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Abstract

Fossil fuels, coal and oil are used for energy production around the world. Combustion of
these fossil fuels produces gases and particles that affect air quality and climate. The COq
emissions can be decreased by substituting fossil fuels with biomass and this substitution
can further affect the particle emissions of the power plants. This thesis focuses on
characterising particles of real-scale power plants with various fuels, from combustion to
atmospheric dilution. The studied power plants were a combined heat-and-power (CHP)
plant (combusting coal and a coal—wood pellet mixture) and a heating plant with three
fuel mixtures. The particles were characterised mainly based on particle number size
distribution and number concentration, using aerosol sampling from the superheater area
of the boiler of the CHP plant, the stack of the CHP and the heating plant and the
atmosphere surrounding the CHP plant.

Measurements for the aerosol samples taken from the boiler indicated that the particles
from the combustion of coal and the mixture of coal and industrial pellets had already
formed in the boiler. The formation of the particles was studied by changing the dilution
of the aerosol sample and by comparing the electrical charges of the particles in the
boiler. The coal-combustion particles were around 25 nm in diameter. The addition of
10.5% industrial pellets to the coal caused the formation of a second particle mode, the
soot mode (120 nm in diameter), in the boiler. In the heating plant, the addition of
light fuel oil to heavy fuel oil had a similar effect on the oil-combustion particles. The
particles from the combined coal-and-pellet combustion agglomerated and coagulated
before reaching the sampling point in the stack. These processes, combined with the
effect of an electrostatic precipitator, resulted the mean diameter of the particles to be 80
nm. Further, the flue-gas desulphurisation and fabric filters lowered the particle number
concentrations. The particles measured inside the stack were also observed from the
atmosphere before they were diluted to background concentrations. The flue-gas plume
was measured in four occasions, in three wind directions and with four flue-gas cleaning
and fuel combinations. These measurements resulted in the observation of a new particle
formation in the diluting plume. In the atmospheric measurements, the concentrations
of SO5 and COy played an important role in measuring the dilution process. In the
heating-plant experiment, the characterization of oil-combustion particles showed that
the lower fuel sulphur content decreased the particles’ hygroscopic growth factors.

The atmospheric primary emissions of coal-fired power plants can be effectively lowered
through flue-gas cleaning technologies. In this study, flue-gas cleaning was shown to affect
the flue gas’s particle number and the mass concentration as well as its black carbon
concentration. The cleaning did not prevent new particle formation in the flue-gas plume
in the atmosphere, but it did reduce the potential for particle formation.






Tiivistelma

Fossiilisia polttoaineita kuten kivihiili ja 6ljyéa kdytetddn maailmanlaajuisesti energiantuotan-
nossa. Néaiden fossiilisten polttoaineiden kdyttdminen tuottaa kaasuja ja hiukkasia, joilla
on vaikutusta ilmanlaatuun ja ilmastoon. COs-péaédstéjen vihentdmiseksi fossiilisia polt-
toaineita korvataan biomassalla. Talld voi olla vaikutusta voimalaitoksen hiukkaspééstoi-
hin. Tésséd viitoskirjassa on mééritetty voimalaitoksien hiukkaspééstojen ominaisuuksia
erilaisilla polttoaineilla aina kattilasta ilmakehdén. Tutkitut voimalaitokset olivat yhdis-
tetty sihkon ja lammontuotannon voimalaitos (combined heat and power plant (CHP),
poltti hiiltd seké hiilen ja puupellettien seosta) ja kaukoldmpélaitos, jossa poltettiin kolmea
Oljyseosta. Hiukkasten lukuméardkokojakauma ja lukuméérikonsentraatio méaritettiin
néiytteestd, joka otettiin CHP-laitoksen kattilasta, CHP-laitoksen piipusta, kaukoldm-
polaitoksen piipusta ja CHP-laitosta ymparoivasta ilmakehésté.

Kattilaolosuhteista otetuille aerosolindytteille suoritetut mittaukset indikoivat, etta hii-
len poltosta seké hiili-pellettiseoksen poltosta syntyneet hiukkaset olivat syntyneet jo
kattilassa, eivit ndytteenoton yhteydessd. Hiukkasten muodostumista tutkittiin priméaari-
laimennussuhdetta muuttamalla ja vertailemalla hiukkasissa olevien varausten méaaréa.
Hiilipoltossa muodostuneiden hiukkasten keskiméardinen halkaisija oli 25 nm. Hiilestéd
10.5% korvattiin pelletilld, jonka seurauksena kattilasta otetun niytteen hiukkaskokojakau-
maan muodostui toinen moodi, nokimoodi (keskiméardinen halkaisija 120 nm). Kaukoldm-
pokattilaa tutkittaessa kevyen poltto6ljyn seostaminen raskaaseen polttodljyyn aiheutti
my6s nokimoodin muodostumisen. Hiili-pellettiseospoltossa muodostuneet hiukkaset agg-
lomeroituivat ja koaguloituivat ennen piipun nédytteenottoa. Namé prosessit yhdistettyna
sihkosuodattimen kéayttoon aiheuttivat hiukkasten keskiméaéraisen koon muutoksen 80
nm:iin. Edelleen savukaasun rikinpoistolaitos ja letkusuodattimet madalsivat hiukkasten
lukumadarapitoisuutta. Piipussa mitatut hiukkaset pystyttiin havaitsemaan ilmakehéasta
tehdyissd mittauksissa ennen savukaasun laimenemista ilmakehén taustapitoisuuksiin.
Savukaasuvanan laimenemista mitattiin neljd kertaa, kolmeen eri tuulen suuntaan ja
neljalla eri savukaasunpuhdistus- ja polttoaineyhdistelmélla. Naméa mittaukset osoittivat
ettd laimentuvassa savukaasuvanassa muodostuu uusia hiukkasia. Ilmakehédmittauksissa
SO, ja CO; olivat tarkedssid roolissa laimenemisen tutkimisessa. Kaukoldampodlaitok-
sessa tehdyissd mittauksissa havaittiin myos, ettd polttoaineen madaltuva rikkipitoisuus
pienensi hiukkasten hygroskooppisuuskasvukertoimia.

Voimalaitosten ilmakehé&péédstoja voidaan vihentad tehokkaasti savukaasun puhdistus-
menetelmilld. Tasséd tyossd osoittettiin, ettd savukaasupuhdistimilla voitiin vaikuttaa
hiukkasten lukumééra- ja massapitoisuuksiin sekd mustan hiilen pitoisuuksiin. Savukaasun
puhdistus ei kuitenkaan pystynyt estdméan hiukkasmuodostusta laimentuvassa savukaa-
suvanassa vaikka se vahensi hiukkasmuodostuspotentiaalia.
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1 Introduction

Werner von Siemens created one of the first working generators in 1866, and 16 years later,
the first central power stations were opened in New York and London (Termuehlen and
Emsperger (2003), Thomas (2017)). The coal production and consumption statistics since
1980 are shown in Fig. 1.1 (BP2, 2017). Since 2014, coal production and consumption
have followed a decreasing trend worldwide. Coal consumption was roughly 32 PWh in
1965, which is roughly half of the coal consumption in 2016. In Finland in 2016, coal
consumption was 66.7 TWh, which was 0.10% of the global total (BP2, 2017).
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Figure 1.1: The total coal production (left) and consumption (right) in various regions plotted
as a function of the year. Reproduced from BP2 (2017) with permissions.

Power-plant planning starts with choises regarding the fuel and the power capacity
(electricity, heat, or both). These two factors with the financial costs guide the combustion
method and the amount of fuel needed for energy production. Depending on its quality the
fuel can be burned in burners, over a grate, in a fluidised bed or in an internal-combustion
engine. The combustion of the fuel releases energy, which heats the circulating water
within the walls of the boiler. The energy in the water or steam is used to produce heat,
electricity or both. The energy that is not tranferred to the circulating water remains in
the flue gas. The heat in the flue gas can be further used to heat the steam or the water
in the tubes i.e., in a superheater or, later on to heat the water in an economizer or the



2 Chapter 1. Introduction

combustion air in a reheater. The efficiency of the boiler can vary between 80 and 95%
depending on the plant type. The electricity generating efficiency from the combustion of
fuel is 30—48% which depends on the heat exchangers, steam pressure and temperature.
In a combined heat-and-power (CHP) plant, rest of the heat is captured to district heat.

Once most of the heat has been transferred to the power plants’ steam —water circulation,
the flue gas can be cleaned. This cleaning is needed for environmental reasons. Power
plants have emission limits to protect enviroment. These emission limits are defined for
gaseous compounds and for particles, both of which are released during combustion. Some
of the gaseous compounds can be removed from the flue gas using scrubbers and catalysts,
such as NO, and SOs. Particles in the flue gas can be filtered using the impaction,
diffusion of intersection mechanisms on filters or using the electrical charge of the particles
to collect them on electrostatic precipitator (ESP) plates.

In the beginning, centralised energy production using coal caused environmental problems.
Likens and Bormann (1974) wrote, “..these trends in fuel consumption, fuel preference,
and pollution control technology (increasing height of smokestacks and installing particle
precipitators) have transformed local “soot problems” into a regional “acid rain problem” .
The acid rain problem triggered efforts to control the SOs emissions of power plants.
Currently, the emission problems is global as humans have disturbed the Earth’s climatic
system (IPCC, 2013). The atmospheric levels of greenhouse gases are increasing. Accord-
ing to IPCC (2013), CO2 concentration determines the extent of climatic warming. Thus,
the most effective method to slow down global warming might be decreasing the COs
emissions.

Fossil-fuel combustion is one of the largest sources of CO5 emission. However, the CO5 is
not the only pollutant from combustion, which also produces particles and other gaseous
compounds. The combustion-generated particles are not the only ones that affect the
climate. Some particles form in the atmosphere from vapours emitted by natural sources,
and some are emitted directly from other sources (e.g. sea salt). All the different particles
and vapours mix in the atmosphere, and both their properties and processes that they
undergo in the atmosphere affect the climate. According to Boucher et al. (2013, p. 617,
Fig. 7.18), the total radiative forcing of aerosol particles has a negative effect, although the
uncertainty is high. To know the real effects that aerosols have through radiative forcing,
the primary emissions of particles and gases must be evaluated based on calculations,
from models and/or measurements.

1.1 Research objectives and scope of the thesis

The aim of this thesis is to provide information about the emissions of fossil-fuel-fired
power plants, particularly those that use coal or a mixture of coal and industrial pellets and
three oil fuel mixtures. The characteristics of the emissions provide detailed information
for use in climate models. The characterisation of these emissions provides answers to
the following questions:

e« How do power plants’ fuel choices affect flue-gas particles’ properties?
e What are the primary emissions of power plants?
e How do aerosol particles from combustion behave in the atmosphere?

Chapter 1 highlighted the fuels used in energy production and introduced basic information
about energy production and emissions. The second chapter 2 is about previous power-
plant emission studies. The results from these previous studies are compared with
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the results presented in this thesis. The following chapters expand upon the flue-gas
lifespan. Chapter 3 gives detailed information about the power plants, the fuels and the
measurement instruments used in each measurement setup. Chapter 4 presents the results
related to a CHP plant’s particle emissions, from the boiler to the atmosphere. The
particles originating from combustion of coal and of the mixture of coal and industrial
pellets were characterised from a hot aerosol sample from the boiler. The particles were
also characterised from a sample taken from the flue-gas duct. Measurements were also
made regarding two flue-gas cleaning situations. The results are then shown for the
primary particle emissions of an oil-fired heating plant. The volatility and hygroscopicity
of the particles from the oil-fired heating plant are discussed with the results form the
stack measurements of the CHP plant. The results are presented here because some of the
particles’ atmospheric properties can be also measured from the flue-gas sample before
the gas is emitted into the atmosphere. Lastly, the results for a CHP plant are discussed
in terms of gas concentrations and the particle number concentration in the atmosphere.
Chapter 5 provides a summary of the results and a discussion about this study’s impacts
regarding aspects related to the power-plant emissions.






2 Power-plant emission studies

This chapter focuses on previous power-plant emission studies and features details about
measurement techniques and particle characteristics. This chapter also provides informa-
tion about how the papers included in this thesis relate to the previous literature. The
internal structure of this chapter follows the lifespan of the flue gas: from the boiler to
the atmosphere.

Primary particle emissions due to combustion can be studied in multiple ways, and
this thesis uses two methods. In the first method, particles in the hot flue gas were
characterised, when the flue gas was sampled from the boiler. The second method was
to study the particle emissions from the stack. The hot flue gas measurement from the
boiler provided information about the effect that the fuel had on the particles during
the combustion process. Particle sampling from hot flue gas requires a specific sampler
because the temperatures inside the boilers range from 500 to 1 300 °C. The temperature
of the flue gas is not the only problem; there can be high concentrations of particles and
water, which can condense inside a sampling probe. Some of the previous researches
(Aho et al., 2008; Jiménez and Ballester, 2005) have used a diluting probe that tolerates
temperature over 1 000 °C. These hot temperature diluters were designed to decrease
the sample’s temperature and its water vapour and particle concentrations before the
measurement. The other option for taking particle sample from a hot environment is
to use a non-diluting sampling probe, which only lowers the sample temperature. Such
non-diluting probes have been applied to temperatures of roughly 800 °C. Further, the
sample can be diluted for example with ejector diluters (Brostrom et al., 2007; Davidsson
et al., 2007). Due to the high temperature of the sampling, cooling of the sample can
produce particles (Abdul-Khalek et al., 1999; Sippula et al., 2012) from compounds with
low vapour pressure. On the other hand, diluters can be designed to promote nucleation
of gaseous compounds to the particle phase during dilution (Jiménez and Ballester, 2005).
Dilution affects the measurement results; therefore, the characterization of the dilution is
important.

After the dilution of the flue-gas sample, the particles in the sample can be characterised
based on their properties, such as mass and number concentrations, particle mass and
particle number size distributions and particle diameters. Particle formation, particle mass
and particle number size distributions have been studied both on the real and laboratory
scales with regard to power plants (Joutsensaari et al., 1992; Kauppinen and Pakkanen,
1994; McElroy et al., 1982; Nielsen et al., 2002; Schmidt et al., 1976; Ylatalo and Hautanen,
1998). The real-scale power-plant measurements have been conducted using a sample
dilution and aerosol instrumentation such as electrical low-pressure impactors (ELPIs)
(Keskinen et al., 1992), scanning mobility particle sizers (SMPSs) (Wang and Flagan,
1990), low pressure impactors and electrical aerosol analyser (Liu and Pui, 1975). These
previous measurements for real-scale power plants were made from the ESP inlet.



6 Chapter 2. Power-plant emission studies

There is limited information related to measurements where the flue-gas sample is taken
directly from a real-scale power plant boiler and the particles are characterised with similar
instrumentation and methods than in paper I. Kuuluvainen et al. (2015) made particle
measurements from a bubbling fluidized bed boiler using similar diluter as in paper
I. They made combustion test with fuel mixtures of various fuels: bark, sludge, peat
and solid recovered fuel. They found out that the particle number size distribution was
bimodal. The first mode (20 nm in diameter) was formed in the dilution by condensation
of gaseous species over core particles and this mode was sensitive to measurement location,
fuel mixture and additive feeding. The second mode (80 nm in diameter) was formed
in the combustion and it was more stable than the first mode. In addition to particle
number size distribution measurements, Kuuluvainen et al. (2015) studied the morphology
of the particle from TEM images, the effective density of the particles and the electric
charge of the particles. One key finding was that the effective density of the particles was
nearly constant in the first mode and varied as a function of size in the second mode. The
electric charge of the particles varied between the modes; the first mode had a negative
net charge whereas the second mode had negative and positive net charge depending
on the diameter of the particle. The physical properties of particles (e.g. size, electrical
charge, effective density) provide information about the formation process of the particles.

After boiler, the heat in the hot flue gas is transferred to water. The cooled flue gas can
be cleaned of particles with various flue-gas cleaning devices before the gas is released into
the atmosphere. For example, the CHP plant in papers I, IT and IIT has a six-section
unit ESP, a two-chamber semi-dry flue-gas desulphurisation (FGD) (discussed in Korpela
et al. (2015)) and fabric filters (FF). Regarding the flue-gas cleaning, the previous studies
have been focused on filtration efficiency of the various flue-gas components, such as trace
metals (Helble, 2000) and particulate matter (PM), after undergoing flue-gas cleaning
with the devices. The filtration efficiency of an ESP for various trace metal elements
was found to be around 99% (Helble, 2000). Yldtalo and Hautanen (1998), on the other
hand, studied PM before and after ESP. The collection efficiency of the ESP depended
on the boiler load, the ESP voltages, the operation of the coal mill and the particle size
(Ylitalo and Hautanen, 1998). The most difficult particle diameter range to collect using
an ESP was 0.1-3 pm (Ylatalo and Hautanen, 1998). The operation of the ESP was
sensitive to the particle’s diameter (Yldtalo and Hautanen, 1998). The ESP influenced
the incoming particle number size distribution by removing the larger particles; some of
the smaller particles went through the ESP. The information about the particle number
size distribution after use of the ESP provides information about the collection efficiency
of that ESP. The collection efficiency of an ESP determines the particle number size
distribution of the flue gas that is released into the atmosphere or that is passed to other
flue-gas cleaning devices.

Some previous studies have focused on PM (Cérdoba et al., 2012; Frey et al., 2014; Ma
et al., 2016; Saarnio et al., 2014; Yi et al., 2008), but a few have also considered particle
number concentrations (PN) (Frey et al., 2014; Yi et al., 2008). The characterisation of
fine particles after applying ESP is the focus of papers II and III; further, the particles
have been characterised after flue-gas desulphurisation (FGD) and FF using the same
measurement setup. The main differences between the measurements are often the diluter,
the dilution temperature (hot/cold) and the instrumentation choices. Therefore, the
comparability of the measurement results from power plants is difficult. This can slow
down the processes of understanding the properties of particles from similar power plants.
In papers II and III, the power plant under the study is the same as that in Frey et al.
(2014). The biggest difference between the measurements was in the dilution temperature,



which caused some differences in the particle number size distribution results, as discussed
later.

The desulphurisation has been designed to decrease SOy concentration in the flue gas.
However, the SO2 removal efficiency depend on the technique (semi-dry or wet) applied
in the desulphurisation plant. More than 90% of the desulphurisation plants use Ca*"
method world wide and over 85% of them are wet-FGD (Jamil et al., 2013). The wFGD
removes more than 95% of the SOy whereas the removal efficiency is 85-90% for a semi-dry
FGD (Jamil et al., 2013). The semi-dry FGD is normally combined with fabric filters,
whereas after wet-FGD, the emission is directly released to the atmosphere without any
additional filters. Cérdoba et al. (2012) studied the operation of FGD, when mixture
of petroleum coke and coal was combusted in a pulverized coal combustion plant. The
analysis was mainly based on offline samples collected from various parts of the flue-gas
cleaning systems and PM samples collected on filters. Their results showed that FGD
removes PM from the flue-gases. On the otherhand, Saarnio et al. (2014) studied mainly
PM; samples collected before and after semi-dry FGD from a coal-fired power plant. The
analysis made for the PM; samples showed that the particles after ESP, before FGD,
consisted mainly of inorganic impurities of coal. They also found out that the usage
of FGD changed the chemical composition of the particles. After FGD, the particles
consisted mainly of chemical species from reagents used in the FGD process. Based on
the TEM images in Saarnio et al. (2014), the particles were mainly internally mixed after
the FGD but some primary emission particles were also observed separately from the
internally mixed particles. Cérdoba et al. (2012) and Saarnio et al. (2014) both state
that FGD decreases PM emissions and alters the chemical composition of the particles
by removing the primary particles and replacing them with particles released from FGD.
In comparison to Saarnio et al. (2014), the PM measurements were made using online
instrument in papers IT and III. Further, the transmission electron microscope (TEM)
images from particles were used to identify the chemical composition of the particles as
well as mixing state (paper III).

Yi et al. (2008) made the measurements at a coal-fired power plant equipped with bag-
house filters. They studied online particle mass and number size distribution with ELPI
and conducted an offline PM analysis from collected samples before and after bag-house
filters. In addition, they studied morphology of the particles by an electron microscope
and energy dispersive X-ray spectrometer (EDS) analysis. The particle number size
distribution showed a bimodal number size distribution with mean diameters of 100 nm
and 2000 nm. Based on the electron microscope images most of the particles were spherical.
Frey et al. (2014) have also studied a coal-fired power plant but it was equipped with ESP,
FGD and FF. They made volatile particle number size distribution measurements with
SMPS and calculated emission factors for particle mass and particle number. In addition,
they studied the chemical composition of the particles in both flue-gas cleaning situations.
Frey et al. (2014) reported also results for co-combustion of 4.5% of pellets mixed with
coal. However, the main result in Frey et al. (2014) was that the particles from coal-fired
power plant after flue-gas desulphurisation and fabric filters had a negative radiative
forcing (over a dark surface) mainly due to sulphate particles released from FGD. Paper
II and III present similarly to Frey et al. (2014), the particle number size distributions
for non-volatile particles from coal and mixture of coal and 10.5% pellet combustion
situations. Paper III contains calculated emission factors for dust, black carbon and
particle number concentration with both fuels and two flue-gas cleaning situations.

Power plant emissions to atmosphere have been studied on 1970-1980’s when the flue-gas



8 Chapter 2. Power-plant emission studies

cleaning was not widely used. Meagher et al. (1981) studied two power plants combusting
coal containing approximately 3.8% of sulphur. One of the power plants did not have any
flue-gas cleaning systems and the other had a wet flue-gas desulphurisation plant. The
measurements made with instruments installed to an aircraft showed that the atmospheric
oxidation rates were the same and were not affected by the flue-gas cleaning. Liebsch
and De Pena (1982) studied a coal-fired power plant with electrostatic precipitators by
measuring conversion from SO, to SO4% " in a flue-gas plume. The results were similarly
shown in plume travel time as in papers II and IIT and in Dittenhoefer and De Pena
(1978). In Liebsch and De Pena (1982), the measurements were made after the plume
had diluted 5 minutes whereas in papers II and III the measurements were done right
after emission. The largest differences were in cut-point diameter of the particle counter
and the particle number size distribution measurement. The smallest detected particles
were 6 nm in Liebsch and De Pena (1982) and the particle number size distribution was
measured with electrical aerosol analyser (EAA) (cyclic measurement) with the lowest
cut-point of 10 nm. Since then, the flue-gas cleaning devices have become more common
and the aerosol instrumentation has developed so that the smallest detectable particle
diameters are around 2.5 nm when using condensation particle counters (papers II and
ITI) and the particle number size distribution can be measured 1 Hz time resolution down
to 5.6 nm particles in diameter (papers II and III).

Emission-controlling devices have been installed in power plants to achieve the emission
limits set by governments and other authorities. The emission limits of a power plant vary
depending on its age, fuel, power /size, yearly operation hours and location. Emission limits
are mainly set for PM, NO, (as NO3) and SO4 or SO3. In addition, the concentration of
heavy metals in particles and in gases can be regulated; for instance, in coal-fired power
plants, it is mandatory to measure the total Hg concentration of the flue gas once per
year. Finnish and EU laws regulate the emission limits for power plants (Ministry of
the Environment, 2014). Continuous measurements of SOs, NO,, PM, Oy, temperature,
pressure and HyO are required for all power plants that exceed 100 MW in power. The
H50O concentration measurement is not mandatory if the regulated measurements are
made on dry flue gas. The law allows exceptions to these emission measurements based on
operation hours or fuel. These regulations and emission limits have affected the gaseous
and particulate concentrations in the flue gas emitted to the atmosphere.

Once flue-gas flow enters the atmosphere, it starts mixing with the surrounding air.
Diffusion, convection and turbulent mixing of flue gas and air cause this natural dilution.
The rate at which the flue gas dilutes depends on the source strength, the background
concentration and meteorology (Stevens et al., 2012). The dilution can be studied through
in-flight measurements taken from an aircraft (Brock et al., 2002; Keil et al., 2002;
Lonsdale et al., 2012; Stevens et al., 2012) such as an ultralight aircraft (Junkermann
et al., 2011a) or a helicopter (papers II and IIT). To understand this dilution, these
flights should be made crosswind, upwind and downwind from the source. Stevens et al.
(2012) and Lonsdale et al. (2012) have studied long-distance crosswind profiles of the
plumes’ gas and particle concentrations as a function of the distance from the stack. In
Junkermann et al. (2011a), the focus of the measurements was mainly in the upwind and
downwind directions, but some crosswind profiles were also measured.

The dilution of a fresh flue-gas plume can be traced using a trajectory calculation or with
gaseous tracers. The gaseous tracers for the fresh flue gas included COg, HoO and Og
(Junkermann et al., 2011b); and SOy and NO, (Lonsdale et al., 2012); SO, CO, HNO3,
total reactive gas phase nitrogen (NOy=NO+NO;+HNO3+PANs+RONOs...), NO and



NO; (Brock et al., 2002). These gases can be classified into two groups: non-reactive (COq,
H50) and reactive tracers (all others). In addition to gases, primary particles can be used
to trace a flue-gas plume in the atmosphere. The primary emissions in the flue-gas plume
have been measured through particle number size distribution (Junkermann et al., 2011b;
Lonsdale et al., 2012; Stevens et al., 2012) and number concentration. Measurements have
been conducted with a condensation particle counter (CPC) battery (Brock et al., 2002)
and an optical particle counter (Brock et al., 2002). In some cases, the measurement
instruments have observed new particle formation in diluted plumes (Junkermann et al.,
2011a; Stevens and Pierce, 2014; Stevens et al., 2012) within a few and tens of kilometres
from a power plant. Stevens and Pierce (2013) made a parameterisation for particle
formation in sulphur-rich plumes. The equations regarding sulphuric acid formation and
nucleation in paper IT were taken from Stevens and Pierce (2013) and used to produce
a simplified model to compare the experimental results with those from a sulphuric-acid
nucleation model. A more detailed model have been published by Lazaridis et al. (2001)
which for example includes more detailed chemical reaction models of gaseous compounds,
deposition and condensation.

