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Abstract 

The aim of tissue engineering (TE) is the production of live and functional tissues by 

combining a biomaterial scaffold, living cells, and a relevant bioactive stimulus. The 

engineering of soft tissues, such as brain and heart, requires a scaffold material that 

represents the natural tissue, meaning that it needs to be soft, elastic, flexible, and 

possibly strain hardening. Additionally, a scaffold material must allow the diffusion of 

nutrients and the penetration of migrating cells inside the microstructure. Furthermore, 

the scaffold must provide the encapsulated cells with enough attachment sites to ensure 

the cells can function in their natural way. 

Hydrogels are promising scaffold candidates for soft tissue engineering applications. 

They are crosslinked, hydrophilic polymer networks with a high water content in the 

structure. Hydrogels can be produced from a large variety of natural or synthetic 

polymers by implementing a variety of physical and chemical crosslinking strategies. 

Here, hydrogels based on the polysaccharide gellan gum are studied in a conclusive 

manner from both the materials science and biological perspective. The gelation process 

and chemistry of modified hydrogel-forming biopolymers are characterized. The 

mechanical properties of the hydrogels as well as their microstructure and the effects of 

different functionalization strategies on these characteristics are studied in detail. Novel 

imaging methods are applied for the analysis of hydrogel microstructure. Similarly, the 

mechanical properties of the hydrogels are studied using methods that have never before 

been applied to gels in hydrated form. Then, the newly developed hydrogel formulations 

are used with human cells for the soft tissue engineering of the two most vital and poorly 

regenerating organs of the human body – the central nervous system and the heart. 

The developed gellan gum-based hydrogels have biomimicking mechanical properties 

with adjustable stiffness corresponding to either brain or heart muscle tissue, depending 

on the exact composition used. The elasticity of the hydrogel network enables the 

spontaneous beating of human induced pluripotent stem cell-derived cardiomyocytes in 

three-dimensional culture. The polymer network creating the hydrogels is loose enough 

so that the cells can grow inside and that nutrients and waste products of cell metabolism 

can also be transported in and out of the hydrogel. The functionalization of gellan gum 

with extracellular matrix proteins, such as laminin and collagen-derived gelatin, 

enhances the cytocompatibility, growth, and elongation of cells cultured in the novel 

three-dimensional microenvironments.   
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Tiivistelmä 

Kudosteknologia tähtää elävän ja toimivan kudoksen tuottamiseen yhdistelemällä 

biomateriaalitukirakennetta, eläviä soluja ja sopivia bioaktiivisuutta stimuloivia ärsykkeitä. 

Pehmytkudoksen kudosteknologia vaatii tukirakenteen, joka vastaa aitoa kudosta, 

tarkoittaen että sen pitää olla pehmeä, elastinen, joustava ja mahdollisesti 

muokkauslujittuva. Tukirakenteen materiaalin pitää sallia ravinteiden diffuusio lävitseen 

ja solujen migraatio mikrorakenteen sisällä. Lisäksi tukirakenteen pitää tarjota soluille 

riittävästi kiinnittymiskohtia, jotta solut voivat toimia niille luontaisella tavalla. 

Hydrogeelit ovat lupaava materiaaliryhmä tukirakenteiksi pehmytkudoksen 

kudosteknologisiin sovelluksiin. Ne ovat ristisilloittuneita, hydrofiilisiä polymeeriverkkoja, 

joiden rakenne sisältää paljon vettä. Niitä voi valmistaa monista eri luonnon- tai 

synteettisistä polymeereistä käyttäen useita eri fysikaalisia ja kemiallisia 

ristisilloitusmenetelmiä. Tässä työssä polysakkaridiin nimeltä gellaanikumi pohjautuvia 

hydrogeelejä on tutkittu perusteellisesti sekä materiaalitekniseltä että biologiselta 

kannalta. Geeliytymisprosessi ja hydrogeelejä muodostavien biopolymeerien kemia on 

karakterisoitu. Hydrogeelien mekaanisia ominaisuuksia, kuten myös niiden 

mikrorakennetta, sekä eri funktionalisointistrategioiden vaikutusta perusominaisuuksiin, 

on tutkittu yksityiskohtaisesti. Uusia kuvantamismenetelmiä on sovellettu hydrogeelien 

mikrorakenteen analysointiin. Samoin mekaanisessa testauksessa on sovellettu 

menetelmiä, joita ei ole aiemmin käytetty märille geeleille. Analyysien pohjalta kehitettyjä 

hydrogeelikoostumuksia on käytetty sovelluksissa yhdessä ihmissolujen kanssa, 

tavoitteena pehmytkudoksen kudosteknologia, keskittyen kahteen elintärkeään mutta 

huonosti uusiutuvaan ihmiskehon kudokseen, eli keskushermostoon ja sydämeen. 

Kehitetyt gellaanikumipohjaiset hydrogeelit ovat biomimikoivia eli vastaavat mekaanisilta 

ominaisuuksiltaan, ja säädettävissä olevalta jäykkyydeltään, joko aivo- tai 

sydänlihaskudosta, riippuen tarkasta geelikoostumuksesta. Hydrogeelin 

verkkorakenteen elastisuus sallii ihmisen uudelleenohjelmoiduista kantasoluista 

erilaistettujen sydänlihassolujen spontaanin sykkeen kolmiulotteisessa viljelmässä. 

Polymeeriverkko on riittävän väljä, jotta solut voivat kasvaa sen sisään ja jotta ravinteet 

ja solumetabolian jätteet pääsevät kulkeutumaan sen läpi. Gellaanikumin 

funktionalisointi soluväliaineen proteiineilla, kuten laminiinilla ja kollageenistä johdetulla 

gelatiinilla, parantaa soluyhteensopivuutta, kasvua ja levittymistä, kun soluja 

kasvatetaan näissä uusissa kolmiulotteisissa ympäristöissä.   
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Three-dimensional (3D) cell culturing is required for various applications in biomedical engineering 

and life sciences. Even though human cells have been cultured for decades on two-dimensional (2D) 

surfaces, such as a petri dish or a well plate, those conditions are not representative of the real 

situation inside the human body. To achieve a more representative, biomimicking environment, cell 

culturing needs to transition from 2D to 3D. Whether the cells are grown for therapeutic clinical tissue 

engineering, for disease modeling, for studying the basis of developmental biology, or for several 

other applications, it has been acknowledged that 3D cell culturing will be a necessity in the future. 

[Gomes et al., 2017, Shah, Singh, 2017, Breslin, O’Driscoll, 2013, Asthana, Kisaalita, 2013]  

The basic principle of tissue engineering is to combine living cells with a biomaterial scaffold that 

provides support and acts as a potential delivery vehicle. The product, an engineered piece of tissue, 

can then be used in a clinical application to treat an injury or the malfunctioning tissue of a patient or 

it can be used as a model for the study of normal physiology and the pathogenesis of a disease. 

[Khademhosseini, Langer, 2016] However, the biomimicking 3D cell culture needs a support struc-

ture for the cells, a biomaterial scaffold, where cells can be cultured and monitored, and where they 

can function as if they were in the human body. 

Hydrogels are prime candidates for use as biomaterial scaffolds for tissue engineering. They are 

crosslinked 3D networks of hydrophilic polymer molecules filled with water [Peppas et al., 2006]. The 

extracellular matrix of any soft tissue (as opposed to any calcified tissues such as bone and tooth 

enamel) is essentially a biological hydrogel, while the tissue as a whole can be considered to be a 

composite material of continuous matrix phase and separate cells [Saldin et al., 2017]. Hydrogels 

can be produced from various polymers using various crosslinking strategies, from which a few have 

been chosen for this study. 

The success of a hydrogel in the intended application is based on both the physical and biochemical 

properties of the material. To rationally design novel hydrogels, the most important physical proper-

ties include adequate mechanical characteristics for the intended application and a microstructure 

that allows diffusion and cell migration. From the biochemical viewpoint, the hydrogel must provide 

enough attachment sites for cells and possibly guide their growth and differentiation. [Brandl et al., 

2007, Darnell, Mooney, 2017] 

1. Introduction 
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This thesis includes a literature review, an experimental part, a discussion comparing the study re-

sults with the previous literature, the conclusions of the studies, and the four original publications. 

The literature review provides an overview of tissue engineering applicable for various soft tissue 

types and an overview of the most important material characteristics of hydrogels. In addition, the 

previous use of selected hydrogel materials is reviewed in more detail. Additionally, existing systems 

for both clinical applications as well as the disease modeling of neuronal and cardiac tissues are 

reviewed. In the experimental part, novel hydrogels, based on a polysaccharide called gellan gum, 

are designed using ionotropic physical crosslinking with endogenous bioamines and hydrazone-

based chemical crosslinking together with a gelatin biopolymer. The materials are characterized 

chemically and physically, with an emphasis on the biomimicking mechanical properties. Physical 

characterization methods have been developed alongside the hydrogel design, creating novel imag-

ing methods for the structural analysis of hydrogels and applying the new methods for the analysis 

of the compression behavior of these hydrogels. The biocompatibility of the designed hydrogels has 

also been studied in cell cultures using cells of human origin. A prospective hydrogel formulation is 

presented for both human stem cell-derived neuronal and cardiac cells. The designed hydrogels 

function well in their intended 3D cell culture application.
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2.1. General principles of tissue engineering 

The main goal of the interdisciplinary field of tissue engineering (TE) is to produce new, func-

tional tissues using the principles of engineering and life sciences [Langer, Vacanti, 1993]. In 

clinical, therapeutic TE, the aim is to repair, regenerate or replace damaged, malfunctioning, 

or diseased tissue inside a patient’s body [Langer, Vacanti, 1993, Khademhosseini, Langer, 

2016]. As the population around the world ages, the need for this kind of regenerative therapy 

will continue to grow [Vats et al., 2005]. Indeed, at present, there are not enough organ donors 

to fill the current need and most traditional biostable implants do not provide full regeneration 

of damaged tissue. Instead, they only fix the broken site, but often still leave it in a worse 

condition than healthy native tissue due to scarring and foreign body reaction and even sus-

ceptibility to infection [Langer, Vacanti, 1993, Gomes et al., 2017, Lechler et al., 2005, Place 

et al., 2009]. The main approaches to tissue regeneration using TE can be divided into four 

main categories: 

1. The implantation of a biomaterial scaffold to fix potential structural damage and to 
bioactively guide the surrounding healthy tissue to regenerate the site. 

2. The implantation of stem cells or other relevant cell types into the treatment site, 
hoping that they will differentiate into the required cells and tissue. 

3. The implantation or controlled release of differentiation-inducing biomolecules, such 
as carefully selected growth factors, and using them for regeneration. 

4. The actual combination of all of the above listed methods into a true TE product built 
from a bioactive and biodegradable scaffold that encapsulates stem cells and also 
contains differentiation-guiding growth factors. 

Only the fourth approach is real TE as currently understood by the term. The other approaches 

are closely related methods and are much simpler to perform in an actual clinical setting, but 

2. Literature Review 
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only when they are combined do they form the three main pillars of TE, as depicted in Figure 

1. [Langer, Vacanti, 1993] 

Using either acellular biomaterial implants or stem cells alone has been shown to have mod-

erate regenerative capability, depending on the particular tissue, but most of the time, the true 

regeneration of damaged tissue is not achieved [Khademhosseini, Langer, 2016]. In many 

clinical applications, such as polymeric stents or nerve guidance conduits, acellular implants 

are the gold standard, but they often lack the more intricate cell guidance [Kehoe et al., 2012, 

Khademhosseini, Langer, 2016]. Likewise, implantation of only stem cells or other potentially 

curative cells, such as insulin producing islet cells, has been a hot topic of discussion, but the 

poor cell survival without a supporting scaffold is a major obstacle that has still to be overcome. 

[Vats et al., 2005] Tailoring the combination of a biomaterial scaffold with cells and stimulating 

biomolecules specifically for the tissue and patient is the true TE approach. 

 

Figure 1. The three equally important aspects of TE to produce a fully functional piece of tissue or 
organ are living cells, a biomaterial scaffold, and a variety of stimuli. 

Another more recent aim for TE is the production of synthetic tissue in vitro for use in disease 

modeling, developmental biology, toxicology, and related biomedical fields with the goal of 

further studying the produced tissue [Gomes et al., 2017]. Recently, fields even further away 

from medicine, such as the development of in vitro meat or soft biorobotics, have also taken  

an interest in TE [Khademhosseini, Langer, 2016]. 

The development of in vitro disease modeling is critical in understanding many genetic dis-

eases, such the ones affecting the heart and central nervous system, as these vital tissues 

function very differently in animals compared with humans [Shah, Singh, 2017, Gomes et al., 

2017]. For example, the physiology or even just the size of a rodent heart is magnitudes dif-

ferent than a human heart [Farouz et al., 2014]. Similarly, the intricate network and functioning 

of a human brain is vastly different from that of a rodent brain, and even measurements with a 
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monkey brain would need to be extrapolated to humans and are therefore not directly compa-

rable [Hopkins et al., 2015]. A similar observation can be made for any other organ.  

In addition to the functioning of organs, another significant field of study is the development of 

cancer in its multiple forms [Breslin, O’Driscoll, 2013]. All these fascinating issues could be 

answered by TE in the future. However, because all the underlying problems associated with 

the complex biomaterial and cell interplay in either in vitro or in vivo conditions have not yet 

been solved, more research is needed in this field. 

2.1.1. Scaffolds 

A biomaterial is any material that can be used in direct contact with a living system, such as 

the human body or cells in vitro [Vert et al., 2012]. Potential biomaterials exist in all the common 

material groups: metals, ceramics (including glasses), and polymers. Nowadays, the most 

studied biomaterials are both bioactive and biodegradable. This means that they not only re-

main passively in the body, but actively transform their surrounding tissue and help the regen-

eration. Once they have fulfilled their purpose, they degrade away. [D. F. Williams, 2008] In 

TE, the support structure built from the biomaterial is called a scaffold. 

In all tissues of the human body, cells are surrounded by the tissue-specific extracellular matrix 

(ECM), creating a composite material filled with various biomolecules and water. The main 

components of this natural scaffold are proteins, glycosaminoglycans, proteoglycans, and ma-

trix metalloproteinases (MMP), all arranged in a unique, tissue-specific 3D microstructure. 

[Chen, Liu, 2016] A good starting point for producing a TE scaffold is to mimick the ECM as it 

provides structure, function, and bioactivity for the cells. Decellularized ECM can even be used 

on its own as a scaffold material, or certain ECM molecules, such as the ubiquitous collagen, 

can functionalize otherwise bioinert materials. [Geckil et al., 2010, Saldin et al., 2017] 

Depending on the specific application, the scaffold can provide structural support to the dam-

aged tissue or have some other functionality, such as the release of drug molecules, or it can 

just be used to house the cells in a 3D matrix. For TE, the most attractive biomaterials are 

various bioactive polymers, bioceramics, and bioactive glasses. The biodegradation of these 

materials can also be utilized in drug delivery systems, where bioactive molecules are released 

once the encapsulating biomaterial degrades. [Khademhosseini, Langer, 2016, Chen, Liu, 

2016] The ability to provide a 3D supporting, tissue mimicking microstructure is the main func-

tion of most TE scaffolds. As cells naturally exist in a 3D environment, culturing them on a 2D 

surface affects both their morphology and their functionality. Some cells may lose their tissue 

specificity via dedifferentiation, whereas others might gain extra features, for example, they 

might develop into tumors. In addition, 3D culture conditions are especially important for in 

vitro models because the whole point is to build a model that represents the natural state. 

[Asthana, Kisaalita, 2013, Breslin, O’Driscoll, 2013, Caliari, Burdick, 2016] 



 

6 

 

2.1.2. Stem cells 

The second main pillar of TE, as stated in the definition above, are cells, the essence of any 

living tissue [Langer, Vacanti, 1993]. When aiming for the regeneration and production of in 

vitro tissue, the most attractive starting point is stem cells. By definition, a stem cell has two 

properties: unlimited self-renewal and potency to differentiate. There are several different po-

tencies of stem cells, depending on where the cells originate. Totipotent stem cells can form 

the entire human body, including extra-embryonal tissues such as the placenta, and they are 

found only on the very first divisions of fertilized oocyte. Pluripotent stem cells are also able to 

form all the cells found in the human body, but they lack the ability to form extra-embryonic 

tissues, and thus cannot form an entire human being on their own. Multipotent stem cells have 

already started to differentiate in a specific direction and can form multiple cells and tissues 

specific for that differentiation lineage, such as the adult mesenchymal stem cells (MSC) that-

form bone, cartilage, and adipose tissue. Oligopotent and unipotent cells are further away on 

the differentiation track and can only form more restricted cell types that are typically con-

strained to one organ. Examples of such cells are oligopotent neural progenitor cells that form 

the neuronal cell types found in the brain and unipotent germ cells that produce oocytes or 

spermatocytes. [Vats et al., 2005, Horwitz et al., 2006, Avasthi et al., 2008, Robinton, Daley, 

2012] 

In TE applications, the most commonly used cells are pluripotent stem cells. Human embryonic 

stem cells (hESC) are pluripotent and found in the developing embryo once it has lost its totip-

otency. The cells can also be harvested from the inner cell mass of a blastocyst in the early 

developmental phase and established into a cell line. [Vats et al., 2005] Another, more recent 

finding are induced pluripotent stem cells (iPSC) [Yamanaka, 2012]. The groundbreaking stud-

ies by professor Yamanaka’s team first on mouse iPSC [Takahashi, Yamanaka, 2006] and a 

year later on human iPSC (hiPSC) [Takahashi et al., 2007] created the possibility to use the 

cells of any adult patient, reprogram them back into a pluripotent state and then use the estab-

lished hiPSC line for both autologous TE and as a model of the patient. The possibility to 

differentiate stem cells in a controlled way into target cell- and tissue-types enables access to 

unreachable parts of human development and to critical cells that cannot be obtained from a 

living patient [Ojala, Aalto-Setälä, 2016]. The original retrovirus vectors used for the repro-

gramming of hiPSC have since been changed into safer, non-viral, and non-genome-integrat-

ing methods, making the reprogramming process safer, especially if aiming to use the cells for 

patients [Okita et al., 2011, Robinton, Daley, 2012, Manzini et al., 2015]. When referring to 

both hESC and hiPSC, the term human pluripotent stem cells (hPSC) is used. 

When comparing different hPSCs, the main question is whether the cell types are similar to 

each other and which should be the gold standard of pluripotency. [Liu, 2008, Robinton, Daley, 

2012, Yamanaka, 2012] There are several pluripotency assays that both of the cell types pass, 

and that are commonly required to prove the newly developed cell line’s pluripotency. The 
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example assays include expression of a panel of well-known pluripotency genes and the for-

mation of teratoma tumors containing all germ layers, when implanted in rodents [Robinton, 

Daley, 2012]. However, iPSCs have also been proven to have some degree of epigenetic 

memory that likely affects their reprogramming and differentiation efficiency [Robinton, Daley, 

2012, Manzini et al., 2015].  

The main advantages of hiPSC over hESC include the amount of knowledge about the patient 

who has donated the cells for the hiPSC reprogramming. Indeed, knowing the medical history 

of the patient is an advantage when the cells are used for disease modeling. When we use 

hESC to model a disease, we do not know what kind of individual the cells would have pro-

duced, and thus we do not know whether the patient would have symptoms of a specific dis-

ease. However, when using hiPSC, the final product of all the genes acting in the stem cells 

are known, as they are from a living patient. Thus, the invention of iPSC greatly enhanced the 

possibilities of doing disease modeling. [Robinton, Daley, 2012] Another advantage of hiPSC 

lines is that they are voluntarily donated by the patients themselves, while hESC lines are 

produced from surplus embryos from infertility clinics that have been donated by parents. This 

is sometimes seen as an ethical dilemma because the hESCs could have produced an indi-

vidual if used successfully in the infertility treatment and, as such, their use in research is seen 

by some religious groups as being akin to murder [Robinton, Daley, 2012, Murugan, 2009]. 

2.1.3. Stimulation 

The third main pillar of TE is the stimulation of the cell culture and this can mean a large variety 

of systems. Stimulation activates the differentiation cascade of the stem cells, causing the 

formation of a wanted cell type or tissue organoid. Without the correct stimulus, the stem cells 

might just stay in their pluripotent state and proliferate uncontrollably. [Discher et al., 2009] 

Biochemical stimulation using growth factors and other soluble signaling molecules is the most 

obvious method of stimulation because they are commonly included in the differentiation pro-

tocols of stem cells. Activating the differentiation cascade can also cause the cells themselves 

to produce more signaling molecules, and thereby enhancing the differentiation process as a 

whole. [Place et al., 2009, Toivonen et al., 2013] 

In addition to biochemical signals, many physical signals can also be used for the stimulation 

of cell cultures in TE production, as listed in Table 1. Electrically active cells, such as cardio-

myocytes and neurons, have been stimulated using electrical fields with the aim of enhancing 

maturation [Huh et al., 2011, Arslantunali et al., 2014]. In addition to electrical activation, light 

has also been used for the activation of cells using so-called optogenetics [Pastrana, 2010]. A 

further active stimulation method, also closely related to the material properties of the growth 

substrate, is mechanical stimulation that uses the stretching, vibration, or shear stress caused 

by flow. All these methods aim to mimic the in vivo situation, and thus to enhance cell matura-
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tion or organoid formation. [Tirkkonen et al., 2011, Chung et al., 2011, Huh et al., 2011] A fur-

ther aspect of stimulation, providing mechanical cues via mechanotransduction and durotaxis, 

is discussed in more detail in Chapter 2.2.4. [Discher et al., 2009, Walters, Gentleman, 2015]. 

Table 1. Examples of physical stimuli used for the stimulation of various cell responses. 

Stimulus Cell type Application Reference 

Electricity 
Cardiomyocyte Maturation [Kujala et al., 2012] 
Neuron Neurite outgrowth [Arslantunali et al., 2014] 

Light Cardiomyocyte Drug response 
[Pastrana, 2010, Björk et al., 
2017] 

Stretching 
Cardiomyocyte Differentiation [Kreutzer et al., 2014] 
MSC Differentiation [Virjula et al., 2017] 

Vibration MSC Differentiation [Tirkkonen et al., 2011] 

Flow 
Endothelial cell Vascularization [Huh et al., 2011] 

Cardiomyocyte 
Maturation, Stress 
induction 

[Katipparambil Rajan et al., 
2018] 

Passive Stiffness Any 
Differentiation & 
Maturation 

[Discher et al., 2009, Walters, 
Gentleman, 2015] 

2.2. Hydrogels 

According to the definition given by the International Union of Pure and Applied Chemistry 

(IUPAC), a gel is a: “non-fluid colloidal network or polymer network that is expanded throughout 

its whole volume by a fluid” [Alemán et al., 2009]. Subsequently, a hydrogel is a gel where the 

expanding fluid or swelling agent is primarily water. Furthermore, in the case of hydrogels, the 

solid component is usually a polymer network and not a colloid. [Alemán et al., 2009] Another 

definition by the American Society for Testing and Materials (ASTM) is: “Hydrogels are water-

swollen polymeric networks that retain water within the spaces between the macromolecules; 

and maintain the structural integrity of a solid due to the presence of crosslinks” [ASTM F2900, 

2011].  

As can be seen from both of these definitions, the main components that make up a hydrogel 

are a crosslinked polymer network and water as a swelling agent. Although there are many 

other definitions of hydrogels that are formulated in slightly different ways, they are always 

formed along these lines [Kavanagh, Ross-Murphy, 1998, Hennink, van Nostrum, 2002, Pep-

pas et al., 2006, Buwalda et al., 2014, Chirani et al., 2015] because they are the essential parts 

required to make a hydrogel. Of particular note for later consideration is the presence of water 

as a swelling agent. A hydrogel lacking the liquid swelling agent is called either an aerogel or 

a xerogel, depending on the drying process [Alemán et al., 2009]. One further case of a dried 

gel is cryogel, where the drying process is done specifically using freezing temperatures [Lo-

zinsky et al., 2003]. 
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The study of hydrogels and the term itself originate from a study by van Bemmelen in 1894 

about copper oxides and the colloidal network phase observed in water as CuO·H2O [van 

Bemmelen, 1894, Buwalda et al., 2014]. The polymer hydrogels formed from water-swollen 

crosslinked polymeric networks used nowadays were first reported almost simultaneously by 

Berkowitch et al. and by Danno who both studied the formation of an innadiation crosslinked, 

water insoluble network of polyvinyl alcohol (PVA) [Berkowitch J. et al., 1957, Danno, 1958, 

Buwalda et al., 2014]. The first real medical application for hydrogel material was studied by 

Wichterle & Lím in 1960.They produced a poly-2-hydroxyethyl methacrylate (pHEMA) hydrogel 

for use as a soft contact lens [Wichterle, Lím, 1960, Buwalda et al., 2014]. 

There are several key characteristics that are ubiquitous to hydrogels, and thus it is important 

to quantify their specific properties. The standard IUPAC and ASTM definitions [Alemán et al., 

2009, ASTM F2900, 2011] do not specify the amount of water in the network, as this can vary 

considerably between different hydrogels and depends on the exact physicochemical mecha-

nisms affecting the polymers in question. The water content is often measured as swelling 

degree, swelling ratio, or water uptake, calculated as a percentage of the weight of the total 

bound water compared with the dry weight of the polymer. This water content can, however, 

vary from a few tens of percentage to over 1 000%. Furthermore, the tendency to absorb sur-

rounding water into the hydrophilic network has enabled multiple industrial applications. [Patel, 

Mequanint, 2011, Chirani et al., 2015] This tendency to absorb water is also directly linked to 

a hydrogel’s crosslinking density, molecular network mesh size, and porosity that are defined 

further in Chapter 2.2.5. A further derivative result related to the properties of the polymer 

network are the mechanical properties of the hydrogel, usually soft and elastic, as explained 

in Chapter 2.2.4. A third category of important characteristics that is defined further in Chapter 

2.2.6. is biological response, biocompatibility and cytocompatibility that are especially im-

portant in the fields of biomedical engineering and biomaterials science, but often not so critical 

in the various industrial applications of hydrogels in other fields. 

Further simple to understand characteristics include gelation time, optical transparency or tur-

bidity, and degradation [ASTM F2900, 2011]. Sometimes gelation is also called sol-gel transi-

tion, by definition a process where a network is formed from a solution by a progressive change 

from liquid precursor into a sol and then to a gel [Alemán et al., 2009]. However, sol-gel pro-

cessing is a term more often used in the case of aerogels than hydrogels. The gelation time is 

simply the time it takes for the crosslinking reaction to finish. After that, the hydrogel behaves 

like a gel and no longer like a liquid. The simplest method to measure gelation time is perhaps 

the tube tilt test as defined by Tanodekaew et al., meaning just periodically tilting the vessel 

where hydrogel components are mixed and, once they stop flowing, the gelation time is rec-

orded. [Tanodekaew et al., 1997, ASTM F2900, 2011] Other methods for measuring gelation 

time include a falling ball test, optical turbidity, and rheology, all giving roughly the same 
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amount of information on material behavior, but requiring more sophisticated equipment than 

the simple tube tilt test [ASTM F2900, 2011].  

The importance of the optical properties of the hydrogel depend strongly on the application, 

but seeing as the first ever biomedical application was a contact lens [Wichterle, Lím, 1960], it 

can be easily understood that transparency is important. Also, when hydrogels are developed 

for tissue engineering applications, measuring the transparency and refractive index can pro-

vide valuable information. For example, it allows a view of the inside of the hydrogel to study 

the biological response, even if the actual success of an implantable hydrogel is not dependent 

on transparency [Vielreicher et al., 2013]. However, the application itself might still require a 

high degree of transparency, as is the case with ophthalmological applications [Koivusalo et 

al., 2018]. Another optical property that might be interesting to measure is the autofluorescence 

of the hydrogel, meaning that the hydrogel emits light on a certain wavelength when illuminated 

with the appropriate excitation wavelength [Vielreicher et al., 2013].   

Measuring the degradation is a more complex task because the variability of hydrogel chem-

istry results in an equal variability in the degradation behavior. Most hydrogels degrade by 

hydrolysis and/or by enzymatic biodegradation and both of these can affect the crosslinked 

sites or the polymer molecules as a whole. This biodegradation is usually beneficial in clinical 

TE applications as it simply means that the hydrogel disappears when it is not needed anymore 

at the injury site. Alternatively, it can be used and tailored to produce highly sophisticated con-

trolled drug delivery devices and the so-called spatio-temporal guidance of cells. Overall, the 

degradation rate in different buffers, temperatures, and pH are often measured and even tuned 

for specific hydrogel applications. [ASTM F2900, 2011, Chirani et al., 2015, Li, Mooney, 2016, 

Leijten et al., 2017] 

The aforementioned typical characteristics of hydrogels and their general tunability by cross-

linking result in their use in a multitude of fields ranging from industrial waste management to 

diapers and cosmetics, all the way to food and pharmaceutics and into tissue engineering and 

other biomedical applications [Chirani et al., 2015]. All in all, hydrogels are a highly interesting 

group of materials that have been under investigation for over fifty years and are still currently 

taking new and exciting steps forward on a monthly basis. 
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2.2.1. Classifications and crosslinking methods 

Since the 1960s, the number of studies of hydrogels and reports on different materials that can 

form a gel has been on an exponential rise [Chirani et al., 2015], creating a need for the clas-

sification of hydrogels. Figure 2 explores the main classification possibilities for dividing hydro-

gels into different categories that could be even further divided into subcategories. 

 

Figure 2. The main classification categories of hydrogels based on polymer source, polymer net-
work type, charge, and crosslinking. Image modified from [Patel, Mequanint, 2011].  

The first classification is between natural and synthetic polymers, or hybrids of these. As  pre-

viously stated, the first hydrogels for biomedical applications were synthetic polymers but cur-

rently many natural polymers are also known to form hydrogels. [Malafaya et al., 2007, Hen-

nink, van Nostrum, 2002, Slaughter et al., 2009] Additionally, the water-swollen ECM of any 

soft tissue can also be considered a natural hydrogel, and is therefore usable either as the full 

decellularized matrix or as single components, such as collagen and elastin [Saldin et al., 2017]. 

When designing a hydrogel, the choice of polymer goes hand in and with the choice of cross-

linking method. Some crosslinking methods work for many hydrogel-forming polymers while 

others are more specific, but none works for all. The main categories of crosslinking, as shown 

in Figure 3, are physical crosslinking, where physical phenomena form the linkage between 

molecular chains, and chemical crosslinking, where covalent bonds are formed between the 

functional groups of molecules [Oyen, 2014]. Depending on the exact crosslinking reaction, 

conditions, such as temperature and pH, might need adjusting for the crosslinking to occur. In 

general, physical crosslinking is more reversible and chemical crosslinking more permanent 

and irreversible. However, exceptions exist both ways, such as reversibly light-activated chem-

ical crosslinks and physical irreversibly self-assembled polymethyl methacrylate nanoparticle 

networks. [Hennink, van Nostrum, 2002, Oyen, 2014] 
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Figure 3. The six main possibilities of hydrogel crosslinking phenomena: a) physical crosslinking 
with ionotropic or small molecule crosslinker, b) physically crosslinked network with 
crystallite, stereo complex or helix formation, c) physical entanglement crosslinked net-
work, d) chemical ideal network with tetra-functional crosslinks, e) chemical non-ideal 
network with tetra-functional crosslinks including ends of polymer chains and loops,     
f) ideal chemically crosslinked double network or interpenetrating (IPN) network. Image      
modified from [Oyen, 2014]. 

One further dividing classification is between a true gel and a weak gel, terms that describe 

the physical properties of a hydrogel. Both of these gels pass a gelation test, appearing to have 

formed a gel. However, only a true gel will retain its shape and appear like a solid if taken out 

of a mold; whereas a weak gel will collapse without external support and form a puddle, being 

more of a fluid with an internal structure than a solid gel, hence the term. [Morris et al., 2012, 

ASTM F2900, 2011] This division between true and weak gels is most often used in the field 

of rheology, but it is also important for easily distinguishing between different materials when 

thinking about the suitability for a certain application. From a rheological point of view, gel is a 

material where elastic behavior dominates over viscous behavior under oscillatory shear stress. 

Both weak and true gels fulfill this criterion. [Kavanagh, Ross-Murphy, 1998] However, the term 

weak gel should not be confused with low mechanical characteristics as weak gels can still 

have a relatively high yield stress and require considerable force to break the network. On the 

other hand, a true gel can have very low stiffness, even if staying intact without support. [Morris 

et al., 2012] 
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2.2.1.1. Physical crosslinking  

For physical crosslinking, one of the most used options is ionotropic crosslinking (Figure 3 (a)). 

This means that positively charged ions or small molecules react with negatively charged pol-

ymer chains and form crosslinks. A large subgroup of hydrogels crosslinkable in this way with 

cations is polysaccharides, including for example alginate, gellan gum, xanthan gum, pectin, 

pullulan, and carrageenan, all of which are anionic natural polymers. An example of a synthetic 

anionic polymer that can be ionotropically crosslinked is poly-[di(carboxylatophenoxy)phos-

phazene]. Different ionotropic crosslinking occurs at the interaction of cationic chitosan with 

polyanions, also forming a hydrogel. [Hennink, van Nostrum, 2002, Coviello et al., 2007] The 

downside of ionotropic crosslinking is the ion exchange from higher to lower valence number 

that is observed to occur in physiological buffers. For example, calcium ions in the polysac-

charide crosslinks change to sodium ions, and thus weakens the hydrogel network because 

the affinity of the polymers towards each other weakens [Coutinho et al., 2010, Lee et al., 

2013]. 

Another physical crosslinking possibility is creating the crosslinks by crystallization of the pol-

ymer chains (Figure 3 (b)). Here, the chains physically and reversibly bind together, but can 

be released by raising the temperature above the melting temperature of the crystallites. A 

well-known example of this thermal gelation is PVA. Similar systems occur with many different 

stereo complex formations (Figure 3 (b)), self-assembling systems and variations of hydrophilic 

and hydrophobic copolymer sequences. For example, block copolymers of polyethylene glycol 

(PEG) and polylactic acid (PLA) as well as PLA together with pHEMA produce stereo complex 

hydrogels. Macromolecular proteins or even parts of DNA can form physical crosslinks based 

on the strong physical affinities they have towards each other or specific antigen-antibody 

bindings (Figure 3 (a,b,d)). [Hennink, van Nostrum, 2002] The entanglement of chains (Figure 

3 (c)) is more common in weak hydrogels and can be triggered by pH or temperature change 

and strengthened by hydrogen bonds. Examples of hydrogels mainly forming weak gels by 

this triggered self-assembly and entanglement include the commercially available, natural 

origin cell culture substrates Puramatrix® [S. Zhang et al., 1995], Matrigel® [Kleinman, Martin, 

2005], and Geltrex® [Akopian et al., 2010] as well as other oligopeptide nanofiber systems 

[Ikonen et al., 2011].  

2.2.1.2. Chemical crosslinking 

Chemical crosslinking (Figure 3 (d-f)) has wider options than physical crosslinking, dependent 

on the available functional groups on the polymer chains. Crosslinking by free radical polymer-

ization from the monomers is suitable, for example, for polyacryl amide (PAA), for pHEMA, and 

for many methacrylate containing polymers [Buwalda et al., 2014]. However, in water solution 

the degree of substitution and reaction efficiency is low, so the introduction of methacrylate 

groups has been improved by using methacrylic anhydride and enzymatic catalysts, especially 
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in the case of polysaccharides. [Hennink, van Nostrum, 2002] The crosslinking of polymers, 

not monomers, to produce a gel was first done by the irradiation of aqueous PVA solution with 

ionizing radiation [Berkowitch J. et al., 1957, Danno, 1958]. This crosslinking method has 

evolved over the years into the currently used ultraviolet (UV) light activated crosslinking, 

where methacrylate groups polymerize into hydrolysis resistant methacrylate esters [Hennink, 

van Nostrum, 2002, Buwalda et al., 2014].  

Due to several disadvantages, such as heterogenous hydrogel network formation, the possible 

cytotoxicity of both UV light and the radical polymerization reaction, more attractive options for 

the production of TE hydrogels include bio-orthogonal click chemistry reactions [Ifkovits, Bur-

dick, 2007, Truong et al., 2016]. A bio-orthogonal reaction does not interfere with biological 

processes [Jiang et al., 2014]. A click chemistry reaction, as such, means a reaction without 

any side products, joining polymer units via heteroatom bridge stereospecifically in simple re-

action conditions and in a harmless solvent, such as in water [Kolb et al., 2001]. Typical char-

acteristics for this reaction type are high reactivity and selectivity, which enable specific hydro-

gel design with the required biofunctionalities. Several full- and pseudo-click reactions exist, 

and all of these can crosslink the hydrogel in aqueous solution in mild reaction conditions and 

are thus compatible with living cell encapsulation. [Jiang et al., 2014] The first hydrogels formed 

via click reaction are again based on PVA [Ossipov, Hilborn, 2006]. Examples of the fully click 

chemistry reaction include norbornene-nitrile oxide in PEG hydrogel production [Truong et al., 

2016], Diels-Alder cycloaddition with PEG and hyaluronic acid (HA) [Nimmo et al., 2011], and 

the tetrazine-norbornene click pair in modified gelatin [Koshy et al., 2016]. The pseudo-click 

chemistry means not full orthogonality of the crosslinking reaction, having for example water 

as a side product. Examples of these reactions include thiol–Michael addition reaction [Jiang 

et al., 2014], Schiff-base amine–aldehyde reaction [M. Khan et al., 2018], and the aldehyde–
hydrazide coupling into a hydrazone [Jiang et al., 2014]. 

