

Tampereen teknillinen yliopisto. Julkaisu 873
Tampere University of Technology. Publication 873

Roman Dunaytsev

TCP Performance Evaluation over Wired and Wired-cum-
Wireless Networks

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB109, at Tampere
University of Technology, on the 26th of March 2010, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2010

ISBN 978-952-15-2327-4 (printed)
ISBN 978-952-15-2391-5 (PDF)
ISSN 1459-2045

ABSTRACT

A fundamental design principle of the Internet is best effort packet delivery. The term “best

effort” means that the network will do its best to deliver packets, but without any guarantees. In

other words, if a problem occurs, the data are discarded. As long as most Internet applications

and services require error-free data delivery and proper sequencing, providing reliable

transmission of data from source to destination has become an important issue in the Internet. It

is worthwhile to note that error control mechanisms, implemented at the lower layers of the

protocol stack, cannot fully replace end-to-end error control, since the end-to-end functionality

cannot be achieved in a hop-by-hop manner. The Transmission Control Protocol (TCP), a

transport layer protocol, provides transparent transfer of data between application layer entities

and releases them from any concern with the detailed way in which reliable delivery of data is

achieved. To provide reliability, TCP detects errors or lost data and triggers retransmission until

the data are correctly and completely received. TCP is also responsible for ensuring that the

sending rate is appropriate for the capabilities of the receiving host (flow control), as well as

avoiding introducing too much data into the network, which could cause buffers in some

bottleneck routers to overflow and start dropping packets (congestion control). This is done by

regulating the rate at which the sending host transmits data. It should be emphasized that the

current stability of the Internet mainly depends on TCP congestion control mechanisms, while

various queue management algorithms, implemented in routers, are helpful but play a less crucial

role in practice. Due to such benefits as end-to-end error control and rate adaptation, TCP is

heavily used throughout the Internet: about 90% of today’s Internet traffic is carried by TCP.

Since TCP controls the vast majority of bytes and packets transmitted over the Internet,

predicting TCP behavior and optimizing its performance is extremely important for satisfying

user needs and providing quality of service in the Internet. In protocol analysis and design,

analytical modeling has proven to be a powerful and cost-effective tool for studying the behavior

of a communication protocol across the entire parameter space of different operating conditions

and protocol parameter settings. Therefore, the research presented in this thesis is concentrated

on improving the existing analytical models and developing new ones. The first part of the thesis

is focused on analytical modeling of TCP performance in wired networks, capturing various

aspects of TCP behavior in different scenarios. The second part is dedicated to TCP performance

modeling in wired-cum-wireless networks. The developed models provide a general framework

for TCP performance evaluation in a wide range of environments and conditions.

 iii

 iv

PREFACE

The research work presented in this thesis was carried out during the period from October 2005

to October 2009 in the Department of Communications Engineering, Tampere University of

Technology, Finland. It was financially supported by the Centre for International Mobility

(CIMO), Tampere Graduate School in Information Science and Engineering (TISE), Nokia

Foundation, and Ulla Tuomisen säätiö (PricewaterhouseCoopers Oy), all of which are gratefully

acknowledged.

The completion of this work would have been impossible without the assistance and efforts

of many wonderful people. First of all, I would like to express my deep gratitude to my thesis

supervisor, Prof. Jarmo Harju, for his guidance, constant support, and infinite patience. I would

like to thank the reviewers of my thesis, Dr. Pasi Lassila and Dr. Pasi Sarolahti for their valuable

comments and suggestions. The members of the Networks and Protocols Group, where the work

for this thesis was performed, are sincerely acknowledged. Special thanks go to my friends and

co-authors Prof. Yevgeni Koucheryavy, Dr. Dmitri Moltchanov, and Dr. Andrey Krendzel for

fruitful cooperation and a pleasant working environment. Moreover, I would like to express my

gratitude to Dr. Konstantin Avrachenkov at the MAESTRO team, Sophia Antipolis, INRIA,

France, Dr. Evgeny Osipov at the Department of Computer Science and Electrical Engineering,

Luleå University of Technology, Sweden, and all their colleagues for sharing professional

knowledge and experience with me. I also wish to thank Prof. Markku Renfors, the TISE

director, and Dr. Pertti Koivisto, the TISE coordinator, for their organizational and

administrative efforts. Finally, my warmest thanks go to (in alphabetical order) Elina Orava,

Heikki Vatiainen, Jani Tuomisto, Karri Huhtanen, Kirsi Viitanen, Sari Kinnari, Tarja Erälaukko,

Tuure Vartiainen, and Ulla Siltaloppi for their professional help and support.

Roman Dunaytsev

Tampere, January 30, 2010

 v

 vi

TABLE OF CONTENTS

ABSTRACT .. iii

PREFACE... v

TABLE OF CONTENTS ... vii

LIST OF PUBLICATIONS... xi

LIST OF ABBREVIATIONS..xiii

LIST OF FIGURES .. xvii

LIST OF TABLES... xxi

1. INTRODUCTION .. 1

1.1 Background and Motivation ... 1

1.2 Objective and Outline of the Thesis ... 4

2. TCP OPERATION ... 7

2.1 TCP Functions .. 7

2.1.1 Data Transfer ... 7

2.1.2 Multiplexing/Demultiplexing .. 8

2.1.3 Flow Control.. 8

2.1.4 Error Control.. 10

2.1.5 Congestion Control.. 10

2.2 TCP Congestion Control Mechanisms ... 12

2.2.1 Acknowledgements.. 12

2.2.2 Retransmission Timer.. 13

2.2.3 Initial Window... 14

2.2.4 Slow Start .. 15

2.2.5 Congestion Avoidance... 15

2.2.6 Fast Retransmit and Fast Recovery ... 16

2.2.7 Explicit Congestion Notification ... 17

 vii

2.3 TCP Implementations ... 18

2.3.1 Comparison of TCP Implementations ... 19

2.3.2 Deployment of TCP implementations and TCP options ... 21

2.4 Conclusions .. 24

3. TCP PERFORMANCE IN WIRED NETWORKS.. 27

3.1 Short-Lived TCP Flows.. 27

3.1.1 Motivation and Related Work ... 27

3.1.2 Model Building.. 32

3.1.3 Model Validation and Conclusions ... 36

3.2 TCP Reno Performance and the PFTK-model ... 38

3.2.1 Motivation and Model Building .. 39

3.2.2 Model Validation and Conclusions ... 45

3.3 TCP NewReno Performance... 48

3.3.1 Motivation and Model Building .. 50

3.3.2 Numerical Analysis and Conclusions .. 56

4. TCP PERFORMANCE IN WIRED-CUM-WIRELESS NETWORKS................................... 63

4.1 Background and Related Work... 63

4.2 System Model and Assumptions .. 66

4.3 Cross-layer Model .. 70

4.4 TCP SACK Model: Completely Reliable ARQ ... 71

4.5 TCP SACK Model: Semi-reliable ARQ... 87

4.5.1 Step 1: Buffer Overflows Dominate the Data Transfer ... 88

4.5.2 Step 2: Non-congestion Losses Dominate the Data Transfer 91

4.6 Numerical Analysis .. 92

4.6.1 Completely Reliable ARQ... 93

4.6.2 Semi-reliable ARQ .. 101

4.7 Conclusions .. 112

 viii

5. SUMMARY OF PUBLICATIONS.. 115

5.1 Overview of the Publications.. 115

5.2 Author’s Contribution to the Publications.. 118

6. CONCLUSIONS .. 119

APPENDIX A... 121

A.1 Solving Polynomials Equations of Higher Degree .. 121

A.2 Solving Transcendental Equations... 124

BIBLIOGRAPHY .. 127

PUBLICATIONS ... 135

 ix

 x

LIST OF PUBLICATIONS

[P1] R. Dunaytsev, Y. Koucheryavy, J. Harju, The impact of RTT and delayed ACK timeout

ratio on the initial slow start phase, in: Proceedings of IPS-MoMe 2005, Warsaw, Poland,

March 2005, pp. 171-176.

[P2] R. Dunaytsev, Y. Koucheryavy, J. Harju, The PFTK-model revised, Computer

Communications 29 (13-14) (2006) 2671-2679.

[P3] R. Dunaytsev, Y. Koucheryavy, J. Harju, TCP NewReno throughput in the presence of

correlated losses: the Slow-but-Steady variant, in: Proceedings of IEEE INFOCOM

Global Internet Workshop 2006, Barcelona, Spain, April 2006, pp. 115-120.

[P4] R. Dunaytsev, K. Avrachenkov, Y. Koucheryavy, J. Harju, An analytical comparison of

the Slow-but-Steady and Impatient variants of TCP NewReno, in: Proceedings of WWIC

2007, Coimbra, Portugal, May 2007, pp. 30-42.

[P5] R. Dunaytsev, D. Moltchanov, Y. Koucheryavy, J. Harju, Modeling TCP SACK

performance over wireless channels with completely reliable ARQ/FEC, Submitted for

publication in International Journal of Communication Systems.

[P6] D. Moltchanov, R. Dunaytsev, Modeling TCP SACK performance over wireless

channels with semi-reliable ARQ/FEC, Accepted for publication in Wireless Networks

(DOI: 10.1007/s11276-009-0231-9).

 xi

 xii

LIST OF ABBREVIATIONS

ACK ACKnowledgement

AIMD Additive Increase/Multiplicative Decrease

ARPANET Advanced Research Project Agency NETwork

ARQ Automatic Repeat reQuest

BCH Bose-Chaudhuri-Hocquengham

BER Bit Error Rate

CA Congestion Avoidance

CE Congestion Experienced

cwnd congestion window

CWR Congestion Window Reduced

DoD Department of Defense

DS Delay Spike

D-SACK Duplicate-SACK

DupACK Duplicate ACK

ECE ECN-Echo

ECN Explicit Congestion Notification

ECT ECN-Capable Transport

EDGE Enhanced Data rates for GSM Evolution

FEC Forward Error Correction

FIFO First-In, First-Out

FR Fast Retransmit/Fast Recovery

FTP File Transfer Protocol

GBN Go-Back-N

HARQ Hybrid ARQ

IETF Internet Engineering Task Force

 xiii

IMP IMPatient

IP Internet Protocol

IW Initial Window

LAN Local Area Network

LFN Long Fat Networks

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NACF Normalized AutoCorrelation Function

OS Operating System

OSI Open Systems Interconnection

P2P Peer-to-Peer

PAWS Protection Against Wrapped Sequences

PDU Protocol Data Unit

PFTK Padhye-Firoiu-Towsley-Kurose

QoS Quality of Service

RFC Request For Comments

RS Reed-Solomon

RTO Retransmission TimeOut

RTT Round-Trip Time

rwnd receive window

SACK Selective ACK

SBS Slow-But-Steady

SR Selective Repeat

SS Slow Start

ssthresh slow start threshold

SW Stop-and-Wait

SWS Silly Window Syndrome

 xiv

TCP Transmission Control Protocol

TD Triple-Duplicate

TO TimeOut

UDP User Datagram Protocol

WAN Wide Area Network

WWW World Wide Web

 xv

 xvi

LIST OF FIGURES

Fig. 2. 1 TCP window evolution versus the maximum number of packets

that can be accommodated in the network, minRTO 1= s .. 20

Fig. 2. 2 SYN segments ... 24

Fig. 3. 1 Examples of the initial slow start phase, IW 1= full-sized segment 28

Fig. 3. 2 Initial slow start phase, RTT ≤ delACKT ... 36

Fig. 3. 3 Initial slow start phase, ()RTT , 2∈ delACK delACKT T .. 36

Fig. 3. 4 Initial slow start phase, RTT 2= delACKT ... 37

Fig. 3. 5 Initial slow start phase, (]RTT 2 , 3∈ delACK delACKT T .. 37

Fig. 3. 6 TCP Reno window evolution in the absence of timeouts (as assumed in [67]) 40

Fig. 3. 7 TDP (as assumed in [67]) .. 41

Fig. 3. 8 Transmission of segments in the last rounds of the -thi TDP 41

Fig. 3. 9 TCP Reno behavior, minRTO 1= s.. 44

Fig. 3. 10 Example of a cycle (by the new definition)... 44

Fig. 3. 11 ns-2 simulation setup... 46

Fig. 3. 12 ns-2 simulation results versus predicted values

for the TCP Reno steady-state throughput.. 47

Fig. 3. 13 Effect of the volume of background traffic on the models’ accuracy 48

Fig. 3. 14 The Slow-but-Steady variant of TCP NewReno, minRTO 200= ms.......................... 49

Fig. 3. 15 The Impatient variant of TCP NewReno, minRTO 200= ms 49

Fig. 3. 16 Transmission of segments during the -thi cycle, the Slow-but-Steady variant.......... 51

Fig. 3. 17 Transmission of segments during the -thi cycle, the Impatient variant 52

Fig. 3. 18 Cycles of the Slow-but-Steady variant (as assumed in [86]) 55

Fig. 3. 19 Cycles of the Impatient variant (as assumed in [86]) .. 55

 xvii

Fig. 3. 20 Total number of segments sent during the fast retransmit/fast recovery phase........... 56

Fig. 3. 21 TCP NewReno steady-state throughput (in segm./RTT) .. 58

Fig. 3. 22 Effect of the delayed ACK algorithm on the difference (in segm./RTT)

between the steady-state throughputs of the Impatient and Slow-but-Steady variants 58

Fig. 3. 23 Effect of using the window scale option on the difference (in segm./RTT)

between the steady-state throughputs of the Impatient and Slow-but-Steady variants 60

Fig. 3. 24 Effect of the TCP timer granularity on the difference (in segm./RTT)

between the steady-state throughputs of the Impatient and Slow-but-Steady variants 60

Fig. 4. 1 System model .. 66

Fig. 4. 2 Encapsulation and segmentation ... 68

Fig. 4. 3 Proposed cross-layer model... 71

Fig. 4. 4 TCP SACK window evolution in the absence of delay spikes 74

Fig. 4. 5 TCP SACK window evolution and buffer occupancy .. 75

Fig. 4. 6 Queue size as a function of the ratio between the buffer size

and the average end-to-end path capacity... 76

Fig. 4. 7 Round-trip delay of the wireless channel .. 77

Fig. 4. 8 End-to-end transmission of packets,

MSS 1460= bytes, ssthresh 65,535= bytes, 1b = ... 78

Fig. 4. 9 End-to-end transmission of packets,

MSS 1460= bytes, ssthresh 65,535= bytes, 2b = .. 79

Fig. 4. 10 Time-sequence graph of a TCP connection over EDGE,

MSS 1460= bytes, ssthresh 65,535= bytes, 1b = ... 80

Fig. 4. 11 Time-sequence graph of a TCP connection over EDGE,

MSS 1460= bytes, ssthresh 65,535= bytes, 2b = .. 80

Fig. 4. 12 End-to-end transmission of packets,

MSS 1460= bytes, ssthresh 17,520= bytes, 1b = ... 81

Fig. 4. 13 Time-sequence graph of a TCP connection over EDGE,

MSS 1460= bytes, ssthresh 17,520= bytes, 1b = ... 82

 xviii

Fig. 4. 14 TCP SACK window evolution in the presence of delay spikes 84

Fig. 4. 15 Ratio between the expected durations of the congestion avoidance phase

and the slow start phase after a delay spike.. 86

Fig. 4. 16 TCP SACK window evolution in the presence of congestion

and non-congestion losses .. 89

Fig. 4. 17 TCP SACK window evolution in the presence of non-congestion losses only 91

Fig. 4. 18 Mean number of transmission attempts per frame,

including failed and successful transmissions .. 94

Fig. 4. 19 Mean time (in seconds) required to transmit an IP packet

over the wireless channel.. 95

Fig. 4. 20 Effect of autocorrelation on the bit error process.. 96

Fig. 4. 21 Number of errors per frame versus the strength of the FEC codes

under high BER .. 96

Fig. 4. 22 Number of errors per frame versus the strength of the FEC codes

under low BER ... 97

Fig. 4. 23 Probability function (in log scale) of the time required to transmit an IP packet

over the wireless channel, ()1 0.00EK = .. 98

Fig. 4. 24 TCP SACK steady-state throughput (in Mbit/s), MTU 1500= bytes 99

Fig. 4. 25 Mean time (in seconds) required to transmit an IP packet

over the wireless channel, MTU 576= bytes .. 100

Fig. 4. 26 TCP SACK steady-state throughput (in Mbit/s), MTU 576= bytes........................ 100

Fig. 4. 27 Mean time (in seconds) during which an IP packet is transmitted

over the wireless channel, (255,131,18) ... 101

Fig. 4. 28 Mean time (in seconds) during which an IP packet is transmitted

over the wireless channel, (255,87,26) ... 102

Fig. 4. 29 Packet loss rate due to an excessive number of transmission attempts,

(255,131,18).. 103

Fig. 4. 30 Packet loss rate due to an excessive number of transmission attempts,

(255,87,26).. 104

Fig. 4. 31 Packet loss rate due to an excessive number of transmission attempts 106

 xix

Fig. 4. 32 TCP SACK steady-state throughput (in Mbit/s), (255,131,18)................................. 107

Fig. 4. 33 TCP SACK steady-state throughput (in Mbit/s), (255,87,26)................................... 108

Fig. 4. 34 TCP SACK performance, (255,131,18), 3r = .. 109

Fig. 4. 35 TCP SACK steady-state throughput (in Mbit/s)

for different MTU sizes, (255,131,18).. 110

Fig. 4. 36 TCP SACK steady-state throughput (in Mbit/s)

for different MTU sizes, (255,87,26).. 111

Fig. A. 1 () 4 3 22 4 5 6f x x x x x= + − − − ... 123

Fig. A. 2 () 23 28 12 2 8xf x x x x= + + − + ... 125

 xx

LIST OF TABLES

Table 2. 1 Summary of the TCP functions .. 11

Table 2. 2 Conventional TCP implementations... 19

Table 2. 3 Default TCP settings (MTU 1500= bytes).. 25

Table 3. 1 cwnd increase patterns.. 30

Table 3. 2 Total number of segments sent ... 31

Table 3. 3 Analytical models for short-lived TCP flows... 32

Table 3. 4 cwnd increase pattern from (3.2), IW 1= full-sized segment 33

Table 3. 5 Approximate analytical solution for the number slow start rounds............................ 35

Table 3. 6 Input parameters for comparing the accuracy of the models from [86] [P3] [P4]...... 56

Table 3. 7 Default parameters for estimating TCP NewReno throughput................................... 57

Table 4. 1 Main notations used in the chapter ... 69

Table 4. 2 Number of frames per packet ... 92

Table 4. 3 Default system parameters.. 93

 xxi

 xxii

1. INTRODUCTION
This chapter provides an introduction to the subject matter of the dissertation. The motivation of

the research, the objective and outline of the thesis are also discussed in this chapter.

1.1 Background and Motivation

The Transmission Control Protocol (TCP) – one of the core protocols of the Internet Protocol

Suite – has a long history. TCP first started to take shape in 1974, when Vinton Cerf and Robert

Kahn published the basic principles of an internetwork protocol [1], which was called the

Transmission Control Program. The challenge of constructing such a protocol was to

accommodate different networks that might vary in terms of addressing, maximum packet size,

delay, throughput, and reliability. The proposed protocol supported global addressing,

fragmentation and reassembly, flow control, end-to-end error control and loss recovery. One of

the primary goals was to provide reliable data transmission between remote hosts

communicating over heterogeneous networks. It should be noted that communication networks

do not inherently guarantee error-free data delivery. Therefore, there is a risk that some packets

will be corrupted, dropped, delayed, misrouted, duplicated, or delivered out of order. In order to

resolve all these problems, the new protocol was responsible for sequencing, issuing

acknowledgements (ACKs), retransmitting unacknowledged packets, and detecting duplicates. A

consequence of this error detection/retransmission scheme was that in order delivery could be

maintained. Moreover, the protocol was also responsible for regulating the flow of packets to

and from the processes it serves as a way of preventing the communicating hosts from becoming

overloaded with traffic. To perform these functions, the Transmission Control Program opened

and closed logical connections between processes. The first demonstration of the new protocol

came in July 1977 [2].

Over the next four years, the protocol went through several modifications [3] [4] [5] [6]. The

most significant change was that the monolithic Transmission Control Program has been split

into two separate protocols: the Transmission Control Protocol (TCP) and the Internet Protocol

(IP), which became the foundation for the Internet Protocol Suite (also known as the TCP/IP

suite) we use today. According to [6], TCP maps to the host-to-host layer of the DoD

(Department of Defense) model just above IP [7], which provides connectionless and best-effort

delivery of TCP segments encapsulated in IP packets. The IP packet header mainly contains

addressing and control information to enable routers to forward packets to their proper

destinations. IP is also in charge of fragmentation and reassembly of packets that exceed the

 1

Maximum Transmission Unit (MTU) size. Above IP, TCP provides end-to-end flow and error

control for applications that need reliable and sequential data delivery. Thus, TCP corresponds to

the transport layer (layer 4) of the OSI (Open Systems Interconnection) reference model [8]. In

1982, the US DoD adopted TCP as its primary protocol for reliable data delivery over the

ARPANET (Advanced Research Project Agency Network) [2]. Eventually, TCP has become a

standard protocol for the Internet and spread throughout the world. Acceptance of TCP was also

catalyzed by its implementation in the 4.2BSD Unix operating system (OS) in 1983 [2].

During the next few years, computer networks experienced an explosive growth, and with

that growth came serious performance problems: the Internet suffered a series of congestion

collapses [9]. In fact, these performance problems were mainly caused by the very TCP

mechanisms that provide reliability. That is, congestion collapse begins with a steady increase in

the load on the network. As hosts send more packets, more packets are queued in the buffers of

the routers. Increased delays and lost data induced by congestion lead to timeouts, which trigger

retransmissions, but a large number of retransmissions overload the network even further to a

point where the network throughput drops to a small fraction of its normal capacity. The

rationale of congestion collapse was the absence of end-to-end congestion control and rate

adaptation in the early Internet. The only end-to-end rate control that existed at that time was

flow control in TCP [6]. But TCP flow control was intended to prevent the sending process from

overwhelming the destination process, not preventing congestion somewhere in the network. At

that point, it became clear that there is a need for a mechanism to control congestion in the

network and, thereby, to control the amount of data injected into the network.

