
User guide for Modularized Surrogate Model Toolbox

Juliane Müller

Tampere University of Technology

Department of Mathematics

email: juliane.mueller2901@gmail.com

October 2, 2012

1 Introduction

This user guide accompanies the surrogate model toolbox for global optimization problems. The
toolbox is made for computationally expensive black-box global optimization problems with
continuous, integer, or mixed-integer variables. Problems where several or all variables have to be
integers may also have black-box constraints, whereas purely continuous problems may only have
box constraints.

For problems with computationally cheap function evaluations the toolbox may not be very efficient.
Surrogate models are intended to be used when function evaluations take from several minutes to
several hours or more. When reading this manual it is recommended to simultaneously take a look
at the code.

The code is set up such that the user only has to define his/her optimization problem in a Matlab file
(see Section 6.1). Additional input such as the surrogate model to be used, the sampling strategy,
or starting points are optional (see Section 6).

This document is structured as follows. In Section 2 the general structure of a surrogate model
algorithm is summarized. The installation is described in Section 3. The dependencies of the single
functions in the code are shown in Section 4. Section 5 briefly summarizes how the surrogate model
algorithm works in general. Section 6 describes the options for the input of the main function. In
Section 7 the input and output of the single subfunctions of the algorithm are described. Examples
for using the surrogate model algorithm are given in Section 8. In Section 9 it is explained how the
user can define an own (mixture) surrogate model and an example is given. The elements of the
saved results are described in Section 10.

Finally, if you have any questions, or you encounter any bugs, please feel free to contact me at the
email address juliane.mueller2901@gmail.com.

2 Surrogate Model Algorithms

Surrogate models (also known as response surfaces, metamodels) are used during the optimization
phase to approximate expensive simulation models [1]. During the optimization phase information
from the surrogate model is used in order to guide the search for improved solutions. Using the
surrogate model instead of the true simulation model reduces the computation time considerably.
Most surrogate model algorithms consist of the same steps as shown in the algorithm below.

Algorithm General Surrogate model Algorithm

1. Generate an initial experimental design.

1

mailto:juliane.mueller2901@gmail.com

2. Do the costly function evaluations at the points generated in Step 1.

3. Fit a response surface to the data generated in Steps 1 and 2.

4. Use the response surface to predict the objective function values at unsampled points in the
variable domain to decide at which point to do the next expensive function evaluation.

5. Do the expensive function evaluation at the point selected in Step 4.

6. Use the new data point to update the surrogate model.

7. Iterate through Steps 4 to 6 until the stopping criterion has been met.

Surrogate model algorithms in the literature differ mainly with respect to

• the generation of the initial experimental design;

• the chosen surrogate model;

• the strategy for selecting the sample point(s) in each iteration.

Typically used stopping criteria are a maximum number of allowed function evaluations, a maximum
allowed CPU time, or a maximum number of failed iterative improvement trials.

3 Installation

Download the file SurrogateOptimizationModule.zip and unzip it in a location known to the Matlab
search path. Alternatively, you can add a new folder to the Matlab search path by clicking in the
Matlab window on

File → Set Path... → Add with Subfolders → Save

You can try if the algorithm works by typing

>> SurrogateModelModule_v1(’datainput_hartman6’,300,’MIX_RcKg’, ’CAND’, ’SLHD’, 15);

into the command prompt.

4 Code Structure

The structure of the code is outlined here. Depending on if there are integrality constraints in the
problem either option (a), (b), or (c) is used. If the problem has only continuous variables, the user
can choose different sampling strategies (options (i)-(v)). For problems with integer constraints only
the candidate point sampling strategy can be used at this moment.

SurrogateModelModule v1.m

StartingDesign.m

SLHD.m/lhsdesign.m/bestlh.m/cornerpoints.m

(a) OptimizationPhase continuous.m

FitSurrogateModel.m

RBF.m/POLY.m/dacefit.m/aresbuild.m/DempsterFor2models.m/DempsterFor3models.m

(i) CandidatePointSampling.m

Perturbation.m

PredictFunctionValues.m

RBF eval.m/POLY eval.m/predictor.m/arespredict.m

DistanceCriterion.m

PredictedValueCrit.m

(ii) SurfaceMinSampling.m

ODDS.m

FitSurrogateModel.m

RBF.m/POLY.m/dacefit.m/aresbuild.m/DempsterFor2models.m/DempsterFor3models.m

2

(iii) ExpImprovementSampling.m

distanceupdate.m

likelihood new.m

ExpectedImprovement.m

(iv) BumpinessMinSampling.m

ODDS.m

RBF.m

bumpiness measure.m

(v) ScoreMinSampling.m

Multi DDS.m

FitSurrogateModel.m

RBF.m/POLY.m/dacefit.m/aresbuild.m/DempsterFor2models.m/DempsterFor3models.m

(b) OptimizationPhase integer.m

SOI OP1.m

FitSurrogateModel.m

RBF.m/POLY.m/dacefit.m/aresbuild.m/DempsterFor2models.m/DempsterFor3models.m

Perturbtation SOI.m

PredictFunctionValues.m

RBF eval.m/POLY eval.m/predictor.m/arespredict.m

DistanceCriterion.m

SOI OP2.m

FitSurrogateModel.m

RBF.m/POLY.m/dacefit.m/aresbuild.m/DempsterFor2models.m/DempsterFor3models.m

Perturbtation SOI.m

PredictFunctionValues.m

RBF eval.m/POLY eval.m/predictor.m/arespredict.m

DistanceCriterion.m

PredictedValueCrit.m

(c) OptimizationPhase mixedinteger.m

FitSurrogateModel.m

RBF.m/POLY.m/dacefit.m/aresbuild.m/DempsterFor2models.m/DempsterFor3models.m

Perturbation SOMI.m

PredictFunctionValues.m

RBF eval.m/POLY eval.m/predictor.m/arespredict.m

DistanceCriterion.m

PredictedValueCrit.m

5 The Main File SurrogateModelModule v1.m

The file from which to run the surrogate model toolbox is SurrogateModelModule v1.m. The file
expects several inputs (see Section 6), of which only the first is mandatory. The algorithm starts
by checking the input and assigns default values to variables that have not been set by the user.
An initial experimental design is created (StartingDesign.m). After evaluating the expensive function
evaluations at the selected points in the initial experimental design one of the three (continuous,
integer, mixed-integer) optimization routines is called.

6 Input

The main file SurrogateModelModule v1.m requires several input arguments (see Table 1), out of which
only the first is mandatory to run the algorithm. If no input is given for the remaining arguments,
default values are used.

3

Table 1: Input parameters

Input Description

data file string with name of data file containing optimization problem data (manda-
tory!)

maxeval integer defining maximum number of allowed function evaluations (default 400)
surrogate model string defining which surrogate model to use (default ’RBFcub’)
sampling technique string defining the technique for picking the next sample site (default ’CAND’)
initial design string defining which initial experimental design should be used (default

’SLHD’)
number startpoints integer defining the number of initial starting points (default 2(d + 1),

d=dimension)
starting point matrix with points added to initial experimental design

6.1 Input data file

The data file contains all the necessary problem information. See for example the file
datainput hartman6.m. The data file has no input argument, and one output argument (the structure
Data). The data structure has to contain the information shown on Table 2.

