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Abstract 

Growth factors and other therapeutic protein that could potentially enhance tissue regeneration have 

been identified, but their therapeutic value in clinical medicine has been almost non-existent for 

reasons such as difficulty to maintain bioactivity of locally applied proteins in the protease-rich 

environment of regenerating tissues. Although human diseases are treated with systemically 

administered drugs in general, all current efforts aimed at enhancing tissue repair with biological 

drugs have been based on their local application. The systemic administration of growth factors has 

been ruled out due to concerns about their safety. These concerns are warranted, because only a 

small proportion of systemically administered drugs reach their intended target. Selective delivery of 

the drug to the target tissue and use of functional protein domains capable of penetrating cells and 

tissues could alleviate these problems. We propose a novel approach utilizing unique molecular 

“Zip/postal codes” in the angiogenic vasculature forming at the regenerating tissues as a target for 

systemically administered, targeted therapies. The angiogenic vasculature allows target organ-specific 

delivery of systemically administered therapeutic molecules by affinity-based physical targeting (using 

peptides or antibodies as an “address tag”) to injured tissues undergoing repair. Molecules with 

therapeutic potential can also be packaged into lipid or polymer-based nanocarriers (such as micelles, 

liposomes, and nanoerythrosomes) which then can be targeted to the desired location by inserting 

multiple copies of the targeting peptide on the surface of the nanoparticle. The desired outcome of 

the targeted therapies is increased local accumulation and lower systemic concentration of the 

therapeutic payload. We believe that the physical targeting of systemically administered therapeutic 

recombinant proteins could be rapidly adapted in the field of regenerative medicine. 
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1. Local versus systemic drug delivery in regenerative medicine

After an injury adult tissue react differently. Only some tissues, such as the bone, repair injuries with 

tissue that is identical to the original tissue. Most tissues, however, undergo a repair process where 

most of the injured tissue is replaced by non-functioning, fibrotic scar tissue, whereas the original 

tissue is only partly restored 
1, 2

. 

Plenty of growth factors and other proteins have been identified that could potentially be used as 

drugs to enhance tissue regeneration, but their therapeutic application in regenerative medicine has 

been rather limited 
1, 3, 4

. Only two of them have been approved by FDA to be used in humans; bone 

morphogenetic protein-2 (BMP-2) for treating fractures and platelet derived growth factor (PDGF) for 

treating chronic skin wounds that do not close 
4, 5

. However, neither of these recombinant growth 

factors is in wide use due to rather limited clinical therapeutic value. Furthermore, PDGF received a 

boxed warning from the U.S. Food and Drug Administration and has been withdrawn in Europe due to 

safety issues 
5
. There are several, biological reasons for their failure in randomized clinical trials 

(RCTs): It is difficult to maintain bioactivity of locally administered therapeutic proteins because of a 

lack of retention of the agent within the regenerating tissue, poor tissue penetration, and instability 

of protein therapeutics in the protease-rich environment of the injured tissue, and side effects 
4, 6

. For 

example, when PDGF was used as a topical administration in skin wounds, supra-physiological doses 

were needed and treatment with the growth factor correlated with a five-times increased risk of 

cancer 
5
. The problems encountered with PDGF illustrate well the importance of controlling not just 

the instability of the growth factors, but also their retention at the wound site and overcoming these 
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challenges are probably the key for successful growth factor-based therapies 
5
. Besides, most injuries 

are inaccessible for topically applied therapeutic molecules, especially if the injury hits multiple sites 

(tissues), which further limit the usefulness of local treatment. 

Remarkably, all current efforts, even the most sophisticated ones, aiming to enhance tissue repair 

with biologic drugs have been based on local application of therapeutic molecules at the injured site 
4, 

6, 7
. Although human diseases are treated with systemically administered drugs/recombinant proteins 

in general, systemic application of growth factors has been ruled out due to concerns about efficiency 

and potential safety. These concerns are warranted because the major problems in systemic drug 

therapy are that only a small proportion of administered drug reaches its intended target site(s) and 

as explained above for PDGF side effects such as increased cancer risk 
5
. Moreover, large molecules 

such as antibodies have a poor tissue penetration and therefore do not reach the intended actual 

target cells 
8-11

. Selective drug delivery to the target tissue and use of functional proteins, such as cell 

penetrating peptides proficient of penetrating cells and tissues, could alleviate some of the above 

mentioned problems 
11-14

. 