To avoid congestion collapse from occurring, congestion control algorithms were added to

TCP [10] [11]. These algorithms are based on the “conservation of packets” principle. The idea

is that a new packet is not put into the network until the previous packet leaves. In other words,

the TCP sender uses the reception of an ACK as an indication that one of the packets sent earlier

has left the network and initiates the next packet transmission without adding to the level of

congestion (for this reason TCP is said to be ACK-clocked). As a rule, packets get lost for two

reasons: they are damaged in transit and, therefore, must be rejected, or the network is congested

and they were dropped due to buffer overflow somewhere on the path. TCP congestion control is

based on the assumption that the packet loss rate due to data corruption is very small (much less

than 1%), so the loss of a packet is a strong indication of congestion somewhere in the network

between source and destination [11]. Upon detection of a packet loss at the TCP sender, the

congestion control algorithms are triggered, which reduces the sending rate multiplicatively

and/or increases the TCP retransmission timer exponentially. It is primarily these TCP

 2

congestion control algorithms that prevent congestion collapse in today’s Internet and establish

some degree of fairness with concurrent traffic, providing the possibility to share the available

bandwidth approximately evenly among all data flows.

Nowadays, TCP is the de facto standard transport protocol for providing reliable data

delivery over best-effort IP networks. Most widely used applications and services in the Internet

are TCP-based [12]. As a result, about 90% of today’s Internet traffic is carried by TCP [13]

[14]. As long as TCP controls the vast majority of bytes and packets transmitted over the

Internet, predicting TCP behavior in various environments and optimizing its performance is

extremely important for satisfying user needs and providing quality of service (QoS) in modern

networks.

Since TCP rate control has a significant impact on user-perceived QoS and the efficiency of

the overall Internet, it is no wonder that different TCP-related issues have been extensively

studied over the last decade. The massive deployment of wireless networks has attracted a lot of

attention of researchers and practitioners to TCP performance in wireless and wired-cum-

wireless environments (e.g., see [15] [16] [17] and references therein), both because the

widespread use of TCP on the Internet and because wireless networks used to transport TCP

traffic present very different characteristics from those TCP was tuned to. While wireless

channels exhibit a higher bit error rate (BER) than typical wired channels, TCP assumes that all

packet losses are caused by network congestion and decreases the sending rate in an attempt to

alleviate the congestion. Thus, packets dropped due to data corruption force TCP to slow down

the transmission of new data, even though these packet drops do not signal congestion in the

network. Hence, TCP performs poorly over lossy wireless channels.

TCP performance evaluation studies can be split into two broad classes: empirical studies

and analytical modeling. Although simulations and measurements are extremely useful tools in

performance evaluation, it is a difficult task to simulate and explore TCP behavior across the

range of all possible operating conditions and different protocol settings. In this case, analytical

modeling is extremely beneficial because it allows to study the performance of TCP over the

entire parameter space and very easily apply a “what if” test to different scenarios. Moreover,

once a model is obtained, it can be used for a number of purposes. Firstly, it can help researchers

and engineers to evaluate the existing TCP implementations and to make design decisions about

novel TCP algorithms. Secondly, the obtained results can be applied to dimension network

resources [18] and/or to develop new queuing policies and scheduling algorithms [19]. Thirdly,

an expression of TCP throughput can serve as the basis for a TCP-friendly rate control protocol

(also known as equation-based congestion control) [20] [21], a cross-layer performance control

 3

system [22] [23], or a technique to speed up large scale network simulations [24]. Indeed, this

list is not exhaustive and can be updated as new ideas and proposals are developed.

1.2 Objective and Outline of the Thesis

Based on the above considerations, we can state that studying TCP behavior in different

environments is an important task for improving the service provided to users and the efficiency

of network resource utilization, while analytical modeling is indispensable for this purpose

because the generality of the conclusions is not possible with experimental investigations alone.

There are a number of ways to classify TCP analytical models. For instance, they are often

distinguished by:

• the length of the TCP transfer: short-lived, long-lived, and TCP transfers of arbitrary

length (see [25] and references therein);

• the approach used to model TCP performance: renewal theory models, fluid models,

processor sharing models, control theoretic models, and fixed-point models (see [26] and

references therein);

• the number of TCP flows under consideration: single source models and models of

multiple TCP sources;

• the type of the underlying network: pure wired, pure wireless (single-hop and multihop),

and wired-cum-wireless, where the term “wired-cum-wireless” refers to the scenario in

which mobile/wireless users access information stored somewhere on the Internet;

• whether flow-level dynamics is accounted or not: flow-level models take into account the

dynamics related to the arrival and departure of TCP flows, while packet-level models

assume a fixed number of long-lived TCP flows (usually just one) and consider the

underlying network from the perspective of packet-level parameters such as the packet

loss probability and the average delay (see [27] and references therein).

The research presented in this thesis is concentrated on improving the existing analytical

models and developing new ones. Specifically, the objective of the study is to develop models

for:

• short-lived and long-lived TCP flows;

• TCP performance in wired and wired-cum-wireless networks.

 4

All of the models are single source packet-level models and, except the one for short-lived TCP

flows, are based on the renewal theory approach. The developed models provide a general

framework for TCP performance evaluation and can be used for different purposes as outlined in

the previous section.

This dissertation consists of six chapters, one appendix, and six publications referred in the

text as [P1], [P2], …, [P6]. In Chapter 1, the motivation of the research and the objective of the

thesis are introduced. In Chapter 2, an overview of the TCP functions and the TCP congestion

control algorithms is given. The developed models for TCP performance evaluation in wired

networks are presented in Chapter 3. A cross-layer model for a TCP connection running over a

wired-cum-wireless network is proposed and discussed in Chapter 4. Chapter 5 provides a

summary of the publications and the author’s contribution to them. Finally, conclusions are

drawn in Chapter 6. Since the model for short-lived TCP flows [P1] involves solving a

transcendental equation based on a new approach developed by M.A. Eremin and available in

Russian only, Appendix A gives a brief introduction to this method.

 5

 6

2. TCP OPERATION
This chapter outlines the details of TCP operation relevant for the research described in the

dissertation. In the first place, a short overview of the TCP functions is presented. Then, a

thorough description of the TCP congestion control algorithms is given.

2.1 TCP Functions

TCP is a complex and feature-rich protocol. The specification for TCP is defined in a number of

RFCs (Request For Comments) published by the Internet Engineering Task Force (IETF). While

the core specification consists of just a few RFCs [6] [28] [29], the total number of TCP-related

RFCs is really huge: entering “TCP” in the RFC index search engine [30] gives more than 100

results. In [31], a good summary of the TCP specification documents is provided. However, it

dates back to 2006 and does not include the latest updates (e.g., [32] [33]).

TCP fulfills the following functions:

• ordered data transfer and data segmentation;

• multiplexing/demultiplexing;

• flow control;

• error control;

• congestion control.

The basic operation of TCP in each of these areas is described in the next sections.

2.1.1 Data Transfer

TCP is a byte-oriented protocol meaning that it transmits application layer data as an

unstructured, but ordered, stream of bytes. TCP transfers a series of bytes, known as a segment,

from one host to another. In order to do so, the TCP sender passes segments to the IP layer for

placement in IP packets, which will be later routed to the destination host. In turn, the TCP

receiver accepts incoming segments from the IP layer and delivers the data bytes to the

appropriate application layer process in the same order in which the data were sent.

Both TCP sender and receiver need to agree on the maximum segment size (MSS) they can

handle on that connection in each direction (note that TCP connections are full-duplex, so traffic

can go in both directions). The MSS option is used to indicate the maximum size of segments

 7

that the host can accept. This option is only used at the time a TCP connection is established (in

segments where the SYN flag is set on). In accordance with [34], the MSS value advertised in

the MSS option field is equal to the sender’s MTU minus the IP header size (without options)

and the TCP header size (without options). Thus, the MSS is 40 bytes less than the MTU.

However, some OSs can send only segments with lengths that are multiples of 512 bytes. For

instance, even if the MTU of 1500 bytes is supported, the segments sent will be only 1024 bytes

long (instead of 1460 bytes, as allowed by the MSS).

2.1.2 Multiplexing/Demultiplexing

TCP employs a multiplexing/demultiplexing mechanism to allow multiple application layer

processes within a host to simultaneously access the network via a single interface. This

mechanism assigns 16-bit identifiers, called port numbers, to every instance of every application

that is using TCP. The combination of source and destination IP addresses, plus source and

destination port numbers uniquely identifies a TCP connection. Using port numbers, the sending

TCP can multiplex segments from different processes onto a single link, while the receiving TCP

can demultiplex incoming segments to the correct destination processes.

2.1.3 Flow Control

In order to prevent inefficient use of the network bandwidth and other resources, TCP is

responsible for flow and congestion control: it ensures that data are transmitted at the rate

consistent with the capacities of both TCP receiver and intermediate links in the end-to-end path.

TCP flow control is a host-oriented feature trying to prevent a fast sender overloading a slow

receiver. To control the amount of data that can be sent at a time, data transfer between TCP

peers is performed using the so called sliding window algorithm. The window is the amount of

data in the stream of bytes to be transmitted that the TCP receiver allows the TCP sender to send.

The TCP sender can transmit only those bytes of the stream that lie inside this window. New

data can be sent only with the receiver’s permission. In other words, the TCP sender can only

transmit a window of segments before receiving any feedback from the TCP receiver. The

window moves (“slides”) along the byte stream as the TCP receiver acknowledges new data.

TCP flow control can be divided into two types: receiver-side and sender-side flow control.

The primary objective of receiver-side flow control is to provide information about the available

space in the receive buffer, while the main goal of sender-side flow control is to limit the data

flow in response to this feedback information. The window field in the TCP header is used to

 8

represent the available space in the receive buffer (also referred to as the receiver advertized

window or the receive window, rwnd, for short) and provides a flow control mechanism for the

TCP connection. The TCP receiver uses the window field to define a window of sequence

numbers beyond the last acknowledged sequence number that the TCP sender is allowed to

transmit. Because the amount of free space in the receive buffer may change over time, the

window size may vary dynamically during lifetime of the TCP connection.

The silly window syndrome (SWS) refers to the situation when much smaller segments are

exchanged across the TCP connection than allowed by the MSS [35]. It can be caused by either

of the two involved parties. Firstly, this phenomenon arises when the TCP receiver advances the

right window edge whenever it has any new buffer space available to receive data, which in turn

causes the TCP sender to transmit small segments. Secondly, the TCP sender can transmit small

segments when the data to be sent increase in small increments (instead of waiting for additional

data to send a larger segment). As a result, transferring small segments consumes extra network

bandwidth due to a large protocol header overhead and introduces unnecessary computational

overhead at each node along the end-to-end network path. To increase the efficiency of data

transmission, TCP avoids sending and receiving small segments by using the Nagle algorithm

(named after its inventor, John Nagle) and the SWS avoidance algorithm. To prevent the sending

of small segments, the Nagle algorithm [9] [28] allows for small amounts of data to accumulate

in the send buffer and not be sent until an ACK is received for the data previously sent. The

SWS avoidance algorithm [28] prevents small window advertisements in the case where a

receiving process reads data from the receive buffer slowly. Then, the TCP receiver waits until

the available space reaches either 50% of the total buffer size or one MSS, whichever is smaller.

The window field in the TCP header consists of 16 bits, so the maximum rwnd size is
162 1 65,535− = bytes. Consequently, the TCP sender can have only 65,535 bytes of data in

transit at a time, which places a limit on the maximum achievable throughput as rwnd RTT ,

where the RTT (round-trip time) is the time needed for a segment to travel from source to

destination and back. To increase performance over long-distance and high-speed networks,

often referred to as long fat networks (LFNs), the TCP window scale option has been defined in

[36], allowing the TCP receiver to advertise a larger window size than 65,535 bytes. The

window scale factor is simply a two’s power multiplier to be applied to the 16-bit advertised

window and is between 0 (no scaling performed) and 14. Hence, the biggest possible window is

now equal to 1465,535 2 =1,073,725, 440× bytes. Like the MSS option, the window scale option

should only appear in the SYN and SYN/ACK segments during the connection setup. Thus, the

scale factor is fixed in each direction after the TCP connection is established.

 9

2.1.4 Error Control

IP provides best-effort packet transmission in which packets may be corrupted, dropped,

delayed, misrouted, duplicated, or delivered out of order. The end-to-end data integrity depends

on TCP error control, which is based on the TCP checksum calculation and the use of sequence

numbers and ACKs. The 16-bit TCP checksum field provides a means for detecting errors in the

received data and covers the whole TCP segment plus some parts of the IP header (referred to as

a pseudo header). The TCP pseudo header contains the source and destination IP addresses, the

code of the transport layer protocol (6 in this case), and the length (in bytes) of the segment.

Each TCP segment is identified by a 32-bit sequence number, which specifies the position

of the first data byte of this segment in the sender’s byte stream. Upon receiving a segment

successfully, the TCP receiver sends an ACK back that contains the value of the next sequence

number the TCP receiver is expecting to obtain. If the ACK is not received within a specific time

interval, called the TCP retransmission timeout (RTO), the TCP sender assumes that the segment

has been lost and will retransmit it.

Since the amount of sequence numbers is finite and wraps around when the limit is reached,

extremely high-speed networks present a real risk of multiple different segments bearing the

same sequence number. The protection against wrapped sequences (PAWS) is an algorithm that

makes use of the TCP timestamps option [36]. These timestamps create a clear distinction

between new segments and old duplicates with wrapped sequence numbers without having to

increase the sequence number field length.

TCP is a connection-oriented protocol. Hence, connections must be established when

needed and terminated when their purpose is completed. The initial sequence number that each

host selects for the transmission is communicated to the other end in the SYN and SYN/ACK

segments during the connection establishment phase. Moreover, during the connection setup

both TCP peers agree on the MSS, window scale, timestamps, and other TCP options.

2.1.5 Congestion Control

Standard TCP congestion control is reactive congestion control in the sense that it uses either

packet losses or excessively delayed packets to trigger congestion alleviation actions. In steady

state, TCP congestion control is based on the following strategy. The TCP sender increases the

window size linearly until a packet loss occurs. Once a packet loss is detected, the TCP sender

halves the window size and, consequently, its sending rate. Therefore, this rate control strategy is

commonly called additive increase/multiplicative decrease (AIMD). The TCP congestion control

 10

algorithms are described in detail in the next sections. It should be emphasized that TCP flow

control and congestion control are used in combination, so TCP must limit the sending rate to the

minimum of what the receive buffer can accept and what the network can effectively carry.

Table 2.1 summarizes the TCP functions.

Table 2. 1 Summary of the TCP functions

TCP function Implementation Basic standards

track RFCs

Ordered data transfer and

data segmentation

Connection establishment and termination

MSS option

Path MTU discovery

793, 1122

879

1191 [37]

Multiplexing/demultiplexing Port numbers 793, 1122, 1700 [38]

Flow control Receive window

Silly window syndrome avoidance

Nagle algorithm

Window scale option

793, 1122

813, 1122

896, 1122

1323

Error control Checksum computation

Sequence numbers

Protection against wrapped sequences

Cumulative and selective ACKs

Retransmission timer and retransmissions

793, 1071 [39]

793

1323

1122, 2018, 2883

1122, 2988

Congestion control Karn’s algorithm

Initial window

Slow start

Congestion avoidance

Fast retransmit and fast recovery

ECN-support

2988

3390

2581

2581

2581, 3782, 3517

3168

 11

2.2 TCP Congestion Control Mechanisms

The rate at which segments are injected into the network is governed jointly by TCP flow control

and congestion control mechanisms. However, while over the last two decades TCP congestion

control continues to be a hot topic in academic research as well as in engineering practice, TCP

flow control has not gained so much attention in terms of performance evaluation, analysis, and

optimization. This can be explained as follows:

• In TCP flow control, by advertising the rwnd size with each ACK, the TCP receiver tells

the TCP sender how much data can be sent and successfully stored, thus providing

explicit information about the available space in the receive buffer. Armed with this

knowledge, the TCP sender can fine-tune its sending rate to avoid overflow and, if

possible, underflow of this buffer. As a result, assuming no bandwidth limitations and

restrictions imposed by the TCP congestion control algorithms, the sending rate will be

mainly limited by application and hardware constraints, rather than TCP performance.

Moreover, using window scaling, the TCP sender can transmit up to 1 GB of data per

RTT, which is much larger than most networks can now handle. And even if the TCP

window scale option is not enabled by default, there are a lot of utilities for adjusting and

tweaking TCP settings (e.g., [40] [41]). Hence, TCP flow control, in its current form, is

not a performance bottleneck by itself.

• On the other hand, since no explicit information about the available bandwidth on the

end-to-end path is provided, the TCP sender infers the state of the network by detecting

various signs of congestion such as lack of ACKs at the expected time (implicit

indication) or receipt of packets with a special congestion indicator (explicit notification).

Without having a clear picture of what is going on in the underlying network, the TCP

sender is forced to rely on the AIMD strategy and some other heuristics to effectively

mitigate network congestion and efficiently utilize network resources. However, this

saw-tooth behavior of the window size leads to a large (and sometimes unnecessary)

variation in the sending rate and, therefore, sub-optimal performance. Since TCP

congestion control, being responsible for rate adaptation, plays an important role in

maintaining QoS for end users, it deserves special attention and careful investigation.

2.2.1 Acknowledgements

TCP uses a feedback mechanism in the form of positive ACKs of the transmitted segments (there

are no negative ACKs in TCP) to achieve rate control and provide reliable delivery. Thus, TCP

 12

congestion control is based on the flow of ACKs transmitted by the TCP receiver to inform the

TCP sender what data have been successfully delivered, so the TCP sender deduces information

about network congestion and lost data by examining these ACKs.

When TCP receives a segment from the other end of the TCP connection, it sends an ACK

back to the source. However, most TCP implementations use the delayed ACK algorithm as

specified in [28]. This causes the receiving TCP to delay ACKs under certain circumstances,

which allows to transmit an ACK and data (if any) in a single segment. According to [28], the

receiving TCP should send an ACK if one of the following conditions is met:

• a new segment arrives and no ACK was sent for the previously received segment;

• a segment is received, but no other segment arrives within 500 ms (typically, 200 ms);

• an incoming segment fills in all or part of a gap in the sequence space of the receiver’s

byte stream.

Moreover, the receiving TCP should generate an immediate ACK when an out-of-order segment

is received (also known as a “duplicate” ACK). The purpose of this duplicate ACK is to inform

the source that a segment was received out of order and which sequence number is expected.

TCP ACKs are cumulative, so they acknowledge that the TCP receiver has correctly

received all bytes up through the acknowledged sequence number minus one. Early TCP

implementations relied only on this cumulative ACK scheme in which received segments that

are not at the left edge of the receive window are not acknowledged. Later it was found that TCP

performs poorly when multiple segments are lost from a window of data, since bursty losses

generally cause TCP to lose its ACK-based clock, reducing the overall throughput. In order to

improve TCP performance during loss recovery in the face of multiple dropped segments, the

selective acknowledgement (SACK) option, the use of the SACK option for acknowledging

duplicate segments (the D-SACK extension), and the SACK-based loss recovery algorithm have

been specified in [42] [43] [44], respectively. Using selective ACKs, the TCP receiver can

inform the TCP sender about all segments that have arrived successfully (including non-

contiguous and duplicate blocks of data), so the TCP sender needs to retransmit only the

segments that have actually been lost.

2.2.2 Retransmission Timer

TCP uses a retransmission timer to ensure data delivery in the absence of any feedback from the

other end of the TCP connection. When TCP sends a segment containing data, it retains a copy

 13

of the data in the retransmission queue and starts the retransmission timer. If the data are not

acknowledged before the retransmission timer expires (i.e., a timeout event occurs), the data are

retransmitted. When the segment is acknowledged, TCP removes the data from the

retransmission queue. Thus, the TCP retransmission timer indicates when a segment should be

retransmitted if no ACK is received. Because of the changing network conditions, the

retransmission timeout value must be adjusted dynamically. The algorithm used to compute and

manage the retransmission timer is described in [45]. It is based on taking RTT samples (at least

one RTT measurement per RTT). Until the first RTT measurement has been made, the initial

retransmission timeout value is set to 3 seconds.

One problem that arises with the dynamic estimation of the RTT value is what to do when a

timeout event occurs and a segment is retransmitted. When the ACK arrives, it is unclear

whether this ACK refers to the original transmission or the latter one. The solution to this

retransmission ambiguity problem is known as Karn’s algorithm [46] [45] (named after its

inventor, Phil Karn). This algorithm dictates that RTT measurements should be ignored for any

segment that has been retransmitted. Instead, the retransmission timeout value is multiplied by a

factor of two every time a retransmission is repeated, up to some maximum timeout value. Thus,

when the sender’s retransmission timer reaches zero and the first unacknowledged segment in

the send window is resent, the retransmission timer is set to twice the initial value.

2.2.3 Initial Window

With old TCP implementations, the TCP sender started a data transfer by sending multiple

segments, up to the window size advertised by the TCP receiver. This is highly efficient when

both hosts (source and destination) reside on the same local area network (LAN), but when they

are separated by a number of intermediate links with unknown conditions (bandwidth, traffic

load, etc.), this can lead to immediate congestion. To prevent an inappropriate amount of traffic

being injected into the network, a TCP data flow begins with a small initial window (IW) and

then increments it. In the early standards [11] [29], the IW was limited to one or two full-sized

segments (i.e., containing the maximum number of data bytes permitted by the MSS). The

current standard [47] specifies the upper bound for the IW as

()()IW min 4MSS, max 2MSS, 4380 bytes .= (2.1)

Note that (2.1) allows TCP to transmit up to three segments initially in the common case when

using 1500-byte packets. As was demonstrated in [48], the majority of Web servers use an IW of

one or two segments, and the rest use an IW of three or four segments.

