
Matti Vuori, Heikki Virtanen, Johannes Koskinen
& Mika Katara
Safety Process Patterns in the Context of IEC 61508-3

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 15
Tampere University of Technology. Department of Software Systems. Report 15

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 15

Tampere University of Technology. Department of Software Systems. Report 15

Matti Vuori, Heikki Virtanen, Johannes Koskinen & Mika Katara

Safety Process Patterns in the Context of IEC 61508-3

Tampere University of Technology. Department of Software Systems

Tampere 2011

ISBN 978-952-15-2596-4

ISSN 1797-836X

3 (128)

Contents

Foreword ... 6

Part I: Description of the pattern collection.. 7

1 Some background on patterns in software development .. 7

2 The purpose of safety process pattern collection .. 8

3 Qualities of a good pattern collection ... 8

4 Context for the patterns ... 10

4.1 Process context .. 10

4.2 Knowledge and culture related context ... 13

5 Structure and contents of a safety process pattern ... 14

6 Structure of the pattern collection ... 15

7 Patterns included in the collection .. 16

7.1 List of included patterns .. 16

7.2 Visual views to the pattern collection .. 19

7.2.1 Generic organisational patterns .. 20

7.2.2 Generic process and product control patterns ... 20

7.2.3 Software Safety Requirements Specification ... 21

7.2.4 Software Design & Development .. 21

7.2.5 Software Aspects of System Safety Validation .. 22

7.2.6 Software Modification .. 22

7.2.7 Functional Safety Assessment .. 22

7.2.8 Software Operation & Maintenance Procedures.. 22

7.3 Examples .. 23

7.3.1 Phase Workflow .. 23

7.3.2 Assign Roles and Responsibilities .. 25

7.3.3 Software Validation Planning .. 27

8 References .. 30

Part II: The Safety Process Pattern Collection ... 31

DISCLAIMER ... 31

1 Generic organisational patterns .. 32

1.1.1 Multiple Viewpoints ... 32

1.1.2 Understand Cultures in Co-operation .. 33

1.1.3 Assign Roles and Responsibilities .. 35

1.1.4 Diversity in Team Practices ... 37

1.1.5 Competence Management .. 39

4 (128)

1.1.6 Continuous Communication .. 40

1.1.7 Transparency of Action and Information .. 42

1.1.8 Anti-pattern: Information Hiding ... 43

2 Generic process and product control patterns ... 45

2.1.1 Phase Workflow .. 45

2.1.2 Verification of a Work Product ... 47

2.1.3 Split and Manage Details .. 49

2.1.4 Single Development Task Control Workflow ... 50

2.1.5 Acceptance of Phases and Tasks ... 51

2.1.6 Configuration Management ... 53

2.1.7 Forward Tracing .. 55

2.1.8 Backward Tracing ... 57

2.1.9 Suspect and Prohibit ... 59

2.1.10 Escalation of Issues .. 61

2.1.11 Use of Checklists .. 62

2.1.12 Continuous Improvement .. 65

3 Development approaches and technologies... 67

3.1.1 Flow Between Design Levels and Tests .. 67

3.1.2 Selection of Methods / Techniques ... 69

3.1.3 Use of Formal Methods ... 71

3.1.4 Selection of Support Tools and Development Languages 73

4 Software Safety Requirements Specification.. 75

4.1.1 Software Safety Requirements Specification ... 75

5 Software Design & Development ... 78

5.1 General ... 78

5.1.1 Software Development .. 78

5.2 Software Architecture Design & Verification .. 80

5.2.1 Software Architecture Design .. 80

5.2.2 Software Architecture Verification ... 82

5.2.3 Technical Diversity .. 84

5.2.4 Formal Methods Aided Design and Verification of Joint Behaviour 86

5.3 Software System Design ... 87

5.3.1 Software System Design – general ... 87

5.3.2 Software System Design Verification .. 89

5.3.3 Generic Glue ... 91

5.4 Module Design and Implementation .. 93

5.4.1 Detailed Module Design .. 93

5 (128)

5.4.2 Glue Design and Implementation .. 95

5.4.3 Coding .. 96

5.4.4 Analytic Design and Code Quality Assessment ... 98

5.5 Verification Testing ... 100

5.5.1 Verification Testing ... 100

5.5.2 Module Testing and Simulation ... 102

5.5.3 Module Integration Testing .. 104

5.5.4 PE Integration Testing... 106

5.5.5 Regression Testing ... 109

5.5.6 Model-Based Testing .. 111

6 Software Aspects of System Safety Validation ... 112

6.1.1 Software Validation Planning .. 112

6.1.2 Software Validation ... 114

6.1.3 Configuration Auditing ... 116

7 Software Modification ... 118

7.1.1 Software Modification Planning ... 118

7.1.2 Software Modification .. 119

7.1.3 Impact Analysis ... 121

8 Functional Safety Assessment .. 123

8.1.1 Functional Safety Assessment .. 123

8.1.2 Failure Analysis... 125

9 Software Operation & Maintenance Procedures ... 127

9.1.1 Writing of the Safety Manual ... 127

6 (128)

Foreword

Standards can be difficult to comprehend and to implement in practice. This is due to many
factors, such as the generic nature of standards in using concepts and vocabulary of any
particular context and also the specific nature of the standards, which makes them refer to
and acknowledge only the issues that they have been authorised to tackle – the idea being
that there are other standards for other issues.

Safety-related standards can thus be difficult to grasp and the IEC 61508 series is no
exception. While one expert in a company may have the time and capability to fully
understand the standard, it needs to be communicated to others so that it is practiced in
projects and other day-to-day activities. Some external help is clearly required. Training is
one route, and even it needs more understandable descriptions so as to communicate the
issues.

A process pattern is a concept that aims to present important aspects of an activity with a
modular expression that can become familiar to personnel. In fact, the pattern descriptions
highly resemble the description used in many companies, such as:

 Process description cards used as instructions.

 Templates of use cases used in software development.

Therefore, in the Ohjelmaturva project we have done research on the use of safety process
patterns to help in utilising the IEC 61508 standard series (2nd edition) and especially its third
part (IEC 561508-3 2nd ed.) which concerns software development. This report presents a)
some ideas behind the patterns aiming to give guidance to future pattern developers and b) a
preliminary pattern collection.

The patterns presented in this reports do not form a complete collection of all necessary
patters, nor do they cover all aspects of the standards, but present a view to the standards
that in our opinion does not have conflicts with the standards and can greatly aid in their
understanding and utilisation.

Note that this report mostly addresses issues of the traditional V-model based development.
For an analysis of how the standards' requirements could be fulfilled in an agile development
process, see the sister publication to this report, "Agile Development of Safety-Critical
Software" (Vuori, 2011).

Finally, the authors would acknowledge partial funding from Tekes and the following
companies participating in the Ohjelmaturva project: ABB, Bronto Skylift, EPEC, John Deere
Forestry, Konecranes, Metso, Safety Advisor, Sandvik Mining and Construction, and
Sundcon.

7 (128)

Part I: Description of the pattern collection

1 Some background on patterns in software development

Pattern are recurring structures or relationships between elements. The concept is used in
trying to understand and share the understanding of complex phenomena both in humans'
actions and in technological system. They are developed by examining an existing or
described activity and detecting the pattern by analysing. Patterns use a concise "pattern"
language that describes the defining elements of the pattern in a generic form. The elements
include thing like name, context, solution, resulting context and other information.

Patterns have been developed for many purposes since the 1990's:

 Organisational patterns have been developed to make organisational structures and
behaviour visible, also in software development organisations, including agile
development (Organizational patterns. Wikipedia article).

 Software design patterns have advanced understanding of software design and
architectures (Category: Software design patterns. Wikipedia article).

 Use cases are a very important usage of the pattern philosophy (Use case. Wikipedia
article). A use case is a very recurring element in every software development project –
many of those are identified and presented in a standard way.

 Process patterns capture among other things, software development issues (Ambler,
2011 has built a nice web site around those).

 Project patterns research has included studies of global software development projects
(Välimäki, Kääriäinen & Koskimies, 2009).

 Communication and knowledge sharing in the context of software engineering (see
Vesiluoma 2009 whose dissertation also contain plenty of information about patterns).

Thus, patterns have evolved into a proven tool to understanding a domain's activity and
issues and to externalise and share knowledge.

Patterns use a concise presentation consisting of short description of key elements. This
same principle has been utilised in many organisations as a template process instructions,
making instruction to have a generic, standardised form, short length (optimally one page)
and thus better understandability that traditional, longer instructions. Thus, patterns have lot
of potential to be used in companies' processes.

8 (128)

2 The purpose of safety process pattern collection

The goal is to help organisations make better product development and safer systems, as,
with the help of the patterns, they could 1) understand better the standards’ requirements
and 2) understand how the requirements show in practical software development work.

The patterns can be used for many purposes:

 Description of development processes & safety lifecycle processes, in an
understandable way.

 Frequently Asked Questions – they should provide answers to common needs of
understanding how a process or task should be carried out.

 Presentation of generic workflows to be used as design & tailoring of workflows in
companies and in evaluating current practices.

 Explaining informal appendix to the official standards.

 A basis for an organisation's understanding of its own activities and a description of
those, to enable communication, training and development of practices.

It should be noted that the patters are just models and should not contain all the details of the

safety standards, but an overview of them and links to the relevant parts of the standards. If
the patters aimed at completeness, organisations would trust too much on them and neglect
understanding of the actual standards.

3 Qualities of a good pattern collection

We understand that a good pattern collection has these qualities:

 It is practical.

 It describes the whole, the context, gives orientation (metapatterns).

 It includes patterns that describe parts of the overall process.

 It includes patterns that show relevant principles and modes of action that are applied in
all process phases. (Those compare with generic requirements in CMMI).

 It is simple and easy to understand for all process participants (developers, safety
experts, managers) at many competence levels – not just university graduates. This
means that the terminology needs to be general and charts should use a generic
notation and understanding of them should not require understanding of for example
UML diagrams.

 It is a simplified presentation of the reality, concentrating on key issues. The
descriptions, including charts can be simplifications.

 It provides a shared view to the development, including things that have meaning for all
participants, occupational groups and stakeholders.

 Thus it can be used in training – both in general training and in initiation into a project’s
practices.

9 (128)

 It is concise and short. (Even the standards emphasise short documentation in safety
matters.)

 It is modular. Patterns should be as independent as possible.

 It is reasonably independent of development lifecycle used. The patterns can be
implemented in any development process with minimal tailoring, providing a solid
backing for process development.

 It presents itself in such a way that its informal nature is very clear to everyone.

The patterns can be of various types:

 Generic patterns penetrate the whole process and are applied in many process phases /
sub-processes and tasks.

 Task patterns are used for a single purpose, showing the process flows.

 A viewpoint pattern can show a specific viewpoint – such as how modelling can be used
in a task.

 An anti-pattern: a pattern that should not be used. If its use is detected, it should be
stopped. An anti-pattern may be thought of as a good idea, but with some analysis will
be understood to be harmful and should be replaced with a better pattern.

A good pattern collection should have variety – just as the life and activity in an organisation
does. That is why our collection has patterns of various types.

10 (128)

4 Context for the patterns

4.1 Process context

The context for the patterns presented is formed by the two views that IEC 61508-3 presents
into the software system development: a) the software system safety lifecycles for the overall
system, the E/E/PE system and the software system and b) the V model that defines the
work flow of the actual development work.

Figure 1. The overall safety lifecycle. A simplified version of figure 2 of IEC 61508-3 (2nd ed.)
to show the role of software development.

(1) Concept (2) Overall scope definition (3)
Hazard and risk analysis (4) Overall safety

requirements (5) Overall safety

requirements allocation

Overall planning: (6)
Overall operation and

maintenance planning (7)
Overall safety validation

planning (8) Overall
installation and

commissioning planning

(9) E/E/PE system safety

requirements specification

(10) E/E/PE safety-related
systems. Realisation

(expanded in other diagram)

(11) Other risk reduction
measures; their specification

and realisation

(12) Overall installation and
commissioning (13) Overall

safety validation

(14) Overall operation, maintenance and
repair (15) Overall modification and retrofit

(16) Decommissioning and disposal

11 (128)

Figure 2. The E/E/PE system safety lifecycle. Expanded box 10 of the overall system safety
lifecycle diagram. Redrawn from figure 3 of IEC 61508-3 (2nd ed.).

Figure 3. The software safety lifecycle. A part of the E/E/PE system safety lifecycle and thus
also part of box 10 of the overall system safety lifecycle diagram. Redrawn from figure 4 of
IEC 61508-3 (2nd ed.).

(10.1) Software safety
requirements specification

(10.3) Software design &

development

(10.4) PE system integration

(10.6) Software aspects of

safety validation

(10.2)Validation plan
for software aspects of

system safety

(10.5) Software operation
& maintenance

procedures

To item (12) in overall safety

lifecycle diagram

(10.1) E/E/PE system design
requirements specification

(10.3) E/E/PE system design
& development including

ASIC & software

(10.4) E/E/PE system
integration

(10.6) E/E/PE system safety
validation

(10.2) E/E/PE system
safety validation

planning

(10.5) E/E/PE system
installation,

commissioning, operation
& maintenance

procedures

Item (10) in overall safety
lifecycle: E/E/PE safety-related

systems. Realisation

To item (12) in overall safety
lifecycle diagram

12 (128)

Figure 4. The V model of the system developed. Redrawn from figure 6 of IEC 61508-3 (2nd
ed.).

As we aim to support practical software development, the main outline of patterns will consist
of elements of the V model, supplemented with items from the safety lifecycle models.

For an analysis of how the standard's requirements could be fulfilled in an agile development
process, see the sister publication to this report (Vuori et al. 2011)

E/E/PE
system safety
requirements

specification

Software safety
requirements
specification

Software
architecture

Software system
design

Module design

Coding

Module testing

Integration testing
(module)

Integration testing
(components, subsystems and

programmable electronics)

Validation testing

Validated software

E/E/PE
system

architecture

Validation

Verification
relations are

drawn with dashed
lines -.-.-

13 (128)

4.2 Knowledge and culture related context

The following figure shows the context of this pattern work from the point of view of
knowledge and culture. We aim to provide information on the safety standards so that it
supports good software engineering principles, good safety management and quality
management, in a form that suits product development practices and development cultures
in companies

Figure 5. Knowledge and culture related context for the patterns.

Context for safety
process patterns

Safety related
standards

Software
engineering
knowledge

Safety
management

Quality
management

Product and
system

development

Software
development
practices and

techniques

Company cultures

Companies

14 (128)

5 Structure and contents of a safety process pattern

The patterns use a standardized structure, based on the one described by Koskinen &
Katara (2011). It is presented in Table 1.

Table 1. Structure of a safety process pattern.

Element Description

Name An unique name for the pattern. Describes what the pattern is a about.

Context The context describes the initial situation where the pattern is thought to be
applied (i.e. where the steps should be performed). It may also have
preconditions or requirements that have to be fulfilled before the pattern can
be applied. Such a requirement could include, among others, a reference to
some other pattern.

Problem The patterns try to solve a problem, which is described in this section. In our
patterns, the problems are usually given in the form “How to...”.

Forces The forces section presents the reasons to apply the pattern. The forces do
not discuss the solution, but usually after defining the forces, the solution is
more or less obvious and easy to adopt.

Solution The solution defines the steps that should be followed to solve the problem.
The steps cover the requirements defined in the standard. For example, if the
standard requires documentation to be written, the solution will have a step
corresponding to that requirement. The solution should cover the forces
defined earlier in the forces section.

There is usually a picture – a diagram, picture of a process flow, a mind map
or similar.

Resulting
Context

Resulting context is the new context which is achieved after the pattern has
been applied. It describes what has been achieved by applying the pattern.

Related
Patterns

References to other patterns that are related to this pattern. Often patterns
whose execution precedes this pattern or starts after this pattern; patterns
that are similar to this one or ones that are more detailed implementations of
a more abstract pattern.

Standard
References

References to the clauses in IEC 61508 standard series that explain the
elements of the pattern or give requirements for its execution.

Authors Who has written the pattern.

Status During development, acceptance status. During the rest of the pattern
lifecycle, update information.

Notes Freeform notes and links to more information, for example to Wikipedia
pages.

Tags Classification tags. Any number of tags that help in classifying the pattern.

15 (128)

Some notes on the elements of the pattern template:

The elements, or fields, "standard references", "authors", "notes" and "tags" are not usually
found in patterns found in literature, but extensions important in practical long-term usage of
the patterns.

The patterns found in literature often include an element called "rationale" or "justification".
Sometimes the justification can be divided into parts, like for example Vesiluoma (2009)
"basic idea", "positive instance" (when the pattern is especially valuable) and "negative
instance" (when the pattern might be unsuitable). In our case the rationale results from
requirements of the IEC 61508 standard series and thus there are not many alternatives.
Still, if future research assesses the patterns in different contexts – like various software
lifecycle models – these applicability issues should be revisited.

But the number of elements should be kept as small as possible. Adding more elements will
at some point make the patterns worse, not better. Therefore, the information regarding
applicability will be included in the "notes" field, as needed.

6 Structure of the pattern collection

The patterns can belong into the following main types:

 Generic organisational patterns – generic principles and practices in an organisation in
projects and in its overall activities and processes.

 Generic process and product control patterns. Patterns that are repeated during a
project many times and are implemented during the development lifecycle or the safety
lifecycle many times. These are process issues that provide a solid context for
development.

 Development approaches and technologies. These include technology choices, etc. that
are applied in the context of the control patterns and during the lifecycle and process
patterns.

 Patterns for individual phases of the safety lifecycle or the software development
lifecycle. These may be carried out only once in a project.

In addition to this classification, patterns have “tags” assigned to them which can be used to
create classification dynamically – for example, combining all the patterns into one view that
have a tag “verification” assigned to them. Some things that tags can express:

 Development process phase and task.

 Type of task, like design or verification.

 An approach, like automation or formal methods.

 A specific tool or technique, like FMEA, test-driven design or Application Lifecycle
Management System.

 Links to company-specific aspects.

Thus, the tags can be used to create dynamic views of the patterns for example in a
company's information system.

16 (128)

The structures of the pattern collection are shown in two ways: the document’s structure
follows the primary classification and is reflected in the table of contents.

