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Rasvamaksa on yleisin pitkäaikainen maksasairaus, johon liittyy rasvapisaroiden kertyminen 

maksan soluihin. Tutkimuksessamme oletimme, että maksan rasvoittuminen näkyy myös 

muutoksina verestä mitatuissa aineenvaihduntareiteissä. 

 

Tutkittavilta henkilöiltä otettiin laskimoverinäytteet, joista selvitettiin kaikkien ihmisen geenien 

ilmentymistasot. Yksittäisistä geeneistä muodostuu aineenvaihduntareittejä, kun useat samaan 

toiminnallisuuteen liittyvät geenit yhdistetään ryhmäksi. Maksan rasvoittuminen tutkittiin 

ultraäänikuvantamisella. Tutkimus tehtiin yhteensä 1650 henkilölle, joista 316:lla oli rasvamaksa. 

 

Tuloksina saatiin 14 aineenvaihduntareittiä, jotka olivat aktiviisempia henkilöillä, joilla oli 

rasvamaksa. Reitit liittyvät soluväliaineen pilkkomiseen, immuunivasteen säätelyyn, veren 

hyytymisen tehostumiseen ja hermokudoksiin. Kun tutkimuksessa vakioitiin rasvamaksaan liittyvät 

tunnetut riskitekijät ja veriarvot, edelleen neljä reittiä oli aktivoitunut merkitsevästi (p<0,05) 

rasvamaksa-ryhmällä: i) integriini A4B1 viestitys, ii) leukosyyttien siirtyminen verisuonten 

seinämien läpi, iii) CD40/CD40L viestinvälitys ja iv) netrin-1 viestinvälitysreitti. Näistä kaikki 

paitsi ii) pysyivät aktivoituneina myös henkilöillä, joilla rasvamaksaan ei liittynyt korkeaa alkoholin 

käyttöä. 

 

Yhteenvetona tutkimuksesta, rasvamaksaan liittyi soluväliaineen pilkkomista, tulehdusvastetta, 

immuunivastetta ja veren hyytymistä lisäävien aineenvaihduntareittien aktivoituminen. Nämä 

tekijät ovat myös sydän- ja verisuonitautien taustalla ja voivat liittyä näiden molempien tautitilojen 

kehittymiseen. 

 

 

 

Tämän opinnäytteen alkuperäisyys on tarkastettu Turnitin OriginalityCheck-ohjelmalla 

Tampereen yliopiston laatujärjestelmän mukaisesti. 
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1 ABSTRACT 

Fatty liver (FL) disease is the most common type of chronic liver disease. We hypothesized that 

liver’s response to the process where large droplets of triglyceride fat accumulate in liver cells is 

reflected also in gene pathway expression in blood. 

Peripheral blood genome wide gene expression analysis and ultrasonic imaging of liver were 

performed for 1,650 participants (316 individuals with FL and 1,334 controls) of the Young Finns 

Study. Gene set enrichment analysis (GSEA) was performed for the expression data. 

Fourteen gene sets were upregulated (false discovery rate, FDR <0.05) in subjects with FL. These 

pathways related to extracellular matrix (ECM) turnover, immune response regulation, prothrombotic 

state and neural tissues. After adjustment for known risk factors and biomarkers of FL, we found i) 

integrin A4B1 signaling, ii) leukocyte transendothelial migration, iii) CD40/CD40L and iv) netrin-1 

signaling pathways to be upregulated in individuals with FL (nominal p<0.05). From these all but not 

ii) remained significantly upregulated when analyzing only subjects without history of heavy alcohol 

use. 

In conclusion, FL was associated with blood gene sets of ECM turnover, inflammatory response, 

immune system activation and prothrombotic state. These may form a systemic link between FL and 

the development of cardiovascular diseases. 
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2 INTRODUCTION 

The fatty liver disease (FLD) is a common liver disorder in western industrialized countries and an 

emerging problem in the Asia-Pacific region. FLD is often associated excessive alcohol consumption 

(alcoholic fatty liver disease, AFLD) or obesity with or without insulin resistance i.e., non-alcoholic 

fatty liver disease (NAFLD) 1, 2. Currently NAFLD is the most common cause of chronic liver disease 

3, affecting up to one third of US population 4 and 70-90% of the obese and diabetics 5. The main 

characteristic of FLD irrespective of the cause is the accumulation of triglyceride lipid droplets (>5% 

of liver weight) in liver cells 1-3, 6. The increased level of intrahepatic fatty acids may lead into cell 

damage and inflammation and provide a source of oxidative stress promoting fatty liver progression 

from steatosis to steatohepatitis and subsequently to cirrhosis or ultimately to hepatocellular 

carcinoma 2, 6. 

The primary causes leading to hepatocellular lipid accumulation are not yet well understood, but they 

are thought to include alterations in the hepatic lipid uptake, synthesis, degradation and secretion 7. 