 14

2.2.4 Slow Start

In addition to the rwnd (i.e., the available buffer space advertised in ACKs), TCP maintains one

more window called the congestion window (cwnd), which is similar in concept to the rwnd in

that it can be increased or reduced, although these actions are taken according to the ability of

the underlying network to handle the amount of data being sent, rather than the capacity of the

TCP receiver. Since these two windows represent the amount of data (in bytes) that the TCP

sender is allowed to have in transit, the maximum amount of data that can be sent

unacknowledged at a time is given by min(rwnd, cwnd) .

To probe the network path and to determine how much bandwidth is available, TCP uses an

algorithm called slow start [29]. When a new TCP connection is established, the cwnd is set to

the IW size and the TCP sender starts transmitting data. For every ACK received that

acknowledges new data, the cwnd is incremented by the number of bytes in the sender’s MSS

(i.e., by one full-sized segment). This results in an exponential growth in the number of segments

that can be sent per RTT.

During slow start, the cwnd increases exponentially over time until a packet loss occurs or

the cwnd reaches the slow start threshold (ssthresh). When the cwnd exceeds the value of the

ssthresh, TCP enters the congestion avoidance mode. As a rule, the initial value of the ssthresh is

set to 65,535 bytes [11]. In case of a packet loss, TCP interprets it as the evidence that the

network is experiencing congestion and reduces the size of the cwnd, which in turn slows down

the sending rate and helps to alleviate the congestion problem.

2.2.5 Congestion Avoidance

After the ssthresh is reached, the TCP connection moves into the congestion avoidance phase

[29]. In this phase, the cwnd is incremented by MSS MSS cwnd× bytes for every non-duplicate

ACK. Therefore, when the TCP receiver acknowledges every received segment, the cwnd

effectively increases by one full-sized segment for each successfully transmitted window. By

using the delayed ACK algorithm, the TCP receiver refrains from acknowledging every

incoming segment and sends one ACK for every second segment. Since the TCP sender

increases the size of the cwnd based on the number of arriving ACKs, reducing the number of

ACKs slows the cwnd growth rate. However, the increase in the cwnd should be at most one

segment each RTT, regardless how many ACKs are received in that RTT [11]. Congestion

avoidance continues until congestion is detected.

 15

2.2.6 Fast Retransmit and Fast Recovery

TCP detects a segment loss in two different ways. The first way is by a timeout event. The TCP

sender starts the retransmission timer when it sends a window of segments and assumes that the

data were lost if no ACK has been received within the specified period. Then the TCP sender

sets the ssthresh to be one-half the amount of data in flight (also known as the flight size) or two

full-sized segments, whichever is larger:

()ssthresh max FlightSize 2, 2MSS .= (2.2)

It also sets the cwnd to the size of one full-sized segment and enters slow start. Thus, after

retransmitting the lost segment, the TCP sender uses the slow start algorithm to increase the

cwnd from one full-sized segment to the new value of the ssthresh. When the ssthresh is

exceeded, the TCP sender enters the congestion avoidance phase.

The other way TCP can detect a segment loss is by the arrival of duplicate ACKs, which is

known as fast retransmit [29]. When a duplicate ACK is received, the TCP sender does not know

if this is because a data segment was lost or because it was delayed and received out of order at

the TCP receiver. Then the TCP sender waits for a small number of duplicate ACKs to be

received. In order to provide timely detection of lost data, the fast retransmit algorithm is

triggered when the TCP sender receives three duplicate ACKs (i.e., four identical ACKs in a

row). Thus, after receiving the third duplicate ACK, TCP performs a retransmission of what

appears to be the missing segment, without waiting for the retransmission timer to expire.

To speed up the recovery of the sending rate after congestion in the network has been

detected and eliminated, a new algorithm, called fast recovery, has been specified in [11]. The

fast retransmit and fast recovery algorithms are usually implemented together as follows. When

the third duplicate ACK is received, the ssthresh is set to the value given in (2.2). The lost

segment is retransmitted and the cwnd is set to the ssthresh plus three full-sized segments. For

each additional duplicate ACK received, the cwnd is incremented by one full-sized segment. A

new segment is transmitted, if allowed by the updated value of the cwnd and the value of the

rwnd advertised in the duplicate ACKs. When the next ACK arrives that acknowledges new

data, the cwnd is set to the ssthresh and the TCP sender enters the congestion avoidance phase.

The reason for not performing slow start is that the receipt of duplicate ACKs not only indicates

that a packet has been lost, but also that other packets have left the network and, therefore, there

are still data flowing between the two hosts. The fast retransmit algorithm first appeared in TCP

Tahoe and was followed by slow start. The fast recovery algorithm appeared in TCP Reno.

Later, a number of new features for improving TCP loss detection and recovery have been

 16

proposed. Among the most known and widely adopted are the NewReno modification to the fast

recovery algorithm [49] and the SACK-based loss recovery algorithm [44].

2.2.7 Explicit Congestion Notification

Routers drop packets for a variety of reasons, but the most common is loss due to buffer

overflow or when the queue size exceeds a certain threshold [50]. TCP detects congestion

through the occurrence of losses and reduces the sending rate. However, detecting and

recovering lost data can be a lengthy process, especially if multiple packets are lost from one

window of data and/or there are not enough duplicate ACKs arriving at the TCP sender to trigger

fast retransmit/fast recovery. To avoid performance problems associated with dropped packets

due to congested routers, a new mechanism, called Explicit Congestion Notification (ECN), has

been developed [51]. It provides a means for intermediate routers to set a congestion signaling

flag in packets from ECN-capable TCP connections and, thus, to notify the hosts of impending

network congestion explicitly, instead of signaling congestion by dropping packets.

ECN support in TCP uses two flags of the reserved field in the TCP header: the ECN-Echo

(ECE) flag and the Congestion Window Reduced (CWR) flag. In turn, ECN support in IP uses

two flags in the IP header: the ECN-Capable Transport (ECT) flag and the Congestion

Experienced (CE) flag. Let us consider basic ECN operation.

• During the connection setup, both TCP peers exchange information about their

willingness to use ECN: the host that performs an active open sets the ECE and CWR

flags in the TCP header of the SYN segment, while the host that does a passive open

sends the SYN/ACK segment but only with the ECE flag. Then, ECN-capable hosts send

TCP segments with the ECT and CE flags in the IP header set to either 10 or 01.

• If ECN is not in use and congestion is detected at an intermediate router, packets are

dropped as usual. If congestion is detected at ECN-capable routers, then packets are not

dropped unless the congestion is very severe. Instead, a router that has congestion

imminent sets the ECT and CE flags in the IP header to 11.

• When the receiving host receives this packet, it sets the ECE flag in the TCP header and

continues setting this flag in subsequent ACKs.

• When the sending host receives the ACK with the ECE flag, it acts as if a single packet

has been dropped: it triggers the congestion avoidance algorithm and halves the cwnd

size. Then the sending host sets the CWR flag in the TCP header of the next segment in

order to acknowledge the reception of the congestion notification.

 17

• On receipt of the segment with the CWR flag set on, the receiving host stops setting the

ECE flag in subsequent ACKs.

It is worthwhile to note that ECN is a dual-layer mechanism, which involves interaction

between routers and hosts, thus the potential improvement in TCP performance can only be

achieved when both source and destination hosts support ECN and ECN-capable routers are

deployed along the path.

2.3 TCP Implementations

The conventional TCP implementations include TCP Tahoe [10], TCP Reno [29], TCP

NewReno [49], and TCP SACK [44]. During the last decade, a large variety of TCP

modifications have been proposed, ranging from minor changes to the present implementations

to completely new design approaches. As a rule, these modifications include algorithms

specifically developed to improve TCP performance in different scenarios and networking

environments (such as startup behavior, loss recovery, wireless environments, etc.). However,

such modifications are usually non-standard and should be used with care, understanding their

consequences, especially those concerned with Internet stability and fairness.

The massive deployment of high-speed networks has attracted a lot of attention to TCP

performance in LFNs. This is because the standard congestion control algorithms, developed

more than a decade ago, fail to utilize the available bandwidth effectively and provide sub-

optimal performance in networks with extremely large bandwidth and long delay. The main

problems limiting TCP performance in LFNs are as follows. The first problem is the AIMD

strategy itself: in congestion avoidance, the cwnd increases linearly by at most one MSS per

RTT, while even a single packet loss cuts the cwnd size and, therefore, the sending rate in half.

Since the number of RTTs required to restore the previous value of the sending rate depends on

the end-to-end path capacity (which is quite large in LFNs), this leads to long periods of

underutilization where the sending rate is less than the available bandwidth. The second problem

comes from the fact that standard TCP congestion control uses mainly packet drops to infer the

state of the network and to estimate the available bandwidth which provides only a rough

estimate and does not allow fine-tuning. To overcome these shortcomings, a number of new TCP

implementations have been developed, among the most known are TCP Westwood+ [52],

HighSpeed TCP [53] and Scalable TCP [54], BIC [55] and CUBIC [56], TCP Vegas [57] and

FAST TCP [58]. However, these promising implementations are beyond the scope of the thesis

which only aims at analytical modeling of the conventional TCP implementations.

 18

2.3.1 Comparison of TCP Implementations

The conventional TCP implementations are summarized in Table 2.2. It is easy to see that they

are based on the same congestion control algorithms and differ mainly in fast recovery.

Table 2. 2 Conventional TCP implementations

Congestion control algorithms TCP

Tahoe

TCP

Reno

TCP

NewReno

TCP

SACK

Acknowledgement scheme Cumulative

only

Cumulative

only

Cumulative

only

Cumulative

and selective

Karn’s algorithm Yes Yes Yes Yes

Slow start Yes Yes Yes Yes

Congestion avoidance Yes Yes Yes Yes

Fast retransmit Yes Yes Yes Yes

Fast recovery

* NewReno modification

** SACK-based

No Yes Yes* Yes**

Fig. 2.1 illustrates the TCP window evolution obtained using ns-2 [59]. In the ns-2

simulations, the initial value of the ssthresh and the rwnd size were set to be much larger than the

maximum number of packets that can be accommodated in the network. During the initial slow

start phase, the cwnd grows exponentially from the IW to the ssthresh, so the number of packets

injected into the network doubles every RTT (the delayed ACK algorithm is disabled).

Eventually, the bottleneck router gets overloaded, resulting in multiple packet drops due to

buffer overflow. Every time a segment loss is encountered (regardless of the way it is detected),

TCP Tahoe drops the cwnd to one full-sized segment and enters the slow start phase. The fast

recovery algorithm, implemented in TCP Reno, NewReno, and SACK, allows the invocation of

congestion avoidance instead of slow start after retransmission of a missing segment using the

fast retransmit algorithm. This leads to the saw-tooth pattern of AIMD: the cwnd slowly

increases (additive increase) and then abruptly is cut in half (multiplicative decrease). As it

 19

follows from Fig. 2.1, TCP Reno, NewReno, and SACK provide similar performance in the

presence of uncorrelated packet losses (i.e., when losses are predominantly single packet losses).

Everything changes when packet losses occur in bursts (see the initial slow start phase in

Fig. 2.1). In particular, TCP Tahoe, NewReno, and SACK significantly outperform TCP Reno

under correlated packet losses. This is due to the fact that TCP Reno can recover only one lost

segment per invocation of fast retransmit/fast recovery. Three or more losses in the same

window usually result in a lengthy timeout [60]. Note that in the ns-2 simulations, the minimum

value of the RTO was set to 1 second, since the current standard [45] dictates that whenever the

retransmission timeout value is computed, if it is less than 1 second then it should be rounded up

to 1 second (which is much larger than the RTT of an average TCP flow).

0 1 2 3
0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

0 1 2 3

0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

timeout

a) TCP Tahoe,

average sending rate = 1233 pkts/s

b) TCP Reno,

average sending rate = 1010 pkts/s

0 1 2 3
0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

0 1 2 3

0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

c) TCP NewReno

average sending rate = 1256 pkts/s

d) TCP SACK

average sending rate = 1259 pkts/s

Fig. 2. 1 TCP window evolution versus the maximum number of packets

that can be accommodated in the network, minRTO 1= s

 20

2.3.2 Deployment of TCP implementations and TCP options

Nowadays, TCP is an integral part of any OS, from desktop to server editions. In [61] [48], the

authors explored the prevalence of TCP implementations on Web servers. The measurement

results reported in [48] indicate that the fraction of SACK-capable Web servers and the

deployment of TCP NewReno have increased significantly in the last few years, while the

deployment of TCP Tahoe and TCP Reno has decreased and is limited now to just a few percent.

In this chapter, we investigate the default TCP settings used by modern OSs. According to

[62], as for October 2009, the Microsoft Windows family counts for about 90% of all client OSs

(out of which Windows XP and Windows Vista are the most popular), whereas the Mac OS X

and Linux families constitute approximately 6% and 4%, respectively. The statistics presented in

[63], as for October 2009, show that Ubuntu, openSUSE, Fedora, and Mint are the most popular

Linux distributions (out of more than 300 distributions listed there). However, since Mint is an

Ubuntu-based Linux distribution, we did not consider it separately. Thus, for our study, we used

the following OSs:

• Microsoft Windows 2000 Professional SP 4 Build 2195;

• Microsoft Windows XP Professional SP 3 Build 2600;

• Microsoft Windows Server 2003 Standard SP 2 Build 3790;

• Microsoft Windows Vista Home Basic SP 2 Build 6002;

• Microsoft Windows Server 2008 Standard SP 2 Build 6002;

• Microsoft Windows 7 Ultimate Build 7600.16385.090713-1255;

• Ubuntu 9.04 Desktop Edition Kernel 2.6.28-11-generic;

• openSUSE 11.1 Kernel 2.6.27.7-9-pae;

• Fedora 11 Desktop Edition Kernel 2.6.29.4-167.fc11.i686.pae;

• Mac OS X Leopard 10.5.8 Darwin Kernel 9.8.0.

Note that the MSS, window scale, SACK, ECN and other TCP options are sent only in SYN

and SYN/ACK segments (i.e., segments with the SYN flag set on). We used Wireshark [64] to

capture the packets of interest. The connection establishment segments are shown in Fig. 2.2.

The default TCP settings are summarized in Table 2.3. As it follows from the results

obtained, the most popular OSs are SACK-capable. At the same time, while most of them have

ECN support, it is not enabled. This is confirmed by recent measurements [48] [13], which show

that the fraction of ECN-capable TCP connections is limited to a few percent.

 21

a) Microsoft Windows 2000 Professional SP 4 Build 2195

b) Microsoft Windows XP Professional SP 3 Build 2600

c) Microsoft Windows Server 2003 Standard SP 2 Build 3790

d) Microsoft Windows Vista Home Basic SP 2 Build 6002

 22

e) Microsoft Windows Server 2008 Standard SP 2 Build 6002

f) Microsoft Windows 7 Ultimate Build 7600.16385.090713-1255

g) Ubuntu 9.04 Desktop Edition Kernel 2.6.28-11-generic

h) openSUSE 11.1 Kernel 2.6.27.7-9-pae

 23

i) Fedora 11 Desktop Edition Kernel 2.6.29.4-167.fc11.i686.pae

j) Mac OS X Leopard 10.5.8 Darwin Kernel 9.8.0

Fig. 2. 2 SYN segments

2.4 Conclusions

In this chapter, we considered the TCP congestion control algorithms and explored the default

TCP settings used by modern OSs. The results of the study allow us to draw the following

conclusions:

• The difference between Reno-based TCP implementations lies mostly in loss detection

and recovery and becomes especially clear in the presence of correlated losses.

Therefore, special attention should be paid on the fast retransmit and fast recovery

algorithms when packet losses occur in bursts.

• According to recent statistics, TCP NewReno and TCP SACK are the most widely used

TCP implementations.

• In modern OSs, the SACK and window scale options are enabled by default.

• Modern Windows, Linux, and Mac OSs support ECN but it is disabled by default.

 24

Table 2. 3 Default TCP settings (MTU 1500= bytes)

Operating system IW

size

(bytes)

Delayed

ACKs

enabled

Maximum

rwnd

(bytes)

SACK

option

enabled

Time-

stamps

enabled

ECN

support

enabled

Microsoft Windows 2000

Professional SP 4 Build 2195
1460 Yes 65,535

Yes No No

Microsoft Windows XP

Professional SP 3 Build 2600
1460 Yes 65,535

Yes No No

Microsoft Windows Server

2003 Standard SP 2

Build 3790

4380 Yes 65,535

Yes No No

Microsoft Windows Vista

Home Basic SP 2 Build 6002
2920 Yes

265,535 2
262,140

×
=

Yes No No

Microsoft Windows Server

2008 Standard SP 2

Build 6002

2920 Yes
265,535 2

262,140
×

=

Yes No No

Microsoft Windows 7

Ultimate Build

7600.16385.090713-1255

2920 Yes
265,535 2

262,140
×

=

Yes No No

Ubuntu 9.04 Desktop Edition

Kernel 2.6.28-11-generic
1460 Yes

565,535 2
2,097,120

×
=

Yes Yes No

openSUSE 11.1

Kernel 2.6.27.7-9-pae
1460 Yes

465,535 2
1,048,560

×
=

Yes Yes No

Fedora 11 Desktop Edition

Kernel 2.6.29.4-

167.fc11.i686.pae

1460 Yes
465,535 2

1,048,560
×

=

Yes Yes No

Mac OS X Leopard 10.5.8

Darwin Kernel 9.8.0
1460 Yes

365,535 2
524, 280

×
=

Yes Yes No

 25

 26

3. TCP PERFORMANCE IN WIRED NETWORKS
In this chapter, the developed analytical models for TCP performance evaluation in wired

networks are introduced. The chapter also describes the motivation of the research and the main

results obtained.

3.1 Short-Lived TCP Flows

Since TCP plays an important role in the Internet, a wide variety of analytical models have been

developed for predicting TCP performance under different scenarios. Among the most known

and widely referenced are the models presented in [65] [66] [67] [68] [69]. One way to classify

TCP analytical models is by the size of the data transfer under consideration [25]. According to

numerous measurement studies [70] [71] [72] [13], TCP traffic is dominated by short data

transfers. This is also known as the “mice and elephants” phenomenon: much of the traffic on the

Internet is carried by a small number of large flows (“elephants”), while most of the flows are

short in duration and carry small amounts of data (“mice”) [73]. This phenomenon can be

considered as invariant, where the term “invariant” refers to an Internet property that has been

empirically shown to hold in a very wide range of environments [74]. Since the vast majority of

TCP connections are short enough to experience any losses and spend the most part of their

lifetime in the initial slow start phase, their performance heavily depends on TCP startup

mechanisms: the three-way handshake connection establishment, the IW size, the slow start and

delayed ACK algorithms. Consequently, performance modeling and evaluation of short-lived

TCP flows has received a lot of attention in the literature (e.g., see [26] and references therein).

Moreover, there have been a number of different proposals on improving the startup and/or

restart performance of TCP connections [73]. Unfortunately, only one proposal [75], concerning

the increase in the permitted upper bound for the IW from one segment to 4380 bytes, has been

standardized by the IETF [47] and widely deployed [48].

3.1.1 Motivation and Related Work

The research presented in [P1] was motivated by the fact that different analytical models assume

different cwnd increase patterns during the initial slow start phase. Fig. 3.1 presents two

examples taken from [76] [77] (Fig. 3.1a and Fig 3.1b, correspondingly). Visual analysis shows

that Fig. 3.1a describes the case when the RTT is smaller than the delayed ACK timeout

(delACKT), while Fig. 3.1b assumes that the RTT is much bigger than this timeout value, which is

 27

usually set to 200 ms [68]. Obviously, the case when the RTT is larger than 200 ms and, hence,

RTT delACKT> is more typical for mobile or satellite networks, which are widely deployed today.

Therefore, a proper model should capture both cases.

A TCP connection starts with a three-way handshake in which the endpoints exchange their

initial sequence numbers. Once the TCP connection has been established, the initial slow start

phase begins. In this phase, the TCP sender increases the cwnd by one full-sized segment for

every new ACK it receives. Although the TCP receiver can acknowledge every successfully

received segment (1b =), as specified in [28], most TCP implementations use the delayed ACK

algorithm: the TCP receiver sends one ACK for every two segments that it gets (2b =) or if the

delayed ACK timer expires. The slow start phase ends when either the cwnd exceeds the ssthresh

or when congestion is observed.

delACK

cwnd 1=

cwnd 2=

cwnd 3=

cwnd 4=

cwnd 6=

cwnd 9=

cwnd 13=

delACK

delACK

cwnd 1=

cwnd 2=

cwnd 3=

cwnd 5=

cwnd 8=
delACK

a) 2b = , RTT delACKT< b) 2b = , RTT delACKT> c) 1b = , 0delACKT = s

Fig. 3. 1 Examples of the initial slow start phase, IW 1= full-sized segment

 28

In order to evaluate how the RTT and delACKT ratio affects the cwnd increase pattern, the

latency of the initial slow start phase, and the total number of segments sent, we used ns-2

simulations. The rwnd and the ssthresh were set to be high enough not to limit cwnd growth

during the initial slow start phase. Our analysis shows that different cwnd increase patterns take

place in the following cases:

a) RTT delACKT≤ ;

b) ()RTT , 2delACK delACKT T∈ ;

c) RTT 2 delACKT= ;

d) (]RTT 2 , 3delACK delACKT T∈ ;

e) (]RTT 3 , 4delACK delACKT T∈ ;

f) (]RTT 4 , 5delACK delACKT T∈ ;

g) (]RTT 5 , 6delACK delACKT T∈ ;

h) etc.

It should be emphasized that the cwnd increase pattern strongly depends on the observed

interarrival times and processing delays (i.e., whether the delayed ACK timer expires or not). In

this context, case c) can be considered as intermediate. However, we mention it here for the sake

of completeness. The obtained results for the first twelve rounds are summarized in Table 3.1

and Table 3.2. It is easy to see that the difference in the cwnd size and in the total number of

segments sent rapidly increases with the number of rounds.

