
Pyrazine-fused triterpenoids block the TRPA1 ion channel in vitro and 

inhibit TRPA1-mediated acute inflammation in vivo 

Ilari Mäki-Opas†, Mari Hämäläinen†, Lauri J. Moilanen†, Raisa Haavikko‡, Tiina J. Ahonen‡, Sami 

Alakurtti‡,§, Vânia M. Moreira‡,, Katsuhiko Muraki⊥, Jari Yli-Kauhaluoma‡ and Eeva Moilanen† 

†The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, 

Tampere University and Tampere University Hospital, Tampere, Finland 

‡Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of 

Pharmacy, University of Helsinki, Helsinki, Finland 

§VTT Technical Research Centre of Finland Ltd, Espoo, Finland

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, 

UK 

⊥Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, 

Japan 

This is the accepted manuscript of the article, 
which has been published in Acs chemical 
neuroscience  2019, vol 10 (6), 2848-2857.                
https://doi.org/10.1021/acschemneuro.9b00083 



ABSTRACT 

TRPA1 is a non-selective cation channel, most famously expressed in non-myelinated nociceptors. 

In addition to being an important chemical and mechanical pain sensor, TRPA1 has more recently 

appeared to have a role in inflammation as well. Triterpenoids are natural products with anti-

inflammatory and anti-cancer effects in experimental models. In this paper, thirteen novel 

triterpenoids were created by synthetically modifying betulin, an abundant triterpenoid of the genus 

Betula L. and their TRPA1-modulating features were examined. Fluo 3-AM protocol was used in 

the initial screening, in which six out of the fourteen tested triterpenoids inhibited TRPA1 in a 

statistically significant manner. In subsequent whole-cell patch clamp recordings, the two most 

effective compounds (pyrazine-fused triterpenoids 8 and 9) displayed a reversible and dose and 

voltage-dependent effect to block the TRPA1 ion channel at submicromolar concentrations. 

Interestingly, the TRPA1-blocking action was also evident in vivo, as compounds 8 and 9 both 

alleviated TRPA1-agonist induced acute paw inflammation in mice. The results introduce betulin-

derived pyrazine-fused triterpenoids as promising novel antagonists of TRPA1 that are potentially 

useful in treating diseases with a TRPA1-mediated adverse component. 
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INTRODUCTION 

Transient receptor potential ankyrin 1 (TRPA1) is a cation channel expressed predominantly in Aδ- 

and C-type nociceptive nerve fibers mediating chemical and mechanical pain. TRPA1 is a 

physiological chemoreceptor for potentially harmful exogenous chemicals and its activation causes 

immediately perceivable and often painful sensations.1,2 Indeed, there are many naturally occurring 

irritants that activate TRPA1 e.g. allicin in garlic (Allium sativum L.), cinnamaldehyde in cinnamon 

(Cinnamomum Schaeff.) and allyl isothiocyanate (AITC) in mustard oil.3-5 

There is increasing data supporting the idea that TRPA1 ion channel also plays a critical role in 

inflammation.1 Pharmacological blockade and genetic deletion of TRPA1 have been shown to 

alleviate nociception and inflammation in animal models such as carrageenan-induced paw 

inflammation,6 monosodium iodoacetate-induced arthritis,7 monosodium urate crystals-induced 

gouty arthritis and formalin-induced pain.8-10 These adverse effects of TRPA1 activation were not 

due to a direct effect of the disease-inducing exogenous substance on the ion channel but 

attributable to endogenous activation of TRPA1. Indeed, endogenous compounds capable of 

opening the TRPA1 channel have recently been characterized and they include factors released in 

inflammatory conditions such as reactive oxygen and nitrogen species (ROS and RNS), bradykinin 

and some prostaglandins.5,11 The emerging dualistic role of TRPA1 in nociception and 

inflammation has revealed TRPA1 as a promising drug target. It has been speculated that blockade 

of TRPA1 is likely to provide direct alleviation of pain and additionally attenuate inflammation. 

However, although there is a wide spectrum of compounds known to activate TRPA1, only a few 

blockers have been identified. 

Betulin (1) is a widely studied triterpenoid, which can be found in the birch tree bark (Betula sp. 

