TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Julkaisu 604 Publication 604

Lasse Harju

Programmable Receiver Architectures for Multimode
Mobile Terminals

Tampere 2006

Tampereen teknillinen yliopisto. Julkaisu 604
Tampere University of Technology. Publication 604

Lasse Harju

Programmable Receiver Architectures for Multimode
Mobile Terminals
Thesis for the degree of Doctor of Technology to be presented with due permission for

public examination and criticism in Tietotalo Building, Auditorium TB109, at Tampere
University of Technology, on the 11th of August 2006, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2006

ISBN 952-15-1618-6 (printed)
ISBN 952-15-1833-2 (PDF)
ISSN 1459-2045

ABSTRACT

This thesis considers the design of a programmable baseband receiver platform for
WCDMA and OFDM mobile terminals. The design challenges introduced by the
evolution of wireless systems are highlighted and design methodologies deployed
in the platform development are introduced. The receiver algorithms of WCDMA
and OFDM receivers are summarized and potential processor based architectures for

implementing these algorithms are studied.

The Espresso platform is composed of a RISC processor core and three coproces-
sors. The coprocessor provide the functions needed to implement the WCDMA and
OFDM receiver algorithms. The key of the coprocessor approach is the exploitation
of the computational similarities of the WCDMA and OFDM receiver algorithms.
This enables effective reuse of hardware resources between the WCDMA and OFDM
modes of the receiver. The RISC processor is used to initiate the coprocessor func-
tions and to implement symbol rate channel estimation and equalization tasks. The
interconnection between the host processor and the coprocessors is realized with
a dedicated coprocessor bus which reduces the communication overhead typically

associated with memory mapped coprocessor.

The programming interface of the platform is implemented with a set of coprocessor
functions. Typically application-speci ¢ processors require low-level programming
which affects negatively to the software development ef cienc y. The programming
interface of the proposed platform is implemented with standard C-language which

enables productive software development.

The platform architecture and the programming interface constitute a template base-
band receiver architecture that can be employed in WCDMA and OFDM receivers.
The hardware and the software can be ne tuned to the target application without af-
fecting each other as long as the programming interface is kept unchanged. Thus, the

platform enables effective reuse of existing hardware and software implementations.

Abstract

PREFACE

The research work for this thesis was carried out in the course of the years 2000-2006

in the Institute of Digital and Computer Systems at Tampere University of Technol-
ogy.

I would like to thank my supervisor Professor Jari Nurmi for his expertise and guid-
ance throughout my research. I am truly grateful to my mentor Dr. Mika Kuulusa
for his inspiration, support, and friendship. I would also like to thank Dr. Mikko
Valkama for his valuable input. Special thanks to the colleagues I have had the plea-
sure of working with and who have provided me mental and technical support in
the course of past few years: Teemu Taskinen, M.Sc., Simo Lehto, M.Sc., Heikki
Hurskainen, M.Sc., Timo Rintakoski, M.Sc., and Tapio Ristiméki, Dr.Tech. I would
also like to thank my thesis reviewers Kimmo Kuusilinna, Dr.Tech., and John Gloss-
ner, Ph.D.

The research work has been funded by Nokia Research Center, The European Union,
and Elekrobit, Ltd. I gratefully acknowledge the support from the Nokia Founda-
tion, the Finnish Cultural Foundation, Walter Ahlstrom Foundation, the HPY Re-
search Foundation, the Foundation of Advancement of Technology, and Tuula and

Y1j6 Neuvo Foundation.

Finally, I would like to thank my parents Pekka and Aino Harju, my sister Elina, and
my grandmother Kaija Harju for their encouragement and kind support.

Thank you Mia for your love, support, and understanding.

Tampere, June 2006

Lasse Harju

Preface

TABLE OF CONTENTS

Abstract L e e e i
Preface iii
Table of Contents e \
List of Publications e ix
Listof Figures o e xi
Listof Tables xiil
List of Abbreviations e XV
Part1 Introduction 1
1. Introduction 3
1.1 Objective and Scope of Research 5

1.2 MainResults, 5

1.3 Outlineof Thesis 5

2. Future Wireless Communications 7
2.1 Next Generation Wireless Systems 7
2.1.1 Evolutionof 3G Systems 8

2.1.2 Convergence of 3G and WLAN Networks 10

22 SoftwareRadio o 11

3. Design Challenges and Methodologies 13

3.1 DesignChallenges 13

Vi Table of Contents

3.1.1 Time-to-Market 14

312 Flexibility 14

3.1.3 Complexity 15

3.1.4 Embedded Software 15

3.1.5 Summary of Design Challenges 16

3.2 Design Methodologies 16
3.2.1 Platform Based Hardware Design 16

3.2.2 Product Line Based Software Design 18

323 FutureDesignTools 19

3.24 Applying New Design Methodologies in Practice 19

4. Baseband Processing in WCDMA/OFDM Receivers 21
4.1 Dual-Mode WCDMA/OFDM Receiver Front-End 21
4.1.1 RF-Section 21

4.1.2 Analog-to-Digital Conversion 22

4.2 Digital Baseband Section 23
4.2.1 Baseband Signal Model 25

4.3 Timing Synchronization 26
43.1 OFDM Timing Synchronization 26

4.3.2 WCDMA Timing Synchronization 28

4.4 Frequency Offset Estimation 30
4.5 Demodulation 31
4.5.1 WCDMA Demodulation 31

4.52 OFDM Demodulation 32

4.6 Channel Estimation 32

4.6.1 WCDMA Channel Estimation 33

Table of Contents Vii

4.6.2 OFDM Channel Estimation 34

4.7 Analysis of the Receiver Algorithms 34
. Programmable Architectures for Wireless Receivers 37
5.1 Non-Functional Requirements 37
5.2 Reduced Instruction Set Processors 38
52.1 COFFEERISC 39

5.3 Digital Signal Processors 40
5.3.1 Texas Instruments TMS320C54x 41

5.4 Multiple-Issue Digital Signal Processors 42
54.1 Sandblaster 43

5.5 Application Speci ¢ Instruction Set Processors 44
5.5.1 TensilicaXtensa 45

5.5.2 ASIPs for Wireless Receivers 46

5.6 Coprocessor Accelerators L 46
5.6.1 Coprocessor Architectures for Wireless Receivers 47

5.7 Comparison of Architectural Alternatives 48
The Espresso Platform 51
6.1 EspressoOverview 51
6.2 Synchronization Coprocessor Architecture 52
6.2.1 TheDatapath, 53

6.3 Demodulation Coprocessor Architecture 54
6.3.1 TheDatapath 55

6.3.2 The Processing Unit 56

6.4 1/0 Coprocessor Architecture 57

6.5 Espresso Programming Interface 58

viii Table of Contents

6.5.1 WCDMA Multipath Estimation 60

6.5.2 WCDMA Demodulation 62

6.5.3 OFDM Synchronization 64

6.54 OFDM Demodulation 66

6.6 Espresso Limitations 66

7. Espresso Simulation and Synthesis 69
8 Conclusions 73
81 MainResults 74

82 FutureTrends 75

9. Summary of Publications 77
9.1 Author’s Contribution to the Publications 78
Bibliography 79

Part IT Publications 89

LIST OF PUBLICATIONS

This thesis is composed of two parts. Part [contains argumentation of the research

and Part II contains the conference and journal publications published during the

course of the work. In the subsequent chapters these publications will be referred to
as [P1], [P2], [P3]...., [P7].

[P1]

[P2]

[P3]

[P4]

[P5]

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible Rake Receiver Architec-
ture for WCDMA Mobile Terminals,” in Proc. |EEE Workshop on Sgnal
Processing Advances in Wireless Communications, Tao Yuan, Taiwan, Mar.
2001, pp. 9-12.

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible Implementation of a WCDMA
Rake Receiver,” in Proc. |[EEE Workshop on Sgnal Processing Systems, San
Diego, CA, USA, Oct. 2002, pp. 177-182.

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible Implementation of a WCDMA
Rake Receiver,” in The Journal of VLS Sgnal Processing, Springer Science,
vol. 39, no 1-2, pp. 147-160, Apr. 2005.

L. Harju and J. Nurmi, “A Baseband Receiver Architecture for UMTS/WLAN
Interworking Applications,” in Proc. |EEE International Symposiumon Com-
puters and Communications, Alexandria, Egypt, June 2004, vol. 2, pp. 678—
685.

L. Harju and J. Nurmi, “A Programmable Baseband Receiver Platform for
WCDMA/OFDM Mobile Terminals,” in Proc. |EEE Wireless Communica-
tions and Networking Conference, New Orleans, LA, USA, Mar. 2005, vol.
1, pp. 33-38.

List of Publications

[P6]

[P7]

L. Harju and J. Nurmi, “A Synchronization Coprocessor Architecture for
WCDMA/OFDM Mobile Terminal Implementations,” in Proc. International
Symposium on System-on-Chip, Tampere, Finland, Nov. 2005, pp. 141-145.

L. Harju and J. Nurmi, “A Demodulation Coprocessor Architecture for
WCDMA/OFDM Mobile Terminal Implementations,” in Proc. NORCHIP
Conference, Oulu, Finland, Nov. 2005, pp. 66—69.

10
11
12
13
14
15
16
17
18
19
20

LIST OF FIGURES

The interworking architecture for 3G networks and WLANs. 11
Architecture of a software radio receiver. 12

A block diagram of a dual-mode WCDMA/OFDM receiver front-end. 22

Block diagrams of WCDMA and OFDM baseband receivers. 24
Illustration of the cyclic pre x in OFDM symbols. 25
Structure of the OFDM packet preamble. 26
OFDM packet detection algorithm. 27
OFDM symbol timing estimation algorithm. 28
Slot structures of downlink channels. 29
WCDMA multipath delay estimation algorithm. 30
WCDMA channel estimation algorithm. 34
WCDMA and OFDM baseband procedures. 35
Functional block diagram of a WCDMA/OFDM baseband. 36
A block diagram of the COFFEE processor core. 40
The COFFEE coprocessorbus. 40
The Espresso platform. 52
General architecture of the coprocessors. 53
The datapath of the synchronization coprocessor. 54
The datapath of the demodulation coprocessor. 56

Comparison of Rake architectures 57

Xii

List of Figures

21
22
23
24
25
26

27

The processingunit. 58
WCDMA multipath searcher sequence diagram. 62
WCDMA demodulation sequence diagram. 63
OFDM synchronization sequence diagram. 65
OFDM demodulation sequence diagram. 67
Espressotestbench. L. 70

Espresso area distribution. L. 71

LIST OF TABLES

1 Comparison of cellular and short range wireless technologies. . . . 8
2 The coprocessor functions. 59

3 Espresso synthesis and simulationresults. 72

Xiv List of Tables

LIST OF ABBREVIATIONS

2G Second Generation

3G Third Generation

3GPP Third Generation Partnership Program
3GLTE Third Generation Long Term Evolution

AAA Authentication, Authorization, and Accounting
ADC Analog-to-Digital Converter

API Application Programming Interface

ASIC Application-Speci ¢ Integrated Circuit

ASIP Application-Speci ¢ Instruction Set Processor
AWGN Additive White Gaussian Noise

BPF Band-Pass Filter

CCK Complementary Code Keying

CPICH Common Pilot Channel

DFT Discrete Fourier Transform

DMA Direct Memory Access

DPCCH Dedicated Physical Control Channel

DPCH Dedicated Physical Channel

DSP Digital Signal Processor

XVi List of Abbreviations

DSSS Direct Sequence Spread Spectrum

EDA Electronic Design Automation

EDGE Enhanced Data Rates for GSM Evolution
FFT Fast Fourier Transform

FIFO First In First Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GPRS General Packet Radio System

GSM Global System for Mobile Communications
HSDPA High-Speed Downlink Packet Access
HSDSCH High-Speed Downlink Shared Channel
IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

P Intellectual Property

ISA Instruction Set Architecture

ISM Industrial, Scienti ¢, and Medical

LNA Low Noise Ampli er

LS Least Squares

LTE Long Term Evolution

MAC Multiply Accumulate

OFDM Orthogonal Frequency Division Multiplexing
OVSF Orthogonal Variable Spreading Factor
PDG Packet Data Gateway

XVii

PSCH
QAM
QoS
QPSK
RF
RISC
RTL
RTOS
SDF
SDR
SIMD
SoC
SSCH
UMTS

VHDL

VLIW
WAG
WCDMA
WLAN

WPAN

Primary Synchronization Channel
Quadrature Amplitude Modulation
Quality of Service

Quadrature Phase Shift Keying
Radio Frequency

Reduced Instruction Set Computer
Register Transfer Level

Real Time Operating System
Single-path Delay Feedback
Software De ned Radio
Single-Instruction Multiple-Data

System-on-Chip

Secondary Synchronization Channel

Universal Mobile Telecommunication System

Very High Speed Integrated Circuit Hardware Description Lan-

guage
Very Long Instruction Word

WLAN Access Gateway

Wideband Code Division Multiple Access

Wireless Local Area Network

Wireless Personal Area Network

Xviii List of Abbreviations

Part |

INTRODUCTION

1. INTRODUCTION

Wireless communications are evolving towards multistandard systems. In the future,
the same wireless applications can be accessed alternatively through multiple wire-
less networks using a single wireless terminal. The rst step towards multistandard
systems will be taken by the forthcoming interworking between second and third
generation cellular networks and wireless local area networks (WLAN). The bene t
of this interworking is that the strengths of the two network types are combined, i.e.,
high mobility can be provided through the cellular networks, and high data through-
put through the WLAN. WLAN networks are becoming very popular at public sites,
such as airports, coffee shops, libraries, etc. Thus, interworking between WLANs
and cellular networks provides a very ef cient way of offering increased throughput
to wireless subscribers, and at the same time, a way of decreasing the load of the

cellular networks.

The multistandard functionality imposes several challenges for network and mobile
terminal implementations, as well as to the service providers. The biggest challenge
for the network implementations is to handle the mobility of the users between the
heterogeneous networks. The concern of service providers is the management of
a common billing system for the usage of the multiple networks. In a multistandard
environment, the users have to be equipped with mobile terminals that can operate
in multiple wireless networks. Thus, the challenge for the mobile terminal imple-
mentations is to integrate several radio technologies into a single device. Utilizing
dedicated transmitter and receiver architectures for each radio technology would re-
sult in an intolerable increase in physical size, weight, and power consumption. Thus,
the key in multimode mobile terminal implementations is to share components and

processing resources between the different radio technologies.

While the complexity of the mobile terminals is increasing due to the evolution of

wireless communications, the highly competitive market forces mobile terminal man-

4 1. Introduction

ufacturers to release new products at shorter time intervals and with lower prices.
The con ict between increasing complexity and shrinking time-to-market has lead
manufacturers to adopt new design methodologies for hardware and software. The
main goal of these new design methodologies is to bene t from the similarities be-
tween software and hardware solutions of similar product families. This goal can be
achieved by designing software and hardware architectures that are reusable within
a restricted eld of application. Another trend in mobile terminals, and embedded
systems in general, is the increasing role of software. Some manufacturers prefer
software implementations because of the shorter lead-time of software development
and because necessary redesigns are much cheaper to carry out with software. As
a result of the multimode functionality, software is utilized increasingly also in the

baseband section of the transceivers.

Programmable receiver and transmitter solutions have already been utilized success-
fully in second and third generation mobile terminals, particularly in the symbol rate
processing. The symbol rate processing involves typically interleaving and channel
coding in the transmitter, and channel estimation, deinterleaving, and channel de-
coding in the receiver. The sample rate processing on the other hand, has typically
required dedicated hardware solutions. This is mainly because of the high sampling
rates and complex signal processing, that is especially computationally intensive at
the receiver end. The sample rate processing at the receiver involves typically syn-
chronization and demodulation algorithms. One of the biggest challenge for multi-
mode mobile terminal implementations is to extend the programmability also to the

sample rate processing.

One of the key technologies in mobile terminals are digital integrated circuits (IC).
Modern mobile terminals utilize ICs that are very complex system-on-chip (SoC) so-
lutions, composed of several processors, interconnection networks, application spe-
ci ¢ processing units, recon gurable hardware, memories, peripherals, etc. Because
software design has an increasingly important role in saving design time and costs,
the programmability of the SoC solutions for mobile terminal implementations is of
paramount importance. However, the programmability itself is not enough as the
programmability should be realized in a way that enables effective software develop-
ment and software reuse. In practice this means that usage of low-level programming

languages should be avoided.

1.1. Objective and Scope of Research 5

1.1 Objective and Scope of Research

The main objective of the research presented in this thesis is to design a program-
mable baseband receiver platform for multimode mobile terminals. The goal is to
extend the programmability also to the sample rate processing without compromis-
ing the energy ef cienc y of the architecture. The approach for achieving this target
is to use application-speci ¢ coprocessor accelerators to boost the performance of
a reduced instruction set computer (RISC) processor. Recon gurable hardware or
low-level circuit design issues are not considered in the research. The radio tech-
nologies considered in the multimode operation are wideband code division multiple
access (WCDMA) and orthogonal frequency division multiplexing (OFDM).

Another very important motivation for the research is to develop a programming
interface for the platform that enables software development without low-level pro-
gramming. Low-level programming affects negatively to the software development
ef cienc y and also restricts the reuse of existing software. The approach for achieving
the programmability is to abstract the implementation details of the platform archi-
tecture behind a programming interface in order to make the software less machine

dependent. Embedded software development is not studied in detail.

1.2 Main Results

The main result of the research presented in this thesis is the Espresso platform. The
platform comprises a template baseband receiver architecture, composed of a proces-
sor core and three coprocessors, and a programming interface for the coprocessors.
The presented platform enables software implementation of baseband procedures,
including the sample rate processing, and minimizes the need for low-level program-
ming. Thus, the platform enables programmable multimode receiver implementa-

tions, with support for ef cient software development.

1.3 Outline of Thesis

This thesis is composed of two parts: introduction and publications. The rst part
is organized as follows. In chapter 2, the main characteristics of future wireless sys-

tems are presented. In chapter 3, the various design challenges related to commercial

6 1. Introduction

wireless products are highlighted and the potential design methodologies for software
and hardware are summarized. In chapter 4, the receiver algorithms of WCDMA and
OFDM systems are studied in detail. Chapter 5 presents architectural alternatives
that can be employed to build programmable baseband receiver architectures. The
Espresso architecture is presented in chapter 6 and simulation and synthesis results
are given in chapter 7. Conclusions are drawn in chapter 8. Summary of the publica-

tions included in the second part of the thesis is given in chapter 9.

2. FUTURE WIRELESS COMMUNICATIONS

Wireless communications has been one of the most successful sectors of consumer
electronics for over a decade now. The increase in the number of wireless subscribers
since the introduction of second generation systems has been phenomenal [1]. Be-
cause of the commercial success, the market for wireless products is also a very
competitive one. Manufacturers are ghting for new customers by releasing products
that are smaller, cheaper, and include more features. As a result, wireless communi-
cations has been a major driving force behind the evolution of cutting edge embedded
systems and semiconductor technologies. The future of wireless communications is
steered not only by the user’s desire for faster and ubiquitous wireless connectivity
but also by industry forces that try to maintain the economical success of the previous
wireless generations. In this chapter the future directions of wireless communications

are studied and the technical challenges resulting from this evolution are highlighted.

2.1 Next Generation Wireless Systems

The transition from third generation (3G) wireless systems to fourth generation (4G)
systems is not likely to be as clear as the transition from second generation (2G)
systems to 3G. The evolution of wireless communications will carry on in two direc-
tions: evolution of the current 3G networks and convergence of cellular and ad hoc
networks [2]. The convergence of cellular networks and short range wireless systems
operating in the unlicensed frequency bands is to be expected because it provides
a convenient way to provide high data rate connections to wireless subscribers and
an ef cient approach for increasing the capacity of cellular networks [3]. In the fu-
ture, wireless personal area networks (WPAN), such as Bluetooth, can also be used as
a complementary access medium to wireless services. A future addition to the WPAN
category will be wireless technologies utilizing ultra wideband (UWB) technology.

The features of different wireless technologies are listed in Table 1.

8 2. Future Wireless Communications

Table 1. Comparison of cellular and short range wirel ess technologies.

3G HSDPA 3GLTE
Frequency Band 2 GHz 2 GHz 2 GHz
Channel Bandwidth 5 MHz 5 MHz 5,10, 15, or 20 MHz
Physical Layer WCDMA WCDMA WCDMA/OFDM
Range 1-3 km 1 km 5km
Data Throughput 384 kbps 14 Mbps 100 Mbps
802.11b 802.11a UWB Bluetooth
Frequency Band 2.4 GHz 5 GHz 3.1-10.6 GHz 2.4 GHz
Channel Bandwidth 20 MHz 20 MHz 500 MHz 2 MHz
Physical Layer DSSS OFDM Multiband Frequency
OFDM Hopping
Range 100 m 100 m 4m 30 m
Data Throughput 11 Mbps 54 Mbps 480 Mbps 3 Mbps

New wireless applications and integration of different types of networks draw several
requirements for wireless systems. The biggest challenge for the network implemen-
tations is to handle the mobility of the users between the heterogeneous networks.
The concern of service providers is the management of a common billing system for
the usage of the multiple networks. The most relevant requirement concerning the
work presented in this thesis is that the users need to be equipped with terminals
that can operate in multiple networks. Dual-band, tri-band, and quad-band handsets
already exist for WCDMA and GSM800/900/1800/1900 networks, and many termi-
nals include also infrared and Bluetooth technologies. In the future, the same handset
has to support a richer set of physical layers, e.g., GSM, EDGE, WCDMA, 802.11b,
802.11a, Bluetooth, and UWB. In addition to supporting the physical layers, multi-
mode terminals also have to be able to detect the available networks, and select the

network that best suites the user’s transfer requirements.

2.1.1 Evolution of 3G Systems

Third generation wireless systems, based on wideband code division multiple access
(WCDMA) are currently being deployed around the world. In Europe, 3G systems
are known as universal mobile telecommunication system (UMTS), which is stan-
dardized by the 3" Generation Partnership Program (3GPP). WCDMA utilizes di-
rect sequence spread spectrum (DSSS) physical layer with 3.84 MHz chip rate, and
quadrature pulse shift keying (QPSK) or 16 quadrature amplitude (16-QAM) mod-

2.1. Next Generation Wireless Systems 9

ulation [4]. The channel bandwidth of WCDMA is 5 MHz, and in the frequency
division duplex (FDD) mode it is centered at 1.92-1.98 GHz frequency band in the
uplink (UL) direction and 2.11-2.17 GHz frequency band in the downlink (DL) di-
rection. WCDMA technology enables higher data rates compared to 2G systems and
improves the spectral ef cienc y. Spectral ef cienc y is essential as the traf ¢ loads of
wireless systems are only expected to increase in the future. Another key advantage
over 2G systems is the improved service e xibility [5]. The properties of the wire-
less connection can be varied according to the quality of service (QoS) requirements
of the application being used [6]. The theoretical peak data rate of 3G systems is
2 megabits per second (Mbps), but the maximum data rate provided by the rst 3G
networks is 384 kilobits per second (kbps).

HSDPA

The data rates of 3G systems will be improved by the forthcoming high speed down-
link packet access (HSDPA) [7]. HSDPA employs high-speed downlink shared chan-
nel (HSDSCH) that is a common resource to all users in a single cell. The HSDSCH
resources are divided into time slots and code channels, which are allocated dynami-
cally to the users at 2 ms time intervals. By allocating the shared resources for a single
user, data rates up to 14 Mbps can be achieved. The limitation of HSDPA is that the
high data rates can only be achieved at proximity to the base station. This is because
HSDSCH is transmitted at constant power, and hence, the interference levels at cell
edges may be too high to fully utilize the shared resources.

3G LTE

3GPP has launched the standardization work of long-term evolution (LTE) 3G sys-
tems [8]. The target of this work, also referred to as Super 3G, is to develop a radio
access technology optimized for packet based traf ¢ that achieves signi cantly lower
latency, higher data rates, broader coverage, and better spectral ef cienc y than current
3G systems. The target peak rate of Super 3G is 100 Mbps in the downlink direction
and 50 Mbps in the uplink direction. The higher data rates will be achieved by em-
ploying orthogonal frequency division multiplexing (OFDM) and multiantenna tech-
niques [9]. 3G LTE also will employ spectrum e xibility by adapting the employed

channel bandwidth according to the traf ¢ characteristics.

10 2. Future Wireless Communications

2.1.2 Convergence of 3G and WLAN Networks

Wireless local area networks were originally intended to be used for establishing
temporary computer networks and for providing an alternative for wired computer
networks in buildings where the necessary wiring could not be installed. Currently
WLANS are becoming very popular at public sites, such as cafes, libraries, and air-
ports, to provide internet access to customers with laptops. The convergence with
cellular networks enables these WLAN hotspots to be employed as an alternative
access medium to the core network of the cellular system.

A majority of the current WLANS are based on the IEEE 802.11b standard that en-
ables data rates up to 11 Mbps and approximately 100 m operating range [10]. This
technology is often referred to as Wi-Fi (wireless delity). 802.11b utilizes direct
sequence spread spectrum (DSSS) technique with 11 MHz chip rate and comple-
mentary code keying modulation (CCK). 802.11b networks operate in the 2.4 GHz
unlicensed industrial, scienti ¢, and medical (ISM) band. In the future, the avail-
able data rates will be increased to 54 Mbps by WLANSs based on the IEEE 802.11a
and IEEE 802.11g standards that utilize an OFDM physical layer [11,12]. 802.11a
and 802.11g networks are operated at the 5 GHz and 2.4 GHz frequency bands, re-
spectively. The principle of OFDM is that the high data rate signal is divided into
parallel lower data rate signals that are transmitted on dedicated subcarriers. Each of
the subcarriers is modulated using phase shift keying (PSK) or quadrature amplitude
modulation (QAM).

The interworking between 3G and WLANSs enables the 3G core network to be ac-
cessed through a WLAN network. The standardization is currently ongoing in 3GPP
[13,14]. A simpli ed block diagram of the interworking architecture is depicted in
Fig 1. The WLAN network is connected to the core network through a WLAN access
gateway (WAGQG) and a packet data gateway (PDG). In addition to the depicted blocks,
additional network elements are also needed for authentication, authorization, and

accounting (AAA) functions.

Six different scenarios for the interworking between 3G and WLANSs are outlined
in [15]. The actual interfaces between the WAG, PDG, and the core network are quite
different for these scenarios. In the simplest interworking scenario, the only integra-
tion between the networks is common billing and customer care. A 3G subscriber

can access internet services through a WLAN network operated by the 3G service

2.2. Software Radio 11

Radio Core Mobile
Network Network

Base Transceiver
Dual-Mode Station
Mobile Terminal

WLAN Packet
Access Data
Gateway Gateway

IP Access
Network

WLAN
Access Point

Fig. 1. Theinterworking architecture for 3G networks and WLANS.

provider, and the WLAN access charge is added to the 3G bill of the subscriber.
At its full extent, the interworking enables access to both packet switched and cir-
cuit switched services of 3G through WLAN networks. A subscriber equipped with
a dual-mode mobile terminal can receive multimedia messages, browse the internet,
and make voice calls through either network and move about the networks without

a notable difference in the service quality.

2.2 Software Radio

The evolution of wireless communications is likely to proceed towards the software
radio concept, introduced in the early 1990s [16—18]. The original idea of the soft-
ware radio was to free wireless communications from the limitations drawn by wire-
less standards. A software radio receiver, in its original form, consists of a multi-band
antenna, a band-pass lter , a low-noise ampli er (LNA), a wideband analog-to-digital
converter (ADC), and a powerful digital signal processor (DSP), as depicted in Fig. 2.
The radio frequency signal picked up by the multiband antenna is band-pass Itered
and immediately converted to digital domain. All the radio frequency, intermedi-
ate frequency, baseband, and protocol processing are then executed in the digital
domain on a single processor. This fully programmable transceiver would enable
adaptation to a wireless technology through software downloads [18]. Upon entering
a previously unknown network, the mobile terminal could seamlessly adapt to the air
interface and protocol stack of the network by downloading the necessary software

without user involvement. In addition to ubiquitous coverage, this approach would

12 2. Future Wireless Communications

BPF
Y
% w « o

Fig. 2. Architecture of a software radio receiver.

enable more ef cient usage of spectrum resources. The terminal could monitor the
available frequency resources through spectrum analysis, and select the appropriate
frequency range, bandwidth, modulation, coding, and error corrections according to
the channel conditions. Ideally, frequency resources would be shared between wire-
less systems, and the resources would be managed dynamically. This methodology
is also known as cognitive radio [19].

Since its introduction, the software radio term has been used rather loosely in various
contexts. The term software de ned radio (SDR) has emerged as a more practi-
cal view of the original concept. The Software De ned Radio Forum has speci ed
ve categories, or tiers, that de ne variants of software radio [20]. Terminals that are
implemented completely with hardware belong to tier 0, a category that is not consid-
ered as software radio at all. Terminals belonging to tier 1 include control functions
implemented in software but do not have the ability to change modulation method
or operation frequency without changing the hardware. Tier 2 is the de nition of
software de ned radio. In this category, terminals are capable of changing operating
frequencies by switching between parallel receiver front-ends and executing different
modulation techniques under software control. In tier 2, it is also required that new
modulation techniques can be added to terminals through software updates. In tier 3,
the down-conversion is done completely in the digital domain, which requires that the
analog-to-digital conversion is done directly after the antenna, as depicted in Fig. 2.
Tier 4 is the de nition of an ultimate software radio. Terminals belonging to this
category have no limitation in operating frequency, channel bandwidth, or modula-
tion technique, and they are capable of switching between air interfaces instantly. In
addition, the physical size, weight, and power consumption are at the level of today’s

mobile terminals.

3. DESIGN CHALLENGESAND METHODOLOGIES

Commercial wireless products form a segment of embedded systems that are char-
acterized by a combination of features that make their design particularly challeng-
ing. Modern mobile terminals include a very rich set of features and applications,
e.g., multiple radio technologies, games, and media players, that require a lot of
processing power. Real time constraints are also essential as reactive applications
and protocol processing require very accurate timing. Moreover, there exist hard
limits for power consumption, price, weight, shape, and size of the products. The
evolution of wireless standards also introduces design challenges as small additions
and re nements are made continuously to the standards that affect the implementa-
tion of the mobile terminals. Ultimately, the goal of any embedded system company
is to minimize development time and costs. Development time is largely dependent
on the complexity of the design, head count of the personnel, availability of legacy
designs, and ef cienc y of the design methodologies used. Correspondingly, develop-
ment costs are made up of labor costs and infrastructure costs, such as design tools
licenses, testing equipment etc. Various other costs, such as manufacturing, market-
ing, and administration affect the total production costs of a product. In this chapter,
the design challenges affecting the development costs of future wireless products are
covered and potential hardware and software design methodologies are introduced.
Although the design challenges covered in this chapter apply for all type of embed-
ded systems and all domains inside an embedded system, the focus of this text is on
system-on-chip (SoC) solutions targeted for mobile terminals.

3.1 Design Challenges

A number of design challenges speci ¢ for future wireless terminals are highlighted

in the following sections.

14 3. Design Challenges and Methodologies

3.1.1 Time-to-Market

Wireless products have particularly strict time-to-market constraints. Because of the
evolution of wireless communications and semiconductor technologies, higher data
rates, new wireless services, better standby times, and new attractive features emerge
constantly. Consequently, the life span of wireless products has shrunk and manu-
facturers are forced to release new products at shorter time intervals to maintain their
market positions. This trend results in very tight time-to-market constraints for new
wireless products, and it has become increasingly dif cult for the manufacturers to
design products within the required time frame.

3.1.2 Flexibility

Small-scale redesign or updates are often required for SoCs. Redesigns may be nec-
essary to cope with a change in the product speci cation or a minor design a w. In the
case of wireless products, redesigns may be needed as the wireless standards evolve
and the physical layer parameters and procedures are subject to changes. Moreover,
utilization of new radio frequency and mixed-signal front-ends may affect the base-
band section in a way that requires design updates. In such situations, design time
and cost are likely to be minimized if the original architecture is e xible enough that

the changes can be implemented with software updates.

Another important motivation for maximizing the e xibility of wireless terminal im-
plementations has been the dramatic rise in the manufacturing costs of modern semi-
conductor technologies [21]. The non-recurring engineering costs of SoCs, i.e., costs
resulting from a single production run, are reported to be several million dollars for
the latest technologies. The best way to mitigate these costs is to increase the volume
of a single production run, and thereby minimize the effect of the manufacturing costs
per chip. However, this is not feasible for products that do not go for mass produc-
tion, and thereupon, the only way to guarantee high-volume production is to employ
the same hardware in several products. This kind of e xibility is best achieved with
programmable architectures where the product differentiation can be done by soft-

warc.

3.1. Design Challenges 15

3.1.3 Complexity

The amount of features found in wireless products has increased dramatically within
the last few years. As the available processing power and storage space have in-
creased, new attractive user interfaces and features, such as video games and multi-
media, have emerged in wireless products. The complexity increase caused by the
new features concerns mainly applications processing but as a result of the multi-
mode functionality, the baseband section is also subject to a considerable complexity

increase.

When the complexity of the systems increase, the size of the design teams is likely
to increase in proportion. In order to avoid this and to keep labor costs under control,
the productivity of the design methodologies needs to be improved. Programmability
is an ef cient way to increase productivity simply because of the faster turnaround
time of software development and the smaller cost of redesigns. Furthermore, utiliza-
tion of existing hardware and software components can boost the design productivity
further. Designing hardware and software components for reusability does require
additional design effort but when pursued systematically, reuse can decrease devel-

opment time signi cantly .

3.1.4 Embedded Software

In response to the e xibility requirements and the increased system complexity the
amount of software utilized in mobile terminal implementations has increased sig-
ni cantly . Hence, software development is becoming the biggest design effort of
wireless terminals and the importance of the software development productivity is
emphasized. To date, the methods for increasing software development productivity
in embedded systems have been rather primitive because the design methodologies
and tools used in software development of other application elds do not suit embed-
ded software development. One reason for this mismatch is that embedded systems
involve specialized requirements regarding real-time operation, safety issues, and
power consumption. One of the most critical shortcomings of embedded software
development practices is the lack of ef cient reuse methodologies [22]. The software
written for embedded systems is typically so machine dependent that reuse is lim-

ited to ad hoc methodologies, e.g., copying parts of existing source code. Another

16 3. Design Challenges and Methodologies

symptom of the machine dependency is that the underlying hardware determines the
software architecture to a large extent, and hence, embedded software designers can-

not make use of the bene ts of careful architectural planning.

3.1.5 Summary of Design Challenges

From the analysis of the previous sections, the following challenges are observed.
First, the implementation of wireless products will become more and more software
dominant. The lead-time of software development is shorter and therefore design
time and costs can be minimized by utilizing programmable architectures. Moreover,
programmability provides a way to cope with evolving design speci cations. New
features can be added and existing features can be changed with minimum costs.
Second, reuse will be of paramount importance to boost the productivity of the design
projects. Reuse of existing components facilitates both design and veri cation. Third,
embedded software is becoming a major factor in the total design costs and new

design methodologies to boost the development productivity are needed.

3.2 Design Methodologies

Although programmability and reuse are among the most important factors leading
to higher design productivity, current design methodologies provide little support
for them. Hence, design methodologies of both hardware and software have been
extensively researched.

3.2.1 Platform Based Hardware Design

Platform based design methodology can be regarded as a natural next step from cur-
rent hardware design methodologies. Currently, the dominant design approach of ICs
is based on utilization of intellectual property (IP) blocks that are pre-designed func-
tional entities, such as memories, processors, buffers, busses, interfaces etc. [23]. The
IP blocks can be imported to the design either at synthesis stage (soft IP) or at place
& route stage (hard IP). The platform based design methodology can be seen as a ex-
tension to the IP based approach, where also the basic architecture, i.e., interconnect

network and communication mechanisms, is considered as an IP block.

3.2. Design Methodologies 17

A clear de nition of what constitutes a platform has not been made but in a strict
sense it can be seen as an off the shelf implementation engine targeted for a speci ¢

application eld [24]. An example of such a platform is the OMAP platform by
Texas Instruments [25]. The OMAPV1030 is a single chip architecture composed of
two processors accompanied by a library of essential software routines and reference
designs, needed to implement a 2.5G GSM/GPRS/EDGE handset. This is an example
of a platform that has a very restricted applications space, but at the same time, it is
a very good example of how production volume can be increased by using a single
platform in several products of the same application eld. Signi cant savings on the
SoC development costs are achieved as product differentiation is done with software

by implementing different types of user interfaces and different sets of features.

