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Abstract

This thesis concentrates on synthesis methods for linear-phase finite-impulse
response filters with a piecewise-polynomial impulse response. One of the
objectives has been to find integer-valued coefficients to efficiently implement
filters of the piecewise-polynomial impulse response approach introduced by
Saramäki and Mitra. In this method, the impulse response is divided into
blocks of equal length and each block is created by a polynomial of a given
degree. The arithmetic complexity of these filters depends on the polyno-
mial degree and the number of blocks. By using integer-valued coefficients
it is possible to make the implementation of the subfilters, which generates
the polynomials, multiplication-free. The main focus has been on finding
computationally-efficient synthesis methods by using a piecewise-polynomial
and a piecewise-polynomial-sinusoidal impulse responses to make it possible
to implement high-speed, low-power, highly integrated digital signal process-
ing systems. The earlier method by Chu and Burrus has been studied. The
overall impulse response of the approach proposed in this thesis consists of
the sum of several polynomial-form responses. The arithmetic complexity
depends on the polynomial degree and the number of polynomial-form re-
sponses. The piecewise-polynomial-sinusoidal approach is a modification of
the piecewise-polynomial approach. The subresponses are multiplied by a
sinusoidal function and an arbitrary number of separate center coefficients is
added. Thereby, the arithmetic complexity depends also on the number of
complex multipliers and separately generated center coefficients. The filters
proposed in this thesis are optimized by using linear programming methods.
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Tapio Saramäki for giving me this great opportunity, and for making it
possible and unforgettable. I would also like to thank Professor Olli Vainio
for his continuous support, his valuable comments and for co-authoring the
articles. My thanks extend to the pre-examiners, Professor Marcello L. R.
de Campos and Professor H̊akan Johansson for the thorough examination
and for their valuable and constructive comments on the manuscript of the
thesis.

I am grateful to Dr. Juha Yli-Kaakinen for providing me information and
support on practical matters to publish the articles. I sincerely like to thank
Prof. Vladimir Katkovnik, Dr. Tuna B. Tarim for their valuable comments
regarding my articles and Ph.Lic. Merja Laaksonen, Ph.Lic. Osmo Kaleva
and Ph.D. Pertti Koivisto for all their advice.

I also want to thank all my colleagues at the Department of Signal Pro-
cessing at the Tampere University of Technology, especially Dr. Sari Peltonen
for her friendship and for listening to my stories during lunch. The Faculty
of Computing and Electrical Engineering and the administration of Depart-
ment of Signal Processing are gratefully acknowledged.

The financial support of Academy of Finland (Finnish Centre of Ex-
cellence program 2006-2011), Ulla Tuominen Foundation, Finnish Concor-
dia Fund, and Finnish Cultural Foundation: Pirkanmaa Regional Fund are
gratefully acknowledged.

I wish to thank my friends Dr. Hanspeter Schmid, Dr. Tuna B. Tarim,
Dr. Felix Lustenberger and Dr. Wouter Serdjin for their unconditional sup-
port, encouragement and making ISCAS a memorable event every year. I
wish especially to thank Hanspeter for all the discussions during the years
between the heaven and earth and beyond. I am especially grateful for
Hanspeter and Tuna for being there for me when mostly needed. I am
grateful for their unconditional and continuous friendship.

I also want to acknowledge the members of my theater group, Sampolan
Opistoteatteri, for enjoyable 2008-2009 with acting. Special thanks go also to

vii



my mother Ph.D. LL.M Leena Lehto for her advice, support and for teaching
me English and reviewing the articles and the thesis regarding the language.

Tampere, May 2009

Raija Lehto

viii



List of Publications

The content of this thesis serves as an introduction to the following publica-
tions. The publications are referred to as Publication-I, Publication-II and
so on in the text.
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Chapter 1

Introduction

1.1 Background and Motivation

Digital filters made their first appearance in the 1940s along with the first
digital computers. The concept of digital data manipulation has made a
dramatic impact on our society due to the increasing efficiency of digital
integrated circuits (IC). Today digital filters are essential and often the most
important part of digital signal processing (DSP) systems e.g. telecommu-
nication, instrumentation, automation, consumer electronics, image process-
ing, audio, radar, sonar, tachometry, digital TVs, multimedia, biological
signal processing and bioinformatics and new emerging products such as
portable devices and implantable medical devices. Furthermore, the finite-
impulse response (FIR) filters constitute one of the fundamental processing
elements in many DSP applications e.g. from video and image processing
to telecommunications. In some applications such as video processing, FIR
filters must be able to operate at high frequencies and, on the other hand, in
applications like cellular telephony, FIR filters must be implemented as low-
power circuits. This evolution has been possible due to advances in digital
integrated circuits (IC) from metal-oxide semiconductor (MOS) circuits to
complementary metal-oxide semiconductor (CMOS) circuits. The advances
in CMOS technology have made it possible to integrate numerous functions
into a single silicon chip, which has led to system-on-chip (SoC) solutions.
Especially advances in very-large-scale integration (VLSI) circuits has made
it possible to implement high-speed, low-power and highly integrated DSP
systems. [33, 43, 44, 46, 63, 67, 97]

One of the main challenges throughout the years of IC circuits has been
power consumption, because that is often the limiting factor when designing
CMOS-based circuits. For instance, in applications like wireless communi-
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2 CHAPTER 1. INTRODUCTION

cation, the bandwidth and power consumption are critical elements. For
digital filters, the major power consumption is due to arithmetic operations
such as multiplications and additions and/or subtractions. Multiplications
consume a significant portion of the overall power [22]; power consumption
is of course also increased with an increase in the sampling rate. Lower-
ing the power consumption means developing computationally efficient filter
structures as well as their design techniques. [20, 44, 46, 63, 67]

Linear digital filters are divided into two classes, namely FIR digital filters
and infinite impulse response (IIR) filters. In many filtering applications,
FIR digital filters are preferred over their IIR counterparts due to their
many favorable properties. The main advantages, among others, are the
following. An FIR filter can be designed with an exact linear phase, which
means that no phase distortion is caused in the input signal during the
filtering operation. Both the output noise due to multiplication round-off
errors and the sensitivity to variations in filter coefficients are low. Non-
recursive realizations of FIR filters are inherently stable and free of limit
cycle oscillations when implemented in a finite-word-length system. [78, 79]

However, the main drawback of conventional narrowband direct-form FIR
filter designs is that they require a large number of arithmetic operations and
thereby, a high power consumption and a large silicon area. The number of
multipliers is the same as the filter length. In the linear-phase case the
number of multipliers can be reduced approximately to half by exploiting
the coefficient symmetry property. In both cases the number of adders and
the number of delays is the same as the filter order. [78, 79]

The design of narrow-transition-band filters is generally regarded as a
difficult problem, because they require a very large number of coefficients.
This is because the order of the filter is roughly inversely proportional to the
transition bandwidth [21, 24, 30, 58], which is not the case with IIR filters.
This fact makes the implementation of direct-form FIR filters with a narrow
transition bandwidth very costly compared to the corresponding IIR filters
in term of their arithmetic complexity, i.e., the required number of adders,
multipliers, and delay elements, which strongly correlates with the silicon
area and power dissipation [27, 44, 46].

However, the advantages of FIR filters outweigh the difficulties in design-
ing these filters. Computationally efficient FIR filter realizations have thus
attracted the attention of several authors also in recent years [4,5,19,27–29,
34–36, 40–42, 44, 51, 53, 57, 73, 75, 83,83,88,94,95,98,102,103].

Many authors [1,7,11,12,16,26,31,47,48,52,56,59,61,76,77,79,81,85–87,
92], have observed that by letting the filter length increase slightly from the
minimum, there can be significant savings in the number of multipliers and
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adders.
Practical frequency-selective FIR filters have an impulse response with a

smooth predictable envelope and they do not need the generality provided
by standard FIR filter implementations. This means that there is a very
strong correlation between neighboring impulse response samples. In the
direct-form implementation of an FIR filter, each multiplier determines the
value of one impulse response sample independently of the other samples.
In the linear-phase implementation, the same is true for approximately half
of the impulse response values. [78, 79, 85] By developing structures which
take advantage of this correlation, the number of multipliers required in
implementation can be drastically reduced [1,7,8,11,12,16,26,31,40–42,44,
47, 48, 51–53, 56, 59, 61, 62, 76, 77, 79, 81, 85–88, 92]. Due to this correlation in
direct-form FIR filters, if some of the samples are removed, they can be easily
found with good accuracy by some interpolation scheme. There are several
methods that utilize this observation to obtain computationally efficient FIR
filter realizations. Thinning of the impulse response by removing some of
the coefficients has been proposed by Smith and Farden [92]. The method
gives some improvement, but the design of the filters is complicated and the
resulting filter has non-uniform coefficient spacing and is therefore irregular
in structure. Thinned FIR filters are designed by direct optimization to
obtain the filter coefficients.

An efficient approach to utilize the redundancy of the impulse response
samples and to overcome problems in synthesizing FIR filters is to create
them with a piecewise- polynomial or a piecewise-polynomial-sinusoidal im-
pulse response and to implement them by using recursive structures [8,11,12].

Boudreaux and Parks [7] were among the first to propose a recursive
piecewise-polynomial approximation of an impulse response of FIR filters.
The approach uses a low-order IIR filter in cascade with a uniformly or non-
uniformly thinned numerator. Dynamic programming is used to optimize the
filter coefficients of this cascade. The IIR section performs the interpolation.
Even though there is a recursive IIR section, in the proposed implementation
the filter has a finite- length impulse response due to pole-zero cancellation.
This approach is most suitable for narrow-transition-band FIR filters.

Chu and Burrus [11, 12] proposed piecewise-polynomial filters by gener-
alizing the filters proposed by Boudreaux and Parks. Chu and Burrus ex-
tended their approach to include wideband filters with narrow transition
band by using a piecewise-polynomial-sinusoidal impulse response approxi-
mation. However, the approach proposed by Chu and Burrus suffers from
drawbacks. First, the derivation of the overall filter structure is very com-
plicated and does not arrive at the best available implementation form. Sec-
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ondly, the polynomial coefficients are obtained by using nonlinear optimiza-
tion with some of the coefficients fixed. In order to overcome these prob-
lems Campbell and Saramäki [8] presented a new preliminary filter structure
based on and modifying the structure of Chu and Burrus for narrowband FIR
filters. Saramäki and Vainio [87] proposed structures to synthesize narrow-
band linear-phase FIR filters with a piecewise-polynomial impulse response
by using polynomials of increasing degrees and accumulators. Saramäki
and Mitra [84, 85] presented a more straightforward approach to synthesize
piecewise-polynomial impulse responses for narrowband FIR filters with the
restriction that all the blocks where the impulse response follows a piecewise-
polynomial, are of equal length. Also other approaches to reduce arithmetic
complexity in narrow-transition-band applications have been developed. One
of the most efficient techniques is interpolated FIR (IFIR) filters [61, 86].
This approach is based on implementing two FIR subfilters as a cascade,
where the first section generates the sparse impulse response with every Lth
sample to be nonzero and the other section “fills in” the missing samples.
Another approach, which is also based on using periodic subfilters to gener-
ate the overall impulse response, is the frequency-response masking (FRM)
technique originally developed by Lim [52]. This technique is also suitable
for applications which require a narrow transition band.

Furthermore, approaches to reduce the arithmetic complexity by altering
the sampling rate in FIR subfilters have been developed. One such a method
is multirate and complementary filtering. The internal data rate is altered by
using decimation and interpolation. The redundancy of the impulse response
samples is reduced by making the actual frequency shaping at a low rate
and with a somewhat wide passband. This approach is efficient in both
narrowband and wideband applications. The major drawback is that, due
to the s-ampling rate alteration in subfilters, there is a danger of aliasing,
which has to be taken into account in the design process. [18, 70]

The cost of the reduction of arithmetic complexity in all the above-mention-
ed approaches is a somewhat increased filter order compared to the equiva-
lent optimum direct-form linear-phase FIR filter. Methods to estimate the
required FIR filter order have been developed by several authors [21, 24, 30,
58].

Additionally, efficient synthesis methods for linear-phase FIR filters have
been developed by using a switching and resetting principle of IIR filters.
The filters are constructed by using a causal and anti-causal version of an
IIR filter so that their impulse response is a truncated and shifted version
of the overall impulse response of the resulting filter. The resulting filter is
implemented by using two identical copies of the same IIR filter by switching
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and resetting. The switching and resetting principle works so that e.g. half
of the input samples are fed into the first filter and the second half of the
input samples to the other filter. The overall structure is reset before the
new set of samples is fed to the structure to stabilize the inexact pole-zero
cancellation due to finite word length used in the implementation. [4, 5, 81]

These efficient methods result in filters with reduced arithmetic operations,
such as fewer multipliers and adders in applications regarding low power con-
sumption and less silicon area. But the number of storage elements remains
the same as the filter order. [27, 44, 46]

1.2 Scope of the Thesis

This thesis presents methods to synthesize linear-phase FIR filters for com-
putationally efficient realizations especially for applications requiring a nar-
row transition band. The main focus is as follows. First, formulas for
integer-valued coefficients to generate efficient implementations are proposed
in Publication-I for linear-phase FIR filters with a piecewise-polynomial im-
pulse response developed by Saramäki and Mitra. Second, computationally
efficient methods for the design and implementation of linear-phase FIR fil-
ters with a piecewise-polynomial and a piecewise-polynomial-sinusoidal im-
pulse response are proposed in Publication-II and Publication-III. The
arithmetic complexity of the proposed filters is based on the number of sub-
responses and the polynomial order and, in the sinusoidal case, also on the
number of complex multipliers in case of Type-1 linear-phase FIR filter.
Third, a computationally efficient synthesis method based on the approach
proposed by Saramäki and Mitra in [85] is proposed for differentiators in
Publication-IV.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 gives briefly the background
information of design and implementation considerations of linear-phase FIR
filters. Chapter 3 reviews some of the most important previous approaches
closely related to Publication-I – Publication-IV to synthesize linear-phase
FIR filters efficiently for narrow-transition-band applications. The meth-
ods described are multirate and complementary filtering, interpolated FIR
(IFIR) filters, the frequency-response masking approach (FRM), and meth-
ods based on switching and resetting IIR filters. Chapters 4 summarizes the
original contributions of the thesis. Chapter 5 concludes with results and
discussion. A list of symbols is not given because the same variables are



6 CHAPTER 1. INTRODUCTION

used in different contexts in the publications and references. The aim has,
where possible, been to use the symbols in the same meanings throughout
the thesis.

1.4 Definitions

This section presents some essential definitions used in the thesis. In this
thesis ⌊·⌋ means rounding downwards to the nearest integer.

Definition 1.4.1. Suppose N is the order of the filter. The transfer function
of an FIR filter is given by [55, 78]

H(z) =
N∑

n=0

h(n)z−n

and its frequency response by [55, 78]

H(ejω) =
N∑

n=0

h(n)e−jnω,

where h(n) is the impulse response of the filter.

Definition 1.4.2. Suppose N is the order of the filter. The four types of
linear-phase FIR filters are given as [55, 78]
Type 1: N is even and h(N − n) = h(n) for all n.
Type 2: N is odd and h(N − n) = h(n) for all n.
Type 3: N is even and h(N − n) = −h(n) for all n.
Type 4: N is odd and h(N − n) = −h(n) for all n.
Additionally, Type 3 attains also the value zero at the center of symmetry.

Definition 1.4.3. Suppose N is the order of the filter. The zero-phase fre-
quency responses of linear-phase FIR filters are of the form [55, 78]:

H(ω) =





h(N/2) +

N/2∑

n=1

h(N/2 − n)2 cos(nω), Type 1

(N−1)/2∑

n=0

h((N − 1)/2 − n)2 cos((n + 1/2)ω), Type 2

N/2−1∑

n=0

h(N/2 − 1 − n)2 sin((n + 1)ω), Type 3

(N−1)/2∑

n=0

h((N − 1)/2 − n)2 sin((n + 1/2)ω), Type 4.

(1.1)
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Definition 1.4.4. Two linear-phase Type 1 FIR filters are said to be com-
plementary if Ha(ω) + Hc(ω) = 1.

Fig. 1.1 shows the scheme of a complementary filter pair.

Ha(ω) Hc(ω)

0
0 π ω

1

Figure 1.1: Complementary filter pair. [18]

Definition 1.4.5. Suppose N is the order of the linear-phase FIR filter,
and N ∈ N. Let M ∈ Z+. Let Nj ∈ N for j = 1, 2, . . . , M and NM+1 ∈ R+

be such that N1 = 0, Nj < Nj+1 when j = 1, 2, . . . , M and NM+1 = N/2.
Then, the block bj is defined to be the interval (see Fig. 1.2)

bj =





[Nj , Nj+1[, if j = 1, 2, . . . , M − 1,

[NM , NM+1], if j = M,

]N − N2M−j+2, N − N2M−j+1], if j = M + 1, M + 2, . . . , 2M.

N
2

N

block bj

}

Nj

N1 NM+1

 Nj +1

Figure 1.2: A graphical presentation of the definition of a block.
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Definition 1.4.6. Let n ∈ N. If pL
j , for j = 1, 2, . . . , M , is a jth polynomial

of a degree L, then a piecewise polynomial is




pL
1 (n − N1), n ∈ b1

pL
1 (n − N1) + pL

2 (n − N2), n ∈ b2

pL
1 (n − N1) + pL

2 (n − N2) + pL
3 (n − N3), n ∈ b3

...
...

...
...

M−1∑

j=1

pL
j (n − Nj) n ∈ bM−1

M∑

j=1

pL
j (n − Nj) n ∈ bM ,

which applies up to the center of symmetry for linear-phase FIR filters. After
the center of symmetry it is either symmetrical or anti-symmetrical depend-
ing on the linear-phase type.

Definition 1.4.7. Suppose N is the order of the linear-phase FIR filter
type, and N ∈ N. Let Nj ∈ N, j = 1, 2, . . . , M . A slice sj is an interval
sj = [Nj , N − Nj ] for j = 2, 3, . . . , M . If j = 1, a slice s1 is an interval
s1 = [N1, N ] (see Fig. 1.3).

C

0 Nj N

Slice sj

n}   N - Nj

Figure 1.3: A graphical presentation of the definition of a slice, where C
marks the center of symmetry.

NB: In this work, a polynomial pL
j in Definition 1.4.6 is on the slice sj .

A slice sj is also a union of blocks in a closed interval, i.e., sj =

2M−j+1⋃

k=j

bk.
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Definition 1.4.4 is used in Chapter 3 and Definitions 1.4.6 and 1.4.7
are used in Publication-II and Publication-III. Publication-II gives also a
definition of a slice with a slightly different formulation, i.e., Eqs. (16a)–(16c)
in Publication-II.





Chapter 2

Background of FIR Filter
Synthesis

This chapter gives a brief background of digital filter design process and
implementation issues related to the FIR filters proposed in Publication-I –
Publication-IV according to literature [2, 18, 55, 78–80, 100]. Digital filters
are the most important part in DSP systems and they are defined either by
the difference equation, by the transfer function or the frequency response
or by the impulse response of the system or by pole and zero locations and
a gain factor. Each of these descriptions completely characterizes the digital
filter. The difference equation gives an input-output relation of the filter in
the time domain. The frequency response shows the frequency properties,
and it is the transfer function evaluated on the unit circle. Digital filters
are designed to modify an input signal in the frequency domain to meet the
given specifications. The purpose is to extract the properties of the desired
signal from other types of signals such as noise, interference or some other
unwanted signals. [2, 18, 55, 78]

2.1 Filter Design Process

This section gives a brief overview of the basic steps to design digital filters.
These steps are described in relation to the publications in this thesis. The
digital filter design process usually involves the following three steps:

1. Approximation is a process to design a digital filter to meet the given
specifications such as magnitude, phase and, sometimes, even time-
domain conditions. Certain error measures are used to character-
ize the “goodness” of the filter. Approximation problems are usually
solved by using some optimization methods to obtain filter coefficient

11
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values.
2. Implementation (realization) is a process to obtain the filter structure

as a block-diagram or signal-flow-diagram from the transfer function
of the filter. The filter structure is the “high-level” description of how
to implement the filter. It is derived from the design method at hand.
All of the transfer functions can be implemented by using different
kinds of structures.

3. Practical implementation can be performed in various ways based
on the application at hand and on the filter structure. The filter
structures can be implemented in various ways e.g. by using software
or hardware. A software-based implementation is usually a program
running on a computer or on a signal processor. In a hardware-based
implementation, the filter structure is transformed into a dedicated
circuitry.

2.2 Filter Design Methods

The filter design methods are basically divided into two categories, optimiza-
tion-based and non-optimization-based methods.

2.2.1 Optimization-Based Methods

When designing linear-phase FIR filters by optimization, the required filter
order to meet the specified design criteria cannot be analytically determined,
only estimated. There are several estimation methods developed during the
years [21, 23–25, 30, 58].

The Remez Algorithm

One efficient algorithm to design optimum-magnitude-response FIR filters
with arbitrary specifications is the Remez multiple-exchange algorithm. Orig-
inally, the algorithm was implemented by Parks and McClellan and later on
improved by McClellan, Parks and Rabiner [54]. This program is directly
applicable to obtain optimal designs for most FIR filters. The algorithm
is based on minimizing the L∞ norm in an iterative way. It can be used
directly to design filters with several passbands and stopbands. The main
drawback is that it cannot be used if filters have several constraints specified
in the time and/or frequency domains. In that case linear programming is
the most suitable method to obtain the filter coefficients. Filters designed
by the Remez algorithm are realized by using direct-form structures as such
or by using direct-form structures as building blocks.
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Linear Programming

One of the most flexible method to design FIR filters is linear programming.
It can be used when constraints in the time and/or frequency domains are
specified. Linear-programming algorithms solve a minimax problem, i.e.,
minimize the L∞ norm. Publication-I – Publication-IV in this thesis use
linear programming to obtain the filter coefficients.

2.2.2 Non-Optimization-Based Methods: The Windowing
Method

The most straightforward method to design FIR filters is to determine the
infinite-duration impulse response by expanding the frequency response of
an ideal filter in a Fourier series and by truncating it and smoothing it with
a window function. The main advantage of the window method is that the
filter coefficients can be obtained very fast and easily in the closed form. The
main drawback is that the passband and stopband ripples are restricted to
be the same. Additionally, this method is not optimal, i.e, the required filter
order is not the lowest one to satisfy the given specifications.

2.3 FIR Filter Implementation

When the required specifications are formulated and the suitable transfer
functions are obtained, a realization phase takes place. Some transfer func-
tions can be realized using many different structures. These structures dif-
fer from each other with respect to complexity, coefficient sensitivity, and
influence of round-off errors in arithmetic operations. The most basic struc-
tures are derived directly from the basic convolution sum. Usually, these
structures require as many multiplications as the filter length; as many ad-
ditions as the filter order. Therefore, these structures are not computation-
ally efficient realizations. In case of linear-phase FIR filters the number of
multiplications is approximately half of the filter length. Especially, when
narrow-transition-band filters are considered, the direct-form structures re-
quire too many coefficients to be implemented and too many additions and
thus the filter requires more power and more silicon area. In Publication-I –
Publication-III computationally efficient structures are proposed.
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2.4 Practical FIR Filter Implementation

2.4.1 Coefficient Quantization

For practical implementations, when implementing in a finite word-length
system, the filter coefficients have to be quantized to a fixed number of
bits. This means that the frequency response deviates from the one which
would have been obtained with infinite word length. Quantization can be
performed e.g. by using rounding or truncation. The implementation cost,
arithmetic complexity and the speed depend on the filter coefficient word
length; therefore, quantization is usually performed in such a way that the
word length is the minimum one still satisfying the given filter specification
due to cost, complexity and the speed of the implementation.

2.4.2 Coefficient Representation

Before the quantization of the filter coefficients, the number representation
has to be decided. The main numerical representations are fixed-point,
floating-point and a combination of these two called a block-floating-point
representation. The most common fixed-point representations are the sign
and magnitude, one’s complement and two’s complement. The choice of the
representation is usually determined by hardware or programming consider-
ations. Two’s complement arithmetic has some favorable properties. When
several numbers are added, the result is correct even if there are overflows in
the intermediate additions if the final result is in the desired range. When
numbers are added, the sign bit is treated like other digits, and thereby the
operation of subtraction may be performed by using appropriate hardware
components like an adder and a two’s complementer. In Publication-I –
Publication-IV two’s complement arithmetic is recommended for practical
implementation due to its above-mentioned properties.

2.4.3 Finite Word-Length Effects

When implementing digital filters in digital hardware with finite word length
to represent the filter parameters, the finite word-length representation of
the filter coefficients causes errors in magnitude and phase of the filtered
signal and also in internal calculations. In general FIR filters are scaled
so that the filter input is divided by the scaling constant and the output
is multiplied with the same value. Additionally, if filter coefficients can be
represented as integer-valued numbers, there is no need for multiplications in
implementation, only additions are needed. In this thesis the filter structures
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are developed to be used in combination with scaling and modulo arithmetic,
e.g. two’s complement arithmetic for efficient implementation.

The following main errors are caused by the use of finite word length in
filters.

1. Analog-digital conversion generates noise when representing samples
of an input data with few bits.

2. Coefficient quantization errors are caused by representing the filter
coefficients with a finite number of bits. Quantization of the coeffi-
cients results in an error in the magnitude and phase responses.

3. Various kinds of oscillations such as granular oscillations and overflow
oscillations may be present in filters. These limit cycles are caused
by overflows and rounding or truncation in recursive structures [100].
Overflow oscillations occur due to arithmetic operations inside the
filter when the signal value is out of the dynamic range of a number
representation used in the filter.

4. Output noise due to multiplication round-off errors occurs when round-
ing or truncating the multiplication products within the filter.

2.4.4 Scaling Methods

Filter scaling is used mainly because of two reasons. First, to avoid overflows.
Secondly, to reduce output noise due to multiplication round-off errors. In
order to accomplish that, the signal levels inside the filter, should be kept as
high as possible. Therefore, these two requirements are “mutually disjoint”.
There exist, however, several scaling methods which make a compromise
between the probability of overflows and the values of output noise. The
purpose of scaling is to ensure that, at the node variable, w(n), which needs
to be scaled, satisfies

|w(n)| ≤ 1 for all values of n. (2.1)

Also, we assume that input signal of the filter is bounded by unity, i.e.,

|x(n)| ≤ 1 for all values of n. (2.2)

Next, the most common scaling methods are briefly reviewed.

Worst-Case Scaling

Worst-case scaling is defined generally, in case of FIR filters, as follows. w(n)
can be expressed as a linear convolution of h(n) and the input x(n), i.e.,

w(n) =

N∑

k=0

h(k)x(n − k).
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From which it follows that

|w(n)| = |

N∑

k=0

h(k)x(n − k)| ≤

N∑

k=0

|h(k)|.

Thus, Eg. (2.1) is satisfied if
∑N

k=0 |h(k)| ≤ 1, where h(k) is the impulse
response up to the node variable, w(n), N is the overall filter order. Thus,
the condition (2.1) is satisfied. The above condition is both necessary and
sufficient to quarantee no overflow [55].

In Publication-I – Publication-IV worst-case scaling is recommended in
practical implementations.

The L∞ norm, denoted by ‖ L ‖∞

First, the Fourier transform of (2.1) is

W (ejω) = H(ejω)X(ejω).

