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A B S T R A C T

This paper examines the relationship between health endowment and later-life outcomes in the labour market.
The analysis is based on reduced-form models in which labour market outcomes are regressed on genetic var-
iants related to the increased risk of cardiovascular diseases. We use linked Finnish data that have many
strengths. Genetic risk scores constitute exogenous measures for health endowment, and accurate administrative
tax records on earnings, employment and social income transfers provide a comprehensive account of an in-
dividual’s long-term performance in the labour market. The results show that although the direction of an effect
is generally consistent with theoretical reasoning, the effects of health endowment on outcomes are statistically
weak, and the hypothesis of no effect can be rejected only in one case: genetic endowment related to obesity
influences male earnings and employment in prime age. Due to the sample size (N = 1651), the results should be
interpreted with caution and should be confirmed in larger samples and in other institutional settings.

1. Introduction

Empirical research shows statistically significant associations be-
tween individuals’ health and labour market outcomes (Cawley, 2015;
Conti & Heckman, 2010; Currie, 2009; Jäckle & Himmler 2010).
However, the findings may not be robust or straightforward to inter-
pret. For example, low income may result in poor health, and health
problems can result in lower earnings. Likewise, the observed associa-
tions may reflect omitted confounders. For example, cognitive and non-
cognitive endowments developed at an early age may be important
determinants of both adult health and labour market performance.
Furthermore, the underlying mechanisms behind the observed re-
lationships are not easily identified. In addition to poor health, dis-
crimination on the basis of physical appearance (Pomeranz & Puhl,
2013; Puhl & Heuer, 2009; Rooth, 2009) or lower cognitive ability and

educational disadvantages in childhood (Hack et al., 2002) may yield
worse labour market performance in later life.

Recent empirical research has exploited data on genetic variants
across individuals as instruments (the so-called Mendelian randomiza-
tion, MR) to improve the identification and validity of the estimates.
For example, Böckerman et al. (2019), Norton and Han (2008) and
Tyrrell, Jones, Beaumont, and Freyling (2016) use genetic instruments
to estimate the effect of weight on labour market outcomes and edu-
cation. Ding, Lehrer, Rosenquist, and Audrain-McGovern (2009) ex-
amine the impact of poor health on academic performance, and Von
Hinke, Smith, Lawlor, Propper, and Windmeijer (2013) investigate the
effect of height on depression symptoms and behavioural problems.

The instrumental variable (IV) assumptions regarding exclusion
restrictions for genetic variables are not always examined with suffi-
cient attention. For example, genetic variants measured by either single
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nucleotide polymorphisms (SNPs) or genetic risk scores (GRSs) may
affect outcomes via pathways other than the exposures, i.e., genes have
pleiotropic effects (Greco, Minelli, Sheehan, & Thompson, 2015; Von
Hinke, Smith, Lawlor, Propper, & Windmeijer, 2016). Similarly, the
effects may depend not only on the value of the exposure but also on the
environment; i.e., there are significant gene-environment interactions
(Conley, 2016; Lundborg & Stenberg, 2010; Pehkonen et al., 2017).
Analysis can also suffer from measurement error and reverse causality if
the exposures are incomplete characterizations of all aspects, are time-
varying or are collected after measurement of the outcome (Cawley,
Han, & Norton, 2011). This complexity implies that caution should be
taken when using genetic information as an instrument in instrumental
variable research designs (Lawlor, Harbord, Sterne, Timpson, & Smith,
2008; VanderWeele, Tchetgen, Cornelis, & Kraft, 2016).

In this study, we analyse the relationships between genetic health
endowments and later-life outcomes in the labour market. To accom-
plish this, we apply a reduced-form (RF) approach by regressing out-
come variables directly on genetic markers associated with biomarkers
that elevate the risk of cardiovascular diseases. As VanderWeele et al.
(2016) show, the method achieves robustness gains against several
possible biases. In particular, the fact that there is no need for data of
the exposure eliminates the sources of bias related to measurement
error in exposures, reverse causality and gene-environmental interac-
tions. The drawback of the approach is that it only provides a test for
the presence of an effect of the exposure on the outcome and does not
provide causal estimates on the relationship. However, in many cases,
information on the existence and direction of an effect may be suffi-
cient. For example, a test result showing no association between genetic
variant and outcome with the findings that the genetic variant affects
the exposure of interest suggests that there is no effect of the exposure
on the outcome among compliers, i.e., among those whose exposure
variable of interest is raised via the impact of genetic variation.