As many biopolymers can be easily modified to contain aldehyde and hydrazide functional 

groups, hydrazone crosslinking is an attractive option when designing hydrogels for TE. This 

reaction is only pseudo-click chemistry, as there is a water molecule by-product. The possibility 

of free aldehyde groups reacting with unintended targets raises a question of the bio-orthogo-

nality of the reaction. However, in reality, the strongly nucleophilic hydrazide’s reaction kinetics 
will reduce the toxicity to negligible levels in the relevant conditions [Jiang et al., 2014]. For 

example, the biocompatibility of hydrazone crosslinking HA has been exploited by crosslinking 

with itself [Koivusalo et al., 2018], with PVA [Karvinen et al., 2018], and with the natural poly-

saccharides alginate and gellan gum [Karvinen et al., 2017, Karvinen et al., 2019]. 
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2.2.2. Gellan gum 

The main polymer studied for hydrogel design and production in this thesis is the bacterial 

extracellular polysaccharide gellan gum (GG). GG has a linear tetrasaccharide repeating struc-

ture of -D-glucose, -D-glucuronic acid, -D-glucose, and -L-rhamnose (Figure 4). Moreover, 

GG is produced by the bacterium Sphingomonas elodea, formerly known as Pseudomonas 

elodea, and the main producer is the C.P. Kelco company based in the USA and Japan. [Morris 

et al., 2012] This polysaccharide was originally discovered by Kang et al. from Kelco in 1982 

[K. S. Kang et al., 1982], and it received approval for use as a food additive in 1992 [FDA, 

2018] and the E number E418 refers to GG in the EU [Morris et al., 2012]. GG was first pro-

posed for use as a TE scaffold material by Smith et al. [A. M. Smith et al., 2007]. Thereafter, 

multiple applications have appeared in both hard and soft tissues [Stevens et al., 2016]. The 

chemical structure, gelation, and material properties of GG hydrogels were thoroughly studied 

in a special issue of Carbohydrate Polymers Vol.30, Issue 2/3, 1996 [Nishinari, 1996]. 

 

Figure 4. Schematic of the GG tetrasaccharide repeating structure in deacetylated form. The car-
boxyl group of glucuronic acid is shown in the carboxylate anion form and a generic 
metallic cation (Me+) is depicted at this typical crosslinking site. 

The most commonly used form of GG is the deacetylated version because the bulky acyl and 

glyceryl groups hinder the compactness of the microstructure. The acyl groups would appear 

in the left -D-glucose of the GG molecule (Figure 4). [R. Mao et al., 2000] Like many other 

linear polysaccharides, GG molecules form stiff double helix coils in water solution, and this 

helix is tighter for the deacetylated GG [Chandrasekaran, Radha, 1995]. The helix is stabilized 

by cations and the natural crosslinking process of GG hydrogel then occurs via the ionotropic 

physical crosslinking resulting from the interaction of the anionic polysaccharide and cationic 

monovalent or divalent metal ion between the carboxylate groups of several GG molecules 

(Figure 3 (a)) [Milas, Rinaudo, 1996]. Cooling the water solution of GG from elevated temper-

atures of over 40 °C increases the helix formation and, even without added crosslinker ions, 

the gelation will occur due to the residual ions of either sodium or potassium (monovalent 

cations) present even in purified GG [Milas, Rinaudo, 1996, Morris et al., 2012]. Normally, 

however, a cationic crosslinker solution is mixed with the GG while cooling down, increasing 

the crosslink formation and creating a true gel with enough internal structure to be self-standing 

without support. The most used crosslinker is calcium ion (divalent) [Osma ek et al., 2014], but 

all the commonly available monovalent and divalent ions alone or as mixtures have been tested 
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to work for crosslinking. Higher ionic strength increases crosslink strength and there have also 

been various ions or small molecules used as a crosslinker, such as tetramethylammonium 

(monovalent) [Morris et al., 2012], aluminium (trivalent) [Maiti et al., 2011], spermidine (SPD, 

trivalent) [López-Cebral et al., 2013], and spermine (SPM, tetravalent) [Parraga et al., 2014]. 

The crosslinking process using the SPD and SPM bioamines (Figure 5) is based on the amine 

groups becoming ammonium groups in water solution, and thus SPD has a trivalent and SPM 

a tetravalent charge. As a result, they are highly efficient in crosslinking GG, the higher ionic 

charge of SPM being naturally the most effective. They are also endogenous molecules that 

are found throughout the body that affect cell survival by reducing oxidative stress and protect-

ing DNA from oxygen radicals. [A. U. Khan et al., 1992] All the biological cascades where these 

antioxidants are involved are not as yet known. However, it has been suggested that they 

reduce stress in the endoplasmic reticulum during myocardial infarction, and thus regulate 

cardiomyocyte apoptosis [Wei et al., 2016], and have a role in the secretion processes of neu-

rons in the brain [Laube et al., 2002]. The use of SPD and SPM bioamines for anionic polysac-

charide crosslinking was pioneered by Parraga et al. [Parraga et al., 2014]  and more specifi-

cally for GG by López-Cebral et al. [López-Cebral et al., 2013, López-Cebral et al., 2014]. 

However, these studies concentrated on drug release applications instead of TE and scaffold 

manufacturing. 

 

Figure 5. Schematic of the molecular structures of bioamines (a) SPD and (b) SPM. In water solu-
tion, each NH or NH2 group gains one H+, thus making the molecules ionically charged, 
trivalent and tetravalent, respectively. 

Another common method for the production of GG-based hydrogels is chemical modification 

by methacrylation and then crosslinking the methacrylated GG (GG-MA) with UV light. Here, 

a methacrylic anhydride is reacted with GG in water solution, turning the hydroxymethyl group 

of glucose into a methacrylate group. UV light can then activate these methacrylate groups to 

crosslink GG chemically via free radical polymerization. Furthermore, since the carboxylic 

group is still left free, the crosslinking can be enhanced ionically. [Coutinho et al., 2010, Bacelar 

et al., 2016] There are two important reasons to use GG-MA instead of normal GG for TE 

applications. First of all, the stability of ionotropic crosslinking is not as good as that achieved 

with chemical crosslinking due to possible ion exchange occuring in a physiological solution 

[Coutinho et al., 2010]. However, the higher ionic charge of bioamines already mitigates this 

[López-Cebral et al., 2013]. The second reason is to enable advanced manufacturing methods, 

such as 3D printing for scaffold design in addition to simple casting [H. Shin et al., 2012, M. B. 
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Oliveira et al., 2016, Mouser et al., 2016]. Here, the only problem is usually the possible cyto-

toxicity of the photoinitiator and the UV light [Ifkovits, Burdick, 2007]. 

The use of GG in different applications has been extensively reviewed elsewhere, so here is 

only a short compilation listing of the most interesting applications [Fialho et al., 2008, V. D. 

Prajapati et al., 2013, Osma ek et al., 2014, Bacelar et al., 2016, Stevens et al., 2016]. The 

initial use of GG was in food applications as a gelling agent, emulsifier, or stabilizer. The ma-

terial properties that make GG attractive for food application are often also relevant for bio-

medical applications. GG hydrogel has high thermal and acid stability, high transparency, and 

good flavor (molecule) release. In tissue, GG goes through enzymatic biodegradation caused 

by the lysozyme enzyme released by macrophages [Xu et al., 2018]. GG also has easily tun-

able elasticity and stiffness by changing crosslinker ion concentration. [Fialho et al., 2008] The 

main food applications include desserts, icings, jams, ice creams, puddings, and vegan can-

dies. Generally, it can be used in many places and one more trendy reason to use GG is as a 

replacement for animal-origin gelatin [Morris et al., 2012]. The most peculiar GG-containing 

food product was the short-lived Orbitz™ soft drink with gelated spheres floating in the juice 

[Skip Rocheford, Hower, 1998]. 

In addition to food applications, GG is used in various pharmaceutical applications. The first 

pharmaceutical application being eye droplets that go through weak gelation when in contact 

with tear fluid, and thus remain on the ocular surface longer than less viscous substances 

would [Carlfors et al., 1998]. The use of GG in personal care products, such as shampoos and 

topical creams, is based on the same stabilizing and flavor release properties that are favora-

ble in food applications. As an alternative to gelatin, GG has been used in various drugs as the 

encapsulating outer layer. [Osma ek et al., 2014, V. D. Prajapati et al., 2013] Combining the 

food use with more biomedical applications has even produced the suggestion of using GG as 

an edible electrode [Keller et al., 2016]. To a lesser extent, GG is also used in various other 

applications, such as the oil and paper making industries [Fialho et al., 2008]. 

The first intended TE applications were for cartilage in the native form without any additional 

functionalization [A. M. Smith et al., 2007, J. T. Oliveira et al., 2010]. However, it was soon 

noted that biological functionalization is needed for most applications because GG on its own 

is a rather bioinert material, even if it has good biocompatibility [Ferris et al., 2013]. Recently, 

it has been functionalized in different ways, depending on the application. For example, the 

addition of bioactive glass, hydroxyapatite or collagen for bone TE [Douglas et al., 2014, M. B. 

Oliveira et al., 2016, Jamshidi et al., 2016, Bacelar et al., 2016], with ECM-peptides or the 

electrochemical activity of chitosan for neural TE [Silva et al., 2012, Lozano et al., 2015, Car-

valho et al., 2018], as an antibiotic or other drug releasing delivery platform for wound healing 

[Matricardi et al., 2009, Maiti et al., 2011, López-Cebral et al., 2014, Shukla, Shukla, 2018], or 

with halloysite nanoclay for soft tissue in general [Bonifacio et al., 2017].  
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The GG polymer has also been fragmented physically by ultrasonication [Moxon, Smith, 2016] 

or scissoring chemically by oxidation using sodium periodate (NaIO4) [Gong et al., 2009]. The 

aim in both cases is to reduce viscosity and enhance 3D printability. The oxidized GG has 

been further chemically crosslinked into an IPN with chitosan using the Schiff-base reaction, 

when aiming for cartilage applications [Y. Tang et al., 2012]. For soft tissue applications, func-

tionalizing the oxidized GG with aldehyde modified HA to yield chemical hydrazone crosslink-

ing is a valid option and produces mechanically biomimicking hydrogels similar to brain tissue 

[Karvinen et al., 2017, Karvinen et al., 2019]. The same components have also been combined 

by just physical mixing, ionotropic gelation, and freeze-drying to produce cryogels for TE of 

skin [Cencetti et al., 2011, Cerqueira et al., 2014]. 

In some cases, not much cell attachment is required. Thus, GG can also work without func-

tionalization as, for example, for adipose TE [Lago et al., 2018] and spinal cord nucleus pulpo-

sus TE [Silva-Correia et al., 2012, Tsaryk et al., 2014]. Indeed, GG has even been functional-

ized specifically to prevent angiogenesis using growth factor blockers [Perugini et al., 2018]. It 

has even been combined with methylglyoxal-rich Manuka honey to include antimicrobial func-

tionality [Bonifacio et al., 2018]. Furthermore, the original cartilage repair approach with GG-

MA has progressed quite far in animal studies [J. T. Oliveira et al., 2010, Vilela et al., 2018]. 

2.2.3. Gelatin 

Collagen is an abundant ECM protein with over 20 different types found in the human body. 

The different types are present in different tissues, with collagen type I being the most abun-

dant and especially needed in the connective tissues. When a collagen molecule is denatured, 

it breaks down into smaller linear molecules called gelatin. [Olsen et al., 2003] An understand-

ing of collagen molecular and supramolecular structure is important for also understanding the 

usability of gelatin as a cell culture substrate. The main difference between different collagen 

types is the order of amino acids, and thus peptide sequences. However, a defining feature for 

all collagens is the right-handed triple helix structure formed by three parallel polypeptide 

chains and stabilized by hydrogen bonds. The total build-up of a collagen fiber starts with proto-

collagen single strands forming a procollagen triple helix, then a tropocollagen triple helix, 

which self-assembles into collagen microfibrils that, after enzymatic crosslinking, finally form 

the collagen fiber. [Shoulders, Raines, 2009] The further crosslinking of these fibers into the 

actual ECM network makes the understanding of specific cell interactions with these complex 

molecules more challenging, but the most important aspect is that cells can attach to collagen 

and collagenous surfaces [Bruckner, 2009].  

The gelatin macromolecule is a polyampholyte with hydrophilic groups having both cationic 

and anionic moieties as well as hydrophobic groups present in the structure in closely 1:1:1 

ratio, due to the different constituent peptides. It can form a similar triple helix tertiary structure 
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as collagen. [Elzoghby, 2013] The basic structure of gelatin is shown in Figure 6. For the pro-

duction of gelatin, the most common sources are bovine or porcine skin, bone, and other left-

over collagenous connective tissues from a slaughterhouse. The collagen is denatured and 

broken down by boiling and chemical treatments, yielding a distribution of polypeptide frag-

ments of different sizes and properties, often also causing lot-to-lot variation [Gómez-Guillén 

et al., 2011]. Based on the production process, gelatin is divided into acid treated type A and 

alkali treated type B, and this also affects the specific polyampholyte nature by controlling 

which peptides are present in larger quantities [Elzoghby, 2013]. In addition to this traditional 

route which produces gelatin for food and pharmaceutical applications, there have recently 

appeared alternative gelatin production routes, such as from fish [Yang et al., 2007], other sea 

life [Gómez-Guillén et al., 2011], or recombinantly from bacteria [Olsen et al., 2003, Rutsch-

mann et al., 2014]. Regardless of the production process, the most important parts, i.e., cell 

attachment peptides (most importantly the arginine-glycine-aspartaic acid or RGD) and cell 

cleavable MMP-sites and some other bioactive sites, retain their functionality. For sensitive 

biomedical applications, such as TE, the recombinant gelatins would be the most attractive 

option with less lot-to-lot variation and lower risk of contaminating pathogens. [Olsen et al., 

2003, Yue et al., 2015] However, mainly due to high production costs, recombinant versions 

are not yet readily available and most of the TE work is done on bovine and porcine gelatin. 

 

Figure 6. Basic structure of gelatin with the RGD-peptide sequence highlighted in blue.  

The use of gelatin in cell culture applications started in the 1970s when it was noted that not 

all cells can attach directly to plastic or glass surfaces and needed a coating to enhance at-

tachment [Folkman et al., 1979]. Since then, gelatin coatings have been standard practice in 

cell culture studies and stem cell research, providing the RGD and other peptides of connective 

tissue for cell attachment. Moreover, when aiming to transfer cell culture from 2D to 3D, gelatin-

based biomaterials are one natural choice as a scaffold material [Yue et al., 2015]. Curiously, 

collagen forms a hydrogel when heated above room temperature due to the temperature trig-

gered helical self-assembly stabilized by ions. Then again, gelatin also has coil-to-helix self-

assembly and entanglement in the crosslinking process. However, without further stabilization 
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it does not reach an equilibrium and gelation occurs when cooling down. Thus, both gelation 

of collagen and gelatin are thermo-reversible processes, but in opposite directions. [Gómez-

Guillén et al., 2011]  

As native gelatin does not form a hydrogel at 37 °C, it needs to be chemically modified with 

stronger crosslinking for cell culture applications [Yue et al., 2015]. Still, it is the main coating 

material used with many anchorage-dependent cells, such as cardiomyocytes [Folkman et al., 

1979, Mummery et al., 2003, Rajala et al., 2010]. The most used hydrogel version is methac-

rylated gelatin (GelMA), which crosslinks similarly to the GG-MA via UV light activated chemi-

cal crosslinking [Van Den Bulcke et al., 2000, Yue et al., 2015]. The UV crosslinking can be 

combined with many scaffold fabrication methods, and thus GelMA has been used for 3D bi-

oprinting, photopatterning, layer-by-layer assemblies, micromolding, and fiber pulling. The tis-

sue applications vary as well and include, for example, cardiac and skeletal muscle, skin, liver, 

vascularization, cartilage, bone, and also neural applications [Van Vlierberghe et al., 2011, 

Yue et al., 2015] However, methacrylation is not the only option. Other chemical modification 

possibilities include the natural crosslinker genipin as well as the peptide binding transglutam-

inase. Furthermore, numerous other less studied possibilities for gelatin hydrogel crosslinking 

strategies also exist [Van Vlierberghe et al., 2011]. After treatment with nordihydroguaiaretic 

acid, the naturally weak gelatin can be made into hydrogels of remarkably high strength and 

toughness that reach mechanical properties relevant for bone applications [Koob, Hernandez, 

2003].  

Gelatin has been combined with various other biomaterials to give the other supporting mate-

rial gelatin’s biofunctionality and increase cell attachment. However, even before TE applica-
tions, gelatin has also been combined with GG for food applications, the earliest example being 

the patent US 4,517,216A [Shim, 1985]. Blending these two biopolymers increases the 

strength of the hydrogel, regardless of whether the hydrogel was used in food applications or 

in TE. The combination of hydroxyl apatite particles in a blend of GG and GelMA and the 

freeze-drying of the system after crosslinking has been used for the production of controlled 

pore shape scaffolds for cartilage [Canadas et al., 2018]. The production of IPN hydrogels is a 

more sophisticated process than just blending the polymers together. In the process, gelatin is 

enzymatically crosslinked via a covalent lysine-amide bond. When gelatin and GG are mixed 

together with transglutaminase enzyme and an ionotropic crosslinker, an IPN hydrogel is 

formed. Because the different crosslinking strategies each stabilizes its own network individu-

ally, the product is a high strength hydrogel with good cytocompatibility. The major downside 

of this reported study was the sterilization of the hydrogel via autoclaving, thus preventing any 

3D cell encapsulation studies. [Wen et al., 2014] Another IPN strategy for combining gelatin 

and GG is via photocrosslinking as the methacrylate groups crosslink with each other regard-

less of the rest of the polymer [H. Shin et al., 2012, Melchels et al., 2014]. The network can be 

purely chemically crosslinked in a two-step process [H. Shin et al., 2012] or it can be further 

stabilized by diffusion of cations [Melchels et al., 2014]. Here, GG-MA again increases the 
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strength of the hydrogel while GelMA increases the cytocompatibility, with the only downside 

now being the possible phototoxicity of UV light. A further strategy of combination reported is 

the biofunctionalization of GG microparticles via immersion in NaIO4 to introduce aldehyde 

groups that can then bind gelatin molecules via 1-ethyl-3-[3-(dimethylamino)-propyl]–car-

bodiimide (EDC) modification. However, this method was only used for surface modification, 

and not fully for 3D functionalization. [C. Wang et al., 2008] The favorable attachment to GelMA 

and lack of attachment in GG has even been utilized in a cell migration study with sandwich 

hydrogels produced from these two components and cells put in the interface [George et al., 

2018]. 

2.2.4. Biomimicking mechanical properties & mechanical testing 

The mechanical properties of tissues are important for the primary biomechanic functioning of 

the tissue, such as the beating of the heart or the expansion and contraction of the lungs, and 

additionally they are relevant in the microscopic range for the migration and behavior of cells 

[Levental et al., 2007]. One logical starting point for the design of a hydrogel biomaterial to be 

used in a specific tissue is to study the tissue with the aim of producing a hydrogel that is as 

closely biomimicking to the target tissue as possible [Brandl et al., 2007]. In TE, implants re-

quire a certain amount of structural integrity, elasticity, and strength to last in their designated 

location. However, in most cases, this is not as limiting a factor in soft tissue applications as it 

can be, for example, in bone applications [Drury, Mooney, 2003]. 

A major part of TE involves cell culturing and the environment where the cells are grown always 

affects their behavior, either by stimulating or inhibiting. Traditional cell cultures are grown on 

2D surfaces, but three-dimensionality would be needed for the better mimicking of real situa-

tions, as the body does not have 2D surfaces for the cells but is a 3D matrix [Murphy et al., 

2014, Shah, Singh, 2017]. It has been shown that stem cells respond to mechanical cues from 

their environment by directing their differentiation towards the tissue that resembles the stiff-

ness of their environment and that this is true for all anchorage-dependent cell types [A. J. 

Engler et al., 2006, Murphy et al., 2014, Walters, Gentleman, 2015]. The phenomenon of af-

fecting cell behavior via mechanical forces is called mechanotransduction and one of the sim-

plest ways to observe it is to culture MSCs on surfaces of varying stiffness. Due to this effect, 

they then differentiate into adipocytes on a soft surface and into osteoblasts on a hard surface, 

even if cultured in the same medium. [Walters, Gentleman, 2015] Another case is the study of 

the development of cancer in 3D, where the tumorigenic potential of cells is activated by an 

abnormally stiff microenvironment, and thus improper stiffness can be even harmful [Steimberg 

et al., 2014]. Between more and less stiff surfaces, most cells change shape drastically. In 

addition, they change the expression of proteins, which is at least partially the reason for the 

behavioral change [Murphy et al., 2014, Ihalainen et al., 2015, Walters, Gentleman, 2015].  
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A kind of subset of mechanotransduction is durotaxis, the phenomenon of controlling cell mi-

gration using changes in substrate rigidity [Nemir, West, 2010, Hadden et al., 2017]. The 

closely related phenomenon of chemotaxis, control of cell migration via chemical gradients, is 

more well-known and easier to perform than durotaxis experiments. However, during embry-

onic development, the cells are guided to migrate to their correct positions by both chemotactic 

and durotactic signals. [Evans, Gentleman, 2014] Translating the durotaxis to the case of 3D 

hydrogel cell culture requires a careful choice of materials because ideally the mechanical 

properties should be independent of both the microstructure of the materials and the biochem-

ical composition. The hydrogels that can be manufactured to be closest to this ideal situation 

are PAA and PEG and in the 2D case membranes made of polydimethyl siloxane (PDMS). 

[Nemir, West, 2010] 

Another valid point is the thickness of the hydrogel substrate. When cells are grown on a very 

soft gel, the cells can also more easily sense the underlying hard well plate surface, whereas 

a stiffer gel hides the underlying surface more efficiently [Evans, Gentleman, 2014]. As the 

cells pull their growth substrate via actin fibers on the attachment sites, they actively deform 

their surroundings [Evans, Gentleman, 2014, Vogel, 2018]. Indeed, if the growth substrate is 

stiff enough or thin enough to not deform under the cell’s pull, the morphology of the cell will 

be changed, which in turn affects other functions of the cell, such as differentiation [Trappmann 

et al., 2012, Evans, Gentleman, 2014, Ihalainen et al., 2015, Walters, Gentleman, 2015].  

The most common methods for the mechanical testing of materials are unconfined compres-

sion and tensile testing. In the simplest form of both, a force is applied along the sample axis 

and increased until the sample fractures, either by pressing it or pulling it beyond breaking 

point. This kind of slow or static testing can be extended into dynamic testing by changing the 

applied force in a controlled amplitude. Compression testing can be also conducted in a con-

fined fashion, so that the sample is not allowed to expand in the direction perpendicular to the 

applied force. Other testing methods include shear, bending, torsion, and indentation testing, 

all of which measure slightly different properties of the material than compression and tensile 

testing do. [Callister, 2003, ASTM F2150, 2013] 

Rheology is a specific field of mechanical testing that combines the material characteristics of 

solids and fluids and is called “the science of everything that flows”. In common rheological 

testing, the sample is situated between two parallel plates, the upper plate rotates controllably 

and exerts shear force on the sample. The material response to this dynamic shear load is 

then observed. [Schramm, 1998, Kavanagh, Ross-Murphy, 1998] 

Even though there is a scientific consensus on the importance of the mechanical properties of 

TE scaffolds, there is no such consensus as to which mechanical models best represent the 

mechanical response of various hydrogel biomaterials or even which represents the actual 
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tissues [Oyen, 2014]. The oldest, simplest, and generally still widely used is Hooke’s law: a lin-

early proportional rise in the stress when the deformation increases, expressed as: 

= E * and shown graphically in Figure 7. Here  is the stress, is the strain, and E is the 

shape-independent material constant called elastic modulus (or Young’s modulus) [Callister, 

2003, SFS-EN ISO 604, 2004]. Because all the mechanical tests conducted in this thesis are 

compressive, this modulus is also called compressive modulus in the results.  

 

Figure 7. Schematic representation of three typical material classes in mechanical testing and the 
equations used for calculating elastic modulus (E) based on Hooke’s law.  

However, this mechanical model was originally postulated in the study of metallic springs and 

as such does not take into account all the mechanical phenomena occurring in polymeric net-

works, such as hydrogels, let alone in living tissue [Heidemann, Wirtz, 2004]. The following are 

background assumptions under which Hooke’s law is in effect: continuum, isotropy, small de-

formation, and linear elasticity [Evans, Gentleman, 2014]. The main concern to raise is with 

the assumption that energy is stored elastically in the material during deformation, and that 

deformation recovers instantly after force is released. This is only valid for some materials and 

even then only in a specific strain range. For example, in metals the 0.2% strain is a commonly 

used limit, but for polymeric materials such a small strain does not have validity, and for them 

the realistic elastic ranges are tens of percentage strain [Callister, 2003]. The other assump-

tions can also be disputed as the isotropy of hydrogels varies and is highly related to the mixing 

efficiency during gelation [Gering et al., 2018]. Likewise, the recoverable deformations endured 

by polymers and elastomer-like hydrogels or soft tissues are not small [Y. Mao et al., 2017, 

Levental et al., 2007]. 

Over time, more accurate models to study elasticity and specifically the mechanics of polymers, 

such as Hencky’s law of elasticity [Hencky, 1928, Hencky, 1931], Flory’s rubber elasticity [Flory, 
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1985a], non-linear elasticity [Storm et al., 2005], combined Kelvin-Voigt-Maxwell model of vis-

coelasticity [Schramm, 1998], poroelasticity [Biot, 1941], combinatorial poroviscoelasticity 

[Caccavo, Lamberti, 2017], and their derivatives [Hong et al., 2010, Chester, 2012, Hu, Suo, 

2012, Q. Wang et al., 2014], have been developed. All these models can provide a more ac-

curate understanding of the full mechanical response, but at the same time they are more 

complicated to use than the simple Hooke’s law, and thus Hooke’s law is the most widely 
known and used. The following is a concise review of the most relevant other mechanical 

models from the view point of hydrogels. 

The theory of rubber elasticity as postulated by Flory [Flory, 1985a] is based on studying mo-

lecular crosslinked networks and their thermodynamics. The main assumption here is that all 

the polymers are in contact with each other via the crosslinks and that the network deforms in 

an affine manner and transforms the macroscopic deformation directly to the microscopic and 

molecular scales. Rubber elasticity can be most simply expressed as E = Np * k * T, where E 

is elastic modulus (often depicted as G in the case of rubber elasticity), k is Boltzman constant, 

T is temperature, and Np is the number of polymer chains per volume, where polymer chain 

means part of the polymer between crosslinking points. Even though the basic rubber elasticity 

has been modified to better take into account the physical interactions of the molecular net-

works [Flory, 1985b], such as phantom and interpenetrating networks, and the effect of solute 

[Slaughter et al., 2009], in addition to the effect of just crosslinks, the applicability of the affine 

deformation has been questioned, for example, in the case of the well-known model hydrogel 

PAA [Basu et al., 2011, Oyen, 2014]. Another problem is not considering the time dependence 

of viscoelasticity, and instead assuming purely elastic material response [Oyen, 2014]. How-

ever, the applicability of rubber elasticity to studying elastic proteins and muscle was already 

mentioned in the original studies, so the similarities between soft tissue and rubber are not a 

new finding [Flory, 1985a].  

The non-linear elasticity theory is based largely on rheological observations of ECM protein 

networks and concentrating on the microscale [Storm et al., 2005, Dobrynin, Carrillo, 2011]. 

Polymer theory has divided polymer filaments into three categories: flexible, semiflexible, and 

rigid. Flexible filaments exhibit purely entropic elastic response, rigid filaments exhibit no en-

tropic elasticity, and semiflexible filaments exhibit a response that is much more complex to 

define. This is where non-linear elasticity theory comes into effect. These semiflexible filaments 

do not form loops in the network structure like totally randomly crosslinked hydrogels do, but 

most biological gel networks belong to this category. [Storm et al., 2005] The compression 

response of cardiac muscle tissue is similarly non-linear, as depicted schematically in Figure 

7, and before the formulation of non-linear elasticity theory, cardiac muscle compression was 

analyzed using tangent modulus, a slope of the stress-strain curve at a single point [Mirsky, 

Parmley, 1973]. There have also been attempts to put polymers and soft tissue in different 

categories of mechanical behavior, treating polymers as more freely jointed chains and biolog-

ical material as a combination of stiff blocks into a worm-like chain. However, hydrogels would 
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belong in biological material and not in polymers in this division. Currently, the applicability of 

non-linear elasticity to polymers in addition to soft tissue is a more valid approach than vice 

versa when the forces used are small enough. [Dobrynin, Carrillo, 2011] The two major short-

comings of non-linear elasticity theory are the need for case-specific polymer structure infor-

mation and the time-dependence of molecules orienting and stiffening due to the applied force, 

meaning viscoelasticity. The model is currently used mostly in the micromechanic studies of 

ECM molecules and in rheology, but not in compression. [Storm et al., 2005, H. Kang et al., 

2009, Dobrynin, Carrillo, 2011] 

Many of the biological materials have a strong strain stiffening effect, easily modeled for poly-

mers with persistent lengths, but more difficult in the case of unfolding protein bundles. There-

fore, the unfolding adds an extra microstructural component in the deformation in addition to 

polymer bending and crosslink breakage, as shown in Figure 8. [H. Kang et al., 2009] This 

multiphase deformation results in the remarkable ability of protein networks and some hydro-

gels to deform at relatively low stresses but sustain reversible deformation multiple times their 

original length [Dobrynin, Carrillo, 2011]. After this low stiffness initial straightening of the more 

free-moving parts of the molecular network, the load is then taken by the stiff crosslinking 

points and the now fully extended polymer molecules. The high strength of these structures 

then causes the pronounced strain hardening effect which can be seen in both soft tissue and 

hydrogels [H. Kang et al., 2009, Shoulders, Raines, 2009, Furmanski, Chakravartula, 2011, 

Karvinen et al., 2017].  

 

Figure 8. The different molecular level events contributing to the deformation of a crosslinked helical 
network during compression: (a) the network structure at rest, (b) bending and exten-
sion of the free-moving polymer segments, (c) breakage of a crosslink, (d) unfolding of 
a helix.  
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Viscoelasticity is the time-dependent deformation of materials under load. It is valid in the study 

of polymers that tend to have both an immediate elastic response and a delayed viscous re-

sponse to load. On the molecular scale, viscoelasticity occurs due to long polymer chains 

adapting to the load in a non-uniform fashion. [Callister, 2003] The first models to understand 

this mechanical behavior depict the material as being composed of multiple dashpots and 

springs connected together in series or in parallel (Figure 9). The dashpot depicting viscous 

liquid is called the Newtonian model and connecting it in series with a Hookean spring creates 

the Maxwell model. Alternatively, the Kelvin-Voigt model has the dashpot and spring elements 

connected in parallel. Each dashpot and spring in the system will then have their own material- 

specific viscosity and elastic modulus, respectively. A multiple element model built from these 

blocks combining the Maxwell model with the Kelvin-Voigt model is then also called a Burgers 

model. [Schramm, 1998] This can be even further generalized into an infinite series of parallel 

dashpots and springs into the Generalized Maxwell model, also called the Wiechert model 

[Roylance, 2001]. 

 

Figure 9. The schematic representation of the components making up the viscoelastic material 
models with increasing complexity. F depicts the force extending the system and each 
spring and dashpot has specific elastic modulus E and viscosity respectively. Image       
modified from public domain source [Wikimedia Commons, 2007]. 
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In all the viscoelasticity models, the viscous components make the deformation time-depend-

ent, and thus these properties are mostly studied by creep test, stress relaxation test, dynamic 

mechanical analysis, or rheology [Roylance, 2001]. However, the viscous component can al-

ready have an effect in a compression test, and thus omitting it is not accurate. In a more 

accurate yet simple analysis of compression, a time-dependent function would replace the 

elastic constant. [Nakamura et al., 2001, Oyen, 2014] Even though there are theoretical mod-

els for the time-dependent function and, for example, for determining the so-called instantane-

ous and equilibrium modulus, applying it in the analysis is not a simple process. The time-

dependent function separates the parts of viscoelasticity, but most of the dynamic mechanical 

testing studies report only curves of storage and loss of modulus, without further analysis or 

defining of viscoelastic coefficients [Oyen, 2014].  

Yet another phenomenon specific to the hydrogel’s mechanical response is the effect of a large 

amount of incompressible water in the system. The theory of poroelasticity was originally de-

veloped for studying the consolidation of soil [Biot, 1941], but it works for other water-contain-

ing porous materials and is of especial interest for hydrogels [Cai et al., 2010, Oyen, 2014]. 

Poroelastic studies have not been widely brought to the 3D case, mostly applying analysis 

either just uniaxially along the test axis or sometimes also perpendicular to the test axis [Cai 

et al., 2010, Oyen, 2014, Oyen, 2015]. However, there have recently been several attempts to 

combine both viscoelasticity and poroelasticity and to update the whole analysis suitability for 

real 3D case as well. To date, however, these finite element method implementations have 

been complicated to use [Chester, 2012, X. Wang, Hong, 2012, Q. Wang et al., 2014, Caccavo, 

Lamberti, 2017]. The use of these methods requires further knowledge of the hydrogel’s water 
content or swelling, the chemical potential of the hydrogel polymer and water, free energy 

balance equations, and general access to computational modeling for implementation, and 

thus are not suitable for the simple compression screening of novel hydrogel formulations 

[Chester, 2012, Caccavo, Lamberti, 2017]. 

One more special model of viscoelasticity is the Le Gac and Duval model [Le Gac, Duval, 1980, 

Duval, Le Gac, 1980]. Originally developed for studying the mechanics of ice, more recently 

the model has also been applied in the case of viscoelastic high-temperature metals [Santaoja, 

2014]. The model is used to study the viscoelasticity during creep and stress relaxation and is 

easily doable using the same measurement setup as conventional compression testing. More-

over, the model is also based on real phenomenological material behavior, and is therefore 

unrelated to the viscoelasticity models presented in Figure 9 in which the dashpots and springs 

are a simplification, regardless of how accurate the Generalized Maxwell model is for specific 

polymers [Le Gac, Duval, 1980, Roylance, 2001, Santaoja, 2014]. The derivation and applica-

tion of a simplified Le Gac and Duval model is proposed in Publication IV for the compression 

of a hydrogel.  
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2.2.5. Microstructure and porosity 

A scaffold material designed as a support structure for cells with the aim of tissue ingrowth 

should have a controlled or at least known microstructure that is able to function in the intended 

application. Additionally, for the TE scaffold to be successful, nutrients, differentiation guiding 

growth factors, and the waste products of cell metabolism need to diffuse through the hydrogel. 

Moreover, as discussed in the previous chapter, the microstructure also holds the key to un-

derstanding the mechanical performance of the material. In the case of hydrogels, however, 

studying microstructure and porosity are not straightforward tasks due to the special nature of 

these water-filled polymer networks. [Loh, Choong, 2013, Li, Mooney, 2016, ASTM F2900, 

2011] An elegant way of defining the terminology related to hydrogel microstructures is by 

dividing the water-filled voids inside the polymer network into porosity and mesh, as illustrated 

in Figure 10 [Li, Mooney, 2016]. A mesh is the polymer network itself, consisting of crosslinked 

polymer molecules and the mesh size is the distance between effective crosslinking points. A 

pore is a larger void inside the material, extending for a much longer distance than the mesh 

and porosity is then the description of this wider property of the microstructure [Li, Mooney, 

2016].  

 

Figure 10. Definition of porosity and mesh primarily based on their size and in relation to polymer 
crosslink distances. Image modified from [Li, Mooney, 2016]. 

Molecular architectures and the crystallization of the polymers can be studied, for example, by 

x-ray diffraction [Chandrasekaran, Radha, 1995]. In addition, freeze-dried hydrogel scaffolds 

have been studied a lot with scanning electron microscopy (SEM) [Loh, Choong, 2013] and to 
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some degree with micro-computed tomography ( CT) [Cengiz et al., 2018]. However, the most 

interesting part is studying the hydrogel microstructure in a wet, water-swollen state. Of course, 

if the gel is intended to be used as a freeze-dried scaffold and then re-wetted at the application 

site, then studying the porosity after freeze-drying is relevant. [Lozinsky et al., 2003, García-

González et al., 2011, Van Vlierberghe et al., 2011] However, if in the actual application the 

gel is not freeze-dried after gelation and the gelation is conducted in situ, then studying the 

freeze-dried version of the gel will not give the correct information on the microstructure. More-

over, drying will likely cause the collapse of the polymer network, forming porosity that originally 

did not exist inside the hydrogel in the swollen state. [Lozinsky et al., 2003, García-González 

et al., 2011] Thus, the validity of pore size measurements as characterization of hydrogels can 

be questioned due to the collapse and swelling differences. So studying the gel microstructure 

via SEM or CT can give valid information on the pore size of a dry scaffold, which could be 

aerogel, xerogel, or cryogel, but will not provide exact information on the porosity or mesh size 

of a water-swollen hydrogel [Alemán et al., 2009].  

Alternative methods for studying the porosity and mesh size in a swollen state exist, but they 

have not gained as much popularity as the SEM imaging of dried hydrogels. At the transition 

between the swollen and dried or frozen state, there are methods based on differential scan-

ning calorimetry (DSC) [Ishikiriyama et al., 1995] and nuclear magnetic resonance (NMR) cry-

oporometry, also termed thermoporosimetry [Nedelec et al., 2006], both usually combined with 

gas adsorption-desorption cycle measurements. However, neither of these methods give in-

formation at exactly the swollen state, and thus they should be considered more as auxiliary 

tools in the study of porosity that are more useful in the case of membranes or hybrid materials 

than scaffolds in a purely hydrogel form [Ishikiriyama et al., 1995, Nedelec et al., 2006]. 

Studying the mesh size based on knowledge about the crosslinkage is possible mathematically 

based on the rubber elasticity theory mentioned in Chapter 2.2.4, especially in the case of 

stoichiometric chemical crosslinking [Flory, 1985b]. The requirement is to know the average 

molecular weight between the crosslinks and the polymer volume fraction in the swollen state, 

which could be further determined using applied mechanical testing [Slaughter et al., 2009]. 

