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Abstract

A financial model plays a key role in the valuation and risk management of financial
derivatives, and it serves as an important tool for investors to measure the risk exposure of
their portfolios and make predictions and decisions. However, the popular a�ne stochastic
volatility models without jumps, such as the Heston model, have been questioned in the
finance literature in terms of their appropriateness for modelling stock prices and pricing
derivatives. Many alternative model specifications have been proposed in recent decades,
including the specification of non-a�ne variance dynamics and the inclusion of Lévy
jumps. However, the complexity introduced by further model specifications leads to poor
probabilistic properties, and hence most popular estimation methods are not applicable.
The Bayesian estimation method is among the few that work. In this thesis, I discuss the
role of new model specifications and investigate the performance of Bayesian estimation
methods.

First, I use an extensive empirical data set to study how the use of infinite-activity Lévy
jumps in stock returns and variance improves model performance. The stock returns and
variance are driven by di�usions and di�erent Lévy jumps, including the finite-activity
compound Poisson jump and infinite-activity Variance Gamma and Normal Inverse
Gaussian (NIG) jumps. Moreover, the non-a�ne linear variance process is compared to
the a�ne square-root stochastic process. With the conventional Markov Chain Monte
Carlo (MCMC) algorithms, including the Gibbs sampler and Metropolis-Hastings (MH)
methods, and the Damien-Wakefield-Walker method to cope with complicated posteriors,
eighteen di�erent model specifications are estimated using the joint information of the
S&P 500 index and the VIX index for 1996–2009. There is clear evidence that in terms of
the goodness of fit and option pricing performance, a relatively parsimonious model with
infinite-activity NIG jumps in returns and non-a�ne variance dynamics is particularly
competitive.

In the second part of the thesis, I examine the performance of advanced MCMC algorithms.
The e�ciency of the MH algorithm has been questioned because of its slow mixing speed,
especially in the presence of high dimensions and a strong dependence between model
parameters and state variables. Generally, a class of algorithms seeks to improve the
MH by constructing more e�ective proposals, and another combines the MCMC with
the Sequential Monte Carlo algorithms. To investigate, I first conduct simulation studies
to compare the estimation performance of seven advanced Bayesian estimation methods
against the MH. Specifically, I use the a�ne Heston model, the a�ne Bates model, and an
a�ne model with NIG return jumps, and examine whether the di�erent jump structures
a�ect the estimation results. Second, I estimate the non-a�ne model with NIG return
jumps using the joint information of the S&P 500 index and the VIX for 2002–2005
with selected algorithms that perform well in the simulation studies. The results of the
simulation and empirical studies are mixed about the performance of the algorithms. The
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ii Abstract

Fast Universal Self-tuned Sampler algorithms are particularly competitive in generating
virtually independent samples and achieving the fastest mixing with a fixed number
of MCMC runs, and their performance is stable regardless of the model specifications.
However, they are computationally expensive. The computational costs of the Particle
Markov Chain Monte Carlo (PMCMC) methods are much cheaper and also e�cient in
mixing, and they perform best when estimating the models without jumps/with NIG
jumps in the simulation studies, as well as in the fit to the VIX in the empirical studies.
However, the PMCMC methods are more vulnerable to model specifications than the
other algorithms; in particular, the rare large compound Poisson jumps in the Bates
model significantly reduce the acceptance rate and worsen the estimation performance of
the PMCMC methods.
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1 Introduction

1.1 Background and Motivation

A financial model can be regarded as an approximation of the true dynamics of a financial
asset. It is a mathematical model that uses variables to abstract parameters of interest
and is designed to capture some of the most important empirical features of the financial
market. It enables us to introduce randomness and make assumptions on the basis of
market observations to link the variables representing di�erent features of the market and
di�erent types of risk, and more importantly, to quantify and evaluate the risk and make a
useful analysis. The financial model is a key element of the valuation and risk management
of complicated financial derivatives and an important tool for investors to estimate future
returns, measure the risk exposure of their portfolios, and make predictions and decisions.

1.1.1 Financial Models
The empirical evidence has shown that the Black-Scholes (BS) model proposed by Black
and Scholes (1973) fails to provide a satisfactory description of the dynamics of real-life
stock prices. That is, the stock prices are not log-normally distributed; rather, the
distribution of stock returns is usually negatively skewed and has long and fat tails and
high peaks. More importantly, jumps, especially downside jumps, may occur randomly
in the path of the stock price. If investors base their investment and risk management
decisions on a model that misses the fundamental features of stock prices, they will be
exposed to a substantial risk of loss.

In response, many more flexible and realistic models have been proposed for stock prices,
such as the stochastic volatility model and the model with Lévy jumps.

Stochastic volatility models

As its name suggests, the stochastic volatility model replaces the constant volatility in
the BS model with another random variable described by some stochastic process. The
Heston model (Heston, 1993) is one of the most popular stochastic volatility models. It
describes the spot variance as a mean-reverting square-root (SQR) process that is driven
by a Brownian motion correlated with the Brownian innovation in the process of the
stock returns. By assuming a negative correlation between two Brownian innovations in
returns and variance, the Heston model takes account of the volatility feedback e�ect,
that is, changes in stock returns and variance are negatively correlated. Moreover, the
introduction of stochastic volatility can alter the skewness and kurtosis of the distribution
of stock prices. Yet the performance of the Heston model has been questioned in the
literature. Jones (2003) argues that the stochastic volatility model with an SQR variance
process is unable to generate realistic variance dynamics, and he concludes that the
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2 Chapter 1. Introduction

Constant Elasticity of Variance (CEV) model is more consistent with index returns and
option prices and is, hence, a better choice for describing the variance process. Similar
observations have been made in many finance studies. For instance, Christo�ersen et al.
(2010a) suggest that the stochastic volatility model with linear di�usion for variance,
compared to SQR di�usion, is much better in the aspects of modelling the realised
volatility and index returns and pricing options.

Moreover, in the historical time series of stock returns and realised variance, many fre-
quent small jumps and some large jumps typically occur randomly, and while stochastic
volatility models may resolve some empirical biases of the BS model, they do not account
for unexpected frequent jumps. The Bates model proposed by Bates (1996) augments the
Heston model by adding a compound Poisson jump component to the dynamics of stock
returns. However, the results in both Bates (2000) based on options and Pan (2002) based
on the joint information of stock prices and options suggest that the Bates model fails to
trace systematic variations in option prices, and that a model with jump components in
the variance process is highly useful. Du�e et al. (2000) propose the double-Poisson-jump
model as a generalisation of the Heston, Bates, and Merton jump di�usion models. This
model is constructed by adding another compound Poisson jump component to the vari-
ance process, whose jump times and sizes are simultaneous and correlated, respectively,
with those in stock returns. Eraker et al. (2003) examine the double-Poisson-jump model
using return data, and their empirical results are clearly in favour of this model rather
than the Heston and Bates models, because the double-Poisson-jump model success-
fully captures unexpected large jumps. Consequently, Eraker et al. (2003) argue that
the inclusion of a double-Poisson-jump specification might be indispensable, especially
under extreme market conditions. However, when models are estimated and compared
using the joint information of index returns and option prices, the inclusion of jumps in
variance seems less important, as Eraker (2004) and Kaeck and Alexander (2012) point out.

Lévy processes

Most of the finance literature relies on the use of Brownian motion to capture normal
asset price variations and on compound Poisson jumps to capture large price movements
in returns and variance. In fact, both Brownian motion and compound Poisson jump
belong to the class of Lévy processes. By definition, a Lévy process is a stochastic process,
the distribution of whose increments is stationary and independent of its past track.

According to the behaviour of the Lévy measure, a Lévy process can be classified in terms
of jump activity: finite activity and infinite activity. A finite-activity Lévy process can
generate only a finite number of small and large jumps in a finite time interval. Brownian
motion and the compound Poisson process are two examples of the finite-activity Lévy
process. In contrast, the infinite-activity Lévy process can generate an infinite number of
small jumps; however, the number of large jumps can only be finite because the Lévy
process is often assumed with càdlàg paths. Importantly, infinite-activity jumps are more
flexible to generate distributions with desired kurtosis, skewness, or tails.

Over the years, a number of option pricing models with infinite-activity Lévy jumps
have been proposed, such as the Variance Gamma (VG) model (Madan et al., 1998), the
Normal Inverse Gaussian (NIG) model (Barndor�-Nielsen, 1997b,a), the CGMY model
(Carr et al., 2002), and the finite moment log stable process (Carr and Wu, 2003). Carr
et al. (2003) propose the time-changed Lévy model and incorporate stochastic volatility
into the Lévy process through an instantaneous time change, and the resultant model
is still a tractable a�ne model, according to Du�e et al. (2003) and Kallsen (2006).



1.1. Background and Motivation 3

Moreover, Wu (2005) conducts an extensive analysis of the empirical performance of
di�erent types of time-changed Lévy models discussed in Carr et al. (2003).

Combination of stochastic volatility and jumps

Combining stochastic volatility models and infinite-activity Lévy jumps may further
improve model performance, but this specification has not been widely studied. Two
notable exceptions are Li et al. (2008) and Yu et al. (2011). Specifically, they compare
a�ne SQR stochastic volatility models with infinite-activity VG and Log Stable (LS)
jumps in the return process, without jumps in the variance process, against the Bates
model and the double-Poisson-jump model. The models are estimated using the S&P
500 index returns in Li et al. (2008) and the joint information of the S&P 500 index
returns and short-term ATM SPX option prices in Yu et al. (2011). Their empirical
results show that models with infinite-activity Lévy jumps significantly outperform the
Bates and double-Poisson-jump models in goodness of fit and achieve better performance
in the option pricing test in Yu et al. (2011). More recently, with a discrete-time a�ne
GARCH model, Ornthanalai (2014) estimates five types of infinite-activity Lévy jumps
using the joint information of index returns and option prices by the maximum likelihood
estimation (MLE) method, and suggests that infinite-activity jumps, rather than Brownian
motion, should be “the default modelling choice” for option valuation. The di�erence
between my research and theirs lies mainly in the use of non-a�ne variance dynamics
and infinite-activity variance jumps.

Previous empirical studies have not focused on whether the use of jumps in both the
return and variance processes can obviate the non-a�ne variance process, or vice versa.
One interesting paper is Kaeck and Alexander (2012), which uses an extensive data set
to estimate and compare the model specifications of the non-a�ne linear variance process
and the CEV process with the inclusion of a finite-activity compound Poisson jump
structure in the return and variance processes. Kaeck and Alexander (2012) conclude that
the inclusion of compound Poisson jumps is less important than allowing for non-a�ne
dynamics. The main di�erence between my research and Kaeck and Alexander (2012)
lies in the use of infinite-activity Lévy jumps.

Surprisingly, very little research focuses on the empirical option pricing performance of
stochastic volatility models with infinite-activity Lévy jumps in both variance and returns,
especially with non-a�ne variance dynamics, perhaps due to computational challenges.
The first part of this thesis aims to fill this gap.

Overall, empirical research with long-term data sets, including booms and crises, is
necessary for making robust conclusions on the empirical performance of di�erent types
of infinite-activity jumps and non-a�ne variance dynamics. The recent literature contains
only a few papers that use the joint information of returns and options to study model
performance with infinite-activity Lévy jumps. Some exceptions include Yu et al. (2011),
Li (2011), and Ornthanalai (2014). In this thesis, I use the S&P 500 index returns and
option prices via the 30-day VIX index from January 1996 to December 2009, a 14-year
period in which several financial crises occurred, to estimate the models. The VIX is
computed by averaging the weighted prices of SPX call and put options with the target
maturity over a wide range of strike prices, and under certain model assumptions, it
measures the square root of expected integrated variance over the horizon defined by
the target maturity. Since the VIX index is computed from a portfolio of option prices,
it contains aggregated information about option prices and can be used to derive the
risk-neutral dynamics of a model. It is worth mentioning that the optimal strategy is
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using option prices directly to estimate models, because the VIX index averages out the
information contained in option prices. However, because I consider both the a�ne and
non-a�ne models in this thesis, I employ the VIX index, instead of option prices, to
estimate the risk-neutral model parameters. Specifically, since the characteristic functions
of non-a�ne models are not available in closed form, the e�cient Fast Fourier Transform
(FFT) proposed in Carr and Madan (1999) is not applicable. Therefore, with option
prices, time-consuming Monte Carlo methods should be used to estimate the models.
However, since the closed-form formula of the VIX index can be derived in all the a�ne
and non-a�ne models discussed in this thesis, using the VIX enables me to estimate the
non-a�ne models e�ciently. Several previous studies, such as Ait-Sahalia and Kimmel
(2007), Duan and Yeh (2010), Kaeck and Alexander (2012), and Kanniainen et al. (2014),
have already confirmed the e�ectiveness of using the VIX for estimating the risk-neutral
model dynamics.

1.1.2 Bayesian Estimation Methods
Many financial research papers apply the classic MLE method to estimate and compare
models (see, for example Ait-Sahalia and Kimmel, 2007; Bates, 2006). However, the
application of the MLE requires that the form of the joint probability density function
(PDF) of the data and the specifications of the moments of the joint PDF should be known.
It also requires that the joint PDF be evaluated for all parameter values. Therefore,
although the MLE has proved excellent for model estimation, its application is limited.
Many other estimation methods with relaxed assumptions are employed in finance studies,
such as the Generalised Method of Moments in Andersen and Sørensen (1996) and Chacko
and Viceira (2003), the E�cient Method of Moments in Chernov and Ghysels (2000),
and the Method of Moments techniques used in Pan (2002). However, these estimation
techniques require that the moments be fully specified, although the assumption of a
fully-specified distribution in the MLE is removed.

In contrast, Bayesian estimation methods do not have the above requirements. Their
implementations by means of sophisticated Monte Carlo techniques (Liu, 2004; Robert and
Casella, 2004) have become very popular over the last two decades. In particular, Bayesian
methods have recently gained popularity in the finance research and have been applied
to estimate complicated financial models (see, for example, Christo�ersen et al., 2010a;
Eraker et al., 2003; Kaeck and Alexander, 2013a; Li, 2011, and reference therein). First,
Bayesian methods are very flexible and can combine the information of index returns and
options prices. Second, Bayesian methods allow for not only estimating the parameters
but also extracting the latent state variables of models, such as jumps and variance. Third,
as general and flexible tools for simulating complicated stochastic processes, Bayesian
methods can be combined with other estimation methods. For example, when integrated
with the MLE, they can solve the problem of a likelihood that is not known in closed
form (see, for example, Jacquier et al., 2007; Johansen et al., 2008).

One shortcoming of Bayesian methods is that they are typically implemented on the
basis of approximation. In most cases where Bayesian methods are employed, we cannot
directly sample from the true distribution that we are interested in, that is, p(�, X|Y ),
where � is the parameter set, X represents the latent state variable, and Y represents
the data. Bayesian methods try to approximate the true distribution by generating
approximate samples, and this has plagued designers of Bayesian estimation algorithms
since the beginning. Although the literature contains powerful mathematical theory for
assessing the mixing and accuracy of Bayesian methods, such as the asymptotic and limit
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theories, in many problems, it is di�cult to assess the approximating performance of
Bayesian algorithms.

Generally, there are two classes of Bayesian estimation methods: Sequential Monte Carlo
(SMC) and Markov Chain Monte Carlo (MCMC). MCMC algorithms generate samples
from a target distribution by drawing from a simpler proposal distribution (Liang et al.,
2010; Liu, 2004) and by generating a Markov chain. SMC algorithms, or particle filters,
use a finite set of particles to represent the target distribution and compute probabilistic
properties on the basis of the particle set. SMC algorithms are on-line estimation methods,
which means that when a new observation arrives, the particles can be updated to account
for the information brought by the new observation; in contrast, o�-line MCMC algorithms
have to be restarted. However, since particle filters were originally designed for extracting
latent state variables in a model, they were not capable of dealing with estimation
involving unknown, fixed model parameters. In the past two decades, although there
have been various adaptations of particle filters aimed at simultaneously handling the
estimation of state variables and unknown fixed parameters, their performance must
be tested further. Conversely, MCMC algorithms are typically flexible in dealing with
problems of estimating parameters and state variables, but the mixing speed of the
Markov chain, which is the key to the success of MCMC algorithms, can be very slow,
especially when the proposal is poorly selected.

In the past decade, numerous new Bayesian estimation methods have been proposed,
targeted at solving the problems of conventional MCMC algorithms in the presence of high
dimensions, complicated target distributions, and complex patterns of dependence between
stable variables and parameters. The second part of this thesis seeks to apply these
methods to estimate di�erent financial models and compare their estimation performance.

The Adaptive Metropolis (AM) algorithm, introduced by Haario et al. (1999a, 2001), aims
to develop an e�ective Gaussian proposal by updating its variance on the basis of past
samples generated in the MCMC chain. According to Haario et al. (1999a, 2001, 2006),
the MCMC chain generated by this on-line tuning proposal is no longer Markovian or
reversible. However, according to Haario et al. (2001), under some regularity conditions
about how the adaptation is conducted, the chain is ergodic and retains the desired
stationary distribution.

Moreover, several automatic and self-tuned samplers have been proposed for dealing
with more general proposals, such as Adaptive Rejection Sampling (ARS) (Gilks, 1992;
Gilks and Wild, 1992), Adaptive Rejection Metropolis Sampling (ARMS) (Gilks et al.,
1995, 1997; Meyer et al., 2008), Independent Doubly Adaptive Rejection Metropolis
Sampling (Martino et al., 2012, 2014), and Adaptive Sticky Metropolis (Martino et al.,
2013). Generally, these algorithms construct the proposals with a number of support
points, and adaptively modify the proposals by adding new points. However, the ARS
cannot dealing with log-concave target distributions, since it is based on the rejection
sampling technique and the proposal must always be above the target. In the ARMS,
support points cannot be added inside regions where the proposal is below the target.
Moreover, the performance of the above algorithms is dependent on the choice of initial
support points, and it is di�cult to ensure their ergodicity, especially in applications
within the Gibbs sampler (Gilks et al., 1997; Robert and Casella, 2004). Recently, the
Fast Universal Self-tuned Sampler (FUSS) algorithm (Martino et al., 2015) is proposed
to overcome the above drawbacks. The FUSS algorithms construct e�ective self-tuned
proposals, starting with a large number of support points, and then remove many of
them according to some pruning scheme combining relevant information. The numerical
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experiments in Martino et al. (2015) show that FUSS algorithms are able to generate
virtually independent samples in the presence of high dimensions and spiky distributions.

Alternatively, it is possible to make use of an SMC algorithm as the proposal distribution
within an MCMC algorithm. More specifically, an SMC algorithm can be used to
approximate the likelihood to be used within a standard Metropolis-Hastings (MH)
algorithm, and the resultant algorithm can be regarded as an approximation to a marginal
MH that targets the marginal posterior p(�|Y ) of the joint posterior p(�, X|Y ), where
Y represents the data, � represents the set of parameters in a model, and X represents
the latent state variables. This approach, called Particle Marginal Metropolis-Hastings
(PMMH) in Andrieu et al. (2010), is used in some literature (see, for example, An and
Schorfheide, 2007; Fernández-Villaverde and Rubio-Ramírez, 2005), and Andrieu et al.
(2010) prove the convergence of the algorithm, such that to ensure the convergence of the
generated chain, the resampling algorithm should be unbiased, so that the estimation
error produced by the approximation does not change the equilibrium distribution.

Andrieu et al. (2010) also propose a new scheme called Particle Gibbs (PG) sampler, which
can be regarded as an approximation of the Gibbs sampler that targets the joint posterior
p(�, X|Y ). In Andrieu et al. (2010), the PMMH and PG sampler are collectively called
Particle Markov Chain Monte Carlo (PMCMC) methods. The PG sampler uses a so-called
conditional SMC update to ensure that the PG kernel leaves the exact target distribution
invariant. In a conditional SMC update, a pre-specified reference trajectory of latent state
variables with an ancestral lineage survives after all the resampling steps. After a complete
run of the SMC update, a new reference trajectory is selected from the particle set with
probabilities given by the importance weights of the particles. However, as underlined in
Lindsten and Schön (2013) and Chopin and Singh (2013), a potential problem with the
PG sampler is that in the presence of high dimensions, the path degeneracy is inevitable
and the mixing of the chain may be poor. This problem is addressed by the Particle
Gibbs with Ancestor Sampling (PGAS), proposed in Lindsten et al. (2014), by adding
a backward sampling step to the PG sampler. Numerical experiments show that this
backward sampling step can significantly improve the mixing speed of the chain, even
with a small number of particles.

While some finance research applies the conventional MCMC or SMC algorithms to
estimate stochastic volatility models with jumps, few attempts have been made to apply
the above newly proposed algorithms. Indeed, the problem of estimating stochastic
volatility models with jumps is particularly di�cult because of the strong dependence
between parameters and state variables and the model complexity brought by jump
components. Therefore, it would be interesting to examine how the advanced estimation
methods perform in estimating complicated financial models compared to the conventional
MCMC algorithms.

1.2 Questions and Research Methods

This research is divided into two parts. The first part of the research focuses on esti-
mating and comparing di�erent model specifications, namely, the inclusion of return
jumps of finite or infinite activity to the stochastic volatility model, a�ne/non-a�ne
variance dynamics, and the inclusion of variance jumps correlated with return jumps.
Eighteen model specifications are estimated from an extensive data set using conventional
MCMC algorithms and are then compared in terms of goodness of fit and option pricing
performance. The second part focuses on the application and comparison of advanced
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Bayesian estimation methods, with the aim to identifying a method that is capable of
e�ciently estimating the unknown fixed model parameters and latent state variables
in the presence of high dimensions, strong dependence between parameters and state
variables, and complicated target distributions.

In the first part of my research, I study the models with infinite-activity return jumps,
augmented with correlated infinite-activity variance jumps and specifications of a�ne and
non-a�ne variance dynamics. I use both VG and NIG jumps, which are popular examples
of infinite-activity pure jump processes; the VG of finite variation with a relatively low
arrival rate of small jumps; and the NIG of infinite variation with a sample path that may
have infinite total variation in any bounded time interval, almost surely. These models
are compared against the benchmark Heston model without any jump component and
the Bates and double-Poisson-jump models with finite-activity compound Poisson jumps.

This research aims to answer the following questions:

– Do inclusions of infinite-activity jump components in returns and variance and the
use of a non-a�ne variance process improve the goodness of fit and option pricing
performance, as compared to the standard SQR models with or without finite-
activity compound Poisson jumps (the Heston, Bates, and double-Poisson-jump
models)?

– In particular, which Lévy jump, VG or NIG, in returns and variance, better describes
the return and variance dynamics and prices options?

– Moreover, how do Lévy jumps of finite activity and infinite activity di�er in capturing
jumps in returns and variance?

These are important questions because there is a trade-o� between model accuracy and
a real computational challenge due to the need for Monte Carlo methods in the option
pricing that use double-infinite-activity-jump models or non-a�ne models.

In the first part of the research, I estimate the models using the joint information of
the S&P 500 index returns and option prices via the 30-day VIX index from January
1996 to December 2009, a 14-year period with several financial crises. The models are
estimated with conventional MCMC algorithms, including the Gibbs sampler, the MH
algorithm, and the Damien-Wakefield-Walker (DWW) method to increase e�ciency.
After the estimation, I compare the model performance in terms of goodness of fit and
option pricing errors in two sample periods: January 1996–December 2009 and January
2010–December 2010. The option prices are computed with the Monte Carlo method,
and instead of using the realised return time series or a simulation method to predict
the daily spot variance when pricing multiple daily cross-sections of options, I use the
VIX-based technique to extract the time series of daily spot variance, as in Kanniainen
et al. (2014). The results in Kanniainen et al. (2014) clearly show that this technique can
improve the option pricing performance across di�erent models, including the NGARCH
and the Heston-Nandi models, over the traditional approach of estimating spot variance
from realised returns.

In the second part of the research, I examine the performance of advanced MCMC
algorithms. The algorithms comprise the AM, the FUSS, the PMMH, and the PGAS.

I aim to answer the following questions:
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– Do inclusions of jump components of finite or infinite activity a�ect the estimation
performance?

– Can the problems of conventional MCMC algorithms be solved, or at least alleviated,
by using advanced MCMC algorithms?

– Which algorithm performs best with a fixed length of chain?

– What are the advantages and disadvantages of each algorithm in estimating the
financial models?

I first conduct simulation studies to compare the performance of algorithms. In the
simulation studies, I simulate one-year data of index returns and variance from the a�ne
Heston and Bates models and the a�ne model with NIG return jumps and then use
the simulated index returns as observations to estimate the model parameters under the
physical measure. Then I examine the performance of algorithms with di�erent chain
lengths and numbers of particles in the PMMH and PGAS algorithms and compare
the algorithms in terms of the parameter estimates, extraction of variance and jumps,
acceptance rate, and the likelihood of the estimation result. Next, I apply the advanced
MCMC algorithms to more complex problems with a large volume of empirical data.
Both the physical and risk-neutral dynamics of the non-a�ne model with NIG return
jumps, which performs best in the model comparison part, are estimated using the joint
information of the S&P 500 index returns and option prices via the 30-day VIX index
from January 2002 to December 2005. Besides the aspects compared in the simulation
studies, I employ the estimated model to price the index options in 2002–2010, and
compare the option pricing performance.

1.3 Outline and Contributions of the Thesis

This thesis is divided into five chapters. The contents of each chapter are summarised
as follows. Chapter 1 briefly introduces the financial models and Bayesian estimation
methods and describes the motivation, objectives, and contributions of the thesis. Chapter
2 describes the physical and risk-neutral dynamics of the models studied in this thesis,
explains the application of the conventional MCMC estimation methods, and presents
the empirical results. Chapter 3 introduces the general ideas and designs of advanced
MCMC algorithms, explains their applications to selected financial models, and presents
the estimation results using the simulated data. Chapter 4 focuses on the application of
advanced MCMC algorithms to model estimation using the empirical data. Chapter 5
concludes the thesis.

The empirical results in the first part are summarised as follows. First and most im-
portantly, the inclusion of infinite-activity return jumps is critical for non-a�ne (linear)
variance specification. In particular, the non-a�ne model with infinite-activity NIG
return jumps significantly outperforms the a�ne and non-a�ne models with and without
finite-activity return jumps in both goodness of fit and option pricing. Its performance is
also clearly better than that of the non-a�ne model with VG return jumps. Interestingly,
the performance of infinite-activity VG and NIG return jumps is mixed with the a�ne
(SQR) variance specification, suggesting that using unrealistic a�ne variance dynamics
may negatively a�ect the identification of the models’ jump components. Overall, it is the
combination of infinite-activity NIG jumps in the return process and non-a�ne variance
specification that makes the model e�cient and robust.
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Second, the role of infinite-activity variance jumps is less important than that of infinite-
activity return jumps. Obviously, in terms of goodness of fit, the relatively parsimonious
non-a�ne model with NIG return jumps is almost as good as the more complex models
with infinite-activity jumps in both the return and variance processes. In terms of option
pricing, the non-a�ne model with NIG return jumps performs best among all the models
that I test, including the complex models with return and variance jumps. Moreover,
variance jumps are insignificant for the models with NIG jumps in returns, since they
worsen the goodness of fit and cause a small improvement only in the option pricing test
with a�ne models. However, according to the goodness-of-fit results, if one still prefers
using a model with infinite-activity jumps in both returns and variance, the inclusion
of NIG variance jumps, rather than VG variance jumps, in the models with VG return
jumps is more appropriate. This is plausible because the NIG is of infinite variation and
is more capable of capturing the frequent small jumps in the variance dynamics than the
finite-variation VG.

The above findings provide two financial economic insights. First, although the Bates
and double-Poisson-jump models may capture rare, large jumps with the finite-activity
compound Poisson jumps, they miss a large number of frequent small jumps that may
cause potential substantial losses in investment and risk management. On the other
hand, the inclusion of infinite-activity jumps in the return process better captures the
uncertainty of future jumps, generates more realistic return dynamics and option prices,
and obviates the complex models with variance jumps. In particular, the infinite-variation
NIG process as return jumps produces a larger jump risk premium than the finite-variation
VG process and outperforms the VG in goodness of fit and option pricing.

Second, despite the popularity of tractable a�ne models in derivative pricing, my research
results clearly demonstrate the dominance of non-a�ne models over a�ne ones in goodness
of fit and option pricing, which is in line with the recent literature (see, for example,
Christo�ersen et al., 2010b; Kaeck and Alexander, 2012). More importantly, the non-a�ne
variance specification improves model robustness, whereas the a�ne variance specification
may lead to unstable option pricing performance between di�erent samples. It may be
dangerous to use a�ne models for making investment and risk management decisions;
therefore, decision makers must seriously consider the trade-o� between computation
time and model robustness.

In the second part of my research, I note that di�erent jump structures significantly a�ect
the estimation performance of algorithms. The results of the simulation studies show that
the algorithms fail to distinguish the randomness created by the infinite-activity jumps
and Brownian di�usions in the return process of the a�ne model with NIG return jumps.
This makes parameter estimation and variance extraction very challenging, and the extra
complexity introduced by the NIG jumps requires the FUSS and PMCMC methods to
increase the numbers of MCMC runs and particles, while the MH and AM are less capable
of dealing with the complicated model specification. Compound Poisson jumps create
rare but significant changes in the return process of the a�ne Bates model, which are
distinctive of the di�usions; therefore, all the algorithms perfectly extract the compound
Poisson jumps when estimating the a�ne Bates model. However, the inclusion of rare,
large return jumps significantly reduces the acceptance rates of the PMCMC methods,
and thus their estimation performance deteriorates. In contrast, the other algorithms are
less vulnerable to the specification of compound Poisson jumps and performs consistently
in estimating di�erent models.

Considering the complexity and computational costs of di�erent algorithms, I conclude
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that for models with a simple specification, the MH is very competitive owing to its low
computational cost. However, if the target distribution is complicated or the proposal
of the MH is inappropriate, the acceptance rate may be very low, and most generated
draws are wasted. The AM makes use of the previous samples and dynamically tunes the
proposal, and this online-tuned adaptive proposal can significantly raise the acceptance
rate and speed up the convergence of the chain. Moreover, in the presence of a spiky and
complicated target distribution and high-dimensional state variables, numerous MCMC
iterations may be required for the chain generated by the MH and AM to converge.
The FUSS algorithms can tackle this problem by constructing an e�cient proposal
and producing virtually independent samples, as noted in Martino et al. (2015). A
shortcoming of the FUSS algorithms is that with a fixed number of MCMC iterations,
they are slower than the very fast MH and AM algorithms. However, if one focuses on
achieving a good estimation performance, despite the relatively high computational cost,
the FUSS algorithms are very competitive due to their fast and good mixing properties.
In addition, the PMCMC methods can deal with complicated target distributions and
strong dependence between parameters and state variables, and their computational cost
is significantly lower than that of the FUSS algorithms, making them very competitive.
However, when the other algorithms achieve a stable estimation performance across
di�erent model specifications, the performance of the PMCMC methods depends largely
on the properties of the specific problem, and their performance may deteriorate when
the dependence between state variables is weak. Moreover, as pointed out in Lindsten
et al. (2014), the relative performances of the PMMH and PGAS depend on whether the
ideal marginal MH or the Gibbs sampler, that is, the samplers that PMMH and PGAS
approximate, respectively, has the better mixing property for the specific problem. In
estimating the Heston-0 and SV-NIG-0 models, the PGAS outperforms the PMMH and
the other algorithms with a small number of MCMC iterations and particles, suggesting
the fast and good mixing of the PGAS kernel in estimating these two models.