2. Vascular Heterogeneity – Organ-specific postal code-system in vasculature

Our growing knowledge of the molecular structure of blood vessels has revealed a practical 

application for organ/tissue-specific therapeutic treatment of various human diseases with 

systemically administered drugs 
8, 12, 13

. Recent studies have shown that each organ has unique 

molecular structures in its blood vessels, so-called “vascular ZIP codes”, essentially providing a built-in 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



postal code system in our body (Figure 1) 
12, 13, 15-17

. Each organ confers endothelial cells (ECs) in it 

with their “organotypic”, i.e. unique tissue-specific features 
18, 19

. A unique combination of clusters of 

transcription factors, angiocrine growth factors, adhesion molecules and chemokines is expressed by 

the ECs of each organ, and so the blood vessels in each organ can be distinctly defined 
19

. Moreover, 

during various diseases, disease-specific signatures are expressed on the vasculature of the diseased 

tissue 
17

. This is particular apparent for diseases such as cancer, or tissue injuries, which both induce 

the growth of new blood vessels into the tissue by angiogenesis 
17

. These angiogenic blood vessels are 

structurally distinct from the pre-existing blood vessels in rest of the body 
17

 and thus, provide an 

appealing target for target organ-specific delivery of systemically administered drugs. 

Hence, the disease and organ-specific molecular “Zip codes” in blood vessels can be exploited for 

target organ-specific delivery (to the diseased tissue) of systemically administered therapeutic 

molecules by affinity ligands 
12, 15-17

. This so-called affinity-based physical targeting (synaphic, 

pathotrophic, or active targeting) makes use of these vascular ZIP codes, i.e. molecular markers that 

are specifically expressed at the target, but not elsewhere in the body on healthy counterparts, 
12, 17

. 

The desired outcome of the synaphic targeting is increased local accumulation and lower systemic 

concentration of the therapeutic payload 
12

. 
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Figure 1. Target-specific drug therapies in tissue regeneration. Molecular “Zip/postal codes” in 

the angiogenic vasculature of the regenerating tissues allow target organ-specific delivery of the 

systemically administered therapeutic recombinant proteins by affinity-based physical targeting 

(using peptides or antibodies as an “address tag”) to injured tissues undergoing repair. The 

desired outcome of the targeted therapies is similar to topical application: increased local 

accumulation of the recombinant protein in the target tissue and lower systemic concentration 

of the therapeutic payload. 
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3. Angiogenesis – a potential for vascular targeting in regenerative medicine

Angiogenesis, the formation of new blood vessels, is an essential step for tissue regeneration because 

it allows a variety of mediators, nutrients, and oxygen to reach the healing tissue 
1-3, 20, 21

. During 

regeneration of injured tissue, angiogenic capillary sprouts invade the fibrin/fibronectin-rich clot and 

within a few days form up into a thick microvascular network throughout the granulation tissue 
1-3, 20,

22
. These newly formed blood vessels that abundantly fill up and from the granulation tissue at the 

site of the injury, differ in their molecular “Zip/postal codes”” from pre-existing vasculature. 

Therefore they provide a fascinating possibility for vascular targeting of systemically administered 

drugs to improve tissue regeneration 
22, 23

. 

4. In vivo phage display

Tissue specific vascular “ZIP codes” can be easily probed by in vivo phage display, a method first 

reported in 1996 
24

. In vivo phage display allows unbiased investigation of vascular diversity by 

random peptide or cDNA libraries expressed as a part of the coat protein on the cell surface of 

bacteriophages (Figure 2) 
13, 25

. Due to the random protein fragments being the only difference 

between different phage particles in the library, phage display is a powerful method for screening an 

unlimited number of potential functional protein domains, because it provides a physical linkage 

between peptides (i.e. the phenotype), which are displayed on the surface of a bacteriophage 

particle, and the encoding DNA (genotype) 
13, 25

. 
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Figure 2. Schematic presentation of the principle of in vivo phage display. (a) A cyclic CX7C-

peptide library has been cloned to the C-terminus of the phage coat protein and expressed in 

415 copies in T7 Select 415-1b phage. (b) A phage library is injected into circulation. The homing 

peptides on the phage surface bind to endothelium in the tissues, resulting in an enrichment of 

phages bound to the endothelium of the target tissue. Target tissue is homogenized, cell 

suspensions prepared, and the bound phage rescued and amplified by adding E. coli. The 

amplified phage pool recovered from the target tissue is then re-injected into mice at a similar 

disease stage, and the screening cycle is repeated several times to ensure that phage clones 

that specifically bind (i.e. home) towards target will be recovered. A set of phage clones is 
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randomly collected from a homing phage population that shows enriched homing towards 

target tissue. The peptide-encoding DNA inserts are amplified by PCR, and the PCR products 

sequenced. 

Bacteriophages can be genetically modified to incorporate random protein sequences fused to the 

coat proteins at a diversity of billions of variants per library, close to the total number of possible 

permutations (20
X
, where X denotes number of amino acids) of a random amino acid sequence 

13
. 

Generating a random phage library results in a pool of billions of bacteriophages all identical to each 

other except for the protein motif expressed at the end of its coat protein. For the in vivo selection, a 

library of phage displaying random peptides is injected systemically into the animals, followed by 

removal of target organ/tissue and amplification of the bound phage pool from the target organ, 

which is then subjected to another round of selection in new animals 
13

. In vivo peptide phage 

screening combines subtractive elements (removal of phage displaying pan-specific peptides by all 

other organs of the body except the given target organ) with positive selection at the target tissue 
13

. 