More generally, a platform can be viewed as a template architecture targeted for
aspeci ¢ application eld, accompanied by a library of IP blocks (both hardware and
software) that can be plugged into the template [23]. One of the most important goals
of platform based design methodology is to raise the level of abstraction at the design
o w entry stage and to streamline the design o w from speci cation to implementa-
tion. At the highest abstraction level the system can be modeled at transaction-level
without any consideration of timing, parallelism, or any physical constraints [26].
Once the designer has selected an appropriate platform for the target application, the
transaction-level model of application is mapped onto the platform components, ef-
fectively resulting in a software-hardware partition. The architecture is then tuned to
the target application by setting the parameters for the hardware blocks and by writ-
ing the nal software for the programmable components. Although the design o w
back-end has to be completed just as with any ASIC designs, development time and
costs are saved because the implementation is constructed from a template architec-

ture and IP block that are readily available and veri ed.

To boost the software development ef cienc y, an application programming interface
(AP]) is necessary that hides the architectural details of the platform architecture from
the programmer. This enables software to be written independent of the underlying
hardware which, in turn, enables software reuse. Furthermore, a real time operating

system and a set of device drivers may be running under the APIL.

18 3. Design Challenges and Methodologies

3.2.2 Product Line Based Software Design

The evolution of wireless communications and semiconductor technologies creates
similar challenges for embedded software development as they do for SoC develop-
ment. The complexity of software, measured by the size of utilized program memory,
used in embedded systems has increased dramatically within recent years [27, 28].
Another trend affecting the embedded software design is the growing diversity of
products. Often, several products for the same market need to be released with dif-
ferent sets of features for different price ranges, and the same products may need to
be released with minor differentiation in different countries. Because of the shorter
lead-time of software development these types of differentiations are best to imple-
ment in software [29]. Some consumer electronics companies have responded to
this by designing software for a family of products that have a common basic soft-
ware architecture. A good example of a product family is GSM handsets. Products
belonging to different product families often include many commonalities. For ex-
ample, a DVD player and a digital TV set might belong to different product families
but they both include an MPEG decoder. This has lead to the adoption of the product
line based software development.

Product line based software design methodology is in many ways analogous to the
platform based hardware design. However, its tenets are much more clearly de ned
than those of platform based hardware design, and it has reached a state of maturity
as several product line success stories already exist [30]. Products developed inside
the product line are created by using the template software architecture and selecting
components from a library of the product line. When the needed components are not
available in the library they are developed in a disciplined manner that guarantees
their reusability in future projects. In addition to the component library, the prod-
uct line assets include detailed instructions for building a product using the library
components, producing the required documentation, testing, etc.

Product developed inside a product line typically employ similar hardware architec-
tures. The software architecture of a product line is largely dictated by the underly-
ing hardware. This implies that the exact characteristics of the hardware architecture
have to be available when the product line is being established. This con icts with
the goal of platform based hardware design, where the system is rst captured with

transaction-level models, and the split between hardware and software is x ed as

3.2. Design Methodologies 19

late as possible in the design o w to allow exploration between alternative solutions.
Therefore, software product lines of the future should be built on an abstraction of

the underlying hardware platform rather than an existing physical implementation.

3.2.3 Future Design Tools

Reuse of existing designs is the basic tenet of both platform based hardware de-
sign and product line based software design. In the endeavor to achieve more ef-
cient reuse, the role of electronic design automation (EDA) tool vendors will be
signi cant. The importance of better EDA tools is addressed in the embedded sys-
tems roadmap [27], technology roadmap for software intensive systems [31], and
international technology roadmap for semiconductors [21]. Although it is possible
to achieve better reuse of hardware and software separately with the current design
methodologies, the true challenge in the future is to combine the hardware and soft-
ware domains and develop the system level methodologies. Similar design, veri ca-
tion, and synthesis tools that are available at register transfer level (RTL) today are
needed at system level in the future. Design tools should provide designers means
to verify the functionality of the design, and measure the performance and the cost
of the architecture at system level. This would require information about the phys-
ical characteristics of the design already at high abstraction levels. Tool suites that
combine the hardware and software domains and automate the mapping of the func-
tional system level models onto the available software and hardware platforms will
be needed.

3.2.4 Applying New Design Methodologies in Practice

Despite the appeal of new design methodologies in a theoretical context, their bene ts

can be quite dif cult to measure in practice. This is a major obstacle for companies
considering a paradigm change to current design methodologies. Besides the costs of
purchasing new design tools and training personnel to apply the new design method-
ologies, a paradigm change may have a negative effect on the income of the company
because it takes a period of time before pro table projects using the new methodology
can be launched. One of the most important factors affecting the design methodolo-

gies employed is legacy designs. A complete paradigm change requires that also the

20 3. Design Challenges and Methodologies

legacy designs are transformed to support the new methodology. Hence the costs and
effort to carry out the adoption of the new methodology are signi cant, and it would

be important to companies to measure the pro tability of their investment.

Increasing design productivity is not only a product of the methodologies applied
and EDA tools used. It is also affected by non-technical factors, such as the orga-
nizational structure of a company, the management style practiced, and the personal
commitment of the employees [32]. Because the adoption of a new design method-
ology greatly affects how information o ws in a company, the personnel and the
projects need to be managed in a way that best suites the design methodology. The
company management also has to establish the guidelines and instructions that de ne
how the design methodology is applied in practice. It also has to monitor that these
instructions are followed and that the development of the core assets and the products
support the long term interest of the company, i.e., the applicability of the core assets

also in future projects.

4. BASEBAND PROCESSING IN WCDMA/OFDM RECEIVERS

Baseband processing in a wireless receiver includes typically synchronization, de-
modulation, channel estimation, and channel equalization procedures. Fundamen-
tally, its task is to recover the transmitted symbol stream from the received signal that
is distorted by the wireless channel, by exploiting the redundancy added to the signal
at the transmitting end. The receiver algorithms needed in the baseband sections of
WCDMA and OFDM receivers are studied in this chapter. The purpose of this study
is to identify the computational structures that can be shared in both modes of a dual-
mode WCDMA/OFDM receiver. All the presented WCDMA and OFDM parameters
are according to 3GPP [33] and IEEE 802.11a [11] standards, respectively.

4.1 Dual-Mode WCDMA/OFDM Receiver Front-End

A receiver front-end comprises the analog radio frequency (RF) section and the
mixed-signal section. The goal in multimode front-end designs is to share as many
components as possible between the different modes of the receiver, and at the same
time, achieve comparable performance to single-mode receivers. The main chal-
lenges of a dual-mode WCDMA/OFDM receiver front-end implementation are brie y

introduced in the next sections.

4.1.1 RF-Section

A dual-mode WCDMA/OFDM receiver requires a front-end that is able to operate
at two different frequency bands and channel bandwidths, and that supports two dif-
ferent duplex methods and several different modulation techniques. The bandwidth
of a radio frequency OFDM signal is 20 MHz centered at 5 GHz, whereas the band-
width of a WCDMA signal is 5 MHz centered at 2 GHz. A good topology for multi-

mode receivers is the direct conversion topology that converts the radio signal straight

22 4. Baseband Processing in WCDMA/OFDM Receivers

Analog Radio Frequency Analog Baseband Mixed Signal

BPF LPF
N %
A s

Sample Rate Digital
-
Select 2 ADC Conversion Baseband signal

Fig. 3. A block diagram of a dual-mode WCDMA/OFDM receiver front-end.

@

R

to baseband, thus eliminating the components needed at the intermediate frequency
stage in heterodyne architectures [34]. A typical solution in multimode receivers
is to employ dedicated band-pass Iters (BPF) and low-noise ampli ers (LNA) for
each mode, and to use a shared mixer with a programmable oscillator frequency [35].
A block diagram of a theoretical dual-band WCDMA/OFDM receiver front-end is de-
picted in Fig. 3. Each frequency band of interest is separately band-pass Itered and
ampli ed and one of the radio frequency signals is then down-converted in a single
step by the mixer that features a tunable local oscillator. After the down-conversion,
the signal is ltered with a tunable low-pass lter and then ampli ed with a variable
gain ampli er . The depicted architecture is based on a dual-mode direct conversion
RF front-end presented in [36] that comprises dedicated components for the antenna,
channel selection lter , and LNA. A similar approach is used in a quad-mode front-
end designed for GSM/GPRS/EDGE and WLAN terminals presented in [37].

4.1.2 Analog-to-Digital Conversion

The double-sided bandwidth of a complex baseband signal in WCDMA is 5 MHz,
assuming ideal Itering of adjacent channels. Thus, according to Nyquist sampling
theorem, the minimum sampling frequency for WCDMA receivers would be 5 MHz.
However, it is convenient to choose the sampling frequency to be a multiple of the
chip rate 3.84 Mcps, and hence the minimum sampling frequency for WCDMA is
7.68 MHz. In order to increase the resolution of the multipath estimation, oversam-
pling is required. Furthermore, the effect of quantization noise is diminished when
oversampling is utilized, and the complexity of the analogue anti-aliasing Iter is re-
duced. The dynamic range of the analog-to-digital conversion (ADC) in WCDMA is
typically 4-6 bits per sample [38].

4.2. Digital Baseband Section 23

In OFDM, the double-sided bandwidth of the complex baseband signal is 20 MHz,
resulting in a minimum sampling frequency of 20 MHz. Although the requirements
for multipath resolution are not that critical in OFDM, the other bene ts of oversam-
pling apply similarly as in WCDMA. The needed dynamic range is also much larger
in OFDM. In a WLAN chipset presented in [39], a sampling frequency of 80 MHz

with a resolution of 10 bits per sample is utilized.

Considering the dual-mode implementation, the ADC requirements are clearly dic-
tated by the OFDM characteristics. However, it is not energy ef cient to run the
system at the OFDM sampling rate because it is likely that the OFDM connection
is employed rarely compared to WCDMA. For this reason a sample rate conver-
sion is included in the mixed signal section of the receiver front-end, as depicted in
Fig. 3. The requirements of the ADC can be eased by making certain restrictions
to the OFDM trafc. The high dynamic range requirement of OFDM receivers is
partly caused by the modulation methods with dense constellations. By restricting
the supported modulation methods to binary phase shit keying (BPSK) and quadra-
ture phase shift keying (QPSK), the ADC requirements can be eased at the expense
of the available data rate.

4.2 Digital Baseband Section

The digital baseband section comprises synchronization, demodulation, channel esti-
mation and channel equalization blocks. High level block diagrams of the baseband
sections of WCDMA and OFDM receivers are depicted in Fig. 4.

The Rake receiver is the key component in WCDMA receivers. As a result of multi-
path propagation, several copies of the transmitted signal with different delays, atten-
uations, and phases are picked up by the receiver antenna. A Rake receiver isolates
the strongest multipath components from the received signal and combines them co-
herently [P3]. A Rake receiver comprises a multipath searcher, Rake ngers, a chan-
nel estimator, and a maximal ratio combiner. The actual number of Rake ngers is not
speci ed by WCDMA speci cations but typically 4-8 ngers are employed [40—42].
Each nger includes resources for despreading a number of parallel data channels
dedicated for the user, control channels of the active cell, or control channels of

neighboring cells. The synchronization in WCDMA receivers is performed by the

24 4. Baseband Processing in WCDMA/OFDM Receivers

Multipath Channel

Searcher Estimation
K2 2K 2 2 N T

Rake
Finger

Pulse Shape Rake
Filtering Finger

™ Extract [Maximal

Pilot Ratio
| Rake ! Symbols |—» Combiner
Finger Symbol
Rake N N ™ Mapping
Finger
(a)
Timing Estimation ’—' E(;:;fnr;r:‘eoln
L2 L2 L2
> > > >l >l
Pulse Shape : : Ex?ract : Channel : Symbol
Filtering SIP —>| FFT s Pilot —» Equalization —» Mapping PS>
ymbols
> (> > >l >l
> > > >l >
(b
Fig. 4. Block diagrams of the digital baseband sections of (a) WCDMA and (b) OFDM re-

ceivers.

multipath searcher. It detects the strongest multipath components of the received sig-
nal and controls the Rake ngers accordingly. The demodulation is performed in the
Rake ngers by correlating the received signal with a spreading code over a period
corresponding to the spreading factor. In principle, the start indices of the Rake n-
ger correlations are determined by the multipath searcher. After the demodulation,
maximal ratio combining is applied to the symbol dumps from the ngers. In maxi-
mal ratio combining, the phases of the symbols are aligned and their amplitudes are
weighted according to the complex tap coef cients acquired by the complex channel
estimator. After the combining, decision of the transmitted symbol is made and the
resulting bit stream is deinterleaved and decoded.

In OFDM, the demodulation is performed by applying 64-tap discrete Fourier trans-
form (DFT) to the samples within a symbol window. Typically the transform is im-
plemented in the form of fast Fourier transform (FFT). The synchronization task in
OFDM involves detecting the symbol boundaries in the sample stream. A merit of
OFDM systems is that they are less vulnerable to multipath fading than WCDMA
systems. A guard period is inserted in front of each symbol to eliminate inter-symbol

interference caused by the multipath fading [43]. Each symbol is cyclically extended

4.2. Digital Baseband Section 25

‘ Symbol l Symbol l Symbol

Ccopy

l/ Cyclic Prefix | l ‘

Lep Lit

Fig. 5. lllustration of the cyclic prefixin OFDM symbols.

over this guard period as illustrated in Fig. 5. Once the symbol timing has been es-
tablished, the samples within a symbol window are serial-to-parallel converted (S/P)
and fed to the 64 FFT inputs. After the demodulation, pilot symbols are extracted
from the FFT outputs and used to estimate the channel coef cients. After the channel
equalization, the symbol mapping is performed. The bit stream is then parallel-to-
serial converted (P/S) and sent to the outer receiver that performs deinterleaving,

descrambling, and Viterbi decoding.

4.2.1 Baseband Signal Model

The general model of the received complex signal after down-conversion, sampling
and pulse shape ltering can be expressed as
Ne—1
r(k) =Y ois(k—1)e?m K% 1 n(k) (1)
i=0
where S(K) is the transmitted baseband signal, N; is the number of multipath taps, o; is
the complex attenuation factor of the ith multipath, T; is the delay of the ith multipath
(expressed as an integer multiple of samples), fq is the offset between the oscillator
frequencies of the transmitter and the receiver, and Ts is the sampling period. It is
assumed that the channel conditions remain constant during the estimation period.
The interference term n(K) is the combination of various interference sources, such
as signals transmitted from neighboring cells, signals of other users in the same cell,

and thermal noise. It is assumed that the interference is Gaussian distributed.

In a typical WLAN environment multipath propagation can be omitted and an ad-
ditive white Gaussian noise (AWGN) channel model can be used. Moreover, the
frequency offset can be normalized to the frequency spacing of the OFDM system,

and (1) can be reformulated as

r(k) = s(k—1)e2™e/Me 1 n(k))

26 4. Baseband Processing in WCDMA/OFDM Receivers

Short Training Symbols Long Training Symbols

11 t2 t3 14 I5 IG t7 tB t9 t1(]

o[[[oo [o]

Fig. 6. Sructure of the OFDM packet preamble.

where T is the timing offset caused by the channel, € is the normalized frequency
offset, computed by dividing the original frequency offset by the frequency spacing
of the OFDM subcarriers (€ = fo/Af), and N; is the number of subcarriers.

4.3 Timing Synchronization

4.3.1 OFDM Timing Synchronization

Timing synchronization in OFDM systems is divided into packet detection and sym-
bol timing estimation. The cyclic pre x makes OFDM systems less sensitive to tim-
ing errors because the timing estimate may vary within an interval bounded by the
length of the cyclic pre x L¢p (see Fig. 5).

Packet Detection

The rst task of the synchronization procedure is to determine when a data packet
has arrived. The detection can be made using the delay-and-correlate method, where
the received signal is correlated against a delayed version of itself [44]. This method
is effective when the received signal includes identical training symbols transmitted
periodically. In 802.11a, the short training symbols in the preamble of a data packet
can be used for packet detection. The data packet preamble is depicted in Fig. 6. The
output of the delay-and-correlate algorithm y(K) is given by

y(k):lilr(k—i—l)r*(k—i—D—i—l) (3)
1=0

where r (k) is the received signal, ()*

is the complex conjugate operation, L is the
length of the correlation, and the delay D is the distance of the two consecutive train-
ing symbols. The correlation y(k) can be normalized by the received signal power
during the correlation period computed as

L—-1
p(K) = 3 3 Ir(k+)P + [r(k+ D+ 1) @)
=0

4.3. Timing Synchronization 27

y(k) M (k)

Threshold

Detect

Fig. 7. Sgnal flow representation of the OFDM packet detection algorithm.

The decision metric is then computed as

2
vl —) -

The value of M(K) is compared against a threshold value, and the detection is made
when a correlation peak crosses this threshold. The packet detection algorithm is
illustrated in Fig. 7. The packet detection algorithm presented in [45] uses this ap-

proach.

Symbol Timing Estimation

Symbol timing estimation is needed to nd the OFDM symbol boundaries. The es-
timation can be done with the delay-and-correlate approach by exploiting sequen-
tial training symbols or the cyclic pre x. An OFDM symbol timing estimator pre-
sented in [46] uses this approach. Alternatively, a matched Iter approach can be
employed [44]. In 802.11a, the long training symbols in the preamble of a data
packet can be used for symbol timing estimation. The output of the matched Iter

y(K) is then computed as
L-1
y(k) = 3t ()r(k+1) (6)

where t(I) is the training symbol. The index that gives the maximum value of y(k)

inside an observation window yields the symbol timing estimate.

t = argmax{ly(k)*} ™

28 4. Baseband Processing in WCDMA/OFDM Receivers

r(k+1)

)

Fig. 8. Sgnal flow representation of the OFDM symbol timing estimation algorithm.

The beginning of the search window is determined by the packet detection and the
length of the search window is determined by the longest expected propagation delay.

A signal o w representation of the algorithm is depicted in Fig. 8.

4.3.2 WCDMA Timing Synchronization

In WCDMA receivers, synchronization is needed for frame and slot timing, as well
as to determine the multipath pro le of the channel.

Cell Search

Cell search is the process in WCDMA systems where the mobile terminal synchro-
nizes to the downlink scrambling code of the closest transmitting base station. The
procedure is divided into three steps: slot timing synchronization, frame timing syn-
chronization (scrambling code group identi cation), and scrambling code identi ca-
tion [40].

The rst step is similar to the symbol timing estimation in OFDM. The received signal
is matched to the primary synchronization channel (PSCH) that is constructed of
a pilot sequence transmitted at the beginning of every transmission slot, as illustrated
in Fig. 9(a). The matched lter output is computed as in (6).

In the second step, the received channel is correlated with all 16 secondary synchro-
nization channel (SSCH) sequences in parallel. These correlations are done at the
beginning of each slot (rst 256 chips) over a period of 15 slots. This can be ex-
pressed as

L—1

yi(n) =Y. ¢'(Hr(l +%+nLs), i=0,...,15, n=0,...,14 (8)
=0

4.3. Timing Synchronization 29

10 ms

2560 chips 256 chips

PSCH

SSCH

(a)
DPCH ‘ Slot 0 ‘ Slot 1 ‘ Slot 2 ‘ ‘ Slot 14 ‘
,,””’ \\\\
,,””,’ \\\\\
‘ Data1 ‘ TPC I TFCI | Data2 ‘ Pilot ‘
DPDCH DPCCH DPDCH DPCCH
(b)

Fig. 9. Sot structures of (a) downlink synchronization channel and (b) downlink dedicated
physical channel.

where ¢i(l) is the ith SSCH sequence, L is the length of the SSCH sequences, 1
is the index of the slot boundary identi ed in the rst stage, and Lg is the length
of a slot measured in chips. After each correlation iteration, one of the 16 parallel
correlations results in a signi cantly larger output than the others, and the indices
of these correlators are stored as a sequence. The used scrambling code group is
identi ed by matching this sequence to one of the 64 possible SSCH codewords.

In the third step, the code inside the code group is identi ed by correlating the re-
ceived signal against each of the eight scrambling code candidates. The code re-
sulting in the largest correlation output is selected as the scrambling code. The cell

searcher implementation presented in [47,48] employ the described basic principles.

Multipath Delay Estimation

The multipath estimation is often divided into two stages: acquisition and tracking.
In the acquisition stage, the received signal and the locally generated codes are syn-
chronized using the information from the cell search procedure as a starting point.
In the tracking stage, the multipath searcher tracks the movement of the multipath
taps inside a certain time window. In WCDMA, the pilot symbols transmitted on
the downlink dedicated physical channel (DPCH) or common pilot channel (CPICH)

can be used for this multipath delay estimation [49]. The structure of the downlink

30 4. Baseband Processing in WCDMA/OFDM Receivers

v, (k) Yare (k)

d Non-coherent Peak
Average Search
*

0)

Fig. 10. Sgnal flow representation of the WCDMA multipath delay estimation algorithm.

DPCH is illustrated in Fig. 9(b).

The multipath estimation is done by matching the received signal to a known pilot
sequence and detecting peaks in the matched Iter output. In principle, the rst peak
determines the acquisition point and following peaks that are within a certain window
determine the other multipath components. The magnitude of a peak is proportional
to the gain of the multipath, and the distance of a peak relative to the rst arrival
gives a measurement of the path delay. In order to minimize the effect of noise and
the interference caused by other users, the sequential estimation windows can be
averaged non-coherently. This can be expressed as

1 M—1
Yave(K) = M Z |Ym(k)|2)]
m=0

where Ym(K) is the kth element of the mth correlation window, computed as in (6).
A signal o w representation of the multipath delay algorithm is depicted in Fig. 10.
Many variations of the presented multipath searcher exist [50-52], but they all em-
ploy the same basic computations, namely matched ltering, non-coherent averaging,
and peak searching. A multipath searcher implementation presented in [53] features
an additional step after the peak selection that measures the power of the selected
multipath candidates to improve the reliability of the estimates. The multipath delay
estimation has to be performed at least at accuracy of one chip. Oversampling or

interpolation is required if better multipath resolution is desired [51].

4.4 Frequency Offset Estimation

An offset between the oscillator frequencies of the transmitter and the receiver causes
a rotation of demodulated symbols in the constellation. Consequently, the frequency
offset can be estimated by observing the phase difference between two known sym-

bols. Conveniently, the frequency offset can be estimated jointly with the timing

4.5. Demodulation 31

estimation. The delay-and-correlate method of (3) can be applied for this purpose
when identical training symbols are transmitted periodically. The correlation output
is computed as in (3) and the frequency offset estimate f, is computed from the ar-
guments of the correlation output y(k), at the index 1 that gives its maximum value
of y(K) within the observation window. This can be expressed as

1

fo= 5 Y0 (10)

where Ts is the sampling period and D is the distance of the two training symbols
measured in samples. A maximum likelihood frequency offset estimation algorithm
for OFDM receivers presented in [45] uses this approach. In 802.11a, the short train-
ing symbols in the preamble of a data packet can be used for this purpose, and in
WCDMA, common pilot channel (CPICH) can be employed [49].

4.5 Demodulation

4.5.1 WCDMA Demodulation

In WCDMA receivers, the demodulation is performed in the Rake ngers by cor-
relating the received signal with a spreading code over a period corresponding to
the spreading factor [54]. The starting index of the correlation is obtained from the
multipath estimation. The output of the ith Rake nger can be expressed as

Lsr—1
di(n)= Y ci(l+nLs)r(l+%+nLss) (11)
i=0

where Lgs is the spreading factor and 7; is the multipath estimate for the ith Rake
nger . If parallel code channels are being employed, each of them is despread sepa-

rately. The combined spreading and scrambling code cs(l) is given by

cs(1) = (Csp(l mod Ler) @ ¢k (I mod L))+
+ j(Csp(l mod Lsf)@Cé?)(l mod L)) (12)

(1) and C(SCQ) are

where @ is the exclusive or operation, Cgp is the spreading code, Cs
the real and imaginary parts of the scrambling code, respectively. The length of the

frame L+ is 38 400 chips in 3GPP [49]. Because the scrambling and spreading codes

32 4. Baseband Processing in WCDMA/OFDM Receivers

are always sequences of £ 1, the multiplication and addition of each correlation stage

are simpli ed. The multiplication in (12) is simpli ed to

(04 1@ 4 j(r@ —r0), whencl) =0, Q=0
r) —r@ 4+ jr@4rM), whenc) =0, Q=1

=) 00 @) 1@ 4 r0), whenc =1, @—p P
(O +1@) — j(r@ — M), whencl) =1, ¥ =1

The chip value +1 is represented with a logic ’0” and the chip value —1 is represented
with a logic ’1°.

4.5.2 OFDM Demodulation

In OFDM, the demodulation is performed by applying 64-point FFT. The reason
why FFT is chosen over a straightforward DFT implementation by correlation is
the reduced number of complex multiply-accumulate operations needed to complete
a single instance of the algorithm. Using DFT, the nth symbol output of the ith
subcarrier would be computed as

N M—1 _

Di(n) = Y r(m-+2+n(Lts+ Lep)) Wy, i=0,...,M—1 (14)

m=0

where M is the length of the transform, 1 is the symbol timing estimate, Ly is the
length of the FFT window (see Fig. 5), L¢p is the length of the cyclic pre x, and
Wiy = e 127/M_ 1t can be seen from (14) that one instance of the algorithm requires
M? multiply-accumulate operations. The derivation of FFT from DFT can be found
in [55].

4.6 Channel Estimation

The channel estimation algorithms are very similar in WCDMA and OFDM. In
WLAN systems, it is commonly assumed that the channel is quasi-stationary, i.e.,
the channel conditions do not change during a data packet [43,44,56]. This means
that the estimation is made using the pilot symbols in the preamble of a data packet,

and used for the entire packet. In WCDMA, the assumption of a quasi-stationary

4.6. Channel Estimation 33

channel does not apply because the signal bandwidth exceeds the coherence band-
width of the channel, and the expected mobile speed is much higher than in typical
WLAN scenarios.

4.6.1 WCDMA Channel Estimation

Assuming zero frequency offset and correct multipath delay estimates, the demodu-

lated symbols from the each Rake nger can be expressed as

~

di(n) = oyd(n) +w(n) (15)

where d(n) is the transmitted symbol, o is the complex attenuation of the ith mul-
tipath, dj(n) is the output of the Rake nger assigned to that multipath, and w(n) is
additive noise. When the transmitted symbols are known, the channel estimate for

the ith multipath can be computed as

d(n) (16)

When quadrature phase shift keying (QPSK) modulation is used, the division in (16)
can be substituted by multiplying the demodulated data with the complex conjugate
of the reference symbol. The noisy channel estimates from each Rake nger are fed
into a moving average Iter . A signal o w representation of the algorithm is depicted
in Fig. 11.

The pilots on the DPCCH or the CPICH are used for channel estimation in WCDMA.
The difference between these is that the pilots transmitted on the CPICH are continu-
ous, whereas the pilots on the DPCCH are transmitted only at speci ¢ elds of a slot.
If the DPCCH is used for channel estimation, interpolation is needed to obtain the
estimates for the duration between the pilot symbols [57]. When the CPICH is used
for the channel estimation, interpolation is needed to match the rate of the pilot sym-
bols to the symbol rate of the data channel, as CPICH is transmitted with a constant

spreading factor [58].

34 4. Baseband Processing in WCDMA/OFDM Receivers

d(n) Gi(n) a(n)

Moving !
Average H Interpolation

From other ————| z d(n)
Rake fingers >

Fig. 11. Sgnal flow representation of the WCDMA channel estimation algorithm.

Extract

dm > piots

4.6.2 OFDM Channel Estimation

Assuming zero offset frequency and correct symbol timing estimation, the received
data symbols after FFT can be expressed as

Di(n) = o;Di (n) +W(n) (17)

where i is the subcarrier index, o is the complex attenuation of the ith subcarrier,
Di(n) is the transmitted data symbol on the ith subcarrier, and W (n) is additive noise.
The channel estimates can be computed as in (16) for each subcarrier.

(18)

This results in a least square (LS) estimation of the channel coef cients [59,60]. The
long training symbols in the preamble of the packet can be used as reference data
in OFDM channel estimation. The packet preamble includes two identical training
symbols and the estimates can be averaged between them to improve the quality of
the estimation [44].

4.7 Analysis of the Receiver Algorithms

Simpli ed o w charts of the baseband processing in WCDMA and OFDM receivers
are depicted in Fig. 12. The WCDMA o w chart only considers the multipath esti-
mation, demodulation, and channel estimation of the DPCH. The channels that are
employed at different stages are listed on the right side of the o w chart. Inthe o w

chart, the multipath delay estimates are updated after each slot. However, the nal

4.7. Analysis of the Receiver Algorithms 35

WCDMA OFDM
Comput_e multipath CPICH Packet detection short training
estimates symbols
Compute channel Compute symbol long training
N CPICH L N
estimates timing estimates symbols
Demodulate the next DPCH Compute frequency long training

field of DPCH offset estimates symbols

Update channel
estimates using
interpolation

Compute channel long training
estimates symbols

Demodulate next
OFDM symbol
Equalize demodulated
symbols

Equalize demodulated
symbols

no

no

yes
Updat§ multipath CPICH
estimates

Compulte channel CPICH
estimates

Fig. 12. Smplified flow charts of WCDMA (left) and OFDM (right) baseband procedures.

update rate depends on the number of averaging iterations used to lter the sequen-
tial estimation windows. WCDMA channel estimation is performed once per slot and
the channel estimates for the different elds inside a slot are computed using inter-
polation. The OFDM o w chart considers the reception of a single data packet. The
symbol elds of the packet preamble employed at different stages are again listed on
right side of the o w chart. In OFDM, the symbol timing and the channel estimates
are computed once per packet.

The timing and frequency synchronization algorithms of WCDMA and OFDM clearly
utilize similar correlation based computations. The two most important computation
kernels of the synchronization algorithms are the delay-and-correlate algorithm and
matched ltering, given by (3) and (6), respectively. Furthermore, non-coherent aver-
aging of sequential correlation windows, as expressed in (9), is needed especially in
the WCDMA multipath searcher. The peak detection block that compares the output

36 4. Baseband Processing in WCDMA/OFDM Receivers

Input Buffer > Demodulation Channel Equalization ~ —

Memory Complex MAC]

Rake FFT

| N

Synchronization Channel Estimation

Code Twiddle
Delay Generators | Factors Interpolation ‘ Averaging

Correlation | Peak
Search

Complex Division

Averaging

Fig. 13. Functional block diagram of a WCDMA/OFDM baseband.

of the correlation against a threshold value is also needed in both systems.

The biggest difference between WCDMA and OFDM baseband processing resides in
the demodulation block. Because the o w of operation in Rake and FFT processing
is so different, common computation kernels in the demodulation algorithms cannot
be extracted similarly as with the synchronization algorithms. However, the FFT and
Rake functionalities can be integrated effectively at the implementation level as will
be shown in chapter 6. Moreover, the computation in the Rake ngers, expressed
in (11), and the computation needed in the second step of the cell search procedure,

expressed in (8), feature similar integrate-and-dump computations.

The channel estimation algorithms are very similar in WCDMA and OFDM. How-
ever, it has to be noted that their accuracy and throughput requirements are quite
diverse. The main difference between the two is the feed-forward structure needed in
WCDMA channels estimation.

The main conclusion that can be made based on the algorithm study is that the
WCDMA and OFDM baseband receiver algorithms can be decomposed into com-
putation kernels that can be employed as functional building blocks in the algo-
rithm implementations. A functional baseband architecture including the most im-
portant computation kernels of WCDMA and OFDM receiver algorithms is depicted
in Fig. 13. With proper parameterization, the functional building blocks can be shared
between the WCDMA and OFDM modes of the receiver, which effectively mini-
mizes the hardware overhead required by the multimode operation. Moreover, based
on the analysis of this chapter it can be stated that by carefully identifying the func-
tional similarities between the WCDMA and OFDM receiver algorithms, the receiver
processing can be implemented very effectively with shared hardware resources with-
out recon gurable hardware.

5. PROGRAMMABLE ARCHITECTURESFOR WIRELESS
RECEIVERS

The importance of programmable SoC solutions in wireless products was addressed
in chapter 3. In this chapter, alternatives for achieving the programmability are dis-
cussed. The basic types of programmable architectures are introduced and real life
examples of each type are given. In general, programmability can be achieved ei-
ther with software programmable processors or with eld programmable gate arrays
(FPGA). In the chapter 4, it was pointed out that the baseband processing of a dual-
mode WCDMA/OFDM receiver can be implemented without recon gurable hard-
ware, and therefore, the text only considers software programmable architectures.

Basic information of processors can be found in [61] and [62].

5.1 Non-Functional Requirements

New implementation approaches are needed in multimode baseband receivers that
enable sample rate signal processing to be implemented with software. As battery
life is always one of the main concerns in portable devices, low power consump-
tion is stressed in addition to the processing power. Currently, all digital baseband
processing in 2G mobile terminals can be implemented with software [63], but in 3G
mobile terminals the processing power demands set by the chip rate processing, i.e.,
multipath searcher and Rake receive, can only be met with dedicated hardware. Typ-
ically, only the symbol rate procedures, i.e., channel estimation, deinterleaving, rate
matching, and channel decoding, are implemented with software [64,65]. In OFDM
receivers, the receiver signal processing requirements are even higher because of the
higher sampling rates and multicarrier operation. If mobile applications are targeted,
the entire OFDM baseband receiver is likely to be implemented with dedicated hard-
ware [66].

38 5. Programmable Architectures for Wireless Receivers

As stated in chapter 3, hardware and software reuse are very important in wireless ter-
minal implementations. From a design productivity point of view, it is essential that
the target application eld of the programmable architecture is as broad as possible to
enable reuse of the platform in multiple applications. Furthermore, the architecture
should be well suited for ef cient software development, i.e., it is required that the

platform can be programmed with high-level programming languages.

5.2 Reduced Instruction Set Processors

Reduced instruction set computer (RISC) processors are architecturally simple proces-
sors targeted for general purpose computing [67]. As the name of the processor type
implies, the instruction set architecture (ISA) of the processor is composed of a small
amount of very simple instructions. Simple in the sense that it takes a longer sequence
of instructions to execute a given function on a RISC processor than on a more elab-
orate processor.

Although some processors based on the RISC philosophy have in fact quite large
ISAs, there are a number of design approaches common to all RISC type of proces-
sors [61,67]. First, all pipeline stages are executed in a single clock cycle. This prop-
erty requires that the processing units, the instruction decoding, and the control logic
of the pipeline are kept as simple as possible. Second, the instruction width is kept
constant and the location of the opcode and operand registers elds within instruc-
tion are x ed. When the instruction length is x ed, the instructions in the memory do
not cross word boundaries, which alleviates instruction fetching. The x ed instruc-
tion format alleviates the decoding as it enables parallel operation code decoding and
register bank access. Third, memory accesses can be done only with dedicated load
and store instructions. This means that the source operands of an instruction need to
be read from memory to registers before the execution of the instruction. Similarly,
the result of the instruction is rst written to a register, from where it can be store
into memory. This method minimizes the effect of the memory access latency on the
clock frequency. Fourth, RISC processors employ short pipelines, typically from 5 to
6 stages. Although increasing the number of pipeline stages would help to increase
the clock frequency, the penalty of branching becomes more signi cant with deep
pipelines.

The advantages of simplifying the processor architecture are evident. Because the de-

5.2. Reduced Instruction Set Processors 39

coding, control, and the arithmetic logic in the datapath are simple, very high clock
frequencies can be achieved. Moreover, the limitations on the amount and complexity
of the instructions, and the simplicity of the addressing modes make RISC processors
very good targets for compilers. Because a given function needs to be built from sim-
ple operations, it is easier for the compiler to perform the optimizations. As a result of
a successful optimization, the compiled code utilizes the resources of the processor
very ef ciently . RISC processors can achieve very high performance by executing
simple one-cycle instructions at a very high rate, and by leaving the optimization
to the compiler. However, RISC processors alone are not suf cient to deliver the
processing power needed in the receiver baseband processing. They are typically

used in mobile terminals to perform protocol and user interface processing [63].