As noted in [68], since the TCP receiver sends one ACK for every -thb segment that it

receives, the TCP sender will get approximately cwnd b ACKs every RTT. According to the

slow start algorithm, for every new ACK the TCP sender receives, it increases the cwnd by one

full-sized segment. Thus, from [68] we have:

1cwnd cwnd cwnd cwnd , 1, 2, ,i i i ib iγ+ = + = = … (3.1)

where γ , 1 1 bγ = + , is the rate of exponential growth of the cwnd.

We found that cases a), b), and c) (i.e., when RTT 2 delACKT≤) can be closely approximated

by (3.1). But if the delayed ACK timer expires before a new segment arrives (as in the cases

when RTT 2 delACKT>), we get the following cwnd increase pattern:

 29

1cwnd cwnd cwnd cwnd , 1, 2, ,i i i ib iγ+ = + = =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ … (3.2)

where ⎡ ⎤⎢ ⎥ is the ceiling function (i.e., x⎡ ⎤⎢ ⎥ is the smallest integer bigger than or equal to x).

Thus, the examples of the cwnd increase pattern in Fig. 3.1a and Fig. 3.1b can be approximated

by (3.1) and (3.2), respectively. Consequently, the comprehensive model can be expressed as

1

cwnd , RTT 2 ,
cwnd

cwnd , RTT 2 .
i delACK

i
i delACK

T
T

γ
γ+

≤⎧
= ⎨ >⎡ ⎤⎢ ⎥⎩

 (3.3)

It should be emphasized that when the TCP receiver does not use the delayed ACK

algorithm (see Fig. 3.1c), 2γ = and the cwnd increase pattern can be modeled just as (3.1).

Table 3. 1 cwnd increase patterns

Size of the cwnd (in full-sized segments) at the end of round i , cwndi Round,

i
a) b) c) d) e) f) g)

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 5 5 5 5 5 5

5 6 7 7 8 8 8 8

6 9 10 11 12 12 12 12

7 13 15 16 18 18 18 18

8 19 22 24 27 27 27 27

9 28 33 36 40 41 41 41

10 42 49 54 60 61 62 62

11 63 73 81 90 91 93 93

12 94 109 121 135 136 139 140

 30

Table 3. 2 Total number of segments sent

Total number of segments sent during n rounds, ssdatan Number

of rounds,

n a) b) c) d) e) f) g)

1 1 1 1 1 1 1 1

2 3 3 3 3 3 3 3

3 6 6 6 6 6 6 6

4 9 11 11 11 11 11 11

5 15 17 17 19 19 19 19

6 24 26 28 31 31 31 31

7 36 41 43 49 49 49 49

8 54 62 67 76 76 76 76

9 81 95 103 115 117 117 117

10 123 143 157 175 177 179 179

11 186 215 238 265 267 272 272

12 279 323 358 400 402 410 412

A number of models have been developed for the analysis of TCP startup behavior. In [68],

Cardwell et al. proposed to approximate the cwnd increase pattern as (3.1) and to compute the

total number of segments sent during the slow start phase as the sum of a geometric series.

Sikdar et al. noted that the cwnd increase pattern varies in practice and can make significant

differences for short-lived flows. In order to account such complex behavior, the model

presented in [69] uses an averaged pattern from (3.3). Finally, Zheng et al. proposed to model

(3.2) as the Fibonacci sequence [78]. Table 3.3 summarizes the resultant expressions.

 31

Table 3. 3 Analytical models for short-lived TCP flows

Output parameter Cardwell et al. [68] Sikdar et al. [69] Zheng et al. [78]

Size of the cwnd at

the end of round n ,

cwndn

1

1

cwnd ,

11 , cwnd IW

n

b

γ

γ

−

= + =

1 2

2 22 2 ,

 is the floor function

n n− −⎢ ⎥
+⎢ ⎥

⎣ ⎦

⎢ ⎥⎣ ⎦

1 1 2 2

1,2

1 2

cwnd ,

1 5 ,
2
1

= +

±
=

+ =

n n
n C X C X

X

C C

Number of

segments sent by

the end of round n ,

1
ssdata cwnd

=

=∑
n

n k
k

1

1

1cwnd ,
1

cwnd IW

γ
γ
−
−

=

n

4 31
82 32 3 2 2

2

nn −+⎢ ⎥⎛ ⎞
+ − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

2 2
1 1 2 2

2
1 1

2

2

n n

n

C X C X

C X

+ +

+

+ − ≈

≈ −

Number of rounds

to transfer ssdatan

segments

()
1

1

ssdata 1
log 1 ,

cwnd

cwnd IW

γ

γ −⎛ ⎞
+⎜ ⎟

⎝ ⎠

=

n

 2 5
8

2ssdata 4 3 2
2log

2 2 3 2

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞⎢ ⎥

n
1

1

ssdata 2
log 2

⎛ ⎞+
−⎜ ⎟

⎝ ⎠
n

X C

⎜ ⎟+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥

3.1.2 Model Building

The model developed in [P1] uses exactly the same assumptions about the hosts and the

underlying network as the models presented in [68] [69] [78]. Namely, we model TCP behavior

in terms of “rounds”, where a round begins when the TCP sender starts transmitting a window of

segments and ends when it receives the first ACK for one or more of these segments. It is

assumed that the TCP receiver uses the delayed ACK algorithm as specified in [28]. Similarly to

[68] [69] [78], we do not take into account the effects of the Nagle and SWS avoidance

algorithms. Instead, we assume that the TCP sender transmits full-sized segments whenever the

cwnd size allows, while the rwnd size is assumed to be large enough not to limit the sending rate

(i.e., at any moment in time, cwnd rwnd≤). We also assume that the time needed to send a

window of segments is smaller than the RTT, which is supposed to be independent of the

transmission window size.

Since the model proposed in [68] approximates well the initial slow start phase when

RTT 2≤ delACKT , the idea behind this study is to extend it for the case when RTT 2> delACKT . Note

that the ceiling function can be represented as

, 0 1.x x r r= + ≤ <⎡ ⎤⎢ ⎥ (3.4)

 32

Thus, we can define the cwnd increase pattern from (3.2) as

()

1

2 1

2
3 1 1

1 2
1 2

cwnd IW,

2

1

cwnd IW IW IW IW ,

cwnd IW IW ,

cwnd IW .

γ γ

γ γ γ γ

γ γ γ− −
− −

=

= + = = +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

= + = + +⎡ ⎤⎢ ⎥

= + + + +

…

…n n
n n n

b r

r r

r r r

r (3.5)

Since 2b = and 1.5γ = , we have that the vari bla e jr , 1, 2, , 1j n= −… , is a discrete

variable, which takes on a value of 0 or 0.5. As it follows from Table 3.4, jr is almost uniformly

distributed between these values. Then we use the following approximations:

[] 0 0.5 1
2 4

E r +
= = (3.6)

and

[]1cwnd cwnd cwnd .γ γ+ = ≈ +⎡ ⎤⎢ ⎥i i i E r (3.7)

Table 3. 4 cwnd increase pattern from (3.2), IW 1= full-sized segment

Round, i

1 2 3 4 5 6 7 8 9 10 11 12

cwndi 1 2 3 5 8 12 18 27 41 62 93 140

jr No 0.5 0 0.5 0.5 0 0 0 0.5 0.5 0 0.5

Hence, the number of segments sent by the end of round n can be found as

[]() [] []()
[] [] []() [] ()

2

1 2 1 1

1 1

ssdata IW IW IW

IW IW .

γ γ γ

γ γ γ γ γ− − − −

= =

= + + + + + + +

+ + + + + = + −∑ ∑

…

…

n

n n
n n k

k k

E r E r E r

E r E r E r E r n k k
 (3.8)

To find the number of rounds required to transfer ssdatan segments (i.e., the value of n), we

transform expression (3.8) to the canonical form:

() []
[]()

() () []
[]()

2IW 1 ssdata 1 IW 1
0.

1 1
γ γ γ

γ
γ γ

⎛ ⎞− + − + − +
− + =⎜ ⎟⎜ ⎟− −⎝ ⎠

nnE r E r
n

E r E r
 (3.9)

 33

The obtained equation is a transcendental equation, which usually cannot be solved by an exact

method, only by a numerical approach. In [P1], we used a new method of finding solutions to

transcendental equations proposed in [79]. Appendix A provides a brief introduction to this

method. Particularly, let (3.10) be a transcendental equation:

()1 2
1 2 0,n n n d q

n d n q nx a x a x a x a x f x a− −
− −+ + + + + + + =… (3.10)

where ()f x is a transcendental function.

According to [79], the equation determinant is given by

() () ()1 2
1 2

, .
d

n q
n d n dn d

q n n d

n q

amp p
a f m m a m a m am

a

−
− + − +−

−

−

−
= =

+ + + + ++ …

(3.11)

The range of values of m and, consequently, the approximate real roots of the equation can be

found from the set of inequalities for 0p > and for 0p < . Taking into account that n is positive

by definition and, hence, 0m > , we arrive at:

() () []
[]()

() []()
() () []

2

2

ssdata 1 IW 1
0,

1

IW 1
0 1 0,

ssdata 1 IW 1

0.

γ γ
γ

γ γ

γ γ

⎧ − + − +
+ >⎪

−⎪
⎪ − +⎪< − <⎨

− + − +⎪
⎪
⎪
⎪ >⎩

m

m

m

E r
m

E r

E r
p

E r

m

(3.12)

Thus, we have:

()
() []

2ssdata 1
log 1 .

IW 1
mm

E rγ

γ
γ

⎛ ⎞−
> +⎜ ⎟

⎜ ⎟− +⎝ ⎠
 (3.13)

As it follows from Table 3.5, expression (3.14) is a fairly good approximation of the number of

rounds required to transfer ssdatan segments:

()
() []

2ssdata 1
log 1 .

IW 1γ

γ
γ

⎛ ⎞−
≈ +⎜ ⎟

⎜ ⎟− +⎝ ⎠

nn
E r

 (3.14)

Finally, from (3.5) and (3.6) we obtain the cwnd size at the end of round n :

[] []
11

1 1 1

1

1cwnd IW IW .
1

γγ γ γ
γ

−−
− − −

=

−
= + = +

−∑
nn

n k n
n

k

E r E r (3.15)

 34

Table 3. 5 Approximate analytical solution for the number slow start rounds

IW 1= IW 2= IW 3=
Round,

i
1

cwnd
cwnd

i

iγ −

=

⎡ ⎤⎢ ⎥

1

ssdata

cwnd

i
i

k
k=

=

∑
 as in

(3.14)

n

1

cwnd
cwnd

i

iγ −

=

⎡ ⎤⎢ ⎥

1

ssdata

cwnd

i
i

k
k=

=

∑
 as in

(3.14)

n

1

cwnd
cwnd

i

iγ −

=

⎡ ⎤⎢ ⎥

1

ssdata

cwnd

i
i

k
k=

=

∑
 as in

(3.14)

n

1 1 1 0.71 2 2 0.83 3 3 0.88

2 2 3 1.71 3 5 1.71 5 8 1.88

3 3 6 2.71 5 10 2.71 8 16 2.93

4 5 11 3.8 8 18 3.76 12 28 3.97

5 8 19 4.91 12 30 4.80 18 46 4.99

6 12 31 5.99 18 48 5.82 27 73 6.01

7 18 49 7.04 27 75 6.84 41 114 7.03

8 27 76 8.07 41 116 7.86 62 176 8.05

9 41 117 9.1 62 178 8.88 93 269 9.06

10 62 179 10.13 93 271 9.89 140 409 10.7

11 93 272 11.14 140 411 10.9 210 619 11.08

12 140 412 12.16 210 621 11.91 315 934 12.09

13 210 622 13.17 315 936 12.92 473 1407 13.09

14 315 937 14.17 473 1409 13.92 710 2117 14.10

15 473 1410 15.18 710 2119 14.93 1065 3182 15.10

16 710 2120 16.18 1065 3184 15.93 1598 4780 16.10

17 1065 3185 17.19 1598 4782 16.93 2397 7177 17.10

18 1598 4783 18.19 2397 7179 17.93 3596 10773 18.10

 35

3.1.3 Model Validation and Conclusions

In order to validate the proposed model and compare it with the models presented in [68] [69]

[78], we compare the results obtained from the analytical models against the simulation results

obtained using ns-2. The ns-2 trials consisted of the cross-product of { }IW 1, 2, 3= full-sized

segments, { }100,150, 200delACKT = ms, and RTT ≤ delACKNT , 1, 2, ,6N = … . To estimate the

accuracy in prediction of the cwnd increase pattern and the number of segments sent during the

initial slow start phase, we computed the relative error at round i using the following expression:

()
() ()()

()
predicted observed

observed

100%, 1, 2, .ε
−

= = …
X i X i

i i
X i

 (3.16)

Hence, a model overestimates an actual value when 0ε > and underestimates it when 0ε < .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

a) The cwnd increase pattern b) The number of segments sent

Fig. 3. 2 Initial slow start phase, RTT ≤ delACKT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

a) The cwnd increase pattern b) The number of segments sent

Fig. 3. 3 Initial slow start phase, ()RTT , 2∈ delACK delACKT T

 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

a) The cwnd increase pattern b) The number of segments sent

Fig. 3. 4 Initial slow start phase, RTT 2= delACKT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

100−

50−

0

50

100

150

200

250

300
Cardwell et al.
Sikdar et al.
Zheng et al.
Proposed model

Rounds

R
el

at
iv

e
er

ro
r,

%

a) The cwnd increase pattern b) The number of segments sent

Fig. 3. 5 Initial slow start phase, (]RTT 2 , 3∈ delACK delACKT T

For the sake of briefness, we present the results only for IW 1= full-sized segment and

cases a), b), c), d) (Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.5, correspondingly). The results for the other

two values of the IW and cases e), f), g) are qualitatively similar (see [P1] for details).

The obtained results lead to the following conclusions.

• All the examined models fail to predict the whole range of cases with different RTT and

delACKT ratios. For instance, the model proposed by Zheng et al. [78] is more suitable for

the cases when RTT > delACKT . Within the first rounds, this model captures the cwnd

increase pattern and the total number of transmitted segments without any error.

Unfortunately, with the increase in the number of rounds, it greatly overestimates these

parameters and introduces a significant error. This is due to the fact that the cwnd

increase pattern can be represented by the Fibonacci sequence only in the first rounds

 37

(i.e., cwnd 1, 2,3,5,8=). After that, the approximation error grows exponentially.

Although the model developed by Sikdar et al. [69] is intended to capture all possible

cases with and without delayed ACK timeout expirations, it gives the best results only for

the case when RTT ≤ delACKT and IW 1= (see [P1] for details). Since the proposed model

was derived for the case when RTT 2> delACKT , it leads to a significant overestimation for

the opposite case, but when RTT 2> delACKT , it outperforms all the examined models.

• As the developed model performs well for the case when RTT 2> delACKT , to obtain a

comprehensive model, we only need to select an appropriate model for the case when

RTT 2≤ delACKT . In addition to acceptable accuracy over a wide range of rounds and

different values of the IW size (see [P1] for details), the model proposed by Cardwell

et al. [68] has a solid theoretical background and can be easily extended to capture the

case when the TCP receiver does not use the delayed ACK algorithm. Thus, combining

the results from [68] with the developed model, we get the comprehensive analytical

model for short-lived TCP flows, which takes into account the impact of different RTT

and delACKT ratios on the initial slow start phase.

3.2 TCP Reno Performance and the PFTK-model

There are various metrics used to characterize the performance of TCP implementations:

bandwidth utilization, fairness, responsiveness, aggressiveness, etc. Data throughput, as an

assessment of the amount of data that can be transmitted per unit of time, is an important metric

for quantifying TCP performance. Since TCP throughput is a mean (rather than instantaneous)

parameter, this value is averaged over a long time (sometimes considered infinity). Therefore,

this performance metric is closely coupled with long-lived TCP flows.

One of the best known analytical models for evaluating the throughput of a TCP connection

is the model proposed by Padhye et al. in [67], also known as the PFTK-model (named after the

authors’ surnames: Padhye, Firoiu, Towsley, Kurose). This model is widely referenced: entering

the paper title in the Scientific Literature Digital Library search engine gives several hundred

citations [80]. The PFTK-model defines the steady-state throughput of a long-lived TCP Reno

bulk data transfer as a function of the loss event rate, the mean RTT, the expected duration of a

timeout, and the maximum size of the rwnd. It assumes a correlated (bursty) loss model that is

better suited for First-In, First-Out (FIFO) Drop-Tail queue management, which is still widely

used [81] [82, p.51]. Unfortunately, this model uses an oversimplified representation of fast

 38

retransmit/fast recovery dynamics as having (supposedly) negligible effect on TCP Reno

throughput. As it will be shown later, this simplification results in overestimation of TCP Reno

throughput in the presence of correlated losses. Since new analytical models are often compared

with the PFTK-model and use its resultant formula, such inaccuracy in throughput estimation

can lead to erroneous results and/or incorrect conclusions. In [P2], the PFTK-model was revised

to make it more consistent with actual TCP Reno behavior when segment losses occur in bursts.

3.2.1 Motivation and Model Building

The refined model we develop is based on the same assumptions about the hosts and the

underlying network as the PFTK-model. We assume that the sending host uses the TCP Reno

implementation [29] and always has data to send. Since we are focusing on TCP performance,

we do not consider sender-side or receiver-side delays and limitations due to scheduling or

buffering. Therefore, we assume that the TCP sender sends full-sized segments whenever the

cwnd allows, while the rwnd is assumed to be always constant. We model TCP behavior in terms

of “rounds” as it was done in [67] and in the previous section. Considering the data transfer, we

assume that segment losses happen only in the direction from the TCP sender to the TCP

receiver. Moreover, we assume that a segment is lost in a round independently of any segments

lost in other rounds, while segment losses are correlated within a round (i.e., if a segment is lost,

all the remaining segments in that round are also lost). This bursty loss model is a simplified

representation of the packet loss process in FIFO Drop-Tail routers. We assume that the time

needed to send a window of segments is smaller than the duration of a round. It is also assumed

that the probability of a segment loss and the duration of a round are independent of the window

size. The latter assumption is justified in case of a high level of statistical multiplexing.

According to [29], a segment loss can be detected in one of the two ways: either by

reception of three duplicate ACKs or via retransmission timer expiration. Similarly to [67], let us

denote the first event as a TD (Triple-Duplicate) loss indication and the second as a TO

(TimeOut) loss indication. As in [67], we develop our model in three steps:

• when the first loss indication in a cycle is exclusively TD and the cwnd is always smaller

than the rwnd;

• when the first loss indication in a cycle is either TD or TO and the cwnd is always

smaller than the rwnd;

• when the first loss indication in a cycle is either TD or TO and the sending rate is limited

by the rwnd.

 39

Fig. 3. 6 TCP Reno window evolution in the absence of timeouts (as assumed in [67])

First of all, let us investigate the case when the first loss in a cycle is detected exclusively

via a TD loss indication, while the sending rate is not limited by the rwnd (see Fig. 3.6).

Considering the cyclic evolution of the cwnd size over time, let iY be the number of segments

sent during the -thi cycle, 1, 2,i = … , iA be the duration of the cycle in rounds, and iW be the

window size at the end of the cycle. Let { }tW , 0t > , be a regenerative process with a renewal

reward process { }tY , and the moments of time when a segment loss is detected be regenerative

points. Then we can define the TCP long-term steady-state throughput as

[]
[]

lim lim ,t
tt t

E YNB B
t E A→∞ →∞

= = = (3.17)

where tB is the sending rate in the interval []0, t ; tN is the number of segments sent in this

interval; []E Y is the expected number of segments sent during a cycle; []E A is the expected

duration of a cycle in rounds.

Note that in [67] a cycle is defined as a period of time between two TD loss indications and

is denoted as a TD Period (TDP). Fig. 3.7 shows the -thi TDP according to [67]. The TDP starts

immediately after the TD loss indication, so the current value of the cwnd (expressed in full-

sized segments) is set to 1 2iW − . The TCP receiver sends one ACK for every -thb segment that

it receives (in Fig. 3.7 and Fig. 3.8, 2b =), so the cwnd increases linearly with a slope of 1 b

segments per round until the first segment loss occurs. Let us denote by iα the first lost segment

in the -thi cycle and by iX the round where this loss occurs (see Fig. 3.7). According to the

sliding window algorithm, after the segment iα , 1iW − more segments are sent before the loss is

detected at the TCP sender and the current TDP ends.

 40

i

iδ

iβ

iα1

2
iW −

iW

Fig. 3. 7 TDP (as assumed in [67])

cwnd 8
FlightSize 8
cwnd FlightSize

=
=

=

() ()
FlightSize 8
ssthresh max FlightSize 2, 2 max 4, 2 4

4

cwnd ssthresh 4 4 8

cwnd FlightSize

DupACK

DupACK

N

N

=

= = =

=

= + = + =

=

FlightSize 7
ssthresh 4
cwnd ssthresh 4
cwnd FlightSize

=
=

= =
<

FlightSize 7
ssthresh 4
cwnd 1

=
≈

=

round iX

round 1iX +

round 2iX +

cwnd 8
FlightSize 8
cwnd FlightSize

=
=

=

iα

iδ iβ

Fig. 3. 8 Transmission of segments in the last rounds of the -thi TDP

 41

Let us consider the evolution of the cwnd size in the -thi cycle after the detection of the first

loss (see Fig. 3.8). Taking into account the assumption about correlated losses within a round

(i.e., if a segment is lost, so are all the following segments till the end of the round), all segments

following iα in the round iX are lost as well. Let us define iδ to be the number of segments lost

in the round iX and iβ to be the number of segments sent in the next round 1iX + of the -thi

cycle. In [67], it is assumed that the random variable iβ is uniformly distributed from zero to

1iW − segments. Thus, taking into account that i i iWβ δ= − (see Fig. 3.8), we can use the

following approximation:

[] [] [] [] [] []1 1
, .

2 2 2 2
E W E W E W E W

E Eβ δ
− +

= ≈ = ≈ (3.18)

After a TD loss indication, the TCP sender enters the fast retransmit/fast recovery phase and

performs a retransmission of what appears to be the missing segment. The ssthresh and the

current value of the cwnd are updated according to [29] as

()ssthresh max FlightSize 2, 2 , ssthresh ,′= = + DupACKW N (3.19)

where FlightSize is the number of segments that have been sent, but not yet acknowledged; W ′

is the value of the cwnd during the fast recovery phase; DupACKN is the number of received

duplicate ACKs.