Mechanical testing data can also be used to measure the transport of water or other solute 

through the hydrogel, if applying the poroelasticity theory. The problems with this approach 

include the difficulty in solving coupled poroelasticity equations and an unknown water chemi-

cal potential in each hydrogel case. However, once these problems are overcome, the theory 

could be used to determine mesh size [Cai et al., 2010, Oyen, 2014, Caccavo, Lamberti, 2017]. 

Another option for mesh and crosslink analysis is the use of rheology, where measuring the 

storage modulus G’ can yield both average mesh size and average crosslink density in the 

swollen state [Karvinen et al., 2019]. However, because a GG network contains the double 

helix structures and can have coil-helix transitions independent of crosslinking as well, the 
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interpretation of crosslink density is more complicated than with more linear or single coil pol-

ymer networks. [Morris et al., 2012] 

Various diffusion-based or forced mass transport methods have also been used for the char-

acterization of hydrogel microstructure. Mercury intrusion porosimetry is usually more suitable 

for more rigid structures than hydrogel-type polymer networks because the pressures required 

to push mercury through the porous material are quite high, but it has also been used in the 

characterization of hydrogels [Gemeinhart et al., 2000]. More suitable methods for hydrogels 

include the confocal microscopy technique fluorescence recovery after photobleaching (FRAP) 

[J. White, Stelzer, 1999]. This method was originally developed to study the lateral transport 

of proteins and lipids in the cell membrane [Axelrod et al., 1976]. The main principle is embed-

ding fluorescent molecules inside the studied volume, and then bleaching the fluorescence 

from a small spot and recording time lapse fluorescence images to study how the fluorescence 

recovers in the bleached area [J. White, Stelzer, 1999]. The recording can be combined with 

computational diffusion simulation to yield the diffusion coefficients of a specific molecule in a 

specific medium, even inside a hydrogel [Karvinen et al., 2019].  

When the diffusing agent is a well-known molecule with a controlled size, the diffusion data 

can be used to calculate pore or mesh size. The main parameter needed for this is the Stokes 

radius, defined as the radius of a smooth sphere with the molecular weight and frictional coef-

ficient of the diffusing agent molecule [Erickson, 2009]. The hydrodynamic radius is a similar 

parameter that better takes into account the shape of the molecule, thus no longer expecting 

a spherical shape, even though in certain applications, such as size exclusion chromatography, 

these can be interchangeable. Knowing the size of a molecule that can go through the hydrogel 

essentially tells the pore or mesh size of the hydrogel. However, this indirect method of meas-

uring the microstructure only works if there are no additional relevant interactions between the 

hydrogel polymer and the diffusing agent, such as binding to the network. [Frigon et al., 1983, 

Venturoli, Rippe, 2005, Erickson, 2009]  

A method combining rheology with the imaging of movement inside the hydrogel is called mul-

tiple particle tracking microrheology, where the Brownian motion of fluorescent particles ena-

bles the imaging of porosity with a laser scanning confocal microscope. This method has even 

been used to correlate microstructure with mechanical properties from compressive and con-

ventional rheology measurements. However, it has so far only been used with freeze-dried 

scaffolds. [Oelschlaeger et al., 2016] Recording the movements of fluorescent molecules is 

also the main point in fluorescence correlation spectroscopy (FCS), another confocal micros-

copy method already used in hydrogel characterization as well [Kisley et al., 2015]. Other dif-

fusion methods include recording the movement of fluorescent molecules out of the hydrogel 

with a simple diffusion chamber and measuring the output either microscopically or spectro-

scopically [ASTM F2900, 2011]. Even studying the diffusion of pure water using NMR and 

spectroscopic methods has been tried with GG hydrogels. The hydrogel network has been 
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proven to not interfere with water diffusion, thus the diffusion coefficient of a water molecule 

inside ionotropically crosslinked GG is very close to diffusion coefficient purely in water. 

[Ohtsuka, Watanabe, 1996]  

One aspect related to both the microstructure and transparency of a hydrogel is the optical 

density, or turbidity, of the material [ASTM F2900, 2011]. This can be measured with a spec-

trophoto-meter as a bulk property [Lau et al., 2000]. Alternatively, a novel method for studying 

the variations in optical density of a hydrogel is to use optical projection tomography (OPT), a 

microscopy method originally developed for the study of embryonal development in the 

mesoscopic scale [Sharpe et al., 2002, Figueiras et al., 2014]. OPT is based on the sample 

rotation and reconstruction of individual 2D projections into a full 3D view of the sample. It is a 

good method for hydrogel studies because the samples can be in the swollen-state throughout 

the imaging. While OPT is a 3D imaging method, spectrophotometry just measures the amount 

of light passing through the sample, essentially being a one dimensional measurement which 

does not take into account the 3D volume aspect [Lau et al., 2000, Figueiras et al., 2014]. 

Additionally, OPT can fit a significantly larger volume in the field-of-view than the more con-

ventional 3D imaging method confocal microscopy. In OPT, the image size can cover several 

millimeters, while confocal microscopy can cover a maximum depth of a few hundred micro-

meters. [L. E. Smith et al., 2010, Figueiras et al., 2014]  

When imaging pure hydrogel samples in bright field OPT without any added dye or contrast 

agents, it was noted that hydrogels of different concentrations show variations in optical density. 

Furthermore, these variations can be studied in the reconstructed 3D images. [Figueiras et al., 

2014] This variation is not directly the microstructure of the hydrogel but characterizes the 

differences as image texture [Haralick et al., 1973], which can also yield insight into the micro-

structure of hydrogels. In short, all digital images have the properties of tone and texture and 

image texture contains information on the spatial distribution of tonal variations [Haralick et al., 

1973]. The image texture analysis should not, however, be confused with the mechanical tex-

ture analysis performed in materials science and the food industry. Mechanical texture is a 

widely used characteristic of a human sensory property that describes how food feels in the 

mouth [Szczesniak, 2002]. When studying hydrogels, it is of primary importance to distinguish 

which texture is studied because the mechanical texture of gels, such as GG and gelatin used 

in food applications, has been generally more studied than their image texture [R. Mao et al., 

2000, Lau et al., 2000]. Thus, variations in the optical density of a hydrogel, even for gels 

transparent to the naked eye, can be used to gain information on the 3D microstructure in the 

swollen-state. 
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2.2.6. Biocompatibility and cytocompatibility 

To be able to call something a biomaterial, the biological response, so-called biocompatibility, 

is key. The general term biocompatibility has several widely accepted definitions in the litera-

ture. For example, the IUPAC gives the following definition: “Ability to be in contact with a living 

system without producing an adverse effect” [Vert et al., 2012]. Another way to express this is 

the famous Williams definition: "The ability of a material to perform with an appropriate host 

response in a specific application", defined by Professor Williams the researcher who originally 

defined biocompatibility in 1987 [D. F. Williams, 2008]. One more definition, modified from the 

Williams definition, is “An expression of the benignity of the relation between a material and its 

biological environment” [Kohane, Langer, 2010]. All in all, there is a consensus that biocom-

patibility is of great importance for any biomaterial application, but then opinions vary on how 

to exactly measure biocompatibility. Methods of measuring biocompatibility can be divided into 

multiple subcategories that include, for example, cytotoxicity, systemic toxicity, hypersensitivity, 

genotoxicity, chronic toxicity, haemocompatibility, and carcinogenicity. All these require their 

own specific tests for a material to be called fully biocompatible and to be accepted for clinical 

therapeutic use by the regulatory authorities. [SFS-EN ISO 10993-1, 2009, ASTM F748, 2010, 

ASTM F2900, 2011] 

However, in most cases when developing novel biomaterials, not all of these aspects are ad-

dressed at once. When novel hydrogels are designed for TE, the main property for initial study 

is cytotoxicity and its reverse side cytocompatibility [Caliari, Burdick, 2016]. When developing 

bioinert implant materials, it is enough during the intial phase to prove that the material is not 

cytotoxic. However, for TE and regeneration, the material should be bioactive and allow at-

tachment and interaction. [Kohane, Langer, 2010, Khademhosseini, Langer, 2016] Thus, when 

studying cytocompatibility in vitro, cells are cultured in direct contact with the material, for ex-

ample, on top of it or encapsulated inside of it, and the focus is on the cell response. This can 

be done with a more general multipurpose cell line at first and then later with the specific cells 

of the intended application. In addition, it can be done directly using the application-specific 

cells if they are not too expensive or too hard to get, or no suitable preliminary model cell line 

is available. [SFS-EN ISO 10993-5, 2009] 

There are several aspects of cytocompatibility to be tested. Culturing cells on top of the studied 

material gives information on how they react when in direct contact with the material. For ex-

ample, do the cells attach, spread, migrate, and proliferate on the material [Naahidi et al., 2017]. 

Moreover, when encapsulating the cells inside a hydrogel, further information is also gained 

on the crosslinking process and its cytocompatibility [Caliari, Burdick, 2016]. Detached cells 

are in a more vulnerable state and harsh chemical reactions, high ion concentrations, or UV 

irradiation are often cytotoxic [C. G. Williams et al., 2005, Truong et al., 2016, Shukla, Shukla, 

2018]. This should to be kept in mind when designing crosslinking strategies and, as already 

stated in Chapter 2.2.1.2., when the bio-orthogonality of chemical crosslinking is desired 
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[Jiang et al., 2014]. Thus, initial cell survival can be studied within a few days of cell plating, 

while longer time effects, such as proliferation and migration, can take at least a week to be 

distinguishable [SFS-EN ISO 10993-5, 2009, Nam et al., 2015]. Furthermore, the effect on cell 

attachment and the long-time response can also be seen in encapsulation studies. However, 

if there is a problem with the crosslinking and encapsulation process itself, this can cause a 

false negative result on the cell attachment. Moreover, if the hydrogel microstructure restricts 

nutrient transport or cell movement too much, this problem can also be traced by culturing cells 

both on top of and encapsulated inside the hydrogel. [ASTM F2900, 2011] 

The most common method to study cytocompatibility is microscopy of the cells living in contact 

with the material, which can be either a qualitative or quantitative assay. In general, a reduction 

of quantitative cell viability by more than 30% is considered a cytotoxic effect. [SFS-EN ISO 

10993-5, 2009] A common method of distinction between live and dead cells with fluorescent 

microscopy is the Live/Dead® assay. The method is based on calcein acetoxymethyl ester 

(Calcein-AM or Ca-AM) and ethidium homodimer-1 (EtHD-1) fluorescent probes. Most viable 

mammalian cells have a ubiquitous presence of esterase enzyme capable of cleaving the ace-

toxymethyl ester off Ca-AM and enabling calcein to be excited by 488 nm wavelength fluores-

cent light, subsequently emitting green fluorescence and labeling the cell alive. Then, only in 

dead cells can the EtHD-1 penetrate the compromised cell wall, bind to the nucleus, and emit 

red fluorescence and labeling the cell dead. [Poole et al., 1993] Other cell viability assays 

include the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) assay that de-

tects metabolic activity or the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)car-

bonyl]-2H-tetrazolium-hydroxide (XTT) assay that detects the mitochondrial dehydrogenase 

activity of live cells. Both MTT and XTT assays are used on a whole culture well at once and 

the result is read with a colorimetric or fluorimetric microplate reader as color change in the 

wells with cytotoxic compounds. [SFS-EN ISO 10993-5, 2009] 

For 3D hydrogel cell cultures, the microscopy-based Live/Dead® assay is the most commonly 

used option, mainly because it can detect more than just the viability status. As the Ca-AM 

stains the whole cell, estimations on cell morphology can be done in addition to the live/dead-

status [Poole et al., 1993]. The morphological changes lead to studying cell attachment and 

spreading or elongation, which are important indicators of cytocompatibility in addition to the 

cells just being alive in contact with the material. Any bioactive function of a material requires 

cell attachment as the first step. [Cukierman et al., 2001, SFS-EN ISO 10993-5, 2009, Naahidi 

et al., 2017] However, most viability assays as well as microscopy methods are designed pri-

marily for 2D cell cultures and to be compatible with standard well plate formats. However, 

because hydrogel samples have a significantly higher thickness and the cells are encapsulated 

randomly throughout the volume in 3D, they often create imaging problems [Appel et al., 2013]. 

For example, the imaging depth reachable by the objective might not be enough, out-of-focus 

fluorescence from the cells above or below the studied spot can interfere, or the hydrogel itself 

may not be fully transparent [L. E. Smith et al., 2010, Appel et al., 2013]. An attractive option 
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that has not been used much for hydrogel imaging is OPT [Sharpe et al., 2002, Figueiras et 

al., 2014]. As mentioned previously in Chapter 2.2.5., OPT is a mesoscale imaging method 

that has larger sample volumes and imaging depths than traditional confocal microscopy. OPT 

is a highly attractive method for studying larger hydrogel volumes in a single imaging step, 

either in transmission or fluorescent imaging mode. Imaging a larger volume reduces the am-

biguity of what is a representative image of the cells and, as the whole 3D volume is recon-

structed, it opens new possibilities to analyze the details of 3D cell cultures. [Belay et al., 2018] 

2.3. Tissue engineering applications for soft tissue 

As stated in Chapter 2.1, current trends in TE can be divided into therapeutic clinical TE and 

research focused in vitro TE. In this work, the number of TE applications were narrowed down 

to soft tissue applications for two main reasons. First of all, hydrogels designed to be mechan-

ically biomimicking and suit the needs of one type of soft tissue are likely to suit other soft 

tissues as well, at least more so than bone and other hard tissues. Even though the elastic 

modulus varies between muscle, internal organs, and brain, it is still closer than that of bone 

and cartilage. [Levental et al., 2007, Brandl et al., 2007] The second reason stems from the 

World Health Organization Global Disease Burden studies that show that cardiovascular dis-

eases are one of the leading causes of death globally [Naghavi et al., 2017, Vos et al., 2017]. 

Furthermore, although not reaching the top five causes of death, neurological disorders are 

also a major cause of death and disability. The importance of cardiac and neural treatments 

further increases when the number of injuries and years lived with non-fatal disease or injury 

are taken into account [Vos et al., 2017]. 

In addition to clinical treatments, iPSC technology has opened up new and exciting ways for 

disease modeling, which would have been impossible if only animal models or even hESC-

derived cell types were used [Robinton, Daley, 2012]. The problems of animal models and 

primary cell line studies include differences between animal and human cell responses, miss-

ing the systemic and metabolic effects, and differences based on age, sex, and ethnicity [Ribas 

et al., 2016]. When using hiPSC, it is possible to know the full medical record of the cell donor 

patient and to study the phenotype of a genetic disease specifically occurring in that patient 

via in vitro disease modeling. This can lead to both a more thorough understanding of the 

disease pathogenesis and the personalized medicine and drug discovery suitable for the spe-

cific patient [Gomes et al., 2017, Monteiro et al., 2016]. The human-based experimental setups 

aim for more precise drug development based on the disease pathway analysis and, while 

aiming to produce more efficient drugs, simultaneously reduce the amount of pre-clinical ani-

mal testing [Langley et al., 2016]. 
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2.3.1. Neural tissue engineering 

The nervous system of the human body is divided into the central nervous system (CNS) and 

the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord and the 

PNS consists of the neuronal innervation of all the tissues, transmitting sensory and excitatory 

input between the CNS and other tissues [Schmidt, Leach, 2003]. There are multiple cell types 

present in the nervous system. The most important of these, neuronal cells, being a top cate-

gory term which can be divided into neurons that actually transmit the electrophysiological 

signals, astrocytes, that function as supporting cells, and oligodendrocytes and Schwann cells 

in CNS and PNS, respectively. The last ones produce the insulating myelin sheath that in-

creases neural signal transmission speed [Schmidt, Leach, 2003, Merryweather, Roach, 2017]. 

Typical neural cell architecture is presented in Figure 11. 

 

Figure 11. Schematic presentation of the most relevant neuronal cell types and their interactions. 
Image modified from public domain source. [National Institutes of Health, 2018] 

The strategies for clinical neural TE mainly comprise guidance systems to allow broken neural 

axons and dendrites to regenerate lost nerve contacts caused by injury or pharmacological 

prevention of neurodegenerative disease progression in the brain [Schmidt, Leach, 2003, Au-

rand et al., 2012, Kornev et al., 2018]. Both physical and biochemical cues have been used as 

conduits to guide a neuronal axon to regrow in the correct direction, for example, in the case 

of spinal cord injury [Schmidt, Leach, 2003]. One further important aspect related to axonal 

regeneration is the repairing of the myelin sheath that covers the axons that is specifically 

required in the treatment of diseases, such as multiple sclerosis [Narkilahti et al., 2009]. Re-

quirements for the scaffolds, cells, and bioactive molecules vary depending on the specific 

clinical application. Very few neural TE approaches have yet advanced to clinical trials, so 

most are just suggested strategies [Kornev et al., 2018]. The ones that have been tested clin-

ically are mainly just cell injection treatments, both for neurodegenerative diseases and for 

injury treatments and axonal regeneration, but not for full TE with cells and scaffold combined 
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[Lindvall, Kokaia, 2010, Feldman et al., 2014, Trounson, McDonald, 2015]. However, several 

commercial products, composed of scaffolds without added cells acting as a guidance conduit, 

have gained approval for clinical testing and have been reviewed thoroughly elsewhere [Kehoe 

et al., 2012, Arslantunali et al., 2014]. To date, the most promising guidance conduit scaffolds 

have been based on collagen type I [Means Jr et al., 2016]. 

The scaffold material choice for neural TE is often a soft hydrogel that mimics brain tissue or 

a composite scaffold with a porous soft matrix and long fibrous phase for axonal guidance. In 

the case of spinal cord injury, adding a stronger scaffold to account for the nucleus pulposus 

tissue surrounding the gentle axons is a valid option. [Pereira et al., 2011, van Uden et al., 

2017, Kornev et al., 2018] For the rational scaffold design, it is good to note that the main 

components of neural ECM are proteins, such as laminin and collagen type IV, together with 

the glycosaminoglycan HA and chondroitin sulfate proteoglycan complexes [Merryweather, 

Roach, 2017]. The low elastic modulus of brain tissue has been attributed to a low amount of 

collagen type I [Shoulders, Raines, 2009, Hopkins et al., 2015]. Even though endogenously 

collagen type I is not a major component in neuronal ECM, it is still the most used in commer-

cial treatment applications so far, but not often in the hydrogel state [Kehoe et al., 2012, Arslan-

tunali et al., 2014, Means Jr et al., 2016, Sensharma et al., 2017].  

All the common neural ECM molecules have been previously used in research for nerve guid-

ance scaffold production [Kornev et al., 2018]. These include axon guiding PLA fibers func-

tionalized with laminin [Ylä-Outinen et al., 2010] and polycaprolactone (PCL) fibers functional-

ized with laminin molecule fragments [Hyysalo et al., 2017]. From synthetic polymer hydrogels, 

there exists a freeze-dried gel product made out of PVA [Ku et al., 1997, Kehoe et al., 2012]. 

Decellularized ECM is another basis for neural TE scaffolds, both as the commercial Matrigel® 

[Kleinman, Martin, 2005] as well as in many in-house built systems [Saldin et al., 2017]. The 

advantage of these is the inherent functionality when retaining the cell attachment sites during 

processing. However, a major disadvantage is the varying product quality between batches 

and possible pathogen transmission, both of which hinder their advancement to clinical treat-

ments [Huebsch et al., 2005, Saldin et al., 2017, Kornev et al., 2018]. 

When considering other hydrogel systems instead of the full ECM products, the HA is one valid 

option for use as a base for a neural hydrogel scaffold, if, for example, hydrazone is crosslinked 

together with alginate or PVA for increased stability. HA promotes neuronal cell attachment 

and neurite spreading, and the cells survive the bio-orthogonal crosslinking reaction. [Karvinen 

et al., 2018] Further enhancement could be achieved with functionalization using ECM mole-

cules, for example, GelMA photocrosslinked with tropoelastin [Soucy et al., 2018]. Another 

hydrogel already tested for neural applications is GG. For example, GG-MA together with chi-

tosan has been used as a freeze-dried and re-hydrated nerve guidance scaffold in rats with 

positive results [Carvalho et al., 2018]. Without the freeze-drying step, RGD-functionalized GG 

has at least been shown to have good cytocompatibility with glial cells and neural precursors 
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[Silva et al., 2012]. A similar composition also proved to be a suitable growth substrate for 

primary rat cortical neurons [Lozano et al., 2015].  

From the biochemical stimulation point-of-view, the small polyamines suggested for GG iono-

tropic crosslinking in Chapter 2.2.2., have been shown to be secreted in both the CNS and the 

PNS [Fujiwara et al., 1997]. Certain neuron subtypes, mainly motor neurons and somatosen-

sory neurons, have specific receptors for both of the bioamines SPM and SPD, and thus it is 

speculated to have a more special function in the synaptogenesis than just common DNA pro-

tection as oxygen radical scavengers [Laube et al., 2002]. Furthermore, SPD has been shown 

to even promote axonal regeneration in vivo in a rat wound healing model for both the spinal 

cord and the optic nerve [Deng et al., 2009]. Another, obvious biochemical stimulation possi-

bility is drug release systems that deliver, for example, neural growth factor (NGF) or brain-

derived neurotrophic factor (BDNF) to the injury site. [Aurand et al., 2012, Arslantunali et al., 

2014, Sensharma et al., 2017] 

2.3.2. Neural disease modeling 

In addition to clinical TE treatments, there are two main aspects for in vitro neuronal cell culture 

systems: disease models for drug development and tissue models for modeling injuries. When 

successful, both of these reduce the need for animal testing and can provide valuable data on 

the cellular and organoid level functions and eventually lead to improved medical treatments. 

[Mobini et al., 2017] Multiple neurological disorders and neurodegenerative diseases, such as 

Parkinson’s, Alzheimer’s, Huntington’s disease, multiple sclerosis, and epilepsy, are still poorly 

understood and would benefit from more accurate, human cell–based in vitro models [Lindvall, 

Kokaia, 2006]. The main reason for the need for in vitro models is the vast differences in size, 

shape, and physiology of human neurons compared to neurons from any other animal source 

[Hopkins et al., 2015, Mertens et al., 2016]. Furthermore, human primary neuronal cells are 

not readily available, so they need to be first differentiated from stem cells to be used in the 

models. What is more, the neuronal cells, organoids, or tissues produced by TE from hiPSC, 

with a known genetic background, can be used for the disease modeling of the specific genetic 

neural disease that the donating patient has. This can yield information on disease progression, 

morphological changes in the diseased cells and their function as well as help in finding drugs 

to prevent or treat the diseased phenotype.  

The hPSC-derived neuronal cells can also be used for studying developmental biology, be it 

with developmental diseases or just for better understanding the embryological development 

of the CNS and PNS in healthy cases. [Mertens et al., 2016] Other specific parts of neuronal 

tissue that need the attention of in vitro modeling are the myelination of axons [Narkilahti et al., 

2009, Narkilahti et al., 2016], the modeling of spinal cord injury [Führmann et al., 2016], trau-

matic brain injury [Tang-Schomer et al., 2014], the modeling and treatment of stroke [Lindvall, 

Kokaia, 2010], and the pain sensing ability of sensory neurons [Woolf, Ma, 2007]. 
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Multiple specific parts of neuronal tissue, such as organoids of cerebellum and hippocampal 

origin for developmental studies or blood-brain-barrier for studying drug transport into the brain, 

have already been modeled in vitro [Hopkins et al., 2015]. The stem cell differentiation into 

organoids is often conducted purely in cell aggregates in suspension culture or with the hang-

ing drop method. However, the organoid cultures have notable heterogeneity and lack support 

structures, but better structural control can be provided by a TE scaffold. [Mertens et al., 2016] 

Many of the materials deemed suitable for clinical neural TE are used in disease modeling as 

well, such as Matrigel®, collagen type I, and various polysaccharides. [Kornev et al., 2018] 

The differentiation methods used to produce the various different neuronal cell subtypes are 

already well characterized and reproducible, as is required for the high-throughput screening 

(HTS) needed by the pharmaceutical industry for drug discovery applications [Lappalainen et 

al., 2010, Reinhardt et al., 2013, Mertens et al., 2016, Langley et al., 2016]. Thus, the next step 

is to produce the cells into the relevant model systems and platforms. For example, limiting 

and guiding the spreading of neuronal processes with PDMS structures on top of microelec-

trode arrays allows both the measuring of the propagation of the neural signals along the axons 

and dendrites as well as studying the myelination of axons with separated neuron and oli-

godendrocyte chambers [Narkilahti et al., 2016, Toivanen et al., 2017]. Examples of hydrogel 

nerve-on-a-chip systems  include bulk PEG with poor cell attachment and tunnels made out of 

Puramatrix® with good attachment, allow 3D growth guidance in vitro [Mobini et al., 2017]. As 

yet, these systems have not been combined with hiPSC-derived cells and PDMS-microelec-

trode arrays, but they do seem compatible. In both drug testing and neurotoxicology, the cul-

ture system needs a suitable exposure method for the studied molecules and a distinction 

between acute and chronic toxicity, most often applied together with the culture medium or via 

microfluidistic channels in the on-chip systems [Kumar et al., 2012]. 

2.3.3. Cardiac tissue engineering 

Cardiovascular diseases are currently the most common cause of death in Western countries 

and a major cause of disabilities and reduction in the quality of life globally [Naghavi et al., 

2017, Vos et al., 2017]. The shortage of donor organs grows as the general patient life-span 

increases and medical treatments that can prolong the life of even poorer condition patients 

needing transplants are developed [Lechler et al., 2005]. Multiple treatment and prevention 

methods are constantly being studied to alleviate the effects of cardiovascular disease, and 

clinical cardiac TE is one of the methods [Simon-Yarza et al., 2017, Duan, 2017]. The main 

application of clinical cardiac TE is the treatment of myocardial damage caused  by ischemia 

or heart failure due to some other causes [Madonna et al., 2016]. Another important application 

relevant to all the organs is the regeneration of vasculature, whether it is for the treatment of 

ischemia due to atherosclerosis or the neovascularization of in vitro produced TE organoids. 

More examples include the treatment of major arteries, such as the aorta, that are critical for 

patient survival. Likewise, vascular grafts are in demand for various surgeries, regardless of 
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the target site.  [Gomes et al., 2017, Di Franco et al., 2018] Yet another, functionally different 

parts of the heart that are being studied in cardiac TE are the heart valves. They require more 

stiffness but an equal amount of creep resistance and dynamic stability compared to vascula-

ture [Sanz-Garcia et al., 2015, Duan, 2017]. The heart and the main treatment areas are shown 

in Figure 12. 

 

Figure 12. Schematic presentation of the structure of the human heart. (a) The cardiomyocyte-rich 
muscle tissue, a typical spot for ischemia. (b) Essential vasculature, snculind aorta. In 
the case of coronary artery disease, the treated blood vessels are actually all over the 
surface of the heart, not depicted in this figure. (c) The heart valves separating heart 
compartments. Image modified from public domain source [Wikimedia Commons, 
2010]. 

The three cardiac TE application areas are very different and require different properties from 

the TE products. The cells used in each of these applications are different. For example, treat-

ments to repair damaged heart muscle due to ischemia require actual cardiac muscle cells, or 

cardiomyocytes, [Madonna et al., 2016] while vasculature mainly requires endothelial cells, 

pericytes, and smooth muscle cells [Potjewyd et al., 2018]. In addition, heart valves are com-

pose of specialized valvular interstitial and endothelial cells [Sanz-Garcia et al., 2015]. The TE 

of heart muscle tissue (Figure 12 (a)) is the focus here. Because cardiac cells cannot be easily 

transplanted from one patient to another, the best option to access them for use is via stem 

cell differentiation. Several methods exist for the differentiation of hPSCs into cardiomyocytes. 

Currently, the most used systems are either co-culture together with mouse endothelial cells 

on top of a gelatin coating [Mummery et al., 2003] or in defined conditions on top of a thin 

Matrigel® or Geltrex® gel by modifying the differentiation pathways using small molecules [Lian 

et al., 2012]. Both methods produce spontaneously beating cardiomyocytes which can be eas-

ily processed further in the final application, be it for clinical TE or disease modeling [Mummery 

et al., 2003, Lian et al., 2012]. The main challenges in hPSC-derived cardiomyocyte generation 

are the maturity of the differentiated cells and the purification and scalability of the culture 

systems to a clinically relevant scale [Talkhabi et al., 2016]. 
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In clinical trials to treat ischemic heart tissue, MSCs have been used more than hPSCs, mainly 

because MSCs are more readily available in large numbers, even autologously. Still, their dif-

ferentiation to actual cardiomyocytes is questionable, and therefore hPSCs provide a more 

promising cell source for the future. The hPSCs could be transplanted as cardiac progenitor 

cells while MSCs are also being tested at the multipotent state. [Madonna et al., 2016] The 

cardiac progenitors are oligopotent cells that have been committed to the cardiac lineage but 

are more potent than just cardiomyocytes. In either case, the regenerative effect of these cell 

transplantations has thus far been largely attributed to the paracrine effect of the cells’ secreted 
biomolecules and not on actual regeneration. [Farouz et al., 2014, Madonna et al., 2016, Duan, 

2017, Menasché et al., 2018]  

Similar to neural TE, the injection of regeneration stimulating growth factors alone, such as 

vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), has been 

studied [Simon-Yarza et al., 2017]. And other molecules, even the oxygen radical scavenging-

bioamines mentioned in Chapter 2.2.2. have been tested as injectable drugs to the infarcted 

site [Han et al., 2007, Wei et al., 2016]. Based on these, the actual regeneration of ischemic 

cardiac tissue still seems to require a full TE product with cell-supporting scaffold and stem 

cells combined, possibly with added growth factor release. [Madonna et al., 2016, Simon-

Yarza et al., 2017] 

Even though the mechanical properties of CNS and heart are very different, there is high sim-

ilarity within the biomaterial choices for both of these tissues. In fact, one of the earliest studies 

on the effect of substrate stiffness on cell response was done with muscle cells on top of col-

lagen coated PAA hydrogels [A. J. Engler et al., 2004]. Due to the non-linear elasticity and 

highly varied testing and data analysis methods, as discussed in Chapter 2.2.4., the elastic or 

compressive modulus of cardiac muscle tissue has been reported to be between 10-150 kPa 

[Levental et al., 2007], with the most agreement in the lower end of this scale at 10-25 kPa 

[Mirsky, Parmley, 1973, Karvinen et al., 2017]. This result is further diversified by the number 

of different animals used, as human cardiac muscle is not readily available for mechanical 

testing [Mirsky, Parmley, 1973]. However, cardiac muscle stiffness seems to be well preserved 

across the mammals. For example, rat and human stem cells give similar results with a re-

ported sweet-spot for muscle cell differentiation and functionality in the aforementioned 

~10 kPa range [A. J. Engler et al., 2006, Xi et al., 2010, Young, Engler, 2011, Murphy et al., 

2014, Scuderi, Butcher, 2017]. 

Further structural properties of materials to consider are fibers and topographies which induce 

cell orientation. The mature cardiomyocytes are highly oriented and elongated, and this struc-

tural maturation is sought after using topographies as stimulator cues [M. Zhang et al., 2015, 

Scuderi, Butcher, 2017]. An intertwined polymer fiber network, such as a textile structure or 

electrospun mat, is one possible scaffold type and the material options include PLA, PCL, or a 

copolymer consisting of these and other biodegradable polymers [Kitsara et al., 2017]. Another 
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approach is to use a hydrogel with a distinct nanofibrillar microstructure [Ikonen et al., 2011, 

Ikonen et al., 2013, Farouz et al., 2014, Y. S. Zhang et al., 2016] The elastic hydrogel environ-

ment can fulfill the cardiac requirements as heart ECM contains mainly different types of col-

lagen, a protein with a fibrillary microstructure [Shoulders, Raines, 2009]. Decellularized rodent 

and porcine heart ECM have been tested pre-clinically with positive results [Saldin et al., 2017]. 

Other hydrogel system examples for cardiac TE include photocrosslinked complex containing 

GG-MA, PEG and chitosan [Coutinho et al., 2012], alginate and gelatin reinforced Matrigel® 

with the possibility to release VEGF [Duan, 2017], hydrazone crosslinked alginate HA [Dahl-

mann et al., 2013], thiol-based pseudo-click reaction hydrogels combining PEG and HA [Jiang 

et al., 2014], and mechanically tunable gelatin-PEG hydrogel [Choi et al., 2017] to name just a 

few in addition to the gel systems already mentioned in Chapters  2.2.1.1. and 2.2.3. The 

cardiac biomaterials have been more conclusively reviewed elsewhere [Di Franco et al., 2018]. 

An advanced TE product for the treatment of ischemic heart tissue is the so-called cardiac 

patch or engineered heart tissue (EHT), originally designed by Eschenhagen and Zimmermann 

et al. [Eschenhagen et al., 1997]. In EHT, the cells are densely cultured inside collagen type I 

or fibrin hydrogel in a silicone mold and stimulated with a pacing electrode, and the dynamic 

mechanical contraction is recorded via a force transducer [Eschenhagen et al., 1997, Eder et 

al., 2016, Mannhardt et al., 2016]. Recently, the size of EHT patches has been scaled up and 

hiPSC can be differentiated into cardiomyocytes in robust ways. Moreover, after successful 

preclinical studies in a macaque ischemia model, they are actually advancing to clinical trials 

[Zimmermann, 2018]. The shapes of the patches can be controlled based on the mold used 

and building the patch has even been automatized to a certain degree [Ong et al., 2017]. 

However, the main disadvantage of the EHT cardiac patch is the requirement for open heart 

surgery during implantation, in contrast to the injectable and in situ crosslinkable hydrogel sys-

tems [Reis et al., 2015, Roshanbinfar et al., 2017, Simon-Yarza et al., 2017]. A minimally in-

vasive surgical procedure that reduces the need for an injection into cardiac muscle has been 

presented based on photocrosslinked hyaluronic acid and cathecol hydrogel with glue-like ad-

hesivity to tissue that can encapsulate cells and be applied directly on top of injured organ [J. 

Shin et al., 2015]. 

Other advanced TE constructs in the cardiac field include the so-called Biowire®, a platform for 

cardiomyocyte maturation built out of collagen type I, a rigid polymer surgical suture wire, and 

hESCs in a PDMS mold. The whole platform can be used for either the production of trans-

plantable cardiac TE products or for studying the maturity of the cells in disease modeling as 

the cells can be studied both electrophysiologically and for gene and protein expression. 

[Nunes et al., 2013] Another advanced system is based on the GelMA hydrogel, either where 

the carbon nanotubes increase the conductivity of the material, representing the conductive 

Purkinje fibers of a heart conduction track [S. R. Shin et al., 2013] or by producing structures 

via 3D bioprinting [Y. S. Zhang et al., 2016]. Further strategies include combining endothelial 

cells with cardiomyocytes in a co-culture [Vuorenpää et al., 2017].  
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2.3.4. Cardiac disease modeling 

Cardiovascular diseases cover a wide range of diseases from coronary artery disease and 

heart failure to genetic arrhythmias and cardiomyopathies and not all of these can be treated 

with a TE implant [Vos et al., 2017]. Thus, learning the disease mechanisms on a cellular level 

using in vitro disease modeling is important for drug discovery. Furthermore, in the develop-

ment of any novel drugs, cardiotoxicity is a major cause of failure of a potential drug molecule 

in clinical trials or even cause withdrawal of a drug from the market, and thus increasing drug 

development costs significantly [Tzatzalos et al., 2016]. The most common cardiotoxic effect 

is drug-induced long-QT syndrome (LQTS). LQTS can be genetic or a patient can just have a 

higher genetic susceptibility to acquire it from a drug. The syndrome appears as prolonged 

repolarization, meaning the interval in the recovery phase of a heartbeat, which can lead to 

multiple problems when combined with increased heart rate or ectopic beats and results in 

severe ventricular tachycardia and even sudden cardiac death. [Roden, 2004] The current ap-

proved methods for cardiotoxicity drug testing with various animal cells are not precise enough 

to reveal all the possible risks, so human cells are needed. [Tzatzalos et al., 2016, Eder et al., 

2016] To solve the problem of cardiotoxicity during drug discovery, there is even a global initi-

ative to create a Comprehensive in Vitro Proarrythmia Assay (CiPA), put together by the reg-

ulatory agencies, the pharmaceutical industry, and academia [Colatsky et al., 2016, Wallis et 

al., 2018]. A result of this initiative is the recently published calcium imaging scoring protocol 

for screening early drug safety [Kopljar et al., 2018]. 

In addition to cardiotoxicity, an encouraging reason to specifically do disease modeling with 

patients from Finland is the historical isolation of this country. The genetic background of peo-

ple living in Finland is highly separated from the gene pool of people from elsewhere in Europe. 

[Lao et al., 2008] The isolated gene pool has caused certain genetic mutations, such as the 

prevalence of LQTS, hypertrophic cardiomyopathy (HCM), and catecholaminergic polymorphic 

ventricular tachycardia (CPVT), to enrich in the Finnish population. The LQTS has four founder 

mutations found in the Finnish population with disease prevalence as high as 0.4% in the whole 

population [Marjamaa et al., 2009, Kuusela et al., 2016]. Similarly, 20% of HCM cases in Fin-

land can be covered by studying just two different genetic mutations, even though the disease 

as a whole has over 1400 identified mutations causing it. The HCM causes the ventricular wall 

of the heart to become enlarged, thus limiting the volume pumped per beat. [Jääskeläinen et 

al., 2013, Ojala, Aalto-Setälä, 2016]. The genetic cause for the third genetic cardiac disease, 

CPVT, was originally identified in Finland [Swan et al., 1999]. The disease mechanism of CPVT 

is malfunction in the calcium handling vital for cardiomyocyte beating and is caused by muta-

tion in gene encoding of cardiac ryanodine receptor protein [Swan et al., 1999, L. Antoine et 

al., 2012]. 

