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A B S T R A C T

The PGC-1 transcriptional coactivators have been proposed as master regulators of mitochondrial biogenesis and
energy metabolism. Here we show that the single member of the family in Drosophila, spargel (srl) has an essential
role in early development. Female germline-specific RNAi knockdown resulted in embryonic semilethality.
Embryos were small, with most suffering a catastrophic derangement of cellularization and gastrulation, al-
though genes dependent on localized determinants were expressed normally. The abundance of mtDNA, re-
presentative mitochondrial proteins and mRNAs were not decreased in knockdown ovaries or embryos, in-
dicating that srl has a more general role in early development than specifically promoting mitochondrial
biogenesis.

1. Introduction

The transcriptional coactivators of the PGC-1 family have been
proposed as global regulators of mitochondrial biogenesis and meta-
bolism (Spiegelman, 2007). Three members of the family, PGC-1α,
PGC-1β and PPRC1 (or PRC) are encoded in mammalian genomes and
are differentially expressed in tissue-specific or physiologically re-
sponsive patterns (Finck and Kelly, 2006). For example, PGC-1α is
strongly induced in brown fat when hormonally stimulated (Puigserver
and Spiegelman, 2003), whilst PPRC1 is instead induced by the addi-
tion of serum to quiescent cells, and has been shown to activate genes
connected with the metabolic needs of growing cells (Andersson and
Scarpulla, 2001).

In contrast, only a single member of the gene family, spargel (srl), is
found in Drosophila, facilitating its study without the confounding fac-
tors of gene diversification and redundancy. In principle, given the
molecular genetic toolkit available in Drosophila, this should allow the
metabolic and developmental context of its expression to be elucidated,
and its downstream effects on gene expression to be profiled, poten-
tially revealing its ancestral function(s). In one such study, a sponta-
neously isolated hypomorph of srl was found to have a metabolic de-
ficiency (in males), comprising decreased weight, and decreased
accumulation of storage nutrients (Tiefenböck et al., 2010). Females of
the line were sterile, and the mutant phenotypes seen in both sexes
were compensated by the transgenic introduction of an additional
genomic copy of the wild-type srl gene. Furthermore, alterations to the

global pattern of gene expression in the fat body of the mutant males
was consistent with a requirement for a sufficient expression of srl to
maintain mitochondrial functions, although many other targets were
identified, suggesting that srl may have a wider function. Although the
question of its specificity remains unresolved, subsequent authors have
also reported positive effects of srl on mitochondria and metabolism
(Mukherjee et al., 2014), reinforcing the mammalian paradigm of PGC-
1 function.

The female sterility of the srl1 hypomorph, which is associated with
an apparent delay in oogenesis (Mukherjee et al., 2014), could be in-
terpreted in accordance with this paradigm, given that mitochondria
and mitochondrial DNA are important components of the oocyte cyto-
plasm in Drosophila, as in other metazoans. Following their proliferation
during oogenesis and delivery into the oocyte (Tourmente et al., 1990),
mitochondria are partitioned to the cells of the embryo during cellu-
larization and contribute vital metabolic functions that are tightly
regulated during embryogenesis (Akiyama and Okada, 1992) and are
essential for the growth of the resulting larva (Galloni, 2003; Adán
et al., 2008). As such, a failure of transcription of genes for mi-
tochondrial products during oogenesis would be a logical consequence
of srl downregulation, leading to their catastrophic under-representa-
tion in the embryo and larva. Without functional mitochondria, a viable
oocyte might fail to form.

In order to test these ideas, and gain insight into the role of srl in
early development, we employed an RNAi approach. Initially we set out
to test whether the female sterility caused by srl downregulation was a
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somatic or germline effect, and whether it affected egg production and/
or viability. To this end, we took advantage of the germline-specific
MTD-GAL4 driver (Rørth, 1998; Hudson and Cooley, 2014). By com-
bining this with an RNAi targeted on srl, using the VALIUM20 system
(Ni et al., 2011), we confirmed that that the effect was germline-spe-
cific. Whilst ovaries appeared normal in germline srl knockdown fe-
males, most embryos did not develop properly, with failure to form a
uniform blastoderm and gross morphological abnormalities observed
from around the time of cellularization onwards. We proceeded to in-
vestigate various parameters in an attempt to establish whether srl
knockdown led to a specific defect in the expression of mitochondrial
genes or functions, as predicted by the widely held assumption that the
PGC-1 coactivators act as master regulators of mitochondrial biogenesis
in different contexts. However, the findings suggest an alternative or
more global role of srl in development. Given the reasons for adopting
Drosophila as the model organism for this study, our findings suggest
that a global role of this kind, lined to growth and transcriptional
switching in early development, may be the ancestral function of the
PGC-1 coactivators. More specific roles in regard to metabolic repro-
gramming, energy homeostasis and mitochondrial biogenesis may have
evolved subsequently or in parallel.

2. Materials and methods

2.1. Drosophila strains and maintenance

Oregon R (wild-type) and balancer lines were originally sourced
from stock centres. Germline-specific drivers MTD-GAL4 (Bloomington
31777), nos-GAL4 drivers NGT40 (Bloomington 4442) and NGTA
(Bloomington 32563) (Tracey Jr et al., 2000; Wheeler et al., 2002), as
well as TRiP RNAi lines targeted on spargel: HMS00857 (Bloomington
33914), HMS00858 (Bloomington 33915) and GL01019 (Bloomington
57043), were sourced from Bloomington Stock Center. Flies were
maintained at 25 °C in a 12 h light-dark cycle in plugged plastic vials
containing standard high-sugar medium (Kemppainen et al., 2016),
supplemented with 0.5% propionic acid (Sigma-Aldrich) and 0.1% (w/
v) methyl 4-hydroxybenzoate (Nipagin, Sigma-Aldrich). For embryo
collection, approximately 200 female virgin flies of either Oregon R or
one of the respective spargel knockdown lines crossed to MTD- or nos-
GAL4 drivers were mated with approximately 100 Oregon R males in
mating chambers with standard medium plates and left to lay eggs at
25 °C for the times indicated in figure legends.