Table 2: Contents data file

Variable Description

Data.xlow variable lower bounds, row vector with d (=dimension) entries
Data.xup variable upper bounds, row vector with d (=dimension) entries
Data.dim problem dimension, integer
Data.integer row vector containing indices of variables with integer constraints

(Data.integer=[] if no integrality constraints)
Data.continuous row vector containing indices of continuous variables (Data.continuous=[] if no

continuous variables)
Data.objfunction handle to objective function, must return a scalar value
Data.constraint cell array with handles to constraint functions; only for integer and mixed-

integer problems; optional

6.2 Input surrogate model

There are several options for choosing the surrogate model. Surrogate models can be interpolating (for
example radial basis functions (RBF), kriging) or non-interpolating (polynomial regression models,
multivariate adaptive regression splines (MARS)). The toolbox allows the user to choose between
different (mixture) models (see Tables 3, 4, 5, 6). The surrogate model to be used can be defined by
the user as string as function input surrogate model. Numerical experiments showed that if nothing
about the behavior of the black-box objective function is known, a mixture surrogate model containing
a radial basis function should be used. Mixture models prevent accidentally selecting the worst
surrogate model.

Table 3: Radial basis function surrogate models

surrogate model Description

’RBFcub’ cubic radial basis function interpolant
’RBFtps’ thin plate spline radial basis function interpolant
’RBFlin’ linear radial basis function interpolant

4

Table 4: Kriging surrogate models

surrogate model Description

’KRIGexp0’ Kriging model with exponential correlation function and 0-order regres-
sion polynomial

’KRIGexp1’ Kriging model with exponential correlation function and first order re-
gression polynomial

’KRIGexp2’ Kriging model with exponential correlation function and second order
regression polynomial

’KRIGgexp0’ Kriging model with generalized exponential correlation function and 0-
order regression polynomial

’KRIGgexp1’ Kriging model with generalized exponential correlation function and first
order regression polynomial

’KRIGgexp2’ Kriging model with generalized exponential correlation function and sec-
ond order regression polynomial

’KRIGgauss0’ Kriging model with Gaussian correlation function and 0-order regression
polynomial

’KRIGgauss1’ Kriging model with Gaussian correlation function and first order regres-
sion polynomial

’KRIGgauss2’ Kriging model with Gaussian correlation function and second order re-
gression polynomial

’KRIGlin0’ Kriging model with linear correlation function and 0-order regression
polynomial

’KRIGlin1’ Kriging model with linear correlation function and first order regression
polynomial

’KRIGlin2’ Kriging model with linear correlation function and second order regres-
sion polynomial

’KRIGspline0’ Kriging model with spline correlation function and 0-order regression
polynomial

’KRIGspline1’ Kriging model with spline correlation function and first order regression
polynomial

’KRIGspline2’ Kriging model with spline correlation function and second order regres-
sion polynomial

’KRIGsphere0’ Kriging model with spherical correlation function and 0-order regression
polynomial

’KRIGsphere1’ Kriging model with spherical correlation function and first order regres-
sion polynomial

’KRIGsphere2’ Kriging model with spherical correlation function and second order re-
gression polynomial

’KRIGcub0’ Kriging model with cubic correlation function and 0-order regression
polynomial

’KRIGcub1’ Kriging model with cubic correlation function and first order regression
polynomial

’KRIGcub2’ Kriging model with cubic correlation function and second order regres-
sion polynomial

5

Table 5: Non-interpolating surrogate models

surrogate model Description

’POLYlin’ linear regression polynomial
’POLYquad’ quadratic regression polynomial
’POLYquadr’ reduced quadratic regression polynomial
’POLYcub’ cubic regression polynomial
’POLYcubr’ reduced cubic regression polynomial
’MARS’ multivariate adaptive regression spline

Table 6: Mixture surrogate models

surrogate model Description

’MIX RcKg’ mixture of cubic radial basis function interpolant and kriging model with
Gaussian correlation function (first order regression polynomial)

’MIX RcM’ mixture of cubic radial basis function interpolant and multivariate adap-
tive regression spline

’MIX RcPc’ mixture of cubic radial basis function interpolant and full cubic regres-
sion polynomial

’MIX KgM’ mixture of kriging model with Gaussian correlation function (first order
regression polynomial) and multivariate adaptive regression spline

’MIX KgPc’ mixture of kriging model with Gaussian correlation function (first order
regression polynomial) and cubic regression polynomial

’MIX KgPqr’ mixture of kriging model with Gaussian correlation function (first order
regression polynomial) and reduced quadratic regression polynomial

’MIX KgPcr’ mixture of kriging model with Gaussian correlation function (first order
regression polynomial) and reduced cubic regression polynomial

’MIX RcKgM’ mixture of cubic radial basis function interpolant, kriging model with
Gaussian correlation function (first order regression polynomial) and
multivariate adaptive regression spline

6.3 Input SampleStrategy

For problems with only continuous variables the user can determine the strategy for selecting the
sample point in each iteration (see Table 7, input sampling technique).

In the candidate point approach [10] (CAND) two groups of candidates for the next sample point
are created. The points in the first group are generated by perturbing the best point found so
far. The points in the second group are generated by uniformly selecting points from the whole
box-constrained variable domain. The response surface is used to predict the objective function
values at the candidate points (response surface criterion). The distance of each candidate point
to the set of already sampled points is computed (distance criterion), and a weighted sum of both
criteria is used to determine the best candidate point.

When using the minimum of the response surface (’SURFmin’) as sampling strategy, the dynamically
dimensioned search (DDS) algorithm [12] is used to find the surface minimum. Other algorithms
(such as Matlab’s fmincon) could be used as well. Note that it is not necessary to find the global
minimum of the surface. Rather, response surfaces that are able to model multimodalities are
preferable because sample points are likely to be derived from local optima in different regions of the
variable domain, which in turn makes the search more global (see also [11]).

Using the point that maximizes the expected improvement (’EImax’) has been introduced by Jones
et al. [6] (EGO algorithm). When using this sampling strategy, the kriging model must be used

6

as response surface because it returns an error estimate together with the objective function value
prediction. Thus, if the maximum expected improvement is the sampling strategy of choice, the
surrogate model cannot be set by the user.

The strategy of using the point that minimizes the scoring criterion (’SCOREmin’) corresponds to
finding the point that minimizes the weighted score defined by the response surface and the distance
criterion. In contrast to the candidate point approach (where the best candidate from a limited
number of points is selected) the actual minimum is tried to be found. When minimizing the scoring
function the DDS algorithm is used.

Minimizing the bumpiness measure [3] (’BUMPmin’) aims at finding the point in the variable
domain where it seems most ”reasonable” that the objective function takes on a given target value,
i.e. it is more reasonable that the objective function takes on a very low value in regions of the
variable domain where already low function values have been encountered, rather than in regions
where large objective function values have been observed and very steep valleys would result. The
sampling strategy can only be used in connection with a radial basis function interpolant. During
the optimization phase the algorithm cycles through several different target values as described by
Holmström [4].

