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Abstract

Inner ear balance problems are common worldwide and are often dif-
ficult to diagnose. In this study we examine the classification of patients
with inner ear balance problems and controls (people not suffering from
inner ear balance problems) based on data derived from the stabilogram sig-
nals and using machine learning algorithms. This paper is a continuation
for our earlier paper where the same dataset was used and the focus was
medically oriented. Our collected dataset consists of stabilogram (a force
platform response) data from 30 patients suffering from Ménière’s disease
and 30 students called controls. We select a wide variety of machine learn-
ing algorithms from traditional baseline methods to state-of-the-art methods
such as Least-Squares Support Vector Machines and Random Forests. We
perform extensive and carefully made parameter value searches and we are
able to achieve 88.3% accuracy using k-nearest neighbor classifier. Our re-
sults show that machine learning algorithms are well capable of separating
patients and controls from each other.
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1 Introduction
The capability of learning new things is amazing for humans. Often in the begin-
ning difficulties are encountered when learning new skills, but after some time we
adjust in such a way that we master the new skill as we would have done it always.
One of the first skills what we learn is to walk. As a baby the first steps are the
most difficult ones since we do not know how to control our body balance. We
may take one step and then fall. This situation is repeated for several times until
we learn to control our balance.

After learning to control our body balance, unfortunately, we easily forget
how complicated and fine-tuned skill it actually is and think it as self-granted.
Overall, a good body balance is taken almost for granted among the majority of
people. Nevertheless, we notice the importance of body balance when accidents
such as falling at the slippery ice or stumbling to an object happen. These kinds
of accidents can happen to everyone and cause a lot of harm to everyday life.

There are many people who have significant difficulties in maintaining balance
even in good environmental conditions. Persons who have problems with their
balance are usually elderly or young with some inner ear disorder. These disorders
may have huge effect on the everyday life and can make even the simplest tasks
impossible to perform (see, for example, [37]). If a person has some inner ear
disorder, it may also increase his/her probability to get into an accident. A number
of accidents happen worldwide due to inner ear disorders which may lead to severe
injuries likewise leg and hip fractures, head injuries or even death [24]. Treatments
for these injuries again can be expensive and require long-term hospitalization or
sick leave. The total costs of accidents (including treatments and recovering) can
be very high both for the patient himself/herself and for the society.

Despite a person being an elder one or young, the severity of balance problem
should be evaluated, if an inner ear balance problem is suspected. Among the
young, objective recording of certain types of balance deficits may help physicians
to make diagnoses whereas for the elderly similar measurements could further be
used in planning and proposing suitable balance training programs. However, the
first step is to recognize whether or not a person has a balance problem, which is
caused by an inner ear disease before other more specific diagnoses are made.

An objective evaluation of human ability to maintain balance can be done
using a force platform which produces a stabilogram signal. There is, however,
no commonly agreed way to interpret such results. In addition, there is a lack
for commonly accepted baseline values for measures for different age groups and
gender (see, for example [36], for discussion on this subject). A commonly used
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method in examination of human swaying is to apply diffusion analysis introduced
by Collins and De Luca [9]. Diffusion analysis has been used since then widely
and some examples of it are the studies of Peterka [28] and Forsman et al. [16].
Peterka [28] studied human swaying during quiet stance without stimulation and
Forsman et al. [16] applied the idea of Peterka in their own study.

In our earlier research [30] we focused on studying a measure that can effi-
ciently tell apart the measurements from young students and older people who
suffered from Ménière’s disease. Compared to [16, 28] we did not use diffusion
analysis in our previous study in order to have a new perspective for the analysis
of human swaying process. The purpose of this article is to examine more closely
machine learning methods that could improve our classification results presented
in [30] using the same dataset and same features than before. In contrast to [30]
we have done significant changes:

1. The number of classification methods is larger.

2. Extended parameter value search

3. Leave-one-out and nested-leave-one-out methods in computational training
and tests

4. New performance measures

Hence, all the experiments presented in this paper are new.
The rest of the paper is organized as follows. Section 2 presents related works.