In addition to that there is a graphical view that is based on the most relevant tags. Drawing
of various “maps” of the pattern collection is best done for a purpose in a context and
complementing the patterns with more content (the organisation's own principles, processes,
patterns) and thus we encourage the readers to think how the patterns would fit their own
context.

7 Patterns included in the collection

7.1 List of included patterns

The following patterns are included in the collection introduced in this report. The
subheadings starting from "Software Safety Requirements Specification" correspond with
chapters of IEC 61508-3 (2nd ed.).

Table 2. The patterns introduced in this collection.

Name Problem

 Generic organisational patterns

Multiple Viewpoints How to identify the viewpoints that project participants should represent in the
project?

Understand Cultures in Co-
operation

How can we co-operate in a multi-cultural project so that cultural differences are
managed so that they will not endanger safety?

Assign Roles and
Responsibilities

How can we select project participants and assign roles and responsibilities so that
utilisation of expertise and required independence are in an optimal balance?

Diversity in Team Practices How to apply the principle of diversity in all tasks?

Competence Management How can we ensure that each member has the required competence?

Continuous Communication How can we get rapid input from everyone in such a way that it doesn’t make
progress slower, but makes the project proceed more efficiently? How can we get
busy professionals to participate in the process?

Transparency of Action and
Information

How can we know what is actually being done and whether there are any
problems?

Anti-pattern: Information
Hiding

We know that we have problems and are ashamed of it. How can we hide the
situation until a miracle happens and the problem is solved?

How can we suppress information so that it will not be leaked to competitors or
media?

 Generic process and product control patterns

Phase Workflow How is a process phase carried out, satisfying safety lifecycle process
requirements?

Verification of a Work Product How to verify that a work product meets its requirements.

Split and Manage Details When a work product, like a module or a specification, is being developed, how can
we ensure that work can be carried on in parallel, so that we can address issues
independently and verify each small task and see the state of the whole?

Single Development Task
Control Workflow

How to have a simple, generic workflow that allows tracking of the completion of
single tasks and progress of a set of tasks?

Acceptance of Phases and
Tasks

How are work products accepted in the development process so that they can be
safely utilized?

17 (128)

Name Problem

Configuration Management How can we know what elements, in what configuration and in what version the
software system assessed consists of and what has changed compared with a
baseline?

Forward Tracing How can we link activities and development items so that we can at any time find
out what actions are planned and have been carried out regarding the items?

How can we follow the chain from any requirement to its verification and testing in
an easy way?

If some aspect of the work product changes, how can we know what items in the
following process phases are invalidated due to that change?

Backward Tracing How can we know what requirements, plans or instructions our work is based on
and thus must be verified against?

Suspect and Prohibit How do support practical suspicion and convert it into practical action? How can we
know what – if anything – should be changed based on our suspicion?

Escalation of Issues How to raise the issue and have it handled at an appropriate level in the project or
line organization?

Use of Checklists How can we remember all issues that need to be checked? How can we be sure
that others remember all issues that need to be checked?

Continuous Improvement How to improve ways of action so that in future projects are more efficient and have
fewer problems?

 Development approaches and technologies

Flow Between Design Levels
and Tests

While utilising a controlled approach, how to support a constant flow of testing
ideas?

Selection of Methods /
Techniques

How to select methods and techniques so that the decision leads to such ways of
action that lead to a safe system, fulfil the requirements of IEC 61508 standard
series and can be justified before the project begins, and afterwards?

Use of Formal Methods How to introduce formal methods into an organization?

Selection of Support Tools
and Development Languages

How to select a set of support tools and languages that fulfil safety requirements
and can be proven to produce reliable results.

 Software Safety Requirements Specification

Software Safety Requirements
Specification

How to specify safety requirements for the software system.

 Software Design & Development

Software Development How to create a software system that fulfils the specified requirements with respect
to the required safety integrity level?

Software Architecture Design How to create a software architecture that fulfils the specified requirements with
respect to the required safety integrity level?

Software Architecture
Verification

How to ensure that the software architecture design adequately fulfils the software
safety requirements specification?

Technical Diversity How to create such a system that not more than one element of it fails due to a
disturbance? Or: how to avoid common cause failures?

Formal Methods Aided Design
and Verification of Joint
Behaviour

How should the parts (components) defined in the architecture behave in order to
obtain the expected behaviour of the total (sub)system?

Software System Design –
general

How to design the software so that it can be implemented, verified and validated.

Software System Design
Verification

How to ensure that there are no incompatibilities between the software system
design specification and software architecture design?

18 (128)

Name Problem

Generic Glue How can one be sure that the given requirements for the next phase are well
defined i.e. complete and do not contain any contradiction?

Detailed Module Design How to develop an individual software module so that it can be implemented safely
and reliably.

Glue Design and
Implementation

How can one be sure that design is correct, detailed enough, can be implemented
with reasonable effort and without extra design decisions?

Coding How to create reliable and safe program code, which is easy to modify when the
need arises and which is also easy to audit – for purpose and for safety and
security.

Analytic Design and Code
Quality Assessment

How to create reliable and safe program code, which is easy to modify when the
need arises and which is also easy to audit – for purpose and for safety and
security?

Verification Testing How to verify programs and their components at all abstraction levels?

Module Testing and
Simulation

How to test the module to verify that it meets requirements?

Module Integration Testing How to test the collection of modules in the architecture to verify that the system
meets functional requirements?

PE Integration Testing How to test the integrated system so that its functioning and functional safety can
be verified?

Regression Testing A change in software can lead to problems in other parts of the system. To identify
those effects, regression testing is used.

Model-Based Testing How to create tests that cover the specification and can be maintained with
reasonable effort when the specification changes.

 Software Aspects of System Safety Validation

Software Validation Planning How to develop a plan for validating the safety-related software aspects of system
safety?

Software Validation How to ensure that the integrated system complies with the software safety
requirements specification at the required safety integrity level?

Configuration Auditing How can we assess how the system differs from a last validated baseline?

 Software Modification

Software Modification
Planning

How to plan modification of the software so that the modification activities can be
performed safely and so that the resulting product is fully understood and can be
validated?

Software Modification How to ensure that the required software systematic capability is sustained when
the validated software is modified?

Impact Analysis How can we best assess how a proposed change impacts the system?

 Functional Safety Assessment

Functional Safety Assessment How to analytically assess the functional safety of software?

Failure Analysis How can we analyse software errors and system failures in order to prevent them
occurring again?

How can we understand how the system handles failures and whether it does it
properly?

How can we understand how failures propagate though the system?

 Software Operation & Maintenance Procedures

Writing of the Safety Manual How can we communicate our knowledge of safe use to the users?

19 (128)

7.2 Visual views to the pattern collection

In the following pages we present the pattern collection in a visual form, collected into
groups. The groupings are just examples of many possible ways to do such grouping. When
the pattern are used in an organisation, the views here should only be used as a starting
point and should be supplemented with other similar patterns that the organisation has
created and used. Thus, they will be integrated in the operational context of an organisation
and the relationships between patterns are defined in the particular context.

All the boxes contain links to the pattern descriptions so in the PDF version of this report it is
possible to click and follow the links to study the connections and relations.

20 (128)

7.2.1 Generic organisational patterns

7.2.2 Generic process and product control patterns

Phase Workflow Single
Development
Task Control

Workflow

Acceptance of
Phases and

Tasks
Escalation of

Issues
Use of Checklists Continuous

Improvement

Flow Between
Design Levels

and Tests

Selection of
Methods /

Techniques

Use of Formal
Methods

Selection of
Support Tools

and Development
Languages

Process control

Development approaches and technologies

Verification of a
Work Product

Split And
Manage Details

Configuration
Management

Forward Tracing

Backward
Tracing

Suspect and
Prohibit

Product control

Functional Safety
Assessment

Failure Analysis

Continuous
Communication

Transparency of
Action and
Information

Anti-pattern:
Information

Hiding

Communication

Multiple
Viewpoints

Understand
Cultures in Co-

operation

Assign Roles and
Responsibilities

Diversity in Team
Practices

Competence
Management

Organisation and team

21 (128)

7.2.3 Software Safety Requirements Specification

7.2.4 Software Design & Development

Software
Development

Software
Architecture

Design

Software
Architecture
Verification

Formal Methods
Aided Design

and Verification
of Joint Behavior

Software System
Design - general Software System

Design
Verification

Detailed Module
Design

Glue Design and
Implementation

Coding

Analytic Design
and Code Quality

Assessment

Verification
Testing

Module Testing
and Simulation

Module
Integration

Testing

PE Integration
Testing

Regression
Testing

Technical
Diversity

Regression
Testing

Regression
Testing

Generic Glue

Model-Based
Testing

Software Safety
Requirements
Specification

22 (128)

7.2.5 Software Aspects of System Safety Validation

7.2.6 Software Modification

7.2.7 Functional Safety Assessment

7.2.8 Software Operation & Maintenance Procedures

Writing of the
Safety Manual

Software Safety
Requirements
Specification

Functional Safety
Assessment

Failure Analysis

Software
Architecture

Design

Detailed Module
Design

Software
Modification

Software
Modification

Planning

Impact Analysis Regression
Testing

Functional Safety
Assessment

Software
Validation

Configuration
Auditing

Software
Validation
Planning

23 (128)

7.3 Examples

The following are three examples of pattern types included in the collection:

 Phase Workflow is an example of a process workflow pattern.

 Assign Roles and Responsibilities presents an approach to a situation and contains a
mind-map.

 Software Validation Planning. This is a pattern that combines a workflow mindset and a
safety conscious understanding of issues and has many references in the IEC 61508
series.

7.3.1 Phase Workflow

A phase is an important building block of any software development lifecycle and also quite
strictly influenced by the IEC 61508 requirements. Therefore, it is a natural application for
process patterns.

The pattern contains a – as the name implies – process workflow, which is shown in a
simplified form, suitable for explaining to various interest groups in training, auditing and
other situations.

24 (128)

Name Phase Workflow

Context A development phase is started after a previous one has been completed.

Problem How is a process phase carried out, satisfying safety lifecycle process
requirements?

Forces Each phase needs to implement the safety management principles and tasks
that the IEC 61508 (2nd ed.) series requires, as they are seen to be critical for
the process to produce a safe system.

Solution A generic work flow:

Critical elements of the process:

 Inputs need to be inspected and reviewed. By inspection we mean a
thorough analysis of, for example, requirements and by review we mean
reaching a consensus that inputs are flawless for the purpose of the
phase.

 Guidance is provided by project level plans and task specific instructions.
Adherence to plans is checked in reviews.

Inspection and review
of inputs (previous

phase)

Outputs to next
phase

Development work on
output work products

Phase review and
acceptance

Extracting, specifying
and elaborating of

phase requirements

Project plan and

lifecycle model

Safety plan

Safety
assessment

Need for
updated risk

analysis?

Return to prev.

Phase if needed

Verification (at this
phase; note the V-

model)

Product

documentation

Development

records

Instructions for phase
tasks

Verification

records

Acceptance
records

25 (128)

Name Phase Workflow

 All safety related tasks are documented by records.

 During the work, mostly analytic verification is carried out, but testing will
happen later – note the V-model as a framework.

 For most work products, safety is assessed and the work product
corrected as required.

 There is always a feedback loop to the previous process phases.

 Because development produces new information about the use of the
product, it needs to be assessed if hazard or risk analyses need to be
updated. This may necessitate updating of many requirements.

 All items under work and work products are configuration controlled. This
includes documentation.

 Before transferring outputs to the next phase they need to be reviewed
and accepted. This internal acceptance must not be confused with
validation.

Resulting
Context

A successfully carried out process phase, providing solid output for the next
phase and next development tasks.

Related
Patterns

Verification of a Work Product

Acceptance of Phases and Tasks

Configuration Management

Standard
References

IEC 61508-1 (2nd ed.) presents the generic process requirements

IEC 61508-3 (2nd ed.) explains how this process is implemented in software
development tasks

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags workflow, phase, process

7.3.2 Assign Roles and Responsibilities

Assigning roles and responsibilities does not happen that often in a project, but during a
company's lifecycle it obviously happens tens or hundreds of times. It is also a critical task to
understand and carry out, as achieving good safety requires good competencies. However,
this pattern does not contain a workflow, but a mind map, describing the criteria and thinking
to be applied in the assignment situation.

26 (128)

Name Assign Roles and Responsibilities

Context A safety-critical development project is being planned. Participants, roles and
responsibilities need to be assigned to individuals.

Problem How can we select project participants and assign roles and responsibilities
so that utilisation of expertise and required independence are in an optimal
balance?

Forces When a project starts, a requirement for safety critical development is an
explicit assignment of responsibilities and thus also roles.

Solution Key points in this process:

 Based on SIL level and other project requirements, understand the
mandatory requirements for participants.

 Identify the need for independence in verification and validation and
select individuals for those tasks. They cannot have a role in
development tasks.

 Define who is responsible for safety and will accept project’s products.

 The challenging parts of the project require experience and skills. Assign
the most capable people to the challenging tasks.

 At high SIL levels, safety attitudes have a high importance in team
selection.

 Support organisational learning by combining various levels of expertise.

 Consider knowledge transfer with other units and subcontractors when
selecting team members.

 Consider employing external experts for added competence even when
independence is not a requirement.

 If external validation (perhaps leading to certification) is required, plan a
good way to include that party in the process from early on.

 While all participants should have generic safety related knowledge and
skills, project-based training should always be considered.

Defining roles and responsibilities does not mean that development needs to
be bureaucratic, it just means that we know that someone will concentrate
especially on the issues and who can help others to do their tasks better.

27 (128)

Name Assign Roles and Responsibilities

Resulting
Context

A formed project organisation where everyone understands what is expected
from him/her and what he/she can expect from others. A good starting point
for flexible collaboration.

Related
Patterns

Multiple Viewpoints

Standard
References

IEC 61508-1 (2nd ed.), sub-clause 6.2.13 describes competence
requirements for project personnel

IEC 61508-1 (2nd ed.), sub-clause 6.2.13 describes criteria for
appropriateness of competence

Authors Matti Vuori

Status Version 2011-04-29

Notes Wikipedia article Project governance describes project roles related issues
http://en.wikipedia.org/wiki/Project_governance

Tags project, planning, organisation, roles

7.3.3 Software Validation Planning

This is again something that happens only once in a projects, but requires careful thinking so
that the projects can be effective and efficient. This is a pattern that combines a workflow
mindset and a safety conscious understanding of issues and has many references in the IEC
61508 series.

Project
participation

selection mind
map

SIL level – risks
and

requirements

Safety
knowledge,

training

Tasks requiring
independence

Knowledge
transfer

Responsibility
for safety

Most critical
design tasks

Attitude

Experience

Stakeholders

Management
and leadership

http://en.wikipedia.org/wiki/Project_governance

28 (128)

Name Software Validation Planning

Context Software safety requirements specification has been finalised.

Problem How to develop a plan for validating the safety-related software aspects of
system safety?

Forces Validation is a task that needs to be a planned activity so that the plans can be
assessed to be sufficient for the requirements of IEC 61508 and so that the
validation can afterwards be compared with the plan to see that it has been
carried out properly. Validation of software is also done in the context of the
overall system.

Solution The main process:

 Understand the overall context and the system and the software’s role in
it.

 Understand the validation requirements, based on the project’s SIL level.

 Make a clear distinction in all plans between the validation of safety
requirements and the validation of other product requirements.

 Decide on the parties who make the validation, considering the required
independence (for example, independent company unit, external
validator) and a need for certification.

 Create an overall safety plan that ensures that the development and
safety assurance process is sufficient.

 Plan all verification steps so that they ensure that the validation will
proceed smoothly.

 Plan the validation, leaving sufficient calendar time for its activities. This is
usually in a form similar to a project plan. Do close collaboration in this
with the party who will be doing the validation.

 Consider in the plans that the validation process may not pass at the first
time and thus changes may need to be made and validation repeated.

 Plan some coordinated collaboration with the party doing the validation so
that the development process can be guided into a positive direction (but
maintaining independence of the validator).

 Review the plan with all stakeholders and ensure that everyone
understands the criticality of the validation – without it the product cannot
be taken into use.

29 (128)

Name Software Validation Planning

Resulting
Context

A planned validation process which can be executed when the product is
ready for validation.

Related
Patterns

Software Validation

Standard
References

IEC 61508-1 (2nd ed.), clause 7.14 describes safety validation requirements

IEC 61508-3 (2nd ed.), clause 7.7 defines the process for system validation.

IEC 61508-3 (2nd ed.), table A.7 presents recommended techniques for
software aspects and properties of system safety validation at different SIL
levels

IEC 61508-3 (2nd ed.), table C.7 describes the strictness of various ways of
application of the software aspects and properties of system safety validation

Authors Matti Vuori

Status Version 2011-04-29

Notes While the validation plan should in an “ideal world” be based on stable
requirements, things change and evolve and thus the validation plan needs to
be updated as well during the development process.

See Wikipedia article Verification and Validation
http://en.wikipedia.org/wiki/Verification_and_validation

Tags validation, software system, software aspects, overall system

Understanding
overall system

Understand safety
requirements

Risks

SIL level

Role of software

Safety requirements allocation

Safety requirements
specification

Plan validation

Plan development

Safety plan

Plan verification

Review plan Update plan as
needed

http://en.wikipedia.org/wiki/Verification_and_validation

30 (128)

8 References

 Ohjelmaturva publications:

Koskinen, Johannes & Katara, Mika. 2011. Safety Process Patterns: Demystifying Safety
Standards. Manuscript. Department of Software Systems, Tampere University of
Technology. 14 pages.

Process Patterns for Safety Critical Software. [Referenced 2011-05-04] Available at
http://sites.google.com/site/safetypatterns. (This is a TUT developed site for collecting safety
process patterns based on IEC 61508)

Vuori, Matti. 2011. Agile Development of Safety-Critical Software. Tampere University of
Technology. Department of Software Systems. Report 14. 112 p. Available at the Tampere
University of Technology DPub system: http://dspace.cc.tut.fi/dpub/.

 Other references:

Ambler, Scott W. 2011. The Process Patterns Resource Page. Referenced 2011-05-04]
Available at: http://www.ambysoft.com/processPatternsPage.html.