In vivo phage display offers a unique prospect to screen for an almost unlimited (potentially billions) 

number of potential protein-based drug candidates simultaneously in an in vivo setting 
13, 25

. 

Combination of in vivo phage display and bacterial 2-hybridization, in turn, allows simultaneous 

identification of ligand-receptor (ligand – peptide; receptor – receptors on the endothelial cells) pairs 

for the target organ-specific targeting 
26

. 

In the field of regenerative medicine  in vivo phage display has been applied for several purposes: to 

identify peptides capable of binding to the blood clots formed after the injury 
27

, homing to the 
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angiogenic blood vessels forming at the injured tissues 
28

, for the identification and illumination of 

neural structures during surgery 
29, 30

 and to identify peptides capable of homing to brain injury after 

the traumatic breakage of blood-brain barrier 
31

. 

5. Systemically administered vascular homing peptides for regenerative medicine

We concluded that it may be achievable to deliver systemically administered drugs into regenerating 

tissues via a target organ-specific approach independent of the location of the injury in the body 
28

. 

For that purpose, in vivo phage display was used on injured tissues during angiogenesis to identify 

protein motifs capable of homing to the injured sites after systemic administration of phage libraries 

28
. Two peptides that selectively target injured tissues have been identified: CARSKNKDC (CAR) and 

CRKDKC (CRK) 
28

. The CAR sequence is homologous to heparin-binding sites in various proteins and 

shows the highest homology with the main heparin-binding site of known angiogenic growth factor, 

BMP4 
28

. Indeed, the CAR peptide binds to cell surface heparan sulfate proteoglycans (HSPGs) and 

utilizes the HSPGs for efficient cell and tissue penetration 
28

. The CRK peptide which is not capable of 

cell and tissue penetration 
28, 32

 shows structural similarity to segments in thrombospondin type 1 and 

3 repeats identified in numerous proteins and has a potential cryptic cell penetration sequence, 

CendR-sequence in it 
28

. These two vascular homing peptides have different targeting profiles: CAR 

peptide prefers early stages of tissue regeneration, whereas the CRK peptide preferably targets 

injured tissues at later stages of healing 
28

. 
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6. Conjugated delivery – Multi-functional recombinant proteins

By conjugating a conventional therapeutic effector molecule to a targeting element, a tissue-specific 

targeted, multi-functional therapeutic molecule is created. The conjugation of these two functional 

elements can be either carried out by chemical linkage or by expressing them together as a 

recombinant fusion protein. An example of such recombinant fusion protein is interleukin-10 (IL-10) 

fused to the antibody F8 (F8-IL10, i.e. Dekavil) that recognizes a domain of the extracellular matrix 

protein fibronectin, that is expressed exclusively in inflammatory vasculature 
33-36

. This therapeutic 

fusion protein is in ongoing clinical trials to treat arthritis and to suppress rejection towards allografts 

in transplantation surgery 
34, 36

. Additional examples include Angiopep, a peptide used to target 

nanoparticles loaded with therapeutic molecules to brains in e.g. Parkinson’s disease 
14

, the tumor 

homing NRG-peptide fused together with tumor necrosis factor α (TNFα) to induce anti-tumor 

reactions towards tumor cells 
37, 38

, interleukin-11 (IL-11) mimic peptide motif fused together with 

apoptosis inducing peptide sequence to halt tumor growth 
39

 and RGR peptide expressed together 

with LIGHT protein to stabilize leaky, non-functional blood vessels 
40

. 

The half-life of the most common peptides used as targeting elements, is usually short in blood 

circulation and their binding affinity for their respective receptor relatively low 
22

. However, both of 

these shortcomings can be substantially minimized by fusing the peptides to become a part of a larger 

recombinant protein or by coating cells or nanoparticles with multiple copies of the peptide 
12, 22, 41

. 

For example, our preliminary data provide evidence that incorporation of CAR peptide into 

therapeutic proteins enhances their binding efficacy towards HSPGs to a nanomolar-level, and even 

more if the recombinant fusion protein is multimerized (expressed as a dimer) (unpublished). One-to-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



one peptide-payload (i.e. targeting element-therapeutic effector) conjugates can be quite effective 

despite the large size difference, particularly when the peptide is used to augment an inherent affinity 

of the payload to the target. Such examples are TNFα targeted to tumors by fusion to a tumor-homing 

peptide that is now in phase 3 clinical trials 
37, 38

, and CAR-peptide targeted decorin (DCN) 
42

. DCN 

homes to angiogenic vasculature through a core protein-dependent interaction 
43

, but despite its 

inherent homing ability, the CAR peptide was able to enhance the accumulation of the recombinant 

fusion protein into the sites of angiogenesis (wound) approximately 500 % over the accumulation of 

native DCN 
42

. Furthermore, a prime example of using multiple copies of a short targeting peptide 