The dilution of atmospheric flue-gas plume and atmospheric oxidation processes are
difficult to study due to multiple variables. The variables can be weather, flue-gas
cleaning devices and precursors. Brock et al. (2003) made atmospheric measurements
with aircraft near Houston, Texas. One of the studied sources was a coal-fired power
plant. The main gaseous emission components of the power plant were NO, and SO5 and
the power plant did not emit high concentrations of volatile organic compounds (VOCs)
or PM. Brock et al. (2003) found out that the SOz mixing ratio correlated well with the
particle volume concentration. However, they also found out that nitrates and organics
were the main contributors for particle growth in the flue-gas plume. Similar results have
been reported by Pirjola et al. (2015) for internal combustion engines and by Kulmala
et al. (2013) for atmospheric nucleation processes. Results presented in paper IT suggests
similar results related to the observed particle formation yet measuring also the dilution
process before the particle formation in the atmosphere.

Further, the particles emitted from the stack or the particles formed in the atmosphere are
exposed to various atmospheric conditions such as humidity, radiation and temperature.
The particle properties such as hygroscopicity is discussed in paper IV for combustion
originated particles. If the particle has hygroscopic tendencies, it will absorb water from
the surrounding gas. In paper IV, the hygroscopic growth factors were determined for
three fuel mixtures combusted in a real-scale power plant. In the study of Henning et al.
(2012) the soot particles were generated with soot generator and in Happonen et al. (2013)
the particles were in the engine exhaust. The hygroscopicity was estimated based on a
growth factor; the ratio between the particle diameter in the humid environment and
the particle diameter in the dry environment. Soot particles were found to have growth
factors close to one, so no clear indication of hygroscopic growth. The hygroscopicity of
the particles is also affected by the chemical composition of the particles and one of the
most important components is sulphate (Henning et al., 2012).

Hygroscopicity of the particles is linked with the volatile compounds on the particles. For
example, nucleation mode particles originated from sulphuric acid are volatile (Ronkko
et al., 2013), the volatility can be measured using thermodenuder (TD) heated up to
265 °C. The volatile fraction consists of compounds that are in gaseous phase in high
temperature exhaust but condense on particle surfaces in cooling dilution of exhaust. The
amount of volatiles varies depending on the fuel sulphur content and engine load (Rénkko
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et al., 2013). Actually, similar information about the condensation of volatile species on
particles can be obtained with dilution ratio tests as in paper I or with fuel changes
(Kuuluvainen et al., 2015). In paper IV, the TD method was used to the particles from
an oil-fired heating plant, where the volatility was linked with hygroscopic properties of
the particles.

In this thesis, particle emissions of a real-scale power plant were characterised simultane-
ously with the state-of-the-art instrumentation and dilution. Physical properties of the
particles were used to characterise the formation mechanisms in the boiler conditions,
after flue-gas cleaning devices and in the atmospheric conditions. The characterisation of
the particles in the boiler was made combusting two fuels: coal and a mixture of coal and
10.5% wood pellets. The effect of flue-gas cleaning on the particles was studied in two
flue-gas cleaning situations after electrostatic precipitators — with and without flue-gas
desulphurisation and fabric filters. The atmospheric measurements were made in each
of the previous cases by following the diluting plume with a helicopter. The helicopter
enabled one second sampling resolution for particle number concentration, for particle
number size distribution and for selected gaseous components. In addition, particle
number size distribution, hygroscopicity and volatility were measured for particles from
an oil-fired heating plant. Moreover to particle emission characterisation, the connecting
factor in the fuel choices of the power plants was the mixing of widely used fossil fuels,
such as heavy fuel oil and coal, with more refined and presumably more environmentally
friendly fuels, namely industrial pellets and light fuel oil.



3 Experimentation

This chapter focuses on describing the power plants, fuels and measurement locations, and
it also gives an overview of the measurement instruments and setups used in papers I,
IT, ITT and IV. First, the CHP plant and its fuel characteristics are introduced. Second,
the measurement methods applied in the boiler (paper I), stack (papers II and III)
and atmospheric (papers II and IIT) measurements are discussed. Third, the oil-fired
power plant, fuel mixtures and measurements are described (paper IV).

3.1 Coal-fired power plant

The studied power plant was a base-load CHP plant situated in Helsinki, Finland (see
Fig. 3.1). The power plant had two boilers (each 362 MW,;,) that entered use in 1974
and 1977, respectively. The boilers were equipped with reheaters and utilised a natural
circulation of flue gas. Each boiler had 12 pulverised fuel burners situated on its front wall.
The burners had been upgraded to high-temperature NO, reduction (HTNR) burners
(Tampella/Babcock-Hitachi) (Ochi, 2009) in 1992 and 1993, respectively to achieve lower
NO, emissions. The combustion air, which was also the carrier air for the pulverised fuel,
was heated up to 350 °C before reaching the fuel grinders. The fuel was then ground
using ball-ring grinders (nine rolling balls) before being blown through a sieve to the
burners.

The low-NO, burners were used to achieve reduced NO, concentrations by staging the
combustion air to secondary and tertiary air. The air staging lowered the combustion
temperature to around 1 100 °C. A pellet-feeding system was installed in the power plant
prior to the measurements. This system fed wood pellets to two of the four ball-ring
grinders. The wood pellets and coal were then ground together. The combined grinding
affected the fuel particles’ diameters. The sieve returned any particles that were still
too large to the grinders, which had been designed for coal grinding. The normal size
range for coal particles is 47-62 pm (58—69% below 74 um and 100% below 600 pm).
The wood pellets’ properties affected the grindability, so the fuel-particle size changed
depending on the amount and the quality of the wood pellets.

3.1.1 Coal- and wood-pellet characteristics

The studied wood pellets were industrial quality wood mixed with coal; the pellets
provided from 6% to 10.5% of the boiler’s thermal power. Industrial pellets (or wood
pellets of industrial quality) fulfill the EN 14961-1 standard, which states that such pellets
have lower quality than do domestic pellets. A low-quality wood pellet is defined one
that includes bark. Normally, wood for these pellets is produced by grinding logs or stem
wood to a powder and then drying that powder before pelletizing it. This manufacturing

11
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Figure 3.1: Hanasaari CHP power plant situated in Helsinki, Finland. The measurements in
papers I, IT and III were conducted at this power plant.

method makes the industrial pellets more brittle than domestic pellets. A mixture of
coal and industrial pellets results in a fuel-particle diameter ranging from 54 to 174 wm
(28—59% below 74 um and 79—-99% below 600 um). A comparison of the fuel particles’
mean diameters shows that the coal -industrial pellet mixture is ground to larger particles
than coal alone is.

Table 3.1: Properties of coal and the pellets used in the combustion tests made in a CHP plant.
Adapted from papers I, I, III.

Industrial pellet Coal
Moisture % 6.7 11.0-11.3
Ash % 0.8 10.5-11.4
Volatiles % 78.1 32.8-33.1
Heating value GJ/t 17.7 24.6-24.9
C % 474 62.3-63.1
H % 5.6 4.1-4.2
N % 0.1 1.8-2
(0] % 39.4 0
S mg/kg dry 180 31004 600
Cl mg/kg dry 39 236
Ca mg/kg dry 2 300 4 300—-4 800
Mg mg/kg dry 280 17001 900
Na mg/kg dry 69 14001 600
K mg/kg dry 760 2 5002 900
Al mg/kg dry 130 14 200-15 000

The source wood’s chemical composition and the pelletizing method affect the pellet’s
chemical composition. The properties of coal and industrial pellets are listed in Table 3.1.
Coal had higher moisture and ash content. The O and volatile content were higher in the
pellet than in the coal. The concentrations of S and Cl, however, were lower in pellet
than in coal. In fact, the alkali metals (K and Na) had lower concentrations in the pellet
than in the coal as well. The heating value of the pellet was lower than that of the coal.
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Figure 3.2: A schematic picture of the Hanasaari CHP plant, which utilises both coal and
coal —pellet-mixture combustion. The measurement locations in papers I, IT and III are
indicated with arrows: the boiler, the stack and the atmosphere. Figure courtesy of Helen Oy.

3.1.2 Measurement instruments and flue-gas treatment devices

The flue-gas aerosol of the coal-fired power plant was studied in three locations: boiler,
stack and atmosphere; the locations are shown in Figure 3.2. In the power plant, each of
the boilers had its own flue-gas duct. One of the boilers and the corresponding duct inside
the stack were used in the experiments. The flue-gas sample was measured after two
flue-gas cleaning situations: first, after an ESP, and second, after the ESP and semi-dry
FGD unit and FFs. These situations are later referred as FGD+FF off and FGD+FF
on, respectively. The flue-gas ducts had their own ESPs, FGDs and FFs so, the flue gases
were not mixed before reaching the stack measurement location. However, the flue gases
were mixed when they entered the atmosphere.

The atmospheric measurements were made with instruments installed in a helicopter.
The flue gas from the two boilers that had their own flue gas ducts became mixed when
released into the atmosphere. The mixing of the flue gases in the atmosphere meant that
the measurement instruments inside the helicopter were measuring mixed flue gases. In
the FGD+FF on situation, both of the flue-gas cleaning devices were operating, whereas
in the FGD+FF off situation only the studied flue gas was bypassing the FGD and
FF; the gas in the other flue was cleaned with FGD and FFs. An image related to the
helicopter measurements is shown in Figure 3.3. Figure 3.3 shows that the flue-gas plume
could be detected with the eye. The helicopter flew both upwind and downwind of the
plume and also made some crosswind flights. More details about the helicopter flight
paths are in paper II (Figure 1) and paper III (Figure SI1).

Combustion aerosol contains high concentrations of gases and particles. Sample dilution
is needed, as flue gas contains high concentrations of water, and the aerosol instruments
work at room temperature and are designed to measure relatively low particle number
concentrations. On the other hand, gas analysers need particle-free air and low concen-
trations to maintain their detection accuracy. Table 3.2 is a brief list of the locations
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Figure 3.3: A picture of the measurement of atmospheric dilution of flue gas from pulverized-
fuel combustion. Measurements were made by aerosol instruments installed in a helicopter.
The figure demonstrates that the flue-gas plume can be visually observed while conducting
measurements.

of the measurement instruments and gas analysers applied in papers I, IT and III.
More detailed measurement setups are presented in Figure 3.4, which provides additional
information about the sampling line lengths and the arrangement of the instruments.

Flue gas can contain volatile gaseous species that can condense on the surfaces of
primary particles (Lyyrédnen et al., 2004). The condensation of these volatile species
can be observed from the particle number size distribution (e.g. as a change in the
mean particle diameter). The primary diluter used in the boiler measurements had
three primary dilution ratios. The dilution-ratio tests were used to evaluate the places
where the particles formed. If particles formed in the dilution, the primary dilution
ratio changes should have changed the nature of the particle number size distribution
because of the volatile species. To support the primary dilution-ratio tests, the electric-
charging probability of the particles was determined based on neutral and charged particle
concentrations. These concentrations were measured with a mini-ESP and a SMPS
consisted of a differential mobility analyser (DMA) and a CPC. The electric-charging
probability values were compared with the particle-equilibrium charge distribution (by
Boltzmann; see Hinds (1982, egs. 15.30 and 15.31)) to obtain information on the particles’
formation temperature. The calculation of the Boltzmann particle-equilibrium charge
distribution relied on the combustion temperatures in the boiler and on the particle size.

The dilution process was not tested in the stack measurements, as the temperatures of the
sampling probe and dilution gas were higher than that of the flue-gas. Moreover, a TD
(Heikkild et al., 2009) was used in the stack measurements to ensure the measurement of
nonvolatile particles. However, the flue gas taken with the helicopter needed no additional
dilution because of the natural dilution in the atmosphere. The atmospheric sample was
diluted naturally in the atmosphere and was captured with measurement instruments
(Table 3.2) installed in the helicopter.

3.2 Oil-fired power plant

The other studied power plant was a peak-load power plant; it was also situated in
Helsinki, Finland. The studied boiler (47 MW,,) was an oil-fired water-tube boiler (Foster
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Table 3.2: Sampling techniques, measurement instruments and gas analysers used
at various locations within the power plant in papers I-III.

location device manufacturer
PTD'+E? self-made and Dekati Ltd.
ELPI® Dekati Ltd.
Boiler SMPS* TSI Inc.
CO» analyser FTIR? DX-4000 Gasmet
CO3 analyser SIDOR SICK Maihak
FPS°+E? Dekati Ltd.
ELPI3 Dekati Ltd.
SMPS” TSI Inc.
CpC8 TSI Inc.
Stack A 9 o
ethalometer AE33 Magee Scientific
CO; analyser VA3100 Horiba
CO; analyser GM 35-type SICK
SO, analyser GM 32-type SICK
CPC® TSI Inc.
EEPS!0 TSI Inc.
Atmosphere CO4 analyser G1301-m Picarro
SO, analyser 43i Thermo Scientific
RH''analyser

! porous tube diluter, Vesala (2007), Aho et al. (2008)

2 ejector, Giechaskiel et al. (2004)

3 electrical low-pressure impactor, Keskinen et al. (1992), Marjaméki et al.

(2002), Yli-Ojanpera et al. (2010)

scanning mobility particle analyser, DMA3071 (differential mobility anal-

yser) and CPC3025 (condensation particle counter), 0.6 slpm/6 slpm,

Wang and Flagan (1990)

5 Fourier transform infrared spectrometer

6 Fine-particle sampler (FPS), Mikkanen and Moisio (2001)

7 scanning mobility particle analyser, DMA3071 and CPC3775, 0.6 slpm/6
slpm, Wang and Flagan (1990)

8 condensation particle counter, CPC3776, 1.5 slpm, Stolzenburg and Mc-
Murry (1991)

9 Drinovec et al. (2015)

10 Engine-exhaust particle sizer, Mirme (1994), Johnson et al. (2004)

I Relative humidity

4
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Wheeler) with a rotary cup-type burner. The boiler entered operation in 1995. In paper
IV, the boiler operated at 30 MW. The usage hours of the plant alternated on yearly
basis, from 1 458 hours in one year to 2 164 hours in the next year. The boiler typically
operated with two fuels: natural gas and oil. The power plant had one stack (108 metres
tall) with two inner ducts, and it lacked flue-gas cleaning devices.

3.2.1 Oil characteristics

The oils (Table 3.3) were stored in their own containers and blended before combustion.
The purpose of the blending was to lower the viscosity of the heavy fuel oil (HFO), as
the viscosity of HFO is almost 50 times higher than that of light fuel oil (LFO). Still, the
fuel blend had to be heated both before and during blending and before combustion. In
paper IV, three oil blends were combusted during the measurements:

« HFO
o water emulsion (em.) of HFO (HFO+-em.)
e 66 mol-% HFO and 34 mol-% LFO blend with em. (HFO+LFO+em.)

The water emulsion was obtained by mixing district heating water with the oil blend.
The amount of added water varied from 3 to 4 L min~?! (i.e. it was less than 10% of the
total fuel consumption).

Table 3.3: Properties of heavy and light fuel oils used in measurement at a peak-load power
plant. The water content of the fuel was determined either with the Karl Fischer method or by
distillation. Adapted from paper IV.

Heavy fuel oil Light fuel oil

Water (by distillation) mol-% <0.05 -

Water (Karl Fischer) mg/kg - 35
Density gem™  0.956 (at 60 °C) 0.8183 (at 20 °C)
Viscosity mm? s7!  99.52 (at 60 °C)  2.60 (at 20 °C)

Heating value (calculated) GJ/t 40.9716 43.3548
Ash m-% 0.04 -
C mol-% 87.2 85
S mol-% 0.89 0.01
N m-% 0.31 -

3.2.2 Measurements

The flue-gas sampling and dilution system used in the stack measurements for the heating
plant in paper IV (Fig. 3.5) was similar to the dilution system used in papers IT and
IIT. In the fine-particle sampler (FPS), the dilution air was heated to 39 °C. The total
dilution ratio was around 60 during the measurements. After the dilution, the flue-gas
sample was captured by the instruments with an approximately 10-metre-long copper
line. The diluted flue-gas sample was divided into four branches, each with measurement
instruments. The first branch consisted of a PM1-cyclone and a CPC3010 (TSI Inc.),
plus a soot-particle aerosol mass spectrometer (SP-AMS) (Aerodyne Research Inc.). The
second branch had a nano-micro orifice uniform-deposit impactor (MOUDI) (model 125B,
MSP Corporation, Shoreview, MN, USA). This device was used for size fractioned PM
collection to obtain mass samples for elemental analysis. The third branch led to NO, and
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CO; analysers. The CO4 concentration was used to calculate the total dilution ratio for
the flue-gas sample. The last branch had a TD before reaching the site of the particle size
distribution measurements. The particle number size distributions were measured with an
ELPI (Dekati Inc.), a nano-SMPS (TSI Inc.) and a SMPS (TSI Inc.). The fourth branch
also had a hygroscopic tandem differential mobility analyser (HTDMA) (introduced in
paper IV and in Happonen et al. (2013)) to measure the particles’ hygroscopicity. The
TD was used to study the volatility of the particles.
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Figure 3.4: Measurement setups used at t

he various measurement locations within the CHP

plant: (a) boiler, (b) stack and (c) atmosphere. Instuments used in the measurement setups are
presented in Table 3.2. The E1 and E2 corresponds to ejector diluters, F' stands for filter, PM1
means cyclone with 1 um cut-off diameter and TD is the thermodenuder. The dashed line in (a)

represents 11-m long sampling line.
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4 Results and discussion

The results of papers I, IT and III are presented here in the order following the path
of the flue gas from the boiler to the atmosphere. These results are mainly related to the
CHP plant, and the results for the heating plant (paper IV) are clearly indicated. The
first section focuses on the particles in the boiler, and specifically those in the superheater
area. The second section focuses on the particles after the flue-gas cleaning. This section
also includes measurements of the particle characteristics that have atmospheric relevance
(hygroscopicity and volatility) from the flue-gas duct of the oil-fired power plant. Lastly,
the results of the atmospheric dilution of the flue-gas plume are presented. The results
regarding both the dilution process and the new particle formation are discussed in the
final section.

4.1 Characterisation of particles from the combustion of coal
and a mixture of coal and industrial wood pellets

In paper I, the dilution of the sample was conducted at a higher temperature than
in the previous studies concerning pulverised coal combustion. Additionally, the fine-
particle characterisation in paper I was more detailed than that in the previous studies
by Joutsensaari et al. (1992), Kauppinen and Pakkanen (1994), McElroy et al. (1982),
Yldtalo and Hautanen (1998), Schmidt et al. (1976) and Nielsen et al. (2002) in terms of
the fine-particle number and mass size distributions, as well as particles’ effective density
and charging state (as described in Sec. 3.1.2).

In paper I, the dilution ratio of the primary diluter was changed to study the effect that
the diluter would have on particle formation. Figure 4.1a shows that the change in the
primary dilution ratio did not affect the shape of the particle number size distribution.
The particles’ mean diameter was 25 nm for all the dilution ratios, which indicated that
the particles formed in the power plant’s boiler rather than in the diluter. This result
also indicated that the gas phase did not contain low-vapour-pressure gases that could
condense on the particles’ surfaces.

To further characterise the particles, the particle-charging probability was calculated from
the SMPS measurements, which were made with and without a mini-ESP (Figure 4.1b).
This probability was linked with the particle-equilibrium charge distribution (by Boltz-
mann; see Hinds (1982, egs. 7-31 and 7-32)), which depends on the particles’ formation
temperature and the particle number concentration (Burtscher et al., 1986). Wiedensohler
(1988) made a parameterisation for the particle-equilibrium charge distribution. The
Wiedensohler parameterisation is valid at room temperature. The charge probability has
also been used as an indication of the particles’ formation temperatures (Alanen et al.,
2015; Lahde et al., 2009; Maricq, 2006; Sgro et al., 2011). Here, it was used for supporting
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Figure 4.1: Particle number size distributions measured with SMPS for (a) total dilution ratios
of 294, 490 and 1022 by changing the primary dilution ratio and (b) the fraction of charged
particles in the size range of 20—70 nm with three fuel mixtures. In (b), B293K, B773K, B1073K
and B1373K refer to Boltzmann particle-equilibrium charge distribution at the given temperature
(in Kelvins). The labels W1 and W1+W?2 refer to the Wiedensohler parameterisation for 1 and
2 elemental charges in a particle, respectively. The charging probabilities were then calculated
for combustion coal, coal + 6.6% industrial pellets, and coal + 10.5% industrial pellets. These
measurements were conducted for flue-gas sample from the superheater area of CHP plant.
Modified from paper I.

information, along with the primary dilution-ratio tests, to show that the 25 nm particles
formed in the boiler and not in the diluter. Figure 4.1b shows that the particles in the
boiler had three to four times as much charge as the ones formed at room temperature.
The Boltzmann equilibrium charge probability at 800 K is the closest one to the measured
charge probability.

Based on a previous study (Nzihou and Stanmore, 2015), the joint-combustion of coal
and wood pellets should increase the PM. However, the PM formation was affected by
the amount of pellets and the pellet quality in paper I. The difference was observed in
the particle number concentration with industrial-pellet —coal mixtures (see Figure 4.2).
The addition of industrial wood pellet decreased the particle number concentration based
on the peak height of the particle number distribution. The results for particle number
concentration in the boiler are also listed in Table 3 in paper I. The mean particle
diameter of the mode was 25 nm for most of the coal -wood pellet mixtures. The coal
and 10.5% industrial-pellet mixture was an exception, as this addition caused another
mode in the particle number size distribution with a mean diameter of 125 nm. The
particles in second mode have higher impact to the volume concentration compared to
the particles in first mode (see Figure 4.2b).

The particle number size distribution of coal with the 10.5% addition of industrial
pellets was found to be bimodal, whereas the other particle number size distributions
were unimodal. The difference in modality could be explained by the fuels’ individual
properties. Transmission electron microscope (TEM) analyses of the particle samples
collected from the boiler were made after the online measurements. The TEM analysis
confirmed the bimodality of the particle size distribution (see Figure 4.3). The qualitative
EDS analysis for 10-25 nm (Figure 4.3b) particles showed that the particles contained Si,
Al P, Fe, Ca and Ti; moreover, the 120-130 nm (Figure 4.3c) particles contained Si, Al,
P, Fe, Ca, Ti and Mg. These chemical compositions supported the elemental composition
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Figure 4.2: (a) The particle number size distribution and (b) the particle volume size distribution
(measured with SMPS) from the superheater area aerosols of CHP plant. Coal and mixture of
coal and 6.6% of industrial pellets resulted nearly unimodal particle size distribution with a
mean diameter of 25 nm. Two particle modes (mean diameters of 25 nm and 125 nm) can be
seen in the size distributions with the mixture of coal and 10.5% industrial pellets. Modified

from paper I.

(a) Overview of particles. (b) 10-25 nm particles. (c) 120-130 nm particles.

Figure 4.3: Particle types observed in the power-plant boiler with coal and 10.5% industrial
pellet mixture, collected onto TEM grids during the experiments at CHP plant. Based on the
EDS analysis, the particles consisted mainly of inorganic material. Adapted from paper I.

that were reported in previous coal-combustion studies (Damle et al., 1981; Flagan and
Friedlander, 1978; Linak et al., 2000; McElroy et al., 1982; Ninomiya et al., 2004; Xu et al.,
2011). In TEM, the 25 nm particles lost some material under the electron beam. This
disappeared material was seen as comprising hollow spherical particles such as red blood
cells. The hollowness of the particles could be related to low-vapour-pressure chemical
compounds exiting the particle under the electron beam.

The effective density calculations made in paper I showed that the effective density
of the particles was approximately 2.05 g cm~3. Thus, the calculated effective density
was higher than 1.3 g cm ™3, which was the previously identified lower limit for mineral
particles (Flagan and Friedlander, 1978). This calculated effective density supported the
EDS analysis of the particles in the TEM. This EDS analysis showed that the particles
consisted mainly of inorganic substances that can be found in minerals.
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The absence or undetectable concentrations of K, Na and ClI in particles indicated that
the addition of 10.5% wood pellets might not increase the corrosion risk of the boiler,
which was in line with the results of studies by Pisa and Lazaroiu (2012) and Montgomery
et al. (2008). The lack of alkalis and chloride was explained by the chemical composition
of the fuels. The 100% coal version had higher total alkali and chloride concentrations
than for the mixture of coal and industrial wood pellets, as the industrial wood pellets
had a lower total alkali and chloride concentrations compared with coal. Consequently,
pellet substitution lowered the total alkali and chloride concentrations in the boiler. The
most important compound to prevent alkali chloride formation has been found to be
sulphur (Brostrom et al., 2007; Montgomery et al., 2008). Sulphur can prevent the
formation of alkali chlorides by reacting with the alkalis by forming alkali sulphates by
consuming the alkalis from the gas phase. The alkali sulphite compounds form at higher
temperatures and are stable after formation. Thus, the alkali sulphate formation could
be used to prevent the formation of alkali chlorides. In paper I, coal contained higher S
concentration than pellets, which decreased the corrosion risk caused by the fuel mixture.
However, it is possible that at some point, the alkali chloride formation can become more
dominant in the flue gas, such as that reported by Pisa and Lazaroiu (2012).