Vesiluoma, Sari. 2009. Understanding and Supporting Knowledge Sharing in Software
Engineering. Tampere University of Technology, Publication 843. 158 p. Available at:
http://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/6174/vesiluoma.pdf

Wikipedia. Process patterns.[Referenced 2011-05-04] Available at:
http://en.wikipedia.org/wiki/Process_patterns.

Wikipedia. Category: Software design patterns. [Referenced 2011-05-04] Available at:
http://en.wikipedia.org/wiki/Category:Software_design_patterns.

Wikipedia. Organizational patterns. [Referenced 2011-05-04] Available at:
http://en.wikipedia.org/wiki/Organizational_patterns.

Wikipedia. Use case. [Referenced 2011-05-04] Available at:
http://en.wikipedia.org/wiki/Use_case.

Välimäki, Antti; Kääriäinen, Jukka & Koskimies, Kai. 2009. Global Software Development
Patterns for Project Management. Proceedings of EuroSPI 2009, CCIS 42, pp. 137-148.

http://sites.google.com/site/safetypatterns
http://dspace.cc.tut.fi/dpub/
http://www.ambysoft.com/processPatternsPage.html
http://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/6174/vesiluoma.pdf
http://en.wikipedia.org/wiki/Process_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Organizational_patterns
http://en.wikipedia.org/wiki/Use_case

31 (128)

Part II: The Safety Process Pattern Collection

DISCLAIMER

The descriptions in this collection are designed to be informative only and are aimed to help

skilled professionals to gain further understanding of how to apply the IEC 61508 standard

series in practical software development and to share that understanding in their

organisations.

For the requirements of and official information contained in the standards, readers shall

study the official standard documents and make any process decisions based on that

information.

The authors of this collection will give no guarantee, implied or otherwise, of the correctness

or applicability of the information given herein.

32 (128)

1 Generic organisational patterns

Name 1.1.1 Multiple Viewpoints

Context Safety of complex systems can only be reached by combining several points
of view during development.

Problem How to identify the viewpoints that project participants should represent in the
project?

Forces In order to be efficient and effective, a project needs to be lean and not have
too many participants. Yet it needs to be assured that all important viewpoints
can be presented during development.

Solution All necessary viewpoints (incl. stakeholder viewpoints) need to be identified
and after that decided, which ones need inclusion in the project team, and for
which others the collaboration and communication channels suffice.

Through the analysis we can gain a collaboration network that will help build
excellent safety that is not compromised through the unplanned actions of
any party.

Resulting
Context

A harmonic project where all necessary viewpoint are present and thus
everyone can work towards a safe and otherwise excellent product.

Related
Patterns

Continuous Communication

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors Matti Vuori

Viewpoints mind
map

Overall system,
high-level
systems

E/P/EP,
hardware

Subcontractors

Product
management

Marketing and
sales

Quality

Safety

Technologies

Certification

Customers

Project

Drive and
critique

Experience

33 (128)

Name 1.1.1 Multiple Viewpoints

Status Version 2011-04-29

Notes Sometimes, inclusion of too many viewpoints actively in a project may
compromise safety, but when using a systematic professional development
process there should not be a danger of that; instead the effect is positive on
safety.

Tags project, principles, organisation, viewpoints

Name 1.1.2 Understand Cultures in Co-operation

Context When planning development collaboration and co-operation in distributed
mode, many cultures are integrated in the process.

Problem How can we co-operate in a multi-cultural project so that cultural differences
are managed so that they will not endanger safety?

Forces Cultural patterns are so strong that they will always overpower any formal
instructions and guidelines.

Solution Cultures of all participating organisations need to be identified and potential
problems assessed. Working modes need to be planned accordingly. Some
examples:

 If participating cultures emphasise oral communication and discussion, it
needs to be practiced instead of just sending instructions in documents.

 Conflicts of cultural status may prohibit testers from giving feedback to
“superior” parties (this has happed in India due to the caste system,
which still is in effect though informally).

 Attitude towards time and punctuality of deadlines varies in cultures.

 Very small details in expressions can make Finnish written
communication seem hostile to other cultures.

 There are many cultures, where “yes” is a common response even if the
personnel does not have a clue of how a task should be done.

 Some cultures may show more initiative and problems solving attitude.

Consultants should be used when starting co-operation with new national
cultures. Teams need to be given intercultural training.

34 (128)

Name 1.1.2 Understand Cultures in Co-operation

Resulting
Context

An understood system of various cultures that can work together efficiently.

Related
Patterns

Assign Roles and Responsibilities

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors Matti Vuori

Status Version 2011-04-29

Notes See Wikipedia article Multiculturalism:
http://en.wikipedia.org/wiki/Multiculturalism

Tags project, principles, organisation, cultures

Cultural issues
mind map

Communication
patterns

Relation to
power

Importance of
safety

Trust in
promises

Personal
communications

Project cultures

Relation to time
and deadlines

Motivational
factors

Competence in
safety issues

Status of written
information

Problem solving
and initiative

http://en.wikipedia.org/wiki/Multiculturalism

35 (128)

Name 1.1.3 Assign Roles and Responsibilities

Context A safety-critical development project is being planned. Participants, roles and
responsibilities need to be assigned to individuals.

Problem How can we select project participants and assign roles and responsibilities
so that utilisation of expertise and required independence are in an optimal
balance?

Forces When a project starts, a requirement for safety critical development is an
explicit assignment of responsibilities and thus also roles.

Solution Key points in this process:

 Based on SIL level and other project requirements, understand the
mandatory requirements for participants.

 Identify the need for independence in verification and validation and
select individuals for those tasks. They cannot have a role in
development tasks.

 Define who is responsible for safety and will accept project’s products.

 The challenging parts of the project require experience and skills. Assign
the most capable people to the challenging tasks.

 At high SIL levels, safety attitudes have a high importance in team
selection.

 Support organisational learning by combining various levels of expertise.

 Consider knowledge transfer with other units and subcontractors when
selecting team members.

 Consider employing external experts for added competence even when
independence is not a requirement.

 If external validation (perhaps leading to certification) is required, plan a
good way to include that party in the process from early on.

 While all participants should have generic safety related knowledge and
skills, project-based training should always be considered.

Defining roles and responsibilities does not mean that development needs to
be bureaucratic, it just means that we know that someone concentrates
especially on the issues and can help others to do their tasks better.

36 (128)

Name 1.1.3 Assign Roles and Responsibilities

Resulting
Context

A formed project organisation where everyone understands what is expected
from him/her and what he/she can expect from others. A good starting point
for flexible collaboration.

Related
Patterns

Multiple Viewpoints

Standard
References

IEC 61508-1 (2nd ed.), sub-clause 6.2.13 describes competence
requirements for project personnel

IEC 61508-1 (2nd ed.), sub-clause 6.2.13 describes criteria for
appropriateness of competence

Authors Matti Vuori

Status Version 2011-04-29

Notes Wikipedia article Project governance describes project roles related issues
http://en.wikipedia.org/wiki/Project_governance

Tags project, planning, organisation, roles

Project
participation

selection mind
map

SIL level – risks
and

requirements

Safety
knowledge,

training

Tasks requiring
independence

Knowledge
transfer

Responsibility
of safety

Most critical
design tasks

Attitude

Experience

Stakeholders

Management
and leadership

http://en.wikipedia.org/wiki/Project_governance

37 (128)

Name 1.1.4 Diversity in Team Practices

Context In all project and product planning phases, good heuristic principles are
applied and understood by all participants.

Problem How to apply the principle of diversity in all tasks?

Forces Diversity means that elements of activity are based on varying underlining
principles and approaches so that if one approach fails, another still
succeeds. This principle is applied in every activity.

Solution Diversity is ultimately a technical thing but individuals reach it.

For example:

 Designers with similar education are prone to use similar designs and
neglect similar issues, making the system very vulnerable.

 Testers who have had similar training or who have similar work
experience will use similar methods.

 If a company supports only one official technique in the specification, all
designs will be prone to its problems.

 If requirements are tied to implementation, it will lead to similar technical
solutions.

 If managers are too technologically oriented, they will see one “best
practice” and suppress alternatives, reducing diversity.

Ways to improve diversity:

 Hiring of people with different backgrounds, from different schools and
different industries.

 Keeping teams that do redundant designs in independent teams and
monitoring that they have alternative approaches.

 Use testers in test teams so they can have more independent thinking
and approach to systems.

 Allocate enough time for development. If people are busy, they start to
copy approaches and lessen diversity and make the system prone to
common cause failures.

 Diversity requires creativity. Team composition is critical here.

 Support for diversity requires leadership.

 There needs to be plenty of information on alternative approaches freely
available. Systematic technology management and the creation of re-
usable assets will help here.

38 (128)

Name 1.1.4 Diversity in Team Practices

Resulting
Context

A project organisation capable of working in diverse ways and creating
diverse designs, implementations and testing.

Related
Patterns

Competence Management

Multiple Viewpoints

Transparency of Action and Information

Technical Diversity

Standard
References

IEC 61508-1 (2nd ed.), sub-clauses 7.6.2.7 and 7.6.2.8 describe requirements
for independence of design solutions considering common cause failures

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags project, planning, organisation, teams, diversity, principles

Team diversity
mind map

Leadership

Team
independence

Work history

Technology-
independent

specification of
tasks

Culture of
alternatives

Education

Team leading
and dynamics

Available
technologies

Time resources

Team
composition

39 (128)

Name 1.1.5 Competence Management

Context When selecting team members, their competence is an issue that needs to
be managed systematically.

Problem How can we ensure that each member has the required competence?

Forces IEC 61508 (2nd ed.) requires competence of all participants to be ensured.

Solution The basic workflow in the beginning of a project:

All proposed participants’ competence requirements in the proposed role are
defined and compared with the person’s current competence. Additional
training is given if the competence is not sufficient.

This process requires active CV management so that all descriptions are up-
to date, and internal training system with which training can be given in a
flexible manner as needed.

Resulting
Context

A person is accepted to a project, with known competence.

Related
Patterns

Assign Roles and Responsibilities

Standard
References

IEC 61508-1 (2nd ed.), sub-clause 6.2.13 describes competence
requirements for project personnel

IEC 61508-1 (2nd ed.), sub-clause 6.2.13 describes criteria for
appropriateness of competence

Authors Matti Vuori

Status Version 2011-04-29

Notes Work experience can of course not be improved by training.

Tags project, planning, organisation, competence, CV, training

Person
proposed to

team

Competence
requirements

based on
proposed role

CV describes
current

competence

Assessment of
sufficiency

Additional
training as
required

40 (128)

Name 1.1.6 Continuous Communication

Context During development, things are developing fast, yet communication is needed
to keep the developments on track and to address possible problems as soon
as possible.

Problem How can we get rapid input from everyone in such a way that it does not make
progress slower, but makes the project proceed more efficiently? How can we
get busy professional to participate in the process?

Forces Complex systems can have complex problems if communication fails. If we get
input too late, mistakes, problems and incompatibilities, thus potential hazards,
are difficult and costly to correct.

Solution A style of project collaboration that combines rhythmic team input and
continuous input from everyone present. Some main elements:

1) Rhythmic flow of viewpoints – group review of input, expert development –
group review of results, validation included in workflow. Splitting of tasks
makes this flexible and allows for concentration on issues.

2) Continuous change of opinions through an Application Lifecycle
Management (ALM) system commenting functions and other channels

Examples:

 Review of input in a team, using several viewpoints and various kinds of
expertise.

 The development underway is always kept open in the information system
and comments are welcome from everyone.

 Splitting of development into small, manageable parts so communication
can be concentrated and be traced to issues.

 All development and design information, especially safety related
information is constantly accessible in a way that supports its linking into
any development situation (like safety requirements and safety
assessments linked to a subsystem design).

 Review of task results both in meetings and via ALM system.

 Input from validation and certification parties is always welcome and
especially supported at certain steps (like concept, project plan,
architecture, implementation, after verification).

3) A meeting rhythm for teams keeps things coordinated

 For example, weekly on a certain day at a certain time, or more frequently
if the process so requires (many agile teams have short daily meetings)

4) Key roles that aid in forwarding information between participating parties

 Site coordinator, project managers etc.

41 (128)

Name 1.1.6 Continuous Communication

Obviously, communication does not just happen. The above approach just
enables. Project and company cultures need to be addressed as well.

Resulting
Context

A constant, natural, yet managed flow of information. Environment where
knowledge and expertise can be utilized easily and as soon as needed. Fewer
problems, fewer hazards.

Related
Patterns

Multiple Viewpoints

Transparency of Action and Information

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors Matti Vuori

Status Version 2011-04-29

Notes For Application Lifecycle Management systems see Wikipedia article
Application lifecycle management:
http://en.wikipedia.org/wiki/Application_lifecycle_management

“Big steps”

Team work

Team analysis

Team review

Validator /
certification
body input

Ongoing work

Type of item /
issue

Internal collaboration
and communication

External collaboration
and communication

Split to items

Expert work

Team
collaboration

Team
assessment

Continuous
external

comments and
review

The Big Picture

Shared real-time views

Team meetings kept in defined rhythm

Assign

http://en.wikipedia.org/wiki/Application_lifecycle_management

42 (128)

Name 1.1.6 Continuous Communication

Tags project, planning, organisation, communication, ALM, principles

Name 1.1.7 Transparency of Action and Information

Context Many tasks are being carried out, perhaps on many sites.

Problem How can we know what is actually being done and whether there are any
problems?

Forces In safety critical development we need to get information on any problems
immediately, when they can be solved efficiently and do not cause bigger
problems.

Solution All information related to tasks, their progress and results needs to be
transparently accessible by all, from team colleagues to top management.
This can be accomplished with the use of shared information systems. That
way, the management information is not delivered with periodical reports, but
real-time views into the contents and logs of the information system, such as
an Application Lifecycle Management system.

Resulting
Context

Everyone has access to progress information (within project / company
confidentiality). Potential problems can be identified and corrected promptly.

Related
Patterns

Continuous Communication

Standard
References

(No direct references in IEC 61508 standard series)

Authors Matti Vuori

Task progress Task results

Control and coordination, correction
of problems

Site level

Team level

Control and coordination and
problem identification

Project coordination and
management, interest

groups

Coordination, portfolio view Product management,
unit management

Business and portfolio view Top management

Individuals

43 (128)

Name 1.1.7 Transparency of Action and Information

Status Version 2011-04-29

Notes For Application Lifecycle Management systems see Wikipedia article
Application lifecycle management:
http://en.wikipedia.org/wiki/Application_lifecycle_management

Tags project, planning, organisation, communication, transparency, ALM

Name 1.1.8 Anti-pattern: Information Hiding

Context Many tasks are being carried out, perhaps on many sites.

Problem We know that we have problems, and are ashamed of it. How can we hide
the situation until a miracle happens and the problem is solved?

How can we suppress information so that it will not be leaked to competitors
or media?

Forces Hiding information is strong practice based on technological positivism and
belief in formal reporting – both of which are now understood not to be valid
assumption anymore. Periodical reporting as the only tool of informing about
progress simply does not work. Specifications based on “need-to-know”
information will leave a lot lacking. Choosing communication patterns based
on fear of leaks will hinder co-operation and innovation. All this compromises
a project and safety. Information hiding simply needs to stop.

The bad
pattern

Bad practices:

 Project is controlled based on promises, not real information, causing big
problems when there is no real progress or deliverables.

 Reports are beautified, not showing real data, making them misleading.

 Problems are not reported because of shame and the hope for a miracle
to happen.

 Early developments are not shared causing different teams to work in
different directions, under different assumptions and goals.

 Subcontractors give false promises of progress which cannot be
validated as there is no access to real data.

 Subcontractors cannot innovate because they are given minimal
information because of fear of information leaks.

 Etc...

Resulting
Context

Due to lacking information problems are not seen until they cause very large
and costly problems endangering the whole product and even the business.

Related
Patterns

=> Use pattern Transparency of Action and Information instead

Continuous Communication

Standard
References

(No direct references in IEC 61508 standard series)

Authors Matti Vuori

http://en.wikipedia.org/wiki/Application_lifecycle_management

44 (128)

Name 1.1.8 Anti-pattern: Information Hiding

Status Version 2011-04-29

Notes What is an anti-pattern? Usually it is a seemingly good idea that ultimately
produces bad results. See Wikipedia article: http://en.wikipedia.org/wiki/Anti-
pattern. Information hiding is such an idea, that many managers have
believed and still believe in.

Tags anti-pattern, project, planning, organisation, communication, transparency,
hiding, principles

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern

45 (128)

2 Generic process and product control patterns

These are patterns that are utilized in almost all parts of the process, in ways that suit the
particular situation. These patterns are used to control the product and process phases and
tasks.

Name 2.1.1 Phase Workflow

Context A development phase is started after a previous one has been completed.

Problem How is a process phase carried out, satisfying safety lifecycle process
requirements?

Forces Each phase needs to implement the safety management principles and tasks
that the IEC 61508 (2nd ed.) series requires, as they are seen to be critical for
the process to produce a safe system.

Solution A generic work flow:

Inspection and review
of inputs (previous

phase)

Outputs to next
phase

Development work on
output work products

Phase review and
acceptance

Extracting, specifying
and elaborating of

phase requirements

Project plan and

lifecycle model

Safety plan

Safety
assessment

Need for
updated risk

analysis?

Return to prev.

phase if needed

Verification (at this
phase; note the V-

model)

Product

documentation

Development
records

Instructions for phase
tasks

Verification

records

Acceptance
records

46 (128)

Name 2.1.1 Phase Workflow

Critical elements of the process:

 Inputs need to be inspected and reviewed. By inspection we mean a
thorough analysis of, for example, requirements and by review we mean
reaching a consensus that inputs are flawless for the purpose of the
phase.

 Guidance is provided by project level plans and task specific instructions.
Adherence to plans is checked in reviews.

 All safety related tasks are documented by records.

 During the work, mostly analytic verification is carried out, but testing will
happen later – note the V-model as a framework.

 For most work products, safety is assessed and the work product
corrected as required.

 There is always a feedback loop to the previous process phases.