(“painting”) is the targeting of stem cells to desired loci 
41, 44

. Both CAR and CRK peptides have been 

used successfully, e.g. to target mesenchymal stem cells (MSCs) to infarcted myocardium after 

“painting” the surface of MSCs with multiple copies of the peptide 
41, 44

. 
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Figure 3. Systemically administered, targeted therapies. (a) Conjugated delivery. The drugs are 

physically conjugated to the targeting element in conventional drug targeting. For protein-based 

therapeutics, targeting domain and therapeutic molecule are fused together as a recombinant 

protein with enhanced activity and tissue-specificity. (b) – (c) Bystander effect. Therapeutic 

drug(s) co-injected with tissue-penetrating targeting peptides are transported across the vessel 

wall and through tissue together with the peptides. No actual physical connection is needed 

between them; the cell penetrating homing peptide “sweeps” co-injected drug(s) to its target 

(homing) tissue in a tissue-specific fashion. 
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Even more striking is the finding that the targeting domain is capable of increasing the activity of the 

therapeutic molecule. We have discovered that a vascular homing peptide for a tissue or lesion often 

also binds to the corresponding parenchymal cells. This is the case with CAR, which also recognizes 

the cells in the granulation tissue in wounds. This localization of the peptide receptor on the 

endothelial cells provokes the translocation of the blood vessel-bound peptide into the injured tissue, 

where the therapeutic payload can exert its functions more potently as it is anchored on the target 

cells in the parenchyma. We were able to show that the anchorage to target cells (outside of 

endothelial cells) provided by CAR peptide fused decorin, enhanced decorin’s biological potency 

against transforming growth factor-β (TGF-β). Later, Hubbell et al. engineered “super” growth factors 

that are more potent than the native ones, simply by fusing the growth factors with the heparin-

binding domain of BMP2 (analogous to the CAR peptide being homologous to BMP4 heparin-binding 

domain) 
7
. 

One of the advantages of using short peptides as targeting elements, is that their small size is unlikely 

to cause an immune reaction. They are only a fraction of the size of the highly variable 

complementary determining regions (CDRs) of therapeutic antibodies, which usually have an excellent 

drug safety and a low immunogenic potential 
11

. Furthermore, homology analysis (by BLAST) of these 

short and stable cyclic peptides typically reveals a high homology to parts of native proteins that are 

highly conserved across a range of species (as for example for CRK and CAR) 
28

. This would predict 

high tolerance of the peptide by the immune system. 

These pharmacological properties highlight the importance of advancing multi-functional, 

systemically administered, target-seeking recombinant fusion proteins. However, unless the target of 

a homing peptide is known to be unimportant for function of the immune system, cell proliferation, 
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angiogenesis, etc., one cannot rule out the possibility of adverse effects caused by high doses of a 

homing peptide binding to its target receptor. Thus, it is necessary to elucidate the target and 

mechanism of homing peptides, and to investigate their safety. 

7. Unconjugated delivery - Bystander effect

The latest innovation to enhance therapeutic drug targeting is a tissue-penetrating transport system 

for certain targeting peptides, which does not require any physical conjugation between the 

therapeutic and targeting elements 
45-47

. The essential features of this system called the “Bystander 

effect” (Figure 3) were first elucidated using a new RGD (RGD is an integrin binding sequence) 

peptide, termed iRGD because it internalizes into target cells 
45-47

. Like conventional RGD peptides, 

iRGD accumulates at tumor vasculature where it binds to integrin, but it is then cleaved by a protease 

to unmask a second binding motif, a so-called CendR motif (consensus: R/KXXR/K in the C-terminal 

end of the peptide after the cleavage) 
45-47

. The CendR motif binds to neuropilin-1, which activates a 

transport tissue-penetration and cell internalization pathway 
45-47

. As the CendR pathway is a bulk 

transport system, it will, once activated, sweep along (through cells) any molecule from large proteins 

to nanoparticles (“Bystander effect”) present in the environment 
45-47

 (Figure 3). Thus, the therapeutic 

molecule can be simply co-injected with the vascular iRGD homing peptide able to induce the 

bystander effect which will sweep the drug molecule into the target organ. Interestingly, even large 

recombinant proteins, such as antibodies, can be transported in target organ-specific fashion using 

vascular homing peptides capable of inducing the “Bystander effect” 
45-47

 (Figure 3). 
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We have recently found that the vascular homing peptide CAR, which does not contain a CendR-

sequence, is a very potent inducer of a bystander effect in pulmonary arterial hypertension (PAH) 
48

 

