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ABSTRACT

Understanding the structure and dynamics of trees and forest is key in studying the en-vironment and understanding current and future climates. Development has been fast inmeasurement technology for these purposes, as it is currently possible to measure forestterrestrially with photography-based instruments or either static or mobile laser scanning,and airborne using drones, helicopters or aeroplanes, and even from space using satellite-mounted instruments. However, as all these measurements are indirect presentations ofthe key attributes to study, they require powerful analysismethods to accompany them. Thisthesis focuses on terrestrial laser scanning data and presents a method for reconstructingcomprehensive, quantitative structure models of trees from such data. The method is de-signed to be a tool for understanding tree and forest structure, as well as, dynamics andfunctionality, without the need for destructive measurements. The reconstructed modelsprovide access to tree attributes previously impossible or laborious to measure, either ata single tree-scale, at forest-plot-scale or even at forest-scale. The thesis will present thereconstruction method and will focus on two of its applications: automatic tree speciesrecognition and augmenting the produced structuremodels with leaves or needles, enablingmore accurate simulations involving light propagation and plant interaction with the atmo-sphere. Additionally, parts of the thesis describe forms of dissemination used to promotethe reconstruction method and its applications, increasing the rate of adoption into op-erational use. The dissemination approaches include several animations, interactive 3Dmodels and open-source software.



PREFACE

I remember starting working on the tree reconstruction project, when the first version of thetree reconstruction procedure had been written. It was in the very first workshop I attendedas part of this project, and after the presentation by my colleague, an emeritus professortold us quite bluntly that, he had tried to reconstruct trees from terrestrial laser scanningdata, and thus knew for a fact, that it simply could not be done! And this was despite theresults we were already presenting. For many years after that, I still had that doubt in theback of my head — at least every once in a while. On the other hand, I was constantly toldby my supervisor Mikko Kaasalainen that we are going to change the information paradigm,and that accurate tree models — which we started calling QSMs — are the key in this rev-olution. Only as late as 2016, when our research group organized a workshop on tree dataand modelling, did I really understand the effect we had made; A room-full of researchersfrom all-over the world, using the term QSM as it was something that had been taught inschool for decades, and even more so, their believe that QSMs are the future, coming upwith dozens of ideas on how they will be utilized. So the revolution is actually happeningas predicted and I’m proud having played at least a small part in it.

When life gives you lemonade, you make it into lemons— and life’s going to be all like whaaaaat?

Phil Dunphy
““

I started the dissertation project without a lot of knowledge about theworld of academia,and it seems that with the project now completing, I’m left with even more questions. Itmight be an overall feature of the era we are in, but it seems to me that there is constantchange going on at least in the Finnish academic institutions and atmosphere. Althoughit is said that evolution is key in success, I do feel that some level of permanence is alsorequired to know if any change was for the better and where to move next. This is in fact thebasic principle of mathematical optimization. Whatever the future might hold for scientificresearch in Finland, I do hope that the appreciation of science itself does not deteriorate,and that the appeal of this line-of-work does build up, because especially in the post-factualworld we need facts and people who separate — and teach to separate — fact from fiction.
During my PhD studies I’ve had the pleasure of meeting a lot of people from differentsectors of academia and various industries, many of whom have been, and continue to be,very passionate about the aspect of the world of science closest to them, but underestimat-ing the importance of all other aspects. While I admire the intensity of their commitment, Ido worry that it is just onemore symptom of the growing binary view of everything. Inferringthat one has to be better, pure mathematics or applied, or that either teaching or research ismore important, mathematics is either embedded in everything or not useful for anything,



iii
research versus dissemination, theoretical versus computational, industry collaboration orindependent science. It makesme think of a quote about onlymadmen dealing in absolutesbut contrary to my recollection, such quote only exists in the realm of science fiction. Evenso, I wish for a time in the future where we can again understand the need for compromiseand not treat it as a curse word — because what is compromise other than a synonym forempathy?

There is no absolute point of view from which real and idealcan be finally separated and labelled.
T. S. Elliot

““
Quite a large portion of my post-graduate time was spent on dissemination related as-pects of research, and often the assumption seems to be that when you do something likethat, you are choosing appearance over substance. However, I see research as a two partjob, where you first make a discovery and then report it. Do either one alone and you arenot a researcher, so why not give attention to both parts? Many people, myself included,have questioned the relevance and importance of dissemination-focused efforts during mystudies, but I’ve come to the conclusion that in the end, the efforts were certainly worth it.An animation or an interactive user-interface demonstration is not meant to replace writtenpublications, but they can be used to augment and elevate them, and to help new readersto find written publications. Furthermore, it is about acknowledging that people learn indifferent ways: some by reading text or equations, other by listening to oral presentations,and others by trying out things by themselves. Therefore, why not help as many peopleunderstand your work as possible? So I would like to challenge everyone — next time youmake a discovery — take some time to think about how to report it in innovative ways, toensure it gets the attention it deserves. But it should still be kept in mind that in a car raceit is better to bet on the car with the best engine, not the one with the shiniest gloss.
I am thankful for my supervisor Mikko Kaasalainen for the words of encouragement,guidance and level of freedom I was given, and to my instructor Pasi Raumonen for thesupport, collaboration and discussions. The funding provided by the Academy of Finlandthrough the Centre of Excellence in Inverse Problems Research and later the Centre of Ex-cellence in Inverse Modelling and Imaging, allowedme to focus solely on research. I’m alsothankful for the additional funding provided by Jenny and Antti Wihuri Foundation, Emil Aal-tonen Foundation and Finnish Foundation for Technology Promotion.
I have been pleasantly surprised and grateful for the positive reception and inclusionby the forest research community over the years. In particular I would like to thank EricCasella, Sanna Kaasalainen, Jari Liski, Raisa Mäkipää, and Risto Sievänen for their inputand support.
I thank the pre-examiners of this thesis, professors Heikki Haario and Martin Herold,for their time and contributions.



iv
To my workplace proximity associates Elina Viro, Henri Riihimäki, Kalle Rutanen, JuhoLauri, Hari Nortunen and Petteri Laakkonen, together with the first people at the departmentwho where always nice to me, Tiina Sävilahti and Riitta Lahti, I thank you for everything wehave shared and endured together.Thank you to my friends Matti Javanainen, Suvi Lehtimäki, Jouni Mäkitalo, Tomi Tur-tiainen, Topi Uusitalo, Aino and Toni Vettenranta, and Jesse Vilja for all the work counter-balance activities and to some of you for efforts to — involuntarily on my part — conquer thebeer capitols of the world. And to Kirsi, Matti, Laura and Kielo Virkki, thank you for lettingme be a part of your life and for giving me one of the greatest honours of my life.Carlos, my brother, thank you for your friendship, support and what must have been abillion jokes we’ve had the pleasure of sharing. Thank you for — quite literally — alwaysbeing there for me. Also, I see your master’s degree and raise you one doctoral degree.

Each friend represents a world in us, a world not born untilthey arrive, and it is only by this meeting that a new worldis born.
Anaïs Nin

““
Koen olevani vähintään keskiverto kirjoitetun sanan osa-alueella. Tiedän, että silti enpysty tuottamaan sanoja, joilla saisin teidät äiti, isä, Riikka ja Juhani vakuutettua siitä, ettäsaavutukseni ovat teidän kovan työnne, esimerkkinne ja loputtoman tukenne ansiota. Teiltäolen vuosien saatossa oppinut enemmän työetiikasta, oikeudenmukaisuudesta ja ennenkaikkea periksiantamattomuudesta kuin kaikkien opintojeni aikana yhteensä. Kiitos ettäolette olleet jättiläisiä, joiden harteilta tämän kääpiön on ollut helppo ponnistaa!My wife Fanni, as you are the brightest light in my life, they should name a star afteryou. However I am just a mathematician and not in the business of naming stars, and thusI had make stuff up to name in you honour. Thank you for being an inspiration and a rolemodel and for standing by me for our first ten amazing years, through the good times andthe tough times, and especially through efforts required to make this thesis into reality. Youmake me a better person, just as you seem to do everyone around you. ♥

Markku ÅkerblomMay, 2018
Tampere
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NOMENCLATURE

Notation Description
a Scalar number a.
a A vector.

M A matrix.
N Set of natural numbers.
Z Set of integers.
R Set of real numbers.

{ a1, a2, . . . } A set of elements.
[a1, a2, . . . ] A list of elements.

a ∈ A a is an element of set A.
‖ a ‖ Euclidean norm of vector a.
|a| Absolute value of the scalar a.
∀ Universal quantification.
∃ Existential quantification.

f (x) f is a function of x.
= Equal to.
, Not equal to.
< Less than.
≤ Less or equal than.
> Greater than.
≥ Greater or equal than.
≈ Approximately equal to.
∝ Proportional to.
± Plus or minus depending on a condition.



ABBREVIATIONS
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HSL hyper-spectral lidar
HTML hypertext markup language
JSON JavaScript object notation
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LAI leaf area index
LS least-squares
LiDAR light detection and ranging
PCA principal component analysis
PHP PHP: hypertext preprocessor
QR quick response
QSM quantitative structure model
RANSAC random sample consensus
RMSE root-mean-square error
SQL structured query language
SSM stochastic structure model
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SVM support vector machine
TLS terrestrial laser scanning
UI user interface
VR virtual reality
WebGL web graphics library
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1INTRODUCTION

Forests are a key part of the environment that surrounds us, enabling the conversion of car-bon dioxide and water into oxygen, through photosynthesis. Furthermore, trees and plantsare also essential for many of our planets animal species, as they offer nutrition and shel-ter. On the other hand, trees can be processed into wood and pulp that are the core oftwo major industries — especially in Finland — the lumber and paper industries. With theecological and economical points-of-views often competing, it is important to measure thecurrent state of the forests and to understand the dynamics of plants. As an example ofwhat to measure, biomass information has been determined to be a key descriptor in thestudy of the global carbon cycle (Kaasalainen et al., 2015), and forest productivity and forestsequestration (Bi et al., 2004).Before the 20th century, deforestation was happening in all climatic domains to makeroom for agriculture and urban development. While this is still the case in the tropical do-main, deforestation has slowed or reforestation has begun in the temperate and borealdomains. On a global level the forest area was measured to be a little below 4 billionhectares — about a third of the total land area (FAO, 2016). Surprisingly even after cen-turies of research, many open questions remain regarding all aspects of forests, includingthe magnitude of forest resources, the role of forests in the carbon cycle, and the structureof individual trees and interaction between trees. For example the estimate of the totalnumber of trees in the world was recently updated from the previous about 400 billion treesto 3 trillion (Crowther et al., 2015), furthermore recent study suggests that tropical forestsmight be net carbon sources rather than sinks due to deforestation and forest degradation(Baccini et al., 2017).With climate change focusing research into the global aspects of forests, the localaspects can be overlooked. However in the end, understanding the phenomena globallycomes down to studying the state and dynamics of single plants, competing with theirneighbouring plants and interacting with their surrounding environment and soil. However,because of the massive area of the worlds forests and the lack of access to large parts ofthem, it is impossible to survey each tree even once, yet alone periodically to study theirdynamics. Instead, much smaller areas are surveyed and the results are upscaled to re-ceive calibration data and validation for measurements done via satellites for larger scales(Calders, 2015). Upscaling is an approximation with many sources of error, from the as-sumption of uniformity to the selection of the upscaling factor. Certainly, a key goal is tominimize the error associated with the values to be upscaled, here meaning the measure-ments from individual trees.Tree architecture can be used together with process models to study the mass, energyand information exchange between plants and the environment. Furthermore, the architec-ture can be seen as a network for transferring nutrients and signals inside a plant (Godinand Sinoquet, 2005). Forest resource management, fire risk modelling and habitat mappingare just a few of the applications that rely on accurate tree models (Côté et al., 2011). Ad-
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ditionally, timber assortment, tree quality, branch decay time and carbon cycle estimationsrequire detailed information about the branching structure of trees (Article II).As an evolving, complex organism a tree proposes many difficulties for recording itsstate and dynamics. The first difficulty is biodiversity, as over 60 thousand tree speciesare known today (Beech et al., 2017), and thus methods for one species might not workfor the next. In more tangible terms the size and shape of trees varies a lot, both betweenspecies and between trees of the same species. For example, the tallest recorded tree,the Hyperion, is 115 meters tall (Preston, 2006), and the largest trunk circumference is 36meters for the El árbol del Tule (Debreczy and Rácz, 1997). Additional challenges are pro-posed by the intricate structure of a tree, consisting of the above-ground woody parts —the stem and branches — foliage or needles, and the stump and root system mostly belowthe ground surface. Branches, foliage and needles, all create occlusion for the tree and anyneighbouring plant, while using any optical instrument. The obvious obstacle in studyingtree roots is access. The options are destructive, i.e. felling the tree and pulling out thestump and root system (Liski et al., 2013; Smith et al., 2014), and non-destructive, usingimaging technologies such as the ground-penetrating radar (GPR) to map the root architec-ture (Borden et al., 2017). To measure chemical content of leaves and branches, such aswater or chlorophyll levels, manual sampling of standing trees has traditionally been theonly available approach.Recording tree architecture is also possiblemanually but it is extremely time-consuming,and inmost cases carried out destructively (Dassot et al., 2011). Suchmeasurements wouldhave to include the measuring and documentation of branch lengths, diameters at certainintervals, branching points and angles. Because of the required man-hours, and the factthat often the goal is to estimate total tree volume — or to derive a biomass estimate basedon the volume — it is common to use allometric equations to estimate total tree volume,from an easily measurable quantity, such as stem diameter at breast-height (DBH). Theparameters of the equations are optimized using the available manually measured data.Although allometric models allow the estimation of various attributes at large scales, theyare error-prone for many reasons, related to both the model and the measured data.As most models, allometric equations are simplifications and approximations, thus re-sulting in uncertainty. Furthermore, most of the models are not universal, they do not ac-count for species diversity or regional differences. Either a completely new model has tobe developed, or at least the parameters have to be re-optimized when considering addi-tional species or regions. However, a universal allometric model has been suggested byChave et al. (2014). Additional error is introduced by the measurements associated withthe optimization data and with the independent variable, e.g. DBH. Studies have shownthat allometric equation derived above-ground biomass (AGB) estimates can have a rela-tive uncertainty of 80 %, and thus the requirement for an alternative is high (Burt, 2017).

Light radar— lidar— or light detection and ranging (LiDAR) is ameasurement technologybased on either the time-of-flight, or the phase-shift, of a light impulse. Lidar scans can beperformed terrestrially, either statically with a tripod or with mobile scanners (Kukko et al.,2012), airborne — from a drone, helicopter or a plane (Hyyppä et al., 2008) — or spacebornefrom a satellite (Stysley et al., 2015). However, in this thesis only terrestrial laser scanning
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(TLS)with a tripod is considered. With a TLS instrument a singlemeasurement gives a rangeassociated with the scanners azimuth and elevation, which can be transformed into a three-dimensional Cartesian coordinate system. Modern scanners can acquire up to a millionrange measurements per second with usually a 360 degree horizontal field-of-view and upto 320 degree vertical field-of-view. Phase-shift based scanners have a higher accuracy(1–3 mm at 25 m, max. range 200 m) but time-of-flight scanners have a higher maximumrange (7–10 mm at 50 m, max. range > 1000 m). Multiple scans from different directionscan be registered to a uniform coordinate system using various techniques (Dassot et al.,2011). The collection of 3D elements resulting from a lidar scan is commonly referred toas a point cloud. Each element will have an intensity value attached to it, or multiple suchvalues if a more advanced hyper-spectral lidar (HSL) — measuring intensities of multiplewavelength laser beams — is used (Chen et al., 2010).In itself, a lidar scanner can directly only measure ranges — and the intensity values.However, when combined with data analysis techniques, they can be used to indirectly mea-sure a lot more. Traditionally, lidar scanners have been used by engineers and researchersto measure and document external walls of buildings and archaeological sites (Dassotet al., 2011), but as early as in 2004 it was shown, that several tree attributes could bereliably extracted from TLS data (Hopkinson et al., 2004). The simple tree attributes in-cluded stem location, tree height, DBH, stem density and timber volume. A similar studywas conducted by Thies and Spiecker (2004), but they only considered DBH, tree heightand the starting height of the tree crown. Their results include a statement that the useof automated data acquiring and attributes derived from that data are more objective thanthose measured manually by a person or persons. Later Olofsson et al. (2014) successfullyused the random sample consensus (RANSAC) algorithm to record stem count, DBH andtree height. Kankare et al. (2014) used a combination of TLS data and field measurementsto study tree quality.There are several sources of error and uncertainty when trying to comprehensively lidarscan a tree, from either one or more directions. The measurement density is not constant;Coverage becomes sparser whenmoving towards the tree top, i.e., farther from the scanner.Furthermore, environmental factors such as wind, fog or rain can affect the scan quality, ascan either self-occlusion or occlusion by other plants. Additional error can be introducedalso in the registration of several scans (Côté et al., 2011).It is important to note, that the early applications of lidar instruments in forests, aimedto measure the same forest inventory parameters as had been measured for decades by-hand. Only later methods were developed to reconstruct more comprehensive descriptionsof the tree structure. A detailed survey on the development of such methods will be pre-sented in Sect. 1.1. The advancement in the area has been truly impressive as in 1999 it wasstated that, with the current technology it is not possible to automatically acquire neitherthe topology nor spatial coordinates of plant components (Godin et al., 1999).The hypothesis is that if a comprehensive tree architecture–surface model can be re-constructed from TLS data, it then provides access to a variety of tree attributes previouslyunavailable or extremely hard to measure. Nonetheless, the model still provides accessto the more traditional measures, like tree height and DBH should applications still require
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them. The new attributes include, e.g., the branching topology, branching angles, partialand total volumes, but are certainly not limited to these. One of the key differences to pre-vious field measurements, is that if a comprehensive structure model is compact enoughto store, it allows the computation of additional values or distributions at any given time.At the core of this thesis is a novel method — TreeQSM — for reconstructing a compre-hensive quantitative structure model (QSM) of a single tree from TLS data, designed to fulfilthe above hypothesis, providing access to compute quantitative tree attributes. Althoughsimilar approaches for reconstructing tree architecture and/or the tree surface have beenpresented before and after TreeQSM, only a fewmatch the accuracy, speed and comprehen-siveness of the reconstructions, and none have been aswidely accepted for operational use.As such, it is not meant for measuring a specific attribute, but rather any structural parame-ter currently in use, or even to be defined in the future. The TreeQSM implementation offersa simple, easy to approach user interface (UI), which has allowed the method to spreadfast and to be accepted by researchers, working on forest and ecosystem research, as avaluable tool. The TreeQSM method is presented in Article II, with additional validation in
Article I.The TreeQSM method transforms the input point cloud data into a QSM, consisting ofcylinders, or other geometric primitives, providing a compact format for storing and dis-seminating tree information. An example of a cylindrical QSM is shown in Fig. 1, colouredin two different ways demonstrating the branching topology contained in the model. Al-though a circular cylinder is most commonly used as the geometric primitive with Tree-QSM, it is not the only option. Thus, the differences between several options are studied in
Article III. The surface reconstruction procedure of the TreeQSM method is visualized in
Animation VII/VIII, using circular cylinders. The resulting QSM format offers easy accessto both geometric and topological tree attributes. Furthermore, the compact format allowsstudying the tree structure evolving over time (Kaasalainen et al., 2014).In addition to the method itself, the thesis focuses on three aspects of the TreeQSMmethod: validation, applications and dissemination. The former is perhaps the most fun-damental, as validation is required to show that any method works as described. Earlyvalidation, mainly in terms of volume reconstruction accuracy, is presented in Article I and
Article II. Furthermore, several validation studies carried out since the publishing of theTreeQSM method, are presented in Sect. 2.6. The studies consider the accuracy of Tree-QSM in regard to commonly-used tree properties, such as, tree volume, DBH and AGB. Errorrelated to the selection of the geometric primitive, that a QSM consists of, is studied in
Article III.Included in the thesis are two applications of reconstructed QSMs, the first of whichis species recognition. Having accurate species information is key in forest managementapplications (Puttonen et al., 2010), and tree species is one of the few tree parametersthat are recorded during manual forest inventories. Rather than done manually by experts,
Article IV shows that automated species recognition is possible in larger scales, by utilizingQSMs. The process involves selecting several classification features, computed from thereconstructed tree models, that have sufficient levels of variation between different treespecies. Animation XI was produced to augment the written publication, by visualizing the
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Figure 1.1: An example reconstructed QSM of an oak tree, visualized as a collection ofcylinders. Left: Full tree with a bark texture. Right: Top of the tree with each branch ordercoloured with separate colours, listed in the table with branch and cylinders counts.
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definition of the included classification features, and to demonstrate the resulting levels ofspecies separation for each of the features.The other included application is leaf cover generation on the structure defined by aQSM. Leaves and needles are responsible for tree photosynthesis and they largely definehow a tree intercepts light (Casella and Sinoquet, 2007). Thus, foliage and needles arekey in studies dealing with atmospheric interactions, and how much light passes throughforest canopies. Unfortunately, there currently exists no software able to reconstruct indi-vidual leaves from TLS data. As an alternative to reconstructing leaves, Article V presentsa method for generating them based on arbitrary, user-defined leaf parameter distributions,to populate a QSM with a leaf cover. The source-code of the MATLAB implementation of theproposed method, Software I, is published online.In addition to the applications presented in this thesis, it would be easy to list numer-ous current and future applications for forest reconstruction. Especially in terms of ma-chine learning high-dimensional QSM based data is ideal, as demonstrated with the speciesrecognition application. Tree and forest structures are too complicated to analyse com-prehensively by the human eye. However, accounting for each branch and bifurcation ispossible for an automated system, for example in a computer-assisted harvester system.Such systems have already been developed (FIBIC, 2014), and could be used to guide theharvester operator helping maximise productivity while minimising tree and soil damage.The final aspect of the thesis is the dissemination of the TreeQSM method and the ad-vances it enables in multiple fields. Printed publications and static images may still be themost common choice for scientists, but they are certainly not the only option (Perkel, 2018).Especially due to the complex nature the reconstruction approach and the long traditions inthe field of forest science and the forest industry, numerous ways of dissemination were uti-lized, to explain the details and capabilities of TreeQSM. Several animations were producedto visualize key details of the reconstructionmethod (Animations I–III) and overviews of thecomplete method (Animations V/VI, VII/VIII, X). Furthermore, reconstructed QSMs weredisseminated as interactive, web-based 3D models, both on their own and with attachedtree property and distribution data. The extensive dissemination has accelerated the pro-cess of adopting the use of the TreeQSM method in operational use.

Animation IX demonstrates the options available for visualizing QSMs as collectionsof cylinders or as branch-level continuous surfaces, with or without textures. Software II isa tool to import cylinder data from a QSM into a 3D graphics program to produce imagesand animations similar to the ones part of this thesis.

1.1 Related research on tree architecture reconstruction

Many approaches for extracting tree architecture have been presented in the past. Someof them aim to reconstruct only the branching architecture as a graph, others evaluate onlyattributes as volume, and some reconstruct stem and branch surfaces. There is a lot ofvariation in the level of detail of the reconstructions, the primary applications, level of au-tomation and required computational resources. Clear differences also occur in the design
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with respect to the input data; Data-driven methods only reconstruct parts well representedin the data, and model-driven approaches augment the data with, for example, biologicalgrowth models, to create geometry or graph nodes with little to no measurements.Amajority of the existingmethods for reconstructing trees from TLS data are presentedbelow, categorized by their primary outputs, i.e., whether the methods have been developedto reconstruct the branching graph, total or partial tree volume, or the tree surface. Notethat some methods reconstruct both a branching graph and a surface model, and thus canbe listed in multiple categories. The section ends by presenting additional methods forreconstructing tree models from photographs.
1.1.1 Reconstructing tree skeletons

A tree skeleton is a graph describing the branching topology of a tree. Typically, the nodesof the graph are located inside the tree geometry and at least each branching point shouldhave a single node, although, additional nodes can be used to describe the geometry of thebranches in more detail. The edges of the graph follow the tree topology and geometry,and the edges usually flow through the core of the stem and the branches. Multiple ap-proaches have been presented for reconstructing a tree skeleton from terrestrial lidar data,with various levels of included detail and automation.Cheng et al. (2007) presented a method for reconstructing a tree from a single rangeimage obtained by a laser-scanner. Their method operates on a two-dimensional imageplane and performs skeletonization based on the difference of ranges between neighbour-ing pixels. User input is required to connect parts of the skeleton. Their method is naturallynot able to reconstruct branch parts that are hidden from the viewing direction.In the method proposed by Xu et al. (2007) a point cloud from a single or several reg-istered laser-scans is processed to produce first a plausible skeleton and finally a corre-sponding surface mesh. Their algorithm is developed for computer graphics applications,and therefore, does not aim for a strictly faithful reconstruction but instead a plausibleresult with a realistic appearance.Dijkstra’s shortest path algorithm is used to form an initial graph. The points are thenclustered into bins and skeleton nodes are computed as centroids of each bin. Possiblesub-graphs are connected to the main skeleton using bi-directional probing. Locations ofleaves are estimated from the point cloud andmissing support branches are synthesized forthem by copying and scaling existing sub-graphs. Their method was criticized for unfaithfulreconstruction of the branching structure and for unrealistic loops in the graph structure(Yan et al., 2009).A very similar approach is suggested by Côté et al. (2009) as both methods reconstructthe main skeleton with Dijkstra’s shortest path algorithm and use the points reflected fromfoliage as attractors to grow plausible branches to overcome the shortcomings of the pointcloud coverage.(Yan et al., 2009) present a novel method for tree skeleton extraction. Their methodstarts by selecting a certain number of clusters defined by a center point and its k nearestneighbours. The direction and radius of each cluster is estimated from the point cloud and
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a bounding cylinder is fitted to each cluster. The cylinders are not used to represent the treesurface, but simply to measure the correctness of the clustering. If a cylinder fits well tothe data, the cluster is accepted, and otherwise it is divided into two sub-clusters and theprocess continues iteratively.Where (Xu et al., 2007) only used the centroids of the clusters, Yan et al. (2009) useadditional junction nodes placed at the boundary of neighbouring clusters and leaf nodesto extract the tree skeleton using, again, the shortest path approach. The use of the junc-tion points gives more accurate node distance measurements. When compared to the verysimilar approach by Xu et al. (2007) the proposed algorithm works much better and does aclearly more faithful reconstruction of the tree skeleton.As an alternative approach and an improvement to many of the earlier methods, Livnyet al. (2010) propose a fully automatic, parameter free skeletal reconstructionmethod basedon global optimization. The use of global and linear optimization makes their approach ro-bust and fast. Furthermore, their input point cloud can contain multiple trees which caneven overlap. They describe a process that is based on branch-structure graphs which areiteratively optimized with just a few general constraints.The initial graphs are formed using Dijkstra’s shortest path algorithm on a point cloudwhere the tree bases have been automatically located. The graphs are then iteratively op-timized based on assigned node weights and constructed orientation fields. The optimiza-tion typically converges after just a few iterations.Preuksakarn et al. (2010) also presented a similar approach to reconstruct manuallyextracted single-tree point clouds as generalized cylinders. The procedure begins by con-
tracting point cloud elements toward the center of their respective branch, that is definedas the centroid of a spherical neighbourhood. The skeleton of the tree is reconstructed as agraph by using the contracted points as attractors, and placing nodes so that the attractorsare visited. Original point cloud elements are assigned to nearest node, and projected inthe respective skeleton direction to estimate the branch radius. The method was tested bycomparing the geometry and topology of an apple tree, reconstructed with the approachand with a digitizer by an expert. The results showed a 90 % match.Bucksch et al. (2010) presented a skeletonization algorithm based on dividing the con-taining space into an octree structure. Although, the method was not designed solely fortrees, it is demonstrated to work with TLS data from trees. In the algorithm each octree cellcontaining lidar returns was placed with an initial octree graph node at the mass center ofthe respective point cloud elements. Nodes in adjacent cells are connected by edges, defin-ing the octree graph. The final tree skeleton is received by a reduction procedure, which isthe most time consuming part of the process. The graph reduction was completed in 192minutes for an apple tree and in about 275 minutes for a tulip tree, on a 2.66 GHz dual-coreprocessor.The (Côté et al., 2009)methodwas perfected by Côté et al. (2011) and named L-architect(lidar data to tree architecture). The trunk and branch reconstruction process remains iden-tical to the previous version, but the foliage appending is introduced as a global optimiza-tion problem in order to make the method more automatic. Several additional in situ mea-surements are required to define the objective function which is then optimized using the
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Global Optimization by Multilevel Coordinate Search algorithm. The required measurementsare DBH, total foliage area, and material distribution in the vertical direction.
1.1.2 Tree volume reconstruction

Not all tree reconstruction approaches aim to recording the topology of a tree. In certainapplications it is key to estimate only the volume of a tree, the stem or the branches, and
voxelization is one way to receive those estimates. When voxelizing the space containinga tree, the space is divided into, usually cubical, voxels with a fixed edge length. The goalof the volume reconstruction is to determine the voxels that are lay inside the tree hull andmake up the tree. The level of detail in voxel-based models is dependent on the voxel size.
I.e., large voxel sizes result in lower spatial resolution, and with the decrease in voxel size,the computational requirements grow fast.Gorte and Pfeifer (2004) presented a method for finding the skeleton structure of atree from a point cloud. Their approach uses voxelization and mathematical morphologytechniques, and produces as an output a point cloud segmented into individual branches.Similar to (e.g. Xu et al., 2007), Dijkstra’s shortest path algorithm is used when segmentingthe acquired tree skeleton, but now it is applied in the voxel space rather than on the pointcloud itself.A couple years later, Lefsky and McHale (2008) suggested a very similar approach andtested their method extensively on a couple of hundred urban trees with eleven differenttree species, and an average of 640000 points per tree. Their method does not directlyaim to reconstruct the branching structure, but rather to estimate the stem and canopyvolumes. To validate the method over 250 diameter field measurements were made witha dendrometer, and were found to be highly correlated with the corresponding diametersreceived from the lidar measurements.The proposed method begins by considering only voxels that have lidar returns in them,and by selecting the stem base voxels manually. Next, stem sections are identified with athree-dimensional search algorithm and the 26-connectivity of the voxels. These sectionsform layers of the stem and later neighbouring, connected layers are merged iteratively. Thestem volume was approximated by fitting cylinders to the original points forming the finalstem sections. Furthermore, the canopy volume was estimated based on the number oflidar returns.The proposed algorithm gives good results for the stem and canopy volumes, but re-quires a lot of computational resources and time formanual editing of the stemsections, es-pecially at branching points. The authors also state that the simple voxel neighbour searchdoes not work very well and causes the stem sections to become non-normal to the stem di-rection, which in turn causes erroneous volume estimates. The authors also suggest usinga cone rather than a cylinder in the volume computations.Vonderach et al. (2012) propose a voxel-based approach for acquiring branch volume,DBH and tree height. Their simplemethod uses horizontal layers and several 2D approachesto identify the interior voxels. The number of interior voxels is used to find an estimate ofthe specified tree properties. The method is designed for an urban environment and high-
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resolution scans consisting of 20–60 million points for each tree. Tests on nine deciduoustrees showed good results with about 0.5 to 1 meter over estimation in tree height and onlya few tenths of a millimeter in the DBH. The computational times are not discussed but theauthors mention a high effort in analysis.Similarly, Bienert et al. (2014) use vertical slicing to determine both exterior and inte-rior voxels. In a effort to account for volume overestimation, the volume of the exteriorvoxels is estimated by the volume of the smallest axis-oriented bounding box containingthe voxel points. Interior voxels are unlikely to have lidar returns, and their volume is thuscomputed the normal way. The accuracy of themethodwas tested on 13 young, short mapletrees, that were scanned leaf-off with from positions without occlusion. Reference volumemeasurements were performed by immersing tree segments in a water tank and measuringdisplacement. The result showed that applying the proposed volume correction loweredthe average relative volume error for the tree trunk volume from 74.2 % to just -0.3 % andthe root-mean-square error (RMSE) from 161.2 % to 11.6 %, compared to the non-correctedvoxel-based volume estimate.
1.1.3 Surface reconstruction

Where in voxel-based methods the tree was presented on a fixed cubical grid, in surfacereconstruction the surface of the stem or branches are presented by either a single para-metrized surface or a collection of such surfaces. Surface models can also be used toestimate the tree volume, but also other properties, such as, local diameter or direction ofa branch.As a continuation to (Gorte and Pfeifer, 2004), in an article published the same year,Pfeifer et al. (2004) suggest using circular cylinder fitting on the segmented point cloud toget an approximation of the tree surface and volume. Starting from the base of a segmenta cylinder is fitted as a least-squares fitting problem to the point cloud data associated withthat part of the segment. Local geometric properties of the point cloud are used as initialvalues. If the fitting is successful, the cylinder hull is moved in its axis direction for a certainsmall distance, and the points close to the updated cylinder position are used to fit a newcylinder. The cylinder following is repeated for each segment until a fitting failure occursor all points in the segment are processed. However, the method proposed by Pfeifer et al.(2004) is only able to reconstruct small parts of the thickest branches and the tree stem.The resulting cylinder model is incomplete and disconnected.Cylinder fitting was also used by Cheng et al. (2007) to reconstruct the surface aroundthe skeleton by using geometric properties of point sets as initial values. Regarding onlyusing a single lidarscan, the authors propose futurework, where several range imageswouldbe used, such that a cylinder model would be computed for each direction separately andlater combined to a single model. However, no such work has since been published.In (Xu et al., 2007) the surface was reconstructed around the skeleton graph by es-timating branch diameter at each skeleton node. Allometric theories, such as, Murray’slaw (Murray, 1926) and the refined pipe model by West et al. (1999), are used to estimatebranch thickness. The circles defined by the diameter estimates could be connected with
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either triangles or smooth spline surfaces. The authors claim the method to be fast andquite automatic. However, they do admit that the tuning of overall 7 parameters requiressome expertise. Furthermore, they state that the utilized allometric theories are not ableto account, e.g., for the difference in the branching structures of old trees, compared toyounger trees of the same species.

Quite similarly, Yan et al. (2009) transform the completed tree skeleton into a set ofB-spline curves, as a process called lofting (Gomes et al., 2012, p. 230) is used to get acontinuous surface presentation of each branch with the help of the radius estimates givenby two-dimensional circle fitting.
The method by Yan et al. is described to be fully automatic but still there are severalparameters to account for, such as, the initial number of clusters and the stopping condi-tions for the iterative processes. With a point cloud of 217 000 points the time required forsegmentation is 3 minutes and 35 seconds, and the total time including branch modellingabout 5.5 minutes. The computer specifications are undefined.
Côté et al. (2009) used the original pipe model (Shinozaki et al., 1964a,b) to get anapproximation of the tree surface around the reconstructed skeleton. On top of that, foliageshoots were appended to the tree geometry. The reconstruction approach was validated bycomparing first and second order reconstructions: laser scanning was simulated on thefirst order reconstruction and second order models were reconstructed. The results showexcellent reconstruction quality in their test set of four coniferous trees, evaluated usingthe crown density, leaf area, and area of the woody structure. The method has severalparameters that are tuned interactively based on visual appearance, and thus it is far froman automated solution.
The results given by the L-architect method, in (Côté et al., 2011), are convincing as, e.g.,the rootmean square error of the vertical material distribution in the five test cases are quitelow. Furthermore, the rendered visualizations are certainly impressive with the includedbark textures and included foliage. A clear downside of the method is the computationaltime which can be anything from 2 to 31 hours on over 5000 processors each operating at2.8 GHz. Other than that, the approach performs very well and delivers on the promise ofdetailed reconstructions even when wind and target occlusion are present.
Livny et al. (2010) generate the surface geometry using global optimization, similarlyas with the skeleton reconstruction. The respective sizes of the sub-graph of the nodes areused as weights in the optimization procedure. L-systems are used to add fine branches tothe model. Example point clouds were collected with a continuous scan made by a scannermounted on a vehicle, travelling at a normal driving speed in an urban environment. E.g., ascan containing approximately 300 000 points and 5 trees, took 2 minutes to process on acomputer with a 2.7 GHz processor.
In a comparison study, the methods by Xu et al., Livny et al. and Preuksakarn et al. werecompared to reference structures recorded by expert researchers in a study by Boudon et al.(2014). The results showed that in the case of the four test trees, volume was underesti-mated by 7 % on average, while total branch length was overestimated between 15-70 %,depending on the method. After determining geometric and structural similarity indices,
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the authors conclude that the methods by Xu et al. and Preuksakarn et al. work better thatthe method by Livny et al..Rather than using skeletonization, Liang et al. (2012) compute flatness values and nor-mal vectors for each single-scan point cloud element, by analysing the geometric propertiesof the point and its k nearest neighbours. By filtering points with these properties, poten-tial stem returns are identified and grouped according to distance. The groups are recon-structed as consecutive cylinders from base towards the top, as far as sufficient data isavailable.The M-estimator Sample Consensus algorithm is used to detect individual tree stemsfrom multi-position scans by (Kelbe et al., 2013). The detected stems are divided into re-gions by taking vertical slices, and each region is reconstructed as a cylinder, by combiningline and circle fitting. Post-processing steps are taken to ensure that consecutive cylindersdo not differ toomuch in direction and radius, by removing outlier cylinders and using splinefitting to find the stem axis. Linear interpolation is used to find a smooth taper curve.Hackenberg et al. (2014) present a method for reconstructing cylinder-based modelsfrom manually isolated single-tree point clouds. The process starts from the base of thestem, which has been detected by extracting the lowest slice of the point cloud. A circleis fitted to the points in this slice to find the starting point of the first cylinder. A spherewith a radius slightly larger than the circle is placed at the starting point. The point cloudelements close to the sphere surface are isolated and circles are fitted to the sufficientlylarge components. Cylinders are appended to the resulting model to connect the previousstarting point and the center points of the new circles. The process continues iterativelyfor each of the new circles, processing the largest first. Post-processing steps are used tofix branching junctions, and to record the branching topology.The method is tested with both real and artificial point clouds and reconstruction ac-curacy and level-of-detail are high. The authors note that the method still lacks the detec-tion of incorrectly added cylinders, and may thus require manual corrections. However, themethod was further developed in (Hackenberg et al., 2015a) to address the problem, usingan allometric correction scheme.
1.1.4 Photo-based approaches

All the methods presented above, operated on lidar data, but that is not the only data sourceavailable for tree reconstruction. Photographs are one alternative even though they do notcontain range information. Using multiple photographs taken from different angles it ispossible to reconstruct objects (e.g. Neubert et al., 2007; Teng et al., 2007). The level-of-detail of the reconstructions is usually lower, but the motivation for using photographsis the low cost of the equipment, tine required for photographing, compared to operatinga laser scanner. Furthermore, as the models generated from photographs are not usuallyapplied in forest science applications, but rather in visualization applications, a lower levelof resemblance between the input and the output trees is tolerated.Shlyakhter et al. (2001) presented a method for reconstructing the main branchingstructure of a tree from several photographs. The received tree skeleton is then used to-
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gether with a species-specific L-system to find a plausible fine branch structure and addfoliage to the branches. The tree in each image is segmented from the background andthe tree silhouette is used to construct a volumetric intersection which defines a visual hullof the tree. Voronoi nodes are then used to find a medial axis which is used as the mainskeleton. The method is not fully automatic as the image segmentation is done manually.Usually, 7 to 14 images are used for a single tree, and the overall time required for a recon-struction is over four hours.Teng et al. (2007) propose a very different approach in terms of image count as theirmethod only utilizes two photographs. The algorithm is designed to reconstruct the treestem and main branches from images, taken from slightly different positions. The use ofonly two images makes the process fast, due to reduced complexity of correspondencematching, but can result in inadequate 3D information and either partial or total occlusionof branches.The process starts by segmenting the stem from one of the images interactively, and byextracting the skeleton of the selection. 2D stem points are selected from the skeleton, toform the graph of the stem. The camera calibration information and the second image arethen used to trace the location of the 2D stem points in the third dimension. Generalizedcylinders are placed on the 3D skeleton to form the final stem model. The total run time ofthe algorithm is not reported, but the authors state that the time is dominated by themanualsegmentation which can take minutes. The resulting stem models are visually impressive,but the method does have limitations with occlusion.Neubert et al. (2007) propose a novel way of producing approximate tree models, us-ing particle flow simulation and two or more images. As their models are approximate andnon-deterministic, strict registration of the photographs is not a requirement. As with theother photo-based methods the tree is first separated semi-automatically from the back-ground of all the images. The main branching structure is then sketched on the extractedtree silhouette either by hand, which gives better results, or automatically. Themain branch-ing structure is used to first create a two-dimensional attractor graph for each plane. Thegraphs are then connected as a single three-dimensional vector field.A voxel model is computed for the tree by approximating the density of each voxel fromthe input images. The density distribution is used to select the starting voxels of particlesfor the simulation; particle position inside a voxel is selected randomly and the attractorfield is used to guide the particles during the simulation. The amount of initial particles ischosen based on the tree size. The particle simulation produces a three-dimensional graphof particle traces. On each point on the graph particle trace count and botanical rules areused to approximate the thickness of the branch at that point. Finally, leaves and tiny twigsare appended according to the density distribution to the treemodel that takes only secondsto generate on a computer with a 3 GHz processor.The method produces natural looking results that are similar to the input images, butthe authors do state that their method does not work well with all tree species. Furthermore,particle flow simulation is not able to capture the smallest details accurately.
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1.2 Objectives of the thesis

This thesis aims to answer the following research questions. Publications related to eachquestion are given in parenthesis at the end of the list item.
1. Can the branch size distribution of a single tree be estimated accurately from a ter-restrial laser scanning point cloud? What other tree properties can be computed fromthe models? Is comprehensive modelling possible?(Articles I – II, Animations I – VIII, X)
2. What is themagnitude of themodel-based error associated with the QSM reconstruc-tions, and especially with the choice of the commonly used circular cylinder as thegeometric primitive? (Article III)
3. Is some of the information contained in reconstructed structure models species-specific? And if so, is there enough of it to automatically recognise the species of atree? (Article IV, Animation XI)
4. Can the structure models be augmented with a set of realistically distributed leavesfor simulation and visualization applications? (Article V, Software I)
5. What different ways are available for visualizing and disseminating structure modelsand other related research results? (Animations IX – X, Software II)

1.3 Thesis outline

This thesis is divided into seven chapters. In Chapter 1 the context of the research is pre-sented shortly, followed by a longer review of related research in Sect. 1.1, mainly focusedon tree reconstruction from various data sources.The novel TreeQSM reconstruction method is presented in Chapter 2, with the mainsteps of the algorithm described in Sects. 2.1–2.5. Studies validating the presentedmethodare presented in Sect. 2.6. Chapter 3 shows how species-specific properties can be com-puted from reconstructed tree models, allowing automatic species recognition. Recon-structed structure models can be populated with a generated leaf cover with a method pre-sented in Chapter 4. The chapter also describes how tree models can be used to describeand visualize distributions related to the tree. Chapter 5 presents approaches that havebeen used to disseminate tree models reconstructed with the TreeQSM method. Sect. 5.1describes a method for rendering point cloud data, used in various animations part of thisthesis. Different ways of visualizing the treemodels are presented in Sect. 5.2. Details of allthe animations included in the thesis are presented in Sect. 5.3, including what visualizationmethods were used for both the point cloud data and tree models. Interactive 3D modelsof reconstructed trees and a related software demonstration are discussed in Sect. 5.
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Themain results of this thesis are discussed in Chapter 6, where speculations are givenon the future of forest inventories and virtual reality applications, in the light of advance-ments in tree and forest reconstruction. Conclusion of the results and discussion are madein Chapter 7, with directions for future work presented in Sect. 7.1.