In this study, we measure individuals’ performance in the labour
market during the prime working age in terms of earnings, employment
months, and social security benefits. The data are drawn from high-
quality administrative records (Statistics Finland, SF), and the variables
are measured as averages over a ten-year period, thus minimizing the
possible influence of idiosyncratic variation from year to year. The la-
bour market outcomes are regressed on genetic health endowments
related to established cardiovascular risk factors, including obesity
(BMI and waist-hip ratio), increased low-density lipoprotein choles-
terol, decreased high-density lipoprotein cholesterol, and increased
triglycerides (Danaei et al., 2009; Teslovich et al., 2010; Zhu, Zheng,
Zhang, & Yang, 2018). GRSs are drawn from genome-wide association
studies (GWAS). We apply a data-driven approach: we use risk scores in
the data of the Cardiovascular Risk in Young Finns Study (YFS) that can
be related to enhanced cardiovascular risk. As such, our study supple-
ments that by Böckerman et al. (2019), which quantifies the effect of
one health endowment (obesity) on later-life outcomes in the labour
market using the IV approach in the context of the YFS data. Fig. 1
graphically illustrates our empirical approach, in terms of estimators, of
exploring the effects of health endowments on later-life outcomes in the
labour market.

The results of the reduced-form regressions show that the effects of
genetic health endowments on later-life labour market outcomes are
generally correctly signed but statistically weak, and, if they exist, they
are related to genetic endowments of obesity and apply for men.
Furthermore, an increase in the number of SNPs in the risk score is
associated with a higher proportion of non-significant estimates for risk
scores. The finding may reflect pleiotropic effects of SNPs with a ten-
dency that genetic variants have associations with various traits that
oppose the labour market effects. We conclude the paper with a dis-
cussion on shortcomings and possible extensions for future research.

2. Data

The linked data used come from three sources. The main data source
is the YFS, which collects information on individuals through ques-
tionnaires, physical measurements, and blood tests. Eight waves of data
have been collected at 3–9-year intervals, starting with the baseline in
1980 and most recently in 2011-12. In 1980, a total of 3,596 persons
participated in the study, and all anthropometric measurements were
conducted by medical professionals at local health centres (Raitakari,
Juonala, Rönnemaa, & Jula, 2008).

The second data source is the Finnish Longitudinal Employer-
Employee Data (FLEED) of SF. It is a source of information on labour
market outcomes, i.e., employment status, wage compensation and
social transfer. SF maintains the FLEED data that come directly from tax
authorities and other administrative registers. The third dataset, the
Longitudinal Population Census (LPC), is the source of information on
parental education and income.

The linkage of both FLEED and LPC to the YFS data is performed
using personal identifiers that are available for both parents and their
children. As a result, our study avoids the shortcomings created by
errors in record linkages. Such register-based data have less measure-
ment error than self-reported data from surveys. For example, the in-
come data do not suffer from underreporting or recall error, nor are
they top coded. This accuracy increases the efficiency of the estimates,
which is particularly important in relatively small samples.

2.1. Measures of genetic health endowments

Recent research in health genetics has identified genetic variants
that are robustly associated with health traits (Belsky, Moffitt, & Caspi,
2013). In this study, we measured health endowment by GRSs that are
associated with a risk of cardiovascular diseases (Teslovich et al.,
2010). GRSs consist of SNPs that have been found to be significantly (at
least p< 1.0 × 10−6) associated with traits of obesity (BMI), body fat
distribution measured by waist-hip ratio (WHR), triglycerides (TG),
high-density lipoprotein cholesterol (HDL-C), and low-density lipopro-
tein cholesterol (LDL-C).

We use GRSs instead of individual SNPs for two reasons. First, GRSs
account for more variation in health traits, which increases the statis-
tical power of estimation. Second, they reduce the risk that any in-
dividual SNP will bias estimates via an alternative biological pathway.
Palmer et al. (2012) provide evidence that supports the use of genetic
scores over indicator variables for individual SNPs, and Böckerman
et al. (2019) document the benefits of the unweighted risk scores as
opposed to the weighted scores in the YFS data.