 Because development produces new information about the use of the
product, it needs to be assessed if hazard or risk analyses need to be
updated. This may necessitate the updating of many requirements.

 All items under work and work products are configuration controlled. This
includes documentation.

 Before transferring outputs to the next phase they need to be reviewed
and accepted. This internal acceptance must not be confused with
validation.

Resulting
Context

A successfully carried out process phase, providing solid output for the next
phase and next development tasks.

Related
Patterns

Verification of a Work Product

Acceptance of Phases and Tasks

Configuration Management

Standard
References

IEC 61508-1 (2nd ed.) presents the generic process requirements

IEC 61508-3 (2nd ed.) explains how this process is implemented in software
development tasks

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags workflow, phase, process

47 (128)

Name 2.1.2 Verification of a Work Product

Context A work product has been created. After its creation it needs to be verified that
it meets any requirement.

Problem How to verify that a work product meets its requirements.

Forces The process of safety-critical development is very much requirement-centred
and thus its success and the product’s and project’s acceptance are based
on requirements being met.

Solution The requirements to any work product come from its previous phase; a phase
in the safety lifecycle or in the V-model, or any process requirements, from
the IEC 61508 (2nd ed.) series. Thus, the verification needs the following
steps:

 Planning of the verification. The plans are assessed (reviewed) to meet
all requirements – that the verification tackles all requirements and is
carried out in such a way that it meets any process requirements.

 Determining of the configuration of the work product being verified.

 Inspecting that the work product’ design is based on the requirements
and fulfils all the mandatory requirements assigned to it. This inspection
compares the work product and its “parent” work product.

 Experimental verification, using simulation or testing that demonstrates
fulfilling of the requirements.

 Review and acceptance of the verification results, by the person
assigned to be responsible for functional safety.

 Storing of all verification documents as evidence of verification

If the work product does not pass verification, it will need to be modified and
the verification repeated until it passes. Criteria for passing are expressed in
the verification plan(s).

The most relevant means of verification can depends on the progress of the
development. For example, program code is mostly verified analytically in the
first steps of its development, but later the verification is mostly based on
testing.

Parent work product

Child work product

Requirements Verification

48 (128)

Name 2.1.2 Verification of a Work Product

When the work product is changed, for example requirements change, the
verification is invalidated, as it only applies to the previous version of the work
product.

Resulting
Context

A verified work product, which can act as input to the next development
phase, finally leading to readiness for validation.

Related
Patterns

Configuration Management explains the configuration related issues.

Software Validation explains the steps in validation, readiness to which
verification build.

Generic Glue pattern describes a helping technique.

Standard
References

IEC 61508-1 (2nd ed.), clause 7.18

IEC 61508-3 (2nd ed.), clause 7.9.2

Authors Matti Vuori

Status Version 2011-04-29

Notes See Wikipedia article Verification and Validation
http://en.wikipedia.org/wiki/Verification_and_validation

Notes workflow, verification

http://en.wikipedia.org/wiki/Verification_and_validation

49 (128)

Name 2.1.3 Split and Manage Details

Context A work product is under development.

Problem When a work product, such as a module or a specification, is being
developed, how can we ensure that the work can be carried on in parallel, so
that we can address issues independently and verify each small task and see
the state of the whole?

Forces In developing any non-trivial system, the work is divided into many parts
which are then developed in parallel and in an interleaved manner. We need
a mechanism with which we can handle the parts, concentrate on them and
track the progress of each individually.

Solution By splitting the tasks into items, each of those can be handled individually
from requirements to validation. An Application Lifecycle Management
system is used to do the splitting and handling of the split items.

Resulting
Context

A complex subsystem or task split into manageable items, allowing an
efficient development process and effective task performance.

Related
Patterns

This pattern is utilised in practically all patters, even though their description
might, for the sake of generality, imply a larger grained approach.

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors Matti Vuori

Subsystem, design or task

Split 1

Split 2

Split N – status,
responsibility, version,

activities

Development, design,
implementation

Verification

Validation

Review & acceptance

Requirements

Tracking of progress

50 (128)

Name 2.1.3 Split and Manage Details

Status Version 2011-04-29

Notes

Tags workflow, phase, process, split

Name 2.1.4 Single Development Task Control Workflow

Context A single design task is started and its progress is tracked from draft to
closure.

Problem How to have a simple, generic workflow that allows tracking of the completion
of single tasks and progress of a set of tasks?

Forces Tracking of progress with defined workflows is essential in any kind of
development.

Solution A generic single task workflow from draft to acceptance:

An approved version is always frozen so that its configuration, design and
implementation can be controlled.

Resulting
Context

A closed work item

Related
Patterns

Phase Workflow

Split and Manage Details

Acceptance of Phases and Tasks

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors

Status Version 2011-04-29

Draft of a work item

Ready

Approved

Closed Closed statuses: done,
rejected, duplicate, trash

Often for a set of tasks so
that the general progress

can be assessed

51 (128)

Name 2.1.4 Single Development Task Control Workflow

Notes This kind of workflows can be implemented in many kinds of design
management tools: task based tools, Application Lifecycle Management
systems, physical task boards, or shared Excel sheets.

Tags workflow, phase, task, process, acceptance

Name 2.1.5 Acceptance of Phases and Tasks

Context When a work product has been created and verified, it still needs to be
reviewed and accepted by the person who is appointed to be responsible for
safety.

Problem How are work products accepted in the development process so that they
can be safely utilized?

Forces In safety-critical development, acceptance of work products means taking
responsibility for safety. Therefore, it needs to be based on clear evidence
that all activities have been carried out properly and that the work product
meets its requirement.

52 (128)

Name 2.1.5 Acceptance of Phases and Tasks

Solution The acceptance is based on the following tasks:

 Getting an impulse that a process phase and its related work products
could be accepted.

 Gathering evidence that the execution of that phase meets all
requirements (correct plans, correct execution, proper verification,
complete documentation, thorough safety assessments etc…).

 A project review of the phase.

 Based on evidence and review, formal acceptance.

If the phase cannot be accepted, its tasks need to be repeated and
acceptance procedures re-executed until acceptance can be given.

Resulting
Context

A process phase and its associated work products have been accepted and
thus the work can move to the next phase.

Related
Patterns

(All)

Standard
References

(All IEC 61508 (2nd ed.) process requirements)

Authors Matti Vuori

Status Version 2011-04-29

Notes Acceptance is a project and product management term and not widely used
in IEC 61508 series, because it is always informal and only validation and
certification will produce real acceptance for safety matters.

Tags workflow, phase, task, acceptance

Work product or process
phase proposed for

acceptance Meets process
requirements (safety
processes / tasks)?

Meets product
requirements (safety)?

(Analyses, verification,
documentation,

records, inspection?)

Review

Acceptance

Next phase

53 (128)

Name 2.1.6 Configuration Management

Context During the process, elements of the software system are developed and
changed during their design, implementation, integration and so on. Thus
there may be developments at various stages in various phases.

Problem How can we know what elements, in what configuration and in what version
the software system assessed consists of and what has changed compared
with a baseline?

Forces Verification and validation of software are only relevant if we know what exact
components the software system consists of. For validation, we need
information about what has changed. Thus, all individual items and
configurations need to be carefully controlled.

Solution Each individual item is determined carefully by (not a complete list):

 Its identification

 Its version

 Rules for using it in the configuration

 Knowledge of its compatibility with other item

Each software system configuration is tracked for:

 Inclusion of new items or versions of existing items

 Removal or change of items

Thus, any changed configuration will form a new configuration, which needs
to be assessed.

All documentation, assessments and other activities need to be associated
with the exact configuration they were done for.

A concept of baseline is used, to determine a stable “starting point” for
development. Baselines are used at given times to freeze the configuration
after it has, by architecture design, evolved. After that time, strict controls of
configuration are applied.

Configuration management needs to be based on a system that allows easy
carrying of configuration related tasks, and also auditing of those tasks and
any configuration.

Changes of configuration and configuration information need to be
authorized.

Also, it needs to be possible to determine the configuration of any system
released to production or marketed.

54 (128)

Name 2.1.6 Configuration Management

Resulting
Context

Continuous knowledge of configurations and their item. Ability to construct
any previous configuration if required.

Related
Patterns

Configuration Auditing

Standard
References

IEC 61508-1 (2nd ed.), sub-clause 6.2.10

IEC 61508-1 (2nd ed.), sub-clause 6.2.3 describes the configuration
management principles

Authors Matti Vuori

Status Version 2011-04-29

Notes Modern configuration management systems support the requirements of
safety-critical development.

See Wikipedia article Configuration Management:
http://en.wikipedia.org/wiki/Configuration_management

Tags product, configuration, management, control, tracing

Configuration
management mind

map

Rules

Control

Tracing

Auditing

Integrity of
configuration

Baselines

Access

Systems

http://en.wikipedia.org/wiki/Configuration_management

55 (128)

Name 2.1.7 Forward Tracing

Context A work product – most often a specification – has been created. Now we
need to track that all its items are handled properly at the next development
process phases, especially on the route from requirements to testing.

Problem How can we link activities and development items so that we can at any time
find out what actions are planned and have been carried out regarding the
items?

How can we follow the chain from any requirement to its verification and
testing in an easy way?

If some aspect of the work product changes, how can we know what items in
the following process phases are invalidated due to that change?

Forces In safety-critical development, every design and implementation needs to be
based on previous, accepted work and verified and validated accordingly.
Therefore, it is critical to know what high level items have been verified and
validated and if they change, what needs to be verified and validated again.
And if the requirements change, what designs need to be revised.

Solution The following principles need to be used:

 The work products are identified (and version controlled)

 The work products are structured so that each item (e.g. each
requirement or each design element) can be identified and addressed
individually. This is achieved by allocating them individual identification
codes in configuration and documentation systems.

 In lower level work products, their elements are linked to elements of
higher level work products and thus can be shown to have a connection.

 Thus, there is a systematic linkage from requirements to verification,
including all testing and various analyses and safety assessments.

 A development management tool is used, which can report the
connections present, and also items that have no connections.

This technique is used to assess:

 Coverage of designs and development tasks (e.g. what requirements
have test cases for them).

 The consequences of proposed changes. If for example a requirement
were changed, how would the change propagate through the design – to
functional specifications, implementations, to test plans and test cases?

 Consequences of the changes made.

56 (128)

Name 2.1.7 Forward Tracing

The techniques are used in everyday project management and control of
development process, but also in verification and validation as proof that the
system is integrated.

Resulting
Context

All design elements have been connected with links to lower level elements
that make it possible to do the tracing for any purpose.

Related
Patterns

Backward Tracing implements the tracing to the other direction.

Standard
References

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags product, configuration, management, control, tracing

Requirements or high
level specification

Tests and test cases

Other verification and
assessments

Item 1

Item 2

Item 3
Designs

Links used to identify
inputs, requirements,

verification basis

Item N (status?)

Tests and test cases

Other verification and
assessments

57 (128)

Name 2.1.8 Backward Tracing

Context A work product, a detailed design or implementation, has been created. Now
we need to track that it has properly handled all higher level issues that affect
it or are assigned it. This applies to the whole work product (like a test plan)
and its individual elements (like test cases).

Problem How can we know what requirements, plans or instructions our work is based
on and thus must be verified against?

Forces When doing systematic development work, work items depend on items on a
higher abstraction level and on the previous development phase. To be able
to assess conformance with the “parent” items and to be able to detect
changes in them that affect the current item, a mechanism is needed.

Solution The following principles need to be used:

 The work products are identified (and version controlled)

 The work products are structured so that each item (e.g. each
requirement or each design element) can be identified and addressed
individually. This is achieved by allocating them individual identification
codes in configuration and documentation systems.

 All items are linked to appropriate higher level (input) work products, and
thus can be shown to have a connection.

 A development management tool is used, which can report the
connections present, and also items that have no connections.

This technique is used to:

 Gain easy access to requirements and other input information on the
current development item.

 Assess the consequences of proposed changes. If an implementation is
proposed to be changed, for example, it needs to be assessed that the
new implementation meets all requirements.

 Audit the current development work product.

The techniques are used in everyday project management and control of
development process, but also in verification and validation as proof that the
system is integrated and valid by structure.

Parent work product at
state (version,
configuration,

completeness, acceptance)

Child work product at state

(version)

Tracing back to
requirements

58 (128)

Name 2.1.8 Backward Tracing

Resulting
Context

All design elements have been connected with links to higher level (input)
elements that make it possible to do the tracing for any purpose.

Related
Patterns

Forward Tracing implements the tracing to the other direction.

Standard
References

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags product, configuration, management, control, tracing

59 (128)

Name 2.1.9 Suspect and Prohibit

Context Whenever something is proposed (like a design or a modification), it is
important to have a suspicion that it might affect something else, might have
problems, might be prone for external influences or just not be robust enough.

Problem How do support practical suspicion and convert it into practical action? How
can we know what – if anything – should be changed based on our suspicion?

Forces Healthy suspicion is a critical element in especially safety-critical development.
Without it, even formal assessments do not provide good results. It is an
element of thinking that should be present is every development task.

Solution A generic suspect-action process:

Some product development management tools show a view of “susceptible”
relations. In some interactive tools the list is then manually edited, meaning
that a conscious decision is made about what relationships to analyse, the
decision can be traced later (for example during validation). These kinds of
tools make the process efficient yet transparent and systematic.

The hypotheses are analysed with techniques like FMEA or cause-
consequence analysis. Corrective actions include changing plans or designs to
be more tolerant and thus to prohibit any undesirable behaviours.

This general pattern is used in every process phase, most clearly in analysing
designs and modification.

Design or process
artefact

External
environment

Identify and
analyse

relationships

Internal
environment

Use tools to show
relationships

Use analysis
methods

Formulate
suspicion

hypothesis

Do analysis to
verify suspicion

Make corrective
action (change
design, change
environment)

Make plans to
verify suspicion in

tests

60 (128)

Name 2.1.9 Suspect and Prohibit

Resulting
Context

New information based on suspicion, with which the impacts of design
decisions can be formulated, designs can be changed and the robustness of
designs can be improved.

Related
Patterns

Impact Analysis is one manifestation of this.

Standard
References

(No direct references in IEC 61508 standard series)

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags workflow, analysis, impact, suspect

61 (128)

Name 2.1.10 Escalation of Issues

Context A problem has been detected at some time during the lifecycle and the
person detecting the problem does not possess the required authority to
handle it.

Problem How to raise the issue and have it handled at an appropriate level in the
project or line organization?

Forces There are many kinds on potential problems and if they require spending
money or require technological changes, more authority may be needed to
resolve the issue.

Solution An escalation procedure is utilised. It can be planned at company level
instructions and as part of risk management processes, but it is implemented
especially in projects and needs to be described in project plans.

The basic flow is like this:

 An individual detects an issue that needs to be handled. If handling is in
his/her power (like correcting a software defect), it is done immediately
without any other action than following the correction procedure.

 If, however, the individual does not have authority to resolve the issue,
he/she reports the issue to his/her superior (like a team leader, or site
coordinator).

 The superior assesses his/her authority to solve the issue and if it is
insufficient (like if the resolution requires more money than he/she is
allowed to spend) in turn reports the issue “upstream” in the command
chain to his/her superior.

 This way the issue can and sometimes should reach the top
management.

 The issue may return back to the reporter with authority to proceed with
action – make a large change of technology, spend money not budgeted,
hire experts or other.

 Or the issue is passed to another party to resolve (like sales to negotiate
with customer, or a technology team to develop a new solution).

 When the process is implemented in a formal workflow, it cannot be
suspended based on opinion.

 The process should be implemented in an information system where the
issue can be forwarded to an appropriate party and all participants can
have receipts / notifications of handling the issue and in general the
process can be monitored.

62 (128)

Name 2.1.10 Escalation of Issues

Resulting
Context

An issue has been resolved promptly.

Related
Patterns

Transparency of Action and Information

Standard
References

(No direct references in IEC 61508 standard series)

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags project, organisation, risk management, escalation, process

Name 2.1.11 Use of Checklists

Context Something needs to be checked, reviewed, remembered.

Problem How can we remember all issues that need to be checked? How can we be
sure that others remember all issues that need to be checked?

Forces Technological systems can be complex and people in projects are sometimes
busy. Various means are needed to ensure that all items are handled
properly, especially when reviewing developments for their acceptance.

Solution Checklists should be used in various situations. In general they provide a

Potential problem

Resolving authority? If
yes, resolve, if not, pass

upstream

Superior, team leader,
site coordinator

Levels of organization
with sufficient authority Higher levels of

organization or top
management

Individuals in
team

Report & follow issue

Report & follow issue

Get authority and
initiate action

Get authority and
initiate action

63 (128)

Name 2.1.11 Use of Checklists

shared view of what is essential and thus help keep everyone’s thoughts in
alignment.

Checklists can also be mandatory. This means that a project phase cannot
be accepted until “all checkmarks are in place”. This can be implemented in
any tool, but often project management tools with such functionality are a
good choice.

Even a basic implementation workflow can be presented as a checklist: [x]
Coding, [x] Analysis, [x] Testing, [] Documentation.

Often, all reviews have tailored checklists to help ensure that all relevant
issues are checked (like all quality factors of architecture or all things to
present in a project plan).

Checking the existence and readiness of all documentation is one important
use for checklists in safety-critical development.

Checklists are a traditional technique in risk analysis and safety assessment.

Thus, checklists have plenty of uses and benefits. Note that checklists do not
need to be lists. A mind map style of presentation can suit many purposes
better.

Resulting
Context

All things to check have been remembered and handled with the aid of
checklists.

Related
Patterns

Acceptance of Phases and Tasks

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors Matti Vuori

Status Version 2011-04-29

Checklist usage
mind map

Orientation

Shared view of
relevant issues

Way to instruct

Use in tasks

Memory jogger

Process gate

Tool of control

64 (128)

Name 2.1.11 Use of Checklists

Notes

Tags process, tools

65 (128)

Name 2.1.12 Continuous Improvement

Context Any activity.

Problem How to improve ways of action so that in future projects are more efficient
and have fewer problems?

Forces Continuous improvement is a principle required by all quality management
systems and standards. As safety-critical development can be challenging,
improvement is an important issue and needs more attention.