L.). Other triterpenoids are present in olives and apple peel and are thought to contribute to some of 

the health promoting effects of these foodstuffs: Betulin (1) and some related triterpenoids have 



been found to possess anti-inflammatory properties.12-15 There is also evidence of their therapeutic 

potential against cancer, HIV and protozoal diseases.16-25 

Based on our preliminary screening results, we postulated that some of the pharmacological features 

of triterpenoids might be attributable to blockade of TRPA1. In the present study, we utilized two in 

vitro protocols: the Fluo 3-AM intracellular Ca2+ measurement and whole-cell patch clamp current 

recording, as well as an in vivo model of acute TRPA1-mediated inflammation to study the effects 

of betulin (1) and a series of its derivatives (2 – 14) on TRPA1.  



RESULTS  

Chemistry. Thirteen triterpenoids 2-14 were synthesized as described previously and their 

structures are shown in Figure 1, along with betulin (1).20-22 In addition, a novel method to convert 

betulin to betulonic and further to betulinic acid was developed (Figure 2): First, betulin (1) was 

oxidized to betulonic aldehyde with air using palladium(II) acetate as a catalyst. The resulting 

betulonic aldehyde was further oxidized to betulonic acid (2) in one pot using sodium chlorite as an 

oxidant. Finally, the reduction of betulonic acid (2) with NaBH4 produced betulinic acid (3) with a 

good yield. 

Six of the fourteen triterpenoids inhibit TRPA1 in vitro. The antagonistic properties of the 

triterpenoids on TRPA1 were first screened at 10 µM concentrations using the Fluo 3-AM calcium 

measurement protocol in human TRPA1 (hTRPA1) transfected HEK293 cells. The cells were pre-

incubated with the triterpenoids and thereafter TRPA1-mediated Ca2+-influx was induced by adding 

the known TRPA1 activator AITC.  

Six triterpenoids, namely compounds 5, 6, 7, 8, 9 and 14 inhibited AITC-induced Ca2+influx at 10 

µM concentration in a statistically significant manner. The results of the TRPA1-blocking activity 

of all triterpenoids studied are summarized in Table 1. The cytotoxicity of the compounds in the 

experimental conditions used was ruled out with the XTT assay. 

The two most promising compounds 8 and 9 (Figure 3) were examined further in a broader range of 

concentrations up to 100 µM and a dose-dependent inhibition was observed with both compounds 

(Figure 4). The IC50 values of compounds 8 and 9 in the Fluo 3-AM Ca2+-influx measurements 

were 9.5 and 7.5 µM, respectively. 

Further experiments demonstrated that the triterpenoids 8 and 9 blocked AITC-induced Ca2+-influx 

also in HEK293 cells transfected with mTRPA1 (Figure 5). In addition, compounds 8 and 9 at 



concentrations up to 100 µM did not induce any detectable Ca2+-influx in HEK293 cells transfected 

with either human or mouse TRPA1, ruling out an agonistic effect. 

In whole-cell patch clamp recordings, triterpenoids 8 and 9 display a strong and reversible 

TRPA1-blocking activity. To verify the TRPA1 blocking ability of compounds 8 and 9, we 

utilized the whole-cell patch clamp recording technique. In HEK293 cells transfected with 

hTRPA1, the AITC (50 µM)-induced ion currents through TRPA1 were strongly attenuated at a 

holding potential of -50 mV when the cells were treated with either compound 8 or 9 (Figure 6A 

and 6C). Interestingly, both compounds exerted a voltage-dependent blockade of TRPA1 channel 

currents (Figure 6B and 6D). The IC50 values of compounds 8 and 9 against HC-030031 sensitive 

TRPA1 channel currents at -100 mV and -50 mV were each 0.3 μM, whereas at +50 mV they were 

1.3 μM, and at +100 mV, they were 1.8 μM and 4.4 μM, respectively (Figure 6E and 6F). 

In additional experiments, we examined the reversibility of the inhibitory effects of compounds 8 

and 9 on TRPA1. Since high concentrations of AITC may desensitize TRPA1 during the 

recordings, we exploited 10 μM AITC to activate TRPA1 in these experiments. As shown in Figure 

7A-H, both pyrazine-fused triterpenoids (compounds 8 and 9) exhibited inhibitory effects on 10 μM 

AITC-induced currents at a holding potential of -50 mV comparable to those seen with the 50 μM 

AITC-induced currents (see also Figure 6E and 6F). This suggests that the concentration of the 

TRPA1 agonist had little or no influence on the inhibitory effect of compounds 8 and 9. After the 

current amplitude had stabilized during the application of compounds 8 and 9, they were removed 

from the bathing solution while maintaining 10 μM AITC. The recovery of AITC-induced TRPA1 

activation was complete after the withdrawal of 0.3 and 3 μM concentrations of compounds 8 and 

9; while the recovery was partial, but still obvious, after 30 µM concentrations of compounds 8 and 

9 (Figure 7C, 7F, 7G and 7H). This demonstrates that compounds 8 and 9 are reversible blockers of 

hTRPA1 at concentrations up to 3 μM, but at 30 µM concentration the blockade is partially 

irreversible. 