Section 3 describes in detail the technical issues of the design of experiments
including description of dataset, feature extraction, measurements, classification
methods, parameter settings, and performance measures used. In Section 4 classi-
fication results are presented. Finally, Section 5 is left for discussion and conclu-
sion.

2 Related Works
Evaluation of human ability to maintain the upright stance is part of physician’s
daily work. First ways to make the evaluation was the use of Romberg’s test. This
test is applied even nowadays, if no other testing method is available. The result
of this test was based on physician’s subjective evaluation whether a person sway
more with eyes closed than eyes open or not. Later on Collins and de Luca [9]
proposed their diffusion analysis as a new tool in the balance evaluation. This
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idea was based on PID (propotional, integral, derivative ) control theory. Within a
short swaying period postural controlling can be seen as open loop system, where
no control is needed. Longer swaying, on the other hand, requires strategy or
closed loop control where feedback from environment is needed (visual and force
feedback). This approach is mostly used in human balance research. Later on,
other methods have been used in modeling the swaying process such as fractals
[13] and wavelets [27].

Fractals and wavelets approaches, however, try to model the swaying process,
not predicting the differences in the model parameters. This task is difficult, be-
cause the model parameters do usually not vary a lot among measured people.
On the other hand, this finding supports the idea that models describing the phe-
nomenon are robust. Classification of human swaying has been considered earlier
in some extent. For instance, works of Audiffren et al. [1] and Hewson et al. [19]
are closely related to the swaying process and measured physical dimensions into
previous theory.

Machine learning approach is quite novel in this field of medical expertise. In
this work we outline how machine learning could be used in simulating medical
diagnosing in a context of human balance disorders. Machine learning methods
have been used earlier in inner ear diagnosis. For example, in [20, 40, 41, 42]
a set of otoneurological diseases (including Ménière’s disease) were classified
using machine learning methods successfully. More specifically, in [20] half-
against-half architecture was used and applied with k-NN, Support Vector Ma-
chine (SVM) and naïve Bayes classifiers. The best accuracy, 76.9%, was obtained
by the SVM. In [40] k-NN and naïve Bayes classifier were used and the high-
est accuracy was 75.0%. Weighted k-NN and genetic algorithms were applied
to classification of otoneurological diseases in [41] and around 80.0% accuracy
was gained. In [42] k-NN and SVM classifiers were used with one-vs-all and
one-vs-one multi-class approaches and 82.4% accuracy was obtained.

In [43] machine learning methods were used for assessing the imbalance and
vestibular dysfunction. Yeh et al. [43] used SVM-based solution and within six
different test setups, the highest accuracy was around 95.0%. Finally, Dastgheib et
al. [11] applied machine learning methods to the diagnosis of Ménière’s disease.
They tested five different approaches and obtained 84% accuracy on test set. For
data derived from stabilogram signals, machine learning methods have been used
in [29, 30, 31, 32]. In these studies k-NN, Hidden Markov Models, SVM were
used and the accuracies were over 70%.
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3 Design of Experiments

3.1 Dataset, feature extraction and measurements
Our dataset consists of stabilogram signals measured from 60 participants like-
wise in [35]. The dataset is collected by the authors. Half of the participants
were patients suffering from Ménière’s disease and the other half were students
from the University of Tampere and they are called controls and they were not
suffering from an inner ear balance problems. Measurements were made by the
permission of patient organization and for the patient organization. Hence, the
collected data is register data where people are not identified and the register data
does not require permission from the ethics committee. Both controls and patients
voluntarily participated in the test.

Detailed information related to groupwise average ages (25 for controls and
60 for patients) and distributions of sexes within the patients (43.3%/56.7% for
M/F) and controls (93.3%/6.7% for M/F) can be found from Table 1. The same
dataset was used in [30] together with the same features. However, the focus in
[30] was more medically oriented whereas this paper concentrates on the machine
learning perspective by classifying patients and controls.