5.2.1 COFFEE RISC

The COFFEE RISC processor is an open source RISC core, developed at Tampere
University of Technology [68]. It follows the RISC design philosophy and utilizes
a Harvard architecture with a 32-bit nominal data word width. COFFEE features a 6-
stage pipeline with complete hazard detection and forwarding logic. The architecture
of the datapath is depicted in Fig. 14. A hardware description language implementa-
tion of the core, along with the software development tools, can be downloaded from
the project web site [69]. Support for operating system is provided as the core fea-
tures two operation modes (user and privileged) and necessary structures for allocat-
ing protected memory areas for the operating system. An internal interrupt controller
is included in the core that enables connection of eight external interrupt sources.

The COFFEE core also features a dedicated coprocessor bus that can be used to
connect four coprocessors to the core, as depicted in Fig. 15. Data between the
coprocessors and the core is transferred through a common 32-bit Data signal and
the direction of the transfer is selected with Wr_cop and Rd_cop signals. The target
coprocessor is selected with the C_indx signal and the source or destination register
is selected with the R.indx signal. In addition to the connection to the coprocessors
register bank, each coprocessor has a dedicated interrupt signal Cop_exc. Because of
the dedicated coprocessor bus, the read and write accesses to the coprocessor register
bank are functionally identical to the accesses to the internal register bank of the core.

Another important feature of the coprocessor interface is that it allows to connect

40 5. Programmable Architectures for Wireless Receivers

Conditional Execution Interrunt Control
Jump Logic P
‘ Cond Reg H Centralized Control and Forwarding Logic
L) L)) L)
Fetch Fetch Execute Coprocesor Memory Write
Back
Inst 8 ‘ Add/Sub ‘ Overflow Check Data Mem

Mem < Access

= "

|l o] Bit = [ppivi e Bal e nal —

PC =|| 8 Reg ‘ Manipulation Priviledge Check Control Reg

S| @ Flie Access

é\hddrk E e i Coprocessor
e = Shifter Access
©
Boolean Conditional
Operations Reg Write
Multiplication
bl ebix oot PP snt
Multiplication
> 32-bit X 32-bit M = H’{ Lower 32-bits ']
Upper 32-bits

Fig. 14. A block diagram of the COFFEE processor core.

Up to 4 coprocessors

{()
Register bank
Wr_cop
0
Rd_cop
1
C_indx[1:0]
2 COFFEE
R_indx[4:0] RISC
Datapath L
31 Data[31:0] Core
-—>
Cop_exc[3:0]
|
_[/

Fig. 15. The COFFEE coprocessor bus.

coprocessors operating in different clock domains.

5.3 Digital Signal Processors

Digital signal processors (DSP) are a step to application speci ¢ direction from RISC
processors. DSPs feature specialized instructions, addressing modes, and other hard-
ware structures that are needed in typical signal processing algorithms. While the
main performance criteria of RISC processors in general purpose computing is the
average execution time, the main concern in signal processing computation is the

worst case execution time.

5.3. Digital Signal Processors 41

Two DSPs designed for two different applications with different performance and
cost requirements can comprise very diverse architectures. However, there exists
a group of features that are common to majority of DSPs despite their target appli-
cation eld [62]. The rst feature is single-cycle multiply-accumulate (MAC) oper-
ation, which is essential in many signal processing algorithms, e.g., nite impulse
response (FIR) ltering and FFT. As DSP algorithms typically operate on matrices
or vectors, the computation is composed of repetitive execution of short instruction
sequences. Hence, a lot of execution time is spent on the looping control, i.e., up-
dating a loop counter, testing the loop counter against an end value, and jumping
back to the beginning of the loop. In order to minimize this looping overhead, many
DSPs include hardware that does the mentioned operations with hardware. DSP al-
gorithms also set very high requirement on the memory architecture of the processor.
The access patterns of the applications are supported with parallel memories, special
addressing modes, and dedicated address computation units. Many signal processing
applications involve sensor or audio signals that are very sensitive in terms of spectral
characteristics of the signal. Hence DSPs include special hardware, e.g., saturation
arithmetics, for preserving the numeric delity with x ed-point data.

Because DSPs employ rather complex instructions, addressing methods, and data
types, they are challenging targets for compilers. Software designers are often forced
to use low-level languages to take full advantage of the specialized features. If the
compiler fails to recognize the parts of the program that can bene t from the spe-
cial hardware, the compiled code needs to be hand optimized in order to meet the

performance and real time constraints of the application.

5.3.1 Texas Instruments TMS320C54x

A typical example of a DSP targeted for wireless communications application is the
TMS320C54x from Texas Instruments [70]. The C54x is a 16-bit x ed point DSP
that employs a modi ed Harvard architecture and a 6-stage pipeline. Low power
consumption has been a priority for the designers of the processor, and it has re-
ported to dissipate 17 mW with 1 V supply voltage and clock frequency of 65 MHz
(0.21 mW/MHz). The processor features three different low-power modes that turn
off the clock feed to the datapath, the on-chip peripherals, the interrupt lines, and the

on-chip crystal oscillator in three different combinations. In addition to the typical

42 5. Programmable Architectures for Wireless Receivers

DSP features listed above, the C54x includes other specialized instructions, includ-
ing the add-compare-select instruction needed in Viterbi decoding. The processor has
been particularly successful in 2G wireless handsets to implement the digital base-
band functionality. A common receiver hardware platform for 2G terminals has been
a combination of the C54x DSP and a RISC core [63]. With this platform all commu-
nication algorithms are executed by the DSP, including demodulation, equalization,
deciphering, channel codec, and deinterleaving, while the user interface and protocol
processing are handled by the RISC core.

5.4 Multiple-Issue Digital Signal Processors

The performance of traditional DSPs can be increased simply by dividing the pipeline
into smaller stages and increasing the clock frequency. However, an alternative
method is to increase the parallelism of the processor by issuing multiple instruc-
tions per clock cycle. Two processor types use this approach: very long instruction
word (VLIW) processors and superscalar processors. They exploit instruction level
parallelism that exists in a sequence of independent instructions, i.e., instructions
whose order can be altered without affecting the outcome. Both superscalar and
VLIW processors exploit this property by issuing multiple instructions to parallel
pipelines whenever instruction level parallelism exists. The difference between the
two processor types is the method that is used for selecting the instructions for par-
allel execution. With VLIW processors the selection is done by the compiler (or the
programmer), and therefore the parallelism is explicitly speci ed by the assembly
code. Superscalar processors, in contrast, select the instruction for parallel execution
on the y, with a specialized hardware that observes the data dependencies of the
instructions at run time. Due to the dynamic behavior of superscalar processors, it
is very hard to predict their performance. Hence, superscalar architectures are rarely

used in signal processing applications that include strict real-time requirements.

VLIW processors typically employ from 4 to 8 parallel pipelines. The instructions
executed in parallel are de ned by a single instruction word, and for this reason the
instruction word is very long, typically from 64 to 128 bits. To fully exploit the
potential of the parallelism it is required that all pipelines are utilized, i.e., useful
instructions are issued to all pipelines at every clock cycle. However, the instruction

issuing is on the responsibility of the compiler and occasionally the code cannot be

5.4. Multiple-Issue Digital Signal Processors 43

split into parallel execution. Thereupon, idle operations have to be issued to some of
the pipelines which decreases the performance of the processor. Another requirement
for fully exploiting the parallel processing units is that they have to be fed with data at
an adequate rate. For this reason VLIW processors employ a large amount of registers
and wide memory busses. The parallel processing units, large register banks, and
complex memory architectures leads to signi cantly larger chips than traditional DSP
processors. Therefore, VLIWSs are typically more power hungry than conventional
DSPs, and thus, more suitable for applications that do not require battery operation.
Another reason for VLIWs being bad candidates for mobile applications is that the
size of the program memory is typically larger than with conventional DSPs. This is
because the operations that compose the compound instruction are kept very simple,
and hence, it can take a signi cantly larger amount of instructions to execute a given

function.

5.4.1 Sandblaster

A multithreaded VLIW processor targeted for software de ned radio applications is
presented in [71] and [72]. The design objective of the processor and its development
tools has been to boost the software development productivity. One of the main limit-
ing factors of the productivity of DSP software engineering is that programmers have
to keep track of what is going on in the pipeline to squeeze the performance out of
the processor. The target of the Sandblaster DSP has been to shift this responsibility
from the programmer to the compiler.

The architecture of the processor includes a single-instruction multiple-data (SIMD)
unit and a RISC based integer unit. The RISC unit is used for control processing
and the SIMD unit is used for algorithm execution. Parallelism is exploited at three
levels. Data level parallelism is provided by the SIMD unit that contains four par-
allel vector processing units, each containing a multiplier, an adder, and saturation
logic. The memory architecture of the processor is designed so that each of the four
vector processor units can access input data from a single-port memory within one
clock cycle. Thread level parallelism is provided by including hardware support for
concurrent execution of up to eight threads. Dedicated data and instruction memories
are provided for each thread. Furthermore, interrupt logic is provided that enables

a speci ¢ thread to interrupt any other thread with a low latency. Instruction level

44 5. Programmable Architectures for Wireless Receivers

parallelism is exploited by enabling instructions for the RISC and SIMD units to be
issued in parallel. A baseband receiver platform for software de ned radio handsets
using the Sandblaster DSP is presented in [73]. The platform can be used for imple-
menting WCDMA, 802.11 WLAN, and GPS transceiver functionalities. A combi-
nation of four Sandblaster cores and an ARM micro controller are used to achieve a
total of 9 billion MAC operation per second. The reported power consumption is less
than 500 mW.

The compiler of the processor uses a technique called semantic analysis. The pro-
grammer writes the application using standard C-code and the compiler analyzes the
code and identi es DSP structures that can utilize the application speci ¢ structures
of the processor cores. The compiler also extracts data level parallelism from the
code and constructs the vector instructions for the SIMD-unit, and attaches these to

the RISC instruction to produce compound instructions.

5.5 Application Speci ¢ Instruction Set Processors

In many applications the above mentioned processor types are not suf cient, either
because they do not meet the performance requirements of the application or because
they are too costly in terms of power or area. Application-speci ¢ instruction set
processors (ASIP) are placed in the middle ground between ASICs and DSPs in terms
of e xibility and energy ef cienc y. The performance gain compared to conventional
DSPs is achieved effectively by narrowing the target application eld of the proces-
sor [74]. In practice this means that the ISA is tuned extensively for the application
so that the number of instructions needed to execute a function is minimized. The
memory architecture is designed so that it best supports the data access patterns of
the application, minimizing the number of memory accesses and the penalty caused
by a single access. The number of registers and the connections between registers and
processing units is reduced to the absolute minimum in order to diminish the critical
path delay and the physical size of the datapath. At the same time, the instruction
format is simpli ed because source and destination registers of the instructions can
be x ed and instruction elds for selecting them are no longer needed. Finally, the
peripherals of the processor are designed to serve the special needs of the applica-
tion. With these optimizations the feasibility of the processor is restricted to a very

small number of applications but in return the performance of the processor can be

5.5. Application Speci ¢ Instruction Set Processors 45

boosted without increasing the clock frequency or the number of processing units
signi cantly . As a result, the size and the power consumption of the processor are

kept in control.

To nd the optimal architecture and ISA for the processor, the target application has
to be analyzed rigorously. This is a signi cant design effort and one of the main
drawbacks of the application-speci ¢ approach. However, many tools exist that au-
tomate the process of architecture exploration and identifying the right instructions
for the applications [75-77]. The biggest disadvantage related to ASIPs is that they
cannot be programmed with high level programming languages. Because the ISAs of
ASIPs are typically even more specialized than those of DSPs and VLIWs, designing
a compiler that employs the architecture effectively is even more dif cult. The po-
tential of a highly tuned datapath and memory architectures can only be utilized if a
customized compiler is available that is able to make use of them. Typically, the most
critical parts of the software need to be programmed using low-level programming
and the productivity of the software development is greatly reduced. Although this
problem is alleviated by ASIP design tools that provide straightforward programming
models for the application speci ¢ structures, the bigger problem is that the software
written for ASIPs is highly machine dependent. This rules out the possibility of
effectively reusing the existing software in projects utilizing even slightly different
processor architectures.

5.5.1 Tensilica Xtensa

Xtensa is a commercial ASIP solution that is built upon a 32-bit RISC architec-
ture [78,79]. The processor is available as a soft IP block that can be licensed for
use in SoC architectures. The Xtensa architecture can be used as a off-the-shelf
RISC processor or it can be armed with optional processing units, I/O interfaces,
and memory architectures, or it can customized by adding instructions to the ISA.
Furthermore, the latest version of the core supports multiple-issue custom instruc-
tions. The custom instructions are described with a hardware description language,
and the customized core and the software tools supporting the added instructions are
produced by a tool. To alleviate the selection of the most pro table custom instruc-
tions a compiler is provided that analyzes the application software and generates the

hardware descriptions automatically for potential custom instructions.

46 5. Programmable Architectures for Wireless Receivers

5.5.2 ASIPs for Wireless Receivers

An ASIP designed for WCDMA and OFDM receivers is presented in [80]. The
processor features special instructions for butter y , add-compare-select, and sum of
squared difference operations. Sub-word parallelism is utilized in the processor data-
path which means that the processing units can be routed in various ways in order
to implement complex or real valued instructions with single or double precision.
The data word of the processor is split in two, for real and imaginary parts, and the
processing units support complex arithmetics. For example, a complex MAC op-
eration can be executed in a single clock cycle. At the maximum clock frequency
65 MHz the processor achieves a peak performance of 1.1 billion MACs per sec-
ond. The maximum clock data rate is quite modest compared to many modern DSPs,
which is due to the routing overhead needed for the sub-word parallelism. With
0.35 pm technology the processor employs 25.2 mm? of silicon area, and the reported
power consumption is 14 mW at 1.5 V supply voltage and 22 MHz clock frequency.

An ASIP designed for OFDM receiver implementations is presented in [81]. The
datapath of the processor comprises two multipliers, three adders, and a switching
logic that routes the multipliers and adders in two different con gurations to exe-
cute a butter y operation in two clock cycles. The processor includes an address
generation unit that is dedicated for computing the bit-reversed input data addresses
of the FFT. In addition, special bit manipulation hardware is employed to support
scrambling, convolutional encoding, and puncturing functions. An FFT operation
can be implemented on the processor with only three assembly instructions and a 64-
point FFT is executed in 390 clock cycles. The implementation of the processor
on 0.18 um technology consumes 80 000 gates and achieves a maximum clock fre-
quency of 240 MHz. Demodulation of a single OFDM symbol in a 802.11a system

requires 1.4 ps of computation time, which is 2.6 ps less than the symbol period.

5.6 Coprocessor Accelerators

An alternative approach for increasing the processor performance is to employ co-
processor accelerators. In the ASIP approach the datapath of the processor as a whole
is tuned to the application, whereas in the coprocessor approach the application spe-

cic processing units are attached in parallel to the processor datapath [82]. This

5.6. Coprocessor Accelerators 47

results in a considerable performance boost especially in applications where a major-
ity of the execution time is spent inside computation kernels that can be separated as

clear functional entities.

A key factor in the coprocessor approach is to minimize the communication over-
head between the core and the coprocessors. Ideally, the core simply passes para-
meters to the coprocessor, triggers the coprocessor, and then reads the results when
the execution completes. The nal speedup enabled by the coprocessor is determined
by the clock cycles saved in the computation and the cycles lost in communicating
with the coprocessor. Thus, the communication mechanism between the core and
the coprocessor is of paramount importance. Another very important factor in the
coprocessor approach is the programming model of the architecture. One option is
to use the coprocessor much like a function call, where the caller waits until the
function completes. Another option is to use the execution time of the coprocessor
to perform other useful computations. This naturally complicates the programming
because concurrency introduces some well known pitfalls, including mutual exclu-
sion and synchronization. The design effort of the coprocessors can be signi cant,
and similarly as with ASIP design, automated design tools for design exploration are
needed. Tools that analyze the application code and produce the hardware description

for coprocessors automatically have been published [83].

5.6.1 Coprocessor Architectures for Wireless Receivers

A platform targeted for WCDMA and IEEE 802.11b baseband processing is pre-
sented in [84]. The architecture comprises four DSPs, a correlator coprocessor,
a channel decoding coprocessor, and an ARM core for protocol processing. Each
of the four DSPs employ a SIMD architecture composed of four processing ele-
ments. The channel decoding coprocessor is an ASIP type of engine that includes
a general purpose control processor and an application-speci ¢ processor specialized
in Trellis recursion. The control processor is used for interfacing the coprocessor
to the system bus and con guring the Trellis data path. The correlator coprocessor
is a multithreaded FIR architecture that supports complex data and coef cients, and
dedicated memory and I/O connections for all four concurrent ltering tasks. An
application programming interface (API), a real-time operating systems, a compiler,

and a debugger are also provided for the platform. The API is basically a library

48 5. Programmable Architectures for Wireless Receivers

of functions that provides a programmer’s view for the computational resources, pe-
ripherals, and operating system functions. The API includes instructions for setting
up complete receiver implementations with a single function call. The compiler of
the SIMD processors extracts the data-level parallelism from a sequential program
but it is required that a data-parallel extension of C-language is used. The mapping
of the receiver procedures onto the four DSPs is done manually. A system-level de-
sign methodology for the platform and a prototype multi-standard receiver design are
presented in [85]. The design methodology is divided into ve systematic phases

extending from functional system-level modeling to circuit implementation.

A programmable baseband receiver architecture for GSM, EDGE, and WCDMA base
stations is presented in [86]. The architecture is split between chip rate processing
running on a coprocessor and symbol rate processing running on a VLIW DSP. The
interface between the host DSP and the coprocessor is implemented with a DMA
and an additional host interface. The coprocessor can execute Rake nger , multi-
path searcher, and preamble detection procedures. The DSP triggers the coprocessor
processing through task messages that include a number of input parameters and the
starting time of the task. The coprocessor executes the task starting at the speci ed

time instant, and dumps data to the host interface. Another implementation of the
same platform presented in [87] features also a RISC core that is used for generating
the micro code for the coprocessor. This enables changes to the coprocessor func-
tions after the chip has been fabricated but it also introduces an area overhead that
cannot be considered for mobile terminal implementations. The platform is operated
with a 1.2 V supply voltage and 246 MHz clock frequency. The implementation of
the platform comprises 75 million transistors, and the reported power dissipation is
2 W for the core and 200 mW for the I/O.

5.7 Comparison of Architectural Alternatives

Each category of programmable architectures presented in this chapter have their own
advantages. The ultimate goal for a programmable baseband receiver architecture is
to achieve small size, small power consumption, high e xibility, easy programmabil-
ity, and support for ef cient reuse of hardware and software. If easy programmability
is the primary concern, the optimal architecture would consist of a single general

purpose processor operating at a suf cient clock frequency. The reason why general

5.7. Comparison of Architectural Alternatives 49

purpose processors are preferred is because they are good target for compilers, which
enables effective usage of high level programming languages. Compromising the
easy programmability, yet emphasizing the e xibility, would result in an architecture
consisting of multiple general purpose processors or DSPs. Programming this type
of architecture is more dif cult, because the peculiarities of concurrent programming
need to be considered. If small power consumption is the biggest concern, the ASIP
approach would be a good option but this would compromise both easy programma-
bility and e xibility. The employment of application speci ¢ processing units in the
processors datapath restricts the target application eld and leads to usage of low-
level programming or programming language extensions, often both. As a result,
software reuse with ASIPs is very dif cult because of the machine dependence of
the code. The coprocessor approach is a way to achieve improved programmability
and e xibility with similar power ef cienc y as the ASIP approach. Compared to the
DSP approach, the e xibility is compromised because the programmer has a limited
control over the execution of the coprocessor functions. On the other hand, typical
wireless receiver algorithms incorporate clear computational entities that require very
little, if any controlling from the programmer. These type of computational kernels
are very well suited for a coprocessor implementation. Because the coprocessor func-
tions are running on dedicated hardware, the overhead caused by looping, branching,
and other controlling tasks is also minimized.

Based on the above summary, the coprocessor approach comes off as the most attrac-
tive alternative for a programmable baseband receiver architecture. However, the co-
processor based baseband receiver architectures listed in section 5.6.1 featured some
less attractive features. In the platform presented in [86] the most evident disadvan-
tage is the 2 W power consumption. It has to noted that the platform was designed for
base station applications, and presumably, power consumption has not been a primary
concern in the design. Another disadvantage of the platform is that the communica-
tion between the DSP and the coprocessor was operated through a DMA and an addi-
tional host interface. The amount of traf ¢ between the DSP and the coprocessors can
be minimized by increasing the granularity of the coprocessor functions, but the com-
munication overhead can still result in a failure to meet the real time constraints of
the baseband processing. The coprocessor bus featured in the COFFEE core provides
an effective solution for attaching coprocessors with minimized communication over-

head. In the platform presented in [84] the programming of the platform requires use

50 5. Programmable Architectures for Wireless Receivers

of a specialized C-language in order to bene t from the processing resources of the
SIMD DSPs. As mentioned previously, low-level languages and language extensions
limit the reuse of software. The optimum solution for achieving good programmabil-
ity would be similar to the semantic analysis approach presented in [73]. However,
the requirements of the compiler can be relieved by using a host processor that is
compiler friendly, preferably a RISC core. In the coprocessor approach, the actual
coprocessor implementations determine the performance of the architecture to a large
extent, but when easy programmability and software reuse are more important, the
connection between the host and the coprocessors, the compiler friendliness, and the

programmer’s view of the coprocessor are crucial.

6. THE ESPRESSO PLATFORM

The baseband receiver algorithm study in chapter 4 indicated that WCDMA and
OFDM baseband receiver processing feature many similar computation kernels. The
baseband processing of a dual-mode WCDMA/OFDM baseband receiver can be im-
plemented effectively by exploiting the similarities of these computation kernels
and by sharing the computation resources between the two modes of the receiver.
The analysis of different implementation alternatives for programmable baseband
receivers in chapter 5 showed that an architecture composed of a RISC core and an
attached coprocessor is a good approach for achieving high performance, while main-
taining programmability and e xibility of the architecture. The coprocessor approach

was deployed in the Espresso platform presented in this chapter [P4, P5, P6, P7].

6.1 Espresso Overview

The receiver algorithms presented in chapter 4 are mapped onto a platform com-
posed of a RISC core and three coprocessors. The three coprocessors are used for
synchronization, demodulation, and I/O tasks, and the RISC core is used for channel
estimation and equalization. The core itself does not process the incoming sample
stream, but only the demodulated symbols. The RISC core used in the platform is
the COFFEE processor introduced in chapter 5. The Espresso platform architecture
is depicted in Fig. 16. In addition to the core and the coprocessors, the platform com-
prises direct memory access (DMA), two memory busses, and on-chip memory for
instructions, data, and sample input buffering. However, implementations of these
components are not studied in this thesis.

The general architecture common to all coprocessors is depicted Fig. 17. The archi-
tecture is composed of an instruction FIFO buffer, an instruction decoder, parame-

ter registers, coef cient registers, code generators, datapath, control, and an output

52 6. The Espresso Platform

Coprocessor bus

From receiver
front-end Input buffer
je—> COFFEE
Demodulation RISC
Core
Coprocessor
110 Synchronization
Coprocessor Coprocessor
T l t I I Data bus
‘r 3 ‘ Instruction bus
To receiver
back-end DMA Inst Data
Mem Mem

Fig. 16. The Espresso platform.

FIFO buffer. The coprocessor is connected to the coprocessor bus of the COFFEE
core. The programmer can access the instruction register, the parameter registers,
the coef cient registers, and the output FIFO through the coprocessor bus. The ISA
of the COFFEE core includes special instructions for reading from and writing to
the coprocessor register bank through the coprocessor bus. The synchronization co-
processor is also connected to the I/0 coprocessor that provides the sample input, and
the demodulation coprocessor is connected to the input buffer that is used to store the
samples within the longest expected multipath delay spread. The execution of the
coprocessor functions is divided into three stages: instruction fetch from the FIFO,

decode, and execution. However, these stages do not overlap in a pipelined manner.

The programming interface of the coprocessors is implemented with a library of co-
processor function calls. The programmer writes code for the COFFEE core and
uses these function calls to initiate the computation kernels on the coprocessors and
to access the register bank inside the coprocessors. The instructions initiated by the
programmer are executed sequentially in the order they are stored into the instruction
FIFO. Thus, the programmer can call new coprocessor functions before the previous

instruction has been completed.

6.2 Synchronization Coprocessor Architecture

The synchronization coprocessor is designed for the correlation based synchroniza-
tion algorithms needed in OFDM and WCDMA receivers [P6]. The datapath of

6.2. Synchronization Coprocessor Architecture 53

Coprocessor Bus

Instruction FIFO H Insfruction F» —P{ Control ‘
Decode
Peremeter) [CoderTuiddle UL FIFO
egisters Generators P
Coefficient Datapath
Registers

sample input

Fig. 17. General architecture of the coprocessors.

the coprocessor comprises a FIR Iter architecture that can execute either matched
Itering or delay-and-correlate algorithm. In addition to the FIR architecture, the
synchronization coprocessor includes hardware for averaging sequential correlation

windows and detecting peaks from the output of the FIR block.

6.2.1 The Datapath

The implementation of the FIR block is fundamentally a tapped delay line structure
with complex data and coef cients. The dual mode operation of the FIR is imple-
mented with a routing network that can select the coef cients for each stage from
two different sources. In the matched Iter mode the coef cients are routed from the
coef cient registers and in the delay-and-correlate mode they are routed from the FIR
delay line as illustrated in Fig. 18(b). In addition to the mode of the correlation, the
length of the correlation can also be changed. Each stage of the FIR is connected to
the output of the previous stage and to the sample input, which allows to select the
tap acting as the rst lter stage. The maximum length of the Iter in the matched
Iter mode is L = 256, and the maximum delay in the delay-and-correlate mode is
D = 128. The matched Iter mode of the FIR block, with convolution length L =4, is
illustrated in Fig. 18(a) and the delay-and-correlate mode, with delay D = 4 and cor-
relation length L = 4, is illustrated in Fig. 18(b). The delay-and-correlate mode could
be implemented alternatively by shifting the multiplication to the beginning of the
delay line and by computing a moving sum of the multiplication results. However,
this alternative implementation would require double length registers in the delay line
which would result in a signi cantly larger silicon area and it would also complicate
the dual-mode operation of the FIR block.

54 6. The Espresso Platform

input

sample
input

(b)

Fig. 18. The datapath of the synchronization coprocessor: (a) matched filter mode (L = 4),
(b) delay-and-correlate mode (L = 4, D = 4).

The routing of the coef cients and the implementation of the variable length corre-
lation is done with multiplexers. For a FIR structure of 256 taps and 8-bit complex
coef cients this would result in a signi cant increase in silicon area and critical path
delay. However, the complexity of the FIR block is greatly reduced by limiting the
width of the coefcients to 1 bits. In WCDMA cell search and multipath searcher
procedures the pilot sequences used in the correlation are always composed of values
+1 only. Likewise in OFDM, the synchronization algorithms can be executed by
using only sign bits of the coef cients [88]. As a result, the routing network of the
coef cients is simpli ed greatly and also the complex MAC operation of the taps are

simpli ed to a two stage add/subtract computation [P3].

6.3 Demodulation Coprocessor Architecture

The demodulation coprocessor is fundamentally a set of processing units (PU) that
can be routed to implement either Rake nger correlations or FFT computations [P7].
The processing units perform the butter y operations in the FFT mode, and the

multiply-accumulate operation in the Rake mode.

6.3. Demodulation Coprocessor Architecture 55

6.3.1 The Datapath

The datapath of the demodulation coprocessor in the Rake and FFT modes is illus-
trated in Fig. 19(a) and Fig. 19(b), respectively. The implementation of the coproces-
sor Rake mode is based on the FlexRake architecture [P1, P2, P3]. As mentioned in
chapter 4.2, a traditional Rake receiver is composed of parallel ngers that are each
used to despread one multipath component of the received WCDMA signal. The
essence of the FlexRake architecture is that the multipath components are processed
sequentially with a single correlator. The incoming sample stream is stored into
a circular buffer that stores the samples within the longest expected multipath win-
dow. The samples are read from addresses determined by the estimated multipath
delays. This approach facilitates the nger allocation task under rapidly changing
channel conditions. Since its introduction, the FlexRake architecture has been used
in numerous Rake receiver implementations [89-92]. The difference between a tra-
ditional Rake receiver and the FlexRake is illustrated in Fig 20. The main drawback
of the FlexRake approach is that the memory used for the input buffering needs to
be accessed at oversampling rate. The buffering in the traditional Rake architecture
is used to equalize the time difference between completed symbol integrations, and
therefore, the memory used for this buffering needs to be accessed only at symbol

rate.

The implementation of the coprocessor FFT mode is based on the single-path delay
feedback (SDF) architecture [93]. In this architecture, the FFT execution is divided
into pipeline stages so that each stage of the FFT has a dedicated processing unit,
as depicted in Fig. 19(b). The input samples are read sequentially from the input
buffer and the correct input pairs for the butter ies are acquired by the delay lines
at each stage. The memory accesses of the SDF architecture are functionally very
similar to the the FlexRake. In the FlexRake, the read addresses are spread over
the longest expected multipath window using the offset addressing, and in the SDF
architecture the read addresses are spread over the OFDM symbol period using bit-

reversed addressing.

In addition to the Rake and FFT functionalities, the coprocessor can be used to exe-
cute up to 24 parallel complex valued correlations. Six parallel processing units are
available, each of which can be shared with four concurrent correlations. The opera-

tion of each processing unit is effectively divided into four time slots. When operated

56 6. The Espresso Platform

sample Input Buffer
stream
Spreading PU Correlation
Code Registers
Spreading ‘ PU Correlation
Code Registers
Spreading Correlation
Code PU Registers

(a)
sample Input Buffer
stream
Delay Delay Delay Delay Delay
Line Line Line Line Line
PU PU PU PU PU
Twiddle
Factors
(b)

Fig. 19. The datapath of the demodulation coprocessor: (a) FlexRake mode, (b) single-path
delay feedback FFT mode.

in this mode, the parallel processing units are always fed with the same input but the
input for the time multiplexed correlation slots can be read from different input buffer
addresses. Up to 32 complex valued coef cients vectors, with 1-bit real and imagi-
nary components, can be loaded to the coef cient registers. This feature is needed,
e.g., in the second phase of the cell search procedure in WCDMA, as explained in

section 4.3.2.

6.3.2 The Processing Unit

The processing units perform the butter y operations in the FFT mode, and the
multiply-accumulate operation in the Rake mode. A butter y operation in decimation-
in-frequency (DIF) FFT is composed of one complex addition, one complex subtrac-
tion and one complex multiplication [55]. This requires a total of four adders, two
subtracters, and four multipliers, as illustrated in Fig. 21(a). In the Rake mode, the

operation of the PUs is much simpler because the code input is binary valued, as

6.4. I/O Coprocessor Architecture 57

sample B
stream

T
I | e =
T

()
s —ULL LTI TLLL T

(b)

Fig. 20. Comparison of Rake architectures: (a) a traditional Rake receiver, (b) the FlexRake.

shown in chapter 4.5.1. The complex multiplication in the correlations is simpli-
ed to a stage add/subtract structure, as depicted in Fig. 21(b). The computation
resources are shared between the two modes of the PU, and the selection between the
two modes is made automatically by the hardware. The particular elements that are
shared are depicted with bold line in Fig. 21.

6.4 I/O Coprocessor Architecture

The architecture of the I/O coprocessor is very simple. It controls the sample feed
to the input buffer and the synchronization coprocessor. It also provides the circu-
lar write addresses to the memory block used for the input buffer. The programmer
can switch on/off the sample feed to the input buffer and to the synchronization co-
processor. Furthermore, the write address for incoming samples in the buffer can
be adjusted which effectively determines the beginning of the time window in the

synchronization algorithms.

58 6. The Espresso Platform

N
sample real —<4 N
+ out real
N
sample1 imag J\I N
t+ J out! imag

N %7 N
sample2 imag > X N

2 real

’B N out2 rea
N

sample2 real ——<————= X

N N
twiddle imag 2N

out2 imag

twiddle real

register real
sample real

out1 real

code real

code imag

2N

sample imag
register imag

N out! imag

(b)

Fig. 21. The processing unitin (a) FFT and (b) Rake modes.

6.5 Espresso Programming Interface

As addressed in chapter 5, the main drawback of application-speci ¢ programmable
architectures is that they are not well suited for effective software development be-
cause they often require low-level programming. In the Espresso platform this prob-
lem is overcome by employing a RISC core as a host processor and by implementing
the most computationally demanding kernels in the coprocessors. As a result, the
compiler only affects the less critical computation executed in the RISC core. All
implementation details of the coprocessors are hidden from the programmer behind

a programming interface.

6.5. Espresso Programming Interface 59

Table 2. The coprocessor functions.

Common Functions

cop_wr(int cop_idx, int reg_idx, int cop_data)
cop_rd(int cop_idx, int reg_idx)
flush_inst_fifo(int cop_idx)

Synchronization Coprocessor

init_sync_scode(int n, bool ack, bool intpt)

set_thr (int new_thr)

init_sync_corr_coef(int coef_handle, int length, bool ack, bool intpt)

set_track_param(int winl, int gapl, int nave)

corr_x_thr(int coef_handle, bool dly_and_corr, int dly, int length, bool use_gold,
bool track, bool ack, bool intpt)

Demodulation Coprocessor

init_ovsf(int sf, int n, int coef_handle, int ack, boal intpt)

init_demod_scode(int n, int ack, bool intpt)

init_demod_corr _coef(int coef_handle, int length, bool ack, bool intpt)

init_multipaths(int dly1, int dly2, int dly3)

despread(int coef_handle, int start_addr, int nsym, int ncorr, bool use_gold, bool ack, bool intpt)
fft(int start_addr, int length, int nsym, bool ack, bool intpt)

I/O Coprocessor

rec_onoff(bool onoff)
set_win(int win_addr)

The programming interface of the coprocessors is implemented with a library of co-
processor function calls [P5, P6, P7]. The list of the functions is given in Table 2.
The programmer writes code for the COFFEE core and uses these function calls
to initiate the computation kernels on the coprocessors. The available coprocessor
functions and their parameters provide the e xibility required for employing the plat-
form in a multiple applications inside a broader application eld. In the case of the
Espresso platform the application eld is de ned by the WCDMA and OFDM radio
technologies. The synchronization between the concurrent processes running on the
coprocessors and the core is maintained with coprocessor interrupts. Functionally
the coprocessors can be regarded as a hardware implemented version of a software
library containing receiver signal processing routines. As mentioned in chapter 5,
in a conventional DSP software development, the most computationally demanding
kernels are hand optimized with low-level languages. In the presented coprocessor

approach these critical kernels are implemented as the coprocessor functions.

The bodies of the coprocessor functions build the coprocessor instruction from an op-

60 6. The Espresso Platform

eration code and input parameters, and write the built coprocessor instructions to the
instruction FIFO of the desired coprocessor. The only processor speci ¢ functions
are the ones implementing the data transfer between the core and the coprocessors,
i.e., cop_wr and cop_rd. The cop_wr function writes the data from the input parameter
cop_data to the speci ed coprocessor register. The cop_rd function returns the data
from the speci ed coprocessor, from the register address given as a parameter. These
functions are the only ones requiring low-level programming, and they only need to
be rewritten if the communication mechanism between the host processor and the co-
processors is changed. The cop_wr and cop_rd functions employ special instructions
for accessing the coprocessor bus. The other functions are written with standard C-
language. As a result, the programming interface and the software developed on top
of it are reusable.

The following sections demonstrate the use of the programming interface through

examples.

6.5.1 WCDMA Multipath Estimation

A sequence diagram of WCDMA multipath searcher procedure is depicted in Fig. 22.
When the programmer wants to implement WCDMA multipath searcher procedure
with the synchronization coprocessor, the rst thing to do is to initialize the scram-
bling code generator of the coprocessor. This is done by calling the init_sync_scode
function with the scrambling code number as an input parameter. The parameters ack
and intpt determine whether the coprocessor issues an interrupt after it has decoded
the instruction and after the initialization is completed.