The inverse Fourier transform is

|w(n)| ≤
1

2π

∫ π

−π
|H(ejω)|X(ejω)|dω (2.3)

≤‖ H(ejω) ‖∞
1

2π

∫ π

−π
|X(ejω)|dω (2.4)

≤‖ H ‖∞‖ X ‖1 . (2.5)

(2.6)

If ‖ X ‖1≤ 1, then (2.1) is satisfied if

‖ H(ejω) ‖∞≤ 1. (2.7)

If the mean absolute values of the input spectrum are bounded by unity,
there will be no adder overflow if the peak gains from the filter input to all
adder outputs are scaled satisfying (2.7) [55]. The L∞ norm is also called
the peak-scaling norm.

The L2 norm, denoted by ‖ L ‖2

Applying the Schwartz inequality in (2.3) we get

|w(n)|2 ≤
( 1

2π

∫ π

−π
|H(ejω)|2dω

)( 1

2π

∫ π

−π
|X(ejω)|2dω

If the input to the filter has a finite energy bounded by unity, then the
adder overflow will be prevented by scaling the filter satisfying ‖ H ‖2≤ 1
[55]. This norm is most suitable when filtering random input signals.



Chapter 3

Design and Implementation
Methods for Linear-Phase
FIR Filters

This chapter reviews basic ideas behind some of the most efficient and com-
mon methods used to design linear-phase FIR filters. In the literature, sev-
eral methods have been proposed to reduce the arithmetic complexity of
sharp FIR filters [1, 3, 6, 7, 11, 12, 14, 16, 20, 26, 27, 29, 35, 36, 44, 46–48, 51, 59,
68–70, 72, 77, 79, 81, 90, 99, 101,102].

In this chapter, efficient FIR filter synthesis approaches are reviewed be-
longing to three common FIR filter classes, such as filters based on multirate
filtering, the use of periodic subfilters and recursive implementation struc-
tures. The first section very briefly gives some basic ideas of FIR filters using
multirate and complementary filtering [18,70,71]. The two following sections
describe filter approaches such as the interpolated FIR filters (IFIR) and the
frequency-response masking (FRM) approach. These two filters use periodic
subfilters as building blocks. The figures of the filter responses in this chapter
show zero-phase frequency responses and magnitude responses. The fourth
section gives the idea of FIR filters based on switching and resetting IIR
filters. These filters are implemented by using recursive structures.

3.1 FIR filters Using Multirate and
Complementary Filtering

This section gives a very brief description of multirate and complementary
filtering technique.

17



18 CHAPTER 3.
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Figure 3.1: A single-stage multirate implementation structure [18].

The first step of multirate filtering [18, 70] is that the bandwidth of a
signal is first reduced by using a narrowband FIR filter with a moderate
transition bandwidth. The second step is to reduce the sampling rate. The
output signal is further filtered at the reduced sampling rate and, finally, the
sampling rate is restored by interpolation. The inner part of the filter stage
in Fig. 3.1 consists of the downsampler, the kernel filter transfer function
HK(z) and the upsampler. Additionally, at the input of the filter stage
there is a decimator transfer function HD(z) and at the filter output there
is an interpolator with the transfer function HI(z). The overall system is
periodically time invariant. The multirate complementary technique uses a
basic multirate filter stage shown in Fig. 3.2 and a complement formation as
a building block resulting in the structure in Fig. 3.3.

Wideband filters with a cutoff frequency in the range 0 ≤ ω ≤ π and
with a steep slope in the transition band can be realised if the basic mul-
tirate filter stage is complemented, i.e., from the input, a delay line, z−N ,
Fig. 3.2, is added to the output. The sign of the output of the interpolator
is complemented. This delay between input and output compensates the
propagation delay through the decimation, HD(z), kernel, HK(z), and in-
terpolator, HI(z), filter transfer functions, which are assumed to be linear

HD(z )

HK(z )

Y(z)

X(z)

H I(z)

X(z)

Y(z)

2

2

z
-N

Figure 3.2: A single-stage multirate implementation structure with a com-
plement formation [18].
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Figure 3.3: A general structure of multirate implementation with comple-
ment formations [18].

phase. By cascading multirate filter stages with a complement formation,
as shown in Fig. 3.3, it is possible to realize filters with arbitrarily narrow-
transition bands. At each filter stage, the following decisions have to be
made. First, whether a complement should be taken (weightings +1 or −1;
see Fig. 3.3) or not (weightings 0 or 1; see Fig. 3.3). Second, should the
decimation and interpolator filters be implemented as a lowpass or a high-
pass filter. The first stage determines if the overall filter is a lowpass or a
highpass filter. E.g. for a lowpass filter, the kernel filter is to be realized as
a lowpass one and, if the cutoff frequency is above π/2, it is necessary to
take the complement and to implement HD(z) and HI(z) as highpass filters.
If the cutoff frequency is below π/2, no complements should be taken and
HD(z) and HI(z) should be implemented as lowpass filters. The structure
can be viewed as a nesting of multirate filter stages. [18] The advantage of
multirate complementary filters is that arbitrarily narrow-transition-band
filters can be implemented. [18, 70, 79]

3.2 Interpolated FIR Filters

This section reviews the basic idea behind interpolated FIR (IFIR) filters
[52,56,61,79,86,88]. This method considers lowpass filters when the stopband
edge, ωs, is less than π/2 as a narrowband filter. This section also describes
the basic idea of IFIR filters according to [18] and the above-mentioned
publications. The main idea is to implement the filter as a cascade of two
FIR filter sections as

H(z) = F (zL)G(z), (3.1)

where the first subfilter with the transfer function, F (zL), generates a sparse
impulse response with every Lth impulse response value as non-zero, which
makes this subfilter periodic. The second subfilter, the non-periodic G(z),
performs the interpolation. Both subfilters are processed at the same sam-
pling rate which is the same as the rate at the input and output of the filter.
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Hereby, IFIR has a constant internal data rate and has never internal alias-
ing problems and it belongs to a class of FIR filters using periodic subfilters.
An example with periodic and non-periodic responses of an IFIR design is
shown in Fig. 3.4. The zero-phase frequency response of this filter is given
by

H(ω) = F (Lω)G(ω), (3.2)

where the periodical response F (Lω) is obtained by adding zero-valued im-
pulse response samples between every non-zero-valued sample of the proto-
type filter response, F (ω), shown in Figs. 3.4(a) and 3.5(a). This compresses
the response by a factor of L and makes it periodical as shown in Figs. 3.4(b)
and 3.5(b). This results in an L-times narrower transition band than the
transition band of the prototype F (ω) is. Therefore, the resulting response
is a frequency-axis-compressed version of the prototype filter so that the in-
terval [0, Lπ] is shrunk onto [0, π], i.e., the passband and stopband edges of
F (Lω) are given as ωp = θ/L and ωs = φ/L (see Fig. 3.5). The periodicity
of the F (Lω) is 2π/L and it has unwanted passband regions and does not
provide attenuations in the following regions.

Ωs =

⌊L/2⌋⋃

k=1

[k
2π

L
− ωs, min(k

2π

L
+ ωs, π)]. (3.3)

The non-periodic G(z) is used to eliminate these unwanted replicas of
the passband given by (3.3). The non-periodic response G(ω) shown in
Fig. 3.5(c), does not need to have a very steep transitionband if the value of
L is properly chosen. Therefore, it has a lower arithmetic complexity than
the periodic filter. When the periodic filter with every Lth value as non-zero,
is cascaded with the non-periodic filter, the non-periodic one “fills in” the
missing samples of the periodic one. The periodic F (Lω) is also referred to
as a shaping filter due to its shaping characteristics of the desired baseband.
It is important to note that the passband and the transition band of the
overall filter are 1/Lth of the corresponding widths of the prototype filter.
The periodic F (zL) in (3.1), increases the order of H(z) given in (3.1) to L
times the order of F (z). Since, in the periodic filter, only every Lth value is
non-zero, the arithmetic complexity, i.e., the number of adders and multipli-
ers, remains the same. The use of G(z) increases the arithmetic complexity
of the overall filter to be slightly more than 1/Lth of that of the direct-form
design. If the factor L is properly chosen, it adds very little to the filter
complexity. For the periodic, F (zL) in (3.1), the implementation structure
is obtained by substituting the single delays, z−1, with multiple delays, z−L,
as shown in Fig. 3.6. This structure cannot be used with a sampling rate re-
duced by a factor L, instead L different input samples have to be stored, one
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Figure 3.4: The amplitude response for an IFIR with L = 8, the passband
edge ωp = 0.025, the stopband edge ωs = 0.05, the passband ripple δp = 0.01
and the stopband ripple δs = 0.001. (a) The prototype filter F (z), (b) F (zL)
of order 26 in zL. (c) G(z) of order 19. (d) The overall filter H(z).

for each delay, and processed at the original sampling rate, i.e., all these in-
put samples contribute to the final output. This means that the arithmetic
complexity of H(z) is reduced by a factor of L compared to the conven-
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Figure 3.5: Synthesis of a narrowband filter as a cascade of a periodic and
a non-periodic zero-phase frequency response. a) A prototype, F (ω), b) a
periodic response F (Lω), c) a non-periodic response G(ω). d) The obtained
response, H(ω) [77].

tional direct-form design, i.e., totally approximately to half of that which
is required in direct-form FIR filter synthesis. Thereby, the benefit of this
technique is that the number of coefficients is reduced. By exploiting the co-
efficient symmetry for linear-phase FIR filters, the number of multipliers in
the implementation can be further reduced. The example shown in Fig. 3.4
requires 24 multipliers, 45 adders when the coefficient symmetry is exploited.
The filter order is increased by approximately 5 per cent compared to the
equivalent direct-form filter. The reduction of the multipliers also results in
reduced coefficient sensitivity and round-off noise levels.

In the cases where the factor L can be factorized and expressed as a
product of the form

L =
R∏

r=1

Lr, (3.4)

where Lrs are integers, further savings in filter complexity can be achieved
if the G(z) is designed in multistage form as follows:

G(z) = G1(z)G2(z
L1)G3(z

L1L2) · · ·GR(zL1L2···LR). (3.5)
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Figure 3.6: A direct-form implementation structure for F (zL) [18].

The design of IFIR can also be done iteratively in order to further reduce the
arithmetic complexity. Also the optimum value of L can be found, at which
the required number of coefficients is the least, which makes it [86] suitable
in very narrow passband cases, where the interpolator factor L becomes
very high [78, 79]. Fig. 3.4 shows the design of a narrow passband filter.
For most very narrowband cases, filters synthesized in the simplified form
H(z) = F (zL)G(z), give the best result. The estimate of the order of the
periodic F (zL) is given by [80]

NF =
N

L
(3.6)

and the estimate of the order of G(z) is given by [80]

Ng = cosh−1(
1

δs
)
[ 1

cosh−1 X

(
Lωp

2
, π −

L(ωp + 2ωs)

3

)

+
L/2

cosh−1 X

(
Lωp

2
, π −

L(ωp + 2ωs)

6

)
]
,

(3.7)

where

X(ωp, ωs) =
2 cos(ωp) − cos(ωs) + 1

1 + cos(ωs)
. (3.8)

The design results of narrowband filters with a piecewise-polynomial im-
pulse response in Publication-II are compared to IFIR filters to show the
effectiveness of the proposed filters in terms of their arithmetic complexity.

3.3 Frequency-Response Masking Approach

The frequency-response masking approach (FRM) is eminently suitable to
implement narrow transition-band FIR filters [20, 27, 29, 44, 45, 48, 60, 72,
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79, 88, 101, 103] and to implement linear-phase filter banks for applications
such as tone control and digital audio systems [49]. Originally, the method
was proposed by Lim [47] and further developed by other authors [20, 27,
29, 44, 45, 48, 49, 60, 72, 83, 88, 101, 103]. This section briefly gives the basic
idea of the FRM method for arbitrary bandwidth design discussed in the
above-mentioned publications.

3.3.1 One-Stage Approach

The approach is based on a pair of filter transfer functions, the transfer
function of a prototype filter,

F (z) =

NF∑

n=0

f(n)z−n, (3.9)

and its complementary transfer function, z−NF /2 − F (z), and on two non-
periodical masking filters with the transfer functions, G1(z) and G2(z) as
follows:

G1(z) = z−M1

N1∑

n=0

g1(n)z−n, g1(N1 − n) = g1(n), n = 0, 1, . . . , N1 (3.10)

and

G2(z) = z−M2

N2∑

n=0

g2(n)z−n, g2(N2 − n) = g2(n), n = 0, 1, . . . , N2. (3.11)

NF is the order of F (z) and N1 + 2M1 and N2 + 2M2 are the orders of
G1(z) and G2(z) in the above equations, respectively. The filter transfer
function pair F (z) and z−NF /2 − F (z) forms a complementary pair because
their zero-phase frequency responses, F (ω) and 1 − F (ω), add up to unity
according to the Definition 1.4.4 in Section 1.4 and as seen in Fig. 3.7(a).
The first step is to create a periodical filter pair of the prototype filter pair
by substituting each delay term, z−1, in (3.9) by L multiple delays resulting
in z−L delays and giving the following periodical transfer function:

F (zL) =

NF∑

n=0

f(n)z−nL, f(NF − n) = f(n), n = 0, 1, . . . , NF (3.12)

and its complementary pair: z−LNF /2 − F (zL). The substitution of z−1

with z−L preserves the complementary property and results in the periodic
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Figure 3.7: Generation of a periodic complementary filter pair. a) Prototype
filter responses, F (ω) and 1−F (ω). b) Periodic filter responses, F (Lω) and
1 − F (Lω) [77].

responses, F (Lω) and 1 − F (Lω), shown in Fig. 3.7, with a filter order in-
creased to LNF . The periodic filters are frequency-axis-compressed versions
of the prototype responses so that the interval of [0, π] is compressed into the
interval [0, π/L]. Because the periodicity of the prototype responses is 2π,
the periodicity of the resulting responses is 2π/L. Thereby, the periodic fil-
ters contain several passbands and stopbands in the baseband interval [0, π]
as seen in Fig. 3.7(b).

Because of the passband and transition-band replicas on the stopband of
the periodic prototype filters, two masking filters with transfer functions,
G1(z) and G2(z) given by (3.10), and (3.11), are needed to attenuate the
unwanted replicas of the passbands and the transition bands and to form
the passband of the desired filter as follows. The first masking filter masks
the response of the periodic F (zL) and the second masking filter masks the
response of z−LNF /2 −F (zL) [47]. The overall filter is obtained by summing
these two resulting filters as follows:

H(z) = H1(z) + H2(z) = F (zL)G1(z) + (z−LNF /2 − F (zL))G2(z). (3.13)

Next, the selections, which assure that the obtained transfer function H(z)
has a linear phase, are explained. The order NF is even and the orders N1

and N2 can be either even or odd.
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• orders N1 = N2 and the number of delays terms M1 = M2 = 0 given
in (3.10) and (3.11).

• if N1 > N2, M1 = 0 and M2 = (N1 − N2)/2
• if N1 < N2, M1 = (N1 − N2)/2, M2 = 0

Hereby, delays for both terms of H(z) become equal and ensure that the
phase of the filter of H(z) is linear. Due to the linear-phase condition, the
overall frequency response can also be written as

H(ejω) = H(ω)e−j(LNF +max(N1,N2))ω/2, (3.14)

where H(ω) is a zero-phase frequency response and can be expressed as

H(ω) = F (Lω)G1(ω) + (1 − F (Lω))G2(ω), (3.15)

where

F (ω) = f(
NF

2
) + 2

NF /2∑

n=1

f(
NF

2
− n) cos(nω) (3.16)

and

Gk(ω) =





g(
Nk

2
) + 2

Nk∑

n=1

gk(
Nk

2
− n)) cos(nω), Nk even

(Nk−1)/2∑

n=1

gk(
Nk − 1

2
− n)) cos((n + 1/2)ω), Nk odd

(3.17)

for k = 1, 2. The transfer function in (3.13) can be efficiently implemented as
shown in Fig. 3.8, if the coefficient symmetry is exploited.The effectiveness
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Figure 3.9: Case A design of a lowpass filter using the frequency-response
masking technique [77].

of the filter is that of the given frequency-response specification, its effective
filter length increases only slightly from that of conventional direct-form
design. Due to the substitution of each unit delay with multiple unit delays,
the order of the filter increases to LNF , but because every Lth impulse
response value is non-zero, the arithmetic complexity regarding multipliers
and adders remains the same. Since a very small fraction of its coefficients
are non-zero, its arithmetic complexity is significantly lower than that of the
equivalent conventional direct-form realization. This very sparse coefficient-
vector leads to very low hardware complexity, round-off noise and coefficient
sensitivity. For a lowpass case, the transition band of the overall transfer
function can be either the transition band of F (zL) or z−LNF /2 − F (zL).
If the transition band of F (zL) is used, the case is referred to as Case A as
shown in Fig. 3.9 and if the transition band of z−LNF /2 −F (zL) is used, the
case is referred to as Case B as shown in Fig. 3.10. For both cases the width
of the transition bands is (φ− θ)/L, which means that it is 1/Lth of that of
the original prototype filters. The passband and stopband edges of F (zL) in



28 CHAPTER 3.

2lπ θ–
L

-----------------

2l 1–( )π
L

----------------------

2l 1–( )π
L

----------------------

(a)

00

1

ωπ

(b)

00

1

ωπ

(c)

00

1

ωπ

(d)

00

1

ωπ

G1 ω( )

F Lω( )

2lπ
L

--------

G2 ω( )

2lπ
L

--------

1 F Lω( )–

2l 1–( )π
L

----------------------

2lπ
L

--------

H ω( )

2 l 1–( )π φ+
L

-------------------------------- 2lπ φ–
L

----------------- 2lπ θ+
L

------------------2lπ
L

--------

H1 ω( ) H2 ω( )

Figure 3.10: Case B design of a lowpass filter using the frequency-response
masking technique [77].

Case A are given by

ωp = (2lπ + θ)/L and ωs = (2lπ + φ)/L (3.18)

and of Case B as

ωp = (2lπ − φ)/L and ωs = (2lπ − θ)/L, (3.19)

respectively, where l is a constant, see Figs. 3.9 and. 3.10. For Case A, the
passband and stopband edges of the masking filter with the transfer function
G1(z) are given as

ωp = (2lπ + θ)/L and ωs = (2(l + 1)π − φ)/L (3.20)

and those of G2(z) as

ωp = (2lπ − θ)/L and ωs = (2lπ + φ)/L. (3.21)

For Case B, the passband and stopband edges of the masking filter with
transfer function G1(z) are given as

ωp = (2(l − 1)π + φ)/L and ωs = (2lπ − θ)/L, (3.22)
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and those of G2(z) as

ωp = (2lπ − φ)/L and ωs = (2lπ + θ)/L. (3.23)

To determine the parameters ωp, ωs, l, L, θ and φ so that the solution fulfills
the relation 0 ≤ θ ≤ φ ≤ π, the following requirements have to be fulfilled
for even order, for Case A:

2lπ/L ≤ ωp, ωs ≥ ((2l + 1)π)/L, (3.24)

for Case B:

(2l − 1)π/L ≤ ωp, ωs ≥ (lπ)/L. (3.25)

The number of multipliers is usually lowest when the transition bandwidths
are the same and the orders of the masking filters, N1 and N2, are the same.
The estimated orders are so close to the required order that they can be used
to determine the value of L. The orders of F (z) and G1(z) and G2(z) can
be quite accurately estimated as [83]

NF =
Φ(δp, δS)

φ − θ
, NG1 =

LΦ(δp, δs)

2π − φ − θ
, NG2 =

LΦ(δp, δs)

φ + θ
, (3.26)

where Φ(δs, δp) is given as

Φ(δp, δs) = [a1 log10(δp)
2 + a2 log10 δp − a3] log10 δs

−[a4 log10(δp)
2 + a5 log10(δp) + a6]

(3.27)

with

a1 = 5.309 × 10−3, a2 = 7.114 × 10−2, a3 = 0.4761

a4 = 2.66 × 10−3, a5 = 0.5941, a6 = 0.4278.

The overall order of the resulting filter can be estimated to be NF /2 + 1 +
⌊(N1 + 2)/2⌋ + ⌊(N2 + 2)/2⌋ or NF + N1 + N2, depending on whether the
symmetries on the filter coefficients are exploited or not. The order NF

is approximately 1/Lth of the equivalent conventional direct-form filter. It
is very well known that the order of the linear-phase FIR filter is roughly
inversely proportional to the transition bandwidth. Since the transition band
of the masking filters equals 2π/L, and decreases with increasing L, the
masking filter order is usually very low.
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Figure 3.11: An implementation structure using a three-stage frequency-
response masking approach [88].

3.3.2 Multistage Approach

The multistage approach [88] is applicable if the order of the prototype filter
transfer function, F (z), is too high. The FRM technique can be extended to
any arbitrary number of stages implemented recursively. This section briefs
the basics of the multistage approach of FRM according to [88]. First, this
approach can be used if L can be factorized into L = L1L2 · · ·LK . The
overall transfer function is generated as

H(z) ≡ F (0)(z) = F (1)(z
bL1)G

(1)
1 (z) + [zM1 − F (1)(z

bL1)]G
(1)
2 (z)

F (1)(z
bL1) = F (2)(z

bL2)G
(2)
1 (z

bL1) + [zM2 − F (2)(z
bL2)]G

(2)
2 (z

bL1)

F (2)(z
bL2) = F (3)(z

bL3)G
(3)
1 (z

bL2) + [zM3 − F (3)(z
bL3)]G

(3)
2 (z

bL2)

...
...

...

F (K−1)(z
bLK−1) = F (K)(z

bLK )G
(K)
1 (z

bLK−1)+ [zMK −F (K)(z
bLK )]G

(K)
2 (z

bLK−1),

where L̂1 = 1 and L̂k =
∏k

n=1 Ln for k = 1, 2, . . . , K, MK = L̂KN
(K)
F /2 and

MK−k = MK−k+1+mK−k for k = 1, 2, . . . , K−1. Fig. 3.11 shows an efficient
three-stage implementation structure for the multistage FRM approach.

The order of F (K)(z), is N
(K)
F and N

(k)
1 and N

(k)
2 are the orders of the

masking filters, G
(k)
1 and G

(k)
2 , respectively.

For the resulting filter to be linear-phase, the following requirements have
to be fulfilled [88]:
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1. The orders of G
(k)
1 (z) and G

(k)
2 (z), for k = 1, 2, . . . , K − 1, and that

of F (K)(z) have to be even.

2. The orders N
(K)
1 and N

(K)
2 can be either even or odd.

3. For G
(k)
2 (z): if the orders N

(k)
1 , N

(k)
2 of G

(k)
1 (z), G

(k)
2 (z), respectively,

are not equal, then z−(Nk
1
−Nk

2
)/2G

(k)
2 (z) has to be used instead of

G
(k)
2 (z) and N

(k)
1 > N

(k)
2 .

4. For G
(k)
1 (z): if the orders N

(k)
1 , N

(k)
2 of G

(k)
1 (z), G

(k)
2 (z), respectively,

are not equal, then z−(Nk
1
−Nk

2
)/2G

(k)
1 (z) has to be used instead of

G
(k)
1 (z) and N

(k)
1 < N

(k)
2 .

3.3.3 FRM approach for Hilbert Transformers

Hilbert transformers are one of the very important classes of FIR filters
used in various signal processing applications [9–13, 15, 32, 35, 37, 38, 50, 57,
64–66, 74, 89, 91, 93, 96]. The FRM approach is very efficient for Hilbert
transformers if the transition bandwidth is very narrow. This section briefly
discusses how to use the FRM approach to realize Hilbert transformers pro-
posed in [50,51]. The approach uses a correction term produced by masking
the periodic filter with a sparse coefficient vector. This correction term is
used to sharpen the band edge of a low-order Hilbert transformer. The ba-
sic idea when designing this filter is seen in Fig. 3.12 and it is as follows.
The band-edge-sharpening filter response, H1(e

jω), is made periodic with a
factor L by replacing each unit delay with L unit delays and the periodicity
becomes 2π/L. The masking-filter frequency response HL(ejω) is used to
mask the unwanted replicas of the passband of the H1(e

jLω) to produce the
frequency response He(e

jω), which is the transition-band correction filter.
When He(e

jω) is added to Hb(e
jω), a very narrow-transition-band Hilbert

transformer is obtained. The overall transfer function can be implemented
as a parallel connection of two branches as seen in Fig. 3.13, and thereby,
given as

H(z) = H1(z
L)HL(z) + Hb(z),

where Hb(z) is a wideband Hilbert transformer, H1(z
L) is the band-edge-

sharpening filter transfer function, and HL(z) is a masking-filter transfer
function. HL(z) has a very low complexity because its frequency response
has a wide transition band.

The total number of nontrivial coefficients, Ntot, is given by

Ntot = N1 + Nb + NL =
ΦH

L∆
+

ΦH

(1/M) − ∆
+

ΦL

(1/L) − ∆
, (3.28)
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Figure 3.12: Zero-phase frequency responses for subfilters of even length
Hb(z). 2π∆ is the transition bandwidth of the desired transfer function [50].

where ΦL = 0.22064 − 0.73294 log10(δ), and ΦHs are given by

ΦH = 0.002655(log10(δ))
3+0.031843(log10(δ))

2−0.554993 log10(δ)−0.049788.

The efficiency of the proposed wideband FIR filters with a narrow transi-
tion band in Publication-III are compared to the FRM approach, to both
one-stage and multistage methods and to Hilbert transformers.