Since we assume (as was done in [67]) that the number of lost segments per loss event is

approximately equal to half of the segments within the transmitted window, then

[]DupACKE N E β⎡ ⎤ =⎣ ⎦ and [] []FlightSize =E E W . Hence, we can determine []E W ′ as follows:

[] [] [] [] []ssthresh .
2 2

′ ⎡ ⎤= + = + =⎣ ⎦DupACK

E W E W
E W E E N E W (3.20)

As [] []FlightSize′ =E W E , it is expected that the TCP sender will not send new segments in

the fast recovery phase. After the successful retransmission of the segment iα , the TCP sender

will receive a new ACK, indicating that the TCP receiver is waiting for the segment 1iα + . As a

consequence of receiving this new ACK, the fast retransmit/fast recovery phase ends and

according to [29] the new value of the cwnd is set as ssthresh=W , where the ssthresh is from

(3.19). Since the number of segments that are still unacknowledged is larger than the new value

of the cwnd, the TCP sender cannot transmit new segments. Therefore, this ACK will be the last

one. As the TCP sender will not be able to invoke the fast retransmit algorithm again, then it will

wait for expiration of the retransmission timer, which was restarted after the successful

 42

retransmission of the segment iα in accordance to step 5.3 in [45] (denoted by the grey diamond

in Fig. 3.8). After TCP retransmission timer expiration, the values of the cwnd and the ssthresh

are set as cwnd 1= and ()ssthresh max FlightSize 2, 2= , and the slow start phase begins.

Consequently, the expected number of segments sent during the fast retransmit/fast recovery

(FR) phase and the expected number of rounds in this phase can be defined as

1, 1.FR FRE Y E A⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ (3.21)

Thus, in the presence of correlated losses and when the first loss in a cycle is detected via a

TD loss indication, the following sequence of steps is expected:

• triggering the fast retransmit and fast recovery algorithms, retransmission of the first lost

segment;

• waiting for TCP retransmission timer expiration, which was restarted after the successful

retransmission of the first lost segment;

• triggering the slow start algorithm.

Our observations well agree with the results from [60] [83], showing that TCP Reno has

serious performance problems when multiple segments are dropped from a window of data and

that these problems result from the need to wait for TCP retransmission timer expiration before

reinitiating data flow. Moreover, the empirical measurements from [67] (Table 2, columns “Loss

Indic.” and “T0”) show that the significant part of loss indications (at the average, about 70%) is

due to timeouts, rather than TD loss indications.

The inability of TCP Reno to recover from multiple losses without waiting for the

retransmission timer to expire and performing slow start is illustrated in Fig. 3.9. The ns-2

scenario is similar to that in Chapter 2. During the unconstrained slow start phase, the number of

packets injected into the network doubles every RTT (the delayed ACK algorithm is disabled).

Ultimately, the bottleneck router gets overloaded, resulting in multiple packet drops due to buffer

overflow. As it was noted in [60] and is shown in Fig. 3.9a, TCP Reno is optimized for the case

when a single packet is dropped from a window of data (see the congestion avoidance phase with

the saw-tooth oscillations caused by AIMD). But when multiple packets are dropped from the

same window (see the initial slow start phase), TCP Reno has performance problems. This is

caused by the fact that only one of the lost segments can be recovered by a single invocation of

the fast retransmit algorithm, so the rest are usually recovered using slow start after TCP

retransmission timer expiration. Obviously, lengthy idle periods result in a much smaller TCP

throughput compared to an almost perfect saw-tooth pattern as assumed in [67] (see Fig. 3.6).

 43

0 1 2 3
0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

timeout

0 1 2 3

0

500

1 103×

1.5 103×

Time, s

Se
qu

en
ce

 n
um

be
rs

 o
f s

eg
m

en
ts

 se
nt

a) The window evolution b) The segments sent

Fig. 3. 9 TCP Reno behavior, minRTO 1= s

In order to include the fast retransmit/fast recovery phase and the slow start phase, we define

a cycle to be a period between two TO loss indications (except for periods between two

consecutive timeouts). Therefore, a cycle consists of the slow start phase, the congestion

avoidance phase, the fast retransmit/fast recovery phase, and one timeout. An example of the

evolution of the cwnd size during the -thi cycle is shown in Fig. 3.10, where the congestion

avoidance phase (TDP in [67]) is supplemented with the slow start phase at the beginning and

the fast retransmit/fast recovery phase with one timeout at the end.

i

iα1

2
iW −

iW

i

()1ssthresh max 2, 2i iW+ =

Fig. 3. 10 Example of a cycle (by the new definition)

 44

Further modeling is generally the same as in [67] and is described in detail in [P2]. Finally,

the steady-state throughput of a long-lived TCP Reno bulk data transfer can be expressed as

l ()

() l ()

l ()

() l ()

max

2

max max

max
max max

2 max max
max

1 [] []
1 , [],

[] ()RTT max log [], 2 1 2 RTO [] RTO RTT
2 1
1

1 ,
4 3 ()RTT max log , 2 RTO RTO RTT

8 4 2 1

B

pE W Q E W
p p W E W
E W f pE W b Q E W

p
pW Q W

p p W E
bW bpW f pW Q W

pW p

=

+ +
−

>
⎛ ⎞⎛ ⎞⎛ ⎞+ + + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

+ +
−

≤
⎛ ⎞+ ⎛ ⎞

+ + + + + −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

[],W

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

(3.22)

where maxW is the maximum possible value of the rwnd (expressed in full-sized segments); lQ is

the probability that a loss indication is TO for the expected window size at the end of a cycle,

l []() []()min 1, 3Q E W E W≈ ; () 2 3 4 5 62 2 4 8 16 32f p p p p p p p= + + + + + ; RTT is the mean

RTT; RTO is the expected duration of a timeout; []E W is the expected window size at the end

of a cycle and is given as

[]
22 3 8 2 3 .

3 3 3
b bE W

b bp b
+ +⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.23)

As in the previous section, b refers to the delayed ACK algorithm: when the TCP receiver

acknowledges every successfully received segment, 1b = ; when the delayed ACK algorithm is

enabled, 2b = .

It should be noted that the definition of ()f p is different from the one used in [67]. This is

because the duration of the first timeout from a sequence of consecutive timeouts has been

incorporated in the duration of a cycle (see Fig. 3.10).

3.2.2 Model Validation and Conclusions

In order to validate the proposed model and compare it with the original one [67], we compare

the results obtained from the analytical models against the simulation results obtained using ns-2.

In our experiments, we used a “dumbbell” topology with a single bottleneck (see Fig. 3.11). To

model a TCP Reno connection, we used Agent/TCP/Reno as the TCP sender,

Agent/TCPSink/DelAck as the TCP receiver (so the delayed ACK algorithm was enabled), and

Application/FTP as the greedy application process which always has data to send. We set the

MSS to be 1460 bytes and maxW to be 10 full-sized segments.

 45

Fig. 3. 11 ns-2 simulation setup

As it was noted in [84], Web traffic tends to be self-similar in nature, while a superposition

of many ON/OFF sources, whose ON/OFF times are independently drawn from heavy-tailed

distributions such as the Pareto distribution, can produce asymptotically self-similar traffic [85].

Thus, we modeled the effects of competing Web-like traffic, sharing the bottleneck with the

considered TCP Reno connection, as a superposition of a large number of ON/OFF UDP

sources. The number of ON/OFF UDP sources was varied between 220 and 420 with a step of

10 sources. In our experiments, we used the shape parameter of the Pareto distribution of 1.2, the

mean ON time of 1 second, and the mean OFF time of 2 seconds. During ON times the UDP

sources sent data at 12 kbit/s.

To quantify the accuracy of the analytical models, we computed the average error using the

following expression:

() ()
()

predicted observed

observations observedAverage error 100%.
number of observations

B p B p

B p

−

=
∑

(3.24)

Fig. 3.12a shows the average TCP Reno throughput (calculated and measured) as a function

of the loss event rate p . The average errors of the proposed model and the PFTK-model are

presented in Fig. 3.12b. As it follows from the results depicted in Fig. 3.12b, the refined model

has the average error smaller than 5% over a wide range of loss rates with the mean of 3%, while

the original PFTK-model performs well only when the loss rate is quite small and significantly

overestimates TCP Reno throughput in the middle-to-high loss rate range (up to 50% and above).

Notice that by varying the number of ON/OFF UDP sources and, therefore, the volume of

background traffic, we obtain the following two extreme cases (see Fig. 3.13a).

• When the volume of background traffic is very low, almost all packet losses are caused

by the considered TCP connection itself. In this case, the transmission window size

 46

shows a perfect saw-tooth behavior: when the last segment in a window gets lost, the

current value of the cwnd is halved, the TCP sender performs a retransmission of what

appears to be the missing segment and returns to the congestion avoidance mode with a

linear increase of the cwnd size until the next loss. Thus, segment losses are independent

and the loss process tends to be periodic. Since the proposed model assumes that packet

losses are correlated within a round, the throughput prediction error of the revised model

increases. Meanwhile, since almost all the time the TCP connection operates in the

congestion avoidance mode and, hence, loss recovery dynamics does not seriously affect

the performance, the throughput prediction error of the PFTK-model decreases (see

Fig. 3.12b). Fig. 3.13b presents the average number of lost segments per loss event

according to the ns-2 simulations and (3.18). While constructing the model, we assumed

(similar to [67]) that in case of congestion along the path about half of the transmitted

window of segments will be lost. It is easy to see that in our simulations this assumption

holds only when the number of ON/OFF UDP sources is equal to 380. In this case, the

average error of the proposed model is less than 1%.

• On the other hand, when the volume of background traffic is quite high, the timeout

probability increases, so the TCP connection spends the most part of its lifetime in the

slow start phase or waiting for TCP retransmission timer expiration. Under such

conditions, both models fail to accurately predict the steady-state throughput (Fig. 3.12b).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

20

40

60

80
ns2
Confidence interval (ns2)

Proposed model
Confidence interval (proposed model)

PFTK-model
Confidence interval (PFTK-model)

Loss event rate (p)

A
ve

ra
ge

 th
ro

ug
hp

ut
 (s

eg
m

./s
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0

10

20

30

40

50

60

70

80

90

100
Proposed model

Confidence interval (proposed model)
PFTK-model

Confidence interval (PFTK-model)

Loss event rate (p)

A
ve

ra
ge

 e
rr

or
, %

a) The steady-state throughput b) The average error

Fig. 3. 12 ns-2 simulation results versus predicted values

for the TCP Reno steady-state throughput

Finally, it is worthwhile to note that it is a non-trivial task to simulate large bursts of packet

loss (as assumed by the bursty loss model in [67] and, thus, in [P2]), since a typical ns-2 loss

 47

event consists of just a few packet drops per TCP flow (Fig. 3.13b). A similar observation was

also made in [86]. This is caused by statistical multiplexing and interleaving of packets from

different flows, which expands the inter-packet distance of each flow and, hence, decreases the

number of dropped packets belonging to the same flow in case of congestion. Moreover, the

empirical measurements from [82, p.51] show the majority of losses are single packet losses.

Nevertheless, we believe that even if the bursty loss model is not very typical in today’s Internet,

TCP performance in the face of such losses deserves to be addressed and carefully studied.

220 240 260 280 300 320 340 360 380 400 420
0

20

40

60

80
ns2
Confidence interval (ns2)

Proposed model
Confidence interval (proposed model)

PFTK-model
Confidence interval (PFTK-model)

Number of ON/OFF UDP sources

A
ve

ra
ge

 th
ro

ug
hp

ut
 (s

eg
m

./s
)

220 240 260 280 300 320 340 360 380 400 420
0

1

2

3

4

5

6
Measured
Expected

Number of ON/OFF UDP sources

N
um

be
r o

f d
ro

pp
ed

 s
eg

m
en

ts
 p

er
 lo

ss
 e

ve
nt

a) On the accuracy of the models b) On the average loss burst length

Fig. 3. 13 Effect of the volume of background traffic on the models’ accuracy

3.3 TCP NewReno Performance

For a long time, the reference TCP implementation has been TCP Reno first deployed in the

4.3BSD-Reno and specified in [29]. This document defines the four intertwined congestion

control algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery. TCP

NewReno is a subsequent modification of the basic TCP Reno implementation and incorporates

slow start, congestion avoidance, and fast retransmit from [29] with a modified fast recovery

algorithm [49]. This modification concerns the sender’s behavior during fast recovery when a

partial ACK is received that acknowledges some but not all of the segments sent before entering

the fast recovery phase. While in TCP Reno the reception of a partial ACK takes the TCP sender

out of the fast recovery mode, in TCP NewReno the TCP sender stays in fast recovery until

either a full ACK arrives that acknowledges all of the segments outstanding by the time the fast

recovery phase was entered (see Fig. 3.14), or the TCP retransmission timer expires

(see Fig. 3.15). As a result, TCP NewReno provides more stable performance in the face of

multiple dropped segments and, therefore, avoids multiple reductions of the cwnd and reduces

the frequency of timeout-based loss recovery, which are typical for TCP Reno [60].

 48

The current standard [49] specifies two variants of TCP NewReno: Slow-but-Steady and

Impatient. The only difference between them lies in the TCP retransmission timer resetting

scheme in response to partial ACKs. In the Slow-but-Steady variant, the TCP sender resets the

retransmission timer after each partial ACK. Consequently, when N segments have been lost

from a window of data, the Slow-but-Steady variant can remain in the fast recovery phase for N

RTTs, retransmitting by one lost segment every RTT (Fig. 3.14a). In the Impatient variant, the

TCP sender performs resetting only after the first partial ACK. Therefore, if a large number of

segments were lost from a window of data, the TCP retransmission timer ultimately expires and

the TCP sender will enter the slow start phase (Fig. 3.15a). Depending on the given operating

conditions (the number of lost segments, delay variation, etc.) either one or the other variant may

provide better performance.

0 0.5 1 1.5
0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

full_ACK

0 0.5 1 1.5

0

400

800

1.2 103×

Time, s

Se
qu

en
ce

 n
um

be
rs

 o
f s

eg
m

en
ts

 se
nt

a) The window evolution b) The segments sent

Fig. 3. 14 The Slow-but-Steady variant of TCP NewReno, minRTO 200= ms

0 0.5 1 1.5
0

20

40

60
cwnd size
network capacity

Time, s

W
in

do
w

, p
kt

s

timeout

0 0.5 1 1.5

0

400

800

1.2 103×

Time, s

Se
qu

en
ce

 n
um

be
rs

 o
f s

eg
m

en
ts

 se
nt

a) The window evolution b) The segments sent

Fig. 3. 15 The Impatient variant of TCP NewReno, minRTO 200= ms

 49

3.3.1 Motivation and Model Building

While TCP performance modeling has received a lot of attention during the last years, the

majority of the proposed models were developed for the TCP Reno implementation (e.g., see

[26] and references therein). In the absence of sufficient analytical background, the current

standard [49] recommends the Impatient variant of TCP NewReno based only on simulation

results. Although network simulation is a powerful tool in protocol analysis and design, it is a

difficult task to simulate TCP NewReno behavior across the range of all possible operating

conditions and protocol parameter settings. In this case, an analytical model would be extremely

useful because it not only allows to apply a “what if” test to different scenarios, but also to

explore TCP NewReno performance over the entire parameter space. Thus, the objective of the

study in [P4] is two-fold. Firstly, we develop an analytical model of the steady-state throughput

of the Impatient variant of TCP NewReno, which together with the previously obtained model of

the Slow-but-Steady variant in [P3] gives us a comprehensive model of TCP NewReno

throughput. We then evaluate the TCP NewReno variants and define the most preferable one.

Since the difference between them only appears when multiple segments are lost from the same

window of data, we focus our analysis on the case of bursty losses inherent to a Drop-Tail

environment. While constructing our model, we use exactly the same assumptions about the

hosts and the network as in section 3.2.1 (of course, with the exception of the TCP

implementation in use, which is TCP NewReno in this case).

According to [49], a segment loss (if the TCP sender is not already in the fast recovery

phase) can be detected in one of the two ways: either by reception of three duplicate ACKs or via

TCP retransmission timer expiration. In the latter case, the TCP sender enters slow start and

recovers what appears to be the lost segment(s) using the Go-Back-N strategy, but no fast

recovery is performed. Since the fast recovery algorithm is the distinctive feature of TCP

NewReno, we focus on the “pure” TCP NewReno behavior, where all loss detections are due to

“triple-duplicate” ACKs. However, the model can be easily extended to capture loss detections

via timeouts by following the approach proposed in [67].

Similar to [67], let us consider steady-state TCP NewReno behavior as a sequence of

renewal cycles, where a cycle is a period between two consecutive loss events detected by

reception of three duplicate ACKs. Then we can define the TCP steady-state throughput as the

ratio between the expected number of segments sent during a cycle and the expected duration of

a cycle. Let 1iδ − denotes the number of segments lost in cycle 1i − . In contrast to the Slow-but-

Steady variant, where the TCP sender recovers one lost segment per round and the number of

rounds in the fast retransmit/fast recovery phase of the -thi cycle can be defined as 1
FR
i iA δ −= , in

 50

the Impatient variant the TCP sender resets the retransmission timer only after the first partial

ACK, so the number of rounds in the fast retransmit/fast recovery phase of the -thi cycle can be

expressed as ()1min ,1 RTO RTTδ −= +FR
i iA . Let us define δ to be the average number of

segments lost in a row per loss event (also known as the average loss burst length) and τ to be

the ratio between the expected duration of a timeout (RTO) and the mean RTT (RTT),

RTO RTTτ = , 1τ > . For simplicity, we suppose that τ is integer. We assume that when

1δ τ< + , the resetting scheme of the TCP retransmission timer has a negligible effect on the fast

recovery phase and the steady-state throughput of the Impatient variant is identical to that of the

Slow-but-Steady one. On the other hand, if 1δ τ≥ + , it is expected that the TCP sender cannot

recover all lost segments during the fast recovery phase and after TCP retransmission timer

expiration it will invoke the slow start algorithm. Thus, a Slow-but-Steady cycle consists of the

fast retransmit/fast recovery (FR) phase followed by the congestion avoidance (CA) phase, while

an Impatient cycle includes, in addition, the slow start (SS) phase after fast recovery. Fig. 3.16

and Fig. 3.17 present examples of transmission of segments during the -thi cycle for the Slow-

but-Steady and Impatient variants, respectively.

i

iδ

()i iW δ−

1iδ −

iWiW 1−

1iδ −

FR
iA CA

iA

1ssthresh
2
i

i
W

= −

Fig. 3. 16 Transmission of segments during the -thi cycle, the Slow-but-Steady variant

After reception of the third duplicate ACK, the TCP sender enters the fast retransmit/fast

recovery phase and sets the ssthresh as (3.19). Note that duplicate ACKs are triggered by out-of-

order segment arrivals at the TCP receiver, while the fast retransmit algorithm resends a segment

 51

only when three duplicate ACKs arrive in a row at the TCP sender. This implies that to trigger

the fast retransmit algorithm, the TCP sender must have at least four outstanding segments, out

of which three segments must be successfully delivered. Then 1 4iW − ≥ and we get:

()1 1ssthresh max 2, 2 2.− −= =i i iW W (3.25)

i

iδ

()i iW δ−

1iδ −

iW1iW −

τ

FR
iA CA

iA

1ssthresh
2
i

i
W −=

SS
iA

Fig. 3. 17 Transmission of segments during the -thi cycle, the Impatient variant

As shown in [87] [88], the number of new segments sent in the -thk round of the fast

retransmit/fast recovery phase of the -thi cycle can be found as

() ()1 1max 0, ssthresh 1 , 1 ,δ δ− −= − + − ≤i i iP k k k ≤ (3.26)

where ssthresh i is given by (3.25).

Using (3.26) and taking into account the number of retransmitted segments, we can

determine the total number of segments sent during the fast retransmit/fast recovery phase of the

-thi cycle. In case of the Slow-but-Steady variant, we obtain:

()
1

1
1

.
i

FR
i i

k
Y P k

δ

δ
−

−
=

= +∑ (3.27)

Then the expected number of segments sent during the fast retransmit/fast recovery phase can be

defined from (3.27) as

 52

[]() []

[] [] []

1 , ,
2 2

1 , .
4 2 2

FR

E W
E W

E Y
E W E W E W

δδ δ δ

δ δ

⎧
+ − − ≤⎪

⎪⎡ ⎤ = ⎨⎣ ⎦ ⎛ ⎞⎪ + − >⎜ ⎟⎪ ⎝ ⎠⎩

 (3.28)

For the Impatient variant, we get:

()
1

1
1 ,FR

i
k

Y P k
τ

τ
+

=

= + +∑ (3.29)

and

() [] []

[] [] () [] []

2
1 1 , ,

2 2

1 1 1 , .
4 2 2 2

FR

E W E W

E Y
E W E W E W E W

τ δ
τ τ δ

τ δ
τ τ δ

⎧ ⎛ ⎞+ −
+ + + ≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎡ ⎤ = ⎨⎣ ⎦ ⎛ ⎞⎛ ⎞ + −⎪
+ + − + + − >⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩

δ

 (3.30)

Further modeling is generally the same as in [67] and is described in detail in [P3] [P4].

Finally, the steady-state throughput of a long-lived TCP NewReno bulk data transfer can be

expressed as follows. In case of the Slow-but-Steady (SBS) variant, we have:

max

max
max

max

1 1
, ,

RTT 1 1
2

1 1 , ,
RTT 1

2

δ

δ

⎧ ⎡ ⎤+ −⎣ ⎦ ⎡ ⎤⎪ <⎣ ⎦⎛ ⎞⎛ ⎞⎪ ⎡ ⎤⎣ ⎦⎜ ⎟⎜ ⎟+ + +⎪ ⎜ ⎟⎪ ⎜ ⎟= ⎝ ⎠⎝ ⎠⎨
⎪ + − ⎡ ⎤ ≥⎪ ⎣ ⎦⎛ ⎞⎪ ⎡ ⎤+ + +⎜ ⎟⎣ ⎦⎪ ⎝ ⎠⎩

SBS
SBS

SBS

SBS

SBS

SBS

p E W
E W W

E W
b

B
p W E W W

bW E V

 (3.31)

where p is the loss event rate; SBSE W⎡ ⎤⎣ ⎦ is the expected window size at the end of a cycle;

[]E V is the expected number of rounds when the transmission window size is limited by the

TCP receiver, so it remains constant and equal to the maximum size of the rwnd (denoted as

maxW).