In the empirical studies, the adaptive proposal used in the AM increases the acceptance
rate of the MH and reduces the autocorrelation between samples of the spot variance.
The FUSS-RC and PGAS further improves the extraction of the spot variance in that
the autocorrelation functions (ACFs) of the spot variance extracted by the FUSS-RC and
PGAS drop sharply. Furthermore, the FUSS-RC even reduces the ACF with negative
autocorrelation, suggesting that the chain is e�cient in generating good representatives of
the target distribution. In contrast, the acceptance rates of the PMMH algorithms are very
low owing to the model specification of independent NIG return jumps, and jump-related
parameters are poorly identified by the PGAS. This suggests that compared to the MH,
AM, and FUSS-RC, the PMCMC methods are less capable of extracting independent
jumps; moreover, the inclusion of independent jumps may negatively a�ect the estimation
performance of the PMCMC methods. Furthermore, the choice of estimation methods
a�ects the option pricing performance. In particular, the model-implied VIX based on
models estimated with the PMMH-PF1 almost completely coincides with the market
VIX; therefore, since the option pricing performance is highly correlated with the fit to
the VIX, the PMMH-PF1 outperforms the other algorithms in the option pricing test. In
contract, the PGAS performs the worst in all three option samples owing to the poorly
identified jump-related parameters under the risk-neutral measure. The MH is the second
best algorithm in predicting option prices due to the use of realised variance as the initial
variance, which leads to an estimation result consistent with the market conditions in
2006–2010.

According to the results of the empirical studies, the PGAS can cope with strong
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dependence between parameters and state variables, and if one emphasises the fit to
observations that can be represented as a function of model parameters and state variables,
the PMMH-PF1 is very competitive. However, the performance of the PMMH-PF1 and
the PGAS may be weakened by the inclusion of independent jumps. In contrast, the other
algorithms are less vulnerable to the inclusion of independent jumps, and they achieve
a stable performance in parameter estimation, extraction of state variables, fit to the
VIX, and option pricing. In particular, an appropriate choice of initial values for state
variables can significantly improve the performance of the MH; moreover, the FUSS-RC
is very competitive because it can improve the estimation performance of the MH and
AM and generate good representatives of the target distribution of state variables in the
presence of high dimensions and a strong dependence structure.

Finally, I declare that I am the sole author of this thesis. Although this PhD thesis is a
monograph and is not presented as a collection of papers, it relates to three papers that I
have co-authored. First, Chapter 2 is closely related to Yang and Kanniainen (2015).1
For this paper, I coded the MCMC algorithms, estimated the models, and mainly wrote
the paper. Prof. Kanniainen mainly coded the option pricing framework and participated
in the writing.

The estimation results in Chapters 3 and 4 have not been reported in any previous
paper, but part of the results are obtained by the FUSS algorithms proposed by Martino
et al. (2015).2 This paper presents the key idea and design of the FUSS algorithms and
uses numerical experiments to illustrate their estimation performance compared to other
MCMC methods. For this paper, I coded the external MCMC algorithm to estimate a
stochastic volatility model with VG return jumps, estimated the model using simulated
data, and wrote the financial example. I did not code the FUSS algorithms that were
applied inside the external MCMC.

Kanniainen et al. (2014)3 present an e�cient way to employ information of the VIX index
in option valuation, which I also employ in this thesis. For this paper, I participated in
implementing the MLE method and I had a minor role in the writing.

1Yang, H. and J. Kanniainen (2015), “Jump and Volatility Dynamics for the S&P 500: Evidence for
Infinite-Activity Jumps with Non-A�ne Volatility Dynamics from Stock and Option Markets”, submitted
to Review of Finance (under revision).

2Martino, L., H. Yang, D. Luengo, J. Kanniainen, J. Corander (2015),“A Fast Universal Self-tuned
Sampler within Gibbs Sampling”, forthcoming in Digital Signal Processing.

3 Kanniainen, J., B. Lin, and H. Yang (2014), “Estimating and Using GARCH Models with VIX
Data for Option Valuation”, Journal of Banking and Finance, 43, 200-211.





2 Jumps and Volatility Dynamics for
the S&P 500 Index:
Conventional MCMC

In this chapter, I compare 18 stochastic volatility models with finite/infinite-activity Lévy
jumps in returns, or in both returns and variance, and with a�ne/non-a�ne variance
dynamics in terms of goodness of fit and option pricing errors. The models are estimated
with conventional MCMC algorithms using the joint information of the S&P 500 index
returns and 30-day VIX index reformulated from option data during 1996–2009.
This chapter seeks to answer the following questions:

• Do the inclusion of infinite-activity jump components in returns and variance and
the use of a non-a�ne variance process improve the goodness of fit and the option
pricing performance, compared to the standard SQR models with or without finite-
activity compound Poisson jumps (the Heston, Bates, and double-Poisson-jump
models)?

• In particular, which Lévy jump, VG or NIG, in returns and variance, better describes
the return and variance dynamics and prices options?

• Moreover, how do Lévy jumps of finite/infinite activity di�er in capturing jumps in
returns and variance?

The outline of this chapter is as follows. Section 2 introduces the a�ne and non-a�ne
models with finite/infinite-activity jumps and describes the change of measure. In Section
3, I derive the formulae of the model-implied VIX index and assume a relation between the
market VIX and model-implied VIX. Section 4 describes the estimation method. Section
5 describes the data set and option pricing methods. Section 6 presents the empirical
results, including parameter estimation, extracted jumps, goodness of fit, and option
pricing errors. Section 7 concludes the chapter.

2.1 Description of Models and Notations

In this part, I briefly describe the models to be compared in this chapter. First, the types
of Lévy jumps considered here comprise the compound Poisson jump, which is of finite
activity, and the VG and NIG jumps, which are of infinite activity. Second, stochastic
volatility is generated by di�usion and Lévy jumps that are correlated with jumps in
the return process. Moreover, apart from the conventional SQR variance process, the
non-a�ne variance process with the linear di�usion term is used.

13
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Lévy processes are used because of their flexible distributions, whereas Brownian motion,
as a special type of Lévy process with continuous paths, restricts itself to following the
symmetric normal distribution. The Lévy process may generate any path as long as the
distribution of the increments of the path is stationary and independent of its past track,
and the path does not have to be continuous. When used in a model to fit a real-life stock
price, the Lévy process may help resolve some known empirical biases of the BS model,
such as the realised skewness and excess kurtosis in the distribution of stock returns, and
may capture the jump risks that are missed by the BS and Heston models.

As in Carr and Wu (2004) and Tankov (2003), the Lévy process can be classified in terms
of jump activity according to the behaviour of the Lévy measure fi: if fi satisfies

⁄ Œ

≠Œ
fi(dx) < Œ,

the Lévy process is of finite activity. This implies that
s

|x|<1

fi(dx) < Œ and thats
|x|Ø1

fi(dx) < Œ; therefore, the Lévy process can have only a finite number of both small
and large jumps per unit of time. However, if fi satisfies

⁄ Œ

≠Œ
fi(dx) = Œ,

the Lévy process is of infinite activity. This means that this Lévy process can generate
an infinite number of small jumps and a finite number of large jumps per unit of time,
because

s
|x|<1

fi(dx) = Œ and
s

|x|Ø1

fi(dx) < Œ, where the latter inequality is entailed by
the definition of the Lévy process. As pointed out in Li et al. (2008), the infinite-activity
Lévy process can generate small jumps for the path of stock returns that are too big for
Brownian motion, and too small and frequent for the finite-activity compound Poisson
process, to capture.

Let {Y

t

} be the continuously compounded return of the S&P 500 index, and let {v

t

} be
the instantaneous squared volatility of the return. Then under the physical measure P ,
I assume that the return dynamics of the S&P 500 index is described by the following
stochastic di�erential equations:
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are mutually independent Brownian motions. J
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Lévy jumps in the return and variance processes, respectively, of finite or infinite activity.
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µsds], as in Madan et al. (1998). µ
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is the physical time-varying
drift of the index return, Ÿ

P is the physical rate of the mean reversion of v
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, ◊

P represents
the physical long-term mean of v

t

, – controls the di�usion term in the variance process,
and fl controls the correlation between Y

t

and v

t

and captures the leverage e�ect. The
parameter — determines whether the variance dynamics is an a�ne SQR process or a
non-a�ne linear process. The linear specification is often called the continuous-time
GARCH model (see, for example, Ait-Sahalia and Kimmel, 2007).
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2.1.1 Benchmark Models: Heston, Bates, and Double-Poisson-Jump
Models

The models considered as benchmarks are the Heston, Bates, and double-Poisson-jump
models. The last model has contemporaneous jumps in both returns and variance
occurring at random times, depending on the increments of the Poisson process N

t

with
intensity ⁄:

J

Y,t

=
Ntÿ

i=1

›

Y

i

, J

v,t

=
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›

v

i

, N

t

≥ Poisson(⁄t). (2.3)

The size of jumps in the variance process follows an exponential distribution: ›

v

t

≥ exp(µ
v

),
where µ

v

is the scale parameter. The reason for choosing the exponential distribution for
variance jumps is to ensure the positiveness of these jumps given the economic observation
that realised variance typically demonstrates large, positive jumps. The size of jumps in
the return process follows a normal distribution with the mean correlated with the jumps
in variance: ›
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), where fl

J

models the correlation between return
and variance jumps. The double-Poisson-jump model nests the Bates model by removing
the variance jumps, J

v,t

, and the Heston model by removing both J

Y,t

and J

v,t

.

In this thesis, the double-Poisson-Jump models are labelled SV-P-P-0 when — = 0.5 and
SV-P-P-1 when — = 1 (the notation comes from Stochastic Volatility, compound Poisson
jumps in returns, and compound Poisson jumps in variance). Similarly, the Heston and
Bates models are labelled SV and SV-P, respectively, but for simplicity, their existing
names are used and the models are labelled Heston-0, Heston-1, Bates-0, and Bates-1,
depending on the values of —.

2.1.2 Infinite-Activity Lévy Jumps
First, the VG and NIG jumps are added only in the return process, and the resultant
models are labelled SV-VG-i or SV-NIG-i, according to the choice of return jumps and
values of —. The VG process can be defined by subordinating a Brownian motion with
drift “ and variance ‡ by an independent Gamma process G

Y

with a unit mean rate and
a variance rate ‹:
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Similarly, an NIG process can be obtained by subordinating a Brownian motion with
drift “ and variance ‡ by an independent inverse Gaussian process G

Y

. G

Y

is the first
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time that a Brownian motion with drift ‹ reaches the positive level t. The Lévy measure
of the NIG is

fi

NIG

(dx) = ‡–

fi

e

—x

K

1

(–|x|)
|x| dx, (2.8)

where – = ‹

2

/‡
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2
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4, — = “/‡

2, and K

1

is the modified Bessel function of the third
kind with index 1. The NIG is also of infinite activity; moreover, it is of infinite variation.
A Lévy process is of infinite variation if the total variation of its sample path in any
bounded time interval is infinite, almost surely, for any partition of the time interval.
When the VG is of finite variation and hence can only have jump-type discontinuities
and is bounded in any bounded interval, the infinite-variation NIG is more flexible and,
therefore, a potential candidate for good performance in modelling financial time series.

Further, an infinite-activity Lévy jump component, VG or NIG, is added to the variance
process, motivated by the findings in Eraker et al. (2003), which indicate the necessity
of jumps in the variance process to account for extreme market conditions. The models
obtained with infinite-activity jumps in returns and variance are labelled SV-VG-VG-i,
SV-VG-NIG-i, SV-NIG-VG-i, and SV-NIG-NIG-i, i = 0, 1, according to the choices of
return and variance jumps and the values of —.

The structure of the jumps J

v

in variance is similar to that of J

Y

in returns, regardless of
the jump subordinator:
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Here, G

v

(‹
v

) can be an inverse Gaussian or Gamma process, independent of the other
random sources. W

v,Gv is the base Brownian motion correlated with W

Y,GY by fl

v

, as in
Eberlein and Madan (2009).

Overall, there are 18 di�erent model specifications, and they are summarised in Table 2.1.

2.2 Change of Measure

In this section, I describe the risk-neutral dynamics and the change of measure.

I follow the procedure described in Pan (2002) to define the change of the probability
measure for Brownian motions in the return and variance processes in all the models
characterised above. Briefly, assuming two risk premia, ÷

s

and ÷

v

, the change of measure
for Brownian motions is as follows:
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In defining the change of measure for the Lévy jumps in returns, I follow the practice in Yu
et al. (2011). Under the Sato theorem, which states the relation between the physical and
risk-neutral measures of the Lévy process, and the restriction that the jump J

Y

(Q) under
Q is still a VG jump, a change of measure for J

Y

exists if ‹

P = ‹

Q, while “

Q and ‡

Q may
change freely. For a compound Poisson jump, all jump-related parameters can change
freely between P and Q; however, for simplicity and econometric meaning, only µ

Q

y

is
assumed to change freely. For models with an NIG jump component in returns, the Esscher
transform is used to define the risk-neutral measure Q, under which the jump in returns
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Table 2.1: Model acronyms and specifications

Model name Heston-0 Heston-1
0.5 1

Jump in return None
Jump in variance None

Model name Bates-0 Bates-1
0.5 1

Jump in return compound Poisson
Jump in variance None

Model name SV-P-P-0 SV-P-P-1
— 0.5 1
Jump in return compound Poisson
Jump in variance compound Poisson

Model name SV-VG-0 SV-VG-1
— 0.5 1
Jump in return Variance Gamma
Jump in variance None

Model name SV-VG-VG-0 SV-VG-VG-1
— 0.5 1
Jump in return Variance Gamma
Jump in variance Variance Gamma

Model name SV-VG-NIG-0 SV-VG-NIG-1
— 0.5 1
Jump in return Variance Gamma
Jump in variance Normal inverse Gaussian
Model name SV-NIG-0 SV-NIG-1

— 0.5 1
Jump in return Normal inverse Gaussian
Jump in variance None

Model name SV-NIG-VG-0 SV-NIG-VG-1
— 0.5 1
Jump in return Normal inverse Gaussian
Jump in variance Variance Gamma

Model name SV-NIG-NIG-0 SV-NIG-NIG-1
— 0.5 1
Jump in return Normal inverse Gaussian
Jump in variance Normal inverse Gaussian
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. It can be
easily worked out that the restriction on the values of risk-neutral jump-related parameters
‡

Q, “

Q, and ‹

Q is ‡

P = ‡
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+(“

Q
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2≠(“

P
)
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(‡

Q
)

2

, and “

Q can change freely.
In fact, under a pure NIG jump model for stock price dS

t

= S

t≠dJ

t

, where J

t

is an
NIG jump process, —

Q

NIG

and “

Q can be worked out from the other jump parameters
and a constant risk-free interest rate. However, in reality, the risk-free interest rate may
vary, and as the model structure becomes complicated, it is di�cult to compute —

Q

NIG

.
Consequently, in the estimation, “

Q is identified from the VIX data.
Given the change of measure for the jumps and di�usion terms, the Radon-Nikodym
derivative for the models is

dQ

dP

|
t

= exp
;

≠
⁄

t

0

’

Y,s

dW

Y,s

≠
⁄
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≠ 1
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5⁄
t
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!
’
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Y,s

+ ’

2

v,s

"
ds

6<
e

Ut
, (2.12)

where e

Ut is defined in the Sato theorem (details can be found in Sato, 1999) and ’

Y

and ’

v

are the market prices of risks of Brownian innovations in returns and variance,
respectively, defined as

’

Y,t

= ≠÷

s

Ô
v

t

, (2.13)

’
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+ ÷
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Therefore, under the risk-neutral measure Q, the return and variance follow
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Here, „

Q

J

(≠i) is the jump compensator for J

Y

under measure Q, and its form depends on
the specific type of J

Y

:
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The form of „

P

J

in Equation (2.1) is the same as „

Q

J

, except that the risk-neutral parameters
should be changed to the corresponding physical ones.
Furthermore,

÷

s

v

t

= r

t

≠ µ

t

+ „

Q

J

(≠i) ≠ „

P

J

(≠i), (2.20)
÷

v

= Ÿ

Q ≠ Ÿ

P

, (2.21)

where r

t

is the risk-free interest rate and Ÿ

Q is the mean-reverting speed under the
risk-neutral measure Q.
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In the variance dynamics under Q,

Ÿ

Q(◊Q ≠ v

t

) = Ÿ

P (◊P ≠ v

t

) ≠ ÷

v

v

t

. (2.22)

This implies that ◊

Q

Ÿ

Q = ◊

P

Ÿ

P . In the estimation, the physical ◊

P is estimated from
the data, and ◊

Q is computed by ◊

Q = Ÿ

P

◊

P

/Ÿ

Q.

2.3 VIX

In this section, I briefly introduce the construction of the VIX index from the option data
(market VIX) and derive its pricing formula in di�erent model settings (model-implied
VIX). Finally, I quote an assumption that suggests a relation between the market and
model-implied VIX.

The VIX measures the square root of expected integrated variance over the horizon defined
by the target maturity, and it is computed by averaging the weighted prices of SPX puts
and calls with the target maturity over a wide range of strike prices. Importantly, there
are two reasons why I have chosen the VIX index, not option prices directly, to estimate
the risk-neutral model parameters. First, the VIX index, computed from a portfolio of
option prices, contains aggregated information about option prices1 and can be used to
derive the risk-neutral dynamics of a model. Second, the e�cient FFT is not applicable
to non-a�ne models because their characteristic functions are not available in closed
form. Therefore, with option prices, one should use the Monte Carlo method to estimate
the models, an extremely time-consuming process, or approximation methods (see, for
example, Lewis, 2000). However, since the formula of the VIX index under all the a�ne
and non-a�ne models discussed in this chapter can be derived in closed form, using the
VIX can make the model estimation e�cient. Several previous studies, such as Ait-Sahalia
and Kimmel (2007), Duan and Yeh (2010), Kaeck and Alexander (2012), and Kanniainen
et al. (2014), have confirmed the e�ectiveness of using the VIX, instead of option prices,
for estimating the risk-neutral model dynamics.

Specifically, according to the definition published in 2003 by the Chicago Board Options
Exchange (CBOE), the theoretical value of the squared VIX is

VIX2

t,T

◊ 10≠4 = 2
T

e

rT �
t

(F
t

(t + T ), t + T ) , (2.23)

where F

t

(t + T ) is the forward price of the stock with maturity t + T at time t, and where
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. (2.24)

Here, C

t

(K, t + T ) and P

t

(K, t + T ) are the European call and put option prices at time
t, with maturity t + T and strike price K. As in Duan and Yeh (2010), by the generic
payo� expansion result of Carr and Madan (2001), the theoretical value of the squared
VIX can be reduced to

VIX2

t,T

◊ 10≠4 = 2
T

3
≠ log S

t

F

t

(t + T ) ≠ E

Q

5
log S

t+T

S

t

64
. (2.25)

1It is worth mentioning that the optimal strategy for estimating the risk-neutral dynamics is using
option prices directly to estimate models, because the VIX index averages out the information contained
in option prices.
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According to the model assumption in my setting,
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Here, the jump compensators „

Q

J

(≠i) for compound Poisson, VG, and NIG jumps are
specified in Section 2.2. M

J

is the expected mean size of the return jumps under Q. For
the VG jump, M

J

= “

Q, for the NIG jump, M

J
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Q
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Q, and for the compound Poisson
jump, M
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The average integrated variance under the risk-neutral measure Q is
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where M

v

is the expected mean size of the variance jumps under Q. If J

v

is a VG jump,
M

v

= “

Q

v

. If J

v

is an NIG jump, M

v

= “

Q

v

/‹

Q

v

. In the models SV-P-P-i, M

v

= ⁄µ

v

.
Moreover, the target maturity T is annualised. When a 30-day VIX is computed and if
the calendar day count convention is used, obviously T = 30/365. However, I use the
trading day count convention, because the return data are recorded on a trading day basis
(see also Kanniainen et al., 2014). Thus, in my setting, T = 22/252, as there are 252
trading days per year and 22 trading days per month. In addition, since the CBOE uses
calendar days to calculate the VIX (see CBOE’s documentation), squared observations on
the VIX must be multiplied by (30/365)(252/22) when the trading day count convention
is applied.
From the VIX index, we can estimate model parameters under the risk-neutral measure
Q and use the estimated model for option pricing. Since all the models in this chapter
have closed-form formulae for the VIX, I need not resort to the time-consuming Monte
Carlo method to estimate the non-a�ne models. If the option pricing error computed
using the estimates from the VIX is small, the VIX can be regarded as a reliable source
of data from which to derive the risk-neutral dynamics.
Following Amengual (2009) and Kaeck and Alexander (2012), I assume that the theoretical
value of the VIX is related to its market value as follows:

VIXMarket

t,T

= VIXModel

t,T

◊ e

Át
, (2.30)

where VIXMarket

t,T

denotes the market observation of the T -day VIX index at time t, and
where VIXModel

t,T

is obtained by Equation (2.26). The multiplicative pricing error e

Á for
maturity T is supposed to follow a first-order autoregressive process as follows:

Á

t+1

= fl

Á

Á

t

+ ‡

Á

‘

Á,t+1

, ‘

Á,t+1

≥ N(0, 1). (2.31)

The parameter fl

Á

measures the correlation between pricing errors on neighbouring trading
days. For example, assuming fl

Á

is positive and high today, the VIX pricing error is likely
to be high tomorrow.
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2.4 Estimation Method

I use the Bayesian MCMC methods to estimate the model parameters and state variables.
In this section, I illustrate the model discretisation and derive the likelihood inference,
which is used in the estimation.

Discretisation

As in Eraker (2004) and Yu et al. (2011), I apply the first-order Euler discretisation, whose
bias has been shown to be very small, to the continuous-time models. After discretisation
at daily frequency, the discrete version of the joint dynamics of the daily index returns
and variance under the physical measure is as follows:
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where � = 1/252, ‘
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In the double-Poisson-jump model,
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In the models with VG or NIG jumps in returns and variance,
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Here, ‘

JY and ‘

Jv follow a bivariate standard normal distribution with the correlation
parameter fl

v

. G is the subordinator independent of any other stochastic sources. If J

Y

is VG, G

Y,t

≥ �(�/‹, ‹), and if J
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is NIG, G
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≥ IG(�/‹, �2). Similarly, if J

v

is VG,
G

v,t

≥ G(�/‹

v

, ‹

v

), and if J
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, �2).

Likelihood Inference

Let J represent the set of jump variables, consisting of JY = {J

Y,t

}, Jv = {J

v,t

},
›v = {›

v,t

}, ›Y = {›

Y,t

}, and N = {N

t

} in the SV-P-P-i, and JY = {J

Y,t

} and
GY = {G

Y,t

} in the SV-VG/NIG-i, and, in addition, Jv = {J

v,t

} and Gv = {G

v,t

} if
there is a VG or an NIG jump component in variance. Moreover, vix = {vixMarket

t

}
represents the market-observed value vector of the VIX, and vixModel = {vixModel

t

}
represents the model-implied value vector of the VIX. Y = {Y

t

} is the return of the S&P
500 index, and v = {v

t

} is the spot variance. � represents the whole set of physical and
risk-neutral parameters. Then, according to the Bayes’ rule, the joint posterior of latent
variables and parameters is

p(�, v, J|vix, Y) Ã p(vix, Y, v, J, �)
= p(vix|Y, v, J, �)p(Y, v|J, �)p(J|�)p(�).

The last term, p(�), is the product of priors of all the model parameters. I choose
uninformative priors as in Yu et al. (2011) or flat priors to ensure that choice of priors
does not distort the estimation results and that the posteriors are dominated by the
likelihoods rather than the priors.



22
Chapter 2. Jumps and Volatility Dynamics for the S&P 500 Index:

Conventional MCMC

The first likelihood of the market-VIX given parameters and latent variables can be
derived from the relation between the model-implied VIX and market VIX:

p(vix | Y, v, J, �) =
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t=0

1Ô
2fi‡

Á

exp

Y
_____]

_____[

≠

C
log

A
vixMarket

t+1
vixModel

t+1

B
≠ fl

Á

log
3

vixMarket

t
vixModel

t

4D
2

2‡

2

Á

Z
_____̂

_____\

.

(2.35)

The remaining likelihoods in the joint posterior can be calculated on the basis of the
model assumptions mentioned above.

Let us take the models SV-VG-NIG-i as an example. Since for every time step t, the joint
dynamics of the model residuals of returns and variance is a bivariate normal distribution
with the correlation factor fl, the likelihood p(Y, v|J, �) is
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where

‘

J

Y,t

= J

Y,t+1

≠ “G

Y,t+1

‡


G

Y,t+1

, (2.40)

‘

J

v,t

= J

v,t+1

≠ “

v

G

v,t+1

‡

v


G

v,t+1

. (2.41)

and

p(G
Y

|�) Ã
T ≠1Ÿ

t=0

1
‹

�/‹�
!

�

‹

"
G

�/‹≠1

Y,t+1

exp
;

≠G

Y,t+1

‹

<
, (2.42)

p(G
v

|�) Ã
T ≠1Ÿ

t=0

�Ô
2fi

G

≠3/2

v,t+1

exp

Y
_]

_[
≠

‹

2

v

1
G

v,t+1

≠ �

‹v

2
2

2G

v,t+1

Z
_̂

_\
, (2.43)

(2.44)
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Since for all the models discussed in this thesis, the joint posterior is not a known
distribution, it is impossible to jointly update the parameters and state variables. Instead,
the joint posterior must be broken down into lower-dimensional conditional posteriors
of individual parameters and state variables. In each MCMC run, the state variables
and parameters are sequentially updated. When the conditional posterior is a known
distribution that can be directly simulated, the Gibbs sampling is used to update the
parameters or state variables. Otherwise, the MH algorithm is employed as in Eraker
et al. (2003), Eraker (2004), and Ignatieva et al. (2015) and others, or the DWW method
proposed by Damlen et al. (1999), as in Yu et al. (2011).
The conditional posteriors of some state variables and parameters, such as Ÿ

P and ◊

P ,
can be worked out as in the appendices of Eraker et al. (2003), Li et al. (2008), and Yu
et al. (2011). One di�erence between the posteriors used in my research and theirs comes
from the di�erent data used in the estimation. In Eraker et al. (2003) and Li et al. (2008),
the models are estimated from the index data, and therefore only physical parameters
are estimated, and in Yu et al. (2011), the models are estimated under both physical
and risk-neutral measures, using the joint information of index return and option data,
whereas I use the VIX to derive the risk-neutral dynamics. The other di�erence is the
value of —: in the above three papers, only the a�ne models are studied, and hence — is
set at 0.5; in my research, — = 1 is also considered, which may cause adjustment in the
posteriors, as in Equation (2.36).
To illustrate, I report the posteriors of parameters ÷

s

, “

Q, and ‡ in the model SV-NIG-i,
as they represent parameters that are estimated only from the index data, only from the
VIX, and from the joint information of index and VIX, respectively. The conditional
posteriors fi(·) of ÷

s

, “

Q, and ‡ are as follows:
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Here, p(÷
s

) = N(a, b) is the prior of ÷

s

, with a being the mean and b the variance of the
normal distribution. In the estimation, I set a = 0 and b = 5.
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p(“Q) = N(a, b) is the prior of “

Q, and in the estimation, I set a = 0 and b = 1.
Considering reasonable value intervals of ÷

s

and “

Q, both N(0, 5) for ÷

s

and N(0, 1) for
“

Q are flat priors. Therefore, when they are used in the estimation, the posteriors of ÷

s

and “

Q are dominated by the likelihoods, instead of the priors.
Moreover,

fi(‡) = p(‡|vix, Y, v, J, � ≠ {‡}) Ã p(vix|v, �)p(J|�)p(‡), (2.51)
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where

p(vix|v, �) Ã
T ≠1Ÿ

t=0

exp

Y
_]

_[
≠

Ë
log

1
vix

Market

t+1
vix

Model

t+1

2
≠ fl

Á

log
1

vix

Market

t
vix

Model

t

2È
2

2‡

2

Á

Z
_̂

_\
, (2.52)

p(J|�) Ã
TŸ

t=1

1
‡


G

Y,t

exp
3

≠ (J
Y,t

≠ “G

Y,t

)2

2‡

2

G

Y,t

4
, (2.53)

p(‡) is the prior of ‡, and in the estimation, an uninformative prior is used: p(‡) = 1

‡

.
In addition, some state variables and parameters, such as v, ◊

P , and ‡, should be
positive, either because of economic interpretation or model assumption. Therefore, in the
estimation, it would be reasonable to generate only positive samples for these variables
and parameters to avoid numerical problems and unrealistic estimation results. This issue
is addressed as follows: if the state variable or parameter is to be updated from a normal
distribution with the Gibbs sampling or DWW method, then an auxiliary uniform random
number u is generated first, and the new sample (in the Gibbs sampling) or candidate
(in the DWW method) is computed by fi

≠1 ((1 ≠ fi(0))u + fi(0)), as in Li et al. (2008).
For other parameters or state variables that are updated with the Gibbs sampling or
DWW method, the forms of their posteriors or proposals, including Gamma distribution,
inverse Gamma distribution, and Beta distribution, already ensure the positiveness of
new samples or candidates. For parameters and variables that are updated with the MH
method, such as state variables G and v, new candidates are repeatedly drawn until they
are positive, before being forwarded to the accept-reject step.
To study the goodness of fit, I calculate the Deviance Information Criterion (DIC) for
each model. The DIC, developed by Spiegelhalter et al. (2002), employs log-likelihoods
to measure goodness of fit, and the model with a lower DIC is preferred to that with a
higher DIC.
Specifically, suppose X is a random variable and Y is the data. Then DIC is computed by

DIC = D(X) + p

D

, (2.54)

where
D(X) = ≠2 log(p(Y |X)) + 2 log(f(Y )), p

D

= D(X) ≠ D(X). (2.55)
f(Y ) is some fully specified standardising term that is a function of the data alone.2 X

is the Bayesian estimator of X, and I set it to be the posterior mean E(X|Y ), which is
approximated by 1

M≠M

0

q
M

i=M

0

+1

X

(i), where M is the length of the complete Markov
chain of X, M

0

is the length of the burn-in period, and X

(i) represents the ith sample in
the chain.
The DIC is made of two components. The first term, D(X), measures the goodness of fit,
since the better the goodness of fit, the larger the log-likelihood log(p(Y |X)). The second
term, p

D

, measures the complexity of the models; consequently, it penalises complex
models with too many parameters.
In the estimation, the DIC is calculated as

DIC = 2D(X) ≠ D(X) = ≠4E

X|Y (log(p(Y |X))) + 2 log(p(Y |X)). (2.56)

2In the estimation, I follow Berg et al. (2004) and assume f(Y ) = 1.
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Figure 2.1: Daily returns of the S&P 500 index in 1996-2009.