Hb(z )

H
L
(z )

Y(z)X(z)

H1(zL)

Figure 3.13: Implementation structure for a Hilbert transformer using the
FRM technique [50].
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3.4 FIR Filters Based on Switching and
Resetting IIR Filters

So far the methods described here have been based on the use of complemen-
tary filters and/or periodical transfer functions cascaded with interpolator
transfer functions. Another approach to synthesize linear-phase FIR filters
to reduce the arithmetic complexity is by using FIR filters that mimic the
performance of IIR filters. One such method is the principle of switching and
resetting between two identical copies of the same IIR filter as introduced
in [17] and utilized in [3–5]. The principle of switching and resetting sta-
bilizes the pole-zero cancellation and prevents the quantization errors from
growing too much. The purpose of this section is to give a brief review of the
principle of switching and resetting [17]. The method is based on IIR filter
transfer functions, which are a cascade of stable G(z) and the corresponding
unstable G(z−1) IIR filter transfer functions. Their impulse response is a
shifted and truncated version of the response of G(z)G(z−1). These filters
can be implemented efficiently by using structures which are a parallel con-
nection of several branches. The truncated version is obtained by using a
feedforward term which provides pole-zero cancellation. To briefly explain
this idea, consider the stable IIR transfer function

G1(z) =
1

1 − bz−1
, (3.29)

and the unstable pair

G2(z) =
1

1 − b−1z−1
. (3.30)

Pole b in (3.29) is either real or complex and |b| < 1 to make the filter G1(z)
stable, which makes G2(z) unstable. The corresponding FIR filter transfer
function of G1(z) is

H1(z) =
1 − bNz−N

1 − bz−1
=

N−1∑

n=0

bnz−n, (3.31)

and similarly, that of G2(z) is

H2(z) =
1 − b−Nz−N

1 − b−1z−1
=

N−1∑

n=0

b−nz−n. (3.32)

When cascading the FIR filter transfer functions H1(z) and H2(z) in (3.31)
and (3.32) the result is a linear-phase FIR filter. The frequency response
of H1(z) can be made as close to that of G1(z) as desired if N is selected
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to be appropriately large; the same is true for H2(z). H1(z) represents an
FIR filter because the pole at z = b is canceled by one of the equispaced
zeros on the circle of the radius |b|. Similarly, H2(z) represents an FIR filter
because the pole at z = b−1 is cancelled by one of the equispaced zeros on
the circle of the radius |b−1|. However, if the cancellation is inexact due to
finite coefficient word length, the transfer function H1(z) becomes

Ĥ1(z) =
1 − b̂Nz−N

1 − b̂z−1
, (3.33)

and that of H2(z) becomes

Ĥ2(z) =
1 − b̂−Nz−N

1 − b̂−1z−1
, (3.34)

b̂ and b̂N , in 3.33, denote the finite-precision values of b and bN . Similarly,
b̂−1 and b̂−N , in 3.34, denote the finite-precision values of b−1 and b−N in
Ĥ2(z). The resulting impulse response of Ĥ1(z) is

h1(n) =

{
b̂n, 0 ≤ n ≤ N − 1

((̂b)N − b̂N )(̂b)n−N , n ≥ N
(3.35)

and that of Ĥ2(z) is

h2(n) =

{
(̂b−1)n, 0 ≤ n ≤ N − 1

((̂b−1)N − b̂−N )(̂b−1)n−N , n ≥ N.
(3.36)

In both cases, the pole is not exactly removed and its effect appears at the
filter output for n ≥ N . In case of H2(z), the effect of an inexact pole-zero
cancellation, b̂−N 6= (̂b−1)N , is growing by |̂b−1|n, for n ≥ N . From (3.36),
it is obvious that even with exact pole-zero cancellation the noise generated
by multiplication round-off errors will be large.

To avoid the above-mentioned problems, both Ĥ1(z) and Ĥ2(z) given
by (3.33) and (3.34) can be implemented by using the switching and re-
setting technique proposed in [17]. To explain this idea, first assume that
the input e.g. to the Ĥ1(z) consists of a set of 2N samples denoted by
x(0), x(1), · · · , x(2N − 1). Assume that the last N values x(N), x(N +
1), · · · , x(2N − 1) are zero. If Ĥ1(z) worked in an ideal way, i.e., finite
word-length effects would not exist, the output would be exactly equal to
zero at the time n = 2N − 1. This raises the idea to reset the state variables
at the time n = 2N − 1 and thereby, to avoid the effect of inexact pole-zero
cancellation from growing too much.
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x1 (n) y1(n)

y(n)

x2(n)
H(z)

H(z)

y2(n)

Figure 3.14: Implementation structure based on switching and resetting,
where a demultiplexer is used to decompose x(n) into two signals x1(n) and
x2(n), H(z) can be H1(z) or H2(z).

To extend this idea to arbitrary inputs, the input x(n) is divided into two
subsequences as follows.

x(n) = x1(n) + x2(n), (3.37)

where

x1(n) =

{
x(n), rN ≤ n ≤ (r + 1)N − 1, r = 0, 2, 4, . . .
0, otherwise

(3.38)

and

x2(n) =

{
x(n), rN ≤ n ≤ (r + 1)N − 1, r = 1, 3, 5, . . .
0, otherwise.

(3.39)

The subsequencies x1(n) and x2(n) are fed into two identical copies of
H1(z) and the outputs are added as seen in Fig. (3.14). This is equivalent to
filtering the whole sequence x(n) by H1(z) as implied by the superposition
in (3.38) and (3.39). The only difference is the finite word-length effects.
Because in every Nth data set, there is a set of N zero-valued samples, it
is possible to reset the filter at the time n = 2N − 1, i.e., when the last
zero-valued sample enters the filter, to avoid the output noise from growing
too much.

Filter synthesis methods introduced in Publication-II and Publication-III
use the principle of switching and resetting in practical implementations.
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3.5 Thinning Digital Filters: A
Piecewise-Exponential Approximation
Approach

Boudreaux and Parks [7] proposed an algorithm to synthesize recursive dig-
ital FIR filters requiring only a few multipliers. The approach to reduce the
number of multipliers is based on thinning the filter. Thinning means that
a filter of several zero-valued coefficients is obtained by removing some of
the non-zero coefficients. This creates a sparse filter vector. According to
Boudreaux and Parks, thinning comes from antenna theory, where a thinned
antenna array is an array of non-uniformly spaced elements derived from an
equally spaced array by systematically removing certain elements. Various
optimal criteria are used to choose the elements to be removed. Dynamic
programming techniques are used to find the best least-squared piecewise-
exponential approximation to a desired impulse response of length N + 1.
These filters are implemented by using recursive structures with FIR and
IIR filter sections. Because of the recursive implementation, the number of
arithmetic operations is independent of the filter length N + 1 and depen-
dent only on the number of pieces or segments S used in the approxima-
tion. The number of segments is much smaller than the filter length, i.e.,
S << N +1. The cascade implementation of finite-length piecewise approx-
imation reduces the number of multiplications to a maximum of 2(S + 2)
per output sample. Symmetric piecewise-exponential sequences need only
(S + 4) multiplications. Compared to a direct-form FIR filter this approach
requires only 1/2 up to 1/4 of the number of multiplications to implement
the filter.

3.6 The Piecewise-Polynomial Approach by Chu
and Burrus

This section reviews briefly the basic idea of the original Chu-Burrus [11,12]
approach to synthesize piecewise-polynomial-(sinusoidal) impulse responses
for a lowpass case. The piecewise technique is based on a time-domain ap-
proximation and a frequency-domain optimization to obtain the filter coeffi-
cients. The original Chu-Burrus approach starts with ideal impulse responses
with infinite duration for lowpass filters as follows:

hid(n) =
sin(ωcn)

πn
, −∞ < n < ∞, (3.40)
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where ωc is the cutoff frequency. To make it an odd-length finite duration
filter, it is cascaded with a finite-duration window function as

h(n) = w(n)hid(n), (3.41)

where w(n) = 0 for |n| > N − 1/2 and w(0) = 1. The impulse response of a
practical odd-length filter is

h(n) =
w(n)

πn
sin(ωcn), (3.42)

where ωc is the cutoff frequency and w(n) is a window function. Thereby,
when using piecewise-polynomials/-polynomial-sinusoidals to represent the
impulse response in (3.42), we have

h(n) = E(n) sin(ωcn), (3.43)

where the envelope E(n) = w(n)/πn is approximated with a piecewise poly-
nomial. In a conventional design with the window technique, the window is
the same for all lowpass filters with different cutoff frequencies. This cor-
responds to the new filter using the same envelope but different impulse
response oscillating frequencies for different cutoff lowpass filters.

A piecewise polynomial is used to represent the impulse response of nar-
rowband filters. Equivalently, piecewise-polynomial-sinusoidals are used to
represent the impulse response of wideband filters according to [12].

The filters are optimized by using the Fletcher-Powell algorithm, which
minimizes the error norm lp of

E =
L−1∑

i=0

[W (ωi)(H(ωi) − Hid(ωi))]
2p, (3.44)

Since this algorithm converges for low values of p, the algorithm starts with
p = 1 and uses the result as a starting point for the next round of optimiza-
tion for higher values of p. This approach does not utilize the coefficient
symmetry for linear-phase FIR filters in implementation.





Chapter 4

FIR Filters with a Piecewise-
Polynomial-(Sinusoidal)
Impulse Response

This chapter is based on Publication-I – Publication-IV, where synthesis
schemes are introduced by using piecewise-polynomial or piecewise-polynomi-
al-sinusoidal impulse responses and recursive implementation structures. Two
different approaches of the piecewise notion are exploited in this thesis. The
aim is first to explain why piecewise polynomials are very well suited to create
impulse responses for linear-phase FIR filters. Secondly, the aim is to cover
how the notion of piecewise is utilized in Publication-I – Publication-IV. The
names of the variables used in this chapter are the same as in the above-
mentioned publications.

4.1 Proposed Piecewise-Polynomial Methods

4.1.1 Why Piecewise-Polynomials?

If we consider an impulse response of an optimum linear-phase FIR filter, it is
seen in Fig. 4.1(a) that the impulse response has a very smooth shape, which
means that there is a strong correlation between successive impulse-response
values.

Because of the smoothness of the impulse response and the smoothness of
polynomial shapes (as seen in Fig. 4.2), we use these characteristics to our
advantage to reduce the number of coefficients and to obtain efficient imple-
mentation structures. Therefore, a piecewise use of polynomials is motivated
to create such impulse responses.

39
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Figure 4.1: Typical (a) impulse response and (b) zero-phase frequency re-
sponse for a narrowband linear-phase FIR filter. The filter has been op-
timized by using the Remez multiple exchange algorithm and it has the
minimum order, N = 215, to meet the specifications: Passband edge
ωp = 0.025π, stopband edge, ωs = 0.05π, passband ripple δp = 0.01, stop-
band ripple δs = 0.001.

4.1.2 The Concept of Piecewise

Two different piecewise- concepts are utilized: one used in Publication-I and
Publication-IV and an approach according to Definition 1.4.6 used in
Publication-II and Publication-III. We start with the approach utilized in
Publication-I and Publication-IV and proceed to the approaches proposed
in Publication-II and Publication-III.

A function is said to be piecewise if it contains a finite number of functions
connected together either with or without discontinuities [104]. Publication-I
and Publication-IV use this notion of piecewise when creating the impulse
response in the time-domain by using polynomials. The polynomials are of
the form:

fl(n) =

[
n − (N − 1)/2

(N − 1)/2

]l

for n = 0, 1, . . . , N − 1, (4.1)

where N is the length of the block and l is the order of the polynomial. Some
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Figure 4.2: Basis functions given by (4.1) when N = 16: (a) l = 0, (b) l = 1,
(c) l = 2, (d) l = 3, (e) l = 4, (f) l = 5.

of the polynomial shapes are shown in Fig. 4.2. Definition 1.4.6 of piecewise
given in Chapter 1 is utilized in Publication-II and in Publication-III. The
polynomials are of the form

p
(L)
k (n) =

L∑

r=0

a(L)
m (r)nr, for 0 ≤ n ≤ N − 1. (4.2)

where L is the degree of the polynomial and N is the length of the slice (see
Publication-II Eq.(30)-(31)). Each polynomial cover one slice according to
Definition 1.4.7.

4.1.3 The Concept of Piecewise by Saramäki and Mitra

This subsection explains the concept of the piecewise used in the approach
by Saramäki and Mitra [85]. In this approach, the overall impulse response
is divided into M blocks of length L in each subresponse. The number of
subresponses is R +1, where R is the degree of a polynomial, Fig. 4.3. Each
block is created by polynomials of a given degree, R. In this approach,
the number of multipliers is 2⌊((M + 1)/2⌋(R + 1) + (M − 2⌊M/2⌋)⌊(R +
2)/2⌋. When exploiting the linear-phase FIR filter symmetry property we
have ⌊((M+1)/2⌋(R+1)+(M−2⌊M/2⌋)⌊(R+2)/2⌋ distinct filter coefficients.
This approach is referred to as a“blockwise”use of polynomials in this thesis.
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Figure 4.3: Impulse responses for the optimized filter for M = 11 blocks
with length L = 20 in each block and N = ML = 220, and R = 3 with
the design criteria: ωp = 0.025, ωs = 0.05, δp = 0.01, and δs = 0.001: (a)
The first subimpulse response by a zeroth-order polynomial in each block.(b)
The second subimpulse response by a first-order polynomial in each block.
(c) The third subimpulse response by a second-order polynomial in each
block. (d) The fourth subimpulse response by a third-order polynomial in
each block. (e) The overall impulse response.

Consider an example, where M = 11 and L = 20, and R = 3. In this case
the number of subresponses is four. Every block in the first subresponse
is created by a polynomial of degree zero, f0(n). Similarily, each block
in the second subresponse is created by the first-degree polynomial, f1(n).
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Every block in the third subresponse is created by using the second-degree
polynomial, f2(n). Finally, the last, i.e., the fourth subresponse is created
also blockwise by using the third-degree polynomial, f3(n).

Depending on the desired linear-phase type, after the center of symmetry
of the impulse response, the subresponse, see e.g. Fig. 4.2 (a), is created
either symmetrically or anti-symmetrically. After optimization by summing
these subresponses the overall impulse response is formed.

The overall impulse response with M blocks is shown in Fig. 4.3(e). If
a third-degree polynomial is used as an approximating function, the basis
functions of order 0, 1, 2 and 3 shown in Figs. 4.2 (a), (b), (c) and (d)
are used to create the subimpulse responses in a blockwise manner shown in
Figs. 4.3(a), 4.3(b), 4.3(c) and 4.3(d) in order to obtain the overall impulse
response as shown in Fig. 4.3(e) by summing the subimpulse responses.

The differentiator design approach proposed in Publication-IV is based on
the Saramäki-Mitra approach by using anti-symmetrical piecewise-polynomial
impulse responses.

4.1.4 The Concept of Piecewise by Lehto, Saramäki and
Vainio

This section explains the piecewise concept utilized in Publication-II and
Publication-III. The definition of piecewise exploited in Publication-II and
Publication-III is given in Definition 1.4.6, where the polynomials are defined
by (4.2). To describe the basic idea, consider the following example with
the number of slices M = 5, and the polynomial degree L = 3. The idea
is to divide the impulse response into M slices defined by (1.4.7) and to
generate each slice with polynomials of a given degree L and of length Nm,
for m = 1, 2, . . . , M . The slices are of different lengths and they form the
subresponses as shown in Fig. 4.4, in the case M = 5. Thereby, each block of
the impulse response consists of a different number of polynomials, which are
shown in Fig. 4.4: e.g. the first block consists of one polynomial, the second
block of two polynomials, and the (left) middle block of the impulse response
consists of five polynomials. Due to the symmetry, there are altogether ten
blocks in the overall impulse response. After summing up the subresponses in
Fig. 4.4, the overall impulse response is obtained and shown in Fig. 4.5. This
approach is thus referred to as a “slicewise” use of polynomials in this thesis.
It has the same smooth and piecewise-polynomial shape as the optimum
linear-phase FIR filter in Fig. 4.1(a).

When designing an FIR filter with a piecewise-polynomial-sinusoidal im-
pulse response in Publication-III, the polynomials in each slice are multiplied
with a sinusoidal function depending on a linear-phase type to create the
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Figure 4.4: Subimpulse-responses, solid up, the longest subresponse, solid
down, the second longest, dashdotted up and down, the third and fourth
longest subresponses, and the shortest subresponse in the middle. The ver-
tical lines mark the block edges. The first block consists of one polynomial,
the second one of two polynomials, the third one of three polynomials, the
fourth one of four and the (left) middle block of five polynomials.
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Figure 4.5: Overall impulse response obtained by summing up the five
subresponses of Fig. 4.4.

subresponses by optimization. In the case of a Type 4 linear-phase FIR fil-
ter the subresponses lack the sinusoidal part (see Publication-III). Thereby,
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they coincide with the piecewise approach in Publication-II.

4.1.5 Implementation of the Saramäki - Mitra Approach

The approach proposed in [83] is implemented recursively by using a parallel
connection of several branches. These branches create the subresponses in
the filtering operation. The efficiency of the structures is based on the paral-
lel implementation of the overall transfer function in the form Gl(z

L)Fl(z),
where each Fl(z) requires no real multipliers. This can be obtained by mak-
ing the coefficients in Fl(z)s integer-valued. Additionally, by using integer-
valued coefficients with modulo arithmetic e.g. fixed-point arithmetic (two’s
complement arithmetic) and worst-case scaling, the proposed structures in
Publication-I and Publication-IV, do not suffer from overflows and harm-
ful effects from miscalculations disappear at the filter output in finite time.
Thereby, the structures do not need initial resetting. In Publication-I, the
formulas for making Fl(z)s integer-valued for efficient implementations are
proposed. The differentiators proposed in Publication-IV can be imple-
mented by using the recursive structures of the Saramäki–Mitra approach.

4.1.6 Implementation of the Proposed Approaches

This section considers the implementation of the filters, which are proposed
in Publication-II and Publication-III. The proposed filters are implemented
by using recursive structures with the aid of accumulators. There are feed-
back loops at the end of the structure and thereby a pole in each feedback
loop at z = 1. This means that there might occur some problems during the
filtering operation, e.g., the pole-zero cancellation is not exact in a practical
implementation. These problems can be avoided as follows. Before starting
to use the structures, the state variables should be reset. Pole-zero cancel-
lation should be done in the overall structure by quantizing the polynomial
coefficients before deriving the coefficients in the structures. Furthermore,
to avoid overflows, the worst-case scaling described in section 2.4 is required
in combination with two’s complement arithmetic. There are no overflows in
the structures provided that the actual rounding or truncation is performed
after accumulators. The accumulators have a double word length.

Additionally, the structure does not automatically recover from tempo-
rary data errors in the accumulators. Such a data corruption can be caused
by overflows, power surges, system start-up, and random errors in general.
These problems including the inexact pole-zero cancellation can be avoided
by using a parallel structure following the principle of switching and reset-
ting stated in section 3.4. The structure shown in Fig. 3.14 can be used in
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the implementation. In this case, if the overall filter order is N , the input
sequence is split into sets of N data samples so that the first set, third set
and so on are fed to the upper branch, whereas the remaining sets are fed
to the lower branch. The performance of the overall system is guaranteed
by resetting the state variables in the upper (lower) branch at time instants
n = 2ρN − 1 (n = (2ρ − 1)N − 1), where ρ is an integer. In this case,
rounding or truncation is allowed after the multiplications by the filter co-
efficients. The switching and resetting principle can also be implemented
by using multiplexing and one structure. This means that single delays are
replaced by double delays, i.e., the number of delay elements is doubled. The
structure in Fig. 7 of Publication-III, has poles on the unit circle, i.e., ejωc ,
which leads to instability problems. One way of dealing with the problem
is by slightly moving the ejωcs off the unit circle by adding a real-valued
coefficient r < 1 as rejωc and the switching and resetting principle as stated
in section 3.4. It may cause more difficulties in implementation regarding
the pole-zero cancellation.

Practical implementation according to Publication-II requires, for Type
1, (L + 1)M + ⌊(L + 1)/2⌋ multipliers, 2M(L + 1) adders, 2M(L + 1) + L +
⌊(L + 1)/2⌋ additions, (M + 1)L + 1 + ⌊(L + 1)/2⌋ + N + 1 delays, where
L is the polynomial degree, M is the number of slices and N is the filter
order. The number of additions, multiplications and delays is approximately
the same for all linear-phase types. The difference between the structures is
caused by the mid section, from which it follows that the number of additions
differs approximately by one between the linear-phase types. As a simple
example of arithmetic complexity, consider Case 2 in Publication-II with
the specifications: ωp = 0.00625, ωs = 0.0125, δp = 0.01, δs = 0.001 (see
also Table 4.2). The criteria were met by the filter order 870, the number
of polynomial slices M = 8 with the polynomial degree L = 3 in each slice.
In this case the arithmetic complexity adds up to 34 multiplications, 70
additions, 64 adders and 901 delays.

The practical implementation according to Publication-III has the num-
ber of multiplications, additions, adders and delays increased by the number
of complex multipliers and by the arithmetic elements and operations caused
by the direct-form FIR filter section (see Publication-III, Fig. 7.). The num-
ber of complex multipliers is, M(L + 2) + L + ⌊(L + 2)/2⌋, the number of
adders in direct-form filter section is T −1, the number of multipliers ⌈T/2⌉,
when exploiting the coefficient symmetry, the number of delays T + N + 2,
and the number of additions is T −1, where T is the length of the direct-form
FIR filter and N is the order of the recursive filter section.
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4.1.7 Summary of Comparisons of the Methods

This section summarizes the arithmetic complexity of the proposed filters
in Publication-II and Publication-III by comparing them to the IFIR
and FRM approaches and the Saramäki–Mitra approach [39, 85] regarding
Structures A and B as seen in Tables, 4.1, 4.2, 4.3, and 4.4. As can be seen
in Tables 4.2, 4.3, and 4.4, the proposed approaches require less multipliers
and adders than IFIR and FRM [79, 80, 82] implementations. It should be
noted that the switching and resetting principle stated in section 3.4 affects
the arithmetic complexity. There may be several ways of perfoming the
switching and resetting, at least one is according the section 3.4, and another
is by multiplexing the structure.

Additionally, if multiplexing is used, the proposed structures are forced
to operate at a double sampling rate, which consumes more power. Re-
garding the arithmetic complexity of the 4.1 Saramäki–Mitra approach in
Table 4.1, delays and adders can be shared between the branch transfer
functions G0(z

L), G1(z
L), G2(z

L) and G3(z
L) before using the coefficients

of Fl(z) (see Structure A and B in Publication-I and Publication-IV).

Table 4.1: Arithmetic Complexity for Case 1 Design Criteria in
Publication-II, i.e., ωp = 0.025π, ωs = 0.05π, δp = 0.01, δs = 0.001.

Filter structure Number of Number of Number of

multipliers adders/ delays

additions

The lowpass filter

in Publication-II 22 42/45 242

IFIR 24 45 227

Saramäki-Mitra

Structure B 22+10 39 224

Saramäki-Mitra

Structure A 22+7 50 233

Direct-form 109 216 216

In Table 4.2 the design result of IFIR is obtained with the parameter
L = 19. The orders of F (zL) and G(z) are 855 and 40, respectively.

In Table 4.3(*), the multiplication of two complex numbers can be per-
formed either by using 1) four real multiplications, one addition, and one
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Table 4.2: Arithmetic Complexity for Case 2 Design Criteria in
Publication-II, i.e., ωp = 0.00625π, ωs = 0.0125π, δp = 0.01, δs = 0.001.

Filter structure Number of Number of Number of

multipliers adders/ delays

additions

The lowpass filter

in Publication-II 34 66/69 901

IFIR 44 84 834

Direct-form 432 863 863

Table 4.3: Arithmetic Complexity for Type 1 Design Criteria in
Publication-III, i.e., ωp = 0.4π, ωs = 0.402π, δp = 0.01, δs = 0.001.

Filter Number Number Number of Number

structure of real of adders/ of

multipliers complex additions of delays

multipliers(∗) real numbers(∗∗)

Type 1 lowpass filter

in Publication-III 37 36 70/76 3081

FRM, one-stage 168 - 330 2690

FRM, two-stage 107 - 204 2920

FRM, three-stage 94 - 174 3196

Direct-form 1280 - 2558 2558

Table 4.4: Arithmetic Complexity for the Hilbert Transformer in
Publication-III, i.e., the passband region [0.00125π, 0.99875π] and δp =
0.0001.

Filter Number of Number of Number of

structure multipliers adders/ delays

additions

The Hilbert Transformer

in Publication-III 48 90/96 4146

FRM 107 211 3056
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subtraction additions, or by using 2) three real multiplications, two addi-
tions, and three subtractions. In Table 4.3(**), additions, which complex
multipliers cause, are not taken into account.





Chapter 5

Summary of the Results and
Discussion

In this thesis new optimization-based methods were introduced to synthesize
digital linear-phase FIR filters. Furthermore, formulas and algorithms for the
integer-valued implementation coefficients of Fl(z) for the dedicated imple-
mentation structures of linear-phase FIR filters with a piecewise-polynomial
impulse response by Saramäki and Mitra, were introduced in Publication-I.
The algorithms make the implementation coefficients of Fl(z) integer-valued
so that their number is minimized. The algorithms are based on alteration
of the basis functions. It was shown that in order to achieve efficient im-
plementations the following properties should be satisfied. First, provided
that fixed-point modulo arithmetic (e.g. one’s or two’s complement arith-
metic) and worst-case scaling is used, the outputs are correct even though
internal overflows may occur in the accumulators. Secondly, there is no need
for resetting and the effect of temporary miscalculations vanishes from the
outputs in finite time.

In Publication-II a new method to synthesize narrowband linear-phase
FIR filters with a piecewise-polynomial impulse response was introduced.
The method is based on the creation of impulse responses in the time domain
with the aid of polynomials with a given degree in a slicewise manner. The
filters are optimized in the frequency domain. The arithmetic complexity
in optimization depends on the number of slices and the polynomial degree.
In the practical implementation additional coefficients are needed, i.e., one
coefficient for every other polynomial degree, referred to as β-coefficients in
Publication-II. The recursive implementation structures were introduced for
all four linear-phase types. In Appendix A, a derivation of implementation
structures for Types 3 and 4 is given. It was advisable that the pole-zero

51
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cancellation in the feedback loops can be ensured by putting two structures
in parallel so that half of the sample values are fed in the upper structure and
the other half in the lower structure and by resetting the whole system at the
time instant 2N − 1. Furthermore, it was shown by means of examples that
savings in arithmetic complexity, compared to other methods for narrowband
linear-phase FIR filters, were achieved.

In Publication-III a new method to synthesize wideband linear-phase
FIR filters with a piecewise-polynomial-sinusoidal impulse response was pro-
posed. The idea of the method arises from a windowing technique and it is
an extension of the method introduced in Publication-II. The design scheme
is extended by multiplying the polynomials with a sinusoidal function in the
time-domain. It was shown that the implementation structure for Type 1 in
Publication-II was extended by adding complex multipliers. Additionally,
it was shown that for Type 4 the structure is the same as that proposed
in Publication-II. For Type 4, the arithmetic complexity in optimization
depends on the number of slices and the polynomial degree. For Type 1, the
arithmetic complexity depends also on the number of complex multipliers.
Furthermore, it was shown by means of two examples that savings in the
arithmetic complexity were achieved compared to the FRM technique.

In Publication-IV a differentiator design approach was proposed based
on the piecewise-polynomial Saramäki–Mitra approach. The efficiency of the
approach in the case of differentiators was shown by the means of an example.
The number of non-integer multipliers was found to be approximately the
same as with the approach proposed in Publication-II. Differentiators were
designed to be Type 3 or 4 linear-phase FIR filters.

In Publication-II and Publication-III the results regarding arithmetic
complexity in terms of the number of multipliers required to meet the design
specifications were compared to other computationally efficient approaches.
Narrowband linear-phase FIR filters proposed in Publication-II were com-
pared to the IFIR approach regarding the number of multipliers needed to
meet the filter design requirements. It was found that the proposed filters
require fewer multipliers than equivalent IFIR filters. It was observed that
the narrower the transition band gets, the bigger the difference grows in
terms of the number of multipliers required to meet the given specifications
in favor to the proposed approach.

It is known according to [22] that the number of multipliers consume a
significant portion of overall power. Of course the power dissipation also
depends on the actual hardware implementation and the word length used
in multipliers. There is a large number of ways to implement on the hard-
ware level. The large number of multipliers also makes the silicon area
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large in VLSI implementations, which results in more costly implementa-
tions. Thereby, the number of multipliers is of importance when developing
computationally efficient synthesis methods. The scope of the thesis is not
on the hardware level, so we only note the hardware issues on the overall
level and not more deeply than this.