Also, its metabolic, systemic and clinical consequences are still incompletely understood 6, 8. For 

example, clinically patients who eventually develop progressive liver cirrhosis or liver failure cannot 

be differentiated from those who do not. Immune system activation and inflammation are key players 

in the pathogenesis of FLD 9-12. NAFLD is considered as an early mediator of systemic disease 13. 

Innate immune system is deeply involved in pathophysiological events of fatty liver by following 

mechanisms: TLR-4 dependent signaling activates the Kupffer cells, complement pathway activation, 

balancing the cytokine network towards pro-inflammatory mediators, alternation in natural killer 

(NK) and NK T cell number and activity, and activation of the adaptive immune system leading to 

severe liver disease 9. The involvement of adaptive immunity in the evolution of fatty liver and its 

complications is under research. Present evidence suggests that adaptive immunity contributes not 

only to the maintenance of fatty liver but also to the progression and comorbidities of it 9, 14. Immuno-

inflammatory mechanisms are present in several comorbidities related with FLD, including obesity, 

type 2 diabetes, chronic kidney disease, metabolic syndrome, and cardiovascular diseases 5, 13. 

However, the actual pathophysiological mechanisms connecting these states are not well known.  

The purpose of the present study was to reveal alterations in gene pathways related to FLD in a 

population based study cohort. We hypothesized that accumulated fatty acids and large droplets of 

triglycerides in liver cells trigger an inflammatory response in liver, which is visible via differential 

immuno-inflammatory gene pathway expression in blood. Understanding the pathogenic mechanisms 
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of FLD and its metabolic and systemic consequences will give us new insight to the disease process 

and comorbidities of FLD. 

3 MATERIAL AND METHODS 

3.1 Subjects 

The Cardiovascular Risk in Young Finns Study (YFS) is a Finnish longitudinal population study on 

the evolution of cardiovascular risk factors from childhood to adulthood. These subjects for the 

baseline study in 1980 were randomly selected from Finnish national registry from six different age 

groups between 3 to 18 years and five different study districts 15. In the present study, we used the 

data from the follow-up in 2011, when 2,063 subjects participated in blood sampling and in clinical 

examinations. Participants in the follow-up studies have been found to be more often women and 

older than those who dropped out, but no significant differences in risk factors have been found 7, 15. 

The present study has been approved by the Ethics Committee of the Hospital District of Southwest 

Finland on September 21st, 2010. The study protocol of each study phase corresponded to the 

proposal by the World Health Organization. All subjects gave written informed consent and the study 

was conducted in accordance with the Helsinki declaration. 

3.2 Clinical examinations 

Waist and hip circumference, height and weight were measured and body mass index (BMI) 

calculated as kg/m². Blood pressure was measured as the average of three measurements taken at 2-

minute intervals in a sitting position from the right arm brachial artery by random zero 

sphygmomanometer. The metabolic syndrome was defined according to the harmonized definition 

16. 

Data regarding daily alcohol consumption, physical activity, and smoking were obtained by 

questionnaires in 2011. Alcohol consumption data were acquired by standardized questionnaires and 

calculated in standard doses (12 g pure ethanol) per day by dividing the total number of doses 

consumed per week (0.33 L doses of beer or cider, 0.12 L doses of wine, and 0.04 L doses of hard 

liquor) by 7. 17 Physical activity index was calculated (range 5-15) 18. The participants were classified 
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as smokers if they smoked daily. Subjects were classified as diabetics based on questionnaires, blood 

fasting glucose and glycated hemoglobin measurements and national medication registry records. 

Complete information on history of HIV and hepatitis C were obtained from the Finnish National 

Hospital Discharge Register. None of the participants had a diagnosis of hepatitis C or HIV, which 

could potentially have contributed to the diagnosis of fatty liver. 19 

3.3 Ultrasound imaging of liver 

Ultrasound imaging of the liver was performed for 2,040 study participants using a validated protocol 

20 and Sequoia 512 ultrasound mainframes (Acuson, Mountain View, CA, USA) with 4.0 MHz adult 

abdominal transducers. Evaluation of hepatic steatosis was performed according to liver-to-kidney 

contrast, parenchymal brightness, deep beam attenuation, and bright vessel walls 21. According to 

these criteria the presence of hepatic steatosis was assessed visually from images by a highly trained 

ultrasonographer. 22 The participants were classified into fatty liver (FL) and normal liver (NL) 

groups. 

