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Abstract

In this work we are motivated by the question: "How to automatically
adapt to, or learn, structure in the past inputs of an algorithm?”. This
question might arise from the need to decrease the amount of consumed
resources, such as run-time or money. In addition, we also consider, in
part, the growing significance of the 1/0-issues in computation. A major
focus is on studying data structures, such as binary search trees (BSTs).
They are a common and practical solution to the problem of representing
data such as sets; hence it is important to understand their properties.

For the most part we work with algorithms which continuously serve
requests under uncertainty about future inputs. These algorithms are called
online algorithms. To analyze their performance we use the competitive
analysis. In it the uncertainty over future inputs is not necessarily modeled
stochastically, but rather we deal with the uncertainty by comparing our
own performance to how well we could have done had we known the input
sequence.

In the first part of the Thesis we study a general online setting, where
one repeatedly chooses a decision from a fixed number of options and then
observes a bounded cost for that decision. We consider using a known
Follow the Perturbed Leader algorithm in this setting. Previously it has
been successfully applied in a related online setting, where we know costs
on all past decisions. As a new result we find that similar algorithms also
perform well when applied in the more restricted setting we study.

In the second part of our Thesis we study BSTs. We first concentrate
on BST algorithms that may change the structure of the BST during the
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accesses. We give a lower bound to the cost of any BST algorithm in terms
of the entropy of the source generating the accesses and also in terms of
the complexity of the access sequence. As an application to these bounds
we show that the splay tree is optimal on accesses that are generated from
a Markov chain with a spatial locality of reference.

Constructing an actual online BST algorithm, which is competitive ver-
sus any full-information BST algorithm on every access sequence, has re-
cently attracted attention. We give new insights on how to implement an
almost competitive online data structure. Our approach is based on aug-
menting a standard balanced structure, such as red-black tree or B-tree,
with dynamic pointers that cache directions of the previous accesses. We
can easily modify the overhead incurred by this scheme by changing the
number of dynamic pointers.

Finally, we give a simple algorithm that computes an approximately
optimal static BST for given weights on items. Although this is a classic
problem with several previous solutions, we are the first to give an 1/0
efficient approach that produces a well-performing output.
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Chapter 1

Introduction

Computing is fundamentally about solving problems using strictly
defined processes under resource constraints —Derrick Coetzee

1.1 Background

Algorithms describe precisely the process of computing, and so to effectively
solve problems we must understand them. A key property of an algorithm
is the performance: what is the cost of using an algorithm? Unfortunately
it may be that predicting the performance of an algorithm is difficult. As
examples consider the simulated annealing and simplex algorithms in op-
timization, quicksort for sorting, and algorithms that handle caching. In
these examples the good performance was originally observed empirically,
and more theoretically sound explanations have followed (if have) the obser-
vations. A complicating factor in these examples is that a simple worst-case
analysis of resources does not work. Naturally we want to know what makes
algorithms work well, so that we can exploit this knowledge when designing
algorithms.

This Thesis primarily concerns a class of algorithms called online algo-
rithms which, in general, are somewhat difficult to analyze. Unfortunately
the term ”online algorithms” is ambiguous and it has several meanings de-
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pending on the context. In this text the term online refers to how the input
is given: the algorithm continuously serves requests and the cost of com-
pleting a request may depend on how the past requests were served; see
the rough sketch in Figure 1.1. Some examples that fit well to this setting

Receive input —a Compute

Iterate - .
Obtain cost

or feedback

Figure 1.1: A conceptual picture on online algorithms.

are network routing, prediction of stock prices, and page caching, to list a
few. Other problems, such as data structures, are not as natural examples,
because they have been analyzed successfully with worst-case costs. Nev-
ertheless, they may also benefit from the tools used in the online setting to
analyze behavior arising from structure in the input.

The title of this Thesis refers to ”learning”, because in online problems
there is uncertainty about future inputs and basically the way to perform
well is to adapt to past input and hence learn. When we face uncertainty
then our method of choice is often to model the uncertainty as stochastic,
but our source of inputs does not necessarily conform to this choice. We
use non-stochastic approach which relies on the competitive analysis (or
the online adversial setting) to analyze how good an algorithm is [19]. In
short, the competitive analysis measures performance by comparing how
well an online algorithm performs against some set of offline algorithms
or strategies that are aware of the future inputs. So, in the competitive
analysis we prove statements such as:

Our algorithm, for any possible sequence of inputs, is never
worse than two times the cost of the best algorithm in the set
S for that sequence of inputs,

where S is the set of algorithms the online algorithm is competing against.
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The cost of the algorithm depends, of course, on the application. For exam-
ple, it could be the time used in computing, money lost, or the probability
of wrong prediction by our online algorithm.

The competitive analysis is a tool that allows us to derive useful infor-
mation on online algorithms, because other methods, such as measuring the
absolute cost, may give little information on the suitability of the online
algorithm. However, neither is the competitive analysis the silver bullet!
for online problems. For example, no input is usually given a priority over
the others, which may be a handicap in some problems, but nevertheless,
competitive analysis provides a useful viewpoint on the algorithmic perfor-
mance.

1.2 The Structure of the Thesis

We now summarize the content of the subsequent chapters, in which we
introduce the attached publications and put our results to the wider con-
text. In short, we have worked on problems where the motivation was at
least originally related to data structures, like the traditional binary search
trees.

First, Chapter 2 gives the preliminaries needed to understand the sub-
sequent chapters, for example, it defines the online setting and the competi-
tive analysis. In it we also recall the Follow the Perturbed Leader algorithm
(FPL) for an online learning setting which generalizes many online decision
problems of interest [47]. If we know the costs for all possible decisions in
the past, then the FPL performs well versus the best static decision chosen
in hindsight. For example, we can apply the FPL algorithm to online rout-
ing in a graph or serving accesses with a data structure. The objective is
to perform as well as the best route or the best binary search tree chosen
after the accesses have been revealed. The costs of the decisions are gener-
ated either by a non-adaptive opponent that is oblivious to our actions, or
an adaptive opponent that is aware of our actions and can set the future

!The term “silver bullet” is a metaphor for a simple and effective solution for a problem
for which there is arguably none.
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costs according to this knowledge. When compared to other algorithms for
similar problems FPL has advantages such as simplicity and flexibility.

Then Chapter 3 presents an introduction to Publication [P1]. It shows
that if we restrict the information about the past costs in FPL, namely
that we get to know only the cost of the decisions which we made, we can
also use an approach similar to the FPL to perform well. This restriction
that we receive only partial information is relevant in several problems, for
example when we make series of runs with an option of selecting from several
different algorithms and we want to perform as well as the best among
them. The performance bound is asymptotically as good as what is known
for the previous EXP3 algorithm against a non-adaptive adversary [10]. The
algorithm itself is somewhat more general as it is not bounded by uniform
bounds for the costs of the experts. For problems where the adversary can
adapt to our own actions Chapter 3 gives a variant that also achieves a
regret bound matching that of previous work. This variant is studied in
detail in Publication [P2].

Chapter 4 proceeds to competitive analysis of binary search trees (BSTs).
Essentially the aim of this analysis is to study if, when, and how should
we change the structure of the BST that is used to serve accesses. Sec-
tion 4.6 introduces Publication [P3], which lower bounds the cost of a BST
algorithm serving accesses that are generated from a random source (note
that the BST that the algorithm uses may change, at a cost, between the
accesses). Additionally, it shows that for a random source, which gives a
probability P (o) to a sequence of accesses o, the cost of any binary search
tree algorithm is lower bounded by a constant times entropy that is cal-
culated from these probabilities P(0) on sequences. Previous work has
considered only the case in which the individual accesses were generated
independently and identically, and our result generalizes to any stochastic
source. The result implies that splay trees are asymptotically as good as
any binary search tree algorithm on an access sequence that is generated
from a Markov source with a spatial locality of reference. The spatial lo-
cality of reference means that the next access is more likely to be generated
from items near the previously accessed item. Also, the cost of serving
an access sequence o is bounded with the complexity of the sequence o as
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measured by the Kolmogorov complexity of o.

Section 4.7 introduces Publication [P4], which considers online binary
search tree algorithms that perform well against the best binary search
tree algorithm. We find that we can implement the approach of Demaine
et al. [32] — which is O(lglgn)-competitive versus any binary search tree
algorithm — on top of a traditional balanced search structure, such as the
red-black tree, hence inheriting the good qualities of these structures, like a
good worst-case cost. The resulting structure also supports updates more
naturally than the previous O(lglgn)-competitive data structures and we
can easily regulate the overhead incurred by this approach.

Chapter 5 continues to discuss Publication [P5] which concerns a slightly
different, but related, topic. It gives an algorithm to construct an approx-
imately optimal BST when we have known weights on the items. The goal
is to minimize the expected cost of an access for these weights. This topic
is well researched and the difference to the previous work is that our con-
struction is 1/0-efficient, i.e., for n items and a cache with lines of size B
the cost of our approach is O(n/B) in the cache-oblivious model. Also,
the cost is O(n) in the standard unit cost model. The motivation is that
the relative importance of 1/0 has grown as the environment where the
algorithms execute has underwent change.

Surprisingly, we also obtain a bound on the performance of the result-
ing BST that is slightly better than previously. The previous best bound
guaranteed that the item is on average found after searching

H+1

nodes of the BST, where the entropy H is computed from the probabilities
p; on the items: H = Y | —p; lg p;. For the optimal BST we give an upper
bound

H +1g(1 + pmax) + 0.087,

where pmax is the maximal probability on the items. Also, for the special
case when ppax < 2/3 we give an upper bound H + 0.503.

This topic is connected to the rest of the Thesis in Section 4.3, where
we first recall how we can apply FPL algorithm to BSTs when we have access
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to an algorithm computing optimal BST for given weights. The resulting
algorithm performs almost as well as the best BST in hindsight for any
access sequence, but it needs to occasionally compute the optimal BST. We
observe that to formally guarantee good performance under the competitive
analysis versus the best static BST it is enough to compute an approximate
BST.

1.3 Summary of the Main Contributions
To summarize, the main contributions of this Thesis are:

1. In [P1,P2] we show that we can apply the FPL algorithm in the bandit
setting, against both non-adaptive and adaptive opponent.

2. In Section 4.4 we observe that using an approximation algorithm with
the FPL algorithm in the application of BSTs results in a good perfor-
mance.

3. In [P3] we give a lower bound to the cost of any BST algorithm, which
is constant times entropy of a probability distribution over access
sequences. Also, the cost is at least a constant times the Kolmogorov
complexity of the access sequence.