Solution The core of continuous improvement is a rhythmic habit of reflecting on
project’s and teams’ performance, success, problems and emerging
possibilities of improvement.

The picture shows many possible “reflection points”.

Any review How could we improve ways to do
this kind of thing?

Refection point Viewpoint

Team meeting Any problems that require solving
and thus creates improvement?

Phase
retrospect /

lessons learned
meeting

General assessment of performance.
Opportunities for improvement?

Project
development

audit

General assessment of performance.
Opportunities for improvement?

Analysis of
metrics

What do any metrics say? Compared
to others?

Risk analysis
New risks to develop generic

approaches for

Design analysis New design patterns to handle
problems

Validation /
certification How to make it more efficient next

time?

66 (128)

Name 2.1.12 Continuous Improvement

The analysis should lead to improvements during the same project, but also
improvements in general project practices, which is why process developers
should participate in these activities.

At a larger scale, the same principles apply at company level, but that is not
addressed here.

Resulting
Context

An improved way of action.

Related
Patterns

Standard
References

(No direct reference in IEC 61508; this is more in the scope of ISO 9000
quality management standard series.)

Authors Matti Vuori

Status Version 2011-04-29

Notes Continuous improvement is a core practice in most quality management
system, but lately (2011) it has become more known in the agile movement
by the concept of “Kaizen” (see http://en.wikipedia.org/wiki/Kaizen)

Tags process improvement, continuous improvement, organisation, quality, ISO
9000

http://en.wikipedia.org/wiki/Kaizen

67 (128)

3 Development approaches and technologies

Name 3.1.1 Flow Between Design Levels and Tests

Context During any phase of development before testing.

Problem While utilising a controlled approach, how to support a constant flow of
testing ideas?

Forces Good testing is a key to a robust system. While the development needs to be
a controlled activity, a holistic approach that supports holistic understanding
of requirements and testing and constant evolution of testing ideas is
essential for the quality of testing and for development efficiency.

Solution The development process provides smooth flows of test analysis based on
many abstraction levels and techniques. Tests of any type or any test level
are considered during any task.

This is a thinking pattern that permeates all processes.

Key elements

 Test analysis attached to any phase and task, either formally or
informally.

 Thinking of all test levels at any test level, if we have test ideas that might
be useable. Thinking at system level even when doing detailed design.

 Keeping in mind the total picture of testing – while management systems
help, this is a mental pattern.

 Understanding that work at different levels in design and testing is just a
helping abstraction that shows us opportunities to think in different ways
and to gradually cover all details.

 Keeping information open and up-to-date so that dynamism between
design levels can bring new ideas.

 Realising that constant test design is a tool that helps in evolving the
design.

 Utilisation of many practices in gaining good test ideas.

 Continuous flow of test case designs.

68 (128)

Name 3.1.1 Flow Between Design Levels and Tests

Resulting
Context

A smooth development process without any gray areas.

Related
Patterns

Constant Communication

Transparency of Action and Information

Standard
References

(No direct references in IEC 61508 standard series)

Authors Matti Vuori

Status Version 2011-04-29

Notes This kind of flow is essential in all development lifecycle models and
supported especially in agile development.

Tags principles, process, flow, verification, testing, test case

Requirement or design activities at various abstraction levels
(requirements, architecture, design, implementation)

Reviews

Conscious test
analysis to identify

good tests and
test cases

A test pool consisting of tests
at any test level (module,

integration, system, validation

Analyses Safety
assessment

Conscious
collecting of test
ideas and test

cases

Test management to keep
track

A continuous flow of test
case

Constant evaluation and
restructuring of test pool to

maintain its quality and
usability

69 (128)

Name 3.1.2 Selection of Methods / Techniques

Context When planning how a task – design, verification or other – should be carried
out, one needs to select methods and techniques.

Problem How to select methods and techniques so that the decision leads to such
ways of action that lead to a safe system, fulfil the requirements of IEC 61508
standard series and can be justified before the project begins, and
afterwards?

Forces There are requirements in the standard series on how “strict” the methods
used should be in any task. Therefore, the selection of methods needs to be
carried out systematically.

Solution The basic selection process:

 Inputs the SIL level, based on hazard and risk analysis of the overall
system.

 Determination of the required “strictness” – see IEC 61508-3 (2nd ed.),
chapter C.1.2.

 For each development task, find a list of alternatives in corresponding
tables in IEC 61508-3 (2nd ed.) Annex A and Annex B.

 Analyse using IEC 61508-3 (2nd ed.), Annex C tables, which methods /
techniques could give, in this particular situation, the required strictness.

 Consider in the analysis the development team’s competence and tools
for each method / technique and any other practical influencing factors.

 Document the rationale for the decisions.

 Present the selections and possible alternatives in the project plans
(Project Plan, Safety Plan, Verification Plan, Validation Plan).

70 (128)

Name 3.1.2 Selection of Methods / Techniques

Resulting
Context

A selection of methods / techniques to be used in the project has been
decided.

Related
Patterns

(All safety lifecycle phases)

Selection of Methods / Techniques

Standard
References

IEC 61508-3 (2nd ed.), chapter C.1.2 shows how to define the required
strictness of method usage

IEC 61508-3 (2nd ed.), Annex A presents possible methods / techniques

IEC 61508-3 (2nd ed.), Annex B presents in more detail possible methods /
techniques

Authors Matti Vuori

Status Version 2011-04-29

Notes While the standard presents a given selection of methods / techniques,
others can be used, as long as when using them, the requirements and
objectives can be met.

Tags development, techniques, tools

Define SIL level and
required strictness (C.1.2)

Define possible alternative
techniques from standards

(A-tables, B-tables)

Analyse ways to reach
required strictness

(C-tables)

Choose techniques, review
and accept

Consider
alternative

techniques if
applicable

Document rationale and
write plans and instructions

Consider
competence and
practical issues

Analyse alternative
techniques for

meeting objectives

71 (128)

Name 3.1.3 Use of Formal Methods

Context Selection of development techniques.

Problem How to introduce formal methods into an organization?

Forces Safety standards highly recommend use of formal methods at high SIL levels.
Unfortunately formal methods are not so mature and generic as required to
be used out of a box. Even worse than that, the use of these requires
knowledge and skills which are not common among software professionals.

Solution Using formal methods is not that much more difficult than ordinary
programming. It is only different and can be learned by practising. In safety

context the required diversity gives natural possibility for experimenting.

There are three common uses of formal methods in software.

1. Formal specification of the requirements helps to understand them more
deeply and make omissions and internal contradictions more visible. For
example, a notation called Safecharts can be used to capture and inspect
safety requirements independently but still along with the functional
requirements. More traditional specification languages are for example LTL,
TLA, Lotos, SDL and CSP.

2. With formal methods one can make abstract implementations with which
various design decisions can be proven applicable. See: "Formal Methods
Aided Design and Verification of Joint Behaviour".

3. Verification. This is the traditional use of formal methods, and there are two
separate base technologies, model checking and theorem proving. A more
general term instead of model checking is state space methods. The idea is
to prove in a mathematically solid way that the (formal model of)
implementation satisfies the requirements.

In these areas, formalisms, tools and methods varies, but all requires some
sort of formal modelling and after learning one, others come more easily.
Selection of the first area is thus arbitrary and can be based on the potential
values which can be gained.

Resulting
Context

A considered application of formal methods.

Related
Patterns

Formal Methods Aided Design and Verification of Joint Behaviour

Sometimes it might be feasible to use formal methods in the context of
Generic Glue pattern, because formal models can be simulated and tested
using test automation.

Standard
References

IEC 61508-3 (2nd ed.), Tables A.1, A.2, A.4, and A.9 present recommend
techniques for requirements specification, architecture design, detailed

design, and software verification at different SIL levels.

IEC 61508-7 (1st ed.), subsections B 2.2 and B 2.3 define related terms.
IEC 61508-7 (1st ed.), subsection C 2.4 gives examples of formal methods.

Authors Heikki Virtanen

Status Version 2011-04-29

72 (128)

Name 3.1.3 Use of Formal Methods

Notes The term "formal methods" refers to mathematically precise notations and
techniques. From the standard' perspective, they have to be used in an exact
manner also. If not, or if the notation or proving methods let any ambiguities
or omissions, the standard uses the term semi-formal method.

IEC 61508-3 (2nd ed.), Table A.10, Functional safety assessment, does not
directly mention formal methods, but the use of them can make assessment
more robust.

See also Wikipedia article Formal methods:
http://en.wikipedia.org/wiki/Formal_methods

Tags development, techniques, tools, formal methods

http://en.wikipedia.org/wiki/Formal_methods

73 (128)

Name 3.1.4 Selection of Support Tools and Development Languages

Context The basic design and requirements for the design have been drafted. Before
the design continues, the design and implementation tools need to be
defined, based on the project’s defined SIL level. The basic decisions are
usually decided during project planning, but can be specified in detail closer
to the design phase.

Problem How to select a set of support tools and languages that fulfil safety
requirements and can be proven to produce reliable results.

Forces Tools are important as they reduce the probability of human error in design,
affect the auditability of designs and implementations and robustness of
software.

Solution Selection of tools based on SIL level, the development task, developers’
competence and other factors.

Resulting
Context

The tools have been chosen. The tools have the required documentation for
use and their validation for use. The tools have been defined in the project’s
Safety Plan or similar.

Related
Patterns

Selection of Methods / Techniques

Coding

Detailed Module Design

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.4 defines the selection process

IEC 61508-3 (2nd ed.), table A.3 presents recommend techniques for tool
selection at different SIL levels

IEC 61508-3 (2nd ed.), table C.3 describes the strictness of various ways of
application of techniques for tool selection

Authors Matti Vuori

Status Version 2011-04-29

Tools and
languages

selection mind
map

SIL level

Hardware
compatibility

Availability Efficiency

Experience and
trust in tools

Familiarity

Developer and
subcontractor
competence

Cost

Support for
techniques

74 (128)

Name 3.1.4 Selection of Support Tools and Development Languages

Notes The development organization does not usually specify tools on a project
basis, but defines a toolset consisting of accepted tools to be used in all
“similar” projects – based on the target system, technologies and the SIL
level.

Tags development, techniques, tools, languages

75 (128)

4 Software Safety Requirements Specification

Name 4.1.1 Software Safety Requirements Specification

Context The overall system requirements have been specified. The safety
requirements have been allocated to hardware, PE and software systems.
The SIL level of overall system has been defined.

Problem How to specify safety requirements for the software system.

Forces Understanding the safety requirements is critical for software development,
as the requirements form the basis for systematic verification and validation.

Solution The safety requirements are created from the overall system safety
requirements, considering the allocation of those requirements and the SIL
level.

Therefore, the safety requirements specification phase is really a design
phase where we specify what the software system should do and how it
should perform regarding safety.

The basic process outline is:

 Understanding the overall system’s safety requirements.

 Understanding the allocation of safety related functions and
requirements for hardware, E/E/PE system and software.

 Extracting the thus known requirements.

 Further identification and analysis of requirements.

 Making additional hazard and risk analyses if needed.

 Writing a Safety Requirements Specification document.

 Inspection and review of the document.

 Freezing the safety requirements specification.

The most important output of the phase is Software Safety Requirement
Specification.

76 (128)

Name 4.1.1 Software Safety Requirements Specification

When using modern information systems, the resulting document may not be
a traditional monolithic “document”, but a view to the safety requirements,
collected from requirements assigned to various elements of the system.
Thus, it can be reviewed, accepted and frozen in parts.

Of course, some requirement specifications may change during a project for
various reasons. The safety requirement specification is a critical document
both for safety and for validation and thus for using the system and its
changes need a very strict process.

Resulting
Context

Safety requirements for software have been defined, reviewed and accepted
and software development can start.

Related
Patterns

In Software Validation Planning it is planned how the requirements will be
validated, in the context of the overall system.

In Software Validation the validation is carried out.

Software Development continues the development branch of the V-model
based on the safety requirements.

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.2.2 defines the process.

IEC 61508-3 (2nd ed.), table C.1 describes the strictness of various ways
application of techniques for the requirement specification

Authors Matti Vuori

Status Version 2011-04-29

Overall system
safety requirements

Allocation of safety
requirements

Identify software
safety requirements

Additional hazard and risk
analysis if needed

Software safety
requirements
specification

Review, accept and
freeze

Update during
development using a

strict process

77 (128)

Name 4.1.1 Software Safety Requirements Specification

Notes For the approach of IEC 61508 and SIL levels, see Wikipedia article IEC
61508: http://en.wikipedia.org/wiki/IEC_61508

Tags safety requirements, requirements specification, safety, risk

http://en.wikipedia.org/wiki/IEC_61508

78 (128)

5 Software Design & Development

5.1 General

Name 5.1.1 Software Development

Context Software safety requirements specification has been produced.

Problem How to create a software system that fulfils the specified requirements with
respect to the required safety integrity level?

Forces Software design is based on software requirements and should transfer those
into system specifications that can be implemented.

Solution Development needs to follow a systematic process that combines of software
development lifecycle and the safety lifecycle presented in IEC 61508.

The IEC 61508 series has an underlying assumption that a V-model based
development model is used, but any model can be used as long as the
organisation can fulfil the requirements of IEC 61508 with it – and produce
safe software.

Obviously, while this document concentrates on IEC 61508, the development
work and process also need to fulfil other standards, regulations and laws
too.

Otherwise – just good, professional development work is carried out, guided
by (among others) the elements in the next mind map.

Elements of
development
process map

Good,
requirements

process

Software
development

lifecycle
process

Strict product
management

Good project
practices

Qualified
personnel

Quality
management
during project

Safety
management

during process

Safety lifecycle

Fulfil 61508
requirements,

laws and
regulations

79 (128)

Name 5.1.1 Software Development

Resulting
Context

A software system integrated into the PE system, verified to meet safety
requirements.

Related
Patterns

(Several)

Standard
References

IEC 61508-1 (2nd ed.) presents the general context and requirements

IEC 61508-3 (2nd ed.) presents the software development requirements

Authors Matti Vuori, Johannes Koskinen

Status Version 2011-04-29

Notes See Wikipedia article Software development process:
http://en.wikipedia.org/wiki/Software_development_process

Safety engineering is a critical aspect in the development of safety-critical
software. See Wikipedia article Safety engineering:
http://en.wikipedia.org/wiki/Safety_engineering

Tags principles, software development, process, lifecycle, safety lifecycle

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Safety_engineering

80 (128)

5.2 Software Architecture Design & Verification

Name 5.2.1 Software Architecture Design

Context Software safety requirements specification has been finalised and the
hardware architecture of the system has been designed.

Problem How to create a software architecture that fulfils the specified requirements
with respect to the required safety integrity level?

Forces Good architecture is a very important factor in the safety critical system.

Solution The software architecture design is based on a partitioning into elements and
subsystems.

Key issues in architecture design:

 Safety architecture is very strictly based on safety requirements and will
be verified against them.

 Obviously, the software architecture must be compatible with hardware
architecture and those two should often be developed in close
collaboration.

 Safety architecture and “operational architecture” need to be kept
separate, yet understanding that the operational architecture requires
just as much attention as its functioning is a potential cause of hazards.

 Separation of safety-related and non-safety related elements greatly
helps in the verification, validation and certification of the system.

 Separation should also lead to independence of the development teams
that do the design and implementation of the modules.

 There may be a need for diversity of design and implementation.
Diversity is important for preventing common cause failures (like a failure
mode or a disturbance that is not addressed in any redundant
components due to similar design principles).

 Besides redundancy, other means of reaching fault tolerance need to be
implemented. The architecture needs to be robust against disturbances
and if it fails, it should fail in a safe manner.

 Diversity may be needed even in implementation tools, so the
architectural ideas should not be dependent on just one approach.

 The architecture should be very much independent of implementation
techniques and technologies. (Even though in practice there will always
be some ideas of those.)

 Modularity is a key factor as it aids both in utilising diversity and
redundancy in design and in verification and validation, as well as
configuration management.

 Simplicity and understandability is an essential factor. If a system is hard
to understand, it will not be safe.

 Analysability and verifiability needs to be considered as analysis is
needed in design and verification already during the design phase is very
important for the project to succeed.

 All systems need to evolve. The above principles make modification of
the system easier.

81 (128)

Name 5.2.1 Software Architecture Design

 Based on good design, the behaviour of the architecture is predictable.

 The design requires certain design and verification techniques,
depending on the SIL level.

 Simplicity and modularisation are essential

See IEC 61508-3 (2nd ed.), table A.2 about design techniques to use to reach
these goals.

Resulting
Context

The software architecture has been designed and software design can begin.

Related
Patterns

Software Architecture Verification

Formal Methods Aided Design and Verification of Joint Behaviour

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.3 describes the process

IEC 61508-3 (2nd ed.), table A.2 presents recommended techniques for the
architecture design at different SIL levels

IEC 61508-3 (2nd ed.), table B.9 presents recommended principles of modular
approach at different SIL levels

IEC 61508-3 (2nd ed.), table C.2 describes the strictness of various ways of
applying techniques in the architecture design

Authors Matti Vuori, Johannes Koskinen

Status Version 2011-04-29

Notes See also Wikipedia article of Software architectures:
http://en.wikipedia.org/wiki/Software_architecture

Tags development, architecture, design, principles

Software
architecture mind

map

Partitioning

Separation of
safety related

modules

Understand-
ability

Behaviour

Testability

Diversity

Safety
requirements

Evolveability

Assignment to
developers

http://en.wikipedia.org/wiki/Software_architecture

82 (128)

Name 5.2.2 Software Architecture Verification

Context Software safety requirements specification has been finalised and the
software architecture design has been completed by applying Software
Architecture Design pattern.

Problem How to ensure that the software architecture design adequately fulfils the
software safety requirements specification?

Forces The software architecture defines the major elements and subsystems of the
software, how they are interconnected, and how the required (safety integrity)
attributes will be achieved. It also defines the overall behaviour of the
software, and how the software elements interface and interact. To carry on
to the next phase, the information from the current software safety lifecycle
phase shall be verified. All essential information from the current phase of the
software safety lifecycle needed for the correct execution of the next phase
should be available and must be verified. The information should include the
adequacy of the specifications, design and validation plans in the current
phase. The verification configuration should be precisely defined and the
verification activities shall be repeatable.