1996 1998 2000 2002 2004 2006 2008 2010
0

0.3

0.6

0.9

1.2

1.5

Figure 2.2: Annualised realised variance in 1996-2009.

2.5 Data Description and Option Pricing Settings

The models are estimated using the joint information of the S&P 500 index returns and
daily 30-day VIX data from January 1996 to December 2009, covering a total of 14 years
and 3,507 trading days. The daily returns of the S&P 500 index, annualised realised
variance of the index, and 30-day VIX index are plotted in Figures 2.1–2.3.

The daily VIX index is reformulated from the volatility surface provided by OptionMetrics.
This approach di�ers from the CBOE’s methodology, and as pointed out in Kaeck and
Alexander (2012), it can reduce the systemic biases in the VIX index provided by the
CBOE. In the estimation, I set 100,000 as the number of MCMC iterations for each
model, take the first 60,000 runs as the burn-in period, estimate the state variables and
parameters as the mean of posteriors, and compute the standard deviation as the standard
error.

To test the option pricing performance, I apply the estimated models to price options
in the long-term sample of 1996–2009 and short-term sample of 2010, obtained from
OptionMetrics. The data files comprise the expiration date, call or put identifier, strike
price, best bid, best o�er, implied volatility, interest rates, and future dividend estimates
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Figure 2.3: 30-day VIX index in 1996-2009.

based on put-call parity. As in Heston and Nandi (2000), Christo�ersen and Jacobs
(2004), and Christo�ersen et al. (2010b), I first use the Wednesday call and put options
in 1996–2009 (Sample A) to best avoid weekend e�ects and then enhance the sample
by including the option data on Thursday in 1996–2009 (Sample B). To test the option
pricing performance in the short-term sample, I use both the Wednesday and Thursday
option data (Sample C). Moreover, as suggested by Bakshi et al. (1997), I filter out
options with prices below 3/8 dollar. Then I remove options with maturities shorter than
one week or longer than one year to reduce the liquidity bias and focus on the short-run
option pricing performance. After filtering, there are 68509, 68322, and 19327 options
left in Samples A, B, and C, respectively (details of the option samples are shown in
Table 2.2).

When — = 0.5, the models with the SQR variance process are a�ne; consequently, the
e�cient FFT can be used to price options. However, since the other models with linear
variance di�usion are non-a�ne, and the FFT is not applicable, for fairness, I use the
Monte Carlo method with the technique of antithetic variates to price options. The
number of Monte Carlo paths is 50, 000, and the models are discretised at daily frequency.

Another issue to address is how to predict spot variance at each sample date, since
the spot variance is necessary as the starting value for the variance process in Monte
Carlo simulations. Conventionally, the variance is computed from the past return series;
however, as pointed out in Kanniainen et al. (2014), this approach reflects only the physical
dynamics, whereas for pricing options, I need information under the risk-neutral measure
Q. Furthermore, past return data provide no information about future stock movements,
whereas the VIX index is computed from implied volatilities and, thus, naturally indicates
the investor’s expectation of the future stock market. Kaeck and Alexander (2012) use
the particle filter to generate samples of v

t

at each out-of-sample date from p(v
t

|vix

t

, Y

t

)
using the fixed parameters estimated from the in-sample data; however, this approach
uses the information at time t that, in practice, is not known when option prices are
predicted at time t ≠ 1. In this thesis, I follow the same practice as in Kanniainen et al.
(2014): the spot variance at every sample date is extracted from the VIX index value on
the previous date according to Equations 2.26–2.29. Since the squared VIX index can be
regarded as a linear function of variance, this approach is extremely fast. According to
the results in Kanniainen et al. (2014), this variance extraction method can improve the
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Table 2.2: Properties of Option Samples A, B, and C. Sample A: Wednesday call and put
options in 1996–2009. Sample B: Thursday call and put options in 1996–2009. Sample C:
Wednesday and Thursday call and put options in 2010. The options with prices below 3/8 dollar
or maturities shorter than one week or longer than one year are filtered out. This table shows
the number of contracts, the average price (in parentheses), and the average bid-ask spread {in
braces} across the moneyness and maturity of the option data, reported by dividing the data
into three groups according to maturity (calendar days) and five groups according to moneyness
(S/K).

Sample A: Wed, 1996-2009

Moneyness Maturity (days to expiration)

S/K 7-90 91-180 181-365 Total

<0.90 9889 3330 3448 16667

(4.05) (11.11) (18.79) (8.51)

{0.83} {1.26} {1.61} {1.08}

0.90-0.97 16425 2993 2384 21802

(8.23) (25.67) (44.02) (14.54)

{0.98} {1.76} {2.15} {1.22}

0.97-1.03 20054 2878 2504 25436

(24.32) (50.21) (73.14) (32.05)

{1.57} {2.08} {2.31} {1.70}

1.03-1.10 2594 510 506 3610

(68.98) (91.84) (111.61) (78.18)

{2.35} {2.38} {2.51} {2.38}

>1.10 638 161 195 994

(236.47) (242.98) (216.34) (233.58)

{2.92} {2.61} {2.76} {2.84}

Total 49600 9872 9037 68509

(20.01) (34.87) (49.97) (26.11)

{1.29} {1.73} {2.03} {1.45}

Sample B: Thu, 1996-2009

Moneyness Maturity (days to expiration)

S/K 7-90 91-180 181-365 Total

<0.90 9299 3310 3320 15929

(4.27) (11.29) (19.59) (8.93)

{0.86} {1.33} {1.70} {1.13}

0.90-0.97 16403 3034 2320 21757

(8.30) (26.43) (43.95) (14.63)

{0.99} {1.80} {2.20} {1.23}

0.97-1.03 20426 3081 2346 25853

(24.03) (50.09) (72.11) (31.50)

{1.58} {2.09} {2.34} {1.71}

1.03-1.10 2705 536 517 3758

(68.16) (93.63) (110.62) (77.63)

{2.41} {2.65} {2.56} {2.47}

>1.10 656 191 178 1025

(222.45) (231.63) (205.08) (221.15)

{3.17} {2.88} {2.94} {3.08}

Total 49489 10152 8681 68322

(20.15) (36.08) (49.52) (26.25)

{1.32} {1.80} {2.08} {1.49}

Sample C: Wed & Thu, 2010

Moneyness Maturity (days to expiration)

S/K 7-90 91-180 181-365 Total

<0.90 4009 1423 1043 6475

(3.42) (10.29) (22.86) (8.06)

{0.90} {1.59} {2.46} {1.30}

0.90-0.97 4681 869 569 6119

(7.74) (28.29) (52.98) (14.86)

{1.24} {2.55} {3.44} {1.63}

0.97-1.03 4252 847 625 5724

(25.16) (54.54) (85.90) (36.14)

{2.20} {3.09} {3.82} {2.51}

1.03-1.10 589 116 105 810

(69.42) (98.82) (122.91) (80.57)

{3.47} {3.53} {4.87} {3.66}

>1.10 120 37 42 199

(221.48) (223.20) (231.20) (223.85)

{6.77} {3.90} {6.16} {6.11}

Total 13651 3292 2384 19327

(16.44) (31.94) (54.65) (23.79)

{1.58} {2.32} {3.22} {1.91}
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option pricing performance of GARCH models beyond that of traditional return-based
variance updating methods.

As in Christo�ersen et al. (2013), Kaeck and Alexander (2012), and Kanniainen et al.
(2014), I compute the root mean square errors (RMSE) from the implied volatility RMSE
from the sum of the squared di�erence between the theoretical and market option prices
scaled by the inverse Black-Scholes vegas of the options as follows:

VRMSE(�) = 100 ◊
ı̂ıÙ 1
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4
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. (2.57)

Here, K

i

is the strike of the ith option at time t, T

i

is the maturity, c

i,t

is the model
price of the option, and ĉ

t,i

is the market price. V̂
t,i

is the inverse Black-Scholes vega
computed on the true market prices of options. Moreover, N

M

=
q

M

t=1

N

t

, where N

t

is the number of option prices in the sample at time t, and M is the total number of
days in the sample. The use of the implied volatility RMSE is motivated by the findings
of Broadie et al. (2007) in that the arithmetic RMSE places more weight on expensive
in-the-money and long-maturity options and, conversely, the implied volatility RMSE can
add reasonable weights to options in di�erent moneyness and maturity groups.

2.6 Estimation Results

2.6.1 Parameter Estimates
Tables 2.3–2.5 report the parameter estimation results obtained using the joint information
of the S&P 500 index returns and the 30-day VIX from January 1996 to December 2009.

The values of Ÿ

P vary significantly across di�erent models. In the model group SV-P-P-i,
the largest Ÿ

P , estimated at 6.1991 (0.5844 as the standard deviation), appears in the
model SV-P-P-1. Compared to the results in previous papers estimating the SV-P-P-0
model, my estimation of Ÿ

P is somewhat higher than that in most papers where it ranges
from 2 to 5. For instance, in Yu et al. (2011), Ÿ

P is 3.3627 (0.6452), estimated with
the MCMC from the S&P 500 index and daily prices of a short-term ATM SPX option
from January 1993 to December 1993. In Duan and Yeh (2010), Ÿ

P is 1.9449 (0.6987),
estimated with the MLE from the S&P 500 index and the CBOE’s 30-day VIX index from
January 1990 to August 2007. Moreover, in Kaeck and Alexander (2012), Ÿ

P is 3.395
(0.328) with the MCMC, estimated from the data of the S&P 500 index and 30-day and
360-day VIX indices from January 1990 to December 2004, whereas my sample period is
from January 1996 to December 2009. One possible explanation relates to the sample data
and estimation method that I use. For instance, Yu et al. (2011) use the index returns
of 1993, when the market was relatively quiet, whereas I adopt longer sample period in
which there were several big financial crises; this di�erence may lead to the higher Ÿ

P for
a more volatile variance path. Another explanation could be the di�erent estimates of
the jump intensity ⁄ in di�erent papers. In Duan and Yeh (2010), ⁄ is 43.9476 (6.4716),
suggesting a quite frequent occurrence of large jumps in a year. Moreover, in Kaeck and
Alexander (2012), ⁄ is 5.894 (1.273), almost three times my estimate, and frequent large
jumps may obviate a strong mean-reversion to generate large movements.

On the other hand, the inclusion of VG or NIG jumps in returns and variance in the
stochastic volatility model can lead to quite di�erent estimates of Ÿ

P . In my estimation,
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Table 2.3: Parameter estimates and DICs of model parameters of the Heston, Bates, and
SV-P-P with — = 0.5, 1. The parameters are estimated using the daily spot returns of the
S&P 500 index and the reformulated 30-day VIX from January 1996 to December 2009. The
parameter values are the mean of the posteriors as annual decimals. The standard errors are the
standard deviations of the posteriors, reported in parentheses.

Models Heston-0 Heston-1 Bates-0 Bates-1 SV-P-P-0 SV-P-P-1

— 0.5 1 0.5 1 0.5 1

◊

P 0.0403 0.0347 0.0326 0.0212 0.0375 0.0289
(0.0057) (0.0048) (0.0029) (0.0023) (0.0054) (0.0064)

Ÿ

P 2.9688 3.4357 4.7392 4.0800 5.8687 6.1991
(0.4056) (0.1671) (0.2450) (0.1891) (0.4267) (0.5844)

Ÿ

Q 1.8501 2.0683 4.1184 3.7637 4.9907 5.7795
(0.9416) (1.1267) (1.7880) (1.6250) (1.4718) (1.8249)

– 0.3181 1.8546 0.6047 1.8230 0.4152 1.3972
(0.0060) (0.0369) (0.0888) (0.1226) (0.7627) (0.7241)

fl -0.7435 -0.7993 -0.8493 -0.8113 -0.8078 -0.8471
(0.0056) (0.0103) (0.0702) (0.0097) (0.0603) (0.0133)

÷

s

-2.1615 -2.0133 -1.6083 -0.5095 -1.2440 -1.3763
(0.5494) (0.6097) (0.6784) (0.5444) (1.2248) (0.9610)

µ

y

-0.0057 0.0002 -0.0002 -0.0022
(0.0018) (0.0003) (0.0005) (0.0010)

µ

Q

y

0.0212 -0.0023 -0.0172 -0.0152
(0.0250) (0.0163) (0.0098) (0.0084)

⁄ 31.5728 16.6611 2.0916 2.6678
(3.2097) (2.2038) (1.3919) (1.4048)

‡

y

0.0074 0.0213 0.0469 0.0348
(0.0009) (0.0012) (0.0084) (0.0052)

fl

J

-0.1975 -0.3185
(0.0529) (0.0876)

µ

v

0.0556 0.0609
(0.0156) (0.0104)

DIC -39149 -39258 -39383 -43617 -41992 -43874

Ÿ

P in SV-VG-VG-i is the strongest (6.2600 in the SV-VG-VG-0), while in the SV-VG-NIG-
i, SV-NIG-VG-i, SV-NIG-i, and SV-NIG-NIG-i, Ÿ

P is much less significant (the lowest
Ÿ

P is 1.0120 in the SV-NIG-0). This is an interesting observation because, intuitively, the
inclusion of jumps in variance reduces the need for a strong Ÿ

P to create large changes.
This result may suggest that the VG may not be a proper choice for the variance jump,
as supported by the insignificant change in the DIC caused by the inclusion of VG
variance jumps, compared to that of the SV-VG-i without variance jumps. Furthermore,
the figures of extracted variance jumps in the SV-VG-VG-i confirm that the VG does
not very actively generate frequent small jumps in variance, and that the magnitude
of large variance jumps generated by the VG is lower than that by the NIG, especially
during periods of market turbulence. Moreover, I examine how long-term physical and
risk-neutral variance levels are identified in di�erent model groups. In fact, according to
the VIX index and realised variance in 1996–2009, the long-term physical and risk-neutral
annual volatilities are about 16% and 20%, respectively. Overall, the SV-NIG-i, i = 0, 1,
and the SV-VG-NIG-i seem more consistent with the data to project realised and expected
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Table 2.4: Parameter estimates and DICs of model parameters of the SV-VG, SV-VG-VG, and
SV-VG-NIG with — = 0.5, 1. The parameters are estimated using the daily spot returns of the
S&P 500 index and the reformulated 30-day VIX from January 1996 to December 2009. The
parameter values are the mean of the posteriors as annual decimals. The standard errors are the
standard deviations of the posteriors, reported in parentheses.

Model SV-VG-0 SV-VG-1 SV-VG-VG-0 SV-VG-VG-1 SV-VG-NIG-0 SV-VG-NIG-1

— 0.5 1 0.5 1 0.5 1

◊

P
0.0486 0.0450 0.0175 0.0232 0.0296 0.0301

(0.0014) (0.0008) (0.0025) (0.0052) (0.0037) (0.0022)

Ÿ

P
5.3469 2.6819 6.2600 4.9766 2.3209 1.7369

(0.6851) (0.2757) (0.6878) (0.4331) (0.2465) (0.1607)

Ÿ

Q
5.3896 1.1632 5.2927 3.6522 1.2462 1.7498

(0.6562) (0.2221) (0.5958) (0.2917) (0.1986) (0.2512)

– 0.6493 2.6504 0.6395 2.7354 0.4489 2.6262

(0.0280) (0.0538) (0.0292) (0.1276) (0.0309) (0.1649)

fl -0.9435 -0.9225 -0.9334 -0.9288 -0.9434 -0.9261

(0.0062) (0.0085) (0.0078) (0.0093) (0.0060) (0.0089)

÷s -2.2801 -1.1632 -2.2931 -2.3841 2.3746 1.2730

(1.3211) (1.1854) (2.1134) (1.0236) (0.6148) (0.6001)

“

Q
-0.0182 -0.0003 -0.0900 0.0036 -0.1820 -0.1839

(0.1447) (0.1939) (0.1427) (0.0135) (0.1402) (0.1419)

“ -0.0307 0.0344 0.2264 0.3263 0.1604 0.2248

(0.1394) (0.1863) (0.1303) (0.1458) (0.0548) (0.1260)

‹ < 0.0001 < 0.0001 0.0229 0.0228 0.0229 0.0230

(< 0.0001) (< 0.0001) (0.0004) (0.0004) (0.0005) (0.0005)

‡ 0.0606 0.0566 0.1303 0.1217 0.1043 0.1091

(0.0020) (0.0022) (0.0120) (0.0101) (0.0095) (0.0098)

‡

Q
0.1189 0.0910 0.1446 0.1011 0.0755 0.0715

(0.0067) (0.0050) (0.0159) (0.0233) (0.0415) (0.0400)

flv -0.1907 -0.1242 -0.0482 -0.0401

(0.0952) (0.0896) (0.1022) (0.1039)

“

Q
v -0.0007 -0.0031 0.0005 -0.0008

(0.0097) (0.0099) (0.0031) (0.0034)

“v 0.0396 0.1000 0.0063 0.0363

(0.0135) (0.0983) (0.0074) (0.0681)

‹

Q
v 0.0287 0.0287 0.0939 0.0936

(0.0005) (0.0005) (0.0179) (0.0184)

‡v 0.1953 0.2052 0.0312 0.0680

(0.0057) (0.0227) (0.0163) (0.0025)

DIC -44792 -48144 -43098 -48750 -47202 -53696

variance levels, the SV-P-P-i and the SV-VG-i imply higher variance levels, and the
SV-VG-VG-i imply slightly lower levels.

Consistent with the previous literature, the estimates of the physical mean-reverting
parameters Ÿ

P and Ÿ

Q imply a negative variance risk premium ÷

v

= Ÿ

Q ≠ Ÿ

P in most
cases. In the SV-P-P-0, the variance risk premium is as large as -0.8780, mainly because
of the large Ÿ

P . In the Heston-i and SV-VG-VG-i, the variance risk premia are even
more significant: -1.1187 and -1.3674 for i = 0, 1 in the Heston-i and -0.9673 and -1.3244
for i = 0, 1 in the SV-VG-VG-i, respectively. Exceptions of a positive ÷

v

arise in models
SV-VG-0, SV-VG-NIG-1, SV-NIG-0, and SV-NIG-VG/NIG-i, with 2.9173 being the
largest in the SV-NIG-VG-1 and 0.0129 in the SV-VG-NIG-1. However, most of them,
except for those in the SV-NIG-VG-1 and the SV-NIG-0, are insignificant compared to the
negative risk premium values in the other models. A similar result of a small positive ÷

v

also appears in the results of Kaeck and Alexander (2012), who argue that the estimation
of the variance process is plausible because the VIX-implied long-term variance level in
their sample period is successfully estimated, which is also done in my estimation. They
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Table 2.5: Parameter estimates and DICs of model parameters of the SV-NIG, SV-NIG-VG,
and SV-NIG-NIG with — = 0.5, 1. The parameters are estimated using the daily spot returns of
the S&P 500 index and the reformulated 30-day VIX from January 1996 to December 2009. The
parameter values are the mean of the posteriors as annual decimals. The standard errors are the
standard deviations of the posteriors, reported in parentheses.

Model SV-NIG-0 SV-NIG-1 SV-NIG-VG-0 SV-NIG-VG-1 SV-NIG-NIG-0 SV-NIG-NIG-1

— 0.5 1 0.5 1 0.5 1

◊

P
0.0115 0.0266 0.0167 0.0451 0.0128 0.0452

(0.0059) (0.0041) (0.0011) (0.0048) (0.0027) (0.0100)

Ÿ

P
1.0120 2.3512 3.0015 2.2694 1.1531 1.3045

(0.4810) (0.4118) (1.0950) (0.2257) (0.1570) (0.3451)

Ÿ

Q
2.6163 0.9687 3.7093 5.1867 1.6379 1.7273

(1.5738) (0.6880) (1.7368) (1.8835) (1.6176) (1.3073)

– 0.3376 2.5347 0.4891 2.5039 0.3154 2.2123

(0.0101) (0.0649) (0.0122) (0.1305) (0.0224) (0.1127)

fl -0.9495 -0.9326 -0.9479 -0.9313 -0.9489 -0.9367

(0.0011) (0.0088) (0.0026) (0.0087) (0.0018) (0.0078)

÷s 0.1511 -0.0699 -1.3819 -0.5883 -1.2290 -1.3166

(1.0707) (1.0341) (0.6887) (0.6835) (0.7557) (0.6827)

“

Q
-0.2031 -0.1947 -0.1854 -0.1768 -0.3740 -0.1762

(0.1425) (0.1412) (0.1373) (0.1416) (0.2299) (0.1361)

“ 0.1954 0.0722 0.6571 0.5233 0.4280 0.2207

(0.5910) (0.1293) (0.9566) (0.9952) (1.0015) (0.9343)

‹

Q
6.7768 3.3669 11.5623 12.3703 46.4268 12.7099

(0.7422) (0.5523) (0.9656) (1.1066) (2.5926) (1.2125)

‡ 0.2154 0.1506 0.4582 0.3091 0.2584 0.1944

(0.0151) (0.0245) (0.0326) (0.0645) (0.1546) (0.0847)

flv -0.0327 -0.1554 -0.1352 -0.1110

(0.0352) (0.1186) (0.0683) (0.1353)

“

Q
v -0.0027 -0.0008 0.0427 -0.0029

(0.0976) (0.0958) (0.2941) (0.0922)

“v 0.3753 0.0559 0.0380 0.0619

(0.0521) (0.0973) (0.0432) (0.0903)

‹

Q
v 0.0287 0.0287 0.2250 0.2196

(0.0005) (0.0005) (0.1221) (0.0997)

‡v 0.0300 0.1002 0.0566 0.1223

(0.0009) (0.0200) (0.0036) (0.0129)

DIC -50861 -51700 -49835 -50314 -45757 -49526

also postulate that the insignificant ÷

v

may result from a relatively flat variance term
structure, which increases the di�culty of correctly estimating the variance risk premium
÷

v

, as pointed out in Broadie et al. (2007). The estimation of the variance risk premium
in returns, that is, ÷

s

, in all models except for the SV-VG-NIG-i and the SV-NIG-0,
supports the economic interpretation of a negative ÷

s

. However, in most models, the
standard errors of ÷

s

are large, suggesting that ÷

s

is quite di�cult to estimate.

The leverage e�ect is captured by all the models, because the correlation factor fl is
estimated to be negative. However, compared to fl in the Bates-i and SV-P-P-i, in other
models with VG or NIG return jumps, fl is much closer to -1, ranging from ≠0.9225 in
the SV-VG-1 to ≠0.9495 in the SV-NIG-0 and suggesting a stronger negative interaction
between changes in spot returns and variance. This can be explained by the di�erent
jump structures: in models without jumps in variance, the correlation between changes
in spot variance and returns can only be captured by the correlation between di�usion
terms; in models with VG/NIG jumps in variance, the correlation between J

y

and J

v

is
relatively weak, whereas in the SV-P-P-i, i = 0, 1, the variance jumps directly a�ect the
jump in returns by J

Y

≥ N(µ
y

+ fl

J

J

v

, ‡

2

y

).
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In models with VG/NIG variance jumps, fl

v

remains negative, from -0.2 to -0.03, suggesting
a negative correlation of jumps in returns and variance, but the correlation between the
jumps is not as strong as that between di�usions. In models with di�erent jump types in
returns and variance, fl

v

is negligible, which is plausible because di�erent types of Lévy
jumps with distinctive features and behaviour are used in returns and variance.
Let us discuss now how these models seek to account for the long-memory e�ect. Here,
two quantities specific to the models are considered, namely, conditional variance E

P

t

[v
t+d

]
and conditional variance of variance var

P

t

[v
t+d

], to illustrate how under the physical
measure P , the current variance a�ects the future variance after d years in di�erent
models. E

t

[v
t+d

] and var

t

[v
t+d

] are calculated as follows:

E

P

t

[v
t+d

] = e

≠Ÿ

P
d

v

t

+ Ÿ

P

◊

P + M

v

Ÿ

P

1
1 ≠ e

≠Ÿ

P
d

2
, (2.58)

var

P

t

[v
t+d

] = –

2

Ÿ

P

1
e

≠Ÿ

P
d ≠ e

≠2Ÿ

P
d

2
v

t

+ var

P (J
v,t

)
Ÿ

P

1
1 ≠ e

≠2Ÿ

P
d

2
(2.59)

+–

2(ŸP

◊

P + M

v

)
2(ŸP )2

(1 ≠ e

≠Ÿ

P
d)2

, (2.60)

where var

P (J
v,t

) is the variance of the variance jumps. The above equations show that
the conditional expectation of future variance is a�ected by the current level with the
coe�cient e

≠Ÿ

P
d; thus, a higher Ÿ

P leads to a smaller correlation between v

t

and v

t+d

.
Furthermore, with other conditions being the same, a low Ÿ

P increases the conditional
variance of variance var

t

[v
t+d

].
Although the choice of J

v

and — does not directly a�ect the long-memory e�ect, I notice
that Ÿ

P is quite sensitive to J

v

and – varies with —. Generally, in the SV-VG-VG-i and
the SV-P-P-i, Ÿ

P is the highest, followed by that in the Bates-i, SV-VG-i, and Heston-i,
and the lowest in the SV-VG-NIG-i, SV-NIG-i, and SV-NIG-VG/NIG-i, suggesting that
with the same —, models with an NIG jump in returns or variance show the strongest long-
memory e�ect, and the SV-VG-VG-i and the SV-P-P-i show the weakest. To illustrate,
the coe�cient e

≠Ÿ

P
d when d = 1/12 is 0.5935 in the SV-VG-VG-0, and after one year, it

drops to 0.0019; in the SV-NIG-0, the one-month e

≠Ÿ

P
d is 0.9191, and the one-year e

≠Ÿ

P
d

is still high, reaching 0.3635. Furthermore, across di�erent model groups, a higher — leads
to a significantly higher –, and although the value of – does not a�ect the conditional
variance, it raises the conditional variance of variance as it increases.
Next, I move to the behaviour of jumps in returns and variance. Extracted jumps in
returns and variance for each model are plotted in Figures 2.4–2.15. Since there are
apparent di�erences between di�erent model groups and almost the same patterns within
the same model group, I include only the figures of jumps in models with — = 1 in each
model group. The figures of extracted jumps in returns and variance show clear di�erences
in jump behaviour between finite-activity and infinite-activity jumps. The SV-P-P-1
has 26 jumps with an absolute size of over 0.005; in fact, they are almost all downside
jumps, which is consistent with the observations. More interestingly, when jumps with
absolute size larger than 0.01 are extracted, 17 jumps are left with several waves of large
jumps occurring in 1998, 2000, 2007, and 2008, covering the several financial crises in the
sample period of 1996–2009. Furthermore, there is a clear negative correlation between
the jumps in returns and in variance.
Notably, in the SV-P-P-i, both µ

y

and µ

Q

y

are estimated with large standard errors. As
pointed out in Eraker (2004), the di�culty of estimating µ

y

lies in that this parameter
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can be identified only from the index return; however, if only a few return jumps are
observed, it may be hard to estimate µ

y

as the expected mean of the jumps. Moreover,
as shown in Kaeck and Alexander (2012), since only the squared value (µQ

y

)2 enters the
formula of the model-implied VIX, µ

Q

y

is bi-modal, and the algorithm cannot determine
its sign.
To deal with the di�culty of estimating jump-related parameters, Kaeck and Alexan-
der (2012) assume a zero jump risk premium by setting the risk-neutral jump-related
parameters identical to the physical ones, because they notice that the jump premium
„

Q

J

(≠i) ≠ „

P

J

(≠i) is very insignificant. In the estimation, I first use di�erent jump-related
parameters under P and Q, and my estimation results of µ

y

are similar to those in Kaeck
and Alexander (2012). However, the absolute sizes of the risk-neutral parameters µ

Q

y

in
the SV-P-P-i are much larger than the physical µ

y

. The di�erence is also found in, for
example, Eraker (2004) and Yu et al. (2011), implying from the investors’ point of view a
strong uncertainty about future jump size.
To further probe into the problem of estimating µ

y

and µ

Q

y

, I follow the practice of Kaeck
and Alexander (2012) by setting µ

Q

y

= µ

y

and updating other jump-related parameters,
including ⁄, ‡

y

, fl

J

, and µ

v

, only according to the information about index returns. The
results reveal that for the SV-P-P-i, when µ

v

is close to its previous estimates, µ

y

is more
significant and ‡

y

is more than 10 times its previous estimate. The larger expected mean
and variance of return jumps can be explained by a smaller ⁄: about 0.25 jumps per
year, estimated under the uniform prior, daily ⁄ ≥ U(0, 1). When this new estimation
result is used, both the DICs and option pricing performance deteriorate. Therefore, in
this chapter, I only report the estimates obtained on the basis of the joint information of
index returns and VIX.3

The behaviour of return jumps in the models SV-NIG-i resembles closely that of models
SV-VG-i, except that there are many more small jumps, which is expected because the
NIG is of infinite variation. For models with VG return jumps, the expected jump size
“

Q is bi-modal, because only (“Q)2 enters the formula of the VIX index. Thus, to obtain
more plausible results in the estimation, I choose priors for “

Q by restricting its value to
either positive or negative. However, “ and “

Q are still estimated with relatively large
standard errors. One could argue that the VIX does not contain useful information in
this regard, and that option data should be used instead of the VIX. However, in Yu et al.
(2011), where the model SV-VG-0 is estimated from the index and option data, these
parameters continue to be estimated with quite large standard errors: 0.0256(0.0315) for
“ and 0.0030(0.0056) for “

Q in the SV-VG-0. When the other jump-related parameters
are estimated with reasonable standard errors, the standard errors of parameters µ

y

,
µ

Q

y

, “, and “

Q are relatively large, and this suggests that the parameters measuring the
expected mean of jumps are di�cult to identify. One possible solution could be to make
these parameters time varying, and they may depend on the level of variance, as assumed
in Bates (2012) and Eraker (2004).

3The estimates of ⁄, ‡y , flJ , and µv reported in Table 2.3 are computed as the mean of the posteriors,
estimated from the joint information of the VIX and index returns, and when they are estimated only
from index data, as in Kaeck and Alexander (2012), their estimates are quite di�erent. The di�erence in
the estimates of jump-related parameters may suggest that the models are not consistent with the market
data: the SV-P-P-i fail to jointly capture the physical dynamics implied by the index and the risk-neutral
dynamics implied by the VIX. Then I conduct a simple simulation study to verify this, simulating five-year
data of the index and VIX under the Bates-1 and SV-P-P-1 models and first estimating the models with
simulated index data and then with the simulated index and VIX data. I notice that in both estimation
experiments, the extracted jumps in returns and variance almost coincide with the simulated jumps, and
the estimation results of ⁄, ‡y , flJ , and µv are very close to the corresponding true values.
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Figure 2.4: Extracted jumps in returns in the SV-P-P-1

Moreover, I compute the jump risk premium „

Q

J

(≠i) ≠ „

P

J

(≠i). In the SV-P-P-i, it is
0.03568 and 0.14728 with i = 0, 1. However, the jump risk premium becomes more
indispensable for models with infinite-activity VG jumps. Indeed, apart from the SV-VG-
0, all the other models with VG return jumps demonstrate positive jump premia: 0.0322
in the SV-VG-1, 0.3151 and 0.3263 in the SV-VG-VG-0, 1, and 0.3449 and 0.3794 in the
SV-VG-NIG-0, 1. The jump risk premium is -0.0125 in the SV-VG-0, coming from the
large “

Q. The jump premium is 0.0588 in the SV-NIG-0 and 0.0775 in the SV-NIG-1,
both larger than that in SV-VG-1. However, the jump premia of models with NIG return
jumps and VG/NIG variance jumps are less significant than those of models with VG
return jumps and VG/NIG variance jumps.