The measures of genetic health endowment for YFS subjects were
drawn in 2009. Genotyping was implemented using the Illumina Bead
Chip (Human 670 K), and the genotypes were called using the Illumina
clustering algorithm (Teo et al., 2007). SHAPEIT v1 and IMPUTE2
software (Delaneau, Marchini, & Zagury, 2012) were used for genotype
imputation with the 1000 Genomes Phase I Integrated Release Version
3 (March 2012 haplotypes) as a reference panel (Howie, Donnelly, &
Marchini, 2009; 1000 Genomes Project Consortium, 2010).

We follow a data-driven approach and use risk scores that are in our
linked data and can be associated with an enhanced risk of cardiovas-
cular diseases. We use unweighted risk scores, which were calculated as
the sum of the genotyped risk alleles or imputed allele dosages carried
by an individual. The calculated risk scores are equal to the sum of the
alleles in SNPs that put an individual at elevated risk. The GRS for a risk
score consisting, for example, of 32 individual SNPs is a count from 1 to
64.

The YFS data provide alternative risk measures for BMI, WHR, LDL-
C and TG. This is an advantage because GRSs with different numbers of
SNPs may involve trade-offs between predictive power and bias related
to pleiotropic effects. In our case, SNPs may affect later-life labour
market outcomes, for example, through cognitive or non-cognitive
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traits and not only through health endowments.
The risk scores for BMI are based on 32 or 97 SNPs reported in

Speliotes, Willer, Berndt, and Loos (2010) and Locke et al. (2015), re-
spectively. For WHR, we use the risk scores consisting of 14 or 16 SNPs
identified in Heid et al. (2010). For HDL-C, we use the risk score of 38
SNPs identified in Teslovich et al. (2010). The risk score for LDL-C is
based on 14 SNPs reported in Teslovich et al. (2010) or 58 SNPs re-
ported in Hernesniemi et al. (2015). Similarly, the risk scores for TG (25
or 41 SNPs) are based on the work of Teslovich et al. (2010) and
Hernesniemi et al. (2015).

We calculated correlations between risk scores and biomarker
measures for BMI, WHR, HDL-C, LDL-C and TG in the YFS data for
2011. The findings were consistent with the GWAS evidence; i.e., the
associations were statistically significant (p< 0.01) for all biomarkers
excluding WHR. The strongest association was between LDL-C and
LDL58 (r = 0.243, p<0.01), and the weakest was between WHR and
WHR14 (r = 0.029, p<0.305).

2.2. Labour market outcome measures

The FLEED of SF is the source of information on employment status,
earnings and social transfers. We describe the participant’s labour
market outcomes from two complementary perspectives. First, high
(low) values for annual earnings and employment months are typical
indicators of strong (weak) labour market attachment and markers of
positive (negative) externalities related to health endowments (Conti &
Heckman, 2010). Second, we augmented this information by social
income transfers received (consisting of, e.g., unemployment, housing
and disability benefits) that are the main indicators of poor labour
market success and markers of negative externalities related to health
endowments (Cawley, 2015).

We use three specific measures: the logarithm of the participant’s
average annual wage and salary earnings, the share of years employed
and the logarithm of the average of the participant’s annual social

income transfers received. The outcomes are calculated as averages of
the values over the 2001–2012 period. Thus, they capture persistent
differences in an individual’s labour market behaviour in the prime
working age. In 2012, the YFS participants were between 35 and 50
years old.

2.3. Covariates and sample considerations

The baseline model controls for the participant’s age and gender,
which are predetermined variables. In addition, we augment the
baseline model using measures of parental environment (family income
and education). This serves two purposes. First, the inclusion may
control for biases arising from a correlation of genetic variants of
children and their parents and the possibility that parents’ genes in-
fluence their own environments and thus the parental socioeconomic
status (Lundborg & Stenberg, 2010). Second, additional predetermined
covariates reduce the variability of the independent variable, improving
the statistical precision of the estimates (Von Hinke, Smith, Lawlor,
Propper, & Windmeijer, 2011). This is useful in a relatively small
sample.

The main characteristics of the linked data are summarized in
Table 1. Two issues are worth noting. First, although the number of YFS
participants in our estimation sample (N = 1638–1675) is smaller than
the original sample size (N = 3,596), the samples are representative of
the baseline (Böckerman et al., 2019). Second, although the sample is
relatively small (N = 1675 or less), there is an important advantage
over the prior literature: labour market data are not self-reported but
come from comprehensive national registers that avoid reporting errors
and are not top coded.