2.2. Developmental assays

Batches of 10 female virgin flies of a given genotype were pre-mated
with five Oregon R males on standard medium for 2 days, then tipped to
fresh vials and allowed to lay eggs over a 24 h period. The adult flies
were then discarded and the laid eggs were counted. The number of
adult flies eventually eclosing from each vial was also counted to
generate a percentage based on the number of embryos that completed
development, using 5–20 vials for each genotype. To measure fe-
cundity, females of a given genotype were mated as above to Oregon R
males that were then discarded. Females were tipped to fresh vials
every 5 days, and the number of eggs laid over a 24 h period measured
four times, i.e. at days 5, 10, 15 and 20.

2.3. mtDNA copy number measurement

Batches of 10 ovary pairs or 50–200 embryos were crushed in 500 μl
DNA lysis buffer (75mM NaCl, 50mM EDTA 20mM HEPES/NaOH,
pH 7.8). 5 μl of 20% SDS and 20 μl of Proteinase K (10mg/ml,
ThermoFisher Scientific) were added to each sample and vortexed to
mix. Samples were briefly centrifuged, left on a heat block at 50 °C for
4 h, then vortexed and centrifuged at 16,000 gmax for 1min to pellet
debris. Supernatants were decanted and nucleic acid was precipitated

with 420 μl of isopropanol with repeated inversion and overnight in-
cubation at−20 °C. Samples were centrifuged at 16,000 gmax for 30min
at 4 °C to pellet the DNA, which was washed with 500 μl of ice-cold 70%
ethanol. Final pellets were left to air dry for 10 mins, then resuspended
in 100 μl of TE buffer (10mM Tris/HCl, 1 mM EDTA, pH 7.8) overnight
at 50 °C. DNA concentration was measured by nano-drop spectro-
photometry and samples were diluted to 2.5 ng/μl. Relative DNA levels
of RpL32 (single-copy nDNA) and mt:lrRNA (16S, mtDNA) were de-
termined by qPCR using Applied Biosystems StepOnePlus™ Real-Time
PCR System with Fast SYBR™ Green Master Mix kit (Applied
Biosystems), using as template 2 μl of DNA in a 20 μl reaction, together
with gene-specific primer pairs each at 500 nM, as follows (all shown 5′
to 3′): RpL32 – TGTGCACCAGGAACTTCTTGAA and AGGCCCAAGATC
GTGAAGAA; mt:lrRNA –ACCTGGCTTACACCGGTTTG and GGGTGTA
GCCGTTCAAATTT. mtDNA copy number per haploid copy of nDNA
was inferred from the cycle-time difference (ΔCT) of the two test genes,
i.e. 2expΔCT. SD was calculated from the mtDNA copy number values in
a genotype group, and means and SD values were normalized to that of
Oregon R for the given tissue or stage (Quiros et al., 2017).

2.4. RNA extraction and analysis

Total RNA was extracted from batches of 20 pairs of ovaries (dis-
sected and placed in PBS), or from 100 to 200 embryos (at 80 or
160min AEL, dechorionated in 50% household bleach (Domestos) for
2min and rinsed thee times in PBS) or from batches of 2-day old adult
flies using a plastic homogenizing pestle and trizol reagent as pre-
viously described (Kemppainen et al., 2016). cDNA was synthesized
using the High-capacity cDNA Reverse Transcription Kit (ThermoFisher
Scientific) according to manufacturer's instructions. Expression levels
were determined by qRT-PCR using Applied Biosystems StepOnePlus™
Real-Time PCR System with Fast SYBR™ Green Master Mix kit (Applied
Biosystems) using, as template, 2 μl of cDNA product diluted 10-fold, in
a 20 μl reaction, together gene-specific primer pairs, each at 50 nM, as
follows (all given 5′ to 3′, gene symbols in the following list following
current practice in FlyBase (Thurmond et al., 2019; Chintapalli et al.,
2007)): RpL32 (CG7939), TGTGCACCAGGAACTTCTTGAA and AGGC
CCAAGATCGTGAAGAA; srl (CG9809), GGAGGAAGACGTGCCTTCTG
and TACATTCGGTGCTGGTGCTT; ND-ACP (CG9160), ACAAGATCGAT
CCCAGCAAG and ATGTCGGCAGGTTTAAGCAG: ND-30 (CG12079),
AAGGCGGATAAGCCCACT and GCAATAAGCACCTCCAGCTC; mt:ND5
(CG34083), GGGTGAGATGGTTTAGGACTTG and AAGCTACATCCCCA
ATTCGAT; SdhA (CG17246), CATGTACGACACGGTCAAGG and CCTT
GCCGAACTTCAGACTC; SdhD (CG10219) GTTGCAATGCCGCAAATCT
and GCCACCAGGGTGGAGTAG; RFeSP (CG7361), GGGCAAGTCGGTT
ACTTTCA and GCAGTAGTAGCCACCCCAGT; UQCR-C2 (CG4169),
GAGGAACGCGCCATTGAG and ACGTAGTGCAGCAGGCTCTC; blw
(CG3612), GACTGGTAAGACCGCTCTGG and GGCCAAGTACTGCAGA
GGAG; COX5A (CG14724), AGGAGTTCGACAAGCGCTAC and ATAGA
GGGTGGCCTTTTGGT; COX4 (CG10664), TCTTCGTGTACGATGAGCTG
and GGTTGATTTCCAGGTCGATG; mt:Cyt-b (CG34090), GAAAATTCC
GAGGGATTCAA and AACTGGTCGAGCTCCAATTC; ATPsynF (CG4692),
CTACGGCAAAGCCGATGT and CGCTTTGGGAACACGTACT; mt:lrRNA
(CR34094), ACCTGGCTTACACCGGTTTG and GGGTGTAGCCGTTCAA
ATTT; TFAM (CG4217), AACCGCTGACTCCCTACTTTC and CGACGGT
GGTAATCTGGGG; Gapdh1 (CG12055) GACGAAATCAAGGCTAAGG
TCG and AATGGGTGTCGCTGAAGAAGTC. Mean values were normal-
ized first against that for RpL32 and then against an arbitrary standard,
usually Oregon R from the same stage or material, as indicated in figure
legends. Statistical analysis used the primary dCT data, whilst plotted
data shows the normalized fold-changes.