The detailed measuring procedure for the data used in this work can be found
from our earlier study [30]. In [30] we conducted a two phase test where our goal
was to extract such measurements that were closely related to the human ability
to maintain the balance. In the first phase we measured how well a person can
follow a moving object only by altering his/her center point of mass on a force
platform. In the second phase of our test we measured an average time delay that
occurs when a subject is following a “jumping” light source only using eyes.

The force platform contains three analog pressure sensitive voltage sensors
that form a plane under the subject’s feet. Using the information about the location
of the sensors in relation to others, we can use a momentum equation that results in
the location of resulting force acting on the platform. Analog signal is converted
into digital form using DT9800 A/D converter at the frequency of 50Hz. The
device used in measuring the visual time delay was a product of Micromedical
Technologies1. This device is usually used in thorough evaluation of inner ear
functionality.

Human postural control system combines information from vision, and force
feedback from the ground. Our selected features closely connect these two infor-

1http://www.micromedical.com/Products/VisualEyes_VNG/
VisualEyes-Spectrum
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mation channels. Tracking the target signal require visual feedback while feeling
the ground tells how far it is possible to lean without losing balance. One can
easily verify the need for force feedback from the ground. It is somewhat difficult
to walk on a soft mattress of a trampoline, because the feel of supporting force
has been suppressed.

These two tests yielded us a five dimensional feature vector (t, n, d, Fx, Fy)
from each subject. More specifically, t is the total time when a subject was able to
follow the object, n is the number of approaches to reach the target when losing it,
d is the mean eye movement delay in a saccade test. Furthermore, Fx and Fy are
form factor signals in x (medio-lateral) and y (anterior-posterior) directions and
they contain the information about the nature of error when following the target.

An individual signal that is used in describing the form factor is a signal
e = e1, . . . , eT where e1 is the difference of target and control squares in sam-
pling instant 1. Similarly, eT is the respective difference in sampling instant T .
Form factors Fx and Fy are calculated as a quotient of kurtosis and variance for re-
spective signals ex and ey. High F presents the situation where a subject manages
to stay on a target well. However, small amounts of large extrusions occur. Low
F , on the other hand, is characteristic for a process where a person does not stay
properly on target and there is a great number of sufficiently large error incidents.

3.2 Classification
3.2.1 Methods

In this research we examined several classification methods ranging from tradi-
tional baseline methods to current state-of-the-art methods. More specifically, we
tested the following methods: Classification tree (CT) (CART algorithm [4, 5,
14, 25, 45]), k-nearest neighbor classifier (k-NN) [10, 15, 45], Linear discrim-
inant analysis (LDA) [2, 8], Logistic regression (LR) [12, 22], Least-Squares
Support Vector Machine (LS-SVM) [38, 39], Mahalanobis discriminant analy-
sis (MDA) [6], naïve Bayes (NB) variants [33, 34, 45], Quadratic discriminant
analysis (QDA) [8, 21] and Random Forests (RF) [7, 23]. These algorithms
were selected because they have shown great performance in many applications
[20, 40, 42, 45] and they extend our earlied study [30] significantly. Naïve Bayes
method was tested with and without kernel density estimation (KDE) [18]. When
KDE was used with NB, we tested four different kernels: Box, Epanechnikov,
Gaussian and triangle.

Overall, classification methods tested can be divided into two groups:
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• Parameter free algorithms

• Parameter-dependent algorithms

Classification was conducted using the leave-one-out (LOO) method for the pa-
rameter free algorithms and for the parameter-dependent algorithms nested leave-
one-out (NLOO) was applied. LOO and NLOO approaches were chosen because
they have the benefit of maximizing the size of training set which is important
when the dataset is relatively small as in our case it is. However, the difference
between aforementioned categories become evident since parameter free methods
(LDA, LR, MDA, NB and its variants and QDA) require the classification proce-
dure to be performed only once whereas for the rest of the methods (CT, k-NN,
LS-SVM, and RF) the classification procedure must be repeated with different
parameter settings.