Next, the coef cients used in the matched ltering need to be loaded to the coproces-
sor coef cient registers. The programmer initiates the coef cient load by calling the
init_sync_corr_coef function with a coef cient handle and the length of the vector to
be loaded as input parameters. By setting the ack ag, the programmer can monitor
when the coprocessor has decoded the init_sync_corr_coef function and is ready to
receive the coef cients. The coef cients are then written into a speci ¢ coproces-
sor register sequentially starting from the element with smallest index. The real and
imaginary parts of the coef cients are written in a single word, imaginary compo-
nent in the most signi cant half and real component in the least signi cant half of

the word. The coprocessor stores the coef cients to registers starting from a location

6.5. Espresso Programming Interface 61

speci ed by the coef cient handle.

The next thing to do is to set the peak detection threshold by calling the set_thr func-
tion with the new threshold as an input parameter. If the sample feed to the syn-
chronization coprocessor is not tuned on, it has to be done by calling the sync_onoff
function of the 1/O coprocessor.

The matched ltering can now be triggered by calling the corr _x_thr function with the
coef cient handle, mode of the correlation (matched Itering/delay-and-correlate),
and the length of the correlation as parameters. Furthermore, the use_gold ag needs
also to be set to turn on the feed of the scrambling code to the FIR taps. Once
triggered, the correlator runs until the rst peak occurs that crosses the set threshold.
The coprocessor issues an interrupt and writes the correlation index and the value of
the detected peak to the output FIFO.

The coprocessor can also be programmed to compute averaging correlations starting
from the rst detected correlation peak. This is done by specifying tracking para-
meters with the set_track_param function and setting the track ag when triggering
the correlation. The input parameters for the set_track param function include the
length of the search window, the length of the gap between correlation iterations, and
number of averaging iterations. After detecting the rst peak, the coprocessors start
the tracking mode where it automatically averages the speci ed number of sequen-
tial correlation windows. The gap between correlation windows is useful when the
correlation is performed against a speci ¢ eld of a slot. During the gap, the delay
line of the FIR block is shifted without any computations and the scrambling code

indices of each tap are automatically incremented.

When the tracking is completed, the coprocessor detects all peaks from the averaged
correlation window, issues an interrupt, and writes the indices and values of the cor-
relation peaks to the output FIFO. The programmer can then read the results from the
output FIFO with the cop_rd function and select the strongest peaks by comparing
the peak values. Once the multipath delays are estimated, they have to be initialized
to the demodulation coprocessor with the init_multipaths function. Three multipath
delays are given as parameters, and their values are given as offsets relative to the

rst multipath.

62 6. The Espresso Platform

Host processor Instruction FIFO Coprocessor

init_sync_scode()
new_inst
rd_inst_fifo
Decode
Initialize
scrambling code
set_track_param() generator
new_inst
rd_inst_fifo
. Decode/
init_sync_corr_coef() . Store parameters
new_inst
C rd_inst_fifo
Wait for ack
Decode
j aok (o
loop wr_cop()
Store coefficients
set_track_thr()
new_inst
rd_inst_fifo
() Decode/
corr_x_thr
new_inst Store threshold
rd_inst_fifo
Wait for intpt
intpt
loop rd_cop()
M —
Select largest
peaks
init_multipaths()
new_inst
rd_inst_fifo
Decode/
Store multipaths
1
'

Fig. 22. WCDMA multipath searcher sequence diagram.

6.5.2 WCDMA Demodulation

A sequence diagram of the WCDMA demodulation procedure is illustrated in Fig. 23.
After the multipath searching, the demodulation can be performed. First, the spread-
ing code and scrambling code generators of the demodulation coprocessor have to be

initialized. Up to three spreading codes can be initialized for demodulation of three

6.5. Espresso Programming Interface 63

Host processor Instruction FIFO Coprocessor

init_demod_scode()

new_inst

rd_inst_fifo

Decode

Initialize
scrambling code
generator

loop init_ovsf()
new_inst
rd_inst_fifo
Decode
Initialize
spreading code
generator
loop despread()
new_inst
Channel Estimation/ rd_inst_fito
Equalization Decode
Wait for intpt Execute
intpt

loop rd_cop()

multipath estimates
Calculate a new
start address

Fig. 23. WCDMA demodulation sequence diagram.

parallel code channels. Each of these are initialized by calling the init_ovsf function
with the spreading factor, spreading code number, and a coef cient handle as input
parameters. The coef cient handles for parallel code channel have to be sequential
numbers. The scrambling code generator is initialized similarly as with the synchro-

nization coprocessor.

Once the code generators have been initialized the demodulation can be triggered
with the despread function. The coef cient handle of the desired spreading code is
given as a parameter. The second input parameter determines the rst read address to
the input buffer. This is given by the index of the rst detected peak in the multipath
searcher procedure. Other parameters include the number of symbols to be despread

and the number of parallel code channels. If parallel code channels are being em-

64 6. The Espresso Platform

ployed, the spreading codes with sequential coef cient handles, starting from the
handle given as an input parameter, are automatically employed in the despreading.
The demodulation starts from the speci ed input buffer address and the multipath
components are accessed from the input buffer using the multipath delays as offset
addresses. While the demodulation is running on the coprocessor, the channel esti-
mation and equalization of previous demodulated symbols can be executed on the the

host processor.

If the intpt ag was set, the coprocessor issues an interrupt when the rst symbol
is demodulated and written to the output FIFO. The programmer can then access the
demodulated symbols from the output FIFO, update the multipath estimates, compute
the start address of the next demodulation cycle, and call the despread function again.

6.5.3 OFDM Synchronization

The OFDM packet detection and symbol timing estimation procedures are illustrated
in Fig. 24. In OFDM synchronization, the programmer rst stores the long train-
ing sequence to the coef cient register of the synchronization coprocessor using the
init_sync_corr_coef function. A coefcient handle and the length of the coef cient
vector to be loaded are given as input parameters. The procedure was described in
section 6.5.1. The long training symbols are not needed until the symbol timing esti-
mation because the packet detection is performed with delay-and-correlate algorithm.
However, it is bene cial to initialize them beforehand. The detection threshold for

the packet detection is initialized next with the set_thr function.

The delay-and-correlate computation is triggered by calling the corr_x_thr function
with the type of the correlation, the length of the delay, and the length of the corre-
lation as parameters. If the short training symbols are employed in the delay-and-
correlate algorithm, the delay and the length of the correlation are set to 16. The
coef'cient handle does not have to be speci ed because the dly_and_corr ag is set.
No tracking is used in the packet detection and the scrambling code feed is turned
off. The programmer can also set the ack ag of the corr x_thr function and pend for
an interrupt from the synchronization coprocessor to monitor when the correlation
starts.

While the coprocessor is executing the correlation, the programmer can set the thresh-

old and the tracking parameters used in the symbol timing estimation. The length

6.5. Espresso Programming Interface

65

Host processor

Instruction FIFO

Coprocessor

init_sync_corr_coef()
new_inst
rd_inst_fifo !
Wait for ack
Decod!
ack ecode
loop wr_cop()
Store coefficients
set_thr()
new_inst
rd_inst_fifo
Decode/
corr_x_thr() Store threshold
new_inst
Wait for ack rd_inst_fifo
ack Decode
set_track_param()
E e
set_thr() xeaute
Wait for intpt
intpt
new_inst
rd_inst_fifo
Decode/
. Store parameters
new_inst
rd_inst_fifo
Decode/
corr_x_thr() . Store threshold
new_inst
rd_inst_fifo
Decode
Wait for intpt Execute
intpt
loop rd_cop()
€ —— 4
Select largest
peak
!

Fig. 24. OFDM packet detection and symbol timing estimation sequence diagram.

of the tracking window can be set to 256, gap length to 0, and number of averag-

ing iteration to 1. The new parameters are not read from the instruction FIFO until

the corr_x_thr function is completed. The programmer can then pend for the next

interrupt from the synchronization coprocessor which informs that the rst correla-

tion is completed and the packet has been detected. The programmer then calls the

66 6. The Espresso Platform

corr_x_thr function again to start the symbol timing estimation with the tracking pa-
rameters set earlier. Now a coef cient handle of the long training sequence and the
length of the correlation are given as parameters. The track ag is also set to activate
the tracking mode, and the intpt ag is set again to inform the coprocessor that an
interrupt needs to be issued upon the completion of the function.

The coprocessor rst correlates until the rst peak occurs, then starts the tracking
mode. This time no actual averaging is performed because the number of averag-
ing iterations was set to 1. When the speci ed number of averaging iterations is
completed, the coprocessor detects all peaks from the averaged correlation window,
issues an interrupt, and writes the indices and values of the correlation peaks to the
output FIFO. The programmer can then select the strongest peaks by comparing the
peak values.

6.5.4 OFDM Demodulation

When the symbol timing estimate is established as described above, the OFDM de-
modulation can be initiated with the fft function. The rst read address to the input
buffer is determined by the detected symbol boundary. Other input parameters in-
clude length of the FFT and number of symbols to be demodulated. While the FFT
is running on the coprocessor, the channel estimation and equalization of previous
demodulated symbols can be executed on the the host processor. If the intpt ag
is set, the demodulation coprocessor issues an interrupt when the rst symbol has
been demodulated and written to the output FIFO. A sequence diagram of the OFDM
demodulation procedure is illustrated in Fig. 25.

6.6 Espresso Limitations

The architecture and the programming interface of the Espresso does draw certain
limitations to the supported trafc. First, simultaneous trafc through WCDMA
and OFDM air interfaces can only be achieved if the baseband processing is time-
multiplexed between WCDMA and OFDM modes. In order to support simultaneous
reception of both systems, a separate sample stream would be needed for WCDMA

and OFDM from the receiver front-end, which rules out the possibility of integrating

6.6. Espresso Limitations 67

Host processor Instruction FIFO Coprocessor

loop fit()

new_inst

Channel Estimation/ rd_inst_fifo
Equalization Decode
Wait for intpt Execute

loop rd_cop()

il

Calculate a new
start address

H A

Fig. 25. OFDM demodul ation sequence diagram.

the RF section and ADCs as depicted in Fig. 3. Furthermore, time-multiplexing the

hardware resources of the baseband would lead to extensive clock frequencies.

Second, the width of the coprocessor instruction word is x ed to the internal word
width of the COFFEE core which is 32 bits. This draws limitations to the range of
the input parameters of the coprocessor functions. For example, the width of the
start_addr parameter of the despread and fft functions limits the length of the input
buffer to 1024 samples. Similarly, the width of the parameters of the set_track_param
function limits the length of the correlation window and number of averaging itera-

tions used in the tracking mode of the synchronization coprocessor.

Third, changes to wireless standards or different variants of OFDM and WCDMA
physical layers may require special type of hardware that is not currently supported
by the synchronization and demodulation coprocessors. For example, the demod-
ulation coprocessor only includes generators for scrambling codes and orthogonal
variable spreading factor (OVSF) codes required in 3GPP physical layer. If the num-
ber or type of code generators is not suf cient, the coprocessor architecture need to

be changed.

Fourth, the programmability of the Espresso does not cover the execution of the
coprocessor functions. The functions provided are designed to cover the required
WCDMA and OFDM baseband procedures, but adding new air interfaces to the base-

band does require changes in the coprocessor architectures. Considering the Software

68 6. The Espresso Platform

De ned Radio Forum tiers mentioned in section 2.2, the Espresso platform falls into
tier 2, but does not support the ability to add new air interfaces through software

updates.

7. ESPRESSO SIMULATION AND SYNTHESIS

The rst step in the design process of the Espresso platform was to model the whole
transmission chains of WCDMA and OFDM systems with Matlab. The models in-
cluded random symbol generation, slot or packet construction, modulation, baseband
channel modeling, synchronization, demodulation, and channel estimation. The pur-
pose of these models was to provide a reference implementation of the receiver algo-
rithms and to serve as a test data generator for future simulations. Furthermore, the
most critical computation kernels of the WCDMA and OFDM receiver algorithms
were identi ed during these simulations. The Matlab models were then converted
to x ed point versions employing SystemC data types. All the functions were con-
verted by hand to C-language syntax. During this step the data word widths for the
coprocessors were selected. 8-bit samples for real and imaginary components of the
baseband signal were used in both WCDMA and OFDM. As mentioned in chapter 4,
this is adequate for WCDMA but draws certain limitations to the OFDM traf c.

Next, the SystemC model was mapped onto the platform components, and the func-
tionality of the individual components were modeled with clock cycle and bit accu-
rate SystemC models. The test bench is illustrated in Fig. 26. Microsoft Visual C++
compiler was used for compiling the SystemC simulation models, and the simulations
were carried out using only the operating system shell as a simulation environment.
The correctness of the test bench output was veri ed with Matlab, by comparing the
received symbols to the transmitted ones. The main purpose of these simulations was
to test the programming interface of the coprocessors and the interrupt based synchro-
nization scheme between the host processor and the coprocessors. The simulations
covered WCDMA cell search, multipath searcher, demodulation, channel estimation,
and equalization procedures, as well as OFDM packet detection, symbol timing es-
timation, demodulation, channel estimation, and equalization procedures. The main
nding of these simulations was that the range of coprocessor functions and parame-

ters constituting the programming interface of the coprocessors can be successfully

70 7. Espresso Simulation and Synthesis

SystemC modules

‘ Input buffer ‘

- =
M t» Source ¥

Demod-Cop
Matlab 1/0-Cop

W 1
I ‘ FIFO ‘

Fig. 26. Espresso test bench.

COFFEE
RISC
Core

Memory Interface

Cop-Bus Interface
Cop-Bus Interface

used to implement the mentioned WCDMA and OFDM baseband procedures. Fur-
thermore, the minimum clock rates for the various baseband receiver procedures were
estimated. The estimates were obtained by counting the clock cycles spent in a par-
ticular synchronization, demodulation, or channel estimation step and dividing the
time available for that particular procedure with the clock cycle count. Simultaneous
synchronization, demodulation, and channel estimation tasks of WCDMA requires
a minimum clock frequency of 90 MHz. The minimum clock frequency for simul-
taneous OFDM demodulation and channel estimation was 120 MHz. Based on the
simulation, the bottleneck of the system is the transfer of the demodulated symbols
from the demodulation coprocessor to the host processor. For example, reading the
64 FFT outputs from the output FIFO of the demodulation coprocessor to the data

memory has a signi cant effect on the required clock frequency.

Although the memory subsystem was only modeled as a FIFO, as shown in Fig. 26,
the size of the data memory and the required memory bandwidth were estimated.
Both WCDMA and OFDM receiver procedures can be implemented with approxi-
mately 2 kB of random access memory. This estimate is based on the number and
type of variables used in the SystemC simulation models, and the effect of the proces-
sors stack was not considered. The peak memory bandwidth was estimated based on
the symbol rates of WCDMA and OFDM, which determines how often the demod-
ulation coprocessor produces its output, and thus, the rate at which the host proces-
sor needs to perform the channel equalization and write the demodulated symbols

to memory. With the smallest spreading factor and three parallel code channels,

71

10 coprocessor
COFFEE

o

Demodulation 2%

COprocessor Synchronization
coprocessor

Fig. 27. Espresso area distribution.

the WCDMA symbol rate is 2.88 - 10° symbols per second. Assuming that the data
memory is accessed at this rate, and 8-bits are used for both real and imaginary com-
ponents of the symbols, the resulting memory bandwidth is 5.8 MB per second. Sim-
ilarly, with 20 - 10 symbols per second and 16-bit symbols, the estimated memory
bandwidth for OFDM is 40 MB per second.

The coprocessors were implemented with RTL VHDL description, and logic synthe-
sis. A standard cell 0.13 um technology was used in the synthesis. The main ndings

of the synthesis was the total silicon area of the platform. The synthesis runs yielded
3.65 mm? area for the whole platform which is equivalent to approximately 452 300
gates. The total area was spread over the platform components as follows: 2.14 mm?
for the synchronization coprocessor, 1.03 mm? for the demodulation coprocessor,
0.01 mm? for the I/O coprocessor, and 0.47 mm? for the COFFEE core. The area
distribution is illustrated in Fig. 27. The memory system of the platform was not
considered in the synthesis. The presented silicon areas are based on the area reports
from the synthesis tool. Hence, the numbers do not include the contribution of the
wiring to the area. The area is clearly dictated by the synchronization coprocessor.
This is explained by the amount of registers required in the FIR block.

Direct comparison of the platform implementation to existing solutions was not feasi-
ble, because the implementation details of the related work covered in chapter 5 have
not been published. However, existing single-mode WCDMA and OFDM were used
as reference. An OFDM receiver implementation presented in [66] comprises auto-
matic gain control, frequency correction, synchronization, demodulation, and chan-
nel estimation units. The chip is implemented with 0.18 pm technology and occupies
7.6 mm? area. It has to be noted that the chip is designed for digital video broadcast-

ing applications and it utilizes a 1024-point FFT. The reported power consumption

72 7. Espresso Simulation and Synthesis

Table 3. Espresso synthesis and simulation resullts.

Synchronization =~ Demodulation 10 COFFEE

Area 2.14 mm? 1.03mm?> 0.0l mm?> 0.47 mm?
Power WCDMA 61.6 mW 33.8 mW - -
OFDM 95.6 mW 472 mW - -

with 52 MHz clock frequency and 1.8 V supply voltage is 32 mW. A WCDMA Rake
receiver implementation that comprises pulse shape ltering, frequency and timing
recovery, multipath searcher, and MRC is presented in [94]. The chip is implemented
with 0.18 pm technology and occupies 8.29 mm? area. The reported power consump-

tion with 20 MHz clock frequency and 1.8 V supply voltage is 4 mW.

The power consumption of the coprocessors were simulated separately using the syn-
thesized gate-level models. The switching activity from the simulations was stored
and then back annotated to the synthesis tools to yield the power consumption es-
timates. The power consumption of the platform as a whole was not estimated be-
cause of the practical workload limitations of the simulation machines. The clock
frequencies used in the estimations were the minimum clock frequencies needed in
the WCDMA and OFDM modes of the platform. WCDMA synchronization with
90 MHz clock frequency yielded a power consumption of 61.6 mW for the syn-
chronization coprocessor, and demodulation with 90 MHz clock frequency yielded
a power consumption of 33.8 mW for the demodulation coprocessor. The WCDMA
simulations were performed with spreading factor of 32 and three parallel code chan-
nels. OFDM synchronization with 120 MHz clock frequency yielded a power con-
sumption of 95.6 mW for the synchronization coprocessor and OFDM demodulation
with 120 MHz clock frequency yielded a power consumption of 47.2 mW for the de-
modulation coprocessor. Espresso simulation results are summarized in Table 3. As
shown in the table, the power consumption of the IO coprocessor and the COFFEE
core were not estimated. Because of the limited extent of the the power estimates,
the results can be treated merely as sanity checks for the platform implementation.
However, based on the presented numbers it can be concluded that the architectures
of the synchronization and demodulation coprocessors enable high performance with
moderate clock frequencies, and consequently are suited for practical implementa-

tions.

8. CONCLUSIONS

Interworking between cellular and ad hoc networks is an effective way to meet the
diverse data throughput, latency, and coverage requirements of future wireless appli-
cations. Multistandard wireless systems require that users are equipped with mobile
terminals that can operate in several wireless networks. As the evolution of wire-
less systems leads closer to the software radio concept, the required e xibility of the
transceiver implementations increases even more, and effective solutions for imple-
menting a multitude of radio technologies in a single device will be of paramount

importance.

As a result of the design challenges introduced by time-to-market, complexity, and
e xibility requirements, the role of software development will continue to increase
and reusability of the software and hardware solutions will be essential. Combining
the principles of platform based hardware design and product line based software de-
sign is the key to building a framework for ef cient reuse of hardware and software.
In addition to the theoretical basis of the new design methodologies, their utiliza-
tion in practice requires nancial investments, right management structure, EDA tool
support, and prioritization of long term design productivity over short term nancial

setbacks.

The programmability of the receiver hardware becomes more and more important
as the number of supported radio technologies increases. The programmability has
to cover also the sample rate processing of the receiver. The receiver algorithms of
different radio technologies employ similar computation kernels which can be used
effectively as functional building blocks in a multimode receiver. The algorithms
needed in different radio technologies can be implemented by instantiating the ker-

nels with different parameters.

A well suited approach for achieving the programmability of the sample rate receiver

algorithms is to employ a RISC processor and attach coprocessors to accelerate the

74 8. Conclusions

execution of the computation kernels. The key architectural choices of this approach
are the interconnection between the host processor and the coprocessors, the synchro-
nization of the concurrent processes of the host processor and the coprocessor, and

the programming interface of the coprocessors.

8.1 Main Results

The main result of the work covered in this thesis is the Espresso platform that en-
ables software implementation of the baseband processing of WCDMA and OFDM
receivers. The required processing power for the sample rate receiver algorithms
is achieved by utilizing coprocessors that implement the most critical computation
kernels of WCDMA and OFDM receivers. The communication between the host
processor and the coprocessors is realized through a dedicated coprocessor bus which
minimizes the communication overhead inherent in typical accelerator based imple-
mentations. The programming interface for the coprocessors is implemented with
a set of coprocessor functions that cover all the kernels needed in WCDMA and
OFDM receivers. The parameters of the coprocessor functions provide enough e xi-
bility to enable the employment of the platform in any receiver requiring WCDMA or
OFDM connectivity. This enables effective reuse as the platform architecture can be
utilized in several products inside the application eld determined by the WCDMA
and OFDM radio technologies.

The programmability issues of typical application-speci ¢ processors are solved by
utilizing a RISC core as the host processor. High-level programming languages can
be utilized for programming the platform because the host processor is an easy target
for the compiler and because the implementation details of the coprocessors are hid-
den under a programming interface. The programming interface employs only two
simple functions that require low-level programming. Thus, the software written for
the platform is reusable when the programming interface of the coprocessors is kept

unmodi ed.

The system level simulations of the platform have shown that the platform architec-
ture and the programming interface provide the necessary resources to implement
WCDMA and OFDM baseband procedures. The area and power consumption of
the platform were only estimated at gate level, but the results are comparable to ref-
erence single-mode WCDMA and OFDM implementations which indicates that the

8.2. Future Trends 75

platform can be used in practical implementations.

The Espresso platform does have limitations on the type of data trafc and range
of physical layer procedures supported. Simultaneous traf ¢ through the WCDMA
and OFDM air interfaces is not possible unless the baseband processing is time-
multiplexed between the modes of the receiver. Furthermore, the programmability
of the platform does not extend to the coprocessor functions, and thus, adding new
functions needed for an air interface is not possible without changing the design of
the coprocessors.

8.2 Future Trends

The evolution of wireless communications will carry on in two directions: evolu-
tion of the 3G networks towards Super 3G and convergence of cellular and ad hoc
networks. The biggest bene t from this evolution, considering the end user, will be
higher data rates, ubiquitous coverage, and the emergence of new wireless services.
The lack of killer applications has hindered the success of 2.5G and 3G systems but
as the evolution of wireless systems opens new business models, new revolutionary

wireless applications will emerge.

The multitude of radio technologies and the convergence of different type of networks
will continue to be a challenge for the mobile terminal implementations. In addition
to the existing radio technologies, future mobile terminals will have to support new
technologies based on UWB, multicarrier, and multiantenna techniques. In future,
different types of networks will be employed also simultaneously which increases
the transceiver complexity even further. For example, users might want to browse
the internet through WLAN, while making a voice call through a cellular network.
Moreover, the mobile terminals should be able to detect the available networks and

to select the appropriate connection based on the desired application.

The evolution of SoC design methodologies is likely to follow the tenets of platform
based hardware development and product line based software development. The tran-
sition will be a slow one as legacy designs require design teams to commit to the old
design methodologies, and the nancial setbacks of a complete paradigm change are
too large. EDA tools will be the enabling factor to boost design productivity in the fu-

ture. It is likely that complete tool suites will emerge that combine the hardware and

76 8. Conclusions

software domains and automate the mapping of the functional system level models

to the available software and hardware platforms.

The architectures employed in future mobile terminal transceiver will comprise more
and more programmable components. Before the current semiconductor technolo-
gies reach the limit of their performance, the available processing power will keep on
increasing, enabling more and more functionality to be implemented with software.
Processor architectures deployed in receiver implementations are likely to follow the
RISC principle because of their compiler friendliness. The biggest challenges re-
lated to programmable architectures will be the development of intelligent compiler
methodologies. This is the key in increasing the design productivity as the program-
mer needs to be freed from the awareness of the architectural details of the hardware.

If pursued successfully, this will also alleviate software reuse.

It can be argued whether the software radio concept will be employed in commercial
systems in its original form. However, the concept certainly projects many attractive
features and steers the evolution of wireless communications to a similar direction.
The ongoing standardization work of future systems aims at global standards which
would diminish the appeal of software radio if pursued successfully. Nevertheless,
it is likely that the vision of software radio terminals will be realized. The current
evolution of SoC design challenges and methodologies will eventually lead to a situ-
ation where the transceiver implementations are in fact implemented completely with

software.

9. SUMMARY OF PUBLICATIONS

The FlexRake receiver concept is introduced in [P1]. The shortcomings of tradi-
tional nger based Rake architectures are highlighted and the basic operation of the
FlexRake is described. Hardware implementation requirements are given and the

system level simulations of the architecture are presented.

The hardware implementation of the FlexRake is presented in [P2]. Two versions
of the architecture are presented and the implementation details are explained. Es-
timates of the silicon area and power consumption are given, and the difference be-

tween the two implementation alternatives are analyzed.

A more extensive analysis of traditional Rake architectures and the FlexRake is pre-
sented in [P3]. The functionality of the individual blocks of the FlexRake are ex-
plained in more detail. The implementation details of the address computation and
code generators are also presented.

The Espresso platform is introduced in [P4]. The implementation issues of a dual-
mode WCDMA/OFDM receiver, including the RF front-end and analog-to-digital
conversion parts, are addressed. The baseband receiver algorithms of WCDMA and
OFDM receivers are studied, and the feasibility of a dual-mode baseband imple-
mentation is investigated. The high-level architecture of the Espresso platform is
presented and the coprocessor functionalities are described.

The programming interface of the Espresso is studied in more detail in [P5]. The
programming interface of the coprocessors are described and a list of the coprocessor

functions is given. System-level simulation results of the platform are presented.

The implementation of the synchronization coprocessor is presented in [P6]. The
functionality and architecture of the coprocessor are described in more depth, and the
coprocessor functions and their input parameters are presented. Synthesis results and

power consumption estimations are given.

78 9. Summary of Publications

The implementation of the demodulation coprocessor is presented in [P7]. The data-
path of the coprocessor and the implementation of the processing units are studied in
detail. The coprocessor functions and their input parameters are presented. Synthesis

results and power consumption estimations are given.

9.1 Author’s Contribution to the Publications

The Author is the primary author in all seven publications. The co-authors of the

publications have agreed with the following descriptions of their contributions.

The FlexRake concept introduced in [P1] was developed by Dr. Kuulusa. The Author
contributed to the development of the system-level FlexRake architecture, and was
responsible of building the simulation model of the receiver. The publication was

co-authored by Dr. Kuulusa and by Professor Nurmi, who also supervised the work.

The implementation details of the FlexRake architecture presented in [P2] were de-
signed by the Author, with support from Dr. Kuulusa and Professor Nurmi. The
VHDL description, synthesis, and power consumption estimations were carried out
by the Author. Dr. Kuulusa and Professor Nurmi contributed as co-authors. Professor

Nurmi also supervised the work.

The work presented in [P3] comprised a more detailed study of traditional Rake archi-
tectures and the FlexRake architecture carried out by the Author. The implementation
of the code generators also presented in the publications were done by M.Sc. Timo
Rintakoski and Dr. Kuulusa. The publication was co-authored by Dr. Kuulusa and

by Professor Nurmi.

The Espresso platform introduced in [P4] was based on the original idea of the Au-
thor. Professor Nurmi contributed to the development of the platform architecture.
The details of the programming interface and the detailed architectures of the co-
processors presented [P5], [P6], [P7] were designed by the Author. Professor Nurmi

provided valuable input and co-authored the publications.

BIBLIOGRAPHY

[1] Y. Neuvo, “Cellular Phones as Embedded Systems,” in Digest of Technical Pa-
pers |EEE Solid-Sate Circuits Conference, Feb. 2004, vol. 1, pp. 32-37.

[2] R. Tafazolli, Ed., Technologiesfor the Wireless Future. West Sussex, UK: John
Wiley & Sons, Ltd., 2005.

[3] A. Doufexi, E. Tameh, A. Nix, S. Armour, and A. Molina, “Hotspot Wireless
LANSs to Enhance the Performance of 3G and Beyond Cellular Networks,” IEEE
Communications Magazine, vol. 41, no. 7, pp. 58-65, July 2003.

[4] Spreading and Modulation (FDD) (Release 5), 3GPP Technical Speci cation
25.213, Rev. 5.4.0, 2003.

[5] E. Dahlman, B. Gudmundson, M. Nilsson, and A. Skold, “UMTS/IMT-2000
Based on Wideband CDMA,” |EEE Communications Magazine, vol. 36, no. 9,
pp. 70-80, Sept. 1998.

[6] H. Holma and A. Toskala, WCDMA for UMTS. West Sussex, England: John
Wiley & Sons, Ltd., 2001.

[7] S. Parkvall, E. Englund, M. Lundevall, and J. Torsner, “Evolving 3G Mobile
Systems: Broadband and Broadcast Services in WCDMA,” |EEE Communica-
tions Magazine, vol. 44, no. 2, pp. 30-36, Feb. 2006.

[8] Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)
(Release 7), 3GPP Technical Report 25.913, Rev. 7.3.0, 2006.

[9] H. Ekstrom et al., “Technical Solutions for the 3G Long-Term Evelution,” IEEE
Communications Magazine, vol. 44, no. 3, pp. 38—45, Mar. 2006.

80

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications; Higher-Soeed Physical Layer Extension in the 2.4 GHz Band, IEEE
Standard 802.11b, 1999.

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications, High-speed Physical Layer in the 5 GHz Band, IEEE Standard
802.11a, 1999.

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications; Further High Data Rate Extension in the 2.4 GHz Band, IEEE Stan-
dard 802.11g, 2003.

3GPP System to Wireless Local Area Network (WLAN) Interworking; Sys-
tem Description (Release 6), 3GPP Technical Speci cation 23.234, Rev. 6.1.0,
2004.

Generic Access to the A/Gb Interface; Sage 2 (Release 6), 3GPP Technical
Speci cation 43.318, Rev. 6.5.0, 2006.

Feasibility Study on 3GPP System to WLAN Interworking (Release 6), 3GPP
Technical Speci cation 23.934, Rev. 6.2.0, 2003.

J. Mitola, “Software Radios: Survey, Critical Evaluation and Future Direc-
tions,” in Proc. National Telesystems Conference, Washington, DC, USA, May
1992, pp. 15-23.

——, “The Software Radio Architecture,” |EEE Communications Magazine,
vol. 35, no. 5, pp. 26-38, May 1995.

W. Tuttlebee, Ed., Software Defined Radio: Enabling Technologies. West
Sussex, UK: John Wiley & Sons, Ltd., 2002.

J. Walko, “Cognitive Radio,” IEE Review, vol. 51, no. 5, pp. 34-37, May 2005.
“Software De ned Radio Forum,” website, http://www.sdrforum.org.
“International Technology Roadmap for Semiconductors,” 2005.

B. Graaf, M. Lormans, and H. Toetenel, “Embedded Software Engineering: The
State of the Practice,” IEEE Software, vol. 20, no. 6, pp. 61-69, Nov. 2003.

Bibliography 81

[23] F. R. Wagner, W. O. Cesario, L. Carro, and A. Jerraya, “Strategies for the In-
tegration of Hardware and Software IP Components in Embedded Systems-on-
Chip,” in Integration, the VLS Journal. Elsevier B. V., Sept. 2004, vol. 37,
no. 4, pp. 223-252.

[24] T. A. C. M. Claasen, “Platform Design: The Next Paradigm Shift to Deal with
Complexity,” in Proc. Symposium on VLS Technology, Systems, and Applica-
tions, Hsinchu, Taiwan, Oct. 2003, pp. 8—12.

[25] “OMAPV1030,” Product Bulletin, Texas Instruments, Inc., 2005.

[26] A. Bernstein, M. Burton, and F. Ghenassia, “How to Bridge the Abstraction
Gap in System Level Modeling and Design,” in Proc. IEEE/ACM Conference
on Computer Aided Design, San Jose, CA, USA, Nov. 2004, pp. 910-914.

[27] “Embedded Systems Roadmap 2002,” STW Technology Foundation, Mar.
2002.

[28] R. van Ommering, “Software Reuse in Product Populations,” |EEE Transac-
tions on Software Engineering, vol. 31, no. 7, pp. 537-550, July 2005.

[29] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley, 2002.

[30] L. M. Northrop, “SEI’s Software Product Line Tenets,” |EEE Software, vol. 19,
no. 4, pp. 32-40, July 2002.

[31] “Technology Roadmap for Software-Intensive Systems,” Information Technol-
ogy for European Advancement, May 2004.

[32] J. Bosch, “Organizing for Software Product Lines,” in Proc. International Work-
shop on Software Architecturesfor Product Families, Las Palmas, Gran Canaria,
Spain, Mar. 2000, pp. 117—-134.

[33] Physical Layer - General Description (Release 1999), 3GPP Technical Speci -
cation 25.201, Rev. 3.0.2, 2003.

[34] A. Loke and F. Ali, “Direct Conversion Radio for Digital Mobile Phones—
Design Issues, Status, and Trends,” |EEE Transactions on Microwave Theory
and Techniques, vol. 50, no. 11, pp. 2422-2435, Nov. 2002.

82

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Loke and M. Abdelgany, “Multi Mode Wireless Terminals—Key Technical
Challenges,” in Digest of Technical Papers IEEE Radio Frequency Integrated
Circuits Symposium, Philadelphia, PA, USA, June 2003, pp. 11-14.

M. Hotti et al., “A Direct Conversion RF Front-End for 2-GHz WCDMA and
5.8-GHz WLAN Applications,” in Proc. |EEE Radio Frequency Integrated Cir-
cuits Symposium, Philadelphia, PA, USA, June 2003, pp. 45-48.

T. Manku et al., “A Single Chip Direct Conversion CMOS Transceiver
for Quad-band GSM/GPRS/EDGE and WLAN with Integrated VCO’s and
Fractional-N Synthesizer,” in Digest of Technical Papers|EEE Radio Frequency
Integrated Circuits Symposium, Forth Worth, TX, USA, June 2004, pp. 423—
426.

L. Sumanen, “Pipeline Analog-to-Digital Converters for Wide-Band Wire-
less Communications,” Ph.D. dissertation, Helsinki University of Technology,
Helsinki, Finland, Dec. 2002.

T. H. Meng, B. McFarland, D. Su, and J. Thomson, “Design and Implementa-
tion of an All-CMOS 802.11a Wireless LAN Chipset,” |EEE Communications
Magazine, vol. 41, no. 8, pp. 160-168, Aug. 2003.

A. Richardson, WCDMA design handbook. Cambridge, UK: Cambridge Uni-
versity Press, 2004.

J. B. Groe and L. E. Larson, COMA Mobile Radio Design. Norwood, MA,
USA: Artech House, 2000.

J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook. Norwood,
MA, USA: Artech House, 1998.

R. van Nee and R. Prasad, OFDM Wirel ess Multimedia Communications. Nor-
wood, MA, USA: Artech House, 2000.

J. Heiskala and J. Terry, OFDM Wreless LANs. A Theoretical and Practical
Guide. Indianapolis, IN, USA: Sams Publishing, 2002.

J.-J. van de Beek, M. Sandell, and P. O. Borjersson, “ML Estimation of
Time and Frequency Offset in OFDM Systems,” |EEE Transactions on Sgnal
Processing, vol. 45, no. 7, pp. 18001805, July 1997.

Bibliography 83

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J.-J. van de Beek et al., “A Time and Frequency Synchronization Scheme
for Multiuser OFDM,” IEEE Journal on Selected Areas in Communications,
vol. 17, no. 11, pp. 1900-1914, Nov. 1999.

Y.-P. Wang and T. Ottoson, “Cell Search in W-CDMA,,” |EEE Journal on Se-
lected Areas in Communications, vol. 18, no. 8, pp. 14701482, Aug. 2000.

N. Darbel, Y. Rasse, B. Jubelin, and M. Carrie, “A UMTS-FDD Cell Search
Engine,” in The Journal of VLS Sgnal Processing. Springer Science, Aug.
2004, vol. 38, no. 1, pp. 73-84.

Physical Channelsand Mapping of Transport Channels onto Physical Channels
(FDD) (Release 5), 3GPP Technical Speci cation 25.211, Rev. 5.5.0, 2003.