4. In [P4] we demonstrate how to make a O(lglgn)-competitive datas-
tructure on top of a traditional balanced search structure.

5. In [P5] we give an 1/0-efficient algorithm for computing an approxi-
mately optimal BST when we have weights on the items. We also give
a upper bound to the performance of this BST which is slightly better
than previously known. In addition, in Section 5.4 we observe that
we can place the constructed BST in a way that the accesses to it are
served 1/0 efficiently.
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1.4 Author’s Contribution

In Publications [P1,P2,P3,P4] the author came up with the idea after given
a general direction and carried out the research work and significant part
of the writing. The author is the sole author of Publication [P5].



Chapter 1. Introduction




Chapter 2

Preliminaries

This chapter gives a short introduction to the basic concepts that we use
in the following chapters 3 and 4. These are the online setting, competitive
analysis of its algorithms, the more specific expert and geometric settings,
and the Follow the Perturbed Leader (FPL) algorithm.

2.1 Online Algorithms and Setting

In problems of the online setting we serve a sequence of inputs without
knowledge of the future inputs. An online algorithm solves the problem
indicated by the input, obtains feedback or cost, and then waits for the
next input. Let us illustrate an online problem with a simple and well-
known example.

Example: the paging problem. Programs store information in a finite
memory. The memory may naturally fill up and then one solution is to
temporarily evict a part of the information to a larger and slower media.
Information is stored as units called pages, and the problem of choosing a
page in the memory to evict is called the paging problem. In this problem
the sequence of inputs consists of the accesses to the memory and the cost of
an algorithm is the time waited for the accesses to complete. This problem
is also called the caching problem, where the finite memory is referred to as
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a cache which contains cache lines that correspond to pages. The situation
i which a page is referenced, but it is not in the fast memory, is called a
page fault, or alternatively a cache miss.

In the above problem the cost is a function of both the sequence of
accesses and the sequence of eviction decisions made by the online paging
algorithm. Worth noting is that the decisions do not matter independently
in the cost function, i.e., the cost is not a simple sum over the eviction
decisions, because the contents of the cache affects the cost. Hence, an
algorithm for the page caching has to consider serving future inputs, which
naturally are uncertain. We can consider this as attempting to use infor-
mation we collect in the past to predict the future. There is a vast amount
of literature on online algorithms for different online problems; for a more
comprehensive introduction see for example [19, 16, 5, 3, 18].

If we want to design a good algorithm we must, of course, know how
good it is. We first point out the deficiencies that the simple worst-case
cost has in some online problems.

The problem is that the worst-case cost does not necessarily give any
information on the performance of an algorithm in an online problem. For
example, in the page caching problem the worst-case scenario happens if
we have a program that inspects the contents of the cache and makes a
reference to a page that is not in the cache. In this case all algorithms for
page caching suffer the same worst-possible cost.

Note that we generated this worst-case behavior through an actual al-
gorithm that makes memory accesses, and the worst-case was not counted
over individual fixed sequences of accesses. This is not an important dis-
tinction, because the average cost (and hence the worst-case cost) over all
sequences is also uninformative. On the average case all pages are equally
probable for the next access and then all algorithms must witness, on the
average, the same cost, which is approximately

number of pages in the cache

the total number of pages

page faults per memory access.
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The example we used was an extreme one. In data structures, for exam-
ple, the worst-case analysis has been very successful. However, the worst-
case analysis alone does not necessarily characterize typical performance on
data structures, as another well-known example shows.

Example: The Move to Front Rule [64]. We store data in a simple
linked list, and when an access arrives then we scan for the accessed item
and move it to the front of the list. This is called the Move to Front (MTF)
rule. In some situations it empirically works quite well, even if the worst-
case cost is O(n) for each access [15].

Now the questions arise how good the MTF-rule is, and when to use it
(or is there something better?). Naturally it performs well in cases such
as when only one item is accessed, but for random accesses it is as bad
as any list. In the next section we recall the competitive analysis which is
an analysis tool that gives insight to the performance of the MTF-rule and
other online algorithms.

2.2 Competitive Analysis

The competitive analysis or the adversarial setting is a method to measure
the performance of online algorithms, which were defined in the previous
section. In it the cost is not directly measured, but rather the cost is com-
pared to the cost of other algorithms or strategies for the same problem. For
example we could compare an online algorithm to the best possible offline
algorithm which knows the future inputs and is thus the full-information
version of the same problem.

If APP is an online algorithm and OPT the corresponding offline algo-
rithm, then over all input sequences o the competitive analysis calls for
bounds of the form

cost(APP (0)) < ¢y cost(OPT (0)) + Cadd,

where ¢, and c,qq are constants that characterize how good the bound
is. The constants may depend on the size of the problem instance, such
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as size of the cache in the page-caching, but this bound must hold over all
inputs o. If in the problem at hand the online algorithms are a subset of
the offline strategies then naturally we have a lower bound

cost(APP (0)) > cost(OPT (0)) .

Thus, if our bound for an online algorithm is good against an offline algo-
rithm, then we at least know that we cannot perform much better. Unfortu-
nately, in some problems online and offline algorithms are strictly separated
in their performance. In these problems the competitive analysis can not
always guarantee good performance in practice, because the inputs that we
encounter can often be far from the worst-case ones.

As an example, in the paging problem, the Least Recently Used (LRU)
algorithm that evicts the page that was used least recently has the following
bound [64]

cost(LRU) < k cost(OPT),

where k is the size of the cache and OPT is the optimal algorithm that
knows all future memory accesses and evicts the page according to this
information [14]. This bound is already better than nothing, although the
multiplicative term k is high (note that no deterministic algorithm can do
better against the OPT). Hence this bound gives useful information on the
performance of LRU, in contrast to the worst-case and the average case
discussed earlier.

As another example, for the MTF rule discussed at the end of the pre-
vious section, the following result is known [15].

cost(MTF rule) < 2 cost(best static list) .

In this Thesis we focus solely on the competitive analysis to analyze
online algorithms and we do not consider alternatives. However, these are
important because it is known that the performance of an online algorithm
is not necessarily characterized completely by the competitive analysis [35].
A list of alternative methods is, for example, given in [34] or in [8], where the
authors also formalize and analyze the intuitive notion that LRU optimally
captures the temporal locality in the accesses.
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2.3 The Expert Setting

The expert setting of online learning is a general framework, where we have
n experts that give black-box advice on what to do [52, 71, 38]. We get
to know how good their advice was after acting according to an expert of
our choice. We must act on a number of time turns and we choose an
expert during each of them. For example, the experts could give advice on
the length or temperature of the winter, or predict the next bit in a data
stream [23], or assess the performance of different paging policies [17].

Our decision of an expert to select is affected by how we believe the
costs are assigned. Below we discuss three possible ways to model these
costs, ordered from the weakest to the most powerful.

1. In stochastic generation of the costs we model them with a probability
distribution, which for example could generate costs on different time
turns independently and/or identically, or from a Markov chain, or
from another relevant distribution. In this Thesis we do not consider
the stochastic generation.

2. In non-adaptive or oblivious generation we recognize that not all in-
puts come from a source that is (approximately) stochastic. Hence,
the approach is as general as possible; we assume that the input can
be anything, except that our own actions do not affect the future
costs. Also, we have a uniform or expected upper bound for the cost
that an individual expert can suffer during one time turn. This im-
plies that we can think that we generate the sequence of costs, for
each of the n experts, and for each of the possible time turns, before
the online algorithm executes.

3. In adaptive or non-oblivious generation we take away the restriction
that our own actions do not affect the future costs. Hence, the gener-
ated costs may depend on our past actions. For example, if the experts
represent different paths and we must route traffic through one path,
then the cost of a path can change depending on how much traffic we
have routed through it in the past. In theory, our actions may often
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affect future costs through hypothetical feedback effects, though the
effect is in reality negligible. For example, in the paging problem our
choices can change the future memory references by evicting always
a page belonging to a particular process. This effectively breaks the
usual non-adaptive analysis.

Of course, these cost assignments may or may not be realistic depending
on the particular application. Therefore, it is important to assess what
assumptions are reasonable in the application under consideration. For ex-
ample, Awerbuch et al. [11] argue that a pessimistic adversial model may
be relevant in routing as a network might be attacked by a malicious and
intelligent outsider. However, if the faults in the routing are random, then a
greedy approach is feasible. Also, there recently was a workshop dedicated
to problems where the adaptive nature of the opponent is relevant [59].
These problems were related to security issues, where the opponent is ma-
licious and intelligent.

We define the expert setting more formally as follows. We have n experts
and for each time turn ¢ € {1,...,T} we have a cost vector ¢, where
the coordinate [¢;], € [0,1] is associated with the cost of the expert i €
{1,...,n}. On turn ¢ we select an expert i(¢) and we would like to minimize
our (expected) total cost

T
cost(arp) = E (Z [[@]]i(t)> )

t=1

where the expectation is over our own actions. Bounding the above cost
is infeasible, so we use the competitive analysis and compare the above
absolute cost to the cost of the best expert in hindsight

T
cost(OPT) = min Z [, -
7
t=1

Hence, we minimize our regret

regret(APP) = cost(APP) — cost(OPT) .
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In the expert setting our aim is to prove rigorous guarantees for the regret
instead of using ad-hoc heuristics. So, we perform poorly if and only if
every expert is incompetent.

Note that a rigorous bound in terms of the absolute cost was infeasi-
ble, because with a non-adaptive or adaptive opponent it is possible that
on each turn all but one random expert incurs costs. Then we cannot
bound the difference between APP and the offline algorithm which selects
the best individual expert each turn. Note also that in the expert setting
the constant factors in the regret bound are more important than usually
with algorithms. The rationale is that the regret can measure, for example,
money, which is more important than the execution time of an algorithm,
which is often relatively cheap and also difficult to measure with regards to
constant factors due to differences between platforms and implementation
decisions.

Next we review a generalization of the expert setting that is useful in
certain problems.

2.4 Online Geometric Setting

The online geometric setting was introduced in [47]. In it we have a set
of decisions Sp in a vector space R?, and we associate each vector with
an expert or a possible decision that we can choose. On turn t the cost
vector & € Sc C R? gives the cost of choosing any decision d € Sp as
the Euclidean dot product d-&. For example, the original expert setting
is obtained by choosing the decision vectors as the standard basis vectors
e; = (0,... ,(),\1,_/, 0,...,0) and listing the costs of the experts in the cost
ith

vector C.