Logistic regression differs from the other parameter free classification meth-
ods. In LR the output for the test instance is not a class label directly but it is a
real number close to 0 or 1. A final class label for each instance was derived by
rounding the output to the closest integer (0/1). Parameter settings are explained
in detail in Section 3.2.2. After finishing the LOO or NLOO procedure, perfor-
mance measures (see Section 3.3) were evaluated. We used Matlab 2017a together
with Statistics and Machine Learning Toolbox and Parallel Computing Toolbox in
our tests. All the tests were run using a desktop computer having Intel i7-3960X
3.5GHz processor, 32GB memory and Win7 operating system.

3.2.2 Parameter settings

The first parameter-dependent algorithm is Classification tree (CART). In the im-
plementation of CART algorithm we varied the number observations required to
be in each splitting node in a tree. We tested values of 1, 5 and 10. Moreover,
we used 1 as a minimum number of observations what each leaf must include. In
addition, we used Gini’s diversity index as a splitting criterion. Classification was
performed using LOO since we present the results of each parameter settings in
result table.

In the cases of k-NN, LS-SVM and RF (other parameter-dependent algo-
rithms) NLOO was used due to parameter optimization and to prevent possible
overfitting. NLOO includes two loops where the outer loop is for model assess-
ment whereas the inner loop is for model selection including parameter optimiza-
tion. In other words, in each round of outer loop, we repeat LOO procedure to
a training set equal number of times as we have parameter values to be tested.
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Hence, we find optimized parameter values for each training set separately. When
the optimal parameter setting is found, a classifier is trained again using the whole
training set and tested with the test instance extracted from the dataset in outer
loop. Optimal parameter setting was selected using accuracy which is specified in
detail in Section 3.3.

For Random Forests classifier the number of trees (#trees) is the most crucial
parameter. We varied the number of trees in a forest from 1 to 50 with the step
size of 1. In the case of k-NN classifier there are three main parameters included:

1. Distance measure

2. Possible distance weighting

3. k value.

In this study we examined eight distance measures: Chebychev metric, correla-
tion measure, cosine measure, Euclidean metric, Mahalanobis metric, Manhattan
metric, standardized Euclidean metric and Spearman measure. In addition, three
typical distance weighting schemes were tested: No weighting that is every in-
stance has weight of 1, inverse weighting ( 1

dist
) and squared inverse weighting

( 1
dist2

) with respect to distance dist. Each one of the distance measure and weight
combination (24 altogether) was tested with k values {1, 3, . . . , 57}. Only odd k
values were tested in order to exclude the possibility of ties. Moreover, k value
is limited with the size of a training set. Due to NLOO procedure the maximum
value for k was 57. Our classification task is a two-class problem and, hence, ties
do not occur when odd k values are used. The NLOO classification procedure was
repeated with all aforementioned k values

The kernel selection is an important issue when LS-SVM is used in prac-
tice. The purpose of the kernel is to map data from the input space to a high-
dimensional space where the two classes can be separated using a maximum mar-
gin hyperplane. Only kernels satisfying the conditions of Mercer’s theorem [38]
can be used. The notation of K(·, ·) refers to a kernel function which is needed
for constructing the LS-SVM classifier and when a new instance is classified. For
our research we selected eight kernel functions which are represented in Table 2.

Parameter settings are kernel and dataset dependent on LS-SVM. In LS-SVM
a common parameter for all kernels is regularization parameter C which controls
a trade-off between a maximum margin and minimum classification error. In ad-
dition, hyperparameters are encountered with different kernels and the number of
hyperparameters vary between each kernel from 0 to 2. For the RBF kernel we
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need a hyperparameter σ describing the width of Gaussian function. For the hy-
perbolic tangent kernel there are two hyperparameters (κ and δ). Hyperparameters
must satisfy constraints C, σ, κ > 0 and δ < 0 or, otherwise, kernels do not fulfill
the conditions of Mercer’s theorem.