3.4 Blood samples and biochemistry 

Venous blood samples were drawn from the right antecubital vein after an overnight fast and 

anticoagulated with EDTA. For liver enzyme quantification serum was separated, aliquoted, and 

stored at -70°C until analysis. Serum alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), gamma-glutamyltransferase (GT) and triglyceride concentrations were measured by 

enzymatic methods (ALT, AST, GT and Triglycerides System Reagent, Beckman Coulter 

Biomedical, Ireland). Apolipoprotein B (ApoB) and C-reactive protein (CRP) were determined 

immunoturbidimetrically (ApoB assay reagent, Orion Diagnostica, Finland and CRP Latex reagent, 

Beckman Coulter Biomedical). The serum triglyceride concentration was assayed using the 

enzymatic glycerol kinase–glycerol phosphate oxidase method (Triglyceride reagent, Beckman 

Coulter Biomedical). 7 All the above-mentioned assays were performed on an automatic analyzer 

(AU400, Olympus, Japan).  
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3.5 RNA isolation and quality control 

Whole blood (2.5 ml) was collected into PaXgene Blood RNA Tubes (PreAnalytix). The tubes were 

inverted 8–10 times then stored at room temperature for at least 2 hours. The tubes were frozen (-

80°C) and thawed overnight before RNA isolation (both miRNA and total RNA) with a PAXgene 

Blood microRNA Kit (Qiagen) including the DNase Set using the QiaCube (Qiagen). The 

concentrations and purity of the RNA samples were evaluated spectrophotometrically (BioPhotomer, 

Eppendorf). The RNA isolation process was validated by analyzing the integrity of several RNAs 

(n=26) with the RNA 6000 Nano Chip Kit (Agilent). 7 

3.6 Genome wide expression analysis 

2,049 individuals gave blood samples to RNA isolation in the 30-year follow-up in 2011-2012. 63 

samples were discarded during the RNA isolation protocol, leading to 1,987 samples including 1 

technical replicate taking part in the genome wide expression analysis. 322 samples had too low 

concentration after amplification step. Finally, 1,667 samples were run with the expression BeadChip 

including 3 technical replicates (2 from the mRNA amplification step).  

The expression levels were analyzed with an Illumina HumanHT-12 version 4 Expression BeadChip 

(Illumina Inc.). In brief, 300–500 ng of RNA was reverse transcribed into cDNA and biotin-UTP 

labelled using the Illumina TotalPrep RNA Amplification Kit (Ambion), and 1,500 ng of cDNA was 

then hybridized to the Illumina HumanHT-12 v4 Expression BeadChip. The BeadChips were scanned 

with the Illumina iScan system. 23 

3.7 Processing of GWE microarray data 

Raw Illumina summary probe-level data was exported from Beadstudio and analyzed in R 

(http://www.r-project.org/) using the Bioconductor (http://www.bioconductor.org/) packages.  The 

HT-12 v4 BeadChip contains 47,231 expression and 770 control probes. The transcripts detected 

(detection p-value <0.01) in less than 5% of samples were excluded from the analysis. After this 

filtering 19,637 genes were used for analysis. We disregarded 4 samples with less than 6,000 

significantly detected expression probes (detection p-value <0.01). The expression data was 

processed using nonparametric background correction, followed by quantile normalization with 

control and expression probes, and log2 transformation using the neqc function in the limma package. 
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Based on RPS4Y1-2 and XIST mRNA levels on the Y and X chromosomes, respectively, we excluded 

9 samples due to mismatch with the recorded sex. After quality control, expression data were 

available for 1,654 samples including 4 technical replicates, which were used to examine batch effects 

and excluded subsequently. 1,650 non-related samples were used for further analysis. 23 

3.8 Definition of the cases and controls and statistical analysis for the 

demographics of the study population 

Subjects were classified into two groups: FL (n=316) and NL (n=1,334) by a highly trained 

ultrasonographer and FL cases were considered as alcoholic fatty liver (AFL) (n=55) if the daily 

alcohol consumption exceeded 20 g for women and 30 g for men 24. If the alcohol consumption was 

lower than these thresholds, they were classified into non-alcoholic fatty liver (NAFL) group (n=223). 

Demographics of the study participants were analyzed with R (version 3.2.2). These include all the 

parameters shown to be connected with fatty liver in a previous study of YFS participants including 

age, sex, BMI, alcohol consumption, smoking, systolic and diastolic blood pressure, waist to hip ratio, 

ApoB, triglycerides, insulin, liver enzymes (ALT, AST, GT) and physical activity index 17. Data are 

presented as mean (SD). P values <0.05 were considered significant. FL, NAFL and AFL groups 

were separately compared to control group using Mann-Whitney test for continuous parameters and 

χ2 test for classified parameters. 

3.9 Gene set enrichment analysis (GSEA) of GWE data 

The Canonical Pathways (CP) from the curated gene sets collection (C2) of the molecular signature 

database (MSigDB v5.0) database 25 were used in gene set enrichment analysis (GSEA). Only 

pathways with 15 to 500 genes were included, resulting in using altogether 870 pathways in the 

analysis. The alternative probes representing the same gene in the beadchip were collapsed to single 

genes by GSEA software, resulting in 14403 genes in the analysis. 

