, so that µ1 is estimable. Now X∗ = (X1 : 0) and in
this particular case, we have the following representations for the matrix Z:

Z = X(X′W−X)−X′∗ = WṀ2X1(X′1Ṁ2X1)−X′1 , (4.6)

where
Ṁ2 = M2(M2WM2)−M2 , M2 = In −PX2 , (4.7)

and column space of Z is
C (Z) = C (WṀ2X1) . (4.8)

This gives Corollary 4.2.

Corollary 4.2. Let µ1 = X1β1 be estimable under M12 and let W ∈ W. Then the
statistic Fy is linearly sufficient for µ1 under M12 if and only if

C (WṀ2X1) ⊆ C (WF′) , (4.9)

where Ṁ2 = M2(M2WM2)−M2.

The linear sufficiency condition (4.9) was proved by Kala, Markiewicz & Punta-
nen (2017, Sec. 3), and, using a different approach, by Isotalo & Puntanen (2006a,
Th. 2).

The inclusion S(X∗β |M12) ⊆ S(X∗β |
¯
M 12) holds if and only if the following

two conditions hold:

C (
¯
Z) ⊆ C (

¯
WW+Z) , (4.10a)

C (
¯
W) ⊆ C (W) . (4.10b)

Putting X∗ = (X1 : 0) gives

Z = WṀ2X1(X′1Ṁ2X1)−X′1 = X(X′W−X)−X′∗ , (4.11)

¯
Z =

¯
W

¯
Ṁ2X1(X′1 ¯

Ṁ2X1)−X′1 = X(X′
¯
W−X)−X′∗ , (4.12)
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with column spaces

C (Z) = C (WṀ2X1) , C (
¯
Z) = C (

¯
W

¯
Ṁ2X1) . (4.13)

In this situation (4.10a) becomes

C (
¯
W

¯
Ṁ2X1) ⊆ C (

¯
WW+WṀ2X1) = C (

¯
WPWṀ2X1) = C (

¯
WṀ2X1) , (4.14)

where we have used (4.10b). Premultiplying (4.14), i.e.,

C [
¯
WM2(M2

¯
WM2)−M2X1] ⊆ C [

¯
WM2(M2WM2)−M2X1] (4.15)

by M2 yields the equivalent form

C (M2X1) ⊆ C [M2
¯
WM2(M2WM2)−M2X1] . (4.16)

Thus we have the following result.

Corollary 4.3. Let µ1 = X1β1 be estimable under M12 and let W ∈ W and

¯
W ∈

¯
W. Then the inclusion

S(X1β1 |M12) ⊆ S(X1β1 | ¯
M 12) (4.17)

holds if and only if the following two conditions hold:

(a) C (M2X1) ⊆ C [M2
¯
WM2(M2WM2)−M2X1] ,

(b) C (
¯
W) ⊆ C (W) .

5 Misspecification and the linear sufficiency with re-
spect to the error term

In this section we study when the following holds:

S(ε∗ |M∗) ⊆ S(ε∗ |
¯
M∗) ? (5.1)

In other words,

C (MV12) ⊆ C (MVF′QFX) =⇒ C (M
¯
V12) ⊆ C (M

¯
VF′QFX) . (5.2)

The following theorem gives the result.

Theorem 5.1. Consider the linear models (with new observations) M∗ and
¯
M∗.

Then the inclusion
S(ε∗ |M∗) ⊆ S(ε∗ |

¯
M∗) (5.3)

holds if and only if the following two conditions hold:
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(a) C (M
¯
V12) ⊆ C [M

¯
VM(MVM)+MV12] ,

(b) C (
¯
W) ⊆ C (W) ,

where (a) can be equivalently expressed in the following two forms:

(c) V21M(MVM)+My ∈ S(ε∗ |
¯
M∗) , i.e., BLUP(ε∗ |M∗) ∈ S(ε∗ |

¯
M∗) ,

(d) C (
¯
V12) ⊆ C [X :

¯
VM(MVM)+MV12] .

Proof. Assume now that the inclusion

S(ε∗ |M∗) ⊆ S(ε∗ |
¯
M∗) (5.4)

holds, which, according to part (vi) of Lemma 2.1, means that

C (MV12) ⊆ C (MVF′QFX) (5.5a)

implies
C (M

¯
V12) ⊆ C (M

¯
VF′QFX) . (5.5b)

Choosing
F′ = M(MVM)−MV12 , (5.6)

yields QFX = If and

MVF′QFX = MVM(MVM)−MV12 = MV12 , (5.7)

which confirms that for any (MVM)− the condition (5.5a) holds, i.e., Fy ∈ S(ε∗ |
M∗). This conclusion could be done also by noting that