Since the first established differentiation protocols to produce cardiomyocytes in vitro [Mum-

mery et al., 2003], several differentiation methods to produce hPSC-derived cardiomyocytes 
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have been published and recently reviewed by Talkhabi et al. [Talkhabi et al., 2016]. Disease 

modeling has been an important application for the cardiomyocytes since the invention of car-

diac differentiation [Mummery, 2018]. Even before the availability of human cells, disease mod-

eling was conducted as part of cardiac TE with rat cells [Carrier et al., 1999]. The aforemen-

tioned cardiac diseases have all been well established in human cell-based 2D in vitro disease 

models: LQTS [Kiviaho et al., 2015], HCM [Ojala, Aalto-Setälä, 2016], and CPVT [Penttinen et 

al., 2015]. They have even been used already to find drugs leading to clinical trials [Penttinen 

et al., 2015].  

The human body is not, however, composed of 2D surfaces; the body is a 3D structure. Thus, 

hydrogel scaffolds are needed as an option to produce more biomimicking model tissues that 

can later advance into disease models [Fang, Eglen, 2017]. It has already been proven that 

when comparing cardiomyocytes in 2D and 3D cultures, both their gene expression and their 

electrophysiological properties change towards a more mature phenotype, even in just a sphe-

roid suspension 3D culture without a hydrogel support scaffold [M. Zhang et al., 2015]. Adding 

a scaffold as a fibrillary orienting structure or an encapsulated 3D hydrogel culture also in-

creases the maturity of the cells [Scuderi, Butcher, 2017]. The stiffness of the growth substrate 

is well known to affect cardiomyocyte functions due to mechanotransduction, another reason 

to transition the disease models in 3D [A. J. Engler et al., 2008, Young, Engler, 2011] 

The EHTs introduced in the previous chapter are an attractive TE product for disease modeling, 

as they biomimic muscle tissue. They can be used in all the modeling aspects, be it cardiotox-

icity, genetic cardiac diseases [Eder et al., 2016], or even an in vitro heart failure model [Malte 

et al., 2017]. The cells can be stimulated as well as measured electrically or mechanically in 

the EHT, thus allowing the study of the effects on cellular electrophysiology. Examples of pub-

lished EHT disease models include the electrophysiological defect diseases LQTS and CPVT. 

[Eder et al., 2016] In the case of HCM, the EHT or any other 3D culture system is even more 

attractive since the ECM and cell-to-cell interactions play a bigger role in abnormal muscle 

formation than they do in purely electrophysiological diseases. For example, in addition to the 

cardiomyocytes themselves, cardiac fibroblasts can also play a significant role in HCM. So far, 

the main use of EHTs in disease modeling has been in the electrophysiological and mechanical 

effects of tested drugs. [Eschenhagen et al., 2015]  

In addition to the EHT, examples of systems designed more specifically for cardiac disease 

modeling and drug discovery include various heart-on-a-chip constructs, where microfluidistic 

flow delivers nutrients and drug molecules to the cells and the functionality can be monitored. 

There are again many similarities between neuronal and cardiovascular organ-on-a-chip sys-

tems with requirements for electrophysiological measurements, orientation, and interest in bar-

rier properties. [Ribas et al., 2016, B. Zhang et al., 2018] Currently, the most advanced heart-

on-a-chip constructs have mostly featured rat cardiomyocytes, when concentrating on the 

proof-of-concept studies related to fluid flow and topography [Y. S. Zhang et al., 2016, Sheehy 
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et al., 2017]. Even if using hiPSC-derived cardiomyocytes, the heart-on-a-chip systems are 

lacking an ECM mimicking hydrogel support because these components have not been com-

bined together thus far [Mathur et al., 2015]. 

One of the main disadvantages of 3D disease models from the pharmaceutical drug develop-

ment point-of-view is the difficulty to apply the same HTS methods that are used in the 2D 

cultures [Eglen, Randle, 2015]. Indeed, at the starting point of drug discovery, there can be 

over 1,000,000 molecules to start the screening with. Such amounts require automation and 

HTS to be feasible and, in the 2D cell culture case, the methods for this already exist. [Molo-

kanova et al., 2017] However, regardless of the higher degree of biomimicry, 3D hydrogel cell 

cultures are more difficult to study and it is more difficult to get accurate signals from the cells, 

especially in an HTS manner. Currently, various methods based on imaging and electrical 

measurements are being developed that will allow the full transition from 2D to 3D in HTS drug 

development [Edmondson et al., 2014, Eglen, Randle, 2015, Nam et al., 2015, Hoffman et al., 

2017]. 

2.3.5. Other soft tissue applications 

Various soft tissues have similar requirements for their TE scaffold as neuronal and cardiac 

tissues, mainly a controlled structure with adequate strength and elasticity and enough sites 

for cell attachment [Place et al., 2009]. As collagen isoforms are a major component in all soft 

tissues, adding collagen or its derivative gelatin to enhance cell attachment is a valid function-

alization strategy, regardless of the exact target tissue [Shoulders, Raines, 2009, Yue et al., 

2015]. Similarly, the mechanical properties of soft tissues generally fall in between the values 

measured for cardiac muscle and for brain [Levental et al., 2007]. Thus, once a suitable hy-

drogel candidate has been found for these two tissue types, it can easily be fine-tuned by 

adjusting crosslinker concentrations, the number of crosslinking sites, or exact collagen or gel-

atin types to suit other applications [Shoulders, Raines, 2009, Place et al., 2009]. 

The first clinical TE products to enter the market included Dermagraft®, a skin substitute scaf-

fold with allograft skin cells in a polymer mesh. The treatment of skin and wounds remains one 

of the most used clinical soft TE products, with various applications using hydrogels in filling 

deep scars and treating burn wounds [Place et al., 2009]. In addition, filling wrinkles with hy-

drogels in plastic surgery has become a popular option due to the biocompatibility and inject-

ability. [Geckil et al., 2010, Cerqueira et al., 2014] However, the use of hydrogels in plastic 

surgery is not always without complications. For example, the inflammation and instability of 

PAA hydrogel injections has been reported to cause severe problems in roughly 1% of patients 

[Manafi et al., 2010]. 

Another, seemingly simple clinical TE application is the regeneration of adipose tissue needed, 

for example, in breast reconstructive surgery after breast cancer tumor removal, or for various 
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trauma patients, and also in aesthetic plastic surgery. Hydrogels are an attractive material 

choice for these applications because they can be used in minimally invasive surgery and even 

injected in patients without anesthesia. Additionally, the human adipose MSCs are an easily 

available autologous cell source for adipose TE [Nam et al., 2015, Lago et al., 2018] This has 

been done for example with human MSCs in GG microgels, where the cells seem to go through 

adipogenesis even without the biofunctionalization of GG, if cultured in adipogenic medium 

[Lago et al., 2018].  

Tissue models for specific internal organs have been aimed for and developed for as long as 

TE has existed as a methodology. Production of hepatocyte-based TE of the liver was already 

in focus in early TE studies because liver cirrhosis, cancer, and other liver diseases are signif-

icant disease burdens [Langer, Vacanti, 1993, Vos et al., 2017]. As liver is the main metabolic 

site for most drug molecules, the use of hepatocytes in drug discovery is also a major point for 

pharmaceutical companies [Langley et al., 2016, Kiamehr et al., 2017]. Even though liver can-

cer cell lines have already been cultured in 3D nanocellulose hydrogels [Bhattacharya et al., 

2012], due to the recent development of hiPSC-derived hepatocytes [Kiamehr et al., 2017], 3D 

culture in mechanically more biomimicking hydrogel than nanocellulose is interesting for future 

investigations [Langley et al., 2016]. Another organ of longstanding interest for TE is the pan-

creas and the implantation of insulin-producing islet cells, since diabetes is one of the major 

diseases in the Western countries associated with increased morbidity and mortality [Langer, 

Vacanti, 1993, Place et al., 2009, Langer, 2017, Vos et al., 2017].  

The production of whole organs to supply the demand of organ transplantations was one of 

the first named goals of TE. However, in reality, the production of fully functioning macroscale 

internal organs has proven more difficult than anticipated [Langer, Vacanti, 1993, Langer, 

2017]. The first fully functioning TE organ was a urinary bladder, produced and implanted in 

patients by Atala et al. [Atala et al., 2006, Place et al., 2009]. The used scaffold was a compo-

site of collagen and polyglycolic acid and the cells were autologous urothelial and smooth 

muscle cells. In the end, all seven patients benefitted from the TE bladder transplantation 

based on a follow-up after several years [Atala et al., 2006]. Still, for most organs the only 

successful TE strategy so far has been the decellularization of donated organs and the repop-

ulation of them with autologous hiPSC, and not production of the complex macroscale struc-

tures from scratch [Khademhosseini, Langer, 2016].  

On the side of disease modeling, the 3D models of cancer are yet another important aspect of 

hydrogel applications. Comparable to the cardiotoxicity issues, cancer drugs sometimes have 

difficulties to advance from preclinical trials to clinical trials, and this can at least partially be 

attributed to non-representative in vitro models [Rijal, Li, 2017]. Various cancer studies are 

conducted on Matrigel®, but the suitability of this very soft and weak hydrogel can be ques-

tioned because it mostly functions as a thick coating and does not necessarily provide a true 
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3D environment [Kleinman, Martin, 2005, Steimberg et al., 2014, Rijal, Li, 2017]. Other alter-

native hydrogel materials currently in use include decellularized ECM, alginate, and HA [Rijal, 

Li, 2017, Gomes et al., 2017]. Other, more novel ways of disease modeling in vitro, where 3D 

structures are important, include inflammatory disorders of the lungs. In addition to cancer and 

drug molecule penetration through lung tissue, models can be used to study infection of tuber-

culosis into human lung tissue. [Huh et al., 2011, Nam et al., 2015, Tezera et al., 2017, Gomes 

et al., 2017] 
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The overall aim of this thesis is to find hydrogel biomaterials suitable for 3D cell culturing and 

to develop methods to characterize the most relevant properties of these hydrogels in TE 

applications. The hypothesis was that gellan gum or its derivatives would provide a simple to 

use and functioning hydrogel for TE and additionally provide a usable model hydrogel for the 

development of hydrogel material characterization methods. As the focus is on pluripotent 

stem cell-derived neuronal and cardiac cells, the development concentrated on hydrogels and 

characterization methods relevant for soft tissue applications, with potential for wider use within 

soft tissue than the two main focus areas. Similarly, the material characterization methods 

developed here are widely usable for studying hydrogels, even beyond the biomedical field. 

More specific aims for each Publication, denoted by their Roman numerals, are defined as 

follows: 

I. To produce a hydrogel suitable for 3D culturing of human induced pluripotent stem cell-
derived neuronal cells and to characterize the relevant properties of this hydrogel. 

II. To develop an optical, non-destructive method to gain insight of the bioamine cross-
linked gellan gum hydrogel microstructure in the water-swollen state. 

III. To produce a hydrogel suitable for 3D culturing of human induced pluripotent stem 
cell-derived cardiomyocytes and to characterize this hydrogel for the relevant properties. 
Additionally, to develop cytocompatibility testing methods for hydrogel screening. 

IV. To develop more representative mechanical testing methods for the compressive re-
sponse of hydrogels and to develop more reliable analysis methods to measure elastic 
modulus. 

 

3. Aims of the Study 
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4.1. Hydrogel design 

4.1.1. Materials (I-IV) 

The reagents needed to prepare the hydrogels: gellan gum (GG, GelzanTM, low acyl, Mw 1 000 

g/mol), spermidine trihydrochloride (SPD), spermine tetrahydrochloride (SPM), sucrose, gela-

tin A from porcine skin, adipic dihydrazide (ADH), carbodihydrazide (CDH), dimethyl sulfoxide 

(DMSO), ethylene glycol, 1-ethyl-3-[3-(dimethylamino)-propyl]–carbodiimide (EDC), hydroxyl-

amine hydrochloride, N-hydroxybentzotriazole (HOBt), 4-hydroxybenzaldehyde, deuterium ox-

ide (99.9 atom % D, containing 0.05 wt. % 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid, sodium 

salt), hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium 

periodate (NaIO4) were obtained from Sigma-Aldrich (St. Louis, MO, USA and Sigma-Aldrich 

Finland). GG, SPD, SPM and sucrose were acquired at the highest level of purity available. 

Methacrylated gellan gum (GG-MA) and the photo-initiator methyl benzoylformate (MBF, 98%) 

were a kind gift from the collaborators in the 3B’s research group at the University of Minho, 

Portugal. Calcium chloride (CaCl2) was obtained from Honeywell Riedel-de Haën (Germany). 

Phosphate buffered saline solution (PBS) was obtained from Lonza (Basel, Switzerland). Lam-

inin (laminin-111, Engelbreth-Holm-Swarm mouse origin) was obtained from Thermo Fisher 

Scientific (Waltham, MA, USA). 

Auxiliary materials for hydrogel sample preparation were obtained as follows: dialysis mem-

brane (Spectra/Por® 12-14 kDa molecular weight cut-off (MWCO)) from Spectrum Laboratories 

(Rancho Dominguez, CA, USA). Syringe sterile filters Whatman FP 30/0.2 CA-S filter from 

Thermo Fisher Scientific (Waltham, MA, USA) and Whatman Plc, (Little Chalfont, UK), 

Sterivex-GP 0.22 m Millipore Express (PES) filter from Merck Millipore (MA, USA), and Acro-

disc® 0.8/0.2 m filter from PALL Corporation (Port Washington, NY, USA). Compression and 

rheological testing sample molds, for non-sticky gels, were prepared from cut BD Discardit II™ 

4. Materials & Methods 
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syringes at sizes 5mL, 10mL, and 20 mL (Mediq, Espoo, Finland). Polydimethyl siloxane 

(PDMS) was fabricated from Sylgard 184 base polymer and curing agent (10:1, w/w, Sylgard 

184, Dow Corning, USA) and acquired from Ellsworth Adhesives AB (Sweden). PDMS was 

used to manufacture custom-made platforms for OPT sample support with fluorinated ethylene 

propylene (FEP) tubes from Adtech (Lochgelly, UK) and for single-use compression sample 

molds for sticky gels.  

For the OPT mass transport study, FITC-Dextran ( excitation 493 nm, emission 520 nm) with de-

fined molecular weights of 20 kDa, 150 kDa, and 2000 kDa were obtained from TdB Consul-

tancy AB (Uppsala, Sweden). Each FITC-Dextran solution was prepared by dissolving the 

powder in distilled water at a concentration of 10 mg/ml. For the in vitro degradation study, 

collagenase II and fluorescamine were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

4.1.2. Chemical modification (III) 

4.1.2.1. Preparation of adipic dihydrazide modified gelatin (gelatin-ADH) 

First, 300 mg of gelatin was dissolved in 100 mL water, and 3.92 g of ADH was added to this 

solution. Excess of hydrazide is used to avoid concurrent crosslinking during functionalization 

[Ossipov et al., 2010]. The pH of the reaction mixture was adjusted to 6.8. Then, 576 mg of 

EDC and 405 mg of HOBt were dissolved in 3 mL DMSO/water (1.5:1 v/v) and added dropwise 

to reaction mixture, while keeping the pH at 6.8 with 0.1 M NaOH and 0.1 M HCl during the 

addition of the mixture and for a further 4 hours. Then, the reaction was continued for a further 

20 hours. The pH was adjusted to 7 and gelatin-ADH was exhaustively dialyzed against water 

for 2 days. Then, NaCl was added to produce a 7% (w/v) solution, and the product was pre-

cipitated in cold ethanol (4 vol eq.). Then, the product was dissolved in water and dialyzed in 

RT against water for 2 days through a MWCO 12-14 kDa membrane followed by freeze-drying. 

4.1.2.2. Preparation of carbodihydrazide modified gelatin (gelatin-CDH) 

Similar to the above, 300 mg of gelatin was dissolved in 100 mL water, and 3.6 g of CDH was 

added to this solution. The pH of the reaction mixture was adjusted to 4.7 with 0.5 M HCl. Then, 

575 mg of EDC and 405 mg of HOBt were dissolved in 3 mL DMSO/water (1.5:1 v/v) and 

added dropwise to the reaction mixture, while keeping the pH at 6.8 with 0.1 M NaOH and 0.1 

M HCl during the addition of the mixture and for a further 4 hours. Then, the reaction was kept 

for 20 hours more. Gelatin-CDH was exhaustively dialyzed in RT against water for 2 days. 

Additional purification was carried out, as described above, followed by freeze-drying. 

4.1.2.3. Preparation of oxidized gellan gum (GG-CHO) 

GG was modified by periodate oxidation according to the method previously reported by our 

group to produce GG-CHO at the modification degree of 25% [Karvinen et al., 2017]. Brie y, 
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500 mg GG was dissolved in 50 mL deionized water at 60 °C for a few hours. NaIO4 (0.05 M; 

48 mg) was added dropwise and stirred for 4 hours at room temperature (RT) under nitrogen. 

Ethylene glycol (4 equivalents) was added to inactivate any unreacted NaIO4 and the reaction 

was stirred for 1 hour. The produced GG-CHO was dialyzed with MWCO 1000 dialysis mem-

brane against deionized water for 4 days followed by freeze-drying. [Karvinen et al., 2017] 

4.1.3. Chemical analysis (III) 

To confirm the presence of hydrazide functionality, 20 mg of gelatin-ADH or gelatin-CDH were 

treated with 10 mL of 4-hydroxybenzaldehyde (20 mg/mL) in distilled water for 24 hours at RT. 

The product was dialyzed and lyophilized, as described in Chapter 4.1.2.1. and analyzed by 

NMR spectroscopy. All the experiments were measured with a Jeol JNM-ECZR 500 MHz NMR 

spectrometer (Tokyo, Japan). Samples (5 mg) were dissolved in deuterium oxide (600 L) 

containing an internal standard (0.05 wt-% 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid, sodium 

salt). The samples were measured at 40 °C. The relative substitution was calculated by com-

paring the integral of the lysine amino acid peak at  3.0 ppm to the aromatic proton peak of 

4-hydroxybenzaldehyde at  7.6 ppm. The presence of aldehyde groups in GG-CHO polymer 

was qualitatively evaluated using FTIR, measured on a Perkin Elmer Spectrum One ATR-FTIR 

Spectrometer (Waltham, MA, USA) in a spectral range of 400 to 4000 cm-1. 

4.1.4. Hydrogel formulation (I, III) 

In Publication I, the formulation of ionotropic crosslinking of GG using bioamines SPD and 

SPM was based on the findings of López-Cebral et al. and Parraga et al. [López-Cebral et al., 

2013, Parraga et al., 2014]. During formulation, the highest crosslinker concentration that pro-

duces hydrogel without apparent turbidity and transparent to the naked eye was first screened. 

After finding the highest usable concentration, we halved the concentration and used that as 

one composition and then screened for the lowest concentration that still produced a self-

standing, true hydrogel. The same procedure was used for both SPD and SPM and the names 

of the formulated hydrogel compositions along with concentrations are found in Table 2. To 

enhance neuronal cell attachment, laminin was added as a physical mixture into the hydrogel 

components at 1, 5, and 10% (v/v) of the final hydrogel volume. 

In Publication III, the formulation of chemical hydrazone crosslinking of gelatin and GG was 

based on the results of Karvinen et al. [Karvinen et al., 2017]. The formulation was started by 

screening for the highest solubility of the polymers while still being able to sterile filter the 

solutions. The breakage of polymer chains and carbohydrate rings makes the polymers more 

flexible during the chemical modification, and thus allows for higher soluble concentrations 

than with unmodified polymers. The starting point for the combination of both gelatin-ADH and 

GG-CHO was 40 mg/mL, and for both gelatin-CDH and GG-CHO it was 60 mg/mL. After find-

ing the highest concentration and verifying gelation, the concentration was reduced for further 
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formulations. For gelatin-ADH, the concentration of GG-CHO was reduced in 10 mg/mL steps, 

yielding three usable compositions of true hydrogels. For gelatin-CDH, the concentration of 

GG-CHO was first reduced to 40 mg/mL, still yielding a true hydrogel. Then, the gelatin-CDH 

concentration was also reduced to 40 mg/mL, again yielding a true hydrogel. In this study, we 

did not screen any further to find the lowest possible concentrations. The names of the formu-

lated hydrogels along with their concentrations are presented in Table 2. All the gelatin-GG 

hydrogels had good transparency. 

4.1.5. Hydrogel production (I-IV) 

All the hydrogel components were dissolved in 10% w/w sucrose to adjust osmolarity on the 

same level as tissues, with the exception of the components of gels containing gelatin-CDH 

that were dissolved in DMEM/F-12. The solutions used in Publications I, II, and IV were sterile 

filtered using an Acrodisc® 0.8/0.2 m sterile filter at 60 °C. In Publication III, due to higher 

viscosity and reactivity that caused more difficult filtration, the GG-CHO solutions were filtered 

using a Sterivex-GP 0.22 m Millipore Express filter at 60 °C. Furthermore, gelatin-ADH and 

gelatin-CDH were filtered using a Whatman FP 30/0.2 CA-S filter at 37 °C. Using the wrong 

filter membrane material or wrong temperature causes clogging of the filter and the loss of 

polymer material. After filtration, solutions can be stored for 1 month at 4 °C. 

To produce the bioamine-GG of Publication I, II, and IV, SPD or SPM crosslinker was mixed 

together with unmodified GG (5 mg/mL) at a volume ratio of 4:25 and heated to 37 °C, cast 

into a mold, and stored overnight at RT for material characterization. In Publication IV, the 

mixing of gel components was done using the magnetic stirrer method as described by Gering 

et al. [Gering et al., 2018]. 

The iGG-Ca in Publication II was prepared in a similar way as the bioamine GG gels, except 

the volume ratio was 1:3 CaCl2 to GG (5 mg/mL). In the same publication, iGG, iGG-MA, and 

photoGG-MA with UV photo-cross-linker were prepared, as described by Silva-Correia et al. 

[Silva-Correia et al., 2011]. To produce the iGG and iGG-MA hydrogels, the solutions were 

heated progressively to 90 °C, and this temperature was maintained for 30 min. Then, the 

temperature was gradually decreased to between 60 and 65 °C and PBS (pH 7.4) was added 

to a nal concentration of 10% v/v in the GG solution. The temperature was continuously de-
creased to 50 °C and the hydrogel was poured in a mold. Then, the hydrogels were allowed to 

crosslink and stabilized by immersion in PBS. To produce photoGG-MA, the photoinitiator MBF 

was mixed to the GG-MA and the solution was then cast in a mold and exposed to UV light 

(366 nm; UV lamp Triwood 6/36, Italy) for either 10 min in FEP tube or 40 min in cuvette, 10 

min for each face of the cuvette. 

In Publication III, the GG-CHO and either gelatin-ADH or gelatin-CDH were heated to 37 °C, 

mixed together by pipetting at 1:1 volume ratio and cast into a mold. 
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Table 2. Abbreviations for the different hydrogel compositions used in Publications I-IV.  

Abbreviation Polymer Cross-     
linking 

Crosslinker 
concentration 

Solvent Publica-
tion 

GG 1.10%SPM* GG (0.5% w/v) Ionic (SPM) 0.350 mg/mL 10%  
sucrose 

I, IV 

GG 0.60%SPM** GG (0.5% w/v)  Ionic (SPM) 0.175 mg/mL 10%  
sucrose 

I, IV 

GG 0.40%SPM GG (0.5% w/v)  Ionic (SPM) 0.125 mg/mL 10%  
sucrose 

I 

GG 3.00%SPD GG (0.5% w/v)  Ionic (SPD) 1.00 mg/mL 10%  
sucrose 

I 

GG 1.50%SPD*** GG (0.5% w/v)  Ionic (SPD) 0.50 mg/mL 10%  
sucrose 

I 

GG 1.25%SPD GG (0.5% w/v)  Ionic (SPD) 0.40 mg/mL 10%  
sucrose 

I 

iGG GG (2% w/v) Ionic (PBS) 10% (v/v) 10%  
sucrose 

II 

iGG-MA GG-MA (2% w/v) Ionic (PBS) 10% (v/v) 10%  
sucrose 

II 

photoGG-MA GG-MA (2% w/v) Chemical 
(UV light; 

MBF & PBS) 

MBF 0.1% (w/v) 
+ PBS 10% (v/v) 

10%  
sucrose 

II 

iGG-SPM-H* GG (0.5% w/v)  Ionic (SPM) 0.350 mg/mL 10%  
sucrose 

II 

iGG-SPM-L** GG (0.5% w/v)  Ionic (SPM) 0.175 mg/mL 10%  
sucrose 

II 

iGG-Ca GG (0.5% w/v)  Ionic (Ca2+) 1.110 mg/mL 10%  
sucrose 

II 

F1-ADH GG-CHO         
(40 mg/mL) &      
gelatin-ADH 
(40 mg/mL) 

Chemical  
(hydrazone) 

- 10%  
sucrose 

III 

F2-ADH GG-CHO         
(30 mg/mL) &      
gelatin-ADH 
(40 mg/mL) 

Chemical  
(hydrazone) 

- 10%  
sucrose 

III 

F3-ADH GG-CHO         
(20 mg/mL) &      
gelatin-ADH 
(40 mg/mL) 

Chemical  
(hydrazone) 

- 10%  
sucrose 

III 

F4-CDH GG-CHO         
(60 mg/mL) &      
gelatin-CDH 
(60 mg/mL) 

Chemical  
(hydrazone) 

- DMEM/F-12 III 

F5-CDH GG-CHO 
(40 mg/mL) &     
gelatin-CDH 
(60 mg/mL) 

Chemical  
(hydrazone) 

- DMEM/F-12 III 

F6-CDH GG-CHO 
(40 mg/mL) &   
gelatin-CDH 
(40 mg/mL) 

Chemical  
(hydrazone) 

- DMEM/F-12 III 

F7-SPD*** GG (0.5% w/v)  Ionic (SPD)  10%  
sucrose 

III 

*, **, *** marked compositions are exactly the same, respectively based on the marks, but with different 
naming convention used in the original publications. 
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4.2. Hydrogel characterization 

4.2.1. Gelation time (I, III) 

Gelation time was estimated with the tube tilt test, as described by Tanodekaew et al.1997 

[Tanodekaew et al., 1997, ASTM F2900, 2011]. The reagents were mixed in a small glass vial. 

After mixing, the vial was slowly turned upside down at 30 s time intervals, and the flow of gel 

was observed. If the solution started to move even slightly once tilting started, it was not tilted 

further to let the gelation continue. Once the solution did not flow, the gelation was considered 

complete, and the time was recorded. 

4.2.2. Hydrogel degradation in vitro (III) 

For the in vitro degradation tests, 500 L hydrogels were cast in Eppendorf® tubes. A solution 

of 10 U/mL of collagenase II was then added to the tubes. After that, they were incubated, and 

aliquots were collected at 1, 3, 5, 7, 24, 30, 48, and 56 hours and refreshed with fresh enzyme 

solution. The fluorescamine ( excitation 390 nm, emission 465 nm) test was used to determine the 

presence of gelatin in the collected samples using a QuantaMaster PTI spectrofluorometer 

(Photon Technology International, Inc., Lawrenceville, NJ, USA). 

4.2.3. Rheology (I) 

Rheological experiments were carried out with a rotational rheometer (Haake RheoStress 

RS150) equipped with Rheowizard 4.3 software (ThermoHaake, Germany). Parallel plate ge-

ometry with 20 mm diameter metal plates was used. All the experiments were conducted at 

room temperature (~25 °C) in the oscillatory mode. In the oscillatory mode, the sample is sub-

jected to sinusoidal oscillatory shear strain with amplitude o. In the linear viscoelastic region 

(LVER) with sufficiently small strain amplitudes, the resulting stress amplitude o will also be 

sinusoidal of the same frequency and corresponding to phase angle . The complex moduli 

(G*) represents the rigidity of the sample and in the LVER the following relationship applies: = = ( + )                 (1) 

The storage modulus (G’) is the in-phase and the loss modulus (G’’) the out-of-phase compo-

nents of the response:  =                      (2) 

=                     (3) 
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The G’ represents the elastic and G’’ the viscous behavior of the sample. The loss factor tan is 

the ratio of the viscous to the elastic portion. [Schramm, 1998]  

The samples for rheological testing were cast in cut syringe molds with a maximum height of 

1 mm and a cross-section diameter of 20 mm. Prior to each measurement, the hydrogels were 

stored overnight at RT to ensure complete gelation. During the measurements, the gap be-

tween plates was set to 0.8 mm. All measurements were done in oscillatory shear deformation 

mode and both amplitude and frequency sweeps were used for all samples. The strain ampli-

tude range for the amplitude sweeps was from 0.01 to 5.00 rad (0.1 rad = 1.6% displacement) 

with 1 Hz frequency. Six parallel samples were tested with amplitude sweeps and two parallel 

samples with frequency sweeps, both in ambient conditions. The frequency sweep was done 

in the range of 0.1 to 3.0 Hz, with constant 0.1 rad strain amplitude, which is in the LVER for 

all samples. 

4.2.4. Compression testing (I, III, IV) 

Mechanical testing was performed with a Bose Electroforce BioDynamic 5100 machine using 

WintTest 4.1 software and 225 N load cell (TA Instruments, Eden Prairie, MN, USA). The com-

mon method in Publications I, III, and IV was unconfined compression in ambient air at 10 

mm/min displacement rate until 65% displacement for bioamine-GG and until 75% displace-

ment for gelatin-GG. Additionally, 22 N load cell and 1 Hz digital filtration was used in Publi-

cation IV for the softer GG 0.6%SPM due to an otherwise poor signal-to-noise ratio in the load 

data. The displacement rate was originally decided based on the Nakamura et al. study, de-

termined to be in the viscoelasticity dominated and not in poroelasticity dominated range 

[Nakamura et al., 2001]. In Publications I and IV, cut syringe molds with an approximate 

height of 6.5 mm and a cross-section diameter of 12.2 mm were used. Due to the very sticky 

surface property of gelatin-GG hydrogels, custom-made PDMS molds, with similar dimensions 

to those stated above, were used in Publication III and the samples were cut from the mold 

with a scalpel.  

Each composition was tested in ve parallel samples. The exact dimensions of each sample 
were measured with calipers before testing. To avoid slippage of the samples, the compression 

plates were covered with a piece of wet lint-free cellulose wadding paper to increase friction 

between the hydrogel and the metal plate. The sample was set in between the compression 

plates so that the upper plate touched the sample, but no pre-load was used. 

To obtain a good reference in terms of the biomimicking of mechanical properties in the design 

of hydrogels for soft tissue TE, compression testing was also performed with brain and heart 

muscle tissue samples. New Zealand white rabbits (age 10 weeks, male) were sacri ced with 
deep anesthesia, after which the heads and hearts were removed and stored in ice for a max-
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imum of 8 h. The brains were removed from the skulls, and samples containing midbrain, cer-

ebellum, or cortex were prepared. For heart tissue, both the left and right ventricle were used, 

and the data were pooled together. The samples were then cut with a biopsy punch to the 

same size and shape as the hydrogel compression samples and stored on ice until compres-

sion testing. The test parameters used were the same as those described above. The rabbit 

tissues were obtained from animal experiments conducted at the Medical School of University 

of Tampere. 

In Publications I and III, the compression data were analyzed with MS Excel (Microsoft, Red-

mond, WA, USA). According to Hooke’s law, = E * , the compressive modulus was calcu-

lated from the stress–strain curve as the slope of the perceived elastic region [Callister, 2003]. 

In addition, the fracture strength and fracture strain were recorded as a sudden drop in the 

stress–strain curve. 

In Publication I, the statistical analysis was conducted using SPSS Version 25.0 (IBM SPSS 

Statistics for Windows, NY, USA). The nonparametric Kruskal Wallis test and Mann–Whitney 

U-test were used due to non-Gaussian distribution of the data. A p value of less than 0.05 was 

considered statistically signi cant. If more than two groups were compared, the resulting p 

values were multiplied by the number of comparisons (Bonferroni correction). 

In Publication III, the statistical analysis was conducted using SPSS Version 25.0. The data 

were presented as mean +/- standard deviation. One–way analysis of variance (ANOVA) was 

performed with confidence level of 95%. A p value less than 0.05 was considered as statisti-

cally significant. Pair comparisons of data were done with Tukey post-hoc test to identify sig-

nificant differences between the hydrogels. 

In Publication IV, compression parameters were varied from the common method for 

GG 1.1%SPM hydrogel to gain further insight on the viscoelasticity of the bioamine-GG hydro-

gel. A lower 1 mm/min displacement rate was used to observe the rate dependency of the 

compression behavior. Then, the repeatability of the measurements was studied by varying 

the starting point of the measurements and the friction between the compression plates and 

the sample. To distinguish any possible machine artifact in the early phase of compression, 

measurements were started both clearly ~1 mm above the sample surface and with a machine-

indicated pre-load value of 0.06 N as well as at the standard position of compression plate 

touching the sample from both sides. The friction was varied by either removing the wet piece 

of paper from the compression plate or by varying how often it was changed. Without the paper, 

the compression was only possible until ~30% displacement, after which the sample tended to 

slip off. Changing the paper between each and every sample helped to keep the contact friction 

constant between tests because the pores of the paper were not filled with hydrogel residue 

from previous tests. This step is recommended for further compression tests.  
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A stress-relaxation test was conducted in Publication IV on the GG 1.1%SPM and 

GG 0.6%SPM hydrogels. In the first step of the relaxation test, the specimen is compressed 

with a 10 mm/min compression velocity to 50% of the fracture load value obtained in the meas-

urements of parallel samples. Then, in the second step (relaxation step) the specimen is held 

in this condition under constant strain for 60 seconds to observe the viscous flow. 

4.2.5. True stress and true strain in hydrogel compression (IV) 

The engineering stress and engineering strain used in other publications were converted to 

true stress  c (or Cauchy stress) and true strain  n (or logarithmic strain or Hencky strain) in 

Publication IV. In the uniaxial case, the Cauchy stress takes the following form: 

     =  ,                (4) 

where F is the applied force and A is the true, current cross-sectional area. 

The true strain is defined as follows: : = =  ,               (5) 

where l0 and l are the initial and current gauge length of the sample, respectively. Here, the 

positive directions are defined so that the strain for tensile deformation is positive and, likewise, 

the stress for tensile loading is positive. After mathematical manipulations, the logarithmic 

strain and the Cauchy stress are obtained in terms of engineering strain and stress as follows: = ln (1 + )                (6) 

and = (1 + ).               (7) 

The applicability of these conversion equations was verified with the digital image correlation 

technique (Chapter 4.2.6.). To precisely analyze the material response, this elastic defor-

mation was divided into bilinear or piecewise linear elastic deformation phases. The first phase 

describes the toe region and the second phase the linear elastic region. Then, the elastic mod-

ulus of each region is calculated using Hooke’s law [Callister, 2003, Gentleman et al., 2006]. 

This piecewise analysis solves the issue of the ambiguity of the linear elastic region and is 

supported by the macromolecular structures of these studied hydrogels. 
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4.2.6. Digital image correlation (IV) 

The three-dimensional digital image correlation (3D-DIC) technique using lenses with a focal 

length of 100 mm was used to study the surface deformations during the compression tests of 

the hydrogel samples (Figure 13) [Schreier et al., 2009, Palanca et al., 2016]. By using this 

technique, the sample surface having unique features is recorded simultaneously with two 

cameras (5 Mpix Imager E-Lite, LaVision, Germany). From the recorded images, a full-field 

surface deformation map was obtained by tracking the movement of the surface divided into 

small subsets. The surface pattern required for carrying out the experiments was made by 

blowing fine carbon black powder (Corax® N550, Evonik, Germany) on the naturally transpar-

ent, moist sample. 

 

Figure 13. (a) The 3D-DIC test setup, (b) an image taken of a sample with carbon black speckle 
pattern. Image modified from Publication IV. 

The lighting of the sample was performed using two synchronized pulsed led lights operated 

directly via DIC software (Davis 8.4, LaVision). To achieve constant and flat light throughout 

the sample, the reflections caused by the curved, wet, and transparent sample had to be opti-

mized and balanced. The recording rate of the 3D-DIC measurements ranged from between 

1 Hz (stress-relaxation test) and 8 Hz (standard compression method), depending on the total 

time for each compression test. The scale factor of the images was 8 m / pixel and the root 

mean square (RMS) fit of the calibration was 0.4 pixels. 

The deformation analysis was performed using Davis 8.4 software. The used subset and step 

sizes were 55 × 55 pixels and 15 pixels, respectively. In order to ease the tracking process and 

to minimize the effects by artificially changing pattern (for example due to water seeping on 

the surface), the applied correlation mode in the analysis was the sum of differential images 

instead of the more conventionally used mode (i.e., relative to the first image) [Schreier et al., 

2009].  From the correlation results, axial surface strains and radial surface displacements 

were calculated in addition to the qualitative examinations of the sample deformations.  
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4.2.7. Optical projection tomography (II, III) 

An in-house built optical projection tomography (OPT) system with transmission and emission 

modes was used for materials characterization in Publication II. The OPT system used for 

materials characterization, as explained in the following Chapters 4.2.7.1. – 4.2.7.4. and ini-

tially described by Figueiras et al., is shown in Figure 14 [Figueiras et al., 2014]. For 3D cell 

culture visualization imaging, the OPT setup was updated, as shown in Publication III and 

explained in Chapter 4.4.5. 

 

Figure 14. Schematic diagram of the OPT setup (from Publication II): the hydrogel samples 
inserted in FEP tubes are rotated in the rotation stage (S) inside a water bath (B). For 
brigth field illumination, a white light (LED 1) and a telecentric lens (L) are used. For 
fluorescence illumination, 470 nm wavelength (LED2) collimated with a lens with 
difuser (LD) are used. The detection system consists of an objective lens (Ob), a band 
pass filter (F) used only for fluorescence imaging, a pinhole (P), a tube lens (TL), and 
a sCMOS camera. 

Image processing and the analysis of all the OPT materials characterization experiments were 

performed using MATLAB®. The data normality and homoscedasticity were verified using 

Shapiro–Wilk and Levene statistics, respectively. Due to the non-Gaussian distribution of the 

data, the non-parametric Mann–Whitney U test was used to compare the differences between 

groups. Analysis was performed with SPSS v13.0 for Windows (SPSS Inc, Chicago, IL, USA). 