(Figure 4). Namely, the CAR peptide targets inflammatory vasculature in experimental models of PAH 

and penetrates to inflammatory lung parenchyma 
48, 49

. Remarkably, any vasodilator drug can become 

a target organ-specific vasodilator in that model of PAH 
48

 (Figure 4). When a low dose of a vasodilator 

is co-injected with CAR peptide, the drug accumulates in the diseased lungs and lowers the 

hypertension selectively only in the pulmonary circulation, but does not affect the systemic 

circulation, i.e. no vasodilation occurs 
48

. This effect presents a new paradigm in the treatment of 

PAH, where the clinical application of new, potential therapeutic agents has generally been hampered 

by their systemic toxicity/adverse effects 
48

 (Figure 4). Whether CAR- and CendR-peptides induce a 

bystander effect that may be applicable for therapeutic benefits in regenerative medicine, remains to 

be examined. But the capability of transporting such large proteins as antibodies, could open avenues 

for targeting therapeutic proteins to their intended target organ or tissue via the “Bystander effect” 

(Figure 4). 
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Figure 4. CAR peptide homes to inflammatory vasculature and induced target-tissue selective 

vasodilation in pulmonary arterial hypertension (PAH). (a) PAH was induced in rats by a single 

subcutaneous injection of SU5416 and 3 week exposure to hypoxia (10% O2) followed by 6 

weeks of normoxia 
48

. CAR peptide accumulates in remodeled pulmonary arteries (A/C: 

occlusive neointimal formation) 
49

. A small signal was detected in lung lesions of the PAH rats 

administered with CAR mutant peptide. (b) Effect of CAR (0.3 mg/kg) and of Rho-kinase inhibitor 

Y27632 (1 mg/kg) mixture on right ventricle (RVSP) and left ventricle LVSP systolic pressure. The 

CAR/Y27632 combination treatment induced a marked pulmonary-specific vasodilation RVSP 

with only a minimum effect on LVSP. When Y27632 or CAR was given alone at the same dose (1 
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mg/kg or 0.3 mg/kg, respectively), a small effect was observed in RVSP and LVSP (data not 

shown). (c) Schematic illustration of targeted delivery by the “Bystander effect” induced by 

vascular homing peptide CAR. 

8. CAR-decorin – a target organ-specific, systemically administered, anti-fibrotic molecule

Decorin (DCN) is the best characterized member of the small leucine rich proteoglycan (SLRP) family 

of extracellular matrix (ECM) proteins 
50

. Due to its close interactions with collagen fibers in the ECM, 

i.e. DCN “decorates” collagen fibers, the proteoglycan was named decorin early on 
51

. It has 

substantial interest to clinical medicine owing to its well established anti-fibrotic, anti-cancer and pro-

regenerative effects 
50

.

DCN was initially cloned in 1986 and thought at the time to be a structural constituent of the ECM 
51

. 

However, soon it was established that DCN had a role beyond just a structural component of the ECM, 

as it became evident that it influenced cellular functions such as proliferation, spreading, migration 

and differentiation, as well as being a physiological regulator of inflammation 
52-54

. Some of these 

early findings were derived from tumor cells, where it was shown that DCN inhibited cancer cell 

proliferation and spreading 
52, 55

. These early studies as well as intensive research during past two 

decades have firmly established DCN as a tumor suppressor gene as well as a promising anti-tumor 

agent to treat human cancer patients 
50

. 
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Mammalian DCN contains a monomeric protein core of 42 kDa and a single chondroitin/dermatan 

sulfate glycosaminoglycan (GAG) chain, attached to a serine residue near the N terminus (Figure 5) 
50

. 

DCN exists as a dimer in physiological solutions and as a monomer when bound to collagen (Figure 5) 

56
, and is the best characterized member of the growing family of SLRPs. Structurally, it has a domain 

of tandem leucine-rich repeats (LRRs, altogether 12 LRRs), flanked on both sides by two cysteine-rich 

regions (Figs. 5 & 6) 
50

. 

Figure 5. Structure of decorin. Mammalian decorin (DCN) contains a monomeric protein core of 

42 kDa and a single chondroitin/dermatan sulfate glycosaminoglycan (GAG) chain. DCN exists as 

a dimer in physiological solutions and is the best characterized member of the growing family of 

SLRPs. Structurally, it has a domain of tandem leucine-rich repeats (LRRs, altogether 12 LRRs), 

flanked on both sides by two cysteine-rich regions. Decorin dimer structure (from PDB 1XKU). 
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Images prepared with JMOL program. The N-terminus is in the "middle" of the anti-parallel 

homodimer. 

Anti-fibrotic function of DCN is related to it being a natural inhibitor of TGF-β that shuts down the 

TGF-β responses related to injury, cancer growth and inflammation 
52, 54, 57, 58

. The scar-inducing 

activities of TGF-β1 in fibroblasts are mediated by connective tissue growth factor (CTGF/CCN2) and 

epidermal growth factor (EGF) family receptors (ERBBs) 
59

. CCN2 activity requires the presence of EGF. 

Interestingly, DCN also neutralizes CCN2 
60

 and also EGF by binding to ERBBs 
61-63

 (Figure 6). The active 

sites for TGF-β, CCN2, and EGF neutralization reside in different parts of the DCN molecule 
64

. Thus, in 

theory, a single DCN molecule could simultaneously block multiple mediators of scarring 
64

 (Figure 6). 

