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ABSTRACT

Background and aims: Atherogenic index of plasma (AIP), defined as the logarithm of triglycer-
ides to high-density lipoprotein cholesterol (HDL-C) ratio, is a strong predictor of future cardio-
vascular disease. Our aim was to examine the association of AIP with haemodynamic variables
in normotensive and never-treated hypertensive subjects in a cross-sectional study.

Methods: Supine haemodynamics in 615 subjects without antihypertensive and lipid-lowering
medications were examined using whole-body impedance cardiography and radial pulse wave
analysis. Linear regression analysis was applied to investigate the association of AIP with haemo-
dynamic variables and age, sex, body mass index (BMI), smoking status, alcohol consumption,
plasma C-reactive protein, electrolytes, uric acid, low density lipoprotein cholesterol (LDL-C), esti-
mated glomerular filtration rate, and quantitative insulin sensitivity check index.

Results: The demographics and laboratory values of the study population were (mean + 95%
confidence interval): age 44.9+ 1.0 years, BMI 26.8 +0.4 kg/m?, office blood pressure 140.6 + 1.6/
89.4+1.0mmHg, total cholesterol 5.2+0.08, LDL-C 3.1+0.08, triglycerides 1.2+0.08, HDL-C
1.6+£0.04 mmol/l, and AIP —0.15+0.02. Age (standardized coefficient Beta 0.508, p <.001) and
aortic systolic blood pressure (Beta 0.239, p <.001) presented with the strongest associations
with pulse wave velocity. However, AIP was also associated with pulse wave velocity (Beta
0.145, p <.001). AIP was not related with aortic or radial blood pressure, cardiac output, sys-
temic vascular resistance, or augmentation index.

Conclusions: AIP is directly and independently associated with arterial stiffness, a variable
strongly related to cardiovascular risk. This supports more widespread use of AIP in standard
clinical cardiovascular disease risk evaluation.

ARTICLE HISTORY
Received 5 December 2018
Revised 15 January 2019
Accepted 2 February 2019

KEYWORDS

arterial stiffness;
atherogenic index;
haemodynamics; HDL
cholesterol; hypertension;
triglycerides

Introduction o ] )
[3,4]. In clinical practice, the influence of LDL-C has

Cardiovascular diseases due to atherosclerosis and its
complications, such as myocardial infarction and
stroke, are the leading cause of mortality worldwide
representing 31% of all deaths [1]. Among 82.6 mil-
lion U.S. adults, the prevalence of cardiovascular dis-
eases due to high blood pressure (BP), coronary heart
disease, and stroke is estimated to exceed 33%, with
the majority of the cases found in subjects older than
60 years of age [2].

Dyslipidaemia is a major risk factor for cardiovas-
cular disease, and the primary focus has been on the
dominant role of low density lipoprotein cholesterol
(LDL-C) in atherosclerosis. The benefits of LDL-C
lowering in cardiovascular disease are well recognized

overridden the significance of high density lipoprotein
cholesterol (HDL-C) and triglycerides [3,4]. Previous
studies have reported that not only low, but also
extremely high, levels of HDL-C increase the risk of
cardiovascular disease and mortality [5-7]. Elevated
serum triglycerides level is also a risk factor for car-
diovascular disease [8,9]. A meta-analysis of 17 popu-
lation-based prospective studies with 46,413 men and
10,864 women reported that plasma triglyceride level,
independent of HDL-C, was a risk factor for cardio-
vascular disease [10].

Increased pulse wave velocity (PWYV) that designa-
tes arterial stiffness is a strong predictor of cardiovas-
cular disease and mortality, independent of the level
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of BP [11]. The role of unfavourable lipid profile in
atherosclerosis is well recognized, but the associations
of plasma lipids with arterial stiffness are not straight-
forward. In spite of the dominant role of LDL-C in
atherosclerosis, the relationship of LDL-C with PWV
is rather weak [12]. Recently, we found that LDL-C was
not associated with PWV when the level of BP was
taken into account [13], and this finding is concordant
with the majority of published papers [12]. High trigly-
cerides concentration in 11,640 and 1,447 subjects, and
low HDL-C levels in 15,302 subjects, were associated
with increased PWV [14-16]. However, Wang et al.
found that HDL-C was inversely associated with PWV
in 2,375 Chinese subjects, while total cholesterol or tri-
glycerides were not associated with PWV [17].

