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Abstract

The unifying theme of this research work is functional composition. We study
operations on a nonempty set A, i.e., mappings f : An → A for some n ≥ 1,
called the arity of f , an important particular case being that of Boolean func-
tions when A = {0, 1}. The composition of an n-ary operation f with m-ary
operations g1, . . . , gn, denoted f(g1, . . . , gn), is them-ary operation defined as
f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a)) for all a ∈ Am. A class of operations is
a subset of the set OA of all operations on A. The notion of composition can
be extended to classes of operations: the composition of classes C1 and C2
is the class C1 ◦ C2 that consists of all well-defined compositions of functions
where the outer functions come from C1 and the inner functions from C2.

A clone on A is a class of operations on A that contains all projection
maps and is closed under functional composition. The first part of this the-
sis is a study of compositions of the clones of Boolean functions. The clone
of all Boolean functions can be decomposed in various ways into minimal
clones, and we observe that such decompositions correspond to different nor-
mal form systems: the disjunctive normal form (DNF), conjunctive normal
form (CNF), Zhegalkin polynomial, dual Zhegalkin polynomial, and so-called
median normal form. These normal form systems are compared in terms of
efficiency, and we establish that the median normal form system provides
in a certain sense more efficient representations than the other four normal
form systems mentioned above.

The second part of this thesis is a study of certain order relations on the
set OA of all operations on A. For a fixed class C ⊆ OA, we say that f is a C-
subfunction of g, denoted f ≤C g, if f can be obtained by composing g from
inside with operations from C, i.e., f = g(h1, . . . , hn) for some h1, . . . , hn ∈ C
(or, equivalently, in terms of function class composition, f ∈ {g}◦C). We say
that f and g are C-equivalent, denoted f ≡C g, if f and g are C-subfunctions
of each other. The C-subfunction relation ≤C is a quasiorder (a reflexive and
transitive relation) on OA if and only if the parametrizing class C is a clone,
and if C is a clone, then ≡C is indeed an equivalence relation and ≤C induces
a partial order 4C on the quotient OA/≡C.
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ii ABSTRACT

The simplest example of C-subfunctions is obtained when C is the small-
est clone IA of projections on A. Forming IA-subfunctions corresponds to
simple manipulation of variables, namely addition and deletion of dummy
variables, permutation of variables, and identification of variables. None of
these operations increases the number of essential variables, and only variable
identification may decrease this number. We study more carefully the effect
of variable identification on the number of essential variables of operations
on finite base sets.

We then study certain order-theoretical properties of various C-subfunc-
tion partial orders defined by larger clones C on finite base sets A. We are
mostly concerned about the descending chain condition and the existence of
infinite antichains, and as it turns out, these properties on the defining clone
C. We focus on the following cases: the clones of monotone functions with
respect to a partial order on A, the clones of linear functions on finite fields,
the clones containing only essentially at most unary functions on A, and the
clone of 1-separating Boolean functions.

Homomorphisms of labeled posets (or k-posets) are applied in our analysis
of subfunction relations defined by clones of monotone functions. The third
part of this thesis is a study of the homomorphicity order of finite k-posets
on its own right. We establish that this order is a distributive lattice, and
furthermore, it is universal in the sense that every countable poset can be
embedded into it. This result implies universality of the subfunction partial
orders defined by clones of monotone functions on finite sets of more than
two elements. In this way, we also obtain a new proof for the well-known
universality of the homomorphicity order of graphs.
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Chapter 1

Introduction

1.1 Operations and clones

. . . that flower of modern mathematical
thought—the notion of a function.

Thomas J. McCormack (1865–1932)

Let A be an arbitrary nonempty base set. In the current work, we are mostly
concerned about the cases where the base set is finite. Since it is unimportant
for our purposes what the elements of the base set are, we may assume that
A = {0, 1, . . . , k − 1} for some k ≥ 1, and we keep denoting the cardinality
of A by k. In any case, the definitions and notions we present in this chapter
apply to arbitrary nonempty base sets A, either finite or infinite.

