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Abstract 

Bone fragility, or conversely, its strength is largely determined by structural properties 
(e.g., cross-sectional geometry, cortical thickness and trabecular architecture). 
Accordingly, a proper structural analysis of bones might help identify those individuals 
who are susceptible to fragility fractures. In this respect, peripheral quantitative computed 
tomography (pQCT) provides a reasonable option to assess bone cross-sectional geometry 
and separate it into the trabecular and the cortical compartments. Although the commonly 
used pQCT systems lack sufficient spatial resolution to capture fine structural traits 
compared with present high-resolution pQCT (HR-pQCT) systems, they are cheaper and 
still widely used among bone researchers. Current techniques used for pQCT image 
analysis (e.g., median filtering, threshold-based segmentation), however, may not be 
optimally suited for characterizing bone geometry and strength. 

Therefore, in this work, image preprocessing based on a statistical approach, and a fast and 
reliable segmentation method were developed with the aim of improving the in vivo 
precision of pQCT image analyses, in vivo assessment of tibial bone geometry and 
strength. The segmentation method is based on the outer boundary detection and 
subsequent shrinking (OBS) procedure. These methods were applied on various phantom 
and in vivo pQCT image data and their performance was compared with commonly used 
analysis approaches and, in the case of segmentation, with a more advanced level-set based 
method. The manual segmentation of cortical bone, done by 3 independent evaluators, was 
considered as a gold standard. 

The findings demonstrate that the developed preprocessing method provided the most 
consistent results and improved the reliability of the analysis of the cortical bone area by 
approximately 30%. However, the preprocessing failed to improve the assessment of 
trabecular density. Nevertheless, some coarse structural patterns could be seen in the 
preprocessed images in contrast to a disperse distribution of density levels in the raw 
images. Further, the developed OBS method showed nearly 50% less variation in error 
compared with threshold-based analysis and, in conjunction with the developed 
preprocessing method, agreed well with the results obtained from manual segmentation. 
The level-set based segmentation resulted in a consistent ~15% mean overestimation of all 
geometrical traits with a similar variation of data as that obtained from the OBS method. 

The results of this research show that the preprocessing method can enhance cortical bone 
analysis.  Further,  the  OBS  method  (i)  improved  assessment  of  cortical  geometry,  (ii)  
enhanced cortical bone analysis of pQCT images and (iii) can, in conjunction with the 
developed preprocessing, form a simple and applicable pQCT image analysis tool for 
clinical bone research applications.  
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1. Introduction 
 

The main goal of this study was to develop an image analysis tool for performing reliable 
bone structural analysis in pQCT image data that would be feasible for use in clinical bone 
research. Osteoporosis and associated fragility fractures are common health problems in 
aging populations and are a considerable socioeconomic burden on health care systems 
[Christensen et al. 2010]. Osteoporotic fragility fractures are attributable both to interaction 
between external loading (mostly fall-induced) and bone fragility. Bone fragility, in turn, is 
largely determined by the bone structure and its particulars [Järvinen et al., 2005].  

Improvements in medical imaging and image preprocessing during the past 3 decades have 
enabled deeper in vivo analysis of bone macro- and micro-structure, increased the overall 
knowledge and understanding of bone anatomy, physiology and assessment of osteoporotic 
processes [Ito, 2011; Griffith & Genant, 2012]. Nevertheless, the present diagnostic 
assessment of bone fragility and fracture risk still rests largely on areal bone mineral 
density (aBMD) measured by dual-energy X-ray absorptiometry (DXA) [Kanis et al., 
2005]. The aBMD approach is limited not only by the inherent inaccuracy of DXA caused 
by the violation of the 2-component (homogeneous soft tissue and bone) assumption in 
individual patients [Bolotin & Sievänen, 2001] but also by the inability of planar DXA to 
yield reliable information on actual bone geometry and structure that is necessary for 
proper assessment of bone strength [Sievänen et al., 2007]. Therefore, the aBMD approach 
has been recognized to be insufficient in describing bone fragility and individual fracture 
risk [Stone et al., 2003; Kanis et al., 2004]. 

Peripheral quantitative computed tomography (pQCT) offers a reasonable option to assess 
bone cross-sectional geometry and to separate it into trabecular and cortical compartments 
[Sievänen et al., 1998]. Although commonly used pQCT systems lack sufficient spatial 
resolution to capture speci c micro-structural traits compared with present high-resolution 



2 
 

pQCT (HR-pQCT) systems, they have been commonly used in many recent studies 
[Lochmüller et al., 2002; Rittweger et al., 2005; Rittweger et al., 2009; Rittweger et al., 
2010; Nikander et al., 2006; Szabo et al., 2011; Shedd-Wise et al., 2011]. Due to obvious 
technical limitations, pQCT cannot be applied to clinically relevant vertebral and proximal 
femur sites. Nonetheless pQCT does provide similar information on apparent structural 
traits from appendicular bones, to data provided by clinical quantitative computed 
tomography (QCT) at the proximal femur and lumbar spine [Lang et al., 2006; Melton et 
al., 2007; Melton et al., 2010]. 

The evaluation of bone fragility and fracture risk is technically challenging, because trade-
offs between parameters such as image resolution, radiation exposure, signal-to-noise ratio 
(SNR) and acquisition time are limiting factors for accurate bone image analysis [Genant 
et al., 2008]. The lower the resolution, the less accurate is the determination of the bone 
structures obtained because the partial volume effect distorts the real borders of bone 
structures. Higher resolution can be reached by increasing radiation exposure. Obviously, 
safety concerns and ethical issues limit larger dosages in clinical applications. However, by 
increasing the acquisition time, the resolution and the SNR level can be improved, but 
longer scan times increase risk of image distortion due to movement artefacts [Beutel et al., 
2000]. 

Hence, identifying the proper imaging method for reasonable assessment of bone structure 
is needed for early diagnosis of osteoporosis. Successful management of osteoporosis 
requires detection of subtle changes in bone mass, structure and tissue mechanical 
properties for accurate prediction of bone fragility [Lochmüller et al., 2003; Kazakia & 
Majumdar, 2006; Griffith & Genant, 2012]. Whether this kind of structural assessment will 
outperform conventional aBMD for fragility fracture prediction and identification of 
individuals-at-risk will be a crucial issue [Sievänen, 2010a]. Before that, proper analysis 
algorithms need to be developed; the present study is considered as a step towards the 
ultimate objective of predicting bone fragility and revealing relevant changes in bone 
structure that affect whole bone strength, making it more susceptible to fracture. 

Current image processing and analysis algorithms used in clinical research are mostly 
limited to the use of median filtering and application of density thresholds [Veitch et  al.,  
2004; Ward et al., 2005; Hangartner, 2007]. This practice comes not only from technical 
simplicity but also from the need for reproducible and tangible results in clinical settings. 
Such needs, however, are not always met by current threshold-based analyses [Ward et al., 
2005; Ashe et al., 2006; Kontulainen et al., 2007], mainly due to partial volume effects, a 
relatively low signal to noise ratio and the presence of movement artefacts. All these 
obstacles cause blurred, indistinct or discontinued edges in analysed images and result in a 
non-uniform density values along these edges. Therefore, the use of a median filter, which 
causes an additional blur, together with variable threshold values substantially modulate 
the  results  of  the  threshold-based  analysis  [Ward  et  al.,  2005;  Ashe  et  al.,  2006;  
Kontulainen et al., 2007] and result in discontinued segmented areas in analysed images. 
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This considerably affects an assessment of bone strength indexes (e.g., area moment of 
inertia [CSMI]) that are largely dependent on the precise definition of the cortical 
compartment. Obviously, the accuracy and precision of measures of relevant bone 
structural changes depends on image quality of the used imaging modality [Lochmüller et 
al., 2003]. Subsequent image processing cannot overcome inherent limitations of the image 
data due to limited resolution, for example. Many sophisticated algorithms such as level 
set-based segmentation [Osher & Paragios, 2003] are also not considered suitable for 
clinical research because of the need for large operator involvement (increasing the risk of 
decreased reproducibility of the results) or the high sensitivity to noise. However, any 
improvement in the accurate and precise description of the structure of the given bone is 
essential for the appropriate assessment of whole bone strength [Sievänen et al., 2007].  
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2. Literature review 

 
2.1. Bone structure 
Bones and bone structures have been an object of interest among researchers during the 
past centuries. Recently, the interest has grown extensively as osteoporosis and related 
fragility fractures have become common health problems in aging populations. Basically, 
human bone structure reflects the overall environment where each bone is and the purpose 
for which they are developed: to support body weight, to work together with muscles, to 
generate body movements and to provide protection for vital organs. Demands for the 
arrangement of bone structures are high considering the occasionally high forces that have 
to be coped with while, at the same time being sufficiently light to cause no excess 
metabolic cost or movement restrictions. Bones are comprised of a cortical shell, with 
trabecular network primarily limited to the long bone ends, vertebrae, flat and small bones. 
A thick cortical shell is primarily found in the shaft of long bones to resist bending forces 
from a limited range of directions. A flexible, lightweight trabecular network is located 
near joints to resist compression forces and to absorb energy coming from many different 
directions, as seen during locomotion for example. Figure 1 illustrates an example of a 
bone with a trabecular bone framework and a relatively thin cortical shell. The 
comprehensive description of bone structures can be found in many anatomy books 
[Marieb, 2004; Martini et al., 2006]. 

Bone tissue is distinguished between two types of osseous tissue: cortical bone, also 
known as a compact bone; and trabecular bone, also called cancellous or spongy bone. As 
the terms already suggest, the porosity of cortical bone is low and ranges from 5-10%. 
Cortical bone is composed of a hierarchical structure that forms a series of concentric rings 
around the central canal. Trabecular bone has a porosity of between 50-90% and is 
relatively light. Trabecular bone is composed of a plate and strut-like structure that forms 
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an open spongy framework and helps to reduce bone weight. A more detailed comparison 
between the general features of cortical and trabecular bone can be found in the work of 
Jee [1983]. 

 

 
Figure 1: Example of the distal radius. The image was obtained from a cadaver bone by 
using a high resolution computed tomography (HR-CT) scanner with an isotropic voxel 
size of 0.1 mm. 

2.2. Bone imaging methods in vivo 
The main purpose of bone densitometric techniques is to determine parameters that  
accurately assess bone strength, predict bone fragility and associated fractures, and assess 
aging  processes  and  endocrine  and  physical  conditions  in  bones.  In  this  respect,  DXA  
derived aBMD was among the first quantitative measurements [Engelke et al., 2008]. 
Areal BMD does not provide a detailed picture of whole bone strength. More parameters to 
measure bone structure and tissue mechanical properties of both trabecular and cortical 
bone are needed to improve the prediction of fragility fractures [Järvinen et al., 2005]. 
However, in clinical practice, the 25-year old DXA-measured aBMD is still the most used 
and recommended parameter [Kanis et al., 2005; Lang, 2010]. Selected bone structural 
indicators (traits) that are commonly used for the estimation of whole bone strength and 
their definitions are shown in Table 1. 

Spatial resolution of imaging – determined by the size of the smallest possible feature that 
can be detected – is typically represented by a point spread function (PSF) for each 
imaging  system.  The  PSF  describes  the  response  of  an  imaging  system  to  a  small  point  
object (e.g., small bead), with the spread of the point object in the image characterizing the 
PSF. However, voxel size is commonly used to indicate differences in spatial resolutions 
between different imaging modalities, with the assumption that the voxel size is greater 
than the PSF. It is important to note that voxel size is not equivalent with PSF. In the 
following pages of this chapter the term voxel size will be used to indicate spatial 
resolutions for different types of imaging modalities 
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2.2.1. In plane methods 

Digital radiographs 

As the first method used for the detection of osteoporotic bones, plain film radiography has 
been used since the 1940s. Although radiography scanners have been radically developed 
during the past decades and digital detectors have replaced the film medium, the main 
principle of plain radiography has remained the same since its introduction by Wilhelm 
Conrad Roentgen in 1895. Radiography is based on the measurement of the linear 
attenuation of x-ray beams that penetrate the body and visualize the skeleton. 

Radiography is very simple, cheap and fast (imaging time < 10 s), is readily available, does 
not require a large radiation dose and is capable of providing sufficient bone details 
[Griffith & Genant, 2011]. There are, however, some limitations with radiography that 
should be mentioned. The use of a lower radiation dose restricts radiography to detecting 
osteoporosis mainly in the appendicular skeleton, due to the large attenuation of x-rays by 
soft tissues. Even though some studies have developed methods to detect semi-quantitative 
indices such as trabecular quantification [Seeley et al., 1991] or cortical thickness 
quantification [Gärdsell et al., 1993], conventional radiographs represent an overall 
projection of the bone structure and are usually not able to show individual trabeculae 
[Link, 2010]. Furthermore, there needs to be about 20% bone mineral loss before the bone 
loss can be detected from radiographs [Ardran, 1951]. Therefore, the sensitivity and 
reproducibility are very poor and, as a result, radiography has been mainly used to identify 
fractures rather than to predict bone fragility. However, there have been some recent 
studies on human cadaver specimens [Pulkkinen et al., 2008] and postmenopausal women 
[Rachidi et al., 2008; Pulkkinen et al., 2011] that suggest the possible prediction of hip 
fracture load and the accurate separation between subjects with fractures and controls 
independently of BMD. Nevertheless, in these studies, a high-resolution scanner with an 
in-plane  voxel  size  of  50  µm  was  used.  This  type  of  scanner  is  a  refined  version  of  the  
standard radiographs used for clinical examinations and further studies are needed to reveal 
the usability of these approaches for the early detection of osteoporosis. 

Dual-energy X-ray Absorptiometry 

Dual-energy x-ray absorptiometry (DXA) and DXA-measured areal bone mineral density 
(aBMD in g/cm2) has been in clinical use since 1987. In 1994, the World Health 
Organization (WHO) proclaimed aBMD to be the primary measure to assess bone strength 
because of its relatively high correlation with actual bone strength and the sufficient ability 
to predict relative fracture risk [Kanis, 1994]. Further advantages of DXA include the 
following: small radiation dose, short screening times (< 1 min.), large availability, simple 
scanner operation and lower costs in comparison with computed tomography. Areal BMD 
is determined by the measurement of attenuation of x-ray beams applied on clinically 
relevant sites of the body. Hard tissues such as bones attenuate more x-ray beams than soft  



7 
 

  

Ta
bl

e 
1:

 S
el

ec
te

d 
bo

ne
 st

ru
ct

ur
al

 in
di

ca
to

rs
 a

nd
 th

ei
r d

ef
in

iti
on

s 

D
ef

in
iti

on
 

a 
m

ea
su

re
 o

f t
he

 a
m

ou
nt

 o
f b

on
e 

m
in

er
al

 (c
al

ci
um

hy
dr

ox
ya

pa
tit

e)
 c

on
ta

in
ed

 in
 a

 c
er

ta
in

 v
ol

um
e 

of
 b

on
e 

th
e 

am
ou

nt
 o

f b
on

e 
m

in
er

al
 p

er
 sq

ua
re

 c
en

tim
et

re
 o

f b
on

e 

th
e 

ar
ea

 o
f b

on
e 

en
cl

os
ed

 b
y 

th
e 

ou
te

r p
er

io
ste

al
 b

ou
nd

ar
y 

th
e 

ar
ea

 b
et

w
ee

n 
th

e 
ou

te
r p

er
io

ste
al

 a
nd

 th
e 

en
do

ste
al

 b
ou

nd
ar

y 

th
e 

ar
ea

 b
et

w
ee

n 
th

e 
ou

te
r p

er
io

ste
al

 a
nd

 th
e 

en
do

ste
al

 b
ou

nd
ar

y 

th
e 

m
ea

n 
va

lu
e 

of
 d

is
ta

nc
es

 b
et

w
ee

n 
th

e 
en

do
st

ea
l a

nd
 th

e 
pe

rio
st

ea
l b

ou
nd

ar
y 

m
ea

su
re

d 
al

on
g 

th
ei

r 
co

nt
ou

rs
 

a 
m

ea
su

re
 o

f c
or

tic
al

 b
on

e 
di

st
rib

ut
io

n 
ar

ou
nd

 th
e 

ne
ut

ra
l a

xe
s, 

de
te

rm
in

es
 th

e 
ab

ili
ty

 o
f b

on
e 

to
 re

sis
t 

be
nd

in
g 

or
 to

rs
io

n 
re

la
tiv

e 
to

 sp
ec

ifi
c 

ne
ut

ra
l a

xe
s 

th
e 

pr
od

uc
t o

f C
SM

I a
nd

 th
e 

m
ax

im
um

 d
is

ta
nc

e 
fr

om
 th

e 
pe

rio
st

eu
m

 to
 a

 p
ar

tic
ul

ar
 b

en
di

ng
 o

r t
or

si
on

al
 

ax
is

, d
et

er
m

in
es

 th
e 

ab
ili

ty
 o

f b
on

e 
to

 re
si

st 
be

nd
in

g 
or

 to
rs

io
n 

in
 a

 g
iv

en
 p

la
ne

 

th
e 

de
ns

ity
 w

ei
gh

te
d 

po
la

r s
ec

tio
n 

m
od

ul
us

 o
f a

 g
iv

en
 b

on
e 

cr
os

s-
se

ct
io

n 

th
e 

pr
od

uc
t o

f t
he

 p
ol

ar
- o

r b
en

di
ng

- s
ec

tio
n 

m
od

ul
us

 a
nd

 th
e 

no
rm

al
iz

ed
 v

ol
um

et
ric

 c
or

tic
al

 d
en

sit
y 

va
lu

e 
of

 e
ac

h 
pi

xe
l i

n 
a 

se
le

ct
ed

 c
or

tic
al

 b
on

e 
cr

os
s-

se
ct

io
n,

 e
ss

en
tia

lly
 a

 w
ei

gh
te

d 
C

SM
I 

th
e 

to
ta

l v
ol

um
e 

of
 b

on
e 

w
ith

in
 th

e 
vo

lu
m

e 
of

 in
te

re
st 

(V
O

I)
 th

at
 c

or
re

sp
on

ds
 to

 th
e 

de
te

ct
ed

 o
ut

er
 

pe
rio

ste
al

 b
ou

nd
ar

y 

th
e 

pr
op

or
tio

n 
of

 th
e 

V
O

I o
cc

up
ie

d 
by

 b
on

e 

th
e 

ra
tio

 o
f a

gg
re

ga
te

d 
po

re
 sp

ac
e 

to
 th

e 
vo

lu
m

e 
of

 th
e 

en
tir

e 
bo

ne
 m

as
s, 

eq
ua

l t
o 

(1
 –

 B
V

/T
V

) 

th
e 

tra
be

cu
la

r b
on

e 
ar

ea
 d

iv
id

ed
 b

y 
on

e-
ha

lf 
of

 th
e 

pe
rim

et
er

 o
r t

he
 tr

ab
ec

ul
ar

 b
on

e 
ar

ea
 d

iv
id

ed
 b

y 
th

e 
le

ng
th

 o
f t

he
 sk

el
et

on
 n

et
w

or
k 

th
e 

av
er

ag
e 

di
sta

nc
e 

be
tw

ee
n 

ad
ja

ce
nt

 tr
ab

ec
ul

ae
 

th
e 

re
ci

pr
oc

al
 o

f t
he

 d
is

ta
nc

e 
be

tw
ee

n 
th

e 
ce

nt
re

s o
f a

dj
ac

en
t t

ra
be

cu
la

e 

In
di

ca
to

r 

B
on

e 
m

in
er

al
 c

on
te

nt
 (B

M
C)

 

A
re

al
 b

on
e 

m
in

er
al

 d
en

sit
y 

(a
B

M
D

) 
To

ta
l c

ro
ss

-s
ec

tio
na

l b
on

e 
ar

ea
 (T

oA
) 

Tr
ab

ec
ul

ar
 c

ro
ss

-s
ec

tio
na

l 
bo

ne
 a

re
a 

(T
rA

) 
C

or
tic

al
 c

ro
ss

-s
ec

tio
na

l b
on

e 
ar

ea
 (C

oA
) 

M
ea

n 
co

rti
ca

l w
al

l t
hi

ck
ne

ss
 

(C
oT

h)
 

C
ro

ss
-s

ec
tio

na
l a

re
a 

m
om

en
t 

of
 in

er
tia

 (C
SM

I) 

Se
ct

io
n 

m
od

ul
us

 (Z
) 

B
on

e 
st

re
ng

th
 in

de
x 

(B
SI

) 

St
re

ss
 st

ra
in

 in
de

x 
(S

SI
) 

B
on

e 
vo

lu
m

e 
(B

V
) 

B
on

e 
vo

lu
m

e 
to

 to
ta

l v
ol

um
e 

fr
ac

tio
n 

(B
V

/T
V

) 

Po
ro

si
ty

 

Tr
ab

ec
ul

ar
 th

ic
kn

es
s (

Tb
.T

h)
 

Tr
ab

ec
ul

ar
 se

pa
ra

tio
n 

(T
b.

Sp
) 

 T
ra

be
cu

la
r n

um
be

r (
Tb

.N
) 

M
ea

su
re

 ty
pe

s 

B
ul

k 

G
eo

m
et

ry
 

St
re

ng
th

 

A
rc

hi
te

ct
ur

e 

G
eo

m
et

ry
 

M
ac

ro
-

st
ru

ct
ur

es
 

M
ic

ro
-

st
ru

ct
ur

es
 



8 
 

tissues (i.e. muscles, bone marrow and fat) at a given x-ray energy. DXA scanners use two 
disparate x-ray energies and evaluate their relative differences in x-ray attenuation. 

Today, the evaluation of osteoporosis related bone fragility and fracture is one of the most 
commonly performed clinical measurements [Kanis et al., 2005]. In 1994, the WHO set the 
reference diagnostic value (T-score) for the definition of osteoporosis to -2.5 or less of the 
standard deviation from the young adult mean aBMD level. The reliability of aBMD can, 
however, be compromised by inherent inaccuracies and ambiguities in interpretation 
[Sievänen, 2000; Bolotin & Sievänen, 2001; Bolotin, 2004]. The aBMD does not take into 
account bone depth and, subsequently, a larger bone might seem to be more dense than a 
smaller  one  [Griffith  &  Genant,  2012].  Furthermore,  aBMD  is  derived  under  an  
oversimplified assumption that the region of interest contains only hard tissues (i.e., bone) 
and homogeneous soft tissues. Evidently, the latter assumption cannot be met in practice 
[Bolotin & Sievänen, 2001].  Hence, use of the reference T-score value does not disclose 
the majority of so-called osteoporotic fractures that appear to occur mainly above this 
value [Stone et al., 2003]. Further, DXA’s inherent inability to directly assess cortical or 
trabecular bone properties (since DXA cannot differentiate between these two tissues) 
illustrates the limited usability of DXA for an accurate assessment of an individual’s bone 
strength [Sievänen, 2010a] and associated fracture risk [Delmas & Seeman, 2004; Li et al., 
2004]. 

Notwithstanding the previously mentioned limitations, DXA-measured aBMD is one of the 
best available measures of osteoporosis [Griffith & Genant, 2012] due to high precision  
(1-2%) [Sievänen et al., 1992; Glüer et al., 1993] and simple usability (e.g., the lower the 
aBMD value is, the more likely the patient has osteoporosis, and the more likely the patient 
will benefit from medical treatment).  

2.2.2. Volumetric methods 

Quantitative Computed Tomography 

Quantitative computed tomography (QCT) for bone densitometry measurements was 
developed at the end of the 1970s and the beginning of the 1980s, and allowed the 
measurement of apparent volumetric BMD (in mg/cm3) [Link, 2010]. QCT uses a fan of x-
rays and a detector-array that rotates around the patient and continuously provides a 
distribution of linear attenuation coefficients within the patient (radiographic projections). 
An image is then reconstructed from these radiographic projections by using Radon 
projection theory. In the image, particular intensity values represent local x-ray linear 
attenuation. The BMD value is determined by these linear attenuations of x-ray beams. The 
BMD measurement is, however, derived by the linear calibration of the CT number to 
BMD using a bone-density equivalent phantom. The CT number is derived from the 
attenuation coefficient by calibration to the x-ray attenuation of distilled water at room 
temperature. Hence, all QCT scanners are identically calibrated. Further, recent QCT, 
based on a spiral system, allows the reconstruction of the 3D structure and brings a number 
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of advantages: reasonable in vivo assessment of bone geometry, the separate assessment of 
the cortical and trabecular bone compartment, the measurement of the apparent densities at 
clinically relevant sites (lumbar spine and proximal femur) and the measurement of a 
volumetric BMD independent of bone size [Riggs et al., 2004; Carpenter et al., 2005; 
Riggs et al., 2006; Black et al., 2008; Yang et al., 2008]. 

The two main limitations of QCT-based densitometry are (i) the need for a dedicated QCT 
scanner (cost) that is not portable and (ii) the relatively high radiation dose involved in 
measurements  that  may  pose  safety  and  ethical  issues.  In  addition,  despite  the  use  of  a  
larger radiation dose compared with DXA, the systems lack sufficient spatial resolution to 
differentiate between individual trabeculae and are, therefore, unable to assess micro-
structural traits (e.g. trabecular number, separation, thickness, connectivity) [Engelke et al., 
2008]. 

However, a relatively small in-plane voxel size (below 300 µm [Ramamurthi et al., 2012]) 
allows separate discrimination of the cortical and trabecular bone compartments. This 
advantage makes it possible to selectively assess trabecular bone and its BMD where 
observed age, treatment and disuse-related changes are greater [Sievänen, 2010b]. 
Consequently, bone fracture prediction is improved in comparison to DXA-measured 
aBMD [Yu et al., 1995; Ito et al., 1997]. Nevertheless, the above mentioned in-plane voxel 
size prevents the correct determination of cortical thickness in the lumbar spine region 
[Prevrhal et al., 1999] and, therefore, due to partial volume effects, cortical BMD always 
contains some portion of sub-cortical bone (i.e., transitional zone between compact-
appearing cortex and trabecular bone) and adjacent tissues (e.g., tendon, muscle, fascia). 

Peripheral QCT 

The term peripheral quantitative computed tomography (pQCT) denotes a special low-cost 
and  low-dose  application  of  QCT  scanners  developed  at  the  turn  of  the  1980s  and  the  
1990s for quantitative determination of BMD at appendicular sites such as upper and lower 
limbs [Griffith & Genant, 2011]. Although, pQCT cannot be applied to an axial skeleton or 
hip region, its data acquisition and reconstruction methods are similar to the second 
generation of QCT scanners. Therefore, this imaging method provides similar information 
on macro-structural traits in the forearm and the distal tibia [Sievänen et al., 1998] but also 
inherits the resolution related benefits and limitations of QCT-based densitometry. 
Moreover, the use of low power x-ray sources results in a longer imaging time  
(about 4 min.) and, therefore, the appearance of motion artefacts is more frequent when 
compared with QCT scanners (screening time for a single image slice ~ 30 s) [Engelke, 
Libanati, et al., 2009]. 

The advantages of pQCT scanners are their smaller size and thus higher mobility, lower 
price compared with whole body clinical QCT scanners and, most importantly, a lower 
radiation dose. Although pQCT has somewhat larger in-plane voxel size (up to 400 µm), 
its precision for BMD measurements is comparable to QCT [Sievänen et al., 1998]. 