The atherogenic index of plasma (AIP) is defined as
the logarithm of plasma triglycerides to HDL-C ratio
[18-22]. In contrast to plasma triglycerides concentra-
tion, AIP shows normal distribution [23], and is there-
fore well suited for the mathematical modelling of
cardiovascular variables. AIP is particularly useful in
predicting plasma atherogenicity [18,20-22]. AIP is
also a strong marker for the future risk of atheroscler-
osis and cardiovascular disease [18-21,24-27], and the
routine calculation of AIP in clinical cardiovascular
disease risk evaluation would seem warranted.

To our knowledge, the association of AIP with
haemodynamic variables has not been previously
examined. Due to the weak association of LDL-C
with arterial stiffness in our previous report [13], our
objective in this cross-sectional study was to examine
the associations of AIP with functional haemo-
dynamic variables, and especially to test the hypoth-
esis whether AIP is related to arterial stiffness.

Methods
Participants

All subjects were from an ongoing study with the pri-
mary aim to examine haemodynamics in primary
and secondary hypertension versus normotensive con-
trols (DYNAMIC study; ClinicalTrails.gov identifier
NCT01742702). The participant
recently published in the form of a study flow-chart
[13], and altogether 615 from 1349 subjects were
included. The exclusion criteria for the study were
volunteers taking (1) statin or other lipid-lowering or
BP-lowering medication, or with a history of (2) cor-
onary artery disease, (3) stroke, (4) heart failure, (5)
valvular heart disease, (6) diabetes, (7) chronic kidney
disease, (8) secondary hypertension, (9) alcohol or
substance abuse, (10) psychiatric illness other than

recruitment was

mild depression or anxiety, or (11) abnormal heart
rhythm other than sinus.

Physical examination and office BP measurements
were performed by a medical doctor, and routine
laboratory analyses for elevated BP according to the
guidelines of the European Society of Hypertension
were performed to all enrolled subjects [28]. Beside the
medical history, lifestyle habits and use of dietary sup-
plements, medicines, and other substances not registered
as drugs were also documented along with information
about smoking and alcohol consumption as standard
drinks (~12 grams of absolute alcohol) per week.

The study included 314 men and 301 women,
altogether 615 normotensive and never-treated sub-
jects with primary hypertension, aged 19-72 years.
Based on the office BP measurements on a single
occasion, 249 (40.5%) of the participants were normo-
tensive and 366 (59.5%) were hypertensive. The sub-
jects were divided into age- and sex-adjusted AIP
tertiles (Tertile 1, n =202; Tertile 2, n =208; Tertile 3,
n=205). The study complies with the declaration of
Helsinki, and was approved by the ethics committee
of the Tampere University Hospital (study code
R06086M) and the Finnish Medicines Agency (Eudra-
CT registration number 2006-002065-39). Signed
informed consent was obtained from all participants.

Altogether 230 (37.4%) of the 615 persons used some
medications. Full description about medicine consump-
tion has been described in our previous study [13].

Laboratory analyses

Blood and wurine sampling was performed after
~12hours of fasting. Plasma total, HDL-C, LDL-C,
triglycerides, C-reactive protein (CRP), sodium, potas-
sium, glucose, cystatin-C, and creatinine concentra-
tions were determined using Cobas Integra 700/800
(F. Hoffmann-Laroche Ltd, Basel; Switzerland) or
Cobas6000, module c501 (Roche Diagnostics, Basel,
Switzerland), insulin using electrochemiluminescence
immunoassay (Cobas e411, Roche Diagnostics), and
blood cell count by ADVIA 120 or 2120 (Bayer
Health Care, Tarrytown, NY, USA). To exclude
patients with renal disease, urine dipstick analysis was
made by an automated refractometer test (Siemens
Clinitec Atlas or Advantus, Siemens Healthcare
GmbH, Erlangen, Germany). AIP was defined as
Lgio(plasma triglycerides/plasma HDL-C) [18-21].
Quantitative insulin sensitivity check index (QUICKI)
was calculated for evaluation of insulin sensitivity
[29], and glomerular filtration rate (eGFR) was esti-
mated using the CKD-EPI cystatin C formula [30].