Moreover, DCN also inhibits myostatin 
65, 66

, an important contributor to scarring in some organs 

(Figure 6). Owing to this multifunctionality, DCN may be superior to therapeutic approaches that only 

inhibit TGF-β 
64

. The ability of recombinant DCN to prevent scar formation and fibrosis and to 

simultaneously promote tissue regeneration has been demonstrated in numerous experimental tissue 

injury- and disease-models 
50, 54, 57

. 
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Figure 6. Decorin interacts with multiple growth factor signaling pathways crucial for cancer 

growth. Schematic drawing of the molecular structure of decorin (DCN). All four domains I–IV of 

decorin core protein are indicated. DCN has a monomeric protein core and a single 

chondroitin/dermatan sulfate glycosaminoglycan (GAG) chain. Structurally, it has a domain of 

tandem leucine-rich repeats (LRR), flanked on both sides by two cysteine-rich regions. DCN 

interacts with a wide set of different signaling molecules, among them different isoforms of 

transforming growth factor-β (TGFβ), platelet-derived growth factor (PDGF), epidermal growth 

factor receptor (EGFR) and ErbB1 - 4 receptor tyrosine kinases, myostatin (MyoS), connective 

tissue growth factor/CCN2 (CTGF), thrombospondin (Thbs), collagen (Col) and fibronectin (FN), 

implicated in cancer progression. The active/binding sites of DCN for TGF-β, CCN2, c-Met and 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



EGFR neutralization/binding all reside in different parts of the DCN molecule. Thus, in theory, a 

single DCN molecule could simultaneously sequester multiple important mediators of tumor 

growth and antagonize multiple signaling pathways crucial for tumor growth and progression. 

Thus, owing to this multi-functionality, DCN may exert its anti-cancer effects through multiple 

molecular approaches that all contribute to varying degree to its biological effects on cancer 

cells and tumor environment. 

We have recently developed a systemically administered, targeted, e.g. inflammation- and 

angiogenesis-homing version of DCN core protein (Figure 7) 
42

. The angiogenesis- and inflammation-

specificity of this enhanced DCN core protein is achieved by a fusion to the CAR homing peptide that 

works as an address tag in the fusion protein and delivers systemically administered CAR-DCN to 

angiogenic and inflammatory vasculature (Figure 7) 
42

. CAR-DCN peptide can deliver increased 

amounts of DCN in a tissue-specific manner with a significant therapeutic advantage over ordinary 

DCN core protein in healing skin wounds (Figure 7) 
42

. Furthermore, the fusion of CAR to recombinant 

DCN enhances its neutralization activity of TGF-β and provides the desired selectivity against the 

fibrotic isoforms of TGF-β 
42

. The molecular explanation for the enhanced biological activity of CAR-

DCN is that the CAR peptide binds to HSPGs on the target cells. TGF-β1, and TGF-β2 in turn, also bind 

heparan sulfate and HSPG binding increases their biological activity (Figure 7) 
42, 64

. Thus, CAR 

mediated binding of CAR–DCN to HSPGs may enhance the neutralizing effect of the fusion protein by 

bringing it into the proximity of the HSPG-binding TGF-βs 
42, 64

 (Figure 7). More recently, we have 

shown that CAR-DCN reduces the severity of abdominal aortic aneurysm. 
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Figure 7. Schematic illustration of the mechanism of action of the systemically administered, 

target-organ specific anti-fibrotic molecule CAR-decorin. CAR-decorin (1) is a systemically 

administered, target-seeking, multi-functional biotherapeutic that inhibits scar formation. It can 

be targeted to an injury taking place at any organ of the body (2, 3) (or multiple organs 

simultaneously). The CAR homing peptide as part of the fusion protein targets angiogenic 

vasculature, which forms at the site of the injury (4, 5). The CAR peptide and any payload 

attached to it (Blue stars) then extravasates into surrounding tissue (6), where it binds to its 

receptor(s) on the cell surface of the scar producing fibroblasts (7). CAR binding to heparan 

sulfate proteoglycans (HSPGs) provides docking sites in the proximity of the main scar-inducing 

growth factors TGF-β1 and TGF-β2 (8) facilitating the neutralization of these growth factors by 

the therapeutic part of the molecule, decorin (8). This mechanism results in therapeutic 

response (9) seen as reduced scar formation in the skin. Picture by Helena Schmidt; reproduced 
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with permission from Finnish Medical Journal Duodecim (originally published in Duodecim 

2011;127:50-51). 

Targeting lung vasculature in PAH using nanoscale drug delivery systems 

Therapeutic delivery of drugs through the lungs for local bronchodilatory and anti-inflammatory 

effects is the most effective way of managing chronic inflammatory diseases– asthma and chronic 

obstructive pulmonary disorders (COPD) 
67

. Lung delivery of therapeutic proteins, such as insulin, has 

also gained momentum in this decade 
68

. A handful of studies have shown that pulmonary specific 

delivery of anti-PAH drugs could be a better alternative to the oral or intravenous therapies 
69-72

. 