Computational experiments showed that the candidate point approach (’CAND’), maximizing the
expected improvement (’EImax’), or using the minimum of the response surface (’SURFmin’) lead in
general to the best results.

Table 7: Options for sampling techniques

sampling technique Description

’CAND’ candidate point approach (default)
’SURFmin’ uses the minimum point of response surface
’EImax’ uses the point that maximizes the expected improvement (currently

working only for kriging with generalized exponential correlation func-
tion)

’SCOREmin’ uses the scoring criteria from the candidate point approach, but tries to
find the best point in the whole domain with respect to these criteria
instead of choosing the best point among a limited number of points as
done in ’CAND’)

’BUMPmin’ minimizes bumpiness measure (see [3]), only for cubic, linear and thin-
plate spline radial basis function interpolant

6.4 Input initial design

The user can choose between the initial experimental design strategies shown in Table 8.

Table 8: Initial experimental design strategies

sampling technique Description

’SLHD’ symmetric Latin hypercube design
’LHS’ Matlab’s built-in Latin hypercube design (default)
’CORNER’ uses (subset) of corner points of variable domain
’SPACEFIL’ space filling design (as in EGO, see [2])

When choosing the SLHD option, it is advised to use at least 2d (d=problem dimension) starting
points, due to the possibility of linear dependencies in the design matrix. When many points are
required for the initial experimental design, using the ’SPACEFIL’ strategy becomes computationally

7

more expensive because of the optimization routine when creating the design. Also note that if more
points are required for the initial experimental than there are corner points, the corner point sampling
strategy as initial experimental design fails.

6.5 Inputs number startpoints and starting point

The user can define the number of points s/he wishes to have in the initial experimental design. The
minimum number of required points depends on the surrogate model and initial design strategy.

• When using the symmetric Latin hypercube sampling (SLHD), at least 2d (d=dimension) points
should be used due to the possibility of linear dependencies in the design matrix.

• When using the kriging model together with the second order regression polynomial (KRIGexp2,
KRIGgexp2, KRIGgauss2, KRIGlin2, KRIGspline2, KRIGsphere2, KRIGcub2), at least 1 + 2d+

(

d

2

)

points are needed, otherwise the DACE toolbox fails.

• When using the full quadratic polynomial regression model (POLYquad) at least 1 + 2d +
(

d
2

)

points are needed. Otherwise the least squares problem is underdetermined.

• When using the reduced quadratic polynomial regression model (POLYquadr), at least 2d + 1
points are needed. Otherwise the least squares problem is underdetermined.

• When using the full cubic polynomial regression model (POLYcub), at least 1 + 3d+
(

d

2

)

+
(

d

3

)

points are needed. Otherwise the least squares problem is underdetermined.

• When using the reduced cubic polynomial regression model (POLYcubr), at least 3d+ 1 points
are needed. Otherwise the least squares problem is underdetermined.

• When using mixture models in general at least the minimum number of required points plus
one additional point are needed because of the leave-one-out cross-validation. For example, if
using MIX RcKg for a d-dimensional problem, at least d + 2 points are required (first order
regression polynomial needs at least d + 1 points, and one additional point is needed because
of the leave-one-out cross-validation).

• When using the mixture ’MIX RcPc’ or ’MIX KgPc’, at least 2+3d+
(

d

2

)

+
(

d

3

)

points are needed.
Otherwise the least squares problem is underdetermined.

• When using the mixture ’MIX KgPqr’ at least 2 + 2d points are needed. Otherwise the least
squares problem is underdetermined.

• When using the mixture ’MIX KgPcr’ or ’MIX KgPc’, at least 2+3d points are needed. Otherwise
the least squares problem is underdetermined.

In numerical experiments it was found that 2(d + 1) points (which is twice the minimum number
of points needed to fit an RBF model of dimension d) work in general well. If the total number
of allowed function evaluations is very low, it might however be better to use fewer points in the
starting design, and spend more evaluations in the iterative improvement. If number startpoints is
not given, the default value 2(d+ 1) is used.

Additionally, the user can define m point(s) s/he wants to add to the initial experimental design.
The points must be given in matrix form (m× d), and the points are added at the beginning of the
starting design.

6.6 Input Example

The following example calls the surrogate model toolbox for finding the minimum of the six-
dimensional Hartmann function defined in the file datainput hartman6.m. The maximum number
of function evaluations is set to 300, the surrogate model to be used is a mixture of the cubic radial
basis function interpolant and the kriging model with Gaussian correlation function (’MIX RcKg’).
The candidate point sampling strategy is used (’CAND’), and the initial experimental design is built
with a symmetric Latin hypercube design (’SLHD’) with 15 points. Starting points are not given.

8

The user is encouraged to try out the example by typing into the Matlab command window (make
sure the location of the files is known to Matlab’s search path):

>> SurrogateModelModule_v1(’datainput_hartman6’,300,’MIX_RcKg’, ’CAND’, ’SLHD’, 15);

7 File Description

This section contains the input and output variables of the single functions.

7.1 SurrogateModelModule v1.m

Input: See Table 1.

Output: None. The algorithm saves the results in the structure Data in the file Results.mat.

This is the main file from which the algorithm is started. At first the user input is checked for
correctness. If all input is correct, the initial experimental design is generated (file StartingDesign.m).
If there are integrality constraints for the variables, the corresponding values of the variables in the
initial design are rounded to the closest integers. The computationally expensive function evaluations
are done at the points in the initial experimental design1. Depending on whether there are only
continuous, only integer, or mixed-integer variables, the corresponding optimization function is called
(OptimizationPhase continuous.m, OptimizationPhase integer.m, OptimizationPhase mixedinteger.m).

7.2 StartingDesign.m

Input

Variable Description

initial design string, name of design strategy (see Table 8)
number startpoints integer, number of points desired for the initial experimental design
Data structure, contains all problem information

Output: Matrix with points in initial experimental design:

S =







xT
1

xT
2

...xT
m






=











x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

...
xm1 xm2 · · · xmd











,

where xij is the jth component of the ith sample point. StartingDesign.m calls either one of the
functions

Function Description

lhsdesign.m Matlab’s built-in latin hypercube design
SLHD.m symmetric Latin hypercube design [13]
bestlh.m space-filling design, implementation by [2]
cornerpoints.m corner point strategy

1Note that this may take a while depending on the time required for one function evaluation. Alternatively, the

evaluations can be done in parallel. Uncomment the parfor loop in that case as indicated in the code.

9

7.3 OptimizationPhase continuous.m

This function is executed when the optimization problem has only continuous variables.

Input:

Variable Description

Data structure array, contains the optimization problem information
Surrogate string, determines which surrogate model to be used
SampleStrategy string, determines strategy for selecting the next sample site
maxeval integer, maximum number of allowed function evaluations

Output: updated structure array Data containing all information about the problem and solution

The function starts by assigning the parameter tolerance, which is used to decide when the distance
of two points is so low that they are considered equal. The value can be changed by the user as
desired. Note however that ill-conditioning of the design matrix may become a problem if the value
is reduced. The best point and the corresponding function value in the initial experimental design
are determined and stored in the variables Data.xbest and Data.fbest, respectively. These values are
being updated throughout the optimization. Large function values are replaced by the median of all
function values obtained so far in order to prevent the response surface from oscillating wildly.