Table 3 shows the detailed information related to parameter value spaces of
each kernel used. Based on the information given in Table 3 we performed exten-
sive parameter value search for all kernels. Since the main objective of this paper
is not to present a novel parameter optimization process (e.g. applying some new
evolutionary algorithm), we performed traditional one, two or three dimensional
grid search depending on the kernel.

3.3 Performance measures
Table 4 shows the confusion matrix for our study in general form. There are
numerous performance measures developed for two-class classification problems
which can be derived from the confusion matrix. We selected seven of them to be
used. Firstly, we examined true positive (TP) and true negative (TN) values which
describe the number of correctly classified controls and patients respectively. Sec-
ondly, we chose true positive rate (TPR) also known as sensitivity or recall and
true negativity rate (TNR) also called specificity. These performance measures
explain the proportion of correctly classified controls and patients within the se-
lected group and supplement the TP and TN information. In other words, we
have

TPR =
TP

TP + FN
100%

and
TNR =

TN

TN + FP
100%.

Thirdly, we use accuracy as one performance measure. Accuracy is commonly
applied and it explains the overall performance (i.e. how many patients and con-
trols were classified correctly with respect to the size of the dataset). It is one of
the most used performance measure in machine learning community and, thus,
used also in this paper. Accuracy can be defined in different ways but we use the
following definition for it

ACC =
TP + TN

TP + FN + TN + FP
100%.

Although accuracy is widely used, it does not always give the right perspective
from the results, if it is used alone. For example, if we have a dataset where the
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one class is very small and the other is very large, we can obtain high accuracy
even all the instances from the smaller class would be misclassified. In order
to avoid this kind of problem, we use other performance measures together with
accuracy. Fourthly, we use F1-score which is the weighted average of precision
(PRE)

PRE =
TP

TP + FP

and TPR [17]. F1-score can be interpreted in terms of TP, FP and FN as follows

F1 =
2TP

2TP + FN + FP
.

Since F1-score does not take into account true negative value, we decided to use
also Matthews correlation coefficient (MCC) [3, 26] as one performance measure.
MCC gives as an output a number from the interval [−1, 1] where 1 indicates
perfect classification and −1 total misclassification. MCC is commonly used and
it describes the classification results well even the class sizes would be highly
skewed. More specifically, MCC can be defined as follows

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

4 Results
Tables 5 and 6 present the detailed classification results. In Table 5 k-NN algo-
rithm was used with various distance measures and weightings. A separate table
for the k-NN results was given due to a large number of distance measures and
weighting combinations. Thus, the analysis of results would be easier for a reader.
The optimal parameter value has not been given in Table 5 since NLOO approach
may give different optimal k value for each training set.

When examining the results of Table 5, we notice that four of the total 24 dis-
tance and weighting combinations achieved 88.3% accuracy. These were cosine
measure with (squared) inverse weightings and (standardized) Euclidean metric
with squared inverse weighting. Overall, Table 5 includes relatively large dif-
ferences between distance measures which can be seen in ACC, F1 and MCC
performance measures. The worst result in terms of accuracy was obtained by the
Spearman measure having maximum of 75.0% accuracy. However, good results
yielded by the k-NN classifier may be explained with the fact that k-NN is a local
classifier which can perform well with rather small datasets.
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The classification of the controls (students) in Table 5 was performed slightly
better than that of the patients since in many cases 28 controls out of 30 were
recognized correctly. For the patients the respective number was 25. One possible
reason why the controls were recognized better than the patients might be that
the controls are more a homogeneous group compared to the patients. Moreover,
the mean age of controls compared to patients may have influence on this kind
of result. The patients may have symptoms in a wide scale from mild to very
difficult. This increases the heterogeneousity of the patients and may affect on the
classification.