The performance of the algorithms in the online geometric setting does
not depend on the number of possible decisions in the comparison class,
which is the usual case for the algorithms of the expert setting. Rather,
the performance depends on the diameters of the sets Sp and S¢, which
makes this setting useful, as the following example shows.
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Example: Selecting a BST. Associate a binary search tree with d items
to a d -dimensional vector by listing the depth of each item in the binary
search tree. The cost vector ¢ of the online geometric setting is an indica-
tor vector for an access, and hence the dot product of ¢ and the decision
vector equals the cost (defined as the depth of the accessed item). The di-
ameter of the decision set Sp is d* and the diameter of the cost set Sc is
2. These are lower than the number of decision vectors (Qj)/(d + 1) which
is approzimately 4% using Stirling’s approzimation.

Other problems that fit to the online geometric setting are the linked
list data structure structure, online routing [47], online set cover [46], on-
line traveling salesman problem [46], and the setting is also useful in more
general online convex optimization [76].

2.5 Follow the Perturbed Leader

There are several algorithms for the expert setting, and we do not introduce
this vast literature which is reviewed for example in the book [24]. Let us,
however, introduce the FPL algorithm, because part of our work is related
to it.

FPL was originally proposed by Hannan [42] and reintroduced by Kalai
and Vempala [47]. It is the only algorithm for the online geometric setting
we know of. The FPL algorithm has an intuitive interpretation. When we
seek good performance in the expert setting then an obvious thing to try is
to choose the best expert for the costs observed so far, i.e., follow the leader.
Unfortunately, every deterministic algorithm fails under the competitive
analysis, because of the following strategy for the adversary. On each turn
set the cost of the expert that will be chosen by the deterministic algorithm
to one and give a cost of zero to all others. Hence, during 7' turns the
deterministic algorithm incurs a cost of T', but because of the pigeon-hole
principle (or rather the reverse of it) there is an expert with a cumulative
cost of at most T'/n. Thus, the regret is not bounded with anything useful.

This is unfortunate, however FPL resembles the idea of following the
leader. In FPL the leader is chosen after perturbing the costs with random-
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ness, e.g. after adding a random vector to the perceived cumulative cost
vector. The actual algorithm is given in Table 2.1, where we also list the
conditions for the random perturbation distribution. Note that in FPL we
must be able to select the best decision given the past costs and in the
online geometric setting it is problem specific whether we can do this.

The performance of FPL depends on the structure of the sets So and Sp
and not on the number of decisions. For example for a uniform perturbation
distribution the competitive bound for FpL is [47]:

M
E(cost(FpPL)) < (cost of the best decision) + ¢ M McT + =0
€

where M is a maximum cost during one turn and M¢ and Mp are the diam-
eters of the cost set S¢ and the decision set Sp. The regret is 2/M Mo Mp T
for a properly chosen value of e.

This bound can not be compared to previous work as such, because we
do not know of other algorithms for the online geometric setting. For the
special case of the expert setting, we can compare the above regret bound
to the regret bound O(/T'Ign) which is achieved by a variant of weighted
majority algorithm [53] called Hedge [38]. The regret of the FPL with

uniform perturbation is O(vnT'). This demonstrates that for a uniform

perturbation distribution the bound is not optimal in this problem. How-
ever, we can achieve a similar performance, if we choose the perturbation
distribution to two-sided exponential distribution, or we can even achieve
the same decisions as the Hedge algorithm, if we choose the perturbation
carefully [30].

In addition to the advantage of flexible cost and decision sets, FPL has
the advantage of so-called lazy behavior versus a non-adaptive opponent.
This means that we do not have to select a new decision vector each time
turn, but can stick to the same decision vector for approximately /7" time
turns [47]. This is useful if we must pay to change the decision, for example
if decisions are algorithms with internal state like a binary search tree.
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We have the following bounds:
e for the diameter of the decision set: Hcf— J;H < Mp for all J; d e Sp,
1

e for the cost set: ||c]|; < M¢ for any ¢ € S¢, and
e for the maximum cost: | &-d |< M.

Also, we have an oracle OPT that, for any cost vector ¢, returns the best
decision OPT(¢). The perturbation distribution D(e) with parameter € is
such that

e For a sample /i oc D(e) the expected norm E(||]|,,) is bounded with
O(1/e) (ignoring the dependence on d).

e For any two cost vectors ¢4 and ¢ and samples fi4 and g from
D(e) the expected difference E(||0PT(Ca + fia) — OPT(CR + [iB)];) is
O(ellca = ézlly)-

On time turn ¢ the algorithm FPL does the following:
1. Chooses a random perturbation vector ji; o< D(e).

2. Picks the decision OPT(¢1.4—1 + [it), where ¢1.4—1 is a shorthand for
the cumulative cost vector th_:1 Cr.

Table 2.1: Follow the Perturbed Leader (FPL) algorithm which is introduced
in [47].
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Bandit FPL

The end of the previous chapter introduced the FPL algorithm for the ex-
pert setting. Publications [P1,P2] study how to apply the FPL in a more
restricted setting, called the bandit setting. This chapter introduces these
publications.

3.1 The Bandit Setting

The bandit setting is similar to the expert setting, but instead of getting
knowledge on the performance of each expert on every turn, we obtain only
the costs associated with the experts we choose to use. This situation is
often depicted in terms of slot machines, where we have n slot machines
and after playing one we, of course, only know how much we profited or lost
with that particular machine. This setting is also called the multi-armed
bandit model. Similarly to the expert setting, the costs are generated by an
opponent, either non-adaptive or adaptive, and there is a maximum cost of
1 for an expert during one time turn.

The motivation for the bandit setting is that in some problems we only
get to know partial information on the costs. A general class of such prob-
lems are those in which we do an experiment without being able to redo it.
For example, if we have several algorithms for sorting, then in the expert
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setting we get a statement “for any sequence of sequences to sort, we can
have a cost comparable to the best algorithm in our disposal”, but we need
the run-times for all these algorithms, which defeats our goal. In the bandit
setting, on the other hand, we need only the run-time of the algorithm we
chose. As an example for how well algorithms for bandit setting perform,
during a total of T' turns with n experts the EXp3 algorithm [10] achieves
the following performance guarantee against a non-adaptive adversary

cost(EXP3) < cost(the best expert) + 2.63vTnlnn.

Other examples of problems fitting the bandit setting are the online routing
where we repeatedly must choose a route through a graph [47], online ad-
vertising where we display advertisements and hope that the user clicks the
advertisement [50], and the dining problem, where we each night choose one
restaurant to dine in a competitive world of food service. Note, yet again,
that the assumptions on our cost generation mechanism may or may not
hold in the sense that having a worst-case regret bound on all possible
futures can be too restrictive (consider the dining problem above).

The existing algorithms [10, 55, 12] for the bandit setting differ from
the algorithms for the expert setting in two ways.

e As the algorithms have no access to the true cost vector ¢, they
make an estimate ¢ of it, and then use black-box suggestions from
a full-information algorithm with ¢ as input (perhaps with a different
amount of randomization to counter the uncertainty). The estimate
¢ is usually the unbiased random estimate, which assigns a cost of

(observed cost of 7)/(probability of choosing 7)
to the chosen expert 7 and zero for other experts.

e In addition to the black-box advice above, the algorithms make sure
that all experts are tried often enough so that the uncertainty in the
estimates of the costs does not grow too significant.

Note that in the literature this condition is achieved by sampling uni-
formly among the experts with a small probability v ~ ©(1/+/T), but
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we have observed that the regret bounds are satisfied if any expert is
selected with at least a probability «v/n. This observation potentially

saves us a cost of up to O (\/T) that would otherwise be incurred by
sampling poorly performing experts.

It is a natural question to ask whether we can apply the idea of FPL in
this bandit setting. In the following sections we answer this question; first
for the case when a non-adaptive opponent generates the costs and then
similarly when an adaptive opponent generates the costs.

3.2 Non-Adaptive Adversary

Recall that a non-adaptive adversary assigns costs to the experts indepen-
dent from our own actions. We can generalize the FPL to work in the bandit
setting, as described in Publication [P1], and this generalization is sketched
in the following. With a small probability v = ©(1/v/T) we choose an ex-
pert uniformly at random. Otherwise we choose the best expert for the
past estimated costs after these have been randomly perturbed. Hence, we
choose the expert
i=arg mzin [{élzt—l + ﬁtﬂ B
7
where &1 is the estimated cumulative cost vector and [y is the random
perturbation vector. When we receive the cost [¢]; associated with the
expert we chose, we make an estimate é} as described in the previous section.
We must set two unknowns: the sampling probability v and the distri-
bution of the perturbation. We use the following condition on the pertur-
bation distribution and the sampling probability -, in addition to the ones
in Table 2.1. Essentially this guarantees that the probability of selecting
an expert does not change relatively too much:

o If [pi], is the probability of selecting the expert ¢ on turn ¢, then we
must have a uniform upper and lower bound for [5]; / [Pi+1];, not
depending on 7.
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The regret for the bandit FPL-algorithm — we call it B-FPL— is with a
properly chosen values of € and ~ then

cost(B-FPL) < cost(the best expert) + (9(\/ Tnln n> ,

where the constant inside O-notation depends on the properties of the
perturbation distribution. Note that we can set the parameters so that
the decisions are identical to EXP3; this was observed by Kalai according
to [30].

One of the appealing features of FPL is that it fits easily to the online
geometric setting, but here we concentrated only on the simpler expert set-
ting. There are, in fact, several known results about the geometric bandit
setting, and these results naturally apply to the bandit setting with the ex-
perts. To simplify the following bounds we omit the dependence on other
parameters than 7. Awerbuch and Kleinberg [12] gave an algorithm that
against an oblivious adversary achieves a regret of O(T 2/ 3). McMahan and
Blum [55] showed a bound for regret of O(T3/ *InT) against an adaptive
adversary with a similar algorithm. We obtained a result that the algo-
rithm of McMahan and Blum is O(T 2/ 3) against a non-adaptive opponent,
but later Dani and Hayes [30] tightened the bound to O(72/3) versus the
adaptive adversary, which is a strictly better result.

Although we could not give a (’)(\/T) regret in the geometric setting,
one smaller similar advantage remains for B-FPL. We do not need to assume
uniform upper bounds for the costs on the experts, and we can make the
regret bound smaller by taking an advantage of this. The reason is that
the performance bound of B-FPL actually depends on the norm ||]|;:

cost(B-FPL) < cost(the best expert) + O(\/TMC In n> ,

where M¢ is the upper bound to the ||c]|;. The above bound is an easy
corollary to our results in Publication [P1] after we observe that uniform
sampling incurs an expected cost of at most yM¢ /n during one time turn.