GSEA software 26, 27 was used to analyze the association of gene pathways with the phenotype. A 

false discovery rate (FDR) q-value < 0.25 can be considered as a significant according to the criteria 

recommended by Subramanian et al. 26. However, we used a more stringent FDR q-value < 0.05 to 

select the statistically significant pathways. GSEA performs 1000 permutations when calculating the 

FDR values. Therefore, in the result tables we present p<0.001 instead of 0 when the calculated FDR 

value appears as 0 in the GSEA results. R language (version 3.2.2) was used for adjusting the gene 
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expression data before the analysis with GSEA software. The expression levels were adjusted for sex 

and age (Model 1) and with those independent confounding factors previously associated with FL in 

our study sample (fully adjusted Model 2) 17: adjusting the gene expression for age, sex, BMI, alcohol 

consumption, ApoB, triglycerides, insulin, systolic blood pressure, ALT, and physical activity index. 

In addition, to reduce the effect of technical factors 28 we adjusted the expression levels for the first 

20 principal components as described elsewhere 23. Finally, inverse normal transformation was 

applied to the probes’ residual variance before analyzing them with the GSEA algorithm. 

Similar analysis setup using the MSigDB canonical pathways were performed for all measurements: 

FL vs. NL, NAFL vs. NL and AFL vs. NL. In addition, GSEA was performed for NAFL vs. AFL to 

reveal the differences in gene expression pathways between these states. 

3.10 Data Availability 

The datasets analysed during the current study are not publicly available due to the regulations of 

Finnish law and the ethical permissions that prohibits uploading the YFS data to public platforms. 

4 RESULTS 

4.1 General characteristics of the study sample 

General demographics of the study population is presented in Table 1. Individuals with FL were more 

often men and older and were metabolically less healthy. They also had higher BMI and waist to hip 

ratio when compared to the NL group. 1.3 % of the NL group had diabetes but for FL group the 

prevalence of diabetes was ten-fold (13.1 %). Elevated systolic and diastolic blood pressure, ApoB, 

triglycerides, insulin, increased levels of liver enzymes (ALT, AST, GT) and CRP were also 

associated with FL. In addition, alcohol consumption and decreased physical activity were 

significantly related to FL. All the mentioned characteristics differed significantly (P<0.001) between 

the groups. Only exception to the previously identified risk factors 17 was that daily smoking did not 

vary from the NL in the FL or NAFL groups in our study. However, smoking differed significantly 

(p=0.022) between the subjects with AFL and NL. In addition, in the NAFL subgroup alcohol 

consumption was similar to the NL group. The subjects in the present study are relatively young and 
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include only 11 individuals with cardiovascular diseases including heart failure, coronary artery 

disease, coronary artery bypass grafting, coronary angioplasty, cerebrovascular disease and stroke. 

However, the number of subjects with cardiovascular diseases is insufficient to provide significant 

pathway enrichment results for this group. 

4.2 Gene set enrichment analysis for FL 

Fourteen gene sets were upregulated (FDR<0.05) in subjects with FL (Table 2) in Model 1 (adjusting 

with sex, age, 20 principal components). These gene sets can be grouped into four groups describing 

the origin of the pathways: (1) pathways related to the extracellular matrix (ECM) turnover, (2) 

pathways regulating immuno-inflammatory response, (3) pathways contributing to thrombosis and 

(4) pathways related to neural tissues. 

Pathways related to the extracellular matrix (ECM) turnover include two different integrin pathways 

(integrin A4B1 and integrin cell surface interactions), ECM receptor interaction and mCalpain 

pathway. All these gene sets share several integrin genes that mediate cell adhesion to ECM.  

CD40/CD40L signaling pathway related to immune response was strongly enriched. Also, leukocyte 

transendothelial migration gene set associated to increased inflammation procedures in individuals 

with FL. Releated to these inflammation mechanisms, a pathway containing genes involved in 

signaling to extracellular signal-regulated kinases (ERKs) was also upregulated in FL group. Another 

upregulated pathway was HIVNEF, which promotes inflammation by helping CD4 helper T cells to 

prevent apoptosis. 

Three upregulated pathways increase the probability for thrombosis in FL. They include integrin 

alphaIIB beta3 signaling, platelet aggregation plug formation and urokinase plasminogen activator 

(UPA) – UPA receptor (UPAR) pathway. 

Interestingly, some of the upregulated pathways we identified in FL individuals have originally been 

identified from neural tissues. Netrin-1 signaling pathway, was initially linked to axon development 

and was recently also associated with atherosclerosis, controlling the trafficking of monocytes 

between blood and plaque 29. Another upregulated gene set was Agrin in postsynaptic differentiation 

(AGR) pathway, which is related to neuromuscular junctions and organization of cytoskeleton in 

skeletal muscle. Alpha-synuclein signaling pathway, is previously identified from presynaptic 

neurons in human brain. 
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With fully adjusted Model 2, four gene sets remained significant (nominal p<0.05) in FL group 

(Table 3). One of them was related with ECM turnover (integrin A4B1 signaling), two gene sets were 

related with immune response regulation (CD40/CD40L signaling pathway, leukocyte 

transendothelial migration) and one gene set associated with neuroimmune guidance cue 1 (netrin-1) 

signaling. 