An operation on A is a mapping f : An → A for some positive integer n,
called the arity of f . Operations on the set {0, 1} are an important particular
case, and they are called Boolean functions. We denote by OA the set of all
operations on A, i.e., OA =

⋃
n≥1A

An .
For 1 ≤ i ≤ n, the i-th n-ary projection is the mapping (a1, . . . , an) 7→ ai,

and it is denoted by xni , or simply by xi when the arity is clear from the
context. Denote by IA the set of all projection operations on A.

If f is an n-ary operation and g1, . . . , gn are m-ary operations on A, then
the composition of f with g1, . . . , gn, denoted f(g1, . . . , gn), is the m-ary
operation defined by

f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a))

for all a ∈ Am. Composition of operations satisfies the superassociativity
condition:

f(g1, . . . , gn)(h1, . . . , hm) = f(g1(h1, . . . , hm), . . . , gn(h1, . . . , hm)).

1



2 CHAPTER 1. INTRODUCTION

Any subset C ⊆ OA is called a class of operations on A. The n-ary part
of a class C is the set C(n) = {f ∈ C : f is n-ary}. The notion of functional
composition is naturally extended to classes of operations on A by defining
the composition of classes C and K as the class

C ◦ K = {f(g1, . . . , gn) : f ∈ C(n), g1, . . . , gn ∈ K(m) for some m, n}.

Class composition satisfies the following associative property of [3].

Lemma 1.1. Let A, B, C be classes of operations on A.
(i) (A ◦ B) ◦ C ⊆ A ◦ (B ◦ C).
(ii) If B ◦ IA ⊆ B, then (A ◦ B) ◦ C = A ◦ (B ◦ C).

A clone on A is a class C that contains all projections and is closed under
composition (in other words C ◦ C ⊆ C, i.e., f(g1, . . . , gn) ∈ C whenever
f, g1, . . . , gn ∈ C and the composition is defined). The smallest clone on A is
the class IA of all projections, and the largest clone on A is the class OA of
all operations on A. The clones on A constitute an inclusion-ordered lattice,
where the lattice operations are the following: the meet of two clones is their
set-theoretical intersection, and the join of two clones is the smallest clone
containing their union. For a general account on clones, see [32].

A major ongoing research programme in universal algebra and multi-
valued logic is the attempt to describe the structure of the lattice of clones on
finite base sets. The clones of Boolean functions were completely described
in the 1940s by E. Post [23], and these clones are called Post classes and
the lattice of clones on the two-element set is called the Post lattice. Post’s
theorem has been reproved by several authors; see, e.g., [28, 33, 38] for recent
shorter proofs.

While the Post lattice is countably infinite, it was shown by Yanov and
Muchnik [36] and independently by Hulanicki and Świerczkowski [15] that
the lattices of clones on finite base sets with more than two elements are
uncountable. Little is known about the structure of clone lattices. Some
parts of these lattices have been described, e.g., it is known that there are
a finite number of atoms (minimal clones) and a finite number of coatoms
(maximal clones). The maximal clones were characterized by Rosenberg [29].
In contrast, the classification of minimal clones is far from being completed
(cf. [5, 25]).
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1.2 C-subfunction relations

One should always generalize.

Carl Jacobi (1804–1851)

For a fixed class C ⊆ OA, we say that an operation f is a C-subfunction
(or a C-minor) of an operation g, denoted f ≤C g, if f ∈ {g} ◦ C, i.e.,
f = g(h1, . . . , hn) for some h1, . . . , hn ∈ C. If f and g are C-subfunctions
of each other, we say that they are C-equivalent and denote f ≡C g. We
have now defined families of binary relations ≤C and ≡C on the set OA of all
operations on A, parametrized by the class C.