One unfortunate drawback remains. If we want a regret of the order

@) (\/T), then we need the probabilities of selecting the experts, and these
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are not necessarily easy to obtain. For example, for the two-sided exponen-
tial distribution we need to calculate several integrals to do this.

3.3 Adaptive Adversary

This section considers a bandit setting in which our own actions can affect
the future costs, i.e., we play against an adaptive opponent. The bandit FPL
algorithm does not guarantee good regret against an adaptive opponent, as
we can see from the following sketch of an example that was given in [30].

Example: Bandit algorithms against an adaptive opponent. For
two experts, A and B, we make a cost generation mechanism where the
variance of the cost estimate of the expert A is high, so that the real cost
may hide under the variance. Let pa be the probability of selecting the
expert A. Then choose cy = 0, if pa < O(1/V/T), and otherwise cq = 1.
Setcg = 1—ca, i.e., the opposite of the cost of the expert A. The probability
pa is usually of the order ©(1/v/T) and Dani and Hayes note that while

the expected regret versus both experts is (’)(\/T) , the variance of the regret

of the expert A is Q(TQ/S). Hence the expected mazimum of the regrets is
Q(T?/3).

As the problem in this example is that variance makes our cost esti-
mate too high, we check whether we can alleviate this by making sure that
we do not overestimate the costs. In fact something similar was done by
Auer [9], though to obtain regret bound with high probability, not specifi-
cally proving a bound against an adaptive opponent. Later, Cesa-Bianchi
and Lugosi [24] observed that the algorithm works against an adaptive op-
ponent. The trick was to add an additional additive factor proportional to
1/p; to the cost of the ith expert, which guarantees that the cost of the
expert is almost never over-estimated.

The factor 1/p; is a linearization of what is subtracted in an algorithm
in Publication [P2]: a term upper bounding the standard deviation of the
estimate of the cost. Formally the subtracted term [6;]; from the unbiased
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estimate [{:,Hﬂ is

(2

. 1
HUt]]i =1+ ﬁ) Vigt
N————
a small value

a upper bound to

standard deviation of [[51;4]

(2

We use a seldom-used concentration bound to show formally that using &
results in an estimate which is almost never more than the real cost, i.e.,
él:t — 0¢ < €1+ with high probability. Of course, we must make sure that
the cost estimate is not too small, because then the bias ‘E’Lt — (é’lzt — 0¢) H
would be too large, and the increased regret would make this approach
useless. Fortunately we were able to show that the bias does not grow too
large for this to happen.
The resulting regret bound for a two-sided exponential distribution is

(9<VnT1nT) ,

which matches the previous bound.
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On the Competitive Analysis of
BSTs

This chapter proceeds to an application of the competitive analysis: the
performance of data structures and more precisely ones that are based on
binary search trees (BSTs).

4.1 Background on the BSTs

BSTs are a fundamental class of data structures that solve the DICTIONARY
problem for items with an order relation. They also support operations
PREDECESSOR and SUCCESSOR and are also rather amenable to adding
other operations. In the DICTIONARY problem we store a (dynamic) set of
items and support operations SEARCH, INSERT, and DELETE for the items
that may have associated data. More extensive details are found in the
standard textbooks [48, 28].

In abstract terms a BST specifies an order in which we perform the
comparisons to limit the number of potential items that we search (and we
use only comparisons to do this). The search begins with a comparison
at the root of the BST and continues recursively until the searched item
is found. This process of comparisons is associated with a search tree of
nodes, where each node corresponds to a comparison.



26 Chapter 4. On the Competitive Analysis of BSTs

When we use BSTs and want to guarantee good performance, we may
keep the BST approximately balanced, like in red-black trees (RB-trees) [28],
because they guarantee a O(lgn) worst-case cost per operation. However,
RB-trees change only when updated and it might be that the sequence of
accesses has some kind of structure which potentially could be exploited
(like in the MTF-rule for lists on page 11). For example, iterating over
items in a sorted order is a typical operation with a very specific structure.
A more general regularity are the working sets, which intuitively mean
that operations are connected either spatially or temporally [33]. In spatial
connectivity the items that are close to each other are more likely to be
accessed together (like names that share a prefix). Similarly, in temporal
connectivity an item that was accessed in recent past is also more likely
to be accessed in close future. In Sections (4.5 — 4.7) we study particular
questions on BST algorithms for these and even more general regularities.

However, first in Section 4.3 we are interested in a simpler regularity,
empirical frequency of items, which is the frequency that an item occurs
in a sequence of the accesses. Of course, some items may be frequently
accessed, and some rarely or never, for example in a symbol table of a
compiler. An important point is that we will not assume that we know the
frequencies a priori.

4.2 Counting Costs in BSTs

Before we continue, we discuss the issue of the cost of the operations in
BsTs. It is complicated to model realistically, and it depends both on the
platform and the size of the data. We recapitulate these issues, because
they are important to keep in mind.

The natural model with BSTs is the comparison model, which defines the
cost of an access as the number of comparisons performed before finding
the correct item or its non-existence. In it we assume that the search relies
only on the order relation of the items and not on their bit representation.

In the comparison model the lower bound for a search is lgn as in the
worst-case each comparison may leave half of the remaining candidates to
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be searched. This lower bound does not hold in a more general model of
cost, because Fredman and Willard [37] showed that at least in theory it is
possible to obtain O(lgn/lglgn) cost in the unit cost model, where we can
rely on other techniques than comparison to speed things up. By “other
techniques” we mean using the binary presentation of the items. Later,
Andersson et al. [7] noted that with slightly super-linear space O(y/Ig n) cost
is achievable with a similar technique. These are superior in O-notation,
but unfortunately the algorithms are complex and in Fredman and Willard’s
approach the height of the resulting tree is 51gn/lglgn so they have not
resulted in practical applications (so far).

Another approach is the so-called van Emde Boas tree [68], which
searches over the binary presentation of the key, and for w bits in a key the
search costs O(lgw). This idea has been, for example, applied to derive a
specialized algorithm to serve operations during the Internet protocol rout-
ing [31]. Unfortunately, for small data sets the space usage of the van Emde
Boas tree can be high.

In this Thesis we essentially use the comparison model. Hence, the
operations we use during a search are simple: comparisons and following
pointers. However, we actually equal the cost with the number of nodes
that are accessed (including both the root and the item). We allow a
constant number of comparisons in a single node, because the cost remains
the same in the O-notation and this simplifies our analysis. We set a cost of
k for restructuring a sub-tree of size k, which is asymptotically a realistic
assumption, because in the unit cost model the cost is O(k) [54]. Also,
when the nodes are at random positions in the memory, these costs should
approximately equal the number of cache misses or page faults, unless the
history from the previous searches interferes.

4.3 Efficient Use of FPL with BSTs

After discussing the issues with costs, we can continue to how we can ef-
ficiently exploit empirical frequencies with BsTs. One method for this is
the recently (re-)introduced FPL algorithm which has an application to
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Input:
e A set S of items.

e A hidden sequence o = (oy,...,07) of accesses to S that will be
served online.

e An algorithm OPT-BST that computes an optimal BST for the access
counts so far.

State: items are stored in a BST. Additionally, the algorithm stores a
count ¢; of accesses and a random number r; for each item 3.
Initialization: initialize each r; independently to a random uniform num-
ber between 1 and /7T /n. Built a BST using OPT-BST algorithm with input
from perturbed counts ¢; + r;.

Serving the access to o;: search the item o; as usual. Update the access
count ¢; for the item o; and if this count becomes 0 modulo /7'/n then
globally rebuild the whole BST using OPT-BST algorithm with input from
the perturbed counts ¢; + r;.

Table 4.1: The online BST-FPL algorithm as in [47].

BSTs [47]. The application is the BST-FPL algorithm in Table 4.1. The
main point of the algorithm is to occasionally compute the optimal BST for
the past frequencies after these have been randomized.

What is interesting in BST-FPL is that, for any possible access sequence,
it can serve it almost as well as the best possible BST for that sequence in
hindsight. More formally, let the cost be as in the previous section, then
for any sequence o with T accesses and n items the cost of serving o with
BST-FPL is at most

cost(BST-FPL (0)) < cost(the best static BST for o) + 2nvnT. (4.1)

Hence, no matter how we choose the frequencies of the items, the average
access cost will be close to the optimal, even if we would have known these
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Input: items {1,...,n} and probabilities p; for each item i.
Output: A BST that minimizes the expected path length

n
sz dia
=1

where d; is the number of nodes on the path from the root to the item.

Table 4.2: Requirements for OPT-BST algorithm.

frequencies and chosen a BST for them. Kalai and Vempala call this strong
static optimality, whereas previously, for example, the splay tree of Sleator
and Tarjan [65] achieved static optimality that means a convergence with
a multiplicative constant factor, i.e.,

cost(-) < O(cost(the best static BST for o)),

which in data structures can be a significant difference. The difference is
significant because BSTs are a frequently needed solution, so their run-time
is important; also the constant factor determines the costs to a large extent
for many values of n, because the costs usually scale in O(lgn).

The upper bound (4.1) shows that in theory it is possible to achieve
excellent performance in this case. Note that the average cost between BST-
FPL and the best BST tends to zero as T increases, hence the performance of
BST-FPL is in some sense optimal. An unfortunate aspect in BST-FPL is that
we must do global rebuild approximately every /Tth access (amortized)
with the OPT-BST algorithm that satisfies the conditions in Table 4.2. The
cost of doing these is not counted in Equation 4.1.

Unfortunately the current best algorithm for the global rebuild with
n items takes both ©(n?) time and space [48]. Hence, because there are
T accesses and approximately /T rebuilds, the average cost incurred by
rebuilds is ©(n?v/T/T) in time (in instructions). This implies that in order
to reduce the amortized rebuilding costs to O(1) the T must be ©(n?), and
even then we must occasionally use ©(n?) space. Thus we definitely would
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like to avoid the additional cost associated with the global rebuilds and,
indeed, there are O(n) space and either O(n) or O(nlgn) time approximate
solutions to the above construction problem [48, 45, 36, 56]. In fact one
such algorithm is proposed in this Thesis, namely the AWOBST algorithm,
the details of which are given in Chapter 5 and which has the advantage of
having a low 1/0-cost.