A. Huang, M. Hall, and I. Hartimo, “Multipath Channel Estimation for
WCDMA Uplink,” in Proc. |[EEE \ehicular Technology Conference, vol. 1,
Amsterdam, Netherlands, Sept. 1999, pp. 141-145.

E.-S. Lohan, “Multipath Delay Estimators for Fading Channels in CDMA Re-
ceivers and Mobile Positioning,” Ph.D. dissertation, Tampere University of
Technology, Tampere, Finland, Oct. 2003.

K.-C. Gan, “Path Searcher for a WCDMA Rake Receiver,” Application Note
AN2252, Freescale Semiconductor, Mar. 2005.

E. Grayver et al., “Design and VLSI Implementation for a WCDMA Multipath
Searcher,” |[EEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 889—
902, May 2005.

R. Tanner and J. Woodard, WCDMA-Requirements and Practical Design.
West Sussex, UK: John Wiley & Sons, Ltd., 2004.

R. G. Lyons, Understanding Digital Sgnal Processing. Boston, MA, USA:
Addison-Wesley, 1999.

C. Hsu, Y.-H. Huang, and T.-D. Chiueh, “Design of and OFDM Receiver for
High-Speed Wireless LAN,” in Proc. |[EEE International Symposium on Cir-
cuits and Systems, vol. 4, Sydney, Australia, May 2001, pp. 558-561.

84

Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. Zhuang, E.-S. Lohan, and M. Renfors, “Comparison of Desicion-Directed
and Pilot-Aided Algorithms for Complex Channel Tap Estimation in a Down-
link WCDMA System,” in Proc. IEEE Symposium on Personal, Indoor, and
Mobile Radio Communications, London, UK, Sept. 2000, pp. 1121-1125.

A. Aziz, “Channel Estimation for a WCDMA Rake Receiver,” Application Note
AN2253, Freescale Semiconductor, Nov. 2004.

J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On
Channel Estimation in OFDM Systems,” in Proc. |EEE Vehicular Technology
Conference, vol. 2, Chicago, IL, USA, July 1995, pp. 815-819.

Y. Shen and E. Martinez, “Channel Estimation in OFDM Systems,” Application
Note AN3095, Freescale Semiconductor, Jan. 2006.

D. A. Patterson and J. L. Hennesy, Computer Organization & Design, 2nd ed.
San Fransico, CA, USA: Morgan Kaufmann Publishers, Inc., 1998.

P. Lapsley, J. Brier, and A. Shoham, DSP Processor Fundamentals. New York,
NY, USA: IEEE Press, 1997.

A. Gatherer, T. Stetzler, M. McMahan, and E. Auslander, “DSP-Based Archi-
tectures for Mobile Communications: Past, Present and Future,” IEEE Commu-
nications Magazine, vol. 43, no. 15, pp. 1244—-1245, 2000.

R. Kokozinski, D. Greindorf, J. Stammen, and P. Jung, “Evolution of Hardware
Platforms for Mobile Software De ned Radio Terminals,” in Proc. IEEE Sym-
posium on Personal, Indoor and Mobile Radio Communications, vol. 5, Lisbon,
Portugal, Sept. 2002, pp. 2389-2393.

P. Jung, P. Schmidt, and J. Plechinger, “Implementation Aspects of Mobile
UMTS FDD Receiver,” in Proc. |IEE Colloquium on UMTS Terminals and Soft-
ware Radio, Glasgow, UK, Apr. 1999, pp. 1-6.

H. Zou and B. Daneshrad, “VLSI Implementation for a Low Power Mobile
OFDM Receiver ASIC,” in Proc. | EEE W rel ess Communications and Networ k-
ing Conference, vol. 4, Atlanta, GA, USA, Mar. 2004, pp. 2120-2124.

D. A. Patterson, “Reduced Instruction Set Computers,” Communications of the
ACM, vol. 28, no. 1, pp. 8-12, Jan. 1985.

Bibliography 85

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

J. Kyllidinen, M. Kuulusa, and J. Nurmi, “COFFEE—A Core for Free,” in Proc.
International Symposium on System-on-Chip, Tampere, Finland, Nov. 2003, pp.
17-22.

“COFFEE RISC Core,” website, http://coffee.tut. .

W. Lee etal., “A 1-V Programmable DSP for Wireless Communications,” |EEE
Journal of Solid-Sate Circuits, vol. 32, no. 11, pp. 1766-1776, Nov. 1997.

J. Glossner, T. Raja, E. Hokenek, and M. Moudgill, “Multithreaded Processor
for SDR,” Proc. Korea Institute of Communication Sciences, vol. 19, no. 1, pp.
7084, Nov. 2002.

J. Glossner, E. Hokenek, and M. Moudgill, “Multithreaded Processor for Soft-
ware De ned Radio,” in Proc. Software Defined Radio Technical Conference,
vol. 1, San Diego, CA, USA, Nov. 2002, pp. 195-199.

J. Glossner, D. lancu, J. Lu, E. Hokenek, and M. Moudgill, “A Software-
De ned Communications Baseband Design,” |EEE Communications Maga-
zine, vol. 41, no. 1, pp. 120-128, Jan. 2003.

M. F. Jacome and G. D. Veciana, “Design Challenges for New Application-
Speci ¢ Processors,” IEEE Design and Test of Computers, vol. 17, no. 2, pp.
40-50, Apr. 2000.

R. Leupers et al., “Retargetable Compilers and Architecture Exploration for
Embedded Processors,” |EE Proc. Computers and Digital Techniques, vol. 152,
no. 2, pp. 209-223, Mar. 2005.

N. Clark, H. Zhong, and S. Mahike, “Automated Custom Instruction Generation
for Domain-Speci ¢ Processor Acceleration,” IEEE Transactions on Comput-
ers, vol. 54, no. 10, pp. 1258-1270, Oct. 2005.

A. Hoffmann, F. Fiedler, A. Nohl, and S. Parupali, “A Methodology and Tooling
Enabling Application Speci ¢ Processor Design,” in Proc. International Con-
ference on VLS Design, Kolkata, India, Jan. 2005, pp. 399-404.

“Xtensa LX,” Product Brief, Tensilica, Inc., 2004.

“An Independent Overview of Tensilica Xtensa LX Processor with Vectra LX,”

Berkeley Design Technology, Inc., 2005.

86

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Y.-H. Huang, H.-P. Ma, M.-L. Liou, and T.-D. Chiueh, “A 1.1 G MAC/s Sub-
Word-Parallel Digital Signal Processor for Wireless Communication Applica-
tions,” |EEE Journal of Solid-Sate Circuits, vol. 39, no. 1, pp. 169-183, Jan.
2004.

J. H. Lee, K. Heo, and M. H. Sunwoo, “Implementation of Application-Speci ¢
Signal Processor for High-Speed Communication Systems,” in Proc. Interna-
tional Symposium on Intelligent Sgnal Processing and Communication Sys-
tems, Seoul, South Korea, Nov. 2004, pp. 250-255.

F. Honore, W. Gass, A. Gatherer, and S. Sriram, “Implementation Options
for WCDMA,” in Proc. IEEE Conference on Acoustics, Speech, and Sgnal
Processing, Istanbul, Turkey, June 2000, pp. 3702—-3705.

B. Hounsell and R. Taylor, “Co-processor Synthesis: A New Methodology for
Embedded Software Acceleration,” in Proc. Design, Automation and Test in
Europe Conference, Paris, France, Feb. 2004, pp. 682—683.

H.-M. Bluethgen, C. Grassmann, W. Raab, U. Ramacher, and J. Hausner, “A
Programmable Baseband Platform for Software De ned Radio,” in Proc. Soft-
ware Defined Radio Technical Conference, Pheonix, AZ, USA, Nov. 2004, pa-
per 3.4-02.

H.-M. Bluethgen et al., “Finding the Optimum Partitioning for Multi-Standard
Radio Systems,” in Proc. Software Defined Radio Technical Conference, Gar-
den Grove, CA, USA, Nov. 2005, paper 1.5-01.

A. Gatherer, “Texas Instrucments TCI Platform: A Cost Effective, Program-
mable Besestation Modem,” in Proc. Software Defined Radio Technical Con-
ference, Orlando, FL, USA, Nov. 2003, paper HW1-03.

S. Sriram et al., “A 64 Channel Programmable Receiver Chip for 3G Infrastruc-
ture,” in Proc. |IEEE Custom Integrated Circuits Conference, San Jose, CA,
USA, Sept. 2005, pp. 59-62.

J.-J. van de Beek, M. Sandell, M. Isaksson, and P. O. Borjersson, “Low-
Complex Frame Synchronization in OFDM Systems,” in Proc. IEEE Confer-
ence on Universal Personal Communications, Tokyo, Japan, Nov. 1995, pp.
982-986.

Bibliography 87

[89]

[90]

[91]

[92]

[93]

[94]

Z. Ye, Y. Kim, and A. Schooler, “A Flexible Chip Rate Processor for CDMA
Rake Receivers,” in Proc. Software Defined Radio Technical Conference, Or-
lando, FL, USA, Nov. 2003, paper HW1-02.

B. D. Andreev, E. L. Titlebaum, and E. G. Friedman, “Low Power Flexible Rake
Receivers for WCDMA,” in Proc. |EEE International Symposium on Circuits
and Systems, vol. 4, Vancouver, Canada, May 2004, pp. 97-100.

M. Chugh, D. Bhatia, and P. T. Balsara, “Design and Implementation of Con-
gurable W-CDMA Rake Receiver Architectures on FPGA,” in Proc. |EEE In-
ternational Parallel and Distributed Processing Symposium, Denver, CO, USA,
Apr. 2005, p. 145b.

S.-C. Han and R. Negi, “Early-Stopping for Rake Receivers,” in Proc. Inter-
national Symposium on Wireless Communication Systems, Siena, Italy, Sept.
2005, pp. 245-249.

T. Taskinen, “Hardware Implementation Architectures for Time-Frequency
Transforms,” Master’s thesis, Tampere University of Technology, Tampere, Fin-
land, Apr. 2002.

A. M. Eltawil and B. Daneshrad, “A Low-Power DS-CDMA Rake Receiver
Utilizing Resource Allocation,” |EEE Journal of Solid-State Circuits, vol. 39,
no. &, pp. 1321-1330, Aug. 2004.

88

Bibliography

Part |1

PUBLICATIONS

PUBLICATION 1

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible Rake Receiver Architecture for WCDMA
Mobile Terminals,” in Proc. |EEE Workshop on Sgnal Processing Advancesin Wre-
less Communications, Tao Yuan, Taiwan, Mar. 2001, pp. 9-12.

Copyright (©) 2001 IEEE. Reprinted, with permission, from the proceedings of IEEE
Workshop on Signal Processing Advances in Wireless Communications 2001.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Tampere University
of Technology’s products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@jieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Third IEEE Signal Processing Workshop on Signal Processing Adavances in Wireless Communications, Taoyuan, Taiwan, March 20-23, 2001

A Flexible Rake Receiver Architecture for
WCDMA Mobile Terminals

Lasse Harju, Mika Kuulusa and Jari Nurmi
Digital and Computer Systems Laboratory
Tampere University of Technology
P.O. Box 553 (Hermiankatu 12),
Tampere, Finland
Tel. +358 3 365 4365, Fax. +358 3 365 3095,

Email: lasse.harju@tut.fi

Abstract — This paper presents a novel Rake receiver
architecture for WCDMA FDD downlink reception in
mobile terminals. In contrast to conventional Rake fin-
ger approach, the proposed FlexRake architecture per-
forms signal reception with a single correlator engine
and a buffer which stores the entire delay spread of the
baseband I/Q samples. This allows each of the tracked
multipaths to be despread sequentially with codes that
are exactly in the same phase. The main benefits of the
proposed receiver architecture are flexible multipath al-
location, symbol-synchronous operation, and straight-
forward receiver control.

I. INTRODUCTION

This paper considers the frequency-division duplex (FDD)
mode of the wideband code-division multiple access (WCDMA)
standard [1, 2]. The main physical parameters for the FDD
downlink are the following: QPSK data modulation, time-
multiplexed control and user data channels, 3.84 Mcps chip
rate, spreading factors between 4 and 512, orthogonal variable
spreading factor (OVSF) codes for spreading (channelization),
and Gold codes for complex scrambling. Variable user data rates
are realized either by discontinuous transmission with a fixed
spreading factor or by allocating multiple spreading code chan-
nels. Maximum downlink user data rate of 2.3 Mbit/s can be
achieved using three parallel code channels that have a spread-
ing factor of four [1].

The first WCDMA receivers are based on Rake receiver. The
main principle of Rake receivers is that they exploit multi-
path propagation by receiving the multipath components of the
transmitted signal separately and combining their energies. In
conventional Rake architectures multipath components with sig-
nificant signal energies are tracked and despread with dedicated
Rake fingers.

In this paper we present a novel Rake receiver architecture for
WCDMA mobile terminals. The proposed FlexRake architec-
ture combines hardware efficiency, flexibility, and easy control-
lability. The paper is organized as follows. First, receivers based
on Rake finger banks are discussed. Then the FlexRake receiver
concept and its architecture is studied in detail. The main im-
plementation requirements are investigated and the high-level
receiver model is briefly described. Finally, the conclusions are
drawn.

II. CONVENTIONAL RAKE RECEIVERS

A conventional Rake receiver is depicted in Fig. 1. The input
to the Rake receiver is a direct I/Q baseband sample stream.

1/Q Samples
I [

E- Decimate

Delay Line

SN
ety Symbol
Dumps

Integration

Register FIFO

Code
Generators

Fig. 1: Block diagram of a conventional Rake receiver based on mul-
tiple Rake finger devices.

In order to obtain higher multipath resolution the baseband
signal is oversampled at 4-8 times the chip rate. After pulse
shaping filtering and multipath estimation the sample stream
is selectively decimated back to the chip rate by tracking the
samples closest to the chip interval midpoints. In order to re-
ceive several multipath components of the transmitted signal,
a dedicated Rake finger is allocated to each of the tracked com-
ponents. Thus the Rake finger count corresponds to the maxi-
mum number of multipaths which is typically between two and
six [3, 4, 5]. In a Rake finger, the received 1/Q samples are
correlated with a time-aligned spreading code and integrated
over a period corresponding to the spreading factor. The time-
alignment is typically carried out with a multiplexer that selects
a specific phase of the code from a delay line [4]. Because the
delay spread can be several times longer than the symbol in-
tegration period, the symbol dumps for a specific data symbol
are completed at different times. Clearly this issue is particu-
larly observable for high data rates with low spreading factors.
Therefore, each Rake finger stores symbol dumps in a deskew
buffer from which they can be accessed for channel correction
and combining after all multipath symbol dumps are available
[3, 4]. The maximum delay spread! and the lowest spreading
factor supported by a Rake finger specifies the size of the deskew
buffer, the size of the code delay line and the width of the code
multiplexer.

Even though the operations required in a Rake finger are
not computationally demanding, the implementation of a Rake

IMaximum delay spread is defined as the longest expected time
difference between the first and the last received multipath compo-
nent.

Offset
Address
Generator

Circular
Address
Generator

1/Q Samples ==t Sample Buffer

1/Q Multipath Samples

Code
Generators

FIFO s

Symbol
Dumps

Integration
Registers

Fig. 2: Block diagram of FlexRake receiver architecture consisting of

a stream buffer (upper half) and a correlator engine (lower half).

receiver is challenging because the receiver should support dif-
ferent spreading factors and parallel code channels, and also al-
low easy finger control according to the rapidly changing radio
channel. One major disadvantage of the Rake finger in Fig. 1
is that it constantly has to adjust the phases of the code gen-
erators because of the rapidly changing multipath delays. Even
more important, it can not perform correlation with passed I/Q
samples. In a case when a Rake finger is assigned to the first
arriving multipath component, and the delay of that multipath
rapidly shortens, it fails to continue despreading because the
sample stream can not be rewinded. Thus, a multipath compo-
nent is lost and the multipath diversity degrades. Furthermore,
in conventional Rake receiver architectures the overall hardware
complexity increases for multicode reception because each finger
requires as many despreaders as there are parallel code channels.

ITI. FLEXRAKE RECEIVER CONCEPT

Instead of using a number of dedicated fingers, FlexRake re-
ceiver performs correlation operations sequentially by accessing
a buffer that serves as a time-sliding window to the received
I/Q samples. A detailed block diagram of the FlexRake re-
ceiver is shown in Fig. 2. The FlexRake receiver contains two
main units: Stream Buffer and Correlator Engine. The Stream
Buffer stores the input stream and tracks multipath samples
with a special addressing method controlled by multipath delay
estimates. The Correlator Engine reads the multipath samples
from the Stream Buffer and performs the despreading of the
multipath components sequentially.

A. Stream Buffer

The Stream Buffer contains a sample buffer and two address
generators. The sample buffer stores the I/Q sample pairs com-
ing from the pulse shaping filtering. The sample buffer, depicted
in Fig. 3, can be comprehended as a time-sliding window that is
divided into three parts: write window, pre-window, and post-
window. The write window allows writing to the buffer with-
out overlapping the pre-window and the post-window needed
to carry out multipath read accesses. These read and write ac-
cesses are interleaved in time in order to avoid the need of con-
current memory accesses. Whereas the post-window contains

Circular Offset
Address Address
Generator Registers
Write
1/Q Sample Sample Buffer
|
Write Pre Post l
Win Win Win
Read
11Q Sample

Fig. 3: Principle of the Stream Buffer read and write accesses.

the I/Q samples within the longest supported delay spread, the
purpose of the pre-window is to add headroom for the move-
ment of the first arriving multipath components. Even if the
delays shorten considerably, the pre-window ensures that mul-
tipath samples are not lost because they can be despread from
the pre-window.

Circular Address Generator provides a stream of sequential
sample buffer cursor and write addresses. The cursor address
points to the beginning of the post-window and it is incremented
periodically after each processing cycle that is equal to the chip
duration. Similarly, the write address points to the write win-
dow and is also incremented after each processing cycle. Offset
Address Generator is employed for fetching I/Q multipath sam-
ples for correlation from the sample buffer. It contains a num-
ber of offset address registers which are controlled by multipath
delay estimates. The number of offset address registers L cor-
responds to the maximum number of tracked multipath com-
ponents and the offset values correspond to the delays of the
tracked multipath components. As shown in Fig. 3, the effec-
tive read addresses are calculated by summing two values: the
cursor address and an offset value.

Each multipath component is read to the Correlator Engine
one at a time for despreading. After each processing cycle the
sample buffer cursor and write addresses are incremented, the
offset values can be updated, and new 1/Q samples are written
to the sample buffer. A processing cycle in the Stream Buffer
contains a number of read and write accesses that correspond
to the number of the tracked multipath components and the
oversampling ratio, respectively.

B. Correlator Engine

Correlator Engine contains a complex correlator, code gen-
erators for channelization and scrambling codes, a number of
integration registers, and a FIFO buffer for symbol dumps.
The number of integration registers Niqeq defines the maxi-
mum number of concurrent symbol integrations. Therefore, for
a single code Nireq = L and for three parallel code channels
Nireg = 3L.

The correlator performs a complex-valued correlation of the
I/Q multipath samples with a combined OVSF/Gold code pro-
duced by the two code generators. Partial symbol integration
results of each multipath component are stored in an integra-
tion register. Since the I/Q multipath samples are read from
the sample buffer sequentially, all correlations can be performed
using the same code phase. When multicode transmission is em-
ployed, L integration registers and a dedicated channelization

code is assigned for each additional code channel. After corre-
lating over one symbol period the final symbol dumps are stored
into the FIFO buffer. It is important to note that since the mul-
tipath components are despread sequentially, L symbol dumps
for a transmitted data symbol appear in a certain sequential
order.

One processing cycle in the Correlation Engine is divided into
a number of correlation cycles. On each correlation cycle, one
(single code) or multiple (multicode) correlations are performed
with each I/Q multipath sample. Thus for four multipath com-
ponents (L = 4) and three parallel code channels (Ngoge = 3),
one processing cycle in the Correlation Engine may include up
to 12 correlation cycles.

C. Control

The functionality of the FlexRake is pipelined into two stages
for Stream Buffer write/read cycles and Correlator Engine cor-
relation cycles. The FlexRake contains a control unit which
is needed to schedule various operations. The offset value up-
dates are received from a programmable DSP processor which
uses a dedicated multipath estimator unit to resolve the multi-
path delay profile of the radio channel. Typically, new offsets
are generated every 10 ms interval, i.e. on a time frame basis.
It is assumed that the offset update rate is sufficiently fast to
avoid the need for delay-lock loops (DLLs) for code tracking.
Furthermore, the control unit has three operational modes: re-
ceiver initialization, steady-state reception, and sleep modes.

There are a number of advantages gained from the FlexRake
receiver architecture. First is the high flexibility of the multi-
path allocation because multipath components are tracked sim-
ply with the offset values and by allocating a dedicated inte-
gration register. Furthermore, the sample buffer pre-window
allows the tracked multipath to move to earlier positions in
the delay spread without being lost, i.e. negative offset val-
ues can be used. This ensures that no I/Q multipath samples
are lost even if the delay profile is rapidly changing. Another
advantage is that the OVSF/Gold code generators need not be
time-aligned separately according to the multipath delays. Fur-
thermore, multicode reception is more straightforward because
the same I/Q multipath sample can be correlated with mul-
tiple spreading codes and thus it is not necessary to perform
several reads from the same buffer address. Since the opera-
tion of the FlexRake receiver is symbol-synchronous, the sym-
bol dumps of each multipath component are completed sequen-
tially in time. This facilitates the implementation of the further
processing operations, such as channel estimation and channel
correction/combining.

IV. FLEXRAKE HARDWARE IMPLEMENTATION
REQUIREMENTS

A. Operating Frequencies

In the Stream Buffer, the sample buffer is realized with a
SRAM block which is accessed for writes at the baseband sam-
ple rate and for reads at an integer multiple of the chip rate.
In the FlexRake architecture, a 1-port SRAM block is em-
ployed because of its lower silicon area with respect to a 2-port
SRAM. Therefore, the required sample buffer read/write access
frequency can be calculated with:

foo=fs+Lfe=(R+L)fe (1)

Twin
Neample | 417ps [8.33us [16.67us | 33.33us [66.67us
6 bits 96 192 384 768 1024
8 bits 128 256 512 1024 2048
10 bits 160 320 640 1280 2560
12 bits 192 384 768 1536 3072

Tab. 1: Examples of sample buffer sizes in bytes.
(Te = 1/(3.84 - 10%)us, Twin = Te + Tpre + Tpost, and R = 4)

where fs is the sample rate, L is the number of tracked mul-
tipath components, f. is the chip rate, and R is the oversam-
pling ratio. Sample rate is computed with f; = Rf.. Assum-
ing fo = 3.84 MHz, R = 4, and L = 4, the resulting read and
write accesses require a memory bandwidth of 30.72 MHz which
is quite reasonable. The multicode reception does not add to
these requirements because a I/Q sample is only read once and
correlated several times with different codes.

The Correlator Engine operates at an integer multiple of the
chip rate. Thus the operating frequency can be calculated with

fce = LNwde.fc (2)

where L is the number of the tracked multipaths, Ncoge is
the maximum number of parallel code channels, and f. is the
chip rate. Thus assuming values f. = 3.84 MHz, L = 4, and
Neode = 3 results in a 46.08 MHz operating frequency.

B. Sample Buffer Size

The size of the sample buffer can be calculated with the fol-
lowing formula:

Nows — "Tc + Tpre + Tyost " SR Nu,)
TC

where Nyus is the size of the sample buffer in bits, Tt is the
chip duration (write window), Tpre is the pre-window duration,
Tpost is the post-window duration, R is the oversampling ratio,
and Npis is the word length for both I and Q samples. Tpost
is determined by the maximum delay spread supported by the
FlexRake. The typical delay spreads are 1-2 ps in urban areas
whereas delay spreads of over 20 us can be expected in moun-
tainous areas [1]. Examples of sample buffer sizes for different
total window sizes and sample word lengths are listed in Ta-
ble 1. With 8-bit I/Q samples and a 33.33 pus window, a 1 kB
sample buffer would be required which is feasible considering
hardware implementations.

V. FLEXRAKE HARDWARE MODEL

The simulation of the FlexRake was done using SystemC
modeling environment [6]. SystemC is fundamentally a C/C++
class library and simulation kernel which can be used to cre-
ate cycle-accurate models of hardware architectures, software
algorithms and system interfaces. The SystemC libraries pro-
vide necessary constructs to model fixed-point data arithmetic,
hardware timing, concurrency, and reactive behavior with the
C/C++ language.

The FlexRake hardware model is depicted in Fig. 4. The
functional model was divided into five SystemC modules:
Stream Buffer, Correlator Engine, control unit, sample source,
and symbol dump sink. A Matlab script was used to create the

Matlab
Cossap

|

I Receiver

f—
source.cpp streambuff.cpp Hmmmril Control
—]
l l ctrl.cpp
f—f
f—
sink.cpp correngine.cpp

rem—

Matlab

Fig. 4: Structure of the FlexRake hardware model.

baseband I/Q sample streams. The script produces a random
binary sequence for transmission and then carries out spread-
ing, scrambling, frame generation, and baseband signal genera-
tion. The multipath channel profile used by the Matlab channel
model is static, i.e. the multipath delays do not change with
time. Alternatively, a Cossap channel model can be used for
creating the baseband input stream.

The interaction between the FlexRake receiver and a pro-
grammable DSP processor was simulated with a processor con-
trol file. This control file is composed of simulation instructions
that specify a control register write, register read, or idle cy-
cles. The control unit model decodes this syntax and performs
cycle-accurate control updates accordingly. The symbol dumps
are stored into an output file that can be further processed with
a Matlab script. This script carries out algorithms for channel
coefficient estimation, channel correction, maximal ratio com-
bining, and symbol detection. In addition, raw channel bit error
rate (BER) can be computed to evaluate different simulation
scenarios.

The initial FlexRake receiver model was designed for
a 3.84 Mcps chip rate and 15.36 MHz sampling rate (4x oversam-
pling). The sample buffer size was 512 I/Q samples which was
divided into a pre-window and post-window of lengths 2.07 us
and 31 us, respectively. Tentatively, 10 bits for both I and Q
samples was employed thus resulting in a buffer size of 1280
bytes. The number of Offset Address Registers was four and
the number of integration registers was 12. This configuration
enables concurrent reception of three parallel code channels.

A number of simulations with different downlink transmis-
sion scenarios were carried out and the correct operation of the
FlexRake receiver was successfully verified. Numerical results
are not in the scope of this paper.

VI. CONCLUSIONS

A novel Rake receiver architecture was presented in this pa-
per. The proposed FlexRake receiver stores the baseband 1/Q
sample stream in a circular buffer and sequentially performs
correlations with the tracked multipath components. The mul-
tipath components are read from the buffer using offset address-
ing where the offset values correspond to the delays of the indi-
vidual multipath components. Multipath I/Q samples are de-
spread sequentially with a single complex correlator with codes
that are exactly in the same phase. With respect to receivers
based on Rake finger banks, the main benefits of the FlexRake
receiver architecture are flexible multipath allocation, symbol
synchronous operation, and straightforward receiver control.

REFERENCES

[1] H. Holma and A. Toskala, WCODMA for UMTS, John Wiley &
Sons, Ltd., New York, U.S.A., 2000.

[2] T. Ojanpera and R. Prasad, Wideband CDMA for Third Gen-
eration Mobile Communications, Artech House, Boston, MA,
U.S.A., 1998.

[3] M. Kuulusa and J. Nurmi, “Baseband implementation aspects
for W-CDMA mobile terminals,” in Proc. Baiona Workshop on
Emerging Technologies in Telecommunications, Baiona, Spain,
Sep. 1999, pp. 292-296.

[4] S.D. Lingwood, H. Kaufmann, and B. Haller, “ASIC implemen-
tation of direct-sequence spread-spectrum RAKE-receiver,” in
Proc. IEEE Vehicular Technology Conference, Stockholm, Swe-
den, Jun. 1994, pp. 1326-1330.

[5] K. Easton J.K. Hinderling, T. Rueth and D. Eagleson, “Cdma
mobile station modem ASIC,” IEEE Journal of Solid-State Clir-
cutts, vol. 28, no. 3, pp. 253260, Mar. 1993.

J. Gerlach and W. Rosenstiel, “System level design using the
SystemC modelling platform,” in Proc. Workshop on System
Design Automation, Rathen, Germany, Mar. 2000.

6

PUBLICATION 2

L. Harju, M. Kuulusa, and J. Nurmi, “A Flexible Implementation of A WCDMA
Rake Receiver,” in Proc. IEEE Workshop on Sgnal Processing Systems, San Diego,
CA, USA, Oct. 2002, pp. 147-160.

Copyright (©) 2002 IEEE. Reprinted, with permission, from the proceedings of IEEE
Workshop on Signal Processing Systems 2002.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Tampere University
of Technology’s products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@jieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

FLEXIBLE IMPLEMENTATION OF A WCDMA RAKE RECEIVER

Lasse Harju, Mika Kuulusa and Jari Nurmi

Tampere University of Technology
Institute of Digital and Computer Systems
P.O. BOX 553, FIN-33101 Tampere, FINLAND

E-mail: lasse.harju@tut.

ABSTRACT

Abstract - This paper presents an ASIC implementation of
a WCDMA Rake receiver. The implementation is based on
a FlexRake architecture that shares resources between mul-
tipath components and uses parallelism for multiple code
channels. This approach facilitates the multipath alloca-
tion and improves the receiver modularity. The architec-
ture was implemented using register-transfer-level VHDL
description and logic synthesis with standard cells. Synthe-
sis for 0.35 pm technology resulted in 0.894 mm? area and
3.63 mW power consumption at 2.7 V.

1. INTRODUCTION

Third generation communications systems are based on Wide-
band CDMA air-interface that employs direct-sequence spread
spectrum with 3.84 Mcps chip rate, and QPSK modulation
for obtaining a peak data rate of 2.3 Mbps. Variable user
data rates are obtained by changing the user spreading factor
or by employing multicode transmission [1]. These meth-
ods provide the bandwidth-on-demand needed for service

e xibility, but at the same time introduce modularity issues
that are a major design challenge concerning the receiver
architecture.

Rake receivers are used in CDMA systems for obtaining
multipath diversity which is one of the most important ca-
pacity improving features of CDMA systems. Typically this
involves a number of Rake ngers, each receiving a multi-
path signal, and a Maximal Ratio Combiner for combining
the outputs of each nger. Even though the functionality
of a Rake receiver is fairly simple, its implementation is
of paramount importance when considering the overall re-
ceiver e xibility.

In this paper we present a WCDMA Rake receiver im-
plementation based on the FlexRake architecture presented
in [2]. The proposed architecture provides improvements to
the shortcomings of the traditional Rake architecture con-
cerning modularity issues like multicode reception. This
paper is organized as follows. First the Rake functionality

Multipath Delay Profile

Multipath

Searcher |
P S S S

Complex
Channel Estimation

e I
Maximal

Ratio
ng Combiner

Receiver
Front-end

Demodulated
QPSK Symbols

Code
generators

Fig. 1. Functional block diagram of a Rake receiver.

in general is introduced shortly, followed by a comparison
between a conventional and the FlexRake architecture. In
the next section, two implementation versions of the pro-
posed architecture are studied and their advantages are high-
lighted. Next, simulation and synthesis results are presented,
and nally , conclusions are drawn.

2. RAKE RECEIVERS

Because of multipath propagation, several copies of the trans-
mitted signal with different delays, attenuation, and phases
are picked up by the receiver antenna. A Rake receiver iso-
lates the strongest multipath components from the received
signal and combines them coherently. A functional block
diagram of a Rake receiver is depicted in Fig. 1.

Each multipath component is despread by correlating
the received signal with the spreading code, and integrat-
ing over a period corresponding to the spreading factor. Af-
ter the despreading, maximal ratio combining (MRC) is ap-
plied to the symbol dumps from the ngers. Each symbol
is weighted in proportion to its amplitude and the phases
of the symbols are aligned after which they are added [3].
The phase and amplitude estimations of the multipath com-

1/Q samples

Symbol
» Dumps

Integration Delay
Register Equalizer

Code
Generators

Delay line

Fig. 2. Conventional Rake architecture.

ponents are acquired by the Complex Channel Estimator.
MRC results in a total signal-to-noise ratio (SNR) that is
equal to the sum of the SNRs of the multipath signals [3].

An important part of the Rake functionality is the mul-
tipath searcher that detects the strongest multipath compo-
nents and determines the relative delays between them. This
is done by correlating the received signal with known pilot
bits, and detecting the strongest peaks from the correlator
output. A peak’s magnitude is proportional to the gain of
the multipath and the distance of the peaks gives an esti-
mate of the delays [4].

The code generators have also very important role in the
Rake functionality. In WCDMA, two types of codes are
used: Orthogonal Variable Spreading Factor (OVSF) codes
for spreading and Gold codes for scrambling [1, 5]. The use
of OVSF codes allows the spreading factor to be changed
while maintaining the orthogonality between the codes. The
complex Gold code is used on top of the spread signal in
order to randomize it, and thus, to improve its autocorrela-
tion properties. In the receiver, one Gold generator and one
OVSF generator for each code channel are needed.

2.1. Conventional Rake Architecture

Traditionally, the Rake functionality has been implemented
with a set of Rake ngers that are used for parallel recep-
tion of the multipath signals. Each nger includes a cor-
relator that performs the despreading. The strongest multi-
path components are assigned to the Rake ngers by chang-
ing the code phase fed into them according to the delay
measurement of the multipath component. Because the rel-
ative delays between the multipaths are potentially much
longer than the symbol integration period, a delay equalizer
is needed in each nger to compensate the time differences
between the completed integrations.

Although this kind of architecture has been commonly
employed, it features problems concerning the receiver e x-
ibility. The most critical of these is the fact that adding e x-
ibility to this kind of architecture requires extensive amount
of additional hardware. The situation is most observable in

Circular Offset
Address Address
Generator Registers

1/1Q samples —-P{

Circular Buffer ‘

—p Symbol
Dumps

Fig. 3. The FlexRake architecture consisting of Stream
Buffer (upper block) and Correlator Engine (lower block).

the case of multicode reception because one correlator per
code channel per nger is required. The peak data rate 2.3
Mbps in the downlink can be achieved with three parallel
code channels and spreading factor SF' = 4 [1]. With four
ngers, this equals to a total of 4 x 3 = 12 correlators.

Another problem is associated with the nger allocation.
In a situation where the delay of the rst multipath shortens,
the nger assigned to that multipath would have to rewind
the sample stream in order to track this change. This is not
possible, and consequently, the symbol cannot be despread
and used for combining which results in decreased diversity.

The assignment of the multipath components to the Rake
ngers can be done, for example, by selecting the right code
phase from a delay line as depicted in Fig. 2. However, the
needed code phase may fall out from the delay line range
when the channel is changing rapidly, and consequently, the
code phases of the code generators need to be adjusted. De-
pending on their implementation, this can take several clock
cycles and force the reception to be suspended.

2.2. FlexRake Architecture

The FlexRake architecture is designed to avoid the short-
comings of the conventional Rake architecture [2]. A block
diagram of the FlexRake is depicted in Fig. 3. It is com-
posed of two parts: Stream Buffer and Correlator Engine.
In the Stream Buffer, the sample stream coming from the
receiver front-end is stored in a circular buffer which is long
enough to hold the I/Q samples within the multipath searchers
tracking window. The multipath components are accessed
from the buffer with a special addressing method, and read
to the Correlator Engine that performs the despreading of
the multipath signals sequentially, i.e. one correlator is time-
multiplexed between the multipath components.

The addressing method used in the Stream Buffer is con-
trolled by the multipath searcher. Instead of using the de-

lem_in| Mem_out
Daw"ﬂ B
SRAM

Addr
Cs
Wr_Ena

Code_Gen

Ld_sample Int_Ctrl

Code_Gen

Code_Gen

Code_sel

Fig. 4. FlexRake datapath with a single correlator.

lay estimates for adjusting the phases of the codes, they
are stored in offset address registers and used in the ad-
dress generation for the circular buffer. By adding an off-
set address to a cursor address generated by the circular
address generator, individual multipath components can be
allocated from the buffer. This method improves the e xi-
bility of the multipath allocation. The delay window of the
circular buffer can be selected so that multipath components
can be tracked even if they move across the beginning of
the tracking window, i.e. negative offset addresses can be
used [2].