The desired surrogate model is fit to the data (Data.S and Data.Ymed). For fitting the kriging models
the Matlab toolbox DACE [7] has been used, and the user is referred to the DACE manual for
instructions of use and parameter settings. Note that due to ill-conditioning of the sample site matrix
the DACE toolbox may fail, in which case the algorithm fails. The DACE toolbox issues an error and
the user may want to use a different surrogate model. For fitting the multivariate adaptive regression
spline (MARS), the Matlab toolbox ARESLab [5] is used. The user is referred to the ARESlab
manual for further details. If mixture models are to be used, several surrogate models have to be
fit to the data. Dempster-Shafer theory is used to determine the influence each model should have
in the mixture [8]. The user may define other (mixture) surrogate models where indicated in the code.

The surrogate models for which implementations exist are summarized in Tables 3, 4, 5, and 6,
respectively.

7.3.1 FitSurrogateModel.m

This function fits the response surface(s) to the given data.

Input:

Variable Description

Data structure, contains all information about the problem
Surrogate string, containing surrogate model to be used

10

Output:

Variable Description

lambda, gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
dmodel structure, parameters for kriging model; dmodel=[] if kriging model not used
mmodel structure, parameters for MARS model; mmodel=[] if MARS model not used
beta vector, parameters of polynomial regression model; beta=[] if polynomial model not used
w m vector, contains the weights for the models in mixtures; w m=[] if no mixture model used

RBF.m and RBF eval.m

The parameters of the radial basis function (RBF) interpolant are computed by the function RBF.m,
and RBF eval.m predicts the objective function values using the RBF surrogate model.

Input RBF.m:

Variable Description

S matrix, contains the sample points
Y column vector, contains function values corresponding to points in S
flag string, determines what type of RBF interpolant is used (see Table 3)

Output RBF.m:

Variable Description

lambda column vector, contains multipliers of radial basis functions
gamma column vector, contains parameters for polynomial tail

11

Input RBF eval.m:

Variable Description

X matrix, contains points where objective function value will be predicted
S matrix, contains the sample points already evaluated
lambda column vector, contains multipliers of radial basis functions
gamma column vector, contains parameters for polynomial tail
flag string, determines what type of RBF interpolant is used (see Table 3)

Output RBF eval.m: vector Yest containing predicted objective function values

POLY.m and POLY eval.m

The parameters of the polynomial regression model are computed by the function POLY.m, and
POLY eval.m predicts the objective function values.

Input POLY.m:

Variable Description

S matrix, contains the sample points
Y column vector, contains function values corresponding to points in S
flag string, determines the order of the polynomial (lin, quad, quadr, cub, cubr)

Output POLY.m: vector b containing the parameters of the polynomial regression model

Input POLY eval.m:

Variable Description

X matrix, contains points where objective function value will be predicted
b column vector, contains parameters
flag string, determines the order of the polynomial (lin, quad, quadr, cub, cubr)

Output POLY eval.m: vector Yest containing predicted objective function values

dacefit.m and predictor.m

See the tutorial for the Matlab toolbox DACE [7] for input and output arguments, and parameter
settings. The output is stored in the structure variable dmodel.

aresbuild.m and arespredict.m

See the tutorial for the Matlab toolbox ARESLab [5] for input and output arguments, and parameter
settings. The output is stored in the structure variable mmodel.

12

7.3.2 CandidatePointSampling.m

The function is called when the candidate point sampling strategy (setting ’CAND’) is used. The
function creates candidates for the next sample site by perturbing the best point found so far,
and by uniformly selecting points from the whole variable domain (function Perturbation.m). The
objective function values of the candidates are predicted using the response surface, and the
distances of the candidate points to the set of already sampled points are computed. Based on
these two criteria the best candidate point is selected for doing the next objective function evaluation.

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations
Surrogate string, surrogate model type to be used
lambda,gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
dmodel structure, parameters for kriging model; dmodel=[] if kriging model not used
mmodel structure, parameters for MARS model; mmodel=[] if MARS model not used
beta vector, parameters of polynomial regression model; beta=[] if polynomial model not used
w m vector, contains the weights for the models in mixtures; w m=[] if no mixture model used
tolerance scalar, distance when two points are considered equal

Output: updated structure Data with all information about the problem.

Perturbation.m

The function generates candidate points for the next sample site by randomly adding or subtracting
perturbations to randomly chosen variables of the best point found so far. Furthermore, candidates
that are uniformly selected from the whole variable domain are generated.

Input:

Variable Description

Data structure, contains all information about the problem
NCandPoint integer, number of points for each candidate point group
sigma stdev vector, contains perturbation ranges (small, medium, large)
P scalar, perturbation probability for each variable

Output: matrix CandPoint of size (2·NCandPoint×d), where d is the problem dimension.

13

PredictFunctionValues.m

The function calls RBF eval., POLY eval., predictor.m, and/or arespredict.m, respectively for doing
objective function value predictions at the candidate points.
Input:

Variable Description

Data structure, contains all information about the optimization problem
Surrogate string, surrogate model type to be used
CandPoint matrix, contains points for doing the objective function value predictions
lambda,gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
dmodel structure, parameters for kriging model; dmodel=[] if kriging model not used
mmodel structure, parameters for MARS model; mmodel=[] if MARS model not used
beta vector, parameters of polynomial regression model; beta=[] if polynomial model not used
w m vector, contains the weights for the models in mixtures; w m=[] if no mixture model used

Output: vector CandValue with predicted objective function value for each point in CandPoint.

Distancecriterion.m

The function computes the distance of each candidate point to the set of already sampled points,
and scales the values to the interval [0,1], where the largest distance is scaled to 0 and the smallest
distance is scaled to 1.

Input:

Variable Description

S matrix, contains all already sampled points
CandPoint matrix, contains all candidate points for next function evaluation

Output:

Variable Description

ScaledDist vector, contains distances of candidate points to the set of already sampled points, scaled to [0,1]
Dist vector, contains distances of candidate points to the set of already sampled points

PredictedValueCrit.m

Scales the predicted objective function values at the candidate points to the interval [0,1], where the
lowest predicted objective function value is scaled to 0, and the largest predicted value is scaled to 1.

Input: Vector CandValue containing the predicted objective function values of all candidate points.

Output: Vector ScaledCandValue containing the predicted objective function values scaled to the
interval [0,1].

14

7.3.3 SurfaceMinSampling.m

The function is called when the minimum site of the response surface is used as sampling strategy
(setting ’SURFmin’). The dynamically dimensioned search algorithm [12] is used for finding the
minimum of the surface.

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations
Surrogate string, surrogate model type to be used
lambda,gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
dmodel structure, parameters for kriging model; dmodel=[] if kriging model not used
mmodel structure, parameters for MARS model; mmodel=[] if MARS model not used
beta vector, parameters of polynomial regression model; beta=[] if polynomial model not used
w m vector, contains the weights for the models in mixtures; w m=[] if no mixture model used
tolerance scalar, distance when two points are considered equal

Output: updated structure Data with all information about the problem.