However, when we use an approximately optimal BST then the analy-
sis behind the upper bound (4.1) fails. Intuitively the difference between
using an optimal or an approximation algorithm does not appear to be sig-
nificant. If we use an approximate BST, we would expect to compare our
own performance to the performance of the approximate BST that has been
formed in hindsight. That is, we would like to have a bound that resembles
something like this:

cost(BST-FPL (0)) < cost(approximately optimal BST for o) + 2nvnT,

where we have replaced the optimal BST in the upper bound (4.1) with an
approximate BST. In the following section we note that most approximation
algorithms achieve a bound that is close to the above bound.

4.4 Approximate BSTs Work with FPL

This section is more technical than the rest of the introduction to this
Thesis. We give a theoretical justification on using an approximate BST
with FPL. This is previously unpublished work and not completely trivial.
First, for completeness, we give the following example, by Kakade et al. [46].

Example: Where FPL fails with an approximate oracle. We have
n experts and an approrimate oracle APPROX, which selects an expert such
that

cost(expert chosen by APPROX) < cost(best expert) + f(n),

where f(n) is the additive error of APPROX. We now run FPL for T turns
and we replace the optimal oracle OPT in FPL with APPROX, t.€., we may
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now choose approrimately optimal decisions for past perturbed costs. To
obtain a large regret for the first f(n) turns let the first expert have a cost of
one and rest zero. Then for f(n) turns let the second expert have the cost of
one and rest zero. This is repeated until the nth expert has finished, at which
point we may iterate and select the first expert again. Note that during each
turn APPROX may select any expert, because the difference in the costs of
any two experts is less than f(n) and so the definition of APPROX does
not limit its output. Hence we may suffer a cost of one every turn if we
use APPROX, but all experts have a cost thalt on average is less than 1/n
per time turn. Thus, the additive error f(n) of APPROX does not limit the
regret of FPL using APPROX.

In general we do not know how to remove this hindrance in FPL (such a
method exists for the so called Zinkevich’s algorithm [76], see [46]). How-
ever, we can obtain a good bound, if we assume additional properties on
the part of the APPROX, as noted in [46]:

Theorem 1. If for an approzimate oracle APPROX: Sc — Sp and for any
cost vector ¢ € Sc we have that that each coordinate [APPROX(C)]; in the
vector APPROX(C) is bounded separately, i.e.,

[apPrOX(C)]; < [0PT(C)]; + f(n),

then the additive approrimation error applies as such to the online regret
of the FPL using APPROX, i.e.,

cost(FPL with APPROX) < cost(FPL) + T f(n).

For BSTs the output of APPROX is a vector that lists the depths of the
items. Unfortunately, the condition of the above theorem does not hold for
these BST vectors in the sense that f(n) ~ lgn is the best possible bound.
To see why, generate the accesses from a uniform distribution, then some
item is the root in the optimal BST, but could be down at depth Ign in the
approximate BST.

Fortunately, in the particular case of BSTs we can show that nearly all
approximation algorithms for optimal BSTs also give a good bound in the
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Figure 4.1: An illustration of a part of the decision set S? which consists of
the vectors on the drawn line.

online setting. Intuitively, what we do is observe that the vector space of
BSTs has a certain shape S, and it is possible to show that most approxima-
tion algorithms always choose BSTs close to the optima in S. Additionally,
the performance of the optimal BST and the optimal vector in S have sim-
ilar performance, though they may be far apart in the norm. These two
reasons, together with the fact that the width of the part of S we use is
bounded, are enough to obtain a good bound in the online setting. We give
a formal presentation in Theorem 2 below, but first we actually define S.
The subset S™ of R" is

n
Zpizlandogpiglforeachpi}.

=1

{(—lgpl,...,—lgpn) eR”

We use S to refer to S™ when the dimension n is clear from the context,
also see the illustration of the set S? in Figure 4.1. The set S relates to
the information-theoretic properties of lengths of code words, which in turn
relate to path lengths in BSTs. To relate S and BSTs we need the following
definition of entropy which, intuitively, is a measure of randomness of a
distribution, because it approximates the amount of bits needed to encode
samples from the distribution [29].

Definition 1. For a probability distribution p = (p1,...,pn) on items
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{1,...,n} the entropy H(p) of the distribution p is

n

> —pilgpi

=1

We use the shorthand H for H(p) when p'is clear from the context. The
entropy is related to BsTs through the following bounds [6, 29].

H(p)—1g H(p)—lge—1 < E;(cost(optimal BST for p)) < H(p)+1. (4.2)

We now proceed to the theorem that shows the competitiveness of ap-
proximate BSTs with BST-FPL.

Theorem 2. Let APPROX compute, for input probabilities pi,...,pn on
the items, an approximately optimal BST in which any item i is at depth
—lgp;+c or less. Then if we use APPROX instead of the optimal algorithm
OPT in BST-FPL, the bound for any sequence o of T accesses is

E(cost(FPL using APPROX on o))

= (upper bound of an approximate BST for o) + 2vVnT'lg (T + nﬁ) .

Proof. Fix any access sequence o. From now on the input to APPROX
consists of access counts, not access probabilities; we can change between
these two because access counts give empirical frequencies. The output is
the BST in a vector format, i.e., a vector that lists the depths of the items.
To serve o, we use the BST-FPL with the APPROX and we want to bound
the expected cost

T
E <Z APPROX(Cy.p—1 + fit) - €t> ,

t=1

where, as in Section 4.3, the cost vector ¢ is an indicator vector; in other
words, the coordinate corresponding to the accessed item is one and the

—

o -1
other elements are zero. We also define ¢1.;—1 as th:1 Cr.
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The upper bound on the performance of APPROX is
APPROX(Criy—1 + fi) - & < =g [pi]; + ¢, (4.3)

where i is the access that is indicated by ¢ and [p:], is the empirical
frequency of the ith item as implied by counts in the perturbed cost vector
C1.t—1 + fiz. Let us now compare this to the cost of a FPL algorithm that
uses vectors in S as decision vectors and has the same input:

OPT(S, C1y—1 + fit) - &,

where by OPT(S, €1.4—1 + i) we denote that the decision vectors come from
S, and so OPT(S, €) outputs a vector Z in S that minimizes # - ¢&. We can
define OPT(S, €) as a function of the frequencies [p:],; the oPT(S, €) is — g Z,
in which the vector ¥ is the minimum of the function

f3(#) = —[pl,1g[#]; given that [Z]; >0 and Y [Z], = 1.

i=1 =1
Now recall a classic result in the information theory that the minimal vector
Z equals the empirical frequency vector p;. Hence, we get
OPT(S, Clia—1 + ﬁt) S G = — lg []5%]]; . (4.4)

Comparing Equations (4.3) and (4.4) we obtain an upper bound for cost
of BST-FPL that uses the approximation algorithm APPROX instead of the
optimal oracle:

T T
E (Z APP(Crip—1 + fit) - 8,:) <E (Z OPT(S, Cr.4—1 + [it) - (?t> + cT.

t=1 t=1

To upper bound the right-hand side of the above inequality we can use the
performance bound of FPL (we do not fix M, M¢, and Mp yet):

T
E (Z OPT(S, E1ip—1 + fit) - a) < oPT(S,e1.7) - Er + 2 M Mc Mp T.

t=1

Recall the definitions of parameters M, M, and Mp:
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e M is the maximum cost on a single turn.

e Mc = max ||c]|;, where S¢ is the set of cost vectors.
ceSe

At first it might appear that we can not bound these values. For example,
the distance between two decisions Mp, can be arbitrarily large as the
width of S is infinite, because lim,_.q —lg x = co. However, when we fix T,
then OPT chooses only parts of S. This is because we can think that the
perturbation places at least one access to each item and then we can bound
the empirical probability [p]; of accessing an item 4 from below. For T real
accesses the perturbation places at most nv/T accesses, and hence for each
item’s empirical frequency it holds that

1 1

L
[[ﬂ]z_T—f-n\/T T’

Here we introduced notation 77 = T +n\/T , which is very close to T. Now
for any vector d € S which OPT may choose, we have that d; = — lg Ipl; <
lgT".

This implies that we can use the following values for the parameters:

o M =1gT".
o My =1.
e Mp=mnlgT.
Finally, we can bound OPT(S, é1.7) - ¢1.7 using Inequality 4.2:
OPT(S, ¢1.7) - é1.7 < cost(the best BST for ¢1.7) + T'(Iglgn +1ge + 1+ ¢),

which proves the claim. O



36 Chapter 4. On the Competitive Analysis of BSTs

The above theorem is slightly better than what we aimed to: a bound
that is worse than the upper bound (4.1) only by the approximation factor.
This is possible because with the optimal oracle the worst-case cost was set
to n, which happens if the BST is a list. With the approximation algorithm
the bound on the approximation makes this unlikely for almost all values
of T'. Unfortunately this result relies on specific properties of BSTs and as
such does not give a general result on how to use approximate oracles with
FPL.

4.5 Offline BST Algorithms

Recall that in the competitive analysis we compare the cost of an online
algorithm to an algorithm with knowledge of the future accesses in the
sequence o'

cost(online BST algorithm on o) < O(cost(best offline algorithm on o)) .

In previous sections the offline algorithm was limited to a static BST, but
what if we want more than performance comparable only to the best BST in
hindsight? The best static BST in hindsight depends only on the empirical
frequencies of items in ¢, and hence it can miss more “dynamic” regularities
that depend on the ordering of the operations in o.

One way to capture the more general regularities is to compare our
online BST algorithm against a more powerful offline BST algorithm than
the static BST. One choice is an offline BST algorithm that is not limited in
its capabilities. Thus, offline BST algorithms may also, at a cost, change the
structure of their internal BST between the accesses. Dynamic optimality
is the term for achieving a performance comparative to the offline BST
algorithms, save for the multiplicative constant factor [65]. Hence, the
difference to the static optimality is that the comparator can change during
the access sequence, at a cost. Table 4.3 lists the definitions of different
types of optimalities for BST algorithms.

It is interesting to know what are the regularities that we can capture
with offline BST algorithms. Remarkably many of the upper bounds are
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optimality cost must be less than
static O(cost(BSTstatic))
strong static cost(BSTstatic) + 0 (T')
dynamic O(cost(BSTdynamic))
almost dynamic | O(Iglgn cost(BSTdynamic))

Table 4.3: Definitions of different types of optimalities for BST algorithms.
Here BSTgtatic is any static BST storing n items, and BSTgynamic 1S any BST
algorithm that can change the BST during the access sequence. The cost
bound must hold for any access sequence o = (o1, ...,o0r) with more than
n accesses.

constructive and proved for the splay tree of Sleator and Tarjan [65], which
is an online self-adjusting data structure. It is a long-standing open problem
to show whether the splay tree achieves dynamic optimality. On the other
hand, there are several known results, and we now list some of them. We
assume that the number of accesses is more than n to simplify the results.

e The splay tree is statically optimal, i.e., its cost is always
O(cost(best static BST)) .