The figures of extracted jumps show that, compared to models with infinite-activity
variance jumps, the models SV-VG/NIG-1 generate many more large return jumps with a
jump size larger than 0.01. The jump patterns of models SV-VG-VG-1 and SV-VG-NIG-1
are similar; the slight di�erence between them, compared to the return jumps in the
SV-VG-NIG-1, is that the return jumps in SV-VG-VG-1, upside or downside, are larger in
general. In particular, the SV-VG-VG-1 has more positive jumps with a jump size larger
than 0.01. However, the frequency of both large and small jumps drops significantly after
the VG/NIG variance jumps are added to the SV-NIG-1, suggesting that the inclusion of
variance jumps reduces the NIG’s e�ectiveness in capturing return jumps, and that it
does not improve the current model specification of the SV-NIG.

Next, let us compare the extracted variance jumps. Compared to the SV-VG-VG-1, the
SV-VG-NIG-1 exhibits more frequent small jumps in the variance path, and its large
jumps are more significant. In particular, to capture the sudden market changes during
the 2007–2008 financial crisis, both models exhibit a very large jump; however, the size of
the NIG variance jump is about two times that of the VG variance jump. In the models
with NIG return jumps, the variance jumps in the SV-NIG-VG-1 are similar to those
in the SV-VG-VG-1; however, the SV-NIG-NIG-1 captures only several large variance
movements and does not actively generate small variance jumps. The model SV-P-P-1
creates large variance jumps, and generally its jumps and the infinite-activity variance
jumps are contemporaneous, at which the market became volatile.

2.6.2 Goodness of Fit

The goodness-of-fit statistics DIC shown in Tables 2.3–2.5 clearly confirm the importance
of non-a�ne models. In all the model groups, models with — = 1 significantly outperform
models with — = 0.5. In terms of the impact of jumps in returns and variance, the
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Figure 2.5: Extracted jumps in returns in the SV-VG-1
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Figure 2.6: Extracted jumps in returns in the SV-VG-VG-1
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Figure 2.7: Extracted jumps in returns in the SV-VG-NIG-1
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Figure 2.8: Extracted jumps in returns in the SV-NIG-1
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Figure 2.9: Extracted jumps in returns in the SV-NIG-VG-1
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Figure 2.10: Extracted jumps in returns in the SV-NIG-NIG-1
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Figure 2.11: Extracted jumps in variance in the SV-P-P-1

1997/12 1999/12 2001/12 2003/12 2005/12 2007/12 2009/12
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 2.12: Extracted jumps in variance in the SV-VG-VG-1
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Figure 2.13: Extracted jumps in variance in the SV-VG-NIG-1
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Figure 2.14: Extracted jumps in variance in the SV-NIG-VG-1
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Figure 2.15: Extracted jumps in variance in the SV-NIG-NIG-1

Heston-i, Bates-i, and SV-P-P-i perform the worst, with the best model class being the
SV-VG-NIG-i, followed by model classes SV-NIG-i, SV-NIG-VG/NIG-i, SV-VG-i, and
SV-VG-VG-i. The large di�erence in the DIC between the benchmark models (Heston-i,
Bates-i, and SV-P-P-i) and the other models provides strong evidence of the inclusion
of VG/NIG jumps in the return process, which produces a better fit than not only
the di�usion model but also models with compound Poisson jumps. In particular, the
inclusion of NIG variance jumps in the SV-VG can further improve its goodness of fit. A
surprising observation is that the inclusion of VG variance jumps (SV-VG-VG-i) does not
result in an obviously lower DIC than the SV-VG-i. This implies that the VG-type jump
may not be an appropriate choice for the variance process, at least compared to the NIG
jump. In the models with NIG return jumps, the inclusion of variance jumps, in contrast,
worsens the goodness of fit due to over-fitting, suggesting that no extra infinite-activity
jumps are necessary in variance for the SV-NIG models.
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However, if we take a closer look at the di�erence in DICs caused by the linear variance
process and inclusion of jumps, there is mixed evidence about the relative importance
of these two specifications. The goodness-of-fit performance becomes much better after
the compound Poisson jumps in returns are replaced with VG/NIG jumps, even if a
comparison is made between the Bates-1/SV-P-P-1 and the SV-VG-0/SV-NIG-0. The
inclusion of proper NIG-type variance jumps can further improve the fit, but this can be
achieved only after changing the variance process from SQR to the linear type. In terms of
modelling variance dynamics, the VG jump has proved not to be the best choice, as it fails
to markedly improve the SV-VG models. In general terms, linear variance specification
can improve the fit within the same magnitude, but the inclusion of appropriate jumps
in returns and variance can significantly lower the DICs. In other words, the inclusion
of VG/NIG return jumps is the first priority, followed by the specification of the linear
variance process, and then the inclusion of the “right” jump in variance.

I have one comment about the di�erence in DICs. The di�erence between the highest and
lowest DICs across all models is 14,547. Within the same model group, the di�erences in
DICs caused by the di�erent — range from 109 in the Heston-i to 7,354 in the SV-VG-NIG-
i, and the di�erences caused by the use of infinite-activity jumps in returns or variance
are about 3,000-5,000. However, as pointed out in Spiegelhalter et al. (2002), a small
di�erence in the DICs can be significant and, by contrast, my result is surprisingly strong.
I also compare the DICs with Kaeck and Alexander (2012), because we discuss some
common models, and because our sample data sets are quite similar. In their paper, they
compare one-factor and two-factor models with — = 0.5 or 1 or flexible —, and the largest
DIC di�erence is 44,511, caused by the use of a second factor. However, the di�erence
caused by — in one-factor models, which is about 600, is quite small compared to mine,
whereas in two-factor models, the di�erence caused by a di�erent — is an average of 3,000.
In one-factor models, the di�erence in DICs caused by the use of compound Poisson
jumps in returns and variance is about 900, and in two-factor models it is about 3,000,
on average, derived from the penalty of overfitting with jump components. Considering
that Kaeck and Alexander (2012) use the VIX term structure of 30 and 360 days, the
second factor plays an important role in capturing the long-term behaviour of variance,
whereas in the short term, jumps can help create frequent fluctuations in returns and
variance, which may explain the relatively large di�erence in DICs caused by jumps in
my estimation. Another possible reason is errors in the Monte Carlo sampling. To study
this, I re-estimate the SV-P-P-0, 1 and notice that the Monte Carlo sampling seems to
cause small di�erences in the DIC, but they are insignificant compared to those between
di�erent models.

2.6.3 Fit to the VIX

Table 2.6 reports the estimates of the correlation factor fl

Á

and the scaled factor ‡

Á

.
Among all models, the di�erence in fl

Á

and ‡

Á

is negligible; therefore, no inference can
be drawn regarding the performance of fit to the VIX. Across all the models, fl

Á

is close
to 1, suggesting a significant positive autocorrelation between the VIX pricing errors on
neighbouring days. A similar observation is made in Kanniainen et al. (2014), where an
additive error model with auto-regressive disturbances is used for VIX pricing errors,
and also in Yu et al. (2011), which, like me, use the multiplicative error model with
auto-regressive disturbances to model the errors between the market prices and the
theoretical values of options on neighbouring days. The autocorrelation factor in both
papers is close to 1. With the same error model, but for variance swap rates, the result
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Table 2.6: Estimates of flÁ and ‡Á in the Heston, Bates, SV-P-P, SV-VG, SV-VG-VG, SV-
VG-NIG, SV-NIG, SV-NIG-VG, and SV-NIG-NIG with di�erent choices of —. The parameters
are estimated using daily spot returns of the S&P 500 index and the reformulated 30-day VIX
from January 1996 to December 2009. The parameter values are the mean of the posteriors as
annual decimals. The standard errors are the standard deviations of the posteriors, reported in
parentheses.

Models Heston-0 Heston-1 Bates-0 Bates-1 SV-P-P-0 SV-P-P-1

fl

Á

0.9870 0.9919 0.9800 0.9832 0.9988 0.9968
(0.0032) (0.0025) (0.0034) (0.0040) (0.0020) (0.0015)

‡

Á

0.0371 0.0344 0.0514 0.0339 0.0273 0.0305
(0.0008) (0.0010) (0.0017) (0.0009) (0.0012) (0.0031)

Models SV-VG-0 SV-VG-1 SV-VG-VG-0 SV-VG-VG-1 SV-VG-NIG-0 SV-VG-NIG-1

fl

Á

0.9861 0.9816 0.9898 0.9835 0.9840 0.9828
(0.0033) (0.0041) (0.0043) (0.0045) (0.0221) (0.0085)

‡

Á

0.0347 0.0333 0.0352 0.0343 0.1636 0.0377
(0.0008) (0.0009) (0.0009) (0.0011) (0.2039) (0.0039)

Model SV-NIG-0 SV-NIG-1 SV-NIG-VG-0 SV-NIG-VG-1 SV-NIG-NIG-0 SV-NIG-NIG-1

fl

Á

0.9955 0.9780 0.9789 0.9789 0.9923 0.9786
(0.0020) (0.0034) (0.0052) (0.0050) (0.0055) (0.0086)

‡

Á

0.0410 0.0342 0.0428 0.0350 0.0435 0.0387
(0.0008) (0.0011) (0.0007) (0.0016) (0.0068) (0.0023)

obtained in Amengual (2009) di�ers slightly from mine. In their paper, the values of
fl

Á

, regardless of the choice of models, are U-shaped: close to zero in three months and
much higher in one month or two years. In particular, their one-month fl

Á

ranges from
0.437 to 0.684. However, using the same error model, Kaeck and Alexander (2012) obtain
quite di�erent results: fl

Á

is almost zero for the 30-day VIX index, and for the 360-day
VIX index, it shows large positive values for one-factor models and again nearly zero
values for two-factor models, suggesting weak autocorrelation in the error terms. This
mixed di�erence between some papers and mine may result from our di�erent sources of
information or di�erent choices of models. In particular, I compare the model-implied VIX
and the market VIX and notice that there tends to be strong, positive autocorrelation
between daily VIX pricing errors when there are significant jumps in the path of the
market VIX, that is, when the stock market became volatile. This positive autocorrelation
may come from a variance path di�erent from the pattern of the VIX index,4 and suggests
that if the data sample for estimation covers periods when the market was turbulent,
the autocorrelation parameter fl

Á

could be more significant than that estimated from
the data sample that comes from a period during which the market was relatively quiet.
Moreover, the large positive autocorrelation between daily errors may also suggest that
models do not perform well in fitting the VIX and the index at the same time. Therefore,
a near random-walk error process with a large positive autocorrelation factor could help

4It may be because I extract the variance using the joint information of the index return and VIX
index.
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to capture the deviation between the market VIX and model-implied VIX.5 Furthermore,
the choice of estimation method counts. In my research, the variance path is extracted
with the random-walk MH algorithm and in Kaeck and Alexander (2012) with the ARMS
algorithm to estimate the variance. In my other research with the MCMC, I observe that
methods of extracting the variance dynamics might a�ect the model-implied VIX. If a
method tends to extract a more volatile volatility curve, the model-implied VIX is more
volatile; consequently, daily errors between the model-implied and market VIX might
vary widely from day to day, implying a lower autocorrelation coe�cient.

2.6.4 Option Pricing Performance
In this section, I address the question of whether infinite-activity Lévy jumps can improve
the option pricing performance. I answer this question under both a�ne (SQR) and
non-a�ne (linear) volatility di�usions. Table 2.7 reports the option RMSEs of all the
models for three samples: Sample A comprising the Wednesday options from January
1996 to December 2009, Sample B comprising the Thursday options from January 1996
to December 2009,6 and Sample C comprising the Wednesday and Thursday options from
January 2010 to December 2010. The test7 allows me to analyse the role of di�erent
model specifications in option pricing, and it further verifies the e�ectiveness of the use
of the VIX index in estimating the models’ risk-neutral dynamics.

As for the role of jumps, I first examine option performance with a�ne models and then
non-a�ne models.

Importance of Infinite-Activity Jumps under A�ne (SQR) Volatility Di�usion

In pricing options from the long-term Samples A and B, the SV-NIG-0 achieves the
best result with Sample A, and its result with Sample B is very close to the best one
obtained by the SV-NIG-VG-0. The superior performance of the a�ne model with NIG
return jumps over the Heston-0, Bates-0, and SV-P-P-0 suggests that the inclusion of
NIG return jumps can significantly improve the performance of the di�usion model in
pricing options in the long-term sample period, and that it is more appropriate than the
inclusion of compound Poisson jumps. However, there is mixed evidence about the role
of variance jumps. On the one hand, the inclusion of VG variance jumps improves the
pricing performance of the SV-NIG-0 with Sample B, and the SV-VG-NIG-0 achieves the
third best performance with Samples A and B, better than the SV-VG-0; on the other
hand, the model specifications of the SV-VG-VG-0 and SV-NIG-NIG-0 make the results
deteriorate, and this suggests that more complex models do not necessarily lead to better
results. The SV-VG-0 achieves a result comparable to that of the Heston-0 and Bates-0
with Samples A and B, but it achieves the best option pricing performance with the
short-term Sample C. Surprisingly, the SV-NIG-0, which is among the two best models
with Samples A and B, produces the worst result with Sample C, while the SV-VG-NIG-0
and SV-NIG-VG-0 maintain their performance. Another interesting observation is that

5In future research, it would be interesting to preset the autocorrelation factor flÁ to a lower value,
which may lead to the model-implied VIX further coinciding with the market VIX.

6The use of Thursday option data is aimed at enhancing the evidence of model performance, motivated
by Christo�ersen et al. (2010a), where the Wednesday options are used for estimation and the Thursday
options for out-of-sample analysis.

7As argued in Christo�ersen et al. (2010b), the option pricing test is out-of-sample even if the
data sample used for estimation is from the same period as the option sample. Therefore, by following
Christo�ersen et al. (2010b), all option Samples A, B, and C can be considered out-of-sample because no
option data are directly used for the estimation.
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Table 2.7: Option VRMSEs for a�ne (i = 0) and non-a�ne (i = 1) models. Sample A: Options
on Wednesdays from January 1996 to December 2009. Sample B: Options on Thursdays from
January 1996 to December 2009. Sample C: Options on Wednesdays and Thursdays from January
2010 to December 2010. Options with prices below 3/8 dollar or maturities shorter than one
week or longer than one year are filtered out. I compute the option prices using the Monte Carlo
method with the technique of antithetic variates. The number of Monte Carlo paths is 50, 000,
and the models are discretised at daily frequency. In each sample, the bolded and italic numbers
are the lowest and highest VRMSEs, respectively, and the models are ranked according to their
performance in Sample A.

model i A B C
SV-NIG 0 4.4506 5.0538 5.3543
SV-NIG-VG 0 4.5488 5.0458 4.8854
SV-VG-NIG 0 4.8204 5.1926 4.7558
Heston 0 4.8397 5.4596 5.5918
Bates 0 4.8491 5.3973 5.0740
SV-VG 0 4.8855 5.3167 4.5432
SV-NIG-NIG 0 5.1724 5.6865 5.4251
SV-P-P 0 5.1917 5.6332 5.0015
SV-VG-VG 0 6.4875 6.6092 5.3300

model i A B C
SV-NIG 1 3.2988 3.8806 3.4939
SV-VG-NIG 1 3.6579 4.1553 3.7446
SV-VG 1 3.7863 4.2534 3.7698
Heston 1 3.8896 4.4093 4.5014
Bates 1 3.9211 4.4643 4.7496
SV-NIG-NIG 1 4.0437 4.4377 4.0404
SV-VG-VG 1 4.1851 4.6071 4.0656
SV-NIG-VG 1 4.3431 4.4265 4.1746
SV-P-P 1 4.6311 4.9499 4.4725

the SV-P-P-0 outperforms the Heston-0 and Bates-0, and ranks fourth best with Sample
C. This observation shows that with the a�ne variance dynamics, the performance of
di�erent return jump specifications is not stable with di�erent samples. Overall, the
performance of infinite-activity jump models is mixed between the di�erent option price
data samples. The models’ mixed, inconsistent performance in pricing options in the
long-term and short-term samples suggests that the use of (unrealistic) a�ne variance
dynamics may negatively a�ect the identification of the other model components and
lead to an unstable pricing performance between di�erent samples.

Importance of Infinite-Activity Jumps under Non-A�ne (linear) Volatility Di�usion

In contrast to the mixed performance of the a�ne models with di�erent samples, with the
non-a�ne variance dynamics, the SV-NIG-1, SV-VG-NIG-1, and SV-VG-1 with infinite-
activity jumps are always the best three models for all the samples, and their option
pricing performance is much better than the best results obtained by the a�ne models.
This observation shows that infinite-activity jumps, especially NIG return jumps, should
be used with non-a�ne variance dynamics, instead of finite-activity compound Poisson
jumps. Similar to those with a�ne models, the results with non-a�ne models imply that
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Table 2.8: Option VRMSEs for models in di�erent maturity groups. Sample: Options on
Wednesdays from January 2010 to December 2010. Options with prices below 3/8 dollar or
maturities shorter than one week or longer than one year are filtered out. The option prices are
computed using the Monte Carlo method with the technique of antithetic variates. The number
of Monte Carlo paths is 50, 000, and the models are discretised at daily frequency.

Maturity # Options Heston-0 Heston-1 Bates-0 Bates-1 SV-P-P-0 SV-P-P-1

7 - 90 6926 6.1884 5.0640 5.7554 4.8434 5.4191 4.7530
91 - 180 1663 4.9269 3.2591 4.2301 3.7321 4.6767 3.9233
181 - 365 1187 3.6833 2.5166 3.2569 4.9606 4.1484 3.6546

Maturity # Options SV-VG-0 SV-VG-1 SV-VG-VG-0 SV-VG-VG-1 SV-VG-NIG-0 SV-VG-NIG-1

7 - 90 6926 5.0464 4.1744 5.6661 4.3562 5.3376 4.0894
91 - 180 1663 3.5736 2.3744 4.4217 2.7691 4.1223 2.1997
181 - 365 1187 3.0746 2.6338 4.2983 2.8392 3.4604 2.8178

Maturity # Options SV-NIG-0 SV-NIG-1 SV-NIG-VG-0 SV-NIG-VG-1 SV-NIG-NIG-0 SV-NIG-NIG-1

7 - 90 6926 5.7412 3.9579 5.5780 4.4826 5.7293 4.5392
91 - 180 1663 4.3054 2.4266 3.9773 3.4209 5.1226 2.6424
181 - 365 1187 5.7584 2.9047 4.0908 4.0810 5.8349 2.4138

the inclusion of jumps in variance does not necessarily lead to an improved option pricing
performance. The choice of jump type matters, and the impact of the variance jumps is
not as significant as that of the return jumps. Indeed, the parsimonious SV-NIG-1 clearly
outperforms all the other models, including the more complex models with variance
jumps, and the inclusion of either VG or NIG variance jumps in the SV-NIG-1 distorts
the pricing results. This implies that the NIG return jump is su�cient for capturing the
jump risks under the risk-neutral measure without variance jumps, and that extra model
specifications seem to destabilise the model estimation.

Overall, complicated models with extra parameters do not necessarily yield a better
option pricing performance. For example, in Eraker (2004), with the parameters directly
estimated from returns and option data, the in-sample option pricing performance of the
Bates-0 model is comparable to that of the augmented SV-P-P-0, and even better than
SV-P-P-0 in terms of out-of-sample performance. Importantly, I do not directly calibrate
the models to the option data, which makes it possible for the SV-NIG-1 to have better
results with Samples A and B than the SV-NIG-NIG/VG-1. However, if one prefers to
include jumps in variance, the specification of the SV-VG-NIG is best for both a�ne and
non-a�ne variance dynamics.

In all samples, the specification of the non-a�ne linear variance process can significantly
reduce the option VRMSE across di�erent model groups, up to 35% in the SV-VG-VG-i in
Sample A, and 23% and 36% in the SV-NIG-i in Samples B and C, respectively. In general,
the superior performance of the linear variance process across di�erent model groups
strongly suggests that to capture the risk-neutral dynamics, the variance process with
— = 1 is preferable to the SQR variance process. More importantly, as highlighted above,
with the non-a�ne variance dynamics, the performance of return jumps is consistent
with di�erent option samples, whereas with the a�ne dynamics, the results are mixed.
This suggests that the use of non-a�ne dynamics both improves model performance and
stabilises it.
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Table 2.9: Option VRMSEs for models in di�erent moneyness groups. Sample: Options on
Wednesdays from January 2010 to December 2010. Options with prices below 3/8 dollar or
maturities shorter than one week or longer than one year are filtered out. The option prices are
computed using the Monte Carlo method with the technique of antithetic variates. The number
of Monte Carlo paths is 50, 000, and the models are discretised at daily frequency.

moneyness # options Heston-0 Heston-1 Bates-0 Bates-1 SV-P-P-0 SV-P-P-1

< 0.9 3390 6.6727 4.8862 5.7688 4.5984 5.8705 4.8242
0.9 - 0.97 3111 5.9981 4.9288 5.6582 5.2043 5.2291 5.0293
0.97 - 1.03 2846 3.8318 3.4482 3.3859 3.9205 3.5410 3.4043
1.03 - 1.1 350 6.0552 5.0312 5.5314 5.5568 5.4663 5.3315
> 1.1 79 7.3114 6.7341 8.5083 6.6527 8.3880 6.4026

moneyness # options SV-VG-0 SV-VG-1 SV-VG-VG-0 SV-VG-VG-1 SV-VG-NIG-0 SV-VG-NIG-1

< 0.9 3390 4.9290 3.7040 5.3411 3.7786 5.4945 3.2580
0.9 - 0.97 3111 4.9593 4.4165 6.0141 4.4602 5.0199 4.3377
0.97 - 1.03 2846 3.5035 3.1907 4.1737 3.2588 3.5742 3.3264
1.03 - 1.1 350 5.9050 4.1624 5.9083 4.5042 5.3796 4.4608
> 1.1 79 6.8483 6.5403 7.7055 6.6761 6.9993 6.5765

moneyness # options SV-NIG-0 SV-NIG-1 SV-NIG-VG-0 SV-NIG-VG-1 SV-NIG-NIG-0 SV-NIG-NIG-1

< 0.9 3390 5.9946 3.4747 5.5608 4.4506 6.5896 3.7888
0.9 - 0.97 3111 5.7392 3.7611 5.4397 4.5384 5.4890 4.5728
0.97 - 1.03 2846 4.1765 3.1182 3.5329 3.5091 3.5008 3.4467
1.03 - 1.1 350 6.1278 4.0621 5.6845 4.8642 5.6951 4.6430
> 1.1 79 7.2112 6.2430 6.8266 7.0017 8.8259 6.8553

Table 2.8 reports the option VRMSEs of models in di�erent maturity groups. The option
sample consists of options on Wednesdays over the short-term sample period of January
2010 to December 2010, and the options are divided into three maturity groups: short
maturity (7-90 calendar days), intermediate maturity (91-180 calendar days), and long
maturity (181-365 calendar days).

According to Table 2.8, the di�erence in VRMSEs caused by a change in — is considerable
in all model groups. Especially for models with infinite-activity Lévy jumps, the reduction
ranges from 17.3% to 31.1% in pricing short-dated options, from 33.6% to 48.4% in pricing
intermediate-maturity options, and from 14.3% to 58.6% in pricing long-maturity options.

Moreover, using infinite-activity Lévy jumps in returns can reduce pricing errors in all
maturity groups. Specifically, I first compare the VRMSEs of the Heston-1 and SV-VG-1:
the VRMSE is reduced by 17.6% for short-maturity options, 27.1% for intermediate-
maturity options, and is increased by 4.7% for long-maturity options, which is not
surprising, because jumps mainly a�ect the prices of short-term options. The inclusion of
NIG variance jumps can further improve the model SV-VG-1 in pricing options with short
and intermediate maturities. The model SV-NIG-1 outperforms the SV-VG-1 in pricing
short-dated options; however, in pricing options with intermediate and long maturities,
the SV-VG-1 achieves the lowest VRMSEs. Moreover, although the overall VRMSEs of
the SV-NIG-NIG-1 in Samples A, B, and C are greater than those of the SV-NIG-1, the
SV-NIG-NIG-1 yields a comparable result in pricing intermediate-dated options and a
17% improvement in pricing long-dated options.

Table 2.9 reports option VRMSEs in five moneyness groups. Here, moneyness is computed
as the ratio of spot price and strike price S

0

/K, and options are divided into groups of
deep in-the-money (ITM), ITM, at-the-money (ATM), out-of-money (OTM), and deep
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OTM. Each moneyness group consists of both call and put options. For example, the
deep OTM option group consists of options with S

0

/K < 0.9 for calls and S

0

/K > 1.1
for puts, and the OTM options refer to those with 0.9 < S

0

/K < 0.97 for calls and
1.03 < S

0

/K < 1.1 for puts.

Uniformly, in di�erent model and moneyness groups, the models with — = 1 significantly
outperform those with — = 0.5. Next, I compare the VRMSEs between the Heston-1
and SV-NIG-1 in five moneyness groups to study the role of infinite-activity jumps. The
errors are reduced by 28.9%, 23.7%, 9.6%, 19.3%, and 7.3% in pricing deep OTM, OTM,
ATM, ITM, and deep ITM, respectively. This suggests that the model with NIG return
jumps is preferable to a simple di�usion model in pricing ITM, OTM, and deep OTM
options, although in the other two moneyness groups, the improvement in pricing options
may be trivial. On the other hand, the inclusion of infinite-activity jumps in variance
seems to have no significant impact on reducing pricing errors, except that there is an
improvement of 12.0% caused by the inclusion of NIG variance jumps in the SV-VG-1
in pricing deep OTM options. In all the other four moneyness groups, the SV-NIG-1
achieves the lowest VRMSEs.

Thus, overall, in terms of option pricing in di�erent moneyness and maturity groups,
using linear variance has a strong impact, especially on options with short or intermediate
maturities, regardless of moneyness. Moreover, adding VG/NIG return jumps can
significantly reduce pricing errors in all moneyness and maturity groups, except for deep
ITM options. Including NIG variance jumps in the SV-VG-1 can further improve the
pricing of options with short and intermediate maturities or deep OTM options, but on
the whole, the role of NIG variance jumps is less important than that of the VG/NIG
return jumps. The model SV-NIG-1 outperforms the other models in almost all moneyness
groups, except that the SV-VG-NIG-1 achieves a slightly better result in pricing deep
OTM options. The SV-NIG-1 performs best when pricing short-dated options; however,
in the other two maturity groups, it underperforms models with VG return jumps with
and without variance jumps.

2.6.5 Comparison of Models with — = 1 and Flexible —

It is worth mentioning that I also estimate models with the CEV-type variance process;
that is, — is a flexible parameter and is estimated from the data, although the estimation
results of the models are not reported. In particular, I follow Ait-Sahalia and Kimmel
(2007) and impose the restriction that 0.5 Æ — Æ 1. The restriction is realised by choosing
N(0.8, 0.3) as the prior of —, and in the step of updating —, the samples of — are repeatedly
drawn until they satisfy the restriction. Interestingly, the estimation results in Duan and
Yeh (2010) and Kaeck and Alexander (2012) without such a restriction suggest that the
elasticity of variance of volatility is between 0.5 and 1.8

I notice that in all model groups except the SV-P-P, the values of — are very close to 1.
Specifically, — is 0.7663 in the SV-P-P, which is close to the estimation of — = 0.778 in
Kaeck and Alexander (2012). In the SV-VG, — rises to 0.8162, followed by 0.8893 in the
SV-VG-VG, and then to around 0.999 in the SV-VG-NIG, very close to 1. Apparently,
the value of — rises as the e�ectiveness of the jumps increases in generating frequent
small jumps. It is reasonable because, as mentioned above, the infinite-activity Lévy
jump can capture jumps that are too small for the compound Poisson jump and too

8Ait-Sahalia and Kimmel (2007) use the VIX as a volatility proxy, whereas Duan and Yeh (2010)
and Kaeck and Alexander (2012) estimate models from index and VIX data.
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big for Brownian motion to capture, so the presence of VG or NIG variance jumps is
su�cient to capture small jumps, and there is no need to have a small — to “enlarge” the
di�usion term. However, the inclusion of compound Poisson jumps in variance, as in the
model SV-P-P, does not produce a — close to 1, since the inclusion of compound Poisson
jumps only accounts for large jumps rather than frequent small jumps. Surprisingly, —

is estimated at 0.9222 in the SV-NIG, although this model has no variance jump. One
possible explanation is that with NIG return jumps, the return process shows su�cient
fluctuation, which obviates an active variance process for generating extra volatility.

Then I compare the DICs and option pricing performance of the models with — = 1 and
a flexible — and observe no significant di�erence and, overall, the specification of — = 1
leads to better results. Similar results can be found in Kaeck and Alexander (2012), where
in all three groups of the Heston, Bates, and SV-P-P, the models with — = 1 achieve
lower DICs than those with a flexible —. Considering the length and readability of this
chapter, I omit the estimation results of models with a flexible —, but will provide them
on request.

2.7 Discussion

In this chapter, I use an extensive data set from stock and option markets to estimate and
compare several model specifications, including the use of infinite-activity Lévy jumps
in returns, or in both returns and variance, and the specification of the linear variance
process, against the benchmark Heston, Bates, and double-Poisson-jump models with the
SQR variance process and with/without finite-activity compound Poisson jumps. The
models are estimated with the MCMC, using the joint information of daily S&P 500 index
returns and the reformulated 30-day VIX index from January 1996 to December 2009.
Very little research has examined the empirical option pricing performance of stochastic
volatility models with infinite-activity Lévy jumps. Notable exceptions include Li et al.
(2008), Yu et al. (2011), and Ornthanalai (2014). The di�erence between my research and
theirs lies mainly in the use of non-a�ne variance dynamics and infinite-activity variance
jumps.

The empirical results clearly confirm the importance of the linear variance process in
terms of both goodness of fit and option pricing, as noted in the literature (see, for
example, Christo�ersen et al., 2010a; Kaeck and Alexander, 2012). More importantly,
the improvement provided by infinite-activity Lévy jumps, a fact not widely recognised,
seems more significant, especially for non-a�ne models. Models with VG/NIG return
jumps markedly outperform the benchmark models in option pricing and goodness of
fit, and the SV-VG-NIG-1 model achieves the best performance in goodness of fit, and
the SV-NIG-1 achieves the best performance in option pricing. Overall, the models
SV-VG-NIG-1 and SV-NIG-1 are comparable, and considering the extra model complexity
of the SV-VG-NIG-1, I conclude that the parsimonious model SV-NIG-1 is the more
competitive one.