Fig. 1. Directed acyclic graph for exploring the effects of enhanced risk of cardiovascular diseases on later-life outcomes in the labour market. Comparison of OLS, IV
and RF-estimators.
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3. Results

3.1. Evidence from the reduced-form models

Tables 2 and 3 present the results of regressing labour market out-
comes on risk scores. We acknowledge that the relatively small sample
size of the YFS limits the statistical power of the analysis. For this
reason, the models are first estimated for men and women pooled
(Table 2), and thus represent the average effect across both genders. In
Table 3, we report the results by gender.

In general, the results reveal statistically non-significant or only
weakly significant associations between genetic health endowments
and later-life outcomes: in 19 out of 27 cases, we cannot reject the null
hypothesis of no effect of genetic variant on the labour market outcome
(Table 2). Encouragingly, in most cases, the estimates are in accordance
with our theoretical reasoning, i.e., the direction of an effect is correct.
The estimates that are against our priors are related to the effects of
triglycerides (all six estimates) and the outcomes that measure social
income received (four cases out of nine).

The results for risk scores of BMI and WHR show the clearest effects.
We find four cases that indicate a statistically significant and correctly
signed effect of genetic endowment on later-life outcome. BMI32 has a
significant negative effect on earnings (p< 0.05) and years in em-
ployment (p<0.05) and a significant positive effect on social income
transfers (p< 0.05). WHR16 indicates a significant negative effect on
the share of years employed (p< 0.10). However, genetic endowment
is not statistically significantly linked to poor later-life performance
when the risk score for BMI is based on 97 SNPs or when the risk score
for WHR is based on 14 SNPs. However, in all cases, the direction of an
effect is consistent with our priors.

The results for risk scores for lipoproteins (HDL38, LDL14, LDL58,
TG25, and TG41) are muted. There are one correctly signed and three

incorrectly signed estimates that obtain statistical significance. LDL14
indicates a negative effect on earnings (p<0.05) as expected. An in-
creased risk of higher triglycerides (TG25 and TG41) implies more
employment years (p<0.10), in contrast to our a priori beliefs.

Table 3 presents the results separately by gender. These results are
consistent with the pooled model; i.e., most of the estimates are im-
precise, partly reflecting weak power related to a small sample. How-
ever, the results show notable gender differences. For men, there are
seven statistically significant estimates that are consistent with theo-
retical reasoning; see columns 1–3. BMI32 has a significant negative
effect on later-life outcomes for earnings (p< 0.10), for years in em-
ployment (p< 0.05), and for social income transfers (p< 0.05).
WHR16 and WHR14 indicate a significant negative effect on earnings
(p< 0.05), and WHR16 also has a significant positive effect on social
income transfers (p< 0.05). For women, there are no effects of obesity
or body shape on later-life outcomes; see columns 4–6. The findings of
gender-specific effects of obesity are consistent with the results docu-
mented in Böckerman et al. (2019), Cawley (2004), Kline and Tobias
(2008), Johansson, Böckerman, Kiiskinen, and Heliövaara (2009). As in
the pooled sample, the effects of risk scores based on lipoproteins show
no statistically significant relationships (24 cases in total), or the effects
are contrary to prior beliefs (five cases in total; HLD38 for employment
and LDL14 for social income transfers; TG25 and TG41 for employment
and TG41 for social income transfers).

3.2. Extensions and robustness

Our analysis suggests that (i) there is an effect of obesity (BMI and
WHR) on several later-life labour market outcomes, and (ii) there are no
effects of low- or high-density lipoprotein cholesterol and triglycerides
on later-life outcomes or that the effects are counterintuitive.
Furthermore, findings are (iii) sensitive to the measurement of genetic
endowments and (iv) show differences across genders.

Table 1
Summary statistics.