Pulse wave analysis

Continuous pulse wave and radial BP were recorded
using a tonometric sensor (Colin BP-508T, Colin
Medical Instruments Corp., USA) that was attached
on the left radial artery pulsation pulse with a wrist
band. The radial BP signal was calibrated twice during
each 5minute-period by right brachial BP measure-
ments. Aortic BP was derived with the SphygmoCor
system  (SpygmoCor PWMx®, AtCor medical,
Australia) [31], and augmentation index (Alx, aug-
mented pressure/pulse pressure*100), and Alx
adjusted to heart rate 75/min (AIx@75) were deter-
mined [32].

Whole-body impedance cardiography

Beat-to-beat heart rate, stroke volume, cardiac output,
and PWV were recorded using whole-body imped-
ance cardiography (CircMon®, JR Medical Ltd,
Tallinn, Estonia). This method detects changes in
body electrical impedance during cardiac cycles, and
the electrode configuration has been previously
reported [33]. Systemic vascular resistance was calcu-
lated from the tonometric BP and cardiac index
measured by CircMon® so that normal central venous
pressure (4 mmHg) was subtracted from mean arterial
pressure and the value was divided by cardiac output.
Systemic vascular resistance and cardiac output were
related to body surface area and presented as indexes
(cardiac index, and systemic vascular resistance index
(SVRI), respectively). The stroke volume values meas-
ured using CircMon® correlate well with 3 dimen-
sional ultrasound [34]. The supine cardiac output
values measured with CircMon® correlate well with
the values measured using thermodilution [33].

To measure the PWV, the CircMon® software
records the time difference between the onset of the
decrease in the impedance of the whole-body signal
and the signal from the popliteal artery region, and
PWYV is then determined from the time difference
and the distance between the electrodes [35]. Thus,
the values measured using this method reflect cardio-
popliteal PWV. The whole-body impedance cardiog-
raphy tends to overestimate PWV, and a validated
equation was utilized to calculate values correspond
to the ultrasound method (PWV =PWVimpedance *
0.696 + 0.864) [35]. By the use of this equation, the
PWV values recorded using CircMon® show very
good correlations with values measured using either
the tonometric SphygmoCor® method (r=0.82, bias
0.02 m/s, 95% confidence interval —0.21 to 0.25) [32]
or ultrasound (r=0.91) [35].
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Experimental protocol

Haemodynamics were recorded by research nurses in
a quiet, temperature-controlled laboratory. Smoking,
caffeine containing products or heavy meals were to
be avoided for >4hours, and alcohol consumption
for >24hours prior to the participation in the studies.
The subjects rested supine, the left arm with the tono-
metric sensor abducted to 90 degrees in an arm sup-
port. After getting accustomed to the laboratory for
about 10minutes, supine haemodynamics were
recorded for five minutes. For the statistical analyses
the mean values of each 1-minute period of recording
were calculated. The good repeatability and reprodu-
cibility of the measurement protocol has been demon-
strated [36].

Statistics

Continuous variables were expressed as the mean,
standard deviation (SD) or 95% confidence interval
(CI) of the mean. Baseline characteristics were
depicted as age- and sex-adjusted tertiles of AIP
(Table 1). The demographic and laboratory data was
analysed using analysis of variance (ANOVA), and
the Bonferroni correction was applied in the post-hoc
analyses. For the illustrations, the haemodynamic dif-
ferences between the tertiles were examined using
one-way ANOVA with the Bonferroni correction in
the post-hoc analyses. The homogeneity of variances
was tested with the Levene’s test.

Spearman’s correlations (rS) were calculated, and
the variables that correlated with the variable of inter-
est with p <.1 were included in the regression analy-
ses, as appropriate. The skewed distributions of CRP
and PWV were corrected by Lg;,-transformation for
these analyses, while alcohol intake was treated as a
series of discrete variables that were assigned a score
of either 0 or 1; cut-points for women 0, 1-7, 8-14,
and above 15 doses per week; for men 0, 1-14, 15-24,
and above 25 doses per week, according to the
Finnish Guidelines [37]. Multiple regression analysis
with stepwise elimination was applied to evaluate the
associations between age, sex, body mass index
(BMI), smoking status, alcohol consumption, insulin
sensitivity evaluated by QUICKI [29], plasma CRP,
sodium, uric acid, LDL-C, AIP, and cystatin C based
eGFR [30] (independent variables), and radial systolic
and diastolic BP, heart rate, and PWV (dependent
variables). In the case of PWYV, heart rate was also
included as an independent variable. The above varia-
bles comprised the model 1. The variables in the
model 2 were model 1+PWV (independent
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Table 1. Age and sex adjusted characteristics of the study population in tertiles of atherogenic index of plasma.