()

()
()

2
2

2

4 23 2 8 3 2 , ,
3 3 3 3 2

8 13 1 3 1 , ,
3 1 3 1 3 1 2

SBS

SBS

SBS

E Wb b
b bp b bE W

E Wpb b
b p b b

δ δδ δ δ

δ

⎧ + − ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ + + ⎣ ⎦− + + + ≤⎜ ⎟ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎝ ⎠⎡ ⎤ = ⎨⎣ ⎦
⎪ ⎡ ⎤−− −⎛ ⎞ ⎛ ⎞ ⎣ ⎦⎪− + + >⎜ ⎟ ⎜ ⎟+ + +⎪ ⎝ ⎠ ⎝ ⎠⎩

 (3.32)

and

 53

2

max max max

max max

max max max

max

31 , ,
2 4 8 2

2 31 1 , .
8 4 8 2

SBS

W bW Wp b
pW WE V

b W bW Wp
pW

δ δ δ δ

δ

⎧ + −−
+ + − ≤⎪

⎪⎡ ⎤ = ⎨⎣ ⎦ −−⎪ + + − >⎪⎩

 (3.33)

In case of the Impatient (IMP) variant, we have:

()

()

max

2

max max

max
2 max

, 1,
1 1 1, ,

,

RTT 1 log 1
2

1 1 1, ,,
RTT 1 log

2

δ τ
δ τ

τ

δ τ

τ

⎧ < +
⎪

⎡ ⎤ ⎡ ⎤+ − ≥ + <⎪ ⎣ ⎦ ⎣ ⎦
⎪ ⎛ ⎞⎛ ⎞⎡ ⎤⎪ ⎣ ⎦⎜ ⎟⎪ ⎡ ⎤ ⎜ ⎟+ + + +⎣ ⎦= ⎜ ⎟⎨ ⎜ ⎟⎝ ⎠⎝ ⎠⎪
⎪ + − ⎡ ⎤≥ + ≥⎣ ⎦⎪ ⎛ ⎞⎪ ⎡ ⎤+ + + +⎜ ⎟⎣ ⎦⎪ ⎝ ⎠⎩

SBS

IMP IMP

IMP
IMP

IMP

IMP

IMP

B
p E W E W W

E W
E W bB

p W E W W
bWW E V

(3.34)

where

()

()
()

22

222

4 4 2 3 23 2 4 8 3 2 4 , ,
3 3 3 3 2

4 3 2 3 23 2 3 2 8 3 2 3 2 , ,
3 1 3 1 3 1 3 1 2

IMP

IMP

IMP

E W

E Wb b
b bp b b

E Wb b
b p b b b

δ δτ τ ττ τ δ

δ δτ τ δ ττ δ τ δ δ

⎡ ⎤ =⎣ ⎦

⎧ + − − − ⎡ ⎤+ + + +⎛ ⎞ ⎛ ⎞ ⎣ ⎦⎪− + + + ≤⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪
⎨
⎪ + − − − − ⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − + + − ⎣ ⎦⎪− + + + >⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ + + + +⎝ ⎠ ⎝ ⎠⎩

(3.35)

and

2
max max

max
2 2

max max max

max

32 2 3 2 4 1 , ,
2 2 8 4 2

32 2 3 2 3 3 , .
2 2 4 8 4 8 2 2

IMPE V

bW Wp p p p p b
pW

bW W Wp p p p p p b
pW

τ τ δτ δ τ δ

τ δ δτ δ τ τ δ δ

⎡ ⎤ =⎣ ⎦

⎧ − − − + +
− − − + ≤⎪

⎪
⎨

− − − + + −⎪ − − − + − + >⎪
⎩

(3.36)

To the best of our knowledge, the only analytical study that explicitly addresses a

comparison of the TCP NewReno variants was recently presented by Parvez et al. in [86]. The

authors studied the TCP NewReno variants both analytically and using simulations and argued

that the Slow-but-Steady variant is superior to the Impatient one in all but the most extreme

network conditions and recommended it as the preferred variant of TCP NewReno, contrary to

[49]. Unfortunately, whereas decision-making in protocol design requires very careful

consideration and detailed analysis, there are several inaccuracies in the model developed in

[86], which lead to wrong results and conclusions. These inaccuracies are as follows.

 54

• Firstly, the authors assumed that within the fast recovery phase the Slow-but-Steady

variant transmits segments at a constant rate of 4W segments per round (see Fig. 3.18).

However, the assumption about the constant sending rate contradicts the actual TCP

behavior as described in (3.26) (see [87] for details).

• Secondly, the authors did not count new segment transmissions during the fast recovery

phase of the Impatient variant (see Fig. 3.19). As it will be shown later, when the number

of lost segments is large enough and RTO RTT� , such simplification results in

underestimation of the performance of the Impatient variant.

• Thirdly, the authors supposed that upon occurrence of a loss event, the TCP sender enters

the fast recovery phase and reduces the cwnd from W to 2W . Moreover, it sets the

ssthresh to 2W . Assuming that the number of lost segments is greater than that can be

recovered before a timeout event (1δ τ≥ +), the TCP retransmission timer eventually

expires, so the TCP sender enters the slow start phase and sets the ssthresh to half of the

current cwnd size (i.e., ssthresh 4W=). However, the assumption about the latter halving

is incorrect because TCP computes the ssthresh only once upon entering the fast recovery

phase. In fact, the value of the ssthresh is given by (3.19) (see [49] for details).

2W

W

4W

Fig. 3. 18 Cycles of the Slow-but-Steady variant (as assumed in [86])

W

4W

1τ + 1τ + 1τ +

Fig. 3. 19 Cycles of the Impatient variant (as assumed in [86])

 55

In order to compare the accuracy of the proposed model and the model developed in [86],

we use the values listed in Table 3.6. Note that 10τ = can be considered as the case where

RTO 1= s (as specified in [45]) and RTT 100= ms. As it follows from the results depicted in

Fig. 3.20, the proposed model captures fast retransmit/fast recovery dynamics without any error,

while the model presented in [86] significantly underestimates TCP NewReno performance

during this phase, especially in case of multiple packet drops.

Table 3. 6 Input parameters for comparing the accuracy of the models from [86] [P3] [P4]

Input parameter Slow-but-Steady Impatient

Window size at the end of a cycle (W) 32 32

Average loss burst length (δ) 1, …, 10; step 1 16

RTO granularity (τ) 16 2, …, 10; step 1

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

120
According to (3.27)

Proposed model
Parvez et al.

Loss burst length (delta), pkts

To
ta

l n
um

be
r o

f s
eg

m
en

ts
 se

nt
 d

ur
in

g
fa

st
 re

co
ve

ry

2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

110

120
According to (3.29)

Proposed model
Parvez et al.

Number of rounds per RTO (tau)

To
ta

l n
um

be
r o

f s
eg

m
en

ts
 se

nt
 d

ur
in

g
fa

st
 re

co
ve

ry

a) The Slow-but-Steady variant b) The Impatient variant

Fig. 3. 20 Total number of segments sent during the fast retransmit/fast recovery phase

3.3.2 Numerical Analysis and Conclusions

Armed with the expressions of the steady-state throughput of the Impatient and Slow-but-Steady

variants, we can perform an analytical comparison of these variants over different values of δ ,

 56

p , b , τ , and maxW . Note that the latter parameter not only captures the impact of the receive

buffer size on TCP NewReno performance, but also allows us to place an upper bound on the

maximum value of δ : since the number of full-sized segments transmitted in any RTT must be

no more than maxW and we assume that all loss indications are exclusively due to “triple-

duplicate” ACKs, then max 3i Wδ ≤ − and 4iW ≥ . Moreover, the fact that [] 4E W ≥ allows us to

obtain an upper bound of the loss event rate p . As it follows from (3.32) and (3.35), 0.015p ≤

(above this value it may not be possible to generate the required number of duplicate ACKs to

trigger the fast retransmit algorithm when a loss occurs). Values of the default input parameters

used in the numerical analysis are listed in Table 3.7. Here we assume that rwnd 65,535= bytes

(used by default in Microsoft Windows XP, the most popular OS [62]) and MSS 1460= bytes.

In practice, instead of using a hard-coded rwnd size, TCP adjusts it to even increments of the

MSS announced during the connection establishment phase [89]. Then we get that max 44W =

full-sized segments and the maximum value of δ is 41 segments. Fig. 3.21 shows the steady-

state throughputs of the Slow-but-Steady and Impatient variants as a function of δ and p .

Table 3. 7 Default parameters for estimating TCP NewReno throughput

Input parameter Value

Maximum segment size (MSS) 1460 bytes

Maximum size of the rwnd (maxW) 44 full-sized segments

Average loss burst length (δ) 1, …, 41; step 1

Loss event rate (p) 0.0001, …, 0.0150; step 0.0001

Number of segments acknowledged by one ACK (b) 2

RTO granularity () 4 τ

As it follows from Fig. 3.21, the TCP NewReno throughput exhibits quite complex

behavior. First of all, we note that there is a set of input parameter values for which the TCP

NewReno throughput is undefined and set to zero. This is either due to our assumption that all

 57

losses are detected via the receipt of three duplicate ACKs (this imposes an effective constraint

on the parameter space), or due to the fact that such parameter combination is invalid (e.g., a

large number of packets dropped from a single window of data implies a large size of the cwnd,

which is impossible at high packet loss rates). Observing Fig. 3.21, we also notice that when the

loss event rate is very small (0p →) and losses are predominantly single packet losses (1δ →),

the TCP NewReno steady-state throughput tends to max RTTW . Note that for convenience of

representation all subsequent plots showing the difference between the TCP NewReno variants

are rotated by 180 degrees from the position in Fig. 3.21.

a) The Slow-but-Steady variant b) The Impatient variant

Fig. 3. 21 TCP NewReno steady-state throughput (in segm./RTT)

a) 2b = b) 1b =

Fig. 3. 22 Effect of the delayed ACK algorithm on the difference (in segm./RTT)

between the steady-state throughputs of the Impatient and Slow-but-Steady variants

 58

Now let us consider how the delayed ACK algorithm impacts the steady-state throughputs

of the TCP NewReno variants. Fig. 3.22 shows the difference between the Impatient and Slow-

but-Steady variants when the delayed ACK algorithm is enabled (Fig. 3.22a) or disabled

(Fig. 3.22b). In the first place, it should be emphasized that when the average loss burst length is

less than five packets, the steady-state throughputs of both variants are identical. This is because

the TCP sender can recover all lost segments before TCP retransmission timer expiration

(4τ =), which was reset after the first partial ACK. But when the average number of lost

segments per congestion event is greater than five (i.e., 1τ +), the difference between the

variants takes place. As it was noted in [49], neither of the two variants is optimal. When the

number of lost segments is small, the performance would have been better without invocation of

the slow start algorithm. However, when the number of lost segments is sufficiently large, the

Impatient variant provides a faster recovery and better performance, while the gain increases

with the average loss burst length.

Secondly, the results show that when the TCP receiver does not use the delayed ACK

algorithm and acknowledges every successfully received segment (1b =), the Impatient variant

provides better performance over a wider range of network conditions. This is due to the fact that

the TCP receiver generates more ACKs, so the cwnd size grows faster, and more packets are

injected into the network. As a result, TCP encounters segment loss more frequently, while the

Impatient variant outperforms the Slow-but-Steady one when many segments are lost at once.

To quantify the impact of using the TCP window scale option on the steady-state

throughputs of the Impatient and Slow-but-Steady variants, we consider two cases taken from

Fig. 2.2h and Fig. 2.2g: rwnd 5840 16 93,440= × = bytes and rwnd 5840 32 186,880= × = bytes

(the window scale factor is equal to 4 and 5, respectively). As it follows from Fig. 3.23, under

given conditions the maximum gain of the Slow-but-Steady variant is almost constant and varies

from 2.8 to 3.6 segm./RTT, while the maximum gain of the Impatient variant increases with the

maximum size of the rwnd (up to 16.6 segm./RTT for rwnd 93,440= bytes and 34.7 segm./RTT

for rwnd 186,880= bytes), since a larger rwnd means more segments in transit, which can be

potentially dropped in case of congestion along the end-to-end network path. However, the

Impatient variant outperforms the Slow-but-Steady one only when the average loss burst length

is more then 10 segments. As was pointed out in [82], while the right tail of the loss burst length

distribution can be fairly long (up to 100 packets and more), most losses are single packet losses.

Then we can expect that in the majority of cases the Impatient variant will behave like the Slow-

but-Steady one (since all lost segments can be recovered within several rounds before TCP

retransmission timer expiration).

 59

a) rwnd 93,440= bytes, max 64W = b) rwnd 186,880= bytes, max 128W =

Fig. 3. 23 Effect of using the window scale option on the difference (in segm./RTT)

between the steady-state throughputs of the Impatient and Slow-but-Steady variants

a) RTO RTT 2τ = = b) RTO RTT 20τ = =

Fig. 3. 24 Effect of the TCP timer granularity on the difference (in segm./RTT)

between the steady-state throughputs of the Impatient and Slow-but-Steady variants

Finally, let us consider the impact of the TCP timer granularity on the steady-state

throughputs of the Impatient and Slow-but-Steady variants. Commonly, TCP implementations

use a coarse-grained retransmission timer, having granularity of 500 ms. Moreover, the current

standard [45] specifies the lower bound of the timeout value as 1 second. However, some TCP

implementations use a fine-grained retransmission timer and do not follow the requirements of

 60

[45] by allowing, for example, the minimum limit of 200 ms [90]. Thus, for the same network

conditions the value of τ can vary greatly from one TCP implementation to another. Fig. 3.24

illustrates the difference between the steady-state throughputs of the Impatient and Slow-but-

Steady variants for fine-grained (Fig. 3.24a) and coarse-grained (Fig. 3.24b) timers.

Fig. 3.24 shows that using a fine-grained retransmission timer, the Impatient variant

provides a higher steady-state throughput in case of large transmission windows and multiple

losses, while the gain of the Impatient variant with a coarse-grained retransmission timer in that

case will be substantially smaller due to a very lengthy fast recovery phase. Taking into account

the prevalence of single packet losses, we believe that in most cases the Impatient variant with a

coarse-grained retransmission timer will behave in exactly the same way as the Slow-but-Steady

one.

The results of the study allow us to draw the following conclusions.

• The Impatient variant provides approximately the same steady-state throughput as the

Slow-but-Steady one in a wide range of network conditions and significantly outperforms

the latter one in case of large windows and bursty losses.

• We can expect that under normal operating conditions there will be no difference

between the Impatient and Slow-but-Steady variants, since in most cases all lost

segments can be recovered in the Slow-but-Steady mode. Nevertheless, our

recommendation is for the Impatient variant as a backup mechanism for extreme

scenarios with multiple packet drops.

 61

 62

4. TCP PERFORMANCE IN WIRED-CUM-WIRELESS
NETWORKS
This chapter introduces a performance evaluation model for a TCP connection running over a

wired-cum-wireless network. The background and related work, as well as the obtained results,

are also presented and discussed.

4.1 Background and Related Work

The basic cause of the degradation of TCP performance in wireless and wired-cum-wireless

networks is that TCP does not distinguish between packet losses induced by network congestion

and packet losses due to incorrect reception of channel symbols [16]. In fact, the latter case does

not imply that the given path cannot support the current rate at which packets are injected into

the network. Nevertheless, in both cases packet losses trigger the TCP congestion control

algorithms and TCP reduces its sending rate in an attempt to alleviate the congestion.

Two basic trends exist to improve TCP performance over lossy wireless channels (e.g., see

[15] [17] and references therein). The first approach is to make TCP aware of non-congestion

losses in such a way that it would be able to differentiate between packet losses due to network

congestion along the path of the TCP flow and packet losses due to data corruption. In other

words, the goal is to decouple congestion control and error control in TCP, thus the TCP sender

can then avoid invoking the congestion control procedures when non-congestion losses occur.

The second approach is to hide non-congestion losses from TCP and recover them locally.

Techniques that use this approach, such as Automatic Repeat reQuest (ARQ) and Forward Error

Correction (FEC), attempt to decrease the packet loss rate seen by TCP, avoiding unnecessary

execution of the TCP congestion control algorithms and subsequent reduction in the sending

rate. As long as it allows TCP to operate efficiently (to some extent) over wireless channels

without any modification of the TCP/IP protocol stack and without requiring proxies between

source and destination, this second approach is now widely adopted.

In ARQ, the ARQ receiver uses an error-detecting code to check if a received frame is in

error or not. If the received frame is error-free, the ARQ sender is notified by sending a positive

acknowledgment. If an error is detected, the ARQ receiver drops the received frame and notifies

the ARQ sender via the feedback channel by sending a negative acknowledgment (NAK) or by

the lack of a positive acknowledgment. In response to the NAK or if the ARQ sender does not

receive the positive acknowledgment before the timeout, the ARQ sender retransmits the

 63

corresponding frame. There are three types of ARQ in use [91]: Stop-and-Wait (SW), Go-Back-

N (GBN), and Selective Repeat (SR). SW is the simplest ARQ scheme and ensures that each

transmitted frame is correctly received before sending the next one, whereas GBN and SR ARQ

allow transmitting a number of frames continuously without waiting for an immediate

acknowledgement. In GBN ARQ, when a certain frame is received in error, the ARQ sender

retransmits all frames, starting from the incorrectly received one. According to SR ARQ, only

incorrectly received frames should be retransmitted.

When the wireless channel conditions are relatively “bad” (e.g., due to fading, shadowing,

mobility of mobile terminals, surrounding obstacles), ARQ introduces significant delays in data

delivery due to multiple retransmissions. The maximum number of transmission attempts is an

important configurable parameter of an ARQ scheme that affects performance of data

transmission over wireless channels [91]. Setting this parameter to infinity assures completely

reliable operation at the expense of increased delay and jitter. That is, frames are always

delivered irrespective of the number of retransmissions it takes. It is important to note that

talking about “completely reliable operation” here, we neglect the possibility that one of the

devices fails or connectivity is entirely lost for some reason. In practice, the number of

transmission attempts is usually limited allowing some frames to be lost. In this case, the service

provided by the data link layer is considered to be semi-reliable: lost frames result in loss of the

corresponding IP packets and, therefore, TCP segments encapsulated into these packets.

In contrast to ARQ, FEC uses certain codes that are designed to be self-correcting for errors

introduced in transmission. That is, FEC adds redundant information to the transmitted data to

recover them in case they are received in error. As a result, the destination host can detect and

correct errors (but only within certain limits) without requiring a retransmission. In practical

applications, two basic types of FEC codes are usually employed [92, p.6]: block codes and

convolutional codes. As the name implies, block codes are used for coding blocks of data with a

predetermined size, while convolutional codes operate continuously on streams of data. Popular

and widely used block codes are Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem

(BCH) codes, named after their inventors.

Unfortunately, both ARQ and FEC have their own drawbacks. In particular, the drawback of

FEC is that it constantly consumes bandwidth to transmit the redundant information. On the

other hand, ARQ uses bandwidth mainly when frames are retransmitted but introduces variable

delay (jitter) due to these retransmissions. The shortcomings of these error control techniques

could be overcome if they are used in combination (also known as hybrid ARQ/FEC or hybrid

ARQ, HARQ, for short) [93, p.60].

 64

The increasing popularity of wireless networks has attracted a lot of attention to

performance modeling of TCP in wireless environments. According to the used approach,

analytical models can be split into two types. In the first type of models (e.g., [66] [94] [95]),

wireless channel behavior is directly modeled at the IP layer, then an appropriate TCP model is

applied to obtain the performance of a TCP connection running over the wireless channel. For

instance, this approach was adopted in [96] to demonstrate that TCP Tahoe performs better in the

presence of correlated losses. However, using this approach, we abstract away from the details of

ARQ and FEC operation that are implemented at the lower layers of the protocol stack. As a

result, evaluating TCP performance under different settings of these error control techniques

becomes time consuming as it requires extensive measurements in order to parameterize the

model. Moreover, while the vast majority of TCP analytical models require the end-to-end

packet delay and the packet loss rate to be given, a model capable to predict TCP performance

from primary network characteristics (such as the raw data rate of the bottleneck link and the

bottleneck link buffer size) would be more usable.

The other way to evaluate the performance of a TCP connection running over a wireless

channel is to use the so-called cross-layer modeling. In this type of models, TCP performance is

derived from physical channel characteristics and other low-level parameters. Recently, a big

effort has been done to model TCP performance as a function of adaptive modulation, the

amount of FEC, the ARQ persistency, etc. In [97], the authors studied the combined effect of

FEC, SR ARQ, and power management on TCP throughput. It was shown that increasing the

transmission power, the FEC redundancy, and the number of transmission attempts allowed for

the ARQ scheme always improves TCP performance by reducing the number of non-congestion

losses. The performance of TCP over a wireless channel with hybrid SR ARQ/FEC and shared

by a number of long-lived TCP flows was considered in [98]. Using the Bernoulli loss model to

model non-congestion losses induced by wireless channel impairments, the authors provided

results for different physical characteristics of the wireless channel and for different traffic loads.

It was shown that the throughput of the wireless channel is an increasing function of the

persistency of ARQ. In [99], the authors analyzed TCP throughput over a wireless channel with a

NAK-based SR ARQ scheme in the presence of correlated errors at the physical layer. They

observed that the TCP throughput mainly depends on the throughput limit of the wireless data

link layer, the residual packet loss rate after data link layer retransmissions, and the correlation

degree of residual losses. An analytical model, capturing the joint effect of SR ARQ and FEC on

TCP performance over a correlated Rayleigh wireless channel, was presented in [100]. One of

the main advantages of this model is that it uses wireless channel related characteristics (the

 65

signal to noise ratio and the Doppler shift) to parameterize the service process of the wireless

channel, while the other models [97] [98] [99] require the frame error rate to be given.