Variable Mean (SD) N

Labour market outcomes, averages from
2001–2012

Log of average annual earnings 9.875 (0.886) 1651
*Log of earnings in 2012 9.480 (2.584) 1638

Share of years employed 0.858 (0.243) 1675
*Indicator for being employed in 2012 0.880 (0.326) 1660

Log of average annual social income transfers 5.665 (2.931) 1651
*Log of social income transfers in 2012 2.449 (3.768) 1638

Genetic health endowments, risk scores
BMI 32 SNPs 29.14 (3.337) 1651
BMI 97 SNPs* 2.315 (0.161) 1651
WHR 14 SNPs 15.178 (2.367) 1651
WHR 16 SNPs 16.250 (2.495) 1651
TG 25 SNPs 26.10 (2.886) 1651
TG 41 SNPs 0.986 (0.095) 1651
LDL-C 14 SNPs 14.466 (2.184) 1651
LDL-C 58 SNPs 0.959 (0.078) 1651
HDL-C 25 SNPs 44.646 (3.714) 1651
Parental environment
University education (1980), mother 0.073 (0.261) 1651
University education (1980), father 0.110 (0.313) 1651
Income (1980), mother (euros) 4642.3 (3433.7) 1651
Income (1980), father (euros) 8684.4 (5633.1) 1651
Background information on participants
Age (2001) 31.570 (4.914) 1651
Female (2001) 0.545 (0.498) 1651
Married (2001) 0.451 (0.498) 1651
BMI (2011) 26.464 (4.839) 1185
WHR (2011) 0.898 (0.088) 1185
TG (2011) 1.205 (0.623) 1185
LDL-C (2011) 3.247 (0.823) 1185
HDL-C (2011) 1.333 (0.322) 1185

Notes: Descriptive statistics are reported for the samples used in the estima-
tions. * = weighted.

Table 2
Genetic health endowments and labour market outcomes: estimates of reduced-
form models for the 2001–2012 period.

Labour Market Outcomes, averages over 2001–2012

(1) (2) (3)
Dependent
variable

Log of average
earnings

Share of years
employed

Log of average social
income transfers

(N = 1651) (N = 1675) (N = 1651)

Genetic risk score
BMI 32 −0.012** −0.004** 0.042**

(0.006) (0.002) (0.020)
BMI 97 −0.001 −0.023 0.380

(0.130) (0.037) (0.421)
WHR 14 −0.011 −0.004 0.042

(0.009) (0.003) (0.029)
WHR 16 −0.011 −0.004* 0.045

(0.009) (0.002) (0.028)
HDL 38 0.001 −0.002 0.012

(0.007) (0.002) (0.020)
LDL 14 −0.023** -0.004 −0.037

(0.010) (0.003) (0.032)
LDL 58 −0.157 0.010 −0.997

(0.252) (0.078) (0.852)
TG 25 0.011 0.003* −0.040*

(0.007) (0.002) (0.024)
TG 41 0.168 0.123** −0.372

(0.199) (0.061) (0.693)

Notes: Earnings are measured as the log of average earnings over the period
2001–2012. Employment is measured as the average share of employment
years over the period 2001–2012. Social income transfers are measured as the
log of average transfers over the period 2001–2012. All models control for
gender and cohort. Heteroscedasticity-robust standard errors are reported in
parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; ***
at the 0.01 level.
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Table 3
Genetic health endowments and labour market outcomes: estimates of reduced-form models for the 2001–2012 period, men and women separately.

Labour Market Outcomes, averages over 2001–2012

Men Woman

(1) (2) (3) (4) (5) (6)
Dependent variable Earnings Years employed Social income transfers Earnings Years employed Social income transfers

(N = 751) (N = 758) (N = 751) (N = 900) (N = 917) (N = 900)

Genetic risk score
BMI 32 −0.016* −0.005** 0.074** −0.008 −0.003 0.016

(0.009) (0.002) (0.031) (0.008) (0.002) (0.025)
BMI 97 0.031 −0.032 0.643 −0.020 −0.017 0.208

(0.206) (0.055) (0.668) (0.169) (0.051) (0.538)
WHR 14 −0.020* −0.002 0.066 −0.004 −0.005 0.024

(0.012) (0.004) (0.046) (0.013) (0.004) (0.036)
WHR 16 −0.023** −0.004 0.093** −0.002 −0.005 0.008

(0.011) (0.003) (0.045) (0.012) (0.004) (0.034)
HDL 38 −0.010 −0.005** 0.013 0.011 0.001 0.013

(0.011) (0.003) (0.030) (0.008) (0.002) (0.026)
LDL 14 −0.019 −0.004 −0.080* −0.029** −0.005 0.008

(0.015) (0.004) (0.048) (0.012) (0.004) (0.042)
LDL 58 −0.106 −0.039 −1.870 −0.209 0.045 −0.255

(0.406) (0.116) (1.386) (0.321) (0.106) (1.058)
TG 25 0.011 0.001 −0.018 0.010 0.006** −0.061*

(0.011) (0.003) (0.036) (0.009) (0.002) (0.031)
TG 41 0.154 0.050 −0.145 0.151 0.174** −0.455

(0.340) (0.093) (1.072) (0.236) (0.082) (0.908)