Even though future work described below includes investigating the coeffi-
cient sensitivity, already some preliminary results have been obtained for nar-
rowband filters in Publication-II. Case 1 lowpass filter in Publication-II re-
quires 1 + 33 bits. The effective number of bits is 21 because there are at
least 12 leading zeros in each coefficient. It is natural to think that if the
required number of coefficients is approximately one tenth compared to the
direct-form equivalent case, the number of bits required has to be higher.
This follows from the fact that a lot fewer coefficients have to carry the same
amount of information as in the direct-form case. That is why there nec-
essarily have to be more bits required in a practical implementation. The
implementation also requires that the optimization of filter coefficient values
has to be done carefully by tuning in the optimization tool. In this manner,
the obtained impulse response of the filter is close enough to the theoretical
impulse response, i.e., most of the implemented impulse response values have
an error approximately equal or less than 10−15 compared to the theoretical
one.

The approach proposed in Publication-II is not suitable to synthesize
wideband filters because the number of required polynomial slices needed
would be impractical. When the polynomials are multiplied with a sinusoidal
function, the number of polynomials needed becomes smaller. Therefore, the
proposed approach in Publication-III is suitable to synthesize wideband
linear-phase FIR filters. The proposed wideband filters are compared to the
frequency-response masking approach. The proposed filters require fewer
multipliers to meet the given filter design specifications than the frequency-
response masking equivalent FIR filters.

The piecewise use of polynomials in Publication-I and Publication-IV can
also be considered to be compressive in nature because of the following ob-
servations. As seen in Fig. 4.3, the first subresponse with the zeroth-order
polynomial contains most of the energies, the second subresponse created
by the first-order polynomial contains the second most of the energies and
so forth. Thereby, it is enough to use polynomials of the lowest degrees to
create the filter, and the high-degree subresponses can be discarded.

Future work includes deriving estimation formulas for the filter parame-
ters, Nms, of the filters introduced in Publication-II and Publication-III.
Additionally, even more research work is going to be done to investigate
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the finite-word-length effects of the proposed filters in Publication-II and
Publication-III by using Alterra boards especially with regard to coefficient
sensitivity and output noise. Also, other synthesis methods are going to be
derived for applications requiring narrowband and computationally efficient
realizations. The aim is to obtain even more efficient narrowband realizations
especially with regard to finite-word-length effects, coefficient sensitivity,
sampling rate, silicon area and power dissipation. Also, finite-word-length
effects of the proposed filters in Publication-IV and in Publication-I could
be investigated.



Appendix A

Implementation Structures

Structures for Type 3 and 4 FIR filters with a Piecewise-Polynomial Impulse
Response The purpose of this chapter is to show derivations for Type 3 and 4
piecewise-polynomial FIR filter structures proposed in Publication-II. These
derivations are not given in Publication-II.

Based on the design technique proposed in Publication-II, the linear-phase
FIR filter transfer functions for Types 3 and 4 are of the form:

H(z) ≡ H(0)(z) =





N−1∑

n=0

h(0)(n)[z−n − z−(2N−n)] for Type 3

N−1∑

n=0

h(0)(n)[z−n − z−(2N−1−n)], for Type 4,

(A.1)

where N is an integer and h(0)(n) is given by

h(0)(n) = p(L)(n) =
L∑

r=0

a(L)(r)nr for 0 ≤ n ≤ N̂0 (A.2)

with
N̂0 = N − 1. (A.3)

In (A.2), p(L)(n) is an Lth-degree polynomial. Hence, there exist L + 1
unknowns in the above transfer functions. In (A.1), h(0)(2N−n) = −h(0)(n)
for n = 0, 1, . . . , 2N ; and h(0)(2N−1−n) = −h(0)(n) for n = 0, 1, . . . , 2N−1;
respectively. Note that due to the above symmetry condition, h(0)(N) = 0
for Type 3. In order to implement efficiently the above H(z) in terms of
accumulators, starting with

p(L)(n) =
L∑

r=0

a(L)(r)nr, (A.4)
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the following polynomials are determined recursively for k = 1, 2, . . . , L:

p(L−k)(n) =

p(L−k+1)(n + 1) − p(L−k+1)(n) =

L−k∑

r=0

a(L−k)(r)nr,
(A.5)

where

a(L−k)(r) =
L−k−r∑

s=0

(
L − k + 1 − s

r

)
a(L−k+1)(L − k + 1 − s). (A.6)

In order to develop proper structures to implement the above transfer func-
tions in terms of accumulators, the first step is to express these transfer
functions in the following form:

H(0)(z) = E(1)(z)/(1 − z−1). (A.7)

This E(1)(z) can be written as

E(1)(z) =

eN∑

n=0

e(1)(n)z−n, (A.8)

where

Ñ =

{
2N + 1 for Type 3
2N for Type 4

(A.9)

and

e(1)(n) = h(0)(n) − h(0)(n − 1), for n = 0, 1, . . . , Ñ . (A.10)

Based on the impulse responses of the original transfer functions, the re-
sulting impulse responses of E(1)(z) for Types 3 and 4 can be expressed, after
some manipulations, in terms of the polynomials p(L)(n) and p(L−1)(n), given
by (A.4)–(A.6), as follows:

e(1)(n) =





p(L)(0), n = 0

p(L−1)(n − 1), n = 1, 2, . . . , N − 1

−p(L)(N − 1), n = N and n = N + 1

p(L−1)(2N − n), n = N + 2, N + 3, . . . , 2N

p(L)(0), n = 2N + 1
0, otherwise,

(A.11)
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and

e(1)(n) =





p(L)(0), n = 0

p(L−1)(n − 1), n = 1, 2, . . . , N − 1

−2p(L)(n − 1) n = N

p(L−1)(2N − 1 − n), n = N + 1, N + 2, . . . , 2N − 1

p(L)(0), n = 2N
0, otherwise,

(A.12)

respectively. To be able to generate the desired overall filter structure using
accumulators, it is desirable to first express, for reasons to be explained later,
the above impulse responses in the following form:

e(1)(n) = h(1)(n − 1) + f (1)(n) for n = 0, 1, . . . , Ñ . (A.13)

Secondly, after some manipulations, it is favorable to express h(1)(n) and
f (1)(n) in terms of the polynomials p(L)(n) and p(L−1)(n) as follows:

h(1)(n) =





p(L−1)(n), n = 0, 1, . . . , N − 1

p(L−1)(2N − 1 − n), n = N, N + 1, . . . , 2N − 1
0, otherwise

(A.14)

and

f (1)(n) =





p(L)(0), n = 0 and n = 2N + 1

−p(L)(N), n = N and n = N + 1
0, otherwise;

(A.15)

as well as

h(1)(n) =





p(L−1)(n), n = 0, 1, . . . , N − 1

p(L−1)(2N − 2 − n), n = N, N + 1, . . . , 2N − 2
0, otherwise

(A.16)

and

f (1)(n) =





p(L)(0), n = 0 and
n = 2N + 1

−p(L)(N) − p(L)(N − 1), n = N
0, otherwise;

(A.17)

respectively.
The above equations make it possible to express E(1)(z) as

E(1)(z) = F (1)(z) + z−1H(1)(z), (A.18)
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and the importance and the roles of H(1)(z) and F (1)(z) are discussed next.
First, H(1)(z) is the polynomial part of the transfer function and can be
expressed as

H(1)(z) =





N−1∑

n=0

h(1)(n)
[
z−n − z−(2N−1−n)

]

h(1)(N − 1) +
N−2∑

n=0

h(1)(n)
[
z−n + z−(2N−2−n)

]
(A.19)

for Types 3 and 4, respectively. Here, h(1)(n) is given in terms of the (L −
1)th-order polynomial p(L−1)(n), given by (A.4)–(A.6), as follows:

h(1)(n) = p(L−1)(n) for 0 ≤ n ≤ N̂1, (A.20)

where
N̂1 = N − 1. (A.21)

When comparing H(1)(z) and H(0)(z), the following differences are observed.
First, H(1)(z) for the original Types 3 and 4 are of Types 2 and 1, respec-
tively. Secondly, both the filter order and the order of the polynomial for the
impulse responses that follow are reduced by one. This makes it possible,
at the second step by means of the second accumulator, to reduce the order
and the degree of H(1)(z) in a similar manner. This will be discussed after
explaining the role of F (1)(z). The key idea is to give F (1)(z) for the Types 3
and 4 in such a form that H(1)(z) is of a form similar to that of the original
transfer function H(0)(z). F (1)(z) is the non-polynomial part, i.e., it does
not have a polynomial form and can be expressed as

F (1)(z) =

{
p(L)(0)[1 + z−(2N+1)] − p(L)(N)z−N [1 + z−1]

p(L)(0)[1 + z−2N ] − [p(L)(N) + p(L)(N − 1)]z−N (A.22)

for Types 3 and 4, respectively. It contains the remainder terms of E(1)(z)
so that H(1)(z) can be expressed in the above form.

In order to further decrease the polynomial order, the second step is to
add the second accumulator in the above step by expressing H(1)(z) as

H(1)(z) = E(2)(z)/(1 − z−1), (A.23)

where, after derivation similar to that performed for the first step, E(2)(z)
can be written in the following form:

E(2)(z) = (1 − z−1)H(1)(z) ≡ F (2)(z) + z−1H(2)(z). (A.24)



59

Here,

H(2)(z) =





(N−1)−1∑

n=0

h(2)(n)[z−n − z−(2(N−1)−n)]

(N−1)−1∑

n=0

h(2)(n)[z−n − z−(2(N−1)−1−n)].

(A.25)

H(2)(z) is the polynomial part of the transfer function and F (2)(z) is the
non-polynomial part and can be expressed as

F (2)(z) =

{
p(L−1)(0)[1 − z−2N ] for Type 3

p(L−1)(0)[1 − z−(2N−1)] for Type 4.
(A.26)

In H(2)(z), h(2)(n) is given in terms of the (L − 2)th-order polynomial
p(L−2)(n), as given by (A.4)–(A.6) as follows:

h(2)(n) = p(L−2)(n) =

L−2∑

r=0

a(L)(r)nr for 0 ≤ n ≤ N̂2 (A.27)

where
N̂2 = (N − 1) − 1. (A.28)

The above process is continued to generate F (k)(z) and H(k)(z) for k =
3, 4, . . . , L + 1. As a result of the overall procedure, the original transfer
function can be expressed as

H(0)(z) = [F (1)(z) + z+1H(1)(z)]/[1 − z−1] (A.29)

H(1)(z) = [F (2)(z) + z−1H(2)(z)]/[1 − z−1] (A.30)

...
...

...

H(L−1)(z) = [F (L)(z) + z−1H(L)(z)]/[1 − z−1] (A.31)

H(L)(z) = F (L+1)(z)/[1 − z−1], (A.32)

where F (k)(z) for k = 1, 2, . . . , L + 1 are the transfer functions to be imple-
mented. The first L transfer functions for Types 3 and 4 are given by

F (2l+1)(z) =

{
p(L−2l)(0)[1 + z−(2(N−l)+1)] − p(L−2l)(N − l)z−(N−l)[1 + z−1]

p(L−2l)(0)[1 + z−2(N−l)] − [p(L−2l)(N − l) + p(L−2l)((N − l) − 1)]z−(N−l)

(A.33)
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for l = 0, 1, . . . , ⌊(L + 1)/2⌋ − 1, respectively, and by

F (2l+2)(z) =

{
p(L−2l−1)(0)[1 − z−2(N−l)] for Type 3

p(L−2l−1)(0)[1 − z−(2(N−l)−1)], for Type 4
(A.34)

for l = 0, 1, . . . , ⌊L/2⌋ − 1.
Alternatively, these transfer functions, for Types 3 and 4, can be expressed

as

F (2l+1)(z) =

{
α2l+1[1 + z−(2(N−l)+1)] + β2l+1z

−(N−l)[1 + z−1] for Type 3

α2l+1[1 + z−2(N−l)] + β2l+1z
−(N−l) for Type 4

(A.35)

for l = 0, 1, . . . , ⌊(L + 1)/2⌋ − 1, respectively, and as

F (2l+2)(z) =

{
α2l+2[1 − z−2(N−l)] for Type 3

α2l+2[1 − z−(2(N−l)−1)] for Type 4
(A.36)

for l = 0, 1, . . . , ⌊L/2⌋ − 1. Here, αks, for k = 1, 2, . . . , L, are related to the
corresponding polynomials, p(L−1+k)(n)s, as given by (A.4), (A.5) and (A.6),
through

αk = p(L+1−k)(0), k = 1, 2, . . . , L, (A.37)

whereas non-zero values of βk’s for Types 3 and 4 are given by

β2k−1 = −p(L−2(k−1))(N − k), (A.38)

for k = 1, 2, . . . , ⌊(L + 1)/2⌋, and

β2k−1 = −p(L−2(k−1))(N − k) − p(L−2(k−1))((N − k) − 1), (A.39)

for k = 1, 2, . . . , ⌊(L + 1)/2⌋, respectively.
The remaining transfer function F (L+1)(z) can be expressed as

F (L+1)(z) =

{
p(0)(0)[1 − z−(N−L/2)(1 + z−1) + z−2(N−L/2)+1] for Type 3

p(0)(0)[1 − 2z−(N−L/2) + z−2(N−L/2)] for Type 4
(A.40)

and

F (L+1)(z) =

{
p(0)(0)[1 − z−(2N−L+1)] for Type 3

p(0)(0)[1 − z−(2N−L)] for Type 4
(A.41)

for L even and odd, respectively.
These transfer functions can be rewritten in the form
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F (L+1)(z) =

{
αL+1[1 + z−2(N−L/2)+1] + βL+1z

−(N−L/2)(1 + z−1)

αL+1[1 + z−2(N−L/2)] + βL+1z
−(N−L/2)

(A.42)
and

F (L+1)(z) =

{
αL+1[1 − z−(2N−L+1)] for Type 3

αL+1[1 − z−(2N−L)] for Type 4
(A.43)

for L even and odd, respectively. Here, for even L, αL+1 = p(0)(0), and

βL+1 = −p(0)(0) and βL+1 = −2p(0)(0)

for Types 3 and 4, respectively.
Based on the above, the overall structures for Types 3 and 4 can be de-

veloped as in Publication-II and the implementation structures are shown
in Publication-II, where delay terms of the structures are given as Tm−1 =
Nm − Nm−1 for m = 2, 3, . . . , M , TM1 = N − NM and TM2 = N − NM (see
Publication-II).
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[40] R. Lehto, T. Saramäki, and O. Vainio,“Synthesis of narrowband linear-
phase FIR filters with a piecewise-polynomial impulse response,” in
Proc. IEEE Int. Symp. Circuits and Systems, 2005., vol. 3, 2005, pp.
2012–2015.
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[86] T. Saramäki, T. Neuvo, and S. K. Mitra, “Design of computationally
efficient interpolated FIR filters,” IEEE Trans. Circuits and Systems,
vol. 35, no. 1, pp. 70–88, 1988.
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Abstract— Two computationally efficient structures to design
and implement linear-phase narrowband FIR filters with a
symmetrical piecewise-polynomial impulse response have been
proposed by Saramäki and Mitra. The efficiency of these struc-
tures is based on implementing the overall transfer function as a
parallel connection of a few branches of the form Gl(z

L)Fl(z),
where each Fl(z) requires no real multipliers. These structures
have been generated in an ad-hoc manner. This paper introduces
straightforward approaches to generate such Fl(z)s for both
structures.

I. INTRODUCTION

The main drawback of conventional direct-form FIR filters is
that they require a very large number of coefficients when imple-
menting narrowband FIR filters. This is because the order of these
filters is roughly inversely proportional to the transition bandwidth,
which is not the case with IIR filter designs. This fact makes the
implementation of direct-form FIR filters with a narrow transition
band very costly compared to the corresponding IIR filters, in terms
of their arithmetic complexity, i.e., the required number of adders,
multipliers, and delay elements. However, the advantages of FIR
filters dominate over the difficulties in such filters.

Recursive implementation structures for FIR filters and the corre-
sponding design techniques have been proposed by several authors
[1–6]. Saramäki and Vainio [4] have introduced efficient recursive
structures to generate arbitrary polynomial responses. Saramäki
and Mitra [5] have presented a straightforward approach for two
structures to implement narrowband linear-phase FIR filters with
a symmetrical piecewise polynomial impulse response, related to
Saramäki’s and Vainio’s filter structures. The start-up transfer func-
tion in the Saramäki-Mitra approach is given by

H(z) =

R∑
l=0

Gl(z
L)Fl(z), (1)

where

Gl(z) =

M−1∑
n=0

gl(n)z−n and Fl(z) =

L−1∑
n=0

fl(n)z−n (2)

with

fl(n) =

[
n − (L − 1)/2

(L − 1)/2

]l

for n = 0, 1, . . . , L − 1 (3)

and for even [odd] gl(M−1−n) = gl(n)[gl(M−1−n) = −gl(n)]
for n = 0, 1, · · · , M − 1. The resulting transfer function is of
order N = ML − 1 and the corresponding impulse response has
an even symmetry. Most importantly, the above transfer function
makes it possible to devide the impulse response into M blocks of
L samples in a such manner that in each block this impulse response
a Rth degree polynomial. As shown in [5] after properly selecting
R < L−1 and M and optimizing the coefficients of Gl(z)s results in

narrowband cases in filters that closely approximate the minimum-
order minimax FIR filter designs to meet the given criteria. When
taking into account only the symmetrical or antisymmetrical coeffi-
cients of the Gl(z)s, this fact yields for small values of R filters with
a significantly reduced number of multipliers.

Efficient implementations cannot be achieved directly by using
the above Fl(z)s as basis fumctions. In order to achieve efficient
implementations the fl(n)s and gl(n)s have to be modified. For this
purpose, the original transfer function has been rewritten as

H(z) =
R∑

l=0

G̃l(z
L)F̃l(z), (4)

where

G̃l(z) =

M−1∑
n=0

g̃l(n)z−n and F̃l(z) =

L−1∑
n=0

f̃l(n)z−n (5)

with
f̃0(n) = f0(n)
f̃1(n) = c̃11f1(n)
f̃2(n) = c̃20f0(n) + c̃22f2(n)
f̃3(n) = c̃31f1(n) + c̃33f3(n)
f̃4(n) = c̃40f0(n) + c̃42f2(n) + c̃44f4(n)
f̃5(n) = c̃51f1(n) + c̃53f3(n) + c̃55f5(n).

(6)

and

g̃0(m) = g0(m) − c̃20g2(m)
c̃22

+ [
g4(m)

c̃44
][ c̃20c̃42

c̃22
− c̃40]

g̃1(m) = g1(m)/c̃11 − c̃31g3(m)/[c̃11c̃33]−
−c̃51g5(m)/[c̃11c̃55]
g̃2(m) = g2(m)/c̃22 − c̃42g4(m)/[c̃22c̃44]
g̃3(m) = g3(m)/c̃33 − c̃53g5(m)/[c̃33c̃55]
g̃4(m) = g4(m)/c̃44
g̃5(m) = g5(m)/c̃55.

(7)

By rewriting the original transfer function in the above manner, the
overall transfer function remains the same. The main goal has been
to to select the c̃lks so that the resulting F̃l(z)s can be implemented
by using accumulators and proper feedforward loops containing
a few integer-valued coefficients and the corresponding structures
satify the following two properties: First, provided that fixed-point
modulo arithmetic (e.g. one’s or two’s complement arithmetic) and
worst-case scaling is used, the outputs are correct even though
internal overflows may occur in the accumulators. Secondly, there
is no need for resetting and the effect of temporary miscalculations
vanishes from the outputs in a finite time. In [5], two structures have
been generated, based on the above principle, to implement the new
basis functions F̃l(z)s up to degree R = 4. However. the derivations
have been performed in ad-hoc manners.

Based on the above approaches [4-5] this paper introduces
mathematical formulas to generate the above-mentioned structures
up to degree R = 5.
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Fig. 1. Case A implementation structure [5].

II. MATHEMATICAL FORMULAS FOR THE MODIFIED BASIS
FUNCTIONS

Proper mathematical formulas for the generation of the modified
basis functions for the two efficient implementation structures pro-
posed in [5] are introduced in this section, whereas the following
section describes the algorithms for practical development of these
structures. These modified basis functions are formulated so that
they guarantee that the coefficients are in the feedforward loops
integer-valued and their number is minimized. The two structures
proposed in [5] are shown in Figures 1 and 2 and are referred to as
Case A implementation and Case B implementation, respectively.
The main difference compared to the structures proposed in [5] is
that both the structures of Figure 1 and Figure 2 contain an additional
term. This makes it possible for us to generate these structure up to
degree R = 5, instead of R = 4 that has been used in [5]. For both
structures, the main goal is to construct modified basis functions
F̃l(z) in such a manner that, first, all the alks become integer-valued
and, secondly, the number of these multipliers is minimized.

In order to achieve the above-mentioned goals for Case A
implementation, consider the structure of Figure 3, where the roles
of the alks are the same as in Figure 1. In Figure 3, the f̃l(n)s
for l = 0, 1, . . . , 5 can be written as

f̃l(n) =

l∑
k=0

alk q̂k(n) for n = 0, 1, . . . , L − 1, (8)

where
q̂0(n) = 1 (9)

and

q̂R(n) =
1

R!

R∏
r=1

(n − r + 1) for R = 1, 2, . . . , 5. (10)

As has been discussed earlier, the ultimate goal is to find in the
above equations the alks in such a manner that the following three
properties are satisfied. First, the impulse responses of the resulting
modified basis functions F̃l(z) for l = 0, 1, . . . , 5 can be expressed
as in the forms as given in (6). Secondly, all the alks are integer-
valued. Thirdly, the number of such alks is minimized.

For Case B implementation, the generation of the desired struc-
ture of Figure 2 is based on the structure of Figure 4. This is because
this figure is in practicle the transposed structure of Figure 4. In this
case, the the f̃l(n)s for l = 0, 1, . . . , 5 can be written as

f̃l(n) =
l∑

k=0

alkqk(n) for n = 0, 1, . . . , L − 1, (11)

where
q0(n) = 1 (12)
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3.II , 4.II , 5.I in Table III and IV and with r0 = 1 and rk =
Πk

l=1(L − 1 + l) [5].

and

qR(n) =
1

R!

R∏
r=1

(n + r) for R = 1, 2, . . . , 5. (13)

The main goal is to determine in the above equations the alks
to meet the same three properties as stated earlier for Case A
implementation.

III. ALGORITHMS TO DETERMINE THE DESIRED alkS

This section describes the algorithms for generation of the alks
to meet the above-mentioned three properties for Case A and Case
B implementations as well as the corresponding c̃kls in the forms
as given in (6). Developing these algorithms has been based on
reasonings that are too long to explain here. All the details behind
these algorithms will be explained in more detail in a full-length
article to published later. This section concentrates only on the basic
steps of these algorithms.

The basis functions can be expressed as (3) [5] except that now
the denominator, (L

2 − 1
2 )l, is left out at this point in order to simplify

the calculations:

f̂l(n) = (n − L

2
+

1

2
)
l

, n = 0, 1, . . . , L − 1, (14)

where L is the length of the impulse response blocks. The denomina-
tor part in (3) has been taken into account in formulas for the altered
c̃lks. For Case A every member of the sum in equation (15b) is
multiplied by 2 in order to simplify the calculations. This value 2
comes from the denominator part of the original basis functions (3).
The following formulas for the unknowns are obtained. The formu-
las have been presented separately for Case A and Case B.

A. Case A Implementation

For Case A implementation there are two sets of unknowns to
be solved, namely, the coefficients alks and the unknowns clks in
order to meet the three conditions stated in the previous section.
The unknowns are altered so that the denominator part in the basis
function (3) is also taken into account as the final step.
For this purpose the whole equation system is derived by using
equations (10), (15a), (15b) and (15c) and by exploiting the relation
mentioned in (8).
The derivation of the whole equation system and solving the coef-
ficients alks and the unknowns clks are done as follows: Algorithm
for Case A implementation:
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Step 1 Generate the following polynomials:

P0(n) = c00 = 1 (15a)
odd-order polynomials as:

Pl(n) =

(l+1)/2∑
k=1

2cl(2k−1)f̂2k−1(n), cl1 = 1, (15b)

where l is the odd-degree of the polynomial
and even-order polynomials as:

Pl(n) =

l
2−1∑
k=0

clk[f̂(l−2k)(n) − f̂(l−2k)(0)], cl0 = 1,

(15c)
where l is the even-degree of the polynomial.
In the above equations, clks are the unknowns and
f̂(l−2k)(n)s are the basis functions in (14).

Step 2 Solve the unknowns, clks, so that Pl(n) for l > 0 becomes
zero for n = 1, 2, . . .

Step 3 Solve the coefficients, alks from
l∑

k=1

(alk q̂k(n)) − Pl(n) = 0 for n = 1, 2, . . . , R

for l > 1 and
l∑

k=0

(alk q̂k(n)) − Pl(n) = 0 for l = 1, n = 0, 1, q̂0 = 1

(16)
Step 4 Generate the unknowns c̃lks as follows: for even polyno-

mial degree, l

c̃lk = clk(L
2
− 1

2
)k, l > 0, ∀ even k > 0

c̃l0 = −cll − clm1 − clm2 · · · − cl2, m1 = l − 2 and
m2 = l − 4

(17)
for odd polynomial degree, l

c̃lk = 2clk(
L

2
− 1

2
)k, ∀ odd k (18)

In the above equations, (L
2 − 1

2 )k is the denominator part of the
original basis functions, fl(n).
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From (16) as many equations are obtained as there are unknowns.
If basis functions (3) are used, the clks are directly the c̃lks in (6),
and from (16) integer-valued coefficients, alks, are obtained directly
without further alterations. If basis functions (14) are used, the clks
have to be altered according to (17) and (18) in order to obtain c̃lks.
The same coefficients are obtained by either way. Results from these
formulas are in Tables I and II.

B. Case B Implementation
For Case B implementation there are also unknowns to be solved:

the coefficients alks and the unknowns clks and c̃lks. The equation
system is derived by using (14), and by exploiting the relation
in (11).

The Roman numbers after the degree number in Tables III and
IV indicate the alternatives for the specific polynomial degree, e.g.
degrees 3 and 4 have two different alternatives and degree 5 has four
alternatives for the combination of the unknowns. The coefficient
alternatives in Table III, which have a lower polynomial order should
be chosen.

Now the algorithm to solve the coefficients alks and the un-
knowns clks and the altered unknowns c̃lks is given. The algorithm
for Case B implementation:

Step 1 Generate the following polynomials:

P0(n) = c00 = 1 (19a)

even-order polynomials as:

Pl(n) =

l
2∑

k=0

clk f̂((2k+l)−l)(n), cl0 = 1, (19b)

where l is the even-degree of the polynomial;
odd-order polynomials as:

Pl(n) =

(l+1)/2∑
k=1

cl(2k−1)f̂2k−1(n), (19c)

where l is the odd-degree of the polynomial.
In the above equations, clks are the unknowns
and f̂(l−2k)(n)s are the basis functions in (14).

Step 2 Solve the coefficients, alks, from

Pl(n) −
l∑

k=0

alkqk(n) = 0

for n = 0, 1, 2, . . . , R.

(20)

Step 3 Solve the unknowns clks so that Pl(n) for l > 0 becomes
zero for n = 1, 2, . . .. For orders higher than 2, make some
of the alks equal to zero.

Step 4 Solve alks by using clks.