4.2.7.1. Bright field OPT imaging 

Five samples of each hydrogel composition iGG, iGG-MA, photoGG-MA, iGG-SPM-H, iGG-

SPM-L, and iGG-Ca, as described in Table 2, were imaged using transmission mode OPT. 

The hydrogels were prepared into FEP tubes with water matching refractive index and sub-

merged inside a large cuvette filled with water for imaging. Projection images were taken 

around an entire 360° rotation at steps of 0.9°, resulting in 400 images. The transmitted light 
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was detected by a 5x infinity-corrected objective with a numerical aperture of 0.14 and imaged 

with a sCMOS camera (ORCA-Flash 4.0, Hamamatsu, Japan). The used 5x objective provided 

a resolution of ~3 m. The 3D images of the samples visualizing the 3D internal structures 

were reconstructed from the projection images using a filtered back projection (FBP) algorithm 

[Jochen Birk et al., 2011, Figueiras et al., 2014]. 

4.2.7.2. Image texture analysis 

Image texture analysis was carried out using multiple discriminant analysis (MDA) [Duda et al., 

2001]. The analysis was performed to assess and compare the microscopic structures of the 

hydrogels in the projection images and in their 3D reconstructions using Haralick’s textural 
features in the five samples of each hydrogel type [Haralick et al., 1973]. Pre-processing of the 

projection images included flat field correction of the illumination non-uniformity created by the 

white LED (LED1 in Figure 14) using 2D polynomial fitting, and the removal of the tube from 

the images by manual segmentation. Histogram equalization was applied to the projections 

and sliced images before performing the textural analysis. The gray-level co-occurrence matrix 

(GLCM) was computed for each image using 1 and 3 pixel lengths in different directions, i.e., 

0°, 45°, 90°, and 135° respectively. From the calculated GLCM of each image, 13 textural 

features were computed using the toolbox originally developed by Gupta et al. [Gupta, Markey, 

2005]. Due to the high dimensionality of Haralick’s features, MDA was used as a method to 
reduce dimensionality and to find differences between the textural features of the hydrogels. 

MDA projects the feature space onto a lower dimension space in such a way that maximizes 

the inter-class scatter and minimizes the intra-class scatter. [Duda et al., 2001]  

4.2.7.3. Fluorescent OPT imaging 

For imaging the mass transport, OPT fluorescent projections were always taken in the same 

angular position of the sample using the OPT in emission mode as represented in Figure 14. 

For the fluorescence mode, a collimated LED of 470 nm (LED 2 in Figure 14, M470L3; Thorlabs, 

Newton, NJ, USA) was used to excite the samples and a band pass filter with a center wave-

length of 520 nm (EO 67-030; Edmund Optics, Barrington, NJ, USA) was added to the detec-

tion system (F in Figure 14). 

4.2.7.4. Mass transport assay of fluorescent molecules and index of homogeneity 

The hydrogel samples ( 1 mL) for mass transport studies were prepared in 5 mL polystyrene 

cuvettes. Fluorescent FITC-labeled dextran with defined molecular weights of 20 kDa, 150 kDa, 

and 2000 kDa were used to characterize the transport of molecules. Each type of dextran 

molecule experiment was replicated five times. 

The experiments were performed as follows: (a) the focal plane of the imaging system was 

placed approximately in the middle plane of the cuvette at the upper part of the hydrogel; (b) 
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100 L of solution of one type of molecular weight dextran was pipetted to the surface of the 

sample; and (c) projections were acquired each minute for 4 hours with an exposure time of 

0.04 seconds. The first image was taken before pipetting the dextran on the top of the samples. 

The imaged area consisted of a square 3 mm in length.The data were pre-processed by sub-

tracting the background to remove common elements, such as non-uniformity produced by the 

LED, in all images. This was performed by subtracting the first image acquired before the 

addition of the dextran molecules.  

We devised a new method to assess the homogeneity of the hydrogel microstructure by defin-

ing an index of homogeneity. The acquired images were first binarized by Otsu´s method [Gon-

zalez, Woods, 2008], a heuristic method which iteratively calculates the optimum threshold 

automatically based on the histogram of the image. This threshold value was calculated for 

each sample. Thus, when the gray level intensity of the pixel is higher than the calculated 

threshold, the value of the pixel is converted to 1 (white). In turn, if the value of the pixel is 

inferior to that for the calculated threshold, the pixel value is converted to 0 (black). This pro-

duces a wavefront descending through the image. We assume that when the binarized signal 

from dextran does not travel uniformly, the hydrogel is less homogenous than when traveling 

uniformly. The index of homogeneity was defined as a measure of the smoothness of the 

wavefront descending through the hydrogel. To calculate the index of homogeneity, the gradi-

ent in the black and white interface was calculated. The gradient points towards the direction 

of greatest change in every pixel, and thus it is possible to determine the flatness of the said 

interface by analyzing the gradient interface. In this manner, when the interface between black 

and white pixels is flat, the angle of the gradient vector is 90° (pointing downwards in the image).  

If the interface is not flat, i.e., irregular, however, its gradient will also be irregular, and the 

angles will be different than 90° (they will point in random directions other than downwards). 

Motivated by this behavior, the index of homogeneity is calculated as the ratio between the 

total number of 90° angles and the total number of angles. When the value of the index is 

closer to 1, a greater number of 90° angles is present, and thus indicates a flat interface. The 

binary images were also used to analyze the position of the wavefront at different times giving 

us the velocity of the mass transport. We calculated the velocities of the wavefront at time 

ranges of 50 minutes by polynomial fitting of first degree. 
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4.3. Cell culture 

4.3.1. Ethical considerations  

BioMediTech Institute of Tampere University has approval from the Ethics Commitee of 

Pirkanmaa Hospital District to derivate, culture, and differentiate hESCs (Skottman R05116) 

and hiPSCs (Aalto-Setälä R08070) and permission from the National Authority for Medicolegal 

Affairs (FIMEA 1426/32/300/05) to conduct human stem cell research. Patients donating cells 

for research have provided written, informed consent. 

4.3.2. Cell culture reagents (I, III) 

The following reagents were used for cell cultures and fluorescent staining of cells: Dulbecco’s 
Modified Eagle Medium/Ham’s Nutrient Mixture F-12 1:1 (DMEM/F-12), Penicillin/Streptomy-

cin (Pen/Strep), Neurobasal medium, N2 supplement, Geltrex®, Roswell Park Memorial Insti-

tute 1640 Medium (RPMI), B27(-insulin), B27(+insulin), KnockOut-Dulbecco’s Modified Eagle 
Medium (KO-DMEM), GlutaMAX™, TrypLE Select, poly-L-lysine (Mw 70,000-150,000) Alexa 

Fluor 488 conjugated to donkey anti-rabbit (A21206) and anti-mouse antibody (A21202),  

Alexa Fluor 568 conjugated to donkey anti-goat antibody (A11057), Calcein-AM (Ca-AM,         
excitation = 568 nm) and Ethidium Homodimer-1 (EtHD-1, excitation= 568 nm) acquired from 

Thermo Fisher Scientific (Waltham, MA, USA). Paraformaldehyde (PFA), pronase, bovine se-

rum albumin (BSA), normal donkey serum (NDS), Triton X-100, phosphate buffer (PB), alpha-

actinin (ACNT2, mouse IgG, A7811), 4’,6-diamidino-2-phenylindole (DAPI) and tetramethyl-

rhodamine isothiocyanate conjugated to phalloidin (TRITC-phalloidin, P1951) acquired from 

Sigma-Aldrich (St. Louis, MO, USA and Espoo, Finland). Basic fibroblast growth factor (bFGF) 

acquired from R&D Systems (Minneapolis, MN, USA). Brain-derived neurotrophic factor 

(BDNF) acquired from Prospec Bio (Germany). Fetal bovine serum (FBS; South American 

origin) acquired from Biosera/Bionordika (Helsinki, Finland). mTeSR1™ medium acquired from 

STEMCELL Technologies (Vancouver, Canada). CHIR99021 acquired from REPROCELL 

(Glasgow, UK). IWP-4 acquired from R&D Bio-Techne (Minneapolis, MN, USA). Non-essential 

amino acids (NEAA) acquired from Cambrex (East Rutherford, NJ, USA). Phosphate buffered 

saline (PBS) and trypsin acquired from Lonza (Basel, Switzerland). Rabbit anti-microtubule 

associated protein 2 (MAP-2, AB5622) acquired from Merck (Kenilworth, NJ, USA). Rabbit 

anti- -tubulin isotype III ( -tub, IgG, A01627) acquired from GenScript (Piscataway, NJ, USA). 

Goat anti-troponin T (TNNT2, IgG, ab64623) acquired from Abcam (Cambridge, UK). Mounting 

medium VECTASHIELD containing DAPI acquired from Vector Laboratories (UK). Qiagen 

RNeasy® kit acquired from Qiagen (Hilden, Germany). cDNA Reverse Transcription kit and 

TaqMan Universal Master Mix acquired from Applied Biosystems Foster City, CA, USA). The 
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compositions and producers of enzymatic dissociation buffers used in cardiomyocyte cell cul-

ture and TaqMan assays used in Quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) are listed in Appendix I. 

Cell cultures were conducted on T75 and T175 culture flasks and Nunc 12- and 24-well plates 

acquired from Thermo Fisher Scientific (Waltham, MA, USA), 48-well plate from Greiner Bio-

one (Kremsmünster, Austria), and glass bottom well plates from MatTek Corporation (Ashland, 

MA, USA). All cell cultures were maintained at 37 °C in 5% CO2 atmosphere and 95% humidity. 

4.3.3. Commercial fibroblast cell line WI-38 (III) 

The commercial human lung fibroblast cell line WI-38 was obtained from European Culture 

Collections (Public Health England, United Kingdom) [Hayflick, Moorhead, 1961]. The fibro-

blasts were cultured and expanded in T175 or T75 culture flask with DMEM/F-12 supple-

mented with 10% FBS and 50 U/mL Pen/Strep. For cytocompatibility tests, the fibroblasts were 

detached with trypsin treatment, counted and plated with 30,000 cells/cm2 in 2D conditions 

and 300,000 cells/mL hydrogel in 3D conditions. To test the cytocompatibility of the modified 

gelatins, separate cell culture wells were dip coated with gelatin-ADH or gelatin-CDH (40 

mg/mL) with 1 hour incubation at 37 °C. Dip coating with unmodified gelatin (1 mg/mL) was 

used as 2D control for all the cell experiments in Publication III. This is a well-known method 

for cardiomyocyte culture and gelatin molecules adsorb to the surface strongly enough to fa-

cilitate the cell attachment [Mummery et al., 2003, Ikonen et al., 2013, Kiviaho et al., 2015]. 

Cytocompatibility testing of hydrogels were conducted both on top of the gel (2D) and encap-

sulated inside the gel (3D) using the compositions F1-ADH, F2-ADH, F3-ADH, F4-CDH, F5-

CDH, F6-CDH, and control unmodified bioamine-GG composition F7-SPD. In the 2D experi-

ment, the hydrogel was cast in the well plate 20 minutes before the cells were plated on top. 

In the 3D experiment, 30 L cell suspension was mixed with the gelatin-ADH or gelatin-CDH 

and GG-CHO simultaneously during gelation to form a total of 330 L of hydrogel. Cell culture 

medium was applied on top of the samples after ~20 minutes gelation time. Cell were cultured 

for 1 week and used for Live/Dead® viability assay on day 3 and day 7. 

4.3.4. Human pluripotent stem cells (I, III) 

Both hESC- and hiPSC-origin cells were used and the derivation and pluripotency of all the 

used lines has been studied and published before. In Publication I, the used hESC-lines were 

Regea 08/023 [Skottman, 2010] and Regea 11/013 [Sorkio et al., 2015] and the used hiPSC-

lines were UTA.04511.WT [Ojala et al., 2016], Hel24.3, and A116 [Toivonen et al., 2013] (the 

latter two being kind gifts from the University of Helsinki). In Publication III, only one hiPSC 

line, UTA.04602.WT [Kiviaho et al., 2015], was used. All the hPSCs were cultured in the stem 

cell state as previously described [Rajala et al., 2010, Kiviaho et al., 2015].  
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4.3.4.1. Neuronal-hydrogel cell culture (I) 

The neuronal differentiation of hPSCs were performed as described previously by Lappalainen 

et al. [Lappalainen et al., 2010]. Briefly, undifferentiated stem cell colonies were mechanically 

cut into small aggregates and placed in a suspension culture on neural differentiation medium 

(NDM) containing 1:1 DMEM/F12 and Neurobasal medium, 2 mM GlutaMax™, 1 × B27, 1 × N2, 

20 ng/mL bFGF, and 25 U/mL Pen/Strep. During suspension culture, the cell aggregates 

formed round, floating neurospheres. The neurospheres were kept small via mechanical cut-

ting once per week and 1/3 of the medium was changed three times per week. Cells were kept 

for 8 to 17 weeks in the differentiation phase prior to use in the hydrogel experiments. The cells 

were constantly monitored for the quality of differentiation. Only experiments in which cells 

formed good neuronal cultures in 2D control were included to the analysis (representative im-

ages of good quality 2D cultures are presented in Appendix II). 

To evaluate the suitability of the hydrogels for neural TE, three approaches were taken to study 

the cell/biomaterial interactions, as shown in Figure 15. In each case, the control cells were 

plated on laminin-coated cell culture wells (positive control) and on non-coated cell culture 

wells (negative control). Cell behavior on the studied materials was always compared to that 

of the controls. Depending on the well type used, either plastic Nunc or glass bottom MatTek 

wells, the wells were coated with either 10 g/mL laminin or 10 g/mL poly-L-lysine followed 

by 10 g/mL laminin, respectively. 

Gelation was performed as described in Chapter 4.1.5. and in Figure 15. A drop of crosslinking 

agent was added on top of the cell culture, followed by the gentle addition of GG solution in 

cases of cultures beneath the gel. To avoid disturbing the cells, no additional mixing was per-

formed. For cell encapsulation, the cells were suspended in GG solution with a minimal amount 

of medium prior to crosslinking. After complete gelation, medium was gently added on top of 

the gel. In 3D cell encapsulation studies for gels with slow gelation (all except GG 3.00%SPD), 

a thin bottom layer of gel was cast beforehand to prevent cell aggregates from sedimenting to 

the well bottom during gelation. 

Cells were plated either as mechanically cut small cell aggregates or as enzymatically disso-

ciated single cell suspensions prepared using 1 × TrypLE Select. For the 2D experiments (con-

trols, cells embedded or on top), the plating density was 60,000 cells/cm2 or 7 to 20 small 

aggregates/cm2 (3000-7000 cells/aggregate). The cell density for the 3D experiments (cells 

encapsulated) was ~3.5 × 106 cells/mL of gel, or a corresponding number of small mechani-

cally cut cell aggregates. 
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Figure 15. Schematic presentation of plating cells with the hydrogels (from Publication I). All com-
ponents were kept at 37 °C to ensure homogeneous and complete gelation.  

The cells were cultured with the gel for 2 weeks. NDM without bFGF was used during the first 

week of the experiments. After one week of culture, NDM containing 5 ng/mL bFGF and 

4 ng/mL BDNF was used. Half of the medium was changed three times per week and the cells 

were monitored periodically throughout the experiments. Phase contrast images of neuronal-

GG cultures were taken using a Zeiss AxioVert.A1 microscope and an AxioCam ERc 5s cam-

era system (Carl Zeiss, Germany) or with a Nikon Eclipse TE 2000-S and a Nikon Digital Sight 

DS-Fi1 camera system (Nikon, Japan). 
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4.3.4.2. Cardiomyocyte-hydrogel cell culture (III) 

The cardiomyocyte differentiation was done by modulating Wnt signaling, according to the 

protocol published by Lian et al. [Lian et al., 2012]. In short, differentiation was initiated by 

plating 700,000 hiPSCs/well in a Nunc 12-multiwell plate in feeder-free condition on                 

Geltrex®-coating and cultured with mTeSR1 medium supplemented with 50 U/mL Pen/Strep 

for four days. For 10 days after initiation, the medium was changed to RPMI supplemented 

with B27(-insulin) and 50 U/mL Pen/Strep. During this period, 8 M CHIR99021 was applied 

to the cells at day 1. After 24 hours, the CHIR99021 was removed. At day 3, 5 M IWP-4 was 

added for 48 hours. From day 10 onwards, the B27(-insulin) was changed to B27(+insulin) and 

the cells were cultured in this medium until they were used for the hydrogel experiments. 

After differentiation, beating cardiomyocyte areas were cut with a scalpel under a microscope 

and collected. Then, the aggregates were partially dissociated to loosen the cell-to-cell bonds 

inside the aggregate and to better allow the attachment on the hydrogel. The dissociation pro-

tocol of Ahola et al. was modified as follows: the enzymatic dissociation buffers were applied 

to the cells incubated at 37 °C: 1st buffer for 45 minutes, 2nd buffer for 15 minutes, and 3rd buffer 

for 10 minutes, but no mechanical dissociation was done [Ahola et al., 2014]. This gentle dis-

sociation treatment loosens the cardiomyocyte aggregate and makes it more susceptible to 

attach to the hydrogel. Four aggregates were plated per well with all coating and hydrogel 

preparations (2D & 3D) in a similar way to that described above for fibroblasts. Cells were 

cultured with KO-DMEM supplemented with 20% FBS, 1% NEAA, 2 mM GlutaMAX™, and 50 
U/mL Pen/Strep. The medium was changed every 3 days, always 1 day before analysis, and 

cells were cultured for 7 days maximum, monitoring their beating throughout the culture time. 

4.4. Cell culture analysis  

4.4.1. Live/Dead® staining (I, III) 

The Live/Dead® cell viability kit was applied to fibroblast samples after 3 and 7 days of culturing 

(Publication III) and to neuronal samples after 2 weeks of culturing (Publication I). Dye con-

centrations were diluted in PBS and optimized further between the publications. The fluores-

cent Ca-AM (at 0.1 M in Publication I and 0.2 M in Publication III) stains intact cells green, 

and Et-HD-1 (at 0.4 M in Publication I and 1.0 M in Publication III) stains dead cell nuclei 

red. After 1 h of incubation at RT with a rocker plate the samples were imaged. 

4.4.2. Immunocytochemical staining (I, III) 

We optimized the protocol for immunostaining cells within macroscopic (up 300 L) hydrogel 

blocks. In brief, cultures were xed with 4% PFA pre-heated to 37 °C for 30 min. After a brief 
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wash in PBS, non-speci c staining was blocked with 10% NDS, 0.1% Triton X-100, and 

1% BSA in PBS for 1 h at RT, followed by another wash in 1% NDS, 0.1% Triton X-100, and 

1% BSA in PBS. Then, the cells were incubated with a combination of primary antibodies at 

4 °C for at least 2 days. These antibodies included MAP-2 (1:400) and -tub (1:1000) (Publi-

cation I) or troponin T (1:1750) and -actinin (1:1250) (Publication III) in 1% NDS, 0.1% Triton 

X-100, and 1% BSA in PBS. The samples were washed three times with 1% BSA in PBS ( rst 
brie y, followed by 2 × 1 h washes) and then incubated overnight at 4 °C with Alexa Fluor 488 

conjugated to donkey anti-rabbit antibody (1:400) and TRITC-phalloidin (0.625 g/mL) (Publi-

cation I) or Alexa Fluor 488 conjugated to donkey anti-mouse (1:800) and Alexa Fluor 568 

conjugated to donkey anti-goat (1:800) (Publication III) in 1% BSA in PBS. The samples were 

washed three times ( rst brie y, followed by 2 × 1 h washes) in PBS and then mounted with 

VECTASHIELD containing DAPI (Publication I) or stained with DAPI (1:2000) in PBS (Publi-

cation III).  

4.4.3. Wide field fluorescence microscopy and image analysis (I, III) 

The samples stained either using Live/Dead® viability assay or immunocytochemical staining 

were imaged with an Olympus IX51 inverted microscope and an Olympus DP30BW digital 

camera. Gray scale images were post-processed (merging and pseudo-coloring) using Adobe 

Photoshop CS4 (version 11.0, Adobe Systems Inc., CA, USA) and Adobe InDesign CS4 (ver-

sion 6.0, Adobe Systems Inc.) in Publication I and ImageJ (Version 1.39, US National Insti-

tutes of Health, Bethesda, MD, USA) in Publication III [Schneider et al., 2012].  

In Publication I, the neurite migration was measured with the ImageJ measurement tool: draw-

ing a straight line from the cell aggregate surface to the visible end of a neuronal process and 

recording the length. For each cell aggregate analyzed, the four longest separately distinguish-

able neurites were measured. Values of less than 10 m were considered as representing no 

migration. The analysis was conducted with at least two individual experiments with at least 

two replicative wells. For each studied group, 7 to 16 images were analyzed. The same statis-

tical analysis as described in Chapter 4.2.4. was applied in neurite migration analysis. 

In Publication III, the cell number quantification was done using the ImageJ particle counting 

algorithm based on at least 3 parallel Live/Dead® stained images taken with 4x magnification 

from all the studied conditions. Fibroblast viability percentage was calculated from the detected 

live and dead cell area according to the following equation: Viability% =             = ( )                    (17) 
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4.4.4. Confocal microscopy (I) 

Confocal scanning of the samples was performed with a Zeiss LSM 780 mounted into an in-

verted Cell Observer microscope (Carl Zeiss, Jena, Germany) using 10x (NA 0.45) or 20x (NA 

0.80) air objectives. The samples were scanned through MatTek #1.5 glass bottom well plates 

or through high performance #1.5 coverslips. The confocal data were visualized with ZEN 

Black 2012 software (Carl Zeiss) and ImageJ [Schneider et al., 2012]. 

4.4.5. Optical projection tomography for 3D cell imaging (III) 

An updated version of the in-house built OPT system presented in Figure 14 (Chapter 4.2.7.) 

was used to visualize the 3D morphology of fibroblasts in selected hydrogel conditions [Figuei-

ras et al., 2014, Belay et al., 2018]. Cell samples were transferred into FEP tubes by puncturing 

the 3D hydrogel cultures. A white LED source was used to illuminate the sample in transmis-

sion mode and imaging was conducted in a similar way to that stated for texture analysis 

(Chapter 4.2.7.1). 3D reconstruction was computed in MATLAB® from projection images using 

the standard FBP algorithm [Figueiras et al., 2014]. Visualization in 3D was done with Avizo 

software (Thermo Fisher Scientific, Waltham, MA, USA). 

4.4.6. Video recording and beat analysis (III) 

The cardiomyocyte cultures were primarily analyzed by phase contrast microscopy using a 

Nikon Eclipse TS100 (Nikon Corporation, Japan) microscope, and monochrome 8-bit videos 

were acquired with an Optika DIGI-12 (Optika Microscopes, Italy). The video recording of beat-

ing cardiomyocytes was done with the same setup using 60 frames per second recording for 

30 seconds. The videos were analyzed based on particle image velocimetry with BeatView® 

software, i.e., creating and comparing velocity vector fields based on pixels in two consecutive 

video frames [Ahola et al., 2014]. Figure 16 shows a representative beating pattern of a cardi-

omyocyte aggregate. It should be noted that this analyzed beating is a record of purely me-

chanical movement, so no further information is known about the electrophysiology and elec-

trical phenotype of the cardiomyocytes. 
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Figure 16. Beating pattern of cardiomyocyte aggregate in F4-CDH hydrogel as an example of the 
BeatView® analysis (from Publication III). Graph a) shows regular beating rhythm for 
30 s, b) shows the breakdown of a single beat into (1) relaxed state, (2) contracting 
movement, and (3) relaxing movement. Each of the x-axis samples consists of two 
consecutive video frames. 

4.4.7. Gene expression (III) 

The expression of three main cardiac marker genes was studied to further verify the cardiac 

nature of the hiPSC-derived cells using qRT-PCR. The total RNA was isolated from 3D hydro-

gel culture using the Qiagen RNeasy® kit after two weeks of culture. The culture medium was 

removed, and the hydrogel was briefly washed with PBS. The cardiomyocyte aggregates in 

the hydrogel were cut and extracted under microscope with a scalpel and transferred to a 

microcentrifuge tube. The excess hydrogel in the sample tube was digested by the addition of 

100 L pronase solution (stock 10 mg/mL in water) incubated at 37 °C for 5 minutes. This 

digested cell-hydrogel solution was added directly to the RNeasy® lysis buffer, homogenized, 

and RNA extracted according to the manufacturer’s instructions. DNase I treated total RNA 
was reverse-transcribed using the high capacity cDNA Reverse Transcription kit. The cDNA 

was amplified with TaqMan Universal Master Mix using the BioRad CFX384 Real-Time PCR 

Detection System (Hercules, CA, USA) Samples were analyzed in triplicates and GAPDH was 

used for normalization of expression levels of individual genes, which was calculated by the 

CT method [Livak, Schmittgen, 2001]. The studied marker genes were troponin T (TNNT2), 

-actinin (ACNT2), and myosin binding protein C (MYBPC3), as listed in Appendix I. 
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Hydrogels based on GG (Publications I, II & IV) and gelatin with GG (Publication III) were 

successfully designed and produced. The material characterization methods for hydrogels in 

the wet state were developed and used for studying relevant parameters for TE and 3D cell 

culture applications. All studied hydrogels satisfy the true gel definition and are transparent. 

The names of the studied hydrogel compositions are presented in Table 2 in Chapter 4.1.4. 

The cytocompatibility of the developed hydrogels is generally good; however, bioamine 

crosslinked GG without ECM protein functionalization does not provide enough attachment 

sites to enable cell spreading. Functionalization with laminin for neuronal cells and with gelatin 

for cardiomyocytes greatly enhances the cell attachment, spreading, and also viability. 

5.1. Polymer modification for hydrazone crosslinking  

Hydrogel producing polymers were chemically modified to enable chemical crosslinking of gel-

atin-GG in Publication III. Successful crosslinking requires introducing the hydrazide groups 

in gelatin, as using only the native amine groups available can form imine crosslinks, but those 

are not as stable as the hydrazone crosslinks [Kalia, Raines, 2008]. In other publications, the 

polymers were used as-received for production of physically crosslinked hydrogels (and chem-

ically crosslinked photoGG-MA in Publication II). Figure 17 shows the chemical reaction 

schemes for modification of gelatin and GG yielding the hydrazone crosslinked hydrogels, and 

the NMR spectra comparing ADH and CDH modified gelatin to the unmodified gelatin. During 

the modification reaction 0.24 millimoles of free carboxylic groups of gelatin react with 3 milli-

moles EDC and either 22.5 millimoles of ADH or 20 millimoles of CDH. The Figure 17 also 

shows higher modification degree of gelatin-CDH compared to gelatin-ADH. As the CDH is a 

smaller molecule, the higher mobility can affect the modification degree, which then affects the 

required concentrations. Additionally, the success of the oxidation of GG-CHO is shown by 

FTIR in Figure 18 as a change in the bend of the curve at wavenumber 1500 cm-1. The degree 

of substitution of GG-CHO has been previously reported [Karvinen et al., 2017].

5. Results 
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Figure 18. Comparison of the FTIR spectra of unmodified and modified GG with the main change 
highlighted with a red circle (from Publication III). 

5.2. Gelation & biodegradation 

During the formulation of new hydrogels, the components were mixed in a syringe mold and a 

tube tilt test was performed. Once the composition in question did not flow anymore, it was 

examined further. Only hydrogels which were fully transparent and self-standing when taken 

out of the mold were considered to be proper, true gels and used in the publications. Omitting 

weak gels was a decision done with clinical TE applications in mind. Weak gels might still be 

suitable growth substrates for disease modeling. All the used hydrogels were also structurally 

stable enough to be handled with tweezers, as can be seen in Figure 19.  

 

Figure 19. Photograph of a GG 3.00%SPD hydrogel sample lifted with tweezers after overnight 
incubation in cell culture medium. 
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Ionotropic, physical crosslinking of native GG using the bioamines SPM and SPD was studied 

in Publication I. The maximum and minimum crosslinker concentrations still producing trans-

parent, true gels were from 1.1% to 0.4% (w/v) in SPM and from 3.0% to 1.25% (w/v) in SPD. 

The recorded gelation times are presented in Table 3. The crosslinker:GG ratio was a constant 

4:25. Higher concentrations than these caused the gelation process to be too fast for uniform 

mixing, causing a white turbidity to form inside the gel. Lower concentrations formed weak gels 

that could not keep their shape unsupported. The bioamine-GG hydrogels functioned as 3D 

cell culture platform in Publication I and as model hydrogels for the methods development 

done in Publication II and IV. 

Table 3. Gelation times of bioamine crosslinked GG estimated by tube tilt test. 

Compo-
sition 

1.10%SPM 0.60%SPM 0.40%SPM 3.00%SPD 1.50%SPD 1.25%SPD 

Gelation 
time 

1 min 5 min 10 min 5 sec 5 min 10 min 

The chemical hydrazone crosslinking of gelatin-ADH/CDH and GG-CHO was studied in Pub-

lication III. Again, the maximum and minimum polymer concentrations used still produced 

transparent, true gels. Weak gels were noted at gelatin-ADH concentrations below 2% (w/v) 

and gelatin-CDH concentrations below 3% (w/v). Forming the gels at a 1:1 volume ratio yielded 

the best gelation. Due to higher modification degree, the highest total gelatin content was 

achieved with gelatin-CDH, reaching 60% w/w. The gelation time of gelatin-ADH gels was 

approximately 5 minutes and gelatin-CDH gels approximately 10 minutes. The hydrogels pro-

duced with either of the modified gelatins were definitely stickier and more difficult to handle 

than the gels produced by bioamine crosslinking, which actually had a rather low surface fric-

tion and slid easily on surfaces. 

The biodegradation of gelatin-GG was studied in Publication III using collagenase enzyme, 

and the presence of gelatin was evaluated using fluorescence spectrophotometry. Figure 20 

shows the degradation profiles. The degradation of gelatin-CDH gels is faster initially but slows 

down around the 24 h time point, after which the gelatin-ADH gels degrade faster. The CDH-

hydrazone bond is known to be more resistant to hydrolysis than the ADH-bond because of 

electron resonance stabilization effect provided by nitrogen heteroatom neighbouring the CDH-

bond [Kalia, Raines, 2008, Oommen et al., 2013, Koivusalo et al., 2018]. Thus, it is assumed 

that the initial part of degradation observed is caused by the collagenase affecting gelatin, 

while after 24 h the degradation effect is more related to hydrolytic vulnerability of the ADH-

bond. The polymer concentrations in either gel type did not have a significant effect on the 

degradation rate. 
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Figure 20. Enzymatic degradation of hydrazone crosslinked gelatin-GG hydrogels incubated in col-
lagenase at 37 °C, over 56 h (from Publication III). The release of gelatin was studied 
by staining with fluorescamine and recording fluorescence intensity. The blank control 
is a sample without collagenase. 

5.3. Mechanical properties  

Compression testing is one of the cornerstones of this research aiming to design and produce 

mechanically biomimetic hydrogels. The compression testing of both hydrogel samples and 

reference tissue samples was conducted in the exact same conditions to ensure the compa-

rability of the data in Publications I, III, IV, unless otherwise specified. In general, the compa-

rability of the mechanical testing data between hydrogel studies is problematic, mainly due to 

viscoelasticity, poroelasticity, definitions of linear elasticity, and differences in applying forces 

on anisotropic samples in various test setups. Thus, the results presented here are comparable 

with each other, but care needs to be taken when comparing them with other test setups. In 

Publications I, the compression data were analyzed using Hooke’s law and engineering 

stress and strain [Callister, 2003]. In Publication III, only the stress-strain curves and fracture 

parameters were analyzed. In Publication IV, the standard compression data were analyzed 

using true stress (Cauchy stress) and true strain (Hencky strain) instead of the engineering 

stress and strain [Hencky, 1928, Hencky, 1931, Xiao et al., 2004]. This analysis was supple-

mented with 3D-DIC compression analysis [Palanca et al., 2016]. 
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The compression testing of bioamine crosslinked GG in Publication I shows biomimicking 

material response compared to rabbit brain tissues until ~30% strain, after which point the 

hydrogel fractures, while the more elastic brain tissue only strain hardens. The representative 

stress-strain curves, and compressive moduli calculated from 10-35% strain, are shown in 

Figure 21. Different sections of rabbit brain: midbrain, cerebellum, and cortex, all have a very 

similar response to compression without significant differences in stress-strain curve or com-

pressive moduli. It was also noted that both SPM and SPD crosslinked GG have linear de-

pendence between crosslinker concentration and compressive modulus, and thus enable the 

easy tuning of the mechanical characteristics by changing concentration. Fracture strength 

and fracture strain were also measured, and the fracture strength had a similar linear depend-

ency on crosslinker concentration as the compressive modulus (Figure 21). Fracture strain 

only changed slightly over the studied crosslinker range, staying around 30 to 40%, which is 

rather brittle for a hydrogel. The addition of laminin as a physical mixture did not affect the 

mechanical properties (data not shown). 

The hydrazone crosslinked gelatin-GG in Publication III had a much stickier surface charac-

teristic than the bioamine-GG and made handling more difficult. Thus, the compression sam-

ples had to be prepared in single-use PDMS molds, from which the samples were cut. The 

difficult handling likely decreased the reproducibility between parallel samples and increased 

error in the results. However, at least five parallel samples were still tested per composition. 

Figure 22 shows the comparison of gelatin-GG compositions between each other and with 

rabbit heart tissue. The most noteworthy result is the highly biomimetic stress-strain curve of 

F5-CDH that closely follows the shape of the heart muscle curve. The brain and heart tissue 

have a similar elastic shape of the curve, but the heart muscle is much stronger. When in-

creasing concentrations, the trends were not as clear as those seen in Publication I. The 

compressive moduli were analyzed according to Hooke’s law. An interesting result with the 
same F5-CDH gel was a significantly higher modulus and fracture strength compared with all 

other studied hydrogels. This gel had disproportioned amounts of gelatin (more) and GG (less), 

potentially finding a sweet spot of crosslinking efficiency.  
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Figure 21. (a) Representative stress-strain curves of the six tested bioamine GG hydrogels com-
pared with rabbit midbrain. (b) Average compressive moduli of the bioamine cross-
linked GG hydrogels with error bars showing the standard deviation. (c) Fracture 
strengths and fracture strains of the studied hydrogels, strength on primary y-axis, 
strain on secondary y-axis. In (b) and (c) n=5, *=significant difference at p  0.05. Image 
modified from Publication I. 
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Figure 22. (a) Representative stress-strain curves of F1-F7 hydrogels compared with rabbit heart 
tissue. (b) Zoomed-out view of the comparison between F5-CDH composition and rab-
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bit heart, showing very close mechanical biomimicking. (c) Compressive moduli meas-
ured case-by-case at the perceived LVER. (d) Fracture strains (primary y-axis) and 
fracture strengths (secondary y-axis). n=5, *=significant difference at p  0.05 (from 
Publication III). 

Only SPM crosslinked GG hydrogels were successfully tested rheologically in amplitude 

sweep, SPD crosslinked GG did not have a discernible LVER, which was likely due to the too 

high anisotropy of the microstructure and the polymer mesh. All the SPM gels had LVER in a 

similar range and both storage and loss moduli of between 1 and 10 kPa (data not shown). 

The calculated complex moduli again showed comparable dependency on crosslinker concen-

tration to the compressive modulus (Figure 23). The frequency sweep showed a linear line 

with storage modulus higher than loss modulus, proving a typical gel-like material response 

(data not shown). Overall, the rheological studies did not yield significantly different information 

on the mechanical response than compression testing. 

 

Figure 23. The rheologically measured complex moduli of SPM crosslinked GG hydrogels. Image 
modified from Publication I. 

The hydrogel composition GG 1.10%SPM was selected for more careful study in Publication 

IV to gain a deeper understanding on the compression response of this rather brittle, physically 

crosslinked hydrogel type. First, the effect of measurement parameters was studied further by 

changing the starting point of measurement with and without pre-load, by increasing and de-

creasing friction between the sample and the measurement plate, and by varying the displace-

ment rate. The resulting suggested protocol for hydrogel compression testing based on these 

experiments is presented in Appendix III. Then, the compression analysis was conducted us-

ing true stress (Cauchy stress) and true strain (Hencky strain) and supplemented with 3D-DIC 

measurement conducted simultaneously with the compression testing. Figure 24 shows ex-

ample stress-strain curves with both engineering and true parameters and the validation of the 

suitability of the true parameters and the deviation of the engineering parameters based on 

3D-DIC. 
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Figure 24. Comparison of a GG 1.10%SPM engineering stress-strain curve with the true stress-
strain curve based on 3D-DIC measurement and the calculated Cauchy stress–Hencky 
strain curve, with a displacement rate of 10 mm/min. Image modified from Publica-
tion IV. 

The 3D-DIC measurement gave additional insight on both the strain distribution in the sample 

during compression as well as on the deformation of the sample. This was used here as vali-

dation of the change of cross-sectional area and for determining true strain. The Poisson ratio 

of the hydrogel could be measured with a further development of 3D-DIC, but currently the 

literature value of 0.5 for GG [J. Tang et al., 1996], indicating incompressible hydrogel with 

constant volume, was used in the analysis. The full-field axial strain map from 3D-DIC is shown 

in Figure 25 (a). Based on this, it can be concluded that the calculated true strain reliably 

represents the strain in the middle of the sample, as presented in Figure 24. Figure 25 (b) 

shows the verification of engineering strain between machine recorded and DIC measured 

values as well as the fracture of the sample. Even though the DIC correlation fails due to a too 

rapidly changing sample surface after fracture, 3D-DIC or just the magnified video could also 

be a valuable tool for studying hydrogel fracture mechanics and crack initiation. A clear, pro-

cedural change in the sample cross-sectional area is seen in Figure 25 (c) and (d), illustrating 

why simply defined engineering stress and strain values are not accurate in demonstrating the 

compression response of a hydrogel. Figure 25 (c) and (d) also depict the radial surface de-

formation with varied friction between sample and compression plate and a clear barreling 

effect is observed. The barreling is approximately symmetrical when the friction is higher, and 

the sample deformation is even. The combinatorial effect of uneven deformation and aniso-

tropic sample microstructure are likely causing high standard deviation between parallel hydro-

gel samples. 
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Figure 25. (a) Representative image of 3D-DIC measured strain field in the loading direction at GG 
1.10%SPM sample surface 8 seconds after start of compression with displacement 
rate of 10 mm/min. (b) Verification of engineering strain measurement based on DIC. 
Fracture of the sample at 14.5 second time point. (c) and (d) the radial surface defor-
mation for hydrogel samples during compression, time interval between each curve is 
1 second. (c) Fresh paper between sample and compression plate to increase friction. 
(d) Reused paper with pores filled with hydrogel residue and reduced friction. Image 
modified from Publication IV. 