2TREEQSM — TREE ARCHITECTURE RECONSTRUCTION METHOD

In 2011 our team developed the first version of a method to reconstruct a single tree froma TLS point cloud, later to be called TreeQSM. The method was used as a tool to showthat it is possible to approximate tree volume and branch size distribution from TLS data(Raumonen et al., 2011). After some improvements, such as better branch segmentationand the gap filling procedure, further validation was carried out in Article I and in moreextensively in (Åkerblom, 2012). A more detailed explanation of the procedure for recon-structing individual trees was published inArticle II. Further development, including addingsegmentation correction, was introduced in Calders et al. (2015b), together with validationwith a large number of real trees. Later the method was augmented with a tree extractionpre-processing step, allowing the input point cloud to contain multiple trees, showing thatautomatic forest-plot-level reconstruction is possible (Raumonen et al., 2015). An overviewof the reconstruction algorithm is given next, but one can also be found in Animation X. Forextensive details, refer to Article II and Åkerblom (2012). Recently the full source-code ofTreeQSM was released in GitHub1 while the development continues.
What happens between the TreeQSM input and output data is described, in order, inSects. 2.1–2.5. The differences between the initial and current versions are also highlightedin the respective sections. All of the TreeQSM validation studies are presented in Sect. 2.6.

2.1 Input data and parameters

The main input of the reconstruction approach is a 3D point cloud of a single tree, thatcan be a combination of separate co-registered terrestrial laser scans, and that can containadditional returns from the ground and surrounding vegetation. Each of the returns consistsof three spatial coordinates and either a single intensity value or numerous intensity values,in the case of a HSL. However, the intensity values are not utilized by the TreeQSM methodas it relies only on geometry. Nonetheless, measurement intensities and recorded colourinformation may be useful in other data processing for, e.g., wood–leaf separation anddetecting leaf cover parameters.
Initial filtering is carried out for the point cloud data to discard lidar returns that areidentified as not part of the tree, by being too isolated, and thus shouldn’t contribute tothe reconstruction and the resulting model. Such point cloud elements can also be causedby the measurement technology, in the form of phantom returns, or by self-occlusion orocclusion by other trees. An important goal of the filtering process is to keep all the returnsfrom the tree, to ensure a detailed reconstruction.
1TreeQSM: https://github.com/InverseTampere/TreeQSM

https://github.com/InverseTampere/TreeQSM
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2.2 Forming surface patches

The filtered point cloud P is partitioned into surface patches (also called cover sets in someof the publications) that conform to the tree surface, using an almost uniform Voronoi tes-sellation (Okabe et al., 2009). During the partitioning process center points, or seed points,
ci ∈ P are selected iteratively and randomly, so that

‖ ci − c j ‖ > dmin, ∀ ci, c j ∈ S, i , j, (2.1)

where S is the set of selected seed points and dmin is a user-defined parameter. On the firstsegmentation run dmin is a fixed value, parameter PatchDiam1, but on the second segmenta-tion run the distance limits vary locally, depending on two parameters PatchDiam2Min andPatchDiam2Max. To ensure the selection of seed points is comprehensive, the maximumdistance between any point cloud element and the closest seed point is limited:
∀ x ∈ P ∃ ci ∈ S : ‖ x − ci ‖ < dmin (2.2)

The center points help define spherical environments Ri consisting of point cloud elementsinside a sphere with a ri radius:
Ri = { x ∈ P | ‖ x − ci ‖ ≤ ri } . (2.3)

Depending on the segmentation run, the radii ri can be a single fixed value, or they may varybetween values by default derived from the PatchDiam2Min and PatchDiam2Max parame-ters.Overlapping spherical environments, determined by shared point cloud elements, definea neighbouring relation for the environments and the resulting surface patches. To increasethe likelihood of overlap, the parameters are typically chosen, so that dmin < ri. Elementspart of any overlap are assigned to the environment with the closest center point, formingthe final surface patches that are a partition of the initial point cloud. The procedure isvisualized in Animation I, although it uses the alternative cover set term.As a surface patch is a subset of the point cloud, principal component analysis (PCA)(Jolliffe, 2002) can be used to analyse its geometry, in order to later find patcheswith certaincharacteristics. The neighbouring surface patches and their principal components can alsobe used to derive characteristics for any given patch. Animation II visualizes how geometricvariations in point clouds show up in the principal components, and what characteristicscan be computed utilizing the principal components. In the reconstruction process mainlythe direction, normal and dimensionality — surface patch in a small branch will be elongated(1D) while planar (2D) in the stem — are utilized to identify the stem in the point cloud.Surface patches characterize the local geometric and topological properties of the tree.
E.g., a given patch is elongated and connected, as defined by the neighbour relation, to aset of other surface patches. Utilizing a local-to-global approach, these local propertiescan be used to determine global properties of the tree geometry and topology, throughsub-procedures called segmentation and cylinder reconstruction, described in the followingsections.
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2.3 Branch segmentation

Even though the point cloud has now been partitioned into surface patches, there is stillno direct information of the topology of the tree, or the geometry of its parts. In orderto reconstruct the branching topology collections of surface patches, forming individualbranches and the stem, have to be identified. The sub-procedure responsible for recon-structing the topology, is called segmentation. The original version of the procedure ispresented in Sect. 2.3.1. The current, updated version, where segmentation is carried outtwice, is presented in Sect. 2.3.2.
2.3.1 Original segmentation

Surface patch characteristics are used to find parts of the point cloud that are both planarand whose direction is parallel to the stem direction, i.e. vertical. After this simple filteringparts not belonging to the stem might still be included. Thus, only the largest connectedcomponent, in terms of point count, is selected as the initial stem set. This set can beaugmented with components directly below or above it. The base of the stem is locatedby fitting a cylinder to the base of the current stem set. Surface patches are then addediteratively below the stem base (and removed above), and the cylinder fitting is repeated.The process is repeated while the ratio of two consecutive cylinder radii does not increasetoo fast. The final stem base is found when the radius increases very fast, with the inclusionof ground points.Next, returns from the ground and surrounding vegetation are excluded by selectingneighbouring surface patches of the stem base set, without moving into the stem set. Asthis process is continued iteratively, all returns not part of the tree are included in the groundset that will be excluded from any further analysis. At this stage the stem and ground setshave been defined, and all the remaining surface patches are assigned into the branchesset. The process of separating the stem, branches and the ground is described visually in
Animation III. If the point cloud data are such that no non-tree returns are present, the baseof the stem can simply be defined as the lowest layers of surface patches in the whole data.Starting from the base of the stem set, the remaining surface patches are segmentedinto individual branches. The first layer of neighbouring surface patches form the initial cut
set, that is updated with a new layer of neighbours at each step, while the oldest layer isappended to the current segment. While the cut set remains a single component the pro-cess repeats. However if the cut set becomes disconnected each component is analysedseparately, and determined which components are a part of the segment. In the case ofcomprehensive data, the only reason why the cut set would become disconnected, is thepresence of a bifurcation, meaning that some cut set components are located in separatebranches. In this case, the smaller components of the cut set are labelled as bases of newsegments, and extension of the current segment into those surface patches and their unvis-ited neighbours is prevented, while the larger component is assigned as part of the currentsegment. However due to imperfections in the data, cut set disconnections can also hap-pen even though the components are part of the same branch. To counter this effect the
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cut set is actually extended a few layers further on each step, to see if the componentsbecome reconnected.Once the cut set becomes empty the current segment is completed, and the segmen-tation process continues from the first found new segment base. Once all new bases havebeen iteratively processed, the segmentation is completed, resulting in a collection of seg-ments that are the branches of the tree, and their topological connections. The segmenta-tion procedure and bifurcation detection is visualized in Animation IV.
2.3.2 Updated segmentation

Although the original segmentation procedure worked well the topology it resulted in, wasoften unnecessarily complex and in many cases the maximum branch order was exces-sively high. I.e., what the human eye would consider a single branch/segment, was oftenpresented by several consecutive segments, each increasing the branch order. Furthermore,the use of fixed size surface patches was inefficient as the radius parameter had to be setin accordance to the diameter of the smallest branches to be reconstructed, resulting in anexcessive number of patches on the larger diameter tree parts, such as the stem. While anupdate was designed, a key goal was to make TreeQSM more robust in terms of the inputparameters given by the user, one of which was the originally fixed surface patch radius.In an updated version of the reconstruction method, first presented in (Calders et al.,2015b), segmentation is carried-out twice, enabling the use of variable-sized surface patcheson the latter run. On the first run a fixed — typically larger — radius is used for the sphericalenvironments, and the segmentation will result in a crude approximation of the branchingstructure. The size of the user-selected surface patch radius for the first segmentation isexpected to be larger than, in most cases, with the original segmentation procedure, thusexpected to make the overall segmentation result less sensitive to the selected value. Inaddition, the initial large radius neighbourhoods allow larger gaps in the point cloud data tobe traversed, connecting otherwise separated components. Should separate componentsremain, they are connected to the closest component by modifying the neighbourhood re-lation. The resulting segmentation of the tree is further refined, such that each segmentextends to the furthest tip of any of its children, lowering the number of individual seg-ments and the maximum branch order, thus overall simplifying the topology.Next, the segments’ shapes are analysed and a non-fixed value for the surface patch ra-dius is determined for each point cloud element, so that the radius decreases linearly whenmoving upwards in the tree, along the branch, or to a larger branching order. However, allradius values have to be in a user-defined interval, by default derived from the parametersPatchDiam2Min and PatchDiam2Max. As a result of this procedure, each point cloud ele-ment has a radius value attached to it that is suitable to expressing the level of detail in therespective part of the tree.The second segmentation is very similar to the original segmentation process, but nowthe radius of the spherical environments varies according to the value stored in the pointcloud elements selected as center points. Segmentation corrections similar to the first run,are applied to the result of the second run, again lowering the maximum branch order. Fur-
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thermore, in order to prevent too large cylinder radius values, child segments are extendedwith the neighbour relation back into the parent segment, and the extension is excludedfrom both segments.
2.4 Cylinder reconstruction
Each segment is iteratively reconstructed as a collection of consecutive cylinders — or anyother geometric block as shown in Article III. The process begins from the base of the seg-ment, once again by selecting a certain number of layers of neighbouring surface patchesto form the current sub-segment,2,3 which is a set of surface patches reconstructed as asingle cylinder. Thus the number of layers in the sub-segment determines the approximatelength of the resulting cylinder. One of the inputs of the reconstruction procedure is theratio between the radius and length of a sub-segment, determining the required number oflayers in a sub-segment.The geometry of a sub-segment is used to derive initial values for the iterative least-squares (LS) cylinder fitting (Lukács et al., 1998). The mean point of the complete sub-segment is used as an estimate for a point on the cylinder axis. Then the sub-segment isdivided into top and bottom parts using the surface patch layers, and the respective meanpoints of the parts are connected to estimate the axis direction. Mean distance from thesurface patch center points to the line defined by the point and direction estimates, is usedas a radius estimate. The final fit is solved iteratively using the Gauss–Newton method.The length of the final cylinder is received by projecting the sub-segment points onto theaxis, and computing the difference between the extreme values.After a segment has been completed, it is possible to do segment-level correctionsusing simple heuristics, such as limiting the radius ratio, or difference in axis directionbetween consecutive cylinders. Such corrections are sometimes necessary because oferrors in the segmentation or gaps and noise in the point cloud data.

2Also called a subregion in (Calders et al., 2015b).
3In practice, the surface patch sets forming the layers are stored during the segmentation process, andthey are utilized when creating sub-segments.
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As presented in (Calders et al., 2015b), the current version of the reconstruction proce-dure performs the following segment-level corrections for branch segments:
1. The radius of the first cylinder of a segment is lowered to match the radius of itscylinder parent, if it is exceeded.
2. Radii smaller than a parameter rmin will be fixed to rmin. The default value of theparameter rmin = 2.5 mm.
3. Finally, a parabola is fitted to the relative-position-along-the-segment – radius data:

a) Only the first three quarters of length are used, as the values in the last quarterare usually more noisy.
b) An additional data point is fixed at relative distance 1 with a radius rmin.
c) The resulting parabola is scaled with two factors to receive local lower andupper limits for allowed radius values.
d) Values outside the bounds are moved to the closest boundary.

For the stem segment the procedure is otherwise the same, but rather that fitting aparabola, a piecewise linear fit is used instead. The curve points for the fitting are computedas averages from a certain number of consecutive cylinder radii values.Once all segments have been reconstructed, it is possible to perform tree-level correc-tions as well, such as analysing if there is too much space between consecutive cylindersinside the branches, or between child and parent cylinders. Should such gaps exist, it ispossible to try to fill them by extending the existing cylinders in their axis directions, orby introducing additional cylinders whose parameters are derived from the cylinders onopposite sides of the gap. Animation VII/VIII shows the full process of fitting cylinders,segment-level corrections and filling gaps, using generated point cloud data and a real re-constructed cylinder model.
2.4.1 Alternative reconstruction

Although, the previous section only considered circle-based cylinders, the presented recon-struction approach also allows the use of other geometric primitives, or even segment-levelreconstruction such as triangulation. Circular cylinder, elliptic cylinder, polygon-based cylin-der, circular cone fitting and segment-level triangulation were tested and compared againstone-another in Article III. The triangulation approach is similar to the one used to recon-struct complex shapes of tree stumps in (Liski et al., 2013).In Article III the included geometric primitive fitting methods were implemented as it-erative, thus relying in initial values. The sensitivity of each method was tested using bysimulating error in the initial values during reconstruction. Furthermore, testing was per-formed with eight generated stem models and eight scanned English Oak tree stems. Theeffect of lowering data quality on the methods was also tested, by lowering the simulated
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scanning resolution and by introducing gaps in the point cloud data. The article mainly fo-cused on tree stems, but a reconstruction test was carried out with a single generated fulltree model.
2.5 Reconstruction procedure and result evaluation
As mentioned above in addition to the point cloud data, the reconstruction procedure alsohas some additional input parameters. In the current version4 of the TreeQSM methodadditional input parameters are the following:
PatchDiam1 Minimum distance between any two surface patch center points in the firstsegmentation step. The parameter is a fixed value as patch size is constant in thefirst segmentation step. By default the radius of the spherical environments, used toform the surface patches in the first segmentation, is derived from the PatchDiam1value by adding 2 cm.
PatchDiam2Min Minimum distance between two surface patch center points in the sec-ond segmentation step.
PatchDiam2Max Maximumdistance between two surface patch center points in the sec-ond segmentation step. More specifically the minimum value is set to branch endpoints and the maximum value to the stem base. Values for the rest of the parts areinterpolated depending on branch order and radius. By default the radius of the spher-ical environments, used to form the surface patches in the second segmentation, isderived from the PatchDiam2Max value by adding 1 cm.
lcyl Approximate ratio between the length and radius of all the produced cylinders.
FilRad Relative factor for excluding outlier points in sub-segments during the cylinder fit-ting procedure. If the distance between a point and the center line-segment of asub-segment is larger than the estimated sub-segment radius, the point is then ex-cluded.

As a result of the TreeQSM process the point cloud data is reconstructed as a QSM, thatis a collection of cylinders with geometric and topological information. Compared to theinput point cloud data with disconnected 3D points, the data dimensionality and semanticmeaning has increased significantly. In a QSM, the position, orientation and size of eachcylinder, together with branch indices and orders and reference to the parent cylinder arestored in themodel. This comprehensive description of the structure of a tree can be used toderive properties, such as, branching angles, branch lengths, tree height, volume and tapercurves for both the stem and any other branch. Animation V/VI shows the transformationof a real forest plot with several oak trees into a collection of QSMs, and showcases someof the information that can be further derived from those models.
4TreeQSM version 2.30
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Once a tree model has been successfully reconstructed, goodness of fit estimationshould be performed, the same way as in any other mathematical modelling application.In the realm of QSMs goodness of fit estimates can be used to compare several modelsreconstructed with differing input parameter values, and also to analyse the variation as-sociated with the stochastic nature of the selection of the surface patch seed points. Thelatter means that even with the same input parameters and point cloud data, the repeatedreconstructions are likely to vary both in terms of topology and geometry. Goodness of fitestimates can be used, e.g., to select a single QSM from a pool of candidate reconstruc-tions, when necessary.Although it is not strictly a goodness of fit measure, the variation associated with mul-tiple reconstructed models with the same input parameters, can be used to assess the ro-bustness of the reconstruction and a level of certainty for the reconstruction. If the variationis low — e.g., in terms of the total volume of the QSM, the number of individual branches, orthe distribution of volume in different branch orders — the segmentation and surface recon-struction procedures have likely been carried out robustly and uncertainty is low. In sucha case, selecting a single model for further computations or storing, is simple as all themodels are expected to be similar. On the other hand if the variation is high, the selectionof the input parameter values should be re-evaluated, to see if higher robustness and levelof certainty is achievable.Visual inspection of the point cloud data compared to the QSM is feasible with smallertrees, but becomes more difficult and time-consuming with increased complexity. The cur-rent implementation of TreeQSM uses the average distance from point cloud elements tothe closest cylinder, to estimate goodness of fit. The single value is easy to compute andto use to compare different reconstructions. However, additional metrics for assessingreconstruction results should be studied and tested.

2.6 Validation of the TreeQSM method

Quantitative structure modelling seems to be a giant leap in the field of forest measuringand tree modelling, as it offers access to properties previously unavailable, extremely labo-rious or slow tomeasure, and properties that can be hard tomeasurewith suitable accuracy.Comprehensive tree models are readily available as long as one can acquire a point cloudof the tree. However, before these claims can be verified, it is necessary to validate theaccuracy of the models resulting from QSM reconstruction.In most applications validation can be done with either real field data, or with simulateddata. The level-of-detail incorporated in the simulations determines, how well the compu-tational results are likely to correspond to field results. A laser scanner is essentially a raytracer: given a direction a scanner determines how far a beam can travel in that direction.Computationally tracing a beam through a scene with complex geometry can be slow. Thus,as a coarse approximation of laser scanning, it is possible to generate random points onthe surface of the geometry in the virtual scene. Such an approach would be faster than raytracing simulated laser beams, but also does not consider the occlusion caused be geom-
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etry and the positioning of the scanner in the scene. With both the ray tracing and randomsampling approaches it is possible to add simulatedmeasurement noise to measurements.However, only in the case of the former is it possible to limit the noise to the direction ofthe beam.Early validation of the reconstruction method was carried out in Article I, using a sim-ple manually-constructed cylinder model. Rather than simulating TLS, random points weregenerated on the surfaces of the cylinders, with a certain level of simulated noise. Thegenerated point cloud was reconstructed and the resulting cylinder model was comparedto the original one. The results showed that volume difference was 7.4 %, while the totalcylinder length was off by only 1.0 %. However, in retrospect the point cloud generation wasextremely unrealistic as it didn’t account for self-occlusion and measurement geometry,resulting in even measurement coverage on all parts of the simple test model.In order to move towards more realistic simulated point cloud data a simple TLS simu-lator, based on ray-tracing was written in MATLAB and utilized for the first time in Article III.The simulator allowed exact measurement geometries be defined, and multiple scans becombined, similarly to the real procedure, while the scanned object consisted of an arbi-trary number of triangles. Although occlusion effects and measurement geometry was ac-counted for in the study, effects like beam divergence, registration errors and environmentalfactors, such as wind and fog were still not considered.As shortly mentioned in Sect. 2.4.1, the main goal of Article III was to compare the ac-curacy performance of several geometric primitives when reconstructing tree stems, fromeither simulated or scanned point cloud data. Themain hypothesis of the publication — andwhat turned out to be true — was that the circle-based cylinder would be the most stable ofthe primitives, in terms of required initial value accuracy, as well as, data quality and angularpoint coverage. This was especially evident in the test with a complete tree model, wherethe simplest shapes (circular and elliptic cylinders) resulted in the lowest difference in re-constructed volume, demonstrating that more complex primitives and reconstruction meth-ods require a fuller measurement coverage than what is usually achievable with branchesabove the scanner height.While considering only stems, the difference in volume and surface area were minimalbetween the reconstruction approaches with both the real stems and the generated stems,deliberately designed to contain exaggerated features. Thus, it is safe to say that if thestem does not contain, e.g., bulges or buttress roots the circular cylinder is a sufficientchoice as a geometric primitive in terms of accuracy, and a great choice due to the levelof stability and data requirements. That being said, naturally there are applications thatfocus on cross-section shape, and for these applications the polygon-based cylinder andsegment-level triangulation offer the best level-of-detail. As discussed in Article III, mod-els combining several primitives or reconstruction approaches are also viable, for exampletrees with buttress roots.In terms of volumetric accuracy theQSM reconstruction approachwas comprehensivelyfirst tested with real TLS data by Burt et al. (2013), using TLS data from three different veg-etation types. The trees were isolated manually from the multi-position scans and recon-structed. TLS simulation was carried out on the reconstructed scene, and the trees were
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reconstructed a second time. The volume of the first and second order reconstructionswere compared, and the results showed an average difference of 10 %. The authors alsostate that the most of the error is caused by point cloud registration errors rather than theQSM reconstruction.In (Smith et al., 2014) the QSM reconstruction method was modified to reconstruct 13extracted root systems as a combination of triangulated meshes and cylinders. Referencevolumes were measured by displacement, and on average the root system volume was un-derestimated in the model by 4.4 %. Moreover, the authors also discuss that the use ofQSM reconstruction also provides more detailed and important information, e.g., surfaceare, branching angles and fork count.Kaasalainen et al. (2014) studied how accurately change in tree biomass can be de-tected with the help of QSM reconstruction of multiple co-registered point clouds of thesame objects, with changes occurring in between. The study consists of two case stud-ies: 1) a single aspen branch scanned four times in a laboratory, with cuts made betweenscans; and 2) a field study with a single maple tree scanned five times over a two-and-a-halfyear time span. In the first case study branch volume and length estimates were comparedto manual reference measurements (and an alternative volume estimation method, trian-
gulated irregular network). The results showed that change in both volume and length isdetectable from QSMs, the former with up to a 12 % error, while the latter had a larger error,8–27 %. The high level of error in branch length change was suggested to be caused byshort branches (length < 5 cm), poorly visible in the TLS data, but that the error would besmaller with complete trees as such branches would contribute less to the total volume.The second case study, showed that numerical values can be obtained for occurred changealso for complete trees, and that large shed branches can be identified from the QSMs.AGB estimated from reconstructed QSMs was compared to manual biomass measure-ments gained through destructive sampling and estimates computed with allometric mod-els by Calders et al. (2015b). Furthermore, manual DBH and tree height measurementswere compared to values computed from QSMs. The study contained a total of 65 treesfrom three different Eucalypt species. The results showed that themeasured and estimatedDBH values had a coefficient of determination R2 = 0.97 and a RMSE of 2.39 cm, while thesame values for tree height were 0.98 and 0.55, respectively. For the biomass comparisonthe coefficient of variation of the root-mean-square error (CV(RMSE)), and the concordancecorrelation coefficient (CCC), were used. The former had a value of 16.1 % and the latter avalue of 0.98, showing that all the attributes could be accurately estimated fromQSM recon-struction made from TLS data. The QSM based estimates were especially more accuratethan allometric equations that were also compared against the reference measurements.Where QSMs overestimated biomass by roughly 10 %, allometric equations underestimatedthe quantity by 30–40 %, especially with larger trees.The same dataset and biomass estimation results together with an additional datasetwith three new species were part of another study the following year, Hackenberg et al.(2015a), where the QSM reconstruction approach presented in this thesis was comparedto another reconstruction procedure called SimpleTree. The reference biomass of the 36trees of the new dataset was also measured through destructive harvesting (Hackenberg
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et al., 2015b). The CCC values for the three new species were E. fordii, 0.80; P. massoniana,0.99; and Q. petraea, 0.57. For the first two the results were good, but for the third speciesthe volume was overestimated on average by 20 %, although better results might have beenpossible with further parameter tuning.Raumonen et al. (2015) presented the preprocessing step for extracting individual trees,but also contained some biomass-based validation, including with a set of 15 English oaktrees (Quercus robur L.). Rather than destructively measuring reference biomass, allometricequations developed specifically to that forest plot and that species, were compared to QSMderived estimates. TreeQSM input parameters were not optimized and the same valueswere used for all the trees. The results showed that on a tree-level biomass was either over-or underestimated by around 25 %. On the forest plot-level biomass was overestimatedbetween 15 % and 19 %.First validation with destructively harvested tropical tree species was performed re-cently by Gonzalez de Tanago Menaca et al. (2017), with a dataset of 20 trees from threedifferent forest regions. Allometric models were also tested against the QSM reconstruc-tion approach, and the results showed that QSM-based reconstruction outperforms eventhe most accurate allometric model, with respective CCC values at 0.95 and 0.89. Alsonoteworthy, is the fact that TLS was performed in very dense forests under leaf-on condi-tions, and that the tree were extremely large, with DBH values larger than 70 cm. As TLSmeasurement density was quite low at the top of such tall trees, and poor reconstructionresults are to be expected under such conditions, branches with diameters smaller than10 cm were discarded from both the destructive measurements and the QSM-based vol-ume estimates. Instead their contribution to the volume was estimated using an expansionfactor.All the above research goes to show that QSMs can be used to accurately estimate, e.g.,total branch length, tree volume and AGB. Although the estimates are not always accuratedown to a single percent, they are often far better than the existing alternatives — allometricmodels in terms of accuracy, and destructive sampling in terms of nature preservation, timeconsumption and cost. Furthermore, these are only a fraction of the tree properties that canbe estimated from reconstructed QSMs.



3SPECIES RECOGNITION WITH TREEQSM

QSMs give access to numerous tree properties, and one application that can benefit greatlyfrom that, is tree species recognition. Similarly, as a biologist would determine the speciesof a tree in the forest, based on certain key factors, species can be determined from at-tributes derived from reconstructed tree models. In their current form, QSMs do not con-tain all the information that a biologist might rely on — e.g. bark colour and texture, or leafshape. However, QSMs offer access to other geometric and topological attributes that caneven be invisible to the human eye, but still allowing species recognition.Feature spaces — an abstract concept vital for QSM-based species recognition — ispresented in Sect. 3.1. Article IV describes an example of automatic, massive-scale QSM-based species classification, while the results are extended and discussed in Sect. 3.2
3.1 Feature spaces
TLS data is in its core three-dimensional data, if you ignore the intensity data. Each pointcloud element is simply a range measurement in a given direction. Thus, there is no way ofknowingwhether any two elements hit the same object, whether a tree, branch or a leaf, evenif the directions of themeasurement beams differ only by a little. The segmentation processof the TreeQSM method aims to reconstruct the connections between the individual pointcloud elements, first identifying the tree and then further separate the stem and branches.These added connections for the point cloud elements can be viewed as an increase in thedata dimensionality.The cylinder reconstruction process, on the other hand, reduces the quantity of data re-quired for describing the tree (million TLS points versus thousand cylinders). At the sametime the cylinders provide an approximation of the surface of the branches, and the recordedtree topology, i.e. the branching structure, is also transferred to the cylinder structure. Theresulting data structure, i.e. the QSM, is a compact and high-dimensional representation ofthe tree, suitable for computing countless tree features, previously unavailable or extremelylaborious to measure, especially from standing trees. QSMs give access to geometric prop-erties, e.g. tree volume, surface area, branch length, branching angles, and taper curves forstem and branches, and topological properties, e.g. branch order distribution, maximumbranch order and the number of child branches for each branch.The computed features map the tree model into a feature space, allowing for examplethe comparison of several models in that space. The features can be common tree at-tributes, such as tree heigh, or quite complex and abstract, like the ratio of the total branchlength and the average branching angle of the first-order branches. Furthermore, featurespaces can be multidimensional simply by mapping multiple attribute values of the sametree to different dimensions. Examples of one-dimensional features spaces, and how threeselected QSMs map to those spaces, are shown in Fig. 3.1. The included features corre-spond to the features to be listed in Table 3.1. The key in the figure is that in some feature
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Figure 3.1: Examples of feature spaces for three reconstructed QSMs. From left to right, theselected QSMs are the same Silver birch, Scots pine and Norway spruce models featuredin Fig. 4 of Article IV. The models are colour-coded to match the pins on the feature spaceaxis.

spaces these three models are clearly separated, while in others some or all of them arevery similar. Furthermore, the order in which they map to the space varies from feature tofeature.
Feature spaces — called space of observables in the publication — of reconstructedtree models were applied to produce stochastic structure models (SSMs) in (Potapov et al.,2016). SSMs are structure models similar to QSMs, but rather than reconstructing an ex-isting tree, SSMs are created simulating tree growth, using a model such as the LIGNUMgrowth model (Perttunen et al., 1996). In the LIGNUM approach, a tree model consists ofparts that grow and can bifurcate to create new parts, at every time step. Originally, thegrowth control parameters were deterministic, however in the SSM approach some of thegrowth parameters are stochastic and optimized by minimizing the distance between distri-butions computed from the generated tree and a reference QSM, i.e. by measuring distance
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in selected feature spaces. As a result the generated tree model is stochastically similar tothe reference QSM, but not a direct clone in terms of geometry and topology.

Later, in (Potapov et al., 2017), the method was further developed as a generator formorphological clones of treemodels. The procedure, called Bayes Forest Toolbox, is writtenin MATLAB and is available for download.1 The toolbox allows the user to generate anynumber of stochastic clones of a reference QSM.

3.2 Classifying tree species

Asmore TLS data and reconstructed QSMs became available from a variety of tree species,the natural question became, howmuch variation therewas on the newly available tree prop-erties, both intra-species and inter-species. The hypothesis in Article IV was that the latterwould be considerably higher, allowing the use of QSM-derived properties as classificationfeatures in species recognition applications.
A massive dataset provided by the Finnish Natural Resources Institute (LUKE), consist-ing of over 1200 trees and 3 tree species — Silver birch (Betula pendula Roth), Scots pine(Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karsten) — from 3 single-speciesand 2 mixed-species forest plots was used in the study. 15 classification features werechosen based on existing research and trial-and-error to maximize species separation inthe corresponding multidimensional feature space. The included classification featuresare listed in Table 3.1 and presented visually in Animation XI. Further information can befound in Article IV.
During the research process also the properties listed in Table 3.2 were considered, butexcluded for the reasons given in the table. The most common cause for exclusion was thelack of separation between species. Fig. 3.2 visualizes the level of variation in the excludedfeatures per species, similarly as Fig. 3 in Article IV for the included species.
Three different training-based classification methods were tested and compared in thestudy. The k-nearest neighbour, multinomial regression and support vector machine (SVM)basedmethods were included. Furthermore, three different kernel functions were tested forthe SVM method. In comparison to one-another, the methods gave consistent results, indi-cating that trees of the included species vary significantly on the selected feature spaces.
The included classification features were designed to be scale-independent, and mostof them are also unitless. The scale-independence was achieved by normalization by, e.g.the DBH or the tree height. The ultimate goal was that regardless of tree age — and thus theabsolute size — all trees of the same species would result in similar feature values. Fig. 3.3shows the distribution of two feature values with the trees of each species separated intothree height intervals.
1Bayes Forest Toolbox: https://github.com/inuritdino/BayesForest

https://github.com/inuritdino/BayesForest
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Table 3.1: List of included classification features. For feature with units, the unit is given inbrackets at the end of the description.
ID Name Description

1 Stem branch angle Median of the branching angles of the 1st orderbranches in degrees. 0 is upwards and 180 down-wards. [◦]
2 Stem branch cluster size Average number of 1st order branches inside a40 cm height interval for 1st order branches. Eachbranch can only belong to one interval.
3 Stem branch radius Mean ratio between the 10 largest 1st orderbranches measured at the base and the stem ra-dius at respective height.
4 Stem branch length Average length of 1st order branches normalized byDBH.
5 Stem branch distance Average distance between 1st order branches com-puted using a moving average with a window width1m. If window is empty average distance in windowis set as half of window width.
6 Crown start height Height of first stem branch in tree crown relative totree height.
7 Crown height Vertical distance between the highest and lowestcrown cylinder relative to tree height.
8 Crown evenness Crown cylinders divided into 8 angular bins. Ratiobetween extreme minimum heights in bins.
9 Crown diameter / height Ratio between crown diameter and height.

10 DBH / height ratio Ratio between DBH and total tree height.
11 DBH / tree volume Ratio between DBH and total tree volume. [m−2]
12 DBH / minimum tree radius Ratio between DBH and theminimumof the verticalbin radius estimates.
13 Volume below 55 % of height Relative cylinder volume below 55 % of tree height.
14 Cylinder length / tree volume Ratio between total length of all cylinders and totaltree volume. [m−2]
15 Shedding ratio The number of branches without children dividedby the number of all branches in the bottom third.
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Table 3.2: List of excluded classification features. The last column ER lists the exclusion
reason that is either the index of an included feature that correlated too highly, or NS for no
clear separation.
ID Name Description ER

16 Volume above 0.65 of height Relative cylinder volume above 65 % of treeheight. 13
17 1st and 2nd order volume ratio Ratio between the volumes of 1st and 2nd orderbranches. NS
18 DBH / branch length Ratio between DBH and total length of allbranches. NS
19 20 % volume from bottom Height from bottom at which 20 % of branch vol-ume is reached. 13
20 20 % volume from top Height from top at which 20 % of branch volumeis reached. 13
21 Branch / stem volume Ratio between branch and stem volume. NS
22 Mean branch radius / DBH Ratio between the average branch cylinder radiusand DBH. NS
23 Top and middle third radii ratio Ratio between the radii estimates of the top andmiddle vertical bins. NS
24 DBH / maximum tree radius Ratio between DBH and the maximum of the ver-tical bin radius estimates. NS
25 Density of middle third Density of a vertical bin is computed as the ratiobetween the cylinders inside a bin and the cylin-der defining the bin.

NS

26 Middle / top third density Ratio between the densities of themiddle and topvertical bins. NS
27 Stem branches / tree height Ratio between the number of stem branches andtree height. NS
28 Stem branch median distance Median of the pairwise stem branch vertical dis-tances normalized by tree height. NS
29 Min / max angular volume Ratio between the minimum and maximum vol-ume of 8 angular bins around the stem. NS
30 Angular volume std Standard deviation of the angular bin volumes. NS
31 Min / max angular branch length Ratio between the minimum and maximumbranch length of the angular bins. NS
32 Angular branch length std Standard deviation of the angular bin branchlengths. NS
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Figure 3.2: Variation in feature values of the excluded features. The vertical line insidethe box is the median. Box limits give the 1st and 3rd quartiles of the distribution andthe whiskers extend to 1.5 times the distance between the 1st and 3rd quartiles, or thedistribution extremes.
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Table 3.3: Pairwise correlation of the included classification features in percentages. Thevalues are also colour-coded, so that, zero percentage is pure green and 100 percentagesis pure red.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 40 51 58 40 15 17 2 16 48 31 9 41 45 12 1
2 41 37 33 42 42 19 17 31 35 34 38 10 24 2
3 62 56 16 17 5 9 52 42 7 28 51 14 3
4 68 11 10 20 12 61 47 12 13 71 32 4
5 3 3 24 0 48 81 12 0 77 19 5
6 100 42 55 23 13 67 67 24 69 6
7 43 53 25 12 68 68 24 69 7
8 10 11 28 27 31 18 30 8
9 21 16 29 24 19 39 9

10 22 14 35 44 6 10
11 2 1 60 6 11
12 61 31 72 12
13 5 49 13
14 46 14

The intervals were chosen, for each species separately, so that each bin would havea sufficient number of samples. For Feature 2 the scale-independence works well, as thevariation in feature values in each of the height bins for each species is lower than betweenthe species. Although, there is a little more variation in the bin of the smallest spruces(h ≤ 22) than the other two spruce bins. An opposite example happens with Feature 12,where the value distribution for the smallest pine trees differs quite a lot from those of thelarger pine bins. Furthermore, the distribution of the small pines is quite close to those ofthe other two species, making it improbable to correctly identify the species of small pinesusing Feature 12.
In mathematical classification applications it is important that all the selected fea-tures remain pairwise uncorrelated. With certain classification methods including addi-tional highly correlating features does not affect the accuracy in any way, however withother methods, correlation may result in unwanted bias in the relevant importance of fea-tures, and the classification accuracy. Fig. 3.3 lists the correlation values for each of theincluded classification feature pairs. The correlation coefficients are expressed in terms ofmagnitude, without noting whether the linear correlation is positive or negative.
There are two feature pairs that have a high correlation level. Features 6 and 7 correlateperfectly with this dataset. Feature 7 is the height of the crown normalized by the total treeheight, and Feature 6 is the similarly normalized starting height, defined by the lowest pointof the branch cylinders. Thus, the values of the two features always sum up to one, resulting
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in perfect negative correlation, unless the lowest branches grow or bend downwards relativeto their connection point in the stem. The branches of all the included three species growupwards, resulting in the perfect correlation. The two features were still both included inthe study, as the correlation is expected to be lower if additional species would be included.In retrospect, the definition of Feature 6 could be changed as the lowest normalizedheight of any branch tip. The updated definition would result in the same value as the oldone in cases where the lowest branches grow downwards. With upwards growing branchesthe value would also correlate less with the value of Feature 7. How much this would affectthe overall classification accuracy, remains untested.The other feature pair with a high correlation coefficient, 81 %, is the pair (5,11),2 whereFeature 5 is the average distance between stem branches, and Feature 11 is the ratio be-tween the tree DBH and total tree volume. The correlation between these two feature valuesfor the included species remains unexplained. Interestingly, the correlation coefficient forFeature 5 and Feature 14 is also moderately high, 77 %, suggesting that there is a connec-tion between the average distance of stem branches and the ratio of total branch lengthand total tree volume.Further studies with a wider array of species should be carried out, to see how the corre-lation values evolve. However as stated in Article IV, the similar classification accuraciesachieved with feature combinations with and without the highly correlating feature pairs,show that in this case the correlation levels don’t have a significant effect on the classifi-cation accuracy.