Step 5 Separate the largest denominator D of alks.
Step 6 Generate the altered unknowns c̃lks by using

c̃lk = Dclk(
L

2
− 1

2
)
k

, if D �= 1 (21)

and
c̃lk = clk(

L

2
− 1

2
)k, if D = 1, (22)

where k is the order of the polynomial, and D is the largest
denominator part of the noninteger-valued coefficients.

Even if it may seem that there are unnecessary steps, the steps
are determined so that the smallest coefficient values are obtained.
Formulas (20), (21) and (22) guarantee that the coefficients, alk,
are integer-valued. Step 6 is carried out if the basis functions in (14)
are used. If (3) is used as a basis function, formulas (21) and (22)
can be used to solve the altered unknowns, c̃lks but without the term,
(L

2 − 1
2 )k. For polynomial orders higher than 5, the coefficients

become very large, if the block length, L, is large, so in practice
those orders are not realisable. This is due to the fact that the value
of coefficients increases with the polynomial degree. This structure
does not cause any overflows. Results from these formulas are in
Tables III and IV.

IV. IMPLEMENTATION COEFFICIENTS

For Case A implementation there is only one alternative for the
desired combination of the coefficients for every polynomial degree
as shown in Table I. Case B implementation, in turn, has several
implementation structures. The different coefficient alternatives up
to degree 5 are shown in Table III for Case B implementation. For
the polynomial degree higher than 5, the coefficient values become
too large for practical implementation purposes especially for large
values of L. As seen fom Tables I and III, already for degree 5, some
of the coefficient values are at least of order L3. This is valid for both
structures. The c̃lks , required to modify the original coefficients
of the Gl(z)s to become of those G̃l(z)s according to (5), are
summarized in Tables II and IV for Case A and Case B, respectively.

TABLE I
COEFFICIENTS FOR Case A IMPLEMENTATION

Degree Polynomial coefficients
0. a00 = 1
1. a10 = 1 − L, a11 = 2
2. a20 = 0, a21 = 2 − L, a22 = 2
3. a30 = 0, a31 = 6 − 5L + L2,

a32 = 18 − 6L, a33 = 12,
4. a40 = 0, a41 = 0,

a42 = 24 − 14L + L2, a43 = 48 − 12L,
a44 = 24

5. a50 = 0, a51 = 0,
a52 = −2L3 + 120 − 94L + 24L2,
a53 = 480 − 216L + 24L2, a54 = 600 − 120L,
a55 = 240

TABLE II
THE c̃lkS FOR Case A IMPLEMENTATION

Degree c̃lks
1. c̃11 = (L − 1)
2. c̃20 = −(L − 1)2/4,

c̃22 = (L − 1)2/4
3. c̃31 = −2((L − 1)/2)3,

c̃33 = 2((L − 1)/2)3

4. c̃40 = −(L − 1)4/16 + ((L − 2)2 + 1)/2
×((L − 1)/2)2,
c̃42 = −((L − 1)2/4)((L − 2)2 + 1)/2,
c̃44 = (L − 1)4/16

5. c̃51 = (L − 1)(L4/16 − (1/2)L3 + (11/8)L2

−(3/2)L + 9/16),
c̃53 = ((L − 1)3/8)(−L2 + 4L − 5),
c̃55 = 2((L − 1)/2)5

V. CONCLUSION

Efficient and easy-to-use mathematical formulas were shown by
thorough derivation for the dedicated implementation structures
of narrowband linear-phase FIR filters with piecewise-polynomial
impulse response.

TABLE III
COEFFICIENTS FOR Case B IMPLEMENTATION

Degree Polynomial coefficients
0. a00 = 1
1. a10 = −1 − L, a11 = 2
2. a20 = 0, a21 = −2 − L, a22 = 2

3.I a30 = 0, a31 = L2 + 5L + 6, a32 = −6L − 18,
a33 = 12

3.II a30 = 6 + 11L + 6L2 + L3, a31 = 0,
a32 = −12L − 36, a33 = 24

4.I a40 = 0, a41 = 0, a42 = 2L2 + 14L + 24,
a43 = −48 − 12L a44 = 24

4.II a40 = 0, a41 = L3 + 9L2 + 26L + 24, a42 = 0
a43 = −48 − 12L, a44 = 24

5.I a50 = 0, a51 = 0, a52 = −L3 − 12L2 − 47L − 60
a53 = 12L2 + 108L + 240, a54 = −60L − 300,
a55 = 120

5.II a50 = 0, a51 = −L4 + −14L3 − 120 − 154L − 71L2

a52 = 0, a53 = 1200 + 540L + 60L2

a54 = −360L − 1800, a55 = 720
5.III a50 = −225L2 − 85L3 − 120 − 274L − 15L4 − L5

a51 = 0 a52 = 0, a53 = 120L2 + 2400 + 1080L
a54 = −3600 − 720L, a55 = 1440

5.IV a50 = 0, a51 = −L4 − 14L3 − 120 − 154L − 71L2

a52 = 5L3 + 60L2 + 235L + 300, a53 = 0
a54 = −300 − 600L, a55 = 120

TABLE IV
THE c̃lkS FOR Case B IMPLEMENTATION

Degree c̃lks
1. c̃11 = (L − 1)

2. c̃20 = −(L + 1)2/4, c̃22 = (L − 1)2/4

3.I c̃31 = −(L − 1)(L + 1)2/4, c̃33 = (L − 1)3/4
3.II c̃31 = −((L − 1)/2)(3L2 + 12L + 13), c̃33 = (L − 1)3/2

4.I c̃40 = 9/16 + (3/2)L + (11/8)L2 + (1/2)L3 + (1/16)L4

c̃42 = −(L − 1)2(L2 + 4L + 5)/8
c̃44 = (L − 1)4/16

4.II c̃40 = 57/16 + (37/4)L + (65/8)L2+
(11/4)L3 + (5/16)L4

c̃42 = −(L − 1)2(3L2 + 18L + 29)/8
c̃44 = (L − 1)4/16

5.I c̃51 = ((L − 1)/32)(L + 3)2(L + 1)2

c̃53 = −(L − 1)3(L2 + 4L + 5)/16, c̃55 = (L − 1)5/32
5.II c̃51 = (L + 1)2(L − 1)(7L2 + 54L + 107)/16

c̃53 = −5(L − 1)3(L2 + 6L + 11)/8
c̃55 = 3(L − 1)5/16

5.III c̃51 = (L − 1)(790L2 + 1067+
+15L4 + 180L3 + 1500L)/8
c̃53 = −5(L − 1)3(L2 + 6L + 11)/4
c̃55 = 3(L − 1)5/8

5.IV c̃51 = (L − 1)(L + 1)2(3L + 13)2/32
c̃53 = −(L − 1)35(17 + L2 + 8L)/16
c̃55 = (L − 1)5/32
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Abstract— Classes of linear-phase finite impulse response (FIR)
filters with a piecewise-polynomial impulse response are proposed
for the four types of linear-phase FIR filters. In addition, very
efficient recursive structures to implement these filters in a
straightforward and consistent manner are proposed.

The desired impulse response is created by using a parallel
connection of several filter branches. Only one branch has an
impulse response of the full filter length, whereas the impulse
responses are shorter for the remaining branches but the center
is at the same location. The arithmetic complexity of these filters
is proportional to the number of branches and the common
polynomial order for each branch, rather than the actual filter
order. In order to generate the overall piecewise-polynomial
impulse response the polynomial coefficients are found, with the
aid of linear programming, by optimizing the responses in the
minimax sense, for both narrowband conventional filters and
narrowband differentiators.

The generation of these structures is based on the use of
accumulators so that after using an accumulator, the resulting
impulse response is divided into two parts. The first part follows
the desired polynomial form, and the second part is what is
left after the division, i.e., the non-polynomial part. This same
procedure can be used for all the following accumulators.

Several examples are included, illustrating the benefits ofthe
proposed filters, in terms of a reduced number of unknowns
used in the optimization and the reduced number of multipliers
required in the actual implementation.

Index Terms— FIR digital filters, linear-phase filters, polynomi-
als, piecewise polynomial, linear programming, filter structures.

I. I NTRODUCTION

I N many filtering applications, finite-impulse response (FIR)
digital filters are preferred over their infinite-impulse re-

sponse (IIR) counterparts due to their many favorable prop-
erties. These properties include, among others, the following.
First, an FIR filter can be designed with an exact linear phase,
which means that no phase distortion is caused in the signal
during the filtering operation. Secondly, both the output noise
due to multiplication round-off errors and the sensitivityto
variations in filter coefficients are lower. The main drawback
of FIR filters is a higher number of multipliers needed in a
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conventional implementation when a narrow transition band
is required [1]. This fact makes the implementation of direct-
form linear-phase FIR filters with a narrow transition band
very costly compared to the corresponding IIR filters, in terms
of their arithmetic complexity, i.e., the required number of
adders, multipliers, and delay elements. However, in many
applications, the various advantages of FIR filters compared to
their IIR counterparts in practice often outweigh the difficulties
in implementing these filters, especially if the correlation
between the impulse response samples is exploited by using
proper implementations structures (see, for example, the ref-
erences in [1] and [8]).

An efficient approach to overcome the above-mentioned
problem is to synthesize linear-phase FIR filters so that their
impulse response is piecewise-polynomial and the imple-
mentation is performed using recursive structures [2–8]. The
arithmetic complexity of these filters is proportional to the
number of impulse-response pieces and the overall polynomial
order rather than the actual filter order.

Boudreaux and Parks [2] were among the first to propose a
recursive piecewise-polynomial approximation of an impulse
response of FIR filters. The piecewise-polynomial filters by
Chu and Burrus [3–4] are a generalization of the filters
proposed by Boudreaux and Parks. The design scheme of
Chu and Burrus suffers from the following drawbacks. First,
the derivation of the overall filter structure, based on the
polynomial coefficients used to generate the overall impulse
response, is very complicated and it does not arrive at the
best available implementation form. Secondly, the optimiza-
tion of the polynomial coefficients has been performed using
nonlinear optimization. In order to overcome these problems,
Campbell and Saram̈aki [5] presented a new preliminary
filter structure based on and properly modifying the synthesis
scheme used by Chu and Burrus. Saramäki and Mitra [7]
have a more straightforward approach for their piecewise-
polynomial filters with the restriction that all the blocks,where
the impulse response follows a piecewise-polynomial, are of
the equal length. In this approach the overall filter length is
the number of blocks multiplied by the block length. Saramäki
and Vainio [6] have made a proposal to synthesize narrowband
linear-phase FIR filters with a piecewise-polynomial impulse
response. The proposed structures are based on polynomials
of increasing degrees and a cascade of accumulators.

Also other approaches have been developed to reduce the
arithmetic complexity of FIR filters in narrowband applica-
tions. One of the most efficient techniques to be used is the
interpolated FIR (IFIR) filters [1], [9], which are constructed
from two subfilters, one of which uses multiple delay elements



instead of unit delays. Its frequency response is therefore
periodic. The unwanted replicated passbands and transition
bands of the periodic filter are removed with a nonperiodic
filter, which has a wider transition band than in the overall
specification. This approach leads to a significantly reduced
number of multipliers and adders required to provide the
desired transition band.

Type 3 and 4 FIR filters can be used for narrowband
differentiator applications. Differentiators are used toperform
a differentiation operation on discrete-time signals. They can
be used e.g. in biomedical engineering and motion analysis
[10] and several other applications [11–13]. Full-band differ-
entiators cause noise amplification in a digital differentiation
process. Lowpass differentiators can be used in order to
avoid this undesirable phenomenon. Some of these designs
are optimized for frequencies aroundω = π/2 [14–16].

In this paper, an approach is proposed to synthesize
piecewise-polynomial linear-phase FIR filters, based on the
preliminary structure proposed by Campbell and Saramäki.
This approach overcomes the drawbacks of the design scheme
of Chu and Burrus by first introducing a straightforward
approach to synthesize the overall filter for all four types of
linear-phase FIR filters, and leading to efficient implementa-
tion structures for all types. These structures are derivedin
Section V. Secondly, linear programming is used effectively
to optimize the unknown polynomial coefficients in the overall
filter. Several design examples for both conventional filters and
narrowband differentiators are included in order to show the
benefits of the proposed design approach and the resulting
filters.

II. M OTIVATION

Why do we use a piecewise-polynomial approach to create
impulse responses? If we consider an impulse response of an
optimum linear-phase FIR filter, it is seen in Fig. 1(a) that
the impulse response has a very smooth shape, which means
that there is a strong correlation between successive impulse
response values. Therefore, piecewise use of polynomials is
motivated to create such impulse responses. In order to reduce
the number of coefficients and to obtain efficient implementa-
tion structures, we use this characteristic to our advantage.

How do we exploit this piecewise-polynomial shape? The
idea is to divide the impulse response into subresponses and
to generate each subresponse with polynomials of a given
degree. What makes this piecewise? These subresponses are
of different lengths and after summing them up the overall
impulse response is obtained with a different number of poly-
nomials forming each block of the overall impulse response.
Consider the filter in Case 1, with the polynomial degree
three, in Section VI. It has the same specification as the
optimum linear-phase FIR filter in Fig. 1. The filter in Case
1 consists of five subresponses of different lengths; thereby,
each block of the impulse response consists of a different
number of polynomials, which are shown in Fig. 2: e.g. the
first block consists of one polynomial, the second block of
two polynomials, and the (left) middle block of the impulse
response consists of five polynomials. There are totally ten
blocks in the overall impulse response.
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Fig. 1. Typical (a) impulse response and (b) zero-phase frequency
response for a narrowband linear-phase FIR filter. The filterhas
been optimized by using the Remez multiple exchange algorithm
and it has the minimum order,N = 215, to meet the specifications:
Passband edgeωp = 0.025π, stopband edgeωs = 0.05π,

passband rippleδp = 0.01, stopband rippleδs = 0.001.

After summing up these subresponses in Fig. 2, the overall
impulse response is obtained and it is shown in Fig. 3. It has
the same smooth and piecewise-polynomial shape as the opti-
mum linear-phase FIR filter in Fig. 1(a). The five subresponses
along with the polynomial degree determine the number of
filter coefficients in both optimization and implementation.
The subresponses are generated with polynomials of degree
three in each subresponse and, therefore, the number of
coefficients becomes20 in the optimization. Now we propose
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Fig. 2. Subimpulse-responses, solid up, the longest subresponse,
solid down, the second longest, dashdotted up and down, the third
and fourth longest subresponses, and the shortest subresponse in the
middle. The vertical lines mark the block edges. The first block
consists of one polynomial, the second one of two polynomials, the
third one of three polynomials, the fourth one of four and the(left)
middle block of five polynomials.



the linear-phase FIR filter classes which make this possible.
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Fig. 3. Overall impulse response obtained from five subresponses
with the polynomial degree three in each.

III. PROPOSEDL INEAR-PHASE FIR FILTER CLASSES

The basic idea is to generate an arbitrary piecewise-
polynomial impulse response for each of the four linear-phase
FIR filter types. It starts by constructing the overall transfer
function H(z) as a parallel connection ofM branch filter
transfer functions as follows:

H(z) =
M∑

m=1

z−NmHm(z). (1)

The desired overall transfer function of order2N for Types
1 and 3 and of order2N − 1 for Types 2 and 4 can be
generated as follows. First, the transfer functions,Hm(z) for
m = 1, 2, . . . , M , are constructed for Types 1, 2, 3, and 4 as

Hm(z) =





hm(N − Nm)z−(N−Nm)+
(N−Nm)−1∑

n=0

hm(n)[z−n + z−(2(N−Nm)−n)]

(N−Nm)−1∑

n=0

hm(n)[z−n + z−(2(N−Nm)−1−n)]

(N−Nm)−1∑

n=0

hm(n)[z−n − z−(2(N−Nm)−n)]

(N−Nm)−1∑

n=0

hm(n)[z−n − z−(2(N−Nm)−1−n)],

(2)
respectively, where the integersNm in the delay termsz−Nm

satisfy

N1 = 0 andNm+1 > Nm for m = 1, 2, . . . , M − 1. (3)

Secondly, an approximation of each subresponse of the over-
all impulse response by anLth order polynomial is achieved
by expressinghm(n) in terms of anLth-degree polynomial as

hm(n) = p
(L)
k (n) =

L∑

r=0

a(L)
m (r)nr for 0 ≤ n ≤ Rm, (4)

where

Rm =

{
N − Nm for Type 1
N − Nm − 1 for Types 2, 3, and 4.

(5)

The transfer functions,Hm(z), as given by (2), are
generated so that their impulse responses automatically
satisfy the desired symmetry conditions for Types 1, 2, 3,
and 4. The corresponding impulse responses for these four
types are respectively given by

hm(n) =




L∑

r=0

a(L)
m (r)nr, n = 0, 1, . . . , (N − Nm)

hm(2(N − Nm) − n), n = (N − Nm) + 1,
. . . , 2(N − Nm)

0, otherwise,

(6a)





L∑

r=0

a(L)
m (r)nr, n = 0, 1, . . . , (N − Nm) − 1

hm(2(N − Nm) − n), n = (N − Nm), (N − Nm) + 1,
. . . , 2(N − Nm) − 1

0, otherwise,
(6b)




L∑

r=0

a(L)
m (r)nr, n = 0, 1, . . . , (N − Nm) − 1

0, n = (N − Nm)
−hm(2(N − Nm) − n), n = (N − Nm) + 1, . . . , 2(N − Nm)
0, otherwise,

(6c)
and



L∑

r=0

a(L)
m (r)nr, n = 0, 1, . . . , (N − Nm) − 1

−hm(2N − 1 − n), n = (N − Nm), (N − Nm) + 1,
. . . , 2(N − Nm) − 1

0, otherwise.
(6d)

Therefore, for themth transfer function,Hm(z), the filter
order and the center of the symmetry are given by

Norder
m =

{
2(N − Nm) for Types 1 and 3
2(N − Nm) − 1 for Types 2 and 4

(7a)

and

Ncenter
m =

{
N − Nm for Types 1 and 3
(2(N − Nm) − 1)/2 for Types 2 and 4,

(7b)
respectively. It is worth emphazising that, due to the symmetry
condition for Type 3 filters,h((N − Nm)/2) = 0. Therefore,
the time interval,[0, Rm] with Rm as given by (5), is the
widest one where the impulse response can follow theLth-
degree polynomial, as given by (4).

The center of the resulting impulse response ofHm(z) for
m > 1 is not located at

Ncenter
m =

{
N for Types 1 and 3
(2N − 1)/2 for Types 2 and 4,

(8)

as required when generating Type 1 and 3 filters of order
2N and Type 2 and 4 filters of order2N − 1. Therefore, the



branch filter transfer functions form > 1 in the overall transfer
function, as given by (1), have additional delay termsz−Nm

shifting the center of each impulse response to the desired
location. When using these additional delay terms, the impulse
response of the overall filter can be expressed as

h(n) =
M∑

m=1

ĥm(n), (9)

whereĥm(n) is given by

ĥm(n) = hm(n − Nm). (10)

The resulting impulse response,̂hm(n), for m =
1, 2, . . . , M is thus given bŷhm(n) =





0, n = 0, 1, . . . , Nm − 1
L∑

r=0

a(L)
m (r)(n − Nm)r, n = Nm, Nm + 1, . . . , N

ĥm(2N − n), n = N + 1, N + 2,
. . . , 2N − Nm

0 otherwise,
(11)




0, n = 0, 1, . . . , Nm − 1
L∑

r=0

a(L)
m (r)(n − Nm)r, n = Nm, Nm + 1, . . . , N − 1

ĥm(2N − n), n = N, N + 1,
. . . , 2N − Nm − 1

0 otherwise,
(12)





0, n = 0, 1, . . . , Nm − 1
L∑

r=0

a(L)
m (r)(n − Nm)r, n = Nm, Nm + 1, . . . , N − 1

0, n = N

−ĥm(2N − n), n = N + 1, N + 2,
. . . , 2N − Nm − 1

0 otherwise,
(13)

and




0, n = 0, 1, . . .Nm − 1
L∑

r=0

a(L)
m (r)(n − Nm)r, n = Nm, Nm + 1, . . . , N − 1

−ĥm(2N − n), n = N, N + 1, . . . , 2N − 1
0 otherwise,

(14)
respectively. The above impulse response for Types 1 and 3
can be regarded as a filter of order2N and for Types 2 and 4
as a filter of order2N − 1. It is characterized by the fact that
there existNm − 1 zero-valued samples at both the beginning
and end of the impulse response. The only exception isĥ1(n),
for which N1 = 0 according to (3). Therefore, this impulse
response has no zero-valued samples at the beginning and end
of the overall impulse response and is given as

h1(n) =
L∑

r=0

a
(L)
1 (r)nr (15)

for n = 0, 1, . . . , N , for Type 1 and forn = 0, 1, . . . , N−1 for
Types 2, 3 and 4.h1(n) satisfies the same symmetry conditions
as the responsêhm(n) for m = 2, 3, . . . , M . Thereby, the
overall response can be expressed asM slices,Xm, as follows:

X1 =
[
N1, N

order
]

(16a)

Xm =
[
Nm, Norder − Nm

]
(16b)

for m = 2, 3, . . . , M , where

Norder =

{
2N for Types 1 and 3
2N − 1 for Types 2 and 4

(16c)

and Nms are in increasing order form = 1, 2, . . . , M , i.e.,
Nm < Nm+1 < . . . < NM . It is possible also to express
slicesXm, with the aid of blocks, as follows:

X̂1 = [N1, N2 − 1] ∪
[
Norder − N2 + 1, Norder

]
(17a)

X̂m = [Nm, Nm+1 − 1]∪
[
Norder − Nm+1 + 1, Norder − Nm

]

(17b)
for m = 2, 3, . . . , M − 1 and

X̂M =
[
NM , Norder − NM

]
, (17c)

where the center section of the sliceXm is missing in each
X̂m except in theX̂M . Thereby one slice consists of two
blocks as shown in Fig. 2, e.g., the first part of thêX1 is
located from0 to the first vertical line and the second part of
the X̂1 is located from the last vertical line toNorder. In the
first part of each sliceXm for m = 1, 2, . . . , M −1 as well as
in slice XM for n = NM , . . . , N̂ , whereN̂ is N for Type 1
andN − 1 for Types 2, 3, and 4, the impulse-response of the
overall filter can be generated to follow an arbitraryLth-degree
polynomial. For the rest of each slice, the impulse responseis
automatically generated so that the overall response satisfies
the desired conditions for each type of linear-phase FIR filters.

This is based on the following facts. First, with eachX̂m it
holds that

h(n) =
M∑

m=1

h̃m(n). (18)

Secondly, based on the above-mentioned definitions of the
ĥm(n)s in (11), (12), (13), and (14), the overall impulse
response inX̂m can be expressed for Types 1, 2, 3, and 4 as
follows:

h̃m(n) =





m∑

k=1

[
L∑

r=0

a
(L)
k (r)(n− Nm)r

]

for n = Nm, Nm + 1, . . . , Nm+1 − 1

h(2N − n)
for n = 2N − Nm+1 + 1, 2N − Nm+1,

. . . , 2N − Nm

0, otherwise,

(19)



h̃m(n) =





m∑

k=1

[
L∑

r=0

a
(L)
k (r)(n − Nm)r

]

for n = Nm, Nm + 1, . . . , Nm+1 − 1

h(2N − n)
for n = 2N − 1 − Nm+1, 2N − Nm+1 + 1,

. . . , 2N − 1 − Nm

0, otherwise,
(20)

h̃m(n) =





m∑

k=1

[
L∑

r=0

a
(L)
k (r)(n − Nm)r

]

for n = Nm, Nm + 1, . . . , Nm+1 − 1

0 for n = N

−h(2N − n)
for n = 2N − Nm+1 + 1, 2N − Nm+1

0, otherwise,

(21)

and

h̃m(n) =





m∑

k=1

[
L∑

r=0

a
(L)
k (r)(n − Nm)r

]

for n = Nm, Nm + 1, . . . , Nm+1 − 1

−h(2N − n)
for n = 2N − 1 − Nm+1, 2N − Nm+1,

. . . , 2N − 1 − Nm

0, otherwise,

(22)

respectively.
In each block ofX̂m for m = 1, 2, . . . , M , an arbitrary

Lth-degree polynomial impulse response can be provided,
as proposed in (19), (20), (21), and (22). Based on
the above equations, it is seen that in each blockX̂m for
m = 2, 3, . . .M compared to blockX̂m−1 there is one
more polynomial, namely,

∑L
r=0 a

(m)
k (r)(n−Nm)r providing

an additional arbitraryLth-degree polynomial contribution to
this block. The only exception in the above consideration is
block X̂1, where only

∑L
r=0 a

(1)
k (r)(n − Nm)r provides its

contribution.
The above can also be considered so that the slices are of

variable or equal length with the center at the same location.
The first slice is of the same length as the overall impulse
response. The rest of the slices are shorter and, therefore,there
are zeros at the beginning and end of the impulse response. If
slicesNms are chosen so that|N2−N1| = |N3−N2| = · · · =
|NM−NM−1|, whereN1 = 0 andM is the number of slices in
the overall impulse response, they are called uniformly spaced
and otherwise non-uniformly spaced.

IV. F ILTER OPTIMIZATION ALGORITHM

FIR filter optimization using linear programming can be
stated as a problem of minimizing

ǫ = max
ω∈[0,ωp][ωs,π]

|W (ω)||H(ω) − D(ω)|, (23)

where W (ω) is a weight function andD(ω) is the desired
zero-phase frequency response. In the above optimization

problem, ωp, and ωs are the passband and stopband edge
angles, respectively. The most crucial feature for the filters
under consideration is that the zero-phase frequency response,
H(ω) [1], is linear with respect to the unknown polynomial
coefficients. This fact makes it possible to solve theOptimiza-
tion Problem(stated later) by using linear programming. In
the practical optimization problem the zero-phase frequency,

H(ω), is in the following form:H(ω) =

M∑

m=1

L∑

r=1

H(ω, m, r),

where

H(ω, m, r) =





a(L)
m (r)(Ñm)r+

eNm∑

n=1

a(L)
m (r)(Ñm − n)r2 cos(nω),

eNm−1∑

n=1

a(L)
m (r)(Ñm − 1 − n)r2 cos((n − 0.5)ω),

eNm∑

n=1

a(L)
m (r)(Ñm − n)r2 sin(nω),

eNm−1∑

n=1

a(L)
m (r)(Ñm − 1 − n)r2 sin((n − 0.5)ω),

(24)
whereÑm = N − Nm, for Types 1, 2, 3, and 4 respectively.
The main concern, for the optimization problem, are the pa-
rameters, i.e., how to choose them so that after applying linear
programming, the polynomial coefficients, which make (23)
equal to or less than unity, can be found as defined by (24)–
(28). The following parameters should be chosen: the number
of slices M , the filter order and the common polynomial
degreeL in each slice and the valuesNm, for the mth slice
for m = 1, 2, . . . , M , so that the arithmetic complexity is
minimized. These parameters are found by a trial-and-error
technique. No straightforward way to find a unique optimum
combination of parameters has been found. Some advice on
how to choose the overall filter order can be found from the
fact that the filter order is slightly greater than the minimum
order of a direct-form FIR filter with the same design criteria.
Based on the results in Section VI, the general basic rule, if
the passband and stopband edges are divided (multiplied) by
a factor, theNms should be multiplied (divided) by the same
factor, could be applied.
Optimization Problem:

1) Givenωp, ωs, δp andδs.
2) Choose the overall filter order and the number of slices

M , the common polynomial degreeL in each slice and
the valuesNm, for the mth slice form = 1, 2, . . . , M .