With modern acceleration technologies (e.g., clouds, FPGAs, GPUs) closed-form solutions
are not necessarily a critical requirement for option valuation. Therefore, my results
strongly suggest that the infinite-activity NIG jumps in the return process should be used
with non-a�ne volatility di�usion, which obviates jumps in variance.





3 Model Estimation with Advanced
MCMC Algorithms:
Simulation Studies

3.1 Motivation

In this chapter, I apply a variety of advanced MCMC algorithms to estimate three financial
models with di�erent jump specifications and compare their estimation performance to
that of the random-walk MH algorithm. The algorithms comprise the AM (Haario et al.,
2006), the FUSS (Martino et al., 2015), the PMMH (Andrieu et al., 2010), and the PGAS
(Lindsten et al., 2014).
The models estimated are the a�ne Heston and Bates models (the Heston-0 and Bates-0
models) and the a�ne model with NIG jumps in the log price process (the SV-NIG-0
model). These three models are selected because they represent stochastic volatility models
without jumps, with finite-activity jumps, and with infinite-activity jumps, respectively. I
seek to study whether the inclusion of jumps and the type of jumps a�ect the estimation
performance of algorithms, and what can be learned in practice to better estimate models
with high-dimensional latent state variables, including strong-autocorrelated variance and
independent jumps.
This chapter focuses on simulation studies. First, I simulate one-year data of log asset
prices and spot variance under the Heston-0, Bates-0, and SV-NIG-0 models, respectively.
Second, I use the log prices as observations to estimate the physical dynamics of these
models and extract the jumps and paths of the spot variance.
The objectives of this chapter are:

• To apply advanced MCMC methods to estimate complex models with a number of
unknown parameters and high-dimensional latent state variables;

• To examine the mixing properties of di�erent algorithms and to determine the
optimal settings for the algorithms to improve the estimation performance and to
keep the computational costs reasonable;

• To compare the estimation performance of di�erent algorithms and analyse the
possible reasons for the success and failure of each algorithm, and thereby determine
the strengths and weaknesses of the algorithms.

This chapter is organised as follows. Sections 2 and 3 briefly review the conventional
MCMC and SMC methods. In Section 4, I introduce the advanced MCMC algorithms in
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detail, including the general idea, algorithm design, and features. Section 5 describes the
simulated data. Section 6 presents the implementation of each algorithm in the estimation
experiments of the Heston-0, Bates-0, and SV-NIG-0 models. Section 7 presents the
estimation results and compares the estimation performance of the algorithms. Section 8
briefly summarises this chapter.

3.2 Review: Conventional MCMC Methods

Recently, MCMC methods have gained popularity in finance research, and quite a few
papers have applied the MCMC methods to the estimation of financial models (see,
for example, Eraker et al., 2003; Kaeck and Alexander, 2013b; Yu et al., 2011, and
reference therein). The general idea of MCMC algorithms is to generate a Markov
chain, whose equilibrium distribution is a given target distribution, that is, the joint
posterior p(�, X|Y ), where � represents the set of model parameters, X represents
the state variable, and Y represents the observation. However, in most cases, a direct
sampling from p(�, X|Y ) is not possible because it is not of a known form. Instead, the
joint posterior is broken into its complete set of conditional distributions p(�|X, Y ) and
p(X|�, Y ), from which samples of � and X are generated sequentially. As justified by
the Hammersley-Cli�ord theorem (Hammersley and Cli�ord, 1971), the joint posterior
p(�, X|Y ) can be completely characterised by its complete set of conditional distributions
p(�|X, Y ) and p(X|�, Y ).
Two of the most widely-used MCMC approaches are the MH algorithm and the Gibbs
sampler (Johannes and Polson, 2003; Liu, 2004; Robert and Casella, 2004). Suppose the
conditional distributions p(�|X, Y ) and p(X|�, Y ) are known in closed form and can be
directly sampled, the Gibbs sampler generates the chain as follows:
Step 1 Initialisation: Assume the initial state: (�(0)

, X

(0)),
Step 2 Recursion: For i = 1, ..., M ,

1. Sample X

(i) from p(X(i)|�(i≠1)

, Y ),

2. Sample �(i) from p(�(i)|X(i)

, Y ),

where M is the pre-specified length of the chain. This algorithm generates a sequence of
random variables {�(i)

, X

(i)}M

i=1

, and the equilibrium distribution of the chain converges
to p(�, X|Y ), as justified by the Hammersley-Cli�ord theorem.
We can further factorise the multivariate conditional distribution p(�|X, Y ) into its
univariate conditional distributions. When a multivariate target distribution can be easily
factorised into univariate conditional distributions, the key point for successfully applying
the Gibbs sampler is the ability to draw e�ciently from these univariate distributions
(Koch, 2007; Liu, 2004; Robert and Casella, 2004). The best scenario for the Gibbs
sampler occurs when exact samplers are available for each full conditional.
However, in many situations, it is not possible to directly sample from one or more of
the conditional distributions, and one has to use the MH algorithms. The idea of MH
algorithms is to generate a candidate draw from a simpler proposal density q, and then
accept or reject the candidate draw according to an acceptance criterion.
Consider the case in which the posterior of X, fi(X), can be evaluated, however, it is not
possible to generate a sample directly from the distribution fi(X). The MH algorithms
update X as follows:
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1. Sample X

(i) from the proposal density q(X(i)|X(i≠1)),

2. Accept X

(i) with probability –(X(i)

, X

(i≠1)) = min

3
q(X(i≠1)|X(i))fi(X(i))

q(X(i)|X(i≠1))fi(X(i≠1)) , 1
4

.

The acceptance criterion ensures that the distribution of the samples generated by the
MH converges to fi(X).

The success of the MH lies in an appropriate choice of the proposal q and, ideally, a good
proposal should lead to a reasonable acceptance rate and a small correlation between
the generated samples. The MH algorithms are usually applied inside another external
MCMC (the Gibbs sampler). Therefore, typical problems of the external MCMC (such
as a long “burn-in” period and a large correlation) may dramatically deteriorate if the
internal MCMC is not e�cient.

One popular special case of MH algorithms is the random-walk MH algorithm. As its
name suggests, the random-walk MH generates a candidate sample from a random-walk
model X

(i) = X

(i≠1) + ‘, where ‘ is an independent mean zero error term. Typically, ‘

t

is assumed to be symmetric, and this assumption leads to a symmetric q and, therefore,
the algorithm is simplified as follows:

1. Sample X

(i) from the proposal density q(X(i)|X(i≠1)),

2. Accept X

(i) with probability –(X(i)

, X

(i≠1)) = min

3
fi(X(i))

fi(X(i≠1)) , 1
4

.

Further, the DWW method proposed by Damlen et al. (1999) seeks to simplify the
sampling from complicated posteriors. The DWW method introduces an auxiliary
variable U and extends the Gibbs sampler to include the extra full conditional. Then, all
the full conditionals are of a known form and, thus, can be directly sampled. Specifically,
suppose the posterior of X given by fi(X) is of the form:

fi(X) Ã t(X)l(X), (3.1)

where t(X) is a density of a known form, and l(X) is a non-negative invertible function.
Then, the update of X is as follows:

1. Sample X

(i) from t(X(i)),

2. Draw an auxiliary variable u from Uniform(0, l(X(i≠1))),

3. Accept X

(i) if l(X(i≠1)) > u, or keep X

(i≠1).

With a number of examples, Damlen et al. (1999) show that the DWW method is fast
and e�cient. In the simulation studies, the DWW method is not used because the
conditional posteriors that are of unknown forms cannot be factorised as in Equation 3.1,
but the DWW method is applied in the empirical studies in Chapter 4, where a number
of conditional posteriors can be represented as products of t(X)l(X).
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3.3 Particle Filters

The general idea of the SMC, or particle filters, is to represent the target posterior with
a finite set of particles with weights, and as a new observation arises, the particles are
updated in order to represent the new posterior. A variety of techniques can be used to
update the particle set. The bootstrap filter, which is the original particle filter (Djuric
et al., 2003; Doucet et al., 2001; Gordon et al., 1993), uses the sampling/importance
re-sampling; however, the BF blindly samples X

(i)

t+1

, i = 1, ..., N , with respect to the
observation Y

t+1

. The auxiliary particle filter (APF), proposed by Pitt and Shephard
(2001), seeks to tackle the problem by introducing an auxiliary index k, which is discarded
at each time step, to combine the information of the likelihood of Y

t+1

when sampling
X

(i)

t+1

. Other update techniques include, for example, the rejection sampling as in Müller
(1991) and the importance sampling as in Liu and Chen (1998). Some finance research
applies particle filters to estimate stochastic volatility models (see, for example, Creal,
2008; Duan and Yeh, 2011; Li, 2011), and Creal (2012) introduces and surveys particle
filters applicable to finance and economics in depth.

In this thesis, I consider only the BF and APF as representatives of SMC methods to
be used in the PMCMC methods; hence, the algorithms of only the BF and APF are
described in detail as follows.

Bootstrap Filter

Step 1 Initialisation: Draw X

i

0

from the prior p(X
0

) and set the weights w

i

0

= 1/N , for
i = 1, ..., N ,

Step 2 Recursion: For t = 1, ..., T ≠ 1,

1. Draw X

i

t+1

≥
q

N

j=1

p(X
t+1

|Xj

t

)wj

t

, for i = 1, ..., N ,

2. Compute the weights w

i

t+1

Ã p(Y
t+1

|Xi

t+1

), for i = 1, ..., N ,

where N is the number of particles and T is the number of observations.

Auxiliary Particle Filter

Step 1 Initialisation: Draw X

i

0

from the prior p(X
0

) and set the weights w

i

0

= 1/N , for
i = 1, ..., N ,

Step 2 Recursion: For t = 1, ..., T ≠ 1,

1. Compute X̂

k

t+1

=
s

X

t+1

p(X
t+1

|Xk

t

)dX

t+1

, for k = 1, ..., N ,

2. Draw k

i ≥ q

t+1

(k) Ã p(Y
t+1

|X̂k

t+1

)wk

t

, for i = 1, ..., N ,

3. Draw X

i

t+1

≥ p(X
t+1

|Xk

i

t

),

4. Compute the weights w

i

t+1

Ã p(Yt+1

|Xi
t+1

)

p(Yt+1

| ˆ

X

k(i)

t+1

)

, for i = 1, ..., N .

Originally, particle filters were applicable only to state-variable models with known
parameters. In the presence of unknown parameters, Berzuini et al. (1997) treat the
parameters as latent variables. However, as pointed out in Storvik (2002), the values of
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some parameters may become very unlikely when a new observation arises, leading to a
shrinking set of distinct parameter values. Gordon et al. (1993) introduce diversity to the
particle set by adding random noise to the particles; however, the “diversity” procedure is
tricky to choose. Moreover, this approach tends to overweight the information introduced
by recent observations; in other words, the parameters are more consistent with recent
observations although, ideally, the non-dynamic parameters should account for the
information introduced by all observations.

Storvik (2002) considers an alternative approach. The only assumption made in Storvik
(2002) is that the joint posterior distribution of parameters is analytically tractable. At
each time point t, the particle set of parameters are updated to a new one using all the
information available up to time t; therefore, this approach does not face the problems
that appear in some others. For example, it avoids the problem of choosing diversity, and
it does not have the drawback that the recent observations are overweighted and a�ect
the parameter estimates much more than the old ones, since the parameters are updated
on the basis of all the information available up to time t.

3.4 Advanced MCMC Methods

The key to the success of MH algorithms is the appropriate choice of proposal distributions.
Ideally, the proposal distribution should be easy to sample from and lead to a reasonable
acceptance rate and a small correlation between the generated samples. However, in the
presence of high dimensions, complicated target distributions, and complex patterns of
dependence between parameters and state variables, the simple fixed proposal in MH
algorithms may not be a good approximation of the target distribution. Hence, the
acceptance rate of MH algorithms can be very low, leading to a poor mixing of the chain.
In this section, I introduce some newly proposed MCMC algorithms that attempt to deal
with the problems of MH algorithms.

3.4.1 Adaptive Metropolis
After an initial non-adaptation period of i

0

iterations, the proposed AM algorithm updates
the variance of the Gaussian proposal according to the values of previously generated
samples. Specifically, suppose c

i

is the variance of the proposal in the i

th iteration, i > i

0

;
then, c

i

is adapted according to the past samples of the chain as follows:

c

i

= s ◊ Cov(x(1)

, x

(2)

, ..., x

(i≠1)) + s ú ‘.

Here, s is a parameter that scales the covariance of past samples, and according to Gelman
et al. (1996), the optimal value of s is 2.42, because this value optimises the mixing of
the Metropolis search with Gaussian targets and Gaussian proposals. ‘ > 0 is a constant
to make sure that c

i

will not become singular, and it can be set very small. c

0

is the
initial variance of the Gaussian proposal, and it should be a strictly positive value, chosen
according to some prior information.

Importantly, as discussed in Haario et al. (2006), in practice, the choice of i

0

a�ects
the performance of the adaptation: the bigger it is, the slower the adaptation takes
e�ect. Moreover, earlier in Haario et al. (1999a) with the non-ergodic version of the
AM algorithm, it is found that it is not optimal to conduct the adaptation in each
iterations, instead, the adaptation should be done only in given iterations to further
improve the mixing of the chain. So the index i

0

, in fact, can be used to define the length
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of non-adaptation during the whole chain. In the simulation studies, the AM is applied
to the update of spot variance v in all three models.

3.4.2 Particle Markov Chain Monte Carlo
The key idea of the PMCMC is to use SMC algorithms to approximate the performance
of MCMC algorithms, which is achieved by generating a particle set to construct the
proposal distribution used in the MH algorithm. As pointed out in Andrieu et al. (2010),
for any fixed number of particles N Ø 1, the transition kernels leave the target density of
interest invariant and lead to the convergence of the algorithms under a mild standard
assumption. For further details, please refer to Andrieu et al. (2010).

In the simulation studies, I employ two schemes of PMCMC methods, namely, the
PMMH (Andrieu et al., 2010) and the PGAS (Lindsten et al., 2014). In particular, the
PMMH can be regarded as an approximation of the marginal MH that targets p(�|Y

1:T

)
of p(�, X

1:T

|Y
1:T

), whereas the PGAS approximates the Gibbs sampler that targets
p(�, X

1:T

|Y
1:T

), where Y

1:T

and X

1:T

represent the observations and state variables at
time steps t = 1, ..., T , respectively.

3.4.2.1 Particle Marginal Metropolis Hasting

The PMMH jointly updates � and X

1:T

with the proposal q:

q(�ú
, X

ú
1:T

|�, X

1:T

) = q(�ú|�)p
�

ú(Xú
1:T

|Y
1:T

).

In my model setting, the structure of the PMMH algorithms is as follows: consider a
model with state variables v

1:T

and J

1:T

,

Initialisation: i = 0,

1. Arbitrarily choose �(0),

2. Run an SMC algorithm targeting p

�

(0)

(v
1:T

, J

1:T

|Y
1:T

), sample v

(0)

1:T

and J

(0)

1:T

≥
p̂

�

(0)

(·|Y
1:T

), and denote p̂

(0)

�

(0)

(Y
1:T

) the corresponding marginal likelihood estimate.

Recursion: For i Ø 1,

1. sample �ú ≥ q(·|�(i≠1)),

2. run an SMC algorithm targeting p

�

ú(v
1:T

, J

1:T

|Y
1:T

), sample v

ú
1:T

and J

ú
1:T

≥
p̂

�

ú(·|Y
1:T

), and denote p̂

�

ú(Y
1:T

) the corresponding marginal likelihood estimate,

4. set �(i) = �ú, v

(i)

1:T

= v

ú
1:T

, J

(i)

1:T

= J

ú
1:T

, and set p̂

(i)

�

(i)

(Y
1:T

) = p̂

�

ú(Y
1:T

) with
probability

min(1,

p̂

�

ú(Y
1:T

)p(�ú)q(�(i≠1)|�ú)
p̂

(i≠1)

�

(i≠1)

(Y
1:T

)p(�(i≠1))q(�ú|�(i≠1))
). (3.2)

The MH acceptance ratio in Equation 3.2 suggests that the PMMH actually approximates
the marginal posterior p(�|Y

1:T

) Ã p

�

(Y
1:T

)p(�).

In the PMMH, the SMC update is used to generate samples of v

1:T

and J

1:T

, and to
compute the approximate marginal likelihood p

�

(Y
1:T

). The SMC algorithms that can be
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used in the PMMH without destroying the ergodicity of the Markov chain could be the
original particle filter (PF), that is, the BF, and the APF. In this thesis, the algorithms
combined with the PF or APF are labeled PMMH-PF and PMMH-APF, respectively.

3.4.2.2 Particle Gibbs with Ancestor Sampling

Like the PG sampler, the PGAS approximates the ideal Gibbs sampler that targets
p(�, X

1:T

|Y
1:T

). The algorithm iteratively samples from p(�|X
1:T

, Y

1:T

), which is usually
feasible, and from p

�

(X
1:T

|Y
1:T

), which is approximated by an SMC update with the
approximate likelihood p̂

�

(X
1:T

|Y
1:T

).

In order to admit p(�, X

1:T

|Y
1:T

) as an invariant density, the implementation of the
PGAS requires using the so-called conditional SMC update. In the PG sampler, this
type of update ensures that a pre-specified path X

Õ
1:T

with an ancestral lineage survives
all the re-sampling steps, whereas the remaining N ≠ 1 particles are generated as usual.
However, in the PGAS, at time t Ø 2, a part of the original reference trajectory, X

Õ
t:T

of
X

Õ
1:T

, is connected with one of the particles X

i

1:t≠1

, i œ {1, ..., N}, and the new trajectory
{X

i

1:t≠1

, X

Õ
t:T

} is regarded as the reference trajectory for the next step in the SMC
update. The new trajectory assigns a new value to the variable a

N

t

= i œ {1, ..., N} that
corresponds to the particle X

i

1:t≠1

, whereas in the PG sampler, a

N

t

is always set to N .

The structure of the SMC update in the PGAS is as follows: let X

Õ
1:T

be the reference
trajectory that is associated with the ancestral lineage {N, ..., N},

Step 1: for t = 1,

1. Sample X

i

1

≥ q

�,1

(X
1

), for i = 1, ..., N ≠ 1.

2. Set X

N

1

= X

Õ
1

,

3. Compute w

i

1

= p

�,1

(X

i
1

)

q

�,1

(X

i
1

)

, for i = 1, ..., N .

Step 2: for t = 2, ..., T ,

1. Sample {a

i

t

, X

i

t

} ≥ w

at
t≠1q

j
w

j
t≠1

q

�,t

(X
t

|Xat
1:t≠1

), for i = 1, ..., N ,

2. Set X

N

t

= X

Õ
t

,

3. Compute ŵ

i

t≠1|T = w

i

t≠1

p

�,T ((X

i
1:t≠1

,X

Õ
t:T ))

p

�,t≠1

(X

i
1:t≠1

)

, for i = 1, ..., N ,

4. Draw a

N

t

with P (aN

t

= i) Ã ŵ

i

t≠1|T ,

5. Set X

i

1:t

= (Xa

i
t

1:t≠1

, X

i

t

), for i = 1, ..., N ,

6. Set w

i

t

= p

�,t(X

i
1:t)

p

�,t≠1

(X

i
1:t≠1

)q

�,t(X

i
t |Xi

t≠1

)

, for i = 1, ..., N .

Here q

�,t

is the proposal conditional on � at time t.
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3.4.3 Fast Universal Self-tuned Sampler Algorithms
As pointed out in Martino et al. (2015), previous algorithms that construct a proposal
with support points usually start with a small number of support points and then add new
points in case a candidate draw is rejected. However, Martino et al. (2015) present a novel
algorithm that constructs e�ective proposals, starting with a large number of support
points and then removing many of them according to some pruning scheme combining
relevant information.

3.4.3.1 General Structure of FUSS

The FUSS is an MCMC approach based on an independent proposal distribution, which
is built through a simple interpolation procedure. Its general structure is as follows:

1. Initialisation: Choose a set of support points, S
M

= {s

1

, . . . , s

M

}, such that
s

1

< s

2

< . . . < s

M

.

2. Pruning: Remove support points according to a pre-specified criterion, attaining
a final set S

m

, with m < M .

3. Construction: Build a proposal function p(x|S
m

) given S
m

, using some appropri-
ate pre-defined mechanism.

4. MCMC algorithm: Perform K steps of the MCMC method using p(x|S
m

) as a
proposal PDF, thus yielding a set of samples {x

1

, . . . , x

K

}.

The first three steps are optimisation steps to obtain a good proposal density, tailored to
the shape of the target distribution, while step 4 contains the MCMC iterations repeated
at K times. In particular, Martino et al. (2015) propose two techniques for step 4, namely
the MH algorithm and the Rejection Chain (RC) algorithm, and the resultant FUSS
algorithms are named the FUSS-MH and FUSS-RC, respectively. The MH algorithm has
been described in Section 3.2, and the structure of the RC algorithm used in step 4 is as
follows:

1. Set k = 0 and choose x

0

.

2. Draw x

Õ ≥ p̄(x) Ã p(x|S
m

) and u

Õ ≥ U([0, 1]).

3. If u

Õ
>

fi(x

Õ
)

p(x

Õ|Sm)

, then go back to step 2.

4. If u

Õ Æ fi(x

Õ
)

p(x

Õ|Sm)

, set x

k+1

= x

Õ with probability

–

RC

= 1 · fi(xÕ) [fi(x
k

) · p(x
k

|S
m

)]
fi(x

k

) [fi(xÕ) · p(xÕ|S
m

)] . (3.3)

Otherwise, set x

k+1

= x

k

with probability 1 ≠ –

RC

.

5. If k Æ K, set k = k + 1 and repeat from step 2. Otherwise, stop.
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The di�erence between the FUSS-MH and FUSS-RC is that the FUSS-RC contains a
rejection sampling (RS) test, and an MH step is applied only when a sample is accepted,
thus ensuring that the samples are drawn from the target distribution. Generally, the
FUSS-RC is slower than the FUSS-MH, since the chain does not move forward when a
sample is rejected in the RS test, but it yields samples with a lower correlation because
of the RS test.

It is worth noting that the initial support points in S
M

should cover all the high probability
regions of the target fi(x). In the simulation studies, when the FUSS algorithms are
applied to the update of spot variance v, I choose a uniform initial grid of support points:

S
M

= {s

1

, s

2

= s

1

+ ‘, . . . , s

M

= s

1

+ (M ≠ 1)‘},

where ‘ is a small constant, and s

1

and s

M

decide the initial region of the proposal.

In step 3, the FUSS algorithms construct the proposal with the support points. Suppose a
set of support points S

m

= {s

1

, s

2

, . . . , s

m

} is obtained after the pruning step, where s

1

<

. . . < s

m

. We can define the intervals I
0

= (≠Œ, s

1

], I
j

= (s
j

, s

j+1

], for j = 1, ..., m ≠ 1
and I

m

= (s
m

, +Œ). The unnormalised proposal is then given by:

p(x|S
m

) = e

W (x)

,

where W (x) is built using a piecewise constant approximation for all the intervals, with
the exception of the first and last intervals (that is, the tails), where a non-constant
function is used. Mathematically,

W (x) = w

i

(x) = max [V (s
i

), V (s
i+1

)] IIi(x), (3.4)

where 1 Æ i Æ m ≠ 1 and

IIi(x) =
I

1, x œ I
i

= (s
i

, s

i+1

],
0, x ”= I

i

= (s
i

, s

i+1

].
(3.5)

In the first and last intervals, I
0

and I
m

, respectively,

W (x) = w

j

(x), j œ {0, m}, x œ I
j

,

where w

j

(x) represents a generic log-tail function.

The proposal p̄(x) Ã p(x|S
m

) is composed of m + 1 pieces, including the two tails.
Therefore, p(x|S

m

) can be seen as a finite mixture,

p(x|S
m

) =
mÿ

i=0

÷

i

„

i

(x),

with
q

m

i=0

÷

i

= 1, whereas „

i

(x) = exp (w
i

(x)) for all x œ I
i

, and „

i

(x) = 0 for x /œ I
i

.
Hence, in order to draw a sample from p̄(x) Ã p(x|S

m

), it is necessary to perform the
following steps:

1. Compute the area A

i

below each piece, i = 0, . . . , m and then normalise them,

÷

i

= A

iq
m

j=1

A

j

, for i = 0, . . . , m.
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2. Choose a piece (that is, an index j

ú œ {0, . . . , m}) according to the weights ÷

i

for
i = 0, . . . , m,

3. Given the index j

ú, draw x

Õ ≥ „̄

j

ú(x) Ã „

j

ú(x) = exp (w
j

ú(x)).

Another issue to address is the pruning step. Martino et al. (2015) propose four di�erent
pruning types, and after several tries, I find that the pruning type 4 is the best fit for the
problems considered in this thesis. Considering the length of this thesis, I report only the
estimation results obtained by the FUSS algorithms with the pruning type 4. Specifically,
the algorithm of the pruning type 4 is as follows:

1. Choose a value ” > 0. Given S
M

= {s

1

, ..., s

M

}, set S(0) = S
M

, m = M , n = 0, and

L = max
1ÆjÆÂ m≠1

2

Ê
(s

2j+1

≠ s

2j≠1

)|fi(s
2j+1

) ≠ fi(s
2j≠1

)|.

2. For r = 1, . . . , R =
%

m≠1

2

&
:

a) Compute b

r

= (s
2r+1

≠ s

2r≠1

)|fi(s
2r+1

) ≠ fi(s
2r≠1

)|,
b) If b

r

Æ ”L, set S(r) = S(r≠1) \ {s

2r

} and n = n + 1,
c) Otherwise, if b

r

> ”L, set S(r) = S(r≠1).

3. If n > 0 set n = 0, S(0) = S(R), m = |S(R)| and repeat from step 2.

4. Otherwise, if n = 0, return S
m

= S(R).

3.5 Simulation Studies: Data Generation

In the simulation studies, I estimate three models with di�erent jump structures in the
log price process by all the above Bayesian methods. The input for the estimation is the
simulated one-year log asset prices,1 and considering the computational cost, I follow
Andrieu et al. (2010) and Martino et al. (2015) and simulate one path2 for each model.
Since typically there are 252 trading days a year, I set T = 252, and assume the initial log
price Y

0

and variance v

0

as known, and further assume no jump in the log price at t = 0.

The true values of parameters and initial conditions are reported as follows:

Initial conditions: Y

0

= log(1000), v

0

= 0.02.

Common parameters: Ÿ = 3, ◊ = 0.02, fl = ≠0.8, – = 0.3 in the Heston-0 and Bates-0
models and – = 0.1 in the SV-NIG-0 model.3

1I simulate one-year data with 252 observations for two reasons. First, it is computationally economical.
Second, for the Bates-0 model with ⁄ = 0.1, with the expected number of jumps per year of approximately
25, and for the SV-NIG-0 model with infinite-activity jumps in the log price process, the observations of
jumps are su�cient to estimate the jump-related parameters. This is later justified by the reasonable
estimation results of the jump-related parameters in the Bates-0 and SV-NIG-0 models, as shown in
Tables 3.5 and 3.6.

2In further research, it would be important to simulate more paths and base the algorithm comparison
on more extensive data sets.

3The reason for choosing a smaller – in the SV-NIG-0 is that quite significant volatility has been
generated by the infinite-activity jumps in the path of the log asset price, and a higher – may make the
variance process and the log price process very volatile with many spiky peaks, and thus too challenging
for the algorithms to estimate the models.
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Figure 3.1: Simulated one-year path of the daily log asset price under the Heston-0 model.
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Figure 3.2: Simulated one-year path of spot variance under the Heston-0 model.
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Figure 3.3: Simulated one-year path of the daily log asset price under the Bates-0 model.

Parameters specific to the Bates-0 model: µ

y

= ≠0.05, daily ⁄ = 0.1, ‡

y

= 0.1.

Parameters specific to the SV-NIG-0 model: “ = ≠0.1, ‡ = 0.2, ‹ = 5.

The paths of the daily log asset price and spot variance4 simulated under the Heston-0,
Bates, and SV-NIG-0 models are plotted in Figures 3.1–3.6.5

4In the simulation, negative variance processes are discarded.
5The set of random numbers is not specified when the paths of the log asset price and variance are

simulated. In future research, it would be interesting to use the same set of random numbers such that
the simulated paths of variance in all three models are the same.
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Figure 3.4: Simulated one-year path of spot variance under the Bates-0 model.
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Figure 3.5: Simulated one-year path of the daily log asset price under the SV-NIG-0 model.
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Figure 3.6: Simulated one-year path of spot variance under the SV-NIG-0 model.

3.6 Implementation of Algorithms

3.6.1 Likelihood Inference
Let the observations Y = {Y

t

}
tØ0

be the log asset price, and let v = {v

t

}
tØ0

be the
instantaneous squared volatility of log prices. After the Euler discretisation, under the
physical measure P , I assume that the transition of Y and v is described by the following
stochastic di�erential equations:

Y

t+1

≠ Y

t

=
3

µ ≠ 1
2v

t

4
� +


v

t

�‘

Y,t+1

+ J

Y,t+1

,

v

t+1

≠ v

t

= Ÿ(◊ ≠ v

t

)� + –


v

t

�‘

v,t+1

,

(3.6)
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where � = 1/252, ‘

v,t

, ‘

Y,t

≥ N(0, 1), corr(‘
v,t

, ‘

Y,t

) = fl.
In the Heston-0 model, J

Y,t

= 0, ’t. The parameters � = {k, ◊, –, fl, µ} are unknown to
be estimated, and v is the latent state variable to be extracted.
In the Bates-0 model,

J

Y,t

= ›

Y

t

N

t

, P (N
t

= 1) = ⁄�.

(3.7)

Here the unknown parameter set � = {k, ◊, –, fl, µ, µ

y

, ⁄, ‡

y

}, and v, N and ›

Y are the
latent state variables to be extracted.
In the SV-NIG-0 model,

J

Y,t

= “G

Y,t

+ ‡


G

Y,t

‘

JY
t

.