Particles from the wood pellet —coal mixture combustion were on average more electrically
charged than the coal combustion-originated particles. Taking into account that the
pellet —coal mixture produced lower nanoparticle concentrations and higher electrical
charge on nanoparticles, the pellet —coal combustion could lead a slightly more efficient
ESP operation.

4.2 Particle emission of power plants

4.2.1 The combustion of coal and the mixture of coal and industrial
wood pellets

The following paragraphs concentrate more on the differences in the particle emissions
caused by the co-combustion of industrial pellets and coal. A comparison between the
particle number size distributions after the ESP in Figure 4.4 shows that the peak concen-
tration of wood pellet —coal combustion was slightly lower than the peak concentration in
the coal combustion. The particle diameter for the coal combustion after the ESP was 80
nm, which was measured with the SMPS. The wood pellet addition in the boiler did not
change the mean particle diameter after the ESP. The more efficient performance of the
ESP in co-combustion could be due to the higher-charged fraction of particles below 70
nm in diameter or the second particle mode in the particle number size distribution. The
particle number size distribution from the wood pellet—coal combustion after the ESP,
the FGD and the FF was similar in shape to that after the ESP. The peak concentration
was also lower after the FGD and FF than after the ESP. With the coal combustion, the
situation was different in terms of the number size distribution shape. The mean diameter
was shifted to smaller sizes: less than 60 nm in the SMPS compared to co-combustion.

The chemical composition of the particles was obtained using a TEM and an aethalometer,
which measured the absorbed and reflected portion of the light through the particle
collection filter paper. The black carbon (BC) concentration for emission factor calculation
was obtained from the aethalometer 880 nm wavelength (Drinovec et al., 2015). The black
carbon concentration was obtained from the aethalometer signal, which was converted
to mass concentration using mass absorption coefficients. The BC concentration was
three-times higher for mixture of industrial wood pellet and coal combustion (see paper
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Figure 4.4: The non-volatile particle number size distribution of the flue-gas sampled from
stack of the CHP plant. The measurement was made with the SMPS. The studied flue-gas
cleaning situations were with the ESP and with the ESP, FGD, FF. The mean particle diameter
for the particles measured was approximately 80 nm, except the coal-combustion situation with
ESP, FGD, FF. Modified from papers II and III.

IIT) than pure coal combustion (unpublished BC concentrations for coal combustion).
The BC concentrations measured after the FGD and the FF were close to zero, which
was seen as a high standard deviation in the measurement values. Some error in the
results could be obtained from the conversion of absorption signal to a BC mass because
the mass absorption coefficients used to convert the signal of the aethalometer to the BC
mass should have chosen based on the fuel and combustion method (Olson et al., 2015).
Another explaining factor for the BC formation in co-combustion situation could be the
increased amount of fuel and the lack of excess oxygen (Wang et al., 2016). However, the
co-combustion particles contained more BC (Drinovec et al., 2015), causing a warming
effect on the atmosphere. In addition, it was observed that the FGD and FF cancelled
the effect of fuel on BC formation in the combustion.

The TEM images of the particles from the co-combustion (in Figure 4.5) showed three
types of primary particles in the stack after the ESP: inorganic 25 nm (Figure 4.5b)
in diameter (EDS: Si, Al, Ca, P, Fe and Mg), inorganic 400—500 nm (Figure 4.5a) in
diameter (EDS: Si, Al, Fe, K, Ca, Mg and Ti) and soot (Figure 4.5¢) particles. The
small inorganic primary particles (Figure 4.3b) had agglomerated with each other and
had coagulated with the large primary particles (Figure 4.3c) after leaving the boiler. In
addition, the soot particles had formed their own agglomerates, but some small inorganic
particles were also found from the soot agglomerates (EDS: C and small amounts of Si,
Al P and Ca).

After the flue-gas cleaning (ESP, FGD and FF), the agglomerated particles disappeared
due to the FGD and FF. However, the FGD produced new particles (Figure 4.5d, EDS:
Ca, S and small amount of Ti, Si and Mg) that were not observed after the ESP. The
chemical composition of particles after the FGD (S and Ca rich particles) supported
the previous observations made by Saarnio et al. (2014). According to Saarnio et al.
(2014), the FGD plant modified the chemical composition of the particles. After FGD, the
particles contained reagents from the desulphurisation process (e.g. CaSO,4 and NaCl).
Some of the larger primary particles were covered with agglomerates (Figure 4.5¢), which
consisted of primary particles, were also seen in TEM images after the FGD and FF.
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Figure 4.5: TEM images of particles collected from the flue gas on the TEM grids with (upper
row) ESP and with ESP, FGD, FF (lower row) in the flue gas of the CHP plant. The flue-gas
after ESP contained three types of particles (upper part, a-c). First, particles (a) which were
400—-500 nm in diameter and spherical in shape. Those particles had collected agglomerates
(shown in b) on their surfaces. The chemical composition of the spherical particles was mainly
inorganic. Second, particles (b) that have agglomerated to 50—300 nm sizes, depending on
the fractal dimension. The agglomerate consisted of small spherical particles which contained
inorganic compounds based on EDS analysis. Third, another type of agglomerate (c) was over
250 nm in diameter and had a nanostructure of soot. When the flue-gas was cleaned using ESP,
FGD and FF, there was two types of particles. First, particles in a size range of 800—1 600
nm. These particles were irregular in shape and had a porous surface structure. The particles
consisted mainly of Ca®T and SO4%~ (measured with EDS). The second type after FGD, FF was
the large 800—1 200 nm particles, that were irregular in shape and had collected agglomerates
on its surface. Adapted from paper III.

Co-combustion additionally affects the filtration efficiency of the FGD and FF. In
papers 1II and III, the filtration efficiency was evaluated after the flue-gas cleaning,
since bypassing them was fairly simple and did not require any changes to measurement
set-up. The effect of the FGD and FF on the particle number and mass concentration
was remarkable, since the filtration efficiency was 99.9% for the nanoparticle number
concentration and 95-98% for the PM. The filtration efficiency was not affected drastically
by the 10.5% addition of industrial pellets to the coal (see Table 4.1). The FGD and FF
also had an effect on the SOy concentration in the flue gas. The combination of FGD
and FF lowered the SO concentrations by a factor of four (coal + industrial pellet) or
five (coal).
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Power plant emissions can be presented as concentrations or as emission factors. The
particle number and mass concentrations are shown in Table 4.1. Table 4.1 also contains
the calculated emission factors for particle number (EFpy), mass (EFpy) and black
carbon in PM; size fraction (EFpc). The emission factors were calculated using CO»
concentration and the fuel-specific default emission factor for CO5 (t COg TJ™1). The
BC concentration for coal combustion is unpublished data from the same measurement as
papers IT and III. The emission factors were almost the same between the fuel mixtures
after the flue-gas cleaning. The EFpyn was around 102 MJ~!, the EFpc was 14 ng MJ~!
and the EFpy was 2 mg MJ™! for both of the fuels after flue-gas cleaning. Without
the flue-gas cleaning devices (FGD and FF), the coal combustion situation of the EFpyn
was 8.74 - 102 MJ~! and the EFpy; was 91 mg MJ ™!, compared to the wood pellet-coal
mixture combustion of the EFpy was 3.37 - 101! MJ ™!, and the EFpy 50 mg MJ~!. The
biggest difference was observed between the EFpc, because for the mixture of coal and
10.5% industrial pellet, the EFgc was 11.7 ug MJ~!, and for coal combustion, it was 3.6
ug MJ~1 after the ESP.

The emission factors can be used to estimate, for example yearly emissions caused by
coal combustion by taking into account the energy produced by coal combustion and
the emission factors (in Table 4.1). If only the flue-gas cleaning situation with the ESP
was looked at, the global particle number emissions were 2- 1027 particles year™!, 43 000
kt year—! and 830 t of BC in a year calculated with the emission factors in paper III.
The yearly particle number emission was close to the yearly particle number emission for
power production (2.5- 1027, 2010) estimated by Paasonen et al. (2016) with a different
method. Paasonen et al. (2016) also calculated an estimate for yearly particle mass
emission for power production (40 000 kt year—!, PM2.5), which was at the same order
of magnitude as the particle mass emissions from a coal-fired power plant based on the
yearly consumption of coal and usage of the ESP in flue-gas cleaning.

Estimation for Finland’s coal combustion emissions was made using the coal consumption
(66.7 TWh from 2016) and the information about flue-gas cleaning (e.g. all power plants
equipped with ESP, FGD and FF). The estimation was made using emission factors for
particle number concentration (PN) and PM calculated for coal combustion. The yearly
particle mass emissions were 960 t year~! and the particle number emissions 4.7-1019
particles year~!. For comparison, the PM, 5 emissions from traffic were 6 750 t year—! in
2015 and were 13 151 t year—! for energy production (Ymparisto.fi, 2015). Unfortunately,
the data for comparison could not be found from 2016, since the statistics for 2016 will

be released in autumn 2018.

4.2.2 Atmosphere-relevant characteristics of oil-combustion particles

The non-volatile and volatile particle number size distribution of oil combustion is shown
in Figure 4.6. A large number of particles below 400 nm was observed in the flue gas of
an oil-heating plant. The mean particle diameter was around 47 nm for all oil mixtures.
The LFO addition to the HFO—water emulsion mixture caused an additional mode of
around 120 nm, which was close to the size of soot. The addition of water to the HFO
did not change the shape of the particle number size distribution.

The formation of the second mode was observed in the boiler with the lowest sulphur
content of the fuel and with the oil mixture that had the lowest sulphur content. The
lower sulphur content of the fuel has been found to correlate (Ntziachristos et al., 2016;
Sippula et al., 2014) and uncorrelate (Anderson et al., 2015) with soot particles in marine
engines designed for HFO combustion. The BC (measured with SP-AMS) explained
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6—20.3% of the PM; of the oil-combustion emissions. For HFO combustion, the BC
concentration was 0.986 mg m~3, emulsion addition decreased the BC concentration to
0.864 mg m~3 and the LFO addition increased the BC concentration to 3.65 mg m~=3.
The BC results followed the trend set by the co-combustion and the sulphur content of
the fuel.

In Figure 4.6, the particle number size distribution was unimodal with HFO and HFO
emulsion with and without the TD. The non-volatile particle number size distribution
was measured using a thermodenuder heated up to 265 °C. The non-volatile particle
number size distribution peak for the HFO combustion particles was higher than the
peak concentration for the non-volatile HFO and water emulsion particles. The water
emulsion mixed with the HFO lowered the volatility of the particles compared to the
HFO combustion. The difference in the volatility could be due to the higher share of
unknown substances (unanalysed mass in Figure 5, paper IV) or a slightly higher share
of particulate organic matter in the HFO combustion particles (paper IV, Figure 5).

The LFO addition to the HFO emulsion increased the share of particulate organic matter
and unanalysed mass, as well as the amount of volatile compounds in the particles.
The particle concentration in the first mode was increased with the TD, whereas the
concentration in the second mode was decreased. This behaviour indicated that the
particles have grown by condensation of volatile components from the first mode to the
second mode. Because of the TD, the particles in the second mode shrank to sizes that
correspond the diameter of the particles in the first mode. Depending on the atmospheric
conditions, these volatile components on particle surfaces could either evaporate or oxidise,
affecting the particle size and the chemical composition of the particles, and even further,
affect their hygroscopicity.
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Figure 4.6: A particle number size distribution measured with and without a thermodenuder
(TD) from the oil-fired heating plant with three fuels. The fuels were heavy fuel oil (HFO),
heavy fuel oil emulsified with water (HFO+ em.) and mixture of heavy fuel oil and light fuel oil
emulsified with water (HFO4+LFO em.). The vertical lines present the particle sizes selected for
the hygroscopicity studies. Adapted from paper IV.

A simple method used to estimate the hygroscopicity of the particles was to calculate the
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growth factor. The growth factor was calculated by dividing the humidified particle diam-
eter with the dry diameter. The growth factor can also provide information about shape
of the particles (e.g. agglomerates). If the particles are agglomerates, the agglomerate
structure can collapse when exposed to high humidity (Pagels et al., 2009).
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Figure 4.7: The hygroscopic growth factors (GF in the y-axis) of particles from the oil-fired
heating plant measured with and without the thermodenuder (TD) when combusting (a) the
HFO, (b) the HFO emulsion and (c) the HFO+LFO emulsion. The measurements were made
at a relative humidities (RH) indicated in the upper part of the Figure. The dg4-, diameters,
i.e. particle diameters before the humidification, are also marked with grey lines in Fig. 4.6.
Adapted from paper IV.

Figure 4.7 shows the growth factors for each of the studied oil mixtures and three dry
particle diameters (20 nm, 47 nm and 72 nm). The dry particle diameters were also shown
in Figure 4.6 with the vertical dashed lines. The GFs were measured for the volatile and
non-volatile particles at relative humidity, from 86—92%. The HFO combustion produced
particles with growth factors of between 1.2 and 1.4. The HFO emulsion combustion
particles had growth factors from 1.2 to 1.3 with a decreasing linear trend as a function
of increasing dry particle diameter. The HFO, LFO emulsion combustion particles had
growth factors from 0.9 to 1.25 with a steep linear decrease as function of dry particle
diameter.

The TD was used to remove the volatile components from the particles, which means
that the non-volatile particles can still contain inorganic non-volatile species and soot.
The difference in the growth factors of volatile particles and non-volatile particles shows
the difference in the hygroscopic properties of the volatile species. Here, clear differences
were not observed between the growth factors of non-volatile and volatile particles, which
can mean that the volatile species in the particles do not increase the hygroscopicity
of the particles. However, most of the non-volatile particles grew larger in the humid
environment, which means that the inorganic compounds in the particles caused the
hygroscopic growth. This is because the 100% soot does not grow under humid conditions
(Henning et al., 2012). Soot particles mainly contain carbon, whereas the oil combustion
nanoparticles consisted of 10-20% of elements, 25—50% of ions, 6—20.3% of BC and
25-35% of unanalysed matter.

The HFO had the highest sulphur content of the fuels. The more blended the oil mixture
was, the lower the sulphur content was in the oil mixture. The sulphur content of the fuel
was reflected by the sulphate (SO4? ) fraction in the nanoparticles. The HFO combustion
caused the highest fraction of sulphate for the 20 nm particles in diameter, whereas the
other oil mixtures decreased the amount of sulphate in the 20 nm particles. However,
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the 47 nm and 72 nm particles from HFO emulsion and HFO+LFO emulsion combustion
contained a higher amount of sulphate than the 20 nm particles (paper IV, Figure 4).
The sulphur concentration of the fuel (the highest with HFO) did not affect the growth
factors of particles 20 nm in diameter (see Figure 4.7). Although, the lower of sulphur
content of the fuel (HFO emulsion and HFO+LFO emulsion) could have decreased the
growth factors of the 47 nm and 72 nm particles. Previous study by Henning et al. (2012)
showed that the sulphur content of the coating affects the hygroscopic growth factor. The
sulphur dependence of the growth factor was also observed with the oil-blend combustion
in marine engines (Kuittinen, 2016).

The 72 nm particles from the HFO and LFO emulsion combustion shrank slightly when
exposed to the humidity in the HTDMA. The behaviour indicated an agglomerate or
a porous surface structure. The chemical composition of the HFO and LFO emulsion
combustion particles was somewhat different than with the other fuels since the ionic
mass fraction was the lowest.

4.3 Flue-gas plume in the atmosphere

Background particle number concentrations in the atmosphere can be higher than the
flue-gas plume nanoparticle concentrations. The flue-gas nanoparticle concentrations
depended on the power plants’s flue-gas cleaning (papers II and III). In paper II, the
flue-gas plume from the coal-fired power plant was studied upwind and downwind from
the stack. The major difference from the previous studies was analysing the measured
data based on the plume age on a second time scale. The time scale was more dense than
in Brock et al. (2002), where the in-flight measured data were from discrete plume age
intervals from 0 to 13 hours. Plume age in paper II and III was calculated based on
the distance from the stack (Global positioning system (GPS) coordinates) and wind
speed at the flight altitude. The agescale was divided to 5-second intervals, which were
used to classify the measurement data. Within each 5-second interval, the median value
was calculated from the measurement data of COs, SOy and ANyyi. The ANyye was
calculated using the background concentrations obtained from the upwindside of the stack.
The age-based approach was used in papers II and III, because Brownian diffusion,
coagulation, gas-to-particle conversion and condensation are time dependent (Hinds, 1982)
and can take place in the diluting flue-gas plume.

Figure 4.8 shows the dilution profiles as a function of plume age. The concentrations of
CO5 and SO, were plotted on the left axis, whereas the ANy was plotted on the right
axis. Regarding to the [CO3] and [SOs], the dilution profiles have a high peak between
0 and 100 seconds. This peak was caused by the flue gas exiting from the duct. The
concentrations observed before the peak mainly represent the background concentrations.
The exiting flue-gas flow was turbulent, meaning that some of the flue gas might have
diffused to the upwind side of the stack. In papers II and III, the dilution started
between the fresh and 100-second-old flue-gas plume from the highest concentration value.
All of the measured components behaved similarly in the dilution, and they followed the
dilution profile defined by the Gaussian dilution model. The atmospheric measurement of
the flue gas also showed the same differences in SOy and Ny, concentrations that were
observed in the stack measurement with the FGD and FF; the concentrations were lower
compared to the situation without FGD and FF.

In paper II, the dilution of CO5 and SOs in the background concentrations was complete
in 200300 seconds (0.74—1.5 km) after emission (see 4.8a). In addition, the dilution
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Figure 4.8: Flue-gas dilution profiles of CO2, SO2 and ANy in the plumes of CHP plant in (a)
coal-combustion situation and (b) coal and industrial pellets 10.5% combustion situation. The
upper panels of (a) and (b) were measured in FGD+FF off and the lower panels in FGD+FF on
situations. The ANyot is the difference between the concentrations measured from the plume and
the atmospheric background. The concentration values are mean values for 5 second intervals.
The measurements were made from the atmosphere with instruments installed in a helicopter.
Adapted from paper II and III
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time scales were similar in paper III, corresponding to approximately 2 km from the
stack. The peak concentrations for COs were 950—2 900 ppm, depending how well the
fresh flue-gas plume was caught with the helicopter. The SO2 peak concentrations varied
from 250 ppb to 2 100 ppb, depending on the flue-gas cleaning and the fuel in the flue-gas
plume in the atmosphere. After dilution, the concentrations of SO, and COy were at
the background concentration level and did not provide a trace for the plume. Since the
dilution time scale was some hundreds of seconds, the validity of the dilution profile in
paper IT was analysed using the Gaussian plume model. The Gaussian plume model
is a solution to an advection—diffusion equation. The equation describes the changes in
the flue-gas plume concentrations due to wind advection and turbulent mixing with the
surrounding air (Stockie, 2011). The Gaussian plume model describes the dilution in
three dimensions. The model uses also the height of the stack, the mean wind speed, the
emission rate and the dispersion coefficients as inputs. The dispersion coeflicients were
calculated using the parameterisation and the atmospheric stability class by Klug (1969).
The wind speed and a solar radiative flux at the surface were obtained from measurements
(see paper II for more details) to calculate the atmospheric stability class. The Gaussian
dilution model was used to calculate the dilution profile of the concentration in the plume
centre line.

Inputs for the model from the stack measurements were first manipulated with an
atmospheric dilution ratio to match the peak concentrations measured close to the stack.
After that, the manipulated input concentrations were diluted with the Gaussian plume
model and compared to the in-flight results. A comparison was made between the Gaussian
plume modelled CO5 concentration and the measured CO5 concentration for both of the
flue-gas cleaning situations (see paper II, Table 2). The comparison showed that the
Gaussian plume model explained the flue-gas dilution profile, which was measured from
the atmosphere (paper II). The Gaussian plume model was also used to calculate the
theoretical maximum for SO, concentration in the plume centre line based on the SO2
concentration measured from the flue-gas duct. The theoretical maximum was 131-413%
higher than the measured SO5 concentration. The observed difference could be due to
the oxidation of SOs.

The increase in the total particle number concentration was observed when the plume
aged in the atmosphere. The increase was observed in three wind/flight directions during
two separate days and fuel combinations and in two flue-gas cleaning situations. The
measurement results of the total particle number concentration (AN, ) in papers IT and
IIT are shown in Figure 4.8. After the ANy, reached zero (200 seconds, 300 seconds, 300
seconds and 600 seconds, in Figure 4.8a upper and lower, b upper and lower, respectively),
a moderate increase in the ANy, was observed after 400 seconds, 500 seconds, 400
seconds and 800 seconds. In both of the FGD+FF off cases, the ANy behaved similarly,
the SO2 concentration was approximately the same however, the Ny, in the stack was
different. In the FGD+FF on cases, the SO5 and Ny in the stack were same; but the
time scales for increasing ANy were different by 500 seconds and 800 seconds. There was
no clear relationship between the increasing ANyqt, and the concentrations of measured
components in the flue gas was found to explain the plume behaviour.

The particles in the flue gas were 80 nm in diameter (paper II Figure S5 and paper
IIT Figure 3) based on the SMPS measurements in the stack. In the industrial pellet—
coal mixture combustion, the signal in the Engine exhaust particle sizer (EEPS) was
clearly linked to the 80-nm particles in the flue-gas plume diluting in the atmosphere
in the FGD+FF off case. In the FGD+FF on case with industrial pellet—coal mixture
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combustion, the signal from the 80-nm particles was weak, although visible. In the
coal-combustion situation (paper II), the signal in the EEPS from the flue gas-originated
particles was not that clear because the background aerosol concentrations or the noise
in the electrometers was too high.

In paper II, a simple sulphuric acid nucleation model was applied in the diluting
plume to see if the nucleation of a sulphuric acid could explain the increase in the total
particle number concentration. The model inputs were gained directly from the stack
and atmospheric measurement data (paper II). The nucleation model assumed that
the formation of HySO,4 only depended on the measured SOy and the calculated OH™
concentration as well as a condensation sink (CS)~! (Kulmala et al., 2006; Stevens and
Pierce, 2013; Stevens et al., 2012). The model also assumed that the HySO4 was only
lost on the particle surfaces. The total CS was calculated based on the CS calculated
from stack measurements in paper II. Then, the CSgiacx was diluted to the background
CS with the atmospheric dilution ratio calculated based on the CO5 in the stack and
from the peak concentration of the atmospheric measurements. The background CS was
calculated from the SMEAR III station measurement data (Junninen et al., 2009). The
concentration of the OH™ was calculated based on the parametrization from Stevens et al.
(2012), which included a downward short wave radiative flux at the surface and [NO,]
from the measurements. The NO, concentration in relation to the parameterisation
was calculated based on the atmospheric time-dependent dilution ratio and the NO,
concentration in the stack. A background [NO,] was assumed to be negligible based on
Pirjola et al. (2014). The nucleation rate (Juu) depended only on the [HoSO4] and a
coefficient A (Kulmala et al., 2006). Different values of A were tested in a sensitivity
analysis. The nucleation rate was further applied to the particle appearance rate (Lehtinen
et al., 2007) for particles over 2.5 nm in diameter. The diameter of 2.5 nm was chosen
based on the lowest detection limit of CPC3776, which was used in measurements.

Based on the model, the sulphuric acid concentration in the flue-gas plume was at the
same level as in the atmosphere: 1-10-10% em™3. The result was in a range that had been
previously reported by Mikkonen et al. (2011) and Sarnela et al. (2015) for Finnish non-
industrial and industrial areas. The sulphuric acid formation in the atmosphere was limited
by the OH™ production and the [SOs]. The OH™ and the SO2 had opposing trends in their
concentrations during the plume dilution. The [SO3] was decreased in the diluting plume,
while [OH | production was restrained by [NO,| in the beginning. The opposing trends
caused fairly constant sulphuric acid concentrations after the steepest descent in dilution
of SO5 and NO,, concentrations. The sulphuric acid concentration was too low to produce
high appearance rates to explain the particle number concentration measured with the
CPC. The sensitivity of the model for A and [HoSO4] was tested by taking 10-fold A and
varying [HoSOy4] from 1 to 10-fold. Based on the sensitivity analysis, the [H2SO4] should
have been 5-fold to 10-fold higher than calculated here, based on the atmospheric measure-
ments. If assuming only the sulphuric acid nucleation, the result indicated that [OH | and
SO, were underestimated or that CS had been overestimated. The underestimation of
[OH ] could be explained with high [NO,], which had also been the case in Lonsdale et al.
(2012, Fig. 1). The underestimation of SO2 was possible because the measurement values
from the atmosphere were 3—4 times lower than the SOs would have been based on the
atmospheric time-dependent dilution ratio and SOs concentration in the stack. In fact, the
unknown concentration of SOz and low-VOCs were not taken into account in the model.
According to an atmospheric study from Kulmala et al. (2013) and an engine exhaust study
from Pirjola et al. (2015), the organic compounds have a high impact on the atmospheric
nucleation, and these compounds can actually be one major error source in the model.
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The main objective of this thesis was to characterise the fine particles of a power plant,
from the boiler to the atmosphere. The characterisation was made with two solid fuels,
coal and a mixture of coal and industrial pellets, and with three oil-mixtures. Figure 5.1
summarises the effect of the fuel on the particles of the studied power plants, from the
boiler into the atmosphere. In the coal-combustion tests, the primary dilution ratio was
varied to study the location of particle formation. The primary dilution ratio tests showed
that the particles were formed in the power plant boiler and not in the dilution probe.
The coal combustion produced a unimodal particle size distribution with a count median
diameter of 25 nm, whereas 10.5% of the industrial pellet—coal mixture combustion
produced a bimodal particle number size distribution. The first mode corresponded to the
mode that originated from the coal combustion and the second mode was linked with the
industrial pellet addition. The count median diameter of the second mode was 125 nm.
In addition to the changes in the shape of particle number size distribution, the 10.5%
industrial pellet addition increased the electrical charge of the particles in the boiler. The
TEM images showed that the particles were mainly spherical and consisted of inorganic
matter.