Triterpenoids 8 and 9 attenuate TRPA1-mediated acute inflammation in vivo. As compounds 8 

and 9 were highly promising TRPA1 blockers in vitro, we determined whether they could inhibit 

TRPA1-mediated inflammation in vivo. Hence, the effects of compound 8 and 9 on AITC-induced 

acute inflammation were investigated in the mouse paw edema model. The mice were injected 

intraplantarly with the TRPA1 agonist AITC and the increase in the volume of the paw caused by 

the inflammatory edema was measured in mice pre-treated with the compounds and compared with 

those receiving vehicle only. Systemically administered compounds 8 (10 mg/kg, i.p.) and 9 (10 

mg/kg, i.p.) both attenuated the AITC-induced inflammatory edema with an effect similar to the 

known TRPA1 antagonist HC-030031 (300 mg/kg, i.g.), used as a positive control. The results are 

summarized in Figure 8. 

  



 

DISCUSSION 

The present results clearly indicate that the two pyrazine-fused triterpenoids, compounds 8 and 9 

(Figure 3), effectively inhibit TRPA1 activation in a dose-dependent manner in vitro and 

significantly attenuate acute inflammation mediated by TRPA1 in vivo. The observed blockade of 

both human and mouse TRPA1 channel in vitro suggests that the compounds’ inhibitory effects on 

TRPA1-mediated conditions in mice are likely to be generalized to humans as well. Furthermore, in 

the whole-cell patch clamp recordings, the blocking effect of the compounds was completely 

reversible up to the concentrations of 3 µM. 

The in vivo experiments demonstrated that compounds 8 and 9 attenuated TRPA1-mediated 

inflammation induced by AITC, indicating that these two triterpenoids when administered 

systemically have appropriate pharmacokinetics to ease paw inflammation, most likely by inhibiting 

TRPA1 activation. It is noteworthy that the two triterpenoids were active at doses lower than the 

widely used TRPA1 antagonist HC-030031. Mice exhibited no adverse effects due to treatment 

with the triterpenoids during the short duration of the experiment. 

The detailed molecular mechanism of action of pyrazine-fused triterpenoids (compounds 8 and 9) 

on TRPA1 channel cannot be determined based on the results of the present study though both 

triterpenoids inhibited the channel currents in a voltage-dependent manner. Previous studies on 

TRPA1 blockers have revealed versatile binding sites and mechanisms of actions: a very effective 

TRPA1 antagonist A-967079 seems to attach to the TRPA1 channel pore vestibule where it 

interacts with the phenyl moiety of F944,26 the site of HC-030031 action is the N855 residue of the 

channel and interaction with the C-terminus region exerts synergistic effects on the inhibition.27 

Since compounds 8 and 9 exerted voltage-dependent blockade against TRPA1, it is possible that 

these triterpenoids interact with certain amino acid residues in the channel which are located close 



to the electrical fields within the plasma membrane. In addition, HC-030031 has been reported to be 

a rapidly acting and reversible blocker.10 Menthol is a terpene related compound, which has been 

shown to have an effect on TRPA1. Its binding site in mouse TRPA1 has been reported to be 

transmembrane domain 5, which is essential for the channel’s ability to sense menthol. Nine other 

pore residues were also identified to account for the species-specific alteration of menthol’s action 

as either agonist or antagonist of TRPA1.28 

In the present study, we showed that the effects of the compounds 8 and 9 were reversible at least 

up to the concentration of 3 μM, while their action was only partly reversible at 30 μM 

concentration. Moreover, the recovery after the removal was relatively slow even at 0.3 μM, 

suggesting that these triterpenoids bind tightly to the TRPA1 channel. Since both compounds 8 and 

9, but not the other triterpenoids investigated, have a pyrazine ring in their structure (Figure 1), this 

moiety appears to be critical for their blocking efficacy, reversibility and/or recovery rate after their 

removal. The conversion of the carboxylic acid in compound 8 to the respective amide in compound 

9 did not seem to affect the TRPA1 blocking properties of the compound. Even though the pyridine 

derivative compound 10 did not exert a blockade similar to compounds 8 and 9, the effects of other 

six-membered rings on the 2,3-position should be determined in the future. Further extensive 

studies will be required to clarify the detailed molecular mechanisms of TRPA1-blocking by 

pyrazine-fused triterpenoids. 