The model presented here also adopts the cross-layer modeling approach. We derive the

long-term steady-state throughput of a TCP SACK connection running over a wireless channel

as a function of the bit error rate (BER), the normalized autocorrelation function (NACF) of bit

error observations at lag 1, the strength of the FEC block code, the persistency of ARQ, the size

of protocol data units (PDUs) at different layers, the raw data rate of the wireless channel, and

the bottleneck link buffer size. The novelty of the proposed model is two-fold. Firstly, the model

allows to evaluate the joint effect of the performance characteristics of the wireless channel and

various implementation-specific parameters on TCP performance over both correlated and

uncorrelated wireless channels. Secondly, the model explicitly takes into account a high

correlation between the TCP window size and the RTT when a bottleneck link is dedicated to a

single host [16], as well as packet losses due to both buffer overflow at the IP layer and an

excessive number of transmission attempts at the data link layer in case of semi-reliable ARQ.

4.2 System Model and Assumptions

The system model is presented in Fig. 4.1. We consider a TCP connection between two hosts

such that the last link on the end-to-end path from the TCP sender to the TCP receiver is a

wireless channel with hybrid ARQ/FEC. Taking into account that backbone networks are highly

overprovisioned [101], we assume that there is only one bottleneck in the system: the wireless

channel. Since such scenario is common in today’s networks (e.g., Internet access over mobile

networks), we do not refer to a particular wireless technology.

Fig. 4. 1 System model

 66

The current status is that nearly all OSs support the SACK option (see Table 2.3 and [48]),

so we assume that the TCP sender and the TCP receiver are both SACK-capable and use the

SACK option under all permitted circumstances [42] [43] [44]. We consider a greedy application

process which always has data to send, thus the TCP sender always sends full-sized segments

(i.e., containing MSS bytes of application layer data) whenever the cwnd allows. It is assumed

that the TCP receive buffer is sufficiently large, so the actual sending rate of the TCP connection

is not limited by the rwnd size. These assumptions are justified for modern high-performance

computers. As long as we are focusing on the performance of a single TCP connection running

over a wireless channel, we do not consider here competing traffic effects and assume that

application layer data are transmitted in one direction only: from the TCP sender to the TCP

receiver (see Fig. 4.1).

Let the round-trip delay of the wired network be τ seconds, the raw data rate of the wireless

channel be μ bits per second, and the buffer size of the intermediate system be B full-sized

packets. Data packets are buffered at the IP layer of the intermediate system and passed one after

another to the data link layer. The queue management algorithm is assumed to be FIFO Drop-

Tail, so any packet arriving when the buffer is full will be lost. However, we do not model

packet losses in the direction from the TCP receiver to the TCP sender and assume that TCP

ACKs are always delivered to the TCP sender. In other words, packet losses happen only in the

direction from the TCP sender to the TCP receiver. We believe that the impact of this omission

is quite small because the cumulative nature of TCP ACKs ensures that the most recent ACK can

cover all previously received data.

Between the IP and data link layers IP packets are segmented to a number of frames. Then

FEC block coding is applied and the frames start to be transmitted. A data block composed of

both data and FEC redundancy bits is called a codeword. For simplicity, we assume that the

terms “frame” and “codeword” refer to the same entity and each frame consists of exactly one

codeword. Additionally, we assume that exactly one bit is transmitted using a single channel

symbol and use the terms “channel symbol” and “bit” interchangeably. Since extensions of the

model to multiple codewords within a frame and multiple bits carried by a single channel symbol

are straightforward, these assumptions are not fundamental and can be relaxed when needed.

The size of IP packets and frames carrying data traffic is assumed to be constant and equal

to MTU bits and m bits, respectively. We denote the number of frames to which an IP packet is

segmented as v . The process of encapsulation and segmentation of PDUs is shown in Fig. 4.2.

We assume that the ARQ receiver immediately sends back a feedback frame (carrying either

a positive or a negative acknowledgement) for every incoming data frame it gets. This

 67

assumption allows to use a single model to capture different variants of ARQ, including the SW,

GBN, and SR modes [102] [103]. Finally, we assume that the wireless channel in the reverse

direction is completely reliable and that feedback frames are delivered instantaneously over the

wireless channel. Indeed, feedback frames are usually small in size and well protected by a FEC

code. Moreover, these assumptions were used in many studies and found to be appropriate for

wireless links with a short propagation time [104] [105].

In [P5] [P6], we consider both types of ARQ operation: completely reliable and semi-

reliable. When the ARQ scheme is completely reliable (i.e., perfectly-persistent), a frame is

always delivered irrespective of the number of retransmissions it takes. However, if the number

of data link retransmissions causes the RTT to exceed the current value of the TCP

retransmission timeout (referred to as a delay spike in [16]), the TCP retransmission timer

expires, leading to a spurious TCP timeout followed by unnecessary retransmission of the last

window of data and invocation of the congestion control procedures. When the ARQ scheme is

semi-reliable, the number of ARQ transmission attempts (including the original transmission and

subsequent retransmissions) is limited to r . When a certain frame cannot be successfully

delivered in r attempts, the ARQ sender drops this frame and the corresponding IP packet. The

channel is then made free for the next packet waiting at the IP layer. Thus, we distinguish

between packet losses occurring due to an excessive number of transmission attempts at the data

link layer and packet losses resulting from buffer overflows at the IP layer. We denote the former

ones as “non-congestion losses” and the latter as “congestion losses”.

Fig. 4. 2 Encapsulation and segmentation

Table 4.1 summarizes the main notations used throughout this chapter.

 68

Table 4. 1 Main notations used in the chapter

Notation Meaning

[]EE W Bit error rate

()1EK Normalized autocorrelation function of bit error observations at lag 1

()f k Probability function of the number of time slots the wireless channel is seized by

transmitting an IP packet of MTU bits in size in case of completely reliable ARQ

()d k Probability function of the number of time slots the wireless channel is seized by

transmitting an IP packet of MTU bits in size in case of semi-reliable ARQ

ε Expected amount of time required to transmit an IP packet of MTU bits in size over

the wireless channel in case of completely reliable ARQ (s)

δ Expected amount of time the wireless channel is seized by transmitting an IP packet

of MTU bits in size (regardless of its eventual fate) in case of semi-reliable ARQ (s)

MTU IP maximum packet size (bits)

MSS TCP maximum segment size (bits)

m Frame size (bits)

v Number of frames per IP packet of MTU bits in size

l Number of errors per frame that can be corrected by the FEC scheme

r Number of transmission attempts per frame in case of semi-reliable ARQ

B Bottleneck link buffer size in IP packets of MTU bits in size

μ Data rate of the wireless channel (bits/s)

τ Round-trip delay of the wired network (s)

C Average end-to-end path capacity in IP packets of MTU bits in size

Cp Packet loss rate due to buffer overflow at the IP layer

 69

Lp Packet loss rate due to an excessive number of transmission attempts made at the

data link layer in case of semi-reliable ARQ

b Number of segments acknowledged by one ACK

RTT Mean value of the total round-trip time (s)

RTO Expected duration of a TCP retransmission timeout (s)

minRTO Minimum value of a TCP retransmission timeout (s)

x By how much does RTO exceed RTT

4.3 Cross-layer Model

Fig. 4.3 outlines the general structure of the model including the input/output parameters. The

model is derived in two steps. At the first step, we consider the service process of the wireless

channel and derive expressions for the following two parameters: the probability function of the

number of time slots the wireless channel is seized by transmitting an IP packet and the packet

loss probability due to an excessive number of transmission attempts made for one of its frames.

Obviously, when the ARQ scheme is completely reliable, the first parameter corresponds to the

probability function of the number of time slots required to transmit an IP packet over the

wireless channel, while the second parameter is equal to zero. This is because the perfectly-

persistent ARQ scheme will retransmit a corrupted frame an infinite number of times until the

frame is successfully transmitted. When the ARQ scheme is semi-reliable, this probability

function captures the duration of the packet transmission regardless of its eventual fate (i.e.,

whether a packet is successfully transmitted or dropped due to an excessive number of

transmission attempts made for one of its frames). These parameters are used at the next step of

the modeling, where we consider the performance of a TCP SACK connection running over the

wireless channel. The wireless channel models for completely reliable and semi-reliable ARQ

are presented in [P5] [P6], correspondingly.

Note that the cross-layer model has a modular structure, which provides the following

advantages. Firstly, following the TCP/IP layering model makes the proposed model tractable.

Secondly, modular design allows to extend the model by adding implementation- and protocol-

specific details. Moreover, since the modules are independent of each other, they can be easily

replaced or enhanced whenever is needed.

 70

o

o

Fig. 4. 3 Proposed cross-layer model

4.4 TCP SACK Model: Completely Reliable ARQ

In this section, we consider the evolution of a TCP SACK connection over a wireless channel

with completely reliable ARQ/FEC and derive expressions for its long-term steady-state

throughput and the spurious timeout probability. The developed model is based on the renewal-

reward approach introduced in [65] [67].

To begin with, let us examine steady-state TCP SACK behavior in the absence of delay

spikes caused by wireless channel impairments. Consider the system model depicted in Fig. 4.1.

In long-distance and high-speed wired networks, the bit length of links is usually sufficiently

large to allow multiple IP packets be on flight simultaneously. Here the bit length of a link stands

for the number of bits present on the link at an instant of time when a stream of bits fully

occupies this link [106, p.211]. The bit length of a link can be found as a product of the data rate

of the link (in bits per second) and its propagation delay (in seconds). In terrestrial wireless

networks, such as mobile networks, the bit length of wireless links is smaller than the length of a

typical data packet. To illustrate this point, let us consider a 10 Mbit/s wireless channel where

the distance between the transmitter and the receiver is 3 km. In free space, the propagation

speed of radio waves is almost the same as that of light (approximately 300,000 km/s), so they

would arrive at the receiver in about 0.01 ms. Then the bit length of the link is equal to 100 bits,

which is much smaller than the length of a typical full-sized 1500-byte data packet (12,000 bits).

At the same time, a 100 Mbit/s wired link, connecting the sender and the receiver located 200 km

apart, has the bit length of 100,000 bits (note that wired media slow down signal propagation to

about 200,000 km/s). Thus, in contrast to the wired network (see Fig. 4.1), where IP packets are

usually sent back-to-back, the wireless channel cannot hold multiple packets at once. Moreover,

assuming that the ARQ receiver immediately acknowledges the reception of every incoming data

frame (either using a positive acknowledgement or a NAK), we get that all frames to which a

 71

previous packet was segmented should be successfully transmitted before starting a new

transmission. Hence, at most one IP packet can be in transit on the wireless channel at a time.

Let the mean time required to transmit an IP packet over the wireless channel be ε seconds.

Since the system bottleneck is solely determined by the wireless channel and at most one packet

can be carried on the wireless channel at a time, the average network throughput is equal to

MTU ε bits per second, assuming there is always at least one packet waiting for transmission

on the wireless channel (e.g., see Fig. 4.10b). Therefore, to fully utilize the wireless channel, the

following requirements should be met. In the first place, we need to ensure that the bottleneck

link buffer does not become empty to force the wireless channel to go idle. In addition, the TCP

sender should not pause too long to make the buffer go empty. These conditions hold when the

buffer size is at least as large as the end-to-end path capacity, while all packet losses can be

detected within one RTT by the reception of three duplicate ACKs [18]. As it will be shown

later, it does not practically limit the generality of our model and really holds in practice.

Let the average end-to-end path capacity (the wired network plus the wireless channel) be

C full-sized IP packets (i.e., of MTU bits in size). To fully utilize the wireless channel, the

buffer at the intermediate system should be sized as B C≥ , while ensuring that 3B C+ ≥ . This

is caused by the fact that at least three duplicate ACKs are required to trigger the fast retransmit

algorithm (if not enough duplicate ACKs arrive from the TCP receiver, the fast retransmit

algorithm is never triggered and a timeout will be required to resend the lost segment) [29] [44].

Consequently, in case of B C≥ and 3B C+ ≥ , the capacity of the wired network can be found

as the bandwidth-delay product (expressed in packets of MTU size), while the capacity of the

wireless channel is equal to just one packet:

1 MTU MTU 1,
MTU

ττ
ε ε

⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

C (4.1)

where ε is the mean time required to transmit an IP packet over the wireless channel.

To evaluate the order of magnitude of C , consider the difference in latency between wired

and wireless networks (that is, between τ and ε). The one-way latency of a link can be defined

as a sum of the propagation delay and the transmission delay. The propagation delay is the time

required for a signal to propagate through the link. The signal propagates at the propagation

speed, which depends on the physical medium of the link and is in the range of about 200,000 to

300,000 km/s. The propagation delay through the link can be calculated by dividing its length by

the propagation speed. The transmission delay is the amount of time it takes to transmit a unit of

data, such as a packet, at the data rate of the link. In turn, the transmission delay is equal to the

packet size divided by the data rate of the link.

 72

In high-speed wired networks, the transmission delay is generally negligible, whereas the

propagation delay varies with distance. For instance, the transmission delay for a 1500-byte

packet at 100 Mbit/s is about 0.12 ms. For fiber optics, the speed of signal propagation is about

2/3 of the speed of light in vacuum, which implies about 0.5 ms of the propagation delay for

every 100 km. Typical wired wide area network (WAN) paths have the propagation delay on the

order of tens of milliseconds (e.g., a USA coast-to-coast path has the propagation delay of

approximately 25 ms). It should be emphasized that in practice the value of τ is larger than just

the two-way propagation delay due to the queuing delay component caused by cross-traffic in

the wired network. According to recent measurements [107] [108], RTTs of the vast majority of

TCP connections are below 500 ms. Also note that τ will reach its maximum value (up to

several hundreds of milliseconds) in case of one or more satellite hops along the path. However,

here we do not consider the presence of both satellite links and a terrestrial wireless link on the

same path of a given TCP connection and assume that the value of τ is mainly determined by

the distance between the sender and the intermediate system (see Fig. 4.1).

The distance in wireless access networks is short enough compared to that in wired WANs

because the distance does not exceed the cell size. Moreover, radio waves propagate at

approximately the speed of light in vacuum. On the other hand, terrestrial wireless networks

support much lower data rates than do today’s wired networks. In addition, these data rates are

inversely proportional to distance: as the data rate increases, the distance, at which this rate can

be sustained, decreases. Besides, the implemented FEC and ARQ schemes can significantly

increase the transmission delay, since adding FEC bits implies more bits to transmit, while

retransmissions of erroneous frames delay delivery of correctly received frames. Consequently, a

terrestrial wireless link introduces a larger transmission delay than most wired networks, but its

propagation delay is negligibly small (in the range of a few microseconds). For example,

assuming that the FEC code has the code rate of 1/2 and neglecting other types of overhead, the

transmission delay for a 1500-byte packet at 10 Mbit/s is 2.4 ms. Suppose the distance between

the base station and the mobile terminal is 3 km. Then the propagation delay is 0.01 ms. As a

result of our calculations, we conclude that the values of τ and ε in (4.1) are commensurable

quantities and, hence, the average end-to-end path capacity C is in the range of several to tens of

full-sized packets. In practice, buffers are significantly overprovisioned in order to prevent

packet losses due to buffer overflow [101]. Thus, our assumption that B C≥ is quite reasonable.

The maximum number of IP packets that can be accommodated in the network is

approximately equal to C B+ , assuming that there are C packets in flight and the buffer at the

intermediate system is fully occupied. Since 2C ≥ and B C≥ , it implies that 4C B+ ≥ . In this

 73

case, the TCP connection experiences periodic packet losses: each time the cwnd exceeds the

maximum number of packets that can be accommodated in the network, the last packet in the

transmitted window is dropped due to buffer overflow at the intermediate system. According to

the TCP sliding window algorithm, after the lost segment, 1C B+ − new segments are sent,

triggering duplicate ACKs. As long as 4C B+ ≥ and at least three duplicate ACKs are required

in order to trigger a fast retransmission without the need to wait for a timeout event, the TCP

sender receives enough duplicate ACKs to detect the segment loss. Since any lost segment can

be recovered within a single RTT by using the SACK-based loss recovery algorithm [44], we

neglect the details of the loss recovery phase as having only a minor effect on the long-term

steady-state performance. Thus, a congestion avoidance phase starts after a segment loss is

detected via three duplicate ACKs. Then the current value of the cwnd is set to approximately

() 2C B+ and the congestion avoidance phase begins. The TCP receiver sends one ACK for

every b segment it gets, so the cwnd increases linearly with a slope of 1 b segments per RTT

until cwnd = +C B (see Fig. 4.4). The factor b depends on the acknowledgement policy: as

specified in [28], TCP should use the delayed ACK algorithm, sending one ACK for every other

received segment (2)b = , unless the delayed ACK timer expires; however, it is also allowed to

send one ACK for every received segment (1)b = . The next additive increase of the cwnd leads

to a new buffer overflow and the current congestion avoidance phase ends. Hence, considering

the evolution of the cwnd between () 2C B+ and C B+ (see Fig. 4.4), we get:

2

0

3 10 0, , ,
2 2 2 C CA

C B C B p
E Y

+ +⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
CAE A⎡ ⎤⎣ ⎦

CAE Y⎡ ⎤= =⎣ ⎦
bb

⎡ ⎤⎝ ⎠ ⎝ ⎠ ⎣ ⎦
 (4.2)

0CAE A⎡ ⎤⎣ ⎦where is the expected duration of a congestion avoidance phase CA0 in rounds;

0CAE Y⎡ ⎤⎣ ⎦ is the expected number of packets sent during this phase; Cp is the packet loss rate due

to buffer overflow at the IP layer.

()+C B

2
+⎛ ⎞

⎜ ⎟
⎝ ⎠

C B

CA0 CA0 CA0 CA0 CA0

Fig. 4. 4 TCP SACK window evolution in the absence of delay spikes

 74

In the considered scenario (Fig. 4.1), the RTT is given by three components: the round-trip

delay τ of the wired network, the queuing delay at the intermediate system, and the round-trip

delay of the wireless channel. As long as the wireless channel is the only bottleneck on the path

of the TCP connection (i.e., the wired network has sufficient bandwidth and low enough total

load, so it never encounters any queues), the value of τ is assumed to be static over time and

mainly determined by the geographical spread of the wired network. Thus, to compute the mean

value of the RTT, we must determine the mean queuing delay at the intermediate system and the

mean round-trip delay of the wireless channel.

We begin by deriving an expression for the mean queue size []E R . Note that the buffer

occupancy tends to be periodic over time, following the saw-tooth TCP SACK window

evolution. Fig. 4.5 shows the window size and buffer occupancy dynamics obtained using ns-2.

0 1 2 3 4 5
0

10

20

30

40
cwnd size
queue size

Time, s

W
in

do
w

/Q
ue

ue
, p

kt
s

0 1 2 3 4 5

0

10

20

30

40
cwnd size
queue size

Time, s

W
in

do
w

/Q
ue

ue
, p

kt
s

a) B C> b) B C=

Fig. 4. 5 TCP SACK window evolution and buffer occupancy

One may note that the queue size depends on the current value of the cwnd and the ratio

between the buffer size B and the average end-to-end path capacity C (Fig. 4.5). Taking into

account that in the absence of delay spikes the minimum value of the cwnd is () 2C B+ and the

maximum is C B+ (see Fig. 4.4 and Fig. 4.6), we get the mean queue size during a congestion

avoidance phase CA0 as

2

0 32 2 2 2 .
4

2

CA

b C B C B C Bb B
B CE R

C Bb

+ + +⎛ ⎞ ⎛ ⎞⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠⎡ ⎤ = =⎣ ⎦ +⎛ ⎞
⎜ ⎟
⎝ ⎠

 (4.3)

 75

The mean queuing delay can be obtained by multiplying the mean queue size []E R by the

mean time ε required to transmit an IP packet over the wireless channel. In the absence of delay

spikes, [] 0CAE RE R ⎡ ⎤= ⎣ ⎦ .

+
2

C Bb⎛ ⎞
⎜ ⎟
⎝ ⎠

+
2

C B⎛ ⎞
⎜ ⎟
⎝ ⎠

+
2

C Bb⎛ ⎞
⎜ ⎟
⎝ ⎠

+
2

C B⎛ ⎞
⎜ ⎟
⎝ ⎠

a) B C> b) B C=

Fig. 4. 6 Queue size as a function of the ratio between the buffer size and the average

end-to-end path capacity

The mean round-trip delay of the wireless channel can be found as a sum of the mean time

required to transmit an IP packet over the wireless channel and the amount of time needed to get

an ACK segment back (the last term depends on whether the delayed ACK algorithm is enabled

or disabled). Recall that we neglect the transmission delay in the reverse direction. This is

justified, since the size of IP packets carrying TCP ACKs is much smaller than the size of IP

packets carrying TCP data segments (typically, a 40-byte ACK packet versus a 1500-byte data

packet). Moreover, we do not take into account the propagation delays in both directions,

because, as it was mentioned earlier, these delays are negligibly small compared to the time

required to transmit a data packet over the wireless channel.

The delayed ACK algorithm determines how the TCP receiver sends ACKs: whether an

ACK is sent for every received segment, or whether an ACK is delayed until either the next

segment arrives or the delayed ACK timeout expires (i.e., after delACKT seconds). The round-trip

delay of the wireless channel as a function of the delayed ACK algorithm and the inter-packet

arrival time is shown in Fig. 4.7, where 1T and 2T are the time intervals required to

successfully transmit all frames to which packets 1 and 2 were segmented, respectively. Then the

mean round-trip delay of the wireless channel can be obtained as

, or 1,
, ,

delACK

delACK delACK

b T
L

T T
ε ε
ε ε

b≤ =⎧
= ⎨ + >⎩

 (4.4)

 76

where 1b = , if the TCP receiver immediately acknowledges every segment it gets; or 2b = , if

an ACK is sent for every other segment unless the delayed ACK timer expires.

delACK

a) 1b = , 0delACKT = s b) 2b = , 2delACKT T≥ c) 2b = , 2delACKT T<

Fig. 4. 7 Round-trip delay of the wireless channel

Finally, the mean value of the RTT is given by

[]RTT ,τ ε= + +E R L (4.5)

where []E R is the mean queue size.