10 
 

Furthermore, due to their application to perpendicular sites where x-rays are not largely 
attenuated by surrounding soft tissues, pQCT can determine cortical thicknesses in 
forearms and lower limbs more accurately than QCT can in the lumbar spine. With regards 
to  a  recent  study  by  Kontulainen  et  al.  [2008],  it  is  known  that  the  geometry-based  
parameters (e.g. stress strain index [SSI] and bone strength index [BSI]) can substantially 
improve the prediction of whole bone strength and bone failure loads at the tibial epiphysis 
and diaphysis. Therefore, an improvement in the accurate detection of the cortical bone can 
improve the prediction of bone failure in this respect. The high association of geometry-
based parameters with whole bone strength has been reported in some pertinent studies 
[Lochmüller et al., 2002; Muller et al., 2003; Kontulainen et al., 2008]. 

High-resolution pQCT 

Recently, a new high-resolution imaging system for appendicular sites (XtremeCT, Scanco 
Medical AG, Bruttisellen, Swizterland) has become available on the market. The imaging 
system  is  the  same  as  any  other  computed  tomography  system  in  that  it  is  based  on  the  
measurement of the attenuation of x-ray beams passing through the test subject. The 
system is the result of the convergence of classical clinical CT with features of micro-CT 
and is designed for the assessment of micro-architecture and morphometric analysis 
[Boutroy et al., 2005; MacNeil & Boyd, 2007a]. The scanner achieves isotropic voxel sizes 
as small as 82 µm [Krug et al., 2010]. With smaller voxel sizes, micro-architectural 
properties such as trabecular thickness, trabecular separation, trabecular number, porosity 
and connectivity can be estimated. Despite smaller voxel sizes, the effective radiation dose 
is relatively small and comparable to standard pQCT or DXA measurements, and several 
orders smaller when compared with QCT. The screening time of high-resolution pQCT 
(HR-pQCT) is shorter in comparison with standard pQCT scanners (~3 min.). Therefore, 
the occurrence of movement artefacts is somewhat reduced. The size of the voxels 
provides a good basis for finite element modelling (FEM) and consequently for various 
simulations of bone strength in different loading conditions [MacNeil & Boyd, 2008; Liu 
et al., 2010] or relative load distributions [MacNeil & Boyd, 2007b]. However, it has not 
yet been demonstrated that FEM improves fracture predictions more than the combination 
of densitometric and geometric parameters [Engelke et al., 2008]. 

HR-pQCT is a great step forward toward better understanding and assessment of bone 
fragility and fractures. However, the system does have some limitations that need to be 
recognized. At present, the system is made by only one manufacturer. As a result, its use is 
still rather limited and the devices are mainly installed in major research institutions [Krug 
et al., 2010]. Further, the system is limited to appendicular sites (wrist, ankle) due to gantry 
size limitation and radiation dose restriction. The imaging of clinically relevant sites such 
as the proximal femur and the spine (located deeper in the body) would need a higher 
radiation dose in order to attain reasonable image quality. Finally, but probably most 
importantly, even with these smaller voxel sizes, the achievable voxel size is only close to 
the thickness of individual trabeculae (about 50 – 150 µm). Therefore, the HR-pQCT 
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image analysis is still affected by partial volume effects and derived micro-architectural 
properties are overestimated compared to histomorphometry results [Boutroy et al., 2011]. 

Nevertheless, HR-pQCT proved to be able to show differences in several structural 
parameters in test subjects, in spite of similar aBMD values [Li et al., 2010; Seeman et al., 
2010]. The precision for HR-pQCT assessment of changes in cortical and trabecular bone 
is about 2-5% [Boutroy et al., 2005]. The values of approximate radiation exposure during 
different densitometry measurements are shown in Table 2. 

 
Table 2: Approximate radiation exposures during densitometry measurements 

Imaging modality Approx. effective dose 
(mSv) 

Radiography < 0.01 

DXA ~ 0.01 – 0.05 

Single-slice QCT < 0.06 – 0.3 

3D QCT scan ~ 1 – 1.5 

pQCT < 0.003 

HR-pQCT < 0.005 

 

 
High-resolution Magnetic Resonance Imaging 

High-resolution magnetic resonance imaging (HR-MRI) systems are becoming more 
popular among bone researchers. Magnetic resonance imaging uses a strong magnetic field 
to  align  the  spin  orientation  of  hydrogen  proton  atoms  in  the  imaged  tissue,  then  radio  
frequency pulse sequences are applied to change the proton spin orientation; the change of 
their spin orientation depends on tissue type. This change and return of the spin orientation 
to a stable state in the magnetic field is detected by the scanner to produce image data. HR-
MRI systems cannot directly measure BMD values. However, they can estimate the bone 
structure information as topology, cortical thickness, cortical area, trabecular network type 
and trabecular orientation [Krug et al., 2010]. The two biggest advantages of HR-MRI 
systems are direct multiplanar acquisition and absence of radiation exposure. Next, by 
virtue of recent developments in the optimization of the pulse sequences and coils used, the 
systems can be easily used for imaging clinically relevant sites (lumbar spine, proximal 
femur) [Krug et al., 2005]. In addition, MRI-based systems allow the physiological aspects 
of bones to be determined beyond the mineralized bone component (marrow fat content, 
water content, marrow perfusion and marrow diffusion) [Griffith & Genant, 2012]. 

Nevertheless, when compared with HR-pQCT scanners, HR-MRI has a significantly lower 
SNR and larger in-plane voxel size (typically ~300 µm [Krug et al., 2010]) due to their 
“trade-off” character (reducing voxel size reduces SNR and vice versa). Further, imaging 
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times  are  relatively  long  (about  10-12  min.,  depending  on  a  system  type)  [Krug  et  al.,  
2008; Krug et al., 2010]. Because patients must lie still in a long narrow tube, this imaging 
modality is not feasible for all cases. 

In a recent study by Krug et al. [2008], the use of pulse sequences optimized for the 
imaging of trabecular bone structures, allowed in-plane voxel sizes of the HR-MRI 
scanners  to  reach  close  to  150x150 µm.  However,  this  is  still  similar  to  the  thickness  of  
individual trabeculae. Therefore the partial volume effect arises, and is compensated for by 
increasing the image slice thickness (usually three times larger than in-plane voxel size) to 
gain sufficient SNR [Krug et al., 2008]. 

Typical characteristics of bone imaging modalities are shown in Table 3. 

2.2.3. Image quality 

In the end, reliable estimation of whole bone strength also depends on image quality 
yielded by the above-mentioned modalities. Image quality depends on factors such as: 
detector and source characteristics, screening time (longer screening time increases risk of 
patient motion artefacts) and artefactual noise. In x-ray-based modalities, artefactual noise 
can be cause by, e.g., beam hardening or beam polychromaticity. In MRI-based modalities, 
sources of artefactual noise can be low-frequency phase shifts due to magnetic field 
inhomogeneity or localized differences in magnetic susceptibility [Beutel et al., 2000; 
Dhawan et al., 2008].  

X-ray based imaging modalities may be adversely affected by factors that reduce images 
resolution, increase noise level or occurrence of image artefacts. Image resolution may be 
reduced by photon scattering during the process of conversion of x-rays to light in a 
detector. Photon scattering results in the blurring of an image, however, modern systems 
have been refined to minimize this problem. Further, detector element size may also result 
in image blurring, as larger detector elements can fail to discriminate the transition 
between two tissues that fall within a single pixel/voxel (partial volume effect). 

Further, the main noise sources in radiographic images are the x-ray quantum noise, the 
non-uniform intensity of the x-ray beam, the internal noise of the system, scattered 
radiation, quantization noise, patient related motion artefacts and structural noise [Hanson, 
1981; Kak & Slaney, 1988; Williams et al., 2007; Boas & Fleischmann, 2012]. The x-ray 
quantum noise causes of random streaks artefacts usually in direction of larger attenuation. 
The non-uniform intensity of the x-ray beam is a statistical noise that reduces the contrast 
sensitivity. This noise arises from detection of only a finite number of x-ray quanta. The 
internal noise of the system is an electronic noise corresponding to properties of particular 
detectors (e.g., variation in sensitivity can cause ring artefacts). Scattered radiation causes a 
reduction in the dynamic range of x-ray intensities and an increase in noise as it contains 
no usable signal. Quantization noise is a truncation error caused by the digitalization 
process. Patient motion during imaging procedure causes blurring, double images or long 
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range streaks (motion artefacts). Structural noise is caused by the superposition of various 
types of overlapping tissues and results in false determination of transition of particular 
tissues. 

Furthermore, the quality of images yielded by CT-based imaging modalities can be 
compromised by high-pass filtration, the back projection of noise, the back projection 
reconstruction algorithm itself and noise artefacts caused by variations in the translational 
and rotational motion of the x-ray source and detector assembly during the screening 

procedure [Hanson, 1981; Kak & Slaney, 1988; Boas & Fleischmann, 2012]. The back 
projection of noise in the projections causes streaks artefacts if the maximum frequency 
presented in the image data exceeds the maximum recordable at given sampling rate. The 
back projection algorithm can cause Gibbs phenomenon, streaks and Moire patterns. These 
artefacts appear due to incorrectly selected number of samples per projections (under 
sampling), a number of views, a reconstruction grid or filter. 

MRI noise sources can be divided into three categories: sources that are related to the use 
of the MRI scanner (technician/user-defined settings), MRI scanner-related sources and 
patient-related sources [Gudbjartsson & Patz, 1995; Beutel et al., 2000].  

Technician/user-defined settings involve compromises in scanner settings (noise 
optimization), so the final noise level must be considered before actual imaging. Primary, 
the noise level is affected by the strength of the magnetic field. Stronger field increases 
SNR, approximately twice with twofold increase in a field strength but also quadruplicates 
specific absorption rate (SAR). Increase in SAR can result in increased tissue heating and 
therefore longer screening times are used to reduce tissue heating. This, however, leads to 
higher occurrence of motion artefacts. Further, the noise level depends on the selected field 
of view. The larger the field is, the more protons contribute to the outcome signal. This is, 
however, at the cost of decreased resolution. Next, the noise level is affected by the 
number of image acquisitions. Larger number of image acquisitions reduces uncorrelated 
noise (e.g., termal noise), Next, the noise level depends on the sample bandwidth  
(a narrower bandwidth decreases the noise digitalization) and the quality of the receiving 
coil. The optimal setting of the coil to the tissue of interest gives better SNR. Moreover, 
noise artefacts that can occur in MRI images due to the incorrect setting of pulse sequences 
are called the Gibbs phenomenon, aliasing, chemical shift and the partial volume effect 
(interface between two kinds of tissues captured within a pixel/voxel). The Gibbs 
phenomenon appears in images as ringing artefact that is caused by data truncation and 
undersampling. Aliasing causes the misplacement of anatomical structures or striping. 
Chemical shift artificially decreases or increases signal intensity coming from particular 
tissue. 

In addition, quality of MRI images can be compromised by appearance of image artefacts 
due to MRI scanner-related sources. These artefacts are caused by magnetic field 
variations shifting tissue contrast to the wrong places or gradient nonlinearity producing 
rectangular sizes of pixels at the edges of the field of view. Further, artefact can appear due 
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to local field variations in consequence of the presence of ferromagnetic material. This is 
called a susceptibility effect and causes incorrect placement of detected image information. 
Next, MRI image artefacts can be caused by non-uniform response of the imaging coils 
(fall-off/decreased intensity in the image) or radio frequency system. Leaked radio 
frequency pulse into the imaging room causes image distortions.  

Furthermore, the MRI images can also be compromised by patient-related noise artefacts. 
Sources of this type noise are the motions of the patient during the imaging and the thermal 
conductivity of the patient. Motion artefacts are not only caused by blinking, sneezing or 
speaking during acquisition but are also caused by uncontrollable movements such as 
respiratory or blood flow motion. Such movements lead to the partial miss-positioning of 
image information, the so called ghost effects [Beutel et al., 2000].  

Since the focus and purpose of this study is to enhance the quality of image analysis for the 
assessment of bone structures in radiological images, the following chapters will focus on 
image processing techniques applicable to QCT, pQCT, HR-pQCT images. The 
description of the image processing techniques used for planar radiographic, DXA or HR-
MRI measurements is considered irrelevant and will not be discussed in the following 
chapters. 

2.3. Preprocessing - Denoising Techniques 

The purpose of image preprocessing-denoising procedures is to emphasise the desired 
details in images and to reduce noise generated during imaging procedures. The accurate 
categorization of noise removal techniques is quite difficult as most of the recent methods 
are a hybrid of multiple methods. For simplicity, we can divide noise removal techniques 
into two main groups: linear and non-linear noise removal methods. Linear noise removal 
methods are not spatially adaptive and are based on the direct change of observed values 
according to filter settings (e.g. Wiener filter [Rangayyan & Neuman, 2005]). Linear 
methods radically reduce the amount of noise in the image, but also over smooth and thus 
lose fine image detail (information from high frequency spectral components – similar to 
noise). Therefore, the main focus of this study will be on non-linear noise removal 
techniques that search the neighbourhoods of the observed values to determine the most 
appropriate values. These techniques, have greater potential to deal with the non-additive 
nature of noise in medical images [Gravel et al., 2004]. The evaluation of image denoising 
techniques is relatively straightforward with the use of technical parameters such as Peak 
Signal-to-Noise Ratio (PSNR) and Signal to Mean Squared Error (SMSE). However,  use 
of these parameters to evaluate medical images is limited, as it is rather difficult, if not 
impossible, to distinguish the true (relevant) signal value from signal affected by the noise. 
Therefore, raw images that come directly from clinical imaging modalities are usually 
preferred due to the possible loss of relevant detail during denoising procedures [Bedi & 
Goyal, 2010]. 



16 
 

To date, hundreds of denoising methods with numerous modifications have been 
developed and their review is outside the scope of this study. Therefore, in the following 
sections there will only be an overview of commonly used image denoising methods: 
Order-statistic techniques, Diffusion-based techniques, and Transform-based techniques. 

Order-statistic techniques 

The class of order-statistic filters is relatively large. The concept of this class of filters is 
based on the assessment (ranking-order) of pixel values in the determined neighbourhood 
of the processed pixel from the minimum to the maximum. It includes not only the median 
filter, which is probably the most commonly used clinical noise removal technique, likely 
due to its well understood nature (see Table 4 [Schalkoff, 1989]) but also additional filters 
such  as:  Max  filters,  Min  filters,  Max/Min  filters,  -trimmed  filters  and  L-filters.  Max  
filters remove low-valued impulsive noise whereas Min filters remove high-valued 
impulsive noise. Max/Min filters combine characteristics of both previously mentioned 
filters. The -trimmed filters are hybrid of the mean and median filters. They discard the 
most atypical pixel values (based on alpha parameter) and calculate mean value from the 
rest. At last, L-filters comprise weighted combination of all previous filters. However, the 
preference and broad usability of median filters is mainly due to their simplicity of 
implementation and their ability to provide relatively reasonable results.  
 

Table 4: Properties of the standard median filter 

The median filter reduces the variance of image intensities 

Intensity oscillations with a period less than the window width are smoothed 

Median filters will change the image intensity mean value if the spatial noise distribution in 
the image is not symmetrical within the window 

Median filters preserve certain edges shapes 

Median filters preserve the location of edges if the window is symmetrical 

Median filters do not generate new gray-level values 

The shape of the median filter window may affect processing results 

 

The standard median filter (SMF) provides reasonable results while removing the 
impulsive type of noise. However, its performance declines when the noise is signal-
dependent. Hence, several modifications to the standard SMF have been introduced since 
its introduction for time series analysis [Tukey, 1977] and its extension to 2D space [Pratt, 
1978]. Between the first variations, the techniques based on threshold decomposition and 
stack  filters  [Fitch  et  al.,  1984;  Lin  et  al.,  1990],  separation  of  dimension  [Nodes  &  
Gallagher, 1983], weighted windows [Brownrigg, 1984; Arce, 1991], Max/median filtering 
[Arce & McLoughlin, 1987], FIR-median hybrid filtering [Nieminen et al., 1987] and a 
multistage (preserving details in horizontal vertical and diagonal directions separately) 
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approach [Arce & Foster, 1989; Arce, 1991] have been developed. These techniques more 
preserve desired image details and, in the case of weighted median filters, allow control of 
the filtering performance at the expense of somewhat lower noise suppression. The desire 
to preserve fine image details while still using powerful median filtering characteristics led 
to the introduction of switching-based median filters. Based on defined selection criteria 
(noise level estimator), these filters first detect pixels corrupted by noise and then apply the 
SMF to the pixels while preserving the rest of the image pixels [Luo, 2006]. More recently, 
switching median filters have been enhanced by using a fuzzy statistic-based approach 
[Eng & Ma, 2001; Toh & Isa, 2010]. 

Diffusion-based techniques 

Diffusion-based denoising methods were introduced by Perona and Malik [1990]. They 
adapted the isotropic heat diffusion equation for image denoising and for preserving 
important image features. In an iterative process, the values of particular image pixels are 
“diffused” with pixels from their neighbourhood. However, the diffusion-based approach is 
limited by assessment of a diffusion conductance. The conductance is only controlled by 
local value gradients in each of the particular neighbourhoods and does not provide any 
image-dependent estimation for selection of the optimal gradient diffusion flow 
magnitudes. Furthermore, the original approach does not use any morphological or 
structural information to control the diffusion in different locations of the processed images 
(fine structures or smooth regions). 

Over the last two decades, researchers have tried to overcome the limitations of the 
original seminal approach by introducing a number of modifications. For instance, the 
diffusion conductance was controlled by: local neighbourhood value gradients estimated 
from the smoothed image [Catte et al., 1992], magnitude and direction of gradients 
[Weickert, 1999], use of a modified optical flow technique model with generalized 
intensity constraint [Monteil & Beghdadi, 1999], or use of a robust estimator to preserve 
sharper boundaries [Black et al., 1998]. Furthermore, additional modifications were 
introduced  to  control  the  level  of  the  diffusion,  which  is  different  for  edge  areas  and  the  
inside of the smoother regions. These modifications comprise introduction of a measure of 
local scale described by: the minimum reliable scale of Gaussian kernel above the required 
critical value (defined threshold) [Elder & Zucker, 1998], or the estimation of rough object 
size using so-called digital hyperball or hyperellipsoid definition [Saha & Udupa, 2001]. 
More recently, the “ball” scale of the hyperball scaling approach was further modified into 
generalized scale object size estimation that allows effective diffusion along edges and 
elongated structures [Souza et al., 2008]. In another study, Gilboa et al. [2004] modified 
the standard diffusion approach to a more general framework by introducing extensive 
analysis in a complex domain called a nonlinear complex diffusion. In the nonlinear 
complex diffusion, the imaginary part acts as a robust edge detector and the real part 
behaves as a real nonlinear diffusion process. This modified approach clearly outperformed 
the original standard diffusion approach [Salinas and Fernandez, 2007].  
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Transform-based techniques 

The transformation of an image from space domain to the frequency domain became 
available  after  the  introduction  of  the  Fourier  transform  and  the  Fast  Fourier  Transform  
algorithm [Cooley et al., 1969]. Fast Fourier Transform is an efficient algorithm for 
computation of the frequency domain representation for large data sets. The idea of using 
the frequency domain comes from the natural behaviour of natural images where step 
changes (high frequencies) are usually scarce while scenes that vary slowly and smoothly 
across the image space (low frequencies) are present in abundance. Therefore, frequency 
domain-based filtering (i.e., removal of high frequency components) may provide better 
results in some applications (e.g., mimicking natural bone geometry and structure), ideally 
with guidance from a priori information about noise characteristic frequency components 
[Rangayyan & Neuman, 2005]. However, that is not entirely true and the simple 
suppression of high frequency components may lead to the removal of some of the 
desirable image components along with the noise components. For the construction of low-
pass (smoothing effect), high-pass (sharpening and extraction of edges), selective band 
pass or comb filters (periodic artefact removal), the Butterworth or Wiener designs are 
usually used [Rangayyan & Neuman, 2005; Dhawan et al., 2008]. 

Although  the  Fourier  transform  has  proved  to  be  a  very  useful  tool  to  study  signals  and  
images in the frequency domain, it lacks the possibility of space localization. Therefore, a 
theory for multiresolution signal decomposition, known as Wavelet transform (WT), was 
introduced, allowing space localization of image spectral components [Mallat, 1989]. The 
main advantage of the wavelet approach is sampling interval variation. Through sampling 
interval variation, WT can perform multiresolution analysis for event localization in data 
over time or space, with respect to all frequency components. This proved to be very useful 
for the effective definition of specific image features and image classification [Dhawan et 
al., 2008]. 

Denoising  based  on  WT was  used  and  studied  more  extensively  after  the  introduction  of  
the soft-thresholding approach by Donoho [1995]. Soft-thresholding uses a defined 
threshold value at coarser scales of decomposed image data to reduce the values of the 
wavelet coefficients obtained after wavelet decomposition of the original image. Soft-
thresholding provides a simple and relatively successful noise removal tool. However, the 
setting of the optimal threshold value remains challenging unless noise characteristics are 
known. Therefore, researchers introduced methods for automatic noise level estimation and 
adaptive threshold setting based on image characteristics, often modelled by Bayesian 
framework [Chang et al., 2000; Sanches et al., 2008]. These techniques treat wavelets 
coefficients as random variables and try to estimate noise free images with the use of 
various prior models in adjacent neighbourhoods from the wavelet coefficients of given 
(noisy) images (e.g. generalized Gaussian priors [Gupta et al., 2005], generalized 
Laplacian priors [Pizurica & Philips, 2006], Markov Random Fields [Malfait & Roose, 
1997], non-Gaussian priors [Sendur & Selesnick, 2002] or scale mixtures of Gaussians 
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[Portilla et al., 2003]). However, these methods are usually time consuming and require 
high computational power when dealing with minimization of a maximum a posteriori 
optimization function. More recently, WT- based denoising was enhanced by substitution 
of dependence on statistical estimation of noise-free images for dependence only on 
estimation of noisy data [Luisier et al., 2007]. Other refinements were the introduction of 
the modification of the WT itself [Luisier & Blu, 2008] and so-called Fractal-based 
denoising approaches (scaling and copying similar blocks of wavelet coefficient to the 
lower decomposition levels) [Zhong & Ning, 2005; Ghazel et al., 2006]. 

2.4. Segmentation Techniques 
Image segmentation is defined as the process of identifying and delineating objects in 
images [Udupa et al., 2006]. In other words, image segmentation analyses the image data 
and then subdivides the regions/objects of interest in the images so that parts with 
similar/cohesive properties are grouped together. Image segmentation is an important part 
of any image analysis as proper segmentation process is crucial for following assessment 
of the image data (e.g. recognition, classification, registration and 3D visualization). 
However, despite extensive research during the last decades, accurate segmentation 
remains a difficult task [Sharma & Aggarwal, 2010]. The accurate categorization of image 
segmentation techniques is as challenging as that of denoising methods, and different 
authors divide segmentation techniques in different ways [Heinonen, 1999; Withey & 
Koles, 2007; Sharma & Aggarwal, 2010]. We will follow the line proposed by Heinonen 
[1999] and divide image segmentation techniques according to their operational principle. 
This study will consider region-based techniques, boundary-based techniques, 
mathematical morphology-based techniques, active contours-based techniques and 
classification-based techniques. In reality, however, the majority of the techniques used in 
medical image analysis are hybrid to significantly improve the segmentation performance 
and robustness of approach used [Yoo, 2004]. The evaluation and quantitative comparison 
of different image segmentation algorithms is difficult because of the number of 
parameters and factors that have to be taken into account. Nevertheless, a few researchers 
have suggested a practical evaluation framework for segmentation algorithms that 
considers the precision, accuracy and efficiency [Udupa et al., 2006]. 

Threshold-based techniques 

Thresholding is the most used segmentation method for clinical images nowadays. Its wide 
popularity is partially due to its simplicity, effectiveness and clear interpretation of 
segmentation outcomes. The technique is based on the use of the pixel gray-level values of 
the image data to find a group of data with similar pixel values [Sahoo et al., 1988; Sezgin 
& Sankur, 2004]. Such a procedure can either use a simple single-threshold approach that 
creates binary images or, more often, a multiple-threshold approach that clusters image 
data into more classes defined by the number of thresholds used.  
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Despite its simplicity, finding the optimal threshold values, to accurately differentiate 
regions of interest, is not a simple task. When applied to noisy data, improperly set 
thresholds can cause larger image assessment errors. Therefore, over the past decades, 
many approaches have been developed to replace operator intervention and automatically 
estimate the optimal threshold values for particular image data sets [Sezgin & Sankur, 
2004]. These approaches can be assigned into the following categories. Image histogram 
shape-based techniques determine the optimal threshold setting by analyzing of the shape 
properties of the histogram (detection of peaks and valleys or concavities) [Tsai, 1995; 
Guo & Pandit, 1998]. Clustering-based techniques cluster divided data into two classes that 
comprise foreground and background pixels. The threshold value is set according to 
analysis of the mean variances of these two classes [Leung & Lam, 1996], the weighted 
sum of the inner class variances [Liao et al., 2001], the minimum error of misclassification 
[Moser & Serpico, 2006] or variances with the use of the fuzzy clustering approach 
[Jawahar et al., 1997]. In Entropy-based techniques, the optimal threshold is found when 
the entropy of a segmented image is maximized [Yen et al., 1995] or the cross entropy 
between the original and segmented image is minimized [Yin, 2007]. Further, the fuzzy 
classification entropy approach considers  inter- and intra-class variance to determined the 
optimal threshold selection [Liu et al., 2006]. The spatial probability-based techniques take 
into account local characteristics of an image and select the optimal thresholds based on an 
analysis of the local histograms [Li et al., 1997; Yang et al., 2005] or the nearest-neighbour 
statistics of each particular pixel in an image [Sauvola & Pietikäinen, 2000; Vasilic & 
Wehrli, 2005]. More recently, Batenburg and Sijbers [2009] introduced an approach for 
tomography-based images where the optimal thresholds are computed by minimizing the 
distance between the forward projection of the segmented image and the measured 
projection data. However, in spite of decades of research on this topic, threshold-based 
segmentation still remains vulnerable to image inhomogeneity, artefacts and noise present 
in the image data. 

Boundary-based techniques 

The boundary-based approaches use the a priori information that abrupt changes in pixel 
intensity values occur at boundaries between regions in the image data. First the algorithm 
detects these localized discontinuities (edge detection), commonly found with different 
gradient operators, and provides candidates for possible edges of objects of interest. These 
operators usually use the first-order differentiation (e.g., Sobel or Roberts operators) or the 
second-order differentiation (e.g., Laplacian operator) [Sonka & Fitzpatrick, 2000], 
although some more sophisticated techniques based on Fuzzy, Genetic and Neural 
Network approaches were recently introduced [Senthilkumaran & Rajesh, 2009]. Second, a 
thresholding procedure is applied to suppress spurious and enhance coherent edges. 
Finally, segmentation is completed by assembling the enhanced edges into closed and 
meaningful object boundaries [Cheng et al., 2001]. During the past decade, several 
algorithms have been developed for boundary assembly. These algorithms are based on 
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border tracing [Yao et al., 2005], graph searching [Sanfeliu et al., 2002], shortest spanning 
trees [Kwok et al., 2004], or the EdgeFlow approach [Ma & Manjunath, 2000]. 
Nevertheless, mainly due to the common presence of noise and the inhomogeneity in 
natural image data, completing fully closed boundaries is still a difficult task and methods 
tend to result in spurious or broken edges [Rangayyan & Neuman, 2005]. As a result, the 
edge detection algorithms are usually combined with region-based segmentation 
approaches to reduce their susceptibility to noise and to provide additional spatial 
information about the object of interest in the image data [Sonka & Fitzpatrick, 2000; 
Cheng et al., 2001]. 