Table 6 shows the classification results when other than k-NN algorithm were
used in classification. Similarly, as in Table 5 we do not present the optimal pa-
rameter values in Table 6 for LS-SVM and RF classifiers due to NLOO procedure
applied. Compared to Table 5 results Table 6 shows similar results with respect to
accuracies. Now, naïve Bayes classifier with and without KDE yielded the highest
accuracy (86.7%) which is an interesting result. The success of simple NB classi-
fier may be explained with the size of the datasets (60 instances and five features).
Probability based NB classifier works with small datasets whereas LS-SVM and
RF classifiers may work better with larger datasets.

Discriminant analysis based methods, LR and LS-SVMs had good accuracies,
F1 score and MCC values. Accuracy, for example, was between 83.3% and 85.0%
which is comparable with the k-NN results given in Table 5. For CART algorithm
78.3% and 80.0% accuracies were obtained depending on the value of “minpar-
ent” parameter. Random Forests, which can be considered as an extension for
the CART algorithm, obtained 80.0% accuracy. The result is good but it did not
outperform other classification methods.

The same trend with respect to the classification of controls versus patients was
seen in Table 6 as in Table 5. The controls were, generally speaking, classified
better than the patients which supports the hypothesis of the homogeneousity of
the controls compared to the patients. Moreover, the age of the controls can also
reflect to the classification results.

5 Discussion and conclusion
This paper dealt with classification of patients and controls using stabilogram de-
rived data. Our study is a natural continuation for our study [30] where the same
dataset was first used and examined. The focal idea was to find a suitable machine
learning method which would separate patients and controls as well as possible
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and the classification results would be improved from the results given in [30].
The stabilogram signal data originates from 30 controls and 30 patients suffering
from Ménière’s disease which is one of the most common inner ear disorders en-
countered. From the stabilogram signal data five features were extracted and used
in classification.

Overall, we performed 45 different test setups with extensive parameter value
search. We managed to achieve 88.3% accuracy using k-NN classifier. From
the other classification methods naïve Bayes and LS-SVMs showed very good
results having 85% or above accuracies. The results showed that patients were
more difficult to classify than controls which indicates that controls may be more
homogeneous group compared to patients. This again shows that there can be
locality behavior into some extent in our dataset.

Stabilogram signal data measured with a force platform are difficult. Finding
correct features from the signal data can be challenging and the differences be-
tween signals of different subjects can be very small. However, this study shows
that separating patients from controls can be done with a high performance mea-
sures when the right features and machine learning algorithm are found.

Ménière’s disease is the most commonly diagnosed inner ear disease and it is
encountered worldwide. The variety in severity of Ménière’s disease and inner ear
diseases, generally speaking, is large. Some people may have mild symptoms and
live relatively normal life whereas in the worst case scenario an inner ear disease
can be disabling. A very important issue is to diagnose the disease as early as
possible and to start a proper treatment so that the quality of life would be as good
as possible. At the same time we can save funds and resources both from the
individual point of view and from the society perspective.

Our study concentrated on the first step of diagnose, classification of a control
and a patient. When we have a machine learning method which tells to a physician
whether or not a person is probably a patient, a physician can use this informa-
tion in his/her diagnose. Machine learning can be a helpful tool for a physician
when diagnosing an inner ear disease which again enables physician to give more
efficiently proper instructions for a patient how to improve his/her condition.

Although our paper focused on separating patients and controls especially in
the context of Ménière’s disease, our research can be extended into other domains
as well. Balance is an important issue as already in the introduction was stated and
there are domains where good balance is a key point. In sports and sports medicine
balance measurements can be performed to improve possible disorders and skills.
Moreover, another domain where this research can be applied is game industry.
Nowadays, various accessories can be attached to computers and consoles. A
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few years ago Nintendo designed a balance board called Wii Balance Board [44]
which could be used for muscle training for example. Hence, this research has
possibilities to extend even to a larger consumer markets.