We also present the results of FL vs. NL comparisons for Model 1 in Supplementary Table 1 and 

for Model 2 in Supplementary Table 2 with cutoff value FDR<0.25. 

4.3 Gene set enrichment analysis with fully adjusted model for NAFL and AFL 

All the 14 gene sets upregulated in FL group with Model 1 were also significantly upregulated in 

NAFL group in comparison to controls (nominal p<0.05), using Model 1 adjustments. With Model 2 

adjusting, we identified three upregulated gene sets: integrin A4B1 signaling, CD40/CD40L signaling 

pathway and netrin-1 signaling (Table 3). 

However, the corresponding results for AFL in Model 1 analysis indicated five of the defined gene 

sets were significantly enriched for upregulation. They consist of integrin cell surface interactions, 

HIVNEF pathway and all three thrombosis related pathways (integrin alphaIIB beta3 signaling, 

platelet aggregation plug formation and UPA–UPAR pathway). For Model 2 analysis with AFL, none 

of the defined 14 gene sets was significantly upregulated. 

When we compared the results of fully adjusted Model 2 with the Model 1, only a few gene sets 

remained statistically significantly upregulated for FL or NAFL. For example, all pathways related 

to thrombosis could be explained by the confounding factors. Three pathways were upregulated also 

in Model 2 analysis of FL and NAFL: integrin A4B1 signaling, CD40/CD40L signaling pathway and 

netrin-1 signaling pathway. 

5 DISCUSSION 

This large study with 1,650 participants is to our knowledge the first wide-scale peripheral blood 

based GSEA analysis of subjects with FL. We hypothesized that hepatocellular accumulation of fatty 

acids and triglycerides trigger an inflammatory response in liver, which is visible via differential 

immuno-inflammatory gene pathway expression in blood. Furthermore, we investigated the effect of 
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alcohol consumption history and fully adjusted model with previously known independent 

confounding factors to the observed gene pathways. After adjusting for the known confounding 

factors, we identified four activated pathways associated with FL, including integrin A4B1 signaling, 

leukocyte transendothelial migration (TEM), CD40/CD40L and netrin-1 signaling pathways. 

These pathways are related to the following biological leukocyte functions: (a) their adherence to 

vessel wall, (b) transmigration, and/or (c) retaining in tissues. CD40/CD40L signaling pathway is 

suggested to increase adherence of CD40 positive cells, such as platelets and monocytes, to the vessel 

wall 30. Integrin A4B1 (also known as very late antigen-4, VLA-4) signaling pathway is thought to 

be activated by chemotactic agents from injured cells 31. Together integrin A4B1 (VLA-4) and 

leukocyte TEM pathways regulate the leukocyte migration from blood to organs through endothelium 

32, 33. Netrin-1 signaling pathway increase leukocyte sensitivity to anti-inflammatory netrin-1, which 

is shown to decrease the accumulation of neutrophils but is downregulated in injured hepatic tissue 

34. As a consequence of these mechanisms, leukocytes increasingly transmigrate from blood and 

retain in injured liver tissue. Accumulated lymphocytes are known to induce fatty liver in different 

ways, such as by activating pro-inflammatory cytokines 9. Furthermore, activated inflammatory 

mechanisms increase accumulation of lipids into liver, which then induce or exacerbate the 

progression of fatty liver. In mouse model of NASH, inflammatory cells also regulate hepatic lipase 

and lipoprotein lipase: CD8+ T cells, NKT cells and cytokines secreted by them induce liver damage, 

ultimately advancing towards hepatocellular carcinoma 35. Our present findings would propose 

background mechanisms behind these previously known pathological changes in FL. 

In the present study, upregulated CD40/CD40L signaling pathway was associated with FL, especially 

NAFL. Sookoian et al. found that circulating levels of soluble CD40 ligand (sCD40L) was 

significantly higher in 113 NAFLD patients when compared to 102 control subjects 36. This result is 

in line with our present findings. Previous results by Ercin et al. controversially indicated that sCD40L 

levels did not differ between 50 NAFLD subjects and 30 healthy controls 37. However, that evaluation 

was performed with smaller number of subjects than the previous and the present study. CD40L 

deficiency has been investigated in rodent models as well. Interestingly, Poggi et al. found that both 

the genetic CD40L deficiency and neutralizing anti-CD40L antibody therapy attenuated the 

development of FL and other metabolic disorders in mice 38. Based on these previous studies and the 

present results we would suggest that C40/CD40L signaling pathway plays an important role in 

metabolic disorders such as FL. More specifically, CD40/CD40L signaling is suggested to increase 

adherence of CD40 positive cells, such as platelets and monocytes, to the vessel wall modulating 

atherothrombosis 30. 
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Integrin A4B1 signaling pathway was significantly enriched in FL and NAFL groups. As previously 

indicated, integrin A4B1 (VLA-4) is normally expressed on leukocyte plasma membranes. Activation 

of this antigen requires chemotactic agents from the site of injury i.e., endothelium or other cells. 