Solution Software architecture verification should consider whether the software
architecture design adequately fulfils the software safety requirements
specification. Verification is done in many parts:

1. During design the architecture plans are iterated. The iterations are flexibly
analysed and simulated using appropriate techniques.

 Execution of use cases through the design.

 Use of failure analysis. (Common causes is an important aspect to
analyse.)

2. Review of architecture. Main issues:

 The basic software architecture design. The software architecture design
should fulfil the software safety requirements specification and other
solid design principles.

 Attributes of elements / subsystems. The attributes of major elements
and subsystems should be

 Adequate for the safety performance required.

 Testable for further verification.

 Readable by the development and verification team.

 Safe to modify.

 Incompatibilities between design and specification.

 Architecture design versus safety requirements specification

 Architecture design versus integration tests.

 Integration tests versus verification and validation plans.

3. Testing.

 Integration testing is the final verification of architecture.

83 (128)

Name 5.2.2 Software Architecture Verification

Resulting
Context

Software architecture design that adequately fulfils the software safety
requirements specification.

Related
Patterns

Software Architecture Design

Software System Design Verification

Module Integration Testing

Software Validation

Formal Methods Aided Design and Verification of Joint Behaviour

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.9.2.9 defines requirements for the
software architecture verification.

IEC 61508-3 (2nd ed.), sub-clause 7.4.3 defines requirements for software
architecture design.

IEC 61508-3 (2nd ed.), sub-clause 7.9 gives general requirements for
software verification.

Authors Matti Vuori, Johannes Koskinen

Status A rewrite 2011-04-12 of the previously published version

Last update 2011-04-18

Notes

Tags architecture, verification, process

Requirements

Architecture
design

Architecture
analysis

Safety
assessment

Module /
subsystem
design and

implementation

Testing during
integration

testing

84 (128)

Name 5.2.3 Technical Diversity

Context All design phases.

Problem How to create such a system that not more than one element of it fails due to
a disturbance? Or: how to avoid common cause failures?

Forces Especially for a safety system it is essential that it does not fail even if the
production system fails. And in the case of redundant systems, they must not
all fail due to a similar disturbance (like a non-working communication
channel), that is, there should be no possibility of common cause failures.
Diversity in design and implementation is a key to this, in both hardware and
in software systems.

Solution Thinking patterns:

 Keeping an open mind to alternatives. Anything can be done in various
ways.

 Innovation. Finding new ways require creative thinking.

 Modular approach to architecture and design allows for diversity.

Organisational patterns:

 Independence of teams and individuals so that they can reach
independent designs.

 Coordination of approaches of different individuals and teams.

Analysis of needs for diversity:

 Requirements for diversity are based on risk – the SIL level, safety
requirements and the role of a subsystem or module.

 Identification of external and internal failures that would require
redundancy and diversity in the redundant subsystems.

Technology management:

 Availability of diverse technologies and basic designs.

 Creation of new alternatives in each project.

Examples of diversity:

 Communication technologies and channels.

 Communication protocols.

 Algorithms and data structures.

 Languages and compilers and code generators.

 Libraries and software components.

 Sensors and monitoring.

 Data storage.

 User interfaces and access.

 Verification methods and test techniques. Test automation and manual
testing. Different test approaches supplement each other.

85 (128)

Name 5.2.3 Technical Diversity

Diversity is an issue to check in design reviews.

Resulting
Context

A diverse system that is not prone to common cause failures.

Related
Patterns

Software Safety Requirements Specification

Software Architecture Design

Diversity in Team Practices

Failure Analysis

Standard
References

IEC 61508-1 (2nd ed.), sub-clauses 7.6.2.7 and 7.6.2.8 describe requirements
for independence of design solutions considering common cause failures

IEC 61508-3 (2nd ed.), table A.2 presents recommendations for diversity in
architecture at different SIL levels

IEC 61508-3 (2nd ed.), table C.2 presents achievable strictness for diversity
techniques in architecture at different SIL levels

IEC 61508-3 (2nd ed.), table A.10 presents common cause analysis as a
technique of functional safety assessment if diverse software is used

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags principles, diversity

Diversity in design
mind map

Risks and role
of system

Failure analysis
and common

cause analysis

Innovation of
new

alternatives

Hardware Design and
implementation

techniques

Verification
techniques

Availability of
alternatives

Modular
approach

86 (128)

Name 5.2.4 Formal Methods Aided Design and Verification of Joint Behaviour

Context There is good understanding of requirements, informal description of the
expected behaviour of the system, and a sketch of the architecture.

Problem How should the parts (components) defined in the architecture behave in
order to obtain the expected behaviour of the total (sub)system?

Forces For reactive and concurrent systems, it is almost impossible to verify
architecture reliably by means of inspection or manual reasoning.

Solution For design:

 Modelling abstract behaviour of parts using cooperative state machines.

For verification:

 Verify design using visual verification or model checking.

Resulting
Context

Formal functional models of the parts of the system, which in combination
produce expected behaviour.

Related
Patterns

Software Architecture Design

Software Architecture Verification

Standard
References

Authors Heikki Virtanen

Status Version 2011-04-29

Notes The technique is outlined in “Visualisation of Reduced Abstracted Behaviour
as a Design Tool”, available at
http://doi.ieeecomputersociety.org/10.1109/EMPDP.1996.500586 and

http://www.cs.tut.fi/ohj/VARG/publications/96-2.ps

Tags verification, techniques, formal methods, modelling, architecture

http://doi.ieeecomputersociety.org/10.1109/EMPDP.1996.500586
http://www.cs.tut.fi/ohj/VARG/publications/96-2.ps

87 (128)

5.3 Software System Design

Name 5.3.1 Software System Design – general

Context The software architecture has been designed and verified. Now the process
can continue in the design phase.

Problem How to design the software so that it can be implemented, verified and
validated.

Forces This is the phase where requirements and architecture are turned into a
software system that can be implemented, verified and finally validated.

Solution Based on requirements, a design for the software is drafted. Note that this
same process can be used at many abstraction levels, as defined by the
architecture.

 It is verified by review that the design meets all safety requirements.

 The behaviour of the design is analyzed using applicable methods, like
simulation, FMEA or cause and consequence analysis. This analysis is in
part regular design analysis and in part formal safety assessment (see
patterns Functional Safety Assessment and Failure Analysis)

 Safety assessment is carried out against the design and the design is
changed accordingly. This supplements other analysis activities and
confirms that the design should meet the SIL level requirements.

 The design is verified to meet safety requirements and architecture
design.

The analysis is used to design test cases, to be executed during integration
testing.

This process is highly iterative. The design evolves from a preliminary draft
(usually based on experience) to detailed design.

The test plans for that design are evolving, not just by test cases, but also test
approach (depending on the design situation). The testing applicable at this
phase is module integration testing and PE integration testing.

After the design has been assessed to be safe, the design and its associated
plans and documentation are reviewed and its implementation can begin.

The basic flow is shown in the next figure:

88 (128)

Name 5.3.1 Software System Design – general

Obviously, the design phase can lead to the proposing of changes of
requirements, returning the flow back to the previous phase.

All design elements are linked to requirements and thus tracked that all
requirements assigned to that design are handled and fulfilled appropriately
(as known at the design phase).

The end result of this phase is a specification, often called functional
specification.

Resulting
Context

The software modules have been designed, and assessed (from the design
point of view) to be sufficiently safe. Implementation can begin.

Related
Patterns

Software System Design Verification

Detailed Module Design

Functional Safety Assessment

Failure Analysis

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.5 describes the design process

IEC 61508-3 (2nd ed.), table A.4 presents recommended techniques for
detailed software design at different SIL levels

Authors Matti Vuori

Status Version 2011-04-29

Design (evolving)

Systematic analysis,
failure analysis and
safety assessment

Feedback and

verification

Requirements

Module integration test
cases & PE integration

test cases

Review and acceptance
of the design

Module integration test
plan & updates to PE

integration test plans

Software specification

(functional specification)

89 (128)

Name 5.3.1 Software System Design – general

Notes

Tags development, design, software system

Name 5.3.2 Software System Design Verification

Context The software system design specification has been produced. Before
designing the software module specification, the system design specification
needs to be verified.

Problem How to ensure that there are no incompatibilities between the software system
design specification and software architecture design?

Forces Following the architectural design decisions is critical for safety-critical
development. Therefore, the software designs need to be verified against the
architecture.

Solution The designs are verified to ensure that the software system design matches
the software architecture design and fulfils its requirements. After integration
the system is checked to ensure that it fulfils the software system design. The
attributes of all the major elements of the software system are concerned.

Verification is done in several parts:

 Analytical verification. Analysis, inspection and review of design
documents and artefacts (including prototypes).

 Verification by testing. This is mostly done in integration testing (all levels).

 Auditing of the integrated system to see that its implementation fully
matches architecture and design.

Resulting
Context

Software designs that are verified and can be passed to detailed design.

Software
architecture

Software system
design

Integration testing
(module)

Integration testing
(components,

subsystems and
programmable

electronics) Analytical
verification and

inspection
Verification
testing and

auditing

90 (128)

Name 5.3.2 Software System Design Verification

Related
Patterns

Software System Design – general presents the context of this.

Detailed Module Design describes the next phase.

Module Integration Testing

PE Integration Testing

Standard
References

IEC 61508-3 (2nd ed.), clause 7.9.2 describes generic software verification

IEC 61508-3 (2nd ed.), table A.9 presents recommended techniques used in
verification at different SIL levels

IEC 6150***8-3 (2nd ed.), table A.8 presents recommended static analysis
techniques at different SIL levels

IEC 61508-3 (2nd ed.), table C.9 describes the strictness of various ways of
application of techniques used in verification

Authors Matti Vuori

Status Version 2011-04-29

Notes For generic information about verification see Wikipedia article Verification and
Validation http://en.wikipedia.org/wiki/Verification_and_validation

For generic information about software testing see Wikipedia article Software
Testing: http://en.wikipedia.org/wiki/Software_testing

Tags software system, verification

http://en.wikipedia.org/wiki/Verification_and_validation
http://en.wikipedia.org/wiki/Software_testing

91 (128)

Name 5.3.3 Generic Glue

Context Before accepting the deliverable of the phase.

Problem How can one be sure that the given requirements for the next phase are well
defined i.e. complete and do not contain any contradiction?

Forces In normal circumstances, answering this kind of problem does not pay back.
When issues arise later, things are simply changed.

In safety critical software development, it is not that straightforward. It is
required that the chain of prerequisites is solid and traceable. On the other
hand, approved deliverables may not be changed without the formal and
rather laborious modification procedure.

Solution Partially the challenge can be responded to by doing extra work within the
phase before approving a deliverable. The extra work can produce a prototype
of the next task, where approximately the same work is done. However, the
prototype is not as complete and is done more quickly using more informal
and/or domain specific notations. For example, before coding the prototype
task can be programming with pseudo code. Anything which can be inspected,
simulated or tested and which ties deliverables of the two successive phases
more tightly together, goes.

This prototype task is a natural context for testing, too. Along the whole
development process, test cases and proof obligations are found and all of
them have to be satisfied before final validation and certification. Therefore
there are always some tests, against which the deliverables of the prototype
task can be reviewed in order to lower risk.

Resulting
Context

Understanding that the phase product can be used with a minimum of
problems

Previous phase

Next phase

Shows what the next
phase would look like

Allows simulation

Helps connect phase
product elements and

shows rationale

Verifies work product

Allows analysis

Glue = description that
links two phase

products

92 (128)

Name 5.3.3 Generic Glue

Related
Patterns

Verification of a Work Product

Software Modification

Single Development Task Control Workflow

Glue Design and Implementation is a specialised instance of this

Standard
References

(No specific reference in the IEC 61508 standard series)

Authors Heikki Virtanen, Matti Vuori

Status Version 2011-04-29

Notes Semi-formal models and methods are natural in this context, because they are
more accurate than the natural language and not as tedious as formal models
and methods.

Tags design, glue, prototyping, semi-formal methods, domain notation, analysis,
validation

93 (128)

5.4 Module Design and Implementation

Name 5.4.1 Detailed Module Design

Context The overall software system has been designed. Now, the individual modules
are designed.

Problem How to develop an individual software module so that it can be implemented
safely and reliably.

Forces The detailed design phase transforms functionality into instructions for
implementation. In this phase the development is prone to many traditional
problems, like coding errors or similar, which may, if left unnoticed and
uncontrolled, lead to system misbehaviour, failures and accidents.

Solution The detailed module design is based on higher level specification and also on
safety assessments. During this phase the details of the module are designed
(like protocols, algorithms, internal data structures) and the development tools
are defined for the module. In practice, coding and design are performed
concurrently by the same developer.

While the requirements should be frozen, the detail design will evolve, with the
help of analysis and simulation, and in modern practice, also module tests are
executed constantly. Simulation and testing may be combined when using

Detailed design
(evolving) and coding.

Systematic analysis and
simulation

Feedback and
verification

Requirements

(functional specification)

Module test cases

Review and acceptance
of the design

Module test plan

Detailed Module

Specification

Module Testing

Decisions on
implementation

technologies and tools.

94 (128)

Name 5.4.1 Detailed Module Design

model-based test techniques – even as simply as making a desk-top
simulation with the help of a state transition diagram.

At the beginning of the phase, as soon as the design and implementation
problem has been understood, the technologies and tools (like what PLC
language should be used) are selected.

The details of coding and module testing are described separately.

The outputs of this phase are the Module Specification, a Module Test Plan
and a collection of module test cases, which are required to be executed.

Resulting
Context

A designed module.

Related
Patterns

Coding will describe the task of coding using a programming language.

Glue Design and Implementation presents use of description that link design
to implementation.

Module Testing and Simulation will describe the testing tasks at this phase.

Model-Based Testing

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.6 describes the phase

IEC 61508-3 (2nd ed.), table C.19 describes the strictness of various ways
application of techniques for modular approach to design

IEC 61508-3 (2nd ed.), table C.4 describes the strictness of various ways of
application of techniques for module design and coding

Authors Matti Vuori

Status Version 2011-05-26

Notes

Tags module design, detailed design

95 (128)

Name 5.4.2 Glue Design and Implementation

Context Moving from the detailed design phase to implementation.

Problem How can one be sure that design is correct, detailed enough, can be
implemented with reasonable effort and without extra design decisions?

Forces In safety critical software development the preceding phase must be
completed and approved before one can move to the next phase, and tedious
modification procedure have to be followed if the approved document has to
be changed.

Solution The solution is an extra document which is more closely related to the end
product of the next phase than the end product of the previous phase, but not
so laborious to write than the end product of the next phase and does not

contain all the details.

In between detailed design and coding glue can be pseudo code or code

fragments inside the design document (literate programming).

Resulting
Context

More trust that the details can be successfully implemented. Good guidance
for the programmers.

Related
Patterns

This is an instance of Generic Glue pattern

Detailed Module Design

Coding

Standard
References

(No direct reference in the IEC 61508 standard series)

Authors Heikki Virtanen

Status Version 2011-04-29

Detailed design

Implementation

Shows what
implementation would

look like

Allows simulation

Guides implementation
(variables, states)

Verifies design

Allows analysis
(failures, timing)

Glue = description that
links design to

implementation

96 (128)

Name 5.4.2 Glue Design and Implementation

Notes

Tags detailed design, implementation, glue, pseudo code, coding

Name 5.4.3 Coding

Context An individual module has been designed and now it is implemented by coding
in a programming language.

Problem How to create reliable and safe program code, which is easy to modify when
the need arises and which is also easy to audit – for purpose and for safety
and security.

Forces Code is the basic block of any software system. Its quality if very critical for
the quality of the system and also for the efficiency of the development
process. Especially in agile development, quality of code is very important.

Solution Preliminary tasks:

 Analysis of implementability of module design (simulation, pseudo code).

 Selection of a suitable language for each task.

 Creation and training of coding standards.

Coding:

 Following of coding standards.

 Aiming for understandability, maintainability and testability.

 Utilising good practices, recommended by IEC 61508-3, such as
defensive programming.

Considering testing:

 Constant consideration for module tests; continuous module test design;
frequent running of tests.

 Using module test automation so tests can be executed during module
integration tests.

 In agile development, coding is often “test driven”, meaning that tests are
written first and after that the module’s code.

Assuring code quality:

 Code reviews especially during early phases of development.

 If the language supports it, running static analysis tools against the code.

97 (128)

Name 5.4.3 Coding

Resulting
Context

A programmed and documented module, module tested, available for low
level integration.

Related
Patterns

Selection of Support Tools and Development Languages

Glue Design and Implementation

Module Testing and Simulation

Analytic Design and Code Quality Assessment

Module Integration Tests

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.6 describes the phase

IEC 61508-3 (2nd ed.), table C.4 describes the strictness of various ways of
application of techniques for module design and coding

IEC 61508-3 (2nd ed.), table C.15 describes the strictness of various ways of
application of techniques for static analysis

Authors Matti Vuori

Status Version 2011-04-29

Notes For test-driven development see Wikipedia article Test-driven development:

http://en.wikipedia.org/wiki/Test-driven_development

Tags implementation, coding, code, glue, module design

Coding

Module design

Code review Module tests

Selection of languages
and tools

Coding standards

Module integration

http://en.wikipedia.org/wiki/Test-driven_development

98 (128)

Name 5.4.4 Analytic Design and Code Quality Assessment

Context An individual module has been designed and now it is implemented by
coding in a programming language.

Problem How to create reliable and safe program code, which is easy to modify when
the need arises and which is also easy to audit – for purpose and for safety
and security?

Forces While testing is the ultimate verification method, quality of design and code
needs to be assessed by human to ensure all qualities of good design and
implementation.

Solution Goals:

 Using appropriate analysis techniques and tools, assess that the designs
and implementations are of good quality.

 Consider: good design principles, understandability, adherence to
standards and rules, testability, documentation, potential problems.

 Utilize: knowledge of experienced designers and testers, automatic tools.

Some traditional ways to do analysis:

 Design and code reviews.

 Using metrics (like module size, complexity).

 Static analysis with tools to identify potential problems.

 Failure analysis and safety assessments.

 Tools to detect adherence to architecture design, use of forbidden
functions, etc.