The experiments with varied pre-loading conditions proved the existence of a so-called toe 

region as part of the material response. This type of increase in strain with very small stress 

before a more pronounced linear stress-strain response is typical for biological materials and 

tissue, but unseen, for example, with metallic materials. In most soft tissues, there are two 

different molecular parts of the ECM that take the load and are responsible for the material 

response. First, very elastic elastin fibers elongate and, after they have reached their limits, 

collagen fibers take over the load, resisting deformation more and in a more linear fashion. 

Purely nonlinear elasticity is possible on the microscopic scale. As GG has a double helix 

molecular structure and collagen is a triple helix, when GG hydrogels are deformed, their initial 
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response is highly biomimicking, with helix unfolding occurring in both cases. Based on this 

finding, the stress-strain curves were interpreted and analyzed as piecewise linear elastic re-

gion, determining two elastic moduli: E1 for toe region elastic modulus and E2 for second linear 

elastic modulus, as shown in Figure 26 for GG 1.1%SPM and GG 0.6%SPM hydrogels. 

 

Figure 26. Determination of bilinear elastic moduli with linear fitting using true stress and true strain, 
graph above for GG 1.1%SPM and below for GG 0.6%SPM. Image modified from Pub-
lication IV. 
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5.4. Microstructure 

The microstructure of six different hydrogel compositions were analyzed in Publication II using 

OPT via Haralick’s textural features and MDA [Haralick et al., 1973, Duda et al., 2001, Gupta, 

Markey, 2005]. For image processing, the texture is just the spatial arrangement of pixel inten-

sities. As it was noted that pixel intensity histograms do not reveal all the information ingrained 

in the texture, the GLCM method was used to extract the spatial dependence of gray level 

values and to characterize the texture. As GLCM does not describe shape properties, it should 

only be used for microstructure analysis and not on large scale structures. The texture was 

analyzed from both projection images and from the reconstructed images of OPT to verify if 

one produces easier to interpret data. It was, however, noted that either image type could be 

used for texture analysis alone. The only benefit of using a reconstructed image is getting the 

full 3D image analyzed. Different textural features are highlighted between image types, as 

can be seen in Figure 27, but the information gained is essentially the same. 

Because the total of 13 Haralick’s features are too many to present in comparison, MDA was 

used to reduce the dimensionality of the data to three dimensions with three discriminant func-

tions, implementing a previously published toolbox [Gupta, Markey, 2005]. These show the 

combination of features that contribute most to the separation of different hydrogel formulations. 

The exact names of the features are irrelevant on this level of analysis, the major result is how 

they contribute to distinguishing between the different hydrogel formulations. As shown in Fig-

ure 27, both GG-MA gels differ from all the GG gels without the methacrylate modification more 

than any unmodified GG formulations differ between each other. This is logical because the 

photoGG-MA is also more densely crosslinked and has both chemical and ionic crosslinking, 

while the others are only ionically crosslinked. It was additionally noted that GG-MA gels also 

have poorer transparency than SPM crosslinked gels, which can affect the monitoring of cell 

cultures and especially disease modeling. This indicates that even though the resolution of 

OPT is not enough to visualize the actual polymer network and its crosslinks, the variations in 

crosslinking density carry over to be contrast enhancing variations in optical density as well. 

When concentrating on the ionically crosslinked GG, it is clear that the SPM crosslinked gels 

have the most similar texture, but even they are distinguishable from each other. The separa-

tion between iGG-Ca and iGG-SPM-H or iGG-SPM-L is more distinctive, clearly presented in 

Figure 27(c). This can be directly traced to the different charge of Ca2+ and SPM molecules, 

affecting both the structure of the hydrogel network and the texture. The high separation of 

iGG and iGG-Ca can be easily explained by the different polymer concentration, as iGG was 

used as a reference to photoGG-MA and iGG-MA, while iGG-Ca was primarily a reference to 

iGG-SPM-H and iGG-SPM-L. It was later attempted to correlate the high amount of numerical 

data provided by Haralick’s textural feature analysis with other properties of hydrogels, but an 
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insufficient amount of data prevented further correlation between image texture and mechani-

cal properties or neurite length [Koivisto et al., 2018].  

 

Figure 27. Image texture analysis workflow and results. (a) Example single projection image of 
iGG-Ca hydrogel with visible texture. (b) Reconstructed 3D image of the same hydro-
gel highlighting the texture. Haralick’s textural features of all the studied hydrogels pro-
jected onto 2D subspace after MDA, (c) projection images, (d) reconstruction images. 
Image modified from Publication II. 

In addition to texture analysis, the OPT setup was used for studying mass transport of known-

sized (20 kDa, 15k Da, 2000 kDa) fluorescent dextran molecules through the six hydrogel 

compositions of Publication II. Dextran sizes were chosen to represent different types of mol-

ecules in the cell culture: 20 kDa or smaller is relevant for nutrients and growth factors, 150 kDa 

for smaller ECM proteins, and 2000 kDa covers all ECM molecules except for the largest pro-

teoglycans [Leddy, Guilak, 2003]. The mass transport was recorded as the progression of the 

fluorescent wavefront through the hydrogel, downwards from the top. The imaging was done 
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in purely 2D without rotating the sample, just taking advantage of the large field-of-view of the 

OPT setup. As expected, it was noted that 20 kDa dextran travels much faster through the gel 

than the 150 and 2000 kDa dextran. These other two have a more similar velocity together and 

they do not reach as far inside the gel during the measurement. This indicates a threshold pore 

size somewhere between 20 kDa and 150 kDa molecules, the smaller ones passing through 

smaller microstructures than the larger ones. Then, there was another threshold between the 

middle and the largest dextran, but even the largest of these molecules will pass through the 

hydrogel eventually. 

The penetration depth for the studied dextran-hydrogel conditions over time are shown in Fig-

ure 28. In all the tested conditions, 20 kDa dextran had a statistically significant difference in 

transport velocity compared with the other dextrans in the same hydrogel. Furthermore, when 

comparing the transport of same dextran size in different compositions, no statistical difference 

was found in comparison between iGG-SPM-L, iGG-SPM-H, and photoGG-MA, and indicates 

similar pore sizes in all these compositions. The observed penetration velocity is not linear due 

to dilution of the diffusing agent and photobleaching of the fluorophore, thus causing a loss of 

fluorescence signal over time during the test.  

Due to the observation of the wavy mass transport wavefront, we defined an index of homo-

geneity to quantify the effect of different crosslinking methods on the isotropy of hydrogel’s 
microstructure, indicated already in the texture reconstruction and analysis. This index states 

the uniformity of parallel samples within a single composition as well as the differences be-

tween compositions related to single dextran size. As Figure 28 shows, the SPM crosslinked 

gels were the most homogenous, while iGG-MA and iGG-Ca gels had the greatest variability 

both within their groups as well as the lowest homogeneity overall compared with other gels. 

Even though this mass transport study does not directly give a value for the pore size, the 

knowledge of how fast certain molecules travel through the hydrogel can be actually more 

valuable, as the effects of molecular charge and shape are already summed in the transport 

behavior. 
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Figure 28. Mass transport of three differently sized dextran molecules in GG hydrogels. (a) Pene-
tration depths over 250 min imaging time. (b) Defined indices of homogeneity based 
on the uniformity of diffusion wavefront progression. Image modified from Publica-
tion II. 
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5.5. Cell response 

The designed hydrogel compositions were tested for cytocompatibility in both 2D and 3D con-

ditions using various human cell lines relevant for soft tissue engineering. As explained in Fig-

ure 15 in Chapter 4.3.4.1, the 2D culture on top of a hydrogel gives information on cell attach-

ment, while 3D culture is the actual application sought, where the diffusion of nutrients and the 

microstructure of the hydrogel also play a major role in cell response. In both conditions, the 

hydrogel will also provide mechanical cues for the cell’s mechanotransduction provided the gel 

is thick enough. Neuronal cell cultures were conducted in Publication I and fibroblast and 

cardiomyocyte cultures in Publication III. 

5.5.1. hPSC-derived neuronal cells  

Neuronal cells of both hESC and hiPSC origin were used when characterizing the cell re-

sponse. However, no significant differences were observed in any of these experiments and 

the results were reproducible with all the cell lines used. The cytocompatibility of the gelation 

process was studied by casting different bioamine crosslinked GG hydrogels on top of a week- 

old, attached neural culture. The gelation process or exposure to pure bioamine prior to gela-

tion did not cause any acute cytotoxicity and the neuronal maturation continued similarly as in 

the positive 2D control cultures without hydrogel. Good viability was shown by Live/Dead® 

staining (Figure 29). Immunocytochemical staining shows expected neuronal protein expres-

sion and also proves the adequate diffusion of both nutrients and staining antibodies through 

the hydrogel to the cells underneath (Figure 29). 

On top of the bioamine crosslinked GG, the neuronal cells remained viable during a prolonged 

culture period of 2 weeks. Cell-type specific behavior, i.e., neurite migration, was observed in 

approximately 50% of cases. When the gel was functionalized with the addition of laminin as 

a physical mixture, the neurite migration increased the most dramatically in the GG 3.00%SPD 

gel. Figure 29(d) shows a representative neurite migration on top of the GG 3.00%SPD gel 

functionalized with 1% laminin compared with non-functionalized gel. When increasing the 

amount of laminin up to 10%, a significant increase was found in the neurite length, the more 

laminin the better the cell response. A similar result was found in encapsulated 3D condition, 

where neurite migration, density, and length all increased in 3D culture when the amount of 

laminin was increased. A full 3D neuronal network expressing typical neuronal markers is 

shown in Figure 30. However, the best composition, 10% laminin per hydrogel, is not a sus-

tainable composition for further use simply due to the high cost of laminin reagent, and we did 

not even use the more expensive recombinant laminin here. Thus, alternative functionalization 

methods, such as the laminin fragment E8, peptides, or fibronectin protein, are required for the 

actual routine use of GG-based hydrogels in neural disease modeling or clinical tissue engi-

neering applications. 
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Figure 29. Representative micrographs of neuronal cell cultures under and on top of the bioamine 
crosslinked GG hydrogel. Row (a) phase contrast images, row (b) Live/Dead® viability 
analysis, row (c) immunocytochemical staining against MAP-2 and -tub (red) and 
DAPI (blue). Scale bar 50 m for rows (a-c). (d) Neurite migration from neurospheres 
on top of the GG 3.00%SPD hydrogel with (above) and without (below) 1% laminin 
functionalization. Scale bar 100 m for panel (d). Image modified from Publication I. 
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Figure 30. Confocal microscope maximum intensity projection of the neuronal cell network growing 
encapsulated in 3D in the GG 3.00%SPD hydrogel functionalized with 10% laminin. 
Immunocytychemical staining against MAP-2+ -tub (green), labeled with phalloidin 
(red) and DAPI (blue). Image modified from Publication I. 

5.5.2. Human fibroblasts 

The cytocompatibility of hydrazide modified gelatin (gelatin-ADH & gelatin-CDH) was first 

tested as a coating material with human WI-38 fibroblasts plated on top of the coating. Even 

though the hydrazone crosslinking occurs in mild conditions, it is important to check the com-

patibility of the reactive groups, as that will greatly affect cell encapsulation later. The fibro-

blasts attached, elongated, and proliferated on the modified gelatin coatings as well as on the 

control native gelatin coating. 

The actual hydrazone crosslinked gelatin-GG hydrogels were tested by culturing fibroblasts on 

top of the gels in 2D and encapsulated inside the gel in 3D. The gelatin coating test essentially 
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replaced the underneath gel culture condition, which was used with neurons, as explained in 

Figure 15 in Chapter 4.3.4.1. Cells were studied at day 3 and day 7 with Live/Dead® staining 

to examine both the initial and prolonged effect of the hydrogel conditions. The cells tolerate 

the aldehyde groups of GG-CHO, so cytotoxic effect is observed. The length of the polymer 

chain attached to the aldehyde is speculated to have importance on cytotoxicity, smaller mol-

ecules penetrating the cell more easily. The calculated cell viability percentage is shown Figure 

31 and a clear improvement in the viability is seen in all 3D gelatin-GG conditions compared 

with unmodified GG. The majority of the cells were alive and showed elongation already at day 

3 and more so on day 7, as can be seen in Figure 32. On top of the gelatin-ADH gels, the 

fibroblasts seemed to randomly form either loose cell aggregates or a continuous cell mat, 

likely due to active proliferation and confluence. On top of the gelatin-CDH gels, the cells did 

not form as many clusters, but instead preferred to stay individual and even more elongated. 

 

Figure 31. Measured fibroblast viability percentage based on the number of live cells compared 
with all cells in the image, 4x magnification images (from Publication III). Error bars 
represent mean values ± standard deviation, n  3, p* < 0.05. 

A remarkable amount of fibroblast elongation was seen in the 3D cultures in all hydrazone 

crosslinked gels. The cells were very long and elongated in all directions, as seen in Figure 32. 

The open aldehyde groups in modified GG did not have a cytotoxic effect on the cells, and 

neither did the gelation process. As wide field fluorescence microscope was not enough to fully 

deliver the 3D information, OPT in bright field mode was used to better visualize the cell re-

sponse in 3D. Figure 33 shows representative results from OPT imaging in control F7-SPD gel 

compared with gelatin containing F3-ADH. Especially the reconstruction video was deemed a 

great tool for the assessment of large cell populations in 3D culture conditions at mesoscopic 

scale. In addition to qualitative analysis, the cell numbers and morphology can be also further 

analyzed from the OPT reconstruction images [Belay et al., 2018]. This makes OPT a highly 

desirable imaging method for any hydrogel 3D cell culture application, whether it is for studying 

the development and myelination of neural networks, the maturation of cardiomyocytes, or 

tissue formation in a TE scaffold.   
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5.5.3. hiPSC-derived cardiomyocytes 

The hydrazide modified gelatins were tested as coatings with human cardiomyocytes for comparison 

with our normal culture conditions on native gelatin coating. When replated, the cells recovered their 

spontaneous beating phenotype in all coating conditions after overnight incubation, indicating the 

chemical modification did not hinder cardiomyocyte response. However, the focus in Publication III 

was testing the cardiomyocyte aggregates in hydrogel conditions. As cardiomyocyte aggregates can 

be very tightly packed, the aggregates were treated with a modified enzymatic dissociation protocol 

to loosen the aggregate, allowing more interaction with the surrounding hydrogel environment but 

not breaking it down to the single cell level. The cells attached on all the tested hydrogels and cell 

migration out of the aggregate and into the hydrogel was noted, as the representative examples in 

Figure 34 show. The protein level expression of the cardiac markers TNNT2 and ACNT2 plus the 

RNA level expression of MYBPC3 confirms the cardiac nature of these cells, shown in Figure 34 (a). 

 

Figure 34. (a) qRT-PCR shows an increase in the cardiac marker gene expressions, most notably on 
TNNT2, when comparing F3-ADH and F5-CDH to gelatin coating control, relative to house-
keeping gene GAPDH. Standard deviations are from 3 biological replicates, each done in 
technical triplicate. (b), (c) and (d) Immunocytochemical staining of hiPSC-derived cardiomy-
ocytes for TNNT2 (red), for ACNT2 (green), and for DAPI (blue). (b) 2D gelatin control, (c) 
F3-ADH, (d) F5-CDH. The density of the cell aggregate interferes with light penetration, caus-
ing blurriness in the image. Scale bar length 200 m. (from Publication III) 

The cardiomyocytes recovered their spontaneous beating after overnight culture either on top of or 

encapsulated inside the hydrogel. This beating behavior is a good indication of the suitability of the 

material for use in cardiac applications. The cardiomyocytes did not recover their beating in unmod-

ified GG or in GG with only a physical mixture of gelatin. The physical mixture of gelatin in GG is 
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only possible to a small degree because without hydrazone crosslinking and modification the gelatin 

interferes with bioamine GG crosslinking and causes the formation of a dense white net inside the 

hydrogel. The spontaneous beating was recorded as phase contrast video, analyzed with digital 

image correlation based BeatView® software [Ahola et al., 2014], and presented in Table 4. An ex-

ample of the beating pattern is shown in Figure 16 in Chapter 4.4.6. The beating characteristics 

remained within expected, normal range for both beating frequency and contraction-relaxation dura-

tion, and thus all the tested hydrogels are suitable for further cardiac studies.  

Table 4. The results of beating analysis of hiPSC-derived cardiomyocytes in gelatin-GG hydrogels, n=4. 

Material 2D / 3D 
Ratios 
[mg/mL] 

Beating 
rate [BPM] 

Standard 
deviation 

Contraction-
relaxation-  
duration [ms] 

Standard 
deviation 

Gelatin coating control 
2D 

100 35.78 ± 20.41 568.60 ± 127.10 a) 
GELA-ADH coating 100 42.35 ± 6.69 435.50 ± 154.02 
GELA-CDH coating 100 35.60 ± 20.18 662.44 ± 268.50 a) 

F1-3-ADH 
2D 

40:40 36.71 ± 17.74 435.25 ± 113.70 
40:20 68.04 ± 17.01 305.21 ± 65.13 

3D 
40:40 72.10 ± 15.14 264.14 ± 41.97 
40:20 52.70 ± 47.60 474.59 ± 303.62 a) 

F4-6-CDH 

2D 
60:60 38.63 - b) 423.74 - b) 
60:40 37.73 ± 2.78 b) 434.34 ± 38.96 b) 
40:40 41.56 ± 5.33 393.14 ± 63.67 

3D 
60:60 35.77 ± 7.00 403.68 ± 44.01 
60:40 37.99 ± 6.50 452.44 ± 32.85 
40:40 33.82 ± 3.02 491.88 ± 15.65 

a) Major prolongation in contraction-relaxation interval detected in one sample. 
b) Elasticity of hydrogel transferring movement over a long distance interferes with beating analysis, so 
only one or two aggregates were analyzed successfully. 

In the videos, it was possible to see how the cells pulled the hydrogel. First of all, this is proof that 

the cell aggregate has attached to the hydrogel as it can exert forces on the hydrogel network and 

deform it. Furthermore, this also shows that the hydrogel is mechanically compliant enough for the 

cardiac application because a material that is too stiff would not deform under the forces the cells 

can exert. This is especially important in the encapsulated 3D case, as an aggregate which is con-

nected to its surroundings from all sides would not be able to move if the surrounding hydrogel would 

not move with it. As the compression measurements in Chapter 5.3. show, the hydrazone cross-

linked gelatin-GG hydrogels were all mechanically biomimicking with heart tissue at small strains. 

The most biomimicking composition F5-CDH did not stand out in the cardiomyocyte tests. This was 

likely due to the other gels being elastic and compliant enough at small strains relevant for cell culture. 

However, if implanted in an actual heart for clinical TE, higher strains could be relevant and gelatin-

CDH gels would be most attractive for initial tests. 
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6.1. The need for hydrogels and 3D cell culturing methods 

The best universal hydrogel formulation for soft TE or TE as a whole, has yet to be found. Moreover, 

the field of biomaterials science is constantly developing novel hydrogel designs to cover the needs 

of biologists and clinicians. A vast number of hydrogel forming polymers have been studied [Chirani 

et al., 2015] and quite many are also commercially available [Caliari, Burdick, 2016]. In fact, there 

are so many that it is already impossible to test all the published formulations for a specific cell 

culture application and even more difficult to follow all the advances in the field. Even just within 

polysaccharides, the number of published polymer combinations and hydrogel crosslinking strate-

gies for compatibility with various cell types was already in the several hundreds ten years ago [Mal-

afaya et al., 2007]. Moreover, when concentrating on just those hydrogel-containing studies with the 

aim of treating brain injuries, the number of base hydrogels is just around ten, but the number of 

published hydrogel combinations is over a hundred in total [Kornev et al., 2018]. It is therefore a 

relevant question whether more hydrogels are still needed.  

When reviewing the literature, however, there are very few commercial TE products on the market 

and only a few that are currently in the clinical testing phase and being used by a few surgeons 

[Caliari, Burdick, 2016, Khademhosseini, Langer, 2016, Gomes et al., 2017, Missirlis, Vallet Regi, 

2017, Langer, 2017]. Hence, the field of TE is concentrated on finding novel formulations with very 

little energy being aimed at the actual translation to clinical practice and commercialization. Indeed, 

when reviewing the published novel hydrogel formulations, the main focus is still on just proving that 

(A) the polymers crosslink to form a hydrogel and (B) that they are cytocompatible. At the moment, 

there is far too little progression from this initial stage to the actual use in a TE application and to 

finally help patients, which is and should be the ultimate goal. 

So, when critically comparing Publications I & III to the literature, it can be said that we have the 

same fault of concentrating only on the initial stage of hydrogel development without advancing the 

development to actual applications. However, we can reject this criticism for a number of reasons. 

First, the bioamine crosslinked GG developed in Publication I provides a simple to use and relatively 

6. Discussion 
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cheap model hydrogel for the further development of hydrogel characterization methods, such as 

the ones developed in Publications II & IV, where it has been used. Moreover, because the stand-

ards in the field are still rather vague, the development and improvement of material characterization 

methods specifically relevant for hydrogels is important [ASTM F2900, 2011]. Second, the intended 

application of neural 3D cell culture is still lacking a scaffold material that would serve to fulfill all the 

needs, such as guided directional growth. Even though several other hydrogels have also been 

tested specifically in the application together with hPSC-derived neuronal cells [Ylä-Outinen et al., 

2012, Hyysalo et al., 2017, Karvinen et al., 2018, Kornev et al., 2018], the best one for this specific 

indication has still to be found. The simple functionalization of bioamine-GG by mixing with laminin 

significantly enhances the cell response, mainly the length and amount of neurite spreading. The 

results conclusively show that the higher the amount of laminin in the hydrogel, the better the cell 

response. However, this creates a new problem because the price of laminin is currently too high for 

continuous and routine use of laminin functionalized bioamine-GG in amounts relevant for the appli-

cations of neurobiologists. Thus, the hydrogel formulation found most suitable for the neuronal ap-

plication is still not in routine use for purely financial reasons. This is another aspect that should be 

taken into account during the early stages of hydrogel design. Either the final application in clinical 

TE needs to be vital enough to justify the material costs or cheaper production methods with scale-

up possibilities need to be further researched. 

However, the cell results shown in Publication III offer the promise of a highly usable hydrogel 

formulation. The elongation of fibroblasts in all the gelatin-GG compositions was already visible at 

day 3, or even earlier, and the 3D elongation seems to be of higher degree than many of the other 

recently published hydrogel studies that use fibroblasts for cytocompatibility testing [Gong et al., 

2009, Coutinho et al., 2012, H. Shin et al., 2012, López-Cebral et al., 2013, Xu et al., 2018, M. Khan 

et al., 2018], and the same applies for quantified cell viability [Pacelli et al., 2016]. The feature we 

have in common with other published studies showing similar cell elongation results as ours is the 

functionalization of GG with gelatin or RGD [Wen et al., 2014, Koshy et al., 2016, Canadas et al., 

2018, George et al., 2018]. Likewise, when using either mouse myoblasts [Ferris et al., 2015] or 

primary rat cardiomyocytes [Y. S. Zhang et al., 2016, K. Zhu et al., 2017] instead of fibroblasts, a 

similar improvement of cell response after ECM functionalization is seen. However, even with gelatin, 

if either the UV exposure during crosslinking or the shear stress during 3D bioprinting is too high, 

the advantageous effect can be negated, at least in the short term [H. Shin et al., 2012, Melchels et 

al., 2014, K. Zhu et al., 2017]. Thus, RGD, gelatin, collagen, or another ECM molecule with available 

cell attachment sites is needed for good cell response. This of course should be an obvious conclu-

sion, but unfortunately, hydrogels are still developed without considering valid attachment sites for 

cells. 

The above considerations lead to the rational design principles of hydrogels, which require a whole-

some view of the application area. The design of hydrogels should at least take into consideration 



 

95 

 

the following points [Brandl et al., 2007, Geckil et al., 2010, Chen, Liu, 2016, Duan, 2017, Darnell, 

Mooney, 2017]: 

1. Biocompatibility of both the polymer itself and the crosslinking strategy. The cells must sur-
vive the encapsulation and must have an adequate number of attachment sites to flourish. 
The cytocompatibility must also include enough attachment sites for the cells. 

2. Gelation time and shelf-life of components. 

3. Mechanical biomimicry combined with adequate strength to endure the forces in the in-
tended application. 

4. Microstructure and porosity suitable for the application, the larger the scaffold, the more 
important this becomes. 

5. Biodegradability or stability depending on the application 

6. Scalability of production and price in a range justifiable for the intended application. 

7. Suitability to be used with the intended scaffold manufacturing method, for example, 3D-
printability or injectability. 

8. Transparency in the case of disease modeling, where cells need to be constantly monitored 
during the culture period. 

Many of the methods to measure and quantify the aforementioned properties have been discussed 

elsewhere in this thesis, but how to conduct the rational design based on previous experiments and 

the literature? A rising trend in all fields of natural sciences is the use of artificial intelligence (AI) and 

automatization, both in experiment design as well as in data analysis and interpretation [A. Vasilevich, 

de Boer, 2018, Lan et al., 2018]. The use of AI-controlled robots to carry out repetitive tasks, such 

as pipetting multiple closely similar compositions or recording signals from the cells, allows scientists 

to concentrate on higher level decision-making and the formulation of the most relevant research 

questions. Making the menial tasks in the screening phase more automatic and increasing high-

throughput allows more time for method development and creative work. [A. Vasilevich, de Boer, 

2018] The biomedical field is already collecting vast amounts of data and utilizing data mining AI as 

part of bioinformatics to better understand the complex interplay of biological molecules [Lan et al., 

2018]. Combining the materials science data held in libraries in a similar fashion to biological data is 

lagging behind genomics and other “omics”, but the process has begun. Some examples of which 

are the Materials Genome Project [A. White, 2012, Jain et al., 2016] and the even more specific 

hydrogel combinatorial library [Vegas et al., 2016]. Screening can also be related to only the material 

properties, only the chemical properties of biomolecules, or on the cell-biomaterial interaction 

[Gomes et al., 2017, A. S. Vasilevich et al., 2017, Leijten et al., 2017]. 

Conducting hydrogel screening in an automatic fashion is one aspect, but the more interesting for 

rational design is the prediction of material properties. This can also greatly reduce the amount of 
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screening needed, if accurate predictions already rule out some compositions as being irrelevant. AI 

and data mining are of course important in the prediction of properties [A. Vasilevich, de Boer, 2018, 

Lan et al., 2018], but the algorithms behind AI do not always have to be too complex, as shown, for 

example, by Antoine et al. with tunable collagen hydrogels [E. E. Antoine et al., 2015]. The use of 

multidimensional image texture data for the prediction of hydrogel properties was also suggested in 

Publication II. Combining the analysis of texture properties of Publication II with the mechanical 

properties and neuronal cell culture results of Publication I has actually been conducted using re-

gression analysis and mathematical neural network. However, the main conclusion of that study was 

that more data are needed for a meaningful analysis and prediction of properties. [Koivisto et al., 

2018]  

6.2. Challenges of mechanical testing 

A new, opposing point to our hypothesis raised by the Publication I is that neuronal cells seemingly 

preferred a hydrogel stiffer than that generally reported to be suitable for neural applications. Im-

portantly, however, many of the hydrogel studies where the mechanical properties of the material 

are studied together with neuronal cell culture use rheology as the characterization method. The 

shear modulus or storage modulus can sometimes be interpreted as elastic modulus, which should 

be a compressive or tensile property. This false comparison straight from shear modulus to com-

pressive modulus, naming both of these as elastic moduli, gives a false impression of what exactly 

is the preferred stiffness for neuronal cells. [Callister, 2003, Flanagan et al., 2002, Levental et al., 

2007, Discher et al., 2009, Pogoda et al., 2014, Budday et al., 2017, Antonovaite et al., 2018] So, 

when specifically comparing the brain compressive modulus, analyzed from engineering stress and 

strain, our reported modulus of 10 kPa (for rabbit brain) is actually smaller than a literature value of 

17-25 kPa (for rat brain) [Karimi, Navidbakhsh, 2014]. Then again, multiaxial compression-shear 

measurements on actual human brain show a modulus of ~1 kPa with a note that compression yields 

higher moduli than shear or tension experiments [Budday et al., 2017]. Thus, as stated in Publica-

tion I, we are still in the correct stiffness range. Finite element simulations of human brain for neu-

rosurgery have even used the same 10 kPa elastic modulus that we reported [Peña et al., 1999, 

Taylor, Miller, 2004].  Furthermore, the standard deviation between parallel measurements can be 

± 5 kPa, both with hydrogels and with tissue samples, so the values should not be checked too 

rigorously. The small variations or errors can come from multiple sources, such as different meas-

urement speed of viscoelastic material, anisotropy and the direction of testing, anatomical interspe-

cies variations, and so on. Thus, our result of most observed neurite spreading in a 23 kPa hydrogel 

is not significantly different from the reported literature values [Peña et al., 1999, Taylor, Miller, 2004, 

Karimi, Navidbakhsh, 2014]. 
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However, the discrepancy between the expected results and our observations resulted in a deeper 

study of analysis methods and mechanical models of compression testing specifically using bioam-

ine-GG reported in Publication IV as well as by Karvinen et al. using hydrazone crosslinked HA-GG 

hydrogels [Karvinen et al., 2017, Karvinen et al., 2019]. First, an attempt to analyze the stiffness as 

a function of strain and as a second-order elastic constant was done [Brugger, 1964]. This method 

seems to work well for samples that do not fracture during the compression test, be they hydrogels 

or soft tissue [Karvinen et al., 2017]. However, when the sample does fracture during the test, it is 

more difficult to fit the polynomial equation on the stress-strain curve, or the polynomial fitting will 

arbitrarily change with the inclusion or exclusion of just a single measurement point around the frac-

ture (data not shown). Thus, another method was developed to extract the compressive modulus 

out of the stress-strain curve. In Publication IV, more emphasis is put on the determination of the 

elastic deformation region, leading to the definition of the two elastic moduli E1 for toe region and E2 

for the normally considered elastic region. The toe region itself is the initial part of a stress-strain 

curve that has been treated differently in the analysis in the literature. In simpler analysis, it is sug-

gested to just be disregarded as a non-important nonlinear part of the curve [Bandyopadhyay, Bose, 

2013, SFS-EN ISO 604, 2004]. However, as the toe region does biologically represent the phenom-

ena of elastin fiber elongation, the modulus of the toe region has also been previously measured for 

some scaffolds [Gentleman et al., 2006, Furmanski, Chakravartula, 2011]. Furthermore, many soft 

tissues have a similarity with GG on the molecular level, GG being a double helix structure and 

collagen a triple helix. Thus, the three molecular interpretations of response to load, as explained in 

Chapter 2.2.4. Figure 8, are valid for all the samples, GG hydrogels, brain, and heart, studied here. 

Thus, the response to compression can be called biomimicking even on a molecular scale. [Chan-

drasekaran, Radha, 1995, H. Kang et al., 2009, Shoulders, Raines, 2009, Elzoghby, 2013] In addi-

tion, the barreling effect recorded by 3D-DIC in Publication IV can be interpreted as being caused 

by the molecular scale buckling effect of these semiflexible molecules.  

As reviewed in Chapter 2.2.4. and reported by others as well, the applied mechanical model will 

naturally have an effect on the final modulus value [Oyen, 2014, Karimi, Navidbakhsh, 2014]. In 

Publication IV, based on Cauchy stress and Hencky strain [Hencky, 1928, Xiao et al., 2004], we 

report E1 = 4.84 kPa and E2 = 17.67 kPa for our model gel GG 1.10%SPM, while we report engineer-

ing stress and strain based modulus E = 22.6 kPa (  E2) for the same material in Publication I. 

Based on this, the range in which the elastic modulus of GG 1.10%SPM can be rounded is from 15 

to 25 kPa, but a more precise determination can be deemed unfeasible.  

Interestingly from the biological point of view, the precise sensitivity of cells with regards to mechano-

transduction is unknown. A highly relevant future study could focus on the local elastic modulus in 

some part of a hydrogel, more in the same range where the cells sense their environment, rather 

than testing the whole bulk material [Evans, Gentleman, 2014, Pogoda et al., 2014, Ferreira et al., 
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2018, Antonovaite et al., 2018]. Measurements comparing macro- and microscale mechanical prop-

erties have recently been reported rheologically for a novel amino acid-based hydrogel, but not uti-

lized with cells nor using GG- or gelatin-based hydrogels [U. A. Khan et al., 2018]. Comparisons of 

nanointendation or atomic force microscopy data with bulk compression testing for the exact same 

hydrogels and the use of those hydrogels as scaffolds for stem cell differentiation would be the key 

for both rational hydrogel design as well as for mechanotransduction studies [Galli et al., 2009]. Of 

course, the choice of applied mechanical model will also be the key in this suggested study as well. 

Even though the importance of mechanical properties on the cell culture are evident, the situation 

with defining and standardizing the hydrogel mechanical testing methods is still lacking [ASTM 

F2900, 2011, Oyen, 2014, Evans, Gentleman, 2014]. The problem is two-fold. First, different meas-

urement methods and parameters affect the results, as mentioned in Chapter 2.2.4. and in Publi-

cation IV. Second, the terminology used varies in this highly interdisciplinary field. One of the main 

problems is the various names of modulus used as the simple measure of stiffness. Synonymous or 

almost synonymous moduli include Young’s modulus, elastic modulus, compressive modulus, tan-
gent modulus, and secant modulus, all referring to static or relatively slow tests. Of these, Young’s 
modulus is the most widely used and can refer to both tensile and compressive case as does elastic 

modulus, while compressive modulus refers only to compression. The tangent and secant moduli 

can be tensile or compressive because they only define the curve fitting method. Further away are 

the bulk modulus, which is used for confined compression, and shear modulus, which describes 

stiffness parallel to the sample surface, not perpendicular to it like tensile and compression moduli. 

[Callister, 2003] In rheological characterization, the mainly used measures are storage modulus, loss 

modulus, and complex modulus. [Schramm, 1998] However, the term plateau modulus is also some-

times used for storage and loss moduli in the LVER [U. A. Khan et al., 2018]. Similarly, instantaneous 

and equilibrium moduli describe dynamic conditions [Roberts et al., 2011]. Unfortunately, the terms 

elastic modulus and shear modulus are also sometimes used to describe the storage modulus, which 

is the main source of confusion when interpreting the mechanical testing results of biomaterials. 

[Normand et al., 2000, Flanagan et al., 2002]  

The static measurement of elastic and shear modulus are coupled together via Poisson’s ratio, a 
parameter that defines how the material deforms in the direction perpendicular to the measured 

deformation. However, in dynamic testing Poisson’s ratio links together rheological storage modulus 
and elastic modulus for dynamic mechanical analysis, not between simple compression and rheol-

ogy. [Callister, 2003] For both hydrogels and tissues [Normand et al., 2000, Antonovaite et al., 2018], 

including ionotropically crosslinked GG [J. Tang et al., 1996], Poisson’s ratio is often assumed to be 
0.5, indicating an isotropic incompressible material. This assumption is based on the incompressi-

bility of water in the swollen hydrogels but might not be accurate due to poroelasticity [Nakamura et 

al., 2001, Cai et al., 2010]. Likewise, the assumption of material isotropy is more accurate for some 
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hydrogels than for others, as shown by our index of homogeneity in Publication II. However, Pois-

son’s ratio can be also measured, for example, by using poroelasticity theory [Cai et al., 2010], non-

linear elasticity theory [Lane et al., 2018], by combining unconfined and confined compression [Mo-

resi, Bruno, 2007], or by 3D-DIC [Palanca et al., 2016, Lane et al., 2018] for a more accurate char-

acterization. The analysis of the Poisson’s ratios of our hydrogels is one interesting future step after 

Publication IV. Likewise, the dynamic mechanical response should be analyzed further. Even 

though the rheology of bioamine-GG hydrogels was briefly analyzed in Publication I and a stress 

relaxation method was proposed in Publication IV, similar studies are needed on both the highly 

cytocompatible gelatin-GG of Publication III as well as on control tissue for a comprehensive un-

derstanding of the mechanotransduction and mechanical properties of hydrogels. 

The main specific problem for hydrogel material development is that they are not yet widely used as 

bulk, true gels in many commercial applications, and thus the standardization of the testing methods 

related to these materials is still lacking [Oyen, 2014, Evans, Gentleman, 2014, A. S. Vasilevich et 

al., 2017]. For example, the ASTM F2900 “Standard Guide for Characterization of Hydrogels used 
in Regenerative Medicine” combines several relevant standards, but these are either too superficial 

on details or too specific for a single material type. A middle ground of generalized methods, but 

under a specific testing category, such as mechanical testing, is still, however, missing. [ASTM 

F2900, 2011] Another example, the ASTM F2150 “Standard Guide for Characterization and Testing 

of Biomaterial Scaffolds Used in Tissue-Engineered Medical Products” lists many more specific 

method-standards, but these standards primarily assume rigid polymers or metals and ceramics as 

the material groups to be studied, and therefore are not valid in the case of soft hydrogel materials. 