3) Form the polynomials for each slice.
4) Form the following weighted error function:

E(ω) = |W (ω)||H(ω) − D(ω)|, (25)

with respect to the unknown polynomial coefficients
a
(m)
k . Here,

D(ω) =

{
Dp(ω) for ω ∈ [0, ωp]
0 for ω ∈ [ωs, π],

(26)



with

Dp(ω) =





1 for Types 1, and 2
ω for Types 3, and 4,

i.e., for a differentiator design
(27)

and

W (ω) =

{
1/δp for ω ∈ [0, ωp]
1/δs for ω ∈ [ωs, π].

(28)

5) Solve the unknown polynomial coefficientsa(m)
k s with

a linear programming algorithm.
6) If the polynomial coefficientsa(m)

k s make the quantity
in (23) equal to or less than unity, the design criteria are
automatically met and the filter is successfully designed,
otherwise continue from step2.

V. I MPLEMENTATION STRUCTURES

This section shows how to generate an arbitrary piecewise-
polynomial impulse response for each of the four linear-phase
FIR filter types.

The main idea when generating the overall impulse response
is to reduce the order and the length of the polynomials by one
at every step until the polynomial order of zero is reached. All
the types have their own implementation structures. In order
to achieve the desired goal, first an implementation block is
derived for a single branch. Based on this structure an overall
implementation structure is generated.

Based on the design technique proposed in Section III, the
linear-phase FIR filter transfer functions for Types 1 to 4 are
of the form:

H(z) ≡ H(0)(z) =





h(0)(N)z−N+
N−1∑

n=0

h(0)(n)[z−n + z−(2N−n)]

N−1∑

n=0

h(0)(n)[z−n + z−(2N−1−n)]

N−1∑

n=0

h(0)(n)[z−n − z−(2N−n)]

N−1∑

n=0

h(0)(n)[z−n − z−(2N−1−n)],

(29)
respectively, whereN is an integer andh(0)(n) is given by

h(0)(n) = p(L)(n) =

L∑

r=0

a(L)(r)nr for 0 ≤ n ≤ N̂0 (30)

with

N̂0 =

{
N for Type 1
N − 1 for Types 2, 3, and 4.

(31)

In (30), p(L)(n) is an Lth-degree polynomial inn. Hence,
there existL + 1 unknowns in the above transfer functions.

For Types 1, 2, 3, and 4, the impulse responses satisfy
h(0)(2N − n) = h(0)(n) for n = 0, 1, . . . , 2N ; h(0)(2N −
1 − n) = h(0)(n) for n = 0, 1, . . . , 2N − 1; h(0)(2N − n) =
−h(0)(n) for n = 0, 1, . . . , 2N ; and h(0)(2N − 1 − n) =
−h(0)(n) for n = 0, 1, . . . , 2N − 1; respectively. Note that
due to the above symmetry condition,h(0)(N) = 0 for Type

3. For Types 1 and 2 (Types 3 and 4), the impulse response is
symmetrical (antisymmetrical). Furthermore, for Types 1 and
3 (Types 2 and 4), the filter order is2N (2N − 1), where the
order is even (odd).

In order to implement the aboveH(z) efficiently by using
accumulators for the four types, starting with

p(L)(n) =
L∑

r=0

a(L)(r)nr, (32)

the following polynomials are determined recursively fork =
1, 2, . . . , L:

p(L−k)(n) =

p(L−k+1)(n + 1) − p(L−k+1)(n) =

L−k∑

r=0

a(L−k)(r)nr,

(33)
where

a(L−k)(r) =
L−k+1∑

j=r+1

(
j

r

)
a(L−k+1)(r). (34)

The first step is to express these transfer functions in the
following form:

H(0)(z) = E(1)(z)/(1 − z−1), (35)

where
E(1)(z) = (1 − z−1)H(0)(z). (36)

This E(1)(z) can be written as

E(1)(z) =

eN∑

n=0

e(1)(n)z−n, (37)

where

Ñ =

{
2N + 1 for Types 1 and 3
2N for Types 2 and 4

(38)

and

e(1)(n) = h(0)(n)− h(0)(n− 1) for n = 0, 1, . . . , Ñ . (39)

Hereinafter, only Types 1 and 2 are discussed because by
deriving the implementation structure for Types 1 and 2 also
structures for Types 3 and 4 are automatically obtained. This
is because Types 1 and 4 as well as Types 2 and 3 alternate
when forming the structure as seen later on. However, the im-
plementation coefficients are given for all four types, because
the final structures are presented for all four types. Based
on the impulse responses of the original transfer functions,
the resulting impulse responses ofE(1)(z) for Types 1 and 2
can be expressed, after some manipulations, in terms of the
polynomialsp(L)(n) and p(L−1)(n), given by (32)–(34), as
follows:

e(1)(n) =





p(L)(0), n = 0

p(L−1)(n − 1), n = 1, 2, . . . , N
−p(L−1)(2N − n), n = N + 1, N + 2, . . . , 2N
−p(L)(0), n = 2N + 1
0, otherwise,

(40)



e(1)(n) =





p(L)(0), n = 0
p(L−1)(n − 1), n = 1, 2, . . . , N − 1
0, n = N
−p(L−1)(2N − 1 − n), n = N + 1, N + 2,
. . . , 2N − 1

−p(L)(0), n = 2N
0, otherwise,

(41)
respectively.

To be able to generate the desired overall filter structure for
all the four filter types using accumulators, it is desirableto
first express, for the reasons to be explained later, the above
impulse responses in the following form:

e(1)(n) = h(1)(n− 1) + f (1)(n) for n = 0, 1, . . . , Ñ . (42)

Secondly, after some manipulations, it is favorable to express
h(1)(n) and f (1)(n) for Types 1 and 2, in terms of the
polynomialsp(L)(n) andp(L−1)(n) as follows:

h(1)(n) =





p(L−1)(n), n = 0, 1, . . . , N − 1
−p(L−1)(2N − 1 − n), n = N, N + 1,

. . . , 2N − 1
0, otherwise

(43)
and

f (1)(n) =





p(L)(0), n = 0
−p(L)(0), n = 2N + 1
0, otherwise;

(44)

as well as

h(1)(n) =





p(L−1)(n), n = 0, 1, . . . , N − 2
0, n = N − 1
−p(L−1)(2N − 2 − n), n = N, N + 1,

. . . , 2N − 2
0, otherwise

(45)
and

f (1)(n) =





p(L)(0), n = 0

−p(L)(0), n = 2N
0, otherwise;

(46)

respectively.

The above equations make it possible to expressE(1)(z) as

E(1)(z) = F (1)(z) + z−1H(1)(z), (47)

and the importance and the roles ofH(1)(z) andF (1)(z) are
discussed next.

First,H(1)(z) is the polynomial part of the transfer function
and can be expressed as

H(1)(z) =





N−1∑

n=0

h(1)(n)
[
z−n − z−(2N−1−n)

]

N−2∑

n=0

h(1)(n)
[
z−n − z−(2N−2−n)

] (48)

for Types 1 and 2, respectively. In (48),h(1)(n) is given in
terms of the(L − 1)th-order polynomialp(L−1)(n), as given
by (43) and (45) with (32)–(34).

Z -N-1

α1

Z -1

Z -1

  IN

OUT
Z -N

-
+

H (1) (z)

F (1) (z)

Fig. 4. Implementation block of the overall transfer function in terms of
F (1)(z) and H(1)(z) for the structure of Type1 filters. In this structure
α1 = p(L)(0).

When comparing these first two steps in derivation in (29),
and (48), the following observations can be made. First, it
can be seen thatH(1)(z) for Types 1 and 2 corresponds to
Types 4 and 3 inH(0)(z). So Types 1 and 4 as well as
Types 2 and 3 alternate when forming the structures. Secondly,
both the filter order and the order of the polynomial for
the impulse responses that follow are reduced by one. This
makes it possible, at the second step by means of the second
accumulator, to reduce the order and the degree ofH(1)(z)
in a similar manner. This will be discussed after explaining
the role ofF (1)(z). The key idea is to giveF (1)(z) for the
filter Types 1 and 2 in such a form thatH(1)(z) is of a form
similar to that of the original transfer functionH(0)(z), as
given by (29)–(31).

F (1)(z) is the non-polynomial part, i.e., it does not have a
polynomial form and can be expressed as

F (1)(z) =

{
p(L)(0)[1 − z−(2N+1)]
p(L)(0)[1 − z−2N ]

(49)

for Types 1 and 2, respectively. It contains the remainder terms
of E(1)(z) so thatH(1)(z) can be expressed in the above form.
The implementation of the overall transfer function in terms
of F (1)(z) and H(1)(z) is shown in Fig. 4 for Type1 FIR
filters.

In order to further decrease the polynomial order, the second
step is to add the second accumulator in the structure of Fig.4
by expressingH(1)(z) as

H(1)(z) = E(2)(z)/(1 − z−1), (50)

where, after a derivation similar to that performed for the first
step,E(2)(z) can be written in the following form:

E(2)(z) = (1− z−1)H(1)(z) ≡ F (2)(z) + z−1H(2)(z). (51)

Here,

H(2)(z) =





h(2)(N − 1)z−(N−1)+
(N−1)−1∑

n=0

h(2)(n)[z−n + z−(2(N−1)−n)]

(N−1)−1∑

n=0

h(2)(n)[z−n + z−(2(N−1)−1−n)]

(52)
for Types 1 and 2, respectively.H(2)(z) is the polynomial part
of the transfer function and andF (2)(z) is the non-polynomial
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Fig. 5. Implementation block of the overall transfer function in terms of
F (1)(z), F (2)(z), and H(2)(z) for the structure of Type1 filters. In this
structureα1 = pL(0), α2 = p(L−1)(0), and β2 = −p(L−1)(N) −

p(L−1)(N − 1).

part and can be expressed as

F (2)(z) =





p(L−1)(0)[1 + z−2N ]−
[p(L−1)(N) + p(L−1)(N − 1)]z−N

p(L−1)(0)[1 + z−(2N−1)]−

p(L−1)(N − 1)z−(N−1)[1 + z−1]

(53)

for Types 1 and 2, respectively.
In H(2)(z), h(2)(n) is given in terms of the(L−2)th-order

polynomialp(L−2)(n), as given by (32)–(34) as follows:

h(2)(n) = p(L−2)(n) =

L−2∑

r=0

a(L)(r)nr for 0 ≤ n ≤ N̂2

(54)
with

N̂2 =

{
N − 1 for Type 1
(N − 1) − 1 for Type 2 .

(55)

The aboveH(2)(z) is thus similar toH(0)(z) except that for
H(2)(z), both the filter order and the degree of the polynomial
for the impulse responses that follow are decreased by two.

The resulting structure in terms ofF (2)(z) andH(2)(z) for
Type 1 filters is seen in Fig. 5. The above process is continued
to generateF (k)(z) andH(k)(z) for k = 3, 4, . . . , L + 1. As
a result of the overall procedure, the original transfer function
can be expressed as

H(0)(z) = [F (1)(z) + z+1H(1)(z)]/[1 − z−1] (56)

H(1)(z) = [F (2)(z) + z−1H(2)(z)]/[1 − z−1] (57)

...
...

...

H(L−1)(z) = [F (L)(z) + z−1H(L)(z)]/[1 − z−1] (58)

H(L)(z) = F (L+1)(z)/[1 − z−1], (59)

whereF (k)(z) for k = 1, 2, . . . , L+1 are the transfer functions
to be implemented. The firstL transfer functions for Types 1
and 2 are given respectively by

F (2l+1)(z) =

{
p(L−2l))(0)[1 − z−(2(N−l)+1)]
p(L−2l)(0)[1 − z−2(N−l)]

(60)

for l = 0, 1, . . . , ⌊(L + 1)/2⌋ − 1 and by

F (2l+2)(z) =




p(L−2l−1)(0)[1 + z−2(N−l)]−
[p(L−2l−1)(N − l) + p(L−2l−1)((N − l) − 1)]z−(N−l)

p(L−2l−1)(0)[1 + z−(2(N−l)−1)] − p(L−2l−1)((N − l) − 1)
×z−((N−l)−1)[1 + z−1]

(61)
for l = 0, 1, . . . , ⌊L/2⌋ − 1.

Alternatively, these transfer functions can be expressed as

F (2l+1)(z) =

{
α2l+1[1 − z−(2(N−l)+1)]
α2l+1[1 − z−2(N−l)]

(62)

for l = 0, 1, . . . , ⌊(L + 1)/2⌋ − 1 and as

F (2l+2)(z) =
{

α2l+2[1 + z−2(N−l)] + β2l+2z
−(N−l)

α2l+2[1 + z−(2(N−l)−1)] + β2l+2z
−((N−l)−1)[1 + z−1]

(63)
for l = 0, 1, . . . , ⌊L/2⌋ − 1. Next, the structure coefficients,
αks andβks, are given for all the four types as mentioned
earlier. Here, αks, for k = 1, 2, . . . , L, are related to
the corresponding polynomials,p(L−1+k)(n)s, as given
by (32), (33) and (34), through

αk = p(L+1−k)(0) = a(L−k+1)(0), k = 1, 2, . . . , L, (64)

whereas non-zero values ofβk ’s for Types 1, 2, 3, and 4 are
given by

β2k = −p(L−2k+1)(N + 1 − k) − p(L−2k+1)(N − k),
k = 1, 2, . . . , ⌊L/2⌋,

(65a)
β2k = −p(L−2k+1)(N − k), k = 1, 2, . . . , ⌊L/2⌋, (65b)

β2k−1 = −p(L−2(k−1))(N − k), k = 1, 2, . . . , ⌊(L + 1)/2⌋,
(65c)

and

β2k−1 = −p(L−2(k−1))(N − k) − p(L−2(k−1))((N − k) − 1),
k = 1, 2, . . . , ⌊(L + 1)/2⌋,

(65d)
respectively.

The remaining transfer functionF (L+1)(z) for Types 1 and
2 can be expressed as

F (L+1)(z) =

{
p(0)(0)[1 − z−2(N−L/2)+1]

p(0)(0)[1 − z−2(N−L/2)]
(66)

and

F (L+1)(z) =





p(0)(0)[1 − 2z−(N−(L−1)/2) + z−(2N−L+1)]

p(0)(0)[1 − z−(N−(L−1)/2)(1 + z−1)+
z−(2N−L)]

(67)
for L even and odd, respectively.
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Fig. 6. Implementation block for Type1 filters.

These transfer functions can be rewritten in the form

F (L+1)(z) =

{
αL+1[1 − z−2(N−L/2)+1]
αL+1[1 − z−2(N−L/2)]

(68)

and

F (L+1)(z) =





αL+1[1 + z−(2N−L+1)] + βL+1z
−(N−(L−1)/2)

αL+1[1 + z−(2N−L)]+
βL+1z

−(N−(L−1)/2)(1 + z−1)
(69)

for L even and odd respectively. Here,αL+1 = p(0)(0),
whereas for evenL,

βL+1 = −p(0)(0) andβL+1 = −2p(0)(0)

for Types 3 and 4, respectively, and for oddL,

βL+1 = −2p(0)(0) andβL+1 = −p(0)(0)

for Types 1 and 2, respectively.
An efficient implementation block for the above transfer

function for Type 1 is shown in Fig. 6 for oddL. For even
L, the corresponding block is obtained by first discarding the
uppermost branch and then replacingL by L + 1.

Based on the above structure, a similar structure can be
developed for each of the branch filters,Hm(z) described
in (2).

To generate the corresponding coefficients,αks andβ2ks,
the impulse response given by (4) is used. The resulting
αks andβ2ks are denoted byα(m)

k and β
(m)
2k . An efficient

implementation structure for the overall filter is shown in
Fig. 10, whereTm = Nm for m = 1, 2, . . . , M − 1, TM1 =
N − NM and TM2 = N − NM + 1. The role of theTms
is to keep the center of the symmetry of the blocks at the
center of the overall filter in order to maintain the shape of
the linear-phase type.

Furthermore, theβ2ks are the sums of the corresponding
β

(m)
2k s. In order to keep the overall diagram simple, the

coefficientsα
(m)
k s have been drawn twice. In the practical

implementation, the overall number of multipliers can be
reduced by first adding [subtracting] the inputs of the left-
hand sideα(m)

k s and the right-hand sideα(m)
k s [−α

(m)
k s] and

then multiplying the result byα(m)
k s.

Based on the above formulas the implementation structures
for Types 2, 3, and 4 are shown in Figs. 11, 12, and 13,
respectively, whereTm = Nm for m = 1, 2, . . . , M − 1,
TM1 = N − NM , andTM2 = N − NM .

VI. D ESIGN EXAMPLES

In this section, the properties and efficiency of the proposed
filter classes over conventional direct-form FIR filters andIFIR
filters [1], [9] are shown by means of examples in narrowband
cases. The following two design criteria are considered: The
passband and the stopband edges are
Case 1: ωp = 0.025π, ωs = 0.05π
Case 2: ωp = 0.0063π, ωs = 0.0125π
and both withδp = 0.01, andδs = 0.001 (60 dB attenuation).

For Case 1, the given criteria are met by a filter of order
220, M = 5, L = 3, N1 = 0, N2 = 23, N3 = 50, N4 = 81,
andN5 = 98 as shown in Table I.

This filter thus consists of five slices with the polynomial de-
gree,L = 3 in each slice. In this case, the number of unknowns
required in the optimization is20. The number of multipliers
is 22 in the practical implementation. The magnitude and
the impulse response for the optimized filter are shown in
Fig. 7(a). For comparison, also cases with polynomial degree
L = 2 and L = 4 are shown in Table I. With polynomial
degree two, the minimum number of unknowns is30. For

TABLE I

FILTER PARAMETERS FORCASE 1 DESIGN CRITERIA

Polynomial Number of Number Filter Slices,

degree slices of order Nms

L M unknowns

3 5 20 220 0, 23, 50, 81, 98.

2 10 30 220 0, 10, 21, 31, 43,

53, 65, 76, 87, 98.

4 4 20 220 0, 31, 71, 98.

TABLE II

FILTER PARAMETERS FORCASE 2 DESIGN CRITERIA

Polynomial Number of Number Filter Slices,

degree slices of order Nms

L M unknowns

3 8 32 870 0, 87, 136, 195,

252, 319, 355, 413.

Case 2, the given criteria are met by a filter of order870,
M = 8, L = 3, andN1 = 0, N2 = 87, N3 = 136, N4 = 195,
N5 = 252, N6 = 319, N7 = 355, andN8 = 413 as shown
in Table II. This filter thus consists of eight slices with the
polynomial degree,L = 3 in each slice. The number of
unknowns required in the optimization is32. The magnitude
and the impulse response for the optimized filter are shown in
Fig. 7(b).



TABLE III

FILTER PARAMETERS OFREFERENCEDESIGNS FORCASE 1 DESIGN

CRITERIA

Filter Order of Filter Number of Interpolation

F (zL)G(z) Order Multipliers FactorL

Direct-form FIR - 215 108 -

IFIR 26+19 24 8

TABLE IV

FILTER PARAMETERS OFREFERENCEDESIGNS FORCASE 2 DESIGN

CRITERIA

Filter Order of Filter Number of Interpolation

F (zL)G(z) Order Multipliers FactorL

Direct-form FIR - 863 432 -

IFIR 50+34 44 16

Tables III and IV show designs with corresponding criteria
for direct-form FIR and IFIR filters.

The IFIR filter in Table III, i.e.,H(z) = F (zL)G(z), needs
altogether24 multipliers compared to our design, which needs
22 multipliers in a practical implementation.

The IFIR filter in Table IV needs altogether44 multipliers
compared to our design, which needs34 multipliers in a
practical implementation.

The following observation can be made for both cases: the
arithmetic complexity becomes the lesser, the narrower the
transition band gets compared to direct-form design, i.e.,the
reduction in the number of multipliers is from82 to 92 percent.
The downside is that the filter length increases. Compared to
IFIR filter designs the arithmetic complexity is slightly less.

As also shown in Table I, if the polynomial degree is
decreased, the number of slices has to be increased in order
to meet the given design criteria.

Next, the properties and efficiency of the proposed filter
class for Type 3 and 4 FIR filters are shown by means of an
example in a narrowband differentiator case. Details of the
example are shown in Table V.

Consider the design of narrowband differentiators with the
specifications:ωp = 0.025π, ωs = 0.05π, δp = 0.01, and
δs = 0.001. For the proposed approach, the given criteria

TABLE V

A NARROWBAND DIFFERENTIATOR WITH CASE 1 DESIGN CRITERIA

Polynomial Number of Number of Filter Overall

degree,L slices,M unknowns order ripple value

3 5 20 332 9.13964 × 10−4

are met by a differentiator of order332, M = 5, L = 3,
N1 = 0, N2 = 37, N3 = 74, N4 = 111 andN5 = 148. This
FIR differentiator thus consists of five uniformly-spaced slices
with the polynomial degree,L = 3 in each slice.

In this case, the number of unknowns required is20 in
the optimization and22 in the practical implementation. The
magnitude response for the optimized differentiator is shown
in Fig. 8.
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Fig. 7. Design examples of proposed linear-phase FIR filters: (a)
Case 1, (b) Case 2.
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Fig. 8. A design example of the proposed narrowband lowpass FIR
differentiator with Case 1 design criteria.

The corresponding direct-form FIR differentiator has a min-
imum order of223, whereby the number of coefficients needed
is 112 when exploiting coefficient symmetry compared to our
design, which requires only22 coefficients in the practical
implementation.

VII. PRACTICAL IMPLEMENTATION ASPECTS

In the implementation structures in Figs. 10–13 there are
accumulators having a pole atz = 1 at the end of the struc-
tures. There are ways to avoid possible problems, which this
fact may create. The following property of two’s complement
arithmetic with a fixed-point representation is utilized: If there
are several values to be added and/or subtracted, overflows



x(n)

x1 (n) y1(n)

y(n)

x2(n)
H(z)

H(z)

y2(n)

Fig. 9. Practical implementation based on switching and resetting, where a
demultiplexer is used to decomposex(n) into two signalsx1(n) andx2(n).

are allowed if the final result is in the range[−1, 1 − 2−b]
( b is the number of fractional bits). First, before starting to
use the structures of Figs. 10–13, the state variables should
be reset. Secondly, pole-zero cancellation should be done in
the overall structure by quantizing the polynomial coefficients
before deriving the coefficients in the structures. Third, to
avoid overflows, worst-case scaling is required, i.e., the sum
of the absolute values of the impulse response has to be less
than or equal to unity. This implies calculating the sum of
the absolute values of the impulse response of the overall
filter and dividing the input signal or the coefficients by
this sum. Finally, the filter output should be multiplied by
this sum. There are no overflows in the structures provided
that after multiplication of the data samples no roundings
or truncations are performed [6]. The actual rounding or
truncation is performed after accumulators before multiplying
by the above-mentioned sum.

These structures suffer from the following drawbacks. First,
the word-length is double in the accumulators. Secondly, the
structure does not automatically recover from temporary data
errors in the accumulators. Such data corruption can be caused
by overflows, power surges, system start-up, and random errors
in general. These problems can be avoided by using a parallel
structure, where all the data registers are doubled, following
the principle proposed in [17]. If the overall filter order isN ,
the input sequence is split into sets ofN data samples so that
the first set, third set and so on are fed to the upper branch,
whereas the remaining sets are fed to the lower branch. The
performance of the overall system is guaranteed by resetting
the state variables in the upper (lower) branch at time instants
n = 2ρN −1 (n = (2ρ−1)N −1), whereρ is an integer. This
structure is shown in Fig. 9. In this case, rounding or truncation
is allowed after the multiplications by the filter coefficients.

VIII. C ONCLUSION

A straightforward approach to design linear-phase FIR fil-
ters with a piecewise-polynomial impulse response for all the
four types has been proposed. It is also shown by means of
design examples that the relative advantage of the resulting
filters in arithmetic complexity increases, the narrower the
transition band gets, compared to other narrowband FIR filter
designs. Examples have been given and comparisons have
been made to direct-form and IFIR filters in order to show
the benefits of the proposed FIR filter classes. Computation-
ally efficient recursive implementation structures were derived
for all four types of linear-phase piecewise-polynomial FIR
filters. Formulas for implementation coefficients based on
the optimized polynomial coefficients have been proposed.

Some practical implementation considerations, e.g. regarding
the practical implementation structure, overflows, and scaling,
have been given. The future work includes finding the formulas
to calculate the optimization parameters such as the filter
order, and how to choose the slicesNms. It is found that the
best polynomial degree to be chosen is three because with
higher polynomial degrees there may be more coefficients
in practical implementation, i.e., moreβ-coefficients. If the
polynomial degree is higher than four the complexity of the
practical implementation increases; the number of unknowns
may become too high to reduce the arithmetic complexity
in both optimization and implementation compared to IFIR
filters.
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Fig. 10. Implementation structure of Type1 filters.
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Abstract A method is presented to synthesize wideband linear-phase finite-impulse-
response (FIR) filters with a piecewise-polynomial-sinusoidal impulse response. The
method is based on merging the earlier synthesis scheme proposed by the authors
to design piecewise-polynomial filters with the method proposed by Chu and Bur-
rus. The method uses an arbitrary number of separately generated center coefficients
instead of only one or none as used in the method by Chu–Burrus. The desired im-
pulse response is created by using a parallel connection of several filter branches
and by adding an arbitrary number of center coefficients to form it. This method is
especially effective for designing Hilbert transformers by using Type 4 linear-phase
FIR filters, where only real-valued multipliers are needed in the implementation. The
arithmetic complexity is proportional to the number of branches, the common polyno-
mial order for each branch, and the number of separate center coefficients. For other
linear-phase FIR filter types the arithmetic complexity depends additionally on the
number of complex multipliers. Examples are given to illustrate the benefits of this
method compared to the frequency-response masking (FRM) technique with regard
to reducing the number of coefficients as well as arithmetic complexity.
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1 Introduction

Finite-impulse-response (FIR) filters have many favorable properties, e.g. they can be
designed with an exact linear phase, which means that no phase distortion is caused
in the signal during the filtering operation and both the output noise due to mul-
tiplication round-off errors and the sensitivity to variations in filter coefficients are
low. Therefore, FIR filters are often preferred over their infinite impulse response
(IIR) counterparts, even though their main drawback is a higher number of multipli-
ers needed in conventional implementations when a narrow transition bandwidth is
required [18]. An efficient approach to overcome the above-mentioned problem for
wideband filters is to synthesize linear-phase FIR filters so that their impulse response
is piecewise-polynomial-sinusoidal and the implementation is done using recursive
structures [4, 5].