Compare the static optimality to the strong static optimality in Sec-
tion 4.3, which replaces the multiplicative constant factor with a small
additive term.

e The splay tree captures time dependent regularities, working sets,
because the cost of the splay tree is

(’)(Z lg (number of accessed distinct items since the last access to O't>> ,

ot€E0

and hence the cost depends on the temporal reference of locality in
the sequence o.
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e Spatial locality of reference, on the other hand, is captured by the
static finger theorem [65], which says that the amortized cost of ac-
cessing oy is O(lg | oy — i |) for any fixed ¢, and the dynamic finger
theorem which gives an amortized cost of O(lg | ox — 01—1 |) [27, 26].
Another such result is the scanning theorem that shows that iterating
the items is a O(n) time operation [66].

Despite these results we note that the splay tree is not necessarily the
best solution, because its performance can be slightly worse than that of
other solutions [74] and in experiments the splay tree performs better only
when there is a structure in the accesses [60]. Thus, static optimality does
not imply good performance for random or non-dynamic data, because
the O-notation has a constant factor in it and thus balanced BSTs are
faster in practice for such data [60]. Note that Albers and Karpinski [4]
and Firer [40] have proposed that the lack of performance is caused by
unnecessary operations that change the structure of the BST during a search.
Another explaining factor, as pointed out by Aho et al. [1], is that the BST
in the splay tree is in practice unbalanced when compared for example to
RB -trees (which in experiments appear to be on average almost perfectly
balanced for uniform accesses).

In the next section we consider limits on how well the offline BST algo-
rithms can perform and in Section 4.7 we consider how to implement an
online BST algorithm with a formal guarantee against offline BST algorithms.

4.6 Limits of BST algorithms

Even though it is unrealistic to foretell what are the future accesses to a
BST, the limits on the performance of offline BST algorithms are interesting,
because they also give a theoretical bound on how well we can perform
online. Also, they can give insights on how to implement BST algorithms,
such as in [32].

Wilber [73] was the first one to give lower bounds for offline BST algo-
rithms. He gave in fact two different lower bounds, which both depend on
the access sequence and neither of which is simple. Hence, we give only
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an application of the first of the bounds to a sequence generated from a
random source, because this relates to results in Publication [P3].

We are given a sequence o = (01,...,0¢...,07). We assume that we
generate each item o; in o independently and identically (i.i.d.), which
means that oy is the item ¢ with probability p;, and these probabilities are
the same for all t. If we serve this kind of sequence with a static BST
and place items only to leaves, not internal nodes, then the expected lower
bound is the entropy of the generating distribution, because of a classic
result which lower bounds the expected length of a code for a distribu-
tion [29]. However, if a BST algorithm is used then it is not clear what
the lower bound is, because “the code” could change on the fly. Wilber
gave the following theorem that relates the cost of BST algorithm and the
entropy of the random source producing the sequence.

Theorem 3 (Wilber [73]). Let us generate a sequence o = (01,...,0¢,...,0T)
from a random source where each access oy is generated according to prob-
abilities P(oy = i) = p;. The entropy of the source H(p) is > —pilgp;
and

LD _aerm ).

E, (cost(any BST algorithm serving o)) >

It is not clear how tight this lower bound is, apart from the fact that the
best static BST serving o has a upper bound of H(p) + 1 for the expected
cost of an access. Hence, Theorem 3 implies that any offline BST algorithm
can only be a constant factor faster than a balanced BST when the accesses
are random.

Why is this result interesting? It asserts that, if we assume that our
accesses behave i.i.d., then essentially there is no reason to use anything
more complicated than static BSTs, because the overhead in more compli-
cated schemes is likely to be too large. In this case we limit our input
(instead of limiting it to a subset we define the process that generates the
input). Usually the bounds in the competitive analysis hold over all pos-
sible inputs, but for example Angelopoulos et al. [8] argue that in some
applications we must assume additional properties on the input to derive
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relevant results. Intuitively, this is so because those input sequences, which
force the competitive ratio of an online algorithm high, may be rare.

However, neither of the assumptions that Wilber makes, the indepen-
dence and identical distribution, may hold. This is because the sequences
may have many kinds of regularities — like in working sets — and these
definitely can cause the accesses to depend on each other. We can, of
course, broaden the assumptions on the source that produces o. The most
general stochastic source gives out sequences o; i.e., for each ¢ there is an
associated probability P (o). Then the entropy is

H=>Y -P(0)lgP(0),

which is counted over sequences, not over individual items. In Publica-
tion [P3] we give the following result *.

Theorem 4. Let us generate a sequence o = (01,...,0¢,...,07) from a
random source, where each sequence o is assigned a probability P(o). The
entropy H is > —P(o)IgP(0) and

E, (cost(any BST algorithm on o)) > % =Q(H).

This generalizes Theorem 3. Note that if the data is i.i.d., then H in the
above theorem equals T H(p), where H (p) is entropy of a source generating
a single access.

Is there a matching upper bound as there was in the i.i.d. case? The
answer is negative, because if the source produces a fixed sequence then its
entropy H is zero, but the cost of a fixed sequence can be Q(T'lgn) [73].
Nevertheless, using Theorem 4 we can show that the splay tree is optimal
when the sequence o is generated from a Markov chain source with a spatial
locality of reference. By this we mean that

P(Ut:i) < 1/\/ 1+ ‘ i—Ut_l ‘

Tn Publication [P3] we assume that the accessed item is assigned to the root. However,
the proof generalizes with minor modifications to cases where this is not true.
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Additionally, in Publication [P3], we gave a result that in a certain sense
links the complexity of the sequence o to the cost of the BST algorithm.
Intuitively, if the access sequence o is complex, then the cost of BST algo-
rithm serving it should be high. We, of course, have the problem of defining
what “complex” means. We use Kolmogorov complexity [51], which intu-
itively defines the complexity of a sequence o as the length of the shortest
computer program printing it (formally the computer program is given for
a universal Turing machine). We give a bound

(Kolmogorov complexity of o)

cost(any BST algorithm serving o) > 5

This bound is far from optimal, as Kolmogorov complexity is low on many
sequences, such as pseudo-random sequences, which are nevertheless ex-
pensive to serve.

In addition to these and Wilber’s bounds, the only other work on lower
bounds that we are aware of is in Harmon’s Ph.D. Thesis [43], where he
gives an injective mapping from BST algorithms serving a specific sequence
to points in a n X T grid, where the cost of the BST algorithm is the number
of the points. Using this mapping he gives a family of bounds, which
includes those of Wilber.

4.7 Augmenting BSTs to Become Dynamic

In the previous section we were interested in lower bounds on the cost of
offline BST algorithms. These algorithms are dynamic in the sense that dur-
ing the access sequence the BST can change. Now we turn to a related topic
of providing upper bounds, and preferably giving explicit constructions.

The history of such bounds is quite short, because the first (and basically
only) algorithm achieving a non-trivial bound is the algorithm Tango by
Demaine et al. [32]. The subsequent work, like [72] and ours, is primarily
based on the idea behind Tango. The idea is to use a lower bound on the
offline BST algorithms and show that for each unit of cost suffered by an
offline BST algorithm, Tango suffers a cost of the order O(lglgn).
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Figure 4.2: The P-tree on the left illustrates the final state of arrows in
a P-tree that has served a sequence that consists of accesses in order H,
L,J,E, O, 1L A C, K, N, M, B, F, D, and G. The P-tree on the right
illustrates how the arrows in the P-tree on the left change when the item
K is accessed, the dashed line in the arrow indicates a switched arrow.

Hence the cost of Tango is at most O(lglgn) times the cost of any offline
algorithm. Recall that dynamical optimality of an online BST algorithm
means that the algorithm costs at most O(1) times the cost of any offline
algorithm.

4.7.1 Wilber’s lower bound for BST algorithms

We now go through the lower bound, as we need it to understand both
Tango and our work. Assume that the items form a perfectly balanced
binary search tree, which we call a P-tree (note that this requires exactly
2% — 1 items for some = > 0). Serve an access sequence o with the P-tree.
Associate to each node in the P-tree a two-state arrow that points to the
direction of the child whose sub-tree was most recently accessed. When
serving ¢ count the number of times these arrows switch. This count plus
n/2 is a lower bound to the cost of any BST algorithm.

See an illustration of an access sequence and the final state of the P-tree
in Figure 4.2. Originally this lower bound was given by Wilber [73], but
Demaine et al. [32] gave this revised description.
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4.7.2 Tango: the almost competitive BST algorithm

Let us also sketch the Tango algorithm so that we can discuss its shortcom-
ings. Tango is conceptually a tree of balanced BSTs. After serving an access
o¢—1, each of these sub-BSTs include items on a continuous path of arrows
in the P-tree. That is, consider nodes from a leaf towards the root, and
add the parent of the node to a BST until the arrow of the parent does not
point to the node under consideration. The maximum number of items in
a sub-BST is lgn since it contains the items on a path and the root-to-leaf
path in the P-tree is of length lgn. When serving an access oy, each switch
of an arrow in the P-tree makes Tango perform computation with a cost of
O(lglgn). The intuitive reason is that for each switch of an arrow in the
P-tree Tango operates on a sub-BST with at most 1gn items. Hence, Tango
is O(lglgn)-competitive, as the number of the switches of the arrows is a
lower bound to the cost of any offline BST algorithms.

Publication [P4] addresses the following shortcomings in this construc-
tion.

e The worst-case cost in Tango is O(lgnlglgn) which is higher than
the usual O(lgn).

e Tango does not support updates to the tree.

Also we wanted to study, in theory, the feasibility of this approach. Note
that a more recent algorithm — the multisplay tree [72] which is also based
on idea behind Tango — supports amortized O(lgn) search, and updates
in O(lg2 n) time. Unfortunately, although in this approach the P-tree is
explicitly stored to the nodes of the tree, it is not used during the searches,
which appears wasteful.

4.7.3 Our approach for a competitive BST algorithm

We now give the basic idea of the approach, called Poketree, which is given
in Publication [P4]. We do the searches directly on a balanced search
structure that mimics the P-tree. This balanced search structure could be
a RB-tree or a deterministic skip list [62, 58]. We can see these structures
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as perfectly balanced search trees because they are implementations of a
B-tree for the value B = 3, i.e. they are 2-3-4-trees, and B-trees are always
perfectly balanced. The normal static search on the balanced structure
alone does not guarantee O(lglgn) -competitiveness, so we need a way to
search quickly if the accessed item is on a path formed by many consecutive
arrows in the P-tree. This search is essentially a binary search on its own.
We can implement this binary search in several ways, but note that we can
implement the search with only one additional pointer at each node. Thus,
our cost model does not break down for doing too much computation in
one node. We call this pointer a dynamic pointer and it essentially points
to the sub-tree that was most recently accessed. We illustrate this search
structure in Figure 4.3.