[ASTM F2150, 2013] Thus, the main standard concerning mechanical testing that is suitable for 

hydrogels is the ISO 640 “Plastics – Determination of Compressive Properties”, which was adhered 

to for the applicable parts in Publications I, III, and IV, even though it also assumes a rigid polymer 

[SFS-EN ISO 604, 2004]. For the scope of this thesis, the standards that are useful specifically for 

hydrogel biomaterial development are the ones that concern biological evaluation and biocompati-

bility [SFS-EN ISO 10993-5, 2009, ASTM F2150, 2013].   

As has been discussed by others in the literature as well [Oyen, 2014, Yue et al., 2015], the repro-

ducibility of the mechanical characterization of hydrogels between research groups, even for the 

same formulations, is lacking, and is mainly due to the non-standardized testing and analysis meth-

ods employed. The example of how the reported modulus of a simple agar hydrogel can vary over 

three magnitudes in the literature is a grave reason why more standardization is needed [Oyen, 

2014]. This variation is partially the result of comparing different moduli with each other, and high-

lights why it is important to only compare mechanical testing results with exactly the same setups 

and parameters. Combining this with the reported variability in the mechanical properties of soft 

tissue, such as brain and heart [Levental et al., 2007], it was an important decision to include the 

self-measured properties of rabbit brain and heart tissue in Publications I and III for a relevant 
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comparison between the developed hydrogels and the target tissue. Furthermore, as we performed 

a study on the effects of measurement parameters on material response in Publication IV, we also 

produced a suggested compression measurement protocol for hydrogel studies, presented in Ap-

pendix III. 

Finally, the carrying out of reproducible mechanical testing on both hydrogels and tissues leads back 

to the rational design [Brandl et al., 2007]. Once the cell requirements for cytocompatibility and  

mechanotransduction have been defined together with a standardized mechanical testing method, 

we can start using AI as the next step in rational hydrogel design [D. F. Williams, 2017, Walters, 

Gentleman, 2015, Oyen, 2014, A. Vasilevich, de Boer, 2018]. An understanding of the mechanical 

properties is also directly linked to the microstructure of the hydrogel. For example, the reported 

prediction of collagen scaffold deformation during cell culture helps determine the change in me-

chanical properties as well as the effect on cells over time [Raub et al., 2010]. Likewise, an interesting 

aspect would be to find deeper connections between crosslinking strategies and mechanical prop-

erties, especially between physical and chemical crosslinking, as both are relevant for our GG [Rob-

erts et al., 2011]. Publication II is already aiming towards this, but further studies are needed to find 

a correlation between mechanical properties and observed microstructure and density variations. 

6.3. Defining hydrogel microstructure, mesh size, and porosity 

The microstructure of a TE scaffold has multiple roles and is generally one of the quantified proper-

ties when developing new scaffolds. As stated in the previous chapter, microstructure and mechan-

ical properties are always linked together. It is therefore very difficult to study only the effect of the 

microstructure on cells without changing the mechanical properties, even though attempts at this 

have been made using PAA hydrogels or PDMS films [Pelham, Wang, 1997, A. J. Engler et al., 2004, 

Trappmann et al., 2012]. If  a hydrogel is only used as a 2D substrate with cells cultured on top of it, 

this can work. However, in 3D encapsulated conditions, the microstructure is changed because of 

the smaller crosslinking density when producing a less stiff material. Moreover, the number and 

density of attachment sites for cells likely varies as well when the crosslinking changes, which will 

affect cell response as well. Then, if a cell has more sites to attach to, does it behave differently than 

with fewer attachment sites? It is likely that the cell spreading is affected by the ability to form fewer 

or more focal adhesions. Thus, it is difficult to study mechanotransduction independently of micro-

structure. [Trappmann et al., 2012, Evans, Gentleman, 2014] It has, however, also been shown with 

rat smooth muscle cells that substrate stiffness can override the effect of attachment site density 

over a specific range, this just needs to be verified case-by-case [A. Engler et al., 2004]. Another 

interesting result with human MSCs in a PEG-based hydrogel has been reported that crosslinking 

density has a clear effect on differentiation, but it is uncertain whether this is due to stiffness, micro-

structure, or a combination thereof [Ferreira et al., 2018]. 



 

101 

 

Due to the link between mechanical properties and microstructure, our main approach was to meas-

ure and quantify the properties of our newly designed hydrogels and to see if the crosslinking had 

linearly proportional dependencies on these properties. To study the microstructure of GG hydrogels, 

the OPT-based methods developed in Publication II were highly efficient. The mass transport ve-

locities of different dextran molecules first of all showed that a neutral 20 kDa molecule travels rather 

quickly and easily through the hydrogel network, while over 150 kDa molecules are hindered signif-

icantly more. Then, the 2000 kDa is another step slower in mass transport. The calculated hydrody-

namic radius of these molecules are 2.8 nm, 8.0 nm, and 30.8 nm, for the 20 kDa, 150 kDa, and 

2000 kDa dextran molecules, respectively [Karvinen et al., 2019]. Thus, we now know that all our 

tested bioamine-GG hydrogels have a mesh size at least over 2.8 nm. Furthermore, there are also 

larger openings in the mesh or pores, corresponding to both over 10 nm and over 30 nm sizes. 

These results are important from the point of nutrient diffusion, as most of them are small molecules 

and even growth factors are around the 20 kDa size, so we can be sure that the hydrogel network is 

not preventing nutrients from reaching the cells [Leddy, Guilak, 2003]. However, this mass transport 

analysis does not take into account the effect of charge and other molecular affinities, as dextrans 

are neutral, so no reactions between them and GG are expected [Venturoli, Rippe, 2005]. Similar 

measurements for gelatin-GG hydrogels have not yet been carried out, but they should be conducted 

in future. 

Another important aspect is cell migration, spreading, and growth. The hydrogel network needs, for 

example, to allow neurite extension and growth through it, as studied in Publication I. For cells more 

prone to migration, the hydrogel should either have big enough pores for the movement or have cell-

degradable crosslinks or MMP-sites [Leijten et al., 2017]. Cell movement might be controlled, for 

example, by a stiffness gradient, such as in durotaxis [Hadden et al., 2017, Nemir, West, 2010], or 

by a chemical gradient of either bound or diffusing molecules, such as in chemotaxis [D. F. Williams, 

2017]. To guide the cell migration and tissue formation, several dynamically changing hydrogel sys-

tems have been designed, for example, with controlled network degradation [Leijten et al., 2017, 

Canadas et al., 2018, Ferreira et al., 2018]. However, in Publication III, we did not modify the deg-

radation rate, and only verified that the hydrazone crosslinked gelatin-GG was degradable by colla-

genase. 

The usefulness of transmission OPT in the imaging of hydrogel texture was a very novel finding in 

Publication II because, to the best of our knowledge, we are the only ones using OPT for material 

characterization purposes. While studying the scaffolds of rigid polymers with CT or SEM and quan-

tifying their porosity is a standard practice [L. E. Smith et al., 2010, Cengiz et al., 2018], the potential 

of OPT as a 3D hydrogel characterization method has not previously been fully realized. While our 

study shows how the different hydrogel formulations can be distinguished from each other via image 

texture analysis, a more interesting future study would be to combine the analysis of the texture 

causing density variations with a more thorough crosslinking and biodegradation study. In this way, 
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we would see the macroscopic, or at least mesoscopic, changes in the microstructure over time. 

This is comparable to studying the turbidity of hydrogels when formulating them. Indeed, our image 

texture analysis could be called 3D turbidity analysis [Lau et al., 2000]. Combining the image texture 

properties with mechanical characterization is another relevant future study that would just need 

many parallel samples to reach statistically significant results [Koivisto et al., 2018].  

Similar imaging studies have been conducted with CT on the texture of a gelatin-based scaffold 

[Massai et al., 2014]. However, like all CT studies on hydrogels, the gels were studied in freeze-

dried form and not in the water-swollen state. This is mainly due to the limitations of contrast and 

resolution to detect a polymer molecular mesh [Massai et al., 2014, Cengiz et al., 2018]. As stated 

earlier, studying the porosity of a freeze-dried gel makes sense only when the final application will 

also use freeze-drying as part of the scaffold manufacturing process [Alemán et al., 2009, García-

González et al., 2011]. The mixing of gels to be used for studying material properties in wet and dry 

states is one of the major problems in the field of hydrogel development. It is essential therefore that 

the final application should always determine how and in which phase the hydrogel material charac-

teristics are studied.   

6.4. The future of clinical tissue engineering 

Even though the concept of TE was presented already in the 1990s, very few TE-based clinical 

therapies are in routine use, and the current number of clinical trials using stem cell containing treat-

ments is rather modest [Langer, Vacanti, 1993, Place et al., 2009, Trounson, McDonald, 2015, 

Cossu et al., 2018]. There are multiple reasons for this slow uptake. One major problem is that TE 

is not exactly recognized by our current healthcare system and regulatory agencies because the 

implantation of cells inside a scaffold has a different kind of effect on the patient than only an implant 

or only a drug would have [D. F. Williams, 2004, SFS-EN ISO 10993-1, 2009, ASTM F2900, 2011]. 

Another problem is the lack of investments needed for clinical translation due to the challenges in 

immaterial property rights and patenting [Cossu et al., 2018]. Furthermore, not all studies that have 

progressed to clinical trials have reached their goals. Common causes of failure include poor survival 

of the cells, a minor or superficial therapeutic effect, and too high hopes on MSC functionality [Troun-

son, McDonald, 2015, Madonna et al., 2016]. Even some widely used hydrogel implants without a 

living cell component have been reported to fail in small but significant numbers in long-term studies. 

The polymer with the most reported problems is PAA. This polymer seems to have first progressed 

to wider clinical use in countries with less strict regulations and then progressed to wider use. The 

use of PAA in plastic surgery for both breast reconstruction and facial soft tissue augmentation has 

mainly caused problems due to implant migration or breakage under the skin and to a smaller degree 

due to infections. [Manafi et al., 2010, Shen et al., 2012, Patlazhan et al., 2013] Thus, while the 
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regulation of true TE is still coming, there is still work and optimization to be done in hydrogel devel-

opment alone, as discussed in the previous chapters.  

Regardless of finding the best hydrogel compositions for each application, a few trends are affecting 

the outlook of therapeutic clinical TE and guiding the field. One of the most important current trends 

in the field of materials science is 3D printing, which is also termed general additive manufacturing. 

In biomedical applications, 3D printing is used for high complexity samples, patient-specific custom-

ization, and small production sets [Ngo et al., 2018]. When samples that contain living cells are 

produced, it is called 3D bioprinting. The development of machines for 3D bioprinting has been rapid 

and there has already been reported a human-scale TE scaffold printer with combined translation of 

clinical images into printable files [Gomes et al., 2017]. This was demonstrated to be able to produce 

bone, cartilage, and skeletal muscle using tissue-specific cells or stem cells. The hydrogel or bioink 

used was composed of varying concentrations of gelatin, fibrinogen, and HA [H. Kang et al., 2016]. 

Another example is peripheral nerve regeneration, where a GelMA scaffold with primary neuronal 

cells and added growth factor release functionality has already been tested in rats [Johnson et al., 

2015]. Likewise, in the cardiac field, myocardial tissue, heart valves, and vasculature have already 

been printed [Duan, 2017]. Compared to above extrusion based 3D printing examples, laser-based 

printing allows higher contrast and finer details, as has been shown in neural application [Turunen 

et al., 2017]. Furthermore, when designing biodegradable or otherwise dynamically changing hydro-

gels, the time-element has even been called 4D printing [Bakarich et al., 2015, Leijten et al., 2017]. 

As 3D bioprinting is seen as one of the main uses of hydrogels in TE, a lot of research has concen-

trated on the printability and optimization of novel hydrogel bioinks [Gomes et al., 2017, Paxton et 

al., 2017]. However, sometimes this 3D printing hype also causes exaggeration to just fit in this 

category, such as a “hand-held 3D printer”, which is essentially a slightly better controlled pipette 
[Lozano et al., 2015]. Another consequence of the 3D printing hype is that the remarkable ability to 

produce highly complex shapes is not used. Instead, the printed scaffolds are either just log-house 

type lines on top of each other or only droplets in a series or pattern. The printing of droplets can of 

course be useful for HTS in material development. However, printing that results in these simple 

shapes, and especially with some lower quality 3D printers, could be easily replicated with a pipette 

in a steady hand. This partial use of the full potential of the technology can be attributed to just the 

printability being tested and not the final applications. Thus, the field still seems to be stagnating and 

not demanding that the real potential of the technology be realized. [Gomes et al., 2017] Regardless 

of the unreached potential, there are also real challenges for 3D printing, which at least include 

regulatory issues and quality control as well as finding the correct balance between all the relevant 

material properties together with cytocompatibility [Geckil et al., 2010, Duan, 2017, Ngo et al., 2018]. 

Another trend in the biomedical field is personalized medicine [Gomes et al., 2017]. The relatively 

recent iPSC technology is surpassing the use of hESCs in studies aiming for clinical outcome. iPSCs 
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can be taken from any patient, cultured, and expanded in vitro and then transplanted back into the 

patient. The possibility to use the patient’s own cells for regeneration is one of the major advantages 

of iPSCs because they are autologous, and thus there is no risk of immunorejection [Yamanaka, 

2012, Madonna et al., 2016, Cossu et al., 2018]. Furthermore, iPSC technology could be used to 

produce exactly the cells the patient needs in correct phase of differentiation and combined with 3D 

bioprinting to produce an implant shape that exactly matches the defect a patient has. [Khademhos-

seini, Langer, 2016, Gomes et al., 2017] Additionally, the advances in direct reprogramming from 

one somatic cell to another, without the intermediary stem cell state, is also progressing fast [S. Zhu 

et al., 2015]. This could bring down the price and time requirements of current iPSC-based TE ther-

apies, which are the main drawbacks at present [Monteiro et al., 2016]. Another solution to ease the 

laborious iPSC technology for single patient treatment is to not use autologous cells, but instead to 

collect a library of immunologically matching cells based on human leukocyte antigen type, similar 

to everyday blood donor types [Monteiro et al., 2016, Cossu et al., 2018]. 

Other challenges of stem cell-based therapeutic TE include standardization issues, quality control, 

regulation, and relevant control samples or blind studies. Even the patient selection for first phase 

clinical trials has recently been recognized as one possibly problematic issue, since co-morbidities 

and co-medication can have a significant effect on the success of treatment. [Madonna et al., 2016, 

Cossu et al., 2018] The tendency to start initial tests with more hopeless patient cases can cause a 

TE implant to fail, even if it would have functioned perfectly on a patient with better overall health 

[Cossu et al., 2018]. 

6.5. The future of disease modeling 

Personalized medicine and the need for better models are the main driving forces behind the cur-

rently rising interest in disease modeling. The numerous possibilities in disease modeling opened 

up by the invention of iPSC technology was mentioned by Takahashi et al. in the first hiPSC study 

[Takahashi et al., 2007]. Even if genetic alteration makes the implantation of hiPSC back into the 

patient too risky, the patients can benefit from drug discovery based on cell models of genetic dis-

eases with the exact same genetic background as the living patient, combined with the patient’s 
medical records [Penttinen et al., 2015]. In addition, another trending approach is to correct the dis-

ease-causing mutation with CRISPR-Cas9 gene editing technology and to compare how the patient-

specific cells behave as a corrected, isogenic control cell line in the same conditions [Doudna, Char-

pentier, 2014]. Finding drugs via this route is the main point of personalized medicine. As disease 

modeling is currently in a steadily advancing phase, with almost all somatic cell types being produced 

in vitro from the hiPSC, the reports of in vitro recapitulated disease-phenotypes are advancing at the 

same speed. [Robinton, Daley, 2012, Fang, Eglen, 2017] However, the next steps needed for major 

future breakthroughs are the transition from 2D culture on the well plate bottom into a biomimicking 
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3D culture and the transition from single cell studies to organ- and tissue-scale studies. These can 

better take into account the systemic effects and metabolic pathways because studying a single drug 

molecule on a single cell can only solve a very limited number of disease cases. [Langley et al., 

2016, Fang, Eglen, 2017, Cossu et al., 2018, B. Zhang et al., 2018]  

Studying the pathways and better controlling how the molecules of interest reach particular cells is 

the main point of the microfluidic devices used for organ-on-chip studies. When further combining 

multiple organs on the same chip, the system can be called body-on-chip or human-on-chip. [Chung 

et al., 2011, Huh et al., 2011, Nam et al., 2015, B. Zhang et al., 2018] For example, combining 

endothelial cell membrane with neurons and vasculature could be used to study the barrier proper-

ties of the blood-brain-barrier. Likewise, combining hepatocytes via vasculature to other tissue-spe-

cific cells, such as cardiomyocytes, could be used to study drug metabolism in the liver and the effect 

of the metabolites on the final application site. [Langley et al., 2016, B. Zhang et al., 2018] To produce 

these larger tissue blocks and organoids from single cells, ECM is needed [Shah, Singh, 2017]. 

There are 3D culture systems, such as the hanging drop method, which do not incorporate an exter-

nal scaffold but instead rely only on the ECM produced by the cells [Fang, Eglen, 2017]. However, 

the scale reachable by these methods is limited because the diffusion of nutrients through a dense 

cell mass is often not sufficient. Thus, a more appealing method is to produce a tissue block with 

ingrown vasculature, all inside an ECM biomimicking hydrogel scaffold [Ikonen et al., 2013, Fang, 

Eglen, 2017]. In the ideal organ-on-chip systems, all these culture conditions are controlled and 

independently changeable by the researcher, so that in addition to just cellular interactions, we can 

also study, for example, the effect of oxygen concentration or temperature on cell functioning [Ka-

tipparambil Rajan et al., 2018, B. Zhang et al., 2018].   

Including the cell-cell and cell-ECM interactions into the models will also make them more complex 

to handle. Here, the rational design principles come into play again, i.e., the complexity should be 

controlled and too many unknown variables should not be added, which could be seen as one reason 

for the very slow translation of TE into clinical use [D. F. Williams, 2017]. Even more, the disease 

model systems should be designed so that the cells not only behave correctly, but that they can also 

be monitored in various ways throughout the culture period. As many of the current methods to study 

cells were originally developed with 2D culture in mind, the transitions of the methods simultaneously 

with the cell culture systems to 3D is on its own a challenging task. [Appel et al., 2013, Nam et al., 

2015, Caicedo et al., 2017] For example, when comparing the microscopy methods used in Publi-

cation I and Publication III, it is clear that OPT is a useful method for mesoscale imaging and larger 

volumes, while confocal microscopy functions very well when the distances are not more than 

roughly one hundred micrometers [L. E. Smith et al., 2010]. In addition to the rather static immuno-

cytochemistry, the study of the functions of dynamic cells using electrophysiological methods is 

highly required from a successful disease model [Langley et al., 2016, Wallis et al., 2018]. Out of 

these, calcium imaging has been done the longest for 3D cultures [O'Connor et al., 2000]. Other 
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methods commonly used in 2D electrophysiological recordings include patch clamp, microelectrode 

array, traction force microscopy, nanoscale indentation or probing, and video microscopy, either 

combining some of these or using them separately [Laurila et al., 2016, Björk et al., 2017, C. Pra-

japati et al., 2018]. Of these, we only used video recordings for 3D cardiomyocyte cultures in Publi-

cation III, but the functional studies of 3D neuronal cultures are also coming in the future. Further-

more, for disease models to be actually useful for the pharmaceutical industry, they need to be HTS 

compatible, as the numbers of drug molecules screened can easily be too high for manual screening 

[Nam et al., 2015, Mathur et al., 2015, Laurila et al., 2016, Kopljar et al., 2018, Mäkinen et al., 2018].  

Once the complexity of combining 3D cell culture systems with microfluidic platforms and measure-

ment methods is solved, yet another aspect to consider will be the maturity of the differentiated cells. 

There is agreement in both the neural and cardiac fields that differentiated cells need to be in a 

sufficient maturation state before they can be useful in disease modeling. [Quadrato et al., 2016, 

Feric, Radisic, 2016, Tan, Ye, 2018] In addition, the cell characterization needs to be accurate 

enough to distinguish between various cell subtypes and to know what cells are being used [Quad-

rato et al., 2016, Madonna et al., 2016]. Currently, the differentiated cells, such as the ones used in 

Publications I and III, are mature enough to have some spontaneous electrophysiological functions. 

However, they still do not resemble adult cells, but rather a fetal phenotype, and not extensively 

screened for subtype [Ylä-Outinen et al., 2012, Vuorenpää et al., 2017]. As many aspects of the 

cells, such as morphology, electrophysiology, and metabolism, do not fully represent the mature 

patient cells, the discovered drug effects can also differ between cell studies and clinical studies 

[Quadrato et al., 2016, Feric, Radisic, 2016]. To solve this problem, multiple stimulation methods 

have been studied to speed up the cell maturation process, and one of the suggested options is 3D 

culture and its physical cues, such as mechanotransduction and morphology orientation along a 

topography [Quadrato et al., 2016, Feric, Radisic, 2016, Tan, Ye, 2018]. This is one of the main 

reasons why the transition of disease modeling into 3D is so important. 

One further trend that is extending from material design to disease modeling is computational dis-

ease modeling. Once the amount of data and variables becomes too large to handle manually, the 

bioinformatics and computational methods come in very handy. They can be used, for example, for 

the formulation of complex genetic and proteomic pathway analysis and for distinguishing the most 

important parameter changes. [Nam et al., 2015, A. S. Vasilevich et al., 2017] These methods have 

already been reported for both the analysis of hiPSC-derived neuronal network maturation [Lenk et 

al., 2016] as well as for the calcium handling of hiPSC-derived cardiomyocytes [Paci et al., 2018] in 

the 2D case. Computational modeling is also recognized as one of the key objectives of CiPA for the 

development of drugs without risks for cardiotoxicity [Wallis et al., 2018]. The obvious next step to 

advance these models is to apply 3D cell culture data and compare it with 2D culture.
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The aim of this thesis was to develop and produce hydrogels for 3D cell culturing of 

neuronal and cardiac cells. Hydrogel biomaterials were developed based on the gellan 

gum polysaccharide, using both physical and chemical crosslinking strategies. The cy-

tocompatibility of the hydrogel as well as of the crosslinking reaction was verified and 

functionalization with ECM proteins was deemed necessary for enhanced, positive cell 

response. The developed hydrogels are compatible with cell encapsulation in 3D inside 

the hydrogels, with the possible future aim towards disease modeling or clinical thera-

peutic tissue engineering in soft tissue applications. 

The main findings and conclusions of each Publication are listed briefly below: 

Publication I: 

1. The bioamines SPD and SPM are suitable and cytocompatible crosslinkers for 
GG. 

2. The mechanical properties of bioamine crosslinked GG hydrogels are in the 
relevant range for brain tissue. 

3. hPSC-derived neuronal cells survive the crosslinking process and encapsula-
tion inside bioamine-GG hydrogel. 

4. Laminin functionalization, even just via simple mixing, is required for the de-
sired neuronal cell response, the neurite spreading. However, too high a lam-
inin concentration is needed for the routine use of the material to be feasible. 

Publication II: 

1. OPT is both a suitable and a highly valuable method for studying hydrogels. 
The transmission OPT of plain hydrogels can be used with Haralick’s textural 
features and MDA to distinguish between different hydrogel formulations, 

7. Conclusions
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whether physically or chemically crosslinked or whether chemically modified or 
in the native state. 

2. Fluorescent OPT can be used to study mass transport through a hydrogel in 
macroscopic scale. 

3. The movement pattern of fluorescent molecules inside a hydrogel can be used 
to determine an index of homogeneity, a tool for the characterization of anisot-
ropy. 

Publication III: 

1. Hydrazone crosslinking, either with ADH or CDH, is a suitable method for the 
production of gelatin biofunctionalized GG hydrogels. 

2. Gelatin-GG hydrogels are much more elastic than the rather brittle bioamine-
GG. The compression response of CDH-crosslinked gelatin-GG closely resem-
bles the compression response of heart tissue. 

3. Gelatin functionalization greatly enhances the cell response in GG-based gel. 
Fibroblast cells elongate in 3D and their viability goes up compared with bio-
amine-GG. 

4. The spontaneous, phenotypical beating behavior of hiPSC-derived cardiomy-
ocytes is retained in 3D culture inside gelatin-GG, regardless of the specific 
hydrazone crosslinking used. 

5. The cardiomyocyte beating behavior can be analyzed in detail using the Beat-
View® video analysis tool. The beating behavior is not altered by transfer from 
2D culture to 3D, and thus this provides a promising platform for the develop-
ment of disease modeling.  

Publication IV: 

1. A simple compression testing protocol with detailed, defined parameters was 
devised and is presented in Appendix III. 

2. A new bi-phasic material model for the analysis of elastic modulus is presented. 

3. 3D-DIC is a suitable method for enhancing the information gained from the 
compression testing of hydrogels. 
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Appendix I – Additional reagents 

Supplementary Table 1. Compositions of buffers for enzymatic dissociation of hiPSC-de-
rived cardiomyocytes and the names of the producers of the reagents. 

 1st Low Ca2+ 

(priming) 
2nd Enzyme 

(dissociation) 
3rd KB      

(recovery) 
Reagent producer  

NaCl 1 M 1 M - Honeywell Fluka 
CaCl2 - 1 M - Sigma-Aldrich 
K2HPO4 - - 1 M Riedel-de Haën 
KCl 1 M 1 M 1 M Sigma-Aldrich 
Na2ATP - - 2 mM Sigma-Aldrich 
MgSO4 1 M 1 M 1 M Sigma-Aldrich 
EGTA - - 0.1 M Sigma-Aldrich 
Sodium Puryvate 1 M 1 M 0.1 M Lonza 
Creatine - - 0.1 M BioChemica 
Taurine 0.1 M 0.1 M 0.1 M Sigma-Aldrich 
Collagenase A - 1 mg/mL - Roche Applied Science 
HEPES 1 M 1 M - Lonza 
Glucose 1 M 1 M 1 M Sigma-Aldrich 
Note 1. Correction to pH 6.9 using NaOH needed for 1st and 2nd buffers and to pH 7.2 
using HCl for 3rd buffer.   
Note 2. Glucose added to 3rd buffer just before using it to avoid precipitation. 
Note 3. Resuspension back to culture medium needs to be gentle and quick to avoid 
damaging the cardiomyocytes. 

 

Supplementary Table 2. TaqMan assays used in the qRT-PCR protocol. 

Gene Description Function TaqMan assay ID 

TNNT2 Cardiac type troponin T2 Sarcomeric gene Hs00165960_m1 

ACTN2 -actinin 2 Sarcomeric gene Hs00153809_m1 

MYBPC3 Myosin binding protein C, car-
diac 

Sarcomeric gene Hs00165232_m1 

GAPDH Glyceraldehyde-3-phosphate 
dehydrogenase 

Housekeeping gene Hs02758991_g1 
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Appendix II – Neuronal cell quality control 

 

Supplementary Figure 1. Representative phase contrast images of good quality neuronal 
differentiation and neurite migration (from Publication I), (a) & (b) control con-
ditions, (c) & (d) encapsulated in 3D in GG 3.00%SPD with 1% laminin. No dif-
ference between hESC and hiPSC origin cell lines.  
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Appendix III – Hydrogel compression protocol 

Here is collected our suggested procedure for hydrogel compression testing based on 

the findings in Publication IV: 

1. Choose displacement rate where no leaking of water from the hydrogel is ob-
served in order to negate the poroelasticity effect and to have only viscoelastic 
material behavior. 

2. Sample size should be measured individually for each compression sample 
due to possible variations in the hydrogel production. Sample height should be 
low enough to rule out buckling [SFS-EN ISO 604, 2004]. 

3. Sample slippage can be prevented by adding a small, single-layer piece of wet 
cellulose wadding paper on both compression plates. This increases friction 
between the sample and the compression plate and makes the measurement 
easier. However, this can cause the stress field to be non-uniaxial on the edges 
of the sample. The paper should be changed between each sample to prevent 
residue from previous tests reducing the friction and affecting the next meas-
urement. 

4. Care should be taken in adjusting the starting point of the measurement to 
avoid applying an unknown pre-load that can obscure the toe region. 

5. Compress over the fracture strain limit to observe the full mechanical behavior 
range. 

6. Data analysis should be done using true stress and true strain instead of engi-
neering stress and engineering strain. 

7. The elastic response of hydrogel material is defined using piecewise linear 
elasticity. The toe region elastic modulus (E1) and the second elastic modulus 
(E2) can be calculated from the stress-strain curve by linear fitting. The strain 
range of the toe region was calculated by extrapolating the curve tangent of 
the linear portion of the stress–strain curve to the strain axis. The strain at 
which the curve crossed the strain axis was taken to be the strain range of the 
toe region.
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ABSTRACT: 

Neural tissue engineering and 3D in vitro tissue modeling require the development of biomaterials that take into 

account the specified requirements of human neural cells and tissue. In this study, an alternative method of 

producing biomimetic hydrogels based on gellan gum (GG) was developed by replacing traditional crosslinking 

methods with the bioamines spermidine and spermine. These bioamines were proven to function as crosslinkers 

for GG hydrogel at +37°C, allowing for the encapsulation of human neurons. We studied the mechanical and 

rheological properties of the formed hydrogels, which showed biomimicking properties comparable to naïve rabbit 

brain tissue under physiologically relevant stress and strain. Human pluripotent stem cell-derived neuronal cells 

demonstrated good cytocompatibility in the GG-based hydrogels. Moreover, functionalization of GG hydrogels 

with laminin resulted in cell type-specific behavior: neuronal cell maturation and neurite migration. 
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1. Introduction 

Tissue engineering (TE) is a field of study that aims to produce tissue-like structures in vivo and in vitro 

using a combination of a biomaterial and living cells [1]. Thus, TE has combined advances in cell 

therapy and biomaterials science to stabilize an injury or defect site and deliver cells and molecules to 

promote the regeneration of damaged tissues [1; 2]. Neural TE has emerged as a promising strategy for 

neural regeneration, both for the central nervous system (CNS) and the peripheral nervous system, 

which suffer from limited regenerative capacity  [2—4]. For successful functional neural TE graft, it is 

important to combine neural tissue mimicking material e.g. a hydrogel and clinically relevant human 

cell type [5]. In addition to therapeutic use in TE, hydrogels as neural scaffolds can also be used for in 

vitro disease modeling, drug testing and developmental biology studies [5—7]. 

The main requirement for biomaterials intended for TE is biocompatibility [3; 8; 9], defined by the 

International Union of Pure and Applied Chemistry (IUPAC) as “the ability to be in contact with a 

living system without producing an adverse effect” [9]. Hydrogel biomaterials can fulfill the 

biocompatibility (systemic scale) and cytocompatibility (cellular scale) requirements [8], and their 

tunable physical properties can mimic soft tissue, such as CNS [3—5]. Thus, while designing hydrogels 

for TE, important material characteristics to take into account are for example mechanical properties, 

porosity, permeability and transparency, especially for in vitro TE [4; 10—12]. Moreover, hydrogels 

can be further modified to incorporate extracellular matrix (ECM) molecules (such as collagen, 

fibronectin, and laminin) or peptides to provide anchoring sites for cells and to enhance growth [3; 4; 

11].  

Gellan gum (GG) is an exopolysaccharide produced by Sphingomonas elodea bacteria. This 

biologically safe polymer has been approved by the Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA)  [13—15], and it has been recently been suggested as a material 

for scaffold development for TE [16; 17]. GG is a deacetylated form of gellan molecule which has a 

tetrasaccharide repeating structure of -D-glucose, -D-glucuronic acid and -L-rhamnose in a 2:1:1 ratio 

[13]. Like many other polysaccharides, GG is a relatively inert biomaterial [17]. To improve cell 

attachment, GG-based hydrogels have been functionalized with peptides by covalently binding them in 

the molecule backbone itself [17; 18]. GG has been studied for bone [16; 19], cartilage [20—22] and 
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spinal cord [23—27] TE applications. In neural applications, GG can support the in vitro culture of 

rodent or human cells (neural stem cells [18; 28], olfactory ensheathing glia cells [18], 

oligodendrocyte-like cells [23]) and has been shown to be biocompatible in vivo in a hemisection rat 

spinal cord injury model [23].  

GG hydrogels produced by physical, ionotropic, crosslinking with metallic cations (Ca2+, Mg2+, Na+, 

K+) are primarily mechanically weak [13; 29]. Another option is chemical crosslinking using 

methacrylate derivatives, followed by the addition of a photoinitiator and photocrosslinking with UV-

light [23; 29]. Disadvantages of these crosslinking methods include cation leakage or exchange, 

weakening of the mechanical properties of the hydrogel over time [29; 30], phototoxicity of UV-light 

and chemical reactivity of the photoinitiator [31—33]. Chemical crosslinking is often in practice more 

complicated than ionotropic crosslinking. Bioamines spermine (SPM) and spermidine (SPD) are small 

cations that have been demonstrated to interact with anionic polymers such as GG [34—36]. 

Crosslinking with bioamines is simple, and a wide crosslinker concentration range can be applied to 

vary the mechanical properties of GG in a controlled way, so they provide an alternative crosslinking 

method. SPM and SPD are present in all living cells, and they play important roles in many 

physiological processes, such as protecting DNA by scavenging oxygen radicals and affecting cell 

proliferation [37; 38] also in neural cells [39; 40]. 

In this study, we developed GG bioamine hydrogels with mechanical properties that resemble brain 

tissue. The resulting hydrogels were characterized mechanically and rheologically. The mechanical 

properties of these hydrogels were compared to naïve rabbit brain tissue by compression testing. 

Hydrogels with a compressive modulus similar to that of brain tissue were used for the cell studies. 

Cytocompatibility and cell type-specific behavior were studied in vitro using human pluripotent stem 

cell (hPSC)-derived neuronal cells. 
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2. Materials & Methods  

2.1. Preparation of GG hydrogels 

To prepare the hydrogels, GG (GelzanTM, low acyl, Mw 1 kg/mol), SPD (spermidine trihydrochloride), 

SPM (spermine tetrahydrochloride) and sucrose were acquired from Sigma-Aldrich (Finland) with the 

highest level of purity available. A 10% (w/w) sucrose solution in deionized water was used as a solvent 

for the hydrogel components to reduce osmotic pressure on the cells [5]. The GG solution was prepared 

at 5 mg/ml. We tested two different crosslinkers (SPD and SPM); both with three different 

concentrations, the names and details are shown in table 1. 

Table 1. Hydrogel compositions used in this study and calculated details of bioamine per GG in the 

used concentrations. 

Hydrogel 
nomenclature 

Bioamine 
working 

solution [ M] 

Bioamine in 
hydrogel [w-

%] 

Bioamine in 
hydrogel 

[ M] 

Bioamine 
moles / 

GG [g] 

Positive 
charge / 
GG [g] 

GG 1.10%SPM 1005 1.108 138.7 32.17 128.7 
GG 0.60%SPM 502.6 0.5569 69.43 16.08 64.33 
GG 0.40%SPM 395.0 0.3984 49.52 11.49 45.95 
GG 3.00%SPD 3927 3.101 541.7 125.6 377.0 
GG 1.50%SPD 1885 1.513 260.0 60.32 180.0 
GG 1.25%SPD 1551 1.248 214.0 49.64 148.9 

 

All solutions were sterile filtered for mechanical and rheological testing with 0.8/0.2 m Acrodisc® 

(PALL Corporation, Port Washington, NY, USA) or for cell culture with Whatman FP 30/0.2 CA-s 0.2 

m (Whatman plc, Little Chalfont, UK) syringe filters. The GG solution was heated in a water bath to 

+60°C for reduced viscosity prior to sterile filtration. All solutions can be stored for up to one month at 

+4°C. 

When preparing hydrogels, the solutions were first heated in a water bath to +37°C. A crosslinker 

solution of SPM or SPD was mixed with GG at a volume ratio of 4:25 and cast into a suitable mold or 

directly onto a cell culture plate. When used, laminin (1 mg/ml) was added to the hydrogel just before 

gelation in the GG solution at 1 v-%, 5 v-% or 10 v-%. 

This study follows the ASTM F2900-11 Standard Guide for Characterization of Hydrogels Used in 

Regenerative Medicine [41]. For initial gelation testing and gelation time estimation, a small glass 

bottle was used as the mold. Gelation time was estimated with the tube tilt test, as described by 
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Tanodekaew at al. [42]. In brief, after mixing the reagents, the bottle was slowly turned upside down at 

30 s time intervals, and the flow of gel was observed. If the solution started to move even slightly once 

tilting started, it was not tilted further to let the gelation continue. Once the solution did not flow, the 

gelation was considered complete, and the time was recorded. 

2.2. Mechanical testing 

Compression testing was performed using a BOSE Electroforce Biodynamic 5100 machine equipped 

with a 225 N load sensor and Wintest 4.1 software (Bose Corporation, Eden Prairie, Minnesota, USA). 

Samples were cast into a self-made cylindrical mold with an approximate height of 6.5 mm and a 

diameter of 12.2 mm, and stored overnight before compression testing to ensure the complete gelation 

before each measurement. Each composition was tested in five parallel samples; the exact dimensions 

of each sample were measured with calipers before testing. To avoid slippage of samples, the 

compression plates were covered with a piece of wet cellulose paper to increase friction between the 

hydrogel and the metal plate. The sample was set in between compression plates so that the upper plate 

touched the sample, but no pre-stress was used. Unconfined compression was performed with a constant 

10 mm/min strain rate, and samples were compressed until 65% strain was reached from the original 

height. The test was performed in wet conditions at room temperature. After compression, the data were 

analyzed with MS Excel. According to Hooke’s law,  = E* , the compressive modulus was calculated 

from the stress-strain curve as the slope of the elastic region [43]. In addition, the fracture strength and 

fracture strain were recorded as a sudden drop in the stress-strain curve.  