(3.8)

Here the unknown parameter set � = {k, ◊, –, fl, µ, “, ‹, ‡}, and v, GY and JY are the
latent state variables to be extracted. ‘

JY ≥ N(0, 1) and is independent of any other
random source.
In the Hesotn-0 model, the joint posterior is

p(�, v|Y) Ã p(Y, v|�)p(�) (3.9)
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where p(�) is the prior of the parameters, and
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‘

v,t

= v
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≠ v

t≠1

≠ Ÿ(◊ ≠ v

t≠1

)�
–


v

t≠1

�
. (3.12)

The joint posteriors of the Bates-0 and SV-NIG-0 models can be derived similarly as the
Heston-0 model, and the extra likelihoods of jump variables can be computed on the
basis of the model assumptions in Equations 3.7 and 3.8.
In the estimation, I cannot directly generate samples from the joint posterior, because
it is not of a known form. Therefore, I break the joint posterior into conditionals of
parameters and latent state variables, and sample from the conditionals with a Gibbs
step, or the MH and more advanced algorithms, such as the AM and FUSS algorithms,
if sampling from one or some of the conditionals is impossible. Alternatively, I use the
PMMH to approximate the marginal posterior of parameters or the PGAS to approximate
the joint posterior.
Before the estimation, I need to choose appropriate priors for the parameters. I choose
conjugate priors to make the conditional posteriors of known forms if possible. The priors
should be uninformative so that the posteriors are dominated by the likelihoods.6 The

6The prior is a part of the model specification. If we have strong prior information regarding the
distribution of a parameter, we should use an informative prior for this parameter so that the posterior
is not too dispersed and sampling from the posterior would be easier. For example, one may observe
that jumps in the path of the log asset price are usually large and negative; then it would be sensible
to assume a normal distribution with negative mean and large variance as the prior for the parameter
controlling the jump size.
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selected priors are reported as follows:

p(k) = N(4, 32), p(◊) = N(0.05, 0.12), p(µ) = N(0, 12).

The parameter pair (–, fl) is re-parameterised as in Jacquier et al. (2002) to improve
the e�ciency and to rule out the large correlation between – and fl: „

v

= –fl and
w

v

= –

2(1 ≠ fl

2). The priors for „

v

and w

v

are conjugate: „

v

|w
v

≥ N(0,

1

2

w

v

) and
w

v

≥ IG(2, 200).

When the models are estimated with the PMMH, I set the priors for fl and – as:

p(–) = 1
–

, p(fl) = Uniform(≠1, 1).

In the Bates-0 model, I assume priors for the model-specific parameters as:

p(µ
y

) = N(0, 12), p(⁄) = Uniform(0, 1), p(‡
y

) = 1
‡

y

.

In the SV-NIG-0 model, I assume priors for the model-specific parameters as:

p(“) = N(0, 12), p(‹) = N(6, 52), p(‡) = 1
‡

.

Except in the PMMH where the candidate draw of the parameter set �ú is generated by
the proposal q(·|�(i≠1)), with the other estimation methods, the parameters are sampled
from their conditional posteriors. Specifically, the conditional posteriors of the parameters
Ÿ, ◊, „

v

, µ in all three models, µ

y

in the Bates-0 model, and “ and ‹ in the SV-NIG-0
model are normal distributions, the conditional posteriors of w

v

, ‡

y

in the Bates-0 model
and ‡ in the SV-NIG-0 model are inverse Gamma distributions, and the conditional
posterior of ⁄ in the Bates-0 model is a Beta distribution. Thus, all the parameters are
updated by a Gibbs step.

As for the extraction of the latent state variables, in the Bates-0 model, the conditional
posterior of N is a Bernoulli distribution and that of › is a normal distribution. In the
SV-NIG-0 model, the conditional posterior of JY is a normal distribution. Consequently,
these variables are updated with a Gibbs step. However, because the conditional posteriors
of v in all three models and G in the SV-NIG-0 model are of complex forms, the Gibbs
sampler is not applicable.

After several estimation experiments, I notice that when the jump variable G is updated
by the random-walk MH, the acceptance rate is reasonable, ranging from 15% to 30% with
di�erent proposals and models, and the application of the AM and FUSS algorithms to the
update of G seems to make little improvement. Therefore, considering the computational
costs, I only apply advanced MCMC methods to update v, and use the random-walk MH
with the proposal G

(i)

t

= N

1
G

(i≠1)

t

, (1 ◊ 10≠3)2

2
, ’t, to sample G. Note that G should

be positive, and to retain the positiveness, I repeatedly sample from the proposal until a
non-negative value is obtained. In this way, a rejection sampler is actually implemented
to sample from the proposal distribution truncated at zero. The truncated density has
the same density as the un-truncated one, apart from the di�erences in supports and
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normalising constants. When the random-walk MH7 is applied to the update of v, the
trick of repeated sampling is also used to ensure the positiveness of v.

When the AM is applied, I follow the practice in Haario et al. (1999b, 2001) and set
s = 2.42 and ‘ = 1 ◊ 10≠4. In particular, instead of adapting the proposal at each MCMC
run, I adapt the proposal at every 100 runs after the initial non-adaptation period of
1,000 runs.

When the FUSS algorithms, including the FUSS-RC and FUSS-MH, are applied, I use
type 4 as the pruning scheme and set s

1

= 0.0001, s

M

= 1, �
si = s

i+1

≠ s

i

= 0.0001, for
i = 1, ..., M ≠ 1, ” = 0.01, and K = 3. The use of the pruning type 4 is motivated by
the findings in Martino et al. (2015) that it is the best pruning type because it selects
the final set of support points according to a minimax optimality criterion, leading to
better-quality estimators, a lower correlation between samples, and less computation
time, especially when the target distribution is multimodal with narrow modes. In the
estimation, I try all four pruning types and find that the type 4 outperforms the other
pruning types.

In the PF update of the PMMH, I sample the particles {v

i

t

} from v

i

t

= v

Ai
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+ Ÿ(◊ ≠
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)� + –

Ò
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�‘, where A
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t≠1

and ‘ is a standard normal random
number. The particles of the jump variables N and ›

Y in the Bates-0 model and G in
the SV-NIG-0 model are drawn according to model assumptions, and the particles of JY
are updated by J

Y,t

= N

t

›

Y

t

, ’t, in the Bates-0 model and by J

Y,t

= “G

t

+
Ô

‡G

t

‘

J

, ’t,
in the SV-NIG-0 model, where ‘

J is a standard normal random number.

The APF in the PMMH is implemented like the PF in the PMMH. The only di�erence is
that I first sample v̂

i

t

= v

i

t≠1

+ Ÿ(◊ ≠ v

i

t≠1

)� without the di�usion term and the sampling
of index A

i

. Next, I sample the index k

i for v

k

i

t≠1

according to the likelihood of Y

t

conditional on v̂

i

t

and the weights computed at the previous time step, and then resample
v

k

i

t

according to its tradition density. It is worth mentioning that when the variance
variable v is resampled, the jump variables are associated with k

i, but they are not
resampled because of the independence of the jumps.

The implementation of the PF in the PGAS: After the particles at time t have been
generated, a key step in the PGAS is to sample the ancestor step for the reference
trajectory of v. Specifically, the weights for the ancestor step are computed by:
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(3.13)

Concerning the update of the parameter set in the PMMH, while reading the attached
discussion in Andrieu et al. (2010), I noticed an interesting suggestion by Professors
Michael Johannes, Nick Polson, and Seung Min Yae that the update step in the PMMH
algorithm can be modified as follows:

Step One: Generate a full vector of latent state variables, X

1:T

, by an SMC update and
accept or reject these draws by a Metropolis update;

7The proposal is a normal distribution with variance 1◊10≠4. It is possible to increase the acceptance
rate of v by lowering the variance of the proposal. However, there seems to be a trade-o� between
the acceptance rate and the moving speed of the chain. Considering the reasonable value interval of v,
1◊10≠4 is quite small as the variance of the proposal, and further reduction of the variance may worsen
the mixing speed of the chain.
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Step Two: Update the parameters according to p(�|X
1:T

, Y

1:T

).

I seek to study the performance of this modified PMMH algorithm combined with the
PF as the SMC update in this thesis. In particular, the modified PMMH-PF is labeled
PMMH-PF2, and the original version is labeled PMMH-PF1.

Finally, I need to decide the length of the Markov chain as well as the length of the burn-in
period and the number of particles in the PMCMC methods. Suppose M is the length of
the Markov chain, M

0

is the length of the burn-in period, and N is the number of particles.
After a number of estimation experiments, I observe that when estimating di�erent models,
the same algorithm may produce di�erent mixing performance. Therefore, the algorithmic
settings, including M , M

0

, and N , may di�er with di�erent models. The details of the
algorithmic settings are reported in Tables 3.1–3.3. Basically, according to the choice
of M and N , the simulation experiments are divided into two groups: to illustrate the
estimation performance with a small number of MCMC iterations and a small particle
set, and to obtain a stabilised performance.8

3.7 Results

First of all, it is important to point out that assessing the numerical accuracy of MCMC
algorithms is very di�cult. We use MCMC algorithms because we cannot directly sample
from the target distribution p(�, X|Y ); instead, we use MCMC algorithms to approximate
the target distribution and examine the performance of algorithms on the basis of the
approximate distribution p̂(�, X|Y ). For example, in Subsection 3.7.1, I compute the
estimation error as the mean squared error of the approximate Ê(v|Y ) and the simulated
variance v, and in Subsection 3.7.4, I compare the performance of algorithms in estimating
parameters on the basis of the distance between the approximate Ê(�|Y ) and the preset
parameters �.

However, ideally, the comparison should be based on the distance between the true
distribution and the approximate distribution, that is, Ê(v|Y ) and E(v|Y ), and Ê(�|Y )
and E(�|Y ). However, we do not know the true distribution; therefore, in this thesis, I
base the comparison on the approximate distribution, the simulated variance, and preset
parameters, following practices in the literature.

3.7.1 Performance of Algorithms with Di�erent Settings:
Acceptance Rate, Estimation Error, Log-Likelihood, and
Computation Time

Tables 3.1–3.3 report the estimation results of di�erent algorithms with the Heston-0,
Bates-0, and SV-NIG-0 models. The results comprise the acceptance rate (AR) of the

8The equilibrium distribution of the Markov chain generated by the MCMC algorithms converges
to the target distribution as the chain length goes to infinity. In this sense, the larger the number of
MCMC iterations (M), the better the performance. However, the improvement brought by increasing M
may become negligible when M is su�ciently large. Similarly, for the PMCMC methods, increasing N
significantly increases the acceptance rate and reduce the estimation error; however, in the simulation
tests, I observe that there seems to be an optimal N , after which a further increase of N provides a
negligible improvement. In the estimation, I seek to find out the su�ciently large M and N , and refer to
the results as “stabilised results”.
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latent state variable v, the mean squared error of v (MSE
v

), the log-likelihood (LL) of
the parameters and state variables, and the computation time.9

It is worth mentioning that the results in Tables 3.1–3.3 are estimated using the simulated
paths of one-year log asset prices, as shown in Figures 3.1, 3.3, and 3.5, and computed
on the basis of 100 experiments, except that the computationally costliest estimation
experiments for each algorithm are conducted only 10 times.10

First, I compare the performance of the algorithms in the Heston-0, Bates-0, and SV-NIG-0
models, respectively.
In estimatingthe Heston-0 model, all the algorithms achieve comparably good performance
in terms of MSE

v

. In particular, with the e�cient adaptive proposal in the AM, the
required length of the chain to reach a stabilised performance, that is, M , is reduced from
100,000 in the MH to 20,000, thanks to the significantly higher AR. However, M becomes
even smaller in more e�cient algorithms, including the FUSS algorithms with the MH
or RC step and the PMCMC algorithms. An important observation about the FUSS
algorithms is that, unlike the others, they can construct a proposal very close to the target
distribution and significantly improve the mixing speed of the chain and, thus, M can be
very small. In fact, the performance of the FUSS algorithms with M = 1, 000 is almost as
remarkable as that with M = 5, 000. Moreover, the length of the burn-in period, that is,
M

0

, is very small, indicating that the FUSS algorithms are very e�cient in that most of
the computation work is useful. Among the PMCMC methods employed to estimate the
Heston-0 model, the three versions of PMMH show comparable performance, with the
PMMH-PF2 slightly better than the PMMH-PF1/APF in terms of a lower MSE

v

and a
higher LL, but generally the PMMH algorithms underperform the PGAS. Surprisingly,
with only 500 MCMC iterations and 500 particles, the PGAS performs better than the
PMMH algorithms with 5,000 iterations and 1,000 particles in terms of MSE

v

. This
suggests that the mixing of the PGAS kernel is very fast even with a small number of
particles.
In estimating the Bates-0 model,11 the performance of di�erent algorithms varies. When
the MH and AM obtain similar MSE

v

, the di�erence in MSE
v

between {AM, MH}
and {FUSS, PMMH-PF1} is significant. This observation shows that when the model
specification becomes complex, the MH and AM are less capable of extracting the variance.
In the experiments, I notice that the performance of the MH and AM are sensitive to the
initial value of the variance, and prior information about the variance may remarkably
improve the estimation performance.12 Further, the FUSS algorithms achieve a stabilised
performance with 5,000 MCMC iterations, as with the Heston-0 model estimation, but
the required number of particles in the PMMH-PF1 significantly increases from 1,000
to 5,000 for a reasonable AR, a small MSE

v

, and a high LL comparable to the FUSS
algorithms. Surprisingly, the PGAS, which performs best in estimating the Heston-0
model, performs worst among all algorithms in estimating the Bates-0 model.

9The computation time is the running time for the whole algorithm, normalised with respect to the
time required by the MH algorithm with M = 100, 000.

10The main reason for reducing the number of experiments is the much longer computation time.
The reduction is justified by the observation that when M and N are su�ciently large, no significant
di�erences are produced in MSEv, AR, and LL, using the same algorithm.

11When estimating the Bates-0 and SV-NIG-0 models, I notice that the PMMH-PF2 underperforms
the PMMH-PF1, and the PMMH-APF fails to achieve reasonable performance; therefore, the results of
the PMMH-APF are omitted, and selected results of the PMMH-PF2 are reported.

12In the estimation, I use vt = 0.02, ’t, as the initial value of v. However, if the initial value is replaced
with a path positively correlated with the true path, the MH and AM achieve much better estimation
performance.
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Table 3.1: Estimation results of the Heston-0 model with di�erent numbers of MCMC iterations
(M) and particles (N) in the PMCMC methods. This table shows the acceptance rate (AR), the
mean squared error of spot variance v (MSEv), the log-likelihood (LL) of the parameters and
latent state variables, and the computation time. The computation time is the running time for
the whole algorithm, normalised with respect to the time required by the MH algorithm with
M = 100, 000. The results presented in this table are computed on the basis of 100 experiments,
except that the estimation experiments computationally the costliest for each algorithm are
conducted 10 times.

M

0

M N AR (%) MSE
v

LL Time
MH 4000 5000 4.38 3.42E-05 888.3 0.04

15000 20000 4.48 2.56E-05 900.2 0.17
80000 100000 3.93 1.30E-05 1111.5 1

AM 4000 5000 45.53 1.33E-05 1037.1 0.05
15000 20000 54.60 1.27E-05 1082.3 0.21

FUSS-RC-P4 150 200 100.00 1.99E-05 1010.8 0.25
300 500 100.00 1.41E-05 1090.2 0.71
300 1000 100.00 1.24E-05 1204.5 1.93

1000 5000 100.00 1.20E-05 1232.0 19.79
FUSS-MH-P4 100 200 100.00 1.68E-05 1061.9 0.28

300 500 99.98 1.28E-05 1144.7 0.69
300 1000 99.97 1.26E-05 1150.6 1.83

1000 5000 99.93 1.24E-05 1166.1 17.53
PMMH-PF1 400 500 500 29.60 1.66E-05 1107.6 0.31

400 500 1000 33.96 1.64E-05 1104.7 0.38
4000 5000 500 24.58 1.33E-05 1102.4 3.24
4000 5000 1000 34.86 1.24E-05 1108.4 3.53
4000 20000 1000 33.79 1.24E-05 1113.0 16.14

PMMH-PF2 400 500 500 19.95 1.49E-05 1107.6 0.40
400 500 1000 24.73 1.43E-05 1152.4 0.43

4000 5000 500 16.13 1.30E-05 1152.5 4.19
4000 5000 1000 23.93 1.25E-05 1157.4 4.61
4000 20000 1000 24.55 1.21E-05 1177.4 18.36

PMMH-APF 400 500 500 33.09 1.58E-05 858.2 0.43
400 500 1000 19.33 1.45E-05 885.2 0.47

4000 5000 500 8.74 1.69E-05 903.3 4.42
4000 5000 1000 16.88 1.26E-05 909.6 4.88
4000 20000 1000 16.21 1.26E-05 910.4 19.81

PGAS 400 500 500 100.00 1.23E-05 1046.7 0.07
400 500 1000 100.00 1.16E-05 1059.5 0.12

4000 5000 500 100.00 1.15E-05 1047.1 0.70
4000 5000 1000 100.00 1.13E-05 1060.0 1.20
4000 5000 5000 100.00 1.08E-05 1095.0 5.54

10000 50000 5000 100.00 1.07E-05 1092.9 45.13
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Table 3.2: Estimation results of the Bates-0 model with di�erent numbers of MCMC iterations
(M) and particles (N) in the PMCMC methods. This table shows the acceptance rate (AR), the
mean squared error of spot variance v (MSEv), the log-likelihood (LL) of the parameters and
latent state variables, and the computation time. The computation time is the running time for
the whole algorithm, normalised with respect to the time required by the MH algorithm with
M = 100, 000. The results presented in this table are computed on the basis of 100 experiments,
except that the estimation experiments computationally the costliest for each algorithm are
conducted 10 times.

M

0

M N AR(%) MSE
v

LL Time
MH 4000 5000 11.62 4.24E-05 975.7 0.05

15000 20000 7.72 4.04E-05 1033.9 0.22
80000 100000 8.54 2.59E-05 1055.9 1

AM 4000 5000 66.60 8.91E-05 1050.2 0.07
15000 20000 64.16 2.61E-05 1107.5 0.30

FUSS-RC-P4 150 200 99.88 7.39E-05 1015.1 0.21
300 500 99.95 4.68E-05 1066.5 0.40
300 1000 99.98 2.46E-05 1170.7 0.98

1000 5000 99.98 1.62E-05 1192.2 10.24
FUSS-MH-P4 150 200 100.00 4.32E-05 1015.0 0.17

300 500 99.96 4.42E-05 1062.6 0.45
300 1000 99.80 1.96E-05 1113.1 1.18

1000 5000 100.00 1.87E-05 1123.4 10.13
PMMH-PF1 400 500 500 5.27 5.14E-05 956.3 0.24

400 500 1000 5.47 4.29E-05 1042.5 0.31
400 500 5000 15.30 2.50E-05 1064.2 0.55

4000 5000 500 1.27 5.35E-05 1015.6 0.43
4000 5000 1000 1.56 2.39E-05 1031.8 0.65
4000 5000 5000 21.24 1.89E-05 1152.3 2.40

PMMH-PF2 4000 5000 1000 1.10 2.70E-05 962.8 0.67
PGAS 4000 5000 500 97.28 7.43E-05 1067.8 0.55

4000 5000 1000 98.16 6.19E-05 1078.5 0.92
4000 5000 5000 99.34 3.43E-05 1088.5 3.73
4000 20000 5000 98.29 3.46E-05 1091.4 14.00
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Table 3.3: Estimation results of the SV-NIG-0 model with di�erent numbers of MCMC iterations
(M) and particles (N) in the PMCMC methods. This table shows the acceptance rate (AR), the
mean squared error of spot variance v (MSEv), the log-likelihood (LL) of the parameters and
latent state variables, and the computation time. The computation time is the running time for
the whole algorithm, normalised with respect to the time required by the MH algorithm with
M = 100, 000. The results presented in this table are computed on the basis of 100 experiments,
except that the estimation experiments computationally the costliest for each algorithm are
conducted 10 times.

M0 M N AR (%) MSE
v

LL Time
MH 4000 5000 12.82 2.12E-05 927.02 0.05

15000 20000 11.82 1.87E-05 942.82 0.27
80000 100000 37.91 1.77E-05 1017.70 1

AM 4000 5000 33.22 2.19E-05 922.88 0.14
15000 20000 56.07 1.58E-05 953.88 0.69
40000 50000 56.94 1.55E-05 966.95 2.71

FUSS-RC-P4 150 200 100.00 2.61E-05 898.86 0.12
300 500 100.00 2.17E-05 918.43 0.32
300 1000 100.00 2.20E-05 926.36 0.89

1000 5000 100.00 1.15E-05 955.64 10.35
3000 10000 100.00 8.31E-06 1022.5 33.79

FUSS-MH-P4 150 200 100.00 2.46E-05 974.94 0.12
300 500 100.00 2.14E-05 979.08 0.34
300 1000 100.00 1.63E-05 938.97 0.87

1000 5000 100.00 1.46E-05 983.45 10.24
3000 10000 100.00 1.31E-05 991.81 33.71

PMMH-PF1 400 500 500 35.30 1.97E-05 963.23 0.36
400 500 1000 49.86 1.47E-05 1020.15 0.39

4000 5000 500 36.01 1.14E-05 1006.39 3.56
4000 5000 1000 45.37 9.00E-06 1019.26 3.66

10000 20000 1000 50.20 7.63E-06 1026.49 11.77
PMMH-PF2 4000 5000 1000 46.42 1.21E-05 1002.80 3.00

10000 20000 1000 58.60 1.19E-05 1001.20 13.83
PGAS 400 500 500 98.67 2.25E-05 998.84 0.06

400 500 1000 98.84 1.31E-05 1008.69 0.09
4000 5000 500 99.50 2.15E-05 997.45 0.50
4000 5000 1000 99.71 6.53E-06 1013.50 0.74
4000 5000 5000 99.86 1.01E-05 998.49 3.09

10000 20000 1000 99.80 6.24E-06 1027.51 1.67
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According to the estimation results of the SV-NIG-0 model, the MSE
v

of the MH is
the largest; however, the LL obtained by the MH ranks the fourth highest, implying
an estimation result more consistent with the data than the AM with 20,000 MCMC
iterations. To investigate, I increase M for the AM to 50,000; however, its performance is
comparable to that with M = 20, 000. The FUSS algorithms significantly outperform
the MH and AM, but with a more complex model specification, the optimal M for the
FUSS algorithms significantly increases. Furthermore, even with the optimal M , the
FUSS algorithms still slightly underperform the PMMH-PF1 and PGAS, the latter being
the best algorithm again in estimating the SV-NIG-0 model, as with the Heston-0 model
estimation.

Moreover, the computation times of di�erent algorithms in estimating the Heston-0, Bates-
0, and SV-NIG-0 models are reported in Tables 3.1–3.3. In each table, the computation
time is normalised with respect to the time required by the MH with M = 100, 000.
Generally, the computation time increases proportionally to the increase of M , whereas
it changes more slowly than the increase of N in the PMCMC methods. As expected,
with a fixed M , the MH is the fastest, the AM ranks the second fastest, followed by the
PMCMC methods, and the FUSS algorithms are the slowest. In particular, the FUSS-RC
is slightly slower than the FUSS-MH owing to the RS test in the FUSS-RC, and the
computation time of the PGAS is only about 30% of that of the PMMH algorithms with
the same M and N . However, if we focus on achieving comparable estimation results, in
estimating the Heston-0 and Bates-0 models, the FUSS algorithms are more e�cient than
the others; however, the advantage of the FUSS algorithms over the AM and MH becomes
smaller when estimating the complicated SV-NIG-0 model. Furthermore, although its
performance is poor in estimating the Bates-0 model, the PMMH-PF1 is very competitive
in estimating the SV-NIG-0 model. Specifically, the PMMH-PF1 takes about 40% of the
computation time of the MH to outperform the MH and the AM, and about 30% of the
computation time of the FUSS-RC to beat the FUSS-RC. More importantly, the PGAS
is extremely e�cient in estimating the SV-NIG-0 model, because it only takes 74% of the
computation time of the MH to beat all the other algorithms.

Next, I analyse how di�erent jump structures a�ect the estimation performance.

First, I discuss how jump structures change the AR. The ARs of the MH in estimating
the Heston-0 and Bates-0 models are very low; however, the AR becomes reasonable in
estimating the SV-NIG-0 model. The ARs of the AM, FUSS, and PGAS algorithms are
stable with di�erent models. For the Bates-0 model, the AR of the PMMH-PF1 is very
low.13 A possible reason for the low AR of the PMMH-PF1 in estimating the Bates-0
model is that, although the simulated compound Poisson jumps are rare events, their
jump sizes are significant; therefore, in the estimation, they play an important role in
computing likelihoods and in deciding the weights of the particles. However, since I have
no prior information of the jumps, and since the jump times and sizes are independent
of each other, the particles generated for the jumps are highly random. Therefore, only
particles with “correct” jump times and sizes are assigned reasonable weights and most
of the generated particles are actually useless, which largely a�ects the performance
of the SMC update. On the other side, in the SV-NIG-0 model with infinite-activity
jumps, where the jumps are on average less significant and, therefore, less distinguishable

13In the estimation, I use the random-walk normal distribution with a diagonal covariance matrix
as the proposal. I have also tried to use other covariance matrices by running the estimation for some
iterations, computing the covariance of the parameters, and setting the covariance matrix as the proposal
covariance matrix. However, this step produces negligible improvement.
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from di�usions, even if the particles of the jumps are unrealistic, they may be assigned
reasonable weights, because “wrong jumps” can be o�set by di�usions. In other words,
the impact of the jumps in the SV-NIG-0 model on the weights of the particles is less
significant than that of the compound Poisson jumps in the Bates-0 model.
Another observation is that when the performance of the MH, AM, FUSS-RC, and
FUSS-MH is stable across di�erent models, the performance of the PMCMC algorithms
seems mixed:
1. Comparison of the PMMH-PF1 and the PMMH-PF2.
When estimating the Heston-0 model, the PMMH-PF1 yields a poorer performance than
the PMMH-PF2, which is plausible because the samples of the parameters in the latter
are updated on the basis of the updated variance and data. However, when estimating the
Bates-0 and SV-NIG-0 models, the PMMH-PF2 underperforms the PMMH-PF1. In fact,
in the simulation studies, I observe that the performance of all the PMCMC methods is
very sensitive to the parameter –, because it is important in generating particles of v,
and with a higher –, the particles of v may vary significantly. Further, the particles of
the jumps may be quite varied as well, especially for the Bates-0 model, and compared to
the Heston-0 model without jumps, jumps in the Bates-0 model and SV-NIG-0 model
play a relatively important role in the likelihoods. Therefore, fewer particles are needed
to create a diverse combination of jumps and variance v with a higher –. However, a
higher – may not be consistent with the data, and the PMMH-PF2 seems to produce
a less significant – than the PMMH-PF1, as confirmed by the estimation results of the
parameters in the Heston-0 model.
2. Comparison of the PF and the APF used in the PMMH.
When estimating the Heston-0 model, the PMMH-APF obtains an estimation performance
comparable to that of the PMMH-PF1/PF2; however, when estimating the other two
models, its estimation performance is rather poor. The reason for the failure of the APF
to estimate the Bates-0 and SV-NIG-0 models is the inclusion of independent jumps,
which makes the advantage of the APF become a handicap. The key idea of the APF
does not work for models with independent random sources. In the estimation with the
PMMH-APF, I first predict the variance at current time t on the basis of the particles
of variance at t ≠ 1 without the random di�usion term, and simulate the particles of
the jumps without any prior information, and then choose the most likely particles of
variance at t ≠ 1 according to the likelihood of the observation at time t and weights at
t ≠ 1. Second, I re-predict the variance at t with the random di�usion term, and choose
the simulated jumps with the indices of the selected particles, rather than re-simulating
the jumps, because the jumps are independent of the past track and re-simulating them
may a�ect the e�ect of auxiliary variables. Therefore, the independence of the jumps
reduces the e�ectiveness of the APF.
3. Comparison of the PMMH and the PGAS.
Although the PGAS is very similar in design to the PMMH-PF2, they di�er in the step
of updating particles of the variance and jumps. In the estimation using the PMMH-PF2,
I use the PF to generate the particles, whereas in the PGAS, the update of particles
uses some prior information embodied in the reference trajectory. In addition, unlike the
PG sampler, after each time step in the SMC update, a new trajectory is obtained by
an ancestor sampling step, which connects part of the reference trajectory, X

Õ
t:T

, with
one of the generated particle trajectories, X

i

1:t≠1

, i œ {1, ..., N}, with probabilities given
by their importance weights. As pointed out in Lindsten et al. (2014), the PGAS is
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Figure 3.7: Randomness sources in the Bates-0 model.

particularly competitive in extracting a high-dimensional and highly autocorrelated state
trajectory. This is confirmed by the superior estimation results of the PGAS in estimating
the Heston-0 and SV-NIG-0 models, and its performance with only a small number of
MCMC iterations and a small set of particles is better than the other algorithms with a
large number of MCMC iterations and particles.

Indeed, there is a remarkable di�erence between the PMMH and PGAS, although both
belong to the PMCMC methods. In particular, just as the PMMH algorithm can
be regarded an approximation of the ideal marginal MH sampler targeting p(�|Y

1:T

),
the PGAS can be regarded an approximation of the ideal Gibbs sampler targeting
p(�, X

1:T

|Y
1:T

). Therefore, as pointed out in Lindsten et al. (2014), the respective
performances of the PMMH and PGAS depend on the properties of the marginal MH
sampler and Gibbs sampler and, therefore, depend heavily on the properties of specific
problems. For the Heston-0 and SV-NIG-0 models, the ideal Gibbs sampler seems to
have better mixing properties than the marginal MH sampler.

4. Comparison of the PMCMC methods and other MCMC methods.

Generally, compared to the MH, the use of adaptive proposals in the AM can significantly
raise the AR, thus reducing M to achieve a stabilised performance. However, as the
model specification becomes complex, the MH and AM underperform the algorithms that
are able to deal with a complicated target distribution and strong dependence between
parameters and state variables. In particular, when estimating all three models, the
FUSS-RC outperforms the FUSS-MH, because of the RS step in the FUSS-RC.

Although the PMCMC methods achieve comparably good estimation performance as the
FUSS algorithms in estimating the Heston-0, their performance deteriorates in estimating
the Bates-0 model with rare large jumps included, even when the number of particles
and length of the chain are quite large. However, the PMCMC algorithms beat the
others in estimating the SV-NIG-0 model. The reason is the di�erent features of the
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Figure 3.8: Randomness sources in the SV-NIG-0 model.

jumps in the Bates-0 and SV-NIG-0 models. The simulated compound Poisson jumps are
discrete jumps, and their expected mean size and variance are large, with µ

y

= ≠0.05
and ‡

y

= 0.1; therefore, the compound Poisson jumps bring on large changes in the
log prices, which are relatively easy to identify. Since there is a distinctive di�erence
between the simulated compound Poisson jumps and simulated di�usion terms, as shown
in Figure 3.7, the algorithms can easily classify the di�erent sources of randomness created
by the jumps and di�usions. However, for the model with NIG jumps, the expected
mean of jumps is “/‹ = ≠0.02, and as shown in Figure 3.8 of the simulated NIG jumps
against the simulated di�usions, large jumps are less significant than those created by
the Bates-0 model. When estimating the SV-NIG-0 model, the algorithms may mix the
randomness created by the infinite-activity jumps and di�usions, especially for the small
frequent jumps. Since the NIG jumps are not significant compared to the compound
Poisson jumps, their role in the likelihoods and importance weights of particles is less
important than that of the compound Poisson jumps. In other words, even if the jumps
are not correctly identified, the extra randomness can be captured by the di�usion terms,
which explains the higher AR and the better mixing of the chain in the estimation of the
SV-NIG-0 model than the Bates-0 model.