Because the operation of the Correlator Engine is time-
multiplexed between the multipath components, its opera-
tion frequency has to be high enough that all correlations
can be performed within a processing cycle de ned be the
chip rate. In addition, in the case of multicode reception a
time slot has to be reserved for each code channel. With
four multipath components and three code channels a total
of 4 x 3 = 12 correlations are done within a processing cy-
cle. This is a requirement that dictates the selection of the
clock frequency of the implementation. With the 3.84 Mcps
chip rate and 12 correlations per chip period, this equals in
a 47 MHz clock frequency.

The completed symbol dumps are written into a small
FIFO which is used as a temporary storing buffer before the
symbol dumps are read to the maximal ratio combining.

3. FLEXRAKE HARDWARE IMPLEMENTATION

The FlexRake was implemented using register-transfer-level
(RTL) VHDL description and logic synthesis with standard
cells. The implementation was divided into three design
blocks: Stream Buffer, Correlator Engine, and Control. Com-
plex channel estimation and the maximal ratio combining
were left out of the examinations, because the modi cations
introduced by the FlexRake apply only to the implementa-

tion of the Rake ngers. The functionality, and thus, the
interface to the other blocks of the receiver are unaffected
by these changes.

The parameters of the implementation were chosen so
that the FlexRake supports the reception of four multipath
components and three parallel code channels. Four times
oversampling was chosen with 8-bit samples. The length
of the circular buffer was chosen so that the total tracking
window for the multipaths is 33 us long, which corresponds
to 128 chips. With the four times oversampling and 8-bit
samples this results in 1 kbyte (8 x1024) of SRAM mem-
ory. Note that the memory size is doubled because stor-
age is needed for both I and Q samples. One-port memory
is utilized due to its smaller area with respect to multiport
memories.

3.1. Single-Correlator FlexRake

The data path of the FlexRake is depicted in Fig. 4. The
computation is divided into three pipeline stages: address
generation, memory access, and correlation. The stages are
separated with a dashed line in the gure.

The address computation unit is not shown in the pic-
ture, but it is composed of a counter that produces the circu-
lar cursor address, and an adder that adds one of the offset
addresses to the cursor value to form a read address. The
data path, in all its simplicity, features a few interesting de-
tails. The multicode operation is carried out with a sim-
ple multiplexer/register structure. In normal operation, I/Q
samples are read from the SRAM and fed directly to the
ALU which performs the correlation. If multiple correla-
tions are to be made with the same I/Q sample, it is stored
in a register and fed again to the ALU, which now performs
the correlation with a different code. The correlations are
done in sequences consisting of up to four multipath com-
ponents, and up to three correlations with each. After each
sequence the code generators are incremented and the next

sequence is started.

The ALU performs the complex multiplication between
the 1/Q samples and the code generator output, and adds the
result to the partial integration result. Because the spreading
codes are always sequences of 1’s and -1’s only (mapped to
logic ’0’ and ’1°, respectively), the complex multiplication
in the correlations is simpli ed to a simple sign change op-
eration. This can be derived from the following formula:

(S1+75q)(Cr—jCq) = (S1C14+850Cq)+i(SeCr—S1Cq)
Sr+Sq+j(Sq—5Sr) C1=0, Co=0
S1—Sa+i(Sq+S1) Cr=0, Co=1
—(81=8q)—i(Sq+S1) Cr=1, Cq=0
—(S1+5q)—i(Sq—S1) Cr=1, Cqo=1

where Sy and S¢ represent the real and imaginary parts
of the input samples, and C; and C¢ the corresponding
code values. The code is the combined OVSF/Gold code
obtained by C, = Co,,.; ® Re{Cq..} and Cy = Cp,.; @
Im{Cgoa}-

Consequently, the whole correlation can be implemented
with a two stage adder/subtractor structure. The rst stage
either adds or subtracts the real and imaginary parts depend-
ing on the code outputs, as derived in the equation above.
The second stage then adds or subtracts the result from the
partial integration registers. The adder/subtractor modules
were implemented with carry-look-ahead topology.

The code generators are a design challenge themselves,
particularly the OVSF generators. The properties of the
OVSEF codes and the rules for generating them are described
by the 3GPP speci cations [6] but they take no position on
their implementation in any way. The total number of the
available OVSF codes is too large to consider an implemen-
tation based on look-up tables, and hence, another type of
implementation is necessary. The OVSF generators were
implemented with combination of a counter and a logic net-
work which is controlled by the spreading code number.
The basic idea is that the counter provides the code index,
and the logic network produces the right code output from
the counter value. The implementation of the Gold code
generator is much simpler. It is generated as a combina-
tion of two 18-bit m-sequences with generator polynomials
1+ X"+ X®and 1+ X5+ X7+ X110 + X8 [6].

The integration registers are a signi cant portion of the
required hardware resources. One integration register is
needed for each code channel and for each multipath com-
ponent for both I- and Q-branches which equals in 24 inte-
gration registers that have to be double-length to avoiding
over o ws with long integrations (SF = 512). In addition,
registers are needed for the symbol dump FIFO (not shown
in Fig. 4).

The control block is of great importance in the FlexRake
functionality, and the object of most of the designing effort.
It was implemented as a Moore type nite state machine. In

addition to the controlling signals shown in Fig. 4, it gen-
erates the control signals to the FIFO and to the receiver
front-end interface. Its functionality was divided into two
distinctive state machines; one controlling the memory ac-
cesses and the other controlling the correlations.

3.2. Multi-Correlator FlexRake

After the initial implementation, the FlexRake architecture
was enhanced with added parallelism. This was done mainly
because of the high clock frequency requirement caused by
the number of sequential correlations in multicode recep-
tion. The solution was to add parallelism to the correlator
engine. However, this was done in a totally different way
than in the traditional Rake architecture. Instead of using
the parallelism for different multipaths, it is used for differ-
ent code channels.

The modi ed FlexRake data path is illustrated in Fig. 5.
A dedicated correlator with a dedicated code generator is
used for each code channel. Changes to the initial datapath
architecture in Fig. 4 is the absence of the multiplexer/register
structure and the two additional ALUs. The advantages of
this approach can be appreciated when a typical receiving
situation is considered. It can be assumed that when ever
multipath propagation exists it is exploited by diversity re-
ception, i.e. as many Rake ngers are utilized as possible.
Parallel code channels, on the other hand, are used less fre-
quently compared to the multipath reception. Thus, it is a
better approach to optimize the architecture for the normal
multipath situation, and to minimize the impact of multi-
code capability on the normal operation.

The clock frequency of the initial architecture had to be
high enough to allow 12 sequential correlations during one
chip period. Only four of these are actually needed if mul-
tiple code channels are not being used. By introducing the
parallel correlators, the number of sequential correlations is
always four. These are all used when four multipath compo-
nents are received, which can be considered as the common
case. As aresult, the required clock frequency dropped from
47 MHz to 16 MHz. It is important to note that with this ar-
chitecture, increasing the data rate by adding parallel code
channels has minimum effect on the receiver operation.

The FIFO in the Correlator Engine was replaced with a
matrix type of parallel-in/serial-out register bank. The sym-
bol dumps from the three correlators are written in parallel
into the matrix rows that have columns for four multipath
components. The symbol dumps are read from the matrix
row-by-row in serial form.

The amount of additional hardware introduced by the
added parallelism, includes only the two ALUs, because
dedicated code generators and integration registers are needed
anyway. At the same time, the multiplexer/register structure
needed for the multicode operation in the initial architecture

Data_in II Mem
L II
SRAM

WrEna —

Int_ctrl

Int Reg_out

Code_Gen

Code_Gen

Code_Gen

b]

Fig. 5. FlexRake datapath with three parallel correlators.

can be left out, and most important, the control block is sim-
plied greatly.

4. SSIMULATION AND SYNTHESISRESULTS

Both implementations were simulated in RTL and gate-level.

The simulations were made using a VHDL testbench with
multicode setup and several spreading factors. In addition to
the actual FlexRake top level entity, the testbench included
a symbol source, a symbol dump sink, a behavioral mem-
ory block, and a receiver control block that performed the
overall con guring and controlling of the FlexRake.

The input stimulus used in the simulations was created
with a Matlab model of the WCDMA transmitter and mul-
tipath channel. The output of the test-bench was veri ed
by another Matlab model that compared the original data
with the demodulated data. The results were not analyzed in
terms of BER versus Ej, /Ny because the mathematic func-
tionality of the FlexRake is not any different from the con-
ventional Rake architecture. It was simply veri ed that the
transmitted symbols were demodulated correctly.

After the RTL simulations were completed, a gate level
model was created from the synthesis tool and formal ver-
ication between the two was carried out. The gate-level
model was then used with the testbench and the switch-
ing activity from the simulations was back annotated to the
power estimation tool. The synthesis results and power es-
timations of the two versions of the FlexRake are listed in
Table 1. It can be seen that the only considerable differ-
ence between the two versions is the power consumption.
Decreasing the clock frequency had an anticipated result on
the power consumption, but at the same time adding the two

100% 7

90 %

80 %

0%

60 %

8% 90 % DOCorrelator Engine
50 % @ Stream Bufler
@ Control

40%.

30%

20%

10% 5%

6%
0% 40 4%

Single-correlator FlexRake

Mult-correlator FlexRake

Fig. 6. The distribution of the area between different parts
of the implementation.

ALUs increased the area only by a fraction. The memory
needed for the circular buffer was not included in the area
estimations. However, based on a reference implementation
that is done for a similar 0.35 pum technology, it can be esti-
mated that the memory consumes 0.599 mm? of area [7].

The distribution of the area between different parts of
the architecture is illustrated in Fig. 6. The Correlator En-
gine clearly dominates the total area in both version. This
is partly explained by the portion of the integration reg-
isters in the Correlator Engine which was about 25% for
both versions. The portion of the ALUs was 7.3% for the
single-correlator version and 20% for the multi-correlator
one. This is a signi cant increase but it was compensated

Single-correlator Multi-correlator
FlexRake FlexRake
Processing technology 0.35 um 0.18 um 0.35 um 0.18 um
Supply voltage 27V 1.8V 27V 1.8V
Clock frequency 47 MHz 47 MHz 16 MHz 16 MHz
Total cell area 0.790 mm?2 | 0.168 mm? | 0.894 mm? | 0.190 mm?
Power consumption 12.89 mW 1.55 mW 3.63 mW 0.44 mW

Table 1. Synthesis results and power estimations of the FlexRake. Results for the 0.18 um technology are scaled from the

simulated results according to vendor information.

by the simpli ed control block and the absence of the multi-
plexer/register-structure. In the whole design the portion of
register elements of the total area was 50% for the single-
correlator FlexRake, and 42% for the multi-correlator
FlexRake.

5. CONCLUSIONS

A Rake receiver implementation was presented in this pa-
per. Instead of the traditional Rake architecture based on
parallel ngers, the proposed implementation is based on
an architecture that shares resources between the multipath
components, and uses parallelism for multiple code chan-
nels. The incoming sample stream is stored in a circular
buffer, from where the multipath components are accessed
with a special addressing method that is controlled by the
multipath searcher. This method facilitates the e xibility of
the multipath operation and improves modularity of the re-
ceiver. Simulation and synthesis results of the architecture
were presented together with power estimates for two ver-
sions of the implementation. The results are favorable to a
parallel implementation that allows the use of a lower clock
frequency and at the same time, simpli es the control.

6. REFERENCES

[1] H. Holma and A. Toskala, WCDMA for UMTS John
Wiley & Sons, Ltd., West Sussex, England, 2001, Re-
vised Edition.

[2] L. Harju, M. Kuulusa, and J. Nurmi, “A Flexible Rake
Receiver Architecture for WCDMA Mobile Terminals,”
in Proc. IEEE Workshop on Sgnal Processing Ad-
vances in Wireless Communications (SPAWC' 01), Tao
Yuan, Taiwan, Mar. 2001, pp. 9-12.

[3] J.S. Lee and L. E. Miller, CDMA Systems Engineering
Handbook, Artech House, Boston, MA, USA, 1998.

[4] E. Bejjani, J-F. Bouquier, and B. de Cacqueray, “Adap-
tive Channel Delays Selection for WCDMA Mobile
System,” in |EEE Vehicular Technology Conference,
Amsterdam, Netherlands, Sep. 1999, vol. 1, pp. 203—
207.

[5] E. H. Dinan and B. Jabbari, “Spreading codes for
Direct Spread CDMA and Wideband CDMA Cellular
Networks,” |EEE Communications Magazine, vol. 36,
no. 9, pp. 48-54, Sep. 1998.

[6] 3GPP Technical Speci cation 25.213, “Spreading and
Modulation (FDD),” 2000, Release 4.

[7]1 T. Solla, R. Makela, M. Liljeroos, and O. Vainio,
“Application-Speci ¢ Filter Processor for Flexible Re-
ceivers,” in Proc. 19th Norchip Conference, Kista, Swe-
den, Nov. 2001, pp. 53-58.

PUBLICATION 3

L. Harju, M. Kuulusa, and J. Nurmi, “A Flexible Implementation of A WCDMA
Rake Receiver,” in The Journal of VLS Sgnal Processing, Springer Science, vol.
39, no 1-2, pp. 147-160, Apr. 2005.

Copyright (©) 2005 Springer Science.

PUBLICATION 4

L. Harju and J. Nurmi, “A Baseband Receiver Architecture for UMTS/WLAN Inter-
working Apllications,” in Proc. |EEE International Symposium on Computers and
Communications, Alexandria, Egypt, Jun. 2004, vol. 2, pp. 678-685.

Copyright (©) 2004 IEEE. Reprinted, with permission, from the proceedings of IEEE

International Symposium on Computers and Communications 2004.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Tampere University
of Technology’s products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@jieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

A Baseband Receiver Architecture for UMTS-WLAN Interworking Applications

Lasse Harju and Jari Nurmi
Tampere University of Technology, Institute of Digital and Computer Systems
PO.BOX 553, 33101 Tampere, Finland
Tel: +358 3 3115 4365, Fax: +358 3 3115 3095, E-mail: lasse.harju@tut.fi

Abstract

This paper presents a programmable hardware
platform for dual-mode WCDMA/OFDM receiver
implementations. The platform is targeted for mobile
terminals capable of operating in tight coupling UMTS-
WLAN interworking systems. The proposed platform
comprises a RISC core and three coprocessors that are
used for the most intensive computation kernels. The
receiver algorithms needed in WCDMA and OFDM
receivers are overviewed and the needed computation
resources are specified based on the analysis. The high-
level architecture of the dual-mode receiver is also
presented. A software development model is specified for
the platform.

1. Introduction

The trend in wireless communications is towards
systems where small-coverage high-bandwidth networks,
such as wireless local area networks (WLAN), are
employed as complementary networks to 3G systems,
such as Universal Mobile Telecommunication System
(UMTS). The reason for this trend is that WLANs could
effectively be used in the hot-spot areas to increase the
capacity of the cellular network. In such systems,
subscribers could be able to access packet based services
through both WLAN and UMTS networks. The effects of
employing WLANS in the hot-spots are studied in [1]. The
coverage, throughput, and capacity were shown to increase
significantly.

Several proposals of how these networks could be tied
together have been made [2], but no standards have been
released yet. However, the interworking between UMTS
and WLANs is under consideration within both 3rd
Generation Partnership Program (3GPP) and European
Telecommunications Standards Institute (ETSI) [3,4]. The
focus of the published work has been on the network
architectures. The fundamental requirement is, however,
that the mobile terminal can operate in both networks. In

this paper, we study the algorithms needed in UMTS and
WLAN baseband receivers and present a programmable
hardware platform for implementing these algorithms in
mobile devices. The focus of this work is on the
interworking between UMTS and orthogonal frequency
division multiplexing (OFDM) based WLANs. The
different radio technologies involved are listed in Table 1.
A reduced instruction set computer (RISC) core is used as
a central processing element in the proposed platform.
Thus, high flexibility is provided to speed-up time-to-
market and to ensure compatibility with other wireless
standards using the same air-interfaces. Secondly, high
computation power is provided by incorporating dedicated
hardware for the implementation of the critical
computation kernels found in wideband code division
multiple access (WCDMA) and OFDM receiver
algorithms.

Table 1. Different air interfaces involved in the
interworking between UMTS and OFDM based

WLANSs.
|IEEE 802.11.a |HIPERLAN/2 UTRA (FDD)
Frequency |5 GHz (ISM) 5 GHz (ISM) uplink:
band 1920-1980 MHz
downlink:
2110-2170 Mhz
Physical layer| OFDM OFDM WCDMA
Channel width{20 MHz 20 MHz 5MHz
Modulation |BPSK, QPSK, |BPSK, QPSK, |QPSK, (16-QAM)
16-QAM, 64-QAM| 16-QAM, 64-QAM
Channel Convolutional Convolutional Convolutional
coding (112, 2/3, 3/4) (112, 213, 3/4) (1/2,113),
Turbo (1/3)
Payload data |6, 9, 12, 18,36, |6,9, 12, 18,36, |up to2 Mbps
throughput |54 Mbps 54 Mbps

The paper is organized as follows. In section 2, an
interworking architecture between UMTS and WLAN is
briefly introduced. In section 3, the different parts of the
WCDMA/OFDM receiver are studied, followed by an
overview of the needed receiver algorithms in section 4.
Based on this analysis, the high-level receiver architecture

UMTS Network

RNC H SGSN GeSN %
/ SGSN HLR

Tight

coupling AMAH

1P Network

L “f
Dual Mode
Mobile Teminal

WLAN Network

Figure 1. Tight coupling interworking
architecture between UMTS and WLANSs.

is specified in section 5, and the platform architecture is
presented in section 6. Finally, conclusions are drawn.

2. Tight Coupling Interworking Scheme

ETSI has specified two interworking architectures
between HIPERLAN/2 and 3G networks: loose coupling
and tight coupling architectures [3]. The main difference
between these two approaches is the point where the
networks are connected in the network architecture. The
focus of this paper is on the tight coupling scheme
depicted in Fig. 1.

In the tight coupling interworking scheme, the WLAN
network is employed as a radio access network
complementary to the UMTS Terrestial Radio Access
Network (UTRAN). A new user data interface between the
networks is utilized that is equivalent to the Iu-interface
connecting UTRAN to the Core Network (CN) in UMTS
[5]. An interworking unit (IWU) is needed between the
WLAN access points and the Serving GPRS Support Node
(SGNS). The IWU has a similar function as a Radio
Network Controller (RNC) in UTRAN. An interworking
architecture based on the tight coupling scheme is
proposed in [2].

The merit of the tight coupling scheme is that the
existing methods for Quality of Service (QoS), mobility
and security of the UMTS network can be reused. The
potential drawback is, however, that the Gateway GPRS
Support Node (GGSN) easily becomes the bottleneck of
the architecture since all packet data traffic is routed
through it.

3. Requirements for WCDMA/OFDM
Receiver Architecture

In this section, the different parts of the WCDMA/OFDM
receiver are studied. A key question concerning the dual-
mode receiver implementation is how large part of the

hardware resources can be shared between the two modes
of the receiver. The different parts of the receiver, depicted
in Fig. 2, are discussed in the following sections.

3.1. RF-Section

The RF characteristics for the two air-interfaces are
very diverse. The bandwidth of the OFDM signal is 20
MHz centered at 5 GHz, whereas the bandwidth of the
WCDMA signal is 5 MHz centered at 2 GHz. However it
is possible to achieve high integration between the two
receiver paths even in the RF front-end. A direct
conversion RF front-end targeted for WCDMA and
WLAN presented in [6] uses dedicated components for the
antenna, channel selection filter, and LNA. A high
bandwidth mixer and phase shift circuit are shared
between the systems.

3.2. Analog-to-Digital Conversion

A shared analog-to-digital converter can be used for
the systems, although the characteristics of the OFDM
signal dictate the sampling rate and sample width
selection. For WCDMA receiver, 4-6 bit resolution has
been found adequate [7], but in OFDM based WLANSs the
needed dynamic range is much larger, and thus, 9-bits/
sample are needed [8]. In the case of WCDMA, the 3.84 M
chip rate dictates the minimum sampling frequency,
although interpolation or oversampling is required if better
multipath resolution is needed. Oversampling is not that
critical in OFDM systems, as they are less sensitive to
timing errors. Therefore, a sampling rate of 40 Msps, two
times the employed signal bandwidth, is adequate.

3.3. Digital Baseband

The digital baseband section comprises the
synchronization, demodulation, channel estimation and
channel equalization blocks, as depicted in Fig. 2. The
algorithms used in these blocks are very similar for
WCDMA and OFDM, although their throughput and
accuracy requirements are very diverse. High level block
diagram of the baseband sections of OFDM and WCDMA
receivers are depicted in Fig. 3.

3.3.1. WCDMA Baseband. The Rake receiver is the key
component of the WCDMA receiver. It comprises the
multipath searcher, the Rake finger bank, channel
estimator, and maximal ratio combiner. The demodulation
is performed in the Rake fingers by correlating the
received signal with a spreading code over a period
corresponding to the spreading factor. The multipath

Digtal
RF front-end «

Channel
estimation

_ ;“‘a'see Channel Symbol N
i equalization detection

Figure 2. A block diagram of a generic receiver

architecture.
Time and Frequency Channel
offset estimation Estimation
= =

Synchronization

Demodulation

Pilot
c Symbol Channel || Symbol To Viterbi decoder

FFT

! ! !
Removal Extacton Equalization mapping Descrambler etc
N N N
N N N
Muttipath
Searcher
gl
(k) = hl Channel
: Estimation
> Piot
Rake
e [o [Ty
[=>{ Extraction]
Bl Maximal Symbol To deinterleaver,
Lyl e Ratio P apong [Vierbi decoder
P Combiner Pong etc

Figure 3. The digital baseband sections of OFDM
(top) and WCDMA (bottom) receivers.

searcher detects the strongest multipath components and
determines their relative delays. The start indices of the
Rake finger correlations are determined according to this
information. After the demodulation, maximal ratio
combining (MRC) is applied to the symbol dumps from
the fingers. In maximal ratio combining, the phases of the
symbols are aligned and their amplitudes are weighted
according to the complex tap coefficients acquired by the
complex channel estimator. After the combining, decision
of the transmitted symbol is made and the resulting bit
stream is deinterleaved and decoded.

3.3.2. OFDM Baseband. In OFDM, demodulation is
performed by applying FFT to the samples within the
symbol window. The symbol boundaries are detected by
the timing offset estimator and the cyclic prefix is removed
before the FFT. The cyclic prefix is a copy of the OFDM
symbols tail which is inserted in front of the symbol [9].
From the demodulated symbol stream, the pilot bits are
extracted, and used to estimate the channel coefficients.
After the channel equalization, the symbol mapping is

performed. The bit stream is then sent to the outer receiver
that performs deinterleaving, descrambling, and Viterbi
decoding.

4. Receiver Algorithms

In this section, different types of algorithms needed in
the OFDM and WCDMA baseband receivers are studied.
The general model of the received and sampled baseband
signal can be expressed as

L
k) =Y

i=1

ej2nAf(1f*f:)h’.(k)S(k7'c[)+n(k))

where s(k) is the transmitted signal, 4;(k) is the complex
channel coefficient of the i-th multipath, z; is the delay of
the i-th multipath (in integer multiple of samples), L is the
length of the channel impulse response, Affk) is the
frequency offset, and n(k) is additive white Gaussian noise
(AWGN). In the case of OFDM, the expression simplifies
greatly if quasistationary AWGN channel is assumed

(k) = s(k—0)e >N

+n(k) 2
where @ is the timing offset caused by the channel, Af is
the frequency offset common to all subcarriers, and N
denotes the number of subcarrier.

4.1. Frequency Synchronization

Frequency mismatch between the oscillator
frequencies of the transmitter and the receiver causes the
constellation to rotate at constant speed. This frequency
error can be estimated in both WCDMA and OFDM with a
similar algorithm by exploiting the pilot sequences time-
multiplexed with the transmitted data. The algorithm is
based on the delay-and-correlate method where the
received signal is correlated against a delayed version of
itself. When two identical symbols in the sample stream
separated by the length of the delay are correlated, the
frequency shift can be estimated. The correlation output
and the decision variable are computed as

n+L-1
e(n)y = Y r(kyr*(k+D) (3)
k=n
n+L-1
Py =5 3 I+t D) @
k=n
2
m(n) = \c(n)\z (%)
(p(n))

Figure 4. Signal flow representation of the delay-
and-correlate algorithm.

where r(k) is the received and sampled baseband signal, L
is the length of the correlation, and the delay D is the
length of the two consecutive training symbol sequences
used in the estimation. The value p(n) is the received
signal power during the correlation period, and it is used to
normalize the value of the correlation c(n), so that it is not
dependent on the received power. The decision is made
based on the value of m(n). The signal flow representation
of the algorithm is shown in Fig. 4. In OFDM, the cyclic
prefix can be used instead of a pilot sequence with same

results [9]. The frequency offset estimate A} is
computed from the correlation output c(n) as

1
21D Ty

Af = - ZLe(n) 6)
where £ denotes the argument of a complex number, D
is the length of the delay, and T is the sampling interval.
The arguments of ¢(n), at the index that gives its maximum
value of m(n) within observation window yields the
frequency offset estimation. A maximum likelihood
frequency offset estimation algorithm presented in [10]
uses this approach. The result of the estimation can be
used to construct an automatic frequency control (AFC)
signal to the receiver front-end.

4.2. Timing Synchronization in OFDM Receivers

In OFDM the timing synchronization is used to
determine the symbol boundaries in the sample stream.
Because cyclic prefix is used, the timing estimate may
vary within an interval bounded by the length of the cyclic
prefix [9]. This makes OFDM systems less sensitive to
timing errors.

4.2.1. Packet Detection. The first task of the
synchronization procedure is to determine when a data
packet has arrived. The detection can be made using the
delay-and-correlate method, by exploiting the training
symbols in the preamble of a data packet [9]. The value of
m(n) in Eq. 5 is compared against a threshold value, and

the detection is made when a correlation peak crosses this
threshold.

4.2.2. Symbol Timing Estimation. Symbol timing
estimation is needed to find the OFDM symbol
boundaries. The estimation can also be done with the
delay-and-correlate approach. In this case, training
sequences are not needed, because the cyclic prefix can be
used. The correlation ¢(n), the weighting factor p(n), and
the decision variable m(n) are computed as in Eq. 3, Eq. 4,
and Eq. 5. The index that gives the maximum value of
m(n) inside the observation window yields the symbol
timing estimate

é = argmax{m(n)} (7

A maximum likelihood symbol timing offset
estimation algorithm presented in [10] uses this approach.

4.3. Timing Synchronization in WCDMA
Receivers

In WCDMA, synchronization is needed for slot and
frame timing, as well as to determine the multipath profile
of the channel.

4.3.1. Cell Search. Cell search is divided into three steps:
slot timing synchronization, frame timing synchronization,
and scrambling code identification. Each step is performed
by correlating the received signal against a different pilot
sequence and detecting the correlation peaks as in the case
of frequency offset estimation [5].

4.3.2. Multipath Estimation. The multipath estimation is
often divided into two stages: acquisition and tracking. In
the acquisition stage the received signal and the locally
generated codes are synchronized. The acquisition can
also be viewed as detecting the first arriving path of the
received signal. In the tracking stage, the multipath
searcher tracks the multipath taps inside a certain time
window. The performance of different type of multipath
delay estimators are compared in [11]. The best suited type
for WCDMA Rake receivers is the feed-forward data-
aided version.

The multipath estimation is done by correlating the
received signal against a known pilot sequence and
detecting peaks in the correlator output. This is very
similar to the delay-and-correlate method illustrated in
Fig. 4, only the delayed version of the received signal is
substituted with the reference pilot sequence. The pilot
symbols transmitted on the downlink Dedicated Physical
Channel (DPCH) can be used for this purpose [5]. In order
to minimize the effect of noise and the interference caused

by other users, this correlation can be averaged non-
coherently over a period of time. In principle, the first
correlation peak determines the acquisition point and
following peaks that are within a certain window
determine the other multipath components. A peak’s
magnitude is proportional to the gain of the multipath, and
the distance of a peak relative to the first arrival gives a
measurement of the path’s delay. The multipath delay
estimation has to be performed at least at accuracy of one
chip. Oversampling or interpolation is required if better
multipath resolution is desired [11].

4.4. Channel Estimation

The channel estimator does not distinguish between the
phase and amplitude fluctuations caused by the channel
and those caused by synchronization errors. Thus, the
channel estimator can act also as a fine-tuning
synchronization. The channel estimation task is very
similar in both WCDMA and OFDM, although the
requirements are quite diverse. In WLAN systems it is
commonly assumed that the channel is quasistationary,
i.e., the channel conditions do not change during a data
packet. Thus, the channel estimation in OFDM is done
with the “single-shot” approach. This means that the
estimation is made using the pilot symbols in the preamble
of a data packet, and used for the entire packet. In
WCDMA, the assumption of quasistationary channel does
not apply because the signal bandwidth is larger than the
coherence bandwidth of the channel, and the mobile speed
is much higher than in typical WLAN scenarios.
Therefore, methods for updating the channel estimates at
symbol rate are needed. Furthermore, channel estimation
has to be performed for each Rake finger output.
Assuming a non-frequency selective channel, the
received k-th symbol after demodulation is denoted as

(k) = h(k)x(k)+ n(k) ®)

where A(k) is the complex channel coefficient
corresponding to the k-th symbol, and n(k) is additive
white gaussian noise. If the transmitted symbols are
known the estimate of the channel is computed as

. p(k
i ~43 ©)
In OFDM, the training symbols in the preamble of the
packet are employed, and the channel estimates are
computed as in Eq. 9 separately to all subcarriers. Because
several identical training symbols are transmitted in the
preamble, these can be averaged to diminish the effect of
noise.

The time-multiplexed pilots on the downlink
Dedicated Physical Control Channel (DPCCH) are used
for the channel estimation in WCDMA [12]. Basically a
WCDMA channel estimator is similar to the OFDM
estimator, with the addition of a decision-directed (DD)
stage that computes the estimates for the duration between
the pilot symbols. A combined pilot-aided decision-
directed (PADD) channel estimator is presented in [12].
The first stage of the estimator computes the preliminary
channel estimates in each Rake finger by first averaging
the pilots in one slot and applying Eq. 9. Then, the
tentative estimates are computed for the data symbols
using linear interpolation. After the MRC, the raw channel
estimates are acquired by removing the data decision from
the received symbols. Finally, a moving average filter is
used to minimize the effects of noise. Dataflow
representation of a feed-forward PADD channel estimation
procedure is depicted in Fig. 5.

Received
data symbols

Delay Delay

Received
pilot symbols

from other
fingers

Reference piot symbols

Figure 5. Dataflow representation of the PADD
channel estimation.

5. Integrating the WCDMA and OFDM
Receivers

From a purely functional point of view, it can be said
that the receiver paths of the WCDMA and OFDM
receivers can be merged to a large extent. All the receiver
algorithms excluding the actual demodulation are very
similar and based on the same computation kernels.
However, without any of limitations on the type and
volume of data traffic and mobility, the degree of
integration of the receiver architectures is limited.

In order to support simultaneous reception of both
systems, a separate sample stream is needed from the
OFDM and WLAN front-ends, which rules out the
possibility of integrating the RF section and ADCs.
Furthermore, because the utilization of the hardware
resources in the digital baseband is very high, sharing the
functional units in the baseband section is limited to the
possibility of time-multiplexing the hardware resources.
This of course would lead to extensive clock frequencies.

Because of these reasons, a number of assumptions
were made concerning the receiver front-end for the

WLAN

Pulse
'rof:end Shape
Filter

L,
UMTS Network

detection
Digital
RF Pulse baseband
Shape
front-end Filter

Figure 6. Receiver front-end of the dual-mode
WCDMA/OFDM receiver.

purpose of this work. It is assumed that dedicated RF
front-ends, ADCs, and pulse shape filters are used for both
air-interfaces. The rest of the baseband section is shared
between the systems, ruling out the possibility of carrying
out simultaneous connection through both air-interfaces. A
high-level block diagram of the receiver front-end is
depicted in Fig. 6.

It is assumed that after power-up, the mobile terminal
always connects first to UMTS and then starts monitoring
possible WLAN access points (APs). The monitoring is
performed by an additional network detection block that is
parallel to the digital baseband, as illustrated in Fig. 6.
When the mobile is in the WCDMA mode, this block
monitors the availability of WLAN network by scanning
for beacon frames transmitted by the APs periodically.
When a beacon is detected, the mobile terminal switches
to the WLAN mode and associates with the AP. Thereupon
all control and user data is transmitted through the WLAN
interface. While in the WLAN mode, the network
detection block is used in turn for monitoring the Paging
Channel (PCH) transmitted by the UMTS base station.
This is equivalent to the Cell PCH state, one of the Radio
Resource Control states in UMTS, in which the mobile
terminal can only be reached through the PCH [5]. If a
paging message is sent for the mobile, it terminates the
WLAN connection and switches back to the UMTS mode.
The WLAN connection has to be terminated also when a
soft handover is to take place. This is because the mobile
terminal cannot carry out the soft handover signalling with
the base station while in the WLAN mode. Consequently,
the mobility during the WLAN mode is limited.

6. A Programmable Hardware Platform for
WCDMA/OFDM Receiver Implementations

In this section, a hardware platform suited for
implementing the WCDMA and OFDM receiver
functionalities described in previous sections is presented.
A high-level block diagram of the dual-mode receiver was

Network detection
N peak.

Input buffer | Demodulation

Symbol detection =

SRAM | SRAM code wRe | EPSK fi6-0aM
AU Rake | generators QPSK [64-0AM|

fingers

FFT

Synchronization Channel estimation

interpolation

Figure 7. A functional block diagram of the
WCDMA/OFDM receiver platform.

depicted in Fig. 6. The assumption was made that the
mobile terminal does not have to carry on simultaneous
connections to both networks, thus, only monitoring of the
inactive network is required. A functional block diagram
of the platform is depicted in Fig. 7.

The sample stream is stored into a circular buffer
which comprises two asynchronous SRAM memories and
an address computation unit (AGU). The AGU computes
the circular write addresses and the read addresses under
the control of the synchronization.

The synchronization block executes the frequency
offset estimation and timing estimation. It performs the
complex valued correlations and a peak search algorithm.
The output of the synchronization is used in the
computation of read addresses for the input buffer. For
example, the output of the OFDM symbol timing estimator
is used to point to the first sample of an FFT input block.
The network detection block is a simplified version of the
pre-demodulation estimator.

The demodulation block reads the input samples from
the buffer and performs the demodulation with the 64-
point FFT or the Rake receiver. Code generators are
needed for the spreading codes and downlink scrambling
code.

The channel estimation block extracts the pilot
symbols from the demodulated symbols and executes
channel estimation. It uses averaging and interpolation to
execute the feed-forward structures.

The symbol detection block performs channel
equalization, the Maximal Ratio Combining (MRC), and
converts the complex symbols into a bit stream.

delay peak

correlation | search

6.1. The Platform Architecture

The above described functionality is mapped to a
platform composed of a RISC core and a number of
application specific coprocessors. The architecture is
depicted in Fig. 8. The RISC core in question is the
COFFEE RISC which is a parametric IP block that can be
connected to four coprocessors through a coprocessor bus
[13]. The coprocessor bus is illustrated in Fig. 9. Data

Input buffer

Coprocessor bus

Demodulation

[
> Network detection COFFEE
RISC
. —» Synchronization CORE
rom receiver
—
front-end 1/0-Control
(9-bit, 40 Msps)
’ ? Data bus
I c 3 I Instruction bus
To Receiver
backeend ¢ = ow Inst Data
Mem Mem

Figure 8. The WCDMA/OFDM platform
architecture.

Wr_cop

Rd_cop

C_indx[1:0] COFFEE

Coprocessors R_indx[3:0] RISC
4—u—’ CORE

Cop_exc[3:0]

Data[31:0]
[——p

Figure 9. The coprocessor bus of the COFFEE
RISC

between the coprocessors and the core is transferred
through a common 32-bit Data signal and the direction of
the transfer is selected with Wr _cop and Rd cop signals.
One of the four coprocessors is selected with the C_indx
signal and the source or destination register is selected
with the R indx signal. Through these signals the core
passes the input parameters to the coprocessors and
initiates the computation kernels. Each coprocessor has a
dedicated interrupt signal Cop_exc.