2In Article IV this pair is reported as (4,11), due to an error by the author.



4MODELLING LEAVES

One of the ultimate goals of reconstructing andmodelling trees, is to understand the ecosys-tem of trees consisting of interactions with the soil, the atmosphere and the sun. To be ableto study andmodel these interactions both the roots and leaves have to be included, as theyare the actuators of most tree-related interactions. However, reconstructing either the rootsor leaves especially from standing trees is very challenging. Root systems can be recon-structed, similarly as described for trees in this thesis, if they are first excavated (Liski et al.,2013; Smith et al., 2014). Reconstructing leaves is equally hard but for a different reasonas they are visible, but recording their count and absolute positions is extremely laborious.
Terrestrial laser scanning can be used record points on leaf surfaces, but there areseveral problems: 1) separating returns from woody and leaf material, 2) identifying returnsfrom the same leaf in order to estimate leaf size or orientation, and 3) leaf presence resultsin a lot of self-occlusion for the tree, and naturally other trees as well, making the accuratereconstruction of the branching structure unlikely from leaf-on scans. Because of the latter,one usually performs two sets of scans, one leaf-off to reconstruct the woody structure,and one leaf-on to measure properties of the leaf cover. Many methods exist for measuringthe leaf area index (LAI) (Woodgate et al., 2017), but also the distribution of leaf material(Béland et al., 2011; Grau et al., 2017) and leaf orientation (Zheng and Moskal, 2012).
Even a single English oak tree, a species which has quite large leaves, can have between50 and 120 thousand leaves (Article V). As such the exact location of each leaf can be seenas irrelevant, while their underlying distribution is the determining factor in interactionswith the atmosphere. Once you have the leaf property distributions, it is straightforward tosample them to generate a leaf cover that follows the distribution, enabling the resultingmodels to be based on exact leaf geometry as well as more abstract property distributions.
Article V presents an algorithm — Foliage and Needles Naïve Insertion (FaNNI) — forgenerating non-intersecting leaves that follow user-defined leaf property distributions. Alsoincluded in the article is the description of aMATLAB implementation of the FaNNI algorithm(Software I). The inputs of the implementation include a QSM, leaf basis geometry, and atotal area of leaves to be distributed. In the current version1 the basis geometry can consistof any number of (3-dimensional) triangles, allowing the use of even very complex leaves.However, the results showed that the basis geometry triangle count heavily affected thecomputational time required for the leaf generation procedure to run, as intersections haveto be detected with all the triangles of all the leaves.
When a single leaf is instanced during leaf generation the basis geometry is scaled,rotated and translated, according to sampled values from user-defined — or default — leafand twig property distributions. This procedure defines the twig start point, leaf start point,direction, length and normal, shown in Fig. 4.1. Even though a normal is defined for a leaf,
1Current release: https://github.com/InverseTampere/qsm-fanni-matlab/tree/v1.2.0

https://github.com/InverseTampere/qsm-fanni-matlab/tree/v1.2.0
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Figure 4.1: Properties of a generated leaf with three triangles in the basis geometry.

the basis geometry does not need to be planar. The normal direction can be viewed asmoreabstract, fixing a local coordinate system for the leaf together with the leaf direction.In the implementation the property distributions are defined asMATLAB functions with afixed interface of input and output arguments, allowing the user to select either the defaultdistribution or substitute one of their own. There are four separate functions for: 1) distribut-ing available leaf area to individual QSM blocks, 2) sampling leaf size (also determines leafcount per block and in total), 3) sampling leaf orientation (direction and normal), and 4)sampling twig parameters (location, orientation, length). The default distribution functionsare presented in Article V. A common input for functions 1–3 is a struct variable containingQSM block properties. Currently the included block properties are fixed in the main file ofthe leaf insertion implementation, but there are plans to make them user-definable in futureversions, in order to make the definition of the distribution functions even more flexible.As the QSM block properties, such as their relative position on the branch or verticallyon the tree, are used to sample values for the required leaf and twig parameters, it is pos-sible to visualize the resulting distribution using the QSM. Examples of such visualizationswere shown in Article V for the leaf area density distribution (LADD), which describes howthe available leaf area will be distributed to the individual blocks. However, it is possibleto make similar illustrations for other properties as well. Such properties could include theones listed above, related to this application, but also unrelated properties such as watercontent or bark thickness. Fig. 4.2 shows on example of a visualized LADD and a result-ing generated leaf cover for the small oak in Article V — an illustration excluded from thepublication for compactness.
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Figure 4.2: An example of a visualized LADD and a resulting leaf cover after leaf samplingfor the small oak in Article V. The lower parts of the tree have been excluded, and theradii of the cylinders in the LADD illustration have been scaled according to their respectivedistribution value for a better visualization.

As discussed shortly inArticle V, one application of the leaf generation algorithmwouldbe to infer the underlying leaf distribution parameters from standing trees. This could bedone, e.g., by forming an optimization problem similarly as done in the publication, whereparametrized distributions were used to generate leaf covers to explain the manual leafcount and area measurements. Should such an optimization be successful, new under-standing could be found on how leaves are distributed along the tree height, and alongthe branches. Naturally, the distribution would be species and location-dependent, and notuniversal.However, should one have the leaf distribution parameters, for a specific species and anarea of study, it could also eventually be beneficial to the woody structure reconstructionprocedure of those trees, while scanned during leaf-on season. If individual broadleavescould be identified from the point cloud data, and there would be an accurate model of howthe leaves of trees of the certain species distribute around the branches, one could infer thelocation and other geometric properties of the branches holding those leaves. This wouldallow more of the tree structure to be accurately reconstructed, even with the presence ofoccluding broadleaves.



5DISSEMINATION OF QSMS

Innovative ways of research result dissemination are becoming increasingly important asthe number of publications keeps rising, and on the other hand the availability of suitabledissemination technologies and platforms has risen drastically. As such part of the workdone for this thesis consisted of preparing and publishing animations, interactive 3D mod-els and web applications. The results of these efforts are presented in this chapter togetherwith details on how they were produced.All of the included animations were composed and rendered with Blender,1 an open-source, cross-platform 3D creation suite for creating 3D graphics and video. CurrentlyBlender ships with two separate render engines, the Internal Render Engine and Cycles, theformer of which was used for majority of the animations. Regarding animations, Sect. 5.1describes how point clouds can be exported and visualized, and Sect. 5.2 describes variousoptions for rendering QSMs in Blender. A list of animations prepared as part of this thesisare listed in Sect. 5.3. Solutions involving interactive 3D models are presented in Sect. 5.4.
5.1 Rendering point clouds for animations
MATLAB was usually used to export point clouds data for animation purposes. The Wave-front OBJ file format was chosen as the migration format between MATLAB and Blender dueto its compact representation of vertices. Blender has a built-in importer for OBJ-data. Formost of the animations the point cloud data was thinned out by excluding point randomlyto achieve more aesthetically pleasing results.Point clouds can be hard to render as themost common 3D animation software are buildfor rendering faces and perhaps edges in some cases, but not vertices. There are separateapplications meant for visualizing massive point clouds, but problems arrive when trying tomix point clouds with mesh data that consists of, e.g., triangles or Bézier surfaces.Blender was not designed to render vertices, but there is a workaround that can be usedto make vertices visible in a render when using the internal render engine, by using a halomaterial. The material is originally intended to be used to create effects like lens flares,but with the right settings it can be used to make vertices render like diffuse or emissionshaded spheres. The settings panel for the Blender halo material is seen in Fig. 5.1.The hardness parameter defines how hard, or distinct, the edges of the spheres appearto be. By setting the hardness to zero the point cloud elements appear solid. Note thatif the hardness is set to greater than zero, the object can appear to be out of focus. The
size parameter of the halo material controls the radius of a single sphere. By default thisparameter is relatively large, but if it is set very small the vertices will appear point-like in therender. A fixed value for the parameter is usually not good enough because the appearanceof the halo material changes drastically as the camera moves closer to the object; either

1Blender 3D, https://www.blender.org/

https://www.blender.org/
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Figure 5.1: Blender settings for a point cloudmaterial. Left: settings panel for halomaterial;Right: rendered example point cloud.

the points appear too large when viewed up close, or they won’t render at all with largedistances. Therefore, the parameter value should be computed as a function of the distancebetween the point cloud object and the camera. In Blender this can be achieved by drivingthe size parameter with the distance between the camera and the point cloud object.2The following linear relation for the distance d( f ) between the object and the cameraand the halo material size parameter s in frame f was determined to work well:
s( f ) =

dmax − d( f )
dmax − dmin · (smax − smin) + smin, (5.1)

where dmax and dmin are the approximate maximum and minimum distances between thecamera and the object, and smax and smin themaximumandminimum size parameter values.It should be noted that the render size and camera view angle also affect the appearanceof the halo material. Thus, the size parameter should only be previewed with final renderresolution, and if a scene contains zoom effects the camera view angle should be factoredinto the driver of the size parameter. However, for many scenes the presented linear relationis sufficient, and it has been used in many of the animations listed in Sect. 5.3.When rendering animations containing point cloud data it is important to remember thatsome of the most used video encoders struggle with this type of images. For example thepoint cloud parts of the 3D Forest Information video suffers from severe decoding artefactswhen played on Youtube. Thus, selection of the video encoder and encoding settings arecrucial.
5.2 Rendering QSMs
There are a couple of ways to represent cylinders in 3D graphics software such as Blender,
i.e., either as mesh objects or as parametrized surfaces received by lofting Bézier curves.

2The size could also be key-framed, but a driver updates automatically should changes occur later.
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Figure 5.2: User interface of the Blender QSM import add-on. Left: settings formesh import;Right: settings for lofted Bézier models.

In the early animations the former approach was used, and thus QSM data was exportedfrom MATLAB in Wavefront OBJ format, either with triangular or rectangular faces. Duringthe export procedure it was possible to choose the number of vertices on the top and bot-tom loops of each cylinder based on the respective radius, thus having less vertices andfaces on cylinders with smaller radii. In later videos the cylinders were presented as loftedcurves. The QSMs were exported in a custom text file format, where each row described thefollowing properties of a single cylinder, in order with the number of respective parametersin parenthesis: branch index (1), starting point (3), axis direction (3), length (1), radius (1),and optional parameters (N ∈ { 0, 1, . . . }).
A Blender add-on (Software II) was developed to automate the QSM import process asboth mesh and curve objects. There are three alternatives for importing a QSM: 1) meshobject, 2) cylinder-level Bézier curves, and 3) branch-level Bézier curves. The UI of the add-on is shown in Fig. 5.2. Regardless of the resulting object type, cylinder data is passed tothe QSM import add-on in the custom text file format described above. The data file is setin the Input file field of the UI. The user can also optionally choose separate materials forthe tree stem and branches, assigned automatically during import to the appropriate QSMparts. An option also exist for the user to choose whether the whole QSM is presented asa single Blender object, or should a separate object be created for each branch. Note thatthe latter is much slower when the number of branches is high.
When importing as a mesh object, the user can choose the minimum and maximumnumber of vertices on cylinder top and bottom loops. The vertex count is determined bylinear interpolation based on respective cylinder radius and the minimum and maximumradius found in the input file, similarly what was done manually in MATLAB.
With the lofting based methods a lofting object (or bevel object in Blender’s terminol-ogy) has to be selected in the respective field. This object is duplicated at each curve pointwith possible scaling, and orientated to match the curve tangent at that point. The du-plicated instances are then connected to each other, forming the final surface. The bevel
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object can be any shape, but in all the animations considered here, a closed Bézier circlewith the radius at unity was used. Compared to the mesh approach, lofting is more dynamicas in Blender it is possible to change the number of control points on the bevel object, en-abling the choice in level-of-detail at any point of the production, and the level could evenbe made dependent on the distance between the camera and the QSM object, allowing anautomated level-of-detail selection.In the cylinder-level lofted models the axis of each cylinder is presented by a separateBézier curve with two points, one at the starting point and one at the end point. The curvedirection is also set parallel to the cylinder axis direction, making the axis a straight linesegment. The radius parameter in both curve points is set to the cylinder radius value, thusresulting in the resulting lofted surface to be a cylinder.With the branch-level lofted models the same idea is expanded further, presenting asingle branch as a lofted Bézier curve, allowing also tapering along the branch. A branchwith N cylinders results in a curve with N + 2 points: c0 at the starting point of the firstcylinder, ci at the center point of each cylinder i ∈ { 1, . . . ,N }, and cN+1 at the ending pointof the last cylinder:

ci =


p1 when i = 0
pi +

1
2 hiai when 0 < i ≤ N

pN + hNaN when i = N + 1
, (5.2)

where pi is the starting point, ai the axis direction, and hi the length of the ith cylinder,
i ∈ { 1, . . . ,N }. Similarly, the left d−i and right d+i curve control points, that determine thecurve tangent at the curve points, are computed as follows:

d±i =


c0 ± γ±0 h1a1 when i = 0
ci ± γ±i hiai when 0 < i ≤ N
cN+1 ± γ±N+1hNaN when i = N + 1

, (5.3)

where γ±i is a parameter determining how far from the curve points the control points areplaced, determining the steepness of the curvature. In the current implementation the fol-lowing parameter values are used:
γ+i =

 0.25 when i ∈ { 0,N,N + 1 }
0.45 otherwise , (5.4)

γ−i =

 0.25 when i ∈ { 0, 1,N + 1 }
0.45 otherwise . (5.5)

Given the radius ri of cylinder i, the radii ti at the curve points ci are set to the following:
ti =


t0 = r1 when i = 0
ti = ri when 0 < i ≤ N
tN+1 = βrN when i = N + 1

, (5.6)
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Figure 5.3: Examples of imported models. From left to right: mesh cylinder, cylinder-level,and branch-level lofted models.

where the radius parameter β controls how steeply the branch ends should close. Setting
β = 0 forces the branch end to taper to an apex, whereas β = 1 results in the radius rN ofthe last cylinder. In the current implementation the radius parameter β is fixed at 0.1.Examples of QSM import results are shown in Fig. 5.3 for all the resulting object types.The vertex number limits for the mesh model were 5 and 8. Because of the low vertex countthe mesh model looks less smooth than its lofted counter parts, but with a higher vertexcount similar results would be possible. However, with the lofted models you can choosethe smoothness level even after the import procedure, for both the branch curve as well asthe bevel object.Currently, it is recommended to use one of the lofted model options over the mesh-based one, as there is a huge difference in computational time. This is because the meshimport option utilizes Blender’s built-in computationally intensive operator to create basiscylinders that are transformed to create the final QSM cylinders. The execution time isexpected to decrease if the cylinder vertex and face generation would be done manually.In future versions of the QSM import add-on the selection of the parameter values γ±iand β should be exposed to the user, enabling more versatile use. There are also plansto implement the option to import multiple QSMs at once, allowing easy visualizations offorest plots.
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5.3 Details of produced animations
Below is a list of animations produced as part of this thesis. Short descriptions of eachvideo are given, together with an overview of how specific parts or effects — such as pointclouds or QSMs — were created during the production. To see the animations, refer to theSupporting material section of this thesis.
Animation I - Creating surface patches

A short animation on the creation of surface patches and the definition of the neighbourrelation. In the animation point cloud elements are represented as individual sphere objects,due to the low point count.
Animation II - Surface patch characteristics

The video visualizes how data variation and PCA can be used to determine point cloudor surface patch properties. In the QSM reconstruction algorithm PCA is used to define adimensionality to surface patches, and a direction to elongated patches, as well as a normalfor planar patches. Point cloud elements are visualized as individual spheres.
Animation III - Locating the trunk and base

BeforeQSM reconstruction frompoint cloud data, lidar returns fromground and surroundingvegetation have to be filtered out. This is done by first identifying surface patches partof the tree trunk by analysing patch geometry with PCA. Ground exclusion is based onthe neighbour relation, as it enables moving along the underlying surface, similarly to apropagating wave, while preventing trunk parts being labelled as ground. Once the trunkand ground points are classified, branches are defined to be the remaining unclassifiedpoints.In the animation the halo material approach from Sect. 5.1 was used to visualize real,thinned-out point cloud data of a pine tree. The propagating colour wave was achieved byutilizing Blender’s dynamic paint tools and invisible brush objects.
Animation IV - Automatic segmentation

The animation begins with a point cloud of a tree with a known set of surface patches thatform the base of the trunk, and visualizes how the neighbour relation can once again beused to select layers of surface patches and move along the trunk. Bifurcation detection ispresented through examples.The tree model in the animation was generated with the Blender Sapling add-on.3 Thepoint cloud was generated in Blender by using a particle system, that was then instanced toreceive a mesh with vertices. The point cloud elements were then generated with another
3Sapling: https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Curve/Sapling_Tree

https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Curve/Sapling_Tree
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hair particle system with the particle count matching the vertex count, and a sphere as the
dupli object. The colour changes relied on several dynamic paint systems.

Animation V/VI - 3D Forest Information

A demonstration of a tree extraction procedure, the QSM reconstruction approach and itsapplications, using real point cloud data from an oak tree point cloud. In the video thethinned-out and ground-excluded input point cloud is introduced and shown to transforminto cylindrical QSMs. Computed values such as branch count, volume, and stem tapercurve for individual QSMs are shown at the end.
Point cloud data was rendered using the halo material approach. The QSMs were ex-ported from MATLAB in Wavefront OBJ format, as the import add-on was yet to be created.Thus, the low vertex count of the mesh cylinders is evident in parts of the animation.

Animation VII/VIII - Cylinder reconstruction

The video describes in detail the QSM reconstruction process steps between the segmentedpoint cloud and the resulting cylinder model. Each segment is divided into sub-segmentsof certain length, each of which is then reconstructed by fitting a single cylinder in the LSsense. After a segment has been completed, possible gaps in the model can be removed byintroducing additional cylinders, or bymodifying existing cylinder parameters. Furthermore,heuristics can be used to ensure too abrupt changes in the consecutive radii in the cylindersof the segment.
A tree model was generated with Blender’s Sapling add-on, and simulated laser scan-ning was performed on it in MATLAB. The resulting point cloud was reconstructed as a QSM.The point cloud and cylinder data were exported into Blender. The halo material approachwas used to visualize the point cloud.

Animation IX - Visualizing reconstructed tree models

The animation begins with a demonstration of a tree getting laser scanned from various di-rections, showing how the individual scans can be co-registered. Cylinder-level and branch-level lofted QSMs are featured in the video, together with leaves generated with an earlyversion of the FaNNI leaf insertion algorithm (Article V). Both the QSM and the leaves arevisualized with various textures and compared to each other.
The point cloud was exported from MATLAB where the vertices were first ordered ac-cording to angle in polar coordinates with respect to the virtual scanner. This allowed thepoint cloud to appear as a wave, by using a build modifier in Blender. The points were visu-alized using the halo material approach. The animation was created at the same time asthe first version of the QSM import add-on and all the QSMs are lofted Bézier models.
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Animation X - Quantitative Structure Models

This compilation video mostly features graphics from previous videos, as a summary ofthe details of the QSM reconstruction approach, applications that are enabled by QSMs,and visualization capabilities. Original parts of the video feature statistics derived fromreconstructed QSMs from the Punkaharju forest plots in Article IV, and demonstrate howdifferent tree species are separable for accurate species classification.The data points in the statistics section were exported from MATLAB, and importedas mesh vertices and respective shape keys. This allowed the smooth animation betweendifferent feature dimensions with simple controls.
Animation XI - Tree species recognition with quantitative structure models

The video was prepared supplementary to Article IV, and it visualizes how the 15 classifi-cation features are computed, with the help of an example QSM. Later in the video classi-fication results are visualized for each feature separately, using additional example QSMs,one of each species.Data for the box plots was exported fromMATLAB and imported as shape keys of ameshobject. Empty objects were then vertex parented into the mesh vertices, and these objectwere hooked to the appropriate box plot geometry. This complex approach allowed smoothtransitions between consecutive features simply by animating the shape key values.
5.4 Interactive 3D models and example tree gallery
Besides videos, QSMs have been disseminated as interactive 3D models. These modelsare powered by web graphics library (WebGL), which is a JavaScript-based technology thatallows 3D graphics to be displayed directly in a compatible web browser, without the userhaving to install any add-ons. Although, it would be possible to write a custom viewer uti-lizing the WebGL application programming interface (API), for simplicity an existing webservice called SketchFab4 was used. A 3D model can be uploaded to the service in variousformats, such as, Wavefront OBJ. After that, displaying the model is only a matter of gettingthe appropriate embedding code to a web page. The 3D model player offered by SketchFabincludes controls to rotate, pan and zoom the scene.A more feature-rich web application was also produced as part of this thesis, designedfor visualizing forest plot maps and individual trees and their properties. The applicationis titled Tree gallery.5 The page consists of three sections: 1) forest plot selector and treemap, 2) interactive tree model player and basic tree properties, and 3) branch/cylinder sizedistribution bar plot.In the first section, shown in Fig. 5.4, the user can select a forest plot by name in adropdown menu. After the selection a tree map of the plot will be drawn below, togetherwith the scanning locations. Basic properties, such as, tree branch and cylinder count, are

4SketchFab, http://www.sketchfab.com
5Tree gallery demonstration, http://math.tut.fi/inversegroup/treegallery

http://www.sketchfab.com
http://math.tut.fi/inversegroup/treegallery


47

Figure 5.4: Forest plot section of the Tree gallery demonstration.

listed next to the map. In the tree map the center point of each tree is marked as a bluedot, with a larger green circle around it, showing the estimated radius of the tree. In thisexample the radius was estimated as the maximum horizontal distance between a cylinderand the base of the tree stem. The tree map is interactive and can be used to select a treeto be inspected more closely in the other two sections.The tree section has similar controls for selecting a single tree from the active forestplot. Once a tree is selected basic properties including area, volume and branch count, areprinted in the section. Furthermore, the respective interactive tree model is loaded fromSketchFab. The size distribution section is also updated to show the distribution values ofthe selected tree.In the last section the user can select between length, area and volume distributions,and whether the distributions are given as a function of branch order or cylinder radius.There is also a choice between absolute and relative units. Both the tree map plot andthe size distribution bar plots are implemented using the Data-Driven Documents (D3.js)JavaScript library.6As the application was used only as a demonstration, data from only one forest plot areavailable. The forest plot and the tree models are the same used in the 3D Forest Informa-
6Data-driven documents — D3.js, https://d3js.org/

https://d3js.org/
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tion video, described in Sect. 5.3. With larger forest plots it would be possible to pan andzoom the tree map, and in future versions the map could be integrated to an open map API,allowing the use of satellite images or terrain maps.



6DISCUSSION

At its core, TreeQSM was designed to be a method for reconstructing tree architecture inthe form of structure models, in a non-destructive manner. However, over time the goalshave evolved to some day have models that also describe tree dynamics and functions,such as growth, nutrient fluxes and interaction with the soil and atmosphere. In fact, stepshave already been taken towards these goals, with TreeQSM used to study tree growth(Kaasalainen et al., 2014) and QSMs being combined with growth models (Potapov et al.,2017). Article V presented a method for generating a leaf cover for a QSM — an advance-ment towards atmospheric interactions — but also showcased how non-structural informa-tion can be attached to QSM primitives, to describe various distributions. Such an approachcould be instrumental at some point, when including nutrient flows into the models.
The accuracy and speed of TLS instruments are increasing while the prices keep de-creasing, making them more readily available to forest scientists, the forest industry andpeople inventorying forests. At the same time QSMs, produced by TreeQSM or other meth-ods, are getting better in terms of accuracy. Destructive sampling is still, and might foreverremain, more accurate but at the same time extremely time consuming and not viable forlarger scales. One could use allometric models in larger scales, but studies have shownthat the accuracy of reconstructed tree models already far exceeds the accuracy of allo-metric models (Calders et al., 2015b). As the benefits are clear, it is expected that QSMswill be the near-future-way of measuring forests.
QSMs have allowed the quantitative analysis at tree-level, and in the future they cando the same at forest-plot-level and forest-level. Previously, when one wanted to validate atheory related to tree structure, the most time-consuming process was the gathering of val-idation data from dozens or hundreds of trees. The single-species forest-plots described in

Article IV—with roughly a thousand trees — took only two days to scan, and some hours toreconstruct as QSMs. Thus, gathering massive amounts of validation data can become ex-tremely fast with these technologies. Furthermore, the resultingmodels are comprehensiveand compact to store, therefore allowing the same measurements to provide various vali-dation metrics for multiple studies, without the need to necessarily measure again. The for-mat for sharing structural and functional tree information should be standardized as soonas possible, to help researches share and utilize an increasing number of reconstructedtree models.
Three aspects of the likely future applications of QSMs are discussed next in separatesections. How the availability of comprehensive tree models is likely to change how forestinventories are performed, is described in Sect. 6.1. Relating to the need for a standard wayto present tree-related information, database solutions are discussed in Sect. 6.2. The sec-tion also describes an example database structure and a related software demonstration.Finally, visualization related applications are reviewed in Sect. 6.3.
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6.1 Towards comprehensive and fully automated forest

inventories

The original TreeQSM procedure in Article II was designed to work on a single tree pointcloud, and to reconstruct a single tree. Although, the initial version was able to automati-cally detect and exclude lidar returns from the ground and undergrowth, results from pointclouds with multiple trees would have had unexpected results. At that time, the researchquestions were more focused on what information could be extracted even from a singletree. However, as the reconstruction procedure began to produce promising results, it be-came relevant to study whether the reconstruction could be made to work on a forest-plotlevel.
Raumonen et al. (2015) presented a pre-processing step for the QSM reconstruction,that segmented a forest-plot-level point cloud into subsets of individual trees. The sameconcepts of surface patches, patch geometric characteristics and neighbour relation werere-purposed to locate stem bases in the forest-plot-level data, and eventually to excludeground and undergrowth returns and isolate individual trees. After that it is simply a matterof running the reconstruction procedure on each tree-level point cloud separately, effectivelyas a whole, moving from the forest-plot-level point cloud data into a collection of QSMsforming the forest plot.
In Article IV an additional step was studied, where based on features computed fromQSMs — that were automatically separated and reconstructed — were used to identify treespecies. The initial results were promising, and showed that species-specific informationis stored in QSMs, in a form that is easily accessible. From an application perspective, com-bining the proposed tree extraction, QSM reconstruction and species reconstruction proce-dures, allows the computation of the species distribution and numerous tree attributes orquality estimates aggregated per species, just from a forest plot point cloud. Albeit, certainrequirements have to be met, such as certain point density and preferably leaf-off condi-tions, we are moving closer to extremely automated forest inventories, where the main limi-tation seems to be the area of forest that can be scanned in a given time frame. At the sametime, the actual definition of taking forest inventory is changing; The previously recordedfew key values per tree are just part of what is included in the detailed snapshot of the for-est structure, when using QSM reconstruction. It might even be the end for characterizingtrees with the traditional, easy-to-measure terms, such as, DBH and tree height, as QSMsmight be able to offer properties that are similarly compact but even more descriptive.
Howmuch forest area can be covered with a suitable resolution, for example in a singleday, depends on the forest density and the present tree species as the level of branchingdensity can be estimated from those. As part of the field measurements for Article IV theSilver birch and Scots pine forest plots were both scanned during a single day, still withsome time to spare as the scanning of the Norway spruce forest plot also started the sameday. Combined, the first two forest plots required 20 scanning locations and included morethan 800 trees.
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It is easy to see that, if not this particular QSM reconstruction approach then some otherTLS-based methodology will be the future of forest inventories. As the results of the powerof what can be reconstructed and estimated from TLS data spreads wider, there should beno reason to perform manual DBH and tree height estimates over TLS scans. Especially,when you compare the number of trees that are visible even from a single scan, and howmuch time it will take to sample the same trees manually. At some point the scanningprocess can become even faster, if the limitations with drone technology — available flighttime and the carrying capacity — are removed, and if any form ofmobile scanning canmatchthe accuracy of static TLS measurements.In the near future of forest scanning, there might be a rapid move from the currentlymost common single-wavelength instruments to their hyper-spectral counterparts. Manyhyper-spectral scanners have already been developed (Danson et al., 2014; Hakala et al.,2012), and the progress is sure to continue, with instruments getting cheaper and smaller,with increases in both the spatial and spectral accuracy.Hyper-spectral lidar measurements could be used to augment the recorded forest snap-shots with chemical information about different trees, branches and leaves. Allowing forexample easier and more accurate separation of leaves and woody structure, estimatingleaf distribution parameters (see Sect. 4), and mapping water content and chlorophyll lev-els. Such information could in turn be used to assess the quality of the wood and thegrowing conditions, and modelling and reconstructing the functional processes of the tree.

6.2 QSM database

QSM data are well-suited for relational databases, and an initial demonstration was carriedout as part of this thesis. QSMs contain cylinder, branch and tree-level details, which canbe stored in separate tables to efficiently avoid redundant information. Fig. 6.1 shows thedatabase schema used in the QSM database demonstration, together with some additionaltables that were planned but not implemented at this stage.The database was built on the assumption that a tree has a fixed species and a location(at least on any given time). Multiple QSMs can be reconstructed of any tree with variousreconstruction methods, using multiple laser scans, or scan sets, as input data. Further-more, a QSM consists of a number of branches, which in turn consist of cylinders in thedemonstration, while other shapes are also possible (Article III).The database demonstration was web-based and built upon an structured query lan-guage (SQL) database and an Apache server, with the back-end written in PHP: hyper-text preprocessor (PHP). The front-end was a combination of hypertext markup language(HTML) and JavaScript. The UI consisted of two sections: 1) choosing and filtering inputdata, and 2) selecting output computations performed on the selected data.QSMs and their parts could be filtered according to various conditions, such as, for-est plot name, tree name, species, height and volume. Furthermore, branch-level filterableproperties included branch length, order and volume, and cylinder-level radius, length andvolume. For simplicity and ease-of-use any number of filters could be added in arbitrary
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Figure 6.1: Database table and property diagram. Tables included in the database demon-stration are shown in blue and planned tables are shown in grey. Foreign key references areshown as lines.

order, but the UI did not allow the filters to be combined by other operators than the logical
AND operator. There are however plans to allow the use of more advanced operators and away to determine their processing order.

The possible output computations included basic properties, species distribution andsize distributions. The first was a panel containing numerical values of the includedmodels,such as tree, branch and cylinder count, volume and area. Species distribution listed treecounts per species. The functionality and customizability of the size distribution outputwas similar to the one presented for the Tree gallery in Sect. 5.4. E.g., the user is able toselect between branch order and cylinder radius based distributions, and length, area andvolume distributions. The resulting values could be displayed either as a table or a bar plot.
The ambitious goal of the database demonstration was that everything was accessiblethrough the website. However, that meant that computations had to be performed on theserver-side, or that the data had to be exported in text format. The problem with the formeris that all of the output computation offered by the systemmust be known and implementedbeforehand, by the system administrator which would be tedious and not very dynamic, asmore and more applications for the models arise. With the latter, there were questions ofexportation format and convenience, as the data would have to be further transferred fromthe web browser to some data processing software. The compromised usability of possiblynumerous query–export repeats would certainly reduce the user base.
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One solution for further development would be to apply interface-based design to thedatabase, making it accessible thought a web interface, having data exportation in a formatlike JavaScript object notation (JSON) the only option. Add-ons could then be created fordata processing software, allowing the user to make queries and access the return datadirectly, e.g., from the command prompt of MATLAB.If necessary the interface could also be utilized by a website to offer basic computa-tions, like checking the number of available models from a given area, and visualize bothtree maps and individual tree models, similarly to the Tree gallery in Sect. 5.4. With thehelp of a custom WebGL viewer parts of the selected QSM could be hidden or coloured, forexample, to separate different branch orders. Interaction is also possible, allowing the userto select branches or blocks in the 3D viewer, and displaying properties of the selection.The applications for the database could include simple data mining to better under-stand how genetics and environmental factors affect tree growth and interaction with theirsurroundings. For example, a database would allow an easy comparison of how differentforest management approaches affect trees in the area, that are genetically close to eachother. A growing database of QSMs could also serve as training data for automated speciesrecognition during TLS-based forest inventories, with the methods presented in Article IV.Furthermore, with the help of data mining better species classification features could bediscovered from a database, making the species recognition even more accurate.Potapov et al. (2017) presented a method to generate morphological tree clones usingstatistics extracted from reconstructed QSMs. Generated tree models that are not exactcopies of one-another are used, e.g., in biological simulations and visualization applicationssuch as video games. Connecting such a generator on the proposed database would allowthe user not only to download reconstructed trees, but also easily generate any number oftree models that are statistically similar to a model pool selected from the database.

6.3 Visualization and virtual reality

TreeQSM was developed to accurately and quantitatively reconstruct the geometry andtopology of a tree. As such, it was not required for the resulting surface to be continuous or,
e.g., to realistically represent the texture of the tree bark. In fact, regardless of data qualitya tree model consisting of any geometric primitives, can never be continuous. When theapproach was first introduced, many potential appliers of the method criticised the methodfor such reasons, for producing unrealistic-looking results. Branches in the tree modelsconsisted of several separate cylinders, rather than eye-pleasing continuous surfaces. Ontop of that, gaps in the models were common, as the gap filling and other refinement pro-cedures were yet to be introduced. However, the discontinuous nature of the models wasby-design, as the goal at that point was to only reconstruct parts that are well covered inthe input point cloud data, differentiating from methods such as (Côté et al., 2009) wheresingle returns, or attractors could generate a branch.With later versions of the reconstruction approach gap filling and tree- and segment-level heuristics help make the models more continuous, but poorly-covered parts are still
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excluded from reconstruction, as the uncertainty of any reconstruction attempt would betoo large. This commitment to relying only on the input data, is one of the factors explainingwhy the reconstructed volume is usually underestimated in studies (e.g. Burt et al., 2013).The cylinder-basedmodels were well suited for the initial research questions as they arefast and simple to do computations with. However, as the variety of applications utilizingQSMs has grown vastly, so has the demand for more realistic visualizations. Therefore, aspresented in Sect. 5.2 some visualization approaches were adapted for presenting QSMsin more visually pleasing ways. As shown in Animation IX individual cylinder parameterscan be used to parametrize Bézier surfaces, presenting branches as continuous surfaces.Furthermore, both the cylinder surfaces and Bézier surfaces can be textured, e.g., with abark texture, and textured leaves can be included using Software I. Some minor gaps canstill remain in the model between parent and child segments, but overall the results aremuch more pleasing to the eye.Realistic visualization can be used for example in gaming and virtual reality (VR) appli-cations (Raumonen et al., 2016). For the former, reconstructed tree models can reduce timerequired for asset creation and the level of realism on nature modelling, as artist are notrequired to create individual tree models by hand. A suitable number of tree models couldsimply be downloaded from a database, should one exist. Furthermore for VR, tree andforest reconstruction allows the virtualization of complete scenes, either to market them orto conserve a 3D snapshot of the real location. Tourists could study locations — in detail— they are considering visiting to help with the decision, or revisit sites they have alreadytravelled to and re-experience the scenery.