Endothelium expresses vascular cell adhesion molecule-1 (VCAM-1) which binds to the VLA-4 and 

enables the transmission of leukocytes from blood to organs. 31 A4B1 has also been shown to bind 

osteopontin, while facilitating hepatic neutrophil infiltration and liver injury in the rat alcoholic 

steatohepatitis model 39. Another significantly enriched pathway after adjusting for confounding 

factors was leukocyte transendothelial migration (TEM). That pathway is close to the VLA-4 pathway 

since they both regulate the migration of leukocytes from blood to tissue through endothelium 32, 33. 

These gene sets correspond to the similar biological functionality but the TEM pathway reflects more 

biological functions by 75 genes (leukocyte – endothelium cell interactions) while integrin A4B1 

signaling targets only 25 genes (leukocyte internal signaling). While Banerjee et al. associated 

leukocyte TEM functions with rat alcoholic steatohepatitis model 39, we observed that the TEM 

pathways were activated in NAFL group. However, these pathways may reflect common pathogenic 

inflammatory mechanisms behind both AFLD and NAFLD 9, 10, and it is possible that the number of 

subjects with AFL (n=55) is insufficient to reveal this change in the present study. To determine if 

there exists difference in TEM pathways between NAFL and AFL in humans, further research is 

recommended with more subjects in the AFL group. To conclude, in the present study fatty liver is 

reflected to blood gene pathways in such way where specific factors (adherence and transmigration) 

driving leukocytes to tissues are activated. 

Neuroimmune guidance cue netrin-1 signaling pathway was upregulated in FL. Initially, netrins were 

considered as cell and axon guidance cue proteins in embryogenesis, and later identified outside the 

nervous system influencing tissue morphogenesis 40. Interestingly, in the present study netrin-1 gene 

was not differentially expressed in our groups. Corresponding results have earlier been observed in 

another study, where expression of netrin-1 associated with atherosclerotic plaques, but did not differ 

in blood of patients with coronary artery disease compared with healthy controls 29. Activated netrin-

1 signaling pathway could indicate increased sensitivity of leukocytes and macrophages to the 

inflammatory mediators such as netrin-1. A recent study with mice suggests netrin-1 as an anti-

inflammatory factor in liver ischemia/reperfusion injury 34, whereas our results extend that also into 

blood of patients with fatty liver. Netrin-1 is suggested to retain macrophages in atherosclerotic 

plaques 29, and by the present results, we would suggest the corresponding effect in patients with FL.  

To conclude, these pathways strongly suggest activation of immunological and inflammatory 

processes in blood of patients with fatty liver. A blood cascade including three different steps was 

identified with association of fatty liver. Firstly, adherence and transmigration of leukocytes from 
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blood to tissues such as liver and vessel wall is activated. Secondly, interaction of monocytes and 

platelets is promoted which increases prothrombotic state. Thirdly, netrin-1 signaling pathway 

induces anti-inflammatory mechanisms by retaining leukocytes into tissues. However, in the present 

study setting we cannot determine the causality, whether the FL participates in production of these 

inflammatory factors into blood or do the dysregulated gene pathways refer to systemic disturbances 

from which FL is one result. Therefore, we are unable to evaluate whether the activation of 

inflammation system in liver or blood is more important for FL. At least, our results may reflect 

common metabolic and inflammatory disturbances behind atherosclerosis and FL. Corresponding 

metabolic results have been identified in a study by Wree et al., where increased adipocyte size 

associated with elevated liver enzymes 41. In addition, Kälsch et al. observed that in population based 

Heinz Nixdorf RECALL Study increasing liver enzymes (transaminases) even within normal ranges 

were significantly associated with metabolic changes, i.e., HbA1c, BMI and Type 2 diabetes 42. These 

observations support the present results of metabolic disturbances associated with FL. Interestingly, 

fatty liver status shared several pathways also associated with atherosclerosis or atherothrombosis 

(CD40/CD40L signaling pathway, Netrin-1 signaling and pathways contributing to thrombosis) i.e., 

another lipid related condition where lipids are accumulated to artery wall. Furthermore, recent 

research results would also suggest to link integrin A4B1 to atherosclerosis, where macrophages 

activate integrin A4B1 by expression of kindlin-3 43 in atherosclerotic plaques 44. These shared 

pathways may form a common link between these two disease states where fatty liver is shown to 

increase the risk of cardiovascular diseases 5. This suggestion is also supported by Baars et al., who 

found that elevated liver parameters are associated with stenosis diameter in acute myocardial 

infarction 45. 