If C and K are classes with C ⊆ K, then by definition ≤C ⊆ ≤K and
≡C ⊆ ≡K. It is easy to verify that {xi} ◦C = C for any projection xi and any
class C. Therefore, the relations ≤C and ≤K are distinct for C 6= K. However,
the relations ≡C and ≡K may coincide even if C 6= K.

Lemma 1.2. The relation ≤C is reflexive if and only if C contains all pro-
jections.

Proof. Let xi be a projection of any arity. Assuming that ≤C is reflexive, we
have that xi ≤C xi, i.e., xi ∈ {xi} ◦ C = C. Assume then that C contains
all projections, and let f be n-ary. Then f = f(x1, . . . , xn) ∈ {f} ◦ C, i.e.,
f ≤C f , so ≤C is reflexive.

Lemma 1.3. The relation ≤C is transitive if and only if C ◦ C ⊆ C.

Proof. Assume first that ≤C is transitive, and let f ∈ C ◦ C. Then f =
g(h1, . . . , hn) for some g, h1, . . . , hn ∈ C, so f ≤C g. Since g ∈ C, it is
clear that g ≤C x1. By the transitivity of ≤C, we have that f ≤C x1, i.e.,
f ∈ {x1} ◦ C = C. Thus, C ◦ C ⊆ C.

Assume then that C ◦ C ⊆ C, and let f ≤C g and g ≤C h. By Lemma 1.1,

f ∈ {g} ◦ C ⊆ ({h} ◦ C) ◦ C ⊆ h ◦ (C ◦ C) ⊆ h ◦ C,

i.e., f ≤C h. We conclude that ≤C is transitive.

Thus, the C-subfunction relation ≤C is a quasiorder (a reflexive and tran-
sitive relation) on OA if and only if the defining class C is a clone. If C is
a clone, then ≡C is indeed an equivalence relation, and ≤C induces a partial
order 4C on the quotient OA/≡C.

The motivating example of C-subfunctions is given by the notion of taking
minors of Boolean functions: addition of dummy variables, permutation of
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variables, identification of variables, deletion of inessential variables. These
manipulations of variables are easily described in terms of composition of
functions from inside with projections. In other words, a minor of f is an
IA-subfunction of f , where IA denotes the clone of all projections.

Denote the set of all C-subfunctions of an operation f by subC(f) =
{g ∈ OA : g ≤C f}. Let Z ⊆ OA be a class of operations on A. The set
FSC(Z) = {f ∈ OA : subC(f) ∩ Z = ∅} is the class of functions induced by
the set Z of forbidden C-subfunctions.

Classes of Boolean functions have been characterized in terms of forbid-
den minors [7, 34, 35, 38]. Pippenger [22] generalized the notion of minor
for operations on arbitrary finite base sets and developed a Galois theory
for classes of operations that are closed under taking minors. Ekin et al. [6]
established that the equationally definable classes of Boolean functions are
exactly the classes that are closed under taking variable identification minors,
i.e., IA-subfunctions, and the structure of this quasiordering of Boolean func-
tions was studied by Couceiro and Pouzet [4].

Thus, C-subfunctions generalize the notion of minor. Such generalizations
have appeared in many areas of mathematics. For example, OA-subfunctions
were studied by Henno [11, 12] in the context of Green’s equivalences and
quasiorders on Menger systems. Equivalences of Boolean functions under
actions of the general linear and affine groups of transformations over the
two-element field were studied by Harrison [10], and they correspond to C-
equivalences defined by clones of linear Boolean functions, and such linear
equivalences have found applications in coding theory and cryptography.

Representation of classes of Boolean functions by forbidden subfunctions
played a key role in Zverovich’s [38] proof of Post’s theorem. Since any
approach to Post’s theorem is potentially a good candidate for proving Post-
like results for large sublattices or sections of the lattice of clones on larger
base sets, we believe that C-subfuntions could prove useful in clone theory,
as well as in other areas of mathematics.