The search in Poketree proceeds as follows. First try the additional
dynamic pointer. Note that we do not have to follow it, if we cache the
minimal and maximal item in the sub-tree that the pointer points to. If
the dynamic pointer fails, then we follow a usual child pointer supplied
by the underlying balanced search structure. We can update the dynamic
pointers after we find the item we searched for by backtracking along the
same nodes (which is a disadvantage in Poketree).

This structure is O(lglgn)-competitive and it has a O(lgn) worst-case
cost because in the worst-case one additional operation is done in each
node (trying the dynamic pointer). Moreover, we can support the update
operations, although these can be quite complicated.

4.7.4 Discussion on the Poketree

One viewpoint to this approach and other similar algorithms is that we
want to take advantage of structure in the input. In Poketree we augment
a standard search structure with local caching in each node, in contrast
to other competitive algorithms that actually change the structure of the
whole search tree.

One advantage in Poketree is its flexibility: we can control the amount of
work we do, because we can either restrict the number of dynamic pointers
or we can place more items to a single node. The latter approach results
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P-tree

Dynamic link \
The same node C

Figure 4.3: An example of a Poketree, where we show two root-to-leaf paths
after first searching for the node A and then for the node B. The nodes A
and B share a common ancestor C and the paths are shown at the left and
right side of the tree. The dynamic pointers are drawn as arrows that point
from one node to another.
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Tango MST Poketree(RB)
Search, worst-case | O(lglgnlgn) @) (1g2 n) O(lgn)
Search, amortized || O(lglgnlgn) O(lgn) O(lgn)
insert/delete | not supported | O(lg”n) O(lgn)
memory per node || 4w+2lg w+2 | Tw+lg w+1 6w+2

Table 4.4: Known asymptotic upper bounds on the performance of compet-
itive BST algorithms. Memory is given in bits, where letter w is a shorthand
for ”words”, and we assume that only one item is stored at a node. The MST
algorithm is the multisplay tree [72] and Poketree(RB) is Poketree based on
a RB-tree.

in a B-tree, where the cost incurred by dynamic pointers per node remains
a constant, but the cost per item drops down.

Another advantage is a low worst-case cost. For example, the worst-
case cost of RB-trees is very good, in theory the tree height is 21gn and in
practice for uniform data the average access depth is between (Ign —1) and
lgn [1] which is the best possible. For a comparison of asymptotic costs
of different algorithms see Table 4.4. We also observe that the updates
in Poketree are more natural than in other approaches, because in the
multisplay tree the P-tree is stored in the nodes, but is only used during
updates.

It remains an open problem to study how these algorithms perform
in empirical experiments. Even on structured data these algorithms pay
O(lglgn) per operation and in the worst-case they could be even slower
than a simple balanced BST.



Chapter 5

Computing I/0 Efficiently an
Approximate BST

In the previous chapter we were interested in online BST algorithms and
one of them, BST-FPL, required an algorithm to compute a nearly optimal
BST for items when we have known weights or probabilities for the items.
In this chapter we study how to solve this problem efficiently.

5.1 Background

We call the problem of computing an approximate BST as APPROX-BST.
Formally it is: given items {1, ...,n} and associated probabilities (p1,...,pn),
we want to compute a BST where an item ¢ is found after searching d; nodes,
such that the expected path length )" | p; d; is almost minimized. In prac-
tice this means that d; < —lg p; + ¢ for some constant ¢, which implies that
the expected cost is H + ¢, where H = (3. | —p;1gp;) is the entropy of
the item distribution.

APPROX-BST is not limited to our interest only; it is a fundamental
problem given attention by Knuth [48] and in the recent literature, for
example, Brodal and Fagerberg [20] need approximately optimal BST tree,
and so does Gagie [41], and Ailon et al. [2]. In all of these articles the
authors design a data structure and desire bounds on the running time,
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such as a good string dictionary with a low search time, and they need a
nearly optimal BST to realize this.

Recall that the exact solution minimizing the expected path length due
to Knuth is ©(n?) both in time and space. Because such a quadratic cost
with data structures is prohibitively high in many applications, several
authors have worked on approximation algorithms [48, 45, 36, 56, 75]. For
n items in the BST the running time of these algorithms is typically either
O(n) or O(nlgn).

At first it might appear that these running times are optimal (ignoring
the constant factors), because if n items are accessed then the cost of build-
ing a BST is Q(n). Nevertheless, in the next section we discuss the reason
why we were somewhat dissatisfied with the time complexities of the above
algorithms, which in short is how the computational costs are counted.

5.2 Costs in Data Structures

The bounds O(n) and O(nlgn) for the running times in the previous section
are expressed in the unit cost model in which each performed instruction
is given a cost of one. This model was given attention in Section 4.2 on
page 26, where we discussed the cost of the searches in BSTs and other
related structures. The unit-cost model is computation, not data, centric,
but nevertheless the CPU that performs the instructions is not necessarily
the bottle-neck in the computation. Rather, the cost of accessing the data
in memory (any primary data storage like RAM, hard disk, or tape) may
be the most significant factor in the run-time, as van der Pas [67] notes in
his introduction to caching. This factor has naturally been recognized for
a long time, see for example the following quote from Backus’ 1977 Turing
lecture [13]:

“Von Neumann computers are built around a bottleneck: the
word-at-a-time tube connecting the cPU and the store.”

The importance of data transfers implies that we should at least consider
taking into account the 1/0 -issues when modeling the costs. The simplest
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method is to count the number of (distinct) memory accesses of operations,
as is done for example in the cell probe model [57], where also the word
length is limited to lg n bits for a data structure storing n things. However,
these models that count the accesses ignore the fact that computers may
store data to hardware such as the cache, standard memory, hard drives,
and tape drives, and these have costs in different orders of magnitude. Also,
the significance of the difference in latencies has grown as the following
quote from [49] demonstrates:

“The time to service a cache miss to memory has grown from 6
cycles for the Vax 11/780 to 120 for the AlphaServer 8400.”

The external memory model(s) [70] distinguish between a fast work
memory and a slower external memory. The external memory is divided
into pages of B units and we pay a cost of one for fetching a page to the
work memory. The objective in this model is to minimize these page fetches.
Memory-disk interactions is an application, for example we can analyze B-
trees! in this setting [48]. We can also analyze interactions between a cache
on the cPU and the main memory, but then the read and write-operations
must behave similarly in cost, i.e., the cache has to be write-back. The
algorithms for the external memory model are called cache-aware, because
they can rely on knowing the value B, which is a property of the cache and
may thus differ between platforms.

Knowing B, though, is not a requirement for performing well cache-wise,
because there are algorithms like the quicksort that empirically perform well
if cache misses are measured [49] though they are not cache-aware. This is
because we can use operations, such as linear scans, which cause few cache
misses for all values of B. For more complicated operations, such as storing
a matrix for multiplication, we need more complicated constructions, such
as the ones used by Veldhuizen [69].

A formal framework was given by Frigo et al. [39] who coined the term
cache-oblivious algorithm. In this framework we design an algorithm which

!The B-tree is a name of the algorithm and the “B” in it is not to our knowledge
referring to the same B as the cache line length.
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is oblivious to the value B. An optimal cache-oblivious algorithm causes
O(M™) cache misses, where M* is the number of cache misses made by any
cache-aware algorithm. Besides giving several cache-oblivious algorithms,
they showed the following result.

Theorem 5. Design a cache-oblivious algorithm for two-levels of memory
hierarchy, and in the design assume that:

1. The cache is tall; i.e., the size of the cache is Q(B?).

2. The page replacement policy is optimal; i.e., replace the page which is
used farthest in the future [14].

3. The cache is fully associative, i.e., each page can be placed to any
position in the cache [{4].

Then an optimal cache-oblivious algorithm designed for two levels of mem-
ory causes asymptotically optimal number of cache misses for multiple levels
of hierarchy. That is, if at a certain level of a hierarchy a cache-aware al-
gorithm causes M* cache misses, then the cache-oblivious algorithm causes
O(M*) cache misses. The memory hierarchy must have the property of
inclusiveness, which means that if an item is stored in a cache at a level 1
of the hierarchy, then it is also stored at the larger and slower cache at a
level i 4+ 1.

Note that Frigo et al. show that none of the unrealistic design assump-
tions need to be true, for example the LRU page replacement policy works
almost as well as the optimal one. So the point is that cache-obliviousness
of an algorithm implies a good performance for several layers of memory.

5.3 Our Algorithm: AWOBST

Now we have the importance of 1/0 in mind and, hence, we want an al-
gorithm that constructs a BST with few 1/0-operations. Actually, there is
already an algorithm for this problem in the cache-oblivious model: Brodal
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’ H instructions ‘ space ‘ cache misses ‘ output ‘

Optimal Knuth [48] 0(n?) 0(n?) O(n?) best
Approximation Knuth [48] O(nlgn) O(n) O(nlgn) H+1
Brodal and Fagerberg [20] O(n) O(n) O(n/B) 2H+2

AWOBST [P5] ©(n) ©(n) O(n/B) H+1

Table 5.1: Certain algorithms for constructing weighted BSTs, their in-
struction count, space usage, number of cache misses in the cache-oblivious
model and how good is the expected performance of the constructed BST.

and Fagerberg [20] give an algorithm with a cost of O(n/B), but unfor-
tunately the quality of the produced BST is not close to the optimal. As
stated above, the previous upper bound for the average cost was H + 1,
but Brodal and Fagerberg’s solution produces trees with a bound 2H + 2.
What we want is the best of both worlds: 1/0 performance and a BST with
performance scaling in H, not 2H. Publication [P5] shows that this is pos-
sible. See Table 5.1 for a rough comparison of construction algorithms for
BSTSs.

Publication [P5] also achieves a theoretical upper bound for the cost of
the constructed BST that is slightly better than the previous ones and this
bound implies the following new upper bound for the expected performance
of the optimal BST:

H + 0.087 + 1g(1 + Prmax),

where pmax is the maximal probability on items. The previous best was
H + 1. Also, if pmax < 2/3 we obtain a bound H + 0.503.