7CONCLUSION

One of the goals of this thesis was to study what tree attributes can be estimated fromTLS data, in a non-destructive manner. As a result a novel approach to reconstruct com-prehensive 3D reconstructions of trees from terrestrial laser scanning point clouds datahas been developed. The TreeQSM software has been implemented in MATLAB and it hasbeen shared open-source for anyone to use. The TreeQSM reconstruction automaticallysegments the tree-level point cloud into branches, using a few tuning parameters chosenby the user, and outputs amodel that contains the geometry and topology of the tree presentin the data. As the reconstruction is comprehensive, meaning that all the trees sufficientlycovered by measurements are reconstructed and included in the model, numerous tree-,branch- and sub-branch-level attributes can be estimated from the model. Tree attributesfrom single-valued properties, such as tree volume or above-ground biomass, to more com-plex properties like branch size and branching angle distributions, are all accessible in theproduced models.At the core of the QSM framework are the notions of quantity and comprehensiveness;Reconstruct all branches well covered by the TLS range measurements, to produce a singlemodel describing the full geometry and topology. Previous reconstruction approaches weredesigned to get estimates of single tree properties such as tree count in a given area, DBH,tree height or stem taper. With TreeQSM the goal is to reconstruct a complete semantically-rich representation of the tree, which allows the computation of not just one specific treeproperty but most of them. The process is data-driven, meaning that only parts with enoughmeasurements are reconstructed. Although in newer versions of TreeQSM small gaps canbe filled using interpolation, the basic design principle is to ignore poorly covered parts andto not guess and try to explain all the isolated lidar returns.TreeQSM was developed primarily as a tool for forest scientists, foresters and biolo-gists, to answer various questions regarding, e.g., tree structure, growth and interactionwith their surroundings. In terms of usage, the TreeQSM software package has becomewidely-spread and well accepted into operational use, especially by forest scientists. Evenbefore the source-code was released, the software was used by dozens of collaborators allover the world, with more certainly to follow with the software freely available for downloadand modification. So far TreeQSM has been successfully used to estimate at least branchsize distributions (Raumonen et al., 2011), DBH, tree height, tree, trunk and branch volumesand respective biomasses. More advanced applications include the study of scaling laws(Sarmiento et al., 2015), detecting growth in trees over time (Kaasalainen et al., 2014), ef-fects of forest management (Juchheim et al., 2017), generating morphological tree modelclones (Potapov et al., 2017), and the estimation of key climate variables (Calders et al.,2015a). Additionally, promising research with the help of QSMs is actively conducted onphenotyping based on structure, crown development mechanics, optimizing the lidar mea-surement geometry to minimize occlusion, optimizing destructive sampling, studying windmechanics of trees and on calibrating airborne and space-borne measurements by upscal-
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ing terrestrial results. The number of tree properties and applications continues to increaseas more professionals adopt the use of TreeQSM, and as measurement technologies (suchas HSL) allow the inclusion of additional functional or structural data.A QSM consists of a collection of geometric primitives — most often circular cylinders— with known geometric parameters and a parent–child primitive relations. As this is anapproximation of the real tree surface, the model-based error, i.e., the error related to theselection of the geometric primitive was studied in Article III, in order to see the differ-ences between various geometric primitives and to validate the selection of the circularcylinder as the default geometric primitive. The results showed that the circular cylinderis an excellent choice as the geometric primitive as the volume of the reconstructed stemmodels was overestimated only by 1.36 % on average, and the DBH was underestimated byonly 1.12 %. This combined with the stability and the low data quality requirements of thecircular cylinder, make it far superior with respect to the other tested primitives — ellipticand polygon-based cylinders, cones and segment-level surface triangulation.Extensive validation of the reconstruction approach has been carried out in variousstudies presented in Sect. 2.6, using both simulations and field measurements. Many ofthe studies suggest that the expected volume error is ≤ 10 % for trees (Burt et al., 2013)and only 4.4 % for root systems (Smith et al., 2014). Above-ground biomass can be es-timated non-destructively and more accurately than with the current industry standard —allometric models. The CCC values of TreeQSM-derived estimates and estimates receivedby destructive harvesting can be as high as between 0.95 and 0.98 (Calders et al., 2015b;Gonzalez de Tanago Menaca et al., 2017). However, for some species, such as the Q. pe-
traea, parameter tuning might be needed as CCC values can be as low as 0.57 (Hackenberget al., 2015a).Even forest-plot level point clouds with multiple trees can be reconstructed withoutuser interaction, by combining the presented reconstruction approachwith a pre-processingstep that automatically identifies and extracts individual trees (Raumonen et al., 2015). Intraditional forest-plot surveys, performed manually by an expert, an important aspect is thegeneration of the plot-level species distribution. This thesis aimed to show that identifyingtree species is possible using reconstructed QSMs. Article IV showed that it is possible tofind multiple tree properties that are species-specific, allowing the species of a tree to berecognized automatically based on them. Given suitable training data, various classificationmethods could be used to classify tree species with an accuracy up to 96.9 %, in a studywith over 1200 trees. QSM reconstruction and automatic species recognition could enablelarge-scale automated forest inventories in the future. Creating and maintaining an opendatabase of reconstructed treemodels would be a clear benefit for forestry, forest sciences,and in particular species recognition, as an increasing population of training data wouldallow even more accurate classification.At least at the moment, the TreeQSM procedure does not reconstruct leaves or needlesor estimate their distribution parameters. However, foliage and needles are essential inall the interactions a tree has with the atmosphere, as well as the appearance of the tree.As such foliage is key in both tree-related simulations and visualization applications. Incontrast to reconstructing leaves while reconstructing the tree structure, the other option is
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to generate a leaf cover after the structure reconstruction. Article V introduced a procedure,FaNNI, for adding leaves to QSMs, following an arbitrary distribution chosen by user. Leaf-augmented QSMs are a valuable tool, e.g., for radiative transfer simulations, but also astep closer to more realistic visualizations. The FaNNI implementation written in MATLAB isfreely available for download. As part of the study it was not possible to find a parametrizedLADD to explain measured vertical leaf distribution, and thus further studies are required.If the distribution of leaves could be explained by parametrized distributions, it would bepossible to estimate leaf count and area in standing trees with fewer manual samples.Furthermore, the distribution information could be used to make structure reconstructionmore accurate, even during leaf-on season.

A key part of this thesis was the visualization and dissemination of the reconstructedtree models and other results. Although QSM reconstruction produces a collection of in-dividual cylinder parameters, it is possible to use the same parameters to parametrizesegment-level continuous surfaces, as shown in Sect. 5.2. Even more realistic results canbe achieved by texturing the surfaces as shown in Animation IX. On the other hand in com-parison to realism, QSMs can be used to visualize parameter or resource distributions of atree as shown in Article V and Sect. 4.
The possible applications of reconstructed tree models are clear for forest science andforest management and harvesting. However, businesses in the travel and gaming indus-tries could also utilize the reconstructed models. Environment reconstruction allows thevirtualization of for example travel locations, allowing the user to visit the virtual represen-tation either before, after or instead of the trip. For game developers reconstructed treemodels can offer speed-ups in the game asset creation process.
The animations part of the thesis feature both point cloud data and QSMs, or their parts,and feature key parts of the reconstruction algorithm and what the results can offer to var-ious fields. Similarly, new web technologies such as WebGL based interactive 3D models(Sect. 5.4) together with interactive distribution visualizations, have been used for dissem-ination of the results. Currently in science, these alternative ways of result disseminationremain highly underused, compared to traditional static content. Rather than replacing writ-ten publications, these technologies should be used in parallel to them, or as supplemen-tary material. The benefits are clear: a wider audience can be reached and mode complexconcepts can be presented faster.

7.1 Future work

Comprehensive reconstructed 3D models are slowly but steadily becoming a standard inforest science. Improvements in the reconstruction accuracy and speed are always re-quired, and part of those improvements come directly from advancements in laser scan-ning technology, as more detailed point clouds translate to more detailed QSMs. However,the main next step is to start focusing on the applications of the models. In their currentform structural tree models are sufficient for estimating tree properties, recognizing their
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species and for simulating radiative transfer and terrestrial, airborne and spaceborne laserscanning.Although, Raumonen et al. (2015) introduced a preprocessing step to extract individualtrees from forest-plot-level point clouds, further development has to be carried out to en-sure the approach works on various conditions, despite the various levels of tree density.Improvements are required especially in complex, multilayered, dense forests, where theremight be hardly any lidar return from the top parts, or the parts close to the center of thetree crown. Fully accurate, automated tree separation might be impossible, as distinguish-ing between intertwined branches from two trees is hard even for the human eye, but stillthere is room for improvement.In its current form, the TreeQSM reconstruction implementation only utilizes the loca-tion information of the input point cloud elements. On top of the intensity values, or thepossible hyper-spectral information, there is at least one more easily accessible set of datathat could be utilized to improve the reconstruction results: the measurement geometry.Considering the travelling direction the light beam resulting in the range measurement, onecould analyse not only what is visible but also what is not and why. For example, if someenvironment in the 3D scene does not contain any returns, the positioning of the scannerscan be used to determine whether that is because no beam entered the environment, orbecause all of the beams travelled through it uninterrupted.Measurement geometry analysis could be carried out in situ, allowing the scanner op-erator to view in real-time what parts, e.g. voxels, need more coverage and possibly evenhave positioning recommendations for additional scans. The key would be to visit as muchof the space in the scene, and more importantly, from as many directions as possible, tomaximize local coverage where possible. During the reconstruction procedure, the mostsimple form accounting for the beam direction, could mean checking that none of the QSMelements block the path from the point cloud elements to their respective scanners. Thenext level would be to determine the level of local coverage, and furthermore a level oftrust in the corresponding reconstruction. The environments not visited by beams could bemarked as not seen, and their combined volume could be used to make corrections in, e.g.,volume or biomass estimates.As shortly described in Sect. 2.5 it is key to have methods to assess the quality ofQSMs. Studies should be made into what are the best indicators and measures to describeand evaluate the level of success for the QSM reconstructions. Having a goodness-of-fit estimate of the reconstruction, allows the process of reconstructing a single tree, tobe repeated and the results compared to each other, to automatically find the best inputparameter values and the optimal output. Furthermore, it might be possible to either reducethe number of input parameters for TreeQSM or to simplify the selection of their value, bysystematically evaluating the quality of the output QSM they produce.When the count of trees to be reconstructed is high, or when the reconstruction needs tohappen in real-time, the importance of the optimization of computational resources rises.Currently TreeQSM is only implemented in MATLAB, but should the applications require, itwould be possible to port it to other programming languages. It would be interesting to see,what kind of speed improvements could be achieved just by using a pre-compiled language.
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TreeQSM was not the first attempt to record tree architecture, as detailed in Sect. 1.1,and it certainly was not the last. Novel ways for adding semantics to point cloud data,especially from forests, should be studied. Improvements can always be made in speedand accuracy, but also in comprehensiveness. There is a long way to go before we canrecord the state of the complex and dynamic system of geometry, topology and chemistry,known as a tree, even on a single time step, yet alone measure the processes inside thesurface over time.That being said, the functional aspect of trees should be integrated into the structuremodels. Adding leaves to the models was a step in this direction, as leaves interact withthe sun and the tree environment. Further adding the flow of nutrients to the model wouldallow the studying of tree–soil interactions, through simulations. For example, studyinghow a disruption in the nutrient flow would affect the health of the tree, its appearance andability to grow leaves.Full 4D models would also allow the geometric and functional presentations of a treeto change over time, essentially allowing the tree to grow and evolve. In fact, a step inthis direction was already taken by our team in Potapov et al. (2017), where growth sim-ulations were used to generate morphological tree clones, using statistics extracted fromreconstructed QSMs.To the author’s knowledge, no public database of reconstructed tree models exists atthemoment. However, the benefits of such a collection are clear, and thus resources shouldbe allocated for creating such a database. As discussed in Sect. 6.2, the best approach fora database would be to offer an application interface to the data, allowing developers andenthusiasts to create their own applications, rather than trying to built a single user interfacefor everyone.Either together with the database development or separately the accuracy of the pre-sented tree species recognition approach, should be tested on a wider array of species.The key limitation for a wider species classification study is the availability of a sufficientnumber of manually classified QSMs — or point cloud data — of each species, as they arerequired for the training data.At the core of the species recognition approach is the concept of feature spaces, thatare N-dimensional spaces where a QSM can be mapped to, for an abstract representa-tion. In this particular application the feature spaces were used to separate models recon-structed of different species of trees using various mathematical classifiers. However itwould be interesting to study what could be some other uses for feature spaces either inthe realm of trees and forest science, or in any other application of information technol-ogy. Also interesting is the current procedure of increasing the point cloud data dimensionthrough the reconstruction process, and then decreasing it once more by mapping the treemodel to a low dimensional feature space. For certain applications, e.g. species recogni-tion, it would be beneficial to know if there exists a short-cut, bypassing the requirement ofthe reconstruction when there is no other use for the QSM.TLS combined with QSM reconstruction (and perhaps terrain mapping) allows the vir-tualization of locations with trees. One logical step to take in the future is to present thereconstructed scene in a VR environment, allowing the user to experience these elements of
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nature, for example, from viewpoints inaccessible in real life, or to simulate the behaviour ofthe location in changing conditions. This could mean previewing the effects of landscapingon the health and appearance of the remaining trees.From a technical point of view, a key question in presenting trees with or without leavesin VR environments, is the level of the required simplifications in order to meet the hardwareand software limitations. Trees can have hundreds of thousands, or even up to millions ofleaves, and the woody parts require a fair amount of triangles for smooth visualizations aswell, making them extremely resource-intensive to render. It is clear that not all of the partsof the tree and all the leaves need to be rendered at full detail, but how to switch betweenthe detailed and the more coarse presentations without disrupting the experience, remainsan interesting topic.Studies have shown that people can experience stress relief and other health benefitssimply by walking in a forest. Studies could be made into the health effects of a personvisiting a virtual reconstruction of a forest, to see whether the results are similar and if VRcould be used as a tool to maintain health.Further down the road, if technological advancements allow it, could be tree and for-est related augmented reality (AR) applications. Either based on pre-scanned locations,or real-time video-based reconstruction performed by the AR equipment. This would allowoverlaying information related to a specific tree or the complete forest plot onto the userview. This way the user could identify tree species on the fly, or even see an animation ofthe surrounding area evolving over time.
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ABSTRACT

We present comprehensive and quantitative tree models re-
constructed from terrestrial laser scanning data. The tree
models consist of large number of cylinders whose location,
size, and orientation locally approximate the geometry of the
tree. The parent-child relations of the cylinders also record
the topological branching structure of the tree. The modeling
process is automatic and scale-independent. When the tree
model is computed once, it can be used to compute tree at-
tributes, such as branch size distributions and taper functions,
without the need to revisit the original dataset. The model is
also compact, achieving a hundred- to thousandfold data size
compression compared to the original dataset. We present
also a validation of the model using generated tree models
and examples of models from measurements of actual trees.

Index Terms— Tree model, terrestrial laser scanning,
surface reconstruction, cylinder model, tree attributes

1. INTRODUCTION

Comprehensive and quantitative data-fitted tree models can
be valuable tools for many forest-related fields, such as forest
and environmental research, lumber industry, and overall for-
est measuring. These fields are interested in various geomet-
ric and topological tree properties, and have developed multi-
ple ways to analyse these from terrestrial laser scanner (TLS)
measurements [1, 2]. Many attribute-specific models exist in
which the starting point is some or few geometric or topo-
logical tree attributes which are estimated [5, 6, 7]. The use
of multiple models to acquire different attributes requires re-
peated analysis of the original TLS dataset which takes com-
putational time and memory.

We propose an approach where we first reconstruct a com-
prehensive tree model (see Fig. 1) from which any of these
attributes can be computed at will. Furthermore, after the

This study was financially supported by the Academy of Finland
projects: Modelling and applications of stochastic and regular surfaces in
inverse problems and New techniques in active remote sensing: hyperspec-
tral laser in environmental change detection.

reconstruction of the model, there is no need to revisit the
TLS dataset as all the information is stored in the model as
a compact presentation. For example the following attributes
are easily accessible from the model: total and partial vol-
umes, branch size distribution, bifurcation frequency and an-
gles, trunk and branch profiles, etc.

Our modeling scheme [3, 4] is comprehensive as it re-
solves all the visible parts of the tree and even interpolates
accurate estimates for some parts not present in the dataset.

Fig. 1: A cylinder model of a broadleaf tree. The model was
reconstructed from a point cloud with 1.8 million points, and
it consists of 9200 cylinders.



Fig. 2: Close-up of the cylinder model and point cloud of a
Norway spruce. The reconstructed cylinder model contains
some 6500 cylinders. The measurements have been thinned
out for visualization.

The trunk and branches are presented quantitatively as a set
of cylinders whose location, orientation, and size accurately
approximate the tree locally. In addition, the branching struc-
ture is stored in the model, giving the topology of the tree.
The model can be reconstructed from a dataset automatically
without user interaction. This allows the modeling scheme
to be used, e.g., in a batch process with a large number of
trees. Because the all the essential information sought from
the measurements can be calculated from the model, which
is hundred- to thousandfold more compact in size, the model
offers a save in memory requirements.

The tree model reconstruction requires only a few as-
sumptions to be made about the TLS dataset and the tree.
First, the TLS measurements should be from multiple posi-
tions (3 or more) around the tree, in order to get a comprehen-
sive cover, and combined into a single point cloud. Second,
we assume that the point cloud is an extensive enough and
locally uniform sample of the tree surface embedded in the
3D Euclidean space. Third, the dataset must be coverable
with large enough neighbourhoods that conform to the local
details of the surface. Fourth, the order of magnitude of the
branch and trunk size to set the reference scale and the ap-
proximate trunk direction are assumed to be known. Finally,
the tree must be locally approximately cylindrical for the
cylinder model to be useful.

Next the outline of the modeling scheme is described in
more detail. Later the process is validated using generated
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Fig. 3: Branch size distributions computed from the cylinder
models shown in Figs. 1 and 2.

tree models, and examples of tree models reconstructed from
real measurements are shown. Example tree attributes are
also computed. For more comprehensive details and valida-
tion, see [8].

2. TREE MODELING PROCESS OVERVIEW

The basic idea of the model reconstruction process is to build
the global tree model, which is a priori unknown, from the
local details of the dataset, which are more easily determined.
At the heart of this process are covers which consist of small
sets along the tree surface and approximate its local details.
The neighbour relations of these cover sets enable us to extend
given sets along the surface and thus change in scale from lo-
cal details to more global ones. The geometric properties of
the cover sets approximate the local properties, such as the
size, shape, and orientation, of the surface. Most of the pro-
cess takes place in the topological level of the cover sets, the
number of which is considerably smaller than that of points
in the dataset. This makes the process faster in computational
time and lowers the memory requirements.

The first step of the modeling process is to generate a
cover of the point cloud with small neighbourhoods con-
forming to the local details of the surface. The cover sets
are balls whose radius is about the same as the radius of
the smallest branches. Each point of the dataset belongs in
at least one of the cover sets and since the sets are inter-
secting, their neighbour-relation is easily determined. The
neighbour-relation allows the determination of the connected
components of the datasets.

The cover sets are classified using their geometric prop-
erties, such as their dimensionality and direction, to find the
trunk of the tree and its base. After that the measurements
from the surrounding ground, the undergrowth and possible
other trees are filtered out using the neighbour relation of the
cover sets. The remaining cover sets are divided into compo-
nents based on their connectedness and possible components
not part of the tree are removed using heuristics. Ideally, each
dataset contains only one component, but imperfections in the
data often lead to a large number of components.
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Fig. 4: Comparison of the original (left) and the reconstructed
(right) cylinder models.

Each component is segmented into connected parts with
no bifurcations such that each segment corresponds to a
branch or part of a branch of the tree. The segmentation
process is based on local recognition of bifurcations, which
in turn is based on the connectivity. The neighbour-relation is
used for set extension which is the main tool. The segmenta-
tion process starts from the base of a component and during
the process a small region, consisting of cover sets, is moved
along the component step by step using the neighbour infor-
mation. Then at each step the connectivity of this region is
checked, and in the cases of multiple connected components,
possible bifurcations are detected. The proposed bifurca-
tion part of the current segment is analysed further to know,
whether the part will end or continues to expand, and if it
is a new branch or continuation of the current segment. The
bases for new child segments are recorded, and segments
are created one-by-one until all the components have been
processed. Branching structure information is recorded dur-
ing the segment forming process, and transferred later to the
cylinder model.

Since the branches can be curved and have a non-constant
radius, each segment is further divided into even smaller
parts, called regions. Each region should be nearly straight
and have nearly constant radius, so that it can be accurately
approximated by a cylinder.

A cylinder is fitted to the points of a region as a least-
squares minimization problem. Geometric properties of the
region, approximated from its points, are used to find ini-
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Fig. 5: Branch size distribution of the original and the recon-
structed tree models.

tial values for the fitting process. A priori information, e.g.,
branch radius decreases when moving outwards away from
the trunk, is also used to find the best local reconstructions.

When cylinders have been fitted to all the segments, the
cylinder model can be further refined by locating and fill-
ing gaps between cylinders. The relational information of the
cylinders is used to identify the possible gaps in the cylinder
model. With the added cylinders the tree model is complete.

Figs. 1 and 2 show examples of completed cylinder model
reconstructions for a broadleaf tree and a Norway spruce, re-
spectively. Fig. 3 shows the computed branch volume distri-
butions for the trees.

3. VALIDATION WITH GENERATED TREE
MODELS

It is hard to validate the modeling scheme by using real trees
as their branching structure and branch sizes are practically
impossible to measure for whole trees. Therefore, we use a
simple generated cylindrical tree model to get some quantita-
tive validation results. This way the detailed structure of the
sampled original tree is known, and it can be compared to the
reconstructed one. Error estimation for the reconstruction is
simple and accurate.

The sampled original tree is defined as a set of cylin-
ders, and then, to simulate laser scanning, random samples
are taken from the surface of each cylinder. Here we do not
try to simulate real laser scanning as closely as possible, but
simply generate a random sample points with uniform dis-
tribution from the surfaces of the cylinders; i.e., the sample
density is kept constant all over the tree. Then we add Gaus-
sian measurement noise to each sample point in the direction
normal to the cylinders so that the points generally do not lie
on the cylinders. An example of a generated tree model is
shown in Fig. 4a.

Reconstruction level for the given generated model has
been studied in detail in [8], by changing the level of the
measurement noise, and the sample density. The study is
done without units, but if the units are considered as meters



(branch radius from 3mm to 7cm), the following values can be
found. The results show that close to complete reconstruction
is possible even when the measurement noise is in the inter-
val [-9mm, 9mm]. The measurement noise of the used laser
scanner is close to the diameter of the beam, which is 2–3mm.
There are, of course, other more unpredictable error sources,
such as wind conditions which may increase the overall noise
level. With sample densities above about 0.3 points/cm2 the
reconstruction is possible. Since the point density of the mea-
surements for the tree in Fig. 1, approximated using the re-
constructed cylinder model, is about 2.3 points/cm2, the the-
oretical lower limit can be easily met with TLS.

Fig. 4b shows the reconstructed tree model when mea-
surement noise level is 3mm and sample density 0.852
points/cm2. These are estimated values for real laser scan-
ning measurements. The cover set radius is 2.16cm. The
difference of the total volumes of the original and the recon-
structed models is 7.4%. The difference in the total length of
the cylinders is 1.0%. The branch volume distributions for
both models are shown in Fig. 5.

The visualization, error percentages and the branch vol-
ume distributions show that the reconstruction is very good.
Even the smallest branches are successfully segmented and
reconstructed. The branch volume distribution shows that
parts of the trunk are reconstructed smaller than they should
(differences in the 6cm and 7cm bars). This is due to the
subtle overlapping of the trunk and the large number of bifur-
cating branches.

4. RESULTS AND DISCUSSION

The presented tree modeling scheme produces accurate 3D
cylinder models from TLS data. The approach is both quanti-
tative and comprehensive as generated and real measurement
examples have shown. The produced cylinder model contains
the properties of the cylinders approximating the tree locally.
In addition the relations between the cylinders are known as
is the information which cylinders form a single branch. The
models are easy and fast to visualize, and information, such
as bifurcation angles and frequencies, and size distributions,
is easily extracted.

The reconstruction is automatic; a few input parameters
for cover specification and possible filtering are required, but
that is the extent of user interaction during the model produc-
tion. Since the method is based on topological concepts, such
as connectivity, it is scale-independent. Thus, the same real-
ization of the method can be used to analyse tree-like point
clouds of various sizes, and the accuracy of the method is
mainly restricted by the measurements.

Because only the cover sets and their center points and
neighbour-relation are needed for most of the steps, only tens
or hundreds of thousands of ”points” are often used instead
of all the millions of measured points. Thus, the memory re-
quirements and the computational time are greatly reduced.

We have implemented the method in MATLAB and the analy-
sis of a single tree takes somewhere from minutes to ten min-
utes (2.8GHz Intel Core i7, 8GB RAM).

The development of the algorithm and its implementation
continues actively. The goal is to make the modeling pro-
cess completely automatic by choosing the cover set radius
based on, e.g., the estimated sample density. Currently, the
modeling scheme is being adapted for tree root modeling as
well. We are also planning to use elliptic cylinders and cones
instead of circular cylinders.
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Abstract: This paper presents a new method for constructing quickly and automatically
precision tree models from point clouds of the trunk and branches obtained by terrestrial
laser scanning. The input of the method is a point cloud of a single tree scanned from
multiple positions. The surface of the visible parts of the tree is robustly reconstructed by
making a flexible cylinder model of the tree. The thorough quantitative model records also
the topological branching structure. In this paper, every major step of the whole model
reconstruction process, from the input to the finished model, is presented in detail. The
model is constructed by a local approach in which the point cloud is covered with small sets
corresponding to connected surface patches in the tree surface. The neighbor-relations and
geometrical properties of these cover sets are used to reconstruct the details of the tree and,
step by step, the whole tree. The point cloud and the sets are segmented into branches, after
which the branches are modeled as collections of cylinders. From the model, the branching
structure and size properties, such as volume and branch size distributions, for the whole tree
or some of its parts, can be approximated. The approach is validated using both measured
and modeled terrestrial laser scanner data from real trees and detailed 3D models. The results
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show that the method allows an easy extraction of various tree attributes from terrestrial or
mobile laser scanning point clouds.

Keywords: terrestrial laser scanning; automatic tree modeling; precision tree models;
segmentation; forest inventory; branch size distribution; carbon cycle estimation

1. Introduction

The determination and prediction of tree characteristics and quality attributes is important in forest
management, especially in pre-harvest measurements [1]. These attributes are geometric and statistical
characteristics of trees such as the crown-base height, total above-ground volume, the branch size
distribution, and the branching structure. In particular, timber assortments, tree quality, branch decay
times and carbon cycle estimations, etc. require accurate estimates on branch sizes and other tree
attributes. However, many of these characteristics have been difficult or even impossible to measure
operationally, often requiring cutting and laborious manual measurements.

One way to estimate parameters that are hard to measure, particularly for a group of similar trees,
is to use other simpler measures together with statistical models developed from detailed manual
measurements. For example, the biomass of a tree can be estimated quickly and quite accurately from
stem diameter at breast height and height of the tree [2]. Traditionally, the crown–base height is measured
and used in estimation of timber quality. However, there are obvious limitations on the accuracy and
applicability of such simplified statistical models.

With accurate and fast-to-use laser scanners, tree parameters can be determined with fewer practical
difficulties [3]. 3D mapping of smaller areas with high detail is possible with terrestrial laser scanning
(TLS) which can produce dense 3D point clouds of the tree surfaces [4]. However, often the laser
scanner data are only used together with statistical models to give statistical estimates of tree properties.
For example, standing tree biomass and its changes can be measured with TLS because they are highly
correlated with the number of hits in the TLS point cloud [5,6].

TLS can produce 3D point clouds that allow the quantitative analysis of trees and the reconstruction
of quantitative 3D tree models. These are required in forest research in general, and they can be
also used to develop better statistical models for tree attributes. ¿From a TLS point cloud, one can
measure tree and stand characteristics such as the location, height, crown coverage, species and stem
curve [6–12]. In forest research, TLS has been used for the detailed modeling of individual trees and
canopies [7,8,11,13,14]. However, a typical property of the modeling procedures has been the estimation
of only a few attributes from TLS data, and only for a limited part of the tree, e.g., stem length/volume.

Many problems in forestry, biomass estimation, forest research, and forest remote sensing could be
more readily tackled if it were routinely possible to fit tree models to TLS measurements, such that a
model is:
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1. Comprehensive: it (i) covers all parts of the tree that are resolved in the data; and; (ii) interpolates
to obtain credible reconstructions of the unseen parts that are not represented in the dataset but are
located between some seen parts.

2. Precise: its parts are best-fit solutions describing the corresponding parts of the tree accurately
and in detail, giving their location, size, orientation, relation to other parts of tree, or many other
desired topological and metric attributes.

3. Compact: it is easily stored and manageable, and any attributes can be readily extracted from
it anytime after its construction without having to use the actual data. Most of the relevant
information of the original data is retained for future use in a compact form, even if one does
not yet know what that information is.

4. Automatic: it is constructed without manual operation such that the pipeline processing of a large
number of measured trees is possible.

5. Fast: a single tree can be modeled virtually immediately (within minutes).

Modeling procedures fulfilling all the conditions above have hitherto not been available, although
various methods have been developed to allow automated tree reconstruction [10,15–20].

In this paper, we present a new method that produces 3D tree models from TLS data fulfilling all the
conditions above (see the examples of reconstructed models in Figures 1 and 2). In particular, we present
all the modeling steps from the point cloud data to a complete tree model. One of the core ideas behind
the approach introduced here is that practically any external attributes of a tree can be approximated
accurately at will from a compact model of the type above. The attributes can be, e.g., the volume and its
distribution along different parts of the tree; the lengths and taper functions for the trunk and branches;
the bifurcation frequency, topology and branching angles, a 3D “branch map”, etc. In this paper, we
restrict the models to cover the woody parts of the tree (no foliage or needles), and only consider scans
from a single tree.

Our scheme is based on the principle of building the global model step by step by an advancing
collection of small connected surface patches. These patches are small local subsets of the point cloud
and their geometric properties and neighbors are easily defined. This building-brick approach makes the
method robust as the procedure does not need to know what a tree is supposed to look like and the point
density can be quite varying. An ordered collection of local connected surface patches automatically
yields the global structure both qualitatively and quantitatively.

A key part of any modeling method is the segmentation of the point cloud into branches. The
segmentation gives the topological tree structure and the resulting segments (branches) can be then
geometrically reconstructed. Our segmentation procedure uses the surface patches and recognizes
bifurcations along the tree surface by checking local connectivity of a moving surface region.
Other methods for segmenting have been presented: one way is to use voxels and mathematical
morphology [21]. Another is to use octree based skeletonization approach [22,23]. Skeletons can be
defined also using a neighborhood graph and checking the connected components of the level sets of the
graph [17,24].
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Figure 1. Segmented point cloud (left) and the final cylinder model (right) of the artificial
Scots pine.

The paper is organized as follows. The method is presented in Section 2; in Section 2.1 we describe
our data, and the outline of the method is given in Section 2.2. In Sections 2.3–2.10 we describe the
method in detail, with some algorithmic points covered in the Appendix. In Section 3 we test the method
using real and artificial TLS point clouds and show some results. Finally, Sections 4 and 5 contain
discussion and conclusions.

We have published two short conference papers [25,26] describing some of the ideas of our method. In
this paper, however, we develop the method further and present many more details, tests, and validations.
The primary novel features of our method are: (i) the partition of the point cloud into patchlike
sets that allow a fast automatic procedure; (ii) efficient segmentation rules that retain the topological
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and hierarchical information; and (iii) a tool-like interface with direct handles for any geometric and
topological attributes of the tree. We render the processed point cloud of a tree in a readily accessible
geometric mode that can be utilized by a wide variety of applications and end-users.

Figure 2. Point clouds and their final cylinder models. The point cloud (top left) and the
cylinder model with some 7,070 cylinders (top right) of the spruce. The point cloud (bottom
left) and the cylinder model with about 6,820 cylinders (bottom right) of the maple.
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2. Method

2.1. Data: Point Clouds

A (laser scanner produced) point cloud PM is a finite subset of the 3-dimensional real coordinate
space R3. In this paper, each point x ∈ PM gives the Cartesian x, y, z-coordinates of the corresponding
scanned point. Furthermore, we assume that each point cloud PM is a sample of a surface M embedded
in R3. The surface M represents the surface of the scanned tree, and the point cloud PM is a finite but
dense enough sample of M such that the point density varies little within distances of about the maximum
trunk diameter. Notice also that the points in PM are unorganized and can be saved in any order as rows
into a three-column matrix.

In this paper, we have used scans from four trees: one Norway spruce [Picea abies (L.) H. Karst]
(see Figure 2), two Scots pines [Pinus sylvestris] (see the other in Figure 3), and one Norway maple
[Acer platanoides] (see Figure 2). The trees were scanned from three different directions to have a
comprehensive cover of the branching structure. The scans were registered to a common coordinate
system via spherical reference targets placed in the measured area. Our method handles the TLS data
only as point clouds and does not take into account the particular features of the equipment used. For
the datasets used in this paper, our system consisted of a phase-based terrestrial laser scanner (Leica
HDS6100 with a 650–690 nm wavelength). The distance measurement accuracy of the scanner is
2–3 mm, and the field-of-view is 360◦ × 310◦, the circular beam diameter at the exit is 3 mm and the
beam divergence is 0.22 mrad (see [9,27] for more details). The measured point clouds for the trees we
have studied in this paper contain roughly one to five million points each. The horizontal distance of the
scanner to the trunks and the point separation angle were about 7–12 m and 0.036 degrees, respectively.
Thus the average point density on the surface of the trunk (at the level of the scanner) for a single scan
is about 2–5 points per square centimeter.

We have also used a complex artificial tree model and simulated laser scanning to produce point
clouds. This was done for controlled testing and validation of the method. The 3D structural tree
model used here represents a 30-year-old Scots pine tree (see Figure 1 in this paper and Figure 4
in [28]). The model is generated using an empirical growth model parametrized by species-dependent
branching statistics in conjunction with specified external environmental conditions [29]. TLS point
clouds were simulated using the Monte Carlo ray-tracing code which has been used for a wide
range of applications [28,30–32]. Simulation parameters were the same as in the scanner used in the
measurements (see above). The simulated lidar was situated at 1.5 m height, at a radial distance
of 20 m from the tree (at [0, 0, 0]), at 70◦, 0◦ and –70◦ in the xy plane, i.e., xyz locations
[0, 20, 1.5], [18.7939, 6.8404, 1.5] and [–18.7939, 6.8404, 1.5]. The simulated point cloud has about 4.5
million points.
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Figure 3. Determination of tree components and their bases. Left: The initial classification
of trunk points (red). Middle: Part of the trunk point set (red) and its base (blue). The green
denotes sets not part of the tree. Right: Final classification of components. The component
starting from the base (red), the other tree components (cyan), and the points not part of the
tree (green). The units of the axes in the left and right figure are meters.

2.2. Outline of the Method

Our method is based on covering the point cloud data with small sets corresponding connected patches
on the tree surface. Then using a building-brick approach, the unknown global tree model is built by
“growing” the tree surface step-by-step using the surface patches. After the patchwork over the tree has
been obtained and the tree has been segmented into its branches, the remaining question is how to render
it in a form suitable for fast computations and storage. The choice adopted here is the simplest one: the
tree surface is reconstructed as an aggregate of small cylinders of varying size approximating parts of
the trunk and branches. Cylinders (or their generalizations) are essentially a robust regularization choice
that is sufficient for providing the essential attributes of the tree such as stem and branch diameters.

All the desired external characteristics of the tree can be readily approximated from the cylinder data.
Moreover, the method is scale-independent because it uses only topological properties and relative sizes.
Absolute size restrictions are related to cover set size (building brick size) and the accuracy and density
of measurements. Thus, if the cover set size is small enough, the method can be used to reconstruct the
model accurately down to the measurement accuracy of the laser scanning. From the point of view of
information compression, the cylinder model retains most of the information of the original point cloud
in a format that is hundreds to thousand times more compressed in size.

Constructing the tree model requires some assumptions and a priori knowledge about the data and
trees. First, we assume that the point cloud is a locally uniform and extensive enough sample of the
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surface in a 3D Euclidean space modeling of the real tree. Second, it must be possible to cover the point
cloud sample with small sets that correspond to connected patches along the surface. Third, some other
features of the tree, such as the order of magnitude of the branch and trunk size and the approximate trunk
direction, are assumed to be known. Finally, we assume the tree to be locally approximately cylindrical.
In the future versions of the algorithm, we will include the option of deformable cylindrical surfaces
whenever this approximation is significantly violated.

The main steps of the method are the following (see Figure 4). At first, the point cloud is filtered
to remove noise or isolated points (see Section 2.3). Then the filtered point cloud is covered with
small sets conforming to the surface of the tree (Section 2.4). Next the neighbor-relation of the
cover sets is defined (Section 2.5) and the sets are geometrically characterized (Section 2.6). The
neighbor-relation determines the connectivity properties, and the geometric characterizations are used,
e.g., for the classification of trunk points. Next, the sets that are not part of the tree, such as the
ground sets, are removed, and the tree components and their bases are defined (Section 2.7). Here,
and throughout the paper, by a tree component we mean an essentially separate part or cluster of the
point cloud that can be, e.g., a single branch, a collection of branches, or even the whole tree. Following
this, the tree components are segmented (Section 2.8). Throughout the paper, by segment we mean
a connected non-bifurcated part of the tree, such as a branch or part of a branch or the trunk. The
segmentation also gives the ordered information of the tree structure. In the segmentation process, we
use surface growing, and bifurcations are recognized by checking local connectivity. The next step is to
approximate each segment as a sequence of cylinders of possibly varying radius, length, and orientation
(Section 2.9). To complete the cylinder model of the whole tree, gaps between cylinders are sought and
filled with additional cylinders (Section 2.10). Finally, statistical and other characteristics of the tree can
be computed from the completed cylinder model (Section 3.1).

Figure 4. The main steps of the method.

Terrestrial LIDAR scans (3 or more views)

Registration

3D point cloud of individual tree

Filtering

Filtered point cloud

Cover sets, their characteristics and neighbors

Tree components determination

Tree components and their bases
Segmentation

Segments, tree structure

Cylinder reconstruction

Cylinders

Interpolation

Complete cylinder model

Analysis

Tree characteristics

Covering

2.3. Filtering Noise from the Sample

The point cloud sample may contain outliers and noisy points caused by various reasons such as
interference effects. Such points are not regarded as samples of the actual surface we want to reconstruct,
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and the first step in our method is to filter some noise from the point cloud. Our approach to filtering is
based on the covers of the point cloud that are defined in the next section.

To remove separate single points or few-point clusters, we cover the point cloud with small balls and
reject points that are only included in balls that contain fewer than some small number of points. A more
comprehensive version of this filtering scheme is to define a small ball for each point and then reject the
points whose balls contain too few points. The size of the balls and the number of points depend on the
density of the points in the data. We have used balls whose radius is 1.5 cm and removed all the balls
with less than three points.

Another, and possibly additional, filtering scheme to remove small separate parts of the point cloud
uses covers of larger balls to determine the connected components of the point cloud. Then the points in
components with too few cover sets are removed. We have used balls whose radius is 3 cm and removed
all the components with less than tree balls.

The values of the filtering parameters and their effects on resulting tree models depend on the noise
level and its distribution in the data, the geometry of the tree, etc., so there is no simple selection rule for
the parameter values. However, we have found that, in practice, experience guides the selection of the
values quite robustly. The effects are mainly local and usually not very sensitive to the parameter values.
Furthermore, the same parameter values work well for similar trees and scanner parameters. For future
versions of the algorithm, we will study automated machine learning of the parameter values and their
adaptive adjustment.

2.4. Cover Sets

The embedding space R3 is endowed with the usual Euclidean distance dis and thus Euclidean
topology. The restriction disP of the distance dis to PM gives the distances between the points of
PM , and thus also a metric topology for PM . Notice that disP locally approximates the distance function
of the surface M and it can thus be used to approximate the surface M from the sample PM . A spherical
neighborhood of radius r at x, or simply r-ball at x, is the subset B(x, r) of PM consisting of all the
points y that satisfy disP (x,y) < r. A cover C = {Bi} of PM is a collection of subsets Bi ⊂ PM

such that each point of PM belongs in at least one of the subsets Bi. A cover is a partition if each point
belongs in exactly one of the subsets.

We aim to reconstruct the surface M from the sample PM , but the “global shape” and structures of
M are impossible to determine directly from the whole sample. However, locally the surface and its
structures can be approximated well from the sample. Furthermore, the sample PM is generally quite
dense compared to the size of the local details ofM . Therefore, a much smaller subsample of PM retains
all the necessary information to reconstruct a cylinder model of the tree surface M . To accomplish these
aims, we cover the sample PM with such small sets that they are expected to correspond to connected
subsets of the surface (see Figure 5). Thus, the cover sets are small, connected surface patches and they
define a new much smaller sample of M , which locally approximates the shape and topology of the
surface. Because the cover sets are in a way the smallest unit sufficient to represent the sample PM , the
size of the sets defines the limit of the details of M that can be accurately approximated (see Figure 6).
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Figure 5. A cover which is a partition. Different colors denote different cover sets.

Figure 6. Comparison of the covers of a branch. The minimum diameters (d) of the cover
sets are 2 cm (left) and 10 cm (right). The smaller cover sets can capture much more detail.

We generate two mutually related covers which are used for different purposes. First, we generate a
cover CB = {Bi} of r-balls, which will then induce the other cover, a partition CP = {bi}. The cover
CB is used to approximate the structures of M and to define the neighbor-relation for the partition CP ,
which is used to define the components and segments of the tree. The cover CB of r-balls is random,
but to distribute the balls evenly along the surface, there are two restrictions: (1) the minimum distance
between the centers of two balls is d; and (2) the maximum distance from any point to the nearest center
is also d. The parameter d is a little smaller than, or equal to, the radius r, and it controls the size of the
cover sets in the partition CP . The partition CP = {bi} is induced by the r-balls: for each ball Bi there
is a corresponding set bi that consists of those points of Bi that are closer to the center of Bi than any
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other center. Thus the minimum diameter of the sets bi, in the case they are not near, e.g., the tip of a
branch, is d and the maximum possible diameter is 2d.

The parameters d and r should be as small as possible so that the cover sets conform to the details
of the surface. On the other hand, they should be large enough so that the sets can be reliably used
to approximate different characteristics, such as surface normals, and to restrict the computational
requirements. The parameters depend on the size of the smallest branches/details we are looking for,
the point density, and the noise level. Usually, in the case of trees, d is about 1 to 3 cm. To generate
the r-balls, we first partition PM into cubes with side length r. Then each r-ball belongs to the r-cube
containing the center and the 26 neighboring cubes.