2.5. Protein analysis

Batches of 20 pairs of ovaries (dissected and placed in PBS) or of
100–200 embryos at 80 or 160 mins AEL, dechorionated in 50%
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household bleach (Domestos) for 2min and rinsed three times in PBS)
were crushed in 50 μl lysis buffer (0.3% SDS in PBS, plus one EDTA-free
cOmplete™ Protease Inhibitor Cocktail tablet (Roche) per 10ml). After
15min incubation at room temperature, samples were centrifuged at
15,000 gmax for 10min at room temperature. Supernatants were dec-
anted and protein concentrations determined using the Bradford assay.
Samples were ran on AnyKD™ Criterion™ TGX™ Midi gels (Bio-Rad) in
ProSieve™ EX running buffer (Lonza) with either Prestained Pageruler™
(or Pageruler™ Plus) Ladder (ThermoFisher Scientific), or Spectra™
Multicolor Broad Range Protein Ladder (ThermoFisher Scientific) as
molecular weight markers. Transfer was performed using the Trans-
Blot® Turbo™ Transfer System (Bio-Rad) with the midi nitrocellulose-
specific transfer pack. Membranes were blocked in 5% non-fat milk in
PBS-0.05% Tween (Medicago) for 30min at room temperature with
gentle shaking, then incubated similarly with primary antibodies, as
listed below, at 4 °C overnight. After three 10min washes in PBS-0.05%
Tween, membranes were incubated with secondary antibody in the
same buffer for 2 h at room temperature, and washed twice in PBS-
0.05% Tween and then for a final 10min in PBS. 5ml of Luminata™
Crescendo Western HRP substrate solution (Merck) was added for 5min
before imaging (Bio-Rad ChemiDoc MP). Densitometry was im-
plemented using ImageJ software. Primary antibodies and dilutions
were as follows: ATP5A 1:50,000 Abcam#14748, COXIV 1:1000
Abcam#16056, NDUFS3 1:2500, Abcam#14711, β-actin – DSHB
JLA20-s 1:2500 (all mouse monoclonals), GAPDH 1:5000 Everest
Biotech EB06377 (goat polyclonal), Histone H4 (Abcam, #10158,
rabbit polyclonal,1:5000) and Srl214AA (against peptide CFDLADFIT-
KDDFAENL), customized rabbit polyclonal (21st Century Biochemicals,
1:5000). Appropriate HRP-conjugated secondary antibodies (Vector
Laboratories) were used at 1:5000). Note that the Srl214AA antibody
was verified previously by over-expression, co-migration with epitope-
tagged Spargel, and use of a second antibody raised against a different
Spargel peptide (George & Jacobs, 2019).

2.6. Brightfield imaging

Embryos laid over 24 h at 25 °C were collected from mating-
chamber plates (as above), placed in PBS, rinsed twice in PBS and
mounted in PBS onto a slide, for viewing with an Olympus DP73 mi-
croscope.

2.7. Time-lapse imaging of embryonic development

Embryos laid over 30min at 25 °C were collected from mating-
chamber plates (as above) and placed in a droplet of halocarbon oil 700
(Sigma-Aldrich) in a 6-well plate. Humidity was maintained by placing
a water-soaked cotton-wool plug in adjacent wells. Images were taken
every 2min for 24 h or until hatching, using the Cell-IQ live-cell ima-
ging platform (Imagen) at 10× magnification and a constant 25 °C.

2.8. Immunohistochemistry and fluorescent imaging

Batches of approximately 20 ovaries were dissected in PBS, fixed in
4% paraformaldehyde (pH 7.2) on ice for 20min, rinsed twice with PBT
(PBS-0.05% Tween), washed twice for 15min in PBT-BSA (0.5% BSA)
and incubated with primary antibody in PBT-BSA overnight at 4 °C.
After two rinses with PBT, samples were washed twice for 15min in
PBT-BSA then incubated with secondary antibody in PBT-BSA for 2 h at
room temperature. After two further rinses with PBT and two further
washes for 15min in PBT-BSA samples were mounted using ProLong™
Gold Antifade Mountant with DAPI (ThermoFisher Scientific). Embryos
laid over 4 h at 25 °C were collected from mating-chamber plates (as
above), dechorionated using 50% household bleach (Domestos) and
rinsed three times in PBS. 500 μl of heptane and 500 μl of 4% paraf-
ormaldehyde (pH 7.2) were added and the embryos left to fix over
10–60min. The aqueous bottom layer was removed, leaving the