To obtain a good reference in terms of the mechanical properties to design hydrogels for neural TE, 

compression testing was also performed with brain tissue samples. New Zealand white rabbits, age 10 

weeks, male, were sacrificed with deep anesthesia, after which the heads were removed and stored in 

ice for a maximum of 8 hours. The brains were removed from the skulls, and samples containing 

midbrain, cerebellum or cortex were prepared. The samples were cut with a biopsy punch to the same 

size and shape as the hydrogel compression samples and stored on ice until compression testing. The 

test parameters used were the same as those described above. The naïve brain tissues were obtained 

from animal experiments conducted at Tampere University Medical School, University of Tampere. 
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2.3. Rheological testing 

Rheological experiments were carried out with a rotational rheometer (Haake RheoStress RS150) 

equipped with Rheowizard 4.3 software (ThermoHaake, Germany). Parallel plate geometry with 20 

mm diameter metal plates was used. All the experiments were conducted at room temperature (~25°C) 

in the oscillatory mode. In the oscillatory mode the sample is subjected to sinusoidal oscillatory shear 

strain with amplitude o. In the linear viscoelastic region (LVER) with sufficiently small strain 

amplitudes the resulting stress will also be sinusoidal of the same frequency with amplitude o and phase 

angle . The complex moduli (G*) represents the rigidity of the sample and in the LVER the following 

relationship applies: 

22* ''' GGG
o

o

 
The storage modulus (G’) is the in-phase and loss modulus (G’’) the out-of-phase components of the 

response:  

cos
o

oG

 

sin
o

oG

 
The G’ represents the elastic and G’’ viscous behavior of the sample. The loss factor tan  is the ratio 

of the viscous to the elastic portion. [44] 

The samples for rheological testing were cast in self-made cylindrical molds with height a maximum 

of 1 mm and 20 mm cross-section diameter. Prior to each measurement, the hydrogels were stored 

overnight to ensure the complete gelation. During measurement the gap between plates was set to 0.8 

mm. All measurements were done in oscillatory shear deformation mode and both amplitude and 

frequency sweeps were used for all samples. The strain amplitude range for amplitude sweeps was from 

0.01 to 5.00 rad (0.1 rad = 1.6 % displacement) with 1 Hz frequency. Six parallel samples were tested 

with amplitude sweeps and two parallel samples with frequency sweeps. The frequency sweep was done 

in range from 0.1 to 3.0Hz, with constant 0.1 rad strain amplitude which is in the LVER for all samples. 

(1) 

(2) 

(3) 
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2.4. Cell culture 

hPSCs, both human embryonic stem cells and human-induced pluripotent stem cells were used in this 

study [45].  The used hESC-lines were Regea 08/023 [46] and Regea 11/013 [47] and the used hiPSC-

lines were UTA.04511.WT [48], Hel24.3 and A116 [49] (two kind gifts from Prof. Timo Otonkoski, 

University of Helsinki).  

BioMediTech has Pirkanmaa Hospital District’s ethical approval to derivate, culture and differentiate 

hESCs (Skottman, R05116) and permission from the National Authority for Medicolegal Affairs 

(FIMEA 1426/32/300/05) to conduct human stem cell research. Additionally, approval has been 

obtained to use hiPSC lines produced by other laboratories for neuronal research (R14023). 

2.4.1. Neuronal differentiation 

The culture and neuronal differentiation of hPSCs were performed as described previously [50]. 

Briefly, undifferentiated stem cell colonies were mechanically cut into small aggregates and placed in 

a suspension culture on neural differentiation medium (NDM) containing 1:1 DMEM/F12 (Gibco, 

Thermo Fisher Scientific, Finland) and Neurobasal medium, 2 mM GlutaMax™, 1 x B27, 1 x N2 (all 

from Gibco), 20 ng/ml basic fibroblast growth factor (bFGF, R&D Systems, Minneapolis, MN, USA) 

and 25 U/ml penicillin/streptomycin (Cambrex, Belgium). During suspension culture, the cell 

aggregates formed round, floating neurospheres. Neurospheres were kept small via mechanical cutting 

once per week, and 1/3 of the medium was changed three times per week. Cells were kept for 8–17 

weeks in the differentiation phase prior to the hydrogel experiments. Cells were under constant 

monitoring for the quality of differentiation. Only experiments in which cells formed good neuronal 

cultures in 2D control were included to the analysis (representative images of good quality 2D cultures 

in supplemental figure 1). 

2.4.2. Hydrogel cell culture experiments 

For the biological evaluation of the hydrogels, three approaches were taken to study the 

cell/biomaterial interactions as shown in figure 1. In every case, control cells were plated on laminin-

coated cell culture wells (positive control) and on non-coated cell culture wells (negative control). Cell 

behavior on the studied materials was always compared to that of the controls. Depending on the well 
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type used, either plastic (Nalge Nunc International, Rochester, NY, USA) or glass bottom (MatTek 

Corporation, Ashland, MA, USA), the wells were coated either with laminin (10 g/ml mouse laminin) 

or poly-L-lysine and laminin (10 g/ml poly-L-lysine followed by 10 g/ml mouse laminin), 

respectively. 

 

Figure 1. Schematic presentation of plating cells with the hydrogels. All components were kept at 37°C 

to ensure homogeneous and complete gelation.  

Gelation was performed as described in figure 1. A drop of crosslinking agent was added on top of 

the cell culture, followed by the gentle addition of GG solution, in case of cultures beneath the gel. To 

avoid disturbing the cells, no additional mixing was performed. For cell encapsulation, the cells were 
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suspended in GG solution with a minimal amount of medium prior to crosslinking. After complete 

gelation, medium was gently added on top of the gel. In 3D cell encapsulation studies for gels with slow 

gelation (all except GG 3.00%SPD), a thin bottom layer of gel was cast beforehand to prevent cell 

aggregates from sedimenting to the well bottom during gelation.  

2.4.3. Cell plating 

Cells were plated either as mechanically cut small cell aggregates or as enzymatically dissociated single 

cell suspensions prepared using 1X TrypLE Select (Gibco). For the 2D experiments (controls, cells 

embedded or on top), the plating density was 60,000 cells/cm2 or 7–20 small aggregates/cm2 (3000-7000 

cells/aggregate). The cell density for the 3D experiments (cells encapsulated) was ~3.5 × 106 cells/ml 

of gel, or a corresponding amount of small mechanically cut cell aggregates.  

The cells were cultured with the gel for 2 weeks. NDM without bFGF was used during the first week 

of the experiments. After one week of culture, NDM containing 5 ng/ml bFGF and 4 ng/ml brain-

derived neurotrophic factor (BDNF, Prospec Bio, Germany) was used. Half of the medium was changed 

three times per week using caution to avoid disrupting the gels.  

Cells were imaged using a Zeiss AxioVert.A1 microscope and AxioCam ERc 5s camera system or 

with a Nikon Eclipse TE 2000-S and Nikon Digital Sight DS-Fi1 camera system during the culturing 

period. 

2.5. Live/dead staining 

For viability analysis, the cultures were stained using a LIVE/DEAD® viability/cytotoxicity assay 

(Molecular probes, Thermo Fisher Scientific). In brief, there are two fluorescent dyes in the kit. Calcein-

AM (0.1 M, emission = 488 nm) stains intact cells, and ethidium homodimer-1 (0.4 M, excitation= 568 

nm) stains dead cells. After 1 h of incubation at +37°C, the cells were imaged with an Olympus IX51 

inverted microscope and an Olympus DP30BW digital camera (Olympus, Finland). The numbers of 

parallel samples varied between 2 and 4. 
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2.6. Immunostaining 

We optimized the parameters for immunostaining cells within macroscopic (60-300 l) hydrogel 

blocks. In brief, cultures were fixed with 4% paraformaldehyde preheated to +37°C for 30 min. After a 

brief wash in phosphate buffered saline (PBS), non-specific staining was blocked with 10% normal 

donkey serum (NDS), 0.1% Triton X-100, and 1% bovine serum albumin (BSA) in PBS for 1 h at room 

temperature, followed by another wash in 1% NDS, 0.1% Triton X-100, and 1% BSA in PBS. Then, 

the cells were incubated with a combination of primary antibodies at +4°C for at least 2 days. These 

antibodies included rabbit anti-microtubule associated protein 2 (MAP-2, 1:400, AB5622, Merck 

Millipore, Darmstadt, Germany) and rabbit anti- -tubulin isotype III ( -tub, 1:1000, A01627, 

GenScript, Piscataway, NJ, USA) in 1% NDS, 0.1% Triton X-100, and 1% BSA in PBS. The samples 

were washed three times in 1% BSA in PBS (first briefly followed by 2 x 1 hour washes) and then 

incubated overnight at +4°C with Alexa Fluor 488 conjugated to donkey anti-rabbit antibody (1:400, 

Life Technologies, A21206) and tetramethylrhodamine isothiocyanate conjugated to phalloidin 

(TRITC-phalloidin, 0.625 g/ml, Sigma Aldrich, P1951) in 1% BSA in PBS. The samples were washed 

three times (first briefly followed by 2 x 1 hour washes) in PBS and then mounted with VECTASHIELD 

containing 4’,6-diamidino-2-phenylindole (DAPI, Vector Laboratories, England). They were then 

imaged with an Olympus IX51 inverted microscope and an Olympus DP30BW digital camera. Confocal 

scanning of the samples was performed with a Zeiss LSM 780 mounted into inverted Cell Observer 

microscope (Carl Zeiss, Jena, Germany) using 10× (NA. 0.45) or 20× (NA. 0.80) air objectives. The 

samples were scanned through #1.5 glass bottom well plates (MatTek Corporation, Ashland, MA, USA) 

or through high performance #1.5 coverslips (Carl Zeiss). The confocal data were visualized with the 

ZEN Black 2012 software (Carl Zeiss) and ImageJ (Version 1.39, U. S. National Institutes of Health, 

Bethesda, Maryland, USA) [51; 52]. 
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2.7. Neurite migration 

Neurite migration measurements were performed with the ImageJ measure tool. Migration was 

measured using a straight line from the cell aggregate surface to the visible end of a neuronal process. 

Each analyzed cell aggregate was measured from 4 longest separately distinguishable neurites. Values 

of less than 10 m were considered as representing no migration. The analysis was conducted with at 

least 2 individual experiments with at least 2 replicative wells. For each studied group, 7 to 16 images 

were analyzed. 

2.8. Statistical analysis 

Due to the non-Gaussian distribution of the data, the nonparametric Kruskal Wallis test and Mann-

Whitney U-test were used. A p value of less than 0.05 was considered significant. If more than two 

groups were compared, the resulting p values were multiplied by the number of comparisons performed 

(Bonferroni correction). 
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3. Results 

3.1. Gel forming and gelation time 

GG hydrogels were formed with bioamine weight percentage varying from 0.40% to 1.10% for SPM 

and from 1.25% to 3.00% for SPD. With these concentrations, the hydrogels were transparent and strong 

enough to hold their own weight and be handled with tweezers. Higher crosslinker concentrations 

caused partial gelation of the solutions before they could be mixed uniformly, resulting in high 

anisotropy with non-transparent (cloudy) areas. Lower crosslinker concentrations formed weak gels 

that could not support their own weight and were not suitable for 3D cell culture, as the encapsulated 

cells would sediment to the bottom of gel. The 10 v-% or lower laminin additions did not affect gelation. 

The gelation times approximated with tube tilt test are listed in table 2. As seen, the fastest gelation 

times were just a few seconds, which could cause difficulties in mixing the reagents evenly and cause 

anisotropic gels. Gelation times over 10 minutes were so slow that during plating the cells could 

sediment to the bottom of the gel before the gelation is completed. From a practical point of view, a 

gelation time of 1–5 minutes is optimal, as it is long enough to mix the components uniformly but short 

enough to keep the cells suspended in the 3D gel and prevent them from sedimenting to the bottom.  

Table 2. The gelation times determined by the tube tilt test 

Gel composition 1.10%SPM 0.60%SPM 0.40%SPM 3.00%SPD 1.50%SPD 1.25%SPD 
Gelation time 1 min 5 min 10 min 5 sec 5 min 10 min 

3.2. Compression testing 

The main variable influencing the mechanical properties of hydrogels in this study was the crosslinker 

concentration. The upper and lower limits of crosslinking were tested along with one concentration 

between the extremes. The compression testing data were analyzed as stress-strain curves (figure 2), 

from which the compressive modulus (figure 3) was calculated as the slope of the elastic region. In all 

GG samples, a distinct fracture point was observed during the test. In contrast, the rabbit brain samples 

did not have a clear fracture point in the measured displacement but rather a more rubber-like elastic 

behavior with strong strain stiffening in the end. The GG 0.40%SPM was almost too soft for the load 

cell, with the force varying during measurement between only 0.01–0.12 N. 
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Figure 2. Representative stress-strain curves of GG and brain tissue compression testing. The linear 

elastic region was determined individually for each sample and ranged from approximately 0.1–0.35 

mm/mm strain. As an example, the fracture point of GG 1.50%SPD is marked with a red arrow. 

Based on figure 2, it is clear that brain tissue is more ductile than any of the hydrogel samples as it 

can endure more plastic deformation without fracture than the GG samples. However, the elastic regions 

at strain of approximately 0.1–0.35 mm/mm of GG 0.60%SPM and GG 1.25%SPM are very similar to 

those of the brain stress-strain curve, resulting in both cases in a compressive modulus of approximately 

10 kPa. The comparison of calculated compressive moduli is shown in figure 3. The strongest 

compositions, GG 1.10%SPM and GG 3.00%SPD, both have a ~23 kPa modulus, whereas the weakest 

composition, GG 0.40%SPM, has only a 3.9 kPa modulus. A significant, linear decrease in the 

compressive modulus is seen with both crosslinkers when lowering the concentration. The addition of 

laminin did not affect the compressive modulus (data not shown). The part of the stress-strain curve 

after the fracture point is negligible. The different parts of the rabbit brain, midbrain, cerebellum and 

cortex, all behaved very similarly throughout the compression testing, with compressive moduli in the 

7–10 kPa range. 
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Figure 3. Average compressive moduli of GG bioamine hydrogels and brain tissue samples with error 

bars showing the standard deviation, n = 5, * = significant at p  0.05. 

The compressive moduli of the hydrogel can be tuned by varying the bioamine concentration, and 

similar mechanical properties can be achieved with either crosslinker. The compressive moduli of 

cortex samples were in the same range as the hydrogel moduli with the lowest crosslinker 

concentrations: GG 0.40%SPM vs. GG 1.25%SPD (p > 0.05). The standard deviation was 

approximately 2.5–3.5 kPa in all measurements. This result indicates that the calculated moduli less 

than 5 kPa are not very accurate, being on the lower limit of the compression testing machine load 

sensor capability. The dependence of the compressive modulus on the crosslinker concentration is linear 

and within the limits of the standard deviation, as shown in figure 4. SPM has a tetravalent charge, so 

the rise of the modulus with increasing crosslinker concentration is steeper than that of trivalent SPD. 
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Figure 4. The dependence of the hydrogel compressive modulus on the crosslinker concentration is 

linear and within the limits of standard deviation as shown by error bars, n = 5. The trend line fit to the 

average modulus values was determined using MS Excel. 

The fracture strength (figure 5) is the ultimate amount of stress a sample can endure, and this value 

can be critical for load-bearing TE applications even though a cell’s mechanotransduction is likely not 

affected by it. A significant decrease in fracture strength is seen when the crosslinker concentration is 

lowered. The fracture strain (figure 5) is an indicator of the brittleness of the sample, and the more 

crosslinker, the more brittle the hydrogel. The brain tissue samples did not have a visible fracture point 

when compressed to 65% of the original height, but they had a strong strain hardening effect, as shown 

in figure 2. However, the strain hardening occurred in the plastic deformation region because the 

deformation was not recoverable (data not shown).  
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Figure 5. The measured fracture strength is shown on the primary y-axis as bars, and fracture strain is 

shown on the secondary y-axis as dots. For each hydrogel composition (n = 5), error bars represent 

standard deviation, * = significant p  0.05. Brain tissue samples did not have a clear fracture point, so 

they are excluded from the graph. 

3.3. Rheological testing 

The low amplitude strain of the rheological spectrum measured with oscillatory shear amplitude sweep 

showed a discernible LVER for GG SPM hydrogels, which is used to calculate the complex modulus 

(figure 6 (d)). At higher strain, a decline due to plastic deformation leads to fracture of the sample at 

the crossover point of the storage and loss modulus as shown in the figure 6 spectra. All the GG SPM 

hydrogels have a typical gel-like behavior in the LVER with the storage modulus higher than the loss 

modulus (G’ > G’’), which means that elastic behavior dominates over viscous behavior and that the 

material is more solid than liquid. As shown in figure 6 (a-c) by decrease in the phase angle and tan  

value in LVER, when the crosslinker concentration increases, the solid-like behavior increases. And 

similar to the compressive modulus, the complex modulus decreased upon lowering the crosslinker 

concentration.  
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Figure 6. Rotational rheological spectra of (a) GG 1.1%SPM, (b) GG 0.60%SPM and (c) GG 

0.40%SPM in amplitude sweep and (d) complex moduli of all GG SPM hydrogels. The LVER exceeds 

to 0.1 rad amplitude and the gel breaking takes place around 1.0 rad. 

Only SPM crosslinked hydrogels displayed distinctive gel-like behavior related to a stable 3D 

network structure, which was confirmed by a straight line in the frequency sweep (data not shown). The 

SPD crosslinked gels did not have a discernible LVER, likely due to anisotropy or being too solid for 

rheology, and thus were not possible to measure with this method. The very quick gelation of SPD 

crosslinked gels can cause nucleation of crosslinking spots. This nucleation leads to anisotropy of gel 

network structure and density variations, which are not seen in compression testing.  

3.4. Neuronal cell cultures beneath the hydrogels 

Neuronal cells were cultured for one week on the plastic dish before casting gel over the cells. The 

gelation process on top of cultures did not cause any acute cytotoxic effects. During prolonged culture 

A B 

C D 
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(up to two weeks) beneath the hydrogel, the neuronal cells remained viable, and neuronal maturation 

continued similarly as in the positive control cultures without the GG. Culturing beneath the hydrogel 

did not cause any morphological changes compared to control 2D cultures (figure 7 (a)). In the cell 

viability analysis, all studied cases had similar degrees of cell viability by visual inspection (figure 7 

(b)). Neuronal cultures beneath hydrogel also had similar neuronal protein expression according to 

immunocytochemical analysis as control cultures without hydrogel (figure 7 (c)). Figure 7 shows the 

representative images of cultures beneath hydrogel with highest the crosslinker concentration and a 2D 

positive control. The results were similar at all studied crosslinker concentrations (SPD 3.00%, 1.50%, 

and 1.25% or SPM 1.10%, 0.60%, and 0.40%, figure 7, data not shown). Thus, SPD and SPM 

crosslinkers enable the formation of GG hydrogels that are compatible with culturing human neuronal 

cells. The hydrogel layers (height 2.2–2.8 mm) on top of the neuronal cultures enabled prolonged 

culturing, implying that the porosity of the formed hydrogels was high enough for nutrient and 

metabolite exchange. 
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Figure 7. Neuronal cultures beneath the gels. Cells were pre-cultured on a laminin coating for one week, 

thereafter the gel was cast over the cells and then cultured for 2 additional weeks before analysis. The 

representative images are shown for the highest crosslinker concentrations, that is, SPM 1.10% (column 

1) and SPD 3.00% (column 2) and for the positive 2D control (column 3). Phase contrast images (a), 

cell viability analysis (b) and immunocytochemistry (c) are shown. Row B: Green = Calcein-AM, live 

cells, red = EthD-1, dead cells. Row C: Blue = DAPI, Red = MAP-2+B-tub. Scale bar for all images 

50 m.  

3.5. Neuronal cell behavior on top of the hydrogels 

Neuronal cells remained viable during prolonged culturing (2 weeks) when plated on top of pre-cast 

hydrogels (success rate 100%, figure 8). For cell type-specific behavior, neurite migration was studied 

in more detail. Although neuronal cells remained alive on top of all the studied hydrogels, their 

spreading and migration along the hydrogel surfaces varied within and between groups. Figure 8 shows 
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a summary of the results. Without any functionalization with laminin, the GG 1.10%SPM and GG 

0.60%SPM were the best compositions for supporting neuronal cell spreading (figure 8 (a)). When a 

low concentration of laminin (1 v-%) was added, the performance of the GG 3.00%SPD hydrogel was 

superior to any other tested gel composition. (figure 8 (a)). As GG 3.00%SPD with laminin 

functionalization gave the best results in neuronal cell spreading and migration, functionalization with 

higher laminin concentrations was further studied. 

 

Figure 8. Cell viability and spreading were analyzed on top of GG hydrogel surfaces crosslinked using 

either SPD (1.25–3.00%) or SPM (0.40–1.10%). With 3.00%SPD and 1.10%SPM, the effects of 

functionalization with laminin were also tested. All experiments were considered successful, as the cells 

were alive in all experiments even though neurite outgrowth was not seen in all cases (a). The best 

neurite migration was seen in 3.00%SPD crosslinked gel with 1% laminin (a**, b**). Representative 

images of cultures on top of 3.00%SPD crosslinked gel with 1% laminin (b). In some experiments cells 
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were alive, but no migration was seen (a*, b*), while in other experiments the cells did migrate along 

the gel surface (a**, b**). (b) second column: Green = Calcein-AM, live cells, red = EthD-1, dead cells, 

(b) third column, Blue: DAPI, Green: MAP-2+B-tub. Scale bar for all images 100 m. 

3.6. Effect of laminin concentration on SPD crosslinked gels 

The addition of laminin (5 v-% and 10 v-%) significantly increased neurite migration on top of gel 

surfaces during prolonged culturing time (2 weeks). Laminin addition increased both the length of the 

neurites (figure 9 (a)) and the number of neurites (figure 9 (b)). The most obvious increase in neurite 

migration was seen on top of GG 3.00%SPD, but a similar trend was also observed with 1.5%SPD and 

1.25%SPD gels (data not shown). 

 

Figure 9. Neurite migration in human derived neuronal cells cultured for 2 weeks on top of GG 

hydrogels. Laminin enhances migration in a concentration-dependent manner. Neurite length 

distribution in SPD crosslinked gels with different laminin concentrations (a). The box shows 50% of 

samples and the median, and the whiskers show 90% of samples. The value of each measured neurite 

is shown as a dot in the background. Representative images of neurite migration in each laminin 

concentration (b). By visual inspection, the laminin concentration increased the amount of neurite 

outgrowth. Green = live cells, red = dead cells. Scale bar 100 m for all images. *= p  0.05, **= p  

0.0001.  
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3.7. Neuronal cells encapsulated inside the gel  

Neuronal cells were cultured as encapsulated in GG hydrogels for two weeks. Cells remained viable 

inside all the studied GG bioamine compositions (data not shown). Due to promising neurite migration 

results obtained from cultures on top of the laminin functionalized GG 3.00%SPD hydrogel, this 

composition was studied further. Neurite migration was observed in cultures inside the GG 3.00%SPD 

hydrogel both with and without functionalization with laminin (0–10 v-%). The amount of neurites 

migrating from the cell aggregates varied from zero to dense outgrowth from aggregate to aggregate 

(example images of dense outgrowth are presented in figure 10). Neither neurite amount nor neurite 

length were affected by laminin concentration of hydrogel. Variation observed was also cell line or cell 

source independent (supplemental figure 1). The neuronal cells cultured encapsulated inside the GG 

hydrogel formed 3D neuronal network expressing typical neuronal markers (MAP-2 and -tubulinIII) 

co-labelled with phalloidin, (supplemental video 1). 

 

Figure 10. Neuronal cell aggregates cultured for 2 weeks inside the GG 3.00%SPD gel. Phase-contrast 

images (a) and Live/Dead images of cultures (b). Green = live cells, red = dead cells. Scale bar 100 m 

for all images. 
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4. Discussion 

4.1. Bioamine crosslinked GG 

GG has been approved by the FDA and EMA for food, cosmetic and pharmaceutical applications as a 

gelling or emulsion agent [15]. Taking advantage of the wide usage, GG has been applied for TE with 

promising results [15; 27; 28].  The common method of physical/ionotropic crosslinking of 

polysaccharides with metallic cations in order to form hydrogels has some inherent problems: 

Controlling the crosslinking process and tuning of properties is challenging [30]. With this fact in mind, 

we tested the ability of bioamines for physical crosslinking of GG. The study of alternative ionotropic 

crosslinking methods using bioamines for anionic polymers in TE is relatively new [34; 35] and those 

studies focused on the development of multicomponent hydrogels for drug delivery applications [35]. 

On the other hand, we have addressed the GG-based bioamine crosslinked hydrogels specifically as a 

3D cell culture scaffold for neural TE applications.  Other forms of GG have already been studied in 

spinal cord injury rodent models [23—27], but not with these alternative crosslinking methods. The 

small cationic bioamine molecules worked efficiently and in a broad range of concentrations, producing 

stable hydrogels with tuneable mechanical properties. 

The definition of a true gel is a material that responds to high stress by fracturing and is self-

supporting, whereas a weak gel is a structured fluid that flows under stress [13]. The hydrogels we 

produced were macroscopic and strong enough to keep their shape after casting or even being handled 

with tweezers, thus they are true gels. For SPM, the lowest concentration that still produced a true gel 

was 0.40 w-% and for SPD the limit was 1.25 w-%. Lower concentrations produced weak gels that still 

pass the tube tilt test but flow under stress. When increasing the crosslinker concentration, a non-

transparent (cloudy) area is formed inside the gel due to too rapid crosslinking and uneven mixing. This 

effect corresponds to highly anisotropic hydrogel formation, so the appearance of the cloudy area was 

considered to indicate the upper limit of the crosslinker concentration. For SPM, this limit was 1.10 w-

%, and for SPD, it was 3.00 w-%. These concentration limitations also limit the mechanical properties 

of produced hydrogels, as they are directly proportional to the crosslinker concentration, as shown in 

figure 4. The same bioamine crosslinking method could be used as an alternative to many hydrogels 
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conventionally formed with ionotropic crosslinking, for example, alginate [30], pectin [13], xanthan 

gum [13] and other anionic polysaccharides.  

4.2. Mechanical and rheological properties of GG bioamine hydrogel 

One design basis in current TE scaffold development is to produce biomimicking materials with 

mechanical properties similar to the corresponding tissue [4; 6; 10—12]. For the applications requiring 

higher stiffness (compressive or Young’s modulus), such as cartilage TE, suitable GG compositions 

already exist [53]. For lower stiffness applications such as neural TE, however, GG needs to be 

modified further [17; 18]. The comparison of hydrogel properties with tissue properties would be easier 

if a higher consensus or standardization of the mechanical testing of biomedical samples existed, as also 

discussed by others [54; 55]. The lack of standardization and lack of accepted mathematical models 

causes high variability and difficulties in interpretation of results between different studies. To 

overcome this challenge, we included rabbit brain tissue samples and tested them with the same 

parameters as the hydrogels. According to the measurements, GG 0.40%SPM and GG 1.25%SPD gels 

with 2.7 and 9.4 kPa modulus, respectively, most closely resembled the compression moduli of rabbit 

cortical brain samples at 6.3 kPa. These values are slightly higher than those often measured for the 

brain, with previously reported values being 0.5–3 kPa [56; 57].  

The hydrogel’s fracture strength and strain are not comparable to brain tissue because no clear 

fracture point was seen on the brain samples, which underwent only a continuous strain hardening 

effect. In the biologically relevant deformation range of < 20% strain, the mechanical behavior is similar 

between bioamine GG and brain. The compression rate, however, has a direct effect on gel fracture due 

to the visco-elastic recovery, as elegantly shown for GG already before [58]. Based on their 

methodology, we chose the compression rate at a relevant range for our application. In general, our 

results were in line with those of others [58], showing that higher crosslinker concentration or faster 

compression rate made GG more brittle (data not shown).  

Rotational rheometry was used here as a complementary method to compression testing to gain 

additional insight into viscoelastic properties of the hydrogels. In addition, rheometry is very sensitive 

to anisotropy of the measured samples; the rheological spectrum is not continuous if the material is not 
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isotropic. This effect makes the measurements more laborious to perform, but it can also be used as a 

quality control for checking the similarity of parallel samples. The measurements show that all the 

successfully measured samples had a gel-like response [13; 59]. In the rheological spectra, the gel 

storage modulus was always higher than the loss modulus, in both amplitude and frequency sweep, and 

a fracture was seen under high strain. The rheological spectrum is also in a similar range as previously 

reported for GG hydrogels [26]. The high precision of rotational rheometry revealed the anisotropic 

nature of SPD crosslinked gels, causing those measurements to fail, but anisotropy was not discerned 

in compression testing. However, in cell culture, these anisotropies and nanotopographical variations 

can actually provide better cell anchoring sites than a totally homogenous hydrogel network [11].  

4.3. Suitability of GG as a culturing matrix for human neuronal cells  

Cytocompatibility, the cellular scale response, needs to be evaluated with human cells before large-

scale systemic biocompatibility testing [8]. In this work, we used hPSC-derived neuronal cells [50] to 

study both cytocompability and cell type-specific behavior in developed GGs. Importantly, when 

aiming for clinical applications, the development of neural TE products requires the usage of human 

cells already in the preclinical stage [60].  

In this study, we used three steps to evaluate the hydrogel performance: 1) culturing cells beneath, 2) 

on top of or 3) encapsulated inside the hydrogel. This evaluation protocol gives information of cell 

survival, cell migration, and 3D network formation, but the different approaches should not be directly 

compared between each other [5]. First, performing the crosslinking directly on top of a pre-cultured 

neuronal network can reveal acute cytotoxicity caused by gel components or gelation during the first 

days in contact with the material [5; 61]. Crosslinking of GG with SPD or SPM did not cause acute 

(data not shown) or long-term cytotoxicity during 2-week follow-up. This result is in line with previous 

cytotoxicity studies for GGs [16; 17; 20; 35]. Importantly, SPD and SPM at the concentrations used 

for gelation (213–541 and 49.5–138 M, respectively) do not cause detrimental effects on neuronal 

cells. Culturing cells beneath hydrogel can also reveal gel-related effect on cell behavior, e.g., changes 

in cell fate as described earlier for Matrigel [61]. With GG hydrogels, no obvious changes in cell fate 

were observed, as these cultures developed similarly to control cultures. Successful embedding also 
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indicates that the porosity of the developed hydrogels was sufficient for medium diffusion and 

metabolite exchange through the gel block (height: 2.2–2.8 mm) during 2 weeks follow up. In 

conclusion, bioamine crosslinked GG hydrogels provided a suitable growth environment for human 

neuronal cells.   

To study cell type-specific behavior, we cultured human neuronal cells on top of and encapsulated in 

GGs. GG hydrogels are considered biologically inert materials [17]. According to earlier studies, GG 

does not in vitro support neuronal cell migration on top of gels or as encapsulated without the addition 

of cell adhesion cues [18; 28]. Our experiments using cells on top of gels showed similar results, as 

some neuronal aggregates remained as spheres without neurite migration as previously described for 

mouse neural cells [18]. Some aggregates, however, had neurite growth along the hydrogel surface. We 

assume that neurites growing on top of unmodified gel surfaces follow physical cues of the hydrogel. 

To enhance the cell migration on top of gels, we added the ECM protein laminin by physically mixing 

it into the GG prior to gelation. This functionalization of GG SPD hydrogels with laminin (5 v-% to 10 

v-%) significantly increased neurite migration. A similar positive effect was reported with fibronectin-

derived synthetic GRGDS-peptide GG hydrogels [18]. Interestingly, functionalization with laminin 

was not beneficial with SPM crosslinked gels.  

Encapsulated human neuronal cells showed a similar level of neurite migration despite 

functionalization with laminin. Previous studies using neural cells either on top of hydrogels or 

encapsulated have contradictory results about the benefits of functionalization on growth and migration. 

For example, functionalization with RGD, IKVAV or YIGSR peptides has shown both favorable and 

non-meaningful effects in neural cultures [62; 63]. This discrepancy could reflect the different 

microenvironments that cells experience in these cases.  

The current paradigm of hydrogel development for TE involves making the mechanical properties 

mimic the tissue of interest [4; 10—12]. For neural cells, a suitable Young’s modulus of hydrogel was 

previously reported between 1–5 kPa [57; 64; 65]. Our study revealed a wider, 2.7–22.6 kPa range in 

compression moduli, enabling neuronal cell growth. At the same time, our measured compression 

modulus for the rabbit brain samples ranged from 7.1 to 10.1 kPa. These results strongly suggest that 



AUTHOR’S ACCEPTED MANUSCRIPT  

 28 

the lack of standardized methods produces high variability in the results, preventing valuable 

comparisons between studies. 

Interestingly, the gels with higher compressive moduli (11.5 to 22.6 kPa) showed the best cell type-

specific response for cells grown on top of these hydrogels; even the compressive moduli brain samples 

were lower (7.1–10.1 kPa). Thus, there is a clear need to determine the actual threshold limits under 

which cells sense the mechanical properties of the surrounding scaffold and exhibit cell type-specific 

behavior [6; 12]. In other words, the true essence of biomimicking is still unknown. To answer this 

question, more optimal testing patterns need to be designed specifically for each tissue type. For 

example, the unconfined compression method measures a bulk hydrogel, whereas locally varying 

modulus and density, which are measurable with atomic force microscopy (AFM), are likely more 

important for cells [11; 12]. Compression testing should be used only to define the correct range of 

operations and for screening purposes, not to make specific interpretations. Although they are easier to 

measure and interpret, the mechanical properties of a bulk hydrogel may not be optimal to predict the 

cellular level response to the hydrogel. 
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5. Conclusions 

We conclude that GG hydrogels crosslinked with either SPM or SPD are cytocompatible and provide a 

compatible 3D scaffold for human neuronal cells. Metallic cations can be replaced by these small 

bioamines as ionotropic crosslinking agents. The mechanical properties of the GG bioamine hydrogel 

show a direct proportionality to crosslinker concentration, increasing the predictability of the properties 

of a certain composition. Mechanically, the GG bioamine hydrogels closely resemble the naïve rabbit 

brain. Both SPM and SPD crosslinked hydrogels were supporting the migration of neuronal cultures 

either on top of the hydrogel or as encapsulated inside the hydrogel and from a practical point of view 

there was no difference in gel handling between the crosslinkers. Neuronal cells grown on top of the 

SPD crosslinked GG hydrogels clearly benefit from laminin functionalization of the gel in a 

concentration dependent manner, suggesting that GG itself is too inert material for consistent neurite 

outgrowth. Based on our results the GG 3.00%SPD hydrogels were the most supportive for 3D neuronal 

network formation inside the hydrogel, being the most promising gel composition for further studies.  
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SUPPORTING INFORMATION 

 

Supplementary video 1. Confocal microscope image of hPSC-derived neuronal cells cultured 

inside the GG hydrogel. Cells were immunostained against MAP-2+ -tubulinIII (green), labelled with 

phalloidin (red) and DAPI (blue).  
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Supplementary figure 1. Phase contrast images of neuronal cultures similarly derived from hESC 

and hiPSC origin. Representative images of good quality 2D neuronal cultures on top of laminin 

coated plastic (A, B). Similarly derived neuronal cultures encapsulated inside GG hydrogel (C, D). 

Scale bars: 100 m. 
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Supplementary Figure 1.  Velocities of the wavefront at time intervals of 50 minutes.   



 

Supplementary Video 2. Representative videos of OPT single projection bright field image 
and 3D view of the OPT reconstruction using filtered back-projection algorithm. Optical texture 
pseudo-colored in blue color. (a) & (b) photo-GG-MA hydrogel and (c) & (d) iGG-SPM-H 
hydrogel. 

 

Supplementary Video 2. Binarized wavefront of fluorescent 20 kDa dextran molecule 
traveling downward through iGG-SPM-H hydrogel. (Still image at 3 seconds time point.) 

 

Supplementary Video 2. Binarized wavefront of fluorescent 2000 kDa dextran molecule 
traveling downward through iGG-SPM-H hydrogel. (Still image at 3 seconds time point.) 
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Figure S1. FTIR spectra of GG-CHO compared with unmodified GG.  
 
 

 
Figure S2. Live/Dead® stained confluent fibroblast cell culture on each tested gelatin coating 
after one week: a) native gelatin, b) gelatin-ADH, c) gelatin-CDH; d) 3D negative control F7-
SPD hydrogel. Scale bar length 1.0 mm. 
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Video S1. Reconstruction of bright field OPT imaging of fibroblasts cultured encapsulated in 

GELA-ADH-GG 40:20 hydrogel. The 3D view reveals how well elongated the fibroblasts are 

inside the hydrogel. 

 
Video S2. Reconstruction of bright field OPT imaging of fibroblasts cultured encapsulated in 

the negative control SPD crosslinked GG hydrogel. The 3D view reveals poorer elongation 

when compared to gelatin-GG culture. 

 

 



  

S-4 
 

 
Video S3. Beating hiPSC-derived cardiomyocytes on control gelatin coating. 

 
Video S4. Beating hiPSC-derived cardiomyocytes on gelatin-ADH coating. 

 
Video S5. Beating hiPSC-derived cardiomyocytes on gelatin-CDH coating. 
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Video S6. Beating hiPSC-derived cardiomyocytes in F1-ADH hydrogel culture conditions. 

 
Video S7. Beating hiPSC-derived cardiomyocytes in F3-ADH hydrogel culture conditions. 

 
Video S8. Beating hiPSC-derived cardiomyocytes in F4-CDH hydrogel culture conditions. 
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Video S9. Beating hiPSC-derived cardiomyocytes in F5-CDH hydrogel culture conditions. 

 
Video S10. Beating hiPSC-derived cardiomyocytes in F6-CDH hydrogel culture conditions. 

 
Video S11. Non-beating hiPSC-derived cardiomyocytes in negative control F7-SPD hydrogel 

culture conditions. 
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Table S1. TaqMan assays used in the qRT-PCR protocol. 

Gene Description Function TaqMan assay ID 

TNNT2 Cardiac type troponin T2 Sarcomeric gene Hs00165960_m1 

ACTN2 -actinin 2 Sarcomeric gene Hs00153809_m1 

MYBPC3 Myosin binding protein C, 

cardiac 

Sarcomeric gene Hs00165232_m1 

GAPDH Glyceraldehyde-3-phosphate 
dehydrogenase 

Housekeeping gene Hs02758991_g1 
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