The IC50 values of compounds 8 and 9, around 0.3 µM each at -50 mV in whole-cell patch clamp 

recordings against 50 μM AITC, were lower than that of the most widely used TRPA1 blocker HC-

030031 (~1 µM against 5 μM AITC-induced human TRPA1 currents).10 However, the IC50 values 

calculated from intracellular Ca2+ influx measurements were higher: 9.5 and 7.5 µM for compounds 

8 and 9, respectively. Similarly, the IC50 value of HC-030031 was higher in the Ca2+ measurement 

assay (6.2 μM) than in the patch clamp experiments.10 It is also notable that IC50 values of 

compounds 8 and 9 were increased at positive membrane potentials in whole-cell patch clamp 



experiments. This depolarization-induced reduction in the blockade of TRPA1 by both compounds 

8 and 9 may in part explain the difference in IC50 values between Fluo 3-AM and whole-cell patch 

clamp experiments. The activation of TRPA1 induces depolarization of TRPA1-expressing HEK 

293 cells in the Fluo 3-AM experiments and thus may attenuate the blocking efficacy of compounds 

8 and 9 against TRPA1.  For comparison to the identified IC50 value of 0.3 µM for betulin -derived 

compounds 8 and 9, the naturally occurred stilbenoids pinosylvin and resveratrol have been shown 

to block TRPA1 activity with IC50 of 16.7 µM and 12,9 µM, in whole-cell patch clamp recordings, 

respectively,29 and gallic acid with IC50 of 11 µM.30 Recently described synthetically modified 

quinazolinone-based purinone 27 and N-isopropylglycine sulfonamide-based Compound 20 have 

increased potency while the most widely used traditional TRPA1 blockers are less potent than the 

compounds 8 and 9 identified in the present study.31,32 

Laavola et al. have recently assessed the anti-inflammatory properties of compounds 8 and 9.15 A 

significant decrease of inducible nitric oxide synthase (iNOS) expression was observed in J774 

macrophages treated with both compounds, which is likely to result in impaired production of nitric 

oxide (NO) in inflammatory conditions. As NO is a known TRPA1 activator,11 compounds 8 and 9 

may down-regulate TRPA1-mediated responses in inflammatory conditions both directly by 

blocking the channel (as shown in the present study) and indirectly by reducing the synthesis of 

endogenous TRPA1 activators such as NO. Moreover, the antagonistic effects of compounds 8 and 

9 on TRPA1 channels may at least partially explain the previously reported attenuating effects of 

these compounds on inflammatory gene expression,15 because TRPA1 activation has been shown to 

up-regulate the expression of pro-inflammatory factors, like cyclo-oxygenase-2, and interleukins 1, 

6, and 8 in inflammatory conditions.6,7,33-35 

The present results have laid the foundation for a wider assessment of the effects of pyrazine-fused 

triterpenoids in different animal models of diseases involving TRPA1 activation. If one considers 

the positive effects of other TRPA1 blockers, treatment of neuropathic pain has travelled the longest 



path; phase II clinical trials of the compound GRC 17536 have been conducted, with favorable 

results.36 Some novel directions in TRPA1 research have emerged: TRPA1 has a notable role in the 

pathogenesis of allergic contact dermatitis and therefore TRPA1 blockers might be useful in its 

treatment.37 Our recent studies have shown that in primary human articular chondrocytes TRPA1 is 

expressed and that TRPA1 blockers and/or genetic deletion of TRPA1 can alleviate pain and 

inflammation in experimental models of osteoarthritis and gout.7,8,33 Other inflammatory conditions 

such as colitis and asthma are also potential targets of TRPA1 blockers.38,39 The most widely used 

TRPA1 blocker in animal experiments, HC-030031, was unfortunately discovered to possess poor 

pharmacokinetic properties.40 Therefore, the pharmacokinetic profile as well as the safety profile of 

compounds 8 and 9 should be characterized in the future, although our preliminary data did not 

reveal any obvious concerns. 

In conclusion, this study discovered two pyrazine-fused triterpenoids (compounds 8 and 9) which 

were found to block the TRPA1 ion channel reversibly in vitro and alleviate TRPA1-mediated 

inflammation in vivo. They could be useful lead compounds when developing new drugs for 

alleviating TRPA1-mediated adverse conditions. 