The power plant flue gases were cleaned with the ESP, FGD and FFs. The ESPs removed
over 99% of the particle number concentration. The particle number size distribution
after the ESPs was unimodal with a count median diameter of 70—80 nm. The black
carbon concentration after the ESP was higher with the 10.5% industrial pellet—coal
mixture compared to the coal combustion. The FGD and FFs cleaned the flue gas from
particles with over 99% efficiency when calculated from the particle number concentration.
The particle number size distribution was unimodal after the FGD and FFs with a count
median diameter of 30-72 nm. The TEM images of particle samples revealed that
the primary particles formed agglomerate structures before the sampling location. The
desulphurisation and FFs affected not only the particle number concentration but the
black carbon and SOs concentrations. Actually, the black carbon concentrations were
very low after the last flue-gas cleaning devices were used.

The particle number concentrations in the urban background and in the city centre were
taken for comparison against the power plant emissions (Figure 5.1). The particle number
concentrations of the studied power plant were lower than the urban background particle
number concentrations, and the result showed that this particular power plant does not
worsen the air quality in Helsinki in terms of the particle number concentration. On the
contrary, the flue gas from the power plant could dilute the particle number concentration.
The other emission components, such as gases, however, can influence the air quality.

The flue-gas behaviour in the atmosphere was studied with measurement instruments
installed in a helicopter. The measurement showed that it was possible to distinguish
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Figure 5.1: Overview of results regarding particle number concentrations (y-axis), particle
mean diameters and their changes from boiler to atmosphere (x-axis). The results are presented
for coal combustion in the CHP plant (blue), for the combustion of coal+10.5% industrial
pellets in CHP plant (green) and for combustion of HFO+LFO emulsion (red) in a peak-load
heating plant. For the latter two, a bimodal particle number size distribution is indicated by two
different values for count mean diameter (CMD). Particle number concentrations of the power
plant are compared to the urban background concentration (Pirjola et al., 2012) and city centre
concentration (Lidhde et al., 2014). Results from papers I, I1, IIT and IV.

both of the flue-gas cleaning situations using measurements taken close to the stack. The
atmospheric measurements were made upwind and downwind of the diluting flue-gas
plume. The flue gas then diluted to the atmospheric concentrations some hundreds of
seconds, after which the particle number concentration started to slowly increase. This
increase in the particle number concentration was interpreted as new particle formation in
the atmosphere. The increase was observed during two days, with three wind directions
and with four flue-gas compositions.

The particle number size distribution from the HFO and HFO emulsion combustion was
unimodal with a count median diameter of 47 nm. The addition of the LFO to the HFO
emulsion caused the formation of a second mode to the particle number size distribution.
The count median diameter of the second mode was around 100 nm. The particles from
the oil-mixture combustion were treated with the TD to remove volatile components from
the particle surfaces. The fine particles that originated from the oil-mixture combustion
were not highly volatile only the second mode from the combustion of HFO mixed with
LFO emulsion had some volatile components coating the particles. The hygroscopicity of
the volatile and non-volatile particles from oil-mixture combustion was studied based on
the hygroscopic growth factor. The growth factors altered from 0.9 to almost 1.4. The
smallest studied dry particles (20 nm in diameter) had the highest growth factors, and
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the larger the dry diameter was, the smaller the growth factor. Growth factor plotted as a
function of particle diameter had a decreasing linear trend, and the slope of the graph got
steeper when the fuel sulphur concentration was decreased. The oil-combustion particles
had the potential to grow larger in the atmosphere at relative humidity over 85%.

Power plants’ fuel choices have an effect on the particle formation in oil-fired and coal-
fired combustion (papers I and IV). The combustion process could be optimised for
the fuel based on the CO and Os concentrations and the temperatures in the boiler.
Still, the optimised combustion does not guarantee the lowest particle number or mass
concentrations. Here, the better-quality fuels (industrial pellet and LFO) decreased
particle number concentrations in the boilers. On the other hand, the portion of 10.5%
industrial pellet mixed with coal caused a second particle mode in the particle number size
distribution. The second particle mode was within the size range of soot. Soot mode was
also produced by the LFO addition in the oil-fired power plant, similarly to the industrial
pellet addition in the coal-fired power plant. The LFO addition and the industrial pellet
addition decreased the fuel sulphur and heavy metal concentrations. Previous studies
have been reported that heavy metals could catalyse the combustion in engines (Anderson
et al., 2015; Moldanova et al., 2013). Also, lower sulphur content in fuel has been found to
correlate (Ntziachristos et al., 2016; Sippula et al., 2014) and uncorrelate (Anderson et al.,
2015) with soot particles in marine engines designed for HFO combustion. The marine
engine tests have shown that the fuel sulphur content affected the sulphate fraction in
the particles (Lehtoranta et al., 2015). These results indicated that the fuel composition
also drastically affected the emissions.

The effects of combustion originated particles on the atmosphere depended on the flue-gas
cleaning technologies (papers II and III). Based on Table 5.1, the flue-gas cleaning
could have affected the particle and gaseous emissions multiple ways. To make truthful
conclusions about “generic” power plant emissions (high or low polluting), the emission
source and the flue-gas cleaning devices inside the stack must be identified before publishing
the results. Many different conclusions of particle formation could be made by assuming
the emission-controlling techniques installed at the studied power plant. In addition, there
is a small probability that substituting coal with wood pellets could be a trade-off between
sulphate aerosol and BC (paper III). Fortunately, the trade-off can be controlled by
applying flue-gas cleaning technologies. The ESP alone is not enough to remove the BC
from wood pellet-combustion emissions; therefore, more versitile flue-gas cleaning might
be needed.

Despite the flue-gas cleaning devices, new particle formation was observed in the flue-
gas plume (papers II and IIT). The new particle formation was observed within two
separate days and three wind directions and four precursor gas and condensation sink
concentrations. The precursor gases and CS concentrations were defined by flue-gas
cleaning. However, the fuel mixtures might have had an effect on the precursor gas
concentrations (e.g. organics). High NO,, concentrations could hinder the OH  formation
in the atmosphere and slow the oxidation processes that can produce particle forming
compounds. The new trend in power plants is to lower the NO,, concentrations. The NO,,
reductions can change the oxidation process of VOC and the oxidant formation cycle,
meaning that the particle formation potential can change.



38 Chapter 5. Conclusions

Table 5.1: The most relevant emission-controlling techniques, discussed in this thesis applied in
coal-fired power plants and the side effects of certain techniques for gaseous and particle emissions.
The target implies the main purpose of the technique, and if the techniques has side effect they
are shown in the table. The results from papers I-III are expressed in bold. The calculated
decrease is marked with *. With the PN, the decrease can also mean that the PN fraction survives
through the technique and appears to increase. The cleaning techniques have been organised by
the installation order, and one technology (between each line) can be chosen by the power plant
(except FF can not be used after wet-FGD).

flue-gas cleaning technique target side effect
wood pellets SO,, CO5* NO, decrease in PM{ PN; increase in BC
low-NO, burners NO, increase in BC and PM

SNCR?2 NO, increase in NHjy

SCR3 NO, increase in NHg and SO3 4
ESP PM, PN °

wFGDS SO, increase in PM “and PN7

FGD SO, decrease in PM®, increase in PN
FF PM decrease in PN and SO»

! Increase in Nzihou and Stanmore (2015)
2 Selective non-catalytic reduction

3 Selective catalytic reduction

4 Srivastava et al. (2004)

® Ylitalo and Hautanen (1998)

6 Wet-FGD

" Ma et al. (2016)

8 Cérdoba et al. (2012)

5.1 Future outcomes

Future research questions could be related to potential aerosol mass produced from the
emissions of a power plant or related to the volatility and hygroscopicity of the potential
aerosol mass. These should be further studied to fully understand the atmospheric effets
of the particles in terms of climate change and air quality. At the same time, it would be
beneficial to study the gaseous precursors in more detail in the diluting flue-gas plume.
The precursor gases seem to have a high impact on the particle number concentration in
quite early stages in the atmosphere. A chemical-ionization atmospheric-pressure inlet
time-of-flight mass spectrometer could be used to measure SOz, H,SO4 and organics,
but applicability, to atmospheric measurements to understand the cluster chemistry would
be challenging. A simpler approach would be to use a Particle Size Magnifier and CPC
to measure the particles below 3 nm in the flue-gas plume.

New particle formation in the flue gas clearly increased the particle concentrations in the
atmosphere. These newly formed particles can grow larger due to coagulation, agglomer-
ation and condensation. Larger particles can then further act as a cloud condensation
nuclei. There is no information about the potential of a newly formed particles for cloud
condensation nuclei activation.

Real-scale emission studies are still needed to understand what consequences real emissions
have on particle formation and flue-gas cleaning devices. There is a lot of information on
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the small-scale testing of different fuels. The results of gaseous emission measurements
can be scaled to real-world applications. In comparison, no one knows if the particle
concentrations measured in small-scale tests can be transferred to a real scale, because
the aerosol processes depend on the gas phase composition, as well as the particle
concentration and size. This scalability of particle emissions from laboratory to reality is
one problem to solve using real-scale emission studies companied with small-scale studies.

A SNCR-system has been installed in Hanasaari because of the tightened NO,, emission
limits (Ministry of the Environment, 2016). Nevertheless, the power plant has decided
to shut down in 2024. However, on a global scale, coal will be still combusted, even
though, coal combustion will end in Finland. I hope the results presented in the thesis
will help people elsewhere to make decisions related to controlling power plant emissions.
In addition, the fuel change can lower CO4 emissions, but the change will not guarantee
lower particle number emissions, and the fuel change can override the observed cooling
radiative effect of particles (Frey et al., 2014).
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Coal

Fossil fuel combustion should be decreased in future years in order to lower the CO, emissions of en-
ergy production. The reduction can be achieved by increasing the amount of CO,-neutral fuels in energy
production. Here 6-13% of coal was substituted with industrial or roasted pellets in a pulverized fuel-
fired power plant without making any changes to fuel grinding or low-NO, burners. The effect of pellet
addition for the flue gas particles was studied with direct sampling from the boiler super heater area.
Based on primary dilution ratio tests, transmission electron microscope images, and the natural electric
charge of the particles, it was observed that particles in the flue gas are spherical and have been formed
in the boiler at high temperatures. The pellet addition lowered the total particle number concentrations
with all of the studied pellet-coal mixtures in comparison to the coal combustion. The 10.5% industrial
pellet addition caused a second mode in the particle number size distribution. In addition, based on the
chemical analysis of the collected size-fractioned particle samples, results indicated that the pellet addi-
tion did not increase the corrosion risk of the boiler. However, the changes in the particle number size
distribution and total particle number concentration can affect the operation of electrostatic precipitators

and flue gas cleaning.

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Climate change has caused a global need to reduce CO,
emissions. These emission reductions are driven mainly by local
political decisions [1,2], but larger scale political actions also
exist. In principle, smaller CO, emissions can be achieved by
reducing the usage of fossil fuels in traffic, residential needs, and
in power generation. This can take place by reducing the energy
consumption or by substituting fossil fuels with renewable fuels
(e.g., biofuels, solar and wind power). One likely cost effective
possibility in these actions is to utilize existing coal-fired power
plant infrastructures and substitute the coal used in those with
biomass. However, decreased CO, emissions and the addition of

* Corresponding author.
E-mail address: topi.ronkko@tut.fi (T. Ronkko).

http://dx.doi.org/10.1016/j.combustflame.2016.10.027

biomass can change the emission of other harmful pollutants
and also increase the corrosion risks for the power plant boilers.
Biomass-based fuels have a different chemical composition than
fossil fuels such as coal [3]. Biomass fuels typically contain more
alkali metals and chlorides [3,4], which can, in the combustion
process, be vaporized into the flue gas [5]. For instance, alkali
chlorides are found to be harmful for the power plant boiler
materials [6]. After the combustion process, corrosion-causing
elements can exist in the vapour or particle phase [7], depending
on the temperature and concentrations [8]. For instance, a change
in the boiler temperature profile affects the deposition locations of
the alkali chloride [8]. In principle, the amount of alkali chlorides
in the particle phase can be determined when the particle size
distribution and chemical composition of the particles are studied
simultaneously.

In addition to the temperature profile existing in the boiler and
the chemical composition of the fuel, the fuel grain size also has

0010-2180/© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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an effect on the combustion process and the slagging and fouling
of the super heater surfaces. The fuel grain size affects the particle
size distribution after combustion in the flue gas. Ninomiya et al.
[9] have studied the effect of coal grain size in terms of particle
mass (PM) emission. They discovered that <63 pm coal particles
produce bimodal PM distribution, with mode means of 500 nm
and 4 pm. They also found that there is a small mode around
130 nm, which consisted of alkali metals, heavy metals and their
sulphate, chloride and phosphate salts. The flue gas is steered
to flue gas ducts and released in to atmosphere with or without
some flue gas cleaning. Particle properties such as size, chemical
composition, and the electric charge carried by particles affect the
flue gas cleaning efficiency [10,11].

In general, the flue-gas changes in large power plant boilers
can affect, for example, the corrosion of the super heater area and
other parts of the flue-gas system, the flue-gas cleaning systems
and, finally, the emissions of power plants. These effects depend
on the characteristics of aerosol generated in the combustion
process. The emissions of particles from combustion plants and
other sources are governed by the Convention on Long-Range
Transboundary Air Pollution of the United Nations Economic
Committee for Europe. The 2012 amendments to the Convention
include national emission reduction commitments by 2020 and
beyond. The limit values for SO,, NOx, ammonia, volatile organic
compounds and particulate matter (i.e., with a diameter equal to
or less than 10pum), including black carbon, are separately defined
for coal and biomass with no mention of co-combustion [12].
In addition to the EU Member States, Canada, the United States,
Russia and several countries of Southern and Eastern Europe, the
Caucasus and Central Asia are also expected to sign the amend-
ments. In its related legislation, the European Union also separates
the emissions from coal and biomass without any mention of
prospects of co-combustion [13-15].

However, the partial substitution of coal by biomass and sub-
sequent co-combustion is one of the pathways identified in the
European Industrial Bioenergy Initiative (EIBI) of the European
Commission and the EU Member States. The EIBI pays attention to
local variation in the available biomass feedstock options and sug-
gests “a pragmatic approach to select the most promising options,
based on transparent criteria reflecting a set of key economic, en-
vironmental and social performances expected” [16]. The European
Commission deems co-combustion of biomass and coal to be “the
most cost-effective option for electricity production”. Addition of
biomass up to 10% share of total power output has been success-
fully demonstrated and the technology is commercially available.
This technology makes use of existing plant infrastructure and
requires only limited investments in biomass pre-treatment and
feed-in systems [17]. However, “feeding, fouling and ash disposal
pose technical challenges that reduce reliability and lifetime of
coal plants. Higher co-firing mix will require more sophisticated
boiler design, process control and fuel handling and control
systems” [18]. The European Commission is hesitant towards to
establish a specific policy for the co-combustion of biomass and
coal. It notes that the incentives of the utilities running rele-
vant combustion plants are national support schemes and/or the
emission ceiling of the emissions trading scheme (ETS). Therefore
setting a policy for co-combustion installations without similar
measures for coal-combustion plants might lead to decreased use
of biomass and hence, by implication, higher emissions [19].

In the United States, short tests of co-combustion have been
conducted since the 1990s. The Energy Information Administration
expects co-combustion to be up to 20 times more prevalent by
2024 than it was in 2010 [20]. Federal-level research into the
heating qualities of different biomass contents and emissions
continues [21]. The 2014 Clean Power Plan offered by President
Obama and the Environmental Protection Agency mentions that,

in co-combustion, the “use of some kinds of biomass has the po-
tential to offer a wide range of environmental benefits, including
carbon benefits”, and that “[I|ncreasing renewable energy (RE) use
will also continue to lower other air pollutants (e.g., fine particles,
ground-level ozone, etc.)” [22]. While federal level regulation is
debated, individual states can use renewable energy standards
(RES) to incentivize power plant operators for co-combustion
[20]. However, by 2012, only 3% RPS-motivated renewable energy
capacity additions came from biomass [23]. With regard to co-
combustion, plant operators hesitate over the costs of acquiring
and transporting the biomass, as well as the long-term effects on
process equipment [20].

In this article, flue-gas aerosol from a large scale pulverized
coal-fired power plant boiler is investigated. The power plant
combusted various mixtures of coal and two types of wood pellet.
Special attention is paid to the particle number size distributions,
total particle number concentration and chemical composition
of particles in the diluted flue-gas sample taken from the boiler
super heater area. In addition, the effects of wood pellets on the
concentrations of gaseous species and particulate matter (PM)
in the flue gas are shown. The aim is to understand the effect
of co-combustion of wood pellets and coal on flue-gas aerosol
formation and characteristics.

2. Experimental
2.1. Power plant

The power plant where the experiments of this study occurred
is situated in Helsinki, Finland. In the power plant, there are two
separate boilers, both equipped with flue gas cleaning systems that
include electrostatic precipitators, semi-dry desulphurization, and
fabric filters, in the given order after the boiler. Boilers (363 MWy,)
are equipped with a reheater and utilizes the natural circulation
of flue gas. Boilers are equipped with 12 low-NOx technology
burners (Tampella/Babcock-Hitachi HTNR low NOy) that are at the
front wall. The combustion air and at the same time the carrier
air for the pulverized fuel is preheated up to 350 °C before the
boiler and grinders. Main operation principle of low-NOx burners
is air staging with secondary and tertiary air, which lowers the
combustion temperature to the level of around 1100 °C. Air staging
decreases NOx formation. The power plant boiler has originally
been designed to combust pulverized coal that is fed to the boiler
after being ground in ball ring grinders.

2.2. Fuel properties

In this study, some of the measurements were made with 100%
Russian coal and some with mixtures of coal and pellets. In the
latter case, coal was substituted with 6-13% (of the boiler thermal
power) wood pellets; roasted pellets or industrial pellets (see
experimental matrix in Table 1). Roasted pellet is torrefactioned
wood pellet, also known as black pellet, steamed pellet, torrefac-
tioned pellet and bio coal, manufactured from wood pellets by
heat treatment at approximately 300 °C.

Industrial pellet (wood pellet of industrial quality) fulfils the
standard EN 14961-1 requirements having lower quality than
domestic quality wood pellets. Industrial pellet can include, for
example, bark, which does not exist in higher quality wood pellets.
Normally, wood for industrial pellets is gained by grinding stem
wood or logs to powder and, after drying, by pressing the powder
to pellets. Due to the preparation principle of industrial pellets,
it is more brittle than domestic pellets and it contains more ash
components.
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Table 1

Experimental matrix. Coal was combusted during the nights and for that reason the “c” test took only 2 h. Note that there is a lower load in “c+rp7.6%”
situation. The deviations we mainly caused by instability of the pellet feeding system.

Label Power g Power eier Portion of pellet from fuel power (%) DLPI sampling time Duration of co-firing test
c+rp6.8% 301.6-322.2 5.2-33 1.6-9.9 2h 3h
c+rp7.6% 246.3-248.7 19.0-21.9 71-8.2 2 h 30 min 5h
c+rp9.8% 294.7-320.3 15.7-44.1 4.7-13 2 h 10 min 5h
c+rp13.1% 287.3-318.5 34.9-475 9.9-14.2 2h 3h
c+ip6.6% 299.2-312.9 12.8-31.8 3.9-9.6 2h 5h
c+ip10.5% 297.9-302.7 28.3-36.8 8.5-11.0 1 h 40 min 4h
c 328.0-335.7 0 0 1 h 40 min 2h

The coal is stored inside the power plant building in four
intermediate storages, “day silos”. From the intermediate storages
the coal is divided to a belt conveyor which carries the coal to
the grinders. Below each belt conveyor there is a grinder, which
pulverizes the coal. The pellet is added to the grinder by a sepa-
rate feeding system. The pulverization is performed with ball ring
grinders (9 rolling balls). The pulverized fuel is blown into three
burners together with the combustion air. Over each grinder there
is a sieve which returns the largest particles back to the grinder.
The fuel mixture was grinded simultaneously in two of the four
grinders and thus in total 6 burners were combusting wood-pellet
coal mixtures. When pulverizing coal the mean fuel particle
size was 47-62 pm (58-69% was below 74 pm and 100% was
<600 pm). For “ctrp” the mean fuel particle size was 56-90 pm
(32-74% was below 74 nm and 87-100% was <600 um), whereas
for the “c+ip” the mean fuel particle size was 54-174 pm (28-59%
was below 74 pm and 79-99% was <600 pum). These numbers
show that the wood pellet substitution changes the pulverized
fuel by increasing the fuel particle diameter.

Pellet and coal properties are listed in Table 2. Table 2 shows
that the pellets had lower water and ash content in contrast to
the coal. Also, the sulphur content and chloride contents were
significantly lower in the pellets than the coal. Instead, the oxy-
gen and volatile content were higher in the pellets than in the
coal. It is notable, that the sum of alkali metals (K and Na) was
higher in coal than in the pellets, which means that actually
the pellet addition diluted the alkali concentration in the boiler.
The heating value of coal was higher than the heating value of
pellets.

2.3. Measurement setup and analytical methods

The measurement setup used is shown in Fig. 1. All the mea-
surements with pure coal and coal-pellet mixtures were made
from the same boiler unit. In these measurements, the flue-gas
sample was taken from the boiler super heater area where the
temperature ranges from 900 to 1000 °C. Due to the temperature
variations and turbulence in the boiler, the flue-gas sampling was
not designed to be isokinetic. This can affect representativeness of
absolute concentration values measured for large particles, but not
to the relative concentrations between the studied fuel-mixtures.
Primary dilution of the sample was performed with a porous
tube-type diluter using nitrogen (200 °C) as diluting gas, similar
to the one in [24]. Due to the hot flue gas condition, the outer
shell of the dilution probe was cooled with pressurized air flow,
whereas the inner shell was heated to prevent the condensation
of the gaseous components. Secondary dilution was performed
with an ejector diluter (Dekati Ltd.), using nitrogen as a diluting
gas, with a dilution ratio of 2.83. The primary dilution ratio was
calculated based on CO, and H,O measurements. In most of the
measurements, the primary dilution ratios were between 6.0 and
8.3. The primary dilution ratio was chosen so that the sample

Super heater area

1 1
Slgiilutil.ll‘q;_ FTIR in raw
mpung gas 600 °C

probe

FTIR i
o R in

diluted gas SMP3
PMI0- | Pa1o- [ Pyio-] | €92 —
syclone| cyclone|| cyclone| | 2™ || T
cyc y : lyzer || ESP

on/off

E2
DLPI| | DLPI|  F------

ELPI ELPI

Fig. 1. Measurement setup. E is ejector type diluter, F is a particle filter, and PM10-
cyclone is a cyclone with 10 pm cut-off diameter. The diluted sample was taken at
900-1000 °C temperature area and the raw flue gas sample at 600 °C temperature
area of the boiler. The dashed line indicates the 11-m long sampling line.

cools enough in the primary diluter. Primary dilution ratio was
changed in one of the experiments to see how sensitive the
particle size distribution is to the variations in primary dilution
conditions. Secondary dilution was used to lower the temperature
of the sample even more to the room temperature. The sample
temperature before the secondary diluter was approximately
200 °C.