embryos in 500 μl of heptane, to which was added 500 μl of methanol.
Embryos were vortexed for 2min to remove the vitelline membrane.
Heptane, methanol and all material at the interphase was removed,
leaving only the devitellinised embryos, which were rinsed three times
with methanol, washed three times for 15min in PBT-BSA (0.5% BSA),
and processed thereafter as for ovaries. For ovaries the primary anti-
body used was against ATP5A – Abcam#14748, 1:5000 and for em-
bryos: Even skipped – DSHB-2B8, Hunchback – Abcam#197787, Dorsal
– DSHB-7A4, all at a dilution of 1:500. Appropriate Alexa Fluor® 488
secondary antibodies (Abcam) were used at 1:1000. Images were ac-
quired using a Zeiss LSM800 confocal microscope or, for large-scale
embryo size and staining-pattern analysis, with a Hamamatsu S60 na-
nozoomer WSI digital slide scanner C13210-01 microscope at 5×
magnification. ImageJ software (Regions of Interest tool) was used to
calculate the areas of DAPI-stained embryos for estimating their overall
size estimation. Embryos stained for localized markers were also ex-
amined manually and judged to be positive or negative for the relevant
characteristic staining pattern (see Fig. 4).

2.9. Image processing

Images have been cropped, rotated and framed for clarity, with
addition of scale bars where appropriate, as well as optimized for
contrast and brightness, but without other manipulations.

3. Results

3.1. srl expression is developmentally regulated

Database information on the expression level of srl, based on in situ
hybridization and RNA-seq (Berkeley Drosophila Genome Project,
Flyatlas) indicates sharp changes in early development and a generally
modest expression in adult, which is highest in the ovaries. To compare
this expression quantitatively between tissues and stages, we conducted
qRT-PCR on RNA extracted from staged early embryos, from each of the
larval instars, and from separate sexes from L3 up to adult stage
(Fig. 1A, B), using RpL32 RNA as an internal standard. Expression was
highest in early embryos (stages 1–3), dropped sharply (at least 10-fold)
at stages 4–6 (Fig. 1A), around the time of the mid-blastula transition,
rose slightly at L1, then remained low throughout development in both
sexes (Fig. 1B). In adults it remained low in males, but was approxi-
mately 8-fold higher in females (Fig. 1A), as noted previously (George &
Jacobs, 2019). Dissection of adult females revealed that this sex dif-
ference was accounted for by much higher expression in ovaries than in

Table 1
Densitometric analysisa of Western blots.

Stage Protein Oregon R 33914b 33915b Statistical
analysisc

Ovaryd Spargel 1.00 ± 0.24 1.29 ± 0.33 0.82 ± 0.24 ns
ATP5A 1.00 ± 0.01 0.87 ± 0.06 0.96 ± 0.05 ns
GAPDH 1.00 ± 0.21 0.40 ± 0.02 0.81 ± 0.10 Oregon R/

33914⁎

33914/
33915⁎⁎

Embryoe COXIV 1.00 ± 0.01 1.46 ± 0.18 nd ns
ATP5A 1.00 ± 0.03 0.78 ± 0.15 nd ns
NDUFS3 1.00 ± 0.29 0.81 ± 0.06 nd ns
GAPDH 1.00 ± 0.05 1.22 ± 0.17 nd ns

a Using Inage J, with normalization to values for Oregon R for each protein
and stage.

b From females/mothers of the indicated RNAi lines crossed to MTD-GAL4.
c Using Student's t-test, with Bonferroni correction where appropriate, * –

p < 0.05, ** – p < 0.01, ns – not significant.
d Based on Western blots shown in Fig. 5C.
e 160min AEL, based on Western blots shown in Fig. 6B.
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the rest of the adult female (Fig. 1C). We then examined the levels of
Spargel protein using a previously verified (George & Jacobs, 2019),
customized antibody (Fig. 1D, S1A, S1B). As noted previously (George
& Jacobs, 2019), the protein was equally represented in males and fe-
males (Fig. S1B), despite the disparity in RNA levels. Moreover, in fe-
males, the protein was found only at low levels in ovaries, where the
RNA is paradoxically most abundant (Fig. 1D, Fig. S1B). Note that
samples from ovaries include both germline and somatic (follicle) cells.
The ~105 kDa ‘main band’ was almost undetectable in laid embryos
(Fig. 1E), suggesting that, in the ovary, it is mainly of somatic origin.