Different small or large molecules with therapeutic potential can be packaged into lipid or polymer-

based nanocarriers which can be modified to offer advantages like prolongation of drug release, deep 

lung deposition for efficient drug absorption 
69-75

. Moreover, by modifying the surface of the particles 

with CAR-peptide, those particles can be targeted to the diseased vasculature for selective effects 
70,

72, 74
. In the present review, we have discussed the methods, advantages and future aspects of homing 

different inhalable nanocarriers towards the remodeled arteries by using CAR peptide for the 

treatment of pulmonary arterial hypertension (Figure 8). 
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Figure 8. Peptide-targeted pulmonary arterial homing approaches of different nanocarriers. 

PEG-polyethylene glycol. 
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Peptide-micelle conjugates 

Micelles, the donut-shaped nanostructures that are composed of amphiphilic block copolymers, are 

considered more stable than the liposomes, has higher drug entrapment capability and are small in 

size as low as ∼10 nm. Polyethylene glycol–distearoyl-phosphoethanolamine (DSPE–PEG5000), a 

copolymer that was used to encapsulate a number of drugs in micellar forms, has been used to 

prepare CAR-conjugated micelles of fasudil, an investigational vasodilator for PAH 
70

. The resultant 

peptide-micelles hybrid had aerodynamic properties suitable for deep-lung deposition and moderate 

drug entrapment efficiency. These CAR-modified micelles of fasudil was effectively taken up by the 

HSPGs expressing pulmonary arterial smooth muscle cells suggesting PAH vascular specific targeting. 

In-vivo absorption studies of these micelles suggests that the formulation extended the plasma half-

life of the drug by ∼15 times. CAR-micelles of fasudil were also found more selective in reducing 

mean pulmonary arterial pressure in monocrotaline-induced PAH rats than that of unmodified fasudil 

micelles, suggesting a strong diseased pulmonary artery specific targeting in PAH 
70

. 

Peptide conjugated nanoerythrosomes 

Nanoerythrosomes (NERs) are the vesicles prepared by the extrusion of white unsealed red blood cell 

(RBC) ghosts. RBC ghosts are prepared by several round of hemolysis with hypotonic solutions. 

Derived from a biomimetic natural origin, NERs offer several advantages like lower propensity of 

forming aggregates, higher drug retention capacity and long circulation time. Conjugation of targeting 

moieties onto the surface of the NER is comparatively straight forward due to the abundance of 

amine groups on the surface of the NERs 
76, 77

. CAR-peptide conjugated NERs loaded with fasudil was 

respirable and was preferentially uptaken by the TGF-β induced HSPGs expressing pulmonary arterial 

smooth muscle cells (PASMC) 
77

. CAR-conjugated fasudil NERs, when administered intratracheally to 
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the MCT induced PAH rats, showed pulmonary selective vasodilation with minimum perturbation on 

the systemic pressures as compared to that of the unmodified NER containing fasudil 
77

. Upon 

pulmonary administration CAR conjugated fasudil NERs was twice more selective than the unmodified 

fasudil NERs as calculated by the lung targeting indices 
77

. Overall, CAR-conjugated NERs can be used 

as a suitable targeted biomimetic system for delivering anti-PAH therapeutics to the diseased 

vasculature more efficiently. 

Peptide conjugated liposomes 

In last five decades, liposomes– the closed bilayered nanospheres composed of phospholipids– gained 

tremendous interest as a drug delivery system for encapsulating a diverse range of therapeutic small 

and large molecules that are distinct in terms of physicochemical properties 
78, 79

. These self-

assembled nanocarriers can encapsulate both hydrophilic and hydrophobic drugs, offers several 

benefits such as good solubilization, colloidal, chemical and biological stability and scope of surface 

modification for targeting 
79, 80

. After pulmonary administration, CAR-peptide linked liposomal 

formulation of fasudil prolonged the drug half-life by 34-folds, can evade alveolar macrophage 

clearance, and was preferentially taken up by the TGF-β activated PASMCs. Efficacy studies in PAH 

rats reveals that CAR-conjugated inhalable liposomes showed pulmonary-specific vasodilation as 

compared to that of the unmodified fasudil liposomes 
71

. A separate study reports that two drugs, 

fasudil and a reactive oxygen species scavenger– super oxide dismutase (SOD), can also be 

encapsulated in the same liposome while retaining the CAR peptide attached on the surface 
72

. This 

dual-drug approach with site-targeted liposomes has important clinical relevance as the development 

of PAH involves multiple pathobiological pathways and are usually managed different combination 

therapies. 
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Future challenges 