Overall Tertile 1 Tertile 2 Tertile 3

Male / female (n/n) 314 /301 104 / 98 106 / 102 104 / 101
Age (years) 449 (11.9) 447 (12.3) 44,1 (11.9) 449 (11.6)
BMI (kg/mz) 26.8 (4.4) 25.1 (3.7) 26.4 (4.0)* 289 (4.7)*T
Alcohol (standard doses/week) 45 (5.7) 3.9 (54) 42 (53) 5.2 (6.4)
Smokers (number / percentage) 76 / 12.4% 19/ 9.4% 27 /1 13% 30 / 14.6%
Office blood pressure (mmHg)

Systolic 140.6 (20.6) 135.7 (19.8) 140.2 (20.3) 145.7 (20‘7)*Jr

Diastolic 89.5 (12.3) 86.1 (12.1) 89.5 (12.7)* 93.0 (11.4)*"
eGFR (ml/min per 1.73 mz) 98.8 (18.1) 102.6 (16.8) 97.9 (18.2)* 95.1 (18.7)*
QUICKI 0.360 (0.042) 0.375 (0.048) 0.360 (0.037)* 0.341 (0. 040)””r
Creatinine (umol/l) 74.0 (13.5) 724 (13.2) 75.0 (13.0) 73.8 (14.3)
Cystatin C (mg/l) 0.85 (0.15) 0.81 (0.14) 0.85 (0.14)* 0.87 (0.15)*
Sodium (mmol/l) 140.4 (2.0) 141.0 (2.0) 140.3 (1.8) 140.3 (2.1)
Potassium (mmol/l) 3.81 (0.28) 3.80 (0.29) 3.78 (0.27) 3.83 (0.28)
Uric acid (umol/l) 303 (76) 280 (71) 300 (70)* 327 (81)*Jr
CRP (mg/l) 7 (2.9) 13 (23) 4(1.7) 24 (4.0)%"
Total cholesterol (mmol/l) 2 (1.0) 4.83 (1.0) 5. 17 (1.0)* 5.44 (1.0)*"
Triglycerides (mmol/l) 1 23 (0.77) 0.70 (0.21) 1.09 (0.33)* 1.92 (0.92)**
HDL-C (mmol/l) 1. 58 (0.44) 1.90 (0.40) 1.58 (0.37)* 1.30 (0.34)*Jr
LDL-C (mmol/l) 1(1.0) 2.70 (0.90) 3.12 (0.90)* 3.40 (1.0)*
Atherogenic index —0. 15 (0.31) —0.44 (0.17) —0. 17 (0.16)* 0.15 (0. 23)"‘Jr
Insulin (mU/L) 8.89 (17.0) 8.1 (28.4) 6 (4.7) 10.9 (7.10)
Glucose (mmol/l) 5.44 (0.59) 533 (0.62) 5 40 (0.52) 5.60 (0. SB)*Jr

Mean (standard deviation),*p < .05 vs Tertile 1; *p <.05 vs Tertile 2.

BMI: body mass index; eGFR: cystatin C based CDK-EPI formula for estimated glomerular filtration rate [30]; QUICKI: quantitative insulin sensitivity check
index [29]; CRP: C-reactive protein; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol.

variables) for radial systolic and diastolic BP and
heart rate (dependent variables), and model 1+ aortic
systolic BP (independent variables) for PWV (depend-
ent variable). The coefficient B, standardized coeffi-
cient Beta, and R squared values were presented in
the Table 2, and p<.05 was considered statistically
significant. SPSS version 25.0 (IBM SPSS Statistics,
Armonk, NY, USA) was used for the statistics.