In this thesis, we analyze various C-subfunction partial orders defined by
different clones on finite base sets. We are mostly concerned about the de-
scending chain condition and the largest antichains contained in 4C, because
of the fact that representation of classes of operations by minimal sets of
forbidden subfunctions is possible if the corresponding C-subfunction partial
order satisfies the descending chain condition, and these minimal sets are
guaranteed to be finite if the partial order contains only finite antichains.
On the other hand, we pay little attention to the closely related ascend-
ing chain condition, because it plays no role in the forbidden subfunction
characterization.
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1.3 Labeled posets

The chief forms of beauty are order and
symmetry and definiteness, which the
mathematical sciences demonstrate in a
special degree.

Aristotle (384–322 B.C.)

For an integer k ≥ 1, a k-labeled partially ordered set (a k-poset) is an object
((P,≤), c) where (P,≤) is a partially ordered set and c : P → {0, . . . , k − 1}
is a labeling function. If the underlying poset (P,≤) is a lattice, chain, forest,
etc., then we speak of k-lattices, k-chains, k-forests, etc. An alternating chain
is a k-chain ((P,≤), c) satisfying the condition that c(a) 6= c(b) whenever a
covers b in (P,≤).

A homomorphism of a k-poset ((P,≤), c) to a k-poset ((P ′,≤′), c′) is a
mapping h : P → P ′ that preserves both the ordering and the labels, i.e.,
h(a) ≤ h(b) in P ′ whenever a ≤ b in P and c = c′ ◦ h. If there exists a
homomorphism of ((P,≤), c) to ((P ′,≤′), c′), we say that ((P,≤), c) is ho-
momorphic to ((P ′,≤′), c′). Two k-posets are homomorphically equivalent if
they are homomorphic to each other. We define a quasiorder ≤ on the set of
all k-posets by the existence of a homomorphism: ((P,≤), c) ≤ ((P ′,≤′), c′)
if and only if there is a homomorphism of ((P,≤), c) to ((P ′,≤′), c′).

Labeled posets are also known as partially ordered multisets (pomsets)
or partial words. They have been used as a model for parallel processes
(see Pratt [24]). Algebraic properties of labeled posets have been studied
by Grabowski [9], Gischer [8], Bloom and Ésik [1], and Rensink [27]. To
the best of our knowledge, the homomorphicity order of finite k-posets was
first studied by Kosub and Wagner [18] in the context of Boolean hierarchies
of partitions, followed by works by Kosub [16, 17] and Selivanov [31]. Ko-
sub and Wagner were mostly concerned with k-lattices, whereas Selivanov
studied k-forests. Kuske [20] and Kudinov and Selivanov [19] have studied
the undecidability of the first-order theory of the homomorphicity order of
k-posets.

In this thesis, homomorphisms of k-posets are applied in the analysis of
subfunction relations defined by clones of monotone functions in Publication
3. We also study the homomorphicity order of finite k-posets on its own right
in Publication 5.





Chapter 2

Author’s contribution

The mathematician does not study pure
mathematics because it is useful; he
studies it because he delights in it and he
delights in it because it is beautiful.

Henri Poincaré (1854–1912)

We present our main results in this chapter. Each of the following sections
summarizes one of the research papers that are part of this thesis, focusing
on the key results that are essentially due to the author of this thesis. We
also indicate some open problems and possible directions for further research.

2.1 Publication 1

Composition of Post classes and normal forms of Boolean
functions

In this paper, we consider the class compositions of clones of Boolean func-
tions. The composition C1 ◦ C2 of Post classes C1 and C2 is either the join
C1 ∨ C2 in the Post lattice or it is not a clone. All pairs of clones C1, C2 are
classified accordingly in a sequence of forty-two propositions that are proved
using various techniques. In this way we obtain a class composition table (see
Table 1 in Publication 1, summarized in Theorems 2 and 3 in Publication 1).