2.5. Neighbor-Relation

The neighbor-relation for the partition CP is a central tool defined by the r-balls: Let bi and bj be
cover sets of the partition CP , and Bi and Bj be the corresponding r-balls. Then bi and bj are neighbors,
if either bi and Bj or bj and Bi have a common point. Thus, the smaller d is compared to r, the more
neighbors there possibly are for each cover set in CP . To guarantee that cover sets whose centers are up
to 2d apart from each other are neighbors, as they should, r should be little larger than d. Notice also
that the number of neighbors varies and thus a natural way to store the neighbor information is to use
cell-arrays with variable cell size.

Let G be a cover set or a group of cover sets. With the neighbor-relations, G can be extended by
adding its neighbors to it, and the resulting group of cover sets is denoted by Ext(G). This can be
repeated multiple times and we can, e.g., “grow” the tree surface from the given initial set and thus also
change the scale from small to large.

One of the applications of the cover set extension is to determine connected components or
connectedness of a given group of cover sets: two cover sets of CP are in the same component if the
cover sets can be expanded by the neighbor-relation to the same sets. Furthermore, the maximal disjoint
sets generated by the cover set extension are the connected components of a given group of cover sets.

2.6. Characterization of Subsets

Next, we present a number of useful geometric characterizations of the cover sets and other subsets
B ⊂ PM of the point cloud. Many of these use the eigenvectors and eigenvalues of the structure tensor
(i.e., scatter matrix or covariance matrix) S(B) of B [33]: Let {u1,u2,u3} be the unit eigenvectors of
S(B) such that the corresponding eigenvalues satisfy λ1 ≥ λ2 ≥ λ3.

If B is a r-ball, then {u1,u2} span the tangent space and u3 approximates the normal line (u3 can
point to either side of the surface M ) [34]. The eigenvectors also give the principal components of the
set B, i.e., they describe the orthogonal components of the data exhibiting maximal variance [35]. The
eigenvalues of S(B) can be used as indicators for the dimensionality of the set B [36], i.e., if the set is
elongated, planar or 3-dimensional.

We use the eigenvectors S(B) also to define the branch direction line D(B) for each r-ball B as a
unit vector that estimates the direction of the underlying branch or trunk at B. For clearly elongated
sets we set D(B) equal to u1. For other sets we use the normals of B and its neighboring sets to define
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D(B). Because branches are locally approximately cylindrical, the normals of the neighboring sets are
all approximately orthogonal to the branch direction. Thus the vector that minimizes the sum of the
squared dot products with the normals is a good approximation of the branch direction. Then D(B) is
the unit eigenvector corresponding to the smallest eigenvalue of the matrix NTN, where N is the matrix
whose rows are the unit normals of B and its neighbors.

For many trees, the trunk, at least near the base of the tree, is often almost straight and has generally
a direction different from that of the most branches and the nearby ground. Thus, if the trunk direction
can be estimated (globally) by a vector T, then the angle between T and D(B) estimates the parallelism
of the underlying branch/trunk of a cover set B.

2.7. Tree Components and Their Bases

The next step, after the generation of a cover, the determination of its neighbor-relation, and the
geometric characterization of its sets, is to extract the cover sets pertaining to the tree. In other words,
the point cloud may contain ground and other points which are not part of the tree. These parts are
removed and the base of the trunk is defined. Furthermore, because of possible gaps in the data, the
point cloud may have multiple (often hundreds or thousands) connected components of the tree. The
bases of these other tree components also need to be defined because later on, starting from the base
each component is segmented into its branches. Although we next present an automatic way to separate
the surroundings from the tree, we still assume that the tree is the only (big) tree in the point cloud.
Hence the manual removal of adjacent trees from the point cloud may be needed. An automated way to
handle multiple trees is a subject of future development.

To determine the tree components, the trunk is first defined approximately as a set Trunk of all those
cover sets that are parallel to the approximated trunk direction and are two-dimensional (see also [9,25]).
Next redefine the trunk by including its neighboring cover sets, i.e., set Trunk = Ext(Trunk). On
the left in Figure 3, we show an example of set Trunk so defined. The set Trunk may contain small
branch components and parts of ground, but most of these can be easily removed by determining the
connected components of Trunk and then removing all the small components. Furthermore, using the
largest component of Trunk, the axis of the trunk can be estimated and Trunk can be redefined as those
large components whose mean is less than, say, half a meter away from the axis.

Next, define the base TBase of the trunk as the lowest part (and its neighbors) of the lowest component
of Trunk (e.g., a 20-cm slice from the lowest point). Most of the ground and other sets that are not part
of the tree can now be removed easily. First, define the set Ground containing the cover sets connected
to the tree base TBase, but not connected to it through Trunk. The set Ground now includes ground
and vegetation points. Next, define the tree component starting from TBase by expanding TBase as long
as possible, but prevent the expansion into Ground. This is now the first tree component and TBase is
its base (see the middle frame of Figure 3).

Next, determine the connected components of the point cloud from which Ground and the first tree
component are removed. Then find out which of these components are part of the tree. This can be done
heuristically by defining the means of the components and then checking their heights from the ground
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and distances to the trunk axis. The final classification of the connected components is shown in the last
frame of Figure 3.

The bases of the other tree components need to be determined for the segmentation process. There
is no easy and fast way to do this with full reliability, and for some components, the defined base may
not be the right one. A wrong base can mix up the branching-relation, i.e., which segment is the parent
branch and which is the child branch. However, our heuristic apparently works most of the time. If
the component shares common sets with Trunk, then we select the lowest common set as its base, and
this base defines a trunk segment. For other components, we first project the component into its largest
principal component to find its two ends in the principal direction. Then, we select the end that is closer
to the trunk axis as the base of the component.

2.8. Segmentation

When the tree components and their bases are determined, the next step is to segment these
components into branches. Each component is partitioned into segments that correspond to the whole
or part of a real branch or trunk. In particular, segments should not have any bifurcations. This kind of
segmenting also defines the tree structure, i.e., the branching-relations of the child and parent branches
for each branch. It is also straightforward to fit cylinders to these segments. Examples of segmented tree
parts are shown in Figure 7 and Figure 1 shows a segmented tree.

Figure 7. Examples of segmented tree parts. (Left) A segmented branch originating from
the trunk of an maple. (Right) Close-up of a segmented Norway spruce.

2.8.1. Overview of the Algorithm

The segmentation process takes place at the level of the cover sets, and the basic tool is their
neighbor-relation. The procedure starts from the base of a tree component and, step by step, a cut
region and its extension, a study region, move along the component (see Figure 8). The cover sets are
the building bricks of the tree surface and the cut region is a layer of these bricks that separates the
component into two parts. At each step the cut region moves to the neighboring layer of cover sets.
Every cut region is expanded or “grown” along the tree component into the study region that consists
of multiple layers of cover sets. Each study region is checked for connectivity to find out possible
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bifurcations. If the study region is not connected, then it is further checked if its separate parts are the
beginnings of new branches or parts of the current segment. The part of the cut region in a branch
becomes a base for a new segment to be determined later. The parts of the cut region that are not new
segment bases are added to the segment, and this way the segment grows one layer a time. The segment
is expanded until no cut regions can be constructed or none of the separate parts of the study region are
clear continuations of the segment. A schematic picture of this process is shown in Figure 8.

Figure 8. A schematic picture of the bifurcation recognition process. The cut region (red)
and its extension, the study region (light red), move along the tree component (brown)
and construct the segment (green). When the cut and study regions move ahead through
a bifurcation, such as a branch, the regions will no longer be connected, and the part of the
cut region belonging to the branch becomes a new branch base.

new branch base

Figure 9. The segmenting process.
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Notice that each new segment base found also defines the tree structure step by step. Furthermore,
because only neighbor-relations and relative sizes are needed, the process is scale independent. However,
the accuracy and density of the scanned data points and the size of the cover sets define a limit for
the separation: If the accuracy of the scanned points is of the order of the width of the gap between
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neighboring parallel branches, then the two branches are merged into one in the data. Also, if the density
of the points is so small that the distance between the closest points is about the same as the gap between
branches, then the gap and thus the branches are indistinguishable. Finally, if the branches are so small
that they are contained (in the transversal direction) in a single cover set, they are also indistinguishable,
because segments are collections of cover sets. Figure 9 shows the segmentation process as a flow chart.
Details of the segmentation algorithm are given in the Appendix.

2.8.2. Remarks

Because each segment is constructed one layer of cover sets at a time, these layers partition the
segments. These layers should be saved so that they can be used in the cylinder reconstruction, where
the segments are first divided into smaller regions. Furthermore, especially in the trunk where the cover
sets are small compared to the segment size, gaps in the data due to self-shadowing may lead to wrong
segments. These gaps may lead to small segments along the trunk which are classified as child segments
of the trunk segment that continues past them, i.e., the child and parent segments are part of the same real
trunk at the same height of the trunk. When cylinders are fitted to these small segments, the cylinders
are strongly overlapping and nearly parallel to the cylinders in the parent trunk segment. This can
be corrected by comparing the cylinders in these segments and removing the overlapping ones in the
child segments.

2.9. Cylinder Reconstruction

Each segment is reconstructed with successive cylinders locally approximating the radius and
orientation of the segment (branch). In the process, also the succession relations of the fitted cylinders are
recorded so that the tree structure can be expressed in terms of the child/parent relation of the cylinders.

The cylinders are expressed parametrically with seven real numbers (the radius and the components
of the axis direction vector and the axis position vector) and the parameters are optimized using the total
least squares method [37]. This nonlinear optimization problem requires iterative solution methods with
good initial estimates for the parameter values [38]. Another possible way to fit cylinders is to fix the axis
direction and project the points into a plane orthogonal to the axis. Then we fit a circle to the projected
points in the least square sense [39].

Our adopted approach starts from the base of a segment and then subdivides it into small successive
pieces. These pieces consist of layers of cover sets and, here, the partition of the segment into layers in
the segmentation process can be used. The number of layers should be such that the length of the pieces
is at least equal to the estimated diameter of the segment. The center points of the successive pieces
define vectors that define the regions, which are later approximated with cylinders. The regions form a
new subdivision of the segment and each region consists of those points of two consecutive pieces whose
projected points are between the start and end points of the vector joining the center points of the pieces
(see Figure 10). These vectors and their starting points are also used as the initial estimates for the axis
direction and starting point in the cylinder fitting. The initial estimate for the radius can be the mean or
median distance of the points in the region from its estimated axis. Longer regions are more tolerant of
noise, outliers, and imperfect point cover, but in some cases, they may not follow the radius and direction



Remote Sens. 2013, 5 506

of the branch as accurately as shorter regions. The effects of outliers and noise can also be reduced by
a second fitting: the cylinder of the first fitting is used to identify points far away from the cylinder that
can be removed from the point set of the second fitting.

Figure 10. Regions for cylinder fitting. Different colors denote the regions defined by the
blue vectors.

When all the regions of a segment are approximated by an adjusted sequence of cylinders, the radii of
the cylinders are checked using prior knowledge: the diameter of a branch is practically always smaller
or only a little larger than the diameter of its parent, and the diameter of a branch usually decreases away
from its base. Moreover, to make the sequence more continuous (e.g., to close small gaps between the
cylinders) and to correct for the effects of radius changes, the starting points and the axes are modified
when needed.

2.10. Completing the Cylinder Model

When all the segments are reconstructed with cylinders, the cylinder model may still be refined.
The point cloud may have multiple connected components, in which case there are gaps between these
components. There may also be clear gaps between a parent cylinder and its child cylinder which is
not an extension. Thus there may be gaps in the cylinder model which can produce errors for the tree
statistics. To reduce these errors, we identify small gaps between the fitted cylinders and then fit cylinders
to these gaps using only the previously fitted cylinders as data.

There are two basic cases. In the first case, there are two nearby and nearly parallel cylinders, one
without a parent (C) and the other without an extension (A) (see Figure 11). Define a vector from the
top of A to the bottom of C. Then this vector defines the axis of the new cylinder B whose radius is the
mean of the radii of A and C. Moreover, B not only joins the cylinder chains but also the underlying
segments since the segments ofA andC are joined into one single segment. In this way, the tree structure
is also refined.

In the second case, there is a cylinder C without a parent, and, close to it, there is a second cylinder
A which is transversal to C and has larger radius (see Figure 12). The idea is to add a new cylinder B as
a child of A such that the radius of B equals that of C. Furthermore, the axis line of B will intersect the
axis of A, and the axes of C and B are adjusted to be as parallel as possible. Again, the added cylinder
refines the tree structure.
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Figure 11. Filling gaps. The green cylinder (A) has no extension, and the nearby blue
cylinder (C) has no parent. The gap between these two cylinders is filled by the red
cylinder (B).

No parent No extensionGap

Figure 12. Filling gaps. The blue cylinder (A) has no parent, but there is a nearby green
cylinder C with a larger radius. The gap between these two cylinders is filled by the red
cylinder (B).
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3. Testing and Results

In this section we first define different tree metrics that can be approximated from completed tree
models. Then we test our method using first simulated TLS data from artificial tree models. Next, we
compare model results for caliper measurements of small branches of a real tree. Finally, we present
complete models and results for real trees.

3.1. Tree Metrics

A large variety of (external) statistical measures and other characteristics of the tree can be
approximated from the cylinder model. These are, e.g., the total volume of the whole tree or its parts
such as the part of trunk with certain radii and the branches of certain size. The total volume and length
of the trunk and branches can be also estimated, but depending on the quality of data (e.g., the extent
of surface cover), the upper parts of the tree may be quite incomplete. Similarly, the sum of the lengths
of the cylinders gives a good estimate of the total branch length in the tree. Trunk and branch profiles
(taper functions) can also be easily estimated.
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There are other statistical data that can be approximated from the cylinder model, e.g., the number of
sub-branches originating from branches, the angles between child and parent branches, and the averages
of these. An important concept is the branch size distribution, which characterizes a tree in many ways.
From the cylinder models we determine the distribution as follows: we assign the branch cylinders
according to their diameter into bins (under 1 cm, over 1 cm but under 2 cm, over 2 cm but under 3 cm,
etc.). and then compute how much of the total branch volume there is in each bin.

3.2. Testing with Artificial Trees

The basic performance of the procedure for the parts existing in the data was validated in [40],
where random but uniformly distributed samples were taken from a simple artificial tree. Random
samples mimicking typical target sizes estimated the error level to remain within the expect bounds;
i.e., within roughly 5–10% for the characteristics of the whole part existing in the data, depending on the
reconstructed quantity.

To test the method with more realistic data and the dependency of some results on the main input
parameters, the cover parameters d and r, we have used simulated TLS scanning from a complex
artificial 3D tree model (see Section 2.1). First, we fixed the cover set diameter d to 2.0 cm and checked
how changes in the radius r, which controls the geometric characteristics and neighbor-relation, affect
reconstructions. The resulting partition CP was the same for each case. The results for the radius test
are shown in Table 1. Figure 1 shows the segmented point cloud and the final cylinder model when
d = 2.0 cm and r = 2.4 cm.

Table 1. Effects of the cover set radius. #comps, #branch, and #1st branch columns give the
number of tree components, branches reconstructed with cylinders, and first-order branches,
respectively. The time column gives the time for completing the model (MacBook Pro,
2.8 GHz, 8 GB).

Radius Tot. vol. Trunk Branch Trunk Branch #comps #branch #1st Time
(cm) (dm3) vol. (dm3) vol. (dm3) len. (m) len. (m) branch (s)
orig 665 348 316 17.2 2,665 1 13,102 99
2.0 568 348 220 17.2 1,970 534 7,520 95 430
2.2 566 348 218 17.2 1,993 357 7,448 96 435
2.4 581 348 233 17.2 1,985 258 7,320 99 430
2.6 593 348 245 17.2 1,960 186 7,128 103 430
2.8 573 320 253 10.5 1,933 150 6,865 52 445
3.0 579 327 252 11.1 1,885 117 6,624 56 430

Obviously, as the radius increases, the connectivity increases as well, which is reflected in the
decreasing number of tree components. We also see that the total branch length and the number of
branches are little affected by the increasing radius, but they decrease somewhat. This is again expected
because of the increasing connectivity (larger neighborhoods). Because there are about 1,778 m of
branches with a diameter under 1 cm in the original tree, it is clear that not all of them are sampled
sufficiently by the point cloud. This explains the difference between the total branch lengths of the
original and reconstructed. Nearly all or all the first-order branches (branches originating from the trunk)
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are found, and with a larger radius also some second-order branches very close to trunk are classified
as first-order branches. The evaluation of the branching structures beyond the first order is complicated
because there are lots of separate components and the order of the “base branch,” even if that exists,
is unknown. However, visual inspection verifies that the branching structure is well defined inside the
components in the sense of branch separation. We also see that, for a large radius, the trunk classification,
due to, e.g., the segmentation and initial trunk component classification, varies quite a lot in the sense of
trunk length. However, most of the trunk volume is still covered as the length differences pertain to thin
parts. From the data we conclude that in this case the suitable radius r is about 2.0–2.4 cm, and thus the
radius can be a little larger than the diameter d.

Next we used multiple different sizes for cover sets to see the effect of the diameter d on the results
(in each case the radius is 0.4 cm larger than the diameter). Figure 13 shows that the trunk profiles
of the original and reconstructed trees are little affected by the size of the cover set, except for small
variations in the upper part for the smallest cover sets (see also the trunk volumes in Table 2). This
is expected because most of the trunk is visible in the data and it is covered quite well all around.
Figure 14 shows the branch size distribution of the original and reconstructed trees. First, only part
of the smallest branches (diameter under 2 cm) exists in the data and thus only part of their volume is
reconstructed. Second, branches whose diameters are much smaller than the cover set usually cannot
be sharply segmented. Then a large cover set may contain points from multiple nearby small branches
or from a branch and its child branches. Thus we see that the larger the cover sets, the larger the bins
in the volume distributions and the less the number of branches and components. This can be seen also
in Table 2: the total volume and length of the branch cylinders increase and decrease, respectively, as d
increases. When the trunk is correctly defined, then all (or nearly all) first-order branches are found, and
with larger d few second-order branches close to trunk are classified as first-order branches. Again, the
branching structure is well defined for most of the tree, and the differences are in the smallest branches.

Figure 13. Trunk profiles.
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Table 2. Effects of the cover set diameter, with columns as above.

Diam Tot. vol. Trunk Branch Trunk Branch #comps #branch #1st Time
(cm) (dm3) vol. (dm3) vol. (dm3) len. (m) len. (m) branch (s)
orig 665 348 316 17.2 2,665 1 13,102 99
1.5 548 342 206 13.1 2,060 393 8,385 62 720
2.0 582 348 234 17.2 1,985 258 7,315 98 480
2.5 598 348 250 17.2 1,825 164 6,133 101 375
3.0 632 348 284 17.2 1,652 119 5,076 103 315
3.5 623 348 275 17.2 1,467 92 4,059 97 270

Figure 14. Branch size distribution.
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3.3. Testing with Real Measurements for Small Branches

There are many sources of errors in the scanning, particularly for small branches. The size of the
laser spot is about 5 mm when it hits the branch (the spot size depends on the distance). There is also a
small error when scans from different directions are registered into a common coordinate system (some
millimeters). Windy conditions can add some error due to movement of the branches. Furthermore, the
scanning beam can be reflected from parts outside the actual surface. For example, there is a certain
amount of data noise in coniferous trees throughout the year due to needles. Thus, it is clear that the
smallest branches (diameter under 3 cm) cannot be scanned very accurately. In order to check if the
cylinder reconstruction works at all for branches whose diameter is near the scanning accuracy, we have
measured some branch profiles for the spruce shown in Figure 2 using caliper. The branches have small
diameters (about 1–3 cm) and their height above the ground is some 1–3 m. In Figure 15, we show some
caliper measurement results and compare them with the results obtained from the cylinder model.

Assuming that the caliper measurements are accurate, the results show that the diameter measurement
error for very small branches is of the order of one centimeter, and usually the computed diameter is
larger than the measured one. There may, of course, be different biases in the two measurements (caliper
and cylinders) which affect the results. For example, the cross-section of small branches is rarely circular.
However, the accuracy of the cylinder fitting for branches whose diameter is near the scanning accuracy
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is as expected. Moreover, the orientations and locations of branches and the tree structure can still usually
be reliably reconstructed for small branches, as can be seen from the bottom frames of Figure 15.

Figure 15. Comparison of measured and computed branch profiles for thin branches. The
graphs below show the measured (blue) and computed (red) profiles: diameter in mm as a
function of branch length in cm. Below are the fitted cylinders for the profiles B and E. The
red points are the laser data points.
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3.4. Complete Models from Real TLS Data

We have scanned four trees, a Norway spruce and maple, and two Scots pines, the first one shown
in Figure 3. The trees have been scanned from three different directions to have a comprehensive cover
of the branching structure (see the scanner specifications in Section 2.1). Complete cylinder models
for a Norway spruce and maple (without leaves) are shown in Figure 2. In Table 3, we show some
statistics computed for the trees. Branch size distributions for the trees are shown in Figure 16. Notice
that because the trunks of the maple and the scots pine 2 bifurcate, a significant proportion of the branch
volume is in large branches with diameter over 10 cm.
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Figure 16. Branch size distributions.
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Table 3. Tree measures computed from the cylinder models. The time column gives the
time for model completion (MacBook Pro, 2.8 GHz, 8 GB). The cover parameters were
d = 2.0 cm and r = 2.5 cm.

Tree Tot. Vol. Trunk Vol. Branch Vol. Trunk Height Tot. Height Branch Len. Time
(dm3) (dm3) (dm3) (m) (m) (m) (s)

spruce 1,090 790 300 14.7 22.0 720 1,160
scots pine 1 410 370 40 13.4 20.5 150 245
scots pine 2 670 450 220 9.4 16.4 380 740

maple 690 170 520 7.9 11.2 720 760

4. Discussion

The results from Section 3 demonstrate that our method is able to automatically build models that
reconstruct the parts existing in the data. With near-perfect data, such as the simulated data, where
potential error sources (registration, wind, etc.) can be controlled and eliminated, the method is able
to reconstruct the tree accurately. Even small branches near the accuracy level of scanning can be
reconstructed, and their branching structure is retained in the model. Overall, the results seem quite good
and, e.g., trunk volumes are very close to the real ones. Compared to a recent voxel-based method [41],
where there was much better cover of the tree (4–5 scanning positions and 20–60 million points) and
smaller unit size (1 cm), the errors in the total volume are about the same. In future studies, we plan to
conduct more validation tests with large field measurements.

Most of the parts missing in the data are not reconstructed, and this affects different tree metrics
estimated from the model. In particular, the top parts of (high) trees are usually poorly covered by TLS
data (see Figure 2). However, because the lower parts have a better cover, it should be possible to use
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the modeled lower parts to give accurate corrections to the total volumes and branch size distributions in
the upper parts. This is a subject for further study.

The method does not model the foliage or needles, and if these are present, they can add noise, make
nearby branches indistinguishable, prevent the visibility of many parts, etc. Needles, especially, can
make the smallest branches appear larger in diameter then they are. Again, however, these could be
taken into account with proper calibration, but this requires extensive field measurements and testing.

The segmentation works well and the separation of the branches comparable or larger in sizes to the
cover sets is nearly perfect. Large noise, if it cannot be properly removed, can affect the separation
of branches but this cannot be helped. Thus individual branches can be analyzed and their topological
relation to the other branches can be determined. However, gaps in the data breaks the data into separate
components and the relations of the components is harder to determine accurately. The gap-filling
procedure presented in Section 2.10 was realized so that only very clear cases were allowed. Thus, only a
few tens of gaps were filled in any of the reconstructed models. This procedure will be developed further.

As shown in Section 3.2, the method is quite robust against the selection of the cover parameters d and
r. This is especially true for parts that are large enough compared to d; i.e., when the sampling size is
small enough, the reconstruction works well. However, this method and all methods reconstructing
the whole tree structure from point clouds are quite sensitive to the quality of the measurements.
Therefore, for example, if the point density is too low or there is lot of movement in the tree during
the measurements, the smallest branches cannot be reliably reconstructed.

We have implemented the method with MATLAB, and the main inputs are the point cloud as well
as the cover and filtering parameters. Other parameters determine, e.g., if a component is part of the
tree, whose parts are initially classified as trunk, and converge criteria for cylinder fitting. If these
parameters are approximately tuned, the method is automatic and no human intervention is needed. The
computation time and memory required mainly depend on the number of cover sets used, and for most
of the steps, the time depends linearly on the number of sets. Especially for the segmentation, which
is the most time-consuming step, the required time is roughly proportional to the total length of the
branches. However, the time and hardware requirements are modest; the whole process (with data sets
of 1–5 million points) takes from minutes to half an hour (see the tables in Section 3) with a MacBook
Pro (2.8 GHz, 8 GB).

In future work, we will apply our method to a larger number of trees to draw some statistical
inferences, and we will analyze exposed stumps and roots of trees, for which there is so far very
little size and structure data (Liski et al., in preparation). We will also compare the results obtained
with conical-elliptic shapes and deformable cylinders to estimate the inherent systematic errors of the
procedure in some attributes extracted. Furthermore, the computational method and its realizations still
need some testing, validations, and further developments, such as adaptive parameter tuning, so that a
general software package can be compiled for a variety of end-users.

5. Conclusions

We have presented the main steps and demonstrated the potential and operability of a method for
constructing automatically comprehensive precision models of trees from TLS point clouds. The method
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is fast, producing almost immediately a model that is compact compared to the measurement data. In the
model, the diameters and orientations of the trunk and branches are locally approximated with cylinders.
The branching structure, i.e., the parent–child relation of the branches, is also recorded in the model.
The method is independent of the absolute scale and can thus be used to analyze the tree quantitatively
down to the level of detail allowed by the data.

The cover-set approach is the driving engine behind our method. It renders the point cloud as a
collection of topologically, geometrically, and hierarchically defined units that can be analyzed with
standard fitting procedures to obtain orientations, sizes, etc. The other key principle presented here is
the wholesale processing of the point cloud to obtain a simple easily accessible model that is designed to
contain most of the necessary trunk–branch information even without defining that information a priori.

Using the model, we can carry out quantitative analysis of the structure and size properties of the
tree. For example, the total volume of the whole tree or any of its parts, such as the trunk or branches,
can be approximated from the model. The trunk and branch profiles, or statistical distributions such as
the branching angle distribution, can be determined from the model. In particular, the model yields the
branch size distributions, which can be used to improve tree quality and forest carbon cycle estimations.

The reference measurements from small real tree branches show that the method is able to reconstruct
the branches with reasonable accuracy (error under 1 cm). The results from the modeled TLS data
show that the volume of trunks and large branches can be reconstructed accurately (few percent error)
even when large portions of tree parts are not sampled by measurements. The data need not be as
comprehensive and dense as required for voxel-based methods.

In the future, we will validate the method further with a large number of trunk and branch
measurements from real trees. We will also develop the method further, e.g., by utilizing generalized
cylinder shapes.

Together with the computational method presented, laser scanning provides a fast and efficient
means to collect essential geometric and topological data from trees, thereby substantially increasing
the available data from trees.
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Appendix: Details of the Segmentation Algorithm

We define variables that are sets containing cover sets:
TBase: the base of the current tree component
Base: the base of the current segment
Seg: the current segment
Cut: the cut region
PreCut: the previous cut region
Study: the study region
Forb: the sets to which all future segments are forbidden to expand
ForbSeg: the sets to which the current segment is forbidden to expand

Let S be a set of cover sets. Then Ext(S) is the set of cover sets containing the cover sets in S and all
the neighboring cover sets of S. The number of cover sets in S is denoted by #S.

Initially Forb contains the cover sets that are not part of the tree and TBase is the base of the
trunk. These are defined in Section 2.7. Then the segmentation of the point cloud is done with the
following algorithm.

A1. Initial Stage of Each Tree Component

Set the variables as follows:

Seg = TBase

PreCut = TBase

Forb = Forb ∪TBase

ForbSeg = Forb.
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A2. Construct the Cut Region and Study Regions

Define Cut by expanding PreCut into the tree component:

Cut = Ext(PreCut) \ ForbSeg

If Cut is empty, go to step 6. Otherwise, if at the beginning of the segment, determine the number N
of cover set layers in the study regions of this segment. For this, estimate the diameter of the segment,
and require that the study regions should be about as high as the estimated diameter, but at least N = 2.
Then define Study by expanding Cut into the tree component:

set Study = Cut and iterate (N − 1)−times Study = Ext(Study) \ ForbSeg.

A3. Determine the Connected Components of Study

If the cut region is not expanded much, i.e., if e.g., #Study < 2#Cut holds, set the number of
connected components to one. Otherwise, determine the connected components {Ci} (see Section 2.4).
If the number of components is one, proceed to step 6, otherwise to step 4.

A4. Classify the Components of Study

Each component Ci is checked if it is a new branch or part of the current segment, e.g., a continuation
of the segment. The base Bi of a component Ci is the part of the component belonging to the cut region,
i.e., Bi = Ci ∩ Cut. Then classify Ci as part of the current segment if (1) component is its base,
i.e., Ci = Bi holds, or (2) if the base is very small compared to cut region and the expansion of the
component is very small; if, e.g., #Bi < 0.05#Cut and #Bi > 0.5#Ci hold, or (3) if there are only a
few points in Ci. Furthermore, if the base is nearly all of the cut region (say, #Bi > 0.9#Cut holds),
then the component is classified specifically as the continuation of the segment.

If no component is specifically classified as the continuation, then check if one could be found with
the following criteria: (1) the angle between the component and the segment is small (e.g., under 25◦)
and the base is most of the cut region (#Bi > 0.9#Cut holds); (2) the component’s base is the largest
of the components whose angle between the segment is small (under, say, 25◦); or (3) the component’s
angle between segment is the smallest and the angle is small (e.g., under 30◦).

To estimate the angles between the segment and the components, define a segment region S consisting
of the last 2N layers added into Seg. Then apply the techniques of Section 2.6 to S and Ci or use vectors
connecting their top and bottom layers to estimate their directions.

If there are components classified as branch, proceed to step 5, otherwise proceed to step 6.
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A5. Save New Segment Bases

For each component Ci classified as a branch, save its base Bi as the base of a new segment that is
defined later with this same segmentation process. Do also the following updates:

Cut = Cut \Bi

ForbSeg = ForbSeg ∪Ci

Next, Seg can be modified by the base Bi. Especially in a branch that is thick compared to its parent,
the cut region may be quite far in the branch before the study region becomes disconnected. Hence, there
may be a significant appendage in the segment (see Figure A1). This appendage should be removed from
the segment so that it does not affect the cylinder fitting later. This can be done by defining and removing
the backward extended branch from the segment, i.e., those cover sets whose distance to the estimated
extended axis of the branch is about the same as the estimated radii of the branch (see Figure A1). Those
parts taken out from the segment are added into ForbSeg. If the removing of an appendage leaves
a clear gap between fitted cylinders, it can be filled either by adding a cylinder (see Section 2.10) or
expanding backwards the cylinder of the child branch.

Figure A1. Modfying the segment. Remove the appendage (red) resulting from the base of
the branch (blue) from the segment. The black dotted line shows the axis of the branch.

When all the bases are saved and the segment is modified, proceed to step 6.

A6. Prepare for New Iteration

If Cut is not empty, it becomes a new previous cut region and the current segment is updated:

Seg = Seg ∪Cut

PreCut = Cut

Then continue from step 2.
If Cut is empty, the current segment Seg is finished and use it to update the forbidden segments:

Forb = Forb ∪ Seg
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Next, if new bases of branches not yet segmented exist for this tree component, choose the Base,
which was created first, for the next round of segmentation and continue from step 2. with the
following updates:

Seg = Base

PreCut = Base

Forb = Forb ∪Base

ForbSeg = Forb

If no new bases of branches exist, the segmentation of the current tree component is finished. Then, if
there are tree components not yet segmented, select the TBase of one of those components and continue
from step 1. On the other hand, if all the tree components are segmented, the segmentation process
is complete.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
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Abstract: One way to model a tree is to use a collection of geometric primitives to represent
the surface and topology of the stem and branches of a tree. The circular cylinder is often
used as the geometric primitive, but it is not the only possible choice. We investigate various
geometric primitives and modelling schemes, discuss their properties and give practical
estimates for expected modelling errors associated with the primitives. We find that the
circular cylinder is the most robust primitive in the sense of a well-bounded volumetric
modelling error, even with noise and gaps in the data. Its use does not cause errors
significantly larger than those with more complex primitives, while the latter are much more
sensitive to data quality. However, in some cases, a hybrid approach with more complex
primitives for the stem is useful.

Keywords: tree modelling; terrestrial laser scanning; shape fitting; biomass estimation;
error analysis

1. Introduction

The reconstruction of precise structure models of trees is important in understanding tree growth
and decay, competition for resources, soil processes, photosynthesis, etc. The models can be used to
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compute, e.g., volumes, biomass estimates and size distributions. Terrestrial laser scanning (TLS) offers
fast and accurate point clouds from which plant geometry can be reconstructed.

Many possible reconstruction methods from TLS data have been presented [1]. These methods can
be divided roughly into three classes according to the way the tree structure is modelled. One class
comprises the voxel methods, where volumetric models are constructed by partitioning the point cloud
into voxels [2–4]. However, the ability of the voxel methods to model the tree structure is limited.
The second class includes the parametric surface methods, where a single continuous surface is used to
present a single branch [5,6]. In some of these methods, the cross-section of a stem or branch can be
modelled as splines or other parameterizable curves [7]. The third class, and the one that we focus on,
consists of shape-fitting methods, which use a geometric primitive to represent a part of a branch. A
branch is modelled as a collection of these primitives [8,9]. Thies et al. [10] have presented a method
that uses overlapping cylinder primitives to assess stem properties, and we have previously presented a
reconstruction process based on geometric primitives [11].

Most of the published shape-fitting methods use the (rectangular) circular cylinder as their elementary
building block. This choice is a compromise between simplicity and realistic reconstruction, as it is
well known that the cross-section boundary of stems is never exactly a circle. For example, when the
largest possible circle is fitted inside the cross-sections of eucalyptus trees, as much as 7% of the area
is left outside the circle [12]. On average, the ratio between the minor and major diameters of various
coniferous tree species is 0.96, indicating some elliptic features [13]. For branches, the ratio is expected
to be even smaller due to gravity. Thus, it is a fair question if the use of circular cylinders is acceptable
in such cases and if other shapes, that a priori appear more suitable, could be used instead with better
results. Here, we study how the choice of the geometric primitive affects the model error and robustness
of the reconstruction process and what are the pros and cons of using different shapes. In addition to
the circular cylinder (circyl), we study the elliptical cylinder (ellcyl), the circular cone (cone) and the
polygonal cylinder (polcyl) as the possible elementary blocks or geometric primitives (see Figure 1). In
addition, we use polyhedral cylinder surfaces (trian), which are triangulated meshes, to reconstruct tree
stems. Similar triangulated surfaces have been previously used for reconstruction with data collected
with a digitizer from tree stems [14] and root systems [15] and for TLS data and root systems [16].

There is also another intuitive objection against the use of cylinders in particular, but also other
geometric primitives: blocks or primitives cannot be attached to each other, such that the resulting
surface is continuous and without gaps. However, we will show that, for most purposes, this is only
an aesthetic problem, as all of the structural and geometric properties, such as the branching structure,
branching angles, tapering, volumes, lengths, curvatures, etc., can be modelled accurately. Indeed, if all
we need are the structural and geometric properties, it is actually better to leave out continuity (and the
related details) altogether in the modelling process, as these would only make it more difficult, slower
and less reliable.

In the building-block approach, the first step is some segmentation of the point cloud into parts to
which the geometric primitives are fitted. The segmentation process described in [11] was used in this
study. This method divides the TLS point cloud efficiently into small surface patches that conform to
the tree surface. These sets are used to segment the point cloud into branches and each segment further
into sub-segments that are then reconstructed using shape fitting. In this study, mainly the tree stems are
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considered when testing the different reconstruction schemes, because of better data quality and the easy
assessment of the results based on visualizations. However, in Section 4.5, we will briefly demonstrate
how the approaches work with branches.

Shape fitting geometric primitives with their basic properties are presented in Section 2. The
main reconstruction results presented in Sections 4–5 are discussed in relation to other works in
Section 6 and presented in more compact form in Section 7. Some of the fitting problems considered
here require strong initial values for the iterative fitting procedures to converge correctly, and the rest
require meaningful, accurate parameters for usable results. In Section 3, procedures for finding good
initial values and parameters from the data are presented, and the sensitivity of the fitting problems on
the initial values is studied. In Section 4, we use generated stem models and simulated laser-scanning
to study the error related to the shapes, as well as the effects of data quality. The simulated shapes
are not meant to represent any particular trees; rather, they were chosen to portray various geometric
characteristics in a somewhat exaggerated manner to analyse the performance and inherent properties of
each geometric primitive. In Section 5, real field data are used in further tests. As no volume estimates
are available for the field data, we use reconstructed models as references in Section 5.1. Simulated laser
scanning is carried out for the reference models, and the resulting point clouds are reconstructed for the
second time, in order to show how the approaches work with more realistic stem models.

2. Shapes

Here, we consider various geometric shapes suitable as geometric primitives. The shapes are shown
in Figure 1, and they are described in Sections 2.1 to 2.5. Cylinders and cones have a few common
parameters: the starting point p in three dimensions, the axis direction a (unit vector) and the length h
in the axis direction. The shapes are rectangular, so the top and bottom planes are perpendicular to the
axis a.

Figure 1. Geometric primitives. From left to right: circular cylinder (circyl), elliptic cylinder
(ellcyl), polygon cylinder (polcyl), truncated circular cone (cone) and polyhedron (trian).
(Top) Perspective side view; (bottom) orthographic top view.
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2.1. Circular Cylinder

The simplest reconstruction shape is the circular cylinder (circyl), which requires only one additional
parameter: the radius r. When using a circyl, the cross-section of a fraction of a branch is approximated
as a disk with the radius r. For the circyl, the envelope area E = 2πrh and volume V = πr2h. The
parameters of each circyl are iteratively fitted to the dataset, as described in [11]. Each cylinder fitting
is done iteratively starting from initial values. For cylinder and cone fitting details and parametrization,
see [17].

2.2. Elliptic Cylinder

The elliptic cylinder (ellcyl) approximates the cross-section as an ellipse. Three additional parameters
are used to model the ellipse: a pair of semiaxes radii (r1, r2) and the direction α of the major semiaxis
(measured as the angle from a reference direction). We use the following approximation for the
envelope area:

E ≈ 2πh

√
r21 + r22

2
. (1)

The volume V can be computed accurately V = πr1r2h.
As a fitting problem when compared to the circyl, the additional parameters make the ellcyl more

complex and time consuming. Therefore, we implement ellcyl fitting in two steps:

1. Estimate axis direction by fitting a circyl.
2. Project the points onto a plane perpendicular to the axis direction. Fit an ellipse to the

two-dimensional data.

Since the steps are done in sequence, the procedure is not fully iterative.

2.3. Polygon Cylinder

The cross-section of a cylinder can be defined by any closed curve. However, it is sensible to keep the
shape complexity to a minimum to achieve reasonable robustness and computational cost. Therefore, we
use a polygon, which is a closed circuit of vertices v1,v2, . . . ,vk,v1 ∈ R3 connected by straight lines,
that in this case is assumed not to intersect itself. In a polygon cylinder (polcyl), the sequence (vi )

k
i=1

defines the base of the cylinder and the sequence (vi + ah )ki=1 the top of the cylinder.
The perimeter p of a polygon is the sum of distances between consecutive vertices and the envelope

area E = ph. The area of the polygon can be found by projecting the vertices onto a plane orthogonally
and by using Gauss’ area formula for these 2D points (ṽi):

A =

∣∣∣∣∣
k−1∑

i=1

ṽi,1ṽi+1,2 − ṽi,2ṽi+1,1

2

∣∣∣∣∣ , (2)

where ṽi,1 and ṽi,2 are the first and second component of the the vertex i, respectively. The polcyl volume
V = Ah.