Results
Study population and laboratory values

Altogether, 314 (51%) male and 301 (49%) female
subjects were included in the analyses (Table 1). The
age range was 19-72 years. The demographics and
laboratory values of the study population were
(mean+SD): age 45+12 years, BMI 27+4kg/m?
office systolic/diastolic BP 141+21/90+12 mmHg,
eGFR 98.8 +18.1 ml/min/1.73 m’, total cholesterol
5.2+1.0, LDL-C 3.1+ 0.6, triglycerides 1.2+0.8, HDL-
C 1.6 +0.4mmol/l, and AIP —0.15+0.3 (Table 1). In
the morning urine sample, none of the study partici-
pants had glucosuria or proteinuria. The fasting
plasma glucose was in the range of 7.1-10.3 mmol/l in
6 (1%) subjects, while impaired fasting plasma glucose
(6.1-7.0mmol/l) was detected in 80 (13%) of
the subjects.

The participants were divided into age- and sex-
adjusted AIP tertiles. The average AIP in the tertiles

ranged from —0.44+0.17 (Tertile 1) to 0.15+0.23
(Tertile 3) (Table 1). The age and sex adjusted AIP
tertiles presented with differences in BMI, office sys-
tolic and diastolic BP, eGFR, QUICKI, and plasma
cystatin C, uric acid, CRP, total cholesterol, triglycer-
ides, HDL-C, LDL-C and glucose concentrations. Age,
alcohol intake, smoking status, and plasma creatinine,
sodium, potassium, and insulin concentrations were
not different between the tertiles (Table 1).

Haemodynamic variables in the tertiles of AIP
adjusted for age and sex

Radial and aortic systolic and diastolic BP and heart
rate were higher in the highest than in the lowest AIP
tertile, while radial systolic BP and heart rate were
also higher in the highest versus the middle AIP ter-
tile (Figures 1(A-D), Figure 2(A)). Cardiac index,
SVRI and AIx@75 (Figures 2(B,C), Figure 3(A)) were
not different between the tertiles. PWV was higher in
the highest and the middle tertile than in the lowest
AIP tertile (Figure 3(B)).

AIP and haemodynamic variables in stepwise
linear regression analyses

To examine the relationships of AIP with BP, heart
rate and PWV, we performed linear regression analy-
ses with two applied models (see methods) (Table 2).
The regression analyses were not performed for
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Table 2. Explanatory factors for haemodynamic variables in linear regression analyses with stepwise elimination.

Radial systolic BP: model 1 (R squared 0.278)

Radial systolic BP: model 2 (R squared 0.338)

B Beta p B Beta p
(Constant) 5.667 915 (Constant) —54.968 281
eGFR —0.265 —0.251 <.001 PWV 81.530 0.396 <.001
BMI 0.613 0.142 .001 QUICKI —53.779 —0.120 .001
Male sex 5.257 0.137 <.001 eGFR —0.207 —0.196 <.001
LDL-C 3.242 0.162 <.001 Male sex 3.270 0.086 .021
Sodium 1.000 0.102 .006 Sodium 1.089 0.111 .002
QUICKI —45.295 —0.101 .010 LDL-C 2.220 0.111 .006
Present smoker —4.690 —0.081 .025 Age —0.209 —0.130 .011
Radial diastolic BP: model 1 (R squared 0.274) Radial diastolic BP: model 2 (R squared 0.333)

B Beta p B Beta p
(Constant) 21.741 .540 (Constant) —37.667 254
eGFR —0.199 —0.282 <.001 PWV 54.136 0.393 <.001
LDL-C 2227 0.166 <.001 eGFR —0.157 —0.222 <.001
QUICKI —31.547 —0.105 .008 QUICKI —33.656 —0.112 .002
Male sex 2.851 0.112 .003 LDL-C 1.622 0.121 .003
High alcohol intake 8.612 0.096 .008 Sodium 0.661 0.101 .004
Present smoker —3.173 —0.082 .024 Age —0.150 —0.140 .006
BMI 0.276 0.096 .024 High alcohol intake 6.602 0.074 .033
Sodium 0.495 0.076 .042
Heart rate: model 1 (R squared 0.108) Heart rate: model 2 (R squared 0.171)

B Beta p B Beta p
(Constant) 80.017 <.001 (Constant) 51.106 <.001
QUICKI —38.761 —0.172 <.001 PWV 43.525 0.421 <.001
CRP 2.310 0.096 .023 QUICKI —42.282 —0.188 <.001
Male sex —3.532 —0.184 <.001 Male sex —4.161 —0.217 <.001
Atherogenic index 4.485 0.143 .003 Age —0.215 —0.266 <.001
Moderate alcohol intake 3.798 0.111 .006 Moderate alcohol intake 4584 0.134 .001