After the secondary dilution the particles were collected with
two parallel Dekati low pressure impactors (DLPI, Dekati Ltd.)
in order to measure the mass size distribution and the chemical
composition of the particles. A cyclone with cut-off diameter of
10 pm was applied before the DLPIs. The DLPI collection plates
were greased polycarbonate films, whereas the smallest particle
fraction was collected to a teflon filter. The particulate sample
collected by one of the DLPI was used to analyse the water soluble
fraction of the particles, and the other to analyse the acid-soluble
particles. In this study, 13 size fractions of DLPI were combined
afterwards into five different size categories <30 nm, > 30 nm to
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Table 2
Fuel properties.
Industrial pellet Roasted pellet Coal

Moisture % 6.7 6.0 11.0-11.3
Ash % 0.8 33 10.5-11.4
Volatiles % 781 64.6 32.8-331
Heating value GJ/t 17.7 20.3 24.6-24.9
C % 474 53.8 62.3-63.1
H % 5.6 5.2 41-4.2
N % 0.1 0.3 1.8-2
o % 394 317 0
S mg/kg dry 180 580 3100-4600
cl mg/kg dry 39 84.3 236
Ca mg/kg dry 2300 6100 4300-4800
Mg mg/kg dry 280 740 1700-1900
Na mg/kg dry 69 240 1400-1600
K mg/kg dry 760 3200 2500-2900
Fe mg/kg dry 140 1100 4800-5700
Al mg/kg dry 130 580 14200-15000
Ti mg/kg dry 8.8 47 600-640
Ba mg/kg dry 26 25 270-280
B mg/kg dry <40 <40 210-230
Ag mg/kg dry <0.5 <0.5 <0.5
As mg/kg dry <0.5 <0.5 49-14
Be mg/kg dry <0.5 <0.5 <0.5
Bi mg/kg dry <0.7 <0.7 <0.7
cd mg/kg dry 0.2 1.2 0.1
Co mg/kg dry <0.5 <05 14-21
Cr mg/kg dry 12 13 9.7-11
Cu mg/kg dry 1.6 5.9 7.8-8.5
Li mg/kg dry <0.5 11 9.3-10
Mn mg/kg dry 140 140 38-66
Mo mg/kg dry <0.5 0.9 11-13
Ni mg/kg dry <0.5 2.3 41-6.6
Pb mg/kg dry <0.5 6.1 3.4-41
Rb mg/kg dry 2.5 6.4 5.2-9.0
Sb mg/kg dry <0.5 <0.5 <05
Se mg/kg dry <0.7 <0.7 <0.7-11
Sr mg/kg dry 55 19 150-170
Th mg/kg dry <0.5 <0.5 1.2-13
Tl mg/kg dry <0.5 <0.5 <0.5
§) mg/kg dry <0.5 <0.5 <0.5-0.6
\Y mg/kg dry <0.5 13 13-15
Zn mg/kg dry 30 120 11-18

<90 nm, > 90 nm to <260 nm, > 260 nm to <600 nm, > 600 nm
to <1.6 pm, and > 1.6 pm.

The water-soluble anion (SO‘Z[, Cl=, F~) concentrations were
determined with ion chromatography (measurement was based
on standard SFS-EN ISO 10304-1 and instrument that was used
was Dionex ICS-2000 Ion Chromatography system). The analysed
water-soluble elements were Ca2*, K+, Na, SOﬁ’, Cl-, F~, and
Zn, whereas the acid-soluble fraction was analysed for 31 elements
(Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo,
Na, Ni, Pb, Rb, Sb, Se, Sr, Th, Ti, Tl, U, V, Zn, Cl and S). Elements
(water-soluble cations and acid-soluble elements) were deter-
mined with an Induction Coupled Plasmonic - Mass Spectrometer
(ICP-MS). Measurement was based on standard SFS-EN ISO 17294-
2 and the instrument that was used was a Thermo Fisher Scientific
iCAP Q ICP-MS. It has to be noted that Si, carbon, carbonates and
oxides were not analysed from the samples. The water-soluble
cations and anions were dissolved in 25 ml of ultra-pure Milli-Q
water in closed plastic tubes at room temperature for 5 days.
During the dissolution, the samples were shaken for 2 h and
stored for 2 h in an ultrasound bath. The acid-soluble elements
were dissolved in 2 ml of nitrous acid-hydrogenfluoride acid (3:1)
solution and the sample was diluted with 10 ml of Milli-Q water.

After the secondary dilution, part of the sample was diluted fur-
ther with dilution ratio of 12 and conducted to an Electrical low-

pressure impactor (ELPI, Dekati Ltd., Keskinen et al. [25]). ELPI was
used parallel with the DLPIs to monitor the loading of the collec-
tion plates of DLPIs. Further, part of the sample flow was led with
an 11-m-long sampling line to a scanning mobility particle sizer
(SMPS, Wang and Flagan [26]), another ELPI and a CO, analyser
(SickMaihak, SIDOR). These instruments were installed inside an
air-conditioned room. The SMPS consisted of DMA 3071 (TSI Ltd.)
and CPC 3025 (TSI Ltd.) with 0.6/6.0 Ipm flows a thus correspond-
ing to particle size range from 9.8 nm to 414 nm. The charging
state of the particles was studied by utilizing a self-made electro-
static precipitator (mini-ESP). The mini-ESP was used in part of the
measurements to remove the electrically charged particle fraction
before the SMPS size distribution measurement. A schematic of the
measurement setup is presented in Fig. 1. The diffusional losses
for particles in the 11-m sampling line were calculated (Hinds
[27, Egs. (7-31) and (7-32)]) to be for 10 nm, 20 nm, 40 nm and
100 nm particles in diameter 48%, 25%, 10%, and 4%, respectively.
The particle size distributions below have been corrected by these
values.

In addition to particle measurements, the concentrations of
gaseous species were measured simultaneously after primary
dilution from the same sampling line as the particles. Gaseous
components were measured with an FTIR gas analyser (Gasmet
DX-4000), in which the optical path was 5.0 m. The gaseous sam-
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Table 3
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Concentrations of gaseous compounds CO, (% red. dry 6% O, marked as % r.) and CO, NO, SO,, HCl, HF (ppm reduced dry 6% O,, marked as ppm r.), total
particle number concentration (N, calculated from particle number size distribution measured with SMPS) and PM10 in the wet flue gas boiler reheater
area. The “c” corresponds to coal and “rp” to roasted pellet and “ip” to industrial pellet; the percentages are the amount of pellet thermal power of the

total fuel power.

Fuel [« co NO S0, Hcl HF Neot PM10
(%r.) (ppm 1) (ppm r.) (ppm 1) (ppm r.) (ppm 1) (- 108 cm~3) mgNm—3

c 13+ 02 19.5+ 2.3 289+ 8.4 204+ 13 18+ 13 33.2+ 08 2.76 600
c+1p6.8% 13+ 02 18.3+ 3.1 276+ 235 158+ 17.3 9+ 11 293+ 15 2.03 690
C+TP7.6% 13+ 0.2 13.6+ 11 272+ 9.6 156+ 14.6 9+ 0.5 32.3+ 16 1.90 510
c+1p9.8% 13+ 02 119+ 2.3 273+ 16.7 183+ 104 8+ 0.4 321+ 0.8 1.67 720
c+rp13.1% 14+ 0.3 12.7+ 3.6 294+ 276 144+ 104 14+ 1 29.7+ 0.8 173 820
c+ip6.6% 14+ 0.2 16.0+ 0.9 295+ 16.9 146+ 5.6 1+ 0.7 30.5+ 0.7 1.89 640
c+ip10.5% 14+ 0.2 18.5+ 16 278+ 11.8 201+ 6.1 16+ 0.4 30.9+ 0.7 2.20 570

ple was kept at 180 °C temperature. The gaseous components were 800

also measured after the reheater where the flue gas temperature I -

was around 600 °C. The measurement place was chosen to be at 700( (N rp6.8%

the reheater area due to lack of viewports at the superheater area. s [ 7 6%

FTIR gas analyser (Gasmet DX-4000) was also used here, with O 600 Eme 8%

the optical path of 2.5 m. The gaseous sample was taken with %g Crp13.1% Iﬁ

sampling probe made by M&C. This FTIR included also a zirconium - 500 ?peﬁ% .

oxide sensor to measure the humid sample gas oxygen content. o Cip1o5%

The measured gaseous components were H,0, CO,, CO, Ny, NO, mE" 400

NO,, SO,, HCl, and HF. =4 300 '

The flue gas particles of one coal-pellet mixture “c+ip10.5%” g’

were collected with a flow-through-type sampler onto holey = 200

carbon grids for microscopy studies. These particle samples were %

studied later with a transmission electron microscope (TEM, Jeol 100

JEM-2010) equipped with energy dispersive X-ray spectrometer D5 007203103006 02616

(EDS, Noran Vantage with Si(Li) detector, Thermo Scientific). —

3. Results
3.1. Gaseous compounds

Table 3 shows the gaseous compounds (CO,, CO, NO, SO,
HCl and HF) studied from the boiler reheater area. Within the
accuracy of measurements, no significant differences in the CO,
concentration was observed. Concentration of carbon monoxide
was lower for pellet-coal mixtures than for coal. The lowest CO
concentration was achieved with “c+rp9.8%” (11.9 ppm) and the
highest with coal (19.5 ppm). There was hardly any NO, present at
the flue gas (<2 ppm) and, thus, the NOx consisted mainly of NO.
It can be seen that the pellet addition also decreased the SO,, HCI
and, in some cases the NO concentrations when compared to coal
combustion. In principle the reductions of SO, and HCl concen-
trations were presumable due to the chemical composition of the
fuels; pellets contain less sulphur and chloride compared to coal.
However, the decrease in SO, concentration can be affected by
changes of combustion and flue-gas processes such as conversion
of SO, to SO3 that may promote the existence of sulphate in parti-
cle phase. Lower carbon monoxide concentrations with pellet-coal
mixtures can be due to higher oxygen content of the fuel.

3.2. Particle mass size distribution and chemical composition

Particle mass on each DLPI stage was weighted in order
to gain the particle mass size distribution which is shown in
Fig. 2. The particulate mass (below 10 pm, PM10) was calculated
from the size fractioned masses and the PM10 was averaged
between the two parallel particle collections. The PM10 values
were 600 mgNm—3, 690 mgNm~—3, 510 mgNm—3, 720 mgNm3,
820 mgNm~3, 640 mgNm~—3 and 570 mgNm—3, respectively for

<003 0.03-0.09 0.09-026 0.26-06 0616 1610

D, (um)

Fig. 2. Particle mass size distribution (mgNm~3) calculated from the weighted par-
ticle samples that were collected with the parallel DLPIs. The bar shows the mean
value of the mass on two different impactor stages and the standard deviation is
calculated based on the same masses.

“c”, “c+rp6.8%”, “c+rp7.6%”, “c+rp9.8%”, “c+rp13.1%”, “c+ip6.6%”, and
“c+ip10.5%” (with the legend in Fig. 2). The PM10 results indicate
that the co-combustion of wood pellets and coal does not increase
the PM10 in the boiler.

The chemical composition of the particles was determined
from the particulate matter collected on the stages of DLPI. Based
on the studied chemical components, a maximum of 50% of PM10
could be identified. This means that more than 50-80% of the
particles consisted of unanalysed compounds (e.g., Si and black
carbon). For instance, Frey et al. reported that, in the emissions of
the same power plant, 80% of particle emission were other than
water or acid-soluble fraction [28].

The results of size-fractioned ionic and elemental analysis are
presented in Appendix C for each fuel mixture. The size fractions
were determined based on the D50% diameters of the DLPI. The
ionic composition of one size fraction was calculated in two steps:
first, all analysed ion concentrations were added up in the specific
size range; second, the ratio of the analysed mass of one ion to the
whole analysed mass of ions in the specific size was calculated.
Similar calculations were made from elemental analysis. The mass
of some size fractions was not enough to determine the ionic or
elemental composition. Thus, the composition of that kind of size
fraction has been left blank in Fig. C.8 of Appendix C. In addition,
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Fig. 3. (a) Effect of total dilution ratio on the measured particle number size distribution (c+rp7.6%). (b) Particle number size distribution measured with ELPI and SMPS
(D indicates D, and D, in the figure, respectively) during coal combustion. (c, d) Particle number size distributions measured with SMPS. Concentrations have been corrected

by the dilution ratio of the whole sampling system.

the missing composition can be due to undetectable concentration
of the ions/elements in the sample.

The acid-soluble fraction was 20-50% of the PM10 and the
water-soluble fraction was 2-3% of the PM10, specific percentages
are shown in Appendix C over the graph. This means that the
elemental composition of the particle is more important when
studying the chemical composition. For all fuel mixtures, the most
common measured elements in the particles were aluminium
(Al), calcium (Ca), iron (Fe), magnesium (Mg), potassium (K)
and sodium (Na). Aluminium was the main element in particles
over 260 nm in diameter, whereas calcium and iron were the
most common in particles that were 30-260 nm in diameter.
The partition of elements is due to different volatilities of the
elements in the fuel [29]. In addition, potassium existed mainly
in the particles over 260 nm. The water-soluble fraction consisted
mainly of Ca2* and SOi’ ions in all size classes. In addition to
Ca%*+ and SO?", some K+ and Na* was analysed in the samples.
These results indicate that substituting coal with 6-13% of pellets
does not have significant effect on the chemical composition of the
particles.

3.3. Physical properties of particles

Figure 3a shows the number size distributions of particles
(9.8-414 nm) sampled from the boiler super heater area where
the temperature was in the range of 900-1000 °C “c+rp7.6%”.
The geometric-mean diameter (GMD) for the mode dominating
the size distributions was around 25 nm. The variation in the
dilution ratio did not affect the particle number size distribu-

tion corrected by the dilution ratio, which indicates that any of
the studied dilution ratios can be used to achieve comparable
results [30,31]. It should be noted that in addition to particle
concentration, the mean particle size also did not change as a
function of the dilution ratio. In other words, there were no
significantly low-vapour pressure gaseous compounds that could
have formed particles or condensed onto existing particles after
the sampling, such as during dilution processes or in other parts of
the sampling system. Thus, the results related to the insensitivity
of the particle size distribution on the dilution ratio indicate
that the particles were formed before the sampling process (i.e.,
they were present in particle phase already in high temperature
conditions).

Figure 3b shows the particle size distribution for coal com-
bustion with two different instruments, namely SMPS and ELPIL
The measurement principle of these instruments differs from
each other; while the SMPS classifies the particle in respect to
their mobility size, the ELPI classifies the particles based on their
aerodynamic diameter. The difference between measurement prin-
ciples enables the evaluation of effective density of particles; see,
for example, Ristimdki et al. [32] and Virtanen et al. [33]. Based
on the ELPI and SMPS measurements and log-normal-distributions
plotted to the size distributions, the particles had a mean mobility
diameter of 25 nm and mean aerodynamic diameter of 55 nm.
When the effective density is calculated using these particle sizes,
its value is 2.05 gcm=3. This is close to the bulk density of SiO,
which is 2.196-2.648 g cm~3, depending on the crystal form [34].
The effective density of the particles was the same with all studied
fuel compositions.
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b

Fig. 4. Transmission electron microscope (TEM) images of particles collected from a flue gas sample. (a) General picture of the small particles, (b) particles having diameters

of 10-25 nm and (c) example of larger particle with diameter of 120-130 nm.

Particle number size distribution was dominated by the par-
ticles in the range of 10-70 nm in diameter. Figure 3 c shows
that the peak concentrations in the number size distribution were
not the same with different fuels. The standard deviations for
each studied wood pellet-coal mixture are shown in Appendix A.
The total particle number concentrations (for particles in the size
range of 9.8-414 nm) were calculated from the particle number
size distributions and are listed in Table 3. The particle number
size distributions were also used to calculate the volume size dis-
tribution of the particles (see Appendix B). The 100% coal has the
highest peak concentration and, thus, indicates the highest total
particle concentration in the boiler super heater area. The sec-
ond highest peak concentration was observed with coal+ip10.5%
case, whereas for the other coal-pellet mixtures total particle
concentrations decreased with increasing pellet proportion. How-
ever, it seems that also “c+rp13.1%” had an increasing trend to
the total particle number concentration (9.8-414 nm) compared
with “c+rp9.8%”. It can be concluded that the pellet substitution
decreases the total particle number concentration in the boiler.
The lowest total particle number concentration (9.8-414 nm) was
achieved with combustion of roasted pellets and coal because all
studied “c+rp”-mixtures, even over 10% substitution, decreased
the total particle number concentration equally compared to coal
combustion. It seems that over 10% substitution of industrial pel-
lets can actually increase the total particle number concentration
in the boiler compared to “c+rp”-mixtures.

Figure 3d shows that the particle number size distributions
were mainly unimodal in size range of 9.8-414 nm with a mean
electrical mobility diameter of 25 nm and a geometric standard
deviation (GSD) of 1.4. However, when combusting “c+ip10.5%"-
fuel, the other mode was also observed, in addition to the mode at
25 nm. The other particle mode had the GMD of around 120 nm
(GSD 1.6), but the number concentration for this mode was about
3 orders of magnitude smaller than the number concentrations of
mode at 25 nm. Thus, the combustion of other “c+rp”-mixtures
decreased the total particle number concentration in the studied
size range, but did not have an effect on the form of particle
number size distribution, and the combustion of “c+ip10.5%"
did cause a slightly higher total particle number concentrations
and a bimodal particle size distribution. This can be a result of
differences in some properties of the fuels, such as the grindability
of the pellets. Roasted pellets are more similar to the coal and,
thus, could be more easily ground with the coal compared to the
industrial pellets which are less processed and look more like
stemwood.

The particle sample for transmission electron microscope (TEM)
analyses was collected during the combustion of “c+ip10.5%". Ex-
amples of the images of the particles are shown in Fig. 4. Based
on the images, the typical particle sizes were determined to be
10-25 nm in diameter and 120-130 nm in diameter. Based on the
TEM images, particles in both of these size ranges were spher-
ical. The observed diameters correspond well with the particle
size distribution measured with the SMPS. Qualitative chemical
analysis of the smaller particles, conducted by the EDS method
(in Fig. 4b), showed that the particles consisted of Si, Al, P, Fe,
Ca and Ti. Similar analysis for larger particles (in Fig. 4c) showed
that they consisted of Si, Al, P, Fe, Ca, Ti and Mg. Based on these
qualitative analyses, the major difference in the chemical com-
position of particles was the existence of magnesium in larger
particles.

The SMPS measurement for the aerosol sample (Fig. 3¢ and
d) produced a number size distribution of all particles in the
size range of the instrument. However, by using the mini-ESP
upstream of the SMPS, the measurement produced the number
size distribution of electrically neutral particles (i.e., electrically
charged particles were removed from the sample before the size
distribution measurement). The fraction of electrically charged
particles was then calculated by subtracting the concentrations
of electrically neutral particles from the concentrations of all
particles. This was made for the particle size range of 20-80
nm in which range the particle concentrations were relatively
high.

In addition to the results calculated from the measurements,
the theoretical charging probabilities were calculated with two
different charging probability functions: Boltzmann equilibrium
charge distribution [35] and Wiedensohler parametrization [36].
Boltzmann equilibrium charge distribution was calculated in
four different temperatures (293 K, 773 K, 1073 K and 1373 K),
assuming 1-6 elemental charges of both polarities. The Boltz-
mann charging probabilities are shown in Fig. 5 with labels “B”.
Figure 5 also includes the charging probability from Wiedensohler
parametrization at room temperature for one elemental charge
with both polarities (“W1”) and for two elemental charges with
both polarities (“W1+W2").

In combustion studies, the amount of electric charge carried
by particles have been used as an indicator of the formation
temperature of the particles (Maricq [37], Filippo and Maricq [38],
Lihde et al. [39], Alanen et al. [40]). In this study, it was observed
that the fraction of electrically charged particles in the studied
size range was strongly particle size dependent (see Fig. 5), being
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Fig. 5. Fraction of electrically charged particles in the boiler super heater area.
Symbols are based on measurement and grey and blue lines denote the charging
probability according to Wiedensohler and Boltzmann at different temperatures.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

approximately 40% at 20 nm, 55% at 60 nm and 60% at 80 nm.
Due to the mean particle size near 25 nm, for coal combustion,
the fraction of electrically charged particles was, on average, 43%.
Coal combustion originated particles 20-30 nm in diameter were
slightly less charged than the same sized coal-pellet-combustion
originated particles. In addition, particles in size range 30-80 nm
from “c+rp13.1%” combustion are also less charged than particles
from coal or “c+ip” combustion. The charging probability calcu-
lated based on particle size distribution measurements was higher
than the charging probabilities calculated from Wiedensohler
parametrization. This result is thought to be expected because the
Wiedensohler parametrization is valid only at room temperatures.
Actually, the comparison of measurement results with Wieden-
sohler parametrization indicates that the particles carried three
to four times more electrical charge than the particles formed at
room temperature.

When we took into account 1-4 elemental charges in one
particle and calculated the Boltzmann charging probability, the
charging probability at room temperature was similar to the
Wiedensohler parametrization for the 20-nm particles in diameter,
but closer the measurement results for the 80-nm particles in
diameter. However, when the Boltzmann charging probability was
calculated at elevated temperatures, the charging probability was
approaching the charging probability that was calculated based on
the measurements. The best fit between the Boltzmann charging
probability and experimental results was gained at approximately
800 K. This similarity in charging probabilities at 800 K indicates
that the particles have been formed at high temperatures. How-
ever, it has to be kept in mind that the Boltzmann temperature,
at particle sizes below 50 nm in diameter, must be interpreted
cautiously. It is also known from the measurements that the
sample temperature after primary dilution was approximately
200 °C, which is less than the temperature predicted by the
Boltzmann charging probability. This strongly supports the in-
terpretation above (related to the insensitivity of particle size
distribution on primary dilution ratio) that the particles were
formed in the boiler before the primary dilution process of the
sample.

4. Discussion

Fuel choices affect the aerosols released in combustion in
power plants. The results of this study showed that coal-pellet
mixture combustion reduces SO, concentrations in flue gas in
comparison with pure coal combustion, which is reasonable based
on the chemical composition on the fuels. In addition, coal-pellet
mixture combustion reduced the concentrations of CO, and HCI
concentrations so that the combustion was cleaner than the
combustion of coal alone. Decrease of CO concentrations may
be caused for example by the oxygen content of pellet fuels
or changes of processes in combustion and flue gas. Additional
reasons for the decrease in CO concentration could be the fuel
particle size distribution, increased amount of volatile matter, but
also using wood and, thus, improving the ignition of coal [41].
However, our data set does not offer unambiguous explanation for
the decreased CO concentration. CO, concentrations of the flue gas
did not change significantly because of fuel changes. It should be
keep in mind that the combustion of pellet-coal mixture reduces
indirectly also the CO, emissions of the power plant due to the
carbon neutrality of the biomass pellets. In order to get informa-
tion regarding the total benefits from CO, perspective e.g., the CO,
emissions of fuel transportation should be taken into account.

In this study, the chemical composition of the particles sampled
from the super heater area was very similar to all studied fuel
combinations and, thus, it can be concluded that the 6-13% pellet
substitution may not increase the corrosion risk of the boiler or su-
per heaters. Nonetheless, the corrosion of boiler and super heater
surfaces is a complicated process affected by both the initially
gaseous and particulate compounds, as well as the temperature
conditions in the boiler, and the detailed understanding of how
the fuel changes affect those requires more detailed studies.

Combustion aerosol particles have been previously studied in
power plants mostly by measurements for the flue gas in the stack
or in duct before ESP. In this study, the particles were studied
from the super heater area of the power plant. In general, the
results are in line with previous studies made at the stack [42-45].
The results indicated that fuel changes have not had major effects
on particle mass and the number size distributions of the flue gas.
In addition, results show very clearly that, with all fuel mixtures
studied here, the particle number size distributions (from 9.8 nm
to 414 nm) were dominated by nanoparticles with a mean size
of approximately 25 nm. From the emission point of view, this
particle size is problematic because, in general, electrical charging
of nanoparticles is not as efficient as the charging larger particles.
For example, Yldtalo et al. [46] have shown that sub-100 nm
particles penetrate through ESP. Thus, removal of these particles
from the flue gas may require techniques other than electrostatic
precipitators (ESP). Compared to the combustion of coal only, the
combustion of coal-pellet mixtures was observed to decrease the
number concentration of nanoparticles and, in addition, slightly
increase the fraction of electrically charged nanoparticles. If the
power plant is equipped with ESPs, both of these effects have the
potential to decrease the particle emissions into the atmosphere.
Thus, from the viewpoint of flue gas cleaning and particle emis-
sions, the possible effects of co-combustion of coal and biomass
pellets seems to be more positive than negative.

The particle number size distribution measurements supported
by other measurements indicated that, for all fuel mixtures, the
particles were solid, chemically stable and a significant part of
them was electrically charged. For one fuel mixture (over 10%
substitution of coal with industrial pellets), the particle number
size distribution was observed to consist of two modes, and
according to TEM analyses, both of these modes consisted of
spherical particles. In general, although the particle measurements
were made after diluting the flue gas sample and thus decreasing
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its temperature into the room temperature, the results strongly
indicate that the measured particles were formed at high tem-
perature conditions before the sampling and dilution process. In
addition to the chemical composition of the particles, this was
also indicated by the insensitivity of the particle size distribution
(number and size of particles) on the primary dilution ratio, as
well as by the observation that the measured particles carried
electric charge typical for high-temperature aerosol. Overall, the
fraction of neutral/charged particles is at the same level as pre-
viously reported by Maricq [37] for particles originating from
gasoline and diesel engines (data followed Boltzmann charge
distributions at 800-1100 K). Thus, the measurement (sampling,
dilution, instrumentation) setup used in this study is suitable to
get information on particles existing in the high-temperature flue
gas. On the other hand, results indicate indirectly that the flue
gas from coal combustion and from the combustion of coal-pellet
mixtures do not include a lot of such gaseous compounds that can
directly condense on particle surfaces.