Three coprocessors are connected to the coprocessor
bus: a synchronization coprocessor, a demodulation
coprocessor, and an I/O coprocessor. The network
detection block shares the same coprocessor interface with
synchronization coprocessor. In addition to the core and
the coprocessors, the platform comprises direct memory
access (DMA), the input buffer, and on-chip memory for
instructions and data.

The 1/O coprocessor is used to control the connections
to the receiver front-end and back-end. The input sample
stream is fed through the 1/0 coprocessor into the network
detection and synchronization coprocessors, as well as into
the input buffer. The output symbol stream from the
baseband is stored to the data memory and accessed via the
1/O coprocessor and the DMA by the receiver back-end.

The synchronization coprocessor implements
correlation-based time and frequency synchronization

algorithms with a configurable FIR structure with complex
valued coefficients. The input parameters for the
synchronization coprocessor include the length of the
correlation and selection between correlation with the
delayed version of the received signal or correlation with a
pilot sequence. The computation resources can be
simplified as the delay-and-correlate based estimation of
the OFDM receiver can be performed using only the sign
bits of the samples [14]. Similarly, in WCDMA multipath
searcher the correlations are performed between the
samples and binary-valued pilot sequences which
simplifies the complex multiplications to a simple
combination of add and subtract operations. The network
detection block is functionally almost identical to the
synchronization coprocessor.

The Rake fingers and FFT functionality are mapped to
the demodulation coprocessor. The input parameters for
the demodulation coprocessor include the first read
address used in the demodulation and the spreading factor,
which determines the length of the despreading. The core
also needs to initialize the code generators before initiating
the kernel. The FFT is implemented with a pipelined
single-path delay feedback (SDF) architecture [15]. The
architecture is composed of 6 radix-2 butterflies (log,N)
and 63 delay elements. With this approach, the processing
of the 64-point FFT takes 135 clock cycles (2N+log,N+1).

The Rake fingers are implemented as a bank of correlators.
The Rake receiver alone needs resources for despreading
up to 4 parallel channels and 4 multipath components. This
means that a total of 16 parallel correlations have to be
carried out. As in the case of the WCDMA multipath
searcher, the correlation in the Rake fingers can be
performed without complex multiplication. The
functionality of the Rake receiver is based on the FlexRake
architecture [16]. In addition to the Rake and FFT
hardware, the demodulation coprocessor includes also the
address generation unit (AGU) which is used to compute
read addresses for the input buffer.

The rest of the receiver functionality is executed with
the RISC instruction set. This includes channel estimation,
equalization, and symbol mapping. Furthermore, several
controlling tasks are executed with the RISC core.

6.2. The Software Development Approach

Application specific processors are known to be
problematic for compilers, affecting negatively to the
software development efficiency. With the proposed
architecture the coprocessors are visible to the
programmer through special function calls that are used to
initiate the computation kernels in the coprocessors. The
link from C-language is provided by means of a C-library

that translates the function calls to assembly instructions
that pass the source and destination operands and initiate
the computation through the coprocessor bus.

The coprocessors can be configured to cause an
interrupt whenever it completes a computation. The
software written for the core executes the channel
estimation and equalization tasks in the main program, and
uses the interrupt service routines to initiate new kernels in
the coprocessor and update the configurations.

7. Conclusions

A programmable hardware platform for implementing
dual-mode WCDMA/OFDM receiver was presented. The
platform is designed for mobile terminals capable of
operating in a tight coupling interworking architecture
between UMTS and WLANs. It was observed that
dedicated receiver paths are needed for the RF front-end,
ADC, and pulse shaping. Additional resources are needed
also for monitoring the inactive network. The proposed
platform comprises a RISC core and three coprocessors
that are used for the most intensive computation kernels.
The needed computation resources were specified based
on astudy on different OFDM and WCDMA receiver
algorithms. It was shown that there are many similarities
between the receiver algorithms of the two systems which
can be utilized in the dual-mode receiver implementation.
An efficient software development scheme was proposed
for the architecture.

8. Acknowledgements

This work has been supported by the EU-project SoC-
MOBINET (IST 2000-30094), the Nokia Foundation, the
Finnish Cultural Foundation, Walter Ahlstrom Foundation,
and the HPY Research Foundation.

9. References

[1] A. Doufex et al., “Hotspot Wireless LANs to Enhance the
Performance of 3G and Beyond Cellular Networks”, IEEE
Communications Magazine, Vol. 41, No. 7, pp. 58-66, July
2003.

[2] A.K. Salkintzis, “Interworking Between WLANs and Third
Generation Cellular Data Networks”, in Proc. IEEE
Vehicular Technology Conference (VIC’03-Spring), Jeju,
Korea, April 2003, pp. 1802-1806.

[31 ETSI Technical Report 101 957, Requirements and
Architectures for Interworking between HIPERLAN/2 and
3rd Generation Cellular Systems, V1.1.1, Aug. 2001.

[4]

[3]

[6]

71

[8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

3GPP Technical Report 22.934, Feasibility Study on 3GPP
system to WLAN interworking, Release 6, V6.2.0, Sep.
2003.

H. Holma and A. Toskala, WCDMA for UMTS, John Wiley
and Sons Ltd, West Sussex, England, 2001.

M. Hotti et al., “A Direct Conversion RF Front-End for 2-
GHz WCDMA and 5.8-GHz WLAN Applications”, in Proc
IEEE Radio Frequency Integrated Circuits Symposium
(RFIC), Philadelphia, PA, USA, June 2003, pp. 45-48.

L. Sumanen, K. Halonen, “A Single-Amplifier 6-bit CMOS
Pipeline A/D Converter for WCDMA Receiver”, in Proc.
IEEE Symposium on Circuits and Systems (ISCAS’01),
Sydney, Australia, May 2001, Vol. 1, pp. 584-587.

T. H. Meng et al., “Design and Implementation of an All-
CMOS 802.11a Wireless LAN Chipset”, IEEE
Communications Magazine, Vol. 41, No. 8, pp. 160-168,
Aug. 2003.

J. Heiskala and J. Terry, OFDM Wireless LANs: A
Theoretical and Practical Guide, Sams Publishing,
Indianapolis, IN, USA, 2002.

J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML
Estimation of Time and Frequency Offset in OFDM
Systems”, I[EEE Transactions on Signal Procesing, Vol. 45,
No. 7, pp. 1800-1805, July 1997.

E.-S. Lohan, Multipath Delay Estimators for Fading
Channels in CDMA Receivers and Mobile Positioning, PhD
Thesis, Tampere University of Technology, Tampere,
Finland, Oct. 2003.

A. Zhuang, E.-S.Lohan, and M. Renfors, “Comparison of
Desicion-Directed and Pilot-Aided Algorithms for Complex
Channel Tap Estimation in a Downlink WCDMA System”,
In Proc. IEEE Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC’00), London, UK, Sep,
2000, pp. 1121-1125.

J. Kyllidinen, M. Kuulusa, and J. Nurmi, “COFFEE -
A Core for Free”, in Proc. International Symposium on
System-on-Chip, Tampere, Finland, Nov. 2003, pp. 17-22.

J.-J. van de Beek, M. Sandell, M. Isaksson, and P. O.
Borjesson, “Low-Complex Frame Synchronization in
OFDM Systems”, in Proc. IEEE Conference on Universal
Personal Communications, Tokyo, Japan, Nov. 1995, pp.
982-986.

T. Taskinen, Hardware Implementation Architectures for
Time-Frequency Transforms, Master of Science Thesis,
Tampere University of Technology, Tampere, Finland,
2002.

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible
Implementation of a WCDMA Rake Receiver”, in Proc.
IEEE Workshop on Signal Processing Systems (SIPS’02),
San Diego, CA, USA, Oct 2002, pp. 177-182.

PUBLICATION 5

L. Harju and J. Nurmi, “A Programmable Baseband Receiver Platform for
WCDMA/OFDM Mobile Terminals,” in Proc. |EEE Wireless Communications and
Networking Conference, New Orleans, LA, USA, Mar. 2005, vol. 1, pp. 33-38.

Copyright (©) 2005 IEEE. Reprinted, with permission, from the proceedings of IEEE
Wireless Communications and Networking Conference 2005.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Tampere University
of Technology’s products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@jieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

A Programmable Baseband Receiver Platform for
WCDMA/OFDM Mobile Terminals

Lasse Harju and Jari Nurmi
Tampere University of Technology, Institute of Digital and Computer Systems
P.0.BOX 553, 33101 Tampere, Finland
E-mail: lasse.harju@tut.fi

Abstract—A programmable system platform that enables
software defined implementations of WCDMA and OFDM
baseband receivers is presented. The design complexity of future
wireless terminals and the shrinking time-to-market constraints
are the motivators for adopting the platform-based design
methodology. The presented hardware platform comprises a RISC
core and three tightly coupled coprocessors that are used for the
most intensive computation kernels. The application program
interface of the platform is provided in the form of a library of
special C-functions that are used to pass the input parameters to
the coprocessors and initiate the execution. The SystemC-based
simulation environment of the platform is described and the
simulation results are given.

Keywords—Platform-based design methodology, software
defined radio, WCDMA, OFDM, 3GPP-WLAN interworking

1. INTRODUCTION

Many wireless devices today incorporate multiple short-
range wireless technologies, such as Infrared, Bluetooth, and
wireless local area network (WLAN), in addition to the second
(2G) and third generation (3G) cellular wireless technologies.
Because multiple radio technologies are being integrated into
the same device, and possibly to the same chip, the design
complexity of commercial wireless products has increased
dramatically. Adversely, the lifespan of these products keeps on
shrinking due to the emerging new features and services,
resulting in very strict time-to-market constraints. The most
effective way to meet these constraints and to cut the design
costs is to exploit both hardware and software reuse, at highest
possible level of abstraction [1]. In addition to the design time
constraints, another big challenge are the increasing costs of
mask sets for the latest silicon technologies [2]. Increasing the
volume of the production is the only way of diminishing the
impact of these costs, and consequently, only chips with
guaranteed high-volume production are implemented on
silicon. This requires that the chips are used in several products
which is only possible if the designs are programmable. Efforts
to exploit larger scale reuse and to find effective ways of
incorporating programmable components in system-on-chip
(SoC) architectures have led to the adoption of platform-based
design methodology [2].

The multi-standard functionality of wireless systems will be
taken one step further by the forthcoming interworking between

IEEE Communications Society / WCNC 2005

universal mobile telecommunication system (UMTS) networks
and WLANSs [3]. The goal of this interworking is to form a
heterogeneous wireless system that combines the strength of
these two networks, i.e., high mobility through the cellular 2G
and 3G networks, and high data throughput through WLANSs in
hotspots. The standardization of the interworking is currently
ongoing in the 3rd generation partnership program (3GPP) [4].
The standards will enable system operators to offer WLAN
access as an add-on to their general packet radio system
(GPRS) services with common billing. In order to benefit from
this interworking, users have to be equipped with terminals that
are capable of operating in both networks. In the case of UMTS
and WLANS this means that such diverse radio technologies as
wideband code division multiple access (WCDMA) and
orthogonal frequency division multiplexing (OFDM) have to be
supported.

The multi-standard functionality of wireless communications
will eventually evolve to something in accordance with the
software defined radio (SDR) concept [5]. Currently, even the
latest digital signal processors (DSP) employing very long
instruction word (VLIW) and superscalar architectures,
fabricated on the latest semiconductor technology, would not
provide the needed processing power for a SDR
implementation in its purest form [6]. However, it is the
desirable flexibility of the SDR concept that leads the wireless
world towards these sort of systems. On the other hand, it is the
inevitable paradigm change in system design methodology that
will eventually lead to a similar situation, where most of the
multi-mode tranceiver functionality is implemented with
software.

In this paper, we present a baseband receiver platform that
enables a software-defined implementation of WCDMA and
OFDM baseband receiver functionalities. The platform is
composed of a reduced instruction set computer (RISC) core
and a combination of coprocessors. The concept and the
system-level issues of the platform were presented in [7].

In section II, a brief overview is given on the fundamentals
of platform-based design methodology. In section III, the
proposed hardware platform is presented and the coprocessor
functionalities are described in detail. The interface used for
programming the coprocessors is described in section 1V,

0-7803-8966-2/05/$20.00 © 2005 IEEE

followed by the simulation results in section V. Conclusions are
drawn in section VI.

II. FUNDAMENTALS OF PLATFORM-BASED DESIGN
METHODOLOGY

The platform-based design methodology has evolved to
serve two purposes: larger-scale reuse and separation of design
concerns. Separation of design concerns means separating
functionality from architecture and communication from
computation. This helps to divide the design into more
manageable parts, and facilitates the reuse. Although there
exists many interpretation of what a platform is, it can always
be divided into two parts: the hardware platform and the
software platform, i.e., the application program interface (API).
Together, the hardware platform and the API form a system
platform [2].

A. Hardware Platform

The hardware platform can be regarded as a library of pre-
designed components, optimized for a field of applications. The
hardware platform is designed by first identifying the most
important functions of an application field and examining their
regularity and performance requirements. A library of
parametrized processing elements is then constructed, that best
supports these functions. This involves evaluation of several
processing elements and communication primitives against the
functional constraints of the application field. It is desirable to
employ programmable components in the architecture, either
DSPs, micro-processors, or reconfigurable logic, in order to
enable the widest possible application space for the hardware
platform.

B. Application Program Interface

The API is an abstraction of the hardware platform. Through
the APIL, the target application is mapped on the hardware
platform. As long as the API is kept unchanged, changes to the
underlying architecture do not affect the application using the
APL. This enables effective software reuse. The implementation
of the APl may be as complicated as a real time operating
system (RTOS), complemented with a set of device drivers, but
a much simpler software layer may be adequate.

C. Implementation

Once a hardware platform and an API are available for a
given application field, the system designer maps the
functionality of the application onto the platform through the
API. The hardware architecture is then derived from the
platform by selecting the appropriate processing elements from
the library and by exploring with the remaining parameters of
the components, resulting in a platform instance. It is important
to note that when the platform is oriented towards a field of
applications, the design space is restricted, and thus time is
saved in the implementation. Ideally, the component library that

IEEE Communications Society / WCNC 2005

34

constitutes the hardware platform includes components at
multiple abstraction levels. Choosing a platform instance closer
to the actual implementation, results in the biggest time save,
while starting from higher abstraction level results in greater
level of freedom in the design space exploration.

III. A SYSTEM PLATFORM FOR WCDMA AND OFDM
BASEBAND RECEIVER IMPLEMENTATIONS

The proposed system platform is targeted for WCDMA and
OFDM baseband receiver implementations. The functional
profiling of the platform was carried out by simulating the
physical layer procedures of WCDMA and OFDM air
interfaces. The simulation were performed according to 3GPP
and IEEE 802.11a specifications, respectively. Details of the
identified functions and the system-level issues can be found in
[7].

A functional block diagram of the combined OFDM and
WCDMA baseband is depicted in Fig. 1. The main functional
entities, which are identical in both air interfaces, include
synchronization, demodulation, channel estimation, and symbol
mapping. The hardware platform used for implementing these
functions is composed of a RISC processor core and three
coprocessors. The architecture is depicted in Fig. 2. The
mapping of the functional blocks to the architecture is such that
synchronization and demodulation functionalities are mapped
to dedicated coprocessors, and the channel estimation and
symbol mapping task are implemented with the instruction set
architecture (ISA) of the RISC core. The core itself does not
process the incoming sample stream, but only the demodulated
symbols. In addition to the core and the coprocessors, the
platform comprises direct memory access (DMA) and on-chip
memory for instructions, data, and sample buffering. The
sample buffer is long enough two store all the samples inside
the expected channel delay spread. The longest supported
buffer size is 1024 complex valued samples.

The RISC core in question is the COFFEE RISC which is
a parametric IP block, developed at Tampere University of
Technology [8]. A hardware description language
implementation of the core, along with the software
development tools, can be downloaded from the project website
[9]. The COFFEE features a 6-stage pipeline with complete
hazard detection and forwarding logic. The internal data word
width is 32 bits, and the memory interface is of Harvard type. In
addition to the typical implementation parameters, the core
includes a configuration register that enables configuration of a
number of features at run time.

The COFFEE core also features a coprocessor bus that can
be used to connect the core to four coprocessors. Through this
bus each coprocessor is seen as a register bank. The
coprocessor bus and the internal structure of a coprocessor are
depicted in Fig. 3. Data between the coprocessors and the core
is transferred through a common 32-bit Data signal and the

0-7803-8966-2/05/$20.00 © 2005 IEEE

Demodulation Symbol mapping >

BPSK |16-QAM|

e

code
generators

Rake
fingers

|: Input buffer T
Synchronization
J

correlation

peak
search

Channel estimation

interpolation | averaging

i

Figure 1. Functional block diagram of the combined WCDMA/OFDM
baseband.

Coprocessor bus

From receiver — Input buffer
front-end

COFFEE™

RISC

Demodu\atio CORE
1/0-Control Synchronization

3’ l ‘ I 1 Data bus
‘ ’ l Instruction bus

To receiver

back-end DA

Data
Mem

Inst
Mem

Figure 2. The architecture of the WCDMA/OFDM baseband receiver
platform.

direction of the transfer is selected with Wr _cop and Rd cop
signals. The target coprocessors is selected with the C indx
signal and the source or destination register is selected with the
R indx signal. Each coprocessor has a dedicated interrupt
signal Cop_exc. The demodulation and synchronization
coprocessors are also connected to the data bus. This provides
an alternative path for the less critical data traffic.

The computation kernels in the coprocessors are initiated by
writing an instruction to an instruction first-in first-out (FIFO)
buffer that is mapped to a specific register inside the register
bank. The 32-bit instruction is composed of an operation code
and a number of input parameters and control flags. The
coprocessor reads the instruction from the instruction FIFO,
decodes the operation code, stores the parameters to the
appropriate registers, and starts executing the desired
computation. When the execution completes, the return value
of the function is stored to a special register in the register bank,
and the possible output data is written in to a output FIFO.

A. Synchronization Coprocessor

The timing and frequency synchronization of WCDMA and
OFDM receivers is performed with similar correlation based
algorithms. The received signal is correlated against a pilot
sequence and the timing synchronization is obtained by
detecting the peaks from the correlation output. The frequency
synchronization if obtained by examining the phase difference
of sequential correlation outputs. Averaging is also commonly
used to diminish the effect of noise [11,12].

IEEE Communications Society / WCNC 2005

35

Upto 4 coprocessors.

Register bank

CIrocesscr bus
\
t

_indx[1:0]
2 . COFFEE™
_indx[4:0] RISC

Data[31:0 CORE
\

\
C‘pp kexc[3:0]
AV

Datapath

%

Figure 3. The coprocessor bus of the COFFEE RISC core.

The synchronization coprocessor implements the correlation
based synchronization algorithms with a configurable finite
impulse response (FIR) structure with complex valued
coefficients. The structure can be configured to compute
normal convolution algorithm, as well as delay-and-correlate
algorithm. In the delay-and-correlate algorithm the received
signal is correlated against a delayed version of itself. This can
be used in many OFDM estimation algorithms [10].

Eight different sets of correlation coefficients can be stored
into the coprocessor. These are distinguished with a coefficient
handle which is passed as one of the input parameters of the
correlation function. This way the coefficients can easily be
switched between correlations as they are pre-stored to the
coprocessor. The coefficients can be initialized by first passing
the handle and the length of the coefficient vector to the
coprocessor and then writing them sequentially to a specific
coprocessor register. Alternatively the initialization can be
performed by storing the coefficients into the data memory and
by passing the address of the vector to the coprocessor.

The correlations are initiated by the core by passing the type
of the correlation (normal/delay-and-correlate), the wanted
coefficient handle (or the length of the delay in the delay-and-
correlate algorithm), and the length of the correlation to the
coprocessor. For purposes of WCDMA synchronization, a
scrambling code generator is provided that can be set on.
Thereupon, the correlation coefficients are automatically
scrambled with the complex conjugate of the scrambling code.

After initiation, the correlation is executed in two steps. First,
the correlation is computed until the first peak crossing the
preset threshold occurs. The coprocessor then interrupts the
core and starts the second step, if tracking parameters are
specified and the tracking mode is switched on. In the second
step, the correlations are computed over a given tracking
window, and the output of the correlator can be averaged over a
number of iterations. This is useful, e.g., when repeated copies
of a pilot sequences are available for timing synchronization.
The tracking parameters are set by passing the length of the
tracking window, length of the gap between sequential
windows, and the number of averaging iteration to the
coprocessor. During the gap, the delay line of the FIR structure
is shifted without any computations. This can be exploited

0-7803-8966-2/05/$20.00 © 2005 IEEE

when the correlation needs to be computed against a certain
field of a transmission slot, and averaged over several
sequential slots. During the last averaging iteration, the
coprocessor detects all correlation peaks inside the tracking
window crossing the threshold value. It stores their indices and
normalized values to the output FIFO, and returns the number
of detected peaks to the core. Thereupon, the core can read the
peak values from the output FIFO and identify the strongest
peaks and use the indices to compute the read addresses for the
sample buffer. The peak values are given in angular form,
which facilitates the frequency error estimation [12].

B. Demodulation Coprocessor

The biggest difference between WCDMA and OFDM
basebands resides in the demodulation block. In WCDMA the
demodulation is performed by a Rake receiver, whereas in
OFDM it is performed with a 64-point fast Fourier transform
(FFT).

A traditional Rake receiver is composed of parallel fingers
that are each used to despread one multipath component of the
received WCDMA signal. The despreading is performed by
correlating the received signal against a spreading code over a
period corresponding to the spreading factor. If multicode
transmission is employed, a dedicated correlator is needed for
each code channel in each finger.

The Rake functionality can be implemented effectively with
the FlexRake architecture [13]. The essence of the FlexRake
functionality is that in stead of using multiple Rake fingers, the
despreading of the multipath components are performed with a
single correlator engine. Effectively, hardware resources are
shared between the multipath components, and parallelism is
used for despreading multiple code channels. The relative
delays of the multipath components are used for accessing the
multipath components from the sample buffer that is large
enough to store the samples within the multipath window.

The demodulation coprocessor includes also generators for
orthogonal variable spreading factor (OVSF) and Gold codes.
These are used in WCDMA for spreading/despreading and
scrambling/descrambling, respectively. The OVSF code
generators are initialized by passing the spreading factor, and
the OVSF code number to the coprocessor. If multiple OVSF
codes are initialized they are automatically assigned to the
parallel correlators used in the despreading operation.
Alternatively, the code generator output can be stored into the
output FIFO, or to data memory, from where it can be read by
the core. The Gold code generators are initialized by passing
the primary and secondary scrambling code numbers to the
generators. The Gold code does not have to be assigned
explicitly to the correlators as it is automatically used in the
despreading operation.

The despreading operation is initiated by passing the address
of the first multipath component in the sample buffer, the
number of despreading iterations, number of code channels,

IEEE Communications Society / WCNC 2005

36

and the spreading factor (length of the correlation) to the
coprocessor. The address of the first multipath component is
used as a base address when computing the addresses of the
other multipath components, which are allocated with offset
addresses. The coprocessor reads the samples from the sample
buffer, performs the correlation, and stores the symbol dump to
the output FIFO. After a number of completed despreading
iterations, specified by the input parameter, the coprocessor
interrupts the core. Alternatively, the output can also be stored
into the data memory, in which case the coprocessor returns the
address of the output vector in the data memory.

In addition to the Rake functionality, the correlation
resources can be used to execute any 16 parallel correlations.
This feature is needed, e.g., in the second phase of the cell
search procedure [14]. However, the correlations are not
computed with a traditional convolution algorithm as the
correlation windows do not overlap. Thus, the correlators in the
demodulation coprocessors are not capable of computing
matched filter type of correlations.

The computation resources are organized into four sequential
groups of four parallel correlations. The four parallel
correlations are always feeded with the same input samples, but
the input to the sequential groups can be read from different
addresses. These are defined by the offset addresses used also
for allocating the multipath components in the despreading
function. The correlation coefficients can be initialized
similarly as in the synchronization coprocessor, and assigned to
one of the 16 correlators. The Gold code generators can be
switched on and off similarly as in the synchronization
COProcessor.

OFDM demodulation is performed with a 64-point FFT that
can be implemented efficiently with a pipelined single-path
delay feedback (SDF) architecture [14]. The architecture is
composed of 6 radix-2 butterflies and 63 delay elements. The
FFT computation is initiated by passing the address of the FFT
window, and the length of the FFT to the coprocessor. The
twiddle factors are automatically initialized when the FFT is
initiated for the first time or when the length of the FFT
changes. The coprocessor generates an interrupt when the first
output is written into the FIFO. Similarly as in the WCDMA
demodulation, the FFT output can also be written into the data
memory. The hardware architecture of the demodulation
coprocessor is designed so that the correlations of the Rake
fingers utilize same hardware resources as the butterflies of the
FFT.

C. 1/O Coprocessor

The I/0 coprocessor is used to control the connections to the
receiver front-end and back-end. The input sample stream is fed
through the I/O coprocessor into the synchronization
coprocessors and into the sample buffer. The core can turn the
feed on and off. The I/O coprocessor also acts as a link between
the receiver baseband and the receiver back-end. The output

0-7803-8966-2/05/$20.00 © 2005 IEEE

TABLE I. COPROCESSOR FUNCTION CALLS

Function Target Description Input Parameters Return Value
coprocessor

set_thr Sync Sets the threshold used for detecting the threshold value (32 bits) -
correlation peaks

init_sync_corr_coef Sync Initializes correlation coefficients of the coefficient handle (3 bits), length (8 bits), source |-
synchronization coprocessor select (1 bit), memory address (14 bits)

set_track_param Sync Sets the tracking parameters for averaging window length (11 bits), gap length (11 bits), -
correlations number of iterations (4 bits)

corr_x_thr Sync Starts the correlation. Writes the peak indices |coefficient handle (3 bits), type select (1 bit), Number of detected
and the peak values in angular form to the length of delay (8 bits), length of correlation (11 | peaks
output FIFO. bits), Gold code flag (1 bit), tracking flag (1 bit)

init_gold Sync/Demod |Initializes the Gold code generator in both primary gold code number (9 bits), secondary gold |-
synchronization and demodulation code number (4 bits)
COProcessors

init_ovsf' Demod Initializes one of the OVSF code generators. |spreading factor index (3 bits), OVSF code The address of the
Writes the code sequence to the coefficient |number (9 bits), output selection flag (1 bit) code sequence in
memory or to the output FIFO. the data memory

init_demod_corr_coef |Demod Initializes correlation coefficients of the coefficient handle (4 bits), length (8 bits), source |-
demodulation coprocessor select (1 bit), memory address (14 bits)

assign_corr_resrc Demod Assigns a specific correlation handle to one |correlator number (4 bits), coefficient handle -
of the 16 available correlators (4 bits)

init_multipaths Demod Sets the offset addresses of the detected three offset addresses (10 bits) -
multipath components

despread Demod Starts the despreading, or any other start address (10 bits), number of iterations (11 The address of the
correlation on the demodulation coprocessor. |bits), number of parallel correlations (4 bits), symbol dump vector
Writes the correlated symbols to the output | Gold-code flag (1 bit), output selection flag (1 bit) | in the data memory
FIFO or to data memory.

it Demod Starts the FFT. Writes the FET output to the |start address (10 bits), FFT length (10 bits), output | The address of the
output FIFO, or to data memory. selection flag (1 bit) FFT output vector

in the data memory

rec_onoff 10 Turns on the feed to the sample buffer on and |rec on/off flag (1 bit) -
off

sync_onoff /0 Turns on the feed to the Sync coprocessor on |sync on/off flag (1 bit) -
and off

set_win /0 Sets the start address of the multipath start address (11 bits) -
window in the sample buffer

wr_cop all Writes one 32-bit word to a register in the coprocessor select (2 bits), register select (5 bits), |-
coprocessor register bank data (32-bit)

rd_cop all Reads one 32-bit word from a regsiter in the |coprocessor select (2 bits), register select (5 bits) |32-bit data word
coprocessor register bank

symbol stream from the baseband is stored to the data memory
and accessed via the I/O coprocessor and the DMA.

TV. THE COPROCESSOR FUNCTION CALLS

The software layer implementing the API is provided in the
form of special function calls that are exclusively used for
controlling the coprocessors. These function calls are translated
into sequences of assembly instructions that compose the 32-bit
coprocessor instruction from the operation code of the function
and the input parameters, and write the instruction to the
instruction FIFO of the desired coprocessor. The link from C-
language is provided by means of a C-library which effectively
constitutes the API for the platform. It is important to note that
since the coprocessor function calls are replaced with simple
sequences of register read or write instructions, the employment

IEEE Communications Society / WCNC 2005

37

of the highly application specific hardware does not constitute a
challenge for the C-compiler. This is an important advantage,
since poor compiler performance has been the very limiting
factor in the performance of application specific instruction set
processors (ASIP) [16].

The complete list of the supported coprocessor function calls
is given in Table I. In addition to the input parameters listed in
the table, each function call includes additional parameters that
can be used to tell the coprocessor to interrupt the core after the
instruction has been decoded, and after the processing of the
function has been completed. These can be used to align the
executions of the core and the coprocessors when necessary.

The coprocessors can be regarded as a library of subroutines
that are executed on dedicated and highly optimized hardware.
Although the COFFEE core is the only programmable

0-7803-8966-2/05/$20.00 © 2005 IEEE

component of the platform, the API provides enough flexibility
for software defined implementation of the WCDMA/OFDM
baseband receiver. Furthermore, the platform is flexible enough
that it can also be used for other radio technologies employing
the OFDM or WCDMA air interfaces.

V. SIMULATION RESULTS

The platform was simulated with a clock cycle accurate and
bit accurate C/C++ testbench running on a PC workstation.
SystemC libraries were used to model the fixed-point data
types, the parallelism, and timing behavior [17]. The timing
behavior of the system was modelled with SystemC wait-
statements, that can be used to stall a process for a wanted
amount of clock cycles. The coprocessors were modelled at
register transfer level, and the COFFEE core was modelled at
behavioral level. The performance of the C-compiler was
estimated and wait-statements were inserted to the C-code
accordingly. In addition to the core and the coprocessors, a
source and a sink module were used in the test bench to model
the behavior of the receiver front and back-ends. A behavioral
memory model was also employed.

The functional simulation of the system was done with
Matlab. The same Matlab model was then used to generate the
test data for the test bench. The output of the test bench was
verified with another Matlab model. The minimum clock
frequency of the platform, needed to run the simulation was
also computed. The interface between the source and the sink
modules and the Matlab model was realized through text files.

A number of simulations were carried out to verify the
correctness of the testbench output, and to test the programming
interface of the coprocessors. In the WCDMA mode,
demodulation of a downlink dedicated physical data channel
(DPDCH) with three parallel code channels and the shortest
spreading factor SF' = 4, required minimum clock frequency of
168 MHz. Other WCDMA physical layer procedures
considered in the simulations included the cell search
procedure, random access procedure, uplink common packet
channel (CPCH) procedure, and the paging procedure [14]. In
the OFDM mode, Demodulation of a WLAN data packet with
QPSK modulation required minimum clock frequency of
275 MHz.

VI. CONCLUSION

The emerging multi mode functionality and the ever
shrinking time-to-market constraints of commercial wireless
devices have forced wireless system designers to adopt
platform-based design methodology. The effectiveness of the
methodology is based on reuse of both hardware and software,
and the separation of design concerns. A system platform
targeted for WCDMA and OFDM baseband receivers was
presented. The platform architecture is composed of a RISC
core and set of coprocessors that are used to implement the

IEEE Communications Society / WCNC 2005

38

most critical computation kernels of the receiver algorithms.
The coprocessors are tightly coupled to the core through a
coprocessor bus. Since the execution of the critical computation
kernels is done on the coprocessors the performance of the
platform is not limited by the compiler. An application program
interface for the platform was also presented. The API enables
software defined implementation of WCDMA and OFDM
baseband receivers. The platform was simulated with a
SystemC-based simulation environment and the minimum
clock frequency estimates were given.

REFERENCES

[1] J. M. Rabaey, M. Potkonjak, F. Koushanfar, S.-F. Li, and T. Tuan,
“Challenges and Opportunities in Broadband and Wireless
Communication Designs”, in Proc. IEEE/ACM Conference on Computer
Aided Design (ICCAD '00), San Jose, CA, USA, Nov. 2000, pp. 76-82.

A. Ferrari and A. Sangiovanni-Vincentelli, “System Design: Traditional
Concepts and New Paradigms”, in Proc. Conference on Computer Design
(ICCD '99), Austin, TX, USA, Oct. 1999, pp. 2-12.

K. Ahmavaara, H. Haverinen, and R. Pichna, “Interworking Architecture
Between 3GPP and WLAN Systems”, /EEE Communications Magazine,
vol. 41, no. 11, Nov. 2003, pp. 74-81.

3GPP Technical Specification 23.234, 3GPP System to Wireless Local
Area Network (WLAN) Interworking; System Description, Release 6,
v6.1.0, June 2004.

E. Buracchini, “The Software Radio Concept”, IEEE Communications
Magazine, vol. 38, no. 9, Sep. 2000, pp. 138-143.

R. Kokozinski, D. Greifendorf, J. Stammen, and P. Jung, “Evolution of
Hardware Platforms for Mobile Software Defined Radio Terminals”, in
Proc. IEEE Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’02), Lisbon, Portugal, Sep. 2002, vol. 5, pp.
2389-2393.

L. Harju and J. Nurmi, “A Baseband Receiver Architecture for UMTS-
WLAN Interworking Apllications”, in Proc. IEEE Symposium on
Computers & Communication (ISCC’04), Alexandria, Egypt, June 2004,
pp. 678-685.

J. Kyllidginen, M. Kuulusa, and J. Nurmi, “COFFEE—A Core for Free”,
in Proc. International Symposium on System-on-Chip, Tampere, Finland,
Nov. 2003, pp. 17-22.

COFFEE RISC website: http://www.cs.tut.fi/~coffee

J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and
Practical Guide, Sams Publishing, Indianapolis, IN, USA, 2002.

E.-S. Lohan, Multipath Delay Estimators for Fading Channels in CDMA
Receivers and Mobile Positioning, PhD Thesis, Tampere University of
Technology, Tampere, Finland, Oct. 2003.

J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML Estimation of
Time and Frequency Offset in OFDM Systems”, /EEE Transactions on
Signal Procesing, Vol. 45, No. 7, pp. 1800-1805, July 1997.

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible Implementation of
a WCDMA Rake Receiver”, in Proc. IEEE Workshop on Signal
Processing Systems (SIPS’02), San Diego, CA, USA, Oct. 2002, pp. 177-
182.

H. Holma and A. Toskala, WCDMA for UMTS, John Wiley and Sons Ltd,
Chichester, West Sussex, England, 2001.

T. Taskinen, Hardware Implementation Architectures for Time-Frequency
Transforms, Master of Science Thesis, Tampere University of
Technology, Tampere, Finland, 2002.

R. Leupers, “Compiler Design Issues for Embedded Processors”, /EEE
Design & Test of Computers, vol. 19, no. 4, July 2002, pp. 51-58.

A. Ghosh, S. Tjiang, and R. Chandra, “System modeling with SystemC”,
in Proc. International Conference on ASIC (ASICON’01), Shanghai,
China, Oct. 2001, pp. 18-20.

(2]

B3]

[4]

[5]
[6]

7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

0-7803-8966-2/05/$20.00 © 2005 IEEE

PUBLICATION 6

L. Harju and J. Nurmi, “A Synchronization Coprocessor Architecture for
WCDMA/OFDM Mobile Terminal Implementations,” in Proc. International Sympo-
sium on System-on-Chip, Tampere, Finland, Nov. 2005, pp. 141-145.

Copyright (©) 2005 IEEE. Reprinted, with permission, from the proceedings of Inter-
national Symposium on System-on-Chip 2005.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Tampere University
of Technology’s products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@jieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

A Synchronization Coprocessor Architecture for
WCDMA/OFDM Mobile Terminal Implementations

Lasse Harju and Jari Nurmi
Tampere University of Technology
Institute of Digital and Computer Systems
P.O.BOX 553, 33101 Tampere, FINLAND
Email: lasse.harju@tut.