Having done this, we are able to decompose clones into proper subclones.
In particular, we obtain all decompositions of the clone Ω of all Boolean
functions into prime clones (clones that cannot be further decomposed into
proper subclones). Such decompositions correspond to certain normal form

7
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representations of Boolean functions. These include the well-known disjunc-
tive and conjunctive normal form representations (see [2]) and the Zhegalkin
(or Reed–Muller) polynomial representation [21, 26, 37], as well as the dual of
Zhegalkin polynomial representation, which relates to the Zhegalkin polyno-
mial representation in a similar way as DNF relates to CNF. We also discover
a new normal form of Boolean functions which we call the median normal
form, corresponding to the decomposition Ω = SM ◦Ω(1) where SM denotes
the clone of self-dual monotone functions and Ω(1) denotes the clone of all
essentially at most unary functions. This decomposition of Ω implies that
every Boolean function can be represented as an iterated composition of the
ternary majority function with itself, with possible substitution of negated
variables or Boolean constants for variables.

Finally, we make a comparison between the efficiency of these normal
form systems, and it turns out that the median normal form system is in
a certain sense more efficient that the other above-mentioned normal form
systems. Given a normal form system N, the N-complexity of f , denoted
CF(f), is the length of the shortest formula representing f that is in the
given normal form. For two normal form systems N and M, we say that
N provides polynomially more efficient representations than M, if there is
a polynomial p such that for all functions f , CN(f) ≤ p(CM(f)). We show
that the DNF, CNF, Zhegalkin polynomial and dual Zhegalkin polynomial
normal form systems provide representations of pairwise incomparable effi-
ciency, while the median normal form system provides polynomially more
efficient representations than the other four normal form systems.

For further research

In the current framework, we only considered factorizations of clones into two
proper subclones at a time. Could we obtain different results, if we allowed
factorizations into more than two subclones?

We described algorithms for converting DNF, CNF, and Zhegalkin poly-
nomial representations of Boolean functions into median normal form. But
the median normal form representations so obtained are not necessarily the
shortest possible. Is there an efficient algorithm for finding the shortest me-
dian normal form representations?
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2.2 Publication 2

On the effect of variable identification on the essential
arity of functions on finite sets

Let 1 ≤ i ≤ n. We say that the i-th variable is essential in an n-ary operation
f on A if there are points a,b ∈ An such that aj = bj for all j 6= i, ai 6= bi,
and f(a) 6= f(b). Otherwise the i-th variable is said to be inessential in f .
The essential arity of f , denoted ess f , is the number of essential variables
in f .

This publication deals with IA-subfunctions, where IA denotes the clone
of projections on A. Substitution of projections to the arguments of a func-
tion amounts to permutation of variables, identification of variables, and
addition and deletion of inessential variables. It is easy to see that the essen-
tial arity of a function cannot be increased by these operations, and the only
one of these operations that may decrease essential arity is the identification
of variables. Thus, if the i-th and j-th variables are essential in f , we call
the function fi←j = f(x1, . . . , xi−1, xj, xi+1, . . . , xn) a variable identification
minor of f , obtained by identifying xi with xj. We define the arity gap of
f , denoted gap f , by

gap f = min
i 6=j

(ess f − ess fi←j)

where i and j range over the set of indices of the essential variables of f .
It is clear that gap f ≥ 1 for every operation f with at least two essential
variables.

In this paper, we consider the effect of variable identification on the num-
ber of essential variables of operations on finite sets. Salomaa [30] showed
that every Boolean function f with n ≥ 3 essential variables has a variable
identification minor with at least n− 2 essential variables, i.e., gap f ≤ 2.

We generalize Salomaa’s result to operations on arbitrary finite sets: every
operation on a k-element set (k ≥ 2) with at least k + 1 essential variables
has a variable identification minor with at least n−k essential variables, i.e.,
gap f ≤ k.