This paper proposes a synthesis scheme for linear-phase wideband FIR filters with
a piecewise-polynomial-sinusoidal impulse response. This method is suitable for the
design and implementation of Hilbert transformers as well as wideband frequency-
selective filters due to the sinusoidal character of the approach. Hilbert transformers
are one of the very important special classes of FIR filters and they are used very
widely in many signal processing applications such as telecommunications, speech
processing, image processing, medical imaging, and medical signal processing, e.g.
biological time series [1–3, 6, 8, 17, 22, 24]. The synthesis scheme proposed in this
paper is partly based on the previous work done by the authors [9] to design linear-
phase FIR filters with a piecewise-polynomial impulse response and on merging it
with and modifying the method proposed by Chu and Burrus [4, 5] for the synthesis
scheme of wideband FIR filters. Chu and Burrus first designed what is called an
envelope filter with a piecewise-polynomial impulse response, for which the design
scheme of the authors [9] is very efficient. Secondly, the coefficient values of this
envelope filter are modified by multiplying them with a sinusoidal function depending
on the linear-phase FIR filter type and by adding at least one center coefficient, which
leads to a wideband FIR filter.

In the case of Type 1 lowpass wideband filters, the modification is carried out as
follows. A 2N th-order Type 3 envelope filter with a piecewise-polynomial impulse
response is created by using the scheme proposed by the authors in [9]. The resulting
impulse response is multiplied by a sinusoidal function sin[(n − N)ωc], where ωc is
roughly the angular frequency at which the zero-phase response of the overall filter
takes on the value of half. This leads to the 2N th-order Type 1 linear-phase filter. The
coefficient values of the envelope filters of a 2N th-order Type 4 Hilbert transformer
and a 2N − 1th-order Type 3 Hilbert transformer do not have to be modified. Type 3
and 4 Hilbert transformers have one very attractive relationship as follows. A Hilbert
transformer with an even order, i.e., 2N th-order Type 3, can be derived from an odd-
order Hilbert transformer, i.e., N th-order Type 4 Hilbert transformer, by adding one
zero-valued impulse response sample between each two impulse response samples of
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a Type 4 Hilbert transformer. This is equivalent to replacing each z−1 in the transfer
function of the odd-order Hilbert transformer by z−2. This results in a 2N th-order
Hilbert transformer, which has only N + 1 nonzero impulse response values instead
of 2N + 1. Thereby, a Type 3 Hilbert transformer derived as above is preferred for
the design.

Because of the importance of center coefficients in FIR filters, the approach pre-
sented in this paper uses an arbitrary number of separately generated center coeffi-
cients instead of only one or none as used by Chu and Burrus [4, 5]. The implemen-
tation structures proposed earlier by the authors can be used with a modification; in
fact, the implementation structure is modified to be complex for Type 1 and a con-
ventional FIR filter is added for all types in order to form the center of the impulse
response.

Other approaches have also been developed to reduce the arithmetic complex-
ity of wideband FIR filters, especially when a narrow transition bandwidth is re-
quired. One of the most efficient techniques is the one-stage or multistage frequency-
response masking (FRM) technique [10, 20]. This technique was originally intro-
duced by Lim [10] and utilized by Saramäki and Lim [20] by using the Remez
multiple-exchange algorithm. Several authors have been using this technique for fil-
ters requiring a very narrow transition bandwidth [7, 11–13, 15, 16, 19, 21, 24]. First,
one of the advantages of using the approach proposed in this paper to create Hilbert
transformers is that in the implementation there are only real-valued multipliers, es-
pecially for Type 3 FIR filters derived from Type 4 filters, and thereby the reduction
of arithmetic complexity is remarkable compared to the FRM technique. Second, lin-
ear programming is effectively used to optimize the unknown polynomial coefficients
and the additional center coefficients. Design examples for both conventional filters
and Hilbert transformers are included in order to show the benefits of the proposed
design approach and the resulting filters. In this paper only Type 1 lowpass filters and
Type 3 and 4 Hilbert transformers are discussed.

2 The Idea for a Piecewise-Polynomial Sinusoidal Approach

This section gives a reason for utilizing piecewise polynomials and combining them
with a sinusoidal function to create impulse responses. The idea in our earlier ap-
proach [9] was to divide the impulse response into subresponses and to generate each
subresponse with polynomials of a given degree. If we now consider an impulse re-
sponse of an optimum wideband linear-phase FIR filter, it is seen in Fig. 1(a) that the
impulse response has a narrow main lobe and the side lobes have very rapid changes
in sign. This means that using our earlier piecewise-polynomial impulse response
approach would require very many polynomial pieces to form the overall impulse
response. Therefore, we are motivated to use sinusoids so that the polynomial pieces
follow the polynomial-sinusoidal shapes to decrease the number of polynomial pieces
and, thereby, to reduce the number of coefficients. To illustrate how such a polyno-
mial piece can be generated, we consider an example of a filter with a polynomial
degree two. Later, in Sect. 8, that example will be considered in more detail.

Consider the seventh polynomial subresponse of that example as shown in
Fig. 2(a). Now, the subresponse is multiplied by a sinusoidal function, i.e.,
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Fig. 1 Typical (a) impulse response and (b) zero-phase frequency response for a wideband linear-phase
FIR filter. The filter has been optimized by using the Remez multiple-exchange algorithm and it has
the minimum order, N = 2558, to meet the specifications: Passband edge ωp = 0.4π , stopband edge
ωs = 0.402π , passband ripple δp = 0.01, stopband ripple δs = 0.001

sin(ωc(n − N)), where N is half of the order, and ωc is roughly the angular fre-
quency at which the zero-phase frequency response achieves the value of half, and
the seventh polynomial subresponse becomes a sinusoidal subresponse as shown in
Fig. 2(b). However, to form a Type 1 response, piecewise-polynomial responses have
to be created starting with a Type 3 response because of the antisymmetrical charac-
teristics of a sinusoidal function. This causes the center sample to be zero valued as
seen in Figs. 2 and 3. Therefore, one separately generated center coefficient is needed
at the center of symmetry to form a Type 1 response. Furthermore, because of the
very narrow and sharp main lobe it is beneficial to use several additional center coef-
ficients around the center of symmetry to make it easier to form the overall impulse
response and to reduce the overall complexity to meet the given criteria. All the nine
subresponses are shown in Fig. 3. We will see in Sect. 8 an example of a filter with
a polynomial degree two. The filter in our example has the same specifications as the
optimum linear-phase FIR filter in Fig. 1. Our example consists of subresponses of
different lengths; thereby, each block of the impulse response consists of a different
number of polynomials up to the center of symmetry, which are shown in Fig. 3. In
Fig. 3, only eight middle blocks of the impulse response are shown for clarity reasons:
e.g. the sixth block consists of six polynomials, the seventh block of seven polynomi-
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Fig. 2 (a) The seventh polynomial subimpulse response. (b) The seventh polynomial subresponse multi-
plied with a sinusoidal function to form a rapidly varying subimpulse response

als, and the (left) middle block of the impulse response consists of eight polynomials.
In the overall impulse response there are altogether 16 such blocks. It is worth men-
tioning that because of the inherent symmetries of the blocks, eight of these blocks
can be separately optimized and the remaining blocks are simultaneously created.

After summing up these subresponses in Fig. 3 and the separately generated center
coefficients in Fig. 4, the overall impulse response, shown in Fig. 5, is obtained. It
has the same general shape as the optimum linear-phase FIR filter in Fig. 1(a).

3 Startup Idea in the Chu–Burrus Approach

This section shows the original Chu–Burrus [4, 5] approach to synthesize wideband
linear-phase filters for Types 1, 3 and 4 based on the use of piecewise-polynomial-
sinusoidal impulse responses. The original approach is briefly reviewed for the causal
case unlike in the Chu-Burrus approach.
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Fig. 3 This example includes altogether eight subimpulse responses. All the subimpulse responses have a
zero-valued coefficient at the center of symmetry. The vertical lines mark the block edges and the numbers
at the bottom mark block numbers. The sixth block consists of six polynomials, the seventh block of seven,
and the eight (left) block (middle) of eight polynomials

Fig. 4 Separate center coefficients, altogether 21, symmetrically located around the mid coefficient

This idea arises from the windowing technique for linear-phase FIR filters. The
technique was used by Chu and Burrus [4, 5] to find a way to synthesize linear-phase
FIR filters with piecewise-polynomial-sinusoidal impulse responses. Consider FIR
filters of order 2N for a Type 1 lowpass filter and a Type 3 Hilbert transformer, as
well as filters of order 2N −1 for a Type 4 Hilbert transformer. The impulse response
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Fig. 5 Overall impulse response

by the basic windowing technique becomes

h(n) = w(n)h0(n), (1)

where w(n) is a window function and h0(n), for Type 1, is given by

h0(n) =
{

sin(ωc(n−N))
(n−N)π

for n = 0,1, . . . ,N − 1,N + 1, . . . ,2N ,
ωc/π for n = N ,

(2a)

where ωc is the cutoff frequency, and for Type 3,

h0(n) =
{

0 for n − N even,
1−cos((n−N)π)

(n−N)π
for n − N odd, (2b)

with nonzero values for 0 ≤ n ≤ 2N . An odd-order impulse response of Type 4 can
be expressed as

h0(n) = 1

(n − (2N − 1)/2)π
. (2c)

h0(n) is an impulse response for the cases in (2a)–(2c).
The resulting transfer functions can be expressed in the following way:

F(z) =

⎧⎪⎪⎨
⎪⎪⎩

∑2N
n=0(W(n) sin[ωc(n − N)]z−n) + ωc

π
z−N, Type 1,∑2N

n=0 W(n)[1 − cos((n − N)π)]z−n, Type 3,∑2N−1
n=0 W(n)z−n, Type 4,

(3)



32 Circuits Syst Signal Process (2010) 29: 25–50

with

W(n) =
{

w(n − N)/[π(n − N)], Type 1,
w(n − N)/[π(n − N)], Type 3,
w[n − (2N − 1)/2]/[π(n − (2N − 1)/2)], Type 4,

(4)

where, for Types 3 and 1, W(n) is an impulse response satisfying W(2N − n) =
−W(n) for n = 0,1, . . . ,N − 1, W(N) = 0, and for Type 4, it satisfies W(2N −
1 − n) = −W(n) for n = 0,1, . . . ,N . It should be emphasized that for Type 1 filters
the overall response becomes symmetrical after multiplying the antisymmetric im-
pulse response with an antisymmetrical sinusoidal function according to (3). Next,
we show how to implement F(z) for Type 1 lowpass filters and for Type 3 and 4
Hilbert transformers.

3.1 Implementation of Type 1 Filters

Start by generating a Type 3 envelope transfer function

E(z) =
2N∑
n=0

W(n)z−n (5)

using our earlier approach for a piecewise-polynomial impulse response [9]. Create
a transfer function F(z) − (ωc/π)z−N as follows:

Step 1 Replace z−1 by z−1ejωc in E(z) given in (5) giving the transfer function

F̃ (z) =
2N∑
n=0

W(n)
(
z−1ejωc

)n
. (6)

Step 2 Multiply F̃ (z) by e−jNωc resulting in

F̂ (z) = e−jNωc

2N∑
n=0

W(n)
(
z−1ejωc

)n
. (7)

Step 3 To obtain the output, take the imaginary part of the complex-valued output of
F̂ (z) as seen later in Fig. 7.

Step 4 Add an additional branch F1(z) = zN̂ Ĥ (z), where Ĥ (z) contains at least one
term of the form: (ωc/π). See Fig. 4 for an example. The overall filter struc-
ture is also seen later in Fig. 7.

3.2 Implementation of Type 4 Filters

Start now by generating a Type 4 envelope transfer function

E(z) =
2N−1∑
n=0

W(n)z−n (8)

using our earlier approach for a piecewise-polynomial impulse response [9] modified
by adding separately generated center coefficients.
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3.3 Implementation of Type 3 Filters

Start by generating a Type 3 envelope as E(z) = ∑2N
n=0 f (n)z−n, where

f (n) =
{

W(n) for n − N odd,
0 for n − N even,

thereby N should be odd in order to prevent both W(0) and W(2N) from becoming
zero valued, and F(z) becomes

F(z) =
2N∑
n=0

W(2n)z−2n. (9)

This means that if we first assume that the transfer function E(z) of Type 4 in (8) is
known, then the transfer function F(z) of Type 3 in (9) can be uniquely determined
from the Type 4 transfer function E(z) by replacing z−1 with z−2. Thereby, the order
of the resulting Type 3 transfer function F(z) becomes 2(2N − 1) instead of 2N and
W(2n) ≡ W(n).

If the above is expressed conversely, i.e., if the transfer function F(z) of Type 3
given in (9) is known, then the transfer function E(z) of Type 4 in (8) is obtained
uniquely from F(z) by replacing z−2 with z−1. Thereby, the order of the resulting
transfer function E(z) becomes N/2 and the envelope becomes W(2n).

From this it follows that only Type 4 is needed. Type 4 can also be considered a
special case of Type 3 filter according to (3), from which it can be seen that the cosine
term, cos((n − N)π), is absent and only W(n) × 1 is present in Type 4 compared to
Type 3.

4 Proposed Linear-Phase Filter Classes for Wideband FIR Filters

First, the overall transfer function, denoted by H(z), is constructed as described in
our earlier method [9], i.e., M parallel branches are connected and delayed with z−Nm

in order to keep the center of symmetry at the same location for all the subimpulse
responses. Second, the subresponses are modulated with a sinusoidal function as de-
scribed in the previous subsection. Third, an arbitrary number of separately generated
center coefficients is added as follows:

H(z) =
M∑

m=1

z−NmHm(z) + z−N̂ Ĥ (z), (10)

and the transfer functions Hm(z), for Types 1 and 4, are given as

Hm(z) =
{

hm(N − Nm)z−(N−Nm) + ∑(N−Nm)−1
n=0 hm(n)[z−n + z−(2(N−Nm)−n)],∑(N−Nm)−1

n=0 hm(n)[z−n − z−(2(N−Nm)−1−n)],
(11)
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respectively, where the integers Nm in the delay terms z−Nm satisfy

N1 = 0 and Nm+1 > Nm for m = 1,2, . . . ,M − 1, (12)

and the order of Hm(z) is 2(N − Nm) for Type 1 and [2(N − Nm) − 1] for Type 4.
The impulse response of Hm(z) is given by

hm(n) =
{∑L

r=0 a
(L)
m (r)nr × sin[ωc(n − (N − Nm))], Type 1,∑L

r=0 a
(L)
m (r)nr , Type 4,

(13)

where
∑L

r=0 a
(L)
m (r)nr is an Lth degree polynomial. In addition, z−N̂ Ĥ (z) is a con-

ventional direct-form transfer function with nonzero impulse response coefficients
ĥ(n) with

n = N − c + 1,N − c + 2, . . . ,N − c + T Types 1 and 4, (14)

where c = �(T /2)� and T is the number of additional coefficients at the center of the
filter. � � means rounding upwards. The order of z−N̂ Ĥ (z) is N̂ + T − 1.

The delay terms in (10) are used to shift the center of symmetry to the desired
location. The center of each subimpulse response occurs at n = N for Type 1 and
n = (2N − 1)/2 for Type 4. Type 4 coincides with a (2N − 1)th-order piecewise-
polynomial impulse response approach [9] as seen in (3) and (13) except for the
separately generated center coefficients.

In order to indicate that the overall filter has a piecewise-polynomial-sinusoidal
impulse response, the interval n ∈ [0,N] is divided into the following M subintervals:

Xm = [Nm,Nm+1 − 1] for m = 1,2, . . . ,M − 1 (15)

and

XM = [NM,N]. (16)

The following facts should be pointed out. First, X1 = [0,N2 − 1] because N1 = 0.
Second, the overall impulse response only needs to be examined up to n = N and
n = N − 1 due to the even or odd symmetry around this point.

The impulse response on Xm, for Type 1 and 4, can be expressed as

h(n) =
M∑

m=1

h̃m(n), (17)

where h̃m(n) = ∑m
k=1 hk(n − Nm), for m = 1,2, . . . ,M − 1 and h̃M(n) =∑M

k=1 hk(n − NM) + ĥ(n), where hk(n) is given in (13), and ĥ(n) is the impulse re-
sponse of a conventional direct-form Type 1 or 4 transfer function Ĥ (z) with nonzero
coefficients for n = 0,1, . . . , T − 1.

Based on the above equations, in each Xm for m = 1,2, . . . ,M , a separate
polynomial-sinusoidal impulse response can be generated. In addition, in the XM ,
there are additional center coefficients, which are of great importance for fine-tuning
the overall filter to meet the given criteria.
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Given the filter criteria as well as the design parameters ωc, M , N , L, Nm’s, and
the number of center coefficients included in Ĥ (z), the overall problem is solvable
by using linear programming, instead of ad hoc nonlinear programming as used in
the original Chu–Burrus approach.

5 Filter Optimization Algorithm

FIR filter optimization using linear programming can be stated as a problem of mini-
mizing

ε = max
ω∈[0,ωp]∪[ωs,π]

∣∣W(ω)
[
H(ω) − D(ω)

]∣∣, (18)

where W(ω) is a weight function and D(ω) is the desired zero-phase frequency re-
sponse. In the above optimization problem, ωp, and ωs are the passband and stopband
edge angles, respectively. The most crucial feature for the filters under consideration
is that the zero-phase frequency response, H(ω) [18], is linear with respect to the
unknown polynomial coefficients. This fact makes it possible to solve the Optimiza-
tion Problem (stated later) by using linear programming. First, a linear programming
problem can be expressed as follows:

min fTx

subject to Ax ≤ bT.
(19)

Now our optimization problem is turned into this linear programming problem:

A =
(

H(ω) −1/W(ω)

−H(ω) −1/W(ω)

)
, b = [

D(ω) − D(ω)
]
, (20)

and x is a vector with (M × (L + 1)) + 1 unknowns to be solved, including ε in (18).
fT is a vector of parameters of the cost function. T in fT means the transpose. This
vector describes the variable according to which the optimization is performed. In
this case it is ε and it corresponds to the overall ripple value, and the vector is defined
as

fT = [0 0 . . . 0 1]. (21)

The above formulation in (20)–(21) is valid for SeDuMi and MATLAB™’s linprog-
routine [14] without including the transition band in the optimization. A more de-
tailed description of a linear programming problem solved by SeDuMi is found in the
Appendix.

In the practical optimization problem the zero-phase frequency response is in the
following form:

H(ω) =
M∑

m=1

L∑
r=0

H(ω,m, r) +
c−1∑
m=0

H1(ω,m), (22)
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where

H(ω,m, r) =

⎧⎪⎪⎨
⎪⎪⎩

a
(L)
m (r)(Ñm)r sin(ωcÑm)

+ ∑Ñm

n=1 a
(L)
m (r)(Ñm − n)r sin(ωc(Ñm − n))2 cos(nω),∑Ñm−1

n=1 a
(L)
m (r)(Ñm − 1 − n)r2 sin((n − 0.5)ω),

(23)

and for Type 1

H1(ω,m) =
{

a
(L)
m+1(N)1 for m = 0,

a
(L)
m+1(N − (m + 1))2 cos((m + 1)ω), otherwise,

(24)

where 1 is an all-ones vector with the same length as ω. For Type 4

H1(ω,m) = a
(L)
m+1

(
(2N − 1)/2 − (m + 1)

)
2 sin

(
(m + 1) − 0.5

)
ω

)
. (25)

Additionally, Ñm = N − Nm, and a
(L)
m (r)s in (10) are the unknown polynomial coef-

ficients and a
(L)
m+1s in (11) are the additional center coefficients to be optimized. The

main concern, for the optimization problem, is the parameters, i.e., how to choose
them so that after applying linear programming, the polynomial coefficients, which
make the weighted error function equal to or less than unity, can be found as defined
by (23)–(30). The following parameters should be chosen: the number of slices M ,
the filter order and the common polynomial degree L in each slice and the values
Nm, for the mth slice for m = 1,2, . . . ,M , so that the arithmetic complexity is mini-
mized. No straightforward way to find a unique optimum combination of parameters
has been found. Some advice on how to choose the overall filter order can be found in
the fact that the filter order is slightly greater than the minimum order of a direct-form
FIR filter with the same design criteria. For the cases in Sect. 8 it has been found that
the length of the shortest slice should be approximately 7–35 samples for the best
solution of the lowpass case, when the symmetry condition is exploited. The number
of center taps should be approximately half of the length of the shortest slice for the
linear-phase types proposed in this paper. These guidelines are, of course, dependent
on the design criteria.

Optimization Problem

1. We are given ωp, ωs, δp and δs, and ωc ≈ (ωp + ωs)/2 for Type 1.
2. Choose the overall filter order and the number of slices M , the common poly-

nomial degree L in each slice and the values Nm, for the mth slice for m =
1,2, . . . ,M .

3. Form the polynomials for each slice.
4. Form the following weighted error function:

E(ω) = ∣∣W(ω)
∣∣∣∣H(ω) − D(ω)

∣∣, (26)

with respect to the unknown coefficients a
(m)
L s. Here,

D(ω) =
{

1 for ω ∈ [0, ωp],
0 for ω ∈ [ωs, π], (27)
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for Type 1, and for a Hilbert transformer

D(ω) = 1 for ω ∈ [ωp, π], Type 4, (28)

and for Type 1

W(ω) =
{

1/δp for ω ∈ [0, ωp],
1/δs for ω ∈ [ωs, π]. (29)

For Type 4, i.e., a Hilbert transformer,

W(ω) = 1 for ω ∈ [ωp, π]. (30)

5. Solve the unknown polynomial coefficients a
(m)
L , given in (23), with a linear pro-

gramming algorithm.
6. If the polynomial coefficients a

(m)
L make the quantity in (18) equal to or less than

unity, the design criteria are automatically met and the filter is successfully de-
signed; otherwise continue from step 2.

One issue is worth noting, namely the fact that in case of numerical problems, the
polynomial values should be scaled to be between zero and one in the optimization. It
has been noticed that if the polynomial values are very high, this can cause numerical
problems in optimization.

6 Implementation Structures

This section shows how to generate an arbitrary piecewise-polynomial-sinusoidal im-
pulse response for linear-phase FIR filter Types 1 and 4. The approach is based on our
earlier structures for a piecewise-polynomial impulse response [9]. Therefore, only
a summary of the structures is given. There are two modifications to be made. First,
additional center coefficients are added as a parallel connection of a direct-form FIR
filter. Second, complex multipliers are added after each delay term as explained in
Sect. 3.1. However, a Type 4 filter does not require any complex multipliers, there-
fore only one direct-form filter is added in this case.

The main idea in [9] was to reduce the order and the length of the polynomials by
one with the aid of an accumulator at every step until the polynomial order of zero is
reached. All the types have their own implementation structures. In order to achieve
the desired goal, first an implementation block is shown for a single branch. Based
on this structure, an overall implementation structure is generated.

Based on the design technique proposed in Sect. 4, the linear-phase FIR filter
transfer functions for Types 1 and 4 are of the form

H(z) ≡ H(0)(z) =
{

h(0)(N)z−N + ∑N−1
n=0 h(0)(n)[z−n + z−(2N−n)],∑N−1

n=0 h(0)(n)[z−n − z−(2N−1−n)], (31)

where

h(0)(n) = p(L)(n) =
{

sin(ωc(n − N))
∑L

r=0 a(L)(r)nr ,∑L
r=0 a(L)(r)nr ,

(32)
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respectively, for 0 ≤ n ≤ N̂0, with

N̂0 =
{

N for Type 1,
N − 1 for Type 4.

(33)

There exist L + 1 unknowns in the above transfer functions. For Types 1 and 4,
the impulse responses satisfy h(0)(2N − n) = h(0)(n) for n = 0,1, . . . ,2N ; and
h(0)(2N − 1 − n) = −h(0)(n) for n = 0,1, . . . ,2N − 1; respectively. For Type 1
(Type 4), the impulse response is symmetrical (antisymmetrical). Furthermore, for
Type 1 (Type 4), the filter order is 2N (2N − 1). In order to implement the overall
transfer function H(z) efficiently by using accumulators for Types 1 and 4, starting
with (32), the following functions are determined recursively for k = 1,2, . . . ,L for
Types 1 and 4:

p(L−k)(n) = p(L−k+1)(n + 1) − p(L−k+1)(n)

=
{

sin(ωc(n − N))
∑L−k

r=0 a(L−k)(r)nr ,∑L−k
r=0 a(L−k)(r)nr ,

(34)

respectively, where

a(L−k)(r) =
L−k−r∑

s=0

(
L − k + 1 − s

r

)
a(L−k+1)(L − k + 1 − s), (35)

i.e., two (L − k + 1)th-degree polynomials, p(L−k+1)(n + 1) and p(L−k+1)(n), are
subtracted from each other to form a polynomial of a lower degree, (L − k). This is
continued until the polynomial of order zero is reached. The sinusoidal terms in (34)
are taken as complex multipliers in the structure according to Sect. 3.1 for Type 1
lowpass filters. This means also that sinusoidal terms are not included in the calcula-
tion of the implementation coefficients. At the end of the section, a simple example
of how to calculate the implementation coefficients for a Type 4 FIR filter will be
given.

The overall structure for a piecewise-polynomial-sinusoidal Type 1 filter is ob-
tained from the structure of the piecewise-polynomial impulse response Type 3 filters,
proposed in [9] and shown in Fig. 6, as described in Sect. 3.1. The overall structure
for a piecewise-polynomial-sinusoidal impulse response of a Type 1 filter is shown in
Fig. 7. The overall structure in Fig. 7 is the combination of M basic implementation
blocks, one for each subresponse, shown in Fig. 8. The implementation structure for
Type 1 consists of L + 1 levels.

The structure coefficients, the αk’s and βk’s, are given for Types 1 and 4. Here, the
αk’s, for k = 1,2, . . . ,L, are related to the corresponding functions, p(L−1+k)(n)s, as
given by (32), (34) and (35) (without sinusoidal terms) through

αk = p(L+1−k)(0), k = 1,2, . . . ,L, for both types. (36)

Table 1 shows values of the α’s for different polynomial degrees, L. Non-zero values
of the βk’s for Types 1 and 4 are given by

β2k−1 = −p(L−2(k−1))(N − k), k = 1,2, . . . ,
⌊
(L + 1)/2

⌋
, (37a)
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Fig. 8 Basic implementation block of Type 1 filters
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Table 1 Values of αk for different polynomial degrees L

L k αk L k αk

2 1 α1 = a(2)(0) 4 1 α1 = a(4)(0)

2 α2 = a(2)(1) + a(2)(2) 2 α2 = a(4)(4) + a(4)(3) + a(4)(2) + a(4)(1)

3 α3 = 2a2(2) 3 α3 = 14a(4)(4) + 6a(4)(3) + 2a(4)(2)

3 1 α1 = a(3)(0) 4 α4 = 36a(4)(4) + 6a(4)(3)

2 α2 = a(3)(3) + a(3)(2) + a(3)(1) 5 α5 = 24a(4)(4)

3 α3 = 6a(3)(3) + 2a(3)(2)

4 α4 = 6a(3)(3)

and

β2k−1 = −p(L−2(k−1))(N − k) − p(L−2(k−1))
(
(N − k) − 1

)
, (37b)

where k = 1,2, . . . , 	(L + 1)/2
, respectively.
Here, for odd L, for Types 1 and 4, βL+1 is given as

βL+1 = −p(0)(0) and βL+1 = −2p(0)(0),

respectively.
The overall structure of M blocks with complex multipliers for Type 1 shown

in Fig. 7 has delay terms as follows: Tm = Nm − Nm−1 for m = 2,3, . . . ,M − 1,
TM = N − NM . The role of the Tm’s is to keep the center of the symmetry of the
subresponses at the center of the overall filter.