Region-based techniques 

In comparison to threshold based segmentation, region-based techniques use information 
about neighbourhood characteristics and try to create connected regions from pixels that 
correspond to the same object in an image. These characteristics can comprise a similarity 
of pixel intensity values, spatial proximity and connectedness. However, real images rarely 
include only homogenous objects. Therefore, the standard approach was extended with the 
use of statistical properties (e.g. mean, variance) or homogeneity criteria [Sonka & 
Fitzpatrick, 2000; Yoo, 2004; Rangayyan & Neuman, 2005]. Region-based techniques can 
be divided into two groups including region growing-based approaches and region 
splitting/merging algorithms. 

Region growing segmentation, proposed in its simplest form by Adams and Bischof 
[1994], starts from the selection of a seed point (usually defined by the operator) that is 
located in a region of interest. The nearest neighbourhood is then searched. If 
neighbourhood pixels satisfy the defined criteria of homogeneity (similar pixel intensity 
values),  the region grows by including these pixels into the region. The correct setting of 
seed points, the proper homogeneity criteria and the order in which neighbourhood pixels 
are explored are the main challenges of this approach. Therefore, since the original work 
where region growing relies only on absolute pixel intensity values, the approach has been 
further improved by integrating boundary information [Fan et al., 2001], the use of so 
called fuzzy-connectedness [Udupa et al., 2002], Bayesian probability [Fan & Xia, 2001] 
or Markov random fields [Qin & Clausi, 2010] into homogeneity criteria, or by methods 
for automatic seed selections [Stewart et al., 2002; Fan et al., 2005]. 

Region splitting and merging segmentation algorithms are based on two successive steps. 
The first step involves the splitting of the image data into square sub-regions that contain 
only pixels fulfilling the criterion of homogeneity. In the second step, the neighbourhood 
sub-regions with similar characteristics can be merged, if the second criterion of 
homogeneity is reached. The main problem with this approach is that the image 
segmentation can result in a blocky (square) representation [Sonka & Fitzpatrick, 2000]. 
This problem can be reduced by splitting the regions into substantially smaller sub-regions 
[Cheng et al., 2001] or through the use of Delaunay triangulation instead of the standard 
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square-block approach [Gevers, 2002]. This is, however, at the cost of largely increased 
computational expenses.  

Mathematical morphology-based techniques 

Mathematical morphology-based techniques are used for geometrical structure analysis in 
image data. The analysis is performed by using a collection of morphological segmentation 
operators that are based, in principle, on a type of distance transform and the chosen 
structuring elements. The main operators are morphological erosion and dilation. In 
combination with each other, these two main operators can further provide additional 
morphological transformations such as morphological opening (erosion followed by 
dilation) and closing (dilation followed by erosion). These operators have been originally 
defined in binary images. However, the approach was later extended for gray-scale 
applications [Sonka & Fitzpatrick, 2000; Pesaresi & Benediktsson, 2001]. Morphological 
operators cannot be applied directly as a segmentation tool. However, in combination with 
edge detection or region-based approaches, they can provide an effective approach for 
image segmentation, the so called Watershed transformation [Vincent & Beucher, 1989]. 

The Watershed transformation is based on the detection of border-lines that separate 
distinct regions in the image data. Usually, this approach is not applied directly to image 
data, but it employs distance transform or gradient operators that create a “topographic 
surface” of the image data and then detect potential borders between segmented regions 
[Vincent & Soille, 1991]. The topographic surface corresponds to the measure of local 
elevation (slope) of the pixel intensity values. Then, the segmentation starts by “flooding” 
this topographic surface from the regional minima, called basins, to the highest (peak) 
pixel intensity value. The algorithm further raises the “water level” uniformly over the 
topographic surface. When the “water” rises to a curtain level, neighbourhood basins start 
to  merge  and  a  dam is  built  to  prevent  it.  The  segmentation  process  ends  at  the  moment  
when no other dam needs to be constructed, the topographic image is fully flooded, and 
only the tops of the dams, called watershed lines, are visible [Sonka & Fitzpatrick, 2000]. 

The original approach to watershed-based segmentation that uses gradient information is 
usually slow and leads to over-segmentation. This is mainly caused by the high sensitivity 
of the gradient operators to noise level or image texture that produce large amounts of non-
relevant regional minima and maxima in the topographic image. To overcome these 
problems, common filtering (e.g. low-pass filter) can be applied to image data before using 
the gradient operators. As a result, the number of segmented regions is lowered. However, 
some relevant information, presented by high-frequencies, might be lost [Pesaresi & 
Benediktsson, 2001]. These problems led to the introduction of a computationally efficient 
watershed algorithm [Vincent & Soille, 1991]. This algorithm employs a priori knowledge 
about possible patterns or structures presented in the image data and the use of so called 
markers that determine regions of interest [Vincent & Beucher, 1989; Beucher, 1992; Gao 
et  al.,  2001].  In practice,  choosing the proper region markers remains a difficult  task.  To 
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address this challenge, new watershed-based algorithms have been developed, including: 
the “fuzzy approach” [Bouchet et al., 2007], algorithms based on fast region merging using 
graph representations [Haris et al., 1998], the integration of the watershed transform with 
an energy minimalization technique (Watersnakes) [Nguyen et al., 2003] or with 
ultrametric contour mapping (OWT-UCM algorithm) [Arbelaez et al., 2011]. 

Deformable models 

The parametric deformable model-based segmentation approach was firstly introduced by 
Kass et al. [1988]. The approach uses the evolution of closed smooth spline curves, called 
snakes, within an image so that the desired object of interest in the given image can be 
detected. The evolution of these original spline curves is based on energy minimization 
controlled by: 1) internal forces to keep desired smooth curves, and 2) by external forces 
derived from imaged data to attract curve evolution towards desired object boundaries. 
This unique approach opened a new way to image segmentation, but suffers from some 
inherent limitations [McInerney & Terzopoulos, 1996; Cremers et al., 2007]: First, due to 
the  use of image gradient information as an external force, snakes are very sensitive to 
initialization that must be close to the desired object; otherwise, the contour can be 
attracted towards undesired local edges. Second, due to internal forces keeping contour 
stiffness, there is a limited contour evolution into boundary concavities, especially in noisy 
images. Third, the original approach does not allow segmentation of multiple objects in an 
image and thus is not able to follow topological changes in image data. Finally, the original 
approach is computationally expensive. 

Over the past two decades, several authors have introduced new approaches to solve 
problems with the necessary initialization close to the desired object and the difficult 
progression into boundary concavities. These new approaches include: methods based on 
the implementation of pressure forces [Cohen & Cohen, 1993], control points [Davatzikos 
& Prince, 1995], directional attraction [Abrantes & Marques, 1996] or the Gradient Vector 
Flow approach [Xu & Prince, 1998]. However, multiple object segmentation still remains 
difficult for the original approach in the absence of a priori statistical  knowledge  on  the  
shape of the desired object [Cremers et al., 2002]. 

Therefore, to address the multiple segmentation problem, Osher and Sethian [1988] 
introduced the geometrical active contour model, so called level set. Level sets employ 
implicit geodesics or minimal distance curves where contour propagation is controlled by 
its curvature. In comparison to snakes, this approach is less sensitive to initialization and 
local noise. In addition, level sets naturally allow the following of topological changes and 
the use of probabilistic interpretations to the segmentation approach (including criteria as 
colour, texture, motion, etc.) [Suri et al., 2002; Cremers et al., 2007]. However, level sets 
also have drawbacks: possible segmentation failure if an object is embedded in another 
one; possible evolving contour “leaks” due to object boundary gaps; and segmentation 
failure caused by curtain singularities (e.g. protrusion, indentation) [Kimia et al., 1994]. 
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Since their introduction, many level sets variations have been developed to incorporate 
stopping criteria (e.g. gradient-, edge-, area minimization-, curvature-based), clustering, 
Bayesian statistic, shape prior or image statistic [Suri et al., 2002; Cremers et al., 2007]. 
Recently, such algorithms have evolved to provide better performance while dealing with: 
noisy and topologically complicated images [Chan & Vese, 2001; Chen, 2010; Shen et al., 
2011], images containing intersecting objects and occlusion [Ali & Madabhushi, 2012], 
images with different texture, colour or shape patterns [Karoui et al., 2010]. Furthermore, a 
new algorithm have been developed to eliminate the need for reinitialization and to 
radically reduce computational costs [Li et al., 2010]. 

Classification-based techniques 

Classification-based segmentation techniques are typically used for the segmentation or 
pattern recognition of multispectral image data or image data from where multiple features 
such as pixel intensity, gradient, spatial properties or texture measures can be derived 
[Sonka & Fitzpatrick, 2000]. These multiple features are grouped into feature vectors in 
the feature space that is related to the original data. The classification procedure analyses 
the feature space and assigns labels to all feature vectors that characterize particular 
classes/subgroups (e.g. particular tissues) in the image data in the best way [Bezdek et al., 
1993; Sonka & Fitzpatrick, 2000]. Classification techniques can be categorized as 
supervised and unsupervised (so called clustering techniques. 

Supervised classification techniques are initialized via user identification and labelling of 
samples of the physical classes (tissues) that need to be segmented. First, these samples are 
used for the algorithm training and then the trained algorithm performs automatic 
classification of all the remaining image data. Unsupervised classification techniques 
group data with similar features vectors together and create natural structures (subgroups) 
in the image data without the need for initialization. However, at the end of the 
unsupervised classification, the user must identify particular subgroups and assign desired 
labels (e.g., corresponding to particular tissues) [Bezdek et al., 1993; Sonka & Fitzpatrick, 
2000]. 

Supervised classification techniques can be further divided according to parametric or non-
parametric design. The supervised parametric methods are based on Bayesian design with 
the use of maximum likelihood estimation [Lei & Udupa, 2003]. These classifiers use a 
mixed population (weighted summation) of a statistical distribution that contains prior 
probabilities and conditional probability density functions corresponding to each of the 
selected classes.  

The advantage of non-parametric methods is that they do not require any prior knowledge 
about the statistical properties of the image data. The group of non-parametric methods 
include: a simple minimum distance classifier, the well known Parzen window, k – nearest 
neighbourhood classifiers (k-NN) or classifiers based on decision tree theory. The simple 
minimum distance classifier searches for the minimum Euclidean distance of a given 
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feature vector from the selected class mean vectors [Sonka & Fitzpatrick, 2000]. The 
Parzen window directly estimates a posteriori probabilities from samples in the given 
window [Fukunaga & Hayes, 1989]. The k-NN classifiers perform direct classification 
depending on the majority of the occurring classes in the nearest neighbourhood [Goin, 
1984]. At last, classifiers based on decision tree theory use the Fisher’s linear discriminant 
to classify given image data [Ouyang et al., 2009].  

Despite their high classification accuracy, non-parametric supervised classification 
methods usually require large computational times to find the differences between the 
training sets and the tested patterns, are vulnerable to noise and need good quality training 
sets in order to perform reasonably well. To overcome these limitations, the popular k-NN 
algorithm has been modified recently in order to improve classification effectiveness by 
incorporating similarity criteria [Chen et al., 2009; Liu et al., 2013] or by decreasing the 
need for large training sets [Huang, 2006; Triguero et al., 2012]. 

Unsupervised classification (clustering) is used in many situations where accurate labelling 
of the test samples and algorithm training are difficult or computationally expensive [Jain 
et al., 2000; Xu & Wunsch II, 2005]. The main goal of the clustering techniques is to 
divide an image into a finite number of natural subgroups (clusters) that are sufficiently 
homogeneous, according to the defined measure of similarity without operator 
involvement. The desired result is that the similarity is greater between objects within the 
same cluster than between objects from different clusters. The clustering is difficult, as the 
process can produce clusters with many different sizes and shapes, and fritter regions with 
holes or containing a single pixel as its own region. However, the advantages of speed, 
reliability and consistency in large data organization were the driving forces behind the 
recent development in this field [Jain et al., 2000]. The group of clustering classifiers 
comprises a large number of methods and their combinations that are based on squared 
error criteria [Kanungo et al., 2002; Chang et al., 2009], graph theory [Silva & Zhao, 2012; 
Peng et al., 2013], fuzzy theory [Cai et al., 2007; Yu et al., 2010], the use of Markov 
Random Fields [Wu & Chung, 2007; Lin et al., 2011], the neural networks approach [Ou 
& Murphey, 2007; Sowmya & Rani, 2011], the kernel approach [Tuia et al., 2011; Huang 
et al., 2012] and/or the use of rough sets [Mitra et al., 2006; Hassanien et al., 2009]. A 
detailed description of the particular techniques is beyond the scope of this study; however, 
more information can be found in large survey studies [Bezdek et al., 1993; Jain et al., 
2000; Xu & Wunsch II, 2005]. 

2.5. Bone Analysis 

2.5.1. Current status 

Accurate assessment of bone structural traits (BMD, cross-sectional geometry, cortical 
thickness, trabecular architecture, etc.) from medical images is challenging due to 
limitations imposed by image resolution, noise and movement artefacts. For clinical 
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settings, the results must be sufficiently reproducible and tangible. Hence, many 
sophisticated image-denoising algorithms have not been applied in bone clinical research 
due to their complexity, ambiguity of results and possible loss of fine detail, resulting in 
analysis distortion. Although some new denoising methods for different clinical 
applications based on statistical approaches have been developed [De Pierro & Yamagishi, 
2001; Villain et al., 2003; Qi, 2005; Afonso et al., 2010], the previously mentioned issues 
limit their use in clinical imaging. Therefore, order-statistic, linear and local linear filters, 
whose influence on image data is well known and understood, are extensively used in 
clinical bone research [Bedi & Goyal, 2010; Krug et al., 2010]. 

Image segmentation is just as challenging as denoising. Limited image resolution level, 
presence of noise and usually unknown ground truth limits the performance of many of the 
previously mentioned techniques (see section 3.4). Therefore, hybrid techniques (e.g., 
[Kang et al., 2003; Zoroofi et al., 2003]) are used to improve the segmentation 
performance [Sonka & Fitzpatrick, 2000; Yoo, 2004; Rangayyan & Neuman, 2005; 
Sharma & Aggarwal, 2010].  

Plane radiography 

Over the past decade, several methods have been developed for bone analysis in x-ray 
based modalities. Behiels et al. [2002] developed a method for accurate bone boundary 
segmentation in digital radiographs. The Behiels method is based on fitting active shape 
models (snakes) that are driven by a least square fit of the contour shape towards the bone 
boundary position. The boundary position is determined by statistical analysis of the image 
intensity in the neighbourhood of each point within the contour. The contour is further 
updated by a step-wise smoothing criteria to correct contrast or inhomogeneity in the bone 
border-line. Furthermore, three other approaches use variations of active contour methods 
for accurate bone segmentation in plane radiology.  

Ballerini and Bocchi [2003] introduced a method for the automatic segmentation of hand 
radiographs to simplify bone age determination. Given a priori knowledge about hand 
structure, the method uses a multiple genetic snakes approach that segments the hand bone 
borders without the need for manual initialization and optimalization. McInerney [2008] 
introduced a method for fast and interactive 2D segmentation applicable in plane radiology 
and MRI images. The method uses curve snakes with sketch-line initialization. Although 
the method is apparently very fast, it requires time consuming user initialization close to 
the borders of segmented objects, the setting of various control parameters and 
occasionally some editing after the segmentation procedure. Diop and Burdin [2013] 
developed segmentation method for bi-planar radiographs that uses variational geometrical 
active contours with shape priors (i.e., shapes derived from prior rough segmentations) to 
reveal bone shape deformation and to improve 2D/3D reconstruction. The shape priors are 
used to improve the segmentation procedure in regions with poor contrast or blurred bone 
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border-lines. However, this guided approach still fails to correctly segment regions near 
joints where occlusion phenomena can appear. 

Computed tomography – outer boundary detection algorithms 

Yao et al. [2005], developed an algorithm for bone edge detection based on multiscale 
estimation and correction of the normal direction of bone edges. The method uses 
windowing function and weighted edge strength calculations to determine the initial seeds 
corresponding to the strong edge points. With these points, the local normal direction of 
bone is estimated and this information is used in the modification of a simple Canny’s edge 
detector to improve the detection process. The authors report a relatively high accuracy 
level (~95%) for their automatic segmentation method compared to manual segmentation. 
However,  the  comparison  was  performed  on  only  9  CT  images  of  the  human  pelvis.  
Furthermore, the authors reported that the algorithm could fail in the presence of a high 
noise level in the image or complicated bone structures. 

Klinder et al. [2009] proposed a fully automatic, model based, method for identification 
and segmentation of the vertebral column. First, the method detects the spinal canal using a 
progressive adaptation of tube-shape segments into the spine area. Second, individual 
vertebrae are detected using a curved planar reformation and a generalized Hough 
transform models of all vertebra. Third, individual vertebrae are identified using rigid 
registration of vertebra shape models to detected vertebrae based on similarity criteria. In 
the last step, the final segmentation of the vertebral column is performed by modification 
of the shape models using a modified shape-constrained deformable model approach. This 
approach incorporates spatial relations between particular vertebral bodies and corrects 
inaccuracies caused by shape model fitting. The technique is fast and can segment the 
whole vertebral column in arbitrary CT images. However, the technique requires the 
training of models prior to the segmentation procedure and the method tends to 
overestimate segmentation results (the mean point-to-surface segmentation error  
~1.2 ± 1 mm). 

Zhang et al. [2010] introduced a fast segmentation method that uses 3D adaptive 
thresholding. Initially, standard thresholding is applied on 3D CT data. Then, inaccurate 
initial segmentation (holes in the bone structure, etc.) is corrected by applying a modified 
k-means clustering algorithm to 2D slices, then, the locally adaptive 3D thresholding is 
applied using a 10-voxel neighbourhood structure. The authors stated that the proposed 
algorithm overcomes the simplified method developed by Kang et al. [2003] with accuracy 
reaching nearly 100% for the correct vertebral segmentation. However, the authors have 
only used one set of data and only one radiologist performed manual segmentation (taken 
as a gold standard in this study). Therefore, the accuracy level reached is questionable. 
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Computed tomography – 3D volume segmentation 

Kang et al. [2003] describe a method for accurate segmentation of skeletal structures such 
as  the  proximal  femur,  the  knee  and  the  skull,  as  well  as  the  separation  of  cortical  and  
trabecular bone. First a rough segmentation is performed by a region growing procedure 
that uses local adaptive thresholds with correction based on local neighbourhood 
information. Second, boundary discontinuities are closed with the use of morphological 
closing with a spherical element. Third, anatomically oriented boundary adjustment is 
performed to refine small, previously smoothed, structuring elements by application of a 
threshold set to 50% of the maximum bone border intensity profile (the periosteal line) in a 
particular image slice  

Fourth, the endosteal border is determined using a 50% threshold of the endosteal intensity 
profile. In the last step, the final refinement of segmented structures is performed using 
morphological closing and hole-filling operations. The method needs the selection of a 
seed point for every selected bone for segmentation, specific separation of regions the 
process should avoid and occasionally, manual intervention for some specific cases. The 
authors stated high accuracy levels for the estimation of geometric parameters up to one 
voxel. 

In contrast with the previous study, Zoroofi et al. [2003] introduced an automated method 
for particular segmentation of the pelvis and the femur.  The method uses four steps.  The 
first step includes operator selection of the femur-pelvis area, re-sampling of voxel 
dimension, smoothing of image data by 3D Gaussian filter and histogram-based 
thresholding using Otsu threshold criteria, binarizing and the application of morphological 
closing and filling holes operations. In the second step, the rough estimation of the joint 
space is performed with a model-based approach. The third step employs Hessian filtering 
for the image enhancement of the hip joint space. In the fourth step, this information is 
further used for refining bone borders with a Moving disk technique. The authors stated 
that their approach is of clinical use. Nevertheless, the proposed approach fails to properly 
segment (according to the authors’ selected criteria of accuracy) up to 50% of cases where 
the femoral head did not have an ellipse-like shape or it was difficult to differentiate 
between the femur and the pelvis due to limited cartilage area, unevenly distributed bone 
tissue or poor quality of image data. 

In a study by Treece et al. [2010], the authors describe a method that should be capable of 
the unbiased segmentation of cortical bone from low resolution clinical CT data into a sub-
pixel range. The method uses a mathematical model of bone anatomy and an imaging 
system that is derived from the work of Prevrhal et al. [2003]. The method takes into 
account the in-plane point spread function (PSF) of the imaging system and the blurring 
caused by interaction between the CT slice thickness and the orientation of cortical bone. 
According to the authors, the method can segment cortical bone in low resolution data  
(~ 0.6 mm) up to a minimum thickness of 0.3 mm with estimated errors 0.01 ± 0.58 mm 
(mean ± 1 std.deviation) in comparison to reference high-resolution data. These results are 
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comparable with the work of Kang et al. [2003]. However, the method has a number of 
drawbacks such as using a standard thresholding procedure for the determination of 
cortical bone contour and; necessary correction of segmented contours due to errors caused 
by the thresholding procedure (thus more time needed for analysis). Also, usage of a fixed 
cortical CT over the whole image slice is unlikely realistic and could be the cause of 
largely overestimated cortical thickness (over 4 mm) in some test cases. 

Mastmeyer et al. [2006] proposed a hierarchical 3D technique for the segmentation of 
vertebral bodies. The method includes the separation of particular vertebrae based on 
markers’ placement followed by elliptic cylinder cuts. Then, the level set method (balloon 
model) is applied for the coarse segmentation of vertebral bodies in the selected cuts 
followed by the locally adaptive volume growing and morphological refinement of the 
bone border-line. Finally, the separation of the cortical shell is performed with the same 
technique as described by Kang et al. [2003], followed by optional peeling for the 
correction of inaccuracies in automatic segmentation that cannot separate the sub-cortical 
bone from the cortex. The method allows the accurate selection of the standard geometrical 
volumes of interest (VOI) used for analyses of trabecular bone. However, the method 
depends on initial operator initialization and the correction of selected regions of the 
vertebral bodies (necessary in up to 20% of cases with a normal data set; up to 40% with a 
complicated data set such as cases with tumours, fractures, etc.) The precision errors for 
segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 
0.7%, respectively. Nevertheless, the accuracy of the correct separation of the cortical and 
trabecular bone compartment is dependent on a reconstructed field of view [Engelke et al., 
2009]. 

High-resolution CT 

In the work of Elmoutaouakkil et al. [2002], the authors presented an algorithm designed 
for the segmentation and separation of cortical and trabecular bone of the lumbar vertebra. 
The method includes the detection of a skeleton from the crest lines of the bone 
architecture using the gray-scale watershed transform. The skeleton is then iteratively 
expanded (perpendicularly to the skeleton) in order to find the remaining pixels in an 
image, corresponding to bone, under selected contrast criteria. In the next step, the cortical 
and trabecular compartment is separated with a clustering process that uses a priori 
information that at least two neighbourhood pixels of the examined pixel, specified in  
3x3 neighbourhood, belong to the same class (cortical or trabecular bone). The authors 
reported relatively high accuracy of the segmentation when applied on a vertebral phantom 
image (~95%) and mentioned the higher stability of the results in comparison with 
commonly used segmentation methods (threshold-based techniques). Nevertheless, the 
relative error in the estimation of bone micro-structure traits was up to 20%. Moreover, the 
method requires an adjustment of two parameters for its optimal performance. 
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A method proposed by Buie et al. [2007] deals with the automatic segmentation of cortical 
and trabecular bone in HR-pQCT images of the distal tibia and the radius. The method is 
based  on  the  use  of  a  dual  threshold  technique  that  requires  the  setting  of  two threshold  
levels for detecting periosteal and endosteal surfaces. The detected area above the higher 
threshold is closed by morphological operations with the utilization of a connectivity filter 
and introduced as a mask of the bone volume. The detected area below the second 
threshold within the bone volume is considered to be a trabecular region mask and is 
processed similarly to the previous step. The final mask for the separation of the cortical 
and trabecular compartment is then constructed with a combination of these two created 
masks (bone volume and trabecular mask). The results of the proposed method were 
validated in comparison to a semi-automated hand contouring approach. The proposed 
method provided a uniform surface of the cortical bone border-lines and was able to fully 
extract thin cortices. However, it needs an experienced operator to initiate the segmentation 
process correctly.  

Lublinsky et al. [2007] introduced a segmentation method for the separation of cortical and 
trabecular bone in micro-CT images. First, the operator measures the maximum and 
minimum cortical thickness to restrain the following analysis. This measurement is 
typically performed only once per data set. Second, the bone mask in the region of interest 
is created. The creation of the mask is based on the following steps: (i) narrow box-shaped 
Gaussian kernel, (ii) pre-set high threshold level, (iii) expansion of the segmented bone 
area,  (iv) Gaussian smoothing (with window size equal to the minimal cortical bone 
thickness) and finally (v) application of the second threshold with a level reduced by 7% of 
the pre-set level. In the next step, the bone mask is further refined by filling bone cavities 
and with a peeling procedure for the correct determination of the periosteal border-line. 
The final cortical bone extraction is based on application of a Gaussian filter with a large 
window size,  global  thresholding  set  to  a  value  6% larger  than  in  the  previous  step,  and  
peeling or filling to geometrically restrict the cortical bone area where thicknesses of the 
segmented cortex exceeded or failed to reach operator-measured cortical bone thickness 
(measured in the first step). The accuracy of the proposed method was tested in 
comparison with results of manual segmentations yielded from 8 raters. The authors 
reported that the mean difference between the data produced by the proposed algorithm 
and  the  mean  of  the  results  from  8  raters  was  within  2%,  which  was  far  less  than  the  
variation of individual raters (~9%). 

Recently, Burghardt et al. [2010], extended Buie’s segmentation technique by 
incorporating the detection of intra-cortical porosity. The method uses the original 
binarized image (i.e, image after application of a dual threshold technique) together with a 
mask of the cortical compartment, generated by Buie’s segmentation technique, for an 
initial estimate of the intra-cortical pores (voxels corresponding to background that are 
surrounded by bone). Then, a 2D connectivity criterion is applied to select the high-
confidence pore voxels used as seeds for the initialization of the hysteresis region growing 
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process in z-plane. Region growing searches for low-confidence pore voxels that are 
longitudinally connected to the previously detected, high-confidence pore voxels and 
marked as high-confidence pore voxels. In the final stage, all the detected high-confidence 
voxels are combined with the initial cortical bone mask for accurate segmentation of the 
cortical compartment. The authors stated that their method is superior to the standard 
segmentation provided by the scanner manufacturer by reporting an in vivo precision for 
the determination of the bone structural parameters to be close to 1% (excluding cortical 
porosity precision of ~10%) in 90% of the segmented cases. In the remaining cases, the 
manual correction of the bone border-lines was required, due mainly to failed cortex 
definition caused by incorporation of an adjacent, dense trabecular network into the cortex. 