Notes: Earnings are measured as the log of average earnings over the period 2001–2012. Employment is measured as the average share of employment years over the
period 2001–2012. Social income transfers are measured as the log of average transfers over the period 2001–2012. All models control for gender and cohort.
Heteroscedasticity-robust standard errors are reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 level.

Table 4
Genetic health endowments and labour market outcomes. Joint significance of BMI32 and WHR16 on various outcomes, men and women separately.

Labour Market Outcomes, averages over 2001–2012

Men Women

Earnings Years employed Social income transfers Earnings Years employed Social income transfers
(N = 751) (N = 758) (N = 751) (N = 900) (N = 917) (N = 900)

Panel A 3.94 3.23 4.65 0.57 1.56 0.22
(0.020) (0.040) (0.010) (0.568) (0.210) (0.802)

Panel B 3.84 3.03 4.82 0.59 1.82 0.23
Added: family background (0.022) (0.049) (0.008) (0.553) (0.163) (0.792)
Panel C 3.34 4.19 5.06 0.47 0.45 0.64
Added: all remaining GRSs (0.036) (0.016) (0.007) (0.625) (0.638) (0.528)
Panel D 3.40 4.16 5.49 0.45 0.55 0.64
Added: all together (0.034) (0.016) (0.004) (0.635) (0.577) (0.529)

Table reports F-statistics for a joint test that all GRS coefficients (BMI32 and WHR16) are zero and p-values in parentheses. All models include controls for age.

Table 5
Genetic health endowments and labour market outcomes. Joint significance of BMI32 and WHR16 on various outcomes, men and woman separately.

Labour Market Outcomes in 2012

Men Woman

Earnings Years employed Social income transfers Earnings Years employed Social income transfers
(N = 745) (N = 751) (N = 745) (N = 893) (N = 909) (N = 893)

Panel A 3.54 3.71 0.81 0.55 1.30 1.11
(0.030) (0.025) (0.446) (0.578) (0.273) (0.330)

Panel B 3.57 3.76 0.79 0.63 1.42 1.09
Added: family background (0.029) (0.024) (0.453) (0.531) (0.243) (0.336)
Panel C 4.38 5.80 4.08 1.14 0.43 0.60
Added: all remaining GRSs (0.013) (0.003) (0.017) (0.319) (0.651) (0.551)
Panel D 4.40 5.93 4.30 1.22 0.51 0.58
Added: all together (0.013) (0.003) (0.014) (0.294) (0.598) (0.561)

Table reports the F-statistics for a joint test that all GRS coefficients (BMI32 and WHR16) are zero and p-values in parentheses. All models include controls for age.
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Table 4 extends the analysis by testing the joint significance of two
GRSs (BMI32 and WHR16) on earnings, employment and social security
benefits. The models are estimated separately for men (columns 1–3)
and women (columns 4–6). For robustness, we augment the models for
age (Panel A), parental environment (Panel B), and all GRSs used in
Table 3 (Panel C). In Panel D, all controls are included in the model
simultaneously. In Table 5, we repeat the analysis using only cross-
sectional data from the year 2012. This model provides a tentative
check for the possibility that the risks of cardiovascular diseases for an
individual’s performance in the labour market may be materialized only
at an older age.

The results confirm the gender differences in the effects of obesity
on later-life outcomes in the labour market. The baseline results for men
(Table 4, Panel A) show that there are statistically significant joint ef-
fects of genetic health endowment related to body weight and body
shape on earnings (p = 0.020 column 1), employment years (p =
0.040, column 2), and social income transfers (p = 0.010, column 3)
for men; see Panel A in columns 1–3. Similar findings for women cannot
be found: the corresponding p-statistics are 0.568, 0.210, and 0.802; see
columns 4–6. The difference between genders remains robust after
controlling for parental background (Panel B), all remaining risk scores
in the data set (Panel C), and both sets of controls simultaneously (Panel
D). The use of cross-sectional data from 2012, instead of averaged data
for the 2001–2012 period, yielded comparable results (Table 5). For
women, the results show no effect in all specifications; see columns 4–6.
For men, the result of no effect is found for social income transfers only
when we control for age and family background (Panels A and B). In all
other cases, the results are similar to those in Table 4.