Abstract— Wireless communications ar e evolving towar ds mul-
tistandard systems. The complexity of mobile terminals will
increase dramatically as multiple radio interfaces need to be
supported. Programmability will be essential in order to manage
the increased complexity of the receiver baseband processing,
and to minimize product development time. A programmable
coprocessor architecture is presented that is targeted for im-
plementing the synchronization algorithms of WCDMA and
OFDM receivers. The coprocessor is a part of a programmable
WCDMA/OFDM baseband receiver platform targeted for dual-
mode mobile terminal implementations. The coprocessor archi-
tecture is presented and the programming interface designed for
the coprocessor is explained in detail. The coprocessor has been
implemented with a register-transfer-level VHDL description
and synthesis with 0.13 um standard cell CMOS technology.
Simulation and synthesis results are given.

I. INTRODUCTION

Wireless communications systems are currently evolving
towards multistandard systems, where existing cellular and
short range radio technologies are seamlessly integrated to
form a hierarchical multistandard system. These systems,
that are also referred to as 4G systems, enable the users
to access the same wireless services through multiple radio
technologies [1]. In a multistandard environment, the users
have to be equipped with devices that support multiple air
interfaces. Consequently, several radio technologies need to
be integrated into a single device and into a single chip. The
biggest design challenge in the future, will be the management
of this increased complexity [2]. Programmability is one
of the most effective ways to combat this complexity and
to decrease product development time. It is imperative that
the baseband receiver hardware is programmable and that
processing resources can be shared in the different modes of
the receiver.

In this paper we present a programmable architecture tar-
geted for implementing the synchronization algorithms of
wideband code division multiple access (WCDMA) and or-
thogonal frequency division multiplexing (OFDM) receivers.
These two radio interfaces are required in the interworking
of 3GPP and IEEE 802.11a wireless LAN networks [3]. The
coprocessor is designed to work with the COFFEE processor
core [4], as a part of the Espresso platform presented in [5].
The Espresso platform enables software de ned implementa-
tion of dual-mode WCDMA/OFDM baseband receivers.

The paper is organized as follows. In section II, the
problems related to application-speci ¢ programmable archi-
tectures are highlighted. In section III a brief overview of
WCDMA and OFDM synchronization is given. In section IV,
the Espresso platform is introduced, followed by a detailed
description of the synchronization coprocessor architecture
in section V. The programming interface designed for the
coprocessor is described in section VI and the simulation and
synthesis results are given in section VII. Finally, conclusions
are drawn in section VIIIL.

II. RECEIVER PROGRAMMABILITY

The most important design objective of the Espresso plat-
form and the proposed coprocessor architecture has been to
increase programmability of the receiver hardware. Equally
important has been to retain the programming productivity
by freeing the programmer from the use of low level pro-
gramming languages. This burden of low-level programming
is a common problem of programmable application-speci ¢
architectures [6]. Often compilers fail to make use of the
application-speci ¢ processing units of the processor, and
the programmer is forced to use low-level programming or
processor speci ¢ language extensions in order to meet the
performance constraints.

Traditionally, the software development task has been facil-
itated with reuse of existing software libraries. Ideally, when
such libraries are available, the software development task is
mainly composed of making code that controls the procedures
offered by the libraries. With the proposed architecture, the
computation resources of the coprocessors are visible to the
programmer through special C-language function calls. The
programmer uses these function calls to initiate the computa-
tion on the coprocessor, similarly as using functions provided
by any other software library.

III. SYNCHRONIZATION IN OFDM AND WCDMA
RECEIVERS

Synchronization in WCDMA and OFDM is acquired with
similar correlation-based algorithms, where the received signal
is correlated against a known pilot sequence. Timing synchro-
nization is obtained by detecting the peaks from the correlation
output and the frequency synchronization is obtained by ex-
amining the phase difference of sequential correlation outputs.

WCDMA and OFDM synchronization algorithms utilize many
similar computation kernels which can be exploited to share
the processing resources in the receivers. The most important
synchronization tasks found in WCDMA and OFDM systems
are described in the following sections. A more comprehensive
study of the different algorithms can be found in [7].

A. WCDMA Multipath Estimation

Multipath estimation in WCDMA receivers is needed to
determine the relative delays of the multipath components in
the impulse response of the channel. This information is used
in the Rake ngers to align the phase of the input signal and
the spreading code used in the despreading [8].

The multipath estimation is done by correlating the received
signal against a pilot sequence and detecting the correlation
peaks from the correlator output. The correlation is computed
with convolution:

L-1
yn) = 3 (k) r(n— k) M
k=0

where 7(n) is the nth sample of the complex baseband signal,
c(k) is the kth element of the complex pilot sequence, y(n)
is the nth element of the complex correlation output vector,
and L is the length of the convolution. In principle, the
rst correlation peak determines the acquisition point and
following peaks that are within a certain window determine
the other multipath components. The magnitude of a peak is
proportional to the gain of the multipath, and the distance
of a peak relative to the rst arrival gives a measurement
of the delay of the path. In order to minimize the effect of
noise and interference caused by other users, the correlation
windows can be averaged non-coherently over a number of
iterations [9]. The averaging is given by:

1 N1

i(n) =+ >_ viln) @)
i=0

where y;(n) is the nth element of the ith correlation output

vector.

The multipath delay estimation has to be performed at
least at accuracy of one chip. Oversampling or interpolation
is required if better multipath resolution is desired. The
performance of different type of multipath delay estimators
are compared in [10].

B. OFDM Symbol Timing Estimation

Symbol timing estimation is used in OFDM to determine
the symbol boundaries in the sample stream. The accuracy of
the estimation is less critical because in OFDM a guard period
is attached in front of each symbol [11]. The OFDM symbol
is cyclically extended over this guard period resulting in a
cyclic pre x. This redundancy allows the timing estimate to
vary over an interval equal to the length of the guard period.

The timing synchronization in OFDM can be made with
a similar matched Iter approach as in WCDMA multipath
estimation. The pilot sequences in the preamble of each data

Coprocessor bus

From receiver

front-end Input buffer

Demodulauo

Synchronization

¥ 1 i 1
]

COFFEE
RISC
core

1/0-Control

f Data bus
l Instruction bus

To receiver
-
back-end Instruction Data

memory memory

Fig. 1. The Espresso platform.

packet can be used for this purpose. Another approach is to
use so-called delay-and-correlate algorithm where the received
signal is correlated against a delayed and conjugated version
of itself [11][12]:

L-1

y(n) = Z r(n—k)r(n—D —k)* 3)
k=0

In the equation, D is the length of the delay. This method

exploits the redundancy introduced by the cyclic pre x. Sim-

ilarly, repeated pilot sequences in the preamble of the data

packet can be used in the delay-and-correlate algorithm.

IV. THE ESPRESSO PLATFORM

The Espresso platform enables software de ned implemen-
tation of dual-mode WCDMA/OFDM baseband receivers. The
architecture, depicted in Fig. 1, is composed of the COFFEE
core and three coprocessors.

In addition to the core and the coprocessors, the platform
comprises direct memory access (DMA) and on-chip memory
for instructions, data, and sample input buffering. The co-
processors are used for the most critical computation kernels
of OFDM and WCDMA receiver algorithms. The synchro-
nization coprocessor is used for correlation based timing and
frequency synchronization algorithms and the demodulation
coprocessor is used for FFT and Rake receiver functionalities.
The 1/O coprocessor controls the incoming sample stream and
provides an interface to the receiver back-end. The channel
estimation and equalization tasks are implemented with the
instruction set architecture (ISA) of the COFFEE core. The
core itself does not process the incoming sample stream, but
only the demodulated symbols.

A unique feature of the COFFEE core is the coprocessor
bus which is used for the data traf ¢ between the coprocessors
and the core. Although the coprocessors can be used with any
processor that features memory mapped coprocessor connec-
tions, using a dedicated coprocessor bus spares the system bus
bandwidth for other trafc.

The internal data word width of the COFFEE core is
32 bits. In the coprocessors this is divided into real and

Coprocessor Bus

Instruction FIFO Instruction
Decode

Control

1

1 ' it i

Parameter
Registers

—>

Coefficient
Registers

sample input ———">|

Peak
Detection

—
Averaging Output FIFO

FIR

Memory

Fig. 2.

imaginary components. Consequently, the data width of the
synchronization coprocessor is limited to 16 bits. However, the
width of the input samples can be much less. For WCDMA
receiver, 6 bits/sample resolution has been found adequate,
but in OFDM, 9 bits/sample are needed [7]. In the presented
coprocessor implementation, 8 bits/sample were used for both
radio interfaces.

V. THE SYNCHRONIZATION COPROCESSOR
ARCHITECTURE

The synchronization coprocessor is designed for the corre-
lation based synchronization algorithms needed in OFDM and
WCDMA receivers.

The architecture of the coprocessor, depicted Fig. 2, is
composed of an instruction rst-in rst-out (FIFO) buffer, an
instruction decoder, parameter registers, coef cient registers,
a nite impulse response (FIR) Ilter block, an averaging
unit, a peak detection block, control, and an output FIFO
buffer. The coprocessor is connected to the coprocessor bus
of the COFFEE core. The FIR block is directly connected to
the 1/O coprocessor that provides the sample stream to the
synchronization coprocessor.

A. The FIR Block

The FIR block is used to execute convolution and delay-and-
correlate algorithms, given by Eq. 1 and Eq. 3, respectively.
The maximum length of the Iter is L = 256, and the
maximum delay is D = 128. The convolution mode of the
FIR block, with convolution length L = 4, is illustrated in
Fig. 3(a) and the delay-and-correlate mode, with delay D = 4
and correlation length L = 4, is illustrated in Fig. 3(b).

Typically in WCDMA synchronization, the value of the co-
ef cients is always £1. Similarly in OFDM, only the sign bits
of the coefcients can be used for the synchronization [13].
For this reason, only 1-bit complex coefcients can be used
in the FIR.

The FIR block includes a switching network that feeds ei-
ther the coef cients or the delayed version of the received sig-
nal to the inputs of the complex multiply-accumulate (MAC)
units. Because the value of the real and imaginary parts of the
coefcients is limited to 1, the complex MAC operation is
simpli ed into a two stage add/subtract computation [8].

The architecture of the synchronization coprocessor.

r(n-3)

sample

z! 7! 7! 7! z!
input

Fig. 3. The FIR block in (a) convolution mode (L = 4) and (b) delay-and-
correlate mode (L =4, D =4).

In order to achieve high clock rates the FIR block was
divided into 16 pipeline stages, each composed of 16 FIR
taps.

B. Averaging and Peak Detection

The output of the FIR block is rst fed to the averaging unit
and then into the peak detection block. These are depicted in
Fig. 4. The averaging unit accumulates sequential correlation
output vectors and divides the resulting vector with the number
of averaging iterations, according to Eq. 2. The averaging
computation is implemented with combinatory logic.

The size of the memory in the averaging unit determines
the maximum length of the averaged correlation output vector,
which in turn determines the length of the channel tracking
window. For example, in a WCDMA receiver, a memory
of 2048 bytes results in a tracking window of 16.67 us
when 16 bit correlation registers, for both real and imaginary
components, and oversampling rate of four are assumed. Dual
port memory is required to allow simultaneous read and write
accesses.

Correlation

window index Memory [

N-1

e
N5

FIR output

Threshold Compare Peak found

Fig. 4. The averaging unit and the peak detection block.

The peak detection following the averaging is made by com-
paring three sequential averaged correlation outputs against
the threshold value. The comparison is implemented with
combinatory logic. When the peak detector detects a local
maxima crossing the threshold, it sets a signal that informs
the control block that a peak has been found.

VI. THE PROGRAMMING INTERFACE

The programming interface of the coprocessors is imple-
mented with a library of coprocessor function calls. The
programmer writes code for the COFFEE core and uses
these function calls to initiate the computation kernels on
the coprocessors. The function calls are replaced by the
compiler with a sequence of assembly instructions that write
the instruction and the input parameters to the instruction FIFO
of the coprocessor.

The function calls used for programming the synchroniza-
tion coprocessor are described in the following sections. In
addition to the functions listed below, the programmer can use
coprocessor read and write functions to access the parameter
and coef cient registers and the output FIFO.

Scrambling Code Initialization

The synchronization coprocessor includes generators for
WCDMA scrambling codes. The init scode function is
use to initialize the generator, by giving the scrambling code
number as a parameter. The output of the scrambling code
generator is fed straight to the FIR block and used with the
corr_x_thr function as described in a following section.

Initialization of Correlation Coefficients

The init corr coef function is used to initialize a
coefcient vector to one of the 8 locations in the coef cient
register bank. The destination location number is speci ed
with coefcient handle. The length of the coefcient vector
and the coef cient handle are given as parameters. The initial-
ization is performed by rst giving the init corr coef
command and then sequentially writing the coefcients to a
speci ¢ coprocessor register.

Setting the Tracking Parameters

The set track_ param function is used to set the pa-
rameters for the correlation tracking mode. In the tracking

mode, the sequential correlation windows are averaged. The
length of the tracking window, the gap length between tracking
windows, and the number of averaging iterations are given
as parameters. During the gap, the delay line of the FIR
block is shifted without any computations. This feature is
bene cial when the correlation needs to be computed against
a certain eld of a transmission slot, and averaged over several
sequential slots.

Setting the Detection Threshold

The set thr sets the threshold value used by the peak
detector. The 32-bit threshold value is given as a parameter.

Correlation

The corr_x_thr function initiates the correlation be-
tween the input sample stream and the correlation coef cients.
The type of the correlation (convolution/delay-and-correlate),
the length of the delay, the length of the correlation, and the
coefcient handle are given as parameters. The scrambling
code can also be activated with an control ag, whereupon
the correlation coef cients are scrambled with the scrambling
code. The scrambling code index updates automatically as the
correlation window moves. The execution of the correlation is
divided into two stages:

1) The correlation is computed until the rst correlation
peak crossing the threshold is detected. The coprocessor
stores the index of the peak to the output FIFO and
interrupts the core.

2) If tracking parameters have been speci ed, the tracking
mode is started. The correlation output vectors are
averaged over a number of iterations using the given
tracking window and gap length parameters. During the
last iteration all the peaks within the window length
crossing the threshold are detected and their indices are
stored to the output FIFO. Finally, the core is interrupted.

VII. SIMULATION AND SYNTHESIS RESULTS

The platform was rst simulated with a clock cycle ac-
curate and bit accurate C/C++ testbench, running on a PC
workstation. The structure of the testbench is depicted in
Fig. 5. SystemC libraries were used to model the x ed-
point data types, the parallelism, and timing behavior. The
coprocessors were modeled at a level equivalent to register
transfer level (RTL), and a behavioral model of COFFEE core
was employed. In addition to the core and the coprocessors, a
source and a sink module were used to model the behavior of
the receiver front-end and back-end. The necessary memory
blocks were modeled at behavioral level. The test data for the
test bench was created with a Matlab model, and the output of
the test bench was compared with that of the Matlab model.
The interface between the source and the sink modules and
the Matlab model was realized through text les.

The functional simulations clearly demonstrated that the
concept of the Espresso platform is a feasible and competent
approach for software de ned baseband receiver implementa-
tions. The simulations also proved that the programming in-
terface designed for the synchronization coprocessor provides

SystemC modules

Input buffer
—> Source >

D
— Sink ||

Fig. 5.

Demod cop

COFFEE
RISC
core

Synch cop

Cop-bus interface

Matlab 1/0 cop

The testbench used in the simulations.

the required functions, parameters, and control ags for the
WCDMA and OFDM synchronization algorithms. In addition,
the minimum clock frequency of the platform needed to run
the computation was estimated. Simulation of the WCDMA
multipath estimation resulted in a clock frequency requirement
of 62 MHz, when oversampling factor of four was assumed.
Simulation of OFDM symbol timing estimation resulted in
a clock frequency of 80 MHz, when Nyquist sampling was
assumed.

After the functional simulations, the coprocessor was im-
plemented with RTL VHDL description. As the simulation
models were already done at a level equivalent to RTL, the
transition from SystemC to VHDL was facilitated. Synthesis
with a 0.13 pm standard cell CMOS technology resulted in
2.02 mm? chip area, which is equivalent to approximately
334000 gates. A simulation of WCDMA synchronization
with the synthesized gate-level circuit resulted in a power
consumption of 29 mW with a clock frequency of 62 MHz and
1.32 V supply voltage. Similarly, an OFDM synchronization
simulation resulted in 49 mW with a clock frequency of 80
MHz.

VIII. CONCLUSION

Programmability of baseband receiver architectures will be
essential in order to manage the design complexity of future
multistandard mobile terminals. The proposed coprocessor ar-
chitecture enables programmable implementation of WCDMA
and OFDM synchronization algorithms. The programming in-
terface of the coprocessor is realized with a set of coprocessor
function calls. Because these functions are only used for
passing the input parameters to the coprocessor and initiating
the computation, the employment of the application-speci ¢
hardware resources does not require a customized compiler
or limit the productivity of the software development. This
approach solves the programming ef cienc y problem related
to application-speci ¢ processors. The coprocessor architec-
ture has been simulated on a SystemC-based testbench and
implemented with RTL level VHDL description. The area of
the synthesized chip and the simulated power consumption
indicate that the architecture is suitable for mobile terminal
implementations.

ACKNOWLEDGMENT

This work has been supported by the EU-project SoC-
MOBINET (IST 2000-30094), the Nokia Foundation, the
Finnish Cultural Foundation, Walter Ahlstrom Foundation, and
the HPY Research Foundation.

REFERENCES

[1] S. Y. Hui and K. H. Yeung, “Challenges in the Migration to 4G Mobile
Systems,” |EEE Communications Magazine, vol. 41, no. 12, pp. 54-59,
Dec. 2003.

Y. Neuvo, “Cellular Phones as Embedded Systems,” in Digest of Tech-
nical Papers IEEE Solid-Sate Circuits Conference, Feb. 2004, vol. 1,
pp. 32-37.

[3] 3GPP System to Wireless Local Area (WLAN) Network Interworking;
System Description, 3GPP Technical Speci cation 23.234, Rev. 6.1.0,
2004.

J. Kylliainen, M. Kuulusa, and J. Nurmi, “COFFEE—A Core for Free,”
in Proc. International Symposium on System-on-Chip, Tampere, Finland,
Nov. 2003, pp. 17-22.

[5] L. Harju and J. Nurmi, “A Programmable Baseband Receiver Plat-
form for WCDMA/OFDM Mobile Terminals,” in Proc. IEEE Wreless
Communications and Networking Conference, vol. 1, New Orleans, LA,
USA, Mar. 2005, pp. 33-38.

R. Leupers, “Compiler Design Issues for Embedded Processors,” |[EEE
Design & Test of Computers, vol. 19, no. 4, pp. 51-58, July 2002.

[71 L. Harju and J. Nurmi, “A Baseband Receiver Architecture for
UMTS/WLAN Interworking Apllications,” in Proc. |IEEE Symposium
on Computers and Communications, vol. 2, Alexandria, Egypt, June
2004, pp. 678-685.

L. Harju, M. Kuulusa, and J. Nurmi, “Flexible Implementation of
a WCDMA Rake Receiver,” The Journal of VLS Sgnal Processing,
vol. 39, no. 1-2, pp. 147-160, Apr. 2005.

A. Huang, M. Hall, and I. Hartimo, “Multipath Channel Estimation
for WCDMA Uplink,” in Proc. |IEEE Vehicular Technology Conference,
vol. 1, Amsterdam, Netherlands, Sept. 1999, pp. 141-145.

E.-S. Lohan, “Multipath Delay Estimators for Fading Channels in
CDMA Receivers and Mobile Positioning,” Ph.D. dissertation, Tampere
University of Technology, Tampere, Finland, Oct. 2003.

R. van Nee and R. Prasad, OFDM Wireless Multimedia Communications.
Norwood, MA, USA: Artech House, 2000.

J.-J. van de Beek, M. Sandell, and P. O. Borjersson, “ML Estimation of
Time and Frequency Offset in OFDM Systems,” |EEE Transactions on
Sgnal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.

J.-J. van de Beek, M. Sandell, M. Isaksson, and P. O. Borjersson, “Low-
Complex Frame Synchronization in OFDM Systems,” in Proc. |[EEE
Conference on Universal Personal Communications, Tokyo, Japan, Nov.
1995, pp. 982-986.

[2

[4

(6

8

[9

[10]

(1]
[12]

[13]

PUBLICATION 7

L. Harju and J. Nurmi, “A Demodulation Coprocessor Architecture for WCDMA/OFDM
Mobile Terminal Implementations,” in Proc. NORCHIP Conference, Oulu, Finland,
Nov. 2005, pp. 66—69.

Copyright © 2005 IEEE. Reprinted, with permission, from the proceedings of NORCHIP
Conference 2005.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Tampere University
of Technology’s products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution

must be obtained from the IEEE by writing to pubs-permissions@jieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

A Demodulation Coprocessor Architecture for
WCDMA/OFDM Mobile Terminal
Implementations

Lasse Harju and Jari Nurmi

Tampere University of Technology, Institute of Digital and Computer Systems
P.O.BOX 553, 33101 Tampere, Finland
E-mail: lasse.harju@tut.fi

Abstract:

Programmability of the baseband receiver hardware
will be essential in the future as multiple radio
technologies need to be supported by the mobile terminal.
A programmable coprocessor architecture is presented in
this paper that can be used to implement demodulation
procedures of WCDMA and OFDM receiver. The
coprocessor architecture is presented and the
programming interface designed for the coprocessor is
explained in detail. Simulation and synthesis results are
also given.

1. Introduction

Wireless communications are evolving towards
multistandard systems. In the future, users can employ
several existing radio technologies to access the same
wireless resources [1]. In a multistandard environment,
the users have to be equipped with mobile terminals that
support multiple air interfaces. Consequently, the
complexity of the receiver hardware increases
dramatically as several radio technologies need to be
integrated into a single device and into a single chip.
Management of the baseband receiver complexity will be
one of the biggest design challenges of future mobile
devices [2]. It is imperative that the receiver hardware is
programmable and that processing resources can be
shared in the different modes of the receiver.

In this paper we present a programmable architecture
that can be used to implement the demodulation
procedures of wideband code division multiple access
(WCDMA) and orthogonal frequency division
multiplexing (OFDM) receivers. These two radio
interfaces are conjoined the interworking of 3GPP and
IEEE 802.11a wireless LAN networks [3]. The
coprocessor is designed to work with the COFFEE
processor core [4], as a part of the Espresso platform [5].

The paper is organized as follows. In section 2,
problems commonly associated with application-specific
programmable architectures are highlighted. In section 3,
a short overview is given on the demodulation procedures
of WCDMA and OFDM receivers. The Espresso
platform is introduced in section 4, and the architecture of
the demodulation coprocessor is presented in section 5. A
detailed description of the programming interface is

given in section 6, followed by the simulation and
synthesis results in section 7. Finally, conclusions are
drawn in section 8.

2. Receiver Programmability

The most important design objective of the Espresso
platform and the proposed coprocessor architecture has
been to increase programmability of the receiver
hardware. The programming interface of the coprocessor
has been designed so that the programmer will be freed
from the use of low-level programming languages. The
burden of low-level programming has been a common
problem of programmable application-specific
architectures [6]. Often compilers fail to make use of the
application-specific processing units of the processor, and
the programmer is forced to use low-level programming
or processor specific language extensions in order to meet
the performance constraints.

Traditionally, the software development task has been
facilitated with reuse of existing software libraries.
Ideally, when such libraries are available, the software
development task is mainly composed of making code
that controls the procedures offered by the libraries. With
the proposed architecture, the computation resources of
the coprocessors are visible to the programmer through
special C-language function calls. The programmer uses
these function calls to initiate the computation on the
coprocessor, similarly as using functions provided by any
other software library.

3. WCDMA and OFDM Demodulation

In WCDMA receivers the demodulation is performed
by a Rake receiver. The received signal is correlated with
a spreading code over a period corresponding to the
spreading factor. In traditional Rake receivers one finger
is dedicated to each multipath components [7].

In OFDM receivers, the demodulation is performed
by applying 64-point fast Fourier transform (FFT) to the
samples within a symbol window [8].

A more detailed study of the different receiver
algorithms of WDCMA and OFDM receivers can be
found in [9].

4. The Espresso Platform

The Espresso platform enables software defined
implementation of dual-mode = WCDMA/OFDM
baseband receivers. The architecture, depicted in Fig. 1,
is composed of the COFFEE core and three coprocessors.

The coprocessors are designed for the most critical
computation kernels of OFDM and WCDMA receiver
algorithms. The synchronization coprocessor is used for
correlation based timing and frequency synchronization
algorithms, and the demodulation coprocessor is used for
FFT and Rake receiver functionalities. The I/O
coprocessor controls the incoming sample stream and
provides an interface to the receiver back-end. The
channel estimation and equalization tasks are
implemented with the instruction set architecture (ISA) of
the COFFEE core. The core itself does not process the
incoming sample stream, but only the demodulated
symbols.

5. The Demodulation Coprocessor Architecture

The architecture of the demodulation coprocessor,
depicted Fig. 2, is composed of an instruction first-in
first-out (FIFO) buffer, an instruction decoder, parameter
registers, spreading and scrambling code generators,
twiddle factor generators, coefficient registers, the
datapath, control, and an output FIFO. Coefficient
registers are provided for storing up to 24 coefficient
vectors, which can be up to 256 elements long. The
coprocessor is connected to the coprocessor bus of the
COFFEE core. Through the bus the programmer can
access the instruction FIFO, the parameter registers, the
coefficient registers, and the output FIFO. The Datapath
is directly connected to the sample input buffer.

The implementation of the coprocessor Rake mode is
based on the FlexRake architecture, depicted in Fig. 3
[10]. A traditional Rake receiver is composed of parallel
fingers that are each used to despread one multipath
component of the received WCDMA signal. The essence
of the FlexRake architecture is that parallelism is only
used for despreading parallel downlink channels and the
multipath components are processed sequentially. The
delays of the multipath components are used to compute
the addresses for the input buffer read accesses.
Consequently, the as the radio channel changes, only the
read addresses need to be updated. The coprocessor also
includes generators for orthogonal variable spreading
factor (OVSF) and scrambling codes.

The implementation of the coprocessor FFT mode is
based on the single delay feedback (SDF) architecture
[11], depicted in Fig. 4. In this architecture, a pipeline
stage is dedicated for each stage of the FFT, i.e., one
butterfly operation is performed per stage at every clock
cycle. The input samples are read sequentially from the
input buffer and the correct input pairs for the butterflies
are acquired by the delay lines at each stage. The
architecture can be used to execute FFTs of length 8, 16,

Coprocessor bus

From receiver

front-end Input buffer

Demodulation |I|

Synchronization

- t 1 Data s

Instruction bus
]]

COFFEE
RISC
core

1/0-Control

]
et

To receiver
back-end Instruction Data
memory memory

Fig. 1. The Espresso platform.

32, or 64. Twiddle factor generators are also needed to
implement the FFT functionality.

In addition to the Rake and FFT functionalities the
coprocessor can be used to execute upto 24 parallel
complex valued correlations. Six parallel correlators are
provided which can be used in four sequential sets. The
idea of the sequential sets is that each of them can be fed
with a different sample input, i.e., from a different input
buffer address. The parallel correlators are always fed
with the same input. Up to 32 complex valued
coefficients vectors, with 1-bit real and imaginary
components, can be loaded to the coefficient registers.
This feature is needed, e.g., in the second phase of the cell
search procedure in WCDMA [7].

5.1. The Datapath

The datapath of the coprocessor includes six
processing units (PU). These can execute a butterfly
operation or simple a multiply-accumulate operation. In
the FFT mode, the PUs are connected in the pipeline
structure of the SDF architecture, and in the Rake mode,
each of the PUs can be used as a parallel correlator. Each
PU is connected to the sample input, twiddle/code input,
the register resources, and the adjacent PUs. All the
register resources are connected to a crossbar switch that
is responsible for establishing the connections between
the registers and PUs. In 64-point FFT, a total of 126
registers are needed to form the delay line structures of
the SDF architecture and in the Rake mode 48 registers
are needed for despreading six parallel code channel and
four multipath components. These registers have to be
double length to avoid overflows when despreading with
long spreading factors.

5.2. The Processing Unit

The processing units perform the butterfly operations
in the FFT mode, and the multiply-accumulate operation
in the Rake mode. A butterfly operation in decimation-in-
frequency (DIF) FFT is composed of one complex
addition, one complex subtraction and one complex
multiplication. This requires a total of four adders, two
subtracters, and four multipliers. In the Rake mode, the
operation of the PUs is much simpler. As the spreading

Coprocessor Bus

Instruction
Decode

Instruction FIFO

]

Control

Parameter
Registers

Code/Twiddle
Generators

sample input

I i

Output FIFO

Coefficient
Registers

Datapath

Fig. 2. The architecture of the Rake/FFT coprocessor.

sample Input Buffer
steam
Spreading pu || Corelation
Code I Registers .
Spreading |_|
Code P
Spreading pu o] Corelaton
Code I Registers .

Fig. 3. The FlexRake architecture.

Correlation
Registers

sample
stream

Input Buffer

Twiddle
Fig. 4. A single delay-feedback implementation of the FFT.

and scrambling codes are always sequences of *1 the
complex multiplication in the correlations is simplified to
a simple sign change operation. Hence, the whole
multiply-accumulate operation in the Rake mode can be
executed with a two stage adder/subtracter structure. The
computation resources are shared between the two modes
of the PU, and the selection between the two modes is
made automatically by the hardware.

6. The Programming Interface

The programming interface of the coprocessor is
implemented with a library of coprocessor function calls.
The programmer writes code for the COFFEE core and
uses these function calls to initiate the computation
kernels on the coprocessors. The function calls used for
programming the demodulation coprocessor are
described in the following sections. In addition to these
functions, the programmer can use coprocessor read and
write functions to access the parameter and coefficient
registers, and the output FIFO.

6.1. Spreading Code Initialization
The init ovsf function initializes the OVSF code

generators in the demodulation coprocessor. The
spreading factor, the OVSF code number are given as

parameters. The output of the OVSF generators is
automatically fed to the correct correlators.

6.2. Scrambling Code Initialization

The init scode function initializes the scrambling
code generator in the demodulation coprocessor. The
scrambling code number is given as a parameter. When
the initialization is completed, the core is interrupted. The
output of the scrambling code generator is fed straight to
the correlators when used with the despread function and
the phase of the code is automatically incremented during
the correlation.

6.3. Multipath Delay Setting

The init multipaths function is used to set the
delay profile of the multipath channel. The delays of the
multipath components are used in the coprocessor to
access the correct samples from the input buffer. The
delays are given as input parameters in integer multiples
of samples and up to three delays can be set. If no
multipath delays are set, all correlators are fed from the
same input buffer address.

6.4. Initialization of Correlation Coefficients

The init corr coef function initializes a
coefficient vector, other than an OVSF code or twiddle
factors, to one of the coefficient registers of the
coprocessor. The desired coefficient register number is as
a parameter. The initialization is performed by first
giving the init corr coef command and then
sequentially writing the coefficients to a specific
coprocessor register. The length of the coefficient vector
is also given as a parameter. After decoding the
init corr coef operation, the coprocessor waits until
the coefficients have been written into the coefficient
register.

6.5. Despreading

The despread function initiates the despreading
operation (or any other correlations) in the demodulation
coprocessor. The number of the parallel correlations is
given as a parameter. The coefficients for each correlator
are read from specific coefficient registers. The start
address of the correlation window is given as a parameter.
This address is used as the base for the offset addressing

that employs the multipath delays. Other input
parameters include the number of symbols to be despread
(number of correlation iterations), a flag that turns the
feed of the scrambling code to the PUs on and off. After
the despreading execution completes, the coprocessor
writes the demodulated symbols to the output FIFO and
interrupts the core.

6.6. FFT Computation

The ££t function initiates the FFT computation in the
demodulation-coprocessor. The start address of the FFT
window and the length of the FFT are given as
parameters. The twiddle factors are automatically
initialized upon the first FFT computation, or whenever
the length of the FFT changes. When the execution
completes, the outputs are reordered and written to the
symbol FIFO, and the core is interrupted.

7. Simulation and Synthesis Results

The platform was first simulated with a clock cycle
accurate and bit accurate C/C++ testbench, running on a
PC workstation. SystemC libraries were used to model
the fixed-point data types, the parallelism, and timing
behavior.

The main focus of the functional simulations was to
test the platform concept and the programming interface
designed for the coprocessor. In addition, the minimum
clock frequency of the platform, needed to run the
simulated procedure was computed. In the WCDMA
mode, demodulation of a downlink dedicated physical
data channel (DPDCH) with three parallel code channels
and spreading factor SF=32, required minimum clock
frequency of 90 MHz. In the OFDM mode, demodulation
of a WLAN data packet with QPSK modulation required
minimum clock frequency of 120 MHz.

After the functional simulations, the coprocessor was
implemented with RTL VHDL description. Synthesis
with a 0.13 pum standard cell CMOS technology resulted

in 1.32 mm? chip area. A simulation of WCDMA
demodulation with the synthesized gate-level circuit
resulted in a power consumption of 33.8 mW with a clock
frequency of 90 MHz and 1.32 V supply voltage.
Similarly, an OFDM synchronization simulation resulted
in 47.2 mW with a clock frequency of 120 MHz.

8. Conclusions

As wireless communications evolve towards
multistandard systems, managing the system complexity
of portable wireless devices becomes one of the biggest
design challenges. Programmability of the baseband
receiver will be of paramount importance. The proposed
coprocessor architecture enables programmable
implementation of WCDMA and OFDM demodulation.
The programming interface of the coprocessor is realized
with a set of coprocessor function calls. Because these
functions are only used for passing the input parameters

to the coprocessor and initiating the computation, the
employment of the application-specific hardware
resources does not require a customized compiler or limit
the productivity of the software development. The
datapath of the coprocessor is optimized for executing
Rake receiver and FFT functionalities. The coprocessor
architecture has been simulated on a SystemC-based
testbench and implemented with RTL level VHDL
description. An overview of the provided coprocessor
functions and results of the simulations were given.

9. Acknowledgments

This work has been supported by the EU-project SoC-
MOBINET (IST 2000-30094), the Nokia Foundation, the
Finnish Cultural Foundation, Walter Ahlstrom
Foundation, and the HPY Research Foundation.

10. References

[1] S.Y.Huiand K. H. Yeung, “Challenges in the Migration to
4G Mobile Systems,” [EEE Communications Magazine,
vol. 41, no. 12, pp. 54-59, Dec. 2003.

[2] Y. Neuvo, “Cellular Phones as Embedded Systems,” in
Digest of Technical Papers IEEE Solid-State Circuits
Conference, Feb. 2004, vol. 1, pp. 32-37.

[3] 3GPP System to Wireless Local Area (WLAN) Network
Interworking; System Description, 3GPP Technical
Specification 23.234, Rev. 6.1.0, 2004.

[4] 1. Kylliainen, M. Kuulusa, and J. Nurmi, “COFFEE—A
Core for Free,” in Proc. International Symposium on
System-on-Chip, Tampere, Finland, Nov. 2003, pp. 17-22.

[5] L. Harju and J. Nurmi, “A Programmable Baseband
Receiver Platform for WCDMA/OFDM Mobile
Terminals,” in Proc. IEEE Wireless Communications and
Networking Conference, New Orleans, LA, USA, Mar.
2005.

[6] R. Leupers, “Compiler Design Issues for Embedded
Processors,” IEEE Design & Test of Computers, vol. 19,
no. 4, pp. 51-58, July 2002.

[7] H.Holma and A. Toskala, WCDMA for UMTS, John Wiley
and Sons Ltd, West Sussex, England, 2001.

[8] J. Heiskala and J. Terry, OFDM Wireless LANs: A
Theoretical and Practical Guide, Sams Publishing,
Indianapolis, IN, USA, 2002.

[9] L.HarjuandJ. Nurmi, “A Baseband Receiver Architecture
for UMTS/WLAN Interworking Apllications,” in Proc.
IEEE Symposium on Computers and Communications,
vol. 2, Alexandria, Egypt, June 2004, pp. 678—685.

[10] L. Harju, M. Kuulusa, and J. Nurmi, “Flexible
Implementation of a WCDMA Rake Receiver,” The
Journal of VLSI Signal Processing, vol. 39, no. 1-2, pp.
147-160, Apr. 2005.

[11] T. Taskinen, Hardware Implementation Architectures for
Time-Frequency Transforms, Master of Science Thesis,
Tampere University of Technology, Tampere, Finland,
2002.

	harju_nimio.pdf
	harju_nimio.pdf
	Lasse Harju
	Programmable Receiver Architectures for Multimode Mobile Ter