METHODS 

Triterpenoid synthesis 

General Experimental Procedures. Commercially available reagents were used without further 

purification. Crude betulin (UPM, Lappeenranta, Finland) was recrystallized from 2-propanol/H2O 

azeotrope to yield 99% pure betulin as a white solid. All solvents were of HPLC grade. Anhydrous 

solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA). All reactions in anhydrous 

solvents were performed in oven-dried glassware under an inert atmosphere of anhydrous argon or 

nitrogen. Thin-layer chromatography (TLC) was performed on E. Merck (Darmstadt, Germany) 

silica gel 60 backed plates, with visualization by UV illumination and staining with 5% H2SO4 in 

MeOH. Melting points were obtained with a Sanyo Gallenkamp (Moriguchi, Osaka, Japan) 

apparatus without correction. The Fourier transform infrared (FTIR) spectra were recorded on a 

Nicolet iS50 FT-IR (Waltham, MA, USA) using a built-in diamond ATR. The 1H and 13C NMR 

spectra were measured on a Bruker Avance III 500 MHz NMR spectrometer (Billerica, MA, USA). 

1H and 13C NMR spectra were recorded in solution, in CDCl3. HRMS were measured to determine 

the purity of all tested compounds on a Waters Acquity UPLC system (Waters, Milford, MA, USA) 

equipped with a Synapt G2 HDMS mass spectrometer (Waters). 

Triterpenoids. A novel method was developed to synthesize betulonic and betulinic acid from 

betulin, as detailed below. The other 11 betulin derivatives were prepared as described previously 20-

22. 

Betulonic acid (2). Palladium(II) acetate (1.2 g, 6 w-%) and pyridine (5 mL) were added to toluene 

(500 mL). Mixture was heated to 80 °C and betulin (1) (20.0 g, 45.2 mmol) was added in small 

portions under vigorous stirring and air bubbling (flow rate 1000 mL/min). After 7 h, the reaction 

was quenched (monitored by GC) by adding N-acetyl-L-cysteine (8.0 g, 66.0 mmol) to scavenge 

Pd(II). The reaction mixture was cooled to room temperature, and the residue was filtered and washed 



with toluene (3 × 20 mL). The resulting filtrate containing betulonic aldehyde was used in the next 

reaction step in one pot without further purification. tert-Butanol (170 mL) and 2-methyl-2-butene 

(30 mL) were added to the filtrate (containing 20 g of betulonic aldehyde, GC purity 88%) under N2 

flow. NaClO2 (80%, 17.0 g, 150 mmol) and NaH2PO4•H2O (25.2 g, 183 mmol) in water (200 mL) 

were added during 30 min and stirring was continued at RT under N2 atmosphere for 15 h. The organic 

and aqueous phases were separated and 1.7 M solution of NaOH in H2O (40 mL) was added to the 

organic phase and stirred for 0.5 h. Half of the solvent was evaporated off in vacuo and the formed 

precipitate was filtered, washed with toluene (4 × 20 mL) and dried overnight in vacuo to yield sodium 

betulonate (16.6 g, 36.0 mmol). Sodium betulonate was treated with a 3% solution of HCl in H2O 

(200 mL) and the resulting mixture was stirred for 2.5 h. The formed precipitate was filtered and 

washed with water (5 × 30 mL), dried in vacuo at 60 °C overnight to give betulonic acid (14.9 g, 32.8 

mmol), in 73% yield from betulin. Spectral data was identical to that reported in the literature 21. 

Betulinic acid (3). Betulonic acid (2) (13.0 g, 28.6 mmol) was added to a mixture of water (130 

mL), 5% solution of NaOH in H2O (26 mL) and 2-propanol (120 mL). NaBH4 (1.20 g, 31.7 mmol) 

was added and the reaction mixture was stirred for 3 h in an ice bath. The alkaline solution was 

acidified by adding 10% solution of HCl in H2O (130 mL). The precipitated betulinic acid was 

filtered, washed with water (4 × 50 mL) and dried in vacuo to yield crude betulinic acid (12.2 g, 

94%). A batch of crude betulinic acid (5.0 g) was dissolved in refluxing ethanol (50 mL) and 

allowed to crystallize at 4 °C overnight. The formed crystals were filtrated and dried in vacuo to 

produce very pure betulinic acid (4.1 g, 9.0 mmol) in 82% yield. Spectral data was identical to that 

reported in the literature 21.  



Effects of triterpenoids on TRPA1-mediated responses 

Reagents. Reagents (unless otherwise indicated) were provided by Sigma Chemical Co., St. Louis, 

MO, USA. 