To fit a polygon cylinder to a point cloud P = {pi ∈ R3 }, we propose the following algorithm.
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1. Estimate the axis direction a either by the approaches described in Section 3 or by fitting a circyl.
2. Project the points onto a plane perpendicular to the axis a. The projected set is denoted by P⊥a.
3. Compute a centre point c for the set P⊥a either by computing the mean or by least-squares circle

fitting [18].
4. Divide the elements of the set P⊥a into k sectors around the centre point c.
5. For each sector i, compute the mean point ṽi. If a sector has no elements, interpolate using the

next and previous non-empty sectors.
6. Transform the points ( ṽi ) back to the original coordinate system. The transformed sequence (vi )

is the base of the reconstructed polcyl.

2.4. Cones

A circular cone (cone) is a shape that is limited by a base circle and circular cross-sections that
smoothly taper to a single point, the apex. A part of a branch is usually not the shape of a complete
cone with an apex, but a truncated cone where the top is cut off. The fitting problem, however, remains
essentially the same as in the cylindrical case. Fitting a cone to 3D data is an extension of this, since
a cone has a minimum of six parameters [17]. There are two common ways to parametrize a circular
truncated cone, either by using the taper angle or a pair of radii. Here, the latter is chosen: r1 is the radius
of the base, and r2 is the radius of the top. In that case, the surface area E = π(r1+r2)

√
h2 + (r2 − r1)2

and the enclosed volume V = 1
3
πh(r21 + r1r2 + r22). Cone fitting is done iteratively starting from

initial values.

2.5. Polyhedron/Triangulation

A polyhedron is a considerably more general and flexible shape than cylinders or cones. In principle,
the whole surface model of a tree could be given as a continuous polyhedron. However, due to
insufficiencies in TLS data, it can be impossible to reliably reconstruct a tree as a single polyhedron
surface, so sub-polyhedra as geometric primitives are an efficient means of interpolating between the
gaps and for smoothing (regularizing) the effect of noise and outliers. Modelling a part of a tree as a
polyhedron captures features in both the axial and radial directions. Polyhedron models are detailed and,
compared to the other shapes, require more space for storing the data and are slower to compute.

Given an axis direction a and a reference point p, a point cloud P ⊂ R3 can be partitioned into cells
the following way:

1. In the axis direction, divide the data into layers (Ri)i=1,...,M of equal height.
2. Further divide each layer into sectors (Cj)j=1,...,N .
3. A cell Pi,j = Ri ∩ Cj ⊂ P .
4. Compute the centre point vi,j of each cell (Figure 2, left).
5. Form triangle edges by connecting centre point pairs horizontally, vertically (Figure 2, centre) and

diagonally (Figure 2, right).

If a cell is empty, its centre point is interpolated linearly using the vertices in the cells above and
below. If interpolation is not possible in the axis direction, it can be done in the radial direction by using
the previous and next non-empty vertices in the same layer of cells.
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Figure 2. Stages of triangulation. (Left) Each vertex (green) is computed as the mean of
points in each cell; (centre) neighbouring cells are connected by edges; (right) The quads
are further triangulated, forming the polyhedron.

3. Initial Values

Next, we discuss initial estimates for shape parameters from point cloud data. These are needed in the
iterative fitting problems, circyl, ellcyl and cone, as well as parameters for the partitioning in the polcyl
and trian reconstructions.

Let Si, i = 1, . . . , n be the subsegments of a segment, computed, e.g., as described in [11]. An axis
point estimate p∗i is computed as the mean of the subsegment points: p∗i = {x ∈ Si }. There are different
ways to estimate the axis direction a∗i , but we use the axis point estimates of consecutive subsegments:
a∗i = p∗i+1 − p∗i . This only works when there are at least two subsegments. For the last subsegment, we
use the same direction as for second to last one. We have also presented alternative ways to estimate the
axis direction; see Section 2.6 in [11]. Given the line defined by the axis point and direction estimates,
the radius estimate r∗i is the mean distance from the points of the subsegment to this line.

3.1. Sensitivity Analysis

To analyse the sensitivity of the shape fitting problems to their initial values, we used the curved
cylinder model shown in Figure 3. TLS was simulated on the object, and reconstructions were computed
from the point cloud with perturbations to the initial values. The appearance, volume and area of the
resulting models were compared to the original.

For circyl and cone, all three initial values (radius, axis point, axis direction) are required, but polcyl
and trian reconstructions do not need a radius estimate. ellcyl fitting was left out of the analysis, because
the results are expected to be very similar to those of the circyl, due to the implementation. Furthermore,
cone fitting also has the tapering parameter, but tests showed that when perturbed from 0 to 45◦, the
relative error in both the volume and area varied only in the magnitude of 10−3. Note that the magnitude
of the error is not as important as its variation under increasing perturbation.
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Figure 3. Curved pipe model used in the sensitivity analysis.

For the radius, perturbation was introduced by scaling the original estimate by factors from 0.1 to
2.5. The test showed that circyl and cone are both very indifferent to the radius estimate. With factors
between 1.3 and 2.0, the perturbation had a minor effect on cone models, but the relative error stayed
below 5% for both volume and area.
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Figure 4. Relative volume error as a function of axis point estimate perturbation. The
magnitude of the transition was received by multiplying the radius estimate by the scaling
factor shown on the horizontal axis.

The axis point estimate was perturbed by moving it to a random direction perpendicular to the
estimated axis direction. The magnitude of the move was the estimated radius scaled by a factor varied
again from 0.1 to 2.5. The effect of the perturbation on the model volume is presented in Figure 4. For
all of the shapes, the error remains small with scaling factor values lower than one. With larger values,
as the axis point estimate moves outside the estimated cylinder hull, the error for polcyl starts to rise
close to linearly for both quantities. At 2.5, the errors are 500% and 150%, for the volume and area,
respectively. trian overestimates the area by ∼10% and underestimates the volume by up to 50% with
factor values above 1.5.

The axis direction estimate was perturbed by rotating it in a random direction by an angle varying
from 0◦ to 90◦. The results for the volume are shown in Figure 5. The iterative fitting methods, circyl
and cone, remain unaffected with perturbations smaller or equal to 45◦. Even at 81◦, the errors in the
volume are only 5% and 7%, respectively. polcyl is very sensitive to the axis direction, even at small
angle perturbations. With large perturbations, the trian model error can be up to 50% underestimation.
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Figure 5. Relative volume error as a function of axis direction estimate perturbation.

Above, each of the initial values was studied individually. In real cases, the perturbation is never
specific to a single property, but rather all of them.

4. Reconstruction from Generated Data

The reconstruction accuracy for the different shapes was studied using generated stem objects in order
to better show the differences of the approaches. For this purpose, eight stem models were created using
the 3D modelling software Blender. Some of the models are non-realistic, because the differences in the
modelling approaches would not otherwise be visible. For a more realistic case, models derived from
real oak trees were used in Section 5.1. The models were imported into MATLAB, where simulated TLS
measurements were made. The resulting point clouds were reconstructed using all of the shapes.

4.1. Generation Process

The models (see Figure 6) are 15-m tall and consist of 302 consecutive 32-vertex rings. The diameter
of the stems remains constant for the first 2 m at 0.40 m and then tapers smoothly to 0.12 m at the
top. Stems 2–4 are unrealistically elliptic on purpose, and Stems 4, 6 and 8 have random perturbations
on the surface.

1 2 3 4 5 6 7 8

Figure 6. Flattened portraits of generated stem models (vertical dimension scaled down
to 20%).
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The simulated scans consisted of three positions around the model with an angular sampling
resolution of 0.036◦ and a distance between the scanner and the models of ∼5 m. The scanner positions
are visualized in Section 4.4. The scans were co-registered perfectly and were made with two noise
levels: no noise and uniformly distributed noise between −3 mm and 3 mm.

4.2. Reconstruction Results

Because of randomness in the surface patch generation, the reconstruction was repeated 10 times for
each shape to analyse the deviation σt associated with the underlying segmentation. The reconstruction
accuracy of the different shapes was determined by comparing the total volume and surface area of the
reconstructed model with the original one. Table 1 lists the average and maximum error for the volume
and area of the noisy measurements and the volume of the noiseless measurements in relative error
percentages. The standard deviations σ of different stem models and the average standard deviation σt

associated with the segmentation randomness are also listed in percentage points. It is clear that the
differences in the results between the noiseless and noisy measurements are very small, and thus, only
the noisy data were used in further tests.

Table 1. Reconstruction results of generated stems. Maximum and average difference in
percentages for the volume and surface area. Negative values stand for underestimation. The
standard deviation of the average error (σ) and average of the standard deviations for the
individual stems (σt) are also listed in percentage points (pp).

circyl ellcyl polcyl cone trian

N
oi

se
le

ss

Vo
lu

m
e ∆Vmax −12.61 −19.20 −8.23 −24.59 −11.40

∆Vavg 1.22 0.34 −2.62 −5.13 −4.63
σ 7.02 3.59 2.35 11.58 2.33
σt 0.70 2.09 0.90 0.81 0.15

N
oi

sy
(±

3
m

m
)

Vo
lu

m
e ∆Vmax −13.81 −19.20 −8.40 −24.43 −11.42

∆Vavg 1.36 0.20 −2.51 −5.00 −4.62
σ 7.33 4.72 2.53 11.93 2.32
σt 0.80 1.86 0.99 0.95 0.15

A
re

a

∆Amax −21.21 −17.83 −10.92 −26.04 −8.47
∆Aavg −4.40 −0.96 −2.58 −7.20 −2.34
σ 6.76 5.69 3.99 8.74 3.44
σt 0.59 1.50 0.86 0.65 0.10

Stems 4 and 6 with the large flanges were the hardest to reconstruct accurately. Especially with
the former, the combination of the flanges and highly elliptic cross-sections caused high errors in both
volume and area. With the non-elliptic stems without flanges, reconstruction accuracy was much better
for all of the shapes. The fitted cylinders and cones had an average length of 30 cm, whereas trian had
a layer height of 10 cm.

With the circyl, all but the elliptic stems (2,3,4) were reconstructed with error between ±3.50% in
the volume. In the surface area, the flanges in Stem 6 caused underestimation of over 7%, but with the
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other non-elliptic stems, the error was again between ±3%. The standard deviation σ seems relatively
high, but it is heavily affected by the elliptic stems.

Using the ellcyl usually resulted in 2%–3% error in volume and area, either from over- or
under-estimation. It did have the lowest average error, but also the highest average standard deviation σt.
Overall, ellcyl seemed more unstable than the other approaches.

The polcyl approach seems to underestimate both the volume and the area by∼2.5% on average. The
largest error appears again in Stems 4 and 6, which have large flanges. The standard deviation of the
average error is lower than with the iterative approaches, but slightly higher than with trian.

The large flanges were particularly hard for cone to model: too much tapering in the first cone caused
errors of over 20%. On stems without flanges or elliptic cross-sections, the volume was underestimated
only by ∼5% and the area by 4%. The standard deviation of the average error was the highest
of all of the shapes.

The trian approach underestimates the volume of most stems by 3% to 5%, although Stem 6 causes
higher error up to 10%. The surface area is reconstructed more accurately, with the average and
maximum errors of −2.34% and 8.47%. The average standard deviation σt is considerably lower than
with any other approach, and if Stem 6 is discarded, the maximum deviation is only 0.05 percentage
points (pp). The standard deviation of the average errors σ was also the lowest of all. For taper curve
comparison, see the Supplementary Material.

To illustrate how the error is distributed vertically within the models, Figure 7 shows the taper curve
for Stem Model 7, and the respective error curves for each approach. Error curves are computed as the
difference between the taper curves of the reconstructed model and the original one. The first meter is
discarded in the figure for clearer visualization.

The taper curves obtained with different models are very similar along most of the stem. Larger
differences only occur near the bulges of the original model. It seems that the cone models are affected
the most by these fast variations in the original diameter, but none of the approaches can model the
bulges correctly.
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Figure 7. Taper error curves. Taper curve for the generated Stem 7 (right axis) and the
diameter error (left axis) in the taper curves of the reconstructed models.
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At the bottom half of the stem, where there are no bulges, the error level stays low and relatively
stable. On the top half, i.e., starting from 8 m, the trend of the error starts to rise almost linearly and
turns from under- to over-estimation. This is due to the fact that as the diameter gets smaller, the noise
becomes more relevant and also the sample density drops. At 15 m, the trend of the diameter error gets
close to 2 cm.

Figure 8 shows how the different approaches are able to reconstruct the cross-sections along the
vertical axis of Stem 8. The circyl seems to get the size of the cross-sections right, but is unable to
capture the finer details. The trian approach captures the finer detail in the cross-sections, as it has better
vertical resolution, but still noticeable differences remain.

0.10

0.80

1.30

14.00

circyl ellcyl polcyl trian orig.

Figure 8. Cross-sections of the models of Stem 8 along the vertical axis, reconstructed from
the noisy measurements.

4.3. Effect of Shape Parameters

The Stem Model 7 was used to test the effect of the length of the shapes on the reconstruction accuracy.
The results showed that by using too short subsegments (less than 14 cm), the orientation could not be
accurately determined, which resulted in overlapping primitives and, thus, overestimation in lengths and
volumes. With larger lengths (up to 42 cm), the overestimation changed to slight underestimation, but
was less than 5% for circyl and ellcyl and less than 8% for polcyl, and for cone, the volume error was
close to 15%.

The effect of polcyl and trian vertex count was studied by reconstructing Stem 7 with the vertex
count varying from four to 60. The results are visualized in Figure 9. Increasing the vertex count makes
the reconstructions more accurate for both shapes. Already with 20 vertices, the reconstructed volume is
underestimated by less than 10% and 3% with the polcyl and trian, respectively.
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Figure 9. Effect of vertex count on polcyl and trian.

4.4. Data Quality

There are a number of factors that contribute to the quality of the scanning data and affect the
reconstruction result. We tested how the different shapes handle changes in the sampling resolution,
occluded parts and the number of scan positions. Because all of the approaches remain quite unaffected
by a realistic amount of measurement noise, its effects were not investigated further. Similarly,
registration errors and environmental factors, e.g., wind, were ignored.

The effect of the scanning resolution is shown in Figure 10 for the Stem Model 7. The resolution
varied from 0.018◦ to 0.360◦. Changing the point density forced us to change the parameters of
the underlying segmentation process manually for each resolution, making the testing very tedious
and probably not definitive. All of the cylinder-based approaches behaved quite similarly: slight
underestimation with the finest resolutions and up to 10% overestimation with the crudest resolutions
in the volume. With the area, the errors were even smaller, e.g., with 0.036◦ resolution, the circyl had
an error of −6.54%. The underestimation in cone models increased steadily and was close to 18% at
the end.
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Figure 10. Effect of the angular sampling resolution on the reconstructed surface area and
volume of Stem 7.

The effects of local occlusions were studied by iteratively degenerating the point cloud of Stem 7
scanned with a resolution of 0.036◦ by removing spherical sections. The radius of the sections varied
linearly from 16 cm at the bottom to 8 cm at the top of the stem. The extractions we distributed vertically
in a way that more of them were in the upper parts of the stem. The number of spherical extractions was
increased from zero to 4850 with a total of 81 steps. Figure 11 shows examples of the four steps.
Reconstruction was repeated 20 times for each step, and the resulting volume errors were averaged. The
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relative volume errors of the reconstructions as a function of the number of extractions is visualized in
Figure 12.
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Figure 11. Example point clouds with increasing number of spherical section removals.
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Figure 12. Effect of decreasing data quality on reconstructed volume. The horizontal axis
represents the increasing number of spherical section removals from the point cloud scanned
with the 0.036◦ sampling resolution.

Interestingly, trian was here the most stable approach, probably because it interpolated vertices into
empty cells. The stability is weaker for the surface area: from about 3500 removals to 4850, the surface
area error went from −1.3% to +6.0%. For the other shapes, the results were similar for both the area
and volume. ellcyl is the most unstable of the five approaches: after about 2000 removals, the volume
starts to decrease due to ellipse fittings not converging and using initial values that are visibly too small.
With the other shapes, circyl, polcyl and cone, the volume error increases slightly from zero to 2000 and
remains relatively stable after that at +10%, +10% and −10%, respectively.

In earlier tests, the object was always scanned all-around from three positions. This is not always
possible, so the effect of the number of scanning positions was studied by using all possible combinations
of the three directions visualized in Figure 13. The results are listed in Table 2 for Stem Model 7.

With a single scanning direction, all of the approaches produce high errors above 10%, at least for
some directions. trian produces physically impossible results (negative volume) with a single scan.
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With two scanning directions, the methods apart from trian produce quite accurate results. The trian
approach still gives errors of several tens of percents. circyl has the smallest deviation and a mean closest
to zero in these three cases. With all three directions, all of the approaches work well.

1

2

3

(-5.0; 0.0)

(4.5; 5.2)

(5.3; -3.9)

Figure 13. Simulated scanner setup. Stem Model 7 is visualized as the object.
(x; y)-coordinates given for the positions. At each position, the scanner is at 1.5 m above
the ground.

This stability test is of particular importance when considering fast scans of entire plots (from a few
scanning positions) rather than detailed ones of individual trees. In such cases, the robustness of circyl
(i.e., its strong regularization) may be a crucial factor.

Table 2. Effect of the number of scanning positions for Stem Model 7. First column:
included scanning directions. Others: relative volume error percentages.

Pos. circyl ellcyl polcyl cone trian

1 2.63 −19.80 14.62 −7.38 −104.51
2 19.66 3.68 20.69 −2.02 31.18
3 3.28 −0.44 12.19 −12.46 −121.47

1,2 −2.26 0.20 −1.37 −8.18 31.66
1,3 −1.44 0.38 −5.29 −7.32 −26.72
2,3 −1.78 6.45 −0.73 −8.21 43.05

1,2,3 −2.62 −1.04 −5.58 −7.46 −1.43

4.5. Reconstruction of Complete Trees

To test how the approaches reconstruct branches, we generated a tree model with 40,600 triangles
visualized in Figure 14. Laser scanning was simulated from the same positions as before in Figure 13
and the same resolution 0.036◦ and simulated measurement noise (uniform±3 mm). The resulting point
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cloud consisted of 108,000 points. The tree was reconstructed 10 times with all of the approaches and
compared to the known volume and area of the model. When the fitting of either the initial cylinder or
the final shape did not converge, the cylinder defined by the initial values was used. Thus, parts of the
ellcyl, polcyl and cone models are circular cylinders.
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Figure 14. Generated tree model. (Left) Front view; (right) top view.

The average normalized volume and standard deviations are listed in Table 3. The results show that the
iterative methods have average and maximum volume underestimation errors below 4%. Their standard
deviation is also close to just one pp. polcyl overestimates the volume by a few percentages, where as the
trian approach produces an overestimation error of over 50% on average. The high error level is caused
by the lack of point coverage on the top parts of the branches. For example models and data tables, see
the Supplementary Material.

Table 3. Reconstruction results for the generated tree model. Maximum and average
difference in percentages for the volume and surface area. Negative values stand for
underestimation. The standard deviation (σt) in percentage points (pp).

circyl ellcyl polcyl cone trian

Vo
lu

m
e ∆Vmax −1.31 −2.71 7.47 −5.32 328.09

∆Vavg −0.28 −0.75 2.93 −3.25 56.72
σt 0.65 1.14 2.35 1.83 93.43

A
re

a ∆Amax −4.89 −5.05 −2.15 −8.07 126.76
∆Aavg −3.52 −2.29 0.13 −5.90 27.90
σt 0.90 1.89 1.07 1.32 45.16
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5. Reconstruction from Measured Data

To test the modelling approaches with measured data, scans were conducted in an 80-year-old oak
plantation located in southeastern England (51.1533◦N, 0.8512◦W, 80 m asl). The plantation covers
a total ground area of about 85 ha managed as a commercial forest of mixed species dominated at
75% by Quercus robur (English oak). A 30 × 30 m experimental area was selected and the understory
removed before data acquisition. TLS data were recorded at nine positions (see Figure 15) over the
experimental area in April 2012 (leaf-off). The TLS used was the single return HDS-6100 (Leica
Geosystems Ltd., Heerbrugg, Switzerland).

In this study, we used scans from the bottom 14 m of eight oak stems, with a sampling resolution of
0.036◦, and six of the eight scanning positions with the best visibility were selected for each stem. A
thinned-out point cloud and reconstructed models of one of the stems, Stem 5, are shown in Figure 16.

The diameter at breast height (dbh) was manually measured using a girth tape, and it was compared
to the reconstructed values. The average and maximum error percentages in the reconstructed dbh are
listed in Table 4, together with the average standard deviation σt over 10 repeats within single stems, the
deviation σ between the stems and the average distance from the measurements to the model surface.
The dbh of the stems ranged from 27.7 cm to 41.6 cm.

The cone models have the highest average error close to 12% and the highest deviation. Because
approximately the first 1.5 m is modelled as a single cone, the tapering of that cone is usually
overestimated due to the bulging at the very bottom of the stems. The accuracy of the dbh measurements
could be further improved for all of the cylinder and cone models, if a block were fitted to a short section
over the breast height. The trian models have high errors, as well, but the underestimation is systematic.
Because of the finer vertical resolution of trian models, the error in the diameter could be caused by the
offset between the zero point of the model and the field ground level. The same systematic error could
affect other shapes more, if they were shorter. The average distance between the measurements and the
model surface was smallest with the trian and polcyl models, as expected, since they have the largest
number of parameters.
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Figure 15. Scanner and tree locations. The scale is in meters.
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cloud circyl ellcyl polcyl cone trian

Figure 16. Point cloud (thinned) and reconstructed models of measured Stem 5.

Table 4. Reconstruction results for the measured stems. Maximum and average dbh error
in percentages and standard deviation (σ), the average of the standard deviations for the
individual stems (σt) in pp and the average distance davg from the measurements to the model
surface in cm.

circyl ellcyl polcyl cone trian

∆Dmax −7.08 7.63 −7.38 −23.28 −6.69
∆Davg −1.12 −0.41 −1.51 −11.57 −4.84
σ 1.94 1.94 1.83 6.19 1.39
σt 1.10 1.56 1.04 2.30 0.01
davg 1.19 1.07 0.88 1.11 0.71

In the bottom half of the stems, the ratio of the minor and major radii of the fitted elliptic cylinders
for all the stems was 0.92, and the variance was small. On the upper half, the ratio started to decline, and
the variance was four-times larger. The same effect was visible for the tapering angle of the fitted cones.
The visualizations of the models showed that unrealistically tapering cones and elliptic cylinders were
fitted to the upper parts of the stems. On average, the ellipse radii ratio was 0.87 and the cone tapering
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angle 0.33◦. Thus, additional constrains should be introduced when using these shapes for stem parts
with high noise or a low number of returns.

5.1. Second Order Reconstructions

To better estimate the volume and area error levels and distribution, the following procedure was
used. The original point clouds were used to reconstruct reference trian models, with 32 vertices, for the
stems respectively. Simulated TLS was then carried out with the same settings and scanner locations as
in Section 4, except that no additional noise was added to the measurements. The resulting point clouds
were then used to compute second order reconstructions ten times with all of the shapes, including trian
with 20 vertices. The results are listed in Table 5, and they are in agreement with the results using
generated stem models in Section 4. Here, the differences between the shapes are minimal, because the
oak stems are simpler than the generated stem models. The average volume underestimation for all of
the shapes other than cone is below 3%. For taper curve comparison, see the Supplementary Material.

Table 5. Average and maximum volume and area errors (%) and standard deviations (pp)
when second order reconstructions were compared to respective reference models.

circyl ellcyl polcyl cone trian

Vo
lu

m
e ∆Vmax −6.69 −6.32 −8.96 −9.60 −7.76

∆Vavg −1.33 −0.18 −2.30 −5.45 −2.72
σ 2.87 3.68 2.99 2.17 2.28
σt 0.37 2.62 0.98 1.08 0.49

A
re

a

∆Amax −10.73 −9.32 −8.19 −12.67 −5.24
∆Aavg −5.80 −3.97 −3.86 −8.04 −3.59
σ 2.67 2.98 1.96 2.74 1.02
σt 0.26 2.69 0.67 0.67 0.34

6. Discussion

The results show that in terms of robustness to data quality and initial values, the use of the circular
cylinder as a geometric primitive in reconstruction approaches (e.g., [8–11]) is justified. The expected
error in volume and surface are low even when comprehensive data are not available. However, the
circular cylinder is not able to model the fine structure of the stem cross-section. For this purpose, the
trian models are better, but they require comprehensive input data. The resulting models require a lot
more disk space to be stored and slower computations, when comparing to the circular cylinder, which
is sufficiently compact for massive-scale automatic reconstructions [19].

Simple eccentricity characteristics, e.g., the ratio between the largest and smallest diameter, can be
computed from the ellcyl models, and for the English oak stems, the ratio was 0.92 (at lowest 3 m),
which seems realistic when comparing to the value of 0.96 measured for various coniferous species [13].
Similar estimates could be computed from the polcyl and trian models. None of the presented structure
models include information about the inner structure, e.g., pith eccentricity [20], and for that purpose,
destructive measurements are still needed.
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The problem with using more complex shapes is the increased requirement for measurement coverage
around the object. Lack of coverage combined with shape fitting instability can lead to very high
errors. Thus, it would be beneficial to analyse, e.g., the radial coverage locally around a given axis
to determine the maximum complexity of the shape that should be fitted to those measurements. By
implementing such local coverage analysis, the resulting models would consist of several types of
geometric primitives. Especially, the lower part of stems has, in most cases, sufficient coverage for
polcyl or trian reconstruction. Thus, the resulting model would consist of the stem polyhedron and a
collection of cylinders for the top part of the stem and the branches. Another possibility is to make
several reconstructions with different shapes for a single part and store all of them in the same model.
Which representation to use could be determined later depending on the application (cf. [21]).

The data in Section 4 were generated using a combination of 3D modelling and simulated
laser-scanning. By further developing and optimizing the scanning part, it would be possible to model
entire forest plots with understory and to simulate scans containing multiple trees or even to simulate
continuous scans with moving scanners. Furthermore, on the tree level, this type of simulation offers an
inexpensive way to study how to model tree abnormalities, such as cankers, seams or buttress roots. This
way, it is possible to start with ideal data without any noise or occlusion present and to degenerate them
in various ways to get data similar to real measurements.

7. Conclusions

In this study, reconstruction approaches based on four different geometric primitives and a
triangulation approach were tested with both measured and simulated data. For all of the shape
fitting approaches, the sub-segmentation procedure presented [11] was used, but most of the results are
applicable to any reconstruction procedures using the same geometric primitives [9,10]. Using simulated
data provided correct reference values of quantities, such as the volume, surface area and taper curves.
These also served as a way to determine how much of the error was caused by the modelling and how
much by the quality of the data. The most noticeable differences in the modelling approaches occurred
in their ability to adapt to different shapes of stems and in their robustness to the quality of data. Adding
a realistic amount of measurement noise did not noticeably change the reconstruction results in terms of
volume or surface area. None of the tested approaches could accurately model complex cross-sections,
such as flanges. On the other hand, the polyhedron method has been shown to give a good representation
of complicated stump shapes that are not well represented by the other primitives [16,22].

Circular cylinderThe circyl primitive is the most commonly used [9–11]. It is robust, as it is very
indifferent to perturbations in all of the initial values of the fitting. Even coarse data-based estimates
converge towards the correct solution; e.g, the axis direction estimate can be up to 45◦ off without
causing any error, and after that, the error was below 10%. For the generated stems, the average
volume overestimation was 1.36% with an average standard deviation of 7.33 pps. The surface area
was underestimated with an average of 4.40% ± 6.76 pp. With field data, dbh was underestimated by
1.12%, on average, with a standard deviation of 1.94 pp.

Elliptic cylinder The ellcyl fitting was implemented as a combination of circyl fitting and
two-dimensional ellipse fitting to fine-tune the cross-section. Thus, in the initial values, it performed
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as circyl. With the generated data, it had the lowest average error at 0.20% for the volume and −0.96%
for the area. The deviation between repeats was the highest at 1.86 pp for the volume and 1.50 pp for the
area. The high deviation means that ellcyl fitting can be unpredictable, but implementing the fitting as a
single iterative process might help stabilize it. If the data are comprehensive and have good quality, the
ellcyl fitting can produce good results. Furthermore, ellcyls fitted to the measured stems were elliptical
rather than circular, as the ratio of the major and minor radii was 0.87 on average.

Polygon-based cylinder The polcyl reconstruction is not an iterative process, so accurate initial
values are crucial. Even small perturbations to the axis direction estimate caused volume and area errors
over 10%. However, in the tests with the generated and measured stems, the initial values received from
the data were sufficient to produce error levels similar to the circyl, and when visualized, the models
appeared accurate. On the generated stems, the average error in the volume was −2.51% ± 2.53 pp and
on the area−2.58% ± 3.99 pp. As expected, the polcyl was more robust on the stem cross-section shape
and reconstructed the elliptic stems more accurately than circyl and cone. With 26 vertices on the base
polygon, the cylinder was able to reconstruct the dbh of the measured stems with an average diameter
error of 7.38%.

Circular cone The cone handles initial value perturbations almost identically to the circyl. Using
cone resulted in an average 5.00% ± 11.93 pp underestimation of the volume and 7.2% ± 8.74 pp of the
area with the generated stems. It almost always resulted in the smallest volume of all of the models.
Especially problematic was the bulging at the bottom of the stems, resulting in overestimation on the
cone tapering. This caused high errors in the dbh values of the models. Most of the cone fitted to the
measured stems tapered only a little, 0.33◦ on average. Thus, the difference in volume in comparison to
circyl is not probably worth the increased instability, especially as the difference is expected to decrease
with the primitive length. If one were to use longer cones, the stability and accuracy should be increased.

Polyhedron The trian approach is fairly sensitive to the values of the axis point and axis direction,
of which the former had the larger effect on accuracy. It requires full coverage around the object: where
the other primitives performed well with just two scans, it required all three positions or the volume
error was close to 30%. On the other hand, it was not sensitive to local occlusions in the data. With the
generated stem models, it produced a volume error of −4.62% ± 2.32 pp, and the error in the surface
area was even lower. The average diameter error in dbh was −4.84%, but seemed systematic and could
be caused by either the selection of breast height in the model or too small a number of vertices used.

Overall The results show that any of the models, even with cruder than normal resolution, can achieve
accurate volume and area estimation. The average volume error for all models was below 5%, and using,
e.g., the circular cylinder model on extremely elliptic stems, resulted in a maximum volume error below
14%. These ties well with the field-calibrated studies of [16,23], as the volume and length errors are
similar in all studies. In [16], it is shown that a hybrid version of polyhedral and cylindrical modelling is
accurate, even for the highly complex shapes of stump-root systems. Furthermore, [24] shows that using
allometric equations to predict the volume of eucalyptus trees results in a 36.6% average error with the
species-specific equation and a 29.9% error with the generic eucalyptus equation, while circular cylinder
structure models produce an error of 9.7%.

Extrapolating the stem-based results to branches predicts that increased occlusions and relative noise
levels and lower point density will increase the demand of robustness and the stability of the fitting
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scheme used. Thus, the general recipe is to use circyl for branches and, when necessary, more complex
primitives for parts of the stem. However, the advantage gained by the latter is not significant, at least
in terms of volume. For a fast and compact processing of a large number of trees, the circyl approach
is rather sufficient. Taking into account the typical systematic errors and glitches that occur in field
campaigns, a rule-of-thumb volumetric error from any surface modelling approach can be expected to be
±10%. The effect of the wind and co-registration error are expected to increase the error level, especially
for the branches, but they were not considered in this study.
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A B S T R A C T

We present three robust methods to accurately and automatically recognize tree species from terrestrial
laser scanner data. The recognition is based on the use of quantitative structure tree models, which are
hierarchical geometric primitive models accurately approximating the branching structure, geometry, and
volume of the trees. Fifteen robust tree features are presented and tested with all different combinations
for tree species classification. The classification methods presented are k-nearest neighbours, multino-
mial regression, and support vector machine based approaches. Three mainly single-species forest plots
of Silver birch, Scots pine and Norway spruce, and two mixed-species forest plots located in Finland and
a total number of trees over 1200 were used for demonstration. The results show that by using single-
species forest plots for training and testing, it is possible to find a feature combination between 5 and 15
features, that results in an average classification accuracy above 93% for all the methods. For the preliminary
mixed-species forest plot testing, accuracy was lower but the classification approach presented potential
to generalize to more diverse cases. Moreover, the results show that the post-processing of terrestrial laser
scanning data of multi-hectare forest, from tree extraction and modelling to species classification, can be
done automatically.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Large multi-hectare areas of forests with thousands of trees
can now be measured quickly with terrestrial laser scanning (TLS)
(Calders et al., 2015a). This kind of massive-scale remote sensing of
trees requires that most, if not all, post-processing steps are done
automatically. In addition to the geometric and volumetric data, an
important piece of information that can be determined from the
point clouds is the tree species. For example, the species have an
effect on the greenhouse gas exchange of a tree (Meier et al., 2016),
and measuring the change in biodiversity is related to the number
of species and their distribution. Thus, automatic and reliable tree
species recognition would be an essential step to make the massive-
scale remote sensing from TLS data practical.

There are a number of published studies that use TLS data for tree
species recognition: Haala et al. (2004) used the combination of TLS
and high-resolution panoramic images to make a comparison of the
bark textures of four trees. Their results show that the texture is a
candidate for classification as it seems to stay similar in a stem, but
differs between stems. However, the approach was not tested on a
larger dataset nor was it automatic.

* Corresponding author.

Puttonen et al. (2010) used TLS and hyperspectral data to classify
24 trees of three species with a support vector machine (SVM).
The scanning was done indoors, so point cloud segmentation into
trees was not required. The classification features included shape
parameters computed from the TLS data and averaged reflectance
values of the hyperspectral data. With a combination of 2 fea-
tures from each dataset, the average classification accuracy was over
85% for all species. When using only a pair of TLS data features,
the accuracy was over 70% for only 43% of the pairs, but the best
classification accuracy was 95.8%.

Puttonen et al. (2011) combined mobile laser scanning (MLS)
and hyperspectral data to classify 133 trees of 10 species with
SVM. Individual trees were manually isolated from the point cloud.
Similarly to Puttonen et al. (2010) , the classification features
consisted of MLS-based shape parameters and per channel averaged
spectral data. The results showed that MLS features on their own
were able to separate coniferous and deciduous trees with 90.5%,
and individual species with 65.4% accuracy. For the combination
of MLS and spectra the percentages were 95.8% and 83.5%, respec-
tively.

Vauhkonen et al. (2013) tested hyperspectral LiDAR (HSL) in
laboratory conditions for classifying 18 spruce and pine trees. The
classification accuracies varied between 78% and 89%. Different scans
of the same trees were used for training and classification.

http://dx.doi.org/10.1016/j.rse.2016.12.002
0034-4257/© 2016 Elsevier Inc. All rights reserved.



2 M. Åkerblom et al. / Remote Sensing of Environment 191 (2017) 1–12

Othmani et al. (2013) used the 3D texture of the bark of 230 trees
of five species. In their approach a 30 cm long patch is manually
isolated in a stem and its texture analysed using 2D signal processing
techniques and a random forest (RF) classifier. The overall species
recognition was 88%.

In a most recent study (Lin and Herold, 2016), 40 trees of 4 species
were classified by using SVM and explicit tree structure parameters
(ETS). In contrast to the shape parameters used by, e.g., Puttonen et
al. (2011) , ETS parameters describe the actual shape of the tree stem
or crown rather than the distribution of TLS samples. The authors
refer to tree isolation details in Holopainen et al. (2013) but fail to
state which of the methods was used, and thus the level of automa-
tion is unknown. At least the separation of stem and branch points
is done interactively. The classification tests were done using the
leave-one-out cross-validation (LOOCV) in two different scenarios,
maximum and robust, with accuracies 90.0% and 77.5%, respectively.
The authors state that the latter scenario is more likely to be suitable
for real applications.

The above literature survey shows that the tree species
recognition from TLS data has been the topic of only a few studies
and in most cases it has been combined with other data sources to
achieve sufficient classification accuracies. Furthermore, the sample
sizes have been relatively small, and no fully automatic solution has
been presented yet.

In this paper, we propose a proof-of-concept for fully automatic
species recognition approach from TLS measurements. Rather than
using 3D point cloud data directly for classification, trees are first
reconstructed as quantitative structure models (QSM) (Calders et
al., 2015b; Raumonen et al., 2013). Notice that the QSM reconstruc-
tion is done by using only the xyz-coordinates of the points and
thus no intensity data, spectral information, photographs, or ultra-
high resolution scans are required. The classification features are
computed from the geometric and topological tree properties stored
in the models, which means that we have more than three dimen-
sions to work with. This enables the use of properties that have been
hard or impossible to determine directly from the point cloud data.
The proposed classification features are listed in Section 2.5.

For the species recognition, we tested three different classifica-
tion methods with numerous feature sets to show their differences
and suitability for the application. Namely, we tested k-nearest
neighbours, multinomial regression, and support vector machine
based approaches. The classification methods are presented in
Section 2.4.

It has been shown that QSMs can be automatically computed in
massive scale (Raumonen et al., 2015), and when combined with
automated feature computations it makes the complete classification
procedure fully automatic. To demonstrate the approach, three large,
mainly single-species plots from Finland are used. In addition, two
mixed-species forest plots, also from Finland, are used to demon-
strate preliminary results from more heterogeneous stands. The
three species are the most numerous in Finland and represent both
deciduous Silver birch (Betula pendula Roth) and coniferous Scots
pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karsten).
Forest plot and scanning setup details are presented in Sections 2.1
and 2.2, respectively. We present results in Section 3, and sum up in
Section 5.

2. Materials and methods

2.1. The forest plots used for the demonstration

We have three large almost single-species forest plots and two
unmanaged mixed-species stands, which have been scanned with
TLS. One of the single-species plots is a systemically planted plot with
only Silver birch trees and the other two are natural coniferous plots
with Norway spruce and Scots pine trees. All three study plots are

in Punkaharju, Finland, where annual mean precipitation is 600 mm
and effective temperature sum 1300 dd (Merilä et al., 2014).

2.1.1. Silver birch plot
A Silver birch stand used in this study is a field experiment in

Punkaharju, Finland (61◦48′N, 29◦18′E), established in 1999 to study
within-stand differences among genotypes (22 genotypes micro-
propagated from local trees) (Possen et al., 2014). Trees were planted
on agricultural field with a planting distance of 2 × 2 m in 1999. In
April 2008, 50% of the trees were harvested. At the time of the scan-
ning in October 2014, the stand density was approximately 1000
trees per ha, height of the trees varied from 18 to 24 m, and diameter
at the height of 1.3 m (DBH) was 10–17 cm.

2.1.2. Scots pine plot
The Scots pine dominated study plot in Punkaharju, Finland

(61◦46′N, 29◦20′E) is conventionally managed forest. The latest
thinning took place in 1994, thereafter only dead trees are removed.
At the time of the TLS in October 2014, the stand age was 95 years,
stem number was approximately 500 stems per ha, the DBH was
18–40 cm, and the height of trees 27–32 m. The stand grows on sub-
xeric site and the average stem volume growth is 11 m3 ha−1 yr−1.
Scots pine and Norway spruce dominated study plots belong to the
European forest monitoring network established under the UN-ECE
ICP programme (Derome et al., 2002; Merilä et al., 2014).