To generate the corresponding coefficients αk and β2k in the overall implementa-
tion, the impulse response given by (13) is used. The resulting αk and β2k are denoted
by α

(m)
k and β

(m)
2k . Furthermore, the β2k’s are the sums of the corresponding β

(m)
2k ’s.

In order to keep the overall diagram simple, the coefficients α
(m)
k have been drawn

twice. In the practical implementation, the overall number of multipliers can be re-
duced by first adding [subtracting] the inputs of the left-hand side α

(m)
k and the right-

hand side α
(m)
k [−α

(m)
k ] and by then multiplying the result by α

(m)
k . Similarly, the

overall implementation structure of M subresponses for a Type 4 filter is gener-
ated and is shown in Fig. 9, where Tm = Nm − Nm−1 for m = 2,3, . . . ,M − 1 and
TM = N −NM . As a simple example to illustrate the derivation of the implementation
coefficients, consider the Hilbert transformer of Type 4 with the following specifica-
tions: Ωp = [0.05π,π] and the passband ripple is δp = 0.01. The criteria are met by
the filter of order 240, L = 2, M = 4, T = 16, N1 = 0, N2 = 60, N3 = 90, N4 = 105
and the ripple value obtained is 0.00969. The optimized coefficient values are shown
in Table 2 and the implementation coefficients, α

(m)
k and β2k−1, in Table 3.

7 Hilbert Transformers

This section shows an application example for proposed Type 3 and 4 filters, namely
Hilbert transformers. This example shows the properties and efficiency of filter



44 Circuits Syst Signal Process (2010) 29: 25–50

Table 2 Filter coefficients for the simple example of a Hilbert transformer

Slice m Optimized

coeff. a
(L)
m (r)s

Coeff. values Separate center coeff.,
number k up to the
center of symmetry

Values of the
separate center coeff.

1 a
(2)
1 (0) 0.000754961341879 1 0.623486118162552

1 a
(2)
1 (1) −0.00000936333201 2 0.15159716143810

1 a
(2)
1 (2) 0.000000928224555 3 0.070292990072642

2 a
(2)
2 (0) −0.000346931193292 4 0.038394617046029

2 a
(2)
2 (1) 0.000044411113383 5 0.021983178252685

2 a
(2)
2 (2) −0.000000230226545 6 0.012559931133717

3 a
(2)
3 (0) 0.001784142790681 7 0.00659804763397

3 a
(2)
3 (1) −0.000262106510178 8 0.005576993714508

3 a
(2)
3 (2) 0.000042287618263

4 a
(2)
4 (0) −0.00108272206937

4 a
(2)
4 (1) −0.00010526842470

4 a
(2)
4 (2) 0.00005780591838

Table 3 Implementation coefficients of block m for the simple example of a Hilbert transformer

α
(m)
k

β
(m)
2k−1

α
(m)
1 = a

(2)
m (0) β

(m)
1 = −2α

(m)
1 − (2(N − Nm) − 1)α

(m)
2 − (N − Nm)2α

(m)
3 − 2a

(2)
m (0)

α
(m)
2 = a

(2)
m (1) + a

(2)
m (2) + (−2a

(2)
m (1) + 2a

(2)
m (2))(N − Nm) + a

(2)
m (1) − a

(2)
m (2)

α
(m)
3 = 2a

(2)
m (2) − 2a

(2)
m (2)(N − Nm)2

β
(m)
3 = −2α

(m)
3

classes over the FRM-based Hilbert transformers proposed in [13]. For comparison
purposes, a Hilbert transformer is designed for the same application as in [13], i.e.,
an acoustic feedback system.

In these systems problems are encountered due to the oscillations caused by the
feedback. If elements in the system are not overdriven, it is linear, which makes linear
filters very suitable to remove these harmful oscillations. In order to attenuate these
oscillations, a frequency shifter is added in the system. The frequency shifter shifts
the frequency by some amount in the range of 0 to 5 Hz. For most people a shift
of 2 Hz is sufficient because our ears are not able to notice it. Thereby, a shifter
requires a very sharp Hilbert transformer to shift low frequencies properly. Such a
Hilbert transformer has the following specifications: sampling rate of 32 kHz, lower
passband edge of 20 Hz and peak ripple magnitude of 0.0001 (as given in [13]).

The required Hilbert transformer has a transition band of the same width at the low
and the high frequency areas. In general, Hilbert transformers are very well suited to
be designed with the proposed Type 3 and 4 filters. The passband for Hilbert trans-
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Fig. 10 An acoustic feedback
system

formers is very wide with a somewhat narrow transition band. Some applications,
like an acoustic feedback system [13], require an extremely narrow transition band
for Hilbert transformers. These systems are used e.g. to amplify voice. In such sys-
tems there appears acoustic noise between the speaker and the system. Often this
acoustic noise is modeled with one acoustic feedback, as shown in Fig. 10.

First a Hilbert transformer which only has one transition band at low frequencies
is designed, and then by substituting every delay element, z−1, with z−2, the desired
Hilbert transformer is obtained. This means that the transition band is shrinking by a
factor of 2. There is, however, one difference between our design and the design of
Lim et al. [13]: they use normalized frequencies where 0.5 corresponds to π in the
case of the angular frequency ω. Thereby, our specification for a Type 4 filter is as
follows: the passband Ωp = [0.0025π,π] and the passband ripple value less than or
equal to 10−4.

For the proposed approach, the criteria are met by a filter of order 2041, M =
6, L = 4, T = 30, N1 = 0, N2 = 430, N3 = 725, N4 = 880, N5 = 955, and N6 =
990. The overall ripple value obtained is 9.8681e−05. This filter thus consists of
six slices with the polynomial degree L = 4 in each slice. In this case, the number
of unknowns required both in the optimization and in the implementation is only 45.
The number of multipliers is 48 in a practical implementation. The magnitude and the
impulse response for the optimized filter are shown in Fig. 11. After replacing z−1 by
z−2, the corresponding FRM-based Hilbert transformer designed in [13] requires 213
multipliers when exploiting the coefficient symmetry, and the effective filter order
is 4106 compared to our design, which only requires 48 multipliers in a practical
implementation, and a slightly lower filter order, 4082. The final design of the Type 3
filter is shown in Fig. 12.

8 A Lowpass Design

This section shows the benefits and the efficiency of the proposed filter classes for
Type 1 FIR filters, over the FRM-based filters, by means of an example.

The passband and the stopband edges, for the lowpass design, are ωp = 0.4π ,
ωs = 0.402π with δp = 0.01, and δs = 0.001 (60 dB attenuation). The given criteria
are met by a filter of order 3058, M = 8, L = 2, the number of separate center coef-
ficients T = 21, N1 = 0, N2 = 343, N3 = 806, N4 = 1170, N5 = 1352, N6 = 1447,
N7 = 1482, N8 = 1507. This filter thus consists of eight slices with the polynomial
degree L = 2 in each slice. In the optimization of the filter, different values of ωc were
used, i.e., ωc = 0.4010, ωc = 0.4008 and ωc = 0.4009. In this case the best design
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Fig. 11 A design example of
proposed linear-phase FIR
filters: Optimized Hilbert
transformer of Type 4

Table 4 Filter parameters of the lowpass design

Polynomial
degree L

Number of
slices M

Number of sep.
center coeff. T

Number of
multipl.

Filter order Nms

2 8 21 37 + 41 3058 0, 343, 806,

1170, 1352, 1447,

1482, 1507

Table 5 Filter parameters of
reference designs Filter Filter Order Number of Multipliers

Direct-form FIR 2541 1271

FRM (three-stage design) 3196 94

FRM (two-stage design) 2920 107

FRM (one-stage design) 2690 168
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Fig. 12 A design example of proposed linear-phase FIR filters: The Hilbert transformer of Type 3 obtained
after replacing z−1 by z−2 in Type 4

result obtained was with ωc = 0.4009. In this case, the number of unknowns required
in the optimization is only 35. The number of multipliers is 37 + 41 = 78 in a practi-
cal implementation. The magnitude and the impulse response for the optimized filter
are shown in Fig. 13. This design result is summarized in Table 4. Table 5 shows the
design results for the corresponding FRM-based FIR filters and the direct-form FIR
filter. The corresponding three-stage FRM-based FIR filters [20] require 94 multipli-
ers, and the overall filter order is 3196 compared to our design, which requires 78
multipliers in a practical implementation, and a slightly lower filter order, 3058.
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Fig. 13 A design example of a proposed lowpass linear-phase FIR filter

9 Conclusion

A straightforward approach to synthesize linear-phase FIR filters with a piecewise-
polynomial-sinusoidal impulse response for Types 1, 3 and 4 has been proposed.
Examples have been given and comparisons made to direct-form and FRM filters
in order to show the benefits of the proposed FIR filter classes. Computationally
efficient recursive implementation structures were shown for Types 1 and 4. It has
also been shown that only the real-valued multipliers are sufficient for Type 3 and
Type 4 implementation structures. Thereby, this approach is more efficient for Hilbert
transformers than for frequency-selective filters. The method is especially suitable to
design Type 4 Hilbert transformers and Type 3 Hilbert transformers with equal width
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for the transition bands. Future work includes finding the formulas to calculate the
optimization parameters such as the filter order, and how to choose the length of
the slices, i.e., the Nm’s. It is found that the best polynomial degree to be chosen is
two for frequency-selective filters because with higher polynomial degrees there are
more complex coefficients in practical implementation and, thereby, the number of
multipliers is too high to reduce the arithmetic complexity compared to the filters
designed using the FRM technique.

Appendix: Linear Programming Problem Formulation Used by SeDumi

A brief formulation of the linear programming problem solved by the SeDuMi algo-
rithm is given. The SeDuMi algorithm solves the following primal-dual optimization
problem:

min fTx max bTy
subject to Ax = b, subject to ATy = c,
x ∈ K, s ∈ K∗,

(38)

where A ∈ Rm×n, x, s, c ∈ Rn, y,b ∈ Rm, K is a cone and K∗ is its dual cone [23].
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R. Lehto, T. Saramäki, O. Vainio and Sanjit K. Mitra, Synthesis of nar-
rowband differentiators with a piecewise-polynomial impulse response with
parallel-branch structures,Proc. of the 6th Int. Symp. on Image and Sig-

nal Processing and Analysis, Salzburg, Austria, September 16-18, submitted
2009.



Synthesis of Narrowband Differentiators with a Piecewise-Polynomial Impulse
Response with Parallel-Branch Structures

Raija Lehto and Tapio Saramäki
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Abstract

A synthesis method is proposed for linear-phase nar-
rowband FIR differentiators. This method is based on
two computationally efficient recursive structures to synthe-
size linear-phase narrowband FIR filters with a piecewise-
polynomial impulse response proposed by Saramäki and
Mitra. The efficiency of these structures is based on im-
plementing the overall transfer function as a parallel con-
nection of a few branches of the formGl(z

L)Fl(z), where
eachFl(z) requires no real multipliers. SuchFl(z)s by
thorough derivation for both structures were proposed by
Lehto, Saram̈aki and Vainio. This paper proposes the syn-
thesis method of linear-phase narrowband FIR filters with
an antisymmetrical piecewise-polynomial impulse response
for differentiators. The arithmetic complexity of the pro-
posed method is based on the number of branches and the
polynomial degree. An example is included, illustrating the
benefits of the proposed filters, in terms of a reduced num-
ber of unknowns in the optimization and implementation.

1. Introduction

Conventionally, differentiators are very useful in deter-
mining and estimating the time derivative of a given sig-
nal giving the rate of change or the slope of the signal. Fi-
nite impulse-response (FIR) differentiators find applications
in fields like image processing, biomedical signal process-
ing, communication and tachometry, i.e., in velocity esti-
mation, which is used in radar and in instrumentation [6].
For example, in radar and sonar the velocity and accelera-
tion are computed from position measurements using differ-
entiators, in image processing differentiators are very use-

ful to detect edges [12] and in biomedical signal process-
ing, differentiation is used in motion analysis, in ventricular
pressure measurements [24] and in the estimation of heat-
ing rates from temperature. Earlier, different methods have
been used to develop fullband differentiators based on Tay-
lor series, quadratic programming, the eigenfilter method
etc. [6–8, 12, 13, 23, 25]. Unfortunately, fullband differen-
tiators greatly amplify high frequency noise, which leads to
a low signal-to-noise ratio. Narrowband differentiators sup-
press high frequency noise and have a better signal-to-noise
ratio. Some of these designs are optimized for frequencies
aroundω = π/2 [1, 9, 17, 21]. In many practical appli-
cations such as Doppler radar or sonar, however, accurate
measurement of differentiated signals at lower frequencies
becomes necessary.

Recursive implementation structures for FIR filters and
the corresponding design techniques have been proposed by
several authors [2–5, 16, 20, 25]. Saramäki and Vainio [20]
have introduced an efficient recursive structure to generate
arbitrary polynomial responses. Saramäki and Mitra [18]
have presented a straightforward approach for two struc-
tures to implement narrowband linear-phase FIR filters with
a symmetrical piecewise polynomial impulse response, and
one of the structures is based on the Saramäki-Vainio filter
structure. The other one is based on the structure proposed
in [19]. The transfer function of the Saramäki and Mitra ap-
proach [18] is the parallel connection of a few branches of
the formGl(z

L)Fl(z), where the coefficients of eachFl(z)
can be implemented by using integer-valued coefficients as
proposed by Lehto et al. [10]

In this paper, very narrowband FIR differentiator de-
signs for high stopband attenuations are proposed by ex-
ploiting recursive implementation structures with parallel
branches proposed by Saramäki and Mitra [18]. The syn-
thesis method is modified to suit differentiators. The arith-
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Figure 1. Typical (a) impulse response and (b) zero-phase frequency response for a narrowband linear-phase FIR
differentiator. The filter has been optimized by using the Remez multiple exchange algorithm and it has the minimum
order,N = 223, to meet the specifications: the passband edgeωp = 0.025π, the stopband edgeωs = 0.05π, the
passband rippleδp = 0.01 and the stopband rippleδs = 0.001.

metic complexity of the proposed differentiators depends on
the number of parallel branches and the polynomial degree.

2 The Problem Formulation

The ideal differentiator has a frequency response of the
form:

D(ejω) = jω, |ω| ≤ π (1)

and the lowpass differentiator has a frequency response of
the form:

D(ejω) =

{
jω, |ω| ≤ ωc

0, ωc ≤ |ω| ≤ π,
(2)

where theωc is the cutoff frequency.
The ideal transfer function is of infinite length and non-

causal. Therefore, the design problem is to approximate
the frequency response by optimizing the desired crite-
ria. The proposed structures in [25] are extremely efficient
multiplication-free structures that are based on the use of
the first-degree anti-symmetrical polynomials. If the lower
sampling rate is desired and acceptable, then they also allow
decimation to reduce the computational work load to gen-
erate the desired output samples. In this paper the differen-
tiator designs are shown by exploiting the Saramäki-Mitra
approach for piecewise polynomial linear-phase FIR filters
with antisymmetrical impulse responses.

The structures proposed in [24] are extremely efficient
tailored multiplication-free structures that are based onthe
use of the first-degree anti-symmetrical polynomials and, if
a lower output sampling rate is desirable and acceptable,
then they even allow decimation to reduce the computa-
tional workload to generate the desired output samples.

3 Proposed Approach for Differentiators

In this section, a new approach to synthesize differentia-
tors is given based on the approach proposed by Saramäki
and Mitra [18] by modifying it for antisymmetrical impulse
responses. The Saramäki-Mitra approach for symmetrical
impulse responses is based on the observations of direct-
form narrowband linear-phase filters [18] and the same ob-
servations can be made for direct-form linear-phase differ-
entiators (see Fig. 1) as follows:

• The impulse response is very smooth, which means
that there is a strong correlation between successive
impulse response values.

• The impulse response can be effectively approximated
by a piecewise-polynomial response.

Let the transfer function of the optimized narrow-band
FIR filter be of the form:

Hopt(z) =

N∑

n=0

hopt(n)z−n, (3)

with anti-symmetrical impulse responseshopt(N − n) =
−hopt(n) for n = 0, 1, 2, . . . , N . The example in Fig. 1
suggests that the impulse responsehopt(n) can be approxi-
mated by an impulse responseh(n) with N = ML − 1,
where bothM and L are integers, so that it satisfies the
following three properties for anti-symmetrical impulse
responses:
Property 1: h(n) is non-zero for0 ≤ n ≤ ML − 1.
Property 2: h(n) is an Rth-order polynomial in each
subintervalmL ≤ n ≤ (m+1)L for m = 0, 1, . . . , M −1,
whereR should be selected as small as possible so that
R < L − 1.
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Figure 2. Basis functions in (4): (a)l = 0 (b) l = 1
(c) l = 2 (d) l = 3 (e) l = 4 (f) l = 5

Property 3: h(ML − n − 1) = −h(n) for n = 0, 1, . . . ,
ML − 1.

The desired piecewise-polynomial impulse response is
constructed by using the following basis functions:

fl(n) =

[
n − (L − 1)/2

(L − 1)/2

]l

(4)

for n = 0, 1, . . . , L − 1. As can be observed in Fig. 2,
the zeroth-degree basis function,f0(n), equals unity. The
first-degree basis function,f1(n), equals the polynomial of
degree one inn− (L− 1)/2. In general, the shape offl(n)
equals the shape of thelth-degree polynomial inn − (L −
1)/2 . For l even,fl(n) is symmetrical and has the center
of symmetry atn = (L − 1)/2. For l odd, fl(n) is anti-
symmetrical and has the center of symmetry atn = (L −
1)/2. Now, we construct the desired impulse responseh(n)
meeting the criteria of Properties 1, 2 and 3 as follows. First,
the impulse responseh(n) meeting Properties 1 and 2 can
be expressed as

h(n) =
R∑

l=0

ĥl(n) (5)

ĥl(n) =

M−1∑

m=0

gl(m)fl(n + mL), (6)

wheregl(m)s are adjustable polynomial coefficients. An
arbitraryRth-order polynomial can be generated in each of
the intervalmL ≤ n ≤ (m+1)L for m = 0, 1, · · · , M−1.
Secondly, because of the symmetries of the basis functions
fl(n), Property 3 gives the following two criteria. Forl
even:

gl(M − 1 − m) = −gl(m), m = 0, 1, . . . , ⌊(M − 1)/2⌋,
(7a)

for l odd:

gl(M−1−m) = gl(m), m = 0, 1, . . . , ⌊(M−1)/2⌋. (7b)

The first criterion above implies that forM andl even:

gl((M − 1)/2) ≡ 0 (7c)

The overall impulse response can thus be written as

h(n) =

R∑

l=0




(M−1)∑

m=0

gl(m)fl(n + mL)



 . (8)

The corresponding transfer function can be expressed as

H(z) =
R∑

l=0

Gl(z
L)Fl(z), (9)

where

Gl(z) =
M−1∑

n=0

gl(n)z−n andFl(z) =
L−1∑

n=0

fl(n)z−n. (10)

The transfer functionGl(z) has a sparse impulse response
with only everyLth impulse-response value non-zero and
Fl(z) “fills in” the missing values.

The following modifications were made to the Saramäki-
Mitra approach: First, Property 3 was modified to be a
case of an anti-symmetrical impulse response. Secondly,
the above-mentioned equations (7) were modified.

4 Optimization of the Proposed Differentia-
tors

This section shows how the adjustable parameters can be
optimized using linear programming.

4.1 Expression of the Impulse Response

Because of the antisymmetric conditions for thegl(n)s
as given by (7), the overall impulse response as given by
(5) and (6) can be rewritten as

h(n) =
R∑

l=0




⌊(M−1)/2⌋∑

m=0

gl(m)e(l, m, n)



 . (11)

For M even,e(l, m, n), is given in the range0 ≤ n ≤
ML − 1 as

e(l, m, n) =






fl(n − mL)
for mL ≤ n ≤ (m + 1)L − 1

(−1)l−1fl(n − (M − m − 1)L) for
(M − m − 1)L ≤ n ≤ (M − m)L − 1
0, otherwise,

(12)
ForM odd and form = 0, 1, . . . , (M − 3)/2, e(l, m, n)

can be expressed in the range0 ≤ n ≤ ML − 1 by the
same equations. Form = (M − 1)/2, gl(m) = 0 for
evenl and therefore, the correspondinge(l, m, n)s are dis-
regarded.e(l, m, n) is given for oddl andm = (M − 1)/2
as

e(l, m, n) =

{
fl(n − mL), mL ≤ n ≤ (m + 1)L − 1
0, otherwise,

(13)
wheren is in the range0 ≤ n ≤ ML − 1.
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4.2 Expression of the Frequency Response

Since the above selections guarantee that the remain-
ing e(l, m, n)s are anti-mirror-image symmetric around the
pointn = (ML − 1)/2, that is

e(l, m, ML − 1 − n) = −e(l, m, n) (14)

for n = 0, 1, . . . , ML − 1, the zero-phase frequency re-
sponseH(ω) can be given as follows:

H(ω) =

R∑

l=0




(M−1)/2∑

m=0

gl(m)φ(l, m, ω)



 , (15)

whereφ(l, m, ω) is

φ(l, m, ω) = 2

(ML−1)/2∑

n=1

e(l, m, (ML− 1)/2−n) sin(nω)

(16)
for ML even and

φ(l, m, ω) = 2

(ML−2)/2∑

n=0

e(l, m, (ML−2)/2−n) sin((n+1/2)ω)

(17)
for ML odd.

4.3 Filter Optimization

FIR filter optimization using linear programming can be
stated as a problem of minimizing

ǫ = max
ω∈[0,ωp]∪[ωs,π]

|W (ω)[H(ω) − D(ω)]|, (18)

whereW (ω) is a weight function,D(ω) is the desired func-
tion. In the above optimization problem,ωp, andωs are the
passband and stopband edge angles, respectively. The most
crucial feature for the filters under consideration is that the
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Figure 4. Implementation structure B.

zero-phase frequency response,H(ω) [15], is linear with
respect to the unknown polynomial coefficients. In order to
apply linear-programming, the main idea is to form and to
minimize the following weighted error function:

E(ω) = |W (ω)||H(ω) − D(ω)| (19)

with respect to the unknown polynomial coefficients and the
weight functionW (ω) is given as

W (ω) =

{
1/ω for ω ∈ [0, ωp]
1 for ω ∈ [ωs, π].

(20)

and the desired responseD(ω) as

D(ω) =

{
ω for ω ∈ [0, ωp]
0 for ω ∈ [ωp, π].

(21)

Before the optimization is performed, the polynomial or-
derR, the number of blocksM and the block lengthL have
to be determined for a given filter specification,ωp, ωs, δp

andδs so that the weighted error function is minimized.

5 Implementation

Efficient implementations cannot be directly achieved by
using theFl(z)s mentioned in (9) and in (10); instead, the
fl(n)s andgl(n)s have to be modified. For this purpose, the
original transfer function has been rewritten as:

H(z) =

R∑

l=0

G̃l(z
L)F̃l(z), (22)

where

G̃l(z) =

M−1∑

n=0

g̃l(n)z−n andF̃l(z) =

L−1∑

n=0

f̃l(n)z−n. (23)
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g̃l(n) and f̃l(n) are re-written so that the overall transfer
functionH(z) in (22) remains the same as stated in [18].
The above-mentioned formulation makes it possible to re-
calculate the coefficients of̃Fl(z) as integer-valued accord-
ing to the proposed algorithms in [10]. Thus the multiplica-
tions are only needed wheñgl(n). Thereby, differentiators
can be efficiently implemented by using the structures in
Figs. 3 and 4 [18]. It is recommended to use structures
with worst-case scaling and with two’s complement arith-
metic to assure the proper zero-pole cancellation especially
with structure A in Fig. 3. In Fig. 4,rks fork = 0, 1, . . . , 5
are given as

rk = −
1

k!

k∏

l=1

(L − 1 + l). (24)

As described in [10], the structure A has only one set of
coefficients as shown in Fig. 3. Structure B has several sets
of coefficients and Fig. 4 shows them all, i.e., all the drawn
coefficients are not used at the same time, see [10].

When using the integer-valued coefficients as reported
in [10], both structures have the following property. Pro-
vided that the worst-case scaling and two’s complement
arithmetic are used, the output of these structures is correct,
i.e., exact pole-zero cancellation is guaranteed, even though
internal overflows may occur. In addition, there is no need
for initial resetting and the effect of temporary miscalcula-
tions vanishes automatically from the output in finite time.

6 A Design Example

In this section, we show the properties and efficiency
of the proposed filter classes by means of a design exam-
ple in a narrowband case. The following design criteria
are considered: The passband and the stopband edges are
ωp = 0.025π, andωs = 0.05π whereas the passband and
the stopband ripples areδp = 0.01, andδs = 0.001 (60 dB
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Figure 6. The zero-phase frequency response of the
differentiator in the design example with the criteria:
the passband edgeωp = 0.025, the stopband edge
ωs = 0.05 and the stopband rippleδs = 0.001.

attenuation). The design is also compared to the piecewise-
polynomial approach proposed by Lehto et al. [11]. The
given criteria are met by a filter of order229, polynomial
degreeR = 3, number of blocksM = 10 and the block
lengthL = 23. The resulting overall ripple value becomes
9.6693 × 10−4. In the design, the number of unknowns
required in the optimization is20.

The corresponding direct-form FIR differentiator has a
minimum order of223, whereby the number of coefficients
needed is112 when exploiting coefficient symmetry com-
pared to our design, which requires only20 coefficients in
the practical implementation as shown in Tables 1 and 2.

As seen in Tables 1 and 2, both piecewise-polynomial

Table 1. Filter Parameters for the Proposed
Design

Polynomial Number of Block Number Filter

degree blocks length of order

R M unknowns

3 10 23 20 229

Table 2. Filter Parameters for Reference De-
signs

Design Polynomial Number Number Filter

Method degree of slices of order

L M unknowns

Piecewise-polynomial approach 3 5 20 231

by Lehto et al. [11]

Direct-form FIR 112 223

approaches require the same number of coefficients, when



the coefficient symmetry is exploited. Thereby, it can be
considered that one slice in the approach proposed in [11]
corresponds to two blocks in the Saramäki-Mitra approach.
Additionally, the filter order is almost the same in both de-
signs.

7 Conclusion

A straightforward approach to design linear-phase FIR
differentiators with a piecewise-polynomial impulse re-
sponse has been proposed. The efficiency of the proposed
differentiator has been shown by means of an example.
Even if the number of coefficients is the same as in [11],
the filter structures have better finite-word-length properties
due to the fact that the structures in [11] need two copies of
the structure and switching and resetting between them.
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Errata

• In Publication-I, Fig. 3, the third branch, the coefficient a30 should
be a31.

• In Publication-I, Eq.(15b) should state cll = 1.
• In Publication-I, Table III, 5.IV a54 should state a54 = −300 − 60L.
• In Publication-II, Eq. (34) should be as Eq. (33) in Publication-III.
• In Publication-II, the βks of the structures of Types 3 and 4 should be

indexed as k = 1, 3, 5, . . ..
• In Publication-II and Publication III, Tms, for m = 2, 3, . . . , M − 1

should be as Tm−1 = Nm − Nm−1 for m = 2, 3, . . . , M .
• In Publication-II, the structures of Types 3 and 4, also the minus and

plus signs should be as +, –, instead of – , +.
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