More recently, Valenthinitxh et al. [2012] developed a new automated threshold-free 
algorithm for cortical bone segmentation (TIST) in HR-pQCT images. This method uses 
supervised classification of the cortical and trabecular compartment based on modelling 
appearance characteristics from manually annotated cases. For the extraction of the feature 
vectors used in the following classification process, a 3D gray-level co-occurrence matrix, 
a local structure tensor and the Hessian matrix calculations were performed on 15x15x15 
voxel neighbourhood for each voxel in the image data. First, training sets are created by 
training the classification algorithm, which consists of assigning calculated feature vectors 
to classes determined by manual segmentation (cortical bone, trabecular bone, 
background). Then, the algorithm classifies every voxel in the given image data into either 
cortical, trabecular or background classes based on similarity with feature vectors from the 
learned training sets. The results of the TIST were compared with the manual segmentation 
of images obtained from the same samples at a twice higher resolution level and two 
additional segmentation methods (standard segmentation provided by the scanner 
manufacturer and the method proposed by Burghardt et al. [2010]). The results show that 
the TIST performed similarly in comparison to the method of Burghard et al and was 
superior to the standard segmentation method, with a mean error ~10% in the analysis of 
Ct.Th and cortical volume in comparison with manual segmentation. However, the analysis 
using the proposed TIST algorithm was performed only on a limited number of samples 
(14  cadaveric  samples  of  the  distal  radius)  where  13  of  them  were  always  used  as  a  
training-set for the segmentation of the remaining sample. This, together with need for 
properly defined training sets, clearly limits the study and more research should be done to 
validate the performance of the TIST algorithm, especially for in vivo studies where 
various types of artefact can appear. 

2.5.2. Commonly used approaches for pQCT image analysis 

Since the introduction of the pQCT scanner in 1973, researchers have tried to determine 
the correct way to analyse images yielded by this modality. The common approach, 
provided by the manufacturer, is based on the use of simple thresholding and peeling 
procedures [Stratec, 2004a; Stratec, 2004b]. However, the correct setting of threshold 
levels is crucial for achieving reasonable accuracy and precision of the performed 
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measurements. Therefore, there have been a number of studies that investigated the 
relationship between threshold setting and the accuracy of the yielded results. Ward et al. 
[2005] and Hangartner [2007] investigated the relationship between the threshold levels 
used and the accuracy of the cortical bone area (CoA), mean cortical wall thickness (CoTh) 
and cortical density (CoD) traits with the use of phantom data. They found out that the 
optimal threshold value for the accurate estimation of geometric traits in CoA and CoTh is 
~50%  of  the  difference  of  the  density  between  the  adjacent  tissues.  For  CoD,  it  is  
recommended that 95% of the maximum density value of the bone is used in order to 
prevent errors due to the presence of partial volume effect in the image data. 

Since the problem with partial volume effect has been recognized, Rittweger et al. [2004], 
and Hangartner and Short [2007] tried to develop proper adjustment for the correction of 
the measured CoD trait. Rittweger et al. identified, based on phantom data, the relationship 
between the used threshold value and CoD and stated that with the use of their correcting 
equations, the error in measurements of CoD was lower than 2%. Hangartner and Short 
selected a different approach. They developed a correction factor of the CoD trait based on 
the measured width of the cortical bone. However, in the end, they reported similar errors 
of measurements as Rittweger et al. (<2%). 

In other studies, Veitch et al. [2004] and Kontulainen et al. [2007] investigated the  
influence of different analysis modes, incorporated in Norland/Stratec XCT software 
[Stratec,  2004b],  on cross-sectional area and BMD analysis.  In the study of Veitch et  al.,  
the authors used manually segmented images obtained from Adobe Photoshop and ash 
weight, respectively for the evaluation of the accuracy of CoA and BMD analysis. They 
reported that the most accurate mode was contour mode 2 in combination with peel mode 5 
(both modes are based on a search of the steepest gradient within a profile in the region of 
interest). However, their analysis resulted in only moderate accuracy for CoA (8%-20%) 
and for cortical BMD (10%-22%) measurements (depending on the selected region). In 
contrast, Kontulainen et al. used a comparison of the measured cross-sectional areas to data 
obtained by histomorphometry. Their results showed that the smallest mean error in total 
cross-sectional area (-1%) was obtained using contour mode 3 (outer threshold value set to 
169 mg/cm3), in CoA (0.1%) using separation mode 4 (outer threshold value set to  
200 mg/cm3 and inner threshold value set to 661 mg/cm3 that was derived from the use of 
the inflection point method). The inflection point method is an operator-independent and 
defines threshold value based on determination of the greatest change in bone mineral 
density at the endosteal surface. 

Recently, two software applications (as plugins for ImageJ software) have been developed 
to improve the automated analysis of pQCT image data. Laskey et al. [2010] developed a 
plugin for the enhanced characterization of cortical bone. The program offers semi-
automatic segmentation of cortical bone based on thresholding, manual contour placing 
and a locally adaptive region-growing algorithm. After segmentation of the cortical bone 
region, the program automatically calculates cortical bone distribution relative to the centre 
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of mass and provides the values of the maximum, minimum and mean cortical thickness. 
In addition, the program quantifies deviation of the analysed cortical bone cross-section 
from an ideal circle and/or ellipse. The second software plugin was developed by 
Rantalainen  et  al.  [2011].  The  program  uses  thresholding  for  the  segmentation  of  CoA  
followed by regional analysis of cortical BMD. Cortical bone is also subdivided into three 
concentric cortical divisions and in 36 cortical sectors originating from the centroid of the 
bone. This regional division is of particular interest as it has been recently recognized that 
the age-related bone loss in cortical bone has non-uniform distribution and  most of the 
bone is lost from the endosteal border [Zebaze et al., 2010]. 
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3. Aims of the study 
 

This thesis has both technological and clinical objectives. The technological goal is to 
develop image preprocessing and segmentation algorithms to improve the assessment of 
apparent structural traits from appendicular bones yielded by pQCT. In a broader 
perspective, these tools are expected to lead towards a more accurate estimation of whole 
bone strength for various clinical research applications. The main objectives of the present 
study and their links to the publications of this study are listed below: 

 

1) To develop an image preprocessing method to enhance the analysis of pQCT images 
and to reduce the noise level, while preserving important details in the image data: 

a. In publication I, the aim was to evaluate whether the preprocessing of 
clinical pQCT images could improve the analysis of bone macro-structural 
traits in comparison to the analysis of raw, unprocessed images, and if so, to 
what extent. The other objective was to investigate the signal to noise ratio 
(SNR) and concomitant gray-scale resolution of pQCT images. 

b. In  publication  II,  the  aim  was  to  assess  whether  (i)  the  bone  responses  to  
bed rest were different at anatomically different sectors of the distal tibia 
and tibial shaft in different subgroups and (ii) whether the sector-speci c 
responses were different during the recovery after the bed rest. The 
additional objective in this study was to use the developed image 
preprocessing method [publication I] that permitted more consistent 
detection of the outer and inner cortical boundaries compared with 
commonly used median filtering. 
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2) To develop an algorithm for cortical bone segmentation in pQCT images that enables 
robust, fast and reproducible cortical bone segmentation and automatic analysis 
without involvement of the operator. 

a. In  publication  III,  the  aim  was  to  address  (i)  the in vivo accuracy of the 
developed algorithm in the analysis of raw pQCT images using the manual 
segmentation of cortical bone as the gold standard, (ii) whether the 
preprocessing of pQCT images could enhance the cortical analysis 
compared with the analysis based on raw images and (iii) to what extent the 
new segmentation algorithm improves the analysis of real pQCT images 
compared to simple density threshold-based analyses and a recently 
proposed advanced analysis based on a new variational level set 
formulation. 

b. In publication IV, the aim was to carry out a density-threshold independent 
analysis of pQCT-measured cortical, subcortical, and trabecular bone 
mineral content (BMCc, BMCsub, BMCt) at the distal tibia by applying a 
robust, previously developed [publication III], segmentation algorithm on 
the same bone areas using data pooled from four prospective 
immobilization trials, each with a different duration and design. 
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4. Materials and Methods 
 

The rationale for the development of the particular methods described in this study was to 
develop reliable, simple, fast and interpretable algorithms for use in clinical bone research. 
In addition, based on experience from the methods mentioned in section 2, the algorithms 
needed to be fully automatic in such a way that no operator involvement would be needed 
to find the optimal threshold values or to perform manual measurements. Furthermore, the 
operator would need no training in the use of the algorithm used. 

During this study, various image preprocessing and segmentation methods for pQCT 
image bone analysis were developed. First, a preprocessing method for pQCT images 
based on gray-level transformation of image intensity histograms was developed; this 
method reduces noise level and generates simple datasets for following segmentation [I]. 
The resultant method was tested by reanalysing data from the LTBR study [II]. Second, a 
threshold-free segmentation algorithm (OBS) was developed to enable accurate cortical 
bone segmentation without the limitations inherent to common threshold-based approaches 
[III]. The developed image preprocessing and segmentation algorithms were further 
applied on pooled data from 4 immobilization studies [IV]. 

4.1.  Phantom and In vivo data 
The data used in this study were obtained from pQCT scanners (XCT 2000 and XCT 3000, 
Stratec Medizintechnik GmbH, Pforzheim, Germany). Images from four phantoms made 
of small plastic containers containing three known concentrations of homogenous K2HPO4 
solutions (50, 100, 250 mg/cm3) and tap water were used for the evaluation of the noise in 
pQCT images [I]. Next, data from 25 healthy volunteers taken from repeated images of the 
distal tibia (5% of the estimated tibial length from the distal endplate) were used to test the 
performance of the preprocessing and segmentation methods [I, III]. For both data sets, the 
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pixel size was 0.5 x 0.5 mm, the slice thickness was 2.5 mm and the translational scan 
speed was 30 mm/s. An example of an image from the four phantoms and an unprocessed 
pQCT image from the distal tibia is shown in Figure 2. In addition, the developed methods 
were tested in various clinical applications. The preprocessing was applied to data obtained 
at the 4% distal site from 23 healthy volunteers that underwent the LTBR (90 days of 
immobilization with 6-degrees head tilt down [Rittweger et al., 2005]) [II]. Furthermore, 
both the preprocessing together with the developed image segmentation algorithm were 
applied to data from the distal tibia (4% of the estimated tibial length from the distal 
endplate)  from  the  control  groups  of  4  immobilization  studies:  LTBR  –  10  volunteers  
underwent 90 days of immobilization with -6-degrees head tilt down [Rittweger et al., 
2005]; BBR – 20 volunteers underwent 56 days of immobilization with 0 degree position 
of the test subject [Rittweger et al., 2010]; Valdoltra – 10 volunteers underwent 35 days of 
immobilization with 0 degree position [Rittweger et al., 2009]; and ULLS – 8 volunteers 
underwent 24 days of unilateral limb suspension [Rittweger et al., 2006] [IV]. Details of 
the study protocols of these four immobilization studies can be found in IV:Table 1. The 
pixel size of the pQCT image was 0.4 x 0.4 mm in the LTBR study and 0.5 x 0.5 mm in 
the BBR, Valdoltra and ULLS studies. The translational scan speed was 30 mm/s and the 
slice thickness was 2.5 mm in all studies. A summary of the pQCT image data used in this 
study is provided in Table 5. 

 
 
Table 5: Summary of image data used in this study 

pQCT data Publication 
I 

Publication 
II 

Publication 
III 

Publication 
IV 

pQCT images of phantoms 
[Sievänen et al., 1998] 

x    

Repeated in vivo pQCT images 
[Sievänen et al., 1998] x  x  

In vivo pQCT images from LTBR 
study [Rittweger et al., 2005] 

 x  x 

In vivo pQCT images from BBR 
study [Rittweger et al., 2010] 

   x 

In vivo pQCT images from Valdoltra 
study [Rittweger et al., 2009] 

   x 

In vivo pQCT images from ULLS 
study [Rittweger et al., 2006] 

   x 
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Figure 2.: Example of pQCT images of phantoms (left) and the distal tibia (right). 
 

4.2. Preprocessing – denoising 
The preprocessing of pQCT image data was performed by using non-equidistant re-
quantization of the gray-scale of the image data followed by a statistical correction 
algorithm using a priori knowledge about the image data [I]. The main idea was to reduce 
the number of gray-levels of an image to make subsequent segmentation easier. However, 
due to the use of gray-level reduction, intensity corresponding to the different tissue can be 
falsely assigned during the transformation process. Therefore, to correct any inaccuracies 
caused by false assignment, the redundant wavelet transform and Markov random fields 
were used. Markov random fields incorporate spatial knowledge about the neighbourhood 
of the evaluated pixels in image data and can correct assignment according to the highest 
probable state. Details about Markov random fields can be found in the article [I] as well 
as  in  a  flow  chart  of  the  developed  method  (I:  Fig  1).  In  this  study,  fields  with  linear  
(LinW) and Gaussian distribution (GausW) of weight coefficients were investigated [I]. An 
example of the performance of the developed image preprocessing can be seen in Figure 3. 

 

 

Figure 3.: Example of the different image preprocessing applied on pQCT images in this 
study. From left to right: the original pQCT image of the distal tibia; the resulting image 
after median 3x3 filtering; the resulting image after preprocessing by the developed 
algorithm with linear weights; the resulting image after preprocessing by the developed 
algorithm with Gaussian weight distribution. 
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4.3. Segmentation 

Manual segmentation 

Manual segmentation of raw unprocessed pQCT images was performed by 3 experts. The 
mean from these blinded independent analyses was considered to be the gold standard. The 
manual segmentation was implemented by in-house software developed for the 
segmentation and visualization of radiological images (Department of Electronics and 
Communications Engineering, Tampere University of Technology). 

Density threshold-based segmentation 

Two segmentations were performed based on standard threshold procedures used by the 
Stratec analysis software [Stratec, 2004a]. First, the threshold values were set to  
200 mg/cm3 for the outer bone threshold and 661 mg/cm3 for the inner threshold, 
according to the optimal settings for cortical bone detection proposed by Kontulainen et 
al., [2007]. Second, the thresholds corresponding to levels automatically chosen by the 
contour  and  peel  modes  2  were  used.  Both  of  these  Stratec  analysis  protocols  use   
3x3 median ltering as a preprocessing method and are called C1/P2 and C2/P2, 
respectively. 

Level set-based segmentation 

In addition to simple threshold-based methods, a sophisticated segmentation method based 
on distance regularized level set evolution (DRLSE) developed recently by Li et al., [2010] 
was performed. When compared with conventional level set formulations, the DRLSE 
algorithm has several advantages: it allows the elimination of reinitialization; 
implementation is simple; large time steps significantly speed up curve evolution while 
ensuring numerical accuracy; and it is computationally efficient. 

Proposed Algorithm for the Automatic Segmentation of Cortical Bone 

The segmentation of cortical bone in pQCT image data was performed by the developed 
outer boundary detection and shrinking (OBS) algorithm [III]. OBS algorithm comprises a 
simple delineation procedure of the outer boundary of cortical bone and the subsequent 
shrinking procedure of the cortical pixels until the inner cortical boundary is found. This 
algorithm was further refined by incorporating morphological inner cortical bone boundary 
correction that deals with the possible “bulgy” contour caused by the blurred or lost edges 
of cortical bone in the image data. Moreover, two fixed density thresholds (set to 180 and 
661 mg/cm3) were used to correct and enhance cortical bone detection. The enhanced OBS 
algorithm was recently introduced by Cervinka et al. [2014] and its description and results 
are included in the thesis for completeness. 

The morphological correction is triggered by values exceeding the assumed maximal 
cortical bone thickness (6 pixels) in detected cortical bone in a pQCT image of the distal 
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tibia. The algorithm detects places where “leaking” of the detected cortical shell occurred 
due to blurred edges resulting from insufficient resolution level, partial volume effect or 
movement artefact. Based upon a priori knowledge, thin (in sub-pixel measure) cortical 
bone could be assumed in place of these “leaks”. Using pixels detected in this way and 
taken as seed points, the morphological erosion operation is repeatedly performed until the 
cortical thickness in the detected place reaches a 1 pixel thin layer.  

In  addition  to  morphological  refinement,  two  fixed  threshold  levels  are  used  for  the  
detection of falsely detected cortical bone. First, the refinement uses a lower threshold of 
180 mg/cm3 to indicate places where ¼ of the pixel is  filled with cortical  bone. In these 
regions, low resolution and partial volume effects artificially increase cortical thickness 
(although the correct thickness is a sub-pixel measure), but decrease local cortical BMD. 
Therefore, pixels within the detected cortical shell that have BMD below the lower 
threshold are detected and the cortical shell thickness in these places is then set to a 1 px 
thin layer. Second, the upper threshold improves accuracy of cortical bone detection by 
incorporating all pixels with a high probability of containing cortical bone, (bone density 
level of 661 mg/cm3 or higher). Thus, the application of the upper threshold allows 
incorporation of high BMD pixels that were not detected by the original OBS method [III], 
correcting improper deletions from prior steps. The upper threshold value was selected 
based on strong agreement for threshold-based findings with histomorphometry results 
[Kontulainen et al. 2007]. The major benefits of the new method lies in its fully automatic 
nature (no parameters need to be adjusted) and the use of only simple segmentation 
algorithms. The flow chart of the enhanced OBS method can be seen in Figure 4. An 
example of the performance of OBS and enhanced OBS methods is depicted on Figure 5. 

 

 

Figure 4.: Flow chart of the enhanced OBS method for cortical bone detection. 
 

4.4. Statistical analysis 
In this study, mean values,  standard deviations (SD) of bone traits  (inter-subject)  and the 
SD of the differences between the repeated measurements (SDmeas  in vivo precision, 
intra-subject) are given as descriptive statistics. As another measure of the reliability of the 
measurements (  in vivo precision), the reliability coefficient was determined as  
R = 100(1  SD2

meas/SD2)%. The R-value represents the error-free proportion of the inter-
subject variability observed in the given bone trait [Fleiss, 1986]. To compare the 
performances of different segmentation approaches with the results of the manual 
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segmentation (which was considered a gold standard measure), the mean error as 
100(Xmethod - Xmanual)/Xmanual and its SD was calculated. The X denotes the geometric trait 
of interest. The statistical signi cance of the observed bone traits was evaluated with 95% 
con dence intervals (95%CI). For reference, if the 95%CI overlap the zero line, this 
implies there is no statistical difference between the manual approach and the specific 
automated method. In addition, as relevant measures of segmentation accuracy, the 
Pearson correlation coefficients and Dice similarity coefficients were determined. The 
Dice similarity coefficient was calculated as follows:  
 

. =             (1)  

 
where p is the number of pixels where the cortical bone was detected in both results from 
manual segmentation and the method of interest while d and q indicate the number of 
pixels that were detected in either the results from manual segmentation or in the method 
of interest, respectively. For reference, a Dice similarity coefficient is a spatial overlap 
index and a reproducibility validation metric where 0 indicates no spatial overlap between 
to segmentation results while 1 indicates complete overlap. In general, Dice coefficient 
above 0.75 indicates a good agreement [Zijdenbos et al., 1994]. 
 

 

 

Figure  5.:  Example  of  the  performance  of  OBS  and  the  improved  OBS  method  on  an  
image corrupted by movement artefact. Original pQCT image of the distal tibia (the upper 
left panel), the result of cortical bone segmentation by simple thresholding procedure with 
the threshold level set to 661 mg/cm3 (the  upper  right  panel),  result  of  cortical  bone  
segmentation performed by the OBS method (the lower left panel), and result of cortical 
bone segmentation procedure performed by the enhanced OBS method (the lower right 
panel).  
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5. Results 

 5.1. Performance of pQCT image analysis techniques 
In publication [I], the effect of noise removal approaches applied to pQCT image data was 
studied in terms of the reliability of total and direction (anatomy) specific bone macro-
structural traits analysis. In this work, two methods for preprocessing pQCT images were 
introduced and their performance tested and compared to 3x3 and 5x5 median filtering on 
repeated scans of four different homogeneous liquid phantoms (tap water and 3 solutions 
with known concentration of K2HPO4 – 50, 100, 250 mg/cm3) and repeated in vivo scans 
of distal tibiae from 25 healthy subjects. It was shown on the phantom data that the newly 
introduced preprocessing improved the SNR in pQCT images by ~15 dB compared with 
the ~9 dB improvement of median filters.  It  was also shown that,  when compared to raw 
images, preprocessing improved the reliability of the analysis of CoA by approximately 
30%. Although results obtained using the LinW approach were the most consistent, no 
method of preference could be determined. Moreover, the preprocessing did not improve 
trabecular  density  (TrD)  assessment  at  any  anatomic  region,  as  the  reliability  of  TrD  
assessment was already high with raw images (~99%). 

In  publication  [III],  an  algorithm  for  the  automatic  segmentation  (OBS)  of  CoA  was  
presented. The algorithm was tested on data from repeated in vivo pQCT scans of the distal 
tibiae from 25 healthy subjects. The performance of the OBS method was tested on raw 
pQCT images, on images after the application of median filtering and on images 
preprocessed using the previously developed approaches [I]. For validation, results 
obtained from manual segmentation were used as a gold standard. In addition, the OBS 
performance was compared with results obtained from commonly used threshold-based 
analysis and from the more sophisticated DRLSE approach [Li et al., 2010]. It was shown 
that the OBS method decreased the 95%CI variation by ~50% in comparison with 
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threshold-based analysis. In addition, the OBS method, in conjunction with the LinW 
preprocessing approach, agreed well with the results obtained from manual segmentation 
(~2% mean difference for all analysed bone geometric traits) [I]. DRLSE exhibited similar 
reduction of 95%CI variation to the OBS method, but DRLSE overestimated all bone 
geometric traits by a mean of ~15%. 

Similarly, the enhanced OBS algorithm was tested on data repeated in vivo pQCT scans of 
the  distal  tibiae  from  25  healthy  subjects  [Cervinka  et  al.,  2014].  The  results  of  the  
enhanced OBS algorithm were compared with the results of manual segmentation, the 
original  OBS  method  and  DRLSE.  Differences  in  the  detection  of  the  distal  tibia  CoA,  
Pearson correlation coefficients and Dice similarity coefficients from all three 
segmentation methods are shown in Table 6. In general, results of all three methods were 
strongly positively correlated with results of manual segmentation of CoA. However, 
DRLSE based segmentation resulted in a nearly 15% overestimation of the CoA in 
comparison with 2% and 4% for the original OBS method and the enhanced OBS method, 
respectively. When compared with manual segmentation, the difference between the CoA 
and correlation results obtained from the original OBS method and the enhanced OBS 
method were marginal. Nevertheless, the Dice similarity coefficient showed an 
improvement in agreement of CoA segmented by the enhanced OBS method in 
comparison with manual segmentation. This improvement in the segmentation 
performance can be clearly seen on various examples presented in Figure 6. However, as 
shown by the example in the third line of Figure 6, the enhanced OBS method can fail to 
correctly segment CoA when severe artefacts are presented in image data. 

 

Table 6:  Descriptive data of CoA, Correlation, Dice coefficient (mean, SD) as obtained 
from different segmentation methods [Cervinka et al., 2014] 

Manual segmentation 

CoA  

150.8 (19.2)  

 

Observed traits OBS method Enhanced OBS DRLSE 

CoA 153.0 (14.7) 156.5 (15.1) 172.6 (15.3) 

Pearson correlation  0.88 0.87 0.76 

Dice coefficient  0.83 (0.04) 0.85 (0.04) 0.81 (0.04) 

Range of Dice coefficient 0.71 - 0.9 0.77 - 0.93 0.71 - 0.88 

Pearson correlation and Dice coefficients were determined between the cortical cross-sectional bone area 
(CoA) obtained from the manual segmentation and CoA obtained from particular segmentation methods 
(OBS, Enhanced OBS and DRLSE). 
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Figure 6.: Examples of the segmentation performance of particular approaches on different 
data sets, from left to right: Original pQCT images of the distal tibia; the results of manual 
segmentation;  the  results  of  the  original  OBS  method;  the  results  of  the  enhanced  OBS  
method, and the results of the DRLSE algorithm [Cervinka et al., 2014]. 

 

5.2. Applicability of the developed methods on clinical 
longitudinal data 
In publication [II], the reanalysis of the data from a long-term bed rest study (LTBR) was 
performed using the above-developed techniques, allowing more accurate sector specific 
bone assessment. The main goal of the study was to evaluate following hypotheses: 1) that 
bone loss appears mostly in bone sectors that typically undergo substantial loading during 
daily life (e.g. locomotion) with minor loss in other bone sectors; 2) that countermeasures 
used during the study can modulate sector-specific bone loss and recovery. The largest 
bone loss appeared to be in the trabecular bone compartment with clear modulation of bone 
loss depending on the countermeasure used (~3-8%). The sector-specific bone loss mostly 
occurred at the medial sector for countermeasure groups (~6-8%) and at the anterior sector 
for the control group (~10%). However, no consistent sector-specific modulation was 
observed during the recovery phase of the study and all bed rest-induced bone losses were 
practically restored. 

In publication [IV], the reanalysis of the data from 4 disuse studies studies (3 bed-rest and 
one unilateral limb suspension study) of different durations and designs was performed 
using the above-developed techniques that allowed a robust reanalysis of the same subject-
specific cortical, subcortical and trabecular bone cross-sectional areas throughout the 
longitudinal disuse studies. The primary objective was to investigate the hypothesis that a 
density-threshold independent analysis can reveal changes in skeletal adaptation that have 
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remained masked with conventional thresholding approaches. The mean absolute bone loss 
was systematically greater in the trabecular compartment than in the cortical or subcortical 
compartment. Results indicated a trend for accelerated trabecular bone loss after ~60 days 
of disuse but also showed a greater inter-subject variance in trabecular bone loss during the 
disuse period. Furthermore, bone loss seemed to continue during the first ~15-30 days after 
the termination of the disuse period in all  bed rest  studies.  During this short  period, bone 
loss became more pronounced in the cortical compartment than in the trabecular or 
subcortical compartment in all studies except for the longest study (of 90 days duration). In 
the longest study, greater bone loss was observed in the trabecular compartment rather than 
in the cortical or subcortical compartment (respectively: ~10 mg/mm, ~8 mg/mm,  
~6 mg/mm). During the recovery phase of the studies, all bed disuse-induced bone losses 
were practically restored.  
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6. Discussion 
 

The developed image preprocessing and segmentation algorithms provide promising 
practical pQCT image analysis tools for bone research applications. During the 
methodological development, emphasis was placed on the use and combination of simple 
and reliable algorithms so that their influence on fine details in clinical image data would 
be comprehensible. These algorithms have been applied in clinical studies including 
analyses of longitudinal disuse studies and, in addition to the present study, the impact of 
different models of exercise loading on tibial bone marrow density [Rantalainen et al., 
2013]. 