Previous smoker —1.709 —0.082 .037

Pulse wave velocity: model 1 (R squared 0.582)

Pulse wave velocity: model 2 (R squared 0.616)

B Beta p B Beta p

(Constant) 0.482 <.001 (Constant) 0.444 <.001
Age 0.004 0.567 <.001 Age 0.004 0.508 <.001
Atherogenic index 0.030 0.100 .007 Aortic systolic BP 0.001 0.239 <.001
Heart rate 0.002 0.197 <.001 Atherogenic index 0.044 0.145 <.001
Uric acid 0.0002 0.129 .001 Heart rate 0.002 0.174 <.001
Present smoker —0.024 —0.086 .002 Uric acid 0.0002 0.161 <.001
LDL-C 0.007 0.076 .021 Present smoker —0.021 —0.076 .004
BMI 0.002 0.079 .020

Male sex 0.015 0.080 .023

Variables in model 1: age, sex, BMI, smoking status, categorised alcohol consumption, QUICKI, Lgqo of plasma CRP, sodium, uric acid, LDL-C, atherogenic
index, and eGFR [30], and for PWV also heart rate. Model 2: model 1+ PWV; for PWV model 2: model 1 + aortic systolic BP.

Blood pressure (BP), coefficient of regression (B), standardized coefficient of regression (Beta), cystatin C based CDK-EPI formula for estimated glomerular
filtration rate (eGFR) [30], body mass index (BMI), low density lipoprotein cholesterol (LDL-C), quantitative insulin sensitivity check index (QUICKI) [29];
the skewed distributions of C-reactive protein (CRP) and pulse wave velocity (PWV) were Lg,o transformed.

cardiac index and SVRI, as these variables were not
different between the AIP tertiles (Figures 2(B,C)).
The univariate correlations (rS) between AIP and
radial systolic and diastolic BP, heart rate, and PWV
were 0.296, 0.252, 0.169, and 0.401 (p <.001 for all),
respectively.

In the regressions analyses AIP was not an
explanatory factor for radial systolic and diastolic BP
in either model, in contrast to PWYV, QUICKI,
eGFR, age, sex, BMI, present smoker, high alcohol
consumption, and plasma sodium and LDL-C concen-
trations (Table 2). AIP was a moderate explanatory
factor for heart rate in model 1, in addition to

QUICKI, CRP, sex, and moderate alcohol consump-
tion, however when PWV was included in the model,
AIP was no longer an explanatory factor for heart
rate (Table 2).

In both of the applied models, AIP was a signifi-
cant independent explanatory factor for PWV
(Table 2). The other significant explanatory factors
for PWV were age, aortic systolic BP, heart rate,
plasma uric acid and present smoking (Table 2, model
2). If aortic systolic BP was replaced by aortic mean
BP or aortic diastolic BP in the model 2, AIP still
remained as an independent explanatory factor for
PWYV (data not shown).
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Figure 1. Averages of radial systolic (A) and diastolic (B) blood pressure, and aortic systolic (C) and diastolic (D) blood pressure in
age- and sex-adjusted tertiles of atherogenic index of plasma (AIP) during 5-minute recordings in the supine position. Tertile 1
(n=202), Tertile 2 (n=208), and Tertile 3 (n=205); mean and 95% confidence interval; *p < .05 vs Tertile 1; *p< .05 vs Tertile

2, one-way ANOVA.

Discussion

There is paucity of studies on the associations of AIP
with haemodynamic variables. Although some reports
have associated triglycerides and HDL-C with arterial
stiffness [14-16], all studies do not support this find-
ing [38-40]. Moreover, the association of LDL-C with
arterial stiffness has been surprisingly weak in the
published literature [12,13]. Therefore, our goal was
to assess the association between AIP and functional
cardiovascular variables using non-invasive recordings
of haemodynamics. The present results showed that

AIP was independently associated with arterial stiff-
ness, while it was not related to aortic or radial BP,
cardiac output, systemic vascular resistance, or AIx.
The present evaluation of arterial stiffness was per-
formed by the measurement of cardio-popliteal PWYV,
the pressure wave thus travelling along the thoracic
and abdominal aorta, iliac artery, and the femoral
artery. The elastic properties of the thoracic and
abdominal aorta are higher than those of the more
muscular iliac and femoral arteries [41]. According to
an expert consensus, PWV is normally 4-5 m/s in the
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Figure 2. Averages of heart rate (A), cardiac index (B), and systemic vascular resistance index (C) in age- and sex-adjusted athero-
genic index of plasma (AIP) during 5-minute recordings in the supine position; mean and 95% confidence interval; *p < .05 vs