2.1.3. Norway spruce plot
The Norway spruce dominated stand of this study is conven-

tionally managed forest on herb-rich site, where the latest thinning
took place in 1994 and since then the site has been a part of forest
monitoring programme. The stand is located in Punkaharju, Finland
and the density was approximately 400 stems per ha, the DBH was
28–45 cm, and the height of trees 28–33 m. The average stem volume
growth is 8.8 m3 ha−1 yr−1 (Merilä et al., 2014).

2.1.4. Mixed-species plots
The two mixed-speciesplotsare located in Sipoo (60◦28′N, 25◦12′E)

and Lapinjärvi (60◦39′N, 26◦7′E) in Southern Finland. These sites are
unmanaged Norway spruce dominated forests (>70% of standing
volume), where other tree species were also present. At the time
of the scanning in 2014, the stand density was approximately 1300
trees per ha in Sipoo and 1000 trees per ha in Lapinjärvi. For further
details, see Rajala et al. (2012).

2.2. Terrestrial laser scanning

The scanning of all forest plots was performed with a RIEGL VZ-
400 scanner and a 0.04◦ resolution. The Silver birch (leaf-off) and
Scots pine plots were scanned completely on October 21st, 2014. The
scanning of the Norway spruce plot was started on the same day
and completed on November 26th, 2014. On both days the weather
was cloudy with no rain and light wind, and the temperatures were
−1◦C and +1◦C, respectively. The approximate scanning times were
1, 3 and 4 (2+2) h for the Silver birch, Scots pine and Norway spruce
plots, respectively. The Sipoo plot was scanned on November 20th,
2014 and Lapinjärvi plot on November 24th, 2014. On both days the
temperature was close to 0 ◦ C. The number of scanning points per
forest plot was selected during the measurements based on visibility
in order to cover most of the trees in the scans.

Retroreflectors were attached to tree stems to enable co-
registration, which was later performed with the RiScan Pro soft-
ware. The number of points in the scans, initially and after plot
restriction and filtering, were the following: 94 and 35 million for
the Silver birch plot, 300 and 58 million for the Scots pine plot,
and 340 and 116 million for the Norway spruce plot. For Sipoo
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Fig. 1. Forest plot tree location and height map (crosses) and scanner positions (circles). The height colour scale is the same for all plots.

and Lapinjärvi the filtered point counts were 126 and 105 million,
respectively. Stem locations and tree heights for each of the study
plots are presented in Fig. 1, together with the scanner locations.

2.3. Tree extraction and quantitative structure models

The individual trees were automatically extracted from the point
clouds, but only in a suitable region close to the scanners. The
extraction method was similar to the one presented in Raumonen et
al. (2015) . In the extraction process the point cloud is first filtered for
noisy measurements and isolated points that should not contribute
to the reconstruction process, and the local ground level is estimated.
The filtered point cloud is then partitioned into small subsets or
surface patches about 10–20 cm in diameter. These patches are the
smallest parts used for tree segmentation. The principal components
of the patches are then used to locate the stems based on simple
heuristics about the stems being vertical. Next, the located stems are
taken as initial sets for the trees and the stems are expanded using
surface growing (using the neighbour relation of the patches). There
will be separate components that cannot be reached from any tree
by surface growing and these components are then connected to the
closest point in the closest expanded tree. At this point, most of the

trees are uniquely separated except in some cases where the initially
expanded stems are connected. The final separation is then achieved
with the segmentation of the point cloud into stems and branches.
The segmentation follows the procedure presented in Calders et al.
(2015b) and Raumonen et al. (2015).

The tree extraction process is prone to some minor errors, and
occasional larger errors when some trees are very close to each other
and their crowns are occupying the same space. However, the errors
in the separation occur mostly in the top parts of the tree crowns,
where there is also typically low point cloud coverage due to the
extreme angle of the scanner and occlusion. The separation errors
most often manifest as a set of branches of a tree incorrectly being
contributed as a part of one of its neighbouring tree. An example of
this can be seen in Fig. 2. Due to the possibility of such errors, the
species classification features were selected to be insensitive in this
regard. The features utilize parts of the trees that are expected to be
reconstructed most accurately, e.g., branches that originate from the
stem. Furthermore, the crown radius, a property that is key to many
of the features, is estimated from the volume distribution of the
cylinders, rather than their absolute positions, making the estimate
more robust should the crown contain parts of the neighbouring
trees.
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Side Top

Fig. 2. Example error in tree extraction in on of the Scots pines. Parts of the crown of a neighbouring tree have been contributed to the tree in error.

As a result of the tree extraction, the point cloud is partitioned
into subsets that represent single trees. These subset point clouds
are used for the reconstruction of QSMs of the individual trees
one-by-one. For each tree, the QSM reconstruction process creates
another partition of the tree point cloud into small patches, and
then segments them into the stem and branches. This new partition
utilizes the first segmentation from the tree extraction step to
determine a finer and variable-size partition of the tree point clouds.
The size of the patches in the partition is determined based on the
branching structure and branch size estimates. Next, the patches are
segmented into the stem and individual branches similarly as earlier.
After the segmentation a cylindrical QSM is reconstructed by fitting
cylinders into the segments.

All the QSMs were reconstructed with the same input parame-
ters: the minimum and maximum patch diameters were 3 cm and
12 cm and the relative cylinder length (length/radius) was 5. The
parameter values were selected based on previous studies with
QSMs to have reasonable models with short computation time (few
minutes per tree). Thus the QSMs used in this study were not
optimized to be the best possible ones. The optimization of the QSMs
could be based on, e.g., median point-to-model distances, as shown
in Hackenberg et al. (2015), but that would require even tens of
models per tree and thus equivalent increase in computation time.
However, one could try a compromise between these two opposites:
A reasonable assumption is that the trees and the quality of the
measurement data (resolution, noise level, occlusion, etc.) are similar
inside the plot. Therefore, at first few trees could be selected for
parameter optimization and then use the optimum parameters for
all trees.

2.4. Classification methods

In this section, we outline classification methods that are used
to classify trees into tree species based on selected features,
that are defined in Section 2.5. Given M features and K species
labels, a training set TEACH is a set of pairs (x, species), where
x ∈ RM is a list of feature values and species ∈ SPECIES =
{species1, species2, . . . , speciesK}. Either by using the training data, or
a model derived from it, the classification methods are able to assign

the elements of a test set TEST = {xi} ⊂ RM into one of the
K species classes in SPECIES. All the presented methods are also able
to present probabilities pij for an element xi ∈ TEST to belong to
a class speciesj ∈ SPECIES. Thus, a classification method produces
a result set of pairs (xi, pi), where xi ∈ TEST, pi = (pi,1, . . . , pi,K ),
pij ∈ [0, 1] and j ∈ SPECIES. The resulting assigned class for a test
element xi is defined as the class j with the maximum probability pij.

2.4.1. k-nearest neighbours
The k-nearest neighbours algorithm finds the k elements from

the training set TEACH that are the closest to a test point xi ∈ TEST.
The class probability pij of the element xi is defined as the relative
number of elements with class j belonging to the subset of k nearest
neighbours. Various distance measures can be used when finding the
closest elements.

On the implementation level, the knnsearch function bundled
in MATLAB®was used for this classification method. Number of
neighbours parameter k and the distance measure were optimized
during computations.

2.4.2. Multinomial regression
For classification based on multinomial regression the mnrfit

and mnrval commands part of the Statistics and Machine Learning
Toolbox in MATLAB®were used. In a multinomial logistic regression
model, the probability pij of a sample xi ∈ TEST having class speciesj ∈
SPECIES can be computed as (Agresti, 1990, p. 313):

pij =
exp

(
xT

i bk
)

K∑
k=1

exp
(
xT

i bk
) . (1)

For a selected baseline class (e.g.j = K) the coefficients bj are set
to zero, and for the rest of the classes the coefficients are optimized
in an iterative fitting process with the TEACHdataset. The predicted
outcome class is defined to be the one with the highest probability.

2.4.3. Support vector machine
Support vector machine classification finds a hyperplane that

maximizes the margin between the samples of two different classes.
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Table 1
List of included tree classification features. Possible units are given in brackets.

ID Feature name Description

Stem branch 1 Stem branch angle Median of the branching angles of the 1st order branches in degrees. 0 is upwards and
180 downwards. [◦]

2 Stem branch cluster size Average number of 1st order branches inside a 40 cm height interval for 1st order
branches. Each branch can only belong to one interval.

3 3 Stem branch radius Mean ratio between the 10 largest 1st order branches measured at the base and the
stem radius at respective height.

4 Stem branch length Average length of 1st order branches normalized by DBH.
5 Stem branch distance Average distance between 1st order branches computed using a moving average with

a window width 1 m. If window is empty average distance in window is set as half of
window width.

Crown 6 Crown start height Height of first stem branch in tree crown relative to tree height.
7 Crown height Vertical distance between the highest and lowest crown cylinder relative to tree height.
8 Crown evenness Crown cylinders divided into 8 angular bins. Ratio between extreme minimum heights

in bins.
9 Crown diameter/height Ratio between crown diameter and height.

Tree 10 DBH/height ratio Ratio between DBH and total tree height.
11 DBH/tree volume Ratio between DBH and total tree volume. [m−2]
12 DBH/minimum tree radius Ratio between DBH and the minimum of the vertical bin radius estimates.
13 Volume below 55% of height Relative cylinder volume below 55% of tree height.
14 Cylinder length/tree volume Ratio between total length of all cylinders and total tree volume. [m−2]
15 Shedding ratio The number of branches without children divided by the number of all branches in the

bottom third.

In a two-class case the optimization problem can be formulated as a
minimization problem as follows:

min
w,n,b

1
2

K(w, w) + C
l∑

i=1

ni, (2)

subject to

yi(K(w, xi) − b) ≥ 1 − ni (3)

ni ≥ 0, (4)

where w is the normal vector of the hyperplane and b the plane’s
location parameter, and C is the penalty parameter. In a two-class
case the class indicator yi of the sample xi is 1 if the sample has the
class i and −1 otherwise. Furthermore, ni are the slack parameters
for a soft margin to allow the overlap of classes. The K( • , • ) function
is called the kernel function which defines the shape of the class
boundary. By using the linear kernel function

K(a, b) = aT b, a, b ∈ RM (5)

the boundaries are hyperplanes. Other kernel functions used in this
study are polynomial and radial basis function (RBF), respectively:

K(a, b) = (caT b)d (6)

K(a, b) = e−c‖a−b‖2
, (7)

where c and d are kernel parameters. The use of these additional
kernel functions allows the decision boundaries to be non-flat.
Support vector machine based classification with a linear, polynomial,
and RBF kernel functions are noted as SVMlin, SVMpol, and SVMrbf,
respectively. For K > 2 species classes the classifier can be imple-
mented in K−1 steps, where on the kth step the two possible classes
are speciesk and SPECIES � speciesk. The libsvm package (Chang and
Lin, 2011) for MATLAB®was used for the computations. Grid search

was used for finding the optimal values for the penalty parameter C
and the kernel parameters c and d.

2.5. Tree features

All the classification methods presented in Section 2.4 are based
on feature data. In this study, each feature is a scalar value com-
puted for a single tree (QSM). The features are derived from the
geometric and topological properties stored in the reconstructed
QSMs. The features were designed to be scale-independent by scaling
absolute lengths with, e.g., the tree height or DBH. By using such
features the classification should perform well with both young and
old trees. Table 1 lists the features that were used in this study.
Apart from Features 1, 11 and 14, the features are unitless. Addition-
ally, the Classification features-animation shows how the features
are defined and computed. In the animation a single Scots pine model
is used to illustrate the features one-by-one (see Supplementary
data).

Stem branches (SB) are first-order branches that originate from
the stem. The branching angle was computed as the angle between
the axes of the first cylinder in the branch and its parent cylinder. The
branching cluster size, Feature 2, was approximated by inspecting
the start points of the SBs. An inspection height interval with a width
of 40 cm was centred at the height of each SB. The number of SBs
inside the interval was recorded and the branches were flagged as
used. Only the SBs without the used flag were computed, thus allow-
ing any branch to be part of only one branching cluster; i.e., height
interval. At the end, the cluster sizes were averaged for every tree.

DBH was computed by fitting a cylinder at the standard height to
the stem point cloud during the reconstruction process and stored
in the tree model. The SB radius, Feature 3, was defined to be the
average ratio between the radii of the SBs and their respective parent
cylinders. Only ten SBs with the largest radius at their base were
selected for this feature to get a better separation between species.

Using the topological information stored in a cylinder model the
set of crown cylinders was found, using the following algorithm, that
is designed to exclude dead branches at the bottom of the stem:

1. Initialize the crown set as cylinders that have a branching
order higher than three. If the initial set is empty, the mini-
mum order is lowered until the set becomes non-empty.
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Fig. 3. Box plots of classification features for each tree species: Silver birch (B), Scots pine (P) and Norway spruce (S). The vertical line inside the box is the median. Box limits give
the 1st and 3rd quartiles of the distribution and the whiskers extend to 1.5 times the distance between the 1st and 3rd quartiles, or the distribution extremes.

2. As long as the crown set extends, append the parent cylinders
of the crown set that are not part of the stem.

3. Append to the crown set cylinders that are not part of the stem
but whose start point is higher than the lowest starting point
of crown cylinders connected to the stem.

4. As long as the crown set extends, append the child cylinders of
the crown set.

The initial crown height is defined as the relative starting height
of the lowest SB in the crown. The crown height is the difference
between the lowest and highest crown cylinders normalized by the
tree height. To analyse how evenly the crown bottom is distributed,
the crown set is divided into eight angular bins around the stem,
and the minimum vertical point is computed. The crown evenness
feature is the ratio between the highest and lowest of these values.

Features 9 and 12 require an estimate of either the tree or the
crown radius. Rather than computing the radius estimate directly
from the positions of the cylinders furthest from the stem, we use a

radial volume distribution for robustness. To estimate the tree radius
at different heights, a tree is divided into three vertical bins, and the
centre point of each bin is defined as the average of mean points of
stem cylinders in the bin. If the bin does not contain stem cylinders
the centre of the previous bin is used. The tree radius estimate in a
vertical bin is defined as the radius of a cylinder whose axis is vertical
and goes through the bin centre point, and which contains 90% of the
volume of the cylinders in that bin. The crown diameter is estimated
as two times the maximum vertical bin radius.

For Feature 13, the branch cylinder volume distribution is
considered in the vertical direction. A good vertical limit 55% of the
total tree height was found by testing numerous alternatives. For
Feature 15 only the bottom third is considered as it is expected
to contain most of the dead/shed branches, which are defined as
branches without child branches.

To see the value range and the level of separation between species
for the proposed features Fig. 3 visualizes the distribution of each
feature per species. The Species separation-animation also shows the
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Fig. 4. Example QSMs and feature distribution for Features 1 and 13. The highlighted markers in the distribution correspond to the colour-coded models.

distribution of feature values per species, together with an example
model of each species and the respective feature values of these
models (see Supplementary data). Furthermore, Fig. 4 visualizes the
two-dimensional feature space of Features 1 (stem branch angle)
and 13 (volume below 55% of height). Three individual QSMs are
also shown and their mapped values in the selected feature space
highlighted. The values in both figures were computed using the
full population of 358 Silver birch, 457 Scots pine, and 276 Norway
spruce trees from the three single-species forest plots.

3. Results

In this section, we first use the three single-species Punkaharju
plots for three different purposes: First, we optimize the parame-
ters of the classification methods, then we determine the optimal
feature sets, and finally we study the effect of the size of the train-
ing dataset. In Section 3.4, we test the classification performance
of the optimal parameters and feature sets on mixed-species for-
est plots, both by using only the single-species plots as training
data, and by supplementing the training data with samples from the
mixed-species plots.

3.1. Optimal parameters

The parameters of the k-NN method were optimized by using 50
samples of each species and 10-fold cross-validation. The value of k
was varied from 2 to 20 and the distance measure in the following
parameter set: euclidean, seuclidean, cityblock, chebychev,
minkowski, mahalanobis, cosine, correlation, and spearman.

Table 2
Limits and results for SVM kernel parameters c∗ and d, and the penalty parameter C∗

grid search.

C∗ c∗ d

Minimum −5 −15 2
Maximum 15 3 5
Increment 1 1 1
Optimums
Linear −2 − −
Polynomial −5 2 2
RBF 1 −3 −

The highest classification accuracy was achieved with k = 4 and
the standardized Euclidean distance (seuclidean). This combina-
tion of parameters was used in all following tests, and is noted as
4-NN.

In order to find the optimal SVM kernel and penalty parameters,
a grid search was performed for all of the kernel types. The following
convenience parameters were defined for the grid search:

C∗ = log2C (8)

c∗ = log2c. (9)

The grid search was performed on the same 50 samples of each tree
species, and was carried out using 5-fold cross-validation provided
by the libsvm package. The grid limits and results for the search are
presented in Table 2. The parameters that yielded the highest clas-
sification accuracy were fixed for further classification tests for each
kernel type.

Table 3
Classification accuracy p̄ in percentages and standard deviation s for cross-validation
in percentage points for best feature combinations with increasing feature count.
The highest accuracy for each count is highlighted, and the total maximum value is
underlined.

4-NN MNR SVM l i n SVM p o l SVM r b f

Feat. count p̄ s p̄ s p̄ s p̄ s p̄ s

1 85.3 3.0 76.7 3.0 80.7 3.0 84.6 3.0 81.1 3.0
2 92.0 1.4 89.8 2.8 88.8 1.4 90.6 2.8 90.1 2.8
3 94.6 1.3 91.5 2.8 91.2 2.6 92.7 2.4 92.3 1.9
4 95.4 1.3 92.5 2.1 92.7 2.1 94.7 2.0 93.8 2.0
5 96.1 2.2 93.0 2.6 93.6 1.7 95.4 1.7 94.9 1.7
6 96.2 1.5 93.6 2.0 93.6 1.7 95.8 2.9 95.1 1.7
7 96.8 1.9 93.8 1.2 93.8 1.8 96.2 1.8 95.5 2.0
8 96.6 1.8 94.2 2.6 94.1 2.1 96.4 1.8 95.5 1.8
9 96.8 1.6 94.2 2.7 94.4 2.4 96.4 2.4 95.8 2.2

10 96.9 2.1 94.3 2.1 94.5 2.2 96.7 1.9 95.8 1.8
11 96.6 1.5 94.4 2.3 94.6 1.9 96.8 1.9 95.9 1.5
12 96.7 1.2 94.5 1.8 94.3 2.2 96.7 2.0 95.9 1.8
13 96.5 1.8 94.4 2.1 94.2 2.8 96.3 2.2 95.9 2.1
14 96.4 1.6 94.6 2.2 94.4 1.7 96.1 1.6 95.8 1.7
15 96.1 1.8 93.9 1.8 94.1 1.8 95.5 1.8 95.7 1.8
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Fig. 5. Data separation with the feature pair that produced the maximum classifica-
tion accuracy with the 4-NN and SVMlin methods.

3.2. Optimal feature sets

To find the optimal classification features, the included feature
count was varied from 1 to 15. For each feature count all the possible
feature combinations were tested using a 10-fold cross-validation.
The remaining trees of each species after the parameter optimiza-
tion were divided into ten subsets of equal size. Each subset was
then classified by using the remaining nine subsets of each species as
training data. The 10-fold cross validation was selected to show the
classification performance in close to optimal conditions, where the
amount of the training data far exceeds the amount of the test data.
The maximum classification accuracies for each method and feature
count are listed in Table 3.

When using just one feature, the maximum classification accu-
racy, 85.3%, was achieved with the 4-NN method and Feature 5: Stem
branch distance. This combination was able to separate Silver birches
and Norway spruce trees from each other but mixed birches with
Scots pines, as 12.4% of birches were misidentified as pines and 15.1%
vice versa.

When the feature count was two, the 4-NN and SVMlin classifica-
tion methods gave the maximum accuracy with Features 5 and 12.
The values of these features are visualized in Fig. 5 to show the high
level of species separation. For the remaining three methods, the best
combination was Features 11 and 15. The maximum total accuracy,
92.0%, was received with the 4-NN method. With this configuration
the standard deviation over the folds was 1.4 pp. and the biggest
confusion was again between birches and pines.

For feature counts higher than two there is no clear difference
between the methods as the standard deviation of the classification
accuracies over the methods remain between 1.23 and 2.89 percent-
age points. With feature counts from 6 to 15 all the methods result
in accuracies above 93.0%.

The highest accuracy, 96.9%, was obtained with the 4-NN method
and 10 features. The resulting relative and absolute confusion tables
are presented in Table 4. The results show that out of 1010 trees only
31 were misclassified when using this setup.

For further testing, top feature sets were selected using the fol-
lowing two criteria: 1) sets whose average classification accuracy
over the methods was above 95%; 2) sets whose minimum classifi-
cation accuracy over the methods was above 94%. 120 combinations
fulfilled the first condition, and 16 combinations the second. Out of
these combinations, ten fulfilled both and these combinations are
listed in Table 5.

Fig. 6 shows the frequency at which each feature is part of the 126
top feature sets. Out of the 15 features, four (1, 10, 13, 14) are part of
all the top feature sets. Next, the top feature sets are used for testing
the effect of training data size.

The independence level of the classification features was tested
by studying the covariance of the features over the total population
of 1010 trees. The correlation between Features 6 and 7 is over 99%
because none of the included species have crowns that extend below
the lowest connecting stem branch. Furthermore, Features 4 and 11
have a correlation over 80%. The connection here is not that obvious
as Feature 4 measures stem branch length and Feature 11 total vol-
ume of the tree. The correlation is expected to drop for both feature
pairs when additional species with varying geometry are included.
For the purpose of this study the high correlation between these pairs
did not affect the classification accuracies, as is evident from the sim-
ilar results with feature combinations containing and not containing
the highly correlated feature pairs, e.g., in Table 5.

3.3. Effect of the size of training dataset

In order to test how each of the proposed classification methods
performs in real applications, the effect of the amount of training
data was studied. The number of trees per species in the training
dataset was varied from 4 to 150, while the same number for the
testing data remained constant at 50. The tree samples were selected
randomly from the complete tree population, but the training and
testing sets remained disjoint. Sampling was repeated 10 times for
each training data size. The optimal parameters from Section 3.1
were used in the test, as well as, the top feature sets from Table 5.

Table 6 shows the total classification accuracy of each method as
a function of the amount of training data. The accuracy of a method
is averaged over the random repeats and the feature combinations.
Furthermore, Fig. 7 shows the average, minimum and maximum
classification accuracies for the same data.

The 4-NN method has the highest average classification accu-
racy and the lowest standard deviation with all training data sizes.
With data sizes above or equal to 30, the average classification accu-
racy remains above 93%, and the minimum accuracy above 88%. The
MNR and SVMlin methods also perform well with an average accu-
racy above 91% with 50 samples or more. The standard deviation is a
little greater than with the 4-NN method but the minimum classifi-
cation accuracies still remain above 82%, and with a high number of
samples (≥100) even comes near 87%.

The SVMpol and SVMrbf methods have relatively hight standard
deviation with all sample sizes but still below 4 pp. The average
accuracy on the SVMpol method is very good, but some of top feature
sets give poor results dropping the minimum performance quite low,
even with a high number of training samples. Similarly, the SVMrbf
method has a relatively low minimum performance, but unlike with
the SVMpol method, the effect seems to diminish with the increasing
number of samples. For operational use the 4-NN, MNR and SVMlin
methods seem to provide the most consistent results.

While performing the accuracy testing described above, the cor-
relation between tree properties, the measurement setup, and the
probability of an incorrect classification was studied. As the tree sets

Table 4
Relative and absolute confusion tables for 4-NN method and 10 features with highest
classification accuracy.

Predicted

B P S B P S

Silver birch 98.2 1.5 0.3 324 5 1
Correct Scots pine 3.0 96.3 0.7 13 414 3

Norway spruce 1.6 2.0 96.4 4 5 241
Relative Absolute



M. Åkerblom et al. / Remote Sensing of Environment 191 (2017) 1–12 9

Table 5
Top feature sets that fulfilled both conditions with their classification accuracy per method and averaged in percentages. The maximum accuracy over the listed feature sets is
highlighted for each method.

# Feature set 4-NN MNR SVMl i n SVMp o l SVMr b f Average

1 1, 2, 3, 5, 7,10,11,13,14,15 96.2 94.1 94.2 96.1 95.5 95.2
2 1, 2, 3, 5, 8,10,11,12,13,14 96.2 94.3 94.5 96.2 95.4 95.3
3 1, 2, 3, 6, 8,10,11,13,14,15 96.1 94.3 94.3 95.2 95.5 95.1
4 1, 2, 3, 7, 8,10,11,13,14,15 96.0 94.3 94.3 95.2 95.4 95.0
5 1, 2, 3, 5, 6, 8,10,11,12,13,14 96.4 94.1 94.1 96.0 95.3 95.2
6 1, 2, 3, 5, 6, 7, 8,10,11,13,14,15 95.8 94.2 94.1 95.8 95.8 95.1
7 1, 2, 3, 5, 6, 7, 8, 9,10,11,13,14,15 96.1 94.4 94.1 95.8 95.9 95.3
8 1, 2, 3, 5, 6, 7, 9,10,11,12,13,14,15 96.0 94.3 94.2 95.5 95.7 95.1
9 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,13,14,15 96.2 94.2 94.4 95.6 95.8 95.2

10 1, 2, 3, 5, 6, 7, 8, 9,10,11,12,13,14,15 96.2 94.6 94.1 95.3 95.7 95.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

40

80
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nc
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Fig. 6. Number of times a feature was part of the 126 top feature sets.

were randomly sampled, the number of picks per tree was stored,
as was the number of incorrect classifications. The probability of
incorrect classification was computed as the ratio between the two
numbers. The results showed that there was no correlation between
the probability to be incorrectly classified and the minimum distance
to the laser scanner position. Furthermore, there was no correlation
between the probability and estimated tree radius, tree height, and
average distance to the laser scanner position.

3.4. Performance on a mixed species forest plots

Above, we used only single-species plots for training and testing.
Arguably one can ask how well these results generalize to mixed-
species forest, which may allow more variability for tree structures.
We only have limited data for this kind of testing, and therefore,
we did not use it in the above analysis. To show preliminary results
we used two mixed-species plots located in Sipoo and Lapinjärvi.

The forests are dominated by Norway spruce trees, but also con-
tains Silver birches and Scots pines among other species. However,
as up-to-date tree maps were not available, we manually classified
the trees by inspecting point clouds of individual trees and by refer-
encing field-measured tree maps from 2009. We identified 22 Silver
birches, 13 Scots pines and 214 Norway spruce trees which were
then used for testing.

Training data was sampled randomly from the Punkaharju plots,
100 trees per species. Classification accuracy was tested with all
the classification methods with the optimal parameter values and
the best feature combinations determined for the three Punkaharju
plots listed in Section 3.2. Additionally, training data sampling was
repeated 100 times. An additional test was performed where 100 of
the Norway spruce trees from the mixed-species plots were used for
training and the remaining 114 were tested, while other parame-
ters remained the same. The other two species did not have enough
samples to split them into training and testing sets. Table 7 lists the
average and maximum classification results for each of the meth-
ods per tree species as well as a total accuracy for both training data
sources.

When using training data from only the single-species plots the
average classification accuracy is between 50% and 55% and the
maximum around 70%. The best result, 76.3%, is produced with
MNR method. When including Norway spruce tree samples from the
mixed-species plot in the training data, all of the average and maxi-
mum total accuracies improve. The total average accuracies are still
between 50% and 70%, but for the Norway spruce trees, that have
sufficient samples from both types of forests, the average classifi-
cation accuracy is over 80% and the maximum over 90% for some

Table 6
Average classification accuracy and standard deviation as a function of training data size per species. The average in percentages and the std in percentage points are computed
over the 126 top feature sets and the 10 repeats with random data.

4-NN MNR SVMlin SVMpol SVMrbf

Sample size p̄ s p̄ s p̄ s p̄ s p̄ s

4 87.8 7.4 55.1 17.1 60.4 25.0 68.7 19.1 43.5 24.1
10 92.1 2.4 88.0 4.6 87.6 4.0 88.2 3.3 71.6 11.6
20 92.9 1.4 89.1 2.8 90.1 2.2 89.6 2.4 82.5 3.7
30 93.0 1.4 90.2 2.6 90.1 2.2 89.7 2.4 85.9 2.9
40 93.3 1.4 90.9 2.4 91.1 2.2 90.7 2.8 86.8 3.0
50 93.7 1.5 91.1 2.1 91.5 2.1 91.0 3.0 87.2 3.6
60 94.2 1.5 91.5 1.9 91.7 1.9 91.4 2.8 88.1 3.4
70 94.1 1.5 91.5 1.6 91.7 2.0 91.2 3.4 88.3 2.9
80 94.1 1.4 91.7 1.6 91.7 1.9 91.9 3.6 88.6 2.9
90 94.0 1.1 91.4 1.7 91.4 1.7 92.0 3.4 89.2 3.3

100 94.5 1.3 91.3 1.6 91.6 2.0 92.4 3.1 89.8 2.9
110 94.6 1.2 91.6 1.4 91.8 1.8 92.7 3.2 89.4 2.8
120 94.6 1.3 91.7 1.5 91.7 2.0 92.8 3.4 89.6 2.7
130 94.5 1.2 91.8 1.6 92.0 1.8 93.2 2.8 89.9 2.9
140 94.7 1.3 91.9 1.7 92.0 1.9 93.2 3.2 89.7 2.8
150 94.6 1.2 91.9 1.7 92.1 1.8 93.3 3.4 90.4 2.2
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Fig. 7. Average, minimum and maximum classification accuracy with changing train-
ing data size per species.

of the methods. For the other two species, which don’t have train-
ing data from the mixed-species forests, the average and maximum
accuracies either stay the same or decrease.

Fig. 8 illustrates values for two of the classification features for the
trees from both the single-species and mixed-species forest plots. As
the number of samples for two of the species is so low it is hard to
make definite conclusions, but at least for the two visualized dimen-
sions the species separation seems lower. Especially, mixed-species
plot Silver birches overlap with single-species plot Scots pines and
mixed-species plot pines overlap with both mixed and single-species
plot Norway spruce trees.

4. Discussion

The feature combination test with the three Punkaharju single-
species plots showed that, with comprehensive training data, it is
possible to find a feature combination for each of the classification
methods such that the average classification accuracy is over 93%.
However, when the size of the training dataset was more limited, as
it would likely be in real applications, the differences in the classifica-
tion methods started to show. The fact that with only 30 samples per
species, the minimum accuracy for the SVMlin method was above 83%,
shows promise for real applications; Sufficient training data can be
obtained from the same forest through manual classification. Alter-
natively, if applicable training data are already available, a complete
forest can be classified in a fully automatic procedure, where the clas-
sification of a single tree takes only a fraction of a second after the
QSM has been computed.

Table 7
Average and maximum classification accuracies for each classification method for the
mixed species forest plot in percentages. First half shows results with single-species
plot training data and the second half with a combination of single and mixed-species
plot training data. The highest maximum total classification accuracies for both types
of training data have been highlighted in green, and the maximum accuracies for the
Norway spruce trees have been highlighted in black.
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Fig. 8. Mixed-species plot species separation with two classification features.

A preliminary mixed-species plot classification test was per-
formed on a limited dataset. When the training data only included
samples from single-species forests and neither the classification
method parameters or the feature combinations were optimized, the
classification accuracies remained low. However, by including sam-
ples of Norway spruce trees from both the mixed and single-species
plots in the training data the classification accuracy improved signif-
icantly, especially for the Norway spruce species. The result suggests
that accurate species classification is possible also in mixed-species
forests when adequate training data are available. However, it is
clear that further testing is needed to determine the classification
performance in a mixed-species forest, when suitable data become
available.

Even though the tree separation was not perfect as even coarse
errors did occur, all of the classification methods were able to clas-
sify trees with an accuracy over 94%, with some feature combinations
in the cross-validation test. This shows that the selected features
are robust in terms of the tree separation, and that the classification
methods are suitable and robust for this classification problem. Fur-
thermore, three of the methods, 4-NN, MNR and SVMlin, performed
very well and gave consistent results when studying the effect of the
size of the training dataset, which shows that QSMs contain sufficient
species-specific characteristics for classification.

Three species were considered in this study, but the computa-
tion of the proposed tree features and the use of the classification
methods should generalize well to a larger number of species. In the
future, the tests should be repeated with a larger number of species
from varying types of forests to see, whether the accuracy also gen-
eralizes. It is well known that the top parts of tall trees are poorly
covered in TLS measurements, especially in dense environments.
Naturally, QSMs inherit this shortcoming, and thus if the differences
between two tree species are mainly focused on the top parts of the
trees, the proposed classification method might fail to separate them.
A further study could also include testing for the effect of leaves on
the classification accuracy. From previous studies we know that the
presence of leaves will decrease the quality of the QSM, but the effect
on species classification still remains unknown.

The QSMs used in this paper were not optimized, but a reason-
able set of input parameters was used for all trees. A further study
on the effects of the input parameters on the classification should
be carried out. One would expect that more accurate QSMs will
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improve the classification accuracy. The QSMs used in this study con-
sisted of circular cylinders, but similar models can be computed with
other, more complicated elements as well (Åkerblom et al., 2015).
The use of more complex shapes might give access to even more tree
features, such as cross-section shapes, but can decrease the recon-
struction accuracy and stability. In any case, the presented results
show even the relatively simple circular cylinder QSMs can produce
high classification accuracies.

The presented 15 classification features yielded good results, but
the use of QSMs allows the computation of numerous other features
as well. It is also possible to combine the features computed from
QSM with features computed directly from the spatial point cloud,
or hyperspectral data, to achieve even better separation between
species. However, in comparison to previous studies (Puttonen et al.,
2011, 2010), the presented QSM based approach produced similar
or even higher classification accuracies without using hyperspec-
tral data or even TLS intensity values. Furthermore, the proposed
classification method is fully automatic and works on a lower resolu-
tion scanning data than the bark texture based method proposed by
Othmani et al. (2013).

Optimization can also be done by increasing the number of scan
positions, or, e.g., by elevating the scanner to get better coverage in
higher tree parts. The improvement in the scan detail will translate
to the quality of the reconstructed models. Alternatively, it could be
studied how high classification accuracies can be achieved by using
a more coarse scanning setup. It might be possible to integrate auto-
matic species identification to forest inventories done with TLS if the
classification features are chosen correctly.

5. Conclusion

We have presented a novel, fully automatic tree species classifi-
cation approach for terrestrial laser scanning data. The approach is
based on reconstructing quantitative structure models (QSM) of the
trees, which enables the computation of tree properties that have
not been available before for species classification. 15 classification
features that utilize the geometry and topology stored in the QSMs
were proposed, and their suitability for separating tree species was
studied in various tests using three different classification meth-
ods: 4 nearest neighbours (4-NN), multinomial regression (MNR) and
support vector machines. For the latter, three different kernel func-
tions were also considered: linear (SVMlin), polynomial (SVMpol), and
radial basis function (SVMrbf).

The classification accuracy was tested on tree models recon-
structed from three single-species forest plots. Over 1000 trees were
used in a 10-fold cross-validation classification test with all classifi-
cation methods. Furthermore, all possible feature combinations were
tested, and the best classification accuracy, 96.9%, was achieved with
the 4-NN method and 10 features. With the feature count between 6
and 15, it was possible to find a feature combination that resulted in an
average classification accuracy above 93% for all the methods.

To further test the performance of the classification methods, 126
of the top feature sets were selected to test how the amount of
training data affected the classification accuracy. The training and
testing trees were selected randomly from the total tree population,
and the process was repeated ten times for each feature combina-
tion and classification method. The results showed that 4-NN, MNR
and SVMlin gave consistent results with all the sets, and were able
to classify trees with an average accuracy above 90% and minimum
accuracy over 82%, with the training sample number per species
greater or equal to 30. The SVMpol and SVMrbf methods had lower
minimum accuracies as they did not perform well with all of the top
feature sets. Thus, more caution should be exercised when selecting
feature sets for these particular methods.

Preliminary testing on mixed-species forest plot trees showed
that training data collected solely from single-species forest plots
is not sufficient for good results. Although, more testing is required
when more comprehensive training data becomes available, adding
training data from mixed-species forest plots even for just one
species improved the classification accuracy to be over 80% for the
MNR method.

Our study showed that tree features made accessible through
QSM reconstruction can outperform the existing tree species classi-
fication approaches based only on 3D spatial, or hyperspectral, point
cloud data. QSMs provide access to features based on detailed geom-
etry and branching structure making the source data more than
three-dimensional. The study also showed that QSMs provide a very
robust basis for classification with little need for tuning. Three dif-
ferent methods could accurately and with small variation classify
the trees based on QSMs that were not optimized for each tree and
with considerable errors in the tree separation. Finally, the proposed
species recognition approach is fully automatic because the required
pre-processing steps of tree separation of the underlying forest plot
(Raumonen et al., 2015) and the QSM reconstruction are automatic.
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We present an algorithm and an implementation to insert broadleaves or

needleleaves into a quantitative structure model according to an arbitrary

distribution, and a data structure to store the required information efficiently.

A structure model contains the geometry and branching structure of a tree.

The purpose of this work is to offer a tool for making more realistic simu-

lations of tree models with leaves, particularly for tree models developed

from terrestrial laser scanning (TLS) measurements. We demonstrate leaf

insertion using cylinder-based structure models, but the associated software

implementation is written in a way that enables the easy use of other types

of structure models. Distributions controlling leaf location, size and angles

as well as the shape of individual leaves are user definable, allowing any

type of distribution. The leaf generation process consist of two stages, the

first of which generates individual leaf geometry following the input distri-

butions, while in the other stage intersections are prevented by carrying

out transformations when required. Initial testing was carried out on English

oak trees to demonstrate the approach and to assess the required compu-

tational resources. Depending on the size and complexity of the tree, leaf

generation takes between 6 and 18 min. Various leaf area density distributions

were defined, and the resulting leaf covers were compared with manual leaf

harvesting measurements. The results are not conclusive, but they show great

potential for the method. In the future, if our method is demonstrated to work

well for TLS data from multiple tree types, the approach is likely to be very

useful for three-dimensional structure and radiative transfer simulation

applications, including remote sensing, ecology and forestry, among others.

1. Introduction
Leaves and needles are essential for the functioning of plants and their inter-

action with the environment. They are also the main part of the vegetation

interacting with remote sensing measurements. Thus, the ability to measure

and model leaf distributions of plants has great importance and many appli-

cations in ecology, forest research and remote sensing [1–3].

We will present an algorithm to generate leaf cover on any plant structure

model with any underlying distribution for the leaf parameters. Although

the process could be used with any type of plant, this article focuses only on

trees. The leaf parameter distributions are supported by quantitative structure

models (QSMs) of trees, and the generated leaves are non-intersecting. This

allows, among other things, the use of more realistic leaf distributions in

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.



gap fraction- and radiative transfer-based simulations, in

comparison with the previously suggested uniform layers

of possibly intersecting leaves [4].

The above-ground biomass of a tree consists mainly of leaves,

and woody material in the trunk and branches. In recent years,

various methods have been presented to reconstruct the woody

parts of a tree in a quantitative manner from terrestrial laser scan-

ning (TLS) data [5,6]. Furthermore, it is possible to estimate

foliage distribution from similar data [7] (for further information,

see [8]). However, reconstructing both the woody and leaf parts

at the same time is more challenging due to self-occlusion effects,

and the complex nature of leaf–wood separation from TLS data,

which has been studied extensively [9,10].

An alternative to extracting the leaves from TLS data is

scanning the tree during the leaf-off season, and then trying

to insert leaves after reconstructing the woody structure. To

generate a leaf cover that is statistically similar to the original,

certain leaf property distributions have to be estimated [11].

Such approaches do not aim to reconstruct real leaves but

rather the underlying leaf distribution, which can be sampled

to produce leaf covers that are statistically similar to the real

one. The approach is limited to deciduous, broadleaf cano-

pies. However, from this we may learn how to improve

and develop methods for separation and re-insertion of

green material in evergreen broadleaf and needleleaf trees.