5. Conclusions

The transition from fossil fuel combustion to biomass combus-
tion has been started, although relevant policies to support this
transition are not yet in place. This study characterized how the
substitution of coal with pellets changes the flue gas composition
in the power plant super heater area. Gaseous components in the
flue gas are directly affected by the fuel chemical composition;
for example, the concentration of SO, and HCl were decreased
in the flue gas by pellet substitution. The fuel oxygen content
may improve the combustion which can be detected as lower CO
concentration in the flue gas.

In addition to changes in the gaseous compounds of the flue
gas, the particle chemical and physical properties might also be
affected by the fuel changes. In this study, it was detected that
the particle mass size distribution did not change significantly
between the studied pellet-coal mixtures. However, the PM10 var-
ied between 510 and 820 mg Nm~3. The particle samples gained

from the determination of the particle mass size distribution
were further analysed. The elemental and ionic analysis showed
that the chemical composition of the particles was quite similar
which indicates that the pellet-coal mixtures in 6-13% does not
increase the corrosion risk. Even though the particle mass size
distributions were similar with all of the fuels that were studied,
the particle number size distributions have some differences,
meaning that the fuel affects the fine particles in the flue gas. The
primary dilution ratio did not have an effect on the particle size
distribution, which indicates that the particles are formed before
dilution in the boiler. The particle number size distributions have
a mean diameter of 25 nm, but with “c+ip10.5%” there is also a
second mode at 120 nm in diameter. Although, the second mode
has 3 orders of magnitude lower particle number concentration
compared to the 1st mode in 25 nm size. The bimodal particle
number size distribution and, for “c+ip10.5%”, spherical shape of
the particles could be also identified from the TEM images. There
was also a difference in the particle number concentration (from
9.8 nm to 414 nm); the coal combustion caused the highest total
particle number concentrations (2.78 -108cm~3) and the “c+rp”
the lowest (1.67 -108 cm~3), whereas the flue gas particle number
concentrations for the coal-industrial pellet mixture were between
these values (1.89 -108 cm=3-2.20 108 cm~3).
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Appendix A. Standard deviation for the particle number size
distributions
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Fig. A.6. Standard deviations of the particle number size distributions measured with SMPS from the boiler super heater area.

563



564

E Mylldri et al./Combustion and Flame 176 (2017) 554-566

15000
&~
S s ¢
o
o 10000 © rp6.6%
§ ® p7.7%
— ® p9.9%
Q
(] ° p13.1%
8 5000 4 ip6.6%
3 2 p10.4%
>
©
0
10° 10"

10°

&~ 10°
5 |-
™ ® p6.6%
§ ® rp7.7%
= ® rp9.9%
Q
% ° p13.1%
ke) A ip6.6%
S 100} a ip10.4%g
>
©
10° 10" 10? 10°
D (nm)

p

Fig. B.7. Particle volume size distribution calculated based on the assumption of spherical particles from the particle number size distribution measured with the SMPS.

Appendix B. Particle volume size distributions

The mode mean size was 35 nm and for “c+ip10.5%” the second
mode mean was 300 nm. The mode mean size cannot be deter-
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Appendix C. Particle chemical composition
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Abstract. Atmospheric emissions, including particle num-
ber and size distribution, from a 726 MWy, coal-fired power
plant were studied experimentally from a power plant stack
and flue-gas plume dispersing in the atmosphere. Experi-
ments were conducted under two different flue-gas clean-
ing conditions. The results were utilized in a plume disper-
sion and dilution model taking into account particle forma-
tion precursor (HySOj4 resulted from the oxidation of emit-
ted SO;) and assessment related to nucleation rates. The ex-
periments showed that the primary emissions of particles
and SO, were effectively reduced by flue-gas desulfuriza-
tion and fabric filters, especially the emissions of particles
smaller than 200 nm in diameter. Primary pollutant concen-
trations reached background levels in 200-300s. However,
the atmospheric measurements indicated that new particles
larger than 2.5nm are formed in the flue-gas plume, even
in the very early phases of atmospheric ageing. The effec-
tive number emission of nucleated particles were several or-
ders of magnitude higher than the primary particle emission.
Modelling studies indicate that regardless of continuing dilu-
tion of the flue gas, nucleation precursor (H2SO4 from SO,
oxidation) concentrations remain relatively constant. In addi-
tion, results indicate that flue-gas nucleation is more efficient
than predicted by atmospheric aerosol modelling. In particu-
lar, the observation of the new particle formation with rather
low flue-gas SO, concentrations changes the current under-
standing of the air quality effects of coal combustion. The

results can be used to evaluate optimal ways to achieve bet-
ter air quality, particularly in polluted areas like India and
China.

1 Introduction

On the global scale, nearly 40 % of annual production of
electricity is covered by coal combustion (EU, 2014). In ad-
dition to CO, emissions, known to have climatic effects,
coal combustion causes emissions of other harmful pollu-
tants like NO,, SO, and particulate matter, all decreasing
the air quality and increasing health-related risks but also
affecting climate directly and indirectly. For instance, SO»
affects the climate indirectly because it tends to oxidize in
atmosphere and form H>SO4, which affects particle forma-
tion. Coal-combustion-related air quality problems exist, es-
pecially in developing countries like China (Huang et al.,
2014), where power production is not always equipped with
efficient flue-gas cleaning systems. However, with proper
combustion and flue-gas cleaning technologies the fine par-
ticle emissions of coal combustion can be decreased to a
very low level and the emissions of gaseous pollutants other
than CO; can also be decreased (Helble, 2000; Saarnio et
al., 2014). Particle mass and number emission factors for the
300 MW coal-fired power plant with electrostatic precipita-
tor (ESP) and flue-gas desulfurization unit (FGD) have been
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reported by Frey et al. (2014): the emission for particle mass
(PM) was 0.18 4 0.06 mg MJ~! and for fine particle number
23x10°+£4.0x 10°MJ~ L, However, it can be expected that
particle emissions and characteristics such as particle size are
highly dependent on technologies used in power production.
Only a few studies have reported particle number size dis-
tributions and mean particle diameter for the coal combus-
tion emissions. The mean particle diameters have been re-
ported to be between 100nm (Frey et al., 2014; Yi et al.,
2008) and 1 um (Yi et al., 2008; Lee et al., 2013). According
to Saarnio et al. (2014), chemical composition of particles
in the efficiently cleaned flue gas after the FGD is shifted
towards desulfurization chemicals. Interestingly, sulfate par-
ticle emissions from coal combustion with proper cleaning
technologies can restrain global warming due to a cooling ef-
fect of the particles (Frey et al., 2014; Charlson et al., 1992;
Lelieveld and Heintzenberg, 1992).

Due to the emission limits of power plants, driven by the
need for a healthier environment, emissions should be kept
at minimum. This can be achieved by different technologies.
Flue-gas NO, emissions can be reduced in the power plant
boiler by applying low-NO, burners, whereas SO, emissions
can be reduced by flue-gas desulfurization (FGD) (Srivastava
and Jozewicz, 2001). Particle emissions can be reduced by
electrostatic precipitators (ESP) and fabric filters (FF). Very
low emission levels can be achieved by these techniques. For
example, for particle emission, ESP typically removes 99 %
(Helble, 2000) of fine particles. Further, Saarnio et al. (2014)
showed that a desulfurization plant with fabric filters re-
moves up to 97 % of fine particles. A combination of these
techniques would then remove 99.97 % of fine particle emis-
sions formed in combustion. However, particle emission as
well as the effects of technologies can differ if the emissions
are measured from the diluted flue gas in the atmosphere.
In principle, particle number and even particle mass can in-
crease in the atmosphere, for example, due to nucleation and
condensation processes (Marris et al., 2012; Buonanno et al.,
2012). However, there are very few observations of the pro-
cesses in the diluting flue gas during the first few minutes
after the stack.

Power plant plumes have been studied with aircraft by
measuring long-distance crosswind profiles of gases and par-
ticles (Stevens et al., 2012; Brock et al., 2002; Lonsdale et
al., 2012; Junkermann et al., 2011). Stevens et al. (2012) and
Lonsdale et al. (2012) have compared these measurements to
modelling results, which were based on emission inventory
values. Modelling results indicated that secondary particle
formation occurs in the plumes after emission from the stack
and the measurement results show correlation with the model
especially at distances of 10-20km. Brock et al. (2002) ar-
gue that the secondary particle formation begins in a 2h old
plume. A study by Brock et al. (2002) has focused on 0 to
13 h old power plant plumes. However, Brock et al. (2002)
do not report particle number concentrations for fresh flue
gas. Crosswind profiles shown in the study of Stevens et
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al. (2012) were at distances from 5 km to a little over 50 km,
and these results were also used in Lonsdale et al. (2012). On
the contrary, Junkermann et al. (2011) followed the plume
centre line based on the SO, concentrations and also made a
few crosswind profiles of the studied plume.

The aim of this study was to characterize how the atmo-
spheric emissions from a 726 MW coal-fired power plant
depend on flue-gas cleaning, i.e. desulfurization plant and
fabric filters (later referred to as “FGD +FF off” and
“FGD + FF on”). In addition to the stack measurements for
pollutants, the study aimed to show how the flue-gas cleaning
affects real atmospheric concentrations of emitted CO,, SO,
and particles. The study included experiments conducted in
the stack of the power plant, measurements conducted with a
helicopter equipped with instruments for CO,, SO, and parti-
cles and flue-gas plume dispersion and aerosol process mod-
elling.

2 Experimentation

The studied power plant is a base-load station located near
Helsinki city centre, Finland. The power plant consists of
two 363 MWy, coal-fired boilers. The energy is produced
by coal combustion in 12 low-NO, technology burners
(Tampella/Babcock-Hitachi HTNR low-NOy ), situated at the
front wall of the boiler. The properties of coal used in this
study are listed in Table S1 in the Supplement. Combustion
releases flue gases that are cleaned in electrostatic precipi-
tator (ESP), semi-dry desulfurization plant (FGD) and fabric
filters (FF) before the stack. There are separate flue-gas ducts
and flue-gas cleaning systems for each boiler.

The flue gas was studied in two different locations: the
flue-gas plume and a reference point inside the stack. Mea-
surements were made at both locations in two different flue-
gas cleaning situations: FGD 4 FF off and, with all clean-
ing systems, FGD + FF on. The measurement location in
the stack was at the height of +35m above sea level. The
flue-gas temperature inside the duct was 78 +2°C in nor-
mal operation conditions and 130 = 13 °C during FGD + FF
off. The flue-gas plume concentrations were measured with
a helicopter equipped with aerosol instruments. The flying
altitude of the helicopter was 150m above ground level
or higher, which corresponds to the lidar (Halo Photonics
Streamline Doppler lidar with full-hemispheric scanning ca-
pability, Pearson et al., 2009) (Fig. S2) results for plume al-
titude. It should be noted that only the flue gases from the
boiler under investigation were steered to bypass FGD and
FF. Thus, in the FGD + FF off situation, the flue-gas plume
consisted of both the cleaned flue gas and the flue gas cleaned
by ESP. This has to be kept in mind during the analysis of at-
mospheric measurements.

The measurements were made on 24 March 2014 in two
separate 1h periods (see specific times from Fig. S2, the
black rectangles; the first illustrates FGD 4 FF on and the lat-
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ter FGD + FF off). Weather conditions were stable during the
study. The wind direction and speed were 216 £ 5.51° (based
on lidar data) and 6.5 ms~! in FGD + FF off and 220 4 6.25°
and 4ms~! in FGD +FF on. The marine boundary layer
height was 246-258 m and the planetary boundary layer
heights were 360-530m. However the calculations were
made within the marine boundary layer because the flue-gas
plume did not rise above it. The background aerosol concen-
trations for each measured gaseous component were 403 ppm
for CO; and less than 2-8 ppb for SO,. The range of am-
bient temperature was 6.6—6.9 °C, the global radiation was
347-466 W m~2 and the visibility was 29 043-36 000 m (see
standard deviations from Table S2).

The instrument installations in different locations are
shown in Fig. S3. The sampling of flue gas in the stack was
performed with a Fine Particle Sampler (FPS; Dekati Ltd.,
Mikkanen et al., 2001) with total dilution ratio (DR) of 27.
Probe and dilution air temperatures were at 200 °C. The sam-
ple was analysed using the following instruments: Conden-
sation Particle Counter (CPC3776; TSI Inc., Agarwal and
Sem, 1980), Electrical Low Pressure Impactor (ELPI; Dekati
Ltd., Keskinen et al., 1992), Scanning Mobility Particle Sizer
(SMPS; Wang and Flagan, 1990) 0.6/6 standard L min~!
(DMA3071, CPC3775 TSI Inc.) and gas analysers for di-
Iuted CO; (model VA 3100, Horiba) and NO, NO; and NO,
(model APNA 360, Horiba). Measurement data were also re-
ceived from a normal operation monitoring of the emissions,
including raw flue-gas SO,, NO,, CO, concentrations and
dust (SICK RM 230, calibrated based on SFS-EN 13284-1
standard). In contrast to stack sampling, the sample in the
flue-gas plume dilutes naturally and can be sampled to equip-
ment without additional dilution of aerosol sample. The sam-
pling inlet position in the helicopter is shown in Fig. S3.
Natural dilution causes rapid changes in concentrations, thus
high measurement frequency equipment was used in the heli-
copter. CPC3776 (TSI Inc.) was installed to measure the total
particle number concentration, whereas the Engine Exhaust
Particle Sizer (EEPS, TSI Inc., Mirme, 1994) measured the
particle number size distribution at 1 Hz sampling frequency
from 5.6 to 560 nm. Gas concentrations for CO,/CHy4/H,0O
(Cavity spring-down spectrometry Picarro model G1301-m
CO,/CH4/H,0 flight analyser) and SO, (Thermo Scientific
Inc. model 43i SO, analyser, with 5s response time) were
measured continuously with 1 Hz frequency (see more de-
tails in Table S3).

Figure 1 shows the helicopter measurement routes for the
FGD + FF on and FGD + FF off situations. The objective
of flight routes was to follow the centre line of the flue-gas
plume. The helicopter flew both up and down the plume; GPS
data were used to separate these two flight situations to cal-
culate the distance and the age of the plume separately.
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Figure 1. Helicopter flight routes. The wind blew at an angle
of 216 £5.51° (based on lidar data) and the flight direction was
213 £4.14° (based on GPS data for helicopter) in FGD + FF off
(blue circles). Corresponding angles for FGD + FF on (black cir-
cles) were 220+ 6.25° (wind direction based on lidar data) and
223 +5.66° (flight direction based on GPS data for helicopter). The
triangular shapes (black and blue lines) show the helicopter GPS co-
ordinates that have been taken into account in the calculations.

2.1 Model description: Gaussian plume model

The Gaussian plume model is a solution to an advection—
diffusion equation that describes the changes in the pollutant
concentrations due to advection of wind and turbulent mixing
with the surrounding air (Stockie, 2011). Accordingly, the
concentration of a pollutant i, C;, emitted from a point-like
source, can be expressed as follows:

Gy =2 o~ 22 Y[exp (-2
AR _27TUO'yUZ P 0}2, P 022

H 2
+exp (—(1—272))] . [€))]

z

Here x, y and z are the spatial coordinates, aligned so that
the x axis corresponds to the wind direction and H is the
height at which i is emitted (stack height). Also, Q; is the
emission rate of i at the source, U is the mean wind speed
and o, as well as oy, are the so-called dispersion coefficients
which reflect the spatial extent of the plume as a function of
the downwind distance x. The dispersion coefficients were
calculated using the parameterization of Klug (1969) and the
atmospheric stability class, which is needed to calculate the
dispersion coefficients. Atmospheric stability classes were
estimated based on the measurements of the wind speed and
solar radiative flux at the surface. Moreover, the pollutant
concentrations were calculated along the centre line of the
plume, the value of U was set to constant and was equal to
the average wind speed during the flights. Finally the value
of z was set equal to the stack height (150 m).

Atmos. Chem. Phys., 16, 7485-7496, 2016
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It is worth noting that the background concentration of
i is zero according to Eq. (1): C; — 0 when z — oo or
y — £oo. However, the flue gas emitted from the stack was
actually cleaner in terms of particle number concentration
than the background air when the flue gas was cleaned prop-
erly. In order to account for such cases, the following equa-
tion was used instead of Eq. (1):

Co—Cwo
0

C=Coot x Ci, @
where C is the background concentration of i, and Cyp is
its concentration at the source. It can be readily shown that
Eq. (2) is a solution to the advection—diffusion equation un-
derlying Eq. (1). Also, it is easily verified that €= Co
when z — oo or y — F00. Finally, the value of Q; in Eq. (1)
was chosen so that ¢ — Co when z — H and x,y — 0.

An important output of the model is the dilution ratio of
the flue-gas plume, DR, which is calculated based on Eq. (3).

[CO2(1)] — [CO2,00]
[C02.stack] - [COZ,oo]

In Eq. (3) [CO2(#)] and [CO2, ] are the modelled CO, con-
centration at time ¢ and the CO; concentration measured in
the stack, respectively.

DR(t) = 3

2.1.1 Model description: nucleation rate and particle
formation calculations

The particle appearance (driven by nucleation and growth)
rates for the particles 2.5 nm in diameter were calculated us-
ing the parameterization developed by Lehtinen et al. (2007)
presented in Eq. (4). The key input parameters for the model
are the nucleation rate (Jy,c), the particle growth rate (GR)
and the coagulation sink, of which the coagulation sink de-
scribes clusters that are removed via coagulational scaveng-
ing (CoagS). The parameter Jp, is calculated based on the
estimated sulfuric acid concentrations as a function of plume
age as detailed below, and the particle growth rates are calcu-
lated by assuming growth only via irreversible condensation
of sulfuric acid. Also, CoagS is calculated from the conden-
sation sink CS (which is calculated in a fashion described
below) using the Eq. (8) in Lehtinen et al. (2007). Also, the
initial size of the freshly nucleated clusters was varied, and
the value of the shape factor (m in Eq. 6 in Lehtinen et al.,
2007) was set equal to —1.6.

CoagS(dl)) @

Jx = Jnue X exp (—y X d x cS

The nucleation rates Jy,c in the studied plume were cal-
culated using the parameterization developed by Kulmala
et al. (2006), which has also been applied previously to
model nucleation in plumes (Stevens et al., 2012; Stevens
and Pierce, 2013).

Joue = A x [H2SO4] %)
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InEq.(5)A=1x10""s" or A = 1x107%s~! and [H,SO4]
(cm™3) is the sulfuric acid concentration. The value of A =
1 x 1077 s~! was chosen according to the study by Stevens
et al. (2012) and Stevens and Pierce (2013). The initial size
of the nucleated particles was assumed to be of 1.5 nm.

Formation of [H2SO4] was calculated assuming that it is
produced only via the OH 4 SO, reaction and the only loss
pathway for H,SO4 is condensation onto the particle sur-
faces. When steady-state is assumed, the [H»SO4] can be cal-
culated from Eq. (6).

[SO2] x [OH]
w22 2

H;SO4] =k
[H2SO4] = k) Cs

(6)
In Eq. (6) k; is the reaction constant between OH and SO,
(Table B.2 in Seinfeld and Pandis, 2006). The SO, concentra-
tions were taken from the helicopter measurements, and the
time development of CS and [OH] in the plume were mod-
elled as follows. First, CS was calculated using the relation
shown in Eq. (7).

CSstack 1
1
CS +CSeo x ( ) @

In Eq. (7) CSgtack is the condensation sink of aerosols mea-
sured in the stack, and CS., is the condensation sink of
the background aerosols. The value of the latter parame-
ter was calculated from the size distributions measured at
the SMEAR III station (Junninen et al., 2009), which is
located around 2km away from the power plant. Second,
[OH] was calculated using the parameterization of Stevens
et al. (2012), which has downward shortwave radiative flux
at the surface and [NO,] as main inputs. The value for the
former parameter was taken from the measurements (using
the value averaged over the measurement periods), and the
NO, concentrations were calculated from Eq. (8).

[Nox ,stack]

[NOx (D] = DR()

®
In Eq. (8) [NOy stack] is the NO, concentration measured in
the stack. It should be noted here that in the calculations the
background concentration of NO, is assumed to be of minor
importance when compared to NO, emitted by power plants.
To support this, the study of Pirjola et al. (2014) indicates that
in the harbour area close to the power plant studied, the NO,
concentration level is typically clearly lower than 100 ppb.

3 Results

3.1 Primary emissions of the coal-fired power plant
The SO, and particle emissions of the power plant were
strongly dependent on the flue-gas cleaning system. This can

be seen in Table 1, which shows flue-gas concentrations for
CO3y, SO3, NOy, O3, particle number (No), dust as well as
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Table 1. Flue-gas concentrations of CO,, SO, NOy, O, total parti-
cle number (Ntot), dust and flue-gas flow rate in the stack. Mean val-
ues (and standard deviation) are presented for both flue-gas cleaning
conditions (FGD + FF on and FGD + FF off).

FGD + FF off FGD + FF on
CO, (%) 992422 10.3 £0.96
SO, (ppbv) 243000 = 71 300 55200 + 14600
NO, (ppmv) 252+74 258 + 65
05 (%) 6.16£0.11 6.11+0.10
Niot (cm™3) (1.8+£0.2) x10° 420+ 640
Dust (mg Nm™3) 188 +82 441

Flow Nm3h~!)  (4.86£0.20) x10°  (4.65+0.064) x 10°

flow rate in the duct in both flue-gas cleaning conditions. In
the shift from FGD + FF off to FGD + FF on, the SO, con-
centration decreased to nearly a fifth, the concentration of
dust decreased by a factor of 50 and the N decreased by a
factor of 4000. For other parameters the effect of FGD + FF
was insignificant.

Figure 2 shows the particle number size distributions of
flue gas in the stack in both cleaning conditions. These
were measured using an electrical low pressure impactor
(ELPI) and a scanning mobility particle sizer (SMPS) in both
FGD + FF on/off cases. In the FGD + FF on case, the SMPS
measurement is a median value over a few hours of operation
due to low particle number concentrations in the stack. Based
on the SMPS measurement the particle geometric mean elec-
trical mobility equivalent diameter was 80 nm and the width
of particle number size distribution (geometric standard devi-
ation, GSD) was 1.45 for FGD + FF off. In comparison, the
geometric mean electrical mobility equivalent diameter was
31 nm for FGD + FF on and the width of particle number size
distribution was 2.15. Based on the measurements using the
ELPI geometric mean aerodynamic equivalent diameter was
141 nm and GSD was 1.41 for FGD + FF off. The difference
in mean diameter measured using the ELPI and the SMPS
comes from the difference in size classification principles of
these instruments and enables the determination of effective
density of measured particles. The effective density calcula-
tion is based on the relation between the electrical mobility
equivalent diameter and the aerodynamic equivalent diame-
ter of the particle (see Ristiméki et al., 2002). In this study
case the difference in equivalent diameter indicates effective
density larger than unit density for emitted particles (approx-
imately 3.1 gem™3). In comparison, Saarnio et al. (2014)
used an effective density of 2.5 gcm™ to convert the elec-
trical mobility diameter measured using a SMPS to an aero-
dynamic diameter. When studying FGD + FF on, the particle
concentrations were so low and thus accurate determination
of mean particle size was not possible from the particle size
distribution measured by the ELPI.

Flue-gas samples from the stack were diluted with hot di-
lution air before the particle instruments and thus the particle
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Figure 2. Particle size distributions measured with ELPI and SMPS
from the flue gas in the stack. ELPI and SMPS data are shown in
operation conditions, FGD + FF on and FGD + FF off. The x axis
is aerodynamic diameter for ELPI data and electrical mobility di-
ameter for SMPS data.

number concentrations (Table 1) and particle size distribu-
tions (Fig. 2) are for non-volatile particles. In combustion
studies the hot dilution air is typically used to prevent the
formation of liquid nucleation particles and to minimize the
effects of condensation of semi-volatile compounds on par-
ticles. However, to ensure the measured particles were non-
volatile and not affected by the dilution method itself, a ther-
modenuder (Ronkko et al., 2011) was used periodically af-
ter the sampling and dilution. The thermodenuder did not
affect the particle number size distribution, which confirms
the non-volatile nature of the measured particles. Due to this
non-volatility of the particles, the lifetime of the primarily
emitted particles in the atmosphere can be longer than that of
volatile particles, e.g. nucleation mode particles observed in
vehicle exhaust (Lihde et al., 2009).

3.2 Atmospheric measurements

Figure 3 shows the measured flue-gas plume concentrations
as a function of plume age. Diffusion losses for the parti-
cles in the sampling lines were calculated based on the mea-
surement set-up (see Fig. S4). The data were recorded based
on GPS coordinates, which were used to calculate distances
from the stack, and the distances were changed to correspond
plume age using wind speeds of 6.5 and 4.0ms™! (lidar,
Fig. S2). The calculation showed that nearly 70 % of the
2.5nm particles in diameter was lost in the sampling lines
and thus the total concentration shown in Fig. 3 can be higher
than shown here. The vertical lines denote the 2 km distance
from the stack. Figure 3 shows the dilution timescale of the
flue gas in terms of CO, and SO, in both operation condi-
tions. The same trend in SO, and Ny concentrations as ob-
served in Table 1 was measured by instruments installed in
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Figure 3. Concentrations of power plant flue-gas components mea-
sured by instruments installed in the helicopter as a function of
plume age; FGD + FF off in the top panel and FGD + FF on in the
bottom panel. SO, (ppb, blue line) and CO; (ppm, black line) con-
centrations on the left axes and total particle number concentration
ANiot (1 cm’3, red line, from CPC) on the right axes. The ANyt is
calculated using the background value calculated from the upwind
side of the stack (COy pg was 403 ppm and SO pg 2-8 ppb). The
grey vertical lines denote 2 km distance from the stack in FGD + FF
on/off. The presented results are 5 s median values.

the helicopter; in FGD + FF off the particle and SO» con-
centrations were higher than the FGD + FF on situation. It
should be kept in mind that in FGD + FF off only one of the
two flue-gas cleaning systems was bypassed.