Tertile 1; Tp < .05 vs Tertile 2, one-way ANOVA.

ascending aorta, 5-6 m/s in the abdominal aorta, and
8-9 m/s in the iliac and femoral arteries [41,42]. This
explains why cardio-popliteal PWV is higher than
carotid-femoral PWV. Moreover, PWV in the aorta
increases progressively with age due to the loss of
elasticity, while PWV in the femoral artery is only
moderately increased in the course of aging [43]. On
the other hand, both the aorta and the femoro-poplit-
eal arteries are frequently affected by atherosclerosis,
making both of these regions relevant in the study of
large arterial pathophysiology [44].

Meta-analyses have demonstrated that statin-
induced reduction in LDL-C reduces cardiovascular
morbidity and mortality, while several statin trials
have also revealed an associated reduction in BP [3,4].
We previously found that LDL-C showed an inde-
pendent inverse relation with BP and systemic vascu-
lar resistance in subjects naive to cardiovascular
drugs, but was not associated with arterial stiffness.
Thus, LDL-C is not only a major risk factor for ath-
erosclerosis, but it can also be considered as a predis-
posing factor for elevated BP [13]. However, even
when LDL-C is reduced to the recommended levels,
some residual cardiovascular risk remains that has
been related e.g. to inflammation, and this has
encouraged the search for new cardiovascular disease
predictors [45,46].

High LDL-C level, smoking, and hypertension have
been identified as causes for atherosclerosis that is an
intimal disease, while ageing, diabetes, and chronic

kidney disease have been associated with arterioscler-
osis, which is a medial disease and especially related
to arterial stiffening [47]. Though LDL-C has been
the major focus on the link between lipids and car-
diovascular disease, the combination of reduced
HDL-C and elevated triglycerides has been identified
as atherogenic dyslipidaemia [48]. This combination
has been associated with more unfavourable cardio-
vascular risk profile, higher heart rate and systolic BP
than hypertriglyceridemia or low HDL-C levels alone
[48]. Furthermore, reduced HDL-C together with ele-
vated triglycerides, and also elevated AIP, have been
associated  with  decreased insulin  sensitivity
[19,48,49]. This view corresponds to the present find-
ings whereby insulin sensitivity, as evaluated by
means of QUICKI, was different in every AIP tertile
with the lowest values in the highest AIP tertile. In
the present regression analyses, insulin sensitivity was
also inversely related with BP and heart rate
(Table 2).

The ratio of triglycerides to HDL-C is related to
the processes involved in LDL size pathophysiology
[50]. An increased proportion of small, dense LDL
particles is characteristic of patients with diabetes and
the metabolic syndrome, and both of these groups
have increased risk for cardiovascular disease [51,52].
The mean LDL particle size was also found to be
smaller in patients with stroke than in control sub-
jects, despite similar total LDL-C concentrations [53].
When compared with age-matched men with normal
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Figure 3. Averages of augmentation index adjusted to heart rate of 75 beats per minute (A), and pulse wave velocity (B) in age-
and sex-adjusted atherogenic index of plasma (AIP) during 5-minute recordings in the supine position; mean and 95% confidence
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lipid levels, young men with hypertriglyceridemia pre-
sented with small dense LDL particles that were asso-
ciated increased serum levels of adhesion molecules
and impaired flow mediated vasodilation [54]. Some
studies have suggested that the definite way to assess
potential atherogenicity of LDL particles would be a
direct measurement of the LDL particle size [55,56].
AITP reflects the lipoprotein composition in plasma,
and it has been postulated as a surrogate marker for
small dense LDL particles, and also as a predictor of
atherosclerosis, cardiovascular risk, and even effective-
ness of therapy [18-21,25,27]. AIP was found to be
higher in 2936 patients with coronary artery disease
versus 2451 controls [25], while AIP has also been
suggested as an independent risk factor for coronary
artery disease [24,25]. An AIP value below 0.11 has
been associated with low, values from 0.11 to 0.24
with intermediate, and values exceeding 0.24 with
high cardiovascular disease risk [20-22,24,57].
Dobiasova et al. examined 1433 subjects with various
risks of atherosclerosis and reported that AIP directly
correlated with the fractional esterification rate of
HDL (r=0.803), and inversely correlated with LDL
particle size (r = —0.776). The fractional esterification
rate of HDL strongly predicted particle size in LDL (r
= —818), and the use of lg(triglycerides/HDL-C)
ratio was considered as a useful predictor of plasma
atherogenicity, as it reflected the metabolic interac-
tions within the whole lipoprotein complex [18,20,22].
Plasma triglycerides levels have been previously