The image-preprocessing algorithm is comprised of a basic gray-level transformation and 
the use of a spatial knowledge about the neighbourhood of the evaluated pixels through 
Markov random fields. This process required prior knowledge about noise and structures 
that were present in the pQCT image data. Nevertheless, if applied to pQCT image data, 
the current denoising process is fully automatic and was able to enhance the analysis of 
cortical area. An improvement in the reliability of repeated measurements (~in vivo 
precision) was consistent with reliability coefficients being nearly 90% or better, even for 
the direction-specific analysis [I].  

The OBS segmentation method is based on bone delineation and a shrinking procedure 
(both use information from the first derivation of the image data) and a morphological and 
threshold-based correction. As the OBS comprises only simple image processing 
procedures, the method is fast and does not require operator involvement [III]. In 
conjunction with the developed preprocessing, OBS method enhanced the cortical bone 
analysis, halved the variation in geometrical traits in comparison with threshold-based 
analyses and consistently showed an excellent agreement with the results of manual 
segmentation (~2% overestimation) for CoA, CoTh, CSMImax [III]. 
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6.1. Preprocessing – Denoising 
The preprocessing of pQCT images is difficult due to (i) the lack of knowledge about the 
ground truth of the acquired image, (ii) the large variety of noise sources that can affect the 
quality of any x-ray-based image [Boas & Fleischmann, 2012], and (iii) the need to 
preserve fine details in the analysed images. Therefore, the need for an accurate analysis of 
pQCT image data limits the use of sophisticated preprocessing methods, as the influence 
on the data of such methods is still not well known. 

The performance of developed preprocessing method was demonstrated on phantom and in 
vivo pQCT images [I]. The results of this method were compared with the results from the 
raw images and standard median filters that are the only currently used method in pQCT 
image preprocessing. In comparison with the analysis of raw images, all preprocessing 
methods were able to markedly improve the analysis of the cortical bone area (reliability of 
measurements increased by nearly 30%). However, all methods failed to enhance the 
trabecular density analysis and, in the end, no preference could be determined, as the 
between-method differences remained marginal. Nevertheless, with LinW setup, the 
developed method showed more consistent performance for the anatomically direction-
specific analysis and was able to increase the dynamic range of the density values. 

The failure in the reduction of the variance in trabecular density could be caused by (i) a 
limited true dynamic range of pQCT imaging that only allows the separation of six distinct 
gray levels (  non-overlapping density ranges) or (ii) a number of various noise sources 
with a non-random nature that are difficult to suppress and need to be taken into account. 
These sources include: a) the high-pass ltration and the back projection of Poisson and 
Gaussian noise in the projections, b) the back projection reconstruction algorithm, c) a 
variation in the translational and rotational motion of the X-ray source and detector 
assembly  during  the  scan,  d)  a  non-uniform intensity  of  the  X-ray  beam,  and  d)  specific  
detector characteristics (e.g., the detective quantum efficiency or pixel-to-pixel sensitivity 
differences). All of these factors may modulate the noise in the pQCT image separately or 
interactively, contributing to the large variance in scan and analysis parameters [Veitch et 
al., 2004; Ward et al., 2005; Ashe et al., 2006; Kontulainen et al., 2007]. 

Even though preprocessing proved beneficial in sufficiently enhancing the cortical bone 
analysis, the use of statistical-based preprocessing methods may not be considered 
appropriate. Questions may be asked as to whether any other sophisticated method, such as 
a diffusion-based method, would show better performance. However, due to the very low 
SNR (~ 20-30dB) in the pQCT images [I] and the need to preserve fine details in the image 
data, the selection of preprocessing based on the redundant wavelet transform and Markov 
random fields was a natural one. Clearly, the redundant wavelet transform decomposes the 
image data into separate frequency bands. While the noise appears primarily in the higher 
frequency bands, the important features of image data can be found in all frequency bands. 
Therefore, combined with geometric constraints (Markov random fields), this 
multiresolution approach reduces noise in the image data while allowing effective 
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detection and preservation of important details (e.g. corners, edges, border lines) [Dhawan 
et al., 2008].  

Nevertheless, one may ask whether the use of any preprocessing method is meaningful, as 
it does not seem to improve the conventional trabecular density analysis. Obviously, 
depending on the type and speci c parameters of the method used, image denoising 
suppresses noise while causing greater or lesser substantial loss of fine image details. 
However, the results of the trabecular density analysis of different preprocessing methods 
(I: Table 2) suggest that, at least at the group level, loss of fine detail may not be a major 
concern. In contrast, probably due to the previously mentioned limited dynamic range in 
pQCT image data, preprocessing revealed some apparent coarse structural patterns within 
the trabecular bone. These patterns reflect the spatial distribution of different trabecular 
density regions within the bone cross-section and may reveal association with true 
structural features in bones (I: Fig 5). 

6.2. OBS Segmentation 
Currently, density-based thresholds are commonly used for pQCT image segmentation. 
However, this approach has its limitations, and bone analysis accuracy greatly depends on 
the quality of the image data. Previously, some studies have assessed optimal density 
threshold settings with a comparison to phantoms [Ward et al., 2005] or histomorphometry 
at the tibial diaphysis [Veitch et al., 2004; Kontulainen et al., 2007]. However, the use of 
these settings is rather difficult at the distal epiphysis where a thin-walled (~2-4 mm) 
cortical shell, the coarse spatial resolution of pQCT images, and the presence of the partial 
volume effect limits their usability for accurate cortical bone detection [Veitch et al., 2004; 
Hangartner, 2007]. 

The novel OBS segmentation method was developed especially for rapid evaluation of 
thin-walled cortical bone in pQCT images of the distal tibia. The OBS method overcomes 
problems associated with low cortical thickness by using the first derivation of the image 
data. The additional benefit of the OBS method is that it evaluates cortical bone geometry 
automatically and does not require any operator involvement that could compromise the 
accuracy and the repeatability of the obtained results [III]. The performance of the novel 
OBS method was compared against a more sophisticated DRLSE method [C. Li et al., 
2010; III] and density threshold-based Stratec C1/P2 and C2/P2 analyses [Sievänen et al., 
1998; Kontulainen et al., 2007] with manual segmentation set as the gold standard. Results 
suggest that the OBS method outperformed not only the commonly used density threshold-
based analyses but also the more sophisticated DRLSE method for accurate delineation of 
cortical bone (III: Figs. 4 and 5). These approaches resulted in either systematic under- or 
overestimations of all the observed geometrical traits of the cortical bone. However, 
despite the larger overestimation of the cortical geometrical traits by the DRLSE method, 
the generally high correlation between OBS and DRLSE method results (> 0.88), with the 
exception of CoTh assessment (~ 0.62), indicates that the results of both methods may be 
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comparable with a proper adjustment. The comparability of the OBS and DRLSE methods 
is also supported by a similar reduction (nearly 50%) in variance in all geometric traits 
compared with the results from simple threshold-based analyses. Nevertheless, in contrast 
to the OBS method, the DRLSE method requires a complex setting of user-defined 
parameters that may reduce its usability and decrease the reproducibility of the results.  

Some may raise concerns about the reliability of any automated method for image 
segmentation, especially when its performance is evaluated in comparison with data 
obtained from manual segmentation that is considered to be a gold standard. Obviously, 
the accuracy of the results of manual segmentation is highly questionable and depends on 
the skills of the particular rater and his/her previous experience in analysing particular 
image data. A skilled rater can see not only the information that is truly present in the 
image but can also distinguish lines and borders that are hardly recognizable by any 
automated method. This skill, however, differs substantially between particular raters and 
studies that observed the inter- and intra-rater variability in the segmentation of the same 
objects demonstrated ~10% variability between ratings [Heinonen, 1999]. As an objective 
assessment, histomorphometry is obviously not an option for an in vivo study. Therefore, 
for the validation of the segmentation results and the reduction of possible inter-individual 
variances, the mean of 3 independent manual segmentations could be considered sufficient. 

Another concern about the performance of the OBS method may arise due to the somewhat 
lower correlation between the results of the mean CoTh from the OBS method and manual 
segmentation. This may indicate that the assessment of the mean CoTh of relatively thin-
walled bones with pQCT imaging may not be robust and the validity of the results obtained 
from the OBS method may remain questionable. However, the enhanced OBS method 
partially cleared these doubts. As was demonstrated, the Dice similarity coefficient (perfect 
similarity = 1), another measure of segmentation accuracy that takes into account the 
spatial similarity, indicated an excellent agreement between CoA results from the enhanced 
OBS method and manual segmentation (the range was 0.77-0.93 with a mean value of 
0.85). Nevertheless, results of the present enhanced OBS method should be compared with 
in vivo HR-pQCT results to clearly determine the validity and accuracy for estimations of 
macro-structural traits. 

6.3. Clinical Aspects 
Bone fragility, or conversely its strength, is largely determined by bone structural 
properties (e.g. cross-sectional geometry, cortical thickness, and trabecular architecture) 
[Järvinen et al., 2005]. Accordingly, a proper bone structural analysis should help to 
identify individuals who are susceptible to fragility fractures. The potential of pQCT 
imaging  for  the  clinical  evaluation  of  whole  bone  strength  and  other  various  research  
applications is  well  known [Engelke et  al.,  2008; Zemel et  al.,  2008].  However,  the need 
for better accuracy of characterized bone macro-structural traits in pQCT images has been 
recognized [Ashe et al., 2006; Kontulainen et al., 2007; Hangartner & Short, 2007], as the 
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performance and reliability of this approach is compromised by several factors such as 
movement artefacts and a high variance in scan and analysis parameters. 

The current state of the art, threshold based approach, used in pQCT image analysis limits 
the accuracy of assessment of these traits [Veitch et al., 2004; Ward et al., 2005; 
Hangartner, 2007; Kontulainen et al., 2007], and recent technical developments are leading 
more towards higher resolution modalities [Elmoutaouakkil et al., 2002; Buie et al., 2007; 
Lublinsky et al., 2007; Burghardt et al., 2010; Valentinitsch et al., 2012] and finite element 
analysis (FEA) [Mueller et al., 2011; Vilayphiou et al., 2011; Rizzoli et al., 2012; 
Nishiyama et al., 2013]. Nevertheless, it is still not known whether the three times more 
expensive HR-pQCT systems with isotropic voxel size of 82 µm and derived FEA models 
can essentially improve the assessment of whole bone strength compared to the data 
yielded by standard QCT scanners [Engelke et al., 2013]. As the trabecular thickness 
ranges  from 50  µm to  150  µm,  the  micro-structural  properties  directly  measured  by  HR-
pQCT are rather overestimated in comparison to the absolute values of properties acquired 
by histomorphometry [Boutroy et al., 2011]. However, there are many pQCT studies that 
would benefit from enhanced bone assessment. In addition, standard pQCT scanners are 
still widely used among bone researchers. Therefore, the proposed preprocessing and 
segmentation method is aimed at improving their daily practice. It should be noted that it is 
also possible that the proposed methods could be applied for the cortical analysis of 
clinical QCT data with similar voxel sizes (<1 mm) at clinically relevant sites. 
Nevertheless, further studies in this direction are needed. 

As anticipated, the proposed preprocessing method reduced the noise present in pQCT 
images and improved image dynamic range. This has been confirmed in a recent study by 
Rantalainen et al. [2013] where the novel preprocessing method helped to reveal small but 
significant differences in bone marrow density in young female athletes with contrasting 
loading histories and bone strengths. These differences remained masked when the data 
were assessed with conventional threshold-based analysis only.  

In addition, the proposed preprocessing in conjunction with the OBS segmentation method 
improved the in vivo precision of pQCT cortical bone analysis, and reduced variance in 
geometric traits. Thus, the preprocessing with the OBS method can improve detection of 
subtle and regional sector-specific changes in the cortical bone geometry. The regional 
sector-specific change may reveal details about the mechanism of regional bone 
adaptations, as suggested by Lai et al. [2005]. In fact, reanalysis of sector-specific 
differences in the long term bed rest study [II] improved detection of subtle differences and 
revealed skeletal responses to various interventions that cannot be inferred from the 
average analysis of the whole bone cross-section. Furthermore, application of a robust 
analysis method to longitudinal data can enhanced detection of subtle cortical bone 
changes within and between intervention groups [II][IV]. Moreover, as recently pinpointed 
by Evans et al. [2012], analysis-related improvements in sensitivity may reveal early, 
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anatomically specific bone changes, informing the design of patient-specific interventions 
to improve whole bone strength. 

The OBS method is unable to correctly determine cortical bone density as it detects all 
pixels that belong to the cortical bone even if their density value was compromised by the 
partial volume effect [III]. However, the OBS method accurately identifies the cortical 
bone geometry. Consequently, the accurately detected cortical bone geometry should 
improve the assessment of the bone strength indices [Kontulainen et al., 2008] and allow a 
simpler comparison of between-study results [IV]. 

The importance of the cortical bone geometry as the major determinant of bone strength 
has been recently pinpointed [Pistoia et al., 2003; Seeman, 2003; Holzer et al., 2009; 
Melton et al., 2010; Roux et al., 2010]. Nevertheless, trabecular density is still considered 
to be the major trait of interest in clinical osteoporosis research [Engelke et al., 2008]. This 
is mainly due to higher metabolic activity of trabecular bone in comparison with cortical 
bone; thus greater changes in trabecular density in response to aging, medical treatment or 
physiological conditions are expected [Engelke et al., 2008]. Therefore, the use of the 
novel preprocessing method in clinical bone research might be restricted by its inability to 
improve the in vivo precision of this trait [I]. However, the apparent structural patterns 
revealed within the trabecular bone (I: Fig 5) may correspond to true trabecular 
architecture. Thus, as suggested by Findlay [2012], analysis of these patterns may open a 
new way to examine trabecular bone, especially in longitudinal studies. This analysis 
approach, however, naturally requires further elaboration. 

6.4. Future Work 
The developed image processing methods for the enhancement of pQCT image analysis 
are promising tools for future clinical bone research [I – IV]. However, for future work, 
HR-pQCT images should be compared with standard pQCT images to determine the effect 
of  true  noise  on  apparent  structural  traits  and  to  determine  the  validity  of  the  presented  
image processing approaches in revealing true structural features in bones. If their 
repeatability and accuracy is proven, the developed image processing algorithms can be 
applied for the reanalysis of existing pQCT image data of the distal tibia and the radius 
(similar bone structure) and enhance existing knowledge about distal tibia bone traits.  

Establishing the connection between data from high- and low-resolution scanners can also 
reveal whether the use of the HR-pQCT scanner provides any relevant information in 
terms of bone strength that cannot be determined by the standard pQCT scanner. In other 
words, revealing whether the use of the recently developed OBS method applied to pQCT 
images  [III]  can  provide  similar  information  on  cortical  bone  as  HR-pQCT  would  allow  
more accurate bone analysis based on more widely available devices compared to more 
expensive high resolution devices. Consequently, the connection would clarify whether the 
use of HR-pQCT is a necessary step towards the more accurate prediction of whole bone 
strength. 
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Nevertheless, currently developed OBS method shows consistent over- and under-
estimation of cortical area for smaller and larger bone cross-sections, respectively  
(III:  Fig  5).  Therefore,  future  studies  should  further  revise  the  OBS  method  so  that  this  
over- and under-estimation of detected cortical area can be corrected. 

Further, the current OBS method is unable to correctly determine cortical BMD as the 
method includes all pixel values that belong to detected cortical area. This results in 
reduction of obtained cortical BMD values due to inclusion pixel values affected by partial 
volume effect. However, the accurately identified cortical bone geometry may be used to 
improve assessment of adaptive changes in longitudinal studies (as suggested in [IV]) and 
further  to  improve  an  assessment  of  the  bone  strength  indices  as  SSI  (i.e.,  improve  
estimates of torsional or bending strength). Hence, future studies should involve cadaver 
data, histomorphometry and actual mechanical tests to reveal (i) the true accuracy of 
detected cortical area and (ii) whether the use of the current OBS method allows better 
prediction of bone strength than existing metrics. 

In addition, future studies should also address whether the apparent structural patterns of 
BMD distributions observed in trabecular bone in pQCT images (I: Fig 5) truly reflect 
actual structural features in bones and spatial distribution of different trabecular density 
regions. Consequently, these patterns could reveal interesting associations between bone 
loading and density variation not only within the bone cross-section but also within the 
anatomic sectors. Therefore, further investigation in this and above mentioned directions 
could introduce new analysis protocols for coarse regional analyses of pQCT images. 
These protocols may comprise sector analysis of cortical bone, subcortical bone and 
distribution of 6 distinct density ranges in trabecular bone, and replace conventional mean 
BMD (BMC) measurements. 

For future work, further investigations should address all these open questions while the 
present work that introduced the current state-of-the-art image analysis algorithms 
developed to enhance the assessment of pQCT data, may be considered to be the first step. 
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7. Conclusion 
 

In this study, new methods were developed for preprocessing and segmentation of cortical 
bone in pQCT images from the distal tibia. The new methods were designed to be fast, 
simple and easy to understand approaches, for integration into analysis software and 
routine clinical research use. These novel methods were also applied to clinical and 
experimental data to demonstrate their benefits for more accurate analysis of bone traits 
used for whole bone strength estimation. 

The first aim of this study was to develop an image preprocessing method that would 
reliably enhance pQCT image analysis and reduce noise in the image data. The statistical-
based method [I] is capable of reducing the noise level in pQCT images and offers 
essential improvements in the analysis of the cortical bone area. Although the method 
failed to enhance the trabecular density analysis, it revealed apparent coarse structural 
patterns in the trabecular area that could lead towards a new way to analyse data from 
pQCT-based studies. In addition, the developed method increased the dynamic range of 
pQCT image intensities and enabled the detection of subtle and sector-specific changes 
that would have remained concealed with conventional analysis. The developed method 
was tested on phantoms and repeated with in vivo pQCT images. Further studies are, 
however, needed to assess its true utility. 

The  second  aim  was  to  develop  an  algorithm  for  cortical  bone  segmentation  in  pQCT  
images that enabled automatic, robust, fast and reproducible cortical detection. The OBS 
algorithm, together with the developed preprocessing [III], is capable of fulfilling all basic 
requirements and provides a promising practical tool for the fast and reliable detection of 
the cortical bone geometry. The developed method was tested on various in vivo pQCT 
images and demonstrated its successful use and potential to enhance bone analyses and 
revealed specific skeletal processes in the cortical bone geometry that cannot be acquired 
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using conventional threshold-based analysis. This, in a broader perspective, may improve 
the estimation of whole bone strength and fracture risk prediction. In addition, the OBS 
algorithm does not require operator involvement and performs the cortical bone 
segmentation automatically.  

The performance of the developed methods meets the given aims and all requirements and 
forms a simple and applicable pQCT image analysis tool for clinical bone research 
applications [I][III]. Therefore, this study can be considered as a step towards the final 
objective which is to find the most appropriate imaging and analysis methods for 
predicting bone fragility and to reveal relevant changes in bone structure that affect whole 
bone strength. 
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ABSTRACT 

Several factors, including preprocessing of the image, can affect the reliability of pQCT-measured bone 

traits, such as cortical area and trabecular density. Using repeated scans of four different  liquid phantoms 

and repeated in vivo scans of distal tibiae from 25 subjects, the performance of two novel preprocessing 

methods, based on the down-sampling of grayscale intensity histogram and the statistical approximation 

of image data, was compared to 3×3 and 5×5 median filtering. According to phantom measurements, the 

signal to noise ratio in the raw pQCT images (XCT 3000) was low (~ 20 dB) which posed a challenge for 

preprocessing. Conerning the cortical analysis, the reliability coefficient (R) was 67% for the raw image 

and increased to 94–97% after preprocessing without apparent preference for any method. Concerning the 

trabecular density, the R values were already high (~99%) in the raw images leaving virtually no room for 

improvement. However, some coarse structural patterns could be seen in the preprocessed images in 

contrast to a disperse distribution of density levels in the raw image. In conclusion, preprocessing cannot 

suppress the high noise level to the extent that the analysis of mean trabecular density is essentially 

improved, whereas preprocessing can enhance cortical bone analysis and also facilitate coarse structural 

analyses of the trabecular region. 

 

Key words: pQCT; cortical bone; trabecular bone; Bayesian estimation; image preprocessing 
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I. INTRODUCTION 

Fragility fractures are common and their incidence increases substantially with age. Dual energy X-ray 

absorptiometry (DXA) is the present standard of diagnosis of osteoporosis and the DXA-measured bone 

mineral density (BMD) is the most common clinical measure to assess bone fragility and fracture risk.1 

Paradoxically, a majority of the so-called osteoporotic fractures occur among persons who are not 

osteoporotic according to DXA assessment, i.e., their BMD is not 2.5 standard deviations lower than the 

reference value.2 Further, the reliability of BMD can be severely compromised by inherent inaccuracies 

and ambiguities in interpretation.3-5 

Since a great number of non-bone factors contribute to fragility fractures, it is obvious that not even a 

perfect in vivo assessment of bone fragility could predict with high sensitivity and specificity whether a 

given person will sustain a fracture.6 However, given the high socio-economic relevance of fragility 

fractures, there is a need for a clinical method (or methods) that can detect specific traits of bone fragility 

more efficiently than the conventional DXA-measured BMD. 

Bone fragility, or conversely, its strength is largely determined by structural properties (e.g., cross-

sectional geometry, cortical thickness, and trabecular architecture).7 Accordingly, a proper structural 

analysis of bones might help identify individuals susceptible to fragility fractures. In this respect, clinical 

quantitative computed tomography (QCT) systems allow reasonable in vivo assessment of bone geometry 

and apparent cortical and trabecular densities at clinically relevant proximal femur and lumbar spine 

sites,8-12 but these systems lack sufficient spatial resolution to separate between individual trabeculae 

making them unable to image specific structural traits of trabecular architecture (eg, trabecular thickness, 

separation, orientation, connectivity). Evidently, architectural features account for bone fragility.13,14 Also, 

the radiation dose of the QCT investigation is large compared to that of standard DXA investigation,15 

which may pose an ethical issue and limit the widespread use of QCT in clinical bone research. 

Notwithstanding the facts that quantitative ultrasound (QUS) does not require ionizing radiation to 
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provide independent aggregate information on bone structure and material properties (~bone quality) and 

that the QUS measurements are associated with fracture risk similar to DXA,16 the ability of QUS to 

image the bone structure in a tangible way remains quite limited at present. In the end, it is the actual 

bone structure that ultimately counts and even a coarse structural analysis may be helpful.7 Obviously the 

low-dose peripheral QCT (pQCT) cannot be applied to the axial skeleton or hip region, but this method 

provides similar information on coarse structural traits for appendicular bones as does QCT for clinically 

relevant proximal femur and lumbar vertebral sites.17 While the direct site-specific assessments describe 

best the strength of the given proximal femur or vertebral site, peripheral pQCT measurements can 

provide useful information in this respect.18,19 Therefore, peripheral bone sites, such as the distal tibia 

showing a relatively thin cortex and trabecular bone within the cortical shell, may offer a good model for 

developing new algorithms and refining existing algorithms for image processing and analysis. These 

approaches, if found feasible and reliable, may be applied to coarse structural assessment of different 

bones, including the clinically relevant bones accessible with clinical QCT. 

The primary objective of the present study was to evaluate whether the preprocessing of clinical pQCT 

images could improve the analysis of coarse bone structure in comparison to analysis of raw, unprocessed 

image, and if so, to what extent. We hypothesized that the preprocessing would enhance the quality of 

pQCT images so that the relevant traits of coarse bone structure could be more precisely detected. The 

other objective was to investigate the signal to noise ratio (SNR) and concomitant grayscale resolution of 

pQCT images. The information on noise was considered essential for devising which preprocessing 

method would be most appropriate for enhancing the quality of the pQCT image. Besides using 

appropriate phantoms, repeated in vivo pQCT images of the distal tibia were employed due to a priori 

knowledge that the paired images should basically provide identical results on bone structural traits. 

These analyses allowed us a straightforward comparison between different preprocessing methods. The 

new preprocessing methods described in this study were based on the statistical approximation of data 
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within the pQCT image. Statistical approaches have shown promising results in other fields such as 

pattern recognition and image processing.20-22  

II. MATERIALS AND METHODS 

II.A. The pQCT system and in vivo data 

The pQCT scanner (XCT 3000, Stratec Medizintechnik GmbH, Pforzheim, Germany) used in this study 

represents one model of the XCT brand (960, 2000, 3000) commonly employed in clinical bone research. 

In short, this device produces a narrow fan beam using a collimated and filtered X-ray source (focal spot 

size 0.25 × 0.25 mm2,  tube  voltage  60  kVp,  current  0.3  mA,  filter  6  mm of  Al  +  0.5  mm of  Cu).  The  

source collimator (dimensions 1.5 mm × 8.5 mm) was located 44 mm above the focal spot. The detector 

consisted of 12 cadmium telluride detectors in a row. The detector collimator had a separate aperture 

(dimensions 4 mm × 0.8 mm) for each detector, and the distance from the source collimator was 343 mm.  

Repeated pQCT images of the distal tibia (5% of the estimated tibial length from the distal endplate) 

obtained from 25 healthy volunteers were used to test the performance of preprocessing methods. The age 

range of the subjects was 35–66 yrs; weight range was 50.4–89.1 kg; and height range was 159–179 cm. 

They had no history of osteoporotic fracture, but were otherwise unselected. The pQCT scans were 

obtained from a precision study which carried out as a part of quality assurance procedure of our bone 

densitometry unit. Informed consent was obtained from the subjects and the in-house review board 

approved the study protocol. All scans were performed the same day with repositioning between the 

scans, according to our standard procedure.17 The pixel-size of the pQCT image was 0.5 mm × 0.5 mm, 

the slice thickness was 2.5 mm, and the translational scan speed was 30 mm/s. 

Of note, in order to reduce the undue influence of excess movement artefacts on the bone analysis, 

differences larger than 25 mm2 in the total cross-sectional area between the repeated scans were excluded; 

data from one subject was excluded.  
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II.B. Phantom pQCT data 

For the noise assessment of pQCT imaging, four phantoms made of small plastic containers filled with 

one of three known concentrations (c) of homogeneous K2HPO4 solution (50 mg/cm3, 100 mg/cm3, 250 

mg/cm3) or tap water, were scanned 12 times consecutively using the same scan parameters as in the in 

vivo scans.17 According to the previously determined relationship between the pQCT-measured densities 

(equivalent concentration of bone mineral in mg/cm3) and known K2HPO4 concentrations,17 the densities 

of the phantoms were 98.4 mg/cm3, 146.5 mg/cm3, and 291 mg/cm3 , respectively. Of note, the phantom 

densities cover well the whole range of pQCT-measured trabecular densities in young athletic and elderly 

women.23,24 In addition to being used in evaluating the noise level of pQCT images, the phantom data 

were used for calibrating the mean pixel values of preprocessed images against bone (trabecular) 

densities.  

II.C. Preprocessing of pQCT data 

The raw, unprocessed pQCT image data (result of the pQCT scanner back projection algorithm) was used 

as a reference to which the preprocessed images were compared. The standard image preprocessing 

methods, median filtering with a 3×3 window (employed by the Stratec analysis software in 

preprocessing) and a 5×5 window, were applied to the raw pQCT data. 