Analysis target:

 Analysis requires some shared presentation. Simple modelling
techniques can aid in analysis.

Remember:

 The earlier we find problems, the easier they are to correct.

 Analysing things in suitable sized parts will make analysis more effective.

 Any analysis that can be done automatically using tools should be done
so, leaving human thinking for challenging issues.

99 (128)

Name 5.4.4 Analytic Design and Code Quality Assessment

Resulting
Context

A programmed and documented module, module tested, available for low-
level integration.

Related
Patterns

Detailed Module Design

Glue Design and Implementation

Coding

Standard
References

IEC 61508-3 (2nd ed.), table B.1 presents some recommended design and
coding standards at different SIL levels

IEC 61508-3 (2nd ed.), table C.18 describes the strictness of various ways of
application of techniques for static analysis

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags techniques, analytic techniques, quality, design, code

Analytic
techniques mind

map

Experience

Automatic
checking with

tools

Good design
principles Long term view

to quality

Metrics

Reviews

Early
identification of

problems

100 (128)

5.5 Verification Testing

Name 5.5.1 Verification Testing

Context After a software module has been implemented or integrated, the resulting
executable program is verified by testing.

Problem How to verify programs and their components at all abstraction levels?

Forces During the course of software system development, all work products and
implementations are verified. For implemented software, testing is the most
important general verification method. Due to the nature of safety-critical
development, testing needs to be both high quality and highly efficient.

Solution Verification testing of software in the context of IEC 61508 (2nd ed.) mostly
follows the traditional V-model.

Key features of this scheme:

 There are several testing levels.

 Testing at each level is based on a design item or the same level.

 Software must pass the lower test level before testing of it at the next
level can begin.

Software safety
requirements
specification

Software
architecture

Software system
design

Module design

Coding

Module testing

Integration testing
(module)

Integration testing
(components, subsystems

and programmable
electronics)

Validation testing

Validated software

Validation

Verification
relations are

drawn with dashed
lines -.-.-

101 (128)

Name 5.5.1 Verification Testing

 There are strict rules for passing each test level. If the software doesn’t
pass the testing, it needs to be corrected and the testing repeated.

 If the correction requires design changes, the designs need to be
updated with Software Modification process.

 If the requirements or specifications that a test or test case is based on
changes, the verification obtained with the tests is invalidated and the
tests need to be repeated. This includes any regression testing based on
impact analysis.

Patterns for the test levels will describe the process more.

Resulting
Context

A software item or system that has been verified by testing.

A software system configuration, behaviour or which is known and
understood due to the testing.

Related
Patterns

The test level patterns: Module Testing and Simulation, Module Integration
Testing, PE Integration Testing

Regression Testing

Software Validation

Standard
References

(See the patterns for test levels)

IEC 61508-3 (2nd ed.), table C.12 describes the strictness of various ways of
application of dynamic analysis and testing techniques

IEC 61508-3 (2nd ed.), table C.12 describes the strictness of various ways of
application of dynamic analysis and testing techniques

IEC 61508-3 (2nd ed.), table B.5 presents recommended modelling
techniques at different SIL levels

IEC 61508-3 (2nd ed.), table C.15 describes the strictness of various ways of
application of techniques for modelling

IEC 61508-3 (2nd ed.), table C.13 describes the strictness of various ways of
application of functional and black-box testing techniques

Authors Matti Vuori

Status Version 2011-04-29

Notes See Wikipedia article Software Testing:

http://en.wikipedia.org/wiki/Software_testing

Tags verification, testing, V-model, process

http://en.wikipedia.org/wiki/Software_testing

102 (128)

Name 5.5.2 Module Testing and Simulation

Context A module has been tested and the quality of program code has been
assessed. Now, the module will be tested individually using appropriate
module testing practices.

Problem How to test the module to verify that it meets the requirements?

Forces A module is the basic unit of software architecture and its proper working is
critical to how the system behaves though it may also be monitored and
controlled by separate safety systems.

Solution Module testing is based on module design and thus the Module Specification.

In the V-model tests are designed based on a specification and run by a test
driver (a ready-made unit test tool or an ad-hoc tool) against the
implementation, usually on the developer's workstation, perhaps using a
hardware emulator.

In practice, the implementation affects test case design. Tests are often
implemented simultaneously with implementation. Module tests are often
integrated in the developer’s IDE so that they are executed automatically
when the local version of the software is built.

Module testing is an incremental process. Tests are executed and the
software corrected based on tests in a flexible manner. Execution of the tests
shows a need for more tests.

After the tests (at least for implemented functionality – see Module Integration
Testing for more on this) pass, the module can be passed to integration
testing.

Module Design
Specification

Module Test
Specification

Implementation
Module Test cases
run by a test driver

103 (128)

Name 5.5.2 Module Testing and Simulation

Resulting
Context

A tested module, which can be passed to integration testing.

Related
Patterns

Detailed Module Design

Coding

Model-Based Testing

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.7 describes the module testing phase

IEC 61508-3 (2nd ed.), table B.2 presents recommended test techniques
suitable for module testing at different SIL levels

IEC 61508-3 (2nd ed.), table B.3 presents recommended test techniques
suitable for module testing at different SIL levels

IEC 61508-3 (2nd ed.), table C.5 describes the strictness of various ways of
application of techniques for module testing and integration

IEC 61508-3 (2nd ed.), table C.12 describes the strictness of various ways of
application of dynamic analysis and testing techniques

IEC 61508-3 (2nd ed.), table C.15 describes the strictness of various ways of
application of techniques for modelling

IEC 61508-3 (2nd ed.), table C.13 describes the strictness of various ways of
application of functional and black-box testing techniques

Authors Matti Vuori

Status Version 2011-05-26

Notes Module testing is often called unit testing.

See also Wikipedia article Unit testing:
http://en.wikipedia.org/wiki/Unit_testing

Tags verification, testing, module testing, simulation

Module Design
Specification

Module Test Plan
and Specification

Implementation
Module Test cases
run by a test driver

Tests
pass

Module Integration

http://en.wikipedia.org/wiki/Unit_testing

104 (128)

Name 5.5.3 Module Integration Testing

Context A module has been developed and is now integrated to the software system.
During integration, integration tests are executed.

Problem How to test the collection of modules in the architecture to verify that the
system meets functional requirements?

Forces Module integration testing is a task where the modules produced by various
developers and subcontractors meet. Thus it is a very important first step in
assuring that the system has been implemented correctly and works as
planned.

Solution Modules are integrated using a pre-decided strategy, usually one at a time.
Tests are executed to verify that the modules together fulfil the functional
requirements and match the architecture design.

Key points:

 Integration is usually carried out by a designated person responsible for
it, or, in larger projects, an integration team.

 As this is the first step of executing many modules together and to
performing the system’s functionalities (at some level) this is also a
learning experience and may produce changes to specifications.

 In modern software development, module integration is a continuous
activity, executed every day or even when new source code is checked
in the version control system.

 A module needs to pass module testing before integration testing. This
does not mean that the module needs to be implemented fully.
“Continuous integration” is a principle where a module is integrated every
time the version control system receives an updated version of it from
the developer (“check in”). Thus, the module still evolves and not all of its
planned tests are yet executed.

 Often, module tests are executed again in the integration phase.

 Integration testing is a good place to run static analyses of the source
code of all integrated modules to check their quality and to assess that
they implement coding standards and follow the architecture rules.

Architecture

Module Integration
Test Plan and Test

Specification

Implemented
modules

Integration Test
cases run by a test

driver

Functional
Specification

105 (128)

Name 5.5.3 Module Integration Testing

 Modelling can be used at this phase.

Resulting
Context

An integrated software system, which can now be integrated into a higher
level system and further verified.

Related
Patterns

Software System Design – general

Software System Design Verification

Module Testing And Simulation

Model-Based Testing

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.4.7 describes the module testing phase

IEC 61508-3 (2nd ed.), table A.5 presents recommended techniques for
module testing and integration at different SIL levels

IEC 61508-3 (2nd ed.), table B.2 presents recommended test techniques
suitable for module integration testing at different SIL levels

IEC 61508-3 (2nd ed.), table B.3 presents recommended test techniques
suitable for module integration testing at different SIL levels

IEC 61508-3 (2nd ed.), table C.5 describes the strictness of various ways of
application of techniques for module testing and integration

IEC 61508-3 (2nd ed.), table C.12 describes the strictness of various ways of
application of dynamic analysis and testing techniques

IEC 61508-3 (2nd ed.), table C.15 describes the strictness of various ways of
application of techniques for modelling

IEC 61508-3 (2nd ed.), table C.13 describes the strictness of various ways of
application of functional and black-box testing techniques

Authors Matti Vuori

Status Version 2011-05-26

Notes See Wikipedia article Integration Testing:
http://en.wikipedia.org/wiki/Integration_testing

About continuous integration see Wikipedia article Continuous integration:

http://en.wikipedia.org/wiki/Continuous_integration

Tags verification, testing, module integration testing, integration testing

http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Continuous_integration

106 (128)

Name 5.5.4 PE Integration Testing

Context The software modules have been integrated and now the software can be
integrated with programmable electronics and tested.

Problem How to test the integrated system so that its functioning and functional safety
can be verified?

Forces PE integration is a critical phase as it verifies that the software can actually
be executed in the target hardware in a correct manner and thus it will bring
to light many problems that need to be solved.

Solution Key points of the process:

 Planning and design of PE integration tests during designing (at all
design levels).

 The configuration of software and hardware needs to be clearly defined.

Goals of tests:

 Verify compatibility of hardware and software.

 Verify fulfilment of software safety requirements.

Specific requirements for tests:

 The configuration of software and hardware needs to be clearly defined.

 Tests need to be repeatable.

 Test specifications need to distinguish activities that the developers can
carry on at their premises and those that need to be carried out at
customer’s premises.

 Test specifications need to distinguish integration steps a) merging of
software into hardware (installation, deployment), b) PE integration such
as adding sensors, c) applying the E/E/PE safety-related system to the
equipment.

 If there are changes to the system, impact analysis is required.

 Strict error management needs to be practiced during PE integration
testing.

 Testing using an emulator and simulators even on the developer's
desktop can be flexible and with fewer process requirements.

107 (128)

Name 5.5.4 PE Integration Testing

Resulting
Context

A tested integrated software + hardware system

Related
Patterns

Flow Between Design Levels and Tests

Impact Analysis

PE integration test
plan

Module Test Plan
and Specification

Continuous test
analysis and test

case creation
during system

design

Module Test cases
run by a test driver

Emulator /
simulator tests by

developer and with
tester

Hardware tests

At developer's
premises

At customer site

Deployment

PE element
integration

Functional tests

Error management

Corrections and
system changes

Impact analysis

108 (128)

Name 5.5.4 PE Integration Testing

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.5.2 describes the PE integration testing
phase

IEC 61508-3 (2nd ed.), table A.6 presents recommended techniques for
programmable electronics integration at different SIL levels

IEC 61508-3 (2nd ed.), table C.6 describes the strictness of various ways of
application of techniques for programmable electronics integration

IEC 61508-3 (2nd ed.), table C.12 describes the strictness of various ways of
application of dynamic analysis and testing techniques

IEC 61508-3 (2nd ed.), table C.13 describes the strictness of various ways of
application of functional and black-box testing techniques

IEC 61508-3 (2nd ed.), table C.15 describes the strictness of various ways of
application of techniques for modelling

IEC 61508-3 (2nd ed.), table B.6 presents recommended techniques for
performance testing at different SIL levels

IEC 61508-3 (2nd ed.), table C.16 describes the strictness of various ways of
application of techniques for performance testing

IEC 61508-3 (2nd ed.), table B.4 presents recommended failure analysis
techniques at different SIL levels

IEC 61508-3 (2nd ed.), table C.14 describes the strictness of various ways of
application of techniques for software failure analysis

Authors Matti Vuori

Status Version 2011-04-29

Notes

Tags verification, testing, PE integration testing, integration testing, hardware

109 (128)

Name 5.5.5 Regression Testing

Context Some part of software implementation has changes.

Problem A change in software can lead to problems in other parts of the system. To
identify those effects, regression testing is used.

Forces Modern software systems are complex and prone to problems caused by
even a small, seemingly trivial change.

Solution Regression testing is done at all test levels, following the V-model from
module testing to high test levels, like system testing.

Regression tests can consist of “standard” regression test suites for each
level and specific regression tests, designed to be used in that particular
situation. These can be selected with the help of impact analysis.

Executing regression tests is an everyday, informal activity, tightly linked to
implementation. But as an official verification task, its activities need to be
logged and results saved.

A key issue in regression testing is test automation:

 Pre-programmed module tests are the first “regression safety net” and
are run by the developer, usually for one module only.

 During integration, integration tests are run. With continuous integration,
catching regression can be immediate.

 Due to automation, logging and storing of test reports is automatic.

 If model-based testing is used, regression testing can be continuous as
new test cases and system conditions can be generated practically
indefinitely.

 On the system level, manual testing has an important role and
exploratory testing is often used.

Changed
implementation of

module

Re-run all module
tests

Integration –
resulting in

changed system

Integration tests

Specific
regression tests

System level

General
regression tests

Specific
regression tests

110 (128)

Name 5.5.5 Regression Testing

Resulting
Context

Software system verified for regression effects.

Related
Patterns

Software Modification

Impact Analysis

Module Testing and Simulation

Module Integration Testing

Standard
References

IEC 61508-3 (2nd ed.), clause 7.8.2 presents regression testing as a tool in
handling changes in software change process

IEC 61508-3 (2nd ed.), table A.8 presents recommendations for regression
testing at different SIL levels in the software change process

IEC 61508-3 (2nd ed.), table C.8 describes the strictness of various ways of
regression testing in the software change process

Authors Matti Vuori

Status Version 2011-04-29

Notes See also Wikipedia article Regression testing:
http://en.wikipedia.org/wiki/Regression_testing

For Test automation see Wikipedia article Test Automation:
http://en.wikipedia.org/wiki/Test_automation

Tags verification, testing, regression testing, modification

http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Test_automation

111 (128)

Name 5.5.6 Model-Based Testing

Context Conformance between a specification and its implementation needs to be
verified.

Problem How to create tests that cover the specification and can be maintained with
reasonable effort when the specification changes.

Forces The number of tests required increases with the complexity of the
specification. Larger the test suite, more problems there are in the test asset
maintenance.

Solution Instead of manually designing the tests, tests are automatically produced
from formal models that have been created based on the specifications and
the requirements. When something changes, the models can be updated
accordingly and the tests regenerated to reflect the new design. Typically, 2/3
of the defects found with the approach are found already in the manual
modelling phase, which entails early defect detection.

Resulting
Context

Implementation verified for conformance against the specifications. Easy to
modify test assets.

Related
Patterns

Module Testing and Simulation

Module Integration Testing

Software Modification

Standard
References

IEC 61508-3 (2nd ed.), table A.5 presents techniques and measures for
software module testing and integration

IEC 61508-3 (2nd ed.), table B.2 presents techniques and measures for
dynamic analysis and testing

IEC 61508-3 (2nd ed.), table B.3 presents techniques and measures for
functional and black-box testing

IEC 61508-3 (2nd ed.), table C.12 and C.13 describe the strictness of model-
based testing as a technique

Authors Mika Katara

Status Version 2011-05-25

Notes See also Wikipedia article on Model-Based Testing:

http://en.wikipedia.org/wiki/Model-based_testing

Another description of the technique:

https://goldpractice.thedacs.com/practices/mbt/

Tags verification, testing, modelling, modification

http://en.wikipedia.org/wiki/Model-based_testing
https://goldpractice.thedacs.com/practices/mbt/

112 (128)

6 Software Aspects of System Safety Validation

Name 6.1.1 Software Validation Planning

Context Software safety requirements specification has been finalised.

Problem How to develop a plan for validating the safety-related software aspects of
system safety?

Forces Validation is a task that needs to be a planned activity so that the plans can be
assessed to be sufficient for the requirements of IEC 61508 and so that the
validation can afterwards be compared with the plan to see that it has been
carried out properly. Validation of software is also done in the context of the
overall system.

Solution The main process:

 Understand the overall context and the system and the role of software in
it.

 Understand the validation requirements, based on the project’s SIL level.

 Make a clear distinction in all plans between the validation of safety
requirements and the validation of other product requirements.

 Decide on the parties who make the validation, considering the required
independence (for example, independent company unit, external
validator) and a need for certification.

 Create an overall safety plan that ensures that the development and
safety assurance process is sufficient.

 Plan all verification steps so that they ensure that the validation will
proceed smoothly.

 Plan the validation, leaving sufficient calendar time for its activities. This is
usually in a form similar to a project plan. Have close collaboration in this
with the party who will be doing the validation.

 Consider in the plans that the validation process may not pass the first
time and thus changes may need to be made and validation repeated.

 Plan some coordinated collaboration with the party doing the validation so
that the development process can be guided into a positive direction (yet
maintaining the independence of the validator).

 Review the plan with all stakeholders and ensure that everyone
understands the criticality of validation – without it the product cannot be
taken into use.

113 (128)

Name 6.1.1 Software Validation Planning

Resulting
Context

A planned validation process, which can be executed when the product is
ready for validation.

Related
Patterns

Software Validation

Standard
References

IEC 61508-1 (2nd ed.), clause 7.14 describes safety validation requirements

IEC 61508-3 (2nd ed.), clause 7.7 defines the process for system validation.

IEC 61508-3 (2nd ed.), table A.7 presents recommended techniques for
software aspects and properties of system safety validation at different SIL
levels

IEC 61508-3 (2nd ed.), table C.7 describes the strictness of various ways of
application of the software aspects and properties of system safety validation

Authors Matti Vuori

Status Version 2011-04-29

Notes While validation plan should in an “ideal world” be based on stable
requirements, things change and evolve and thus the validation plan needs to
be updated during the development process.

See Wikipedia article Verification and Validation
http://en.wikipedia.org/wiki/Verification_and_validation

Tags validation, software system, software aspects, overall system

Understanding
overall system

Understand safety
requirements

Risks

SIL level

Role of software

Safety requirements allocation

Safety requirements
specification

Plan validation

Plan development

Safety plan

Plan verification

Review plan Update plan as
needed

http://en.wikipedia.org/wiki/Verification_and_validation

114 (128)

Name 6.1.2 Software Validation

Context A plan for validating the software aspects of system safety has been
developed by applying the Software Validation Planning pattern. The
software for the system has been developed by applying the Software
Development pattern.