Although targeted nanocarriers showed good promise in producing selective anti-PAH effects in the 

diseased vasculature of the animals after single administration, thorough long-term safety and 

efficacy studies must be established before any clinical translation can be made. Steady-state 

pharmacokinetics of the drugs after repeated administration is needed to be correlated with 

pharmacodynamic effects. In case of combination therapies, potential pharmacokinetic and 

pharmacodynamic interactions are required to be investigated. PLGA-based solid microparticles are 

often preferred in designing inhalable therapeutics because of their trusted safety profile, superior 

biodegradability and biocompatibility, better stability for being in solid powder form and the flexibility 

of surface (stealthing) and core-modification (porosity) 
69, 73, 81, 82

 However, surface modification of 

PLGA-based nanospheres with peptides is challenging mostly because of protein/peptide 

denaturation in the harsh organic solvents that are used in particle preparation. Developing a protein-

friendly particle preparation technique with step-wise optimization and the selection of a suitable 

polymer might be helpful in developing a peptide-coated solid inhalable particles of anti-PAH drugs 
83

. 
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Figure 1. Target-specific drug therapies in tissue regeneration. Molecular “Zip/postal codes” in the 
angiogenic vasculature of the regenerating tissues allow target organ-specific delivery of the systemically 
administered therapeutic recombinant proteins by affinity-based physical targeting (using peptides or 

antibodies as an “address tag”) to injured tissues undergoing repair. The desired outcome of the targeted 
therapies is similar to topical application: increased local accumulation of the recombinant protein in the 

target tissue and lower systemic concentration of the therapeutic payload.  
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Figure 2. Schematic presentation of the principle of in vivo phage display. (a) A cyclic CX7C-peptide library 
has been cloned to the C-terminus of the phage coat protein and expressed in 415 copies in T7 Select 415-
1b phage. (b) A phage library is injected into circulation. The homing peptides on the phage surface bind to 

endothelium in the tissues, resulting in an enrichment of phages bound to the endothelium of the target 
tissue. Target tissue is homogenized, cell suspensions prepared, and the bound phage rescued and amplified 
by adding E. coli. The amplified phage pool recovered from the target tissue is then re-injected into mice at 
a similar disease stage, and the screening cycle is repeated several times to ensure that phage clones that 
specifically bind (i.e. home) towards target will be recovered. A set of phage clones is randomly collected 
from a homing phage population that shows enriched homing towards target tissue. The peptide-encoding 

DNA inserts are amplified by PCR, and the PCR products sequenced.  

196x284mm (300 x 300 DPI) 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 3. Systemically administered, targeted therapies. (a) Conjugated delivery. The drugs are physically 
conjugated to the targeting element in conventional drug targeting. For protein-based therapeutics, 

targeting domain and therapeutic molecule are fused together as a recombinant protein with enhanced 

activity and tissue-specificity. (b) – (c) Bystander effect. Therapeutic drug(s) co-injected with tissue-
penetrating targeting peptides are transported across the vessel wall and through tissue together with the 

peptides. No actual physical connection is needed between them; the cell penetrating homing peptide 
“sweeps” co-injected drug(s) to its target (homing) tissue in a tissue-specific fashion.  
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Figure 4. CAR peptide homes to inflammatory vasculature and induced target-tissue selective vasodilation in 
pulmonary arterial hypertension (PAH). (a) PAH was induced in rats by a single subcutaneous injection of 
SU5416 and 3 week exposure to hypoxia (10% O2) followed by 6 weeks of normoxia 48. CAR peptide 

accumulates in remodeled pulmonary arteries (A/C: occlusive neointimal formation) 49. A small signal was 
detected in lung lesions of the PAH rats administered with CAR mutant peptide. (b) Effect of CAR (0.3 

mg/kg) and of Rho-kinase inhibitor Y27632 (1 mg/kg) mixture on right ventricle (RVSP) and left ventricle 
LVSP systolic pressure. The CAR/Y27632 combination treatment induced a marked pulmonary-specific 

vasodilation RVSP with only a minimum effect on LVSP. When Y27632 or CAR was given alone at the same 

dose (1 mg/kg or 0.3 mg/kg, respectively), a small effect was observed in RVSP and LVSP (data not shown). 
(c) Schematic illustration of targeted delivery by the “Bystander effect” induced by vascular homing peptide 

CAR.  

250x135mm (300 x 300 DPI) 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 5. Structure of decorin. Mammalian decorin (DCN) contains a monomeric protein core of 42 kDa and 
a single chondroitin/dermatan sulfate glycosaminoglycan (GAG) chain. DCN exists as a dimer in 

physiological solutions and is the best characterized member of the growing family of SLRPs. Structurally, it 

has a domain of tandem leucine-rich repeats (LRRs, altogether 12 LRRs), flanked on both sides by two 
cysteine-rich regions. Decorin dimer structure (from PDB 1XKU). Images prepared with JMOL program. The 

N-terminus is in the "middle" of the anti-parallel homodimer.  
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