Cell culture. HEK293 human embryonic kidney cells (American Type Culture Collection, 

Manassas, VA, USA) were cultured at 37 °C in 5% CO2 in Eagle’s Minimum Essential Medium 

(EMEM) supplemented with fetal bovine serum (10%), sodium pyruvate (1 mM), sodium 

bicarbonate (1.5%), non-essential amino acids (1 mM each, all from Lonza, Verviers, Belgium), 

streptomycin (100 mg/mL), penicillin (100 U/mL) and amphotericin B (all from Invitrogen, Paisley, 

UK). Cells were cultivated on a 96-well plate and transfected transiently with hTRPA1 (0.2 

µg/well, pCMV6-XL4; Origene, Rockville, MD, USA) or mTRPA1 plasmid (0.2 µg/well, 

Mm17807; Gene Copoeia Inc., MD, USA). The cells were transfected 20 h before the experiments 

were started with Lipofectamine 2000 (Invitrogen, 0.5 µL/well).  

Intracellular Ca2+ measurements. For intracellular Ca2+ measurements, transiently transfected 

HEK293 cells were loaded with Fluo 3 acetoxymethyl (AM) ester [2.5 µM Fluo 3-AM in Hanks’ 

Basic Salt Solution (Lonza, Verviers, Belgium) pH 7.45 with 25 mM HEPES, 1 mg/mL bovine 

serum albumin, 2.5 mM probenecid and 0.08% Pluronic F-127®], for 40 min, at RT. Thereafter, the 

cells were washed and buffer solution containing the studied compounds was added to the wells and 

the cells were incubated for 30 min at 37 °C. Free intracellular Ca2+ concentrations were measured 

with a Victor3 1420 multi-label counter (Perkin Elmer, Waltham, MA, USA) at wavelengths of 

em485/ex535 nm. Basal level of fluorescence was measured for 15 s before adding the TRPA1 

agonist allyl isothiocyanate (AITC, 50 µM) and thereafter the measurements were continued for 30 

s. Finally, ionomycin (1 µM), was applied to induce a robust Ca2+-influx. The TRPA1-opening 

properties of the compounds were measured using the same protocol with the exception of adding 

the compounds of interest instead of AITC. In these measurements, AITC (50 µM) was used as a 



positive control and the TRPA1 antagonist HC-030031 (100 – 200 µM) was utilized to estimate the 

TRPA1 mediation of Ca2+-influx. 

The cytotoxic effects of all the triterpenoids studied were evaluated with the modified XTT test 

(Cell Proliferation Kit II; Roche Diagnostics, Mannheim, Germany).  

Whole-cell patch clamp recordings. Whole-cell patch clamp recordings were performed on 

HEK293 cells transiently transfected with a plasmid encoding hTRPA1 (pIRES2-AcGFP1; Takara, 

Tokyo, Japan). The cells successfully expressing TRPA1 were identified using green fluorescent 

protein. The resistance of electrodes was 3–7 MΩ when filled with a solution mimicking 

intracellular conditions (CsCl 30 mM, Cs aspartate 110 mM, MgCl2 1 mM, EGTA 10 mM, HEPES 

10 mM, CaCl2 6.25 mM, ATP disodium salt 2 mM, adjusted to pH 7.2 with CsOH). Membrane 

currents and voltage signals were converted into a digital form using an analog–digital converter 

(PCI6229; National Instruments Japan Corporation, Tokyo, Japan). Data acquisition and current 

imaging of whole-cell currents were performed using WinEDR V3.38 developed by Dr. John 

Dempster (University of Strathclyde, UK). A ramp voltage protocol from -150 mV to +100 mV of 

100 ms was applied every 5 s from a holding potential of -50 mV. A HEPES-buffered bathing 

solution (CsCl 10 mM, KCl 5.9 mM, NaCl 137 mM, glucose 14 mM, MgCl2 1.2 mM, HEPES 10 

mM, adjusted to pH 7.4 with NaOH) was used. All experiments were performed at 25 ± 1 °C, and 

the studied drugs, AITC (10 and 50 μM), compound 8 (0.3 – 100 µM), compound 9 (0.3 – 100 µM), 

HC-030031 (30 µM), and A-967079 (5 μM) were dissolved in dimethyl sulfoxide (final 

concentration ≤ 0.13%). 

In vivo model of TRPA1-mediated inflammation. Male C57BL/6N mice were obtained from 

Scanbur Research A/S, Karlslunde, Denmark. The mice were housed at the Tampere University 

animal facility (12:12 h light:dark cycle, temperature 22 ± 1 °C, food and water provided ad 

libitum). Animal experiments were carried out in accordance with the institutional, national and 

European (Directive 2010/63/EU) legislation for the protection of animals used for scientific 



purposes and approved by the National Animal Experiment Board. Anaesthesia was performed with 

ketamine (75 mg/kg, i.p., Ketalar®; Pfizer Oy Animal Health, Helsinki, Finland) and medetomidine 

(0.375 mg/kg, i.p., Domitor®; Orion Oyj, Espoo, Finland). 