Furthermore, we strengthen Salomaa’s theorem on Boolean functions by
classifying all Boolean functions according to whether their arity gap is one
or two. It turns out that there are only a few exceptional cases where the
arity gap is two, namely the functions of the following forms:
• xi1 + xi2 + · · ·+ xin + c,
• xixj + xi + c,
• xixj + xixk + xjxk + c,
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• xixj + xixk + xjxk + xi + xj + c,
where c ∈ {0, 1}. The proof makes good use of the Zhegalkin polynomial
representations of Boolean functions and it separates cases in a clever and
efficient way.

For further research

The problem on the arity gap of operations on finite sets with more than
two elements still remains quite open. We do not know whether the bound
gap f ≤ k is sharp for operations on a k-element set with at least k + 1
essential variables. In fact, we do not even know whether there exists any
such operation of arity gap at least three.

Our framework could be generalized a little bit, and we could consider
functions f : An → B. We note that the codomain set plays no role in
the proof of the upper bound gap f ≤ k (insofar as there are at least two
distinct elements in B to have essential variables to begin with), and hence
this bound still holds for any sets A and B with |A| = k and |B| ≥ 2. Could
we find, for example, a classification of pseudo-Boolean functions (mappings
{0, 1}n → R) according to whether their arity gap is one or two?

2.3 Publication 3

Descending chains and antichains of the unary, linear,
and monotone subfunction relations

In this paper, we study the C-subfunction relations defined by certain clones
on a finite base set A, namely
• the clone OA of all operations on A,
• the clones containing only essentially at most unary operations on A,
• the clone of linear functions on a finite field A,
• the clone of monotone functions with respect to a partial order on A.
For the clone OA of all operations on A, we observe that the notions of

OA-equivalence andOA-subfunction correspond to Green’s equivalence L and
Green’s quasiorder ≤L on full function systems, which were studied by Henno
[11, 12]. A very simple criterion on function range holds here: f ≤OA

g if and
only if Im f ⊆ Im g. Hence, there are only a finite number of OA-equivalence
classes on OA for any finite base set A.

For the clones containing only essentially at most unary operations, the
descending chain condition is seen to hold by an easy argument on the es-
sential arity. As regards antichains, we generalize the infinite antichain con-
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struction presented by Pippenger [22, Proposition 3.4], and we rephrase his
proof in the language of subfunctions and functional composition.

An operation f on a finite field A is linear if it has the form f = a1x1 +
· · ·+ anxn + c for some a1, . . . , an, c ∈ A. The class L of linear functions is a
clone on A, and it is a maximal clone according to Rosenberg’s classification
[29]. We show that the L-subfunction partial order satisfies the descending
chain condition but contains infinite antichains. The same applies to the
partial order defined by the clone L0 of linear functions with constant part
c = 0.

For any partial order ≤ on A, the class M≤ of monotone functions with
respect to ≤ is a clone; furthermore, by Rosenberg’s classification [29], it is
a maximal clone if ≤ has a greatest and a smallest element. Our analysis of
M≤-subfunctions makes use of homomorphisms between k-posets.

We associate with each n-ary function f on A the k-poset P (f,≤) =
((A,≤)n, f). It holds that f ≤M≤ g if and only if P (f,≤) ≤ P (g,≤). Then
we make use of a family of k-lattices constructed by Kosub and Wagner [18]
and show that if |A| ≥ 3 and the partial order ≤ on A is not an antichain,
then 4M≤ contains both infinite descending chains and infinite antichains.
In fact, using the results obtained in Publication 5, we conclude that 4M≤

is a universal partial order in the sense that every countable poset can be
embedded into it.