3.2. Maternal srl knockdown in the female germline results in embryonic
lethality

To test the effects of downregulating srl expression specifically in

the female germline, we made use of the MTD-GAL4 driver, which di-
rects transgene expression in germ cells throughout oogenesis. We
combined it with shRNA lines from the Harvard Medical School TriP
collection, targeted on srl. We initally tested three such lines. Two of
them gave only a weak knockdown of srl in whole females (Fig. S1D).
The third (Bloomington stock center ID 33914, HMS00857, hereafter
referred to more simply as line 33914) produced substantial (> 80%)
knockdown (Fig. S1D), and also showed this result when RNA from
isolated ovaries was tested (Fig. 2A). One of the lines that showed only
a weak knockdown in whole females (Bloomington stock center ID
33915, HMS00858, hereafter referred to as line 33915) did not give
knockdown in isolated ovaries either (Fig. 2A), and was used in all
subsequent experiments as an additional strain-background negative
control, along with wild-type Oregon R. The other negative line
(Bloomington stock center ID 57043, GL01019) was not studied further.
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Fig. 1. srl expression is developmentally regulated.
(A, B) Relative level of srl RNA (by qRT-PCR) in flies at different developmental stages, means± SD, values normalized to that in stage 1–3 embryos (E1–3, 80min
AEL). E4–6 – stage 4–6 embryos (160min AEL); L1, L2 – first and second larval instars; L3e – early wandering-stage third-instar larvae; L3 l – late wandering-stage
third-instar larvae (one day later); Pe – early pupae (first day); Pl – late pupae (adult structures clearly visible through pupal case); A – 2-day old adult; males and
females shown separately from L3e on, when gonads become visibly distinguishable. In (A) *** denotes significant difference from E1–3, Student's t-test with
Bonferroni correction, based on dCT values, n=4 batches of embryos for all groups. In (B) n=3 batches of flies for all groups except adult females, where one
sample was lost. Statistical analysis by one-way ANOVA with Tukey post hoc HSD test (Table S1) indicated overlaps between most data groups, with only E1–3 being
significantly different from all others. (C) Relative srl RNA levels (qRT-PCR) and (D, E) Spargel protein level (Western blot probed with the antibody against the
peptide indicated in Fig. S4) in (D) intact 2-day old adult females, sham-ovariectomized females, isolated ovaries and ovariectomized females and (E) isolated ovaries
and embryonic stages 1–3 (E1–3) and 4–6 (E4–6), as indicated. In (C), means± SD nornalized to values for intact, adult females, *** denotes significant difference
from intact females, Student's t-test with Bonferroni correction, based on dCT values, p < 0.001. n=4 batches of females (or ovaries) for all groups. Equal loading in
(D) was confirmed by Ponceau S staining (Fig. S1C). As no other normalization control was used in the experiment shown in (D), an equivalent blot from a separate
experiment is shown in Fig. S1B, reprobed for GAPDH. ATP5A was used as a loading control in (E), as shown. Molecular weights extrapolated from the migration of
molecular-weight markers. Separated images are non-adjacent tracks from the same gel. Note that, the virtually undetectable signal from the major (~105 kDa) band
in embryos in (E), indicates a> 20-fold difference in the protein level compared with whole adults, given the wide dynamic range of the Bio-Rad imager system.
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Even when using line 33,914, two nos-GAL4 drivers, NGT40 and NGTA
(Tracey Jr et al., 2000; Wheeler et al., 2002) gave no knockdown (Fig.
S1D) and were not used further.

The rate of egg-laying by females with germline srl knockdown (line
33914 combined with the MTD-GAL4 driver) was comparable with
wild-type or with line 33915 (Fig. S2A). The embryos that developed
manifested a drastically lower (> 2 orders of magnitude) level of srl
RNA than controls (Fig. 2B) 80min after egg-laying (AEL), and the level
remained low at 160min AEL, the time when control embryos at stage
4–6 showed a substantial drop in srl RNA abundance (Fig. 2B). Over
90% of the knockdown embryos failed to complete development
(Fig. 2C). However, of the small minority that hatched, almost all de-
veloped normally through the larval and pupal stages thereafter, in-
dicating that the developmental defect conferred by maternal srl
knockdown in the germline occurred specifically during embryogenesis.
Examination of knockdown embryos laid over a 24 h period (Fig. 3A)
revealed that they varied in their progress through embryogenesis, but
most of them failed to reach the later stages in which trachea were
visible. Some did not appear to develop at all, and many did not re-
semble any normal stages, manifesting diverse and typically severe
morphological defects. Using time-lapse photography we tracked
knockdown embryos through a full 24-hour period. A common pattern
(Movie S1) was of grossly abnormal cellularization and gastrulation
movements, whilst control embryos cultured in parallel developed as
normal (Movie S2).

3.3. Maternal srl knockdown embryos have an abnormal size distribution

The embryos laid over a 4 h period by germline srl knockdown
mothers were analyzed for size and for the expression of genes involved
in patterning of the embryo. Whereas control embryos were normally
distributed in size (Fig. 3B), those from knockdown mothers showed a
broader size distribution, but with a substantial proportion smaller than
the size range of controls and a significantly decreased mean size. Au-
tomated Gaussian curve fitting failed (Fig. 3B, middle panel), indicating
a left-skewed size distribution. The expression of genes in specific em-
bryonic territories in response to localized determinants was, never-
theless, similar to wild-type controls and to published literature, even in
small embryos, for the three test gene products studied (Even skipped –
Fig. 4A, Hunchback – Fig. 4B and Dorsal – Fig. 4C).

3.4. Germline srl knockdown does not downregulate transcripts related to
mitochondrial function

Given the widely credited view that the main role of the PGC-1
coactivator family is to boost the transcription of genes related to mi-
tochondrial and metabolic function under specific physiological or de-
velopmental conditions, the observed embryonic semilethality and
morphological abnormalities could be consistent with such a role for srl
in early development (oogenesis and/or embryogenesis). To investigate
this possibility, we studied the steady-state levels (normalized to that of
cytosolic ribosomal protein RpL32) of transcripts for a range of genes
encoding components of the mitochondrial OXPHOS complexes, as well
as the major mitochondrial transcription factor and nucleoid protein
TFAM, the mitochondrial large-subunit (16S) rRNA, and one reference
gene, the Gapdh1 isoform of the glycolytic enzyme GAPDH. In ovaries
from germline knockdown females (MTD-GAL4/33914) the levels of
these transcripts showed no significant differences from controls
(Fig. 5A). In knockdown ovaries we observed ovarian follicles in all
stages of development (Fig. 5B), with a normal amount and distribution
of DNA and of the mitochondrial OXPHOS protein Bellwether (Droso-
phila ATP synthase α subunit, ATP5A). By Western blot we also found
normal levels of typical OXPHOS proteins such as those detected by
antibodies against ATP5A (Fig. 5C, S2C), NDUFS3 (ND-30, Fig. S2C)
and COXIV (Fig. S2C), as well as housekeeping proteins β-actin and
histone H4 (Fig. S2C). Against this trend, and despite the level of
Gapdh1 mRNA not being significantly less than wild-type (Fig. 5A), we
found consistently decreased levels of GAPDH (Fig. 5B, S2C). Surpris-
ingly, and despite the large decrease in srl RNA (Fig. 2A), there were no
systematic effects observed on the levels of Spargel polypeptides in
ovaries (Fig. 5B). Relative mtDNA levels measured by qPCR were not
significantly different from those of Oregon R wild-type ovaries
(Fig. 5C).