V21M(MVM)−My = BLUP(ε∗ |
¯
M∗) . (5.8)

Notice that choosing F as in (5.6) actually makes Fy linearly minimal sufficient.
Now in view of (5.4), also the following must hold:

C (M
¯
V12) ⊆ C [M

¯
VM(MVM)−MV12] . (5.9)

As (5.9) must hold for all choices of (MVM)−, Lemma 3.2 shows that this holds if
and only if the following two conditions hold:

C (M
¯
V12) ⊆ C [M

¯
VM(MVM)+MV12] , (5.10a)

C (M
¯
V) ⊆ C (MV) . (5.10b)

In light of Lemma 3.1, (5.10b) is equivalent to

C (
¯
W) ⊆ C (W) . (5.11)
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It remains to prove the reverse relation, i.e., that (5.10a) and (5.10b) together imply
(5.4). To do this, we write

C (M
¯
V12) ⊆ C [M

¯
VM(MVM)+MV12]

⊆ C [M
¯
VM(MVM)+MVF′QFX]

= C [M
¯
VM(MVM)+MVMF′QFX]

= C (M
¯
VMPMVMF′QFX)

= C (M
¯
VMF′QFX)

= C (M
¯
VF′QFX) . (5.12)

The first inclusion in (5.12) comes from (5.10a), and the second one from (5.5a); the
first equality follows from F′QFX = MF′QFX, and the third from (b). Notice that
part (d) comes from part (e) of Lemma 3.1 Thus we have completed the proof.

Using Lemma 2.2 we can write the following corollary.

Corollary 5.1. Consider the linear models M∗ and
¯
M∗, where C (X′∗) ⊆ C (X′),

and the following statements:

(a) S(X∗β |M∗) ⊆ S(X∗β |
¯
M∗) ,

(b) S(ε∗ |M∗) ⊆ S(ε∗ |
¯
M∗) ,

(c) S(y∗ |M∗) ⊆ S(y∗ |
¯
M∗) .

Then each of the two statements above imply the third one. In particular (a) and
(b) imply (c), i.e., (c) holds if

(i) C (M
¯
V12) ⊆ C [M

¯
VM(MVM)+MV12] ,

(ii) C (
¯
Z) ⊆ C (

¯
WW+Z) ,

(iii) C (
¯
W) ⊆ C (W) .

It is noteworthy that it would be interesting to find a necessary and sufficient
condition for (c) in Corollary 5.1. This seems to be not so easy to do and this
question is postponed for a further research topic.

6 Conclusions

We consider the general linear model y = Xβ + ε, or shortly M = {y,Xβ,V},
supplemented with the new unobservable random vector y∗, coming from y∗ =
X∗β + ε∗, where the expectation of y∗ is X∗β and the covariance matrix of y∗ is
known as well as the cross-covariance matrix between y∗ and y. We denote the
supplemented model as M∗. The misspecified supplemented model is denoted as

¯
M∗, and the misspecification concerns only the covariance part of the setup.
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We can denote the models shortly as

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
, (6.1a)

¯
M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
¯
V

¯
V12

¯
V21 ¯

V22

)}
. (6.1b)

Suppose that Fy is linearly sufficient for estimable parametric function X∗β un-
der M∗. We give necessary and sufficient conditions that Fy continues to be linearly
sufficient for X∗β under the model

¯
M∗. The corresponding properties regarding the

linear sufficiency with respect to ε∗ and y∗ are also studied.
Consider then the mixed linear model y = Xβ+ Zu + e , where Xn×p and Zn×q

are known matrices, β ∈ Rp is a vector of unknown fixed effects, u is an unobservable
vector (q elements) of random effects with E(u) = 0, cov(u) = ∆, e is a random
error vector with E(e) = 0, cov(e) = Φ, and cov(e,u) = 0. Denoting g = Xβ+Zu,
we have cov(y) = cov(Zu + e) = Z∆Z′ + Φ = Σ and

cov

(
y
g

)
= cov

(
y

Zu

)
=

(
Σ Z∆Z′

Z∆Z′ Z∆Z′

)
=

(
Σ Σ12

Σ21 Σ22

)
:= Ω . (6.2)

Now the mixed linear model can be expressed as a version of the model with “new
observations”, the new observations being in g = Xβ + Zu:

L∗ :=

{(
y
g

)
,

(
X
X

)
β,

(
Σ Σ12

Σ21 Σ22

)}
. (6.3)

The misspecified mixed model is then
¯
L∗, where the covariance matrix would be

¯
Ω.

Thus the results concerning the linear sufficiency in the misspecified mixed model
can be directly obtained from the corresponding properties of the models with new
observations. For the linear sufficiency in the mixed model, see also Isotalo et al.
(2018) and Markiewicz & Puntanen (2018c).
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