On the contrary, in the case that |A| = 2 the clone M of monotone
Boolean functions defines a subfunction partial order that is far from be-
ing universal. Namely, 4M is isomorphic to the homomorphicity order of
2-lattices. As pointed out by Kosub and Wagner [18], every 2-lattice is ho-
momorphically equivalent to its longest alternating chain. An alternating
2-chain is completely determined by its length and the label of its small-
est element. Denoting by C(n, b) the alternating 2-chain of length n with
its smallest element labeled by b, we have that C(n, b) is homomorphic to
C(n′, b′) if and only if either n = n′ and b = b′, or n < n′. It is then easy to
see that this partial order is as presented in Figure 4 of Publication 5, having
ascending chains but no infinite descending chains and its largest antichain
contains just two elements.

For further research

It could be possible to obtain explicit description of the C-subfunction rela-
tions for some clones C. In particular, it could be possible to describe the
C-subfunction relations for all clones C of Boolean functions with the help of
the Post Lattice. For clones on larger base sets, such a complete description
would not be possible, since the lattice of clones on finite sets with more than
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two elements is largely unknown.
It would be interesting to determine the clones C on A for which the cor-

responding C-equivalence relation on OA has only a finite number on equiv-
alence classes. Such clones form an order filter on the lattice of clones on A,
so it would be sufficient to determine the minimal elements of the filter.

Yet another goal is to classify some natural classes of functions by forbid-
den C-subfunctions.

2.4 Publication 4

An infinite descending chain of Boolean subfunctions
consisting of threshold functions

For b ∈ {0, 1}, an n-ary Boolean function f is called b-separating, if there is
an i (1 ≤ i ≤ n) such that for all a ∈ {0, 1}n with f(a) = b we have that
ai = b. The classes U∞ and W∞ of 1-separating and 0-separating functions,
repsectively, are clones on {0, 1}.

An n-ary function is a threshold function, if there are weights w1, . . . , wn ∈
R and a threshold w0 ∈ R such that f(a) = 1 if and only if

∑n
i=1wiai ≥ w0.

In this paper, we show that there is an infinite descending chain of U∞-
subfunctions. The proof is based on an explicit construction consisting en-
tirely of threshold functions. Analogous results hold for the clone W∞ of
0-separating Boolean functions.

2.5 Publication 5

Labeled posets are universal

This paper is a study of the homomorphicity order of finite k-posets. For
k ≥ 1, denote by Pk the set of finite k-posets, and consider the quasiorder on
Pk defined by the existence of a homomorphism: (P, c) ≤ (P ′, c′) if and only if
there is a homomorphism of (P, c) to (P ′, c′). Denote by P ′k the partial order
induced by the homomorphicity quasiorder on the homomorphic equivalence
classes of Pk.

We show that the homomorphicity partial order P ′k of finite k-posets is a
distributive lattice whenever k ≥ 2. The lattice operations can be described
as follows. The join of (the equivalence classes of) k-posets (P, c) and (P ′, c′)
is (the equivalence class of) the disjoint union (P, c)∪ (P ′, c′), and their meet



2.5. PUBLICATION 5 13

is (the equivalence class of) the k-poset (Q, d), where

Q = {(a, a′) ∈ P × P ′ : c(a) = c′(a′)},

d(a, a′) = c(a) = c′(a′), and (a, a′) ≤ (b, b′) in Q if and only if a ≤ b in P and
a′ ≤ b′ in P ′.

The lattice P ′k has a smallest element, namely (the class of) the empty
k-poset, but it has no maximal elements. Furthermore, it is a universal
partial order in the sense that every countable poset can be embedded into
it. We also prove that the homomorphicity order of finite k-lattices (k ≥ 3)
is universal. This is shown by constructing an embedding of a poset that
is known to be universal in each of the homomorphicity orders mentioned
above. Such a universal poset is provided by Hubička and Nešetřil [13, 14],
and it comprises of a particular order relation imposed on the set of finite
sets of finite sequences of natural numbers.