A strength of the present study is that the subjects are based on the well-powered prospective 

randomly selected population based cohort, followed up for over 30 years with long well-known 

history of alcohol use and disease history. This study had large cohort (n = 1,650) and this adds the 

confidence to the present results. In addition, we used strict FDR limit in GSEA results and heavily 

adjusted our analysis with known fatty liver risk factors. The original suggestion was FDR <0.25 but 

we used FDR <0.05 as a limit. The strict FDR limit combined to the large number of subjects and 

adjustment with known risk factors makes the results of this study reliable. 

Limitations of the study include population homogeneity: all subjects are Finnish, ethnically 

homogenous Caucasian people. Because of that these results can be only generalizable in Caucasians. 

We unfortunately had no possibility for validation of the results in other comparable cohort. 

Therefore, we recommend the replication of our results and corresponding analysis for further 

research. In addition, majority of individuals with FL in our population are men. Even though sex has 
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been included in statistical analyses as covariate and sex stratified analyses were performed, possible 

features specific for FL in women could have been missed due to low number of women with FL. 

The results cannot therefore be directly generalized to older populations with equal amounts of 

women and men with FL. 7 The number of subjects in AFL group limited (n=55), which is probably 

insufficient to reveal the alterations in the expression of gene pathways in this subgroup. Subjects 

with FL had more metabolic disorders, which may influence to the present results. 

Furthermore, there is a risk of complications when the liver biopsy is taken and it is therefore 

unacceptable (unethical) to take liver biopsies from healthy asymptomatic individuals on population 

based studies. Analyzing blood samples is much safer and thus makes it possible to have much larger 

cohorts. Thus, we decided to analyze gene expression from blood tissue, which restricts the present 

observations to extrahepatic changes. 

The key concept of analyzing gene sets instead of separate genes is considered as a strength of this 

study. The blood gene pathways reflect real metabolic and systemic functions. We were able to reveal 

much broader biological mechanisms related to the FL using metabolic pathways instead of single 

genes. 

In conclusion, FL was associated with blood gene sets of inflammatory response, immune system 

activation and prothrombotic state. These activated blood pathways may serve as a systemic link 

between FL and the development of cardiovascular diseases.  
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10 TABLES 

10.1 Table 1 

Summary of the 1,650 study participants: classified into normal liver and fatty liver groups of FL, 

NAFL and AFL. Values are mean (SD). 

  NL FL NAFL AFL 

Number of subjects in group 1,334 316 223 55 

Age, years 41.55 (5.07) 43.16 (4.73) 42.91 (4.83) 44.47 (4.32) 

Males (%) 534 (40.0) 221 (69.9) 151 (67.7) 42 (76.4) 

Body mass index, kg/m2 25.60 (4.37) 30.75 (5.43) 30.99 (5.64) 30.01 (5.17) 

Waist to hip ratio  0.88 (0.08) 0.98 (0.07) 0.98 (0.08) 0.99 (0.08) 

Daily smokers (%) 172 (13.5) 48 (16.6) 34 (15.3) 14 (25.5) 

Diabetics (%) 22 (1.7) 41 (13.1) 28 (12.7) 8 (14.5) 

Metabolic syndrome (%) 167 (12.7) 183 (59.0) 130 (59.4) 33 (62.3) 

Systolic BP, mmHg 117.38 (13.60) 128.22 (14.20) 126.89 (13.09) 132.61 (14.82) 

Diastolic BP, mmHg 73.56 (9.86) 82.38 (10.64) 82.01 (10.61) 83.40 (10.89) 

Apolipoprotein B, g/L 1.01 (0.26) 1.23 (0.33) 1.23 (0.33) 1.24 (0.31) 

Triglycerides, mmol/L 1.15 (0.71) 2.04 (1.60) 2.07 (1.73) 1.96 (1.05) 

Insulin, mU/L 8.11 (9.81) 17.70 (20.52) 17.81 (16.78) 14.69 (10.47) 

ALT, U/L 14.40 (7.89) 26.91 (13.60) 26.57 (13.79) 30.16 (13.94) 

AST, U/L 20.57 (5.43) 25.86 (6.99) 25.31 (6.99) 29.35 (7.03) 

GT, U/L 24.90 (15.88) 46.66 (23.90) 45.29 (22.95) 58.03 (24.77) 

CRP, mg/L 1.39 (2.14) 2.53 (3.24) 2.45 (3.09) 2.81 (3.78) 

Alcohol consumption, drinks/day 0.71 (1.01) 1.25 (1.59) 0.65 (0.63) 3.70 (1.95) 

Alcohol consumption, g/day 8.50 (12.16) 15.02 (19.13) 7.78 (7.53) 44.38 (23.42) 

Physical activity index 9.20 (1.83) 8.40 (1.87) 8.50 (1.84) 8.06 (1.99) 

Note: Alcohol consumption was available from 1,536 subjects. Statistics: Mann-Whitney test was 

used for continuous parameters and χ2 test for classified parameters when each fatty liver group was 

compared to controls (NL group). P<0.001 for all other comparisons, except smoking (FL p=0.209, 

NAFL p=0.548 and AFL p=0.022) and alcohol consumption (NAFL p=0.192). Abbreviations: NL, 

normal liver; FL, Fatty liver; NAFL, non-alcoholic fatty liver; AFL, alcoholic fatty liver; ALT, 
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alanine aminotransferase; AST, aspartate aminotransferase; GT, glutamyltransferase; CRP, C-

reactive protein. 