5.3.1 Description of AWOBST

The name of the algorithm is arithmetic weight-optimal binary search tree
(AWOBST). It is conceptually simple: assign to each item i a priority that
is the index of the first bit that changes between the binary representations
of Z;;ll pj and 7%, p; (this priority equals the length of a code word
assigned to the item when encoded with the arithmetic code [63]). Then
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build a BST in a heap-order with respect to these priorities. This building
process can be visualized as doing a so-called postorder traversal of the BST
while reading the sorted items from an array. Recall that in the postorder
visit of a BST we process the items in the following order: first process the
left child, then the right child, and finally the node itself. We can implement
the construction process with a scan and a stack, because we can store the
parent and left sub-tree in the stack while constructing the right sub-tree.
We emphasize that we do not use any non-realistic bit tricks, though we
rely on the binary presentations of the probabilities.

The number of cache misses with AWOBST is ©(n/B), and the implemen-
tation is independent of the value B, thus it is a cache-oblivious algorithm.
We think that it is not possible to save more than a constant amount cache
misses even if we knew B, hence using the cache-oblivious model does not
result in a overhead of Q(n/B) in this case, although this depends on how
we want to place the constructed BST to the memory.

We emphasize that it is the process of constructing the BST which is
cache-oblivious in AWOBST, and in Publication [P5] we do not consider the
performance of the constructed BST, because this is a separate problem. For
completeness, in Section 5.4 we give details on how to make the produced
BST perform well in the cache-oblivious model.

5.3.2 An example

We give an example on how a certain BST is constructed in AWOBST. The
following Table 5.2 gives the input.

| itemd [ 1 [ 2 | 3 | 4 [ 5 | 6 |
| probability p; [ 0.001 | 0.001 | 0.011 | 0.0001 | 0.0001 | 0.01 |

Table 5.2: An example of an input to AWOBST.

From the input we calculate the cumulative probabilities in binary, and
hence also the priorities which are the indices of the first changing bit
between two successive cumulants. We give these in Table 5.3.
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[itemi [ 1 | 2 | 3 | 4 | 5 ] 6
iy pj || 0.001]0.01 | 0.101 | 0.1011 | 0.11 | 0.111...
d;i 3 2 1 4 2 3

Table 5.3: Cumulative probabilities and the priorities of the items in
AWOBST, calculated from the input in Table 5.2.

From the priorities we can deduce the tree in Figure 5.1, because from
the priorities we can infer the child-parent relationships.

Figure 5.1: The BST that AWOBST constructs from the input given in Ta-
ble 5.2.

As we stated earlier, a stack is used to store a sub-tree consisting of a
node and its left descendants while constructing the sub-tree consisting of
right descendants. Hence, first we process item 1, push it to stack, then
process item 2 and also push it to the stack. Then we process item 3 and
because its priority is smaller than either the priority of item 1 or 2, we
know that all items in the sub-tree rooted at item 1 or 2 have been found.
Hence we can pop items 1 and 2 from the stack, link them together with
item 3 and push it to the stack. We continue and process the right sub-tree
of item 3, consisting of items 4, 5, and 6, and after this we note that all
items have been processed and we link the remaining items in the stack
and then we have the final tree.
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5.4 1/0 performance of the constructed BST

Publication [P5] does not bound the performance of the constructed BST in
the cache-oblivious model. Rather it bounds the expected path length of
an access. Recall that this does not necessarily model the performance of
a BST well, because for example a parent and a child node are more likely
to be accessed together. The problem of placing the items to memory is
a separate problem from the BST construction. We now give details on
the memory layout, because this is not completely trivial and otherwise an
argument could be raised that we do not use cost models consistently, but
pick the model which best fits our analysis.

5.4.1 Where to place the items?

Brodal et al. [21, 22] experimented with several memory layouts for BSTs
and for us the interesting ones are an “ad-hoc” B-tree layout where we just
guess some value for the page size B and a cache-oblivious layout. The
B-tree layout is interesting for its simplicity and empirical performance,
and the cache-oblivious layout for its theoretical properties.

For perfectly balanced BSTs the layouts are as follows. In the B-tree
layout we first place together the topmost B items to the memory and then
recurse to the remaining sub-trees until we have no items.

The cache-oblivious layout is more complicated, and was suggested by
Prokop [61] and is called the van Emde Boas structure for its original in-
ventor in a different context [68]. Let R(T") denote the function that for a
balanced BST T outputs the memory layout for T'. Let h be the height of
T and let the sub-tree Ty consist of the topmost half of T and let sub-trees
from T to T,n/2> be the ones that remain at the bottom half of the 7T". The
van Emde Boas layout is then given by the following recursive formula:

R(T') = R(Ty) catenate R(T}) catenate ... catenate R(Tyn/2).

In theory the van Emde Boas structure is not as efficient as the B-tree
layout, if the node size of the B-tree matches the page size B. Then an
access to a depth d costs d/1g B + 1 misses in the B-tree layout, but the
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cost is upper bounded only with 4d/1lg B+ 1 in van Emde Boas layout. We
remind that the van Emde Boas structure is still asymptotically optimal
for unknown B and for multiple levels of memory hierarchy.

These bounds O(d/1g B) are for a balanced tree, but the bounds also
apply to BSTs with other shapes if the ”missing items” are simply ignored
by removing the gaps in the memory where they would have been. Hence,
because the item 7 is at most at the depth lg p;+1 we can achieve O(—1gg pi)
cache misses with the 1/0 efficient layouts.

5.4.2 How to place the items?

The details in this section are somewhat technical. We describe how to as-
semble the layouts discussed in the previous section with AWOBST. Actually
we can apply the following method for any layout where we can efficiently
obtain an order-preserving (as defined later) position of a node in the final
BST. We apply the standard time forward processing technique [25]. In
short, we delay computation depending on data that is not in the cache to
the future using a cache efficient heap (for example in the cache-oblivious
model this heap is naturally a cache-oblivious heap).

The idea is as follows. When the parent of a node is set then we know
the children of this node. If we knew the structure of the BST, then we
could calculate the memory location for this node (and the locations of, or
pointers to, its children) and push the node to a cache efficient heap using a
priority that is the location. After AWOBST finishes, we would then pop all
the items in the order of memory location and place them, and we would
be finished.

The only significant “but” remaining is that when the parent of the node
is set, we do not have enough information to infer the location of the node.
This is because parts of the BST have not been constructed. Hence instead
of the real location we use an order-preserving location, which guarantees
that the priority does not need to equal the actual location. Instead, the
order relation between the priorities must be conserved, i.e., nodes in higher
memory locations have also larger priorities. Also, as we need to know the
pointers to the children, we need to do an additional trick with heaps, as
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described in Table 5.4.
We did not describe how to compute the order-preserving location for
the nodes. For the item ¢ we can do this with the following information:

e Probability p; of the item 1.
e Cumulative probability 22:1 Dj.
e Minimal probability pmi, over all items.

The idea is to embed the constructed BST into a perfectly balanced BST
of height 1g 1/||pmin] |, where |[z]]| denotes the closest power of two that
is smaller than z. See for example Figure 5.2 where we have embedded
the BST from Figure 5.1. Note that the depth and position of each item is
inferred directly from the probabilities so there is a gap between the item
5 and 4.

Figure 5.2: How a BST from Figure 5.1 is embedded to a larger tree. Here
B is 3 and the boxes correspond to nodes in the B-tree which stores three
items per node.

Now the order-preserving location is easy to calculate for the B-tree
layout. Given the item ¢ we can obtain the actual position in the embedded
tree from the probability p; and the cumulative probability (the position
is at the depth of the priority and there are as many items to the left
of the item as how many times the priority bit can have changed in the
cumulative probability). Then we just calculate the “box” where the item
falls by calculating the band where the item is and how many boxes there
are above and left to the position of the item . This takes O(1)-time.
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Input: A cache efficient heap H, which contains the nodes with order-
preserving priorities. The nodes include the keys the of children, but no
pointers.

1. Set S :=1.
2. Until H, is empty:

) Pop a node N from H,.
) Assign N a memory location S.
c) S:=5+1.
) Push N to a heap Hj, with a priority equal to its key.
)

Push the memory location and the key of N to the heap Hj two
times, with the priority equal to the key of the left and with the
priority equal to the key of the right child.

3. Until Hy is empty:

(a) Pop anode N and the memory locations of its children from Hp.

(b) Push N, with correct child pointers, to a heap H. with priority
equal to the memory location of N.

4. Pop the nodes from H. and assign them to the correct memory loca-
tions.

Table 5.4: How to 1/0 efficiently place the nodes to the memory, a general
approach.
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The process is similar for the van Emde Boas layout. However, to our
knowledge one must use a recursive function with possibly O(lg 1/ |pmin]|)
levels of recursion.
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Conclusions

In this Thesis, we have studied online problems in which, in general, we
learn good decisions from the past data. Our approach is theoretical and
we provided formal performance guarantees. First we studied the FPL algo-
rithm, and we showed that we can effectively apply it to the bandit setting.
This results in an approach that is more flexible than the previous algo-
rithms, but suffers from increased complexity in estimating the probability
of selecting an expert.

In later chapters we were interested in understanding properties of BST
algorithms and we mostly used methods developed for the online setting
to derive results. We showed that if we generate accesses to a BST with
a random source, then all BST algorithms have a cost proportional to the
randomness in this source, as measured by the entropy. Also, the cost
is lower bounded by the complexity of the access sequence, as measured
by the Kolmogorov complexity. It remains an open problem to effectively
compute a strict lower bound to the cost of the best BST algorithm for any
given access sequence. Lower bounds are interesting because they give not
only a limit to our performance, but we can also potentially use them to
design better algorithms.

One such application of lower bounds is in our study on augmenting a
tree structure, such as a B-tree, with dynamic pointers that change during
the accesses. The advantage in the additional dynamic pointers is that they
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capture the regularities in the input. Formally our construction achieves
a cost of O(lglgn) times the cost of any BST algorithm. However, we still
need to study when this construction (or other similar algorithms) results
in increased performance in empirical experiments.

Finally, we gave an algorithm which is 1/0 efficient and computes an
approximately optimal BST for any given weights on items. This work might
also have a minor importance in the coding theory, as we provide new upper
bounds to the code length of a one-to-one code. Our upper bound depends
on the maximum probability on the items.

There are essentially two factors (or open problems) which have enabled
this work. The first is the fact that we did not and still do not understand
very well how to deal with uncertainty (or regularity) in the future inputs.
The second is that computers are human made objects and are evolving.
What holds today, does not necessarily hold in the future, as we can see
from the relative growth of importance of 1/0 and parallelism.
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