In addition to the standard two median filters, two novel preprocessing methods were introduced. These 

methods were composed in two steps. First, a gray–level transformation of each image was carried out by 

implementing a common, iteratively employed, piecewise linear conversion function. Second, the 

transformed data was corrected for inaccuracies caused by the re-quantization procedure by using the 

Bayesian approach and Markov random fields with 3×3 linear or 5×5 Gaussian neighborhoods and 

redundant wavelet transform (Fig. 1). 
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Gray-level transformation 

The gray-level transformation reduces the number of used grayscales in order to make subsequent image 

processing easier and faster. This transformation can be regarded as a non-equidistant re-quantization of 

the gray scale. The example of conversion function after the first iteration is depicted in Fig. 2. 

Redundant wavelet transform 

A redundant wavelet transform with bio-orthogonal filters was used to decompose the image after the 

above described gray-level transformation. The wavelet transform provides decomposition of a function 

on a particular basis of specific functions, called wavelets. A one-dimensional function f is decomposed 

as 

lj
ljljwf

,
,,  ( 1 )

, which defines the transform of f to its wavelet coefficients wj,l. The wavelets are defined in terms of a 

mother wavelet (t) as 122, tjj
lj . The basis wavelets differ by their position l and level j. The 

factor 2j is the characteristic scale of all wavelets at level j. Redundant wavelet transform is used to 

achieve separated frequency bands of the preprocessed image with the same number of coefficients in 

each frequency band. Separation into the frequency bands provides information on the wavelet 

coefficients that represent important features in the image. These coefficients can be found at all 

frequency bands, while noise appears mostly at the higher frequency bands. Detailed information about 

wavelet transforms can be found for example in (Aldroubi A and Unser M 1996).25 
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Requantization 

Through the wavelet transform separated frequency bands of the processed image are obtained. A priori 

knowledge, that wavelet coefficients with similar values are usually locally concentrated in the 

preprocessed images across all decomposition levels, is taken into account. A conditional probability can 

be defined as follows; if a wavelet coefficient (obtained after the decomposition of transformed image) 

has a certain value, it is more likely that the value  at the same location before reconstruction is the same 

than that a different one.  

Thus using the modified Bayes’ rule, a posteriori probability of wavelet coefficients can be derived: 

AABBA PPP  ( 2 ) 

The first term in the right side is the conditional probability, the second term is the a priori probability. 

Both probabilities are usually modelled as Gibbs probability functions. This approach has an advantage 

that all variables can be described directly with an image model called a Markov random field. The 

relation between Markov random field and Gibbs probability functions is expressed in the Hammersly-

Clifford theorem.26 

In our approach the states of the Markov random field are pixels in neighbourhoods 3-by-3 (LinW) or 5-

by-5 (GaussW). The a priori probability expresses that pixels in each neighbouring state vectors have the 

same label value, are more probable than those with different values and its calculation is based on a 

comparison of the central state with its neighbours. Thus the posterior probability of the value of the pixel 

depends on the neigbourhood as well. 

Because of the different sizes and types of the Markov random fields (basic steps of both approaches were 

similar), we termed the preprocessing methods used the Linear window (LinW) and Gaussian window 

(GaussW). A variation of the present approach has been recently described by Xie et al.27 



9 

 

II.D. Noise analysis 

The noise in the pQCT images of homogeneous K2HPO4 phantoms was characterized in the following 

manner. For each phantom density level and above described preprocessing method, the SNR (in dB) was 

determined from the data obtained from the repeated phantom scans as follows: 

12..1  ,
12

2

12
log20 iiSDimean

SNR  

 
( 3 ) 

 

, where meani is the mean of all pixel values in the ith image and SDi is the standard deviation (SD) of 

separate pixel values in the ith image. Pixels from the whole cross-section of the phantom (> 5000 

pixels) were included in the noise analysis, the plastic wall excluded. The SNR values then used for 

evaluating the performance of different preprocessing methods in noise reduction. Finally, applying the 

above-mentioned preprocessing methods to the pQCT images of the phantoms, the maximum number of 

density levels that could be exclusively separated from adjacent levels was determined. 

II.E. pQCT image analysis  

All pQCT images, both the raw image and four preprocessed images were segmented into cortical and 

trabecular bone areas by using a simple and fast algorithm described by Seits et al.28 This method was 

further refined to improve the tracing of outer border of cortical bone by using the maximum values after 

the first derivation of the image data. Then the region inside the traced contour was shrunk over the valley 

lying between the outer contour towards the next maximum values of the first derivation which would 

match with the inner border of the cortical bone. The shrunk region corresponded to the trabecular bone 

and subtraction of the original and shrunk bone region represented the cortical bone. Then, the 

conventional pQCT traits, cortical cross-sectional area (CoA) and trabecular density (TrD, expressed as 

the equivalent concentration of bone mineral in mg/cm3), were determined as coarse descriptors of bone 

structure. In addition to analyzing the total bone cross-section, the cross-section was divided into four 
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anatomic sectors (lateral, posterior, medial, anterior) so that direction-specific features of the cortical and 

trabecular bone could be assessed (Fig. 3). The CoA was expressed either as a percentage of total bone 

cross-sectional area or as a percentage of total bone area of the given anatomic sector, as appropriate.  

For the classification of trabecular pixels into exclusive (non-overlapping) density ranges, the k-nearest 

neighbor (k-NN) classifier technique was used.29 Briefly, this method is based on assigning each 

trabecular pixel to the class of the majority of its k-neighbors;30 that is, assuming that the number of 

voting neighbors is k = k1 + k2 + … + kn (where ki is the number of pixels from class i in the k-sample 

neighborhood of the test sample), the test sample is assigned to class m if km = max (ki ; i = 1, 2, …, n). 

The number of classes i was set according the a priori information gained from image analysis of the 

phantoms. Since the phantom images were acquired and preprocessed similarly to the in vivo pQCT 

scans, this classification approach was applied to in vivo data of the distal tibia in an attempt to assess 

structural patterns within the trabecular region. 

II.F. Statistical analysis 

Mean value, standard deviation (SD) of bone traits, and SD of differences between the repeated 

measurements (SDmeas ~in vivo precision) are given as descriptive statistics for each preprocessing 

method. It should be noted that the CoA values obtained from different methods were made comparable 

by presenting them as a percentage proportion of the total bone area. As another measure of reliability of 

the measurement (~in vivo precision), the reliability coefficient (R = 100(1 – SD2
meas/SD2)%) was 

determined. The R value represents the error-free proportion of the inter-subject variability observed in 

the given bone trait.31 
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III. RESULTS 

Table I shows the influence of preprocessing on the assessment of CoA. Clearly, the preprocessing of the 

image data improved the reliability of the cortical analysis (for the total cortical area, from R = 67% of 

the raw image to 94–97%), while no substantial preference was observed between different preprocessing 

methods. For the raw images, it is worth noting that the precision was poorer at the antero-medial regions 

of the distal tibia (R < 50%) and much greater (R  75%) at the postero-lateral regions. Among the 

preprocessing methods, no such direction dependence was seen; however, the R-value was consistently 

higher with the LinW method compared to the 3×3 median filter, which is the current standard 

preprocessing method in pQCT image analysis. 

Table II shows the influence of preprocessing on the assessment of TrD. In contrast to enhanced cortical 

analysis, the preprocessing did not improve the precision of the TrD assessment at any anatomic region of 

the distal tibia. Precision obtained with the raw images was so high (all R values ~99% or higher) that 

there was no room for any improvement. Noteworthy, the highest mean trabecular density was observed 

at the posterior region and the lowest at the anterior region. 

Table III shows the mean pixel values and SD of separate pixel values within the phantom images after 

preprocessing, and the effect of preprocessing on the SNR in the pQCT images. For both median filters, 

the noise suppression was independent of density; whereas the suppression improved with density for the 

LinW and GaussW methods. The SNR ranged from 21(22) dB for tap water to 25(26) dB for the highest 

density phantom for GaussW and LinW (in brackets), respectively. Regarding the background (~air) 

noise, LinW and GaussW methods improved the SNR by ~15 db compared to the ~9 dB improvement for 

median filters. Fig. 4 indicates that the pQCT image contains a relatively large amount of random noise in 

addition to some nonrandom noise.  
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 It is also worth noting that the dynamic range was greater for the LinW and GaussW than the median 

windows or raw image; the max/min ratios were 2.5 and 1.6, respectively. Smaller absolute mean pixel 

values obtained from LinW and GaussW are due to the gray-level transformation. 

As can be inferred from the mean and SD values in Table III, only six distinct (equidistant) density ranges 

corresponding to tap water (50.2 mg/cm3), 98.4 mg/cm3, 146.5 mg/cm3, 194.7 mg/cm3, 242.8 mg/cm3 and 

291 mg/cm3 can be exclusively separated (i.e., the density ranges were not allowed to overlap their 

neighbors). Four levels (three lowest and the highest one) corresponded to the densities of respective 

phantoms, while two intermediate levels were interpolated using the regression equation between 

measured density levels and phantom concentrations17 and observed SD values in the densities of 

neighborhood phantoms. 

Fig. 5 illustrates the results from the k-NN classifier analysis using a pair of repeated scans as an example. 

The colored density regions correspond to density ranges that could be unequivocally separated from each 

other. Some structural patterns could be seen in the preprocessed images, whereas a disperse distribution 

of density levels appeared in the raw images. After preprocessing of the image, the density increased 

consistently from the anterior to the posterior region, which was not evident in the raw image. 

IV. DISCUSSION 

While the pQCT imaging has potential in clinical evaluation of bone fragility and various research 

applications;32,33 there are several factors that can compromise its performance and reliability. Namely, 

pQCT images are subject to movement artefacts that are largely attributable to the slow scan speed and 

long imaging time,17 to the great variance in scan and analysis parameters,34-37 and also to the type of 

scanner used, even within the same brand.38 In this study, special emphasis was placed on evaluating the 

noise present in pQCT images. We elaborated this rarely discussed topic in order to compare and devise 

appropriate method(s) that could improve the in vivo precision of pQCT image analysis, and thus, 
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enhance the evaluation of commonly used bone traits, including the cortical area and trabecular density. 

Should the precision be improved, smaller changes in bone traits could be detected at the given sample 

size of study subjects, or smaller studies could be undertaken.  

As anticipated, the preprocessing of pQCT image data improved the analysis of cortical bone, but to our 

surprise, not that of trabecular density. It appeared that the true dynamic range of pQCT imaging is poor; 

allowing separation of six distinct gray levels (~non-overlapping density ranges) only. However, this 

limited resolution may open a new way to examine the trabecular bone, particularly the apparent 

structural patterns within (~spatial distribution of bone mass within the bone cross-section), as illustrated 

in our preliminary analysis (Fig. 5). This approach naturally requires further elaboration. 

Cortical bone has a vital role in maintaining bone rigidity.40-45 However, reliable analysis of cortical bone 

with pQCT, particularly at the thin-walled long bone ends, is challenging because of the relatively low 

spatial resolution.17,34,39 Several studies have evaluated cortical bone analysis from the viewpoint of 

precision, influence of the scan or analysis parameters,17,34-36,46 but to our knowledge, the influence of the 

preprocessing on the pQCT image quality has not yet been evaluated. The present study showed that the 

preprocessing can markedly enhance the analysis of the cortical area. The improvement in reliability, 

judged from the R values, was approximately 27–30%. However, the differences between the 

preprocessing methods remained marginal and no preference could be determined. In contrast, for the 

direction-specific analysis, the most consistent results were obtained by LinW preprocessing, the R values 

were close to 90% or better.  

Trabecular density is considered the major trait of interest in clinical osteoporosis research,32 mainly 

because of the greater expected changes in this trait in response to medical treatment, physiological 

conditions, or aging. Nevertheless, the influence of preprocessing on the reliability of pQCT results has 

not yet been explored. Our hypothesis was that the preprocessing would render the results of trabecular 

density analysis more consistent, but this was not the case. Neither the novel LinW or GaussW 
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approaches, nor the conventional median filters were able to reduce variance in trabecular density 

between repeated scans. The explanation is apparent: the R values for the raw images were close to 100%, 

leaving no room for improvement. These negligible returns from both simple and sophisticated 

preprocessing of the trabecular region are probably due to the high noise level, and to some extent, also to 

its non-random nature. This kind of noise cannot be efficiently managed by preprocessing methods based 

on universal setting approaches that cannot take into account specific characteristics of noise. 

 In addition to observing low SNR (~20 – 30 dB) in the pQCT image, we attempted to determine specific 

characteristics of noise by analyzing repeated scans of homogeneous K2HPO4 liquid phantoms. In 

addition to random variation, which could be reduced, the noise appeared to comprise some features that 

could not be suppressed by preprocessing (Fig. 4). Apparent sources of the latter type of noise include the 

high-pass filtration and back projection of Poisson and Gaussian noise in the projections, the back-

projection reconstruction algorithm, variation in the translational and rotational motion of the X-ray 

source and detector assembly during the scan, non-uniform intensity of the X-ray beam and detector 

characteristics, as well as the movement of the patient during the scan. All of these factors may modulate 

the noise in the pQCT image separately or interactively.  

While the benefits of preprocessing in enhancing the cortical analysis were evident compared to the 

results from the raw images, one may ask whether the preprocessing of pQCT images in terms of 

trabecular density is worthwhile. Obviously, filtering of the image, depending on the type and specific 

parameters of the method, results in greater or less substantial loss of true information while suppressing 

noise. However, as can be judged from the similar mean trabecular density and standard deviation values 

obtained after different preprocessing methods (Table II), the loss of essential information, at least at the 

group level, does not seem to be a real concern. In contrast, preprocessing may reveal some coarse 

structural features (those reflecting spatial distribution of different trabecular density regions within the 

bone cross-section), not only within the whole cross-section, but also within the anatomic sectors. It is 
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noted that these apparent structural patterns were not distinct in the raw image (Fig. 5). In particular, the 

region-specific analysis may reveal some interesting associations between bone loading and density 

variation as the recent analyses based on small regions of interest by Lai et al.47-49 suggested. Further, 

regarding the benefits of preprocessing, the dynamic range of the density values might be increased using 

sophisticated methods (LinW, GaussW). The LinW method also appeared to provide the most consistent 

cortical results for all anatomical sectors of the distal tibia. Further studies are needed to refine these 

approaches and assess their true value. 

There are some issues that need further discussion. First, the benefits of sophisticated preprocessing 

methods need to be evaluated in terms of required processing power and time. Second, the apparent utility 

and validity of the obtained results need further corroboration. While being basically an important issue, 

the processing time is considered irrelevant since the structural analysis is generally not done in real time 

but after the scanning the patient scan. Obviously, simpler techniques, like median filtering, are faster by 

an order than the more sophisticated approaches assessed in this study, but the difference in processing 

time may be reduced by optimizing the code of the latter methods. Moreover, given the substantial 

processing power of modern PCs, the processing time cannot be considered an issue. Obviously, further 

studies are needed to show the utility of proposed preprocessing approaches in assessing patient-specific 

bone strength and fracture risk.  As regards the validity of the preprocessed results, it is recalled that the 

spatial distribution of bone and non-bone regions of the trabecular architecture is mainly smaller than the 

resolution of the standard pQCT image. It may be thus possible that the noise reduction algorithms may 

introduce errors in the subsequent interpretation of trabecular structure rather than reveal true structural 

features, even at the coarse level.  If so, the raw pQCT images would be a better representation of the 

trabecular architecture than the preprocessed images.  In this respect, it would be interesting to compare 

images obtained from high resolution QCT (HR-QCT) to those obtained from low-resolution pQCT to 

determine the effect of true noise on the apparent structural traits and to determine the validity of the 

present preprocessing approaches in revealing true structural features in bones.   



16 

 

In conclusion, this study showed that the signal to noise ratio in the pQCT image can be rather low, and 

the noise, particularly that present at the trabecular region, cannot be suppressed with preprocessing to the 

extent that the analysis of trabecular density is essentially improved. However, preprocessing may 

enhance cortical bone analysis and also facilitate coarse structural analyses of the trabecular bone. 



17 

 

ACKNOWLEDGEMENTS 

We would like to thank Markus Hannula for creating the testing models used for developing our method. 

We also acknowledge the Finnish Cultural Foundation and Research School of Tampere University of 

Technology for financial support of the doctoral studies for TC. This study was also supported by the 

Competitive Research Funding of the Tampere University Hospital (Grant 9K092). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

REFERENCES 

1Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B 

and Khaltaev N. Assessment of fracture risk. Osteopor. Int. 2005; 16:581-589. 

2Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC and Cummings SR. 

BMD at multiple sites and risk of fracture of multiple types: Long-term results from the study of 

osteoporotic fractures. J. Bone Miner. Res. 2003; 18:1947-1954. 

3Bolotin HH and Sievanen H. Inaccuracies inherent in dual-energy X-ray absorptiometry in in vivo bone 

mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific fragility. J. 

Bone Miner. Res. 2001; 16:799-805. 

4Sievanen H. A physical model for dual-energy X-ray absorptiometry-derived bone mineral density. 

Invest. Radiol. 2000; 35:325-330. 

5Bolotin HH. The significant effects of bone structure on inherent patient-specific DXA in vivo bone 

mineral density measurement inaccuracies. Med. Phys. 2004; 31:774-788. 

6Järvinen TL, Sievänen H, Khan K, Heinonen A and Kannus P. Shifting the focus in fracture prevention 

from osteoporosis to falls. BMJ 2008; 336:124-126. 

7Jarvinen T, Sievanen H, Jokihaara J and Einhorn TA. Revival of bone strength: the bottom line. J. Bone 

Miner. Res. 2005; 20:717-737. 

8Riggs BL, Melton III LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, 

Bouxsein ML and Khosla S. Population-based study of age and sex differences in bone volumetric 

density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 2004; 19:1945-1954. 

9Riggs BL, Melton III LJ, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA, McCollough CH, 

Khosla S and Bouxsein ML. Population-based analysis of the relationship of whole bone strength indices 

and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J. Bone Miner. Res. 

2006; 21:315-323. 



19 

 

10 Carpenter DR, Beaupre GS, Lang TF, Orwoll ES and Carter DR. New QCT analysis approach shows 

the importance of fall orientation on femoral neck strength. J. Bone Miner. Res. 2005; 20:1533-1542. 

11Yang L, Masic I, McCloskey EV and Eastell R. Shape, structural properties, and cortical stability along 

the femoral neck: A study using clinical QCT. J. Clin. Densitom. 2008; 11:373-382. 

12 Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM 

and Orwoll ES. Proximal Femoral Structure and the Prediction of Hip Fracture in Men: A Large 

Prospective Study Using QCT. J. Bone Miner. Res. 2008; 23:1326-1333. 

13Hulmea PA, Boydb SK and Ferguson SJ. Regional variation in vertebral bone morphology and its 

contribution to vertebral fracture strength. Bone. 2007; 41:946-957. 

14Verhulp E, van Rietbergen B, Huiskes R. Load distribution in the healthy and osteoporotic human 

proximal femur during a fall to the side. Bone. 2008; 42:30-35. 

15Njeh CF, Fuerst T, Hans D, Blake GM and Genant HK. Radiation exposure in bone mineral density 

assessment. Appl. Radiation Isot. 1999; 50:215-236. 

16Guglielmi G, de Terlizzi F. Quantitative ultrasond in the assessment of osteoporosis. Eur J Radiol. 2009; 

71:425-431. 

17Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A and Vuori I. Peripheral quantitative computed 

tomography in human long bones: Evaluation of in vitro and in vivo precision. J. Bone Miner. Res. 1998; 

13:871-882. 

18Lochmüller EM, Müller R, Kuhn V, Lill CA and Eckstein F. Can Novel Clinical Densitometric 

Techniques Replace or Improve DXA in Predicting Bone Strength in Osteoporosis at the Hip and Other 

Skeletal Sites? J. Bone Miner. Res. 2003; 18:906-912. 

19 Lochmüller EM, Bürklein D, Kuhn V, Glaser C, Müller R, Glüer CC, Eckstein F. Mechanical strength 

of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, 

quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative 

ultrasound. Bone. 2002; 31:77-84. 



20 

 

20Zhang Y, Brady M and Smith S. Segmentation of brain MR images through a hidden Markov random 

field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 2001; 20:45-57. 

21Li J, Najmi A and Gray RM. Image classification by a two dimensional hidden Markov model,” IEEE 

Trans. Signal Proc. 2000; 48:517-533. 

22Lai J, Ford JJ, O’Shea P and Walker R. Hidden Markov Model Filter Banks for Dim Target Detection 

from Image Sequences. presented at the DICTA 2008, Canberra, Australia, December 1-3, 2008, URL: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4700037&isnumber=4699978. 

23Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P. Loading modalities and bone structures 

at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female 

athletes. Bone. 2006; 39:886-894. 

24Uusi-Rasi K, Sievänen H, Pasanen M, Oja P, Vuori I. Associations of calcium intake and physical 

activity with bone density and size in premenopausal and postmenopausal women: a peripheral 

quantitative computed tomography study. J. Bone Miner. Res. 2002; 17:544-552. 

25Aldroubi A and Unser M. Wavelet transform: Theory and implementation. In Wavelets in Medicine and 

Biology, edited by Aldroubi A, Unser M (CRC Press LLC, Boca Raton, USA, 1996), pp. 3-73. 

26Malfait M, Roose D. Wavelet based image denoising II: Wavelet based image denoising using a Markov 

Random Field a priori model, Technical Report TW 228, Katholieke Universiteit, Leuven, Belgium, 1995 

27Xie H, Pierce LE and Ulaby FT. SAR speckle reduction using wavelet denoising and Markov random 

field modeling. IEEE Trans. Geosci. Remote Sens. 2002; 40:2196-2212. 

28Seits P and Ruegsegger P. Fast contour detection algorithm for high precision quantitative CT. IEEE 

Trans. Med. Imag. 1983; 2:136-141. 

29Fix E and Hodges JL. Discriminatory analysis, non-parametric discrimination. Technical report, USAF 

School of Aviation Medicine, Randolf Field, Tex. Project 21-49-004, Rept. 4, Contract AF41(128)-31 

(1951). 



21 

 

30Kadah YM, Farag AA, Zurada JM, Badawi AM and Youssef A-BM. Classification Algorithms for 

Quantitative Tissue Characterization of Diffuse Liver Disease from Ultrasound Images Medical Imaging. 

IEEE Trans. Med. Imag. 1996; 15:466-478. 

31 Fleiss JL. Reliability of measurement. In: The Design and Analysis of Clinical Experiments, edited by 

Fleiss JL (John Wiley & Sons, New York, USA, 1986), pp. 1-32. 

32Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, 

Prevrhal S, Hans DB and Lewiecki EM. Clinical Use of Quantitative Computed Tomography and 

Peripheral Quantitative Computed Tomography in the Management of Osteoporosis in Adults: The 2007 

ISCD Official Positions. J. Clin. Densitom. 2008; 11:123-162. 

33Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, Moyer-Mileur L, Shepherd J, Specker 

B, Ward K and Hans D. Peripheral Quantitative Computed Tomography in Children and Adolescents: 

The 2007 ISCD Pediatric Official Positions. J. Clin. Densitom. 2008; 11:59-74. 

34Veitch SW, Findlay SC, Ingle BM, Ibbotson CJ, Barrington A, Hamer AJ and Eastel R. Accuracy and 

Precision of Peripheral Quantitative Computed Tomography Measurements at the Tibial Metaphysis. J. 

Clin. Densitom. 2004; 7:209-217. 

35Ward KA, Adams JE and Hangartner TN. Recommendations for Thresholds for Cortical Bone 

Geometry and Density Measurement by Peripheral Quantitative Computed Tomography. Calcif. Tissue 

Int. 2005; 77:275-280. 

36Kontulainen S, Liu D, Manske S, Jamieson M, Sievänen H and McKay H. Analyzing Cortical Bone 

Cross-Sectional Geometry by Peripheral QCT: Comparison With Bone Histomorphometry. J. Clin. 

Densitom. 2007; 10:86-92. 

37Ashe  MC,  Liu-Ambrose  T,  Khan  KM,  White  N  and  McKay  HA.  Optimizing  results  from  pQCT:  

reliability of operator-dependent pQCT variables in cadavers and humans with low bone mass. J. Clin. 

Densitom. 2005; 8:335-340. 



22 

 

38Burrows M, Cooper DM, Liu D and McKay HA. Bone and Muscle Parameters of the Tibia: Agreement 

Between the XCT 2000 and XCT 3000 Instruments. J. Clin. Densitom. 2009; 12:186-194. 

39Hangartner TN and Gilsanz V. Evaluation of cortical bone by computed tomography. J. Bone Miner. 

Res. 1996; 11:1518-1525. 

40Augat P, Reeb H and Claes LE. Prediction of fracture load at different skeletal sites by geometric 

properties of the cortical shell. J. Bone Miner. Res. 1996; 11:1356-1363. 

41Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF and Reeve J. Structure of 

the Femoral Neck in Hip Fracture: Cortical Bone Loss in the Inferoanterior to Superoposterior Axis. J. 

Bone Miner. Res. 1999; 14:111-119. 

42Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ and Reeve J. Intracapsular 

Hip Fracture and the Region-Specific Loss of Cortical Bone: Analysis by Peripheral Quantitative 

Computed Tomography. J. Bone Miner. Res. 2001; 16:1318-1328. 

43Pistoia W, van Rietbergen B and Ruegsegger P. Mechanical consequences of different scenarios for 

simulated bone atrophy and recovery in the distal radius. Bone 2003; 33:937-945(9). 

44Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ and Reeve J. 

Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet 2005; 336:129-

135. 

45Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, 

Eskola H, Soimakallio S, Heinonen A, Hyttinen J and Sievänen H. Targeted exercises against hip 

fragility. Osteoporos. Int. 2009; in press. 

46Groll O, Lochmüller EM, Bachmeier M, Willnecker J and Eckstein F. Precision and intersite correlation 

of bone densitometry at the radius, tibia and femur with peripheral quantitative CT. Skeletal Radiol. 1999; 

28:696-702. 

47Lai YM, Qin L, Hung VWY and Chan KM. Regional differences in cortical bone mineral density in the 

weight-bearing long bone shaft—a pQCT study. Bone 2005; 36:465-471. 



23 

 

48Lai YM, Qin L, Yeung HY, Lee KKH and Chan KM. Regional differences in trabecular BMD and 

micro-architecture of weight-bearing bone under habitual gait loading – a pQCT and microCT study in 

human cadavers. Bone 2005; 37:274-282. 

49Lai YM, Qin L, Hung VWY, Choy WY, Chan ST, Chan LWC and Chan KM. Trabecular Bone Status 

in Ultradistal Tibia Under Habitual Gait Loading: A pQCT Study in Postmenopausal Women. J. Clin. 

Densitom. 2006; 9:175-183. 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

LIST OF FIGURES 

Fig. 1. Block diagram of the novel preprocessing method. The processing cycle is performed twice in 

order to enhance the effect of processing. 

 

Fig. 2. Example of the gray-level conversion function (values on both axes correspond to the gray level 

values). The conversion factor is 1:2 for the chosen region of interest (i.e., the main trabecular region and 

partly the lower intensities of cortical bone), 1:4 for lower values of the gray levels (i.e. muscles and other 

soft tissues), and constant for highest gray level values (i.e., where the cortical bone region can be 

certainly defined). 