Measuring leaf position, size and orientation by hand is

extremely laborious [11] as one can have millions of leaves

per tree. Great progress in measurement systems and data

analysis has meant that remote sensing can now be used to

detect leaf properties. Methods have been presented to esti-

mate the three-dimensional distribution of leaf material from

TLS data [7,12]. Furthermore, methods for measuring leaf

orientation distribution (LOD) from similar data have been pre-

sented in [13] and more recently in [14]. Determining leaf size

distribution (LSD) remotely is more challenging as it requires

the detection of leaf edges [15], which is also challenging due

to the decrease in data point density higher in the canopies,

when scanning from the ground. However, sampling leaf

size by hand is faster and less error prone than leaf angle,

especially when carried out in a destructive manner.

The algorithm we present in this paper populates a QSM

of the woody parts of a tree with leaves, resulting in a model

with inserted leaves (L-QSM). The algorithm generates leaves

based on user-defined leaf property distributions that may be

estimated with the methods presented above, or alternatively

by using distributions parametrized by branch properties

such as branch order. The basic steps of the procedure are

illustrated in figure 1, which shows an example leaf area distri-

bution supported by a QSM, leaves generated by sampling the

distribution and the final product, which is an L-QSM.

The algorithm is designed to work with models consisting of

any type of geometry, but we use models that are a collection of

cylinders, i.e. cylindrical QSMs [5]. The leaf insertion procedure

works on blocks, which is essentially the largest unit of the struc-

ture model that can be assumed to have uniform leaf distribution

parameters that can define, for example, limits for the number of

leaves, leaf size and orientation. Because certain tree species can

have a different leaf density along branches, the blocks can be

smaller than the branch. Thus, the cylinders forming the QSM

geometry, and other similar small geometric primitives [16],

can be used directly as blocks. However, it would also be pos-

sible to divide the cylinders and form even smaller blocks. In

the case of voxel-based structure models a pre-processing step

is required to form blocks that are acollection of voxels. Similarly,

in continuous surface models the branch surfaces should be

divided into smaller sections that can be used as blocks.

As the leaf insertion algorithm is designed to be as gen-

eral as possible, i.e. any user-defined distribution can be

used, validation can take various forms. We carried out initial

validation using leaf area and count measurements from

three English oaks together with their QSMs reconstructed

from TLS data. Both the TLS and leaf measurements are pre-

sented in §2.1. The structure reconstruction process to create

the required cylindrical QSMs is briefly described in §2.2.

The leaf insertion algorithm is presented in §2.3 together

with the related distributions that control leaf position, size

and orientation. Although this paper focuses on sampling

the described distributions to produce individual leaves with

a known geometry, it is not always necessary, as discussed in

§2.4. Section 2.4 shows how the distributions define a leaf

density distribution around the structure model blocks, and

how that overall distribution can be used for computations

without generating the geometry of individual leaves.

Although we focus on broadleaves, the procedure can also

QSM-supported distribution generated leaves QSM with leaves

Figure 1. A QSM supports a leaf area distribution (grey: no leaves; green: some leaves; red: a lot of leaves), which can be sampled to generate non-intersecting
leaves and inserted into the structure model.
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be used for generating needles. Approaches for working with

needles are presented in §2.5.

A Matlab implementation of the algorithm, including

descriptions of the related classes and the main function, is

introduced in §2.6. The Matlab implementation was used to

compute several leaf distributions for the oak trees. The

results are presented in §3. A discussion is included in §4

and conclusions are made in §5.

2. Material and methods
2.1. Laser scanning and leaf measurements
Our analysis was based on raw point-clouds recorded at Alice

Holt Forest, UK (51.1533 N, 0.8512 W), by a single-return phase-

shift Leica HDS-6100 TLS (Leica Geosystems Ltd, Heerbrugg)

on three 80-year-old oak trees (Quercus robur L.). Scans were per-

formed in March 2014, during winter time, under dry and low

wind speed (less than 1 ms21) conditions. Trees were recorded

from six scan positions around each tree (azimuth angle of

08 S, 608, 1208, 1808, 2408 and 3008) at a distance of 5 m from

the base of the tree and with a TLS sampling resolution level

of 0.0188 at each scan position. Six reflective targets were set out

around each tree to merge the multiple scans. Three-dimensional

reconstructions of the trees were then computer-generated using

the method described in [5].

The trees were harvested in June 2014. The foliage sampling

method consisted of a manual stripping-off of each leaf from the

branches and storage in bags labelled with the height stratum to

which they belonged (table 1). A second component of the

method involved the collection of a set of 100 leaves at random

from each stratum on each tree. Each stratum bag was then fresh-

weighed (Avery Berkel HL206, UK) and oven dried at 758C to

obtain their dry masses. From the subsets, individual leaf area

was measured in the laboratory with a laser area metre (CID-203,

Camas, WA, USA) and weighed (Mettler Toledo AG204, Switzer-

land) before and after oven drying at 758C. Specific leaf area (SLA)

was derived for each of the subsets and used to estimate the total

leaf area and the number of leaves for each stratum (e.g. [12,17]).

Additionally, the average area of the leaves was recorded from the

smallest to the largest tree as 33.71, 40.33 and 29.66 cm2, respectively.

2.2. Quantitative structure models
The three oak trees were reconstructed as cylindrical QSMs in

Matlab with the procedure detailed in [18]. The properties of

the resulting models are listed in table 2. Furthermore, the

branch count distribution per branch order is visualized in

figure 2. The count of the branches is important as leaves are

placed near the tips of the branches.

The small and medium oaks were similar in height, but the

latter had about 2.6 times more branches when measured in total

count and in length. The large oak had the most branches for all

branch orders, and almost twice the volume of the medium oak.

2.3. Leaf generation algorithm
This section describes an algorithm to populate QSMs with

leaves. The main inputs of the algorithm are distributions that

control the position, orientation and size of the leaves. These dis-

tributions are sampled to retrieve the parameters of individual

leaves. The approach can be described as simplified or naive,

for three reasons: (i) position, orientation and size are sampled

independently, which is to say that, for example, the size of a

leaf may not affect its orientation; (ii) simple controls for phyllo-

taxy and clumping effects are yet to be implemented (although

there is some control when generating the petioles); and (iii) the

only effect leaves have on one another is that they are prevented

from intersecting. We call this procedure the foliage and needles

naive insertion algorithm, or the FaNNI algorithm in short.

2.3.1. Overview of the procedure
The inputs of the algorithm are a collection of QSM blocks, leaf

basis geometry, target leaf area to be distributed, and petiole

and leaf parameter distributions. Details of the roles of the leaf

basis geometry and the distributions are presented in §§2.3.2

and 2.3.3, respectively. The process can be viewed as two separ-

ate stages: (I) generating candidate leaves and (II) accepting

candidates while preventing intersections. An overview of the

process is provided in figure 3.

Table 2. Oak tree properties computed from reconstructed QSMs.

oak tree

property small medium large

branch count 1334 3579 6161

cylinder count 8429 23 539 35 428

DBH (mm) 298 432 848

height (m) 19.1 19.6 21.8

order max. 9 8 9

total length (m) 592 1552 2516

volume (l) 707 1169 2098

branch order
1 2 3 4 5 6 7

br
an

ch
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ou
nt

1500

1000

500

0

small
medium
large

Figure 2. Branch order – count distribution. The stem and branch orders 8
and 9 have been excluded due to their negligible portions. (Online version
in colour.)

Table 1. Leaf area and count measurements.

tree/layer leaf area (m2) leaf count

small oak 153 47 644

0.0 – 11.5 m 18 5432

11.5 – 19.6 m 135 42 212

medium oak 215 52 416

0.0 – 9.0 m 46 12 753

9.0 – 19.9 m 169 39 663

large oak 339 114 224

0.0 – 8.0 m 61 16 056

8.0 – 13.0 m 23 9399

13.0 – 18.4 m 49 19 597

18.4 – 22.4 m 206 69 172
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The first stage begins by distributing the available leaf area

onto the blocks. The leaf area density distribution (LADD)

determines the relative probability for a block with given par-

ameters to have leaf area. After sampling the distribution

with the block properties, each block has a target leaf area, or

a leaf area budget, that will be divided into individual leaves

by sampling the LSD.

For the leaf size determination the blocks are processed in

random order. To match the target leaf area as closely as possible

the cumulative area difference with respect to the target is

updated after each leaf. While there is room in the current

block, or the cumulative area budget, a new leaf is added to

that block. The algorithm assumes that all the generated leaves

have the same geometry, and thus we can sample a leaf length

value which can be converted to area. After this step, the

number of generated leaves and the block parent of each leaf

are known.

Next, the locations of the leaves are determined by physically

attaching them to their branches by the petioles. Because TLS

measurements usually cannot capture petioles as they are too

small to be detected reliably, all the petioles are generated: the

petiole’s starting point, orientation and length are determined

by sampling appropriate parameter distributions given by the

user. The end point of a petiole also determines the origin of

the respective leaf. Although the exact petiole geometry is com-

puted, they are considered insignificant compared with the

blocks and the leaves, and thus they are excluded later from

the intersection detection process.

The final property to sample is the leaf orientation. The LOD

is used to determine the direction and the surface normal of each

leaf. Once this is done, all leaves have a fixed position, orien-

tation and scale, and their geometry can be computed by

transforming the leaf basis geometry accordingly.

At this point it is possible, and even likely with a high leaf

count, that some of the leaf candidates intersect one another, or

the blocks, as they were generated independently. However,

the goal is to produce a model without leaf intersections, and

thus in the second stage the leaves are checked one by one for

intersections before adding them to the list of accepted leaves.

If a leaf candidate intersects a block or an accepted leaf, it is

possible to try to change the position, orientation and scale of the

leaf and check whether the intersection was avoided. If it was,

the leaf candidate is accepted; if not, the process can be repeated

any number of times with a different transformation applied to

the parameters. If, despite all the transformations, intersections

cannot be avoided the candidate is discarded. An example of

how intersection prevention can be implemented is described

in §2.3.4. The leaf generation process stops when all the leaves

have been processed, unless some other stopping condition has

been given, such as a target leaf area of accepted leaves.

2.3.2. Leaf model
The leaf model defines the basis geometry of an individual leaf.

This geometry is the same for all the sampled leaves, but it is

scaled, rotated and translated to receive the final leaf geometry,

during the generation process. Thus all the generated leaves

have the same shape but the size and orientation can vary. In

the simplest case, the basis geometry can be a single triangle,

allowing fast leaf cover generation due to simple intersection

detections. For examples of basis geometries consisting of tri-

angles, see §2.6. On the other hand, there is no upper limit for

the complexity of the basis geometry, other than computational

time requirements to ensure non-intersecting leaves. Thus, it is

possible to represent more complicated shapes, e.g. a leaf with

three-dimensional curvature, or a compound leaf with several

leaflets, that do not have to lie on the same plane. However, to

simplify the generation process, it is possible to use a simplified

basis geometry while generating the leaves, which is then

replaced with something more complex, as long as the change

does not introduce additional intersections.

The origin of the leaf basis coordinate system is assumed to be

the point where the petiole connects to the leaf. Leaf direction is

the direction from the origin towards the tip of the leaf, and

Figure 3. Process overview of the leaf generation process. Leaf distributions are drawn in green, and functions and properties related to the QSM in orange. The
main outputs are written in blue. The two stages are presented on top of one another. (Online version in colour.)
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perpendicular to this lies the leaf normal that defines the direction

to which (most of) the leaf area is facing. The length of the basis

geometry, i.e. leaf length, is fixed at unity. Other dimensions

are given with respect to that. During leaf parameter sampling

only the leaf length is sampled as it determines the leaf area

when the basis geometry is fixed. Note that it is not required to com-

pute the exact geometry of the leaf candidates before the intersection

prevention stage.

2.3.3. Leaf and petiole parameter distributions
Leaf and petiole properties are controlled by multiple user-defin-

able distributions which are sampled when leaves are generated.

The properties fix the number of leaves, their position, size and

orientation. In theory, these distributions are multidimensional

as they may depend on any number of block properties, such as

height from the ground, radius and orientation. They can also

be formed as a weighted product or sum of one-dimensional mar-

ginal distributions. The purpose of each distribution is described

below in the order they are sampled in the implementation.

2.3.3.1. Leaf area density distribution
Total leaf area is one of the inputs of the algorithm, and leaf area

density distribution defines how that area should be distributed

to the blocks. Thus, the leaf area density distribution can allocate

more leaf area towards the top of the tree and towards the tips

of the branches. One could also prevent leaf area from being

attached directly to stem blocks by using branch order informa-

tion. Furthermore, the distribution produces a relative mapping

of area on the blocks, allowing the distribution to assign any

given total area of leaves to the structure model.

2.3.3.2. Leaf size distribution
After a leaf area target has been assigned to each block, the LSD

is used to sample leaf count and size, so that the target area is

matched as closely as possible. This distribution determines the

number of leaves to be generated Ninit. However, as no intersec-

tions between leaves or between blocks and leaves are tolerated,

the final number of leaves may be smaller than initially gener-

ated if intersection cannot be avoided with transformations, i.e.

Nfinal � Ninit holds.

2.3.3.3. Petiole generation
After size distribution sampling, the number of leaves is known

and it becomes possible to sample the petioles that connect the

leaves to their block parents. Similarly to leaves, petiole par-

ameters include the starting point, orientation and length of

the petiole, which effectively also determine the starting points,

or origins, of the leaves. It would be possible to model the

petioles as three-dimensional objects, like small cylinders, but

the implementation considers them only as line segments, and

they are excluded from the intersection prevention step.

2.3.3.4. Leaf orientation distribution
The final distribution controls the orientation of the leaves. This

distribution controls the directions and normals of the leaves,

and can be used to describe, for example, which parts of the

tree are erectophile and which are planophile.

2.3.4. Intersection prevention
Sampling the presented leaf and petiole parameter distributions

results in a list of Ninit candidate leaves. But because each sample

is independent of the rest, the leaves may intersect with other

leaves in the list, or blocks of the QSM. To avoid intersections,

leaves are only accepted to the final collection of leaves if they

do not intersect with other geometry.

The accepted leaves list is initialized as empty. One by

one, the initial leaves are checked, so that they do not intersect

with any of the blocks or the accepted leaves. To avoid a low

acceptance rate, an intersecting leaf is not discarded instantly.

Instead, a number of preselected user-defined transformations

are applied to the leaf candidate, and intersection checking is

repeated. A transformation may consist of any combination of

scaling, rotation and translation, but they are applied in that

order. Only if none of the preselected transformations prevent

all the intersections, the candidate is discarded.

2.4. Leaf density model
Section 2.3 described an algorithm to generate exact leaf geome-

try by sampling certain distributions that depended on

individual block parameters. However, in some cases it is not

necessary to compute the exact geometry, but rather to view

the leaves as an abstract density around the branches [19].

Such an approach saves computational resources as there is no

need to compute and store a lot of geometry. This is especially

relevant for computations with needles as their number often

far exceeds the number of broadleaves for similar sized trees.

This abstract approach without exact leaf realizations can be

suitable for many applications, e.g. ray tracing operations in

radiative transfer and gap fraction computations. However,

exact geometry may be better suited for some applications, e.g.

requiring realistic visualization, and it is also a more straight-for-

ward way to study effects on a single broadleaf of needle scale.

The distributions defined earlier depended on block proper-

ties, which essentially means that each block defines a density,

size and angle distribution around itself. In the case of a cylind-

rical QSM, this can be viewed as a leaf density cylinder around the

block (figure 4). The radius (and length) of the leaf cylinder is

defined by petiole length and LSDs. Let us next briefly justify

the leaf cylinders as potentially useful and consider ray tracing

with leaf cylinders as an example. One possible approach for

ray tracing applications would be to determine an absorption

rate for the leaf cylinder, which can depend on the distance

from the cylinder axis, and where the rate can be stochastic (cf.

the turbid medium analogy [4]). Branch cylinders can be

viewed as infinitely dense, and thus hits occur at their surface.

When enough of the energy of a simulated beam is absorbed, a

hit occurs inside a leaf cylinder. If the application requires it,

an incidence angle can be sampled from the orientation

distribution stored in the respective block.

2.5. Inserting needles
Although this paper focuses on demonstrating broadleaf inser-

tion, it is possible to use the algorithm with needles in

different ways. The most obvious method is to use a tiny cylinder

perspective front view orthographic side view

Figure 4. Two views of an example ray (blue) travelling through the leaf
density cylinder (yellow) that is supported by one of the branch cylinders (brown).
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to represent a single needle and use that as a basis geometry.

However, the computational requirements of the insertion

would be enormous (but not impossible [20]), as they would

be for any further application using the resulting model.

A less resource-consuming approach would be a modifi-

cation of the leaf density cylinder approach described in §2.4.

Rather than inserting needles at all, they could be viewed as a

density distribution around the blocks (cf. [19]). Note that the

distribution does not have to be uniform, and thus it can be

used to account for needle phyllotaxy. Additional buds could

also be introduced as density cylinders if the QSM does not con-

tain the level of detail in terms of branching structure required by

the user. Even though exact needle geometry is not generated, it

is important to incorporate the needle phyllotaxy in any ray tra-

cing operations inside needle density cylinders, as it is key in

simulations including needles [21].

A third option would be to use a needle bud as the basis

geometry. An example of a needle bud suitable for visualization

applications can be seen in figure 5. Even though the model is

complex, it can be simplified to a cylinder during the inter-

section checking stage. The complex model can still be used for

visualizations, or in further computations when required.

2.6. A Matlab implementation
The leaf insertion algorithm was implemented in Matlab [22].

The supporting classes and the main function of the imple-

mentation are presented below. Currently the implementation

works with leaves, where the basis geometry is a collection of

triangles, and cylindrical QSMs, but the structure of the

implementation is modular, so that it is easy to extend to other

types of leaves and blocks as necessary.

2.6.1. Classes
The following classes were written to make the implementation

as modular as possible. Especially, the LeafModel and QSMB

abstract classes were designed to define interfaces for easy

extendibility when using other structures than cylindrical

QSMs, or triangle-based leaf models.

2.6.1.1. LeafModel
The objects of this class have two main purposes in terms of the

data they hold. First, they contain the leaf basis geometry, which

is transformed to determine the geometry of the generated

leaves. Second, they hold the parameters of the accepted leaves,

i.e. leaf origin, scale, direction and normal. In terms of functional-

ity the class is responsible for defining an intersection detection

method for two leaves. There is also a method for converting

the geometry of a leaf into a collection of triangles. The tri-

angles method is required mainly when detecting intersections

between a leaf and a block.1 There is also a method for adding

a new, accepted leaf to the model.

LeafModel is an abstract class, used only for defining the

required interface for subclasses rather than actually creating

instances. This allows the class to be extended by creating sub-

classes, such as the implemented LeafModelTriangle class

for leaf models, where the leaf basis geometry consists of vertices

and triangular faces. This class already allows numerous leaf

shapes, as seen in figure 6, but the user can extend the possibili-

ties by implementing a subclass of LeafModel, e.g. for leaf

geometry defined with Bézier curves, or other vertex–face-based

geometries but with more optimized intersection detection than

checking each triangle separately.

2.6.1.2. QSMB
The class name is an acronym for quantitative structure model

blocks (QSMBs), and it essentially acts as a container for QSMB

information. The class is abstract and used to define an interface

for its subclasses. The interface includes a method for reading

block properties, such as position, orientation and branch order,

and to detect intersection between blocks and triangles. Further-

more, a QSMB object is responsible for generating the petioles of

the leaves using the block geometry. Finally, there is a method

for converting the blocks of a QSM into a CubeVoxelization

object, which is used to optimize intersection detection.

As an example subclass, the QSMBCylindrical was cre-

ated to contain cylindrical QSM data. In this class, the block

data consist of cylinder parameters for the geometry, and branch-

ing topology, such as branch order information. The user can

extend the implementation to work on other types of structure

models, by providing the appropriate subclass definition.

The QSMBCylindrical class also defines default uniform

distributions for the petiole parameters. In this initial imple-

mentation, the petiole parameters are the following, with

the lower and upper limits in parentheses: relative position

along the cylinder axis (0, 1); relative position in the radial direc-

tion when connected to the end circle of the last cylinder in a

branch (0, 1); rotation around the cylinder axis (2p, p); petiole

elevation (2p/2, p/2); petiole azimuth (2p/2, p/2); and

petiole length (2 cm, 5 cm).

2.6.1.3. CubeVoxelization
An object of this class is a voxelization of a fixed three-

dimensional space into cubical voxels with a fixed edge length.

A CubeVoxelization object has a minimum and a maximum

point and the space between them is divided into a finite number

of cells. Object references can be stored in the cells to indicate that

the objects occupy at least a part of that voxel. In the main func-

tion of the leaf insertion implementation, voxelizations are used

to store and find candidate leaves and blocks, to perform more

accurate intersection detection. Furthermore, the edge length of

the voxelizations is set as the maximum leaf size produced by

sampling the LSD function.

Figure 5. An example of a needle bud three-dimensional model without a
strict phyllotaxy. (Online version in colour.)
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2.6.2. Main function
qsm_fanni is the main function that receives the QSM as a

QSMB object, an initialized LeafModel object that contains the

leaf basis geometry, and total leaf area to be distributed. The

leaf area parameter can have two components; one for the initial

leaf area Ainit to be generated, and one for the target leaf area

Atarget � Ainit. This can be used to increase the probability that

the target area is reached, even if some of the generated leaves

are discarded due to unavoidable intersections.

There are also numerous optional inputs for the user to cus-

tomize, such as the distribution functions and transformations

during the intersection prevention step. However, default

options are available for all the remaining parameters.

The main output of the function is a LeafModel object

derived from the corresponding input, but it now contains the

accepted leaves, petiole start points and a vector of parent

block indices of each accepted leaf.

2.6.3. Default leaf parameter distributions
The implementation contains default distribution functions for

leaf parameter properties, and they are described below. At the

moment these defaults are not designed to be biologically accu-

rate, but rather just to provide an example of distributions.

However, there are plans to improve the realism and usability

of the default options in future versions, by offering the user a

choice between common options, such as a spherical distribution

for the leaf orientation.

2.6.3.1. Leaf area density distribution
By default the available leaf area is distributed equally to all the

last cylinders in the branches of the QSM. All other cylinders

remain leafless.

2.6.3.2. Leaf orientation distribution
The default LOD is such that most of the leaf area faces upwards,

but there is some random variation. The LOD computes an initial

leaf normal estimate as a cross product of the petiole direction

and a side direction on a horizontal plane. If the initial direction

differs by less than 208 from a reference direction (straight up in

this case), then the final normal direction is the reference direc-

tion. Otherwise, the final normal is the initial direction rotated

towards the reference direction by 208.

2.6.3.3. Leaf size distribution
The default LSD samples a leaf length value from a uniform dis-

tribution with given limits. That value is then scaled with a value

based on the relative height of the parent block to ensure that

leaves are a little bit larger at the top of the tree.

3. Results
3.1. Leaf geometry complexity test
The LeafModelTriangle class enables the use of leaf

basis geometries with an arbitrary number of triangles.

However, the detection of intersections between leaves

requires that all those triangles are checked, which has an

enormous effect on computational time. To study the effect

of the number of triangles on the basis geometry, a single

cylindrical block (length 1 m, radius 0.25 m) was fitted

with an increasing total area of leaves. The area varied

from 0.25 to 5 m2 for the four basis geometries in figure 6.

The process was repeated 10 times for each leaf area–basis

geometry pair. The average computational time results are

shown in figure 7.

When using a single triangle, generating non-overlapping

leaves was very fast even with the maximum leaf area, 5 m2,

taking only 11 s on average. With the two-triangle quadran-

gle, the times increased 1.8-fold to 4.3-fold in comparison

with the single triangle when moving from the lowest to

the highest leaf area. For the polygon with eight triangles,

the required time was 8.1-fold already at 1 m2 and 16-fold

at the maximum. The respective multipliers for the 20-tri-

angle polygon were 35.9 and a 79.7, which translate to 31

and 891 s, respectively.

3.2. Leaf area density distribution definitions
To demonstrate the leaf insertion algorithm, we defined the

two following parametrized leaf area density distributions.

While we tested other distributions and parametrizations,

these two were chosen because of the low parameter count

and overall simplicity.

polygon (8) polygon (20)

ba
se

 le
ng

th
 =

 1

triangle (1) quadrangle (2)

Figure 6. Triangular basis leaf geometries. The number of triangles is given in parentheses. The origin of the leaf is marked with a circle, and the length of a basis
geometry always equals 1. (Online version in colour.)
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Figure 7. Computational time as a function of total generated leaf area for a
single test cylindrical block. The values are averages over the 10 repeats.
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LADD 1 initialized the last 5% of each branch to have an

equal portion of leaves, then scaling these proportions

with a factor dependent on the relative height of the

respective cylinder. The factor had a value of the par-

ameter y0 at ground level and 1 at the top of the tree.

Values in between were interpolated linearly.

LADD 2 had an additional parameter to define a cut-off

point along a branch. The branch did not have any

leaves before this point, which was dependent on the

branch order. For the stem the cut-off was at 95%. For

branch orders 4 and above, the cut-off was at y4, and for

lower branch orders the cut-off was interpolated linearly.

For cylinders after the cut-off point, the probability of

leaves was interpolated linearly between 0 at the cut-off

and 1 at the tip of the branch. Furthermore, the probabil-

ities were scaled with a factor depending on the relative

cylinder height as with LADD 1. The scaling factor y4 is

visualized in figure 8 for a parameter value of 0.4.

To find the optimal values for the parameters, we performed

a simple grid search by varying the values of y0 and y4 in the

closed intervals (0, 1) and (0, 0.9), respectively. For LADD 1,

which only depends on the y0 parameter, the results are shown

in figure 9; for LADD 2, the optimal parameter values are listed

in table 3. Optimization was done on the cumulative area differ-

ence that was computed as the sum of unsigned leaf area

differences in the vertical layers of the trees. The error was nor-

malized with the measured total leaf area of the tree. The total

error was computed as a sum over all the trees.

For LADD 1 the total optimal value was y0 ¼ 0.2, which

was close to those of the small and large oak trees. However,

the optimal value of the medium oak tree was different at 0.7.

For LADD 2 the total optimum values were y0 ¼ 0.2 and

y4 ¼ 0.5, but there were differences in the optimal parameter

values between the individual trees.

Figure 10 visualizes the LADD 2 distribution with the opti-

mal parameter values on the small and medium oak trees. Grey

parts have no leaves, green parts have some, and red parts have

a lot of leaves. Furthermore, figure 11 shows similar LADD

heat maps and corresponding generated leaves. Note that in

figure 11 LADD 1 is the same as LADD 2 with parameter

value y4 ¼ 0.95. Going from top to bottom the regions of

high probability of leaves spread from the very tip towards

the base of the branch. In the top two rows, the leaves are

very concentrated at the tips, whereas in the latter two the

leaves are more evenly spread along the high-order branches.

3.3. Leaf insertion test for oak trees
Each of the three oak trees was inserted with their measured leaf

area (highlighted in table 1). The two LADDs described above

with the optimal parameters were used, and all tree–LADD

pairs were repeated 10 times. As we lacked reference data for

the leaf orientation and LSDs, defaults from the Matlab

implementation were used. To match the measured leaf sizes

for each tree, the limits for the default uniform leaf length distri-

bution were derived from the average leaf area measurements.

The mean leaf length li for tree i was computed as follows:

li ¼
ffiffiffiffiffi

Ai
p

r=2
, ð3:1Þ

where Ai is the average leaf area for tree i, r � 0.6 is the ratio

between the width and length of the leaf basis geometry,

which in this case was the quadrangle from figure 6 to keep

the triangle count low. The leaf length limits were computed

for each tree as l+1 cm.

The computations were done on a quad-core computer

(Intel Core i7-6700 K 4 GHz, 32 Gb RAM). The computational

mean times and standard deviations over the 10 repeats are

listed in table 4. The average computational time per QSM

block was between 20 and 40 ms for all the trees. Most of

the computational time (95.3%) was spent on detecting inter-

sections, which further supports using the simplest possible

leaf basis geometry. The table also lists the average number

of required block and leaf neighbour computations, the

average number of performed transformations to avoid inter-

sections, and the discarded leaf candidate percentage. The

small oak tree had twice the leaf area per branch in com-

parison with the other two trees, which explains why there

were twice as many neighbouring leaf computations and dis-

carded leaves. The results suggest that it would be sufficient

to sample 5–10% more leaves than the target leaf area to

account for discarded leaves. The results show that the vast

scaling factor at ground
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Figure 9. Cumulative area difference curves for the LADD 1 distribution as a
function of the height scaling parameter. (Online version in colour.)
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Figure 8. Piecewise linear polynomials defining the branch order-dependent
LADD 2 scaling factor y4 ¼ 0.4.

Table 3. Optimal parameter values for LADD 2 distribution. Parameter y0

controls the vertical distribution and parameter y4 the distribution along
the branch length.

tree y0 y4

small oak 0.1 0.7

medium oak 0.6 0.5

large oak 0.2 0.9

total 0.2 0.5
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majority of leaf candidates are accepted without any trans-

formation as the average number of tried configurations

was between 1.0 and 1.5 for all the trees.

Figure 12 shows a top view of all the oak trees with leaves

generated with both LADDs, and figure 13 shows a side view

of the LADD 1-generated leaf covers for the medium and

large oaks. The differences between the leaf covers generated

with LADD 1 and LADD 2 are subtle, but notable. As the

higher order branches have a lower cut-off point along the

relative position on the branch, leaf cover is more even,

making the gap fraction smaller on LADD 2 covers.

To compare the generated leaf distributions with the

measured data, the leaves were placed in the same vertical

bins listed in §2.1 according to their centre. The signed differ-

ence between generated and measured leaf count and area

are listed in table 5. Negative values mean that the tree or

layer should have had more leaves or leaf area; positive

values are the opposite. Both LADDs were able to match

the measured leaf area at the tree level because that was the

stopping condition. The tree-level leaf counts are only

between 500 and 3500 below the target values. Relative to

the total leaf count the differences were 7.5%, 0.9% and

2.0% for the small, medium and large oaks, respectively.

The layer-level differences were much higher, which

suggests that the vertical distribution generated by the pro-

posed LADDs did not match the measurements. With LADD

2 the top layer of the large oak was missing over 90 m2 of leaf

area while the layer below that had an excess of about 60 m2.

Results for the small oak were similar, which suggests lowering

the y0 parameter. However, the opposite was true for the

medium oak, which had about 6 m2 of extra leaf area in the

upper layer.

4. Discussion
The above results presented two relatively simple LADD

functions that used branch order, relative height and relative

position along a branch to determine the portion of leaf area

to be assigned to a block. However, the implementation

small oak medium oak

5 m

Figure 10. Example leaf area density distribution (LADD 2) for the small and medium oak trees as heat maps. As branch tips are small in size all cylinder radii have
been scaled up to four times larger according their LADD value for a better visualization.
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LADD 1/LADD 2, y4 = 0.95

LADD 2, y4 = 0.9

LADD 2, y4 = 0.5

LADD 2, y4 = 0.1

(b)(a)

Figure 11. LADD examples on a single branch from the small oak tree. The distributions control how leaf area is distributed on the supporting branching structure.
The parameter y4 controls the cut-off point along the branch length, starting from the branch base, before which there can be no leaves. (a) Distribution as a heat
map; (b) sampled leaves based on the corresponding heat map.

Table 4. Oak tree average leaf generation results. The properties are computational mean time, time standard deviation, average block and leaf neighbour
counts, and average number of transformation configurations tried before accepting or discarding a leaf.

tree/LADD time time std block neigh. leaf neigh. transforms discard (%)

LADD 1

small oak 6 min 12 s 7 s 13.1 32.8 1.4 7.3

medium oak 7 min 55 s 9 s 15.7 16.3 1.0 3.4

large oak 17 min 48 s 30 s 11.8 16.2 0.9 3.5

LADD 2

small oak 6 min 32 s 4 s 13.6 33.9 1.4 7.8

medium oak 8 min 07 s 5 s 16.1 16.2 1.0 3.6

large oak 18 min 19 s 8 s 12.4 16.5 1.0 3.6
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allows for the user to write more complex LADD functions

that make use of additional information, such as absolute

height (whether the block is above the surrounding canopies)

and absolute orientation (north or south side of the stem).

Owing to limited reference data only the LADD was opti-

mized. However, if detailed leaf angle or leaf size

measurements are available, it is possible to optimize the

respective distribution in a similar manner.

The LADD parameter optimization results and the con-

flicting layer difference results show that the presented

LADDs are not able to capture the differences in the leaf

area distributions of the three oak trees. Further studies

should be carried out to assess whether the underlying leaf

distributions differ between these three trees, or whether it

is simply a matter of choosing a better LADD. It should

also be noted that the manual leaf measurements were

limited with only eight data points in total for the three

trees, and, as such, more detailed and comprehensive

measurements would be beneficial. Some of the leaf area

difference can also be explained by uncertainties in estimat-

ing leaf area and count for the vertical layers, and by

missing branches in the upper canopy in the QSMs.

The parameters of the two LADDs were optimized by

using a grid search where exact leaf geometry was generated

at each grid position. This made the optimization computa-

tionally intensive as 95% of the computational time was

spent on intersection prevention, which forced a low par-

ameter count. However, in retrospect it was unnecessary

to generate leaf geometry, because as the results showed

the discard rate was very low, which means that the

LADD of the output was very close to the input. Thus,

optimization according to, for example, vertical layers can

2 m
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m
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LADD 1 LADD 2

2 m 2 m
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Figure 12. Top view of the three oaks with leaves generated with the two LADDs. (Online version in colour.)
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be simplified to only include distributing the available leaf

area onto the structure model and exclude both leaf size

and orientation sampling and especially the computation

of exact geometry.

Future research should also include testing the impor-

tance of the intersection prevention for various applications,

i.e. whether possibly intersecting and non-intersecting

leaves differ significantly in terms of required resources and

2 m 2 m

medium oak large oak

Figure 13. Side view of the medium and large oak with leaves generated with LADD 1. (Online version in colour.)

Table 5. Difference between oak leaf count and leaf area in total and in vertical layers.

LADD 1 LADD 2

tree/layer D count D area (m2) D count D area (m2)

small oak 23561 þ0.0 23581 þ0.0

0.0 – 11.5 m þ1707 þ5.7 þ1002 þ3.3

11.5 – 19.6 m 25268 25.7 24583 23.3

medium oak 2473 þ0.0 2432 þ0.0

0.0 – 9.0 m 23339 28.1 22811 26.0

9.0 – 19.9 m þ2866 þ8.1 þ2379 þ6.0

large oak 22275 20.1 22157 þ0.0

0.0 – 8.0 m þ9507 þ12.9 þ10 748 þ16.6

8.0 – 13.0 m þ2758 þ13.1 þ3254 þ14.5

13.0 – 18.4 m þ15 634 þ58.7 þ15 883 þ59.4

18.4 – 22.4 m 230 174 284.8 232 040 290.5
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produced level of detail. This way we would know whether it

is sensible to perform the intersection prevention step, e.g. for

simulations studying light use efficiency.

In this paper, the proposed method was only used to

generate leaf covers according to user-given distributions.

However, it would also be interesting to see whether this algor-

ithm could be used to invert or approximate the real-leaf

distributions of a given tree, with simple non-destructive

and non-direct measurements. For example, it would be

possible to test whether gap-fraction measurements and

suitable parametrizations of the leaf distributions can be

used to optimize the distribution parameters, to derive a

mathematical or even a biological explanation for the real

leaf distribution. With this method, it is possible to make

such simulations and study this inverse problem. It should

be noted that such inversion does not reconstruct exact

leaf geometry but rather gives an approximation of their distri-

butions. Such an approach could produce new understanding

of what affects the distribution of leaves for a specific tree.

Furthermore, it would allow the generation of leaf covers

that follow the reconstructed distribution for the same tree

or some other tree.

Currently the algorithm views each leaf independent

from the others (apart from intersection prevention),

which is one of the reasons for calling the algorithm naive.

However, in most tree species leaves follow a certain phyllo-

taxy or the leaves are clumped together, e.g. their petioles

originate near one another, or even from the very same

spot [23]. We are planning to implement simple phyllotaxy

controls in future versions of the FaNNI implementation.

The level of clumping could be defined as a separate distri-

bution that would be used to sample the size of a clump and

variation in petiole and leaf parameters for the leaves within

the clump.

In nature, leaves are often connected to branches that

are small in diameter. Because of the limitations of the

TLS technology, such branches are often poorly sampled

in the resulting point clouds. Therefore, they can be

excluded from the reconstructed QSM also, which means

that, when leaves are inserted, they are connected to

branches that are too large. To counter this shortcoming,

it is possible to perform a pre-processing step that inserts

small branches into the structure model, which will be

given a high probability of leaves when defining the

LADD function.

Although the implementation enables the use of leaf

basis geometries consisting of any number of triangles, the

results show that additional complexity multiplies the

expected computational time by large factors. However, if

detailed leaf geometry is required for later computations,

it is possible to use a simplified stand-in basis geometry

that encapsulates the complex shape to prevent overlapping

during generation and replace the geometry afterwards.

Such a procedure could even be built in to an extension of

the LeafModel class.

5. Conclusion
We have presented an algorithm to generate non-intersecting

leaves to a QSM that follow user-defined position, size and

orientation distributions. A Matlab implementation of the

algorithm was also presented. Currently, the implementation

allows the use of any leaf shape consisting of an arbitrary

number of triangles.

In order to present leaf property distributions in a com-

pact yet versatile format, we propose a scheme where a

QSM is divided into blocks that determine, and can be

used to contain, property information for leaves that are to

be connected to it. This means that we can assign the avail-

able leaf area, leaf size and orientation parameters to the

blocks of a QSM even without generating leaves. Then we

can do one of the following.

— Visualize the property distributions by colouring the

blocks according to their respective property values as

seen in the case of leaf area density distributions, e.g.

in figures 10 and 11.

— Sample the user-defined distribution with the parameter

values and generate exact leaf geometry as was done in §3.

— View the leaves as a probability distribution around the

QSM blocks, and rather than computing exact leaf geo-

metry do computations by determining the probability

of a hit and the incidence angle when a beam enters

the vicinity of a block.

Although any triangle-based geometry is possible for the

leaves, a simple test of adding an increasing area of leaves to

a single cylindrical block showed that complex leaf shapes

can drastically increase the computational time, at least

with the current implementation. Thus, the leaf basis geome-

try should be kept as simple as possible, or optimization is

required for intersection detection.

To demonstrate leaf generation, we presented two

different LADDs and applied them to three oak trees

trying to match field measured leaf count and areas. The

measurements were done with two–four vertical bins per

tree, and the average leaf area was also recorded for each

tree. Simple uniform LSD (with some scaling based on

height) and planophile orientation distribution were used,

while the main focus was on optimizing the LADDs.

The two suggested LADDs were able to match leaf

area and count per tree, but the vertical distribution of

leaves had major errors despite the optimization. Further

research is required to understand the cause of the leaf

area differences.

A further goal is to use the leaf-augmented QSM (L-QSM)

to incorporate a number of biological principles such as the

availability of resources (mass and energy exchanges between

vegetation and atmosphere, and phyllotaxy) to construct as

many self-consistent tree models as possible. One can include

stochastic variations in the same sense as in the creation of

four-dimensional QSMs [24], extending that scheme to fully

functional trees. This approach would enable a large number

of applications to verify and refine assumed biological postu-

lates of theoretical models, and then use the resulting full-

scale three- and four-dimensional models for predictions

and the modelling of ecological systems at various size and

complexity scales, including large-scale statistical (allometric)

estimates.
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Endnote
1Otherwise you would have to write a separate intersection detection
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