From the methodological point of view there are possibilities how to improve
our research further. In future, when we have a larger dataset, machine learning
techniques from the field of artificial neural networks (ANNs) can be considered
as possible classification method. ANNs were left out from this study due to the
small number of instances. Artificial neural networks have proven good results
in many applications, but they may require a large training set (especially deep
learning techniques) in order to work properly.
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Table 1: Describing information of the dataset.
Class Sex (M/F) Frequency Proportion Average age (years)
Controls 28/2 30 50.0% 25± 4
Patients 13/17 30 50.0% 60± 12
Total 41/19 60 100.0% −
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Table 2: LS-SVM kernels used in our study and their descriptions.
Kernel Description
Linear K(x, y) = xTy
Quadratic K(x, y) = (1 + xTy)2
Cubic K(x, y) = (1 + xTy)3
Polynomial kernel (degree = 4) K(x, y) = (1 + xTy)4
Polynomial kernel (degree = 5) K(x, y) = (1 + xTy)5
Polynomial kernel (degree = 6) K(x, y) = (1 + xTy)6
Radial Basis Function K(x, y) = exp(−‖x− y‖2/2σ2)
Hyperbolic tangent K(x, y) = tanh(κxTy + δ)
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Table 3: LS-SVM kernels and the parameter value spaces used in this study.
Kernel C σ κ δ

Linear {2−7, . . . , 210} - - -
Quadratic {2−7, . . . , 210} - - -
Cubic {2−7, . . . , 210} - - -
Polynomial kernel (degree = 4) {2−7, . . . , 210} - - -
Polynomial kernel (degree = 5) {2−7, . . . , 210} - - -
Polynomial kernel (degree = 6) {2−7, . . . , 210} - - -
Radial Basis Function {2−7, . . . , 210} {2−7, . . . , 210} - -
Hyperbolic tangent {2−7, . . . , 210} - {2−7, . . . , 24} {−23, . . . ,−2−7}

20



Table 4: Confusion matrix for two-class classification problem.
Predicted label
Control Patient

True Control TP FN
label Patient FP TN
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Table 5: The results of k nearest neighbors method variants.
Abbreviations TP, TPR, TN, TNR, ACC, F1 and MCC stand
for true positive, true positive rate, true negative, true nega-
tive rate, accuracy, F1 score and Matthews correlation coeffi-
cient. From the performance measures TPR, TNR and ACC
are presented in percentages.

Controls Patients
Method TP TPR TN TNR ACC F1 MCC
Chebychev measure and
equal weights 26 86.7 24 80.0 83.3 0.84 0.67

Chebychev measure and in-
verse weights 26 86.7 24 80.0 83.3 0.84 0.67

Chebychev measure and in-
verse squared weights 26 86.7 24 80.0 83.3 0.84 0.67

Manhattan metric and equal
weighting 27 90.0 24 80.0 85.0 0.86 0.70

Manhattan metric and inverse
weighting 27 90.0 25 83.3 86.7 0.87 0.74

Manhattan metric and
squared inverse weighting 24 80.0 23 76.7 78.3 0.79 0.57

Correlation measure and
equal weighting 25 83.3 23 76.7 80.0 0.81 0.60

Correlation measure and in-
verse weighting 25 83.3 24 80.0 81.7 0.82 0.63

Correlation measure and
squared inverse weighting 26 86.7 24 80.0 83.3 0.84 0.67

Cosine measure and equal
weighting 26 86.7 23 76.7 81.7 0.83 0.64

Cosine measure and inverse
weighting 28 93.3 25 83.3 88.3 0.89 0.77

Cosine measure and squared
inverse weighting 28 93.3 25 83.3 88.3 0.89 0.77

Euclidean measure and equal
weighting 26 86.7 23 76.7 81.7 0.83 0.64

Euclidean measure and in-
verse weighting 26 86.7 24 80.0 83.3 0.84 0.67
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Euclidean measure and
squared inverse weighting 28 93.3 25 83.3 88.3 0.89 0.77