Plume dilution can be evaluated by the CO, concentra-
tions (in Fig. 3a and b), which show that the FGD + FF
off case dilutes to approximately background levels in 200 s
(0.74km) and the FGD +FF on case in 300s (1.5km).
The peak values for CO,, SO, and Ny, were 3195 ppm,
2193 ppb, 3.3x 10* cm™3 in the FGD + FF off and 3254 ppm,
585 ppb, 0.4 x 10* cm=3 for the FGD + FF on. However, di-
lution decreases the CO;, SO, and Ny concentrations in
the atmosphere to 422 ppm, 52 ppb in FGD + FF off, and
473 ppm, 89 ppb in FGD + FF on. The Ny reached near
background concentrations after 200 s and 300s. The back-
ground gaseous concentrations for each measured gaseous
component were 403 ppm and 2-8 ppb for CO, and SO,,
respectively. The boundary layer mixing started during the
FGD + FF on measurements and thus the background values
measured from the upwind side flight loops from the stack
were averaged and subtracted from both FGD + FF on/off. It
can be noted that very near (first 10-50s) the stack the heli-
copter was not in the plume. This can be seen from CO; and
SO, concentration values presented in Fig. 3a and b when
approaching plume age zero. Thus, the dilution process is
discussed below, mainly from the maximum concentrations
onward.
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An increase in total particle concentration can be seen in
Fig. 3 after 400 s aged the flue-gas plume. This tendency can
be seen in both flue-gas cleaning situations. Based on Fig. 3a,
for the FGD + FF off situation, the background particle con-
centration was 1430 cm™3, after 200 s the concentration was
at the background level and after 400 it increased signif-
icantly, even up to an average level of 5000cm 3. Based
on CO, measurements, the dilution of flue gas was practi-
cally complete at 200 s. Similarly, in the FGD + FF on situa-
tion after 500 s the particle concentration was slightly above
background, after which it increased even up to 5000 cm 3
after 700 s. Thus, the concentrations in the diluted and aged
flue-gas plume were higher than the background and signif-
icantly higher than could be expected based on the primary
particle concentrations and observed dilution profiles. In gen-
eral, taking into account the fact that there is no compre-
hensive measurement of the primary precursor matrix (only
[SO;] is measured), the primary precursor matrix might in-
clude low-volatile organics and SO3, which can increase the
probability of new particle formation. Due to the increasing
trend in particle concentration, some estimation about for-
mation rates can be calculated. Depending on the plume age,
the mean formation rates calculated from the data shown
in Fig. 3 depended on the plume age being for FGD + FF
off 081 cm™3 s~ ! and for FGD +FF on, 0 to 18cm™3s~!
(mean slope of increasing total particle number concentra-
tion at 400—482 and 500-692 s).

Particle size distributions, shown in Fig. S5, were calcu-
lated from the EEPS data measured from the helicopter in
both FGD + FF on/off situations as a 10 s moving median
method. The particle size distribution in the FGD + FF off
case had a mode around 80 nm, which refers to the solid
particle median diameter measured with the SMPS from the
flue gas in the stack. The particle size distribution measure-
ment made using the EEPS (Fig. S5) supports the results
for total particle number measurement made by the CPC
(Fig. 3), i.e. in terms of particles the flue gas dilutes in 0—
300s in FGD + FF off. In addition, the particle size distri-
butions measured by the EEPS indicates a slight increase of
nanoparticle concentrations during the dilution and disper-
sion of the flue gas in the atmosphere. Although EEPS total
particle number concentration cannot be compared to total
concentration of CPC because Levin et al. (2015) showed
that EEPS total particle number concentration is not compa-
rable with a CPC. Further, Fig. S5 shows that the EEPS par-
ticle size distribution data are noisy and, based on Awasthi
et al. (2013), can show maximum of 67 % error compared to
SMPS.

3.3 Model calculations: modelled vs. measured CO;,
concentrations

The validity of the Gaussian plume model was tested against

CO; measurements from the plume. Median CO; concen-
trations were calculated using the measurement data at a 5s

www.atmos-chem-phys.net/16/7485/2016/



F. Mylliri et al.: New particle formation in the fresh flue-gas plume from a coal-fired power plant

7491

Table 2. Comparison between modelled CO, concentration and measured CO; concentration, and comparison between SO, measured from
the atmosphere and Gaussian-model-diluted SO;. Mean relative error (MRE) and correlation coefficients (R2) were calculated between

measured and modelled concentrations.

CO, SO,
case stab. class MRE (%)  R2 MRE (%) R?
c 5 097 131 0.95
FGD+FFoff 4 25 097 322 0.96
b 29 0.87 291 0.84
FGD+FFon 40 087 413 085
interval separately for the FGD + FF on/off cases and the FGD+FF off
locations of the peak CO concentration (fmax, [CO2 max]) B jggg, e medians |
were identified from the resulting time series. The value Cq £ : modelled, Stab class C |
g oz
was chosen for Eq. (2) so that the modelled CO; concentra- v 2000 R L modelled, Stab.class D |
tion, Cco,, was around [CO2 max] when ¢ = tyax. The choice D 000 F IR e b s
of Cp was made in this manner r?lther than initializing .the 100 200 00 200 500
model to use the stack concentrations due to the following Agefs)
two reasons. First, the Gaussian plume model does not yield 5000 : ,FGD*FF o :
reliable results close to the source, i.e. within a few tens of e AODO e RPN TEmmedans.
. £ th 1 E 30001 —modelled, Stabclass B _ |
metres (Arya, 1995). Second, the comparison of the results 2 il modelied Stab class C
near (first 10-50s) the source is problematic because the he- 8” 20001 : 1
1000

licopter was not located at the plume centre line during the
initial stages of the measurements.

Comparison of the measured and modelled CO, concen-
trations is shown in Fig. 4 and in Table 2. The chosen sta-
bility classes were b and ¢ for FGD + FF on and ¢ and d for
FGD + FF off, corresponding to the stability conditions rang-
ing from unstable to neutral (Pasquill, 1961). As can be seen,
the model reproduces the observed trends rather well, in par-
ticular for FGD + FF off, while the model tends to slightly
overestimate the observed concentrations for FGD + FF on.
The modelled and measured concentrations were within one
standard deviation in general. Mean relative error (MRE)
and correlation coefficients (R2) were calculated between the
measured and modelled concentrations for CO5. In order to
further investigate the performance of the model, a compari-
son was made between measured SO, and Gaussian-model-
diluted SO, concentrations, shown in Fig. S6 and Table 2.
The results showed that the model consistently overestimates
the SO, concentration in the plume, typically by a factor be-
tween 3 and 4, compared to the measured values. This differ-
ence could be partly explained by the oxidation of SO, be-
cause it is not taken into account by the model. However, this
discrepancy between MREs and R? does not affect the model
performance as the measured SO, concentrations, instead of
being modelled, were used in the plume model simulations.

3.4 Model calculations: nucleation and new particle
formation

Modelled and measured CO; concentrations showed that the
model reproduced the observed dispersion of the plume rel-
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Figure 4. Comparison of measured and modelled CO, concentra-
tions. Median of measured values are shown with black (circle)
symbols along with the standard deviations. Dashed and dotted red
lines correspond to model results for stability classes b and ¢ (top
panel) and c and d (bottom panel), respectively. The correlation co-
efficients between the model and the measurements are shown in
Table 2.

atively accurately. Thus the model was applied to calcu-
late [NO,], [OH] and [H,SOg4], which were needed to in-
vestigate the possibility of new particle formation in the
plume. These results are summarized in Fig. 5. It is seen
that sulfuric acid concentrations exponentially increase dur-
ing the initial stages of the simulation and then reach con-
stant concentration around 1 x 10® and 1 x 107 cm~3, a range
which is also comparable to the atmospheric observations
of [H,SO4] (Mikkonen et al., 2011) formation. Mikkonen
et al. (2011) reported that HpSO4 concentrations varied
between 1.86 x 10°-2.94 x 109 moleccm™> and Sarnela et
al. (2015) reported [H2SO4] concentrations 4.4 x 100-11.5 x
10% moleccm™ for Finnish industrial and non-industrial
area. More H>SOy4 is formed in the FGD + FF off case
because of higher primary SO; emission compared to the
FGD + FF on case.

Initially, OH concentrations are lowered by large con-
centrations of NO, which subsequently decrease during
plume ageing. NO, reduction leads to increases in [OH]
and [H2SO4]. While the [OH] increased consistently during
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Figure 5. Time development of [HySO4] (red lines), nucleation rate
(black lines), [OH] (blue lines) (cm_3 ). Dashed and dotted red lines
correspond to model results for stability classes ¢ and d (top panel)
and b and ¢ (bottom panel), respectively.

the simulations, [SO;] decreased because of dilution. Due
to these opposed trends, the production term for the sulfuric
acid in Eq. (6), did not change greatly during the later stages
of the simulations. Moreover, the condensation sink (CS)
diluted rapidly to its background value, which was around
1 x 107251, These facts explain why the modelled sulfuric
acid concentrations, calculated with Eq. (6), did not change
notably after the initial rapid increase.

The modelled nucleation rate Jy, is directly proportional
to the sulfuric acid concentration and hence the trends in
[H2SO4] are directly reflected in Jy,¢ (Fig. 5). Furthermore,
in our measurements the particles were detected at the low-
est CPC detection limit which was 2.5nm, J> 5. According
to the scheme applied here (see Eqs. 4 and 5), the fraction of
freshly nucleated particles that survive into detectable sizes
depends mainly on their growth rate (GR) and condensa-
tion sink (CS). The average given by the model GRs were
0.34 or 0.19nmh~! in the FGD + FF off case, and 0.07 or
0.04nmh~! in the FGD + FF on case for the two stability
class scenarios. These values are clearly smaller than atmo-
spheric GR observations in urban areas (e.g. Stoltzenburg et
al., 2005). As a lower GR leads to a lower surviving frac-
tion, we conclude that the modelling results do not explain
the observed particle formation in the flue-gas plume.

A series of additional calculations were performed in order
to investigate the sensitivity of the results to the values of the
key input parameters. First, Jy,c is proportional to the con-
stant A, the exact value of which is not accurately known, and
this uncertainly translates directly into the calculated nucle-
ation rates. A sensitivity analysis was made for the nucleation
model in order to evaluate the sensitivity of nucleation rates
to the value of A (shown in Table 3). In these calculations, a
value of 1x 10~ was chosen for A, which is an order of mag-
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nitude higher than in base case simulations. The choice of the
value was based on the study of Sihto et al. (2006) who in-
vestigated NPF (new particle formation) events occurring in
boreal forest. As can be seen, an increased value of A alone
is not sufficient to explain observed new particle formation.
A second source of uncertainty is the sulfuric acid concentra-
tion, which was calculated using a rather simple scheme (see
Sect. 2.1.1). Increases in [H»SOq4] leads to both increased
Jnue and GR and ultimately to larger J> 5. Results displayed
in Table 3 show that J, 5 is more consistent with observa-
tions when [H>SOy4] is increased 5 or 10-fold and when A
is set equal to 1 x 107° like in Sihto et al. (2006). There-
fore, underestimation of [H,SO4] may explain the discrep-
ancy between the observations and base case model results.
This might be caused by underestimation of [OH] or overes-
timation of CS. Regarding the modelled OH concentrations,
it can be noted that they are relatively low, reaching values of
around 1 x 10> cm~3 by the end of the flights. In comparison,
concentrations of around 1 x 106 cm™3 have been reported
during the daytime around noon in various atmospheric en-
vironments (Hofzumahaus et al., 2009; Petdji et al., 2009),
0.26 x 10® moleccm™> in Mace Head (Berresheim et al.,
2002), and 1 x 10°-2 x 107 molec cm 3 in Atlanta (Kuang et
al., 2008). Relatively low modelled OH concentrations can
be explained by high NO, concentrations which were calcu-
lated to decrease consistently from several tens of ppm down
to around 200 ppb during the flights (not illustrated here).
Such high concentrations of NO, are consistent with low
[OH] (see Fig. 1 in Lonsdale et al., 2012). It could thus be
speculated that the model underestimates [HSO4] and con-
sequently the rate of new particle formation due to overesti-
mation of [NO,]. Moreover, it should be noted that neither
SO3 nor low-volatile organic vapours that might have been
present in the measured flue gas were not accounted for in the
modelling study. Previous studies suggest that these exhaust
compounds may also increase the formation rate of nucle-
ation particles (Pirjola et al., 2015; Ehn et al., 2012; Arnold et
al., 2012), which may explain the discrepancy between mea-
surements and model calculations. Regarding the estimation
of the value of CS, it should be noted that its values were
taken from the field site measurements located nearby rather
than from in situ measurements. Therefore it can be spec-
ulated that actual CS values were lower than those used as
input to the model, which causes additional uncertainties.

3.5 Discussion

Each power plant (over 50 MW) in the EU has emission lim-
its for SOy, NO, and particle mass concentrations. For the
studied power plant the limits are 600 mg Nm~3 (210 ppm),
600 mg Nm~3 (290 ppm) and 50 mg Nm~3. A comparison of
the results in Table 1 with these emission limits shows that
the emissions were clearly below these limits when the power
plant operation was normal (FGD + FF on). It was observed
that these low emissions can be achieved through properly
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Table 3. Sensitivity analysis made for number of particles formed with diameters above 2.5 nm during the flight (1 em 3 s71) in the atmo-
sphere with different values of A and [HySO4]. The [H2SO4] is calculated based on the measurement results and scaled up to test faster
nucleation rates for both FGD + FF on and FGD + FF off cases and stability classes (sc).

A=1x10""7s"1
sc 1x[HpSO4] 1.25x[HpSO4] 1.5 [HpSO4] 2 x [HpSO4] 5 x [HpSO4] 10 x [HpSO4]
_4 —4 -3 -3
FGD4FEoff P 100x10 536 x 10 1.73 x 10 8.29 x 10_4 0.2§2 1.74
c 0 0 0 432x10 4.78x10 0.44
c 0 0 0 0 427x107% 1.85x 1072
FGD + FF
ey 0 0 0 0 0 173x1073
A=1x10"0s"1
sc 1x[HpSO4] 1.25x[HpSO4] 1.5 [HpSO4] 2 x [HpSO4] 5 x [HpSO4] 10 x [HpSO4]
_3 -3 —2 —2
FGD L FFoff P 1:00x10 536 x 10 1.73 x 10_4 8.29 x 10_3 2.89 17.4
c 0 0 4.47 % 10 432 % 10 0.48 443
c 0 0 0 0 427x1073 0.19
FGD+FFon 0 0 0 0 0 0.017

working flue-gas cleaning systems. In addition to primary
emissions, flue-gas cleaning systems also seemingly affect
the compounds, which can act as precursors for new parti-
cles, e.g. SO, tends to oxidize in the atmosphere to form SO3
and further forms H,SO4, which can nucleate or condensate
to particle phase. This study clearly shows the importance
of flue-gas cleaning technologies and underlines the proper
usage of the technologies when the atmospheric pollution is
discussed in terms of coal combustion. For example, accord-
ing to Huang et al. (2014) in Xi’an and Beijing 37 % of the
sulfate in atmospheric particles is emitted from coal burning.
In this study the power plant plume diluted to background
levels in 2km (200400 s), which is faster than in other in-
flight measurements (Stevens et al., 2012; Junkermann et
al., 2011). This difference may be because the dilution of
plume and other processes are affected by source strength,
background concentrations and meteorology (Stevens et al.,
2012). We observed that while SO, and CO; were already di-
luted to background levels, the effect of the source to aerosol
concentration was still clearly distinguishable after 2km. In
our study, we collected high time-resolution data close to the
power plant stack, which enabled us to model the plume di-
lution on a detailed scale. From this, we were able to observe
that while SO, and CO; were already diluted to background
levels at a distance of 2 km — in agreement with the dilution
modelling — the effect of the source on the aerosol number
concentration was distinguished at distances > 2 km. We at-
tribute this to nucleation taking place in the ageing plume.
According to the modelling results from Stevens et
al. (2012), atmospheric new particle formation via nucleation
of sulfuric acid begins in the flue-gas plume at 1 km distance
from the coal-fired power plant, whereas the sulfuric acid
formation begins right after emission. Our study therefore
supports this previous modelling work by showing that nu-
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cleation may take place in the aged plume and is most effec-
tive after 400 s, corresponding to a distance of approximately
2 km from the emission source in the atmosphere.

In light of the new results authors would like to distinguish
the primary particle emission from the newly formed particle
emission because those particles have different effects on the
atmosphere and different formation mechanisms. By com-
paring primary particle emission with newly formed particle
emission, the effects of different particles in the atmosphere
could be taken into account more precisely in aerosol models
or air quality assessments.

For instance, rough estimates for particle number emission
factors can be calculated by comparing the measured parti-
cle number concentration with the simultaneously measured
CO; concentration of the flue-gas plume (see e.g. Saari et
al., 2016). By utilizing this method for particles existing in
the flue-gas plume between the ages of 25-55 s, the emission
factor with respect to CO; was 2.0 x 1010 (g COg)*l, as well
as from ages over 400's 8 x 1010 (g CO»)~! in the FGD + FF
off case. Similarly, in the FGD + FF on case, the emission
factors were 4 x 107 (g COy)~! (for aerosol dispersed 55-85's
in the atmosphere) and 3.74 x 10'0 (g CO,)~ ! (for aerosol
dispersed more than 500s in the atmosphere). In compari-
son, the primary emissions were 1.75 x 10'0 (g COy)~! for
FGD + FF off and 8.0 x 10° (g CO,)~! for FGD +FF on.
Thus, new particle formation can increase the real atmo-
spheric particle number emissions even by several orders of
magnitude. It should be noted that particle formation depends
strongly on the plume age [SO,] and primary particle con-
centrations, and it is possible that there are some low-volatile
organics or SO3 present in the plume, affecting the nucle-
ation.

Our observations show that the number of secondary par-
ticles formed in the flue-gas plume can be several orders of
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magnitude higher than the primary particles directly emit-
ted from the flue-gas duct. The formation can already be ob-
served at a distance of ca. 2km from the stack; this distance
is significantly lower than the grid size used in many atmo-
spheric models, which demonstrates the need for subgrid pa-
rameterizations for power-plant-originating secondary parti-
cles. Such a parameterization does already exist (Stevens and
Pierce, 2013), but it does not account for different types of
sulfur removal technologies such as semi-dry desulfurization
and wet desulfurization. Determining the effect of different
removal technologies on power plant secondary aerosol pro-
duction would increase the accuracy of particle-loading pre-
dictions for regional air quality and global models.

4 Conclusions

Emissions of a coal-fired power plant into the atmosphere
were studied comprehensively for the first time, by com-
bining direct atmospheric measurements, measurements con-
ducted in the power plant stack, and modelling studies for at-
mospheric processes of flue-gas plume. The stack measure-
ments were made to estimate the effectiveness of flue-gas
cleaning technologies, such as filtering and desulfurization. It
was shown that the flue-gas cleaning technologies had a great
effect on the SO, and total particle number concentrations
in the primary emission. SO, concentration was reduced to
fifth of FGD + FF off compared to FGD + FF on and the to-
tal non-volatile particle number concentration was reduced
by several orders of magnitude. A similar trend in primary
emission reduction was detected in the atmospheric measure-
ments. In addition, the reduction in primary emissions di-
rectly affects the concentrations of gaseous precursors (SO2)
for secondary particle formation in the atmosphere.

It was observed that the flue gas dilutes to background
concentrations in 200-300 s. This dilution timescale is faster
than reported in previous studies. However, the concentra-
tion profiles also showed an increase in particle number con-
centration in an aged flue gas, dilution and dispersion pro-
cesses. To validate the dilution timescale, a Gaussian model
was used to calculate the dilution in the atmosphere, tak-
ing into account the primary emission and weather condi-
tions. The Gaussian model confirms the dilution timescale,
and the dilution ratio could be used to calculate the theoreti-
cal maximum values for different components in the flue-gas
plume. Weather conditions and theoretical maximum value
for [NO, ] were used to calculate the [OH] formation rate and
further [HoSOy4] formation rate. These were calculated be-
cause the measurement results showed an increase in particle
number concentrations in the flue-gas plume during the di-
lution process. The modelling results for [HySO4] formation
rate support the hypothesis of sulfuric acid formation, but the
sulfuric acid formation itself does not totally explain the in-
crease in the total particle number concentration, therefore,
e.g. low-volatile organics may exist on the flue-gas plume.
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The sensitivity analysis of the [H»SO4] formation showed
that the atmospheric parameterization is not enough to ex-
plain the processes in the flue-gas plume.

Comparison between the primary particles and newly
formed particles show that in the flue-gas plume of coal-fired
power plant, the concentration of newly formed atmospheric
particles can be several orders of magnitude higher than
the primary particles from the flue-gas duct; therefore they
should be considered when discussing emissions of power
production. Including the effect of varying flue-gas cleaning
technologies in parameterizations of power-plant-originating
secondary particles is a necessary step in understanding their
importance.

The Supplement related to this article is available online
at doi:10.5194/acp-16-7485-2016-supplement.
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ABSTRACT: Heavy fuel oil (HFO) is a commonly used fuel
in industrial heating and power generation and for large marine
vessels. In this study, the fine particle emissions of a 47 MW
oil-fired boiler were studied at 30 MW power and with three
different fuels. The studied fuels were HFO, water emulsion of
HFO, and water emulsion of HFO mixed with light fuel oil
(LFO). With all the fuels, the boiler emitted considerable
amounts of particles smaller than 200 nm in diameter. Further,
these small particles were quite hygroscopic even as fresh and, 20 40 60 80

in the case of HFO+LFO emulsion, the hygroscopic growth of dary (nm)

the particles was dependent on particle size. The use of

emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions
lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42
nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate
that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and

air quality.

s HFO
s HFO emulsion
s LFO + HFO emulsion

GF

Bl INTRODUCTION those of HFO. The advantage of using oil—water emulsion is
the occurrence of the so-called microexplosions that take place
in the emulsion prior to its combustion.”® Microexplosions
enable a secondary atomization of fuel droplets prior to the
combustion. When the water—oil emulsion is sprayed into the
combustion chamber, the small water droplets enclosed in oil
droplets start to expand at a greater rate than the oil. The rapid
evaporation of the water then results in disintegration of the oil

Heavy fuel oil (HFO) is a petroleum product that is left when
all distillates have been separated from crude oil. HFO includes
much impurities such as sulfur, asphaltenes, and vanadium. The
main uses of HFO are in industrial heating and power
generation and in the transport sector, where it is used as fuel
for large marine vessels. HFO is generally preheated before
combustion to lower its viscosity. The combustion of HFO is . 6
known to produce considerable amounts of sulfur oxides (SO,) droplets to smaller ones before the combustion of the oil.” The
and particulate matter (PM). Particulate matter emitted in smaller droplets at the combustion then enable more efficient
HFO combustion has high metallic ash (Ni, V, Fe, Cr, Na)" combustion of the fuel leading to a reduction in PM while the
and sulfur content. From these, the vanadium content has cooling effect of introducing water to the combustion reduces
. 7 Q: . - . . . .
especially been of interest due to its adverse effects on human NO, forr‘nanon. S1z‘e distribution of particles enptted m SHFO
health.> Because of the high PM and sulfur emissions combustion has typically been observed to be bimodal.”" The
larger particles (diameter typically >1 ym) consist of the char
residues of oil droplets and particulates re-entrained to the
exhaust from walls. The smaller particles (diameter <1 um,

associated with HFO, meeting the emission legislation
practically means either efficient exhaust after-treatment,
influencing the fuel composition to achieve cleaner combustion,

or both. mass median diameter typically 100—S00 nm), on the other
Techniques that can be used to modify the fuel in oil-fired

burners are mixing a portion of light fuel oil (LFO) into HFO Received: June 26, 2013

and creating water emulsions of the fuel oil. Mixing LFO into Revised:  November 11, 2013

HFO mainly makes the fuel a higher grade of fuel oil, that is, Accepted: November 18, 2013

the sulfur and ash contents of the resulting blend are lower than Published: November 18, 2013
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hand, consist mainly of soot, metallic ash, and sulfur
compounds.”*"°

Most fuel oil emission studies have concentrated on studying
the larger particles due to their significance to the legislated
particulate mass (PM10 or PM2.5) and due to the measuring
equipment they have used. However, there are studies pointing
out that, in fact, sufficiently small (<100 nm) particles may be
the most harmful ones due to their ability to {Jenetrate deep
into lungs and even enter the bloodstream."’ The adverse
health effects associated with PM are not the sole reason to
study combustion particles. The PM originating from
combustion also affects the radiative properties of the
atmosphere. Large amounts of black carbon in the atmosphere
can increase the direct radiative forcing,'> especially harmful to
Arctic ice and snow,'® whereas other types of particles, e.g,
sulfuric acid particles, can reduce the radiative forcing via the
indirect effect, i.e., cloud formation and resulting backscattering
of solar radiation.'* The key to understanding the con-
sequences of emitting particles into the atmosphere is to
determine their composition and properties. Moreover,
depending on their hygroscopic properties, the fine particles
may affect visibility and cloud formation and, thereby, also
climate.