ODDS.m

Ordinary dynamically dimensioned search algorithm [12] for finding the minimum of the response
surface.

Input:

Variable Description

Data structure, contains all information about the optimization problem
x0 vector, starting guess for search
objective string, surrogate model type to be used
lambda,gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
dmodel structure, parameters for kriging model; dmodel=[] if kriging model not used
mmodel structure, parameters for MARS model; mmodel=[] if MARS model not used
beta vector, parameters of polynomial regression model; beta=[] if polynomial model not used
w m vector, contains the weights for the models in mixtures; w m=[] if no mixture model used
tolerance scalar, distance when two points are considered equal

Output: vector xbest, best point found during the optimization routine.

7.3.4 ExpImprovementSampling.m

The function is called when the point that maximizes the expected improvement is used as sampling
strategy (setting ’EImax’). Matlab’s genetic algorithm is used to maximize the expected improvement.
Parts of the implementation are from [2].

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations

15

Output: updated structure Data with all information about the problem.

distanceupdate.m

Computes the pairwise distances of all sample points.

Input: Structure Data containing all information about the problem

Output:

Variable Description

D matrix, contains pairwise distances between variable values in each dimension
ij matrix, contains indices of points for which pairwise distances computed

likelihood new.m

Implementation by A.I.J. Forrester [2]. See the book Engineering Design via Surrogate Modelling -
A Practical Guide by [2] for usage and file description.

ExpectedImprovement.m

Computes the expected improvement at a given point n the variable domain.

Input:

Variable Description

Data structure, contains information about the problem
x vector, the point in the variable domain at which the expected improvement is computed

Output: scalar ExpImp, the expected improvement at the point x. See the book Engineering Design
via Surrogate Modelling - A Practical Guide by [2] for usage and file description.

7.3.5 BumpinessMinSampling.m

The function is called when the minimum site of the bumpiness measure is used as sampling strategy
(setting ’BUMPmin’).

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations
Surrogate string, surrogate model type to be used
lambda,gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
tolerance scalar, distance when two points are considered equal

Output: updated structures array with all information about the problem.

16

bumpiness measure.m

The function is minimized in order to find the point where it is most reasonable that the objective
function takes on the given target value.

Input:

Variable Description

x vector at which the bumpiness measure is being computed
Data structure, contains all information about the optimization problem
flag string, containing information of the type of RBF model to be used
target scalar, target value for objective function
tolerance scalar, distance when two points are considered equal
lambda,gamma vectors, parameters of RBF model

Output: bumpiness measure value hn.

7.3.6 ScoreMinSampling.m

The function is called when the minimum site of the score function is used as sampling strategy
(setting ’SCOREmin’).

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations
Surrogate string, surrogate model type to be used
lambda,gamma vectors, parameters of RBF model; lambda=gamma=[] if RBF model not used
dmodel structure, parameters for kriging model; dmodel=[] if kriging model not used
mmodel structure, parameters for MARS model; mmodel=[] if MARS model not used
beta vector, parameters of polynomial regression model; beta=[] if polynomial model not used
w m vector, contains the weights for the models in mixtures; w m=[] if no mixture model used
tolerance scalar, distance when two points are considered equal

Output: updated structure Data with all information about the problem.

Multi DDS.m

Implementation of the DDS algorithm [12] for finding the minimum of the scoring function.

Input:

Variable Description

Data structure, contains all information about the optimization problem
valueweight scalar, weight for the response surface criterion
mindistweight scalar, weight for the distance criterion
tolerance scalar, distance when two points are considered equal
myfun function handle to the (mixture) surrogate model

Output: best point found during optimization xbest

17

7.4 OptimizationPhase integer.m

This function is executed when the optimization problem has only integer variables. The algorithm
is able to solve problems that have in addition to the integer and box constraints also black-box
constraints. The constraints must be defined in form of function handles in the Data file as variables
Data.constraint{1}, Data.constraint{2}, etc. See the file datainput G4 I.m for an example. If there
are black-box constraints, and if there is no feasible point contained in the starting design, then the
function SOI OP1.m is executed. After a first feasible point has been found (or the problem does not
have any black-box constraints), SOI OP2.m is executed. If the problem has integer constraints for
all variables, only the candidate point sampling strategy can be used.

7.4.1 SOI OP1.m

This function tries to find a first feasible point of an optimization problem with additional black-box
constraints by minimizing a constraint violation function. The candidate point approach is used
during the optimization. SOI OP1.m stops after the first feasible point has been found, or the
maximum number of allowed function evaluations has been reached.

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations
P scalar, perturbation probability for creating candidates
stdev int vector of integers, perturbation ranges
Surrogate string, contains the name of the (mixture) surrogate model to be used for predictions

Output: Updated structure Data with all problem information.

Perturbation SOI.m

This function generates the candidate points for the next expensive function evaluation. The best
point found so far is perturbed for generating the candidates in the first group. For candidates in
the second group are uniformly selected integer points form the whole variable domain.

Input:

Variable Description

Data structure, contains all information about the optimization problem
NCandidates integer, number of candidates
stdev int vector of integers, perturbation ranges
P scalar, perturbation probability for creating candidates

Output: Matrix CandPoint with candidate points.

18

7.4.2 SOI OP2.m

This function is used after a first feasible point of an optimization problem with additional black-box
constraints has been found (or if the problem does not have any additional constraints). The
candidate point approach is used during the optimization.

Input:

Variable Description

Data structure, contains all information about the optimization problem
maxeval integer, maximum number of allowed function evaluations
P scalar, perturbation probability for creating candidates
stdev int vector of integers, perturbation ranges
Surrogate string, contains the name of the (mixture) surrogate model to be used for predictions

Output: Updated structure Data with all problem information.

7.5 OptimizationPhase mixedinteger.m

This function is called when mixed-integer black-box problems are considered. If the mixed-integer
problem has additional black-box constraints, the user must supply at least one feasible point in the
variable starting point in the input of SurrogateModelModule v1.m. For mixed-integer problems only
the candidate point sampling approach can be used.

Input:

Variable Description

Data structure, contains all information about the optimization problem
Surrogate string, contains the name of the (mixture) surrogate model to be used for predictions
maxeval integer, maximum number of allowed function evaluations

Output: Updated structure Data with all problem information.

7.5.1 Perturbation SOMI.m

This function is used to create candidate points by uniformly selecting points from the whole variable
domain, and by perturbing the best feasible point found so far as follows

• randomly add or subtract small, medium, or large perturbations only to continuous variables

• randomly add or subtract small, medium, or large perturbations only to integer variables

• randomly add or subtract small, medium, or large perturbations to continuous and integer
variables

19

Input:

Variable Description

Data structure, contains all information about the optimization problem
NCandidates integer, number of candidates
stdev int vector of integers, perturbation ranges for integer variables
stdev cont vector, perturbation ranges for continuous variables
P scalar, perturbation probability for creating candidates

Output: Matrix CandPoint with candidate points.

8 Examples

This section contains several examples for continuos, integer, and mixed-integer black-box optimiza-
tion problems. The input data files are supplied, and the user is encouraged to take a look at these
files when defining data files for own problems. The examples have computationally cheap objective
functions in order to reduce the computation time when experimenting with the code.