4. Discussion

This study uses the YFS data to examine whether genetic endow-
ments related to an enhanced risk for cardiovascular diseases have
significant effects on long-term labour market performance in prime
age. The reduced-form approach of the study is useful because there is
previous evidence according to which health correlates with labour
market outcomes and different mechanisms that may explain the re-
lationship. Furthermore, the observed relationships may be reciprocal.
The approach of testing, instead of estimating a causal relationship, has
several advantages related to measurement errors in exposures, reverse
causality and potential gene-environmental interactions.

Our empirical analysis provides two main findings. First, the effects
of genetic health endowments related to an enhanced risk of cardio-
vascular diseases on later-life outcomes in the labour market are gen-
erally correctly signed but statistically weak, and if they exist, they are
related to endowments associated with obesity and prevail only for
men. Second, an increase in the number of SNPs in risk scores tends to
result in non-significant estimates. This result may reflect pleiotropic
effects of SNPs with a tendency that genetic variants have strong as-
sociations with various traits with opposing labour market effects. This
finding, in turn, implies that caution is warranted when using genetic
information in instrumental variable research designs (Burgess,
Bowden, Fall, Ingelsson, & Thompson, 2017).

The possible limitations of the study relate to the sample, the con-
struction and power of GRSs, and the measurement of outcomes. First,
the size of the YFS data limits the statistical power and the use of
subsamples by gender and wave, although the baseline findings are
robust to certain permutations of the sample. Second, the power of
GRSs in explaining biomarkers related to cardiovascular risk is limited.
On average, the GRSs account only for a small proportion of total
variation in health traits. Third, it is not obvious which risk score to use
in analysis. The use of a risk score with the highest number of SNPs may
entail a trade-off between the predictive power of the GRS and the
possible bias related to pleiotropic effects. In our case, SNPs may affect
later-life labour market outcomes through unobserved characteristics
that are not related to health endowments. Fourth, a risk of

cardiovascular disease for individual performance in the labour market
may materialize only at an older age: the average age of participants in
the sample was 36 years, and therefore, it is possible that the increased
genetic risks were not yet fully developed among the participants.
Furthermore, the findings are based on data from a single country,
Finland, which may raise issues related to generalization of the results.
However, Finland is a prominent example of a highly developed Nordic
welfare state, and thus, our results may apply to European labour
markets as well.

We suggest five extensions for future research. First, the analyses
could be confirmed by using information on individual SNPs instead of
risk scores to detect and account for possible pleiotropic effects (Von
Hinke et al., 2016; Zhu et al., 2018). Alternatively, polygenic risk
scores, which account for genome-wide variation and achieve greater
predictive power compared with GRSs comprising a small number of
genome-wide significant SNPs, could be used (Visscher et al., 2017;
Choi, Mak, & Reilly, 2018; Inouye, Abraham, Nelson, & Samani, 2018).
Unfortunately, the YFS data that are currently linked to the compre-
hensive registers of Statistics Finland contain only data on risk scores
and no information on individual SNPs or polygenetic risk scores.
Second, the results should be confirmed in other and preferably larger
samples. This research would provide more information and precision,
in particular, on the gender differences in the effects of health en-
dowment for later-life outcomes (Cawley, 2004). Third, it would be
useful to repeat our analyses by using genetic health endowments that
are related to other dysfunctions and abnormal conditions of the body,
along with cardiovascular diseases (Zhu et al., 2018). Fourth, the
analysis could be augmented with information on parental health en-
dowments (Conley et al., 2015). This approach would alleviate the
problems associated with assortative mating and the possibility that
parental endowments shape the childhood environment, which, in turn,
affects offspring’s later performance in the labour market. Fifth, it could
be interesting to augment the analysis by using the variables that
measure participant’s health behaviour in youth. This approach could
provide a more complete picture of the interplay between early genetic
endowments, early health behaviour and later labour market outcomes
(Conti and Heckman, 2010).
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