Not only has the previous research of fuel oil combustion
been focused on the larger end of emitted particles, but also
most of the studies have been performed on smaller boilers
(rated below 1 MW).”*'* In this paper, the particle emissions
of an industrial scale boiler of a peak-load heating plant are
studied focusing on the size distribution, hygroscopic proper-
ties, and chemistry of fine particles. Further, the impacts of
using different fuels (HFO, HFO—water emulsion, and HFO
+LFO—water emulsion) on the said properties are also studied.
The aim of the research is to provide more detailed insight on
the properties of emitted fine particles and on the effects of fuel
alterations to the said properties.

B EXPERIMENTAL SECTION

The studied boiler was an oil-fired water tube boiler of a peak-
load heating plant having a rotary cup type burner. The
nominal output of the boiler was 47 MW. The main fuel used
in the boiler was natural gas but HFO or HFO+LFO blends
could be used as auxiliary fuel. In this study, the boiler was
operated at 30 MW power. The studied fuels were HFO, water
emulsion of HFO, and water emulsion of HFO+LFO blend.
The properties of the applied HFO and LFO can be found in
Table 1. The HFO+LFO blend included 66 mol% of HFO and
34 mol% LFO. The resulting fuel sulfur content was 0.58 mol%.

Table 1. Properties of Studied HFO and LFO Fuels

analysis method HFO LFO
Lower Heating Value [kWh/kg] 1SO 8217 11.381 12.043
(calculated)
Density [g/em®] ASTM D (at 60 °C)  (at 20 °C)
4052 0.9560 0.8183
Viscocity [mm?/s]  ISO 3104  (at 60 °C) (at 20 °C)
99.52 2.60

Water (Karl Fischer) [mg/kg] IEC 814 - 35

Water (by [mol%] ISO 3733 <0.05
distillation)
Sulfur [mol%] ASTM D 0.89 0.01
1552
Carbon [mol%] ASTM D 87.2 85
5291

District heating water used in the convection part of the boiler
was applied to produce the water emulsions. The district
heating water is softened tap water where hydrazine has been
added to bind residual oxygen and pyranine (C;¢H;Na;0,,S;)
has been added as a colorant. The addition rate of water during
emulsion tests was 3—4 L min™". The rates of fuel combustion
for HFO, HFO emulsion, and HFO+LFO emulsion were 2.6,
2.2, and 2.5 t/h in total, respectively.

The particle measurement system applied in this study is
presented in Figure 1. Particle sampling was performed with a
Fine Particle Sampler (FPS, Dekati Inc.) from a smoke flue
located inside the facility. The primary dilution air was heated
to 39 °C and the nominal dilution ratio of the primary dilution
was approximately 6. The dilution ratio of the downstream
ejector diluter was approximately 10 during the tests. The
particle sampling point was situated approximately 25 m from
the boiler and approximately 10 m above the measurement
instruments. Copper tubing was used to deliver the sample
down to the level of the instruments. The sample was divided
in a flow divider to provide the sample for the different
branches of the measurement system. One branch led to a
Nano-Micro-Orifice Uniform Deposit Impactor (nano-
MOUDI model 125B, MSP Corporation, Shoreview, MN,
USA) which obtained the particulate sample in the range of
0.01-10 pm for the elemental particle mass distribution
analysis. The nano-MOUDI is a cascade impactor that separates
the sampled particles into 13 stages. In addition, below the 0.01
um stage there is a back-up stage to collect particles smaller
than 0.01 gm. The model 125B rotates sampling stages during
sampling leading to uniform samples. Total mass and chemical
composition of particles <1 ym (aerodynamic diameter) was
determined from the polytetrafluoroethylene (PTFE, Millipore,
3.0 pm, FSLW04700)-filter samples collected by filtration using
a combination of five upper stages (7—11) of a Berner low
pressure impactor (BLPI) and a filter cassette (Gelman
Science) (flow rate 25 L min~")."%” The major ions (Na',
NH,*, K¥, Mg*, Ca**, CI", NO;~, SO,*") were analyzed by a
Dionex ICS-2000 ion chromatography (Dionex Corp.,
Sunnyvale, CA, USA)"™ from the section of PTFE and
polycarbonate filters. Uncertainties in the ion chromatography
(IC) analyses have been estimated to be around 10—15%)."
The elemental components were analyzed by an Inductively
Coupled Plasma Mass Spectrometer (ICP-MS; DRC I, Perkin-
Elmer SCIEX, Concord, Ontario, Canada) and inductively
coupled plasma optical emission spectrometry (ICP-OES; Vista
Pro Radial, Varian Inc., Melbourne, Australia). The analyzed
elements were aluminum (Al), arsenic (As), cadmium (Cd),
cobalt (Co), chromium (Cr), copper (Cu), iron (Fe),
manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), zinc
(Zn), barium (Ba), calcium (Ca), potassium (K), magnesium
(Mg), and sodium (Na). The applied analyzing method is
based on the standard SFS-EN 14902:2005 (Ambient air -
Standard method for the measurement of Pb, Cd, As, and Ni in
the PM10 fraction of suspended particulate matter) where
hydrogen peroxide—nitric acid extraction is done for the
samples. The yield for elements ranged between 54% and 104%
and the results were corrected based on the yields of each
element.

The second branch led to NO, and CO, analyzers which,
together with the gas analyzers measuring from the smoke flue,
were used to calculate the dilution ratio of the FPS unit. The
third branch consisted of two scanning mobility particle sizers
(SMPS, TSI Inc.), an electrical low pressure impactor (ELPI,

dx.doi.org/10.1021/es4028056 | Environ. Sci. Technol. 2013, 47, 14468—14475
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Figure 1. Measurement setup.

Dekati Inc.), and a hygroscopic tandem differential mobility
analyzer (HTDMA). The third branch included a possibility to
use a thermodenuder (TD) prior to the measurement
instrumentation in order to remove semivolatile compounds
from sampled particles. The duration of one measurement
period with or without the thermodenuder was 10—1S min.
The data measured after the thermodenuder treatment was
corrected using particle losses reported by Heikkili et al.'” The
residence time from the FPS dilution unit to the instruments
was approximately 3.5 s when the thermodenuder was
bypassed. The fourth branch had a Soot Particle Aerosol
Mass Spectrometer (SP-AMS; Aerodyne Research Inc.)
together with a CPC 3010 (TSI Inc.). The total flow of the
SP-AMS and the CPC 3010 was 1.1 L min™". The SP-AMS was
used to measure refractory black carbon (BC) with an
intracavity laser vaporizer similar to Onasch et al.'” It should
be noted here that the SP-AMS has been calibrated separately
for organics and BC, but due to the different collection
efficiencies and relative ionization efficiencies, the carbon
balance given by the SP-AMS has rather high uncertainty.
Here, the concentration of organic carbon (OC) was obtained
from the elemental analysis described by Aiken et al.*°

One of the SMPSs was equipped with a DMA 3071 and a
CPC C3775 and the other with a DMA 3085 and a CPC 3025
(TSI Inc.). Together the SMPSs provided particle number size
distributions over the range of 3—400 nm, a wider range that
was possible with either of the SMPSs alone. In the HTDMA, a
single particle size is first chosen from the particle size
distribution with the first differential mobility analyzer (DMA)
after which this sampled particle size is subjected to chosen
relative humidity. The second DMA and the following CPC
then work as an SMPS and measure the particle size
distribution after the humidity conditioning. Thus, the
HTDMA measured the hygroscopic growth of emitted particles
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providing additional information about their behavior in the
atmosphere. In fact, HTDMA measurements are rather
commonly used to study the properties of atmospheric
aerosols.”’ The HTDMA used in this study was the same as
that used in Happonen et al.*> However, during these
measurements, the HTDMA had an additional S-cm-thick
layer of polyurethane insulation enclosing the humidifying part
and the second DMA providing better thermal insulation.
Further, a Peltier cooler was installed at the back of the
insulated casing to provide active temperature control within
the casing. The casing was set to operate at 20 °C temperature
during the measurements by a PID controller. The ELPI was
used to monitor the emission in real-time to ensure that the
emission was stable during the actual measurements.

B RESULTS AND DISCUSSION

Particle Number Size Distributions. Particle size
distributions measured from the smoke flue with the SMPS
using the DMA 3071 are presented in Figure 2. The
distributions measured with the SMPS using the DMA 3085
are not presented here since they provided no additional
information: no particle mode below 10 nm was observed with
any of the fuels. The figure shows the distributions obtained
using HFO, HFO emulsion, and HFO+LFO emulsion as fuel
measured both through the thermodenuder (TD), to remove
the volatile fraction from the sample, and bypassing the TD. In
addition, the figure shows as dotted vertical lines the dry
particle sizes that were chosen for hygroscopic growth
measurements.

With all the studied fuels, the particle number size
distributions were dominated by the particle mode having the
GMD ca. 50 nm. In addition, it was observed that when the
HFO+LFO emulsion was used the particle number size
distribution was clearly different from the two other fuels; the
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Figure 2. Particle number size distributions measured by the SMPS
with ("w”, solid lines) and without ("w/o”, dashed lines)
thermodenuder treatment with different fuels. The size distributions
were corrected with dilution ratios and, when appropriate, with the
particulate losses in the thermodenuder. The dotted vertical lines show
the particle sizes which were chosen for the HTDMA measurements.

size distribution included another particle mode with the GMD
ca. 120 nm, and the concentration of the smaller particles was
considerably reduced. However, when the HFO+LFO
emulsion was used, the total particle number concentration in
the studied size range was over 25% lower compared to the
situations with the other fuels. It was noted that HFO and LFO
were not fully mixed prior to the combustion, which can at least
partly explain the observations. In the case of HFO, applying
the thermodenuder treatment slightly reduced the GMD of the
emitted particles. This indicates that the particles were mostly
nonvolatile but, anyway, they included an observable fraction of
volatile compounds. When the HFO emulsion was used, the
thermodenuder treatment barely affected the size distribution,
which indicates that the particles were less volatile compared to
the case of HFO. When the HFO+LFO emulsion was used, the
thermodenuder treatment led to the shifting of particle number
concentration from the larger mode to the smaller one.
Nevertheless, a clear particle mode was still present at
approximately 100 nm also after the thermodenuder treatment,
only with lower concentration. Results indicate that the smaller
particle mode with HFO+LFO emulsion consists essentially of
nonvolatile particles and some of these particles have grown by
absorbing volatile compounds into the particle sizes of the
larger particle mode. In general, the thermodenuder treatment
on the diluted flue gas sample shows that the particles emitted
by the studied power plant consist mainly of nonvolatile
compounds, indicating that at short time scales the evaporation
characteristics do not limit the lifetime of particles in
atmospheric conditions.

Most of the results presented in the literature about oil-fired
boilers concentrate on particle mass and, therefore, the particle
size distributions that are shown in the literature are mass, and
in some cases, volumetric’ size distributions. The mass
distributions are generally measured by weighing the separate
stages of cascade impactors.”>** To ease the comparison of size
distribution data with the literature, Figure 3 presents
volumetric particle size distributions measured in this study
with an ELPI from the same situations as the numbers size
distributions shown in Figure 2. The difference between

14471

— HFO w/o TD —— HFO+LFO em. w/o TD
=== HFO w TD - == HFO+LFO em. w TD
—— HFO em. w/o TD - -- HFO em. w TD
-10*
8
&
g 6
<
B
g
=
~ 4
3
0
2
3
= 2
=]
0
10" 10*

da (nm)

Figure 3. Volumetric size distributions as a function of aerodynamic
diameter measured with an ELPL The concentrations of particles
larger than 1 pm are underestimated.

volumetric and mass size distribution is particle density. The
volumetric and mass distributions can be different in shape if
particle density changes strongly with particle size. The
presented volumetric size distributions underestimate the
concentrations in the particle sizes larger than 1 um. The
reason is that the applied measurement setup for the ELPI
induced notable losses for large particles in sampling, dilution,
sample transfer lines, and in the thermodenuder, and these
losses are not taken into account.

The volumetric distributions show one particle mode at the
particle size of approximately 480 nm and larger particles
having highest concentrations at the sizes above 2 ym. Thus, as
can be expected, there is a shift to larger particle sizes in the size
distribution when the point of view is changed from particle
number to particle volume. The particle mode dominating the
number size distributions is only barely observable at the lower
size end of the volumetric distribution. It seems to be quite
common that one particle mass/volume mode below 500 nm in
aerodynamic diameter exists in the exhaust of HFO-fired
boilers®”** and there can be a coarse mode in addition.*®
Using electrical mobility measurements Linak et al’
determined the location of the fine particle mode to be at
approximately 100 nm in the volumetric particle distribution of
a 59 kW laboratory scale refractory-lined combustor, but they
found considerably lower concentrations of that mode when
measuring from a 732 kW fire-tube package boiler. They
interpreted the concentration of the ultrafine mode to be linked
to the amount of metals vaporizing in the combustor. That is,
the more metal is vaporized, the higher the ultrafine mode.
Sippula et al. reported that the GMD of the ultrafine particle
mode from 4 to 7 MW HFO boilers was approximately 100 nm
(aerodynamic diameter) in the mass distribution and 49—61
nm in the number size distribution. Note that, with the
exception of Hays et al,* all the studies mentioned have been
performed on quite small boilers compared to the boiler used
in the current study (47 MW at maximum). Accessing the
larger scale boilers with the measurement instruments in order
to do research can be quite challenging, which may partly
explain the limited amount of comprehensive studies about
particulate emissions of such boilers. However, large oil-fired
boilers are a reality in many countries and in large marine
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vessels. Further, these boilers often lack flue gas after-treatment
in developing countries.

Particle Composition. The composition of emitted
particles was determined by analyzing the particle samples
collected by the nano-MOUDI and the samples including the
total PM1. From the nano-MOUDY], particle size segregated ion
compositions were determined. These compositions are
presented in Figure 4. The masses analyzed in the ion
composition analysis were 45%, 47%, and 26% of the total
weighed mass for HFO, HFO emulsion, and HFO+LFO
emulsion, respectively.
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Figure 4. Size segregated ion composition of particles emitted from
the heating plant using different fuels.

As shown in the figures, the sulfate fraction dominates the
ion distributions of the particles in most fuel/size fraction
combinations. Especially when HFO was used as the fuel
(Figure 4a), the whole ion distribution was almost exclusively
sulfate. Other than sulfate ions, only small fractions of sodium
and calcium ions were observable mainly at particle sizes larger
than 30 nm with the HFO fuel.

Compared to the case of HFO, the ion distribution was
much more diverse when the HFO emulsion was used as fuel
(Figure 4b). The ions of particles over 40 nm in diameter were
still mainly sulfates but the particles also included larger
fractions of calcium and magnesium compared to pure HFO
fuel. On the size fraction below 40 nm, the fraction of sulfate
ions of total ion concentration was below 50%. The rest of the
ions were mainly chloride, calcium, nitrate (13 nm size
fraction), and sodium (24 nm size fraction).

The particle size segregated ion distribution measured during
the combustion of HFO+LFO emulsion (Figure 4c) was
similar to the case of HFO emulsion in the respect that the
contribution of sulfate ions was over 50% at aerodynamic
particle sizes over 40 nm and less than 50% at smaller particle
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sizes. However, the fraction of calcium ions was higher when
the LFO was involved. By taking into account that in the lowest
particle sizes the low mass collected on filters (particle size
below 13 nm) significantly increases the uncertainty of the
results related the smallest particles, the addition of LFO does
not seem to considerably change the ion distributions
compared to HFO emulsion. Therefore, the calcium and
chloride ions, which are present in much larger fractions in the
particles emitted with emulsified fuels than with pure HFO,
originate likely from the water used to produce the emulsions.

An elemental analysis of the particles was performed from a
PM1 sample. The mass analyzed in the elemental analysis was
19%, 22%, and 10% of the total weighed mass for HFO, HFO
emulsion, and HFO+LFO emulsion, respectively. The results of
the ratios of each individual element to the total elemental mass
are shown in Table 2. According to the analysis, the largest

Table 2. Relative Amounts of Mass of Elements from PM1
Samples with Different Fuels®

mass fraction present in the elemental analysis (%)

Element HFO

HFO emulsion HFO+LFO emulsion

Al 2.1 5.0 7.1
As 0.4 0.3 0.3
Co 0.8 0.8 0.8
Cr 0.4 0.1 0.0
Cu 0.2 0.1 0.1
Fe 232 21.0 20.7
Mn 0.2 0.1 0.1
Ni 19.8 18.4 184
Pb 0.2 0.1 0.1
\Y% 23.6 274 27.3
Zn 0.6 0.5 0.4
Ba 0.4 0.8 0.8
K 21.6 14.7 132
Mg 6.4 10.7 10.7

“The analyzed mass for the elemental analysis was 19%, 22%, and 10%
of the total weighed mass for HFO, HFO emulsion, and HFO+LFO
emulsion, respectively. The black carbon content of the weighed mass
was 7%, 6%, and 20%, respectively.

elemental fractions present in the samples were vanadium, iron,
nickel, and potassium in this order. The black carbon content of
the PM1 samples was 7%, 6%, and 20% of the PM1 mass for
HFO, HFO emulsion, and HFO+LFO emulsion, respectively.
Thus, the HFO+LFO emulsion increases the black carbon
content in the PM emission. The mass closures of PM1 for the
three fuels are shown in Figure S. The results of the presented
chemical analysis are rather well in line with the PM
compositions reported earlier for HFO."?¢

Hygroscopic Growth. The hygroscopic growth of particles
having mobility diameters of 20, 47, and 72 nm (see Figure 2)
were studied using an HTDMA. The measurements were
performed close to 90% relative humidity both through and
bypassing the thermodenuder. The results of the obtained
hygroscopic growth factors are presented in Figure 6. The
hygroscopic growth results are the calculated averages of 2 to 7
separate HTDMA measurements with humidified air and of 4
to 7 separate HTDMA measurements with dry sheath air. The
standard deviations of the hygroscopic growth factors in the
figure are shown as error bars. The table above the figure shows
the relative humidities at which each measurement was
performed. The absolute error of the relative humidity values
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Figure S. Mass closure for particles emitted from the heating plant
using different fuels (HFO, HFO emul, and HFO+LFO emul.).
Measured PM1 values were 14.5 mg m=3, 14.6 mg m~3, and 18.0 mg
m™3, respectively. POM factors for each fuel HFO, HFO emul,, and
HFO+LFO emul. are 1.9, 2.0, and 1.5 (Turpin, Barbara J. and Lim,
Ho-Jin, "Species Contributions to PM2.5 Mass Concentrations:
Revisiting Common Assumptions for Estimating Organic Mass”,
Aerosol Sci. Technol. 35 (1), 602—610).
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Figure 6. Growth factors as a function of dry particle size (GMD) for
particles emitted using HFO (a), HFO emulsion (b), and HFO+LFO
emulsion (c). Both the growth factors of particles measured through
(circles) and bypassing (squares) the thermodenuder are presented.
The relative humidities in which the growth factors were measured are
presented above the figures. The standard deviations of the dry
geometric mean diameters for 20, 47, and 72 nm particles are 0.1, 0.5,
and 1.0 nm, respectively.

is approximately +1.5%RH, but the repeatability of the RH
values is under 1%RH. All the HTDMA measurements
produced a narrow unimodal particle size distribution within
the measurement range (<400 nm) indicating that all the given
particle sizes were similar in their hygroscopic growth
properties.

In general, it was observed that the measured hygroscopic
growth factors were affected mostly by the fuel and the particle
size. The highest growth factors (approximately 1.3—1.3S, not
significantly affected by thermodenuder treatment) were
measured with dry particle sizes 20 and 47 nm when the
boiler used HFO. In the case of 72 nm particles, the growth
factors measured without the thermodenuder treatment were
quite close to those observed for smaller particle sizes, but the
use of the thermodenuder reduced the average growth factors
for 72 nm particles to 1.25. This reduction may either mean
that the volatile compounds in the particles increased particle
hygroscopicity or the evaporation of the volatiles in the
thermodenuder made the measured 72 nm particles more like
agglomerates. For more agglomerate-like particles, the addition
of water is less quickly seen as an increase in particle mobility
diameter as the condensing water tends to first fill the cavities
in the particles. The hygroscopic growth factors that were
measured during the use of HFO emulsion were in general

somewhat lower than those measured during the use of HFO.
Further, the greater the particle diameter was, the lower the
growth factor. This indicates that either particle chemistry or
particle density/structure changes with particle diameter. The
effect of the thermodenuder treatment was observed to be
nearly negligible.

When the HFO+LFO emulsion was used, the growth factors
of the measured particle sizes changed considerably with the
particle size. The 20 nm particles had large growth factors
(approximately 1.25) which were close to those measured
without mixing the LFO into the HFO. Further, the
thermodenuder treatment did not noticeably alter the growth
factors of 20 nm particles. The 47 nm particles, on the other
hand, had more moderate growth factors which were in the
range of 1.1—1.15. The thermodenuder treatment lowered the
growth factors of this particle size only very slightly. The largest
(72 nm) particles, with and without the thermodenuder
treatment, actually shrank in the carrier gas having high relative
humidity. This behavior of growth factors in high relative
humidities is similar to the case of fresh diesel soot
particles.”>”” The behavior indicates that 72 nm particles
were agglomerates with low hygroscopicity. Pagels et al*®
reported that the condensation of sulfuric acid or water on
agglomerated soot initially results in shrinkage of mobility
diameter due to the restructuring of the soot core. They report
that a mass increase of 2—3 times the initial mass may be
required for a transformation to spherical particles and only
after that will the addition of condensate increase mobility
diameter. It should be noted here that, based on the particle
size distribution measurements, the 72 nm particles consist of
particles from two different modes. Regardless, the HTDMA
result of humidified particles shows one single particle mode.
This indicates that either the two modes have similar chemical
composition or the chemical composition is different but,
nonetheless, the hygroscopic properties of the particle surface
are similar.

In this study, the growth factors of the smallest (20 nm) and
assumably the most compact particles were in the range of
1.25—1.35. These growth factors are quite close to those that
Henning et al.*® measured for sulfuric acid coated CAST soot
particles having high organic carbon (OC) content (>80%) at
90%RH. The soot particles having lower OC content had also
lower growth factors. They explained the phenomenon by
claiming that sulfuric acid reacts with polyaromatic hydro-
carbons (PAH) present in the OC fraction forming products
with lower molecular weight than the initial PAHs. These
products have higher solubility to water and, as a consequence,
hygroscopic growth increases. Further, quite similar high
growth factors as in the current study with HFO were also
observed in the study of Khalizov et al. for sulfuric acid coated
30 and S50 nm propane soot particles at approximately 90%
RH.*® It was possible to obtain OC versus black carbon (BC)
information from the emitted particles in this study with the
SP-AMS. However, it should be noted that the size ranges of
the HTDMA and the SP-AMS were not similar. The HTDMA
measured 20, 47, and 72 nm particles separately, whereas the
SP-AMS measured all the particles from 40 nm to
approximately 1 ym without any size segregation. The OC/
BC results are presented in Figure 7.

The figure shows that the OC/BC fraction of emitted
particles remains practically the same between HFO and HFO
emulsion, but the addition of LFO to the fuel resulted in a
lower OC/BC ratio. The measured OC/BC ratios from HFO
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Figure 7. Fractions of organic and black carbon of the total emitted
carbon with different fuels measured with the SP-AMS.

combustion are very similar to those reported by Sippula et al.!
for a 4 MW HFO boiler. All in all, according to the OC/BC
results, the reasoning of Henning et al.*” on the significance of
the OC content on hygroscopic growth factors is plausible also
in the current study. However, it is equally possible that the
reduction in the hygroscopicity of particles emitted with the
emulsion of HFO+LFO compared to the HFO cases is
explained by other differences in chemical composition.
Particles emitted with HFO+LFO emulsion have, for example,
much lower content of analyzed ion compounds and higher,
quite insoluble, BC content. The HTDMA results show that
the fine particles emitted from HFO combustion are quite
hygroscopic even as fresh particles. However, by adding water
to the combustion process and, further, by mixing HFO into
LFO, the hygroscopic growth factors of emission particles
decrease. Furthermore, it should be noted that particle mobility
diameter growth factors depend very much on the size of the
emitted particles. This is especially the case with the emulsion
of a mix of HFO and LFO. Overall, it is probable that particles
from HFO combustion will contribute to cloud formation,
reduce visibility, and, furthermore, have a detrimental effect on
the overall air quality especially in large cities. Recent studies
have also shown that emissions of large ships that are primarily
fueled by HFO could have a strong impact on the Earth’s
radiation budget by increasing local marine cloud albedo. Ship
particles have been estimated to cause a change in the global
radiative forcing of —0.11 W/ m?*! and in the range of —0.27 to
—0.58 W/m2.* These estimates still include large uncertainties.
The results of the current paper give some insight of particle
properties, and thus might be utilized in global climate models.
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