8.1 Examples for Continuous Problems

The algorithm is applicable to box-constrained continuous problems. If the problem has additional
constraints, they should be incorporated with a penalty term in the objective function. The input
data files below are all for continuous problems.

• datainput Ackley15.m

• datainput Ackley30.m

• datainput Branin.m

• datainput DixonPrice15.m

• datainput hartman3.m

• datainput hartman6.m

• datainput Levy20.m

• datainput Michalewicz25.m

• datainput Powell24.m

• datainput Rastrigin12.m

• datainput Rastrigin30.m

• datainput Rosenbrock10.m

• datainput Rosenbrock20.m

• datainput Schoen 10 4 3.m

• datainput Schoen 17 2 5.m

• datainput Shekel5.m

• datainput Shekel7.m

• datainput Shekel10.m

• datainput Shubert.m

20

• datainput Sphere27.m

• datainput Zakharov.m

For the six-dimensional Hartmann function, type

>> SurrogateModelModule_v1(’datainput_hartman6’,200,’RBFtps’,’BUMPmin’,’LHS’,7);

With this input the following settings are used:

• 200 function evaluations are allowed

• the thin-plat spline radial basis function model is used as response surface (RBFtps)

• the bumpiness measure (BUMPmin) is used as sampling strategy

• the Latin hypercube sampling strategy (Matlab’s built-in Latin hypercube sampling) is used
(LHS) as experimental design strategy

• 7 points are used in the initial starting design

For the 4-dimensional Schoen function with 7 local minima, type

>> SurrogateModelModule_v1(’datainput_Shekel7’,400,’MIX_RcPc’,’CAND’,’SLHD’,24);

With this input the following settings are used:

• 400 function evaluations are allowed

• the mixture model of cubic RBF and full cubic polynomial model is used as response surface
(MIX RcPc)

• the candidate point sampling strategy (CAND) is used as sampling strategy

• the symmetric Latin hypercube sampling strategy (SLHD) is used as experimental design strat-
egy

• 24 points are used in the initial starting design

8.2 Examples for Integer Problems

The algorithm is applicable to optimization problems where all variables have integer constraints,
and may have additional black-box constraints. The black-box constraints are treated with a penalty
approach. Currently only the candidate point sampling strategy can be used with purely integer
problems. The example data input files for integer problems all end in I.m:

• datainput convex I.m

• datainput ex I.m

• datainput ex1221 I.m

• datainput G1 I.m

• datainput G2 I.m

• datainput G4 I.m

• datainput G6 I.m

• datainput G9 I.m

• datainput GWSS20 I.m

• datainput hmittelmann I.m

• datainput hydropower 1plant1 I.m

21

• datainput hydropower 1plant2 I.m

• datainput hydropower 1plant3 I.m

• datainput hydropower 2plant1 I.m

• datainput hydropower 2plant2 I.m

• datainput hydropower 2plant3 I.m

• datainput linearproblem I.m

• datainput nvs09 I.m

• datainput nvs09alt I.m

• datainput Rastrigin12 I.m

• datainput Rastrigin30 I.m

• datainput throughput I.m

• datainput throughput small I.m

For the convex problem, type for example

>> SurrogateModelModule_v1(’datainput_convex_I’,300,’MARS’,’CAND’,’LHS’,10);

With this input the following settings are used:

• 300 function evaluations are allowed

• the MARS model is used as response surface (MARS)

• the candidate point sampling strategy (CAND) is used as sampling strategy (this is the only
sampling strategy that can be used with integer problems)

• Matlab’s built-in Latin hypercube sampling strategy (LHS) is used as experimental design strat-
egy

• 10 points are used in the initial starting design

For the small throughput problem, type for example

>> SurrogateModelModule_v1(’datainput_throughput_small_I’,500,’KRIGgauss2’,’CAND’,’LHS’,21);

With this input the following settings are used:

• 500 function evaluations are allowed

• the kriging model with second order regression polynomial and Gaussian correlation is used as
response surface (KRIGgauss2)

• the candidate point sampling strategy (CAND) is used as sampling strategy (this is the only
sampling strategy that can be used with integer problems)

• Matlab’s built-in Latin hypercube sampling strategy (LHS) is used as experimental design strat-
egy

• 21 points are used in the initial starting design

22

8.3 Examples for Mixed-Integer Problems

The algorithm can be applied to mixed-integer problems that may have black-box constraints in
addition to the variable upper and lower bounds. For constrained problems the user must supply at
least one feasible starting point. During the computational experiments described in [9] the starting
points given in the files StartPoints 1.mat, StartPoints 2.mat, etc. in Table 9 have been used. Each file
contains 30 feasible points, and for each algorithm trial one of these points has been used. The data
input files for mixed integer problems all end in MI.m. For mixed-integer problem currently only the
candidate point sampling strategy works. For testing the surrogate model algorithm for test problem
datainput G4 MI.m, for example, type

>> load(’StartPoints_7.mat’);

>> x0=StartPoints(1,:);

>> SurrogateModelModule_v1(’datainput_G4_MI’, [],[],[],[],[],x0)

In this example only the problem defining data file is given and the starting point. For all other input
parameters the default values are used.

Table 9: Problem files and feasible starting points for mixed-integer problems

Test Problem File Feasible Starting Points

datainput BermanAshrafi MI.m StartPoints 1.mat
datainput convex MI.m StartPoints 2.mat
datainput ex MI.m StartPoints 13.mat
datainput ex1221 MI.m StartPoints 3.mat
datainput Floudas MI.m StartPoints 4.mat
datainput G2 MI.m StartPoints 6.mat
datainput G4 MI.m StartPoints 7.mat
datainput G6 MI.m StartPoints 8.mat
datainput G9 MI.m StartPoints 9.mat
datainput linearproblem MI.m StartPoints 11.mat
datainput nvs09 MI.m StartPoints 14.mat
datainput nvs09alt MI.m StartPoints 15.mat
datainput Rastrigin12 MI.m StartPoints 16.mat
datainput Rastrigin12alt MI.m StartPoints 12.mat
datainput Rastrigin30 MI.m StartPoints 10.mat
datainput Yuan MI.m StartPoints 5.mat

For the problem G2, type for example

>> load(’StartPoints_6.mat’);

>> x0=StartPoints(11,:);

>> SurrogateModelModule_v1(’datainput_G2_MI’,300,’RBFtps’,’CAND’,’SLHD’,50,x0);

With this input the following settings are used:

• 300 function evaluations are allowed

• the radial basis function with thin-plate spline is used as response surface (RBFtps)

• the candidate point sampling strategy (CAND) is used as sampling strategy (this is the only
sampling strategy that can be used with mixed-integer problems)

• the symmetric Latin hypercube sampling strategy (SLHD) is used as experimental design strat-
egy

• 50 points are used in the initial starting design

23

For the Yuan problem, type for example

>> load(’StartPoints_5.mat’);

>> x0=StartPoints(19,:);

>> SurrogateModelModule_v1(’datainput_Yuan_MI’,300,’MIX_RcKgM’,’CAND’,’SLHD’,22,x0);