Theorem 4.6 and Proposition 6.1 of Publication 3 imply the universality
of M≤-subfunction partial orders. As explained in the proof of Theorem 6.2
of Publication 3, for every k-lattice L, there exists an integer n and a function
f : An → A such that the k-poset P (f,≤) corresponding to f and the partial
order ≤ on A retracts to L and hence is homomorphically equivalent to it. It
then follows from Proposition 6.1 of Publication 3 that the homomorphicity
order (L′k,≤) of finite k-lattices embeds into theM≤-subfunction partial order
�M≤ . Since (L′k,≤) is shown to be universal when k ≥ 3, it follows that the
subfunction partial order defined by the clone M≤ of monotone functions
with respect to a non-antichain partial order ≤ on a base set with at least
three elements is also universal.

Furthermore, we represent k-posets by directed graphs and establish a
categorical isomorphism between k-posets and their digraph representations.
This yields a new proof for the well-known fact that the homomorphicity
order of graphs is universal.

For further research

What are the cores, i.e., the k-posets that are not homomorphically equiva-
lent to any k-poset of smaller cardinality?

Establish representations of graphs by k-posets such that there is a cate-
gorical isomorphism between graphs and their k-poset representations. Can
this be done with k-lattices? What is the smallest k for which this is possible?

Complexity-theoretical aspects of k-posets could also be studied. Certain
decision problems related to existence of homomorphisms between k-posets
are likely to be NP-complete.
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Errata

If a mistake is not a stepping stone, it is
a mistake.

Eli Siegel (1902–1978)

Publication 1. “Composition of Post classes and normal forms of
Boolean functions”

• Page 3224, line 4: Remove “)” after “[16,18,22]”.

Publication 2. “On the effect of variable identification on the es-
sential arity of functions on finite sets”

• Page 5, line 12 (Equation (11)): “pl←i = xixj +xixk +xjxk +xia
′+ a′′”

should read “pl←i = xixj +xixk +xjxk +xiai +xjaj +xkak +xia
′+ a′′”

(three terms are missing).

• Page 5, line 13: Remove “because no terms cancel,”.

• Page 6, lines 5–11: Subcase 1.2.3 is empty and can be removed.

• Page 7, line −19: Insert “or xi + xk” after “xixk”.

• Page 8, line −11: “rm←l” should read “pm←l”.

• Page 9, line −6 (Equation (34)): “xl” should read “xt”.

Publication 3. “Descending chains and antichains of the unary,
linear, and monotone subfunction relations”

• Page 135, line 12: “hm” should read “hn” (2 occurrences).

• Page 138, line −21 (second paragraph of the proof of Proposition 5.9):
“v” should read “d”.
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20 ERRATA

• Page 139, lines 16–17: The passage

If both S1 and S2 are nonempty, let r ∈ S1, s ∈ S2 and
t /∈ Imσ. Then vσ(r), vσ(s) and vt are distinct elements of A,
and so v /∈ {0, 1}m.

should be replaced by the following:

For a nonnegative integer q, denote by q · 1 the sum

1 + · · ·+ 1︸ ︷︷ ︸
q terms

.

If both S1 and S2 are nonempty, then vσ(i) = 1 + |S2| · 1 =
(|S2| + 1) · 1 for all i ∈ S1, vσ(i) = (|S2| − 1) · 1 for all i ∈
S2, and vj = |S2| · 1 for j = σ(1) and for all j /∈ Imσ.
If A has characteristic greater than 2, then (|S2| − 1) · 1,
|S2| · 1, (|S2|+ 1) · 1 are pairwise distinct elements of A, and
so v /∈ {0, 1}m. If A has characteristic 2, then (|S2|− 1) · 1 =
(|S2|+ 1) · 1 6= |S2| · 1, and hence w(v) equals either n− 1 or
m− n+ 1 and so w(v) /∈ {1,m− 1}.

Publication 5. “Labeled posets are universal”

• Page 2, line −1: “L/≡” should read “Lk/≡”.
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