The specific TRPA1 agonist AITC was used to induce inflammatory paw edema by injecting 50 µL 

of sterile endotoxin-free PBS containing 15 mM AITC into the hind paw of anaesthetized mice. The 

contralateral paw was injected with the corresponding volume of the vehicle. Prior to the injection 

of AITC, the mice were dosed with either compound 8 or 9 (both 10 mg/kg in PBS/10% DMSO 

given intraperitoneally 1 h before AITC), or with the vehicle or with the known TRPA1 antagonist 

HC-030031 [300 mg/kg in 50% polyethylene glycol, 40% 1,2-propanediol and 10% Glucosteril 50 

mg/mL (Baxter Oy, Vantaa, Finland) given intragastrically 2 h before AITC]. The paw volumes 

were measured before and 3 and 6 h after the AITC injections with a plethysmometer (Ugo Basile, 

Comerio, Italy). The volume change in the vehicle-injected control paw was subtracted from the 

volume change in the AITC-injected paw and the results are given in µL.  

Statistical analysis 

The statistical significance of the results was analysed with GraphPad InStat® 3.10 for Windows 

(GraphPad Software, Inc. San Diego, CA, USA) and with Origin9.1J (OriginLab, Northampton, 

MA, USA) using two-way or one-way ANOVA with Dunnett’s, Bonferroni’s or Tukey’s multiple 

comparison test. The results are expressed as mean ± SEM (standard error of the mean) with 

*=p<0.05, **=p<0.01 and ***=p<0.001.  
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Table legends 
Table 1 

The effect of triterpenoids (10 µM) on allyl isothiocyanate (AITC, 50 µM)-induced TRPA1 

activation measured by Ca2+ influx in HEK293 cells transfected with a plasmid encoding hTRPA1. 

TRPA1-inhibition by triterpenoids is presented as a percentage of the area under curve (AUC) in 

relation to the untreated AITC control. Results are expressed as mean ± SEM, *p < 0.05, **p < 0.01 

and ***p < 0.001. 

  



Figure legends 

Figure 1 

Structural formulae of betulin and its triterpenoid derivatives. 

 

Figure 2 

Synthesis of betulonic (2) and betulinic (3) acid from betulin (1). Reagents and conditions: (a) 

Pd(OAc)2, py, toluene, air, 80 °C, 7 h; (b) NaClO2, NaH2PO4•H2O, 2-methyl-2-butene, tert-butanol, 

H2O, rt, 12 h; (c) NaBH4, NaOH, H2O, 2-propanol, 0 °C, 3 h. 

 

Figure 3 

Structural formulae of the key triterpenoids 8 and 9. 

 

Figure 4 

Compounds 8 and 9 inhibited allyl isothiocyanate (AITC, 50 µM)-induced Ca2+-influx in 

HEK293 cells transfected with a plasmid encoding hTRPA1 in a dose-dependent manner. Fluo 

3-AM loaded cells were pre-incubated for 30 min with compound 8 (1 – 100 µM), compound 9 (1 – 

100 µM) or with the known TRPA1 antagonist HC-030031 (100/200 µM) before intracellular Ca2+ 

measurement. A and C show representative curves displaying relative fluorescence units after 

treatment with compounds 8 and 9, respectively. B and D show the areas under curve (AUC; from 

15 to 45s) of the response to AITC with or without compound 8 and 9 treatments, respectively. 

Background fluorescence was recorded for 15 s before the addition of the TRPA1 agonist AITC. 

Fluorescence increase in response to AITC was measured for 30 s after which the control 

ionophore, ionomycin (1 µM), was added and fluorescence was measured for another 30 s. The 

results are normalized to the background and expressed as mean + SEM, n = 6 – 8, *p < 0.05, **p < 

0.01 and ***p < 0.001. 



 

Figure 5 

Triterpenoids 8 and 9 inhibited allyl isothiocyanate (AITC, 50 µM) induced Ca2+ influx in 

HEK293 cells transfected with a plasmid encoding mTRPA1. Fluo 3-AM loaded cells were pre-

incubated for 30 min with compound 8 (100 µM), compound 9 (100 µM) or with the known 

TRPA1 antagonist HC003031 (100 µM). In A and B, the areas under curve (AUC) of the 

fluorescence response to AITC with or without 8 and 9 treatment, respectively, are presented. 