associated with arterial stiffness [14,16], but

contradictory findings have been published. A study
in young type 1 diabetic patients found that an
increase in triglycerides level of 48 mg/dl (0.54 mmol/
L) resulted in a 1.0% higher PWV during a 4.8-year
follow-up, but this increase was no longer significant
after adjustment for baseline waist circumference,
LDL-C, and HbAlc [39]. In 917 middle-aged French
men and women, neither plasma triglycerides nor
HDL-C were independently related with carotid-fem-
oral PWV [38]. Although some reports have inversely
associated HDL-C with arterial stiffness [15,17],
HDL-C was not correlated with brachial-ankle PWV
in 12,900 Chinese adults aged 20-79 years [40].

In the present study, the highest tertile with a
mean AIP of 0.15 presented with the highest PWV.
In the regression analyses, age and the prevailing level
of BP showed the strongest associations with PWV,
corresponding to previous studies [12,13]. However,
AIP was also significantly and independently related
with arterial stiffness (Beta values in the two models
0.100-0.145, p <.007 for both). As discussed above,
controversies remain about the associations of trigly-
cerides and HDL-C with arterial stiffness, while our
findings for the first time suggest that AIP is directly
and independently associated with PWYV, an acknowl-
edged marker of large arterial stiffness that is also
strongly related to cardiovascular risk [11]. The pre-
sent results do not provide an explanation why AIP is
better correlated with arterial stiffness than LDL-C.
The process leading to increased large arterial stiffness
is complex and comprises influences mediated via



mechanical pulsatile stress, inflammatory cells, growth
factors, and alterations in endothelial function,
enzymes that degrade elastin, changes in smooth
muscle cells from the contractile to the synthetic
phenotype, and increased extracellular matrix produc-
tion by fibroblasts [47]. Plasma triglycerides and
HDL-C are known to have opposite influences on
oxidative stress, inflammation, extracellular matrix
formation, and on the change in vascular smooth
muscle from the contractile to the synthetic pheno-
type, and the index AIP summarizes these influen-
ces [43].

The current study has limitations and the inter-
pretation of the results should be done cautiously.
The present methods have been validated against
invasive measurements, 3 dimensional ultrasound,
of PWV [31-34].
Nevertheless, the non-invasive evaluation of stroke
volume and cardiac output is based on mathematical
analysis of the bioimpedance signal that simplifies
physiology [33]. The present recordings lasted for
5minutes, which gives a rather narrow window of

and tonometric recordings

observation for the examination of haemodynamics.
Yet, when compared with single measurements of BP
and heart rate, the present analyses were based on
recordings collected from more than 300 cardiac
cycles. The haemodynamic recordings were performed
in subjects who themselves were willing to participate,
and this makes a potential source for selection bias.
The inclusion of PWV in the regression model 2
resulted in an inverse relationship between age and
systolic and diastolic BP in the present population,
probably due to the strong interrelationship between
PWYV and age (rS = 0.67, p<.001). A small but sig-
nificant inverse association between present smoking
and PWV was perceived. According to our previous
report that was focused on the haemodynamic effects
of smoking, and also to a comprehensive review,
smoking does not usually influence PWV [12,58]. In
our previous study, present smokers had a clear
reduction in systemic vascular resistance [58], and
such a haemodynamic change may favour reductions
in PWV. Finally, the cross-sectional design does not
allow conclusions about causality, and the present
findings should be confirmed in follow-up studies.

In conclusion, the present results showed that AIP
was directly and independently associated with arter-
ial stiffness. AIP is known to inversely correlate with
LDL particle size [18,21], and it can be readily calcu-
lated from the routine lipid profiles. The link between
AIP and large arterial stiffness further supports the
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view that calculation of AIP should be included in the
normal clinical cardiovascular disease risk evaluation.
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