 

Fig. 3. Definition of the anatomic sectors of interest for the distal tibia. First, a line was drawn through the 

center-of-mass of the tibia and that of the fibula. Then two lines were drawn through the center-of-mass 

of the tibia at angles of 45 and -45 degrees. The delineated sectors between these lines define the four 

anatomic (posterior, medial, anterior, lateral) regions of interest. 

 

Fig. 4. A raw pQCT image of the phantoms (the upper left panel), the average image of all 12 raw images 

(the upper middle panel), and the subtraction (raw average) image (the upper right panel). The lower 

panel images illustrate the background noise within the delineated boxes in the images of the upper row. 

The standard deviation (noise) of the background intensity was 11 (mean grey level 12; SNR = 0.8 dB) in 

the average image, while in the subtraction image it was 21 (mean level 0.2; SNR = -40 dB) 

 



25 

 

Fig. 5. Repeated pQCT scans after being processed by different methods: a) the raw, unprocessed image 

of the first scan (left-most panel), its result after k-NN analysis, the original image of the repeated scan 

and its results after k-NN analysis (right-most panel); b) preprocessed image by linear window; c) 

preprocessed image by Gaussian window; d) preprocessed image after 3×3 median filtering; and e) 

preprocessed image after 5×5 median filtering. ROI – region of interest (densities investigated from 

phantom images and cortical bone). 

 

 

 

 



Table I. Descriptive data and precision of the proportional cortical area (in %) at the total bone cross-

section and four anatomic regions of the distal tibia after different pre-processing methods. 

Pre-processing method Cortical area Posterior 
region 

Medial 
region 

Anterior 
region 

Lateral 
region 

Raw image Mean (SD) 15.5 (1.6) 15.8 (1.7) 15.7 (1.7) 15.6 (2.0) 15.0 (1.7) 

SDmeas 0.9 0.7 1.3 1.5 0.9 

R  67 84 47 48 75 

3x3 median 
window 

Mean (SD) 15.6 (1.8) 15.8 (1.7) 16.0 (2.1) 15.7 (2.1) 15.2 (2.0) 

SDmeas 0.5 0.7 0.8 0.6 0.8 

R-value 94 85 85 91 83 

5x5 median 
window 

Mean (SD) 16.4 (1.6) 16.4 (1.8) 17.1 (2.0) 16.7 (2.0) 15.3 (1.6) 

SDmeas 0.4 0.7 0.5 0.6 0.7 

R-value 94 84 93 92 81 

Linear 
window 

Mean (SD) 17.6 (1.8) 18.0 (1.7) 17.7 (1.8) 17.9 (2.3) 17.0 (1.8) 

SDmeas 0.3 0.5 0.6 0.5 0.5 

R-value 97 93 88 95 91 

Gauss 
window 

Mean (SD) 16.5 (1.7) 16.9 (1.7) 16.6 (1.6) 16.5 (2.4) 16.0 (1.8) 

SDmeas 0.3 0.6 0.6 0.7 0.5 

R-value 97 87 85 92 91 

SDmeas is the standard deviation of the differences between the repeated scans. 

R is the reliability coefficient (R = 100(1 – SD2
meas/SD2)%)  

 



Table II. Descriptive data and precision of the trabecular density (in mg/cm3)* in total and at the four 

anatomic sectors of the distal tibia after different preprocessing methods. 

Preprocessing method Total area Posterior 
region 

Medial 
region 

Anterior 
region 

Lateral 
region 

Raw image Mean (SD) 282 (42) 319 (42) 281 (45) 260 (49) 270 (52) 

SDmeas 2 5 4 5 5 

R (in %) ~100 99 99 99 99 

3×3 median 
window 

Mean (SD) 283 (42) 320 (42) 281 (45) 261 (49) 271 (52) 

SDmeas 3 5 5 5 5 

R-value ~100 99 99 99 99 

5×5 median 
window 

Mean (SD) 279 (42) 316 (41) 278 (44) 254 (49) 267 (52) 

SDmeas 3 5 5 4 5 

R-value ~100 99 99 99 99 

Linear 
window 

Mean (SD) 281 (41) 319 (41) 280 (46) 259 (48) 269 (51) 

SDmeas 2 5 4 3 5 

R-value ~100 99 99 ~100 99 

Gauss 
window 

Mean (SD) 279 (41) 316 (41) 279 (46) 255 (48) 265 (51) 

SDmeas 2 5 4 4 5 

R-value ~100 99 99 99 99 

SDmeas is the standard deviation of the differences between the repeated scans. 

R is the reliability coefficient (R=100(1 – SD2
meas/SD2)%). 

* obtained from the mean pixel values after applying the calibration equation between the measured mean pixel values and 
known densities of the K2HPO4 phantoms: density = 1.577mean_pixel_value + 357.13 for 3×3, 5×5 median, density = 
6.452mean_pixel_value + 125.82 for the LinW and GaussW. Both relationships between the density values and mean pixel 
values were linear (r  1). 

 



Table III. Mean pixel values and SDs of separate pixel values (in brackets) within the pQCT image and 

SNR at different density levels of the homogeneous phantoms after different preprocessing methods. 

Phantom  

(concentration) 

Preprocessing method 

Background* Tap water  

 

98.4 
(mg/cm3) 

146.5 
(mg/cm3) 

291 
(mg/cm3) 

Raw 
image 

Mean (SD) 12 (21) 259 (28) 292 (29) 323 (30) 417 (35) 

SNR†  -4.6 19 20 21 21 

3×3 
median 
window 

Mean (SD) 12 (10.3) 259 (14.5) 291 (14.5) 322 (14.6) 416 (20.9) 

SNR†  1.2 25 26 27 26 

5×5 
median 
window 

Mean (SD) 12 (7.2) 258 (11.2) 290 (11.2) 321 (11.1) 415 (18.0) 

SNR†  4.5 27 28 29 27 

Linear 
window 

Mean (SD) 1.4 (1.0) 36.9 (3.0) 45.0 (3.0) 52.9 (3.1) 76.2 (4.0) 

SNR†  9.4 22 23.5 25 26 

Gauss 
window 

Mean (SD) 1.4 (1.0) 37.0 (3.3) 45.0 (3.3) 52.9 (3.4) 76.4 (4.4) 

SNR†  9.4 21 22.5 24 25 

*Background denotes the air region of the pQCT image.  

†the derivation is given in the Section II.D  (Equation 3) 
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Summary

The aim of this study was to investigate whether the bone response to long bed rest–
related immobility and during subsequent recovery differed at anatomically different
sectors of tibial epiphysis and diaphysis. For this study, peripheral quantitative
tomographic (pQCT) scans obtained from a previous 90-day �Long Term Bed Rest�
intervention were preprocessed with a new method based on statistical approach and
re-analysed sector-wise. The pQCT was performed on 25 young healthy males twice
before the bed rest, after the bed rest and after 1-year follow-up. All men underwent
a strict bed rest intervention, and in addition, seven of them received pamidronate
treatment and nine did flywheel exercises as countermeasures against disuse-related
bone loss. Clearly, 3–9% sector-specific losses in trabecular density were observed at
the tibial epiphysis on average. Similarly, cortical density decreased in a sector-
specific way being the largest at the anterior sector of tibial diaphysis. During
recovery, the bed rest–induced bone losses were practically restored and no
consistent sector-specific modulation was observed in any subgroup. It is concluded
that the sector-specific analysis of bone cross-sections has potential to reveal skeletal
responses to various interventions that cannot be inferred from the average analysis
of the whole bone cross-section. This approach is considered also useful for
evaluating the bone responses from the biomechanical point of view.

Introduction

Bone structure can deteriorate in response to several factors such

as disuse, immobilization, ageing, diseases and hormonal

disturbances. Because the lower limb skeleton is primarily

locomotive organ and capable to adapt to varying loading

conditions (Frost, 2003; Ruff et al., 2006), disuse irrespective of

its primary cause provides a useful model to investigate

responses of bone structure to reduced loading. Experimental

bed rest with )6� head down tilt is an established ground-based

model to simulate the physiological effects of spaceflight (Pavy-

Le Traon et al., 2007). Earlier bed rest studies have mostly relied

on dual-energy X-ray absorptiometry (DXA) (LeBlanc et al.,

1990; Zerwekh et al., 1998; Shackelford et al., 2004; Armbrecht

et al., 2010) but with regard to bone structure these studies are

limited by the inherent inability of DXA to yield tangible

information on actual cross-sectional bone geometry, let alone

separating the measured bone into trabecular and cortical

compartments (Sievänen, 2000). Peripheral quantitative com-

puted tomography (pQCT) offers a reasonable option to assess

bone geometry and density without evident limitations of planar

DXA (Sievänen et al., 1998; Sievänen, 2000). The few studies

which have used pQCT or QCT technology indicated that bone

loss is most prominent at endocortical bone regions both after

bed rest (Rittweger et al., 2005, 2009, 2010) and space flight

(Lang et al., 2006).

It is obvious that different bone sectors experience specific

loading environment in terms of biomechanics of the given site.

A good example of sector-specific bone adaptation comes from

patients with spinal cord injury, in whom electrical stimulation

of the soleus muscle led to site-specific bone accrual in the

posterior aspect of the distal tibia (Dudley-Javoroski & Shields,

2008). Apparently, normal locomotive muscle contractions

mostly affect the anterior and posterior sectors of distal tibia via

the ground reaction forces imposed on the feet in the front and

the pulling forces mediated by the Achilles tendon in the back.

Therefore, we hypothesized that the most substantial bone losses

would occur at those sectors where the lack of locomotive

loading is most evident because of immobility during bed rest

and accordingly a faster recovery at the same sectors when the
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locomotive loading was resumed. To our knowledge, disuse-

related changes in anatomical sectors of bone structure have not

been studied before.

To elaborate our hypothesis, we re-analysed the pQCT data

from the �Long Term Bed Rest� (LTBR) study that was carried out

in 2001 and 2002 in Toulouse ⁄ France. The LTBR results

indicated that administered countermeasures, pamidronate and

flywheel exercise could only partly prevent the mean loss in

tibial bone mineral content during bed rest (Rittweger et al.,

2005). However, after the resumption of locomotion, the bone

loss fully recovered at the tibial shaft and also to a large extent at

the distal epiphysis (Rittweger & Felsenberg, 2009). In this

study, we assessed specifically whether (i) the bone responses to

bed rest were different at anatomically different sectors of the

distal tibia and tibial shaft in different subgroups and (ii)

whether the sector-specific responses were different during the

recovery. The latter research question can give valuable

information as to whether the recovery is achieved not only

in quantitative terms but also with anatomical specificity in line

with anticipated biomechanics. We also expected different

responses between the groups treated with countermeasures and

the control group. While the flywheel exercise could halve the

bone loss in the LTBR study (Watanabe et al., 2004; Rittweger

et al., 2005), it is unclear whether this benefit is evenly

distributed within the bone cross-section. Likewise, it is not

known whether bisphosphonate treatment could modulate the

sector-specific maintenance of bone mass during bed rest, while

the general benefits of such treatments on DXA-measured bone

mineral density have been consistently observed (Chappard

et al., 1989; Grigoriev et al., 1992; Ruml et al., 1995; LeBlanc

et al., 2002; Watanabe et al., 2004; Rittweger et al., 2005).

Material and methods

The details of the LTBR study as well as the countermeasures and

scanning procedures have been described in detail elsewhere

(Rittweger et al., 2005). In short, 25 healthy young male

volunteers were recruited to undergo 90 days of strict bed rest

with )6� head down tilt. These men were randomly assigned

into three groups: nine to the control group (Ctrl, bed rest

only), seven received a single infusion of 60 mg pamidronate

i.v. prior to bed rest (Pam) and the other nine participants

practiced resistive flywheel exercises every 2–3 days (FW). The

age range of the subjects was 23–41 years; weight range

60–80 kg and height range 167–185 cm. The study was

approved by the local Ethics Committee and all participants

gave their written informed consent before they were included

into the study.

Peripheral quantitative computed tomography (XCT 2000;

Stratec Medizintechnik GmbH, Pforzheim, Germany) was

performed at distal 4% (epiphysis) and at 66% (diaphysis) sites

of the tibia (Rittweger et al., 2005). For the present study, pQCT

data measured 2 weeks before the bed rest (BDC-14), 1 week

before the bed rest (BDC-7), 2 weeks after cessation of the bed

rest (R + 14) and 1 year after the bed rest (R + 360) were

used. The reason to select R + 14 rather than the penultimate

day of bed rest (HDT89) was that the bone changes continued

and were largest around R + 14 (Rittweger et al., 2010). Three

subjects (one from Pam group and two from FW group) were

excluded because they did not attend the R360 follow-up

measurement. Also, one subject from FW group was moved into

Ctrl group for second half of the study because of knee pain that

was partly related to the flywheel training (Rittweger et al.,

2007). Repositioning for the pQCT scans included in this study

was considered acceptable because the differences in total cross-

sectional bone areas were within 25 mm2 (�1%) in all

consecutive four scans of distal tibia. The mean total area and

mean intra-individual standard deviation (in parentheses)

between BDC-14 and BDC-7 were 2122 (10) mm2 for epiphysis

and 662 (0Æ1) mm2 for diaphysis.

Peripheral quantitative computed tomography image

analysis

A new preprocessing method for pQCT data, proposed recently

by Cervinka et al. (2010), was applied to the raw pQCT data that

were produced by the back projection algorithm of the pQCT

system without preprocessing. The new method was chosen

because it permitted more consistent detection of outer and

inner cortical boundaries compared to common image-prepro-

cessing techniques, such as median filtering. In brief, prepro-

cessing of the image data was composed in two steps. First, a

gray-level transformation was carried out by implementing a

common, iteratively employed, piecewise linear conversion

function. This transformation represents a non-equidistant

re-quantization of the gray scale. Second, the transformed data

were corrected for inaccuracies caused by the re-quantization

procedure by using the Bayesian approach and Markov random

fields with 3 · 3 linear neighbourhoods and redundant wavelet

transform. The method is described in detail elsewhere

(Cervinka et al., 2010).

After preprocessing of the pQCT images, a modification of

simple and fast edge tracing algorithm (described in Seits &

Ruegsegger, 1983) was used for segmenting the bone cross-

section into cortical and trabecular bone regions (Cervinka et al.,

2010). After detecting the outer cortical boundary according to

the maximum values of the first derivative of the preprocessed

image data, the region inside the traced bone contour was

radially shrunk until the inner cortical boundary was found. The

next local maximal points along the radii were considered to

coincide with the inner boundary of the cortical shell (Cervinka

et al., 2010). The shrunken region corresponded to the

trabecular bone area and subtraction of the original and shrunk

bone regions provided the cortical bone area. The procedure for

cortical contour detection is illustrated in Fig. 1.

Then, the conventional pQCT traits, cortical cross-sectional

area (CoA) and trabecular density (TrD) for epiphysis, and CoA

and cortical density (CoD) for diaphysis, were determined as

descriptors of bone structure. Besides analysing the total bone

cross-section, the cross-section was divided into four anatomical
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sectors (lateral, posterior, medial and anterior) so that direction-

specific features of the cortical and trabecular bone could be

assessed (Fig. 2). The CoA was expressed as a percentage of total

bone cross-sectional area or as a percentage of total bone area

within the given anatomical sector, as appropriate. The TrD and

CoD values represented the volumetric bone mineral apparent

density of the given bone region. The conversion from gray

scale values to bone mineral density was based on previously

determined relationship between the pQCT-measured densities,

known K2HPO4 concentrations and gray scale values (Sievänen

et al., 1998; Cervinka et al., 2010).

Statistical analysis

Group mean values and 95% confidence intervals (95% CI) of

bone traits are given as descriptive statistics. Changes in bone

traits after bed rest (R + 14) and after recovery periods

(R + 360) were expressed as percentage changes from baseline

value, which was defined as the mean of BDC-14 and BDC-7

data measured before bed rest. These two pQCT assessments

prior to bed rest provided also relevant information on short-

term precision of bone traits and facilitated appropriate

interpretation of changes in bone traits. Given the small number

of subjects in study groups, the 95% CIs of percentage changes

were considered adequate for indicating within-group changes

during bed rest and subsequent recovery period or substantial

between-group differences at different time points. In addition

to mean changes over time, potential group differences in the

variance of responses to bed rest and accompanying counter-

measures at R + 14 and R + 360 were evaluated with the F-test.

Results

Epiphysis

Changes in CoA and TrD at the distal tibia during bed rest and

1-year recovery are shown in Fig. 3. Mean changes in CoA

generally remained within �±2% in all groups without

apparent trends or indication of statistical significance. How-

ever, the Pam group showed lower variance in the anterior and

posterior changes in CoA during the bed rest compared to FW

and Ctrl groups, respectively, (P<0Æ05 for both) but higher

variance in medial and anterior changes in CoA during recovery

compared to Ctrl group (P<0Æ05 for both sectors).

Mean trabecular loss during bed rest was systematically

greater (�3–8%) than the cortical loss, and it was most

pronounced in Ctrl group and smallest in FW group. Besides the

general decline within the whole bone cross-section, some

anatomical sectors appeared to be more affected. During bed

rest, the greatest (�6–8%) mean losses in trabecular density

occurred at the medial sector in Pam and FW groups, whereas in

Figure 1 Cortical bone contour detection. The upper curve shows one
radial X-ray attenuation profile along a radial line through the
preprocessed bone image and the lower curve represents its first
derivate. The greater attenuation of cortical bone is distinct. The
maximum of the first derivative denotes the outer cortical boundary and
the next local maximum denotes the inner cortical boundary. This
algorithm is repeated across the whole bone cross-section and the area
remaining between the maxima and next local maxima of the first
derivative represented the cortical area.

Anterior

Posterior

Lateral

Medial Anterior

Posterior

Lateral

Medial

Figure 2 Definition of the anatomical sectors of interest for the distal
tibia (4%) and tibia diaphysis (66%). First, a line was drawn through the
centres-of-mass of the tibia and fibula. Then, two lines were drawn
through the centre-of-mass of the tibia at angles of 45� and )45�. The
sectors between these lines denote the four anatomical (posterior,
medial, anterior and lateral) regions of interest.
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Ctrl group, the greatest mean loss (�10%) took place at the

anterior sector. Compared to FW group, Ctrl group showed

higher variance in density changes at anterior and lateral sectors

during bed rest. During recovery, virtually all mean density

levels returned back to baseline, the quite consistent �2%

anterior loss in Ctrl group excluded. The variance at the anterior

density in Ctrl group was lower compared to Pam group

(P<0Æ05). Individual changes in TrD during the bed rest and

recovery periods are shown in Fig. 4.

Diaphysis

Mean changes in CoA and CoD at the tibial diaphysis during bed

rest and 1-year recovery are shown in Fig. 5. In general, mean

changes in CoA during the whole study period were marginal

(mainly within ±1%) without apparent trends or indication of

statistical significance. However, the variance in individual

responses appeared to be great and some between-group

differences were indicated. Compared to Ctrl group, changes

in total CoA were less variant in Pam and FW groups during bed

rest (P<0Æ05 for both). In FW group, in turn, the variance in

bed rest–related changes in medial CoA was higher compared to

those in Ctrl and Pam groups (P<0Æ05 for both). During

recovery, changes in lateral CoA were more variant in Pam

group than in Ctrl group.

The mean losses in CoD remained marginal (mostly clearly

within ±1%) in Pam and FW groups but were somewhat larger

at posterior (�1Æ5%) and anterior (�2%) cortical regions in Ctrl

group. During bed rest, changes in medial and anterior CoD

were more variant in FW group than in Pam or Ctrl groups and

in Pam group, respectively (P<0Æ05). In addition, changes in

total, posterior and anterior CoD were more variant in Ctrl

group compared to Pam group (P<0Æ05). During recovery,

there was virtually no systematic sector-wise effect on R + 360

and all mean density levels returned back to baseline. The

variances were also similar in all groups. Individual changes in

CoD during the bed rest and recovery are shown in Fig. 6.

Discussion

The main purpose of this study was to investigate whether the

bone responses to bed rest and subsequent recovery differ

Figure 3 Distal tibia (4%): mean percentage changes (95% CI) of CoA (left panel) and TrD (right panel) in Pam (upper row), FW (middle row) and
Ctrl (lower row) groups at baseline (mean of BDC-14 and BDC-7; left bars), from baseline to 2 weeks after 90 days bed rest (R + 14; middle bars) and
from baseline to the end of 1-year recovery period (R + 360; right bars) in total and at four anatomical sectors of distal tibia.
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between anatomically different sectors of the tibial epiphysis

and diaphysis and whether they differ between different

subgroups. Sector-specific modulation was evident and the

bone losses were most pronounced in the trabecular compart-

ment (reaching �9% on average) of the distal tibia. This is in

line with the results from long-term immobilization caused by

spinal cord injury (Sievänen, 2010) but in apparent contrast to

recent findings from bed rest studies (Rittweger & Felsenberg,

2009; Rittweger et al., 2009, 2010; Armbrecht et al., 2010). The

latter have suggested that the most prominent bone loss

occurred at the endocortical surface of cortical bone. During

1-year recovery, no consistent sector-specific modulation was

observed in any subgroup and the bed rest–induced bone losses

were practically restored, albeit with a small deficit was seen in

trabecular density at the anterior sector of the control group.

The general recovery of bone mass is perfectly in line with

recent results of Rittweger & Felsenberg (2009).

Obviously, the structure and geometry of lower limb bones

have developed under the regular influence of mechanical

loading comprising largely the ground impacts and accompa-

nying muscle forces during bipedal locomotion in different

physical activities. Therefore, bed rest induces a drastic change

to the loading environment of lower limb skeleton. Reportedly,

significant (2–6%) mean losses occur in bone in response to bed

rest and the magnitude of mean loss is related to the total

duration of intervention (Rittweger & Felsenberg, 2009;

Rittweger et al., 2009, 2010; Armbrecht et al., 2010; Sievänen,

2010). In the present study, the emphasis was uniquely placed

on the sector-specific evaluation of cortical and trabecular bone

responses to bed rest and consequent recovery in three different

groups, one without countermeasure and two with counter-

measures against bed rest–related bone loss.

Sector-specific analysis of bone structure has been previously

applied in assessing the association of physical activity or

(a)

(b)

(c)

(d)

Figure 4 Individual percentage changes in TrD at distal tibia (4%) in Pam (left column), FW (middle column) and Ctrl (right column) at four
anatomical sectors; posterior (a), medial (b), anterior (c) and lateral (d) at base line (mean of BDC-14 and BDC-7), R + 14 and R + 360.
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exercise loading with tibial geometry (Ma et al., 2009;

Macdonald et al., 2009; Shaw & Stock, 2009; Rantalainen et al.,

2010). With regard to the present bed rest data, this approach

allowed a good opportunity to test, at least tentatively, three

following hypotheses all pertinent to bone physiology. First, a

general bone loss should occur as a consequence of the lack of

locomotive loading; second, the flywheel exercise should reduce

this bone loss especially at sectors that are loaded most by

pedalling (i.e. mainly along the antero-posterior axis because of

muscle forces delivered via Achilles tendon); third, the

pamidronate treatment should show a general preventive effect

because of its apparently systemic influence on bone metabo-

lism. Quite surprisingly, all three hypotheses were virtually

confirmed for the cortical density only (Fig. 5), whereas the

responses in trabecular density were not so distinct between

groups (Fig. 3), let alone the marginal responses in cortical area

(Figs 3 and 5).

As expected, the variance in individual skeletal responses was

impressively great during the bed rest phase. In the light of such

substantial inter-individual variability, the inter-subject variation

during recovery has to be described as astoundingly small. It

therefore seems that bone adaptation is more accurately

governed when bone is accrued than when it is lost (Figs 4

and 6). Increased bone resorption, in particular, has been shown

in a recent bed rest study on bone biomarkers (Armbrecht et al.,

2010).

Long bones, such as tibia, allow efficient movement of the

body and provide stiffness against muscle contractions. The

apparent goal of skeletal adaptation is to keep the loading-

induced deformations (strains) within a specific physiological

range (Frost, 2003), and when the regular loading is essentially

reduced, the bone loses some of its rigidity. The contribution of

cortical bone (geometry in conjunction with material elasticity)

to the whole bone rigidity and strength is evident (Currey,

2001). Because the elasticity of cortical bone as a material is

proportional to the third power of cortical density (Martin,

1991), the reduction in cortical density may be the first adaptive

process to increase the flexibility of the given bone to meet the

new loading environment – provided that the bone normal

metabolism is not affected by antiresorptive medication. Indeed,

Figure 5 Tibia diaphysis (66%): mean percentage changes (95% CI) of CoA (left panel) and CoD (right panel) in Pam (upper row), FW
(middle row) and Ctrl (lower row) groups at baseline (mean of BDC-14 and BDC-7; left bars), from baseline to 2 weeks after 90 days bed rest
(R + 14; middle bars) and from baseline to the end of 1 year recovery period (R + 360; right bars) in total and at four anatomical sectors of the
tibia shaft.
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cortical density is shown to decline by 7–8% during the first

year after spinal cord injury (Frey-Rindova et al., 2000). Later,

this density deficit may reduce back to some percents only while

substantial (>30%) cortical thinning ensues (Eser et al., 2004).

This initial reduction in cortical density among paralysed

persons is basically concordant what was seen in the present

study. Apparently, the 3-month duration of the present bed rest

intervention was too short to result in substantial reduction in

cortical area, at least to the extent that could be reliably captured

by low resolution pQCT.

Trabecular loss was much more substantial in magnitude and

rather uniform without a distinct indication of direction-specific

loss. The largest (�9%) bone loss in the anterior sector and

relative insensitivity of the medial loss to any countermeasure

may be noted, however. In general, substantial trabecular bone

loss is a well-known consequence of bone disuse (Sievänen,

2010). However, the specific nature of disuse, e.g. in bed rest

studies, the body position and the total duration (0� and 35 days

in (Rittweger et al., 2009), 0� and 56 days in (Armbrecht et al.,

2010), and )6� head tilt down and 90 days in LTBR study

(Rittweger et al., 2005)) may account for the results.

Somewhat surprisingly, the most effective countermeasure

against bed rest–induced trabecular loss appeared to be the

flywheel exercise, not antiresorptive medication. This observa-

tion could stipulate the speculation whether incident mechanical

loading is necessary for such a medication to be effective.

Among ambulatory postmenopausal women, however, there is

no indication for interaction between bisphosphonate treatment

and exercise intervention; both interventions showed antici-

pated effects independently without interaction (Uusi-Rasi et al.,

2003). The time course of the bone losses in the present

pamidronate group suggests that there was good efficacy in the

first 4 weeks and that further injections might have led to better

maintenance of bone mass (Rittweger et al., 2005).

(a)

(b)

(c)

(d)

Figure 6 Individual percentage changes in CoD at tibia diaphysis (66%) in Pam (left column), FW (middle column) and Ctrl (right column) at four
anatomical sectors: posterior (a), medial (b), anterior (c) and lateral (d) at base line (mean of BDC-14 and BDC-7), R + 14 and R + 360.
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The strengths of the present study are the randomized

prospective design with three interventional arms and a long

follow-up period: the knowledge on the baseline variance which

helped to put the observed skeletal responses in proper context;

the sector-specific analysis of bone structure based on apparent

ankle biomechanics; and the application of a new image

processing method known to reduce noise in pQCT images

(Cervinka et al., 2010). It is known that the use of different

thresholds and analysis methods can affect the results of pQCT

studies (Kontulainen et al., 2007) that may also account for the

above-mentioned discrepant results observed in the present study

compared to other bed rest studies (Rittweger & Felsenberg,

2009; Rittweger et al., 2009, 2010; Armbrecht et al., 2010).