With this input the following settings are used:

• 300 function evaluations are allowed

• the mixture of cubic radial basis function, kriging with gaussian correlation function, and MARS
is used as response surface (MIX RcKgM)

• the candidate point sampling strategy (CAND) is used as sampling strategy (this is the only
sampling strategy that can be used with mixed-integer problems)

• the symmetric Latin hypercube sampling strategy (SLHD) is used as experimental design strat-
egy

• 22 points are used in the initial starting design

9 So you want to define your own surrogate model?

The files that need to be altered when defining an own (mixture) surrogate model are

• SurrogateModelModule v1.m

• FitSurrogateModel.m

• DempsterFor2models.m or DempsterFor3models.m

• PredictFunctionValues.m

• SurfaceMinSampling.m (if necessary)

• ScoreMinSampling.m (if necessary)

9.1 Example

Suppose you want to add a mixture model consisting of the thin-plate spline RBF model and a
reduced quadratic polynomial model. Let’s abbreviate the model by MIX RBFtpsPqr. We have to
alter the file SurrogateModelModule v1.m at the indicated position (see the code) as follows:

if isempty(surrogate model)
display(’Using default surrogate model.’)
surrogate model=’RBFcub’; %if no surrogate model defined, use cubic RBF

else %add own surrogate model to the list
if ∼any(strcmp(surrogate model,{’RBFcub’, ’RBFtps’, ’RBFlin’,’KRIGexp0’,...

’KRIGexp1’,’KRIGexp2’,’KRIGgexp0’, ’KRIGgexp1’, ’KRIGgexp2’,...
’KRIGgauss0’, ’KRIGgauss1’, ’KRIGgauss2’,’KRIGlin0’,’KRIGlin1’,...
’KRIGlin2’,’KRIGspline0’,’KRIGspline1’,’KRIGspline2’,’KRIGsphere0’,...
’KRIGsphere1’,’KRIGsphere2’,’KRIGcub0’,’KRIGcub1’,’KRIGcub2’,...
’POLYlin’, ’POLYquad’, ’POLYquadr’, ’POLYcub’, ’POLYcubr’,...
’MARS’, ’MIX RcKg’,’MIX RcM’,’MIX RcPc’, ’MIX KgM’,...
’MIX KgPc’, ’MIX KgPqr’, ’MIX KgPcr’,’MIX RcKgM’,’MIX RBFtpsPqr’}))
error(’The surrogate model you want to use is not contained in the toolbox. Check spelling.’)

end
end

24

In the file FitSurrogateModel.m the following branch in the if-elseif tree must be added under the
comment

% add more 2-model combinations here if necessary. Update function ”DempsterFor2models” accordingly:

elseif strcmp(Surrogate,’MIX RBFtpsPqr’)
[lambda, gamma]=RBF(Data.S,Data.Ymed,’TPS’); % RBF-tps
beta=POLY(Data.S,Data.Ymed,’quadr’); %reduced quadratic polynomial
w m=DempsterFor2models(Data, Surrogate); %uses dempster shafer theory to adjust model weights

In the file DempsterFor2models.m the following branch in the if-elseif tree must be added under the
comment

%other 2-model mixtures here:

%Mixture model: thin-plate spline RBF & reduced quadratic polynomial
elseif strcmp(Surrogate,’MIX RBFtpsPqr’)

if ∼forcekfold %leave-one-out cross-validation
for jj=1:m

[lambda, gamma]=RBF([Data.S(1:jj-1,:);Data.S(jj+1:end,:)],...
[Data.Ymed(1:jj-1,:);Data.Ymed(jj+1:end,:)],’TPS’); % RBF

yPred all(jj,1)=RBF eval(Data.S(jj,:),[Data.S(1:jj-1,:);...
Data.S(jj+1:end,:)],lambda,gamma,’TPS’); %repredict jj-th objective function value

reduced quadratic polynomial model prediction
beta=POLY([Data.S(1:jj-1,:);Data.S(jj+1:end,:)],...
[Data.Ymed(1:jj-1,:);Data.Ymed(jj+1:end,:)],’quadr’);

yPred all(jj,2)=POLY eval(Data.S(jj,:),beta,’quadr’);
end

else %k-fold cross-validation
Ss=Data.S(mix,:); %resorted sample sites
Ys=Data.Ymed(mix);
for jj=1:ceil(m/kfold)

%validation set
if jj*kfold <=m

validation S=Ss((jj-1)*kfold+1:jj*kfold,:);
else %left-overs

validation S=Ss((jj-1)*kfold+1:end,:);
end
%validation set
if jj ==1 %first group

trainset S=Ss(jj*kfold+1:end,:);
trainset Y=Ys(jj*kfold+1:end,:);

elseif 2<=jj && jj<= floor(m/kfold) && mod(m,kfold) >0 ||...
2<=jj && mod(m,kfold)==0 && jj*kfold<m
%group 2 till last full group
trainset S=[Ss(1:(jj-1)*kfold,:);Ss(jj*kfold+1:end,:)];
trainset Y=[Ys(1:(jj-1)*kfold,:);Ys(jj*kfold+1:end,:)];

else %left-overs
trainset S=Ss(1:(jj-1)*kfold,:);
trainset Y=Ys(1:(jj-1)*kfold,:);

end
if 1<=jj && jj <= floor(m/kfold) $& mod(m,kfold) >0 ||...
2<=jj && mod(m,kfold)==0 && jj*kfold<m
% RBF model for prediction
[lambda, gamma]=RBF(trainset S,trainset Y,’TPS’);
yPred all((jj-1)*kfold+1:jj*kfold,1)=RBF eval(validation S,...
trainset S,lambda,gamma,’TPS’);

25

% rduced quadratic polynomial model prediction
beta=POLY(trainset S,trainset Y,’quadr’); %Polynomial
yPred all((jj-1)*kfold+1:jj*kfold,2)=POLY eval(validation S,beta,’quadr’);

else %left-overs
id a=(jj-1)*kfold+1;
if mod(m,kfold)>0

id e=(jj-1)*kfold+mod(m,kfold);
else

id e=jj*kfold;
end
% RBF model for prediction
[lambda, gamma]=RBF(trainset S,trainset Y,’TPS’);
yPred all(id a:id e,1)=RBF eval(validation S,trainset S,...
lambda,gamma,’TPS’);

% reduced quadratic polynomial model prediction
beta=POLY(trainset S,trainset Y,’quadr’);
yPred all(id a:id e,2)=POLY eval(validation S,beta,’quadr’);
yPred all=sortrows([yPred all,mix(:)],Data.numberOfModels+1);
yPred all=yPred all(:,1:Data.numberOfModels);

end
end

end

If a new three-model mixture is introduced, the file DempsterFor3models.m must accordingly be
altered.