In embryos at the 80min AEL time point (stage 1–3 in control
embryos), we observed increased levels of many of the OXPHOS-related
transcripts (Fig. S3A), although in many cases this trend was shared
with embryos from MTD-GAL4/33915 mothers, so may be a back-
ground effect. The steady-state level of ATP5A (Bellwether) protein was
unchanged from controls (Fig. S3B), whilst that of Spargel polypeptides
was extremely low, as in controls (Fig. S3B). mtDNA copy number,
although more varied than in controls at this time-point (Fig. S3D), was
of a similar order of magnitude. More pronounced changes were seen at
the 160min AEL time-point (stage 4–6 in controls), following the
period when srl mRNA is normally at maximal abundance, but then
declines (Fig. 1A), and when development in embryos from knockdown
mothers becomes clearly aberrant (Supplementary Movie S1). How-
ever, here again the trend from srl knockdown was towards increased,
not decreased levels of OXPHOS-related transcripts (Fig. 6A), which
were clearly elevated compared with both Oregon R and MTD-GAL4/
33915 controls. Typical OXPHOS proteins were unchanged compared
with wild-type control embryos (Fig. 6B), and this now applied also to
GAPDH (Fig. 6B). Relative mtDNA copy number (Fig. 6C, S3D) declined
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substantially between the two embryo time-points, in line with the
expected synthesis of nuclear DNA. Although copy number in maternal
srl knockdown (MTD-GAL4/33914) embryos remained slightly higher
than in wild-type (Oregon R), this was shared with the MTD-GAL4/
33915 control (Fig. 6C, S3D). This indicates that it was most likely a
background effect, possibly related to the timing of the final rounds of
nuclear DNA synthesis.

4. Discussion

In this study we demonstrated that srl function in the germline is
required to ensure successful embryogenesis. In summary, gerrmline srl
knockdown produced embryos with an abnormal size distribution
(Fig. 3B) and decreased mean size, which failed to develop normally
(Fig. 3A) and exhibited aberrant patterns of cellularization and gas-
trulation movements that did not resemble any normal developmental
stage (Movie S1). However, knockdown produced no detectable ab-
normalities in the embryonic expression of axial specifiers dependent
on localized determinants laid down during oogenesis (Fig. 4) and no
significant changes in mtDNA copy number (Figs. 5D, 6C) or OXPHOS
proteins (Figs. 5C, 6B). mRNAs for OXPHOS subunits were unchanged
in oocytes (Fig. 5A) but generally elevated 160min AEL (Fig. 6A) Al-
though srl was at its highest levels in early embryos and in ovaries,

Spargel protein was paradoxically at very low levels in these develop-
mental stages (Fig. 1), and was not affected by germline knockdown of
the RNA. We here discuss the significance and implications of these
findings.

4.1. Respective roles of spargel RNA and protein in early development

Two different antibodies raised against non-overlapping peptides
from the Spargel protein detect the same bands in Western blots
(George & Jacobs, 2019), namely a major isoform migrating at an ap-
parent molecular weight of ~105 kDa and a less abundant isoform
migrating at ~120 kDa. The same bands were detected in S2 cells
transfected with an epitope-tagged variant of srl, probed for the epitope
tag (George & Jacobs, 2019). In the present study we also detected a
minor band in ovaries (Fig. 5C) and embryos (Fig. S3B), visible only at
long exposure, migrating around ~70 kDa. Based on the previous data
(George & Jacobs, 2019) we consider that these antibodies are reliable
for detecting Spargel polypeptides, although not necessarily all Spargel
polypeptides. Any Spargel isoforms in which the two relevant (non-
overlapping) peptides used for raising antibodies (see Fig. S4) are both
excised or heavily modified would remain undetected. The primary
translation products of both of the reported srl mRNA splice variants
(see FlyBase (Thurmond et al., 2019; Chintapalli et al., 2007)) differ by
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only a short run of amino acids near the N-terminal region (Fig. S4), are
each predicted to be detected by these antibodies. Several observations
suggest that we may be missing some vital information, which could
relate to one or more isoforms of the protein that are not detected by
either of these antibodies, or to a role for srl RNA that is distinct from its
coding function as the mRNA for Spargel. First and most puzzling is the
discordant result regarding the abundance of srl RNA and Spargel
protein. The RNA was several-fold higher in females than in males, but
the difference is accounted for by its much higher representation in the
ovaries than in somatic tissues. Ovariectomized females had similar
amounts of the RNA as males (Fig. 1B, C). However, the major,
~105 kDa protein isoform follows a distinct, in some ways opposite
pattern, being present in similar amounts in adult males and ovar-
iectomized females, but at much lower levels in ovaries. In the early
embryo, the RNA was at its highest level of any stage (Fig. 1A), yet the
major Spargel protein band of ~105 kDa was virtually undetectable,
with only the minor ~70 kDa band clearly visible. Further, despite ef-
fective RNAi knockdown of srl at the RNA level (Fig. 2), the protein
level was essentially unaffected, at least in ovaries (Fig. 5C).