Background fluorescence was recorded for 15 s before addition of AITC. The increase in 

fluorescence in response to AITC was measured for 30 s. The results are normalized to background 

and expressed as mean + SEM, n = 5-8, *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Figure 6 

Triterpenoids 8 and 9 inhibited allyl isothiocyanated (AITC) -induced membrane currents 

measured with whole-cell patch clamp recording in HEK293 cells transfected with hTRPA1. 

In A and C, the current trace displays the change of inward currents at -50 mV which was evoked 

by compounds 8 (0.3, 3, and 30 μM) and 9 (0.3, 3, and 30 μM), respectively, in the presence of 50 

μM AITC. To determine the zero current level of TRPA1 components, 30 μM HC-030031 (HC) 

was applied at the end of each experiment. In B and D, a current-voltage (I-V) relationship was 

constructed to use a ramp waveform pulse from -150 to +100 mV for 100 ms. Six I-V relationships 

were illustrated before (cont) and after application of AITC (50 μM AITC), and during 

simultaneous application of 0.3, 3, or 30 μM compound 8 (+30 μM 8) and 50 μM AITC in B. The 

experimental conditions in D were identical to those utilized in B except for application of 

compound 9. In E and F, each relative amplitude (relative) was calculated as a current size at -100, 

-50, +50, and +100 mV between before and after application of 8 and 9, respectively, and 



summarized as a dose-response relationship. Maximum and minimum amplitudes of the current 

were obtained in the presence of AITC (1.0) and in the presence of both AITC and HC-030031 (0). 

The results in E and F are expressed as mean ± SEM. * = p < 0.05 by two-way ANOVA. In E and 

F, the numbers of replicates are described in parentheses next to the markers. 

 

Figure 7 

Recovery of allyl isothiocyanate (AITC) -induced membrane currents after removal of 

compounds 8 and 9. In A and D, the trace displays the change of inward currents at -50 mV which 

was evoked by application and removal of compounds 8 (0.3 μM) and 9 (0.3 μM), respectively, in 

the presence of 10 μM AITC. To determine the zero-current level of TRPA1 components, the 

known TRPA1 antagonist A-967079 (A96, 5 μM) was applied at the end of each experiment. The 

experimental conditions in B and E and in C and D were identical to those utilized in A and D 

except for the concentration of compounds 8 and 9 at 3 μM and 30 μM, respectively. In G and H, 

the relative amplitude was calculated as a current size at -50 mV between the zero current and the 

current amplitude before and after application of each compound, and after their removal but still in 

the presence of AITC. The results in G and H are expressed as mean ± SEM, * = p < 0.05 against 

each first column and # = p < 0.05 against each second column, tested by Tukey's multiple 

comparison test. In G and H, the numbers of replicates are described in parentheses above the 

columns. 

 

Figure 8 

Triterpenoids 8 and 9 inhibited TRPA1-mediated acute paw inflammation in mice. Mice were 

pre-treated with compound 8 (10 mg/kg, i.p.), compound 9 (10 mg/kg, i.p.), the known TRPA1 

blocker HC-030031 (300 mg/kg, i.g.) or with the vehicle at 1 h (8, 9 and vehicle) or 2 h (HC-



030031) prior to the subcutaneous administration of the TRPA1 agonist allyl isothiocyanate (AITC) 

in the paw. The paw volume was measured with a plethysmometer before and 3 and 6 h after AITC 

paw injection. The results are normalized to the control paw injected with the vehicle. Mean + 

SEM, n = 6, *p < 0.05, **p < 0.01, ***p < 0.001  



Tables 

Table 1 

  
  
Compound  % of control 
control  100 
HC-030031 (100 µM)  22.24 ±2.2 *** 
   
1 (10 µM)  98.89 ±4.0  
2 (10 µM)  83.32 ±8.9  
3 (10 µM)  83.65 ±3.9  
4 (10 µM)  83.42 ±5.0  
5 (10 µM)  85.52 ±3.2 * 
6 (10 µM)  79.08 ±3.2 ** 
7 (10 µM)  79.55 ±4.2 ** 
8 (10 µM)  61.32 ±3.1 ** 
9 (10 µM)  64.09 ±4.0 ** 
10 (10 µM)  85.65 ±15.1  
11 (10 µM)  86.48 ±6.6  
12 (10 µM)  96.48 ±6.3  
13 (10 µM)  96.90 ±6.8  
14 (10 µM)  75.50 ±6.0 ** 
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