Overall, the strength of the PMMH algorithms, compared to the other MCMC methods, is
that they simultaneously update the parameters and state variables, targeting p(�|Y

1:T

),
and the PGAS simultaneously update all the variables, targeting p(�, X

1:T

|Y
1:T

), which
is very important in the presence of a strong dependence between state variables and
parameters. In the Bates-0 model, the independent rare large events reduce the e�ciency
of the PMCMC methods; however, in the SV-NIG-0 model, where the jumps are hard
to distinguish from the di�usions and their role in deciding the weights of the particles
is relatively small, most particles generated by the PMCMC methods are useful and,
therefore, the PMCMC beat the other algorithms and are very competitive in this case.
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3.7.2 Variance
In this subsection, I analyse the extraction of variance in the Heston-0, Bates-0, and
SV-NIG-0 models. The figures of the extracted variance against the simulated path are
listed in Appendix A.

The figures show that the MH and AM yield relatively poor results when little prior
information of variance is available. Specifically, given that the initial variance is v

t

= 0.02,
’t = 1, ..., 252, the MH and AM do not achieve the true variance dynamics and are sensitive
to the initial flat values, whereas the other algorithms capture the variance dynamics
relatively well. Moreover, I observe that when estimating all three models, the FUSS and
PMCMC algorithms tend to extract a path of variance more volatile than the true one.
In particular, in the Bates-0 model, the path extracted by the PMMH-PF1 is the most
volatile: it captures the concaveness that occurs between 50 and 100, which the other
algorithms miss. In the SV-NIG-0 model, the di�erences between the paths of variance
extracted by the MH, AM, and FUSS algorithms are much less significant, and clearly
the PMCMC methods achieve better performance in generating more volatility and more
consistent levels for the paths.

The extraction of the path of variance is relevant to values of Ÿ and –. The paths of
variance extracted by the FUSS and PMCMC algorithms are more volatile than those by
the MH and AM algorithms, and correspondingly, Ÿ and – estimated by the FUSS and
PMCMC are more significant than those by the MH and AM. In fact, in the estimation
with the PMCMC methods, the update of variance is very sensitive to –. Specifically, a
more significant – can introduce more diversity to the particle set of variance; therefore, it
may prevent the particles from accumulating in a local region and increase the e�ciency
of the SMC update.

3.7.3 Jumps
The figures of the extracted jumps against the simulated jumps are listed in Appendix B.
In the Bates-0 model, all the algorithms extract the discrete rare large jumps quite well in
terms of estimating both jump times and jump sizes. However, extracting infinite-activity
NIG jumps is much more di�cult than extracting discrete finite-activity compound
Poisson jumps. Overall, the extracted NIG jumps are smaller than the true jumps,
especially the downside jumps and jumps extracted by the FUSS and PMMH. Interesting,
although the extraction of NIG jumps is not as accurate as that of compound Poisson
jumps, there are significant similarities in the extracted NIG jumps across di�erent
algorithms, suggesting that the MCMC methods tend to reallocate the randomness
created by Brownian di�usions and infinite-activity jumps, especially the frequent small
jumps.

3.7.4 Parameter Estimation
First, I analyse the parameter estimation results of the Heston-0 model as shown in
Table 3.4. The MH and AM produce similar parameter estimation results, except that
Ÿ and – are more significant with the AM. Further, Ÿ and – become higher with the
FUSS algorithms and are highest with the PMMH and PGAS. A possible reason for the
significant Ÿ and – with some algorithms is that they tend to extract a volatile path
of variance with more spiky peaks and valleys, and this may a�ect the values of the
parameters that are key in creating the changes in the path of variance.
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Table 3.4: Parameter estimates of the Heston-0 model using simulated one-year data of daily
log asset prices. The parameter values are the mean of the posteriors as annual decimals. The
standard errors are the standard deviations of the posteriors, reported in parentheses.

True values MH AM FUSS-RC-P4 FUSS-MH-P4
M

0

80000 15000 1000 1000
M 100000 20000 5000 5000
Ÿ 3 2.536 2.562 2.615 3.240

(1.895) (1.799) (1.705) (1.860)
◊ 0.02 0.022 0.023 0.016 0.018

(0.025) (0.025) (0.009) (0.008)
– 0.3 0.147 0.156 0.186 0.171

(0.031) (0.013) (0.035) (0.025)
fl -0.8 -0.849 -0.840 -0.790 -0.731

(0.091) (0.064) (0.098) (0.202)
µ -0.1 -0.151 -0.152 -0.142 -0.136

(0.104) (0.105) (0.096) (0.100)

True values PMMH-PF1 PMMH-PF2 PMMH-APF PGAS
M

0

4000 4000 4000 10000
M 20000 20000 5000 50000
N 1000 1000 1000 5000
Ÿ 3 2.895 2.730 2.662 3.180

(0.649) (1.561) (0.421) (1.881)
◊ 0.02 0.021 0.017 0.016 0.019

(0.005) (0.008) (0.001) (0.009)
– 0.3 0.251 0.139 0.469 0.199

(0.067) (0.043) (0.033) (0.052)
fl -0.8 -0.825 -0.874 -0.701 -0.804

(0.076) (0.072) (0.003) (0.069)
µ -0.1 -0.186 -0.161 -0.163 -0.152

(0.071) (0.092) (0.037) (0.095)

Further, in the Heston-0 model, all the algorithms estimate µ more negative than its
true value. This may also be explained by the extracted path of variance being flatter
than the true path. As captured by the correlation parameter fl, a strong negative
correlation occurs between the changes in variance and log asset prices, and when the
spot variance increases, the log price process tends to drop. However, when the peaks in
the true path of variance are not captured by the algorithms, the extracted variance is
less capable of causing a drop with “enough” magnitude in the log asset price, which has
to be compensated for by a µ more negative than its true value.

According to the estimation results of the Bates-0 and SV-NIG-0 models as shown in
Tables 3.5 and 3.6, the values of Ÿ and – are also correlated with the performance of
algorithms in extracting variance, and overall, – is higher with the PMCMC methods.
This suggests a potential problem of the PMMH. In the estimation with the PMMH, I use
an SMC algorithm to update the latent state variable v. In particular, I generate a set of
particles of the variance v according to its transition kernel: v

t

= v

t≠1

+ Ÿ(◊ ≠ v

t≠1

)� +
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Table 3.5: Parameter estimates of the Bates-0 model using simulated one-year data of daily
log asset prices. The parameter values are the mean of the posteriors as annual decimals. The
standard errors are the standard deviations of the posteriors, reported in parentheses.

True values MH AM FUSS-RC-P4
M

0

80000 15000 1000
M 100000 20000 5000
Ÿ 3 2.482 3.035 3.305

(1.481) (1.652) (1.295)
◊ 0.02 0.025 0.023 0.023

(0.021) (0.018) (0.009)
– 0.3 0.171 0.141 0.205

(0.023) (0.027) (0.013)
fl -0.8 -0.937 -0.867 -0.798

(0.031) (0.070) (0.028)
µ -0.1 -0.071 -0.052 -0.041

(0.116) (0.136) (0.119)
µ

y

-0.05 -0.062 -0.060 -0.060
(0.028) (0.029) (0.026)

⁄ 0.05 0.067 0.067 0.067
(0.017) (0.017) (0.018)

‡

y

0.1 0.108 0.106 0.110
(0.024) (0.021) (0.022)

True values FUSS-MH-P4 PMMH-PF PGAS
M

0

1000 4000 4000
M 5000 5000 20000
N 5000 5000
Ÿ 3 2.977 3.014 3.008

(0.779) (0.046) (0.498)
◊ 0.02 0.022 0.015 0.019

(0.008) (0.000) (0.005)
– 0.3 0.201 0.256 0.345

(0.040) (0.004) (0.001)
fl -0.8 -0.749 -0.758 -0.860

(0.113) (0.022) (0.104)
µ -0.1 -0.047 -0.023 0.028

(0.119) (0.000) (0.094)
µ

y

-0.05 -0.062 -0.045 -0.062
(0.028) (0.001) (0.029)

⁄ 0.05 0.069 0.068 0.066
(0.018) (0.000) (0.017)

‡

y

0.1 0.110 0.126 0.111
(0.021) (0.003) (0.023)
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Table 3.6: Parameter estimates of the SV-NIG-0 model using simulated one-year data of daily
log asset prices. The parameter values are the mean of the posteriors as annual decimals. The
standard errors are the standard deviations of the posteriors, reported in parentheses.

True values MH AM FUSS-RC-P4
M

0

80000 40000 3000
M 100000 50000 10000
Ÿ 3 3.293 2.828 3.062

(2.093) (1.584) (2.024)
◊ 0.02 0.024 0.021 0.022

(0.009) (0.005) (0.008)
– 0.1 0.088 0.095 0.080

(0.011) (0.020) (0.012)
fl -0.8 -0.805 -0.844 -0.790

(0.063) (0.070) (0.070)
µ -0.1 -0.211 -0.139 -0.191

(0.037) (0.061) (0.055)
“ -0.1 -0.122 -0.088 -0.156

(0.072) (0.116) (0.167)
‹ 5 8.693 8.457 5.900

(3.353) (3.422) (1.406)
‡ 0.2 0.254 0.253 0.265

(0.058) (0.055) (0.054)

True values FUSS-MH-P4 PMMH-PF1 PGAS
M

0

3000 10000 10000
M 10000 20000 20000
N 1000 1000
Ÿ 3 3.160 3.615 3.162

(1.786) (1.788) (1.826)
◊ 0.02 0.020 0.019 0.027

(0.006) (0.004) (0.008)
– 0.3 0.088 0.131 0.095

(0.010) (0.048) (0.037)
fl -0.8 -0.849 -0.826 -0.814

(0.072) (0.086) (0.076)
µ -0.1 -0.131 -0.132 -0.307

(0.038) (0.050) (0.127)
“ -0.1 -0.078 -0.098 -0.088

(0.071) (0.031) (0.195)
‹ 5 5.974 5.218 5.567

(1.513) (1.145) (1.418)
‡ 0.2 0.252 0.137 0.244

(0.055) (0.083) (0.058)
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–


v

t≠1

�‘, where ‘ is a standard normal random number. The transition kernel shows
that the diversity of the particle set is determined by the parameter –; therefore, a larger
– is more likely to produce a particle set that better represents the target distribution.
In other words, – has an important role in the performance of the SMC update in that it
not only directly a�ects the likelihood as a parameter involved in the likelihood function,
but also indirectly changes it by generating a particle set. Thus, it is not surprising that a
larger – is more likely to be accepted with the PMMH-PF1, whereas with the PGAS and
PMMH-PF2, – is updated according to its conditional posterior as in the MH, AM, and
FUSS, and whether it is accepted or not is not related to the likelihood of the particle set.

In the Bates-0 model, all the algorithms succeed in estimating the jump-related parameters
µ

y

, ⁄, and ‡

y

, owing to very accurate extraction of the jumps. However, in the SV-NIG-0
model, the jump-related parameters, including “, ‹, and ‡, are harder to identify from
the data. Specifically, the expected mean size of the NIG jumps is “/‹, and the variance
of the NIG jumps is ‹‡

2 + “

2

/‹

3. When the estimated values are similar in the other
algorithms, “ is more negative with the FUSS-RC, and ‡ is lower in the PMMH-PF1.
Correspondingly, the NIG jumps extracted by the FUSS-RC show downside jumps that
are more negative, and the jumps extracted by the PMMH-PF1 are less significant than
those extracted by the other algorithms. Moreover, the arrival rate of the NIG jumps is:

fi

NIG

(dx) = ‡–

fi

e

—x

K

1

(–|x|)
|x| dx, (3.14)

where – = ‹

2

/‡

2 + “

2

/‡

4, — = “/‡

2, and K

1

is the modified Bessel function of the third
kind with index 1. Therefore, generally, a more significant ‹ with the MH and AM leads
to a higher arrival rate, and as reflected in the figures of extracted jumps, there are more
frequent small jumps extracted by the MH and AM.

Further, in the SV-NIG-0 model, the values of µ with all algorithms are more negative than
its true value. Indeed, this result may come from the less significant jumps. Compared to
the simulated NIG jumps, the number of the extracted jumps are fewer, the jump sizes
are smaller, and, markedly, the algorithms miss several large downside jumps.
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3.8 Discussion

In this chapter, I compare the estimation performance of advanced MCMC algorithms
comprising the AM (Haario et al., 1999a, 2001), the FUSS algorithms (Martino et al.,
2015), and the PMCMC methods against conventional MH algorithms (Hastings, 1970;
Metropolis et al., 1953). The PMCMC methods comprise the PMMH-PF1/PF2/APF
(Andrieu et al., 2010) and the PGAS (Lindsten et al., 2014). The comparison is based on
simulation studies. In particular, I examine, from simulated data, how these algorithms
perform in estimating the a�ne Heston-0, Bates-0, and SV-NIG-0 models with di�erent
jump structures and in dealing with the problems of high dimensions, complicated target
distributions, and strong dependence between latent state variables and parameters.
While some finance research applies the conventional MCMC or SMC algorithms to
estimate stochastic volatility models with jumps (see, for example, Christo�ersen et al.,
2010a; Eraker et al., 2003; Kaeck and Alexander, 2013a), few attempts have been made to
apply the above algorithms. This chapter seek to examine how the advanced estimation
methods perform in estimating complicated financial models compared to conventional
MH algorithms.

The results of the simulation studies show that di�erent jump structures significantly
a�ect the estimation performance of the algorithms. In particular, when all the algorithms
perfectly extract the compound Poisson jumps in the Bates-0 model, they fail to distinguish
the randomness created by the infinite-activity NIG jumps and Brownian di�usions in
the log price process of the SV-NIG-0 model. This makes parameter estimation and
variance extraction very challenging, and the extra complexity brought on by the NIG
jumps requires the FUSS and PMCMC methods to increase the numbers of MCMC runs
and particles, while the MH and AM are less capable of dealing with complicated model
specifications. In contrast, compound Poisson jumps create rare but significant changes
in the path of the log price process, which are distinctive of di�usions. Therefore, in
the PMCMC methods, jumps in log asset prices play an important role in deciding the
importance weights of particles. The results of the simulation studies show that in the
estimation of the Bates-0 model, the acceptance rate of the PMCMC methods significantly
decreases, and the e�ciency drops. However, the other algorithms are less vulnerable
to the specification of compound Poisson jumps and achieve consistent performance in
di�erent models.

Considering the complexity and computational costs of di�erent algorithms, I conclude
that for models with a simple specification, the MH is very competitive because of its low
computational cost. However, if the target distribution is complicated or the proposal
of the MH is inappropriate, the acceptance rate may be very low, and most generated
draws are wasted. The AM makes use of the previous samples and dynamically tunes the
proposal, and this online-tuned adaptive proposal can significantly raise the acceptance
rate and speed up the convergence of the chain.

Moreover, when there is a strong correlation between state variables and the target
distribution becomes complicated, numerous MCMC iterations may be required for the
chain generated by the MH and AM to converge. The FUSS algorithms can tackle
this problem by constructing an e�cient proposal and producing virtually independent
samples, as noted in Martino et al. (2015). On the other hand, with a fixed number
of MCMC iterations, the FUSS algorithms are slower than the very fast MH and AM
algorithms. However, if one focuses on achieving a good estimation performance, despite
the relatively high computational costs, the FUSS algorithms are very e�cient because
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they only require a small number of MCMC iterations to achieve a good mixing.

In addition, the PMCMC methods can deal with strong dependence and complicated
target distributions, and their computational costs are significantly lower than those of the
FUSS algorithms, which make them very competitive. However, when other algorithms
achieve stable performance across di�erent model specifications, the performance of the
PMCMC methods depends largely on the properties of specific problems, which may
deteriorate when the dependence between some state variables is weak. Moreover, as
pointed out in Lindsten et al. (2014), the relative performances of the PMMH and PGAS
depend on whether the ideal marginal MH or the Gibbs sampler, that is, the samplers
that PMMH and PGAS approximate, has the better mixing property for the specific
problem. In estimating the Heston-0 and SV-NIG-0 model, the PGAS outperforms the
PMMH with a small number of MCMC iterations and a small set of particles, suggesting
a fast and good mixing of the PGAS kernel in estimating these two models.

Finally, it would be interesting to discuss the performance of MCMC algorithms on the
basis of more extensive data sets. For example, in this study, the comparison is based on
one simulated path of one-year data, and in further research it is possible to consider a
number of simulated paths with more observations.





4 Model Estimation with Advanced
MCMC Algorithms:
Empirical Studies

4.1 Motivation

In this chapter, I apply the advanced MCMC algorithms that prove e�cient in the
simulation studies to estimate the SV-NIG-1 model using real market data. The algorithms
comprise the AM (Haario et al., 2006), the FUSS-RC with pruning type 4 (Martino et al.,
2015), the PMMH (Andrieu et al., 2010), and the PGAS (Lindsten et al., 2014), and their
performance is compared to that of the conventional random-walk MH algorithm.

The model estimated is the SV-NIG-1 model, namely, the stochastic volatility model with
infinite-activity NIG jumps in returns and the non-a�ne linear variance process. This
model is selected because, as shown in Chapter 2, the SV-NIG-1 performs best in option
pricing and is a good fit with the data of the S&P 500 index returns and the 30-day VIX
in 1996–2009.

This chapter focuses on empirical studies. The SV-NIG-1 model is estimated using the
joint information of the S&P 500 index returns and the 30-day VIX from January 2002
to December 2005, the same time period used in Andrieu et al. (2010).1 Using the joint
information enables me to estimate both the physical and risk-neutral dynamics of the
index returns and variance. The first reason of estimating both dynamics is that the
risk-neutral dynamics has a number of important real-life financial applications, one of
the most important being the valuation of derivatives. Second, estimating the risk-neutral
dynamics from the joint information adds to the existing di�culty of estimating the
physical dynamics in the presence of high dimensions and complicated posteriors, which
challenges an algorithm to e�ciently fit a model to data.

The objectives of this chapter are

• To apply the advanced MCMC algorithms to estimate a complex model using the
joint information of empirical index returns and VIX data;

• To compare the estimation performance of di�erent algorithms in the presence of
strong dependence between a number of unknown parameters and high-dimensional
state variables.

1Andrieu et al. (2010) use only daily index data.

79
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Figure 4.1: Daily S&P 500 index returns in 2002–2005.
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Figure 4.2: Annualised realised variance of the S&P 500 index in 2002–2005.

This chapter is organised as follows. Section 2 briefly describes the data. Section 3
presents the initial settings and implementation of algorithms. Section 4 presents the
estimation results and discusses the performance of algorithms. Section 5 concludes this
chapter.

4.2 Data

In the empirical studies, the SV-NIG-1 model is estimated using the joint information of
the S&P 500 index returns and daily 30-day VIX data from January 2002 to December
2005, covering a total of four years and 1,000 trading days. The daily returns of the S&P
500 index, the annualised realised variance of the index, and the 30-day VIX index are
plotted in Figures 4.1–4.3. The VIX index is reformulated from the volatility surface
provided by OptionMetrics, and unlike the CBOE’s methodology, this approach reduces
the systemic biases in the VIX index provided by the CBOE, as pointed out in Kaeck
and Alexander (2012).
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Figure 4.3: 30-day VIX of the S&P 500 index in 2002–2005.

4.3 Implementation of Algorithms

Since the likelihood inference of the SV-NIG-1 model has been discussed in detail in
Chapter 2, in this section, I focus only on the initial settings and implementation of the
algorithms employed.

Before the estimation, I need to assign appropriate priors to the parameters. I choose
conjugate priors to make the conditional posterior a known form if possible, and the
priors should be uninformative so that the posteriors are dominated by the likelihoods.
The selected priors are as follows:

p(ŸP ) = N(4, 32), p(ŸQ) = N(4, 32), p(◊) = N(0.05, 0.12), (4.1)

p(÷
s

) = N(0, 22), p(fl
Á

) = N(0, 12), p(‡
Á

) = 1
‡

Á

. (4.2)

As in the simulation studies, the parameter pair (–, fl), which is expected to be strongly
correlated, is re-parameterised as in Jacquier et al. (2002): „

v

= –fl and w

v

= –

2(1 ≠ fl

2).
This improves estimation e�ciency and helps to rule out the large correlation between –

and fl. The priors for „

v

and w

v

are conjugate: „

v

|w
v

≥ N(0,

1

2

w

v

) and w

v

≥ IG(2, 200).

When the model is estimated with the PMMH-PF1, I set the priors for fl and – as follows:

p(–) = 1
–

, p(fl) = Uniform(≠1, 1).

Further, I assume the priors for the jump-related parameters as:

p(“) = N(0, 12), p(“Q) = N(0, 12), p(‹Q) = N(6, 52), p(‡) = 1
‡

.

Except for the PMMH, where the candidate draw of the parameter set �ú is generated by a
proposal q(·|�(i≠1)), with the other estimation methods the parameters are sampled from
their conditional posteriors. In particular, the conditional posteriors of parameters „

v

, ÷

s

,
fl

c

, and “ in the SV-NIG-1 model are normal distributions, and the conditional posteriors
of w

v

and ‡

c

are the inverse Gamma distributions. Consequently, these parameters are
updated by a Gibbs step.



82
Chapter 4. Model Estimation with Advanced MCMC Algorithms:

Empirical Studies

Ÿ

Q, “

Q, and ‹

Q are updated by the random-walk MH with Gaussian proposals, and the
variances2 of the proposals for Ÿ

Q, “

Q, and ‹

Q are 0.09, 0.0025, and 0.04, respectively.
It is possible to apply the FUSS-RC or the AM to estimate these three parameters;
however, after the estimation with the random-walk MH, the acceptance rates of these
parameters are very high, reaching 85% for Ÿ

Q, 91% for “

Q, and 86% for ‹

Q. Su�ciently
high acceptance rates obviate the computationally expensive algorithms.

The conditional posteriors of Ÿ

P , ◊ and ‡ can be factorised by the product of a known
distribution and the likelihood of the VIX; therefore, they can be updated by the DWW
method. After the estimation, the acceptance rates of Ÿ

P , ◊, and ‡ are 56%, 68%, and
79%, respectively, and for the same reason as mentioned above, I decide to use the fast
DWW method, instead of the AM and FUSS algorithms.

In the extraction of latent state variables, I follow the same approach as in the simulation
studies, updating the jump variable JY by a Gibbs step, updating G by the random-walk
MH with a Gaussian proposal with variance 1◊10≠6, and applying the random-walk MH
with a Gaussian proposal with variance 4◊10≠6, the AM, or the FUSS-RC to extract
v. The settings of the AM and the FUSS-RC are the same as in the simulation studies.
Alternatively, I use the PMCMC methods to extract the state variables JY, G, and v by
an SMC update.

Importantly, I choose the realised variance as the initial value for variance, and in the
PGAS, it is the initial reference trajectory. The choice of the realised variance is motivated
by the fact that it is an important measure of the physical dynamics of the variance
process and may contain some information about the physical parameters. Moreover, the
implied variance, although usually not as volatile as the realised variance and with fewer
spiky peaks, is positively correlated with the realised variance. Therefore, instead of using
v

t

= a, ’t, for some constant a, as in the simulation studies, in the empirical studies, I
exploit the information of the realised variance. This may improve the performance of
the MH, which is sensitive to initial values.

4.4 Results

4.4.1 Parameter Estimation
Let us first look at the parameter estimation results as reported in Table 4.1. The MH
and AM obtain similar parameter estimates. Compared to the estimates of the MH and
AM, the FUSS-RC di�ers mainly in a higher ◊

P and higher Ÿ

Q, because the FUSS-RC
algorithm tends to extract a path of variance with a higher level than the other two
algorithms. A higher Ÿ

Q compensates for the large ◊

P

Ÿ

P to imply a ◊

Q more consistent
with the VIX data.

On the other hand, the PGAS and PMMH-PF2 achieve similar results, which is not
surprising because in structure, these two algorithms are very similar, except for a reference
trajectory used in the PGAS. The di�erence between the two lies in their estimation of
jump-related parameters. Uniformly, the jump-related parameters in the PMMH-PF2 are
more significant than those in the PGAS, suggesting a higher frequency of jumps and
jumps of a larger mean size under the physical measure P , corresponding to the jumps
extracted by the PMMH-PF2 as shown in Figure 4.19.

2The variances are proper in the sense that they consider the trade-o� between a high acceptance
rate and a generated chain mixing well.
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Table 4.1: Parameter estimates, acceptance rate of v, and DICs of model parameters of the
SV-NIG model with — = 1. The model is estimated using daily spot returns of the S&P 500
index and the reformulated 30-day VIX from January 2002 to December 2005. The parameter
values are the mean of the posteriors as annual decimals. The standard errors are the standard
deviations of the posteriors, reported in parentheses.

MH AM FUSS-RC-P4 PMMH-PF1 PMMH-PF2 PGAS
M

0

60000 60000 1000 10000 10000 10000
M 100000 100000 10000 50000 50000 50000
N 1000 1000

◊

P 0.014 0.011 0.024 0.030 0.031 0.025
(0.005) (0.003) (0.010) (0.002) (0.010) (0.008)

Ÿ

P 1.946 2.097 2.178 2.457 1.896 1.920
(0.795) (0.812) (0.865) (0.103) (0.136) (0.187)

Ÿ

Q 1.322 1.628 1.957 1.698 2.502 2.472
(1.164) (1.238) (1.692) (0.081) (1.460) (1.422)

– 1.860 1.719 1.829 2.198 1.408 1.165
(0.096) (0.084) (0.116) (0.039) (0.009) (0.053)

fl -0.945 -0.944 -0.943 -0.858 -0.984 -0.978
(0.006) (0.008) (0.009) (0.003) (0.001) (0.002)

÷

s

-1.433 -2.026 -1.338 -0.506 -1.726 -1.278
(1.472) (1.630) (1.602) (0.059) (0.802) (0.805)

“ 1.312 1.424 1.310 0.211 -0.430 0.225
(0.449) (0.408) (0.457) (0.003) (0.158) (0.371)

“

Q -0.254 -0.277 -0.232 -0.171 -0.036 0.033
(0.175) (0.176) (0.700) (0.003) (0.574) (0.598)

‹

Q 5.079 4.517 9.161 3.134 9.274 6.497
(1.599) (1.388) (1.623) (0.060) (1.618) (0.946)

‡ 0.176 0.170 0.177 0.114 0.105 0.111
(0.022) (0.020) (0.019) (0.006) (0.002) (0.009)

AR of v (%) 33 57 100 < 1 < 1 12
LL 7810.1 7853.1 7873.7 7523.4 7606.5 7844.5

Generally, compared to the estimates of the MH and AM, the results obtained by the
PMMH-PF1 di�er in a higher – and ◊

P , and a lower “, ‹

Q, and ‡. As mentioned above,
the estimates of ◊

P and – depend strongly on the level and shape of the extracted variance,
respectively, and a more volatile extracted path with a higher level may lead to a more
significant – and ◊

P . In addition, as will be discussed below, in the PMMH-PF1, the
volatile path of variance mitigates the need of frequent large jumps to create the desired
volatility in returns, which directly a�ects the estimation of jump-related parameters.

The ACFs of parameters are plotted in Figures 4.4–4.8.3 Autocorrelation is an important
measure of the independence of samples generated from the posterior distribution, and a
lower autocorrelation suggests more independent samples. In practice, when the generated

3The ACFs of the PMMH-PF1 are not reported, because in the PMMH-PF1, the acceptance rate of
the set of parameters is lower than 1% and the autocorrelation between parameters stays at a very high
level.



84
Chapter 4. Model Estimation with Advanced MCMC Algorithms:

Empirical Studies

0 100 200 300 400 500 600 700 800 900 1000
-0.2

0

0.2

0.4

0.6

0.8

1

κP

θP

κQ

ηs
γ

γQ

ν

σ

ρ

α

Figure 4.4: MH: ACFs of parameters in the SV-NIG-1 model.
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Figure 4.5: AM: ACFs of parameters in the SV-NIG-1 model.

samples show a high positive autocorrelation, it means that the samples within a certain
length of chain are “trapped” in a local mode, and the higher the autocorrelation, the
longer the length of the concerned chain. A high positive autocorrelation suggests that
the generated samples are not good representatives of the target distribution, because
their empirical distribution may be only a portion of the complete target distribution.
Therefore, a strong autocorrelation may suggest that the samples are not very informative
of the target distribution and that more MCMC runs are required to make the chain
move to the target distribution.

In this regard, the PMMH-PF2 performs best, followed by the FUSS-RC and PGAS,
while the performance of the MH and AM is relatively poor. Apparently, the ACFs of
some parameters drop more slowly than those of other parameters. In particular, with
the MH and AM, the ACF of – is the slowest to move towards zero, and even though I
use the re-parameterisation for – and fl and sample them in pairs, the autocorrelation
generated by – still remains strong.4 Moreover, some parameters obtained with the

4A possible reason is that in the estimation, the algorithm is trapped in a local mode of the multimodal
posterior of –, and if so, choosing di�erent initial values may help to solve this problem. In the estimation
presented in this thesis, I use 2 as the initial value for –. However, with di�erent initial values, the strong
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Figure 4.6: FUSS-RC-P4: ACFs of parameters in the SV-NIG-1 model.
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Figure 4.7: PMMH-PF2: ACFs of parameters in the SV-NIG-1 model.

FUSS-RC, PMMH-PF2, and PGAS even show negative autocorrelations, which means
that the chain e�ciently generates representatives of the target distribution and is even
better than a chain with independent samples.

One comment on the low ARs of PMMH-PF1/PF2. To improve the AR, I increase the
number of particles to 5,000; however, the ARs of both algorithms are still lower than
1. It reminds me of the poor performance of the PMMH-PF1/PF2 in the estimation
of the Bates-0 model in the simulation studies, and suggests that for a jump model,
even if the data suggests only a few large jumps, the PMMH algorithms may need a
large particle set to yield a reasonable AR. Furthermore, I try various updating schemes
with the PMMH-PF1, but they seem ine�cient in reducing the ACFs of parameters. To
achieve reasonable performance in the AR and ACFs, a considerably large N for the
PMMH-PF1/PF2 is required. However, for a high-dimensional model and a large-volume
data set, increasing N further is extremely time-consuming. Therefore, considering the
expensive computational cost incurred with a large set of particles, I present only the
results obtained with 1,000 particles.

autocorrelation remains.
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Figure 4.8: PGAS: ACFs of parameters in the SV-NIG-1 model.
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Figure 4.9: Extracted variance of the SV-NIG-1 model by the random-walk MH, AM, and
FUSS-RC-P4.