Mahalanobis measure and
equal weighting 26 86.7 23 76.7 81.7 0.83 0.64

Mahalanobis measure and in-
verse weighting 27 90.0 23 76.7 83.3 0.84 0.67

Mahalanobis measure and
squared inverse weighting 24 80.0 23 76.7 78.3 0.79 0.57

Standardized Euclidean mea-
sure and equal weighting 26 86.7 24 80.0 83.3 0.84 0.67

Standardized Euclidean mea-
sure and inverse weighting 28 93.3 25 83.3 88.3 0.89 0.77

Standardized Euclidean
measure and squared inverse
weighting

26 86.7 25 83.3 85.0 0.85 0.70

Spearman measure and equal
weighting 26 86.7 19 63.3 75.0 0.78 0.51

Spearman measure and in-
verse weighting 26 86.7 18 60.0 73.3 0.76 0.48

Spearman measure and
squared inverse weighting 26 86.7 18 60.0 73.3 0.76 0.48
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Table 6: The results of CT, LDA, LR, LS-SVM, MDA,
NB, QDA and RF classifiers. Abbreviations TP, TPR, TN,
TNR, ACC, F1 and MCC mean true positive, true positive
rate, true negative, true negative rate, accuracy, F1 score
and Matthews correlation coefficient. From the performance
measures TPR, TNR and ACC are presented in percentages.

Controls Patients
Method TP TPR TN TNR ACC F1 MCC
Classification tree (CART)
(minparent = 1) 24 80.0 23 76.7 78.3 0.79 0.57

Classification tree (CART)
(minparent = 5) 25 83.3 23 76.7 80.0 0.81 0.60

Classification tree (CART)
(minparent = 10) 24 80.0 23 76.7 78.3 0.79 0.57

Linear discriminant analysis 26 86.7 24 80.0 83.3 0.84 0.67
Logistic regression 25 83.3 25 83.3 83.3 0.83 0.67
LS-SVM Linear kernel 26 86.7 24 80.0 83.3 0.84 0.67
LS-SVM Quadratic kernel 27 90.0 24 80.0 85.0 0.86 0.70
LS-SVM Cubic kernel 26 86.7 24 80.0 83.3 0.84 0.67
LS-SVM 4th degree polyno-
mial kernel 27 90.0 24 80.0 85.0 0.86 0.70

LS-SVM 5th degree polyno-
mial kernel 27 90.0 24 80.0 85.0 0.86 0.70

LS-SVM 6th degree polyno-
mial kernel 27 90.0 24 80.0 85.0 0.86 0.70

LS-SVM RBF kernel 26 86.7 24 80.0 83.3 0.84 0.67
LS-SVM Sigmoid kernel 26 86.7 24 80.0 83.3 0.84 0.67
Mahalanobis discriminant
analysis 27 90.0 24 80.0 85.0 0.86 0.70

Naïve Bayes (normal distri-
bution assumption) 27 90.0 25 83.3 86.7 0.87 0.74

Naïve Bayes (kernel smooth-
ing density estimation and tri-
angle kernel)

27 90.0 25 83.3 86.7 0.87 0.74
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Naïve Bayes (kernel smooth-
ing density estimation and
Epanechnikov kernel)

27 90.0 25 83.3 86.7 0.87 0.74

Naïve Bayes (kernel smooth-
ing density estimation and
box kernel)

26 86.7 25 83.3 85.0 0.85 0.70

Naïve Bayes (kernel smooth-
ing density estimation and
Gaussian kernel)

27 90.0 25 83.3 86.7 0.87 0.74

Quadratic discriminant analy-
sis 26 86.7 24 80.0 83.3 0.84 0.67

Random Forest 25 83.3 23 76.7 80.0 0.81 0.60

25