Problem How to ensure that the integrated system complies with the software safety
requirements specification at the required safety integrity level?

Forces It should be precisely defined when the software fulfils the safety
requirements. The process should also be repeatable and well documented.
The safety of the software part of E/E/PE safety related systems usually
cannot be ensured without the underlying hardware and system environment.

Solution Validation is the final confirmation that the total system meets all the required
objectives and that all the design procedures have been followed. If
compliance with the requirements for safety-related software has already
been established in the safety validation planning (IEC 61508-2 (2nd ed.),
clause 7.7), then the validation need not be repeated. The division of
responsibility should be documented during safety planning (IEC 61508-1
(2nd ed.), chapter 6), as responsibility for conformance with safety validation
may rest with multiple parties.

The validation configuration should be precisely defined and software
validation should be repeatable. It should also be clear when the validation is
complete and has been successfully completed. Unlike normal software
validation, the software part of E/E/PE safety related systems usually cannot
be validated separately from the underlying hardware and system
environment.

The validation is carried out mainly by testing. Analysis, animation and
modelling can be used to supplement the validation activities. The used
software tools are defined in IEC 61508-3 (2nd ed.), sub-clause 7.4.4. The
requirements for safety-related software are specified in software safety
requirements specification (IEC 61508-3 (2nd ed.), clause 7.2).

1. Carry out the validation plan. The validation activities are carried out as
specified in the validation plan. The validation should meet the requirements
given in IEC 61508-3 (2nd ed.), sub-clause 7.7.2.7: The tools used should
meet the requirements of IEC 61508-3 (2nd ed.), sub-clause 7.4.4.

2. Document the responsibilities. If the responsibility for conformance rests
with multiple parties, the division of the responsibility is documented during
safety planning.

3. Document the results. The results of the validation are documented. For
each safety function, the following results are documented:

 Record of validation activities as it is important to be able to retrace the
sequence of activities.

 The version of the validation plan used.

 The safety function being validated.

 The tools used.

 The results.

 Discrepancies between expected and actual results.

115 (128)

Name 6.1.2 Software Validation

4. Analyse the results. The result of validating software aspects of system
safety shall be documented. If there are discrepancies between expected
and actual results, the validation can be continued or aborted with a change
request issued. The decision shall also be documented. To pass the
validation, the tests shall show that all of the specified requirements for safety
related software are correctly met and the software does not perform
unintended functions. The documented results should state whether the
software has passed the validation or not. In the latter case, the reasons for
not passing the validation shall be documented.

If compliance with the requirements for safety-related software has already
been established in the safety validation planning, then the validation does
not need to be repeated. The results of the validation of the software aspects
of system safety should meet the following requirements (IEC 61508-3 (2nd
ed.), sub-clause 7.7.2.9):

 The tests show that all of the specified requirements for safety-related
software are correctly met and the software does not perform unintended
functions.

 Test cases and their results are documented for subsequent analysis
and independent assessment as required by the safety integrity level.

 The documented results of validation states either that the software has
passed the validation or the reasons for not passing the validation.

Resulting
Context

An integrated system that complies with the software safety specification at
the required safety integrity level.

Related
Patterns

Verification of a Work Product

Software Verification Testing

Software Validation Planning

Standard
References

IEC 61508-1 (2nd ed.), clause 7.14 describes safety validation requirements

IEC 61508-3 (2nd ed.), clause 7.7 defines the process for system validation.

IEC 61508-3 (2nd ed.), table A.7 presents recommended techniques for the
software aspects and properties of system safety validation at different SIL
levels

IEC 61508-3 (2nd ed.), table C.7 describes the strictness of various ways of
application of the software aspects and properties of system safety validation

Authors Johannes Koskinen; small edits Matti Vuori

Status Published

Notes See Wikipedia article Verification and Validation
http://en.wikipedia.org/wiki/Verification_and_validation

Tags validation, software system, software aspects, overall system

http://en.wikipedia.org/wiki/Verification_and_validation

116 (128)

Name 6.1.3 Configuration Auditing

Context For validation, the configuration needs to be audited to see what changes to
the system have been made and how the changes have been handled.

Problem How can we assess how the system differs from a last validated baseline?

Forces Each change needs to be verified and validated properly and analysed for
effects to the software system and also the overall system.

Solution A Configuration Audit is a starting point in determining the system’s state. It is
carried out by comparing the configuration to be validated against the
configuration previously validated. After the configuration changes have been
identified, the changes to the configuration items and the actual tasks can be
traced and assessed.

The outputs of this task are:

 A list of changed configuration items.

 Access to all associated tasks – design, risk analysis, implementation,
verification, safety assessment

Resulting
Context

The configuration of the system, its state and changes to the (previous)
baseline are known and validation can proceed.

Related
Patterns

Configuration Management

Software Modification

Software Validation

Configuration to be
validated

Previous validated
configuration

Identify changes
with configuration
management tool

List of changed
configuration items

Assess handling of
changed item and

the changed
system

ALM system or
similar

117 (128)

Name 6.1.3 Configuration Auditing

Standard
References

Authors Matti Vuori

Status Version 2011-04-29

Notes For Application Lifecycle Management systems, see Wikipedia article
Application lifecycle management:
http://en.wikipedia.org/wiki/Application_lifecycle_management

Tags configuration, auditing, validation

http://en.wikipedia.org/wiki/Application_lifecycle_management

118 (128)

7 Software Modification

Name 7.1.1 Software Modification Planning

Context Software modification should be planned before carrying out the actual
modification activities.

Problem How to plan modification of the software so that the modification activities can
be performed safely and so that the resulting product is fully understood and
can be validated?

Forces Software modification changes the validated configuration that designs and
implementations are based on. Thus, it invalidates aspects of the system and
may cause a lot of work and unexpected problems if not carried out in a
systematic, risk-mitigating manner.

Solution Software modifications are carried out using a well planned systematic
process.

Often, a company or unit has instructions for the modification process which
consider the information systems and other tools used. The modification
process is integrated or linked in the project’s Safety Plan.

Resulting
Context

A plan for making modification in the software. The process can be project-
based, created during safety planning or a general instruction for the software
development unit or company and chosen for the project with a clear,
documented decision.

Related
Patterns

The plan is executed in the Software Modification pattern.

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.8.2 present software modification
principles

IEC 61508-3 (2nd ed.), table A.8 presents recommended techniques and
properties used in modifying at different SIL levels

IEC 61508-3 (2nd ed.), table C.8 describes the strictness of various ways of
application of techniques and properties used in modifying software

Authors Matti Vuori

Status Version 2011-04-29

Project Safety Plan

Standard
requirements

Company / unit
instructions and

tools

Procedure and
rules for software

modification

119 (128)

Name 7.1.1 Software Modification Planning

Notes

Tags modification, software modification, impact analysis, planning

Name 7.1.2 Software Modification

Context There is an E/E/PE safety-related system where Software Validation has been
applied. The software may need modifications, for example because of
modifications to the overall safety requirements.

Problem How to ensure that the required software systematic capability is sustained
when the validated software is modified?

Forces Based on IEC 61508-3 (2nd ed.) standard, software cannot be maintained – it is
always modified. When the validated software is modified (e.g. corrected or
enhanced), it should be ensured that the functional safety is appropriate after
the modification. Modification should be complete and correct with respect to
its requirements. Unwanted behaviour caused by the modification shall be
avoided. In addition, the design of the modified software should be verifiable
and testable.

Solution A systematic modification procedure goes in the following way:

 A change request is made.

 Impact analysis is made for the proposed modification.

 It is determined whether a hazard and risk analysis is required and which
software safety lifecycle phases will be repeated. It may even be
necessary to implement a full hazard and risk analysis.

 The modifications and verification are planned in detail. The planning

should cover the identification of required staff, the detailed specification
for the modifications, verification, and testing of the modifications (see IEC
61508-1 (2nd ed.), chapter 6).

 After the planning, the modifications are carried out as planned.

 During the modification, analysis and safety assessment are applied in the
same manner as when developing a new functionality.

 The modification will result in changed configuration and will require
verification, regression testing and re-validation (unless it is a non-safety
related feature).

 Details of all modifications, including log files and re-verification and re-
validation of data and results, shall be documented.

120 (128)

Name 7.1.2 Software Modification

Resulting
Context

A modified software system, verified appropriately. A changed configuration.
Information for re-validation of the system.

Related
Patterns

Software Modification Planning

Impact Analysis

Regression Testing

Model-Based Testing

Standard
References

IEC 61508-3 (2nd ed.), clause 7.8 describes guidelines to corrections,
enhancements or adaptations to the validated software.

IEC 61508-1 (2nd ed.), clause 7.16 defines software modification procedures.

IEC 61508-3, table A.8 presents recommended techniques and properties
used in modifying at different SIL levels

IEC 61508-3 (2nd ed.), table C.8 describes the strictness of various ways of
application of techniques and properties used in modifying software

Authors Johannes Koskinen, Matti Vuori

Change request

Impact analysis

Assess need of
hazard and risk
analysis update

Risk analysis and
return to previous

phases

Detailed design
and

implementation

Analysis and
safety assessment

Verification

Re-validation
Changed

configuration

Regression testing

121 (128)

Name 7.1.2 Software Modification

Status Version 2011-05-26

Notes Wikipedia article Change management (engineering) describes in generic level
the change management process:
http://en.wikipedia.org/wiki/Change_management_(engineering)

Tags modification, software modification, impact analysis

Name 7.1.3 Impact Analysis

Context When a change is considered to any element of software requirements,
architecture, design or implementation, its impact on the system and safety
needs to be assessed.

Problem How can we best assess how a proposed change impacts the system?

Forces In any system, of any complexity, changes impact many other things, even
outside the scope of the change. We need to identify where and how the
change impacts so we can verify and validate the system after the change.
Based on the analysis we may see that the change may not be feasible due
to the amount of work or increased risk, compared with the benefits.

Solution The analysis consists of many tasks:

 Usually, the proposal for change (change request) includes a “pre-
understanding” of what impacts the change might have. After that, an
expert or a small team can consider the impact.

 Tracing of design links. When, for example, a requirement changes, we
need to look into what designs and implementations it may invalidate or
affect. Forward tracing is used for that.

 Effects of code changes. Where a code module or function is used or
linked to, can be analysed with special analysis tools, or manually. All
other modules will need to be looked into for known affects and also for
unknown regression effects.

 Decision of whether the change would cause a need for hazard and risk
analysis (especially if it changes a safety-related functionality of the
system, the risks of which would need to be reanalysed).

Tools:

 Modern tools will greatly help in analysing the impact as they can
automatically report all known relations between the part to be changed
and other parts of the system.

 When using model-based development, simulations can be used in
analysing the impact.

 A fishbone diagram is a traditional tool to assess how changes would
affect all parts of the production system: technology, people, operation,
processes, overall system, etc. Other analytical tools can be suitable,
depending on the situation. This analysis helps in understanding the
safety percussions and need for a formal safety analysis.

 Many companies have a checklist to aid in identifying impacts and also in
reviewing the change proposal in question.

http://en.wikipedia.org/wiki/Change_management_(engineering)

122 (128)

Name 7.1.3 Impact Analysis

The outputs of Impact Analysis include:

 A report, to be used in accepting the modification presenting the impacts,
the specification, design and implementation required (or to be repeated)
and how the change would affect safety; especially whether a safety
analysis would be required.

 Possibly a list of software components that should be regression tested
due to the change. Understanding of this will be updated when the
change gets into detailed design.

Resulting
Context

A change request fully understood for its impact.

Related
Patterns

Software Modification

Standard
References

IEC 61508-3 (2nd ed.), sub-clause 7.8.2.3

Authors Matti Vuori

Status Version 2011-04-29

Notes Impact analysis also a tool to help project stakeholders to understand that
there are no trivial changes, especially in safety-critical development. A
simple looking change in code or user interface requires a lot of analysis,
testing (including regression tests), documentation and other work.

See also Wikipedia article Change Impact Analysis:
http://en.wikipedia.org/wiki/Change_impact_analysis

Tags impact analysis, modification, software modification

Change request

Deterministic
impact areas

(tracing)

Impacts

Identified impact
areas (modelling,

analysis)

Possible
regression

Other technical
areas, operational
system, concept

http://en.wikipedia.org/wiki/Change_impact_analysis

123 (128)

8 Functional Safety Assessment

Name 8.1.1 Functional Safety Assessment

Context A software design has been drafted and its safety needs to be assessed

Problem How to analytically assess the functional safety of software?

Forces Safety assessment is obviously a very critical phase in safety-critical
development.

Solution Safety is assessed in numerous ways that complement each other. It is
based on the requirements and specification of the system. Through
analysis, a team will assess the behaviour of the software system and identify
possible safety issues. Corrective actions are planned for these. The
assessment also produces test cases that verify and validate the correct
handling of system failures and disturbances identified in the analysis.

Key points:

 The object of analysis can be the whole software system or a subsystem.
Thus, the analysis should be carried out at various abstraction levels and
repeated many times during the course of development.

 While the analysis is based on specification, it requires realistic
understanding of the environment where the system is used, possible
deviations and disturbances, etc.

 Systematic methods / techniques are used. Those include checklists and
failure analysis techniques like FMEA, Cause and Consequence
Analysis. IEC 61508-3 (2nd ed.), tables A.10 and C.10 present possible
techniques.

 The analysis team benefits from the participation of people who have not
participated in the design of the system analysed, as they have less

Software system

Software
requirements

Software
specification

Analysis

Corrective actions

Additions to Safety
Manual

Test cases (e.g.
failures that the
system needs to

handle)

124 (128)

Name 8.1.1 Functional Safety Assessment

presuppositions and can more easily identify possible issues.

 The analysis needs to be documented.

 Depending on the time of analysis, the corrective actions may require
processing through the Software Modification process pattern.

Resulting
Context

An analysed software system or subsystem. A number of corrections to
specifications or requirements. Information to be included in the Safety
Manual of the product. Test cases that verify handling of disturbances.

Related
Patterns

Software System Design

Failure Analysis

Standard
References

IEC 61508-3 (2nd ed.), chapter 8 describes the principles of safety
assessment

IEC 61508-3 (2nd ed.), table A.10 presents recommended techniques for
functional safety assessment at different SIL levels

IEC 61508-3 (2nd ed.), table C.10 describes the strictness of various ways of
application of techniques for functional safety assessment

Authors Matti Vuori

Status Version 2011-04-29

Notes For safety analysis see Wikipedia article Safety Engineering:
http://en.wikipedia.org/wiki/Safety_engineering

Tags safety assessment, functional safety assessment, safety, risk, assessment

http://en.wikipedia.org/wiki/Safety_engineering

125 (128)

Name 8.1.2 Failure Analysis

Context Failure analysis is a generic paradigm used in analysing identified failures (in
testing or operation) or analysis of designs of how they handle failures.

Problem How can we analyse software errors and system failures in order to prevent
them occurring again?

How can we understand how the system handles failures and whether it does
it properly?

How can we understand how failures propagate though the system?

Forces Failures are a very critical issue to handle correctly in all safety-critical
systems and thus analysing them requires a systematic approach.

Solution Systematic analysis in the design phase, using techniques like:

 Cause consequence analysis.

 Event tree analysis.

 Fault tree analysis.

 Software functional failure analysis.

The picture shows some generic ways of how failure analysis helps
understand the system and how to make it more robust.

Resulting
Context

With the help of analysis, the system and its development are understood
better. Failures identified in testing can be avoided.

Related
Patterns

Functional Safety assessment

Suspect and Prohibit

Disturbances

Handling

Subsystem failures

Common causes

Safety?

Corrective actions

Modelling of
events

Modelling of systems and
interactions

Experience

126 (128)

Name 8.1.2 Failure Analysis

Standard
References

IEC 61508-3 (2nd ed.), table B.4 presents recommended failure analysis
techniques at different SIL levels

IEC 61508-3 (2nd ed.), table C.14 describes the strictness of various ways of
application of techniques for software failure analysis

Authors Matti Vuori

Status Version 2011-04-29

Notes As an example of analysis approach see Wikipedia article Failure mode and
effects analysis:
http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

Tags failure analysis, analysis, design analysis, failures, suspect, safety
assessment, FMEA, Cause consequence analysis, fault tree analysis, event
tree analysis

http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

127 (128)

9 Software Operation & Maintenance Procedures

Name 9.1.1 Writing of the Safety Manual

Context During the course of software system development, its use is understood and
possible safety issues are identified, as well as rules to follow in operation to
ensure safety.

Problem How can we communicate our knowledge of safe use to the users?

Forces Every system needs instructions for use. In safety-critical development,
safety issues have an important role in the instructions.

Solution The safety related issues are presented in a Safety Manual and other
operation manuals.

Key points:

 The information included in the Safety Manual is collected in all phases
of the development.

 Writing of the manual should be clear and concise, as the manual should
be understood by its users.

 When the software is embedded, much of its safety information is
expressed through the Safety Manuals of the PE system and the overall
system.

Software related
hazards

Hazard and risk
analysis

Functional safety
assessment

Safety issues

Software safety
requirements

Functional
specification

Other
documentation

(Operating
instructions,
installation,

configuration…)

Safety Manual for
operation

128 (128)

Name 9.1.1 Writing of the Safety Manual

 All safety issues that can be resolved by technical means should be
resolved so, and not by warnings in the Safety Manual, which is the last
resort of handling hazards.

 User documentation is an important part of the overall system and is
addressed in validation.

Resulting
Context

A software system which is documented for operation so that it can be safely
applied in the context of the overall system.

Related
Patterns

Software Safety Requirements Specification

Functional Safety Assessment

Standard
References

IEC 61508-1 (2nd ed.), table A.3 presents an example of a documentation
structure for information related to the software safety lifecycle

IEC 61508-1 (2nd ed.), Annex D describes the requirements for the Safety
Manual

Authors Matti Vuori

Status Updated 2011-04-26

Notes

Tags safety manual, operation, maintenance, instructions, safety, risk

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