4.4.2 Variance
The extracted paths of variance are presented in Figures 4.9 and 4.10, and the figures of
individual paths are plotted in Figures C.1–C.6 in Appendix C. The patterns of variance
extracted by the MH and AM are similar, except that on average the level of variance
extracted by the AM is lower than that extracted by the MH. This may be because in
the estimation, I use the volatile realised variance with high peaks as the initial value
of variance, and for the MH, it takes longer for the chain to move owing to a relatively
ine�cient proposal and a low acceptance rate. However, after a su�ciently large number
of MCMC runs, and after the chain generated by the MH has mixed well, the variance
extracted by the MH still di�ers from that extracted by the AM with a similar pattern but
a di�erent level and scale. This suggests that more than one combination of parameters
and latent state variables may make a good goodness of fit. Among the PMCMC methods,
the paths of variance extracted by the PMMH-PF2 and PGAS are similar, whereas the
PMMH-PF1 tends to extract a path of variance with the same pattern as the VIX.

Next, I move to the ACFs of variance at selected time points, as shown in Figures 4.11–
4.14. Clearly, the AM with an adaptive proposal improves the update of variance in the
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Figure 4.10: Extracted variance of the SV-NIG-1 model by the PMMH-PF1, PMMH-PF2, and
PGAS.
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Figure 4.11: MH: ACFs of variance at selected time points.

MH, because the samples of variance generated by the AM show a weaker autocorrelation.
The FUSS-RC further reduces the ACF, with even a negative autocorrelation. For the
PGAS, N = 1, 000 is large enough to make the ACF drop sharply and remain at the zero
level.

4.4.3 Jumps

The extracted jumps are plotted in Figures 4.15–4.20. The jumps extracted by the MH,
AM, and FUSS-RC are very similar, not only the large jumps, but also the frequent
small jumps. On the other hand, there is a significant di�erence in the patterns of jumps
extracted by the PMCMC methods. Compared to the jumps extracted by the MH, AM,
and FUSS-RC, the mean sizes of positive jumps extracted by the PMCMC methods are
much smaller. The potential explanation is that the paths of variance extracted by the
PMCMC methods are more volatile with higher levels than those extracted by the other
algorithms.

One remark on why the PMCMC methods choose the variance, rather than generating
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Figure 4.12: AM: ACFs of variance at selected time points.
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Figure 4.13: FUSS-RC-P4: ACFs of variance at selected time points.

large jumps, to create the desired changes in the path of returns. A possible reason is that
in the estimation, the jumps are involved only in the likelihood of returns, whereas the
variance is involved in the likelihoods of both returns and the VIX index. In particular,
in the SV-NIG-1 model, the VIX index is a linear function of the spot variance, and
roughly speaking, the changes in the VIX correlate negatively with the changes in returns,
especially when the market became turbulent and there were sudden changes in the VIX
and returns. Therefore, considering the above factors, it is more e�cient for the PMCMC
methods to use the spot variance, instead of jumps, to capture the large changes in returns
and VIX index simultaneously, and particles suggesting volatile variance paths following
the pattern of the VIX are likely to gain larger importance weights.

Importantly, with the MH, AM, and FUSS-RC algorithms, the jumps are updated
according to their conditional posteriors, whereas with the PMCMC methods, the jumps
are updated using an SMC update. In the SMC update, since the jumps are assumed
to be independent of each other, the particles of jumps are simulated without any prior
information; therefore, the extracted jumps are more a sequence of randomly generated
NIG samples than jumps extracted from the data, as reflected in Figures 4.18–4.19.
Another observation is that, in terms of jump extraction, the PMMH-PF2 and PGAS
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Figure 4.14: PGAS: ACFs of variance at selected time points.
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Figure 4.15: Random-walk MH: extracted jumps of the SV-NIG-1 model.

disagree sharply, which is surprising because the results of the simulation and empirical
studies obtained so far indicate that these two algorithms usually produce similar results.
To investigate this disagreement, I re-estimate the SV-NIG-1 model by the PGAS and
use the jumps extracted by the FUSS-RC as the initial reference trajectory; however, the
pattern of jumps extracted by the PGAS highly resembles that in Figure 4.20. In fact, the
use of a reference trajectory provides little improvement in updating the particles of jumps,
because the NIG jumps are assumed to be independent of each other and, therefore, the
reference trajectory of jumps cannot guide simulated particles to the relevant region.

4.4.4 Fit to the VIX
The model-implied VIX obtained by di�erent algorithms is plotted in Figures D.1–D.6 in
Appendix D, and the estimates of fl

Á

and ‡

Á

and the mean squared errors (MSE) of the
model-implied VIX are presented in Table 4.2. Interestingly, although all the algorithms
estimate the SV-NIG-1 model from the joint information of the index returns and VIX
data, there is a clear di�erence in the model-implied VIX computed from estimated
parameters and the extracted path of variance. In particular, the model-implied VIX
with the PMMH-PF1 achieves the smallest MSE, and it almost completely coincides with
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Figure 4.16: AM: extracted jumps of the SV-NIG-1 model.
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Figure 4.17: FUSS-RC-P4: extracted jumps of the SV-NIG-1 model.

the market VIX as shown in Figure D.4. The reason is obvious: the PMMH-PF1 is the
only algorithm that updates parameters and state variables simultaneously on the basis
of the likelihoods of the VIX and index returns. This ensures that the combination of
parameters and state variables, if accepted, produces a very good fit to the VIX index.
This suggests that the PMMH-PF1 may perform particularly well in fitting models to
data that can be represented as a function of model parameters and state variables, say
the VIX. However, in the other algorithms, for example, the PMMH-PF2 and the PGAS,
where parameters and state variables are updated sequentially, the SMC update only
samples state variables on the basis of the previous sample of the parameter set. After
the SMC update of state variables, parameters are updated according to their conditional
posteriors. Consequently, candidate draws of parameters, even if they are accepted, do
not have to be optimal to maximise the posteriors.

Next, I discuss the estimates of fl

Á

and ‡

Á

. An interesting observation is that fl

Á

estimated
by the MH and AM is very close to 1, suggesting a significant correlation between VIX
pricing errors on neighbouring days, and fl

Á

estimated by the PMMH-PF2 and PGAS
is also close to 1, but slightly below the estimates by the MH and AM. In contrast,
fl

Á

estimated by the PMMH-PF1 is as low as 0.125, suggesting a weak autocorrelation
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Figure 4.18: PMMH-PF1: extracted jumps of the SV-NIG-1 model.
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Figure 4.19: PMMH-PF2: extracted jumps of the SV-NIG-1 model.

between daily VIX pricing errors. One explanation is the di�erence in the paths of
extracted variance. As mentioned above, the variance extracted by the PMMH-PF1 is
more volatile than the others, and its shape highly resembles that of the VIX; therefore,
the pricing errors are more random rather than caused by the flatter variance path.

4.4.5 Option pricing performance
To test the option pricing performance, I apply the SV-NIG-1 model estimated using the
joint information of index returns and the 30-day VIX in 2002–2005 to price option in two
time periods, 2002–2005 and 2006–2010. First, I use the Wednesday call and put options
in 2002–2005 (Sample A) to best avoid weekend e�ects, and then enhance the sample by
also using the option data on Thursdays in 2002–2005 (Sample B). To test the option
pricing performance in a future period, I use the Wednesday option data in 2006–2010
(Sample C). Moreover, as suggested by Bakshi et al. (1997), I filter out options with
prices below 3/8 dollar. Then I remove options with maturities shorter than one week
or longer than one year to reduce the liquidity bias and focus on the short-run option
pricing performance. Moreover, to study how the estimated model performs in predicting
future option prices, I compute the option pricing errors in each year for 2006–2010. The
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Figure 4.20: PGAS: extracted jumps of the SV-NIG-1 model.

Table 4.2: Mean squared errors of the model-implied VIX and estimates of flÁ and ‡Á in the
SV-NIG-1 model. The mean squared errors are computed as the mean of squared di�erences
between the model-implied VIX and market VIX in 2002–2005. The parameters are estimated
using daily spot returns of the S&P 500 index and the reformulated 30-day VIX from January
2002 to December 2005. The parameter values are the mean of the posteriors as annual decimals.
The standard errors are the standard deviations of the posteriors, reported in parentheses.

MH AM FUSS-RC-P4 PMMH-PF1 PMMH-PF2 PGAS
M

0

60000 60000 1000 10000 10000 10000
M 100000 100000 10000 50000 50000 50000
N 1000 1000 1000

MSE 5.51E-04 1.07E-03 9.89E-04 3.04E-05 6.84E-04 5.08E-04

fl

Á

0.979 0.989 0.984 0.125 0.956 0.912
(0.009) (0.005) (0.011) (0.007) (0.021) (0.020)

‡

Á

0.034 0.035 0.034 0.026 0.042 0.042
(0.001) (0.001) (0.001) (0.000) (0.001) (0.001)

statistics of the option data in all samples are listed in Tables 4.3 and 4.4.

First, it is important to point out that the option pricing performance is not a strict
measure of the performance of the algorithms. Instead, it allows us to examine the
robustness of the estimated model parameters and to understand how di�erent estimation
results a�ect the option pricing performance, thereby a�ecting the application of the
model to investment and risk management.

Second, regarding the option pricing performance with Sample C and its sub-samples,
although it works as a robustness check, the robustness is made of model robustness
and estimation robustness. As shown in Figures 4.21–4.23, the market remained stable
and quiet in 2002–2007, and from 2008 on, it shifted sharply and became very volatile.
Therefore, it is probable that if I re-estimated the models using the data from 2008–2010,
the results would be very di�erent. However, since nobody could anticipate future market
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Table 4.3: Properties of options in Samples A, B, and C. Sample A: Wednesday call and put
options in 2002–2005. Sample B: Thursday call and put options in 2002–2005. Sample C:
Wednesday call and put options in 2006–2010. Options with prices below 3/8 dollar or maturities
shorter than one week or longer than one year are filtered out. This table shows the number of
contracts, the average price (in parentheses), and the average bid-ask spread {in braces}.

Sample A Sample B Sample C
Wed, 2002-2005 Thu, 2002-2005 Wed, 2006-2010

17660 17082 40543
(21.56) (21.28) (26.45)
{1.25} {1.25} {1.74}

Table 4.4: Properties of options in Sub-Samples of Sample C. Options with prices below 3/8
dollar or maturities shorter than one week or longer than one year are filtered out. This table
shows the number of contracts, the average price (in parentheses), and the average bid-ask spread
{in braces}.

Sub-samples of Sample C
Wed, 2006 Wed, 2007 Wed, 2008 Wed, 2009 Wed, 2010

5872 7198 8889 8808 9776
(18.70) (26.16) (35.81) (26.49) (22.77)
{1.12} {1.64} {2.38} {1.57} {1.76}

Table 4.5: Option VRMSEs for the SV-NIG-1 model. Sample A: Wednesday options from
January 2002 to December 2005. Sample B: Thursday options from January 2002 to December
2005. Sample C: Wednesday options from January 2006 to December 2010. Options with prices
below 3/8 dollar or maturities shorter than one week or longer than one year are filtered out.
The option prices are computed by the Monte Carlo method with the technique of antithetic
variates. The number of Monte Carlo paths is 50, 000, and the model is discretised at daily
frequency. In each sample, the number in bold is the lowest VRMSE.

Sample A Sample B Sample C

MH 3.019 3.150 4.042
AM 3.067 3.212 4.185

FUSS-RC-P4 2.971 3.250 4.157
PMMH-PF1 2.854 3.090 3.966
PMMH-PF2 3.076 3.502 4.575

PGAS 3.207 3.627 4.849
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Table 4.6: Option VRMSEs for the SV-NIG-1 model. The option samples are Wednesday
options from 2006 to 2010. Options with prices below 3/8 dollar or maturities shorter than one
week or longer than one year are filtered out. The option prices are computed by the Monte
Carlo method with the technique of antithetic variates. The number of Monte Carlo paths is
50, 000, and the model is discretised at daily frequency. In each sample, the number in bold is
the lowest VRMSE.

2006 2007 2008 2009 2010
MH 2.332 3.260 4.776 4.592 4.114
AM 2.221 3.271 4.920 4.844 4.318

FUSS-RC-P4 2.292 3.382 4.819 4.748 4.322
PMMH-PF1 2.244 3.224 4.708 4.513 4.005
PMMH-PF2 2.571 3.848 5.134 5.177 4.883

PGAS 2.662 4.031 5.452 5.502 5.197
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Figure 4.21: Daily returns of the S&P 500 index in 2002–2010.

changes, a model capable of explaining di�erent market conditions and an estimation
method capable of identifying a robust parameter set will win the day.

The option pricing performance in Samples A, B, and C correlates highly with the fit to
the VIX. This is not surprising because the VIX index is constructed by option prices, and
as mentioned above, the VIX is very informative of the risk-neutral dynamics of a model.
Clearly, the PMMH-PF1, which performs best in the fit to the VIX, outperforms the others
in all three Samples A, B, and C. In pricing the options in the sub-samples of Sample
C, all the algorithms perform better in 2006–2007 than in 2008–2010, because market
conditions in 2006–2007 were similar to those in 2002–2005, whereas in 2008–2010, the
market shifted dramatically.

Surprisingly, despite its good fit to the VIX, the PGAS performs worst in all three
samples A, B, and C. The reason is the unrealistic extracted jumps and jump-related
parameters inconsistent with the data. In fact, the VIX index can be represented as a
deterministic function of the spot variance and risk-neutral parameters; therefore, the
importance of appropriate jump-related parameters is relatively small in computing the
VIX index, as the other risk-neutral parameters may compensate for the mis-speciation
of the jumps-related parameters. However, when pricing options, I need to simulate
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Figure 4.22: Annualised realised variance of the S&P 500 index in 2002–2010.
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Figure 4.23: 30-day VIX of the S&P 500 index in 2002–2010.

jumps from the risk-neutral jump-related parameters, and the simulation with unrealistic
jump-related parameters may miss the potential risks of jumps.

Another surprising observation is that the option pricing errors with the MH in Samples
A, B, and C are relatively small. In particular, although the MH underperforms the
FUSS-RC in Sample A, the MH ranks the second best in predicting future option prices
(Samples C), better than the AM and FUSS-RC. Let us take a closer look at the pricing
errors of the MH in individual years from 2006–2010. In fact, the pricing error of the
MH in 2006 is larger than that of the FUSS-RC, because market conditions in 2006
were similar to those in 2002–2005. However, as the market became volatile, the MH
demonstrates an increasing advantage over the AM and FUSS-RC. Recall that in the
estimation with the MH, I use the realised variance in 2002–2005 as the initial variance.
Since the extraction performance of the MH is sensitive to the choice of initial values,
the use of realised variance leads to a volatile extracted path of variance and a�ects the
parameter estimates, which are more consistent with the market conditions in 2006–2010
than those estimated with the AM and FUSS-RC. This may explain the remarkable
performance of the MH in predicting future option prices, and importantly, this suggests
the importance of initial values for the MH.
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4.5 Discussion

In this chapter, I apply the advanced MCMC algorithms to estimate the SV-NIG-1 model
using the joint information of the S&P 500 index returns and daily 30-day VIX data from
January 2002 to December 2005. The algorithms comprise the AM, the FUSS-RC with
pruning type 4, the PMMH-PF1/PF2, and PGAS, and their performance is compared to
that of the conventional random-walk MH algorithm.

When extracting the strongly autocorrelated spot variance, the adaptive proposal used
in the AM increases the acceptance rate of the MH and reduce the autocorrelation
between samples of the spot variance. The FUSS-RC and PGAS further improve the
extraction of the spot variance in that the ACFs of the spot variance extracted by the
FUSS-RC and PGAS drop sharply, which is in line with the results of Martino et al.
(2015) and Lindsten et al. (2014). Furthermore, the FUSS-RC even reduces the ACF
with negative autocorrelation, suggesting that this algorithm is e�cient in generating
good representatives of the target distribution. In contrast, the acceptance rates of
the PMMH-PF1 and the PMMH-PF2 are very low owing to the model specification of
independent NIG return jumps.

Moreover, the choice of estimation methods may a�ect the option pricing performance. In
particular, the model-implied VIX with the PMMH-PF1 almost completely coincides with
the market VIX; therefore, since the option pricing performance correlates highly with the
fit to the VIX, the PMMH-PF1 outperforms the other algorithms in the option pricing
performance in all three samples. In contrast, the PGAS performs worst in all three
samples owing to the poorly identified jump-related parameters under the risk-neutral
measure. The MH ranks the second best in predicting option prices due to the use of
realised variance as the initial variance, which makes the estimation results more consistent
with the market conditions in 2006–2010 than those estimated with other algorithms.

To sum up, the PGAS can cope with strong dependence between parameters and state
variables, and if one emphasises the fit to observations that can be represented as a
function of model parameters and state variables, the PMMH-PF1 is very competitive.
However, the performance of the PMMH-PF1 and the PGAS may be weakened by the
inclusion of independent jumps. In contrast, the other algorithms are less vulnerable to
the inclusion of independent jumps, and they achieve a stable performance in parameter
estimation, extraction of state variables, fit to the VIX, and option pricing. In particular,
an appropriate choice of initial values for state variables may significantly improve the
performance of the MH; moreover, the FUSS-RC is very competitive because it can improve
the estimation performance of the MH and AM and generate good representatives of
the target distribution of state variables in the presence of high dimensions and a strong
dependence structure.
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In this thesis, I first compare the use of infinite-activity VG/NIG jumps in the return
process, or in both the return and variance processes, and the specification of the non-
a�ne variance process, against the popular a�ne Heston, Bates, and double-Poisson-jump
models without jumps or with finite-activity compound Poisson jumps. The models
are estimated by conventional MCMC algorithms (Gibbs sampler, random-walk MH,
and DWW methods) from an extensive data set of daily S&P 500 index returns and
the reformulated 30-day VIX index from January 1996 to December 2009. Only a little
research has examined the empirical option pricing performance of stochastic volatility
models with infinite-activity Lévy jumps. Notable exceptions include Li et al. (2008), Yu
et al. (2011), and Ornthanalai (2014). The di�erence between my research and theirs lies
mainly in the use of non-a�ne variance dynamics and infinite-activity variance jumps.

Second, I compare the estimation performance of advanced MCMC algorithms comprising
the AM (Haario et al., 1999a, 2001), the FUSS algorithms (Martino et al., 2015), and
the PMCMC methods against conventional MH algorithms (Hastings, 1970; Metropolis
et al., 1953). The PMCMC methods comprise the PMMH-PF1/PF2/APF (Andrieu et al.,
2010) and the PGAS (Lindsten et al., 2014). The comparison is based on simulation
and empirical studies. In particular, I first examine, from simulated data, how these
algorithms perform in estimating the a�ne Heston-0, Bates-0, and SV-NIG-0 models
with di�erent jump structures and in dealing with the problems of high dimensions,
complicated target distributions, and strong dependence between latent state variables
and parameters. Then, the non-a�ne SV-NIG-1 model, which performs best in the model
comparison, is estimated using the joint information of the daily S&P 500 index returns
and the reformulated 30-day VIX from January 2002 to December 2005 with selected
algorithms that perform well in the simulation studies. When some finance research has
applied the conventional MCMC or SMC algorithms to estimate stochastic volatility
models with jumps (see, for example, Christo�ersen et al., 2010a; Eraker et al., 2003;
Kaeck and Alexander, 2013a), only a few attempts have been made to apply the above
newly proposed algorithms. These algorithms have been successfully applied in other
fields of science. For example, the AM has been used in climate models (Järvinen et al.,
2010; Solonen et al., 2012), and the PMCMC methods have been applied in biology
models (Golightly and Wilkinson, 2011; Holenstein, 2009) and ecology models (Peters
et al., 2010). Indeed, the problem of estimating stochastic volatility models with jumps
is particularly di�cult because of the strong dependence between parameters and state
variables and the inclusion of jump components. The second part of the thesis seeks to
examine how advanced estimation methods perform in estimating complicated financial
models compared to conventional MH algorithms.

As for the model comparison, the empirical results in Chapter 2 clearly confirm the
importance of non-a�ne variance process in terms of both the goodness of fit and

97



98 Chapter 5. Discussion and Conclusion

option pricing, as noted in the literature (see, for example, Christo�ersen et al., 2010a;
Kaeck and Alexander, 2012). Moreover, the non-a�ne variance specification can improve
model robustness, whereas a�ne variance dynamics may lead to unstable option pricing
performance across di�erent option samples. More importantly, the improvement brought
by the infinite-activity Lévy jumps, which has not been widely recognised, is critical
with the non-a�ne variance specification. The empirical results indicate that the infinite-
activity VG/NIG return jumps generate more realistic index dynamics and option prices,
and capture the uncertainty of future jumps better, which is missed by the finite-activity
compound Poisson jumps. Furthermore, the role of infinite-activity variance jumps is less
important than that of infinite-activity return jumps. The empirical results show that
the SV-NIG-1 markedly outperforms the others in pricing options and the SV-VG-NIG-1
achieves the best performance in goodness of fit. However, overall, the SV-VG-NIG-1 and
SV-NIG-1 models are comparable, and considering the extra model complexity of the
SV-VG-NIG-1, I conclude that the parsimonious model SV-NIG-1 is the more competitive
one.

As for the algorithm comparison, the results of the simulation studies in Chapter 3
suggest that di�erent jump structures may significantly a�ect the estimation performance
of the algorithms. When estimating the Bates-0 model, all the algorithms are able to
extract the compound Poisson jumps; however, the inclusion of rare large jumps reduces
the acceptance rate of the PMCMC methods and worsens their estimation performance.
Moreover, the extraction of the infinite-activity NIG jumps is di�cult for all the algorithms,
and the inclusion of NIG jumps makes the estimation of parameters and the extraction
of variance very challenging. Considering the complexity and computational costs of
di�erent algorithms, I conclude that for models with simple specifications, the MH
is very competitive because of its low computational cost. The AM further improves
the performance of the MH because it can significantly raise the acceptance rate and
accelerate the convergence of the chain by an online-tuned adaptive proposal. However,
the MH and AM are less capable of dealing with complicated model specifications. The
FUSS algorithms are particularly competitive in coping with strong dependence between
state variables and in generating virtually independent samples from complicated target
distributions, as noted in Martino et al. (2015). Generally, they achieve a good mixing
with the smallest MCMC runs, and their performance is stable and excellent regardless of
model specifications; however, they are relatively computationally expensive. In contrast,
the PMCMC methods are computationally cheap and very e�cient in mixing, and in
the simulation studies, they outperform the FUSS algorithms in estimating the Heston-0
and SV-NIG-0 models. However, the PMCMC methods are more vulnerable to model
specifications than the other algorithms; in particular, the inclusion of large independent
jumps may significantly reduce the e�ciency of the PMCMC methods.

The results of the empirical studies in Chapter 4 show that in extracting the strongly au-
tocorrelated spot variance, the adaptive proposal used in the AM increases the acceptance
rate of the MH and reduces the autocorrelation between samples of the spot variance.
The FUSS-RC and PGAS further improve the extraction of the spot variance in that the
ACFs of the spot variance extracted by the FUSS-RC and PGAS drop sharply, which is
in line with the results in Martino et al. (2015) and Lindsten et al. (2014). Furthermore,
the FUSS-RC even reduces the ACF with negative autocorrelation, suggesting that this
algorithm is e�cient in generating good representatives of the target distribution. In
contrast, the acceptance rates of the PMMH algorithms are very low owing to the model
specification of independent NIG jumps in the return process, and the jump-related
parameters are poorly identified by the PGAS. This suggests that, compared to the MH,
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AM, and FUSS-RC, the PMCMC methods are less capable of extracting independent
jumps; moreover, the inclusion of independent jumps may negatively a�ect their esti-
mation performance. Furthermore, the choice of estimation methods a�ects the option
pricing performance. In particular, the model-implied VIX with the PMMH-PF1 almost
completely coincides with the market VIX; therefore, since the option pricing performance
correlated highly with the fit to the VIX, the PMMH-PF1 outperforms the others in the
option pricing performance in all three option samples. In contract, the PGAS performs
worst in all three samples owing to the poorly identified jump-related parameters under
the risk-neutral measure. The MH ranks the second best in predicting option prices due
to the use of the realised variance as the initial variance in the estimation, which leads to
an estimation result consistent with the market conditions in 2006–2010.

In conclusion, according to the empirical results in the model comparison, there is clear
evidence for the importance of the infinite-activity return jumps and non-a�ne variance
dynamics in terms of the goodness of fit and option pricing performance, and the role of
variance jumps is less important than that of return jumps. In particular, a relatively
parsimonious model with infinite-activity NIG return jumps and non-a�ne variance
dynamics is very competitive. The results of the simulation and empirical studies on the
algorithm comparison suggest that each estimation algorithm has its own strengths and
drawbacks, and no single algorithm has shown an overwhelming advantage. The PMCMC
methods perform well in the presence of high dimensions and strong dependence between
parameters and latent state variables, and if one emphasises the fit to data that can be
represented as a function of model parameters and state variables, the PMMH-PF1 is
particularly competitive; however, their performance may be weakened by the inclusion
of large independent jumps. Despite the high computational cost, the FUSS algorithms
are particularly competitive in generating virtually independent samples and in achieving
the fastest mixing with a fixed number of MCMC runs, and their performance is stable
regardless of model specifications.

Finally, in future research, it would be interesting to use a volatility term structure to
identify the variance dynamics and to use a second factor to model the long-term mean of
variance, as in Kaeck and Alexander (2012). Moreover, as pointed out in Andersen et al.
(2014), a left tail factor is critical in forecasting the variance risk premium dynamics,
and the time-varying jump risk premia improve the risk-neutral dynamics. It would be
interesting to add the specification of time-varying jump risk premia to the current models,
for example, by making the jump-related parameters time-varying, or by assuming another
factor. As for the estimation methods, a number of extensions to the PMCMC methods,
as mentioned in Andrieu et al. (2010), may further improve the estimation performance.
In particular, a lot of literature has contributed to improving SMC algorithms, and the
techniques discussed in the SMC literature, such as the PF scheme dealing with anomalous
observations (Maiz et al., 2012), may be applied to the SMC update in the PMCMC
methods. Moreover, the FUSS algorithms prove e�ective in this thesis; however, their high
computational cost may limit their application. Therefore, it would be helpful to make
the FUSS algorithms more e�cient in pruning support points and constructing proposals.
Further, the particle learning (Carvalho et al., 2010) has shown to be competitive to the
MCMC, and this would be a promising direction for future research.
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Appendices





A Simulation Studies: Extracted
Variance

In this appendix, I report the spot variance extracted by di�erent algorithms in the
Heston-0, Bates-0, and SV-NIG-0 models. The extracted path is plotted in a blue solid
line and the true path is plotted in a red dotted-dashed line.
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112 A Simulation Studies: Extracted Variance
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Figure A.1: Random-walk MH: extracted variance of the Heston-0 model.
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Figure A.2: AM: extracted variance of the Heston-0 model.
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Figure A.3: FUSS-RC-P4: extracted variance of the Heston-0 model.
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Figure A.4: FUSS-MH-P4: extracted variance of the Heston-0 model.
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Figure A.5: PMMH-PF1: extracted variance of the Heston-0 model.
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Figure A.6: PMMH-PF2: extracted variance of the Heston-0 model.
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Figure A.7: PGAS: extracted variance of the Heston-0 model.
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Figure A.8: Random-walk MH: extracted variance of the Bates-0 model.



114 A Simulation Studies: Extracted Variance

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

simulated path

filtered path

Figure A.9: AM: extracted variance of the Bates-0 model.
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Figure A.10: FUSS-RC-P4: extracted variance of the Bates-0 model.
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Figure A.11: FUSS-MH-P4: extracted variance of the Bates-0 model.
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Figure A.12: PMMH-PF1: extracted variance of the Bates-0 model.
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Figure A.13: Random-walk MH: extracted variance of the SV-NIG-0 model.
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Figure A.14: AM: extracted variance of the SV-NIG-0 model.
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Figure A.15: FUSS-MH-P4: extracted variance of the SV-NIG-0 model.
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Figure A.16: FUSS-RC-P4: extracted variance of the SV-NIG-0 model.
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Figure A.17: PMMH-PF1: extracted variance of the SV-NIG-0 model.
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Figure A.18: PGAS: extracted variance of the SV-NIG-0 model.



B Simulation Studies: Extracted
Jumps

In this appendix, I report the jumps extracted by di�erent algorithms in the Bates-0
and SV-NIG-0 models. The extracted jumps are plotted in a blue solid line and the true
jumps are plotted in a red dotted-dashed line.
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118 B Simulation Studies: Extracted Jumps
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Figure B.1: Random-walk MH: extracted jumps of the Bates-0 model.
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Figure B.2: AM: extracted jumps of the Bates-0 model.
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Figure B.3: FUSS-RC-P4: extracted jumps of the Bates-0 model.
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Figure B.4: FUSS-MH-P4: extracted jumps of the Bates-0 model.
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Figure B.5: PMMH-PF: extracted jumps of the Bates-0 model.
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Figure B.6: PGAS: extracted jumps of the Bates-0 model.
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Figure B.7: random-walk MH: extracted jumps of the SV-NIG-0 model.
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Figure B.8: AM: extracted jumps of the SV-NIG-0 model.
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Figure B.9: FUSS-RC-P4: extracted jumps of the SV-NIG-0 model.
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Figure B.10: PMMH-PF: extracted jumps of the SV-NIG-0 model.
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Figure B.11: PGAS: extracted jumps of the SV-NIG-0 model.



C Empirical Studies: Extracted
Variance of the SV-NIG-1 Model

In this appendix, I report the spot variance extracted by di�erent algorithms in the
SV-NIG-1 model.
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122 C Empirical Studies: Extracted Variance of the SV-NIG-1 Model
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Figure C.1: Random-walk MH: extracted variance of the SV-NIG-1 model.
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Figure C.2: AM: extracted variance of the SV-NIG-1 model.
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Figure C.3: FUSS-RC-P4: extracted variance of the SV-NIG-1 model.
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Figure C.4: PMMH-PF1: extracted variance of the SV-NIG-1 model.
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Figure C.5: PMMH-PF2: extracted variance of the SV-NIG-1 model.
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Figure C.6: PGAS: extracted variance of the SV-NIG-1 model.





D Empirical Studies: Model-implied
VIX of the SV-NIG-1 Model

In this appendix, I report the model-implied VIX based on parameter estimates and
extracted variance of di�erent algorithms. The model-implied VIX is plotted in a blue
solid line and the market VIX is plotted in a red dotted-dashed line.
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126 D Empirical Studies: Model-implied VIX of the SV-NIG-1 Model
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Figure D.1: Random-walk MH: the model-implied 30-day VIX compared against the market
30-day VIX in 2002-2005.
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Figure D.2: AM: the model-implied 30-day VIX compared against the market 30-day VIX in
2002-2005.

01/2002 01/2003 01/2004 01/2005 12/2005
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

model-implied VIX

market VIX

Figure D.3: FUSS-RC-P4: the model-implied 30-day VIX compared against the market 30-day
VIX in 2002-2005.
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Figure D.4: PMMH-PF1: the model-implied 30-day VIX compared against the market 30-day
VIX in 2002-2005.
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Figure D.5: PMMH-PF2: the model-implied 30-day VIX compared against the market 30-day
VIX in 2002-2005.
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Figure D.6: PGAS: the model-implied 30-day VIX compared against the market 30-day VIX
in 2002-2005.
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