It should be noted that different normalization standards were used
for RNA (RpL32) and for protein (GAPDH). For RNA normalization
RpL32 is commonly used as reference gene, making our data compar-
able with that of other studies. For protein normalization, there is no
fully agreed universal standard, although GAPDH is widely used, and

shows only minor fluctuations in most contexts. RpL32 has not been
widely used as a protein standard in Drosophila. We considered the ef-
fects of applying the same standard for normalization to both RNA and
protein. The abundance of Gapdh1 mRNA (relative to that for RpL32)
showed no significant differences between the genotypes in ovary
(Fig. 5A), nor in embryos 80min AEL (Fig. S3A). Moreover, based on
the data in Flyatlas (Thurmond et al., 2019; Chintapalli et al., 2007),
the abundance of Gapdh1 and RpL32 mRNAs in ovary is at a very si-
milar ratio to that in the whole fly (0.76 and 0.86, respectively).
Therefore, switching to Gapdh1 as an alternative normalization stan-
dard would make no difference to the overall result for those stages, nor
to the major finding of radically different srl mRNA and protein abun-
dances. It should also be noted that, at 160min AEL, there is a sharp
drop in Gapdh1 mRNA abundance in all genotypes (Fig. 6A), making it
unsuitable as a reference ‘housekeeping’ mRNA during the specific
context of embryogenesis where, in any case, new protein synthesis
contributes little to the steady-state level of abundant housekeeping
proteins such as GAPDH.

There is no reported evidence for an antisense srl RNA or any
truncated RNA lacking the start codon, from the srl locus. Therefore, the
RNAi target in our experiments must be one or all of the reported srl
mRNA isoforms. One possible explanation for our findings would be
that the Spargel protein detected in ovaries and embryos does not
originate in the germline but is imported from follicle cells, whilst the
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abundant srl mRNA in the oocyte and early embryo is untranslated, and
has a novel but unknown (non-coding) role in early development.

Like PGC-1α in mammals, srl is known to be regulated post-trans-
lationally by RNF34-mediated ubiquitylation (Wei et al., 2018). In
adult muscle, knockdown of srl counteracts the metabolic and physio-
logical effects of RNF34 knockdown (Wei et al., 2018), including the
promotion of mitochondrial biogenesis. Translational regulation, as
hypothesized previously (George & Jacobs, 2019) might account for
low levels of the protein despite high levels of the RNA, if srl translation
is responsive to levels of the encoded protein, as documented for a
subset of genes in yeast (Beyer et al., 2004). Although purely spec-
ulative at this point, such an idea needs to be thoroughly investigated.

4.2. Maternal spargel is required in the germline for embryo viability

In this study, we showed that the female sterility (Tiefenböck et al.,

2010) or near sterility (Mukherjee et al., 2014) previously seen in srl1

flies is due to an effect specifically in the female germline, affecting the
viability of the resulting embryos. Previous studies indicated a delay in
oogenesis in the srl1 hypomorph (Mukherjee et al., 2014), although we
did not find any difference in fecundity as a result of germline srl
knockdown (Fig. S2A), nor any obvious difference in ovarian mor-
phology (Fig. 4). The previous findings may therefore have been in-
fluenced by somatic insufficiency of srl (e.g. in the fat body). Here we
showed that srl knockdown in the germline affects embryo size (Fig. 3)
and produces a dramatic, disruptive effect on embryonic development,
commencing around the time of the mid-blastula transition (Movie S1).
Nevertheless, we found no specific evidence of an effect on mitochon-
dria.

Gametogenesis clearly does depends upon mitochondrial function in
somatic cells of the developing gonad (Reeve et al., 2007), although
spatial and temporal disruption of mitochondrial movement into the
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oocyte from the nurse cells does not prevent the development of viable
progeny (Cox & Spradling, 2006).

Mitochondria are a major component of the Balbiani body (Cox &
Spradling, 2003), which is involved in the formation of polar granules,
the germ plasm (Lehmann, 2016) that specifies the future germline. The
widespread and dramatic effects on cellularization are not consistent
with any specific effect on future germ cells, although we cannot ex-
clude the possibility that components of the germ plasm may have been
incorrectly distributed to other regions of the srl knockdown oocyte,
where they might interfere with nuclear re-localization or specific as-
pects of fate specification during blastoderm formation and/or cellu-
larization.

Several lines of argument support the conclusion that the embryonic
lethality was due to a genuine RNAi effect, despite the lack of corre-
spondence between srl RNA and protein levels, as detected by the an-
tibody. First, knockdown was highly effective at the RNA level, whereas
other RNAi lines targeted against srl gave no such knockdown and also
no observable phenotype. Second, the previously studied hypomorph
srl1 also showed female sterility (Tiefenböck et al., 2010), even though
it was not possible to establish whether this was a somatic or germline-
specific effect. The similar phenotype makes it highly unlikely that our
findings are an off-target effect. Although an off-target effect cannot be
completely ruled out, the usual way of excluding it, which would be to
recode the protein and express it in the RNAi background, would be

uninterpretable, given the non-congruence of the RNA and protein data.
Note also that massive overexpression at the RNA level also had only
modest effects on the protein (George & Jacobs, 2019). Thus, in-
sufficiency of the srl RNA as such, rather than of the encoded protein,
may underlie the embryonic phenotype, which would impute an un-
defined, non-coding function to the RNA.

4.3. Does size matter?

srl knockdown embryos were smaller than their wild-type or control
counterparts (Figs. 3, 4), and their sizes spanned a greater range.
However, many were in the normal size range, despite the fact that only
~10% of them were able to complete development, implying that size is
not the sole determinant of developmental success or failure following
srl knockdown. Rather, the abnormal size distribution should be con-
sidered an indicator of unknown aberrations during oogenesis. Oo-
genesis was not grossly disturbed (Fig. 5B), and knockdown embryos
were ostensibly normal as regards localized determinants (Fig. 4).
Compared with controls, the amount of mtDNA relative to nuclear DNA
in knockdown ovaries or embryos showed only minor variations that
are probably attributable to strain background (Fig. 6D, S3D). Once
cellularization was complete (160min AEL), relative mtDNA copy
number was only slightly elevated compared with controls (Fig. 6C,
S3D), implying that total nuclear DNA synthesis during embryogenesis
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was close to normal. The only consistent differences we could detect in
knockdown ovaries was in the representation of GAPDH, which was
decreased (Fig. 5C, S2C).