The file PredictFunctionValues.m has to be extended by adding a branch to the if-elseif tree under
the comment

%add more surrogate models here if desired:

elseif strcmp(Surrogate,’MIX RBFtpsPqr’) %Mixture model: RBF with tps & reduced quadratic polyno-
mial

CandValue RBF = RBF eval(CandPoint,Data.S,lambda,gamma,’TPS’); % objective function value
prediction with cubic RBF model for all candidate points

CandValue Pqr=POLY eval(CandPoint,beta,’quadr’); %objective function value prediction with
reduced quadratic polynomial for all candidate points

CandValue= w m(1)*CandValue RBF+w m(2)*CandValue Pqr; %weighted objective function
value prediction

The file SurfaceMinSampling.m need to be altered only if the minimum of the response surface is
chosen as sampling strategy (setting SURFmin). The if-elseif tree has to be extended under the
comment

%add other 2-model mixtures here:

elseif strcmp(Surrogate,’MIX RBFtpsPqr’) %mixture model of Kriging with gaussian correlation and 1st
order regression polynomial, and reduced quadratic polynomial

myfun1=@(x)RBF eval(x,Data.S,lambda,gamma,’TPS’); % cubic RBF model
myfun2=@(x)POLY eval(x,beta,’quadr’); %reduced quadratic model
myfun=@(x)w m(1)*myfun1(x)+w m(2)*myfun2(x); %weighted mixture

The file ScoreMinSampling.m needs to be altered only if the minimum of the scoring function is used
as sampling criterion. In that case the if-elseif tree needs to be extended under the comment

%add more 2-model mixtures here as follows:

26

elseif strcmp(Surrogate,’MIX RBFtpsPqr’) %mixture model of Kriging with gaussian correlation and 1st
order regression polynomial, and reduced cubic polynomial

myfun1=@(x)RBF eval(x,Data.S,lambda,gamma,’TPS’); % cubic RBF model
myfun2=@(x)POLY eval(x,beta,’quadr’); %reduced quadratic model
myfun=@(x)w m(1)*myfun1(x)+w m(2)*myfun2(x); %weighted mixture

If a completely new surrogate model is to be defined, two functions are needed, namely a first
function that computes the model parameters (the output of FitSurrogateModel.m must be adjusted
accordingly), and a second function that predicts the objective function values, where the predictions
should be scalars.

10 Results

The algorithm saves the results of the optimization in every iteration to the file Results.mat. If the
algorithm is not interrupted (e.g. by pressing CTRL+C), the following elements are contained in the
saved Data structure (see Table 10).

Table 10: Saved data structure elements

Elements Description

Data.xlow vector with lower variable bound
Data.xup vector with upper variable bounds
Data.dim integer, problem dimension
Data.integer vector with indices of integer variables
Data.continuous vector with indices of continuous variables
Data.objfunction function handle to objective function
Data.constraint cell array with function handles to constraints; only for constrained problems
Data.S matrix with sample sites
Data.Y vector with objective function values corresponding to Data.S
Data.fevaltime vector with time for each function evaluation
Data.gevaltime vector with time for constraint evaluations; only for constrained problems
Data.pen vector with squared constraint violations; only for constrained problems
Data.Feasible binary, 1 if feasible solution found, 0 otherwise; only for constrained problems
Data.Fbest inf scalar, best infeasible function value found; only for constrained problems
Data.xbest inf vector, best infeasible point found; only for constrained problems
Data.xbest vector, best (feasible) point found
Data.Ymed vector with function values where large values have been replaced by median
Data.fbest scalar, best feasible objective function value found
Data.Ypenalized vector with penalty-augmented objective function values; only for constrained

problems
Data.Problem string, contains name of data file that specifies the optimization problem
Data.SurrogateModel string, contains name of (mixture) surrogate model used in optimization
Data.SamplingTechnique string, contains name of iterative sampling technique used in optimization
Data.InitialDesign string, contains name of experimental design strategy
Data.NumberStartPoints integer, number or points in initial experimental design
Data.StartingPoint matrix, contains user-defined points that are added to the initial experimental

design; only if defined, and for mixed-integer problems
Data.TotalTime scalar, total computation time needed by the algorithm

References

[1] A.J. Booker, J.E. Dennis Jr, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset. A rigorous
framework for optimization of expensive functions by surrogates. Structural Multidisciplinary

27

Optimization, 17:1–13, 1999.

[2] A. Forrester, A. Sóbester, and A. Keane. Engineering Design via Surrogate Modelling - A
Practical Guide. Wiley, 2008.

[3] H.-M. Gutmann. A radial basis function method for global optimization. Journal of Global
Optimization, 19:201–227, 2001.

[4] K. Holmström, N.-H. Quttineh, and M.M. Edvall. An adaptive radial basis algorithm (ARBF)
for expensive black-box mixed-integer constrained global optimization. Journal of Global Opti-
mization, 41:447–464, 2008.

[5] G. Jekabsons. ARESLab: Adaptive Regression Splines toolbox for Matlab. available at
http://www.cs.rtu.lv/jekabsons/, 2010.

[6] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13:455–492, 1998.

[7] S.N. Lophaven, H.B. Nielsen, and J. Søndergaard. DACE a Matlab kriging toolbox. Technical
report, Technical Report IMM-TR-2002-12, 2002.

[8] J. Müller and R. Piché. Mixture surrogate models based on Dempster-Shafer theory for global
optimization problems. Journal of Global Optimization, 51:79–104, 2011.

[9] J. Müller, C.A. Shoemaker, and R. Piché. SO-MI: A surrogate model algorithm for computa-
tionally expensive nonlinear mixed-integer black-box global optimization problems. Computers
and Operations Research, http://dx.doi.org/10.1016/j.cor.2012.08.022, 2012.

[10] R.G. Regis and C.A. Shoemaker. A stochastic radial basis function method for the global
optimization of expensive functions. INFORMS Journal on Computing, 19:497–509, 2007.

[11] R.G. Regis and C.A. Shoemaker. A quasi-multistart framework for global optimization of
expensive functions using response surface models. Journal of Global Optimization, DOI
10.1007/s10898-012-9940-1, 2012.

[12] B.A. Tolson and C.A. Shoemaker. Dynamically dimensioned search algorithm for computation-
ally efficient watershed model calibration. Water Resources Research, 43:W01413, 16 pages,
2007.

[13] K.Q. Ye, W. Li, and A. Sudjianto. Algorithmic construction of optimal symmetric Latin hyper-
cube designs. Journal of Statistical Planning and Inference, 90:145–159, 2000.

28

	Introduction
	Surrogate Model Algorithms
	Installation
	Code Structure
	The Main File SurrogateModelModule_v1.m
	Input
	Input data_file
	Input surrogate_model
	Input SampleStrategy
	Input initial_design
	Inputs number_startpoints and starting_point
	Input Example

	File Description
	SurrogateModelModule_v1.m
	StartingDesign.m
	OptimizationPhase_continuous.m
	FitSurrogateModel.m
	CandidatePointSampling.m
	SurfaceMinSampling.m
	ExpImprovementSampling.m
	BumpinessMinSampling.m
	ScoreMinSampling.m

	OptimizationPhase_integer.m
	SOI_OP1.m
	SOI_OP2.m

	OptimizationPhase_mixedinteger.m
	Perturbation_SOMI.m

	Examples
	Examples for Continuous Problems
	Examples for Integer Problems
	Examples for Mixed-Integer Problems

	So you want to define your own surrogate model?
	Example

	Results