10.2 Table 2 

Gene sets upregulated in subjects with FL compared to NL using GSEA and adjusting for sex, age 

and 20 principal components (Model 1).  

Gene set name SIZE ES NES Nominal P value FDR Q value 

ECM turnover      

  INTEGRIN_A4B1_PATHWAY 25 0.66 2.22 <0.001 0.003 

  INTEGRIN_CELL_SURFACE_INTERACTIONS 47 0.61 2.22 <0.001 0.002 

  ECM_RECEPTOR_INTERACTION 36 0.59 1.98 <0.001 0.031 

  MCALPAIN_PATHWAY 17 0.69 2.02 <0.001 0.029 

Immune response regulation      

  CD40_PATHWAY 25 0.65 2.10 <0.001 0.010 

  LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 75 0.51 2.04 <0.001 0.025 

  SIGNALLING_TO_ERKS 28 0.57 1.93 <0.001 0.049 

  HIVNEF_PATHWAY 54 0.49 1.93 0.002 0.046 

Thrombosis      

  INTEGRIN_ALPHAIIB_BETA3_SIGNALING 20 0.72 2.16 <0.001 0.004 

  PLATELET_AGGREGATION_PLUG_FORMATION 25 0.75 2.26 <0.001 0.003 

  UPA_UPAR_PATHWAY 23 0.65 2.00 0.004 0.035 

Neural tissue      

  NETRIN1_SIGNALING 20 0.64 2.02 <0.001 0.026 

  AGR_PATHWAY 20 0.66 1.98 <0.001 0.034 

  ALPHA_SYNUCLEIN_PATHWAY 26 0.57 1.89 0.004 0.049 

Gene sets with FDR <0.05, no gene sets were enriched (FDR <0.05) for downregulation in subjects 

with FL. Abbreviations: NL, normal liver; FL, fatty liver; GSEA, gene set enrichment analysis; ES, 

enrichment score; NES, normalized enrichment score; FDR, false discovery rate. 
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10.3 Table 3 

Upregulated gene sets with different adjustment models for covariates. Values are shown as nominal 

p values for each gene set in the specified groups compared to normal liver group (n=1334). 

 FL (n=316) NAFL (n=223) AFL (n=55) 

Gene set name M1 M2 M1 M2 M1 M2 

ECM turnover 
      

  INTEGRIN_A4B1_PATHWAY <0.001 0.013 <0.001 0.012 0.820 NA 

  INTEGRIN_CELL_SURFACE_INTERACTIONS <0.001 0.289 <0.001 0.768 0.025 0.102 

  ECM_RECEPTOR_INTERACTION <0.001 0.370 0.002 NA 0.132 0.674 

  MCALPAIN_PATHWAY <0.001 0.076 0.004 0.089 0.168 0.542 

Immune response regulation 
      

  CD40_PATHWAY <0.001 <0.001 <0.001 <0.001 0.075 0.376 

  LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION <0.001 0.023 0.016 0.092 0.203 0.369 

  SIGNALLING_TO_ERKS <0.001 0.054 0.002 0.082 0.088 0.271 

  HIVNEF_PATHWAY 0.002 0.080 0.004 0.215 0.042 0.191 

Thrombosis 
      

  INTEGRIN_ALPHAIIB_BETA3_SIGNALING <0.001 0.227 0.006 0.926 <0.001 0.119 

  PLATELET_AGGREGATION_PLUG_FORMATION <0.001 0.185 0.004 0.898 <0.001 0.139 

  UPA_UPAR_PATHWAY 0.004 0.107 0.006 0.098 0.017 0.307 

Neural tissue 
      

  NETRIN1_SIGNALING <0.001 0.018 <0.001 0.012 0.202 NA 

  AGR_PATHWAY <0.001 0.110 <0.001 0.133 0.336 NA 

  ALPHA_SYNUCLEIN_PATHWAY 0.004 0.479 <0.001 0.393 0.242 0.959 
 

Statistics: Model 1 (M1) is adjusted for age, sex and 20 principal components; Model 2 (M2) is 

adjusted for age, sex, 20 principal components, body mass index, apolipoprotein B, triglycerides, 

insulin, systolic blood pressure, ALT, alcohol consumption and physical activity index. FL, Fatty 

liver; NAFL, non-alcoholic fatty liver; AFL, alcoholic fatty liver. NA means that the pathway was not 

upregulated in the specific group. 

 