Our tentative interpretation is that a sufficient level of spargel gene
product is required to ensure the supply of one or more vital compo-
nents to the oocyte. Noting that the qRT-PCR data at both the 80min
AEL (Fig. S3A) and 160min AEL (Fig. 6A) time-points has been nor-
malized to the values for each transcript in Oregon R embryos at 80min
AEL, it is evident that there is a general decline in most maternal
transcripts (compared with RpL32) between these two time-points in
control embryos. Yet in knockdown embryos this decline did not occur
(Fig. 6A), suggesting a global failure of the transcriptional activation
that occurs once the cleavage cycles of nuclear division are complete
(Anderson & Lengyel, 1979). This fits the canonical activity of Spargel
as a transcriptional coactivator, and would imply that one of its roles in
the embryo could be to boost new transcription across the genome, at
cellularization. Note, however, that the zygotic activation of evens-
kipped and hunchback transcription during the syncitial phase of em-
bryonic development occurred normally (Fig. 4A, B). These early
switches in transcription involve specific mechanisms, such as the di-
lution of maternally synthesized repressors (Pritchard & Schubiger,
1996), and may be independent of a general requirement for Spargel.
The fact that GAPDH protein was decreased in knockdown ovaries
(Fig. 5C) also suggests the possibility that Spargel may indeed be acting
as a transcriptional coactivator during oogenesis, but with a completely
different set of specific targets than those related to mitochondria. A
completely different possibility would be that spargel has a more spe-
cific role in cellularization, which might directly involve the srl RNA,
which abruptly declines in abundance in control embryos around this
time (Fig. 1), rather than the protein.

4.4. Ancestral function(s) of PGC-1 family coactivators

In mammals, only one member of the PGC-1 family, PPRC1, is an
essential gene, being specifically required for early development in the
mouse (He et al., 2012), as well as for the growth program in somatic
cells (Andersson & Scarpulla, 2001; Vercauteren et al., 2009). Its
functions are less well characterized than those of PGC-1α and PGC-1β.
Although PPRC1 is responsive to mitochondrial metabolic stress, which
it counteracts (Gleyzer & Scarpulla, 2011), it is less obviously focused
on metabolism than PGC-1α and PGC-1β. For this reason, it has been
widely assumed that it arose by duplication and diversification, evol-
ving novel functions in the process. The fact that the PGC-1 family is
represented in Drosophila by a single gene offered a theoretical oppor-
tunity to identify the ancestral function of the gene family, and re-assess
the meaning of the gene family in mammals.

Previous studies of srl have suggested a relationship with metabo-
lism, although the hypomorph srl1 was earlier found to have a growth
defect and to exhibit female sterility (Tiefenböck et al., 2010), with a
few ‘escapers’ (Mukherjee et al., 2014). Using a highly specific driver/
RNAi vector combination, our studies have now shown that this es-
sential function is exercised in the female germline and/or early em-
bryo, but does not involve any specific effect on mitochondria or on
gene expression connected to metabolism.

The developmental expression pattern of PPRC1 shares some simi-
larities with that of srl, being abundant during the cleavage stages, or
when embryonic stem cells are induced to form embryoid bodies, but
then falling away sharply (He et al., 2012). These various features
suggest that srl has more in common with PPRC1 than with other
members of the PGC-1 family, and that these shared properties may be
ancestral. On the other hand, previous data relating srl to growth reg-
ulation and responsiveness to insulin signalling (Tiefenböck et al.,
2010; Mukherjee & Duttaroy, 2013), imply that the ancestral PGC-1
coactivator may have performed functions both in early development
and in metabolic regulation of growth, and these only diverged func-
tionally later on in mammals.

4.5. Clinical relevance

In humans, the PGC-1 coactivators have been implicated in key
physiological and pathological processes linked to diet and metabolism
(Cheng et al., 2018). Moreover, their upregulation has been shown to
be beneficial in numerous disease models (Cheng et al., 2018), and they
have been proposed as potential drug targets via the use of agents such
as bezafibrate, that act as PGC-1 pan-agonists (Komen & Thorburn,
2014). However, such trials have so far met with only limited success
(Orngreen et al., 2015). The present study indicates one fundamental
reason why this might be the case: namely, that, in addition to their
roles in energetic homeostasis, the PGC-1 coactivators are also involved
in regulating other processes, including key events in early develop-
ment performed in Drosophila by srl and in mammals by PPRC1.
Therefore, PGC-1 pan-agonists may simply have too broad an effect,
with unintended side effects and self-cancelling modifications of me-
tabolism, unless some way can be found to target PGC-1 regulation of
metabolic functions more specifically.

4.6. Conclusions

In conclusion, whilst spargel expression in the female germline plays
an important function in reproductive viability, there is no evidence
supporting mitochondrial biogenesis or metabolic homeostasis as the
object of that function. Instead, spargel potentially plays a more global
role in oogenesis, ensuring adequate resources for the developing em-
bryo after oviposition. We suggest that the PGC-1 coactivator family
might better be considered as supplying a boost to transcription in re-
sponse to several different types of metabolic, developmental or phy-
siological signalling, and that the precise targets of this effect depend
more on the tissue and context than on specific properties of the
coactivators.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.mito.2019.08.006.
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