The bed rest studies undoubtedly provide a useful model for

bone loss (Pavy-Le et al., 2007), but some inherent limitations

of these demanding studies need to be recognized. First, the

group sizes are deemed quite limited because of obvious

challenges in financial, technical and practical execution of the

intervention. Second, besides the small number of subjects in

each study group, subject background characteristics within and

between the groups can be heterogeneous, which may increase

the variance in responses, confound their interpretation and

further compromise the power of the study to detect between-

group differences with statistical confidence. Therefore, many

results obtained from bed rest studies remain descriptive and

indicative only rather than conclusive in the statistical sense.

Third, the bed rest intervention was too short to result in

measurable changes in cortical area, but on the other hand,

3 months being bound to bed is close to maximum among

healthy volunteers. Fourth, during the recovery, the assessment

of biomechanical environment was based on coarse qualitative

description because of lack of specific quantitative data on bone

loading (the type, amount and intensity of physical activity of

particular subjects were not known). Notwithstanding these

limitations, observations from bed rest interventions because of

their specific and well-controlled design are of utmost impor-

tance in unravelling not only the skeletal responses to disuse but

also the effects of accompanying countermeasures on disuse-

induced bone loss.

Keeping the inherent statistical limitations of bed rest

interventions in mind, it is concluded that the sector-specific

analysis of bone cross-sections has potential to reveal skeletal

responses to various interventions that cannot be inferred from

the average analysis of the whole bone cross-section. This

approach is considered particularly useful for evaluating the

responses from the biomechanical point of view and thus

strengthening the interpretation of bone data from this relevant

aspect of bone physiology.
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Abstract 

An accurate assessment of bone strength is an important goal in clinical bone research. 

For appropriate information on bone strength, precise segmentation of actual cross-

sectional bone geometry is needed. In this paper, we introduce an automatic, simple and 

fast approach for reliable segmentation of cortical bone cross-sectional area based on 

the outer boundary detection and subsequent shrinking procedure (OBS). Using 

repeated in vivo pQCT images of distal tibia from 25 subjects we compared new 

segmentation results with those obtained from commonly applied simple density 

thresholds and from a recent advanced analysis based on distance regularized level set 

evolution (DRLSE). Manual segmentation of cortical bone done by three independent 

evaluators was considered a gold standard. The new approach showed nearly 50% less 

variation in error compared to threshold based analysis in conjunction with a recently 

introduced statistical preprocessing method, and agreed well with results obtained from 

manual segmentation. The DRLSE segmentation resulted consistently in ~15% mean 

overestimation of all geometrical traits with a similar variation of data as obtained from 

the OBS method. In conclusion, the OBS method improved assessment of all observed 

measures of cortical geometry and can enhance the cortical bone analysis of pQCT 

images in clinical research studies. 

 

Key words: pQCT, Cortical bone, Image preprocessing, Segmentation, distance 

regularized level set evolution, Bone strength 
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Introduction 

Fragility fractures are a common health problem in aging populations. The present 

diagnostic assessment of bone fragility and fracture risk rests largely on dual-energy X-

ray absorptiometry (DXA) measured bone mineral density (BMD) (1). However, the 

BMD approach is limited not only by the inherent inaccuracy of DXA caused by the 

violation of the two-component (homogeneous soft tissue and bone) assumption in 

individual patients (2) but also by the inability of planar DXA to yield reliable 

information on actual bone geometry and structure which is necessary for proper 

assessment of bone strength (3). Peripheral quantitative computed tomography (pQCT) 

allows a reasonable option to assess bone cross-sectional geometry and separate it into 

trabecular and cortical compartments (4). Although the commonly used pQCT systems 

lack sufficient spatial resolution to capture specific structural traits compared to present 

high  resolution  pQCT  (HR-pQCT)  systems,  they  are  still  more  available  and  widely  

used in many recent studies (5-12). While pQCT cannot be applied to clinically relevant 

vertebral and proximal femur sites due to obvious technical limitations, it provides 

similar information on apparent structural traits from appendicular bones as does the 

clinical quantitative CT (QCT) from proximal femur and lumbar spine (13-16). 

Typically the separation of cortical bone from trabecular bone and soft tissues in pQCT 

image is based on application of density thresholds (17-19). This practice comes not 

only  from  technical  simplicity  of  analysis  algorithms  but  also  from  the  need  for  

reproducible and tangible results in clinical settings. Many sophisticated segmentation 

algorithms, e.g., level sets based segmentations (20-22), need relatively large operator 

involvement. 
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Obviously, both accurate and precise description of the cortical bone compartment is 

essential for appropriate assessment of bone strength (14,23-25). This is, however, not 

always guaranteed by simple threshold based analyses. It is well known that the use of 

different threshold values can substantially modulate pQCT results (17-19), mainly 

because of the partial volume effect, relatively low signal to noise ratio in pQCT 

images, and presence of movement artifacts leading to blurred or discontinued cortical 

edges.  

To account for the above described limitations of simple thresholding, we developed a 

new fast algorithm for cortical bone segmentation following the basis ideas of fast 

contour detection algorithm for QCT images described earlier by Seitz and Ruegsegger 

(26). Specifically, we addressed the following four research questions: first, what is the 

in vivo accuracy of the refined algorithm in analyzing raw pQCT images using the 

manual segmentation of cortical bone as the gold standard; second, whether could the 

preprocessing of pQCT images enhance the cortical analysis compared to the analysis 

based on raw images; third, to what extent can the new segmentation algorithm improve 

the  analysis  of  real  pQCT  images  in  comparison  to  simple,  density  threshold  based  

analyses and to a recently propoced, more advanced analysis based on a new variational 

level set formulation (22)? 

Material and Methods 

The pQCT system and in vivo data 

The pQCT scanner (XCT 3000, Stratec Medizintechnik GmbH, Pforzheim, Germany) 

used in this study represents one model of the widely used XCT brand (models 960, 

2000,  3000)  in  clinical  bone  research.  In  this  study,  the  mean  of  results  from  two  
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repeated pQCT scans of the distal tibia (5% of the estimated tibial length from the distal 

endplate) from 25 volunteers was used in the analysis to reduce random variation so that 

the differences between different approaches could be better determined. The age range 

of the subjects was 35–66 yrs; weight range was 50–89 kg; and height range was 159–

179 cm. The repeated pQCT scans were obtained from a precision study which was 

carried out as a part of quality assurance procedure of our bone densitometry unit. 

Informed consent was obtained from the subjects and the in-house review board 

approved  the  study  protocol.  Both  scans  were  performed  on  the  same  day  with  

repositioning according to our standard procedure (4). The pixel-size of the pQCT 

image was 0.5 mm × 0.5 mm, the slice thickness was 2.5 mm, and the translational scan 

speed was 30 mm/s. 

Preprocessing procedures 

For preprocessing of the raw pQCT image data, standard image preprocessing methods, 

median filtering with a 3x3 window and a 5x5 window, were applied. In addition to 

these two median filters, two preprocessing methods introduced recently to reduce noise 

in pQCT images were used (27). Details of these methods have been described 

elsewhere (27). In short, the methods were composed of two steps. First, a gray level 

transformation of image intensity histogram was reduced by implementing a common, 

iteratively employed, piecewise linear conversion function. Second, the transformed 

data was corrected by using Bayesian approach and Markov random fields with 3x3 

linear or 5x5 Gaussian neighborhoods and redundant wavelet transform. Because of the 

different sizes and types of the Markov random fields (basic steps of both approaches 

were identical), the preprocessing methods were coined the Linear window (LinW) and 

Gaussian window (GaussW). 
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Manual segmentation  

The manual segmentation of cortical bone in raw unprocessed pQCT images was 

performed by three experts in segmenting radiological images. The mean of the cortical 

cross-sectional area (CoA) from these three blinded, independent analyses was 

considered the gold standard of CoA. The manual segmentation was implemented by in-

house software developed for segmentation and visualization of radiological images 

(Department of Biomedical Engineering, Tampere University of Technology). Manual 

segmentation of a single pQCT image took 3 to 6 minutes. 

Density threshold based segmentation 

Two segmentations based on standard threshold procedures employed by the Stratec 

analysis software were performed. First, the threshold values were set to 200 mg/cm3 

for  the  outer  bone  threshold  and  to  661  mg/cm3 for the inner threshold according to 

optimal settings for cortical bone detection proposed by Kontulainen et al. (19). Second, 

the thresholds corresponding to levels automatically chosen by the contour and peel 

modes 2 were used in line with our standard procedures (4). Both of these Stratec 

analysis protocols use 3x3 median filtering as a preprocessing method and are called 

C1/P2 and C2/P2, respectively. 

Level set based segmentation 

In addition to simple threshold based methods, a sophisticated segmentation method 

based on distance regularized level set evolution (DRLSE) developed recently by Li et 

al.  (22)  was  performed.  Compared  to  conventional  level  set  formulations,  the  DRLSE 

algorithm has several advantages. It allows: elimination of re-initialization; use of large 

time steps to significantly speed up curve evolution, while ensuring numerical accuracy; 
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and a computationally efficient simple implementation. In the present study, the DRLSE 

method was applied both on raw pQCT images and those processed with standard 3x3 

median filtering so that the influence of additional preprocessing on segmentation 

results could be assessed. The parameters of the DRLSE method were experimentally 

set to the following values so that as common setting of parameters as possible could be 

used for analyzing the whole set of pQCT images. For the inner contour evolution, time 

step was 5.0, lambda 40.0, alpha -11.0, epsilon 2, and sigma 1.5. For the outer contour 

evolution time step was 5.0, lambda 5.0, alpha 3.5, epsilon 2, and sigma 1.5. However, 

for some images, the alpha parameter had to be changed within the limits -11.0  -5.0 

and 3.0  4.0 for inner and outer contours, respectively. With the above mentioned 

settings,  the  DRLSE  segmentation  of  CoA  of  a  single  slice  pQCT  image  with  space  

resolution 375x375 pixels took about 20 - 25s including the contour initialization. 

Proposed algorithm for automatic segmentation of cortical bone 

The new method comprises the delineation procedure of the outer boundary of cortical 

bone and the subsequent shrinking procedure of cortical pixels until the inner cortical 

boundary is found. The present method is called the outer boundary detection and 

shrinking algorithm and coined as the OBS-method.  The OBS-method is described in 

detail below.  

Detection of outer bone contour 

The outer contour of the cortical bone in raw and four preprocessed pQCT images was 

detected by using a simple and fast algorithm described by Seits and Ruegsegger (26). 

This algorithm was chosen for its good performance in detecting the outer contour of 

cortical bone without additional preprocessing of the raw images and for yielding highly 
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reproducible data. In brief, the initialization of the algorithm was based on exhaustive 

search in the successive lines of the image for the first (seed) pixel representing bone 

tissue (i.e., the pixel value was greater or equal threshold value T). The algorithm 

further assumed an initial  set  of contour elements Pn-1,  …, Pn-k and the traced contour 

being situated on the left side of initial element. Selection of the next contour element 

Pn was based on searching the nearest neighborhood connected to element Pn-1 (8 

possible paths) and testing possible successor elements C1,  …,  C8 against  a  given  

threshold value T. The first element which fulfilled the threshold condition was chosen 

as  the  new  contour  element  Pn. Seits and Ruegsegger stated that they achieved 

satisfactory results with only two predecessor elements Pn-1, Pn-2 and  three  possible  

successor elements C1,  C2,  C3 situated in line with direction of predecessor element. 

Hence, our contour detection was also based on this approach. 

However, in some cases (e.g., blurred or discontinued edges caused by movement 

artifacts), the setting of the correct threshold value T can be critical, making the 

algorithm unable to follow the correct contour without operator intervention (Figure 1). 

Therefore to improve the contour detection, we refined the method further by using 

additional information from the first derivation of the image data and by adding a 

supreme condition to the threshold condition for assessment of the new contour element 

Pn. Hence, the threshold value T was only used to coarsely distinguish between bone 

and soft tissues, and to search initial contour elements (the T value was experimentally 

set to 200 mg/cm3).  The  new condition  compared  the  values  of  the  first  derivation  of  

image data corresponding to the new candidate elements C1,  C2,  and  C3, and the new 

candidate element with the largest value was taken as the new contour element Pn. Then 

the difference between the largest and the second largest value was determined. If this 
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difference, representing possible candidate elements of traced contour (e.g. C2 and C3), 

was smaller than a pre-defined decision value D (set to 40mg/cm4 based on knowledge 

of a profile of the first derivation of pQCT image), it remained uncertain which path 

should be followed. Therefore, the algorithm continued searching the next candidate 

states (C2.1, C2.2 and C3.1, C3.2) in possible path directions of the traced contour. Values 

of the first derivation of image data representing the next candidate states (C2.1, C2.2 and 

C3.1, C3.2) were then compared with each other and the largest value determined which 

one of the possible candidates (C2 and C3) was chosen as the new contour element Pn. 

The example of pattern of the candidate and following candidate states for two possible 

configurations is depicted in Figure 2. 

Shrinking procedure 

After detecting the outer cortical contour, our method detected the inner cortical 

boundary by radial shrinking of the region inside the outer contour (pixel by pixel) until 

the inner cortical boundary was found. For every pixel at the outer contour, the 

shrinking procedure aimed at searching the second peak of the first derivation of the 

image data along a line starting from the given pixel to the center of mass of the bone 

region. Until the next local maximum of the first derivation was found, the preceding 

pixels along the line were removed. These maximal points were considered to coincide 

with the inner boundary of the cortical shell (27). The shrunken region corresponded to 

the trabecular bone area (TrA) and subtraction of the original and the shrunken bone 

regions provided the CoA. In order to prevent undue extension of the inner cortical 

boundary, e.g. in case of partially disrupted edges, the maximum radial change in 

cortical thickness was experimentally set to one mm (two pixels) along 2 mm distance 
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(four pixels) of the bone contour. The procedure for the inner cortical contour detection 

is illustrated in Figure 3.  

The time of CoA analysis from a single slice pQCT image comprising 375x375 pixels 

was about 3-4s for all automatic segmentation approaches depending on used 

preprocessing technique. The unsupervised preprocessing  and cortical segmentation 

were implemented in MATLAB ver. R2011a and performed on a laptop computer 

(Lenovo X61) with Intel Core 2 Duo CPU (2.1 GHz) and 4GB of RAM. 

Statistical analysis 

As descriptive statistics, the means and standard deviation (SD) are given. Besides the 

segmented  CoA,  cortical  thickness  (CoTh)  as  obtained  from  a  commonly  used  ring  

model of the bone, and maximal (Imax) and minimal (Imin) areal moments of inertia of 

cortical cross-sections1 were determined as relevant measures of cortical geometry. 

Accordingly, we compared the CoA, CoTh, Imax and Imin results obtained from C1/P2 

and C2/P2 segmentations, DRLSE based segmentation and the OBS-method after 

applying different preprocessing approaches to results obtained from the manual 

segmentation. We calculated the mean error as 100*(Xmethod –  Xmanual)/Xmanual and its 

standard deviation, where X denotes the geometric trait of interest.  Statistical 

signi cance was evaluated by 95% con dence intervals (95% CIs) of the mean error. 

Pearson correlation coefficients were determined between cortical traits obtained from 

the manual segmentation and those obtained from different segmentation and 

preprocessing methods. As the delineation of cortical area was the primary target of 

                                                             
1  The cortical cross-sections represented either the actual segmented cortical areas, or for the density 
threshold based methods C1/P2 and C2/P2, cortical pixels exceeding the inner (higher) bone thresholds. 
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segmentation, the Bland-Altman plots illustrating the differences (or agreement) 

between the manual segmentation and the method of interest are shown only for CoA 

results.  

Results 

Differences in distal tibia CoA, CoTh, Imax and  Imin from various segmentation and 

preprocessing methods in comparison to manual segmentation are shown in Table 1 and 

Figure 4. In general, substantial between-method differences did manifest as statistically 

significant  under-  or  overestimations.  Only  the  results  of  the  OBS-method  in  

conjunction with the LinW preprocessing agreed well on average with results obtained 

from the manual segmentation, the slight 2% overestimation of Imin excluded. Without 

preprocessing of the image data, the OBS method resulted in 4-11% mean 

underestimation of all geometrical traits. Preprocessing with the GaussW method 

resulted consistently in 4 % mean underestimation, the accurate assessment of Imin 

excluded. Median filtering with 3x3 and 5x5 windows showed opposite effects leading 

to 5-11% mean underestimation and to 3-10% mean overestimation of geometrical 

traits. The C1/P2 threshold based segmentation resulted consistently in underestimated 

geometrical traits whereas the C2/P2 method using lower thresholds led to clear 

overestimation. It is also worth noting that these threshold based methods showed 

almost twice greater variation (SD) of measured traits.  The sophisticated DRLSE 

segmentation resulted consistently in ~15% mean overestimation of all geometrical 

traits with a similar variation of data as obtained from the OBS method irrespective of 

image preprocessing. Median filtering had a negligible (increasing) effect on the results 

in contrast to more distinct effect of preprocessing on the OBS method.  
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The Bland-Altman plots illustrating the mean agreement of the CoA assessment 

between different segmentation methods and the manual segmentation are shown in 

Figure 5. Correlation between the cortical traits obtained from the manual segmentation 

with those obtained from different segmentation and preprocessing methods is shown in 

Table 2. As expected, all correlations were significant (r>0.39, p<0.05) most of them 

indicating very strong associations (r about 0.9 or greater). Strikingly, the correlations 

were lower for density threshold based C1/P2 and C2/P2 segmentations, excluding the 

correlations obtained from CoTh values. 

Discussion and Conclusion 

In  this  work  a  novel  automatic  segmentation  algorithm,  coined  the  OBS  method,  for  

evaluation of cortical bone geometry from pQCT images was presented. The 

segmentation comprised a fast and simple contour detection algorithm for the outer 

cortical boundary and a subsequent shrinking procedure for the inner cortical boundary 

both employing the information from the first derivation of the image data. Further, the 

aim of present study was to determine whether the OBS method could improve the in 

vivo assessment of tibial cortical geometry compared to commonly used simple density 

threshold based analyses (4,19) and also to a more sophisticated image processing 

method based on the DRLSE method (22). Among the several methods evaluated in the 

present study, only the results of the OBS method used in conjunction with LinW 

preprocessing showed consistently an excellent agreement on average with the results of 

manual segmentation whereas the other approaches mostly resulted in either systematic 

under- or overestimations of geometrical traits of cortical bone. 
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The importance of bone geometry and that of cortical bone in particular as major 

determinants of bone strength has been recently pinpointed (14,23-25,28). Obviously, 

overestimation or underestimation of cortical geometry can confound the estimation of 

bone strength in clinical research. Thus, to reliably estimate bone strength, accurate 

assessment of relevant cortical bone traits is indispensable. Previously, some studies 

have assessed optimal density threshold settings with comparison to phantoms (17) or 

histomorphometry at the tibial diaphysis (19,29). However, to our knowledge, no study 

has so far compared several automated analysis methods with results obtained by 

manual segmentation of cortical bone.  

The present study showed that the novel OBS segmentation of cortical bone could 

outperform  not  only  the  commonly  used  threshold  based  analyses  but  also  a  

sophisticated level set approach for image segmentation and delineated the cortical bone 

more accurately (Figures 4 and 5). Nevertheless, it is noted that the correlation between 

the OBS and DRLSE methods was generally very high (even up to 0.96 for Imax and 

0.97 for Imin; data not shown) indicating that the result from these methods may be 

made comparable through proper adjustment. Further, both the new OBS method and 

the sophisticated DRLSE methods were associated with almost halved variation in 

geometrical traits compared to the results from density threshold based analyses.  

However, it is recalled that the OBS method was faster and moreover, the user input is 

more straightforward. In DRLSE method the complex setting of user defined 

parameters may reduce its usability and degrease the reproducibility of the results. 

The preprocessing in itself did not significantly affect the variability in results, but the 

most consistent findings with the manual segmentation were obtained by LinW 

preprocessing (Figure 5). Be it noted that the smaller variance of results together with 
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better in vivo precision (27) can make the analysis of cortical bone more sensitive to 

detect between-group differences or within-group changes. 

Notwithstanding the promising results, there are some issues that warrant further 

discussion and studies. Using the manual segmentation based on visual assessment as 

the gold standard may rise some concerns about its reliability. Obviously, the human 

eye can see not only the information which truly is present in the image but also 

distinguish lines and borders which cannot be recognized by any automatic  algorithm 

and therefore reduce the influence of partial volume effect. However, this skill rests on 

previous experience in analyzing image data and can differ substantially between raters. 

Apparently an objective assessment such as histomorphometry and high resolution 

digitization is not an option for an in vivo study. Therefore, we considered the mean of 

three independent manual segmentations of cortical bone as the gold standard, which 

reduces possible between-individual variance in determination of cortical area. In the 

present study, the relative standard deviation of differences between raters in manual 

segmentations of CoA was 4.4% (< 10mm2). This is comparable to the in vivo precision 

of cortical area measurement (4).  

The  coarse  spatial  resolution  of  pQCT images  obviously  limits  the  performance  of  all  

image processing methods, but especially this concerns the threshold based analyses 

when the thickness of cortical bone is less than 4 mm (29) as is the case with distal tibia 

(and all epiphyseal sites of long bones). The latter influence is clearly seen in Bland-

Altman plots (Figure 5) which indicate the dependence of errors on the size of CoA (ie, 

the smaller CoA the more underestimation) in the threshold based analyses. The 

thinness of cortical bone may also account for somewhat conflicting correlations 

indicating seemingly better performance for simple density threshold based 
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segmentation methods. Apparently, the validity of the estimation of mean cortical 

thickness of relatively thin-walled bones with coarse pQCT imaging remains 

questionable. 

The strength of present study pertains to the assessment of several different 

segmentation approaches and preprocessing methods that were applied to the distal 

tibia, the most common site of interest in pQCT studies. As the bone structure of distal 

radius,  the  other  common  site  in  pQCT  studies,  is  similar  to  distal  tibia,  the  present  

results are likely applicable to distal radius as well. Furthermore, it is also possible that 

the OBS method could be applied for cortical analysis of clinical QCT images with 

similarly coarse resolution (< 1 mm) and also for HR-pQCT with much better spatial 

resolution  (<  0.1  mm)  with  only  small  modifications.  However,  further  studies  are  

needed to show this. 

In conclusion, this study showed that the new OBS algorithm performed reasonably 

well and it offers a promising practical tool to enhance the assessment of cortical bone 

geometry in pQCT images. As a broader perspective, a more reliable cortical analysis 

may facilitate estimation of bone strength and related prediction of fracture risk. 
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Figure captions: 

Figure 1: Examples of distorted edges (left) and movement artifacts (right) in raw pQCT 

images,  and  development  of  detected  contours  for  particular  threshold  setting  T  

corresponding to density values (in mg/cm3) from top to bottom: 590, 540, 460, 380 and 

590, 460, 350, 270, respectively. 

Figure 2: An example of newly proposed pattern of tracing algorithm for two out of 

eight eligible pixel arrangements with two predecessor elements Pn-1, Pn-2, three 

successor elements C1 – C3 and four possible following candidate states C1.1 –  C3.2. 

Figure 3: A raw pQCT image (left), radial X-ray attenuation profile along a radial line 

through the raw bone image (specified by cut line) with small distortion of the cortical 

bone on right side (middle) its first derivate (right). The maximum of the first derivative 

denotes the outer cortical boundary and the next local maximum clearly denotes the 

inner cortical boundary. This algorithm is repeated across the whole bone cross-section 

by rotating the line pixel by pixel along the outer contour.  

Figure 4: Mean percentage differences in CoA, CoTh, Imax and Imin (95% CIs) between 

results from different analysis methods and the manual segmentation. 

Figure 5: Bland-Altman plots for each CoA analysis approach with depicted regression 

lines for all cases where correlation was significant (p<0.05).  



Table 1: Descriptive data of CoA, CoTh, Imax and Imin (mean, SD) as obtained from different 
segmentation and preprocessing methods 

   CoA [mm2] CoTh [mm] Imax [mm4] Imin [mm4] 

Manual segmentation 150.8 (19.2) 1.5 (0.1) 22684 (6809) 17198 (4975) 

  Raw 
images LinW GaussW 

Median 
3x3 

Median 
5x5 C1/P2 C2/P2 DRLSE 

med3x3 
- 

DRLSE 

CoA [mm2] 132.7 
(13.5) 

153.0 
(14.7) 

142.9 
(13.9) 

133.2 
(16.8) 

160.2 
(15.3) 

137.0 
(24.1) 

175.3 
(35.4) 

172.6 
(15.3) 

176.4 
(15.5) 

CoTh [mm] 1.5 (0.1) 1.5 (0.1) 1.5 (0.1) 1.4 (0.1) 1.6 (0.1) 1.4 (0.3) 1.9 (0.4) 1.8 (0.1) 1.8 (0.1) 

Imax [mm4] 19776 
(5101) 

21961 
(5580) 

21355 
(5408) 

20055 
(5295) 

22970 
(5591) 

10224a 
(3990) 

25261b 
(8080) 

24886 
(6306) 

25319 
(6528) 

Imin [mm4] 15973 
(4392) 

17593 
(4838) 

17322 
(4618) 

16097 
(4531) 

18701 
(4902) 

7152a 
(3613) 

19084b 
(6063) 

19169 
(5095) 

19623 
(5192) 

a based on cortical pixels exceeding the density threshold of 661 mg/cm3 

b based on cortical pixels exceeding the density threshold of 405 mg/cm3 



Table 2: Correlation between CoA, CoTh, Imax and Imin values obtained from manual 
segmentation and different segmentation methods 

 Raw 
images 

LinW GaussW Median 
3x3 

Median 
5x5 

C1/P2 C2/P2 DRLSE 
med3x3 

- 
DRLSE 

CoA 0.71 0.88 0.81 0.79 0.84 0.62 0.61 0.76 0.79 

CoTh 0.32 0.65 0.58 0.56 0.29 0.72 0.70 0.46 0.57 

Imax 0.90 0.97 0.94 0.90 0.91 0.58 0.80 0.95 0.95 

Imin 0.94 0.99 0.96 0.94 0.94 0.42 0.81 0.96 0.96 
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 -52.2 (4.7)  -53.6 (6.0) 



y = -0.3687x + 34.188 (r = -0.61) y = -0.3433x + 42.521 (r = -0.53)y = -0.2821x + 45.077 (r = -0.49)

y = 0.8028x - 102.23 (r = 0.69)





 
 

 

Publication IV: 

Cervinka T., Sievanen H., Hyttinen J., Rittweger J. 
Bone loss patterns in cortical, subcortical and trabecular compartments during simulated 

microgravity. 
Journal of Applied Physiology (1985), 2014; 117(1): 80-88. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reprinted with kind permission from The American Physiological Society 
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