Now let us consider the effect of delay spikes on the long-term steady-state throughput of a

TCP SACK connection. Delay spikes can be caused by a number of factors, including

handovers, high priority traffic, etc. In the considered scenario, the completely reliable ARQ

scheme can cause a sudden delay due to transmission errors on the wireless channel and a large

number of subsequent retransmissions of the incorrectly received frames, resulting in a TCP

spurious timeout. It is worthwhile to note that improving TCP performance in the presence of

abrupt delay changes is an active research area. A number of algorithms have been proposed to

avoid or detect spurious timeouts and to recover from them (e.g., [109] [110] [111] [112] [33]).

Consider the transmission of packets during the initial slow start phase when the delayed

acknowledgement algorithm is disabled and the receiver acknowledges every segment it gets

(Fig. 4.8). For simplicity of illustration, let us assume that the IW size is equal to two full-sized

segments and the ssthresh is sufficiently high. Once the TCP connection has been established,

the TCP sender begins sending data packets. When the TCP sender transmits the first packet, it

starts the TCP retransmission timer so that it will expire after RTO seconds. After approximately

2τ seconds the first packet arrives at the intermediate system. Since the wireless channel is idle

 77

and the buffer is empty, the incoming packet will be serviced immediately: at the data link layer

it will be segmented to a number of frames and these frames will be transmitted one after another

over the wireless channel. Packet 2 arriving at the intermediate system will find the wireless

channel busy and will be buffered for later transmission. Let 1T be the time required to

successfully transmit all frames to which packet 1 was segmented. The TCP receiver then replies

with an ACK segment (ACK1). As soon as the wireless channel becomes idle, the packet service

process starts all over again: packet 2 is passed to the data link layer for segmentation and

subsequent transmission over the wireless channel. Since we assume that the wireless channel in

the reverse direction is completely reliable and that the feedback is almost instantaneous, it will

take only 2τ seconds to deliver ACK1 to the TCP sender. The next ACK (ACK2) will arrive

after 2T seconds, where 2T is the time required to successfully transmit all frames to which

packet 2 was segmented. ACK3 will arrive at the TCP sender after 3T seconds and so on.

2
τ

IW 2 segm.=
ssthresh 44 segm.=

2
τ

1cwnd 2=

2 1cwnd cwnd # ACK 32 1= + + ==

3 2cwnd cwnd #ACK 43 1= + + ==

4 3cwnd cwnd #ACK 54 1= + + ==

5 4cwnd cwnd #ACK 65 1= + + ==

6 5cwnd cwnd # ACK 76 1= + + ==

7 6cwnd cwnd #ACK 87 1= + + ==

8 7cwnd cwnd #ACK 98 1= + + ==

Fig. 4. 8 End-to-end transmission of packets, MSS 1460= bytes, ssthresh 65,535= bytes, 1b =

 78

Note that these arrivals are separated by the time required to transmit a corresponding IP

packet over the wireless channel. When the delayed ACK algorithm is enabled, the TCP receiver

acknowledges every other incoming segment or delays an ACK for delACKT seconds (see

Fig. 4.9). In this case, the mean inter-ACK gap is given by (4.4). In accordance to [45], when an

ACK is received that acknowledges new data, the TCP retransmission timer should be restarted

so that it will expire after RTO seconds (see step 5.3 in [45]). Thus, every time a new ACK

arrives, the TCP retransmission timer will be restarted (denoted by grey diamonds in Fig. 4.8 and

Fig. 4.9). Therefore, the only possibility for a TCP spurious timeout to occur is to transmit an IP

packet over the wireless channel within RTO seconds or more.

2
τ

2
τ

1cwnd 2=

2 1cwnd cwnd # ACK 2 1 3= + = + =

3 2cwnd cwnd #ACK 3 1 4= + = + =

4 3cwnd cwnd #ACK 4 1 5= + = + =

5 4cwnd cwnd #ACK 5 1 6= + = + =

IW 2 segm.
ssthresh 44 segm.

=
=

Fig. 4. 9 End-to-end transmission of packets,

MSS 1460= bytes, ssthresh 65,535= bytes, 2b =

 79

In order to illustrate and validate the above examples, we used Iperf [113], a standard tool

for measuring network performance, to generate TCP flows between a server host in a high-

speed wired domain (100 Mbit/s Ethernet) and a client host connected via a wireless last-hop

link (EDGE). In our experiments, we used Wireshark to capture packet traces at both sender and

receiver. Fig. 4.10 and Fig. 4.11 depict the obtained results for immediate and delayed ACKs,

respectively. For the sake of simplicity, we do not show the delays caused by the three-way

handshaking process.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50
Packet departures

Time since the first data packet, s

D
at

a
pa

ck
et

s s
en

t

0 1 2 3 4 5 6 7 8

0

10

20

30

40

50
Packet arrivals

Time since the first data packet, s

D
at

a
pa

ck
et

s r
ec

ei
ve

d

a) The sending side b) The receiving side

Fig. 4. 10 Time-sequence graph of a TCP connection over EDGE,

MSS 1460= bytes, ssthresh 65,535= bytes, 1b =

0 1 2 3
0

10

20

30

40

50
Packet departures

Time since the first data packet, s

D
at

a
pa

ck
et

s s
en

t

0 1 2 3

0

10

20

30

40

50
Packet arrivals

Time since the first data packet, s

D
at

a
pa

ck
et

s r
ec

ei
ve

d

a) The sending side b) The receiving side

Fig. 4. 11 Time-sequence graph of a TCP connection over EDGE,

MSS 1460= bytes, ssthresh 65,535= bytes, 2b =

 80

2
τ

2
τ

1FlightSize 0, cwnd 2= =

2 1FlightSize 1, cwnd cwnd #ACK 2 1 3= = + = + =

3 2FlightSize 2, cwnd cwnd # ACK 3 1 4= = + = + =

4 3FlightSize 3, cwnd cwnd # ACK 4 1 5= = + = + =

5 4FlightSize 4, cwnd cwnd # ACK 5 1 6= = + = + =

6 5FlightSize 5, cwnd cwnd # ACK 6 1 7= = + = + =

7 6FlightSize 6, cwnd cwnd # ACK 7 1 8= = + = + =

8 7FlightSize 7, cwnd cwnd # ACK 8 1 9= = + = + =

9 8FlightSize 8, cwnd cwnd #ACK 9 1 10= = + = + =

10 9FlightSize 9, cwnd cwnd # ACK 10 1 11= = + = + =

12 11 11FlightSize 11, cwnd cwnd 1 cwnd 12.08= = + ≈

11 10FlightSize 10, cwnd cwnd #ACK 12 ssthresh= = + = =

IW 2 segm.
ssthresh 12 segm.

=
=

Fig. 4. 12 End-to-end transmission of packets,

MSS 1460= bytes, ssthresh 17,520= bytes, 1b =

Examining the time-sequence graphs, we can make the following observations. TCP, being

a window-based protocol, sends packets into the network in bursts. This is especially noticeable

in the slow start phase (see Fig. 4.10a and Fig. 4.11a). However, when the bottleneck link is

saturated with incoming traffic and is fully utilized, data packets arriving at the receiver tend to

be well distributed in time (see Fig. 4.10b and Fig. 4.11b). Note that the gaps between packet

arrivals at the beginning of the initial slow start phase in Fig. 4.11b are due to the fact that the

 81

TCP sending rate at that time is less than that required to keep the bottleneck link full (i.e., to

“fill the pipe”). Thus, in case of a single greedy source under steady-state conditions, the

interarrival time distribution at the receiver is completely determined by the service process of

the wireless channel. Since packet arrivals are spread in time, the corresponding ACKs will be

sparsely issued as well. In turn, this smoothes out the transmission of packets (see Fig. 4.12 and

Fig. 4.13).

A common approach to estimate the long-term steady-state throughput of a single TCP

source is to compute the ratio between the expected transmission window size and the mean

RTT. This concept is used, for instance, in [65] [67] [94] [95] [P2] [P3] [P4]. However, armed

with a wireless channel model (such as the one introduced in [P5]) and assuming that the

wireless channel is saturated with incoming traffic, we can define the TCP steady-state

throughput as the ratio between the MSS and the mean time required to transmit an IP packet

over the wireless channel. At this point, we only need to know the mean RTT to calculate the

expected duration of the RTO and, thereby, to estimate the spurious timeout probability.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50
Packet departures

Time since the first data packet, s

D
at

a
pa

ck
et

s s
en

t

0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

50
Packet arrivals

Time since the first data packet, s

D
at

a
pa

ck
et

s r
ec

ei
ve

d

a) The sending side b) The receiving side

Fig. 4. 13 Time-sequence graph of a TCP connection over EDGE,

MSS 1460= bytes, ssthresh 17,520= bytes, 1b =

To calculate the mean duration of a TCP retransmission timeout, we use the following

approximation. Commonly, TCP implementations use a coarse-grained retransmission timer,

having granularity of 500 ms. Moreover, the current standard [45] requires that whenever the

RTO is computed, if it is less than 1 second then it should be rounded up to 1 second. At the

same time, some implementations use a fine-grained retransmission timer and do not follow the

 82

requirements of [45] by allowing, for example, the minimum limit of 200 ms [90]. Thus, we

obtain the expected duration of the RTO as

()minRTO max RTT, RTO ,= x (4.6)

were x , 1x > , relates to the granularity of the TCP retransmission timer; minRTO is the

minimum value of a TCP retransmission timeout; RTT is from (4.5).

Since 1x > , [] 1E R ≥ , and L ε≥ , we get that the expected duration of the RTO is at least

several times (denoted as M) larger than ε :

[]()()minRTO max , RTO , 2.τ ε ε= + + = >x E R L M M (4.7)

Then the spurious timeout probability Q′ can be obtained as the probability that the amount

of time required to transmit an IP packet over the wireless channel and to get an ACK segment

back will be at least M times larger than ε :

()

()2

, 1,

, 2, ,

, 2, ,

k M
m

delACK

k M
m

delACK delACK

k M
m

f k b

Q f k b T

f k T b T
m

μ ε

μ ε

μ ε

ε

μ ε

∞

⎡ ⎤=⎢ ⎥⎢ ⎥

∞

⎡ ⎤=⎢ ⎥⎢ ⎥

∞

⎡ ⎤=⎢ ⎥⎢ ⎥

⎧
⎪

=⎪
⎪
⎪
⎪′ = =⎨
⎪
⎪
⎪ ⎛ ⎞⎡ ⎤+ = >⎪ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎪
⎩

∑

∑

∑

≤ (4.8)

where ⎡ ⎤⎢ ⎥ is the ceiling function; mμ is the number of slots per second; ()f k , , 1,k v v= + … ,

is the probability function of the number of time slots required to transmit an IP packet over the

wireless channel (see [P5] for details); ()2f k is the convolution of two functions,

() () ()2f k f k f k= ∗ .

Thus, each data packet may be excessively delayed with probability Q′ due to a large

number of transmission attempts at the data link layer, causing a TCP spurious timeout. On the

other hand, it may be delivered in time (i.e., before the TCP retransmission timer expires) with

probability 1 Q′− . Similarly to [94], we consider the evolution of a TCP SACK connection as a

sequence of cycles, where a cycle is a period between two consecutive delay spikes (see

Fig. 4.14). Then the expected number of packets sent during a cycle can be defined as

[] () 1

1

11 .k

k
E Y Q Q k

Q

∞
−

=

′ ′= − =
′∑ (4.9)

 83

The expected duration (in seconds) of a delay spike (DS) can be computed as

()

()2

, 1,

, 2, ,

, 2, ,

k M
m

DS
delACK

k M
m

delACK delACK

k M
m

m f k k b

mE Z f k k b T

m f k T k b T
m

μ ε

μ ε

μ ε

μ

ε
μ

μ ε
μ

∞

⎡ ⎤=⎢ ⎥⎢ ⎥

∞

⎡ ⎤=⎢ ⎥⎢ ⎥

∞

⎡ ⎤=⎢ ⎥⎢ ⎥

⎧
⎪

=⎪
⎪
⎪
⎪⎡ ⎤ = ⎨⎣ ⎦
⎪
⎪
⎪ ⎛ ⎞⎡ ⎤+ =⎪ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎪
⎩

∑

∑

∑

= ≤

>

 (4.10)

where m μ is the duration of a time slot.

When the variability in the wireless channel quality introduces a sudden delay in the service

process of an IP packet, all the subsequent transmissions up to the end of the delay spike will be

delayed as well. After TCP retransmission timer expiration, the TCP sender retransmits the first

unacknowledged segment, and in the absence of any feedback from the TCP receiver it will

continue trying to deliver this segment as specified in [45]. When the delay spike ends, the ACK

for the original transmission returns to the TCP sender. On receipt of this ACK after the wireless

channel outage, the TCP sender mistakenly interprets it as acknowledging the recently

retransmitted segment and enters the slow start phase with unnecessary retransmission of other

outstanding segments in the Go-Back-N strategy. Since none of the outstanding segments was

actually lost, all these segments get retransmitted unnecessarily. These unnecessarily

retransmitted segments arrive as duplicate at the TCP receiver, which in turn triggers a series of

duplicate ACKs. In the absence of the SACK option or timestamps, a duplicate ACK carries no

information to identify the segment that triggered that ACK, so TCP is unable to distinguish

between a duplicate ACK that results from a lost segment and a duplicate ACK that results from

an unnecessary retransmission of a segment that had already been received at the destination.

+
2

C B⎛ ⎞
⎜ ⎟
⎝ ⎠

()C B+

()max 2, 2iW

iW1iW −

ssthresh i

CA0 CA0 CA0

in1

Fig. 4. 14 TCP SACK window evolution in the presence of delay spikes

 84

In early TCP implementations, spurious timeouts usually lead to unnecessary multiple fast

retransmits and, hence, multiple reductions of the cwnd. As was demonstrated in [114], TCP

SACK is robust against false fast retransmits, since the SACK option with the D-SACK

extension allows the TCP sender to infer when it has unnecessarily retransmitted a segment.

Therefore, we assume that the slow start phase continues until the cwnd reaches the ssthresh and

then a new congestion avoidance phase begins (see Fig. 4.14).

Let 1iW − denote the window size when delay spike 1i − occurs. After TCP retransmission

timer expiration, the current values of the ssthresh and the cwnd will be set as

()1ssthresh max 2,2i iW −= and cwnd 1= , respectively. Supposing that delay spikes are less

frequent than packet losses due to buffer overflow (Cp Q′>), we can safely assume that the

random variable iW is uniformly distributed from () 2C B+ to C B+ . Hence

[] []1 3 [], ssthresh max , 2 .
2 2 2 2 2

+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

C B C B E WE W C B E (4.11)

The expected durations (in rounds) of phases CA1 and CA2 (see Fig. 4.14) can be found as

[]

[]

1

2

,
2 2 4 2

,
2 2 2

CA

CA

E WC B b C BE A b

C B b C BE A b E W

⎛ ⎞+ +⎛ ⎞⎡ ⎤ = − =⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
+ +⎛ ⎞ ⎛ ⎞⎡ ⎤ = − =⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠

 (4.12)

and the expected number of segments sent during these phases can be defined as

[] [] []

[] []

2 2
1

2 2
2

7 ,
2 2 2 2 2 2 32 2

5 .
2 2 2 2 8 2

CA

CA

E W E W E WC B b C B b C BE Y b

C B C B b C B b C BE Y b E W E W

⎛ ⎞ ⎛ ⎞+ + +⎛ ⎞⎡ ⎤ = − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠

+ + + +⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ = − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (4.13)

The number of segments transmitted during a slow start phase can be closely approximated

as a geometric series () ()121 1 1i iN NSS
i γ γ γ γ γ−Y = + + + + = − −… , where 1 1 bγ = + [68].

Taking into account that in the slow start phase of the -thi cycle the cwnd growths exponentially

from one segment to ssthresh i , we get that ()1
1ma 2, 2xiNγ − = iW − . Hence, the expected duration

(in rounds) of the slow start phase and the expected number of segments sent during this phase

can be expressed as

[]
()

2[]max log , 2 , max ,3 .
2

SS SS E WE WE A E Yγ

γγ
γ2 1

⎛ ⎞−⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤= = ⎜ ⎟⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠
 (4.14)

 85

Neglecting those segments that were unnecessarily retransmitted during the delay spike, the

total number of segments sent during the -thi cycle is 1 0 2SS CA CA CA
i i i i iY Y Y n Y Y= + + + (see

Fig. 4.14). Then the expected number of buffer overflows within a cycle is given by

[]
[] 1 2

0
.

SS CA CA

CA

E Y E Y E Y E Y
E n

E Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
⎡ ⎤⎣ ⎦

 (4.15)

Let us compare the durations of the slow start phase after a delay spike and the subsequent

congestion avoidance phase. Fig. 4.15 shows the ratio between the expected durations (in

rounds) of the congestion avoidance phase, which can be defined as

[]1 0 2CA CA CAE A E n E A E A⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (see Fig. 4.14), and the slow start phase (4.14). It is easy to

see that the slow start phase is much shorter than the subsequent congestion avoidance phase

over a wide range of network conditions.

a) 1b = b) 2b =

Fig. 4. 15 Ratio between the expected durations of the congestion avoidance phase and the slow

start phase after a delay spike

Then, neglecting the duration of the slow start phase after a delay spike, we can find the

mean queue size during a cycle:

[]
[]

[]

0 0 1 1 2

0 1 2

2

.
CA CA CA CA CA CA

CA CA CA

E R E n E A E R E A E R E A
E R

E n E A E A E A

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4.16)

Similarly to (4.3), the expected queue size during phases CA1 and CA2 can be computed as

 86

()
1 2

2

7 9 5, ,
16 3 5 3 .

85, , ,
3

CA CA

B C CB
B CE R E R

B C CB C
C B

−⎧ >⎪ −⎪⎡ ⎤ ⎡ ⎤= =⎨⎣ ⎦ ⎣ ⎦− ⎡ ⎤⎪ ∈ ⎢ ⎥⎪ + ⎣ ⎦⎩

 (4.17)

Taking into consideration that the expected number of packets sent during a cycle is given

by (4.9) and the mean time required to transmit an IP packet over the wireless channel is equal to

ε seconds, we define the TCP SACK long-term steady-state throughput as

[]
[]

MSS MSS ,
ε ε

= =
′⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

DS DS

E Y
T

E Y E Z Q E Z
 (4.18)

where MSS MTU 40= − bytes; ε is from (4.20); Q′ is from (4.8); DSE Z⎡ ⎤⎣ ⎦ is from (4.10).

Evidently, when Q′ is small, expression (4.18) can be simplified as follows:

0

MSS MSSlim .
εε′→

⎛ ⎞
⎜ ⎟≈ =
⎜ ⎟′ ⎡ ⎤+ ⎣ ⎦⎝ ⎠

DSQ
T

Q E Z
 (4.19)

4.5 TCP SACK Model: Semi-reliable ARQ

In this section, we consider the evolution of a TCP SACK connection over a wireless channel

with semi-reliable ARQ/FEC and derive an expression for its long-term steady-state throughput.

We suppose that each data packet may be dropped with probability Lp due to an excessive

number of transmission attempts made for one of its frames at the data link layer or,

consequently, successfully delivered to the IP layer with probability 1 Lp− . Let Cp be the packet

loss rate due to buffer overflow at the IP layer in the absence of non-congestion losses. We

develop our model in two steps:

• when non-congestion losses are sufficiently rare and, on average, there is at least one

buffer overflow between two consecutive non-congestion losses (C Lp p>);

• when non-congestion losses are frequent enough to keep the cwnd below the maximum

number of packets that can be accommodated in the network (C Lp p≤). In this case, non-

congestion losses prevent the TCP sender from overloading the bottleneck buffer.

Note that we do not consider here TCP spurious timeouts caused by delay spikes due to wireless

channel impairments. As it will be demonstrated later, TCP spurious timeouts do not occur when

wireless channel conditions are covariance-stationary and their presence in some practical

studies should be attributed to non-stationary behavior of wireless channel characteristics

 87

(caused by handovers, resource preemption due to higher priority traffic, etc.), which is,

however, out of the scope of this thesis and remains for future studies. Moreover, according to

the results obtained in [P5], the TCP spurious timeout probability is negligibly small even for

very severe wireless channel conditions and a perfectly-persistent (i.e., completely reliable) ARQ

scheme in use.

In order to distinguish between the models corresponding to completely reliable and semi-

reliable ARQ, we denote the mean time within which the wireless channel is seized by

transmitting an IP packet as ε in case of the completely reliable ARQ scheme and as δ in case

of the semi-reliable ARQ scheme. It should be emphasized that when the ARQ scheme is

completely reliable, the time required to transmit an IP packet over the wireless channel is

potentially unlimited, while the lower bound is equal to the amount of time needed to

successfully transmit all v frames to which the packet was segmented from the first try. When

the ARQ scheme is semi-reliable, the time during which an IP packet is transmitted over the

wireless channel is either the amount of time to successfully transmit the frames or the time till

the packet is dropped due to an excessive number of transmission attempts made for one of its

frames. Then the lower bound can be defined as ()min ,r v , while the maximum time is bounded

by rv (i.e., every frame out of the total v requires exactly r attempts to be successfully

transmitted). Again, we note that we define δ as the amount of time the wireless channel is

seized by transmitting an IP packet irrespective of whether this packet is successfully transmitted

or not. Thus, we have:

()

()
()

() ()
min ,

, , 1, ,

, min , ,min , 1, , ,

k v

rv

k r v

m f k k k v v

m d k k k r v r v rv

ε
μ

δ
μ

∞

=

=

= = +

= =

∑

∑

…

…+
 (4.20)

where ()f k and ()d k are the probability functions of the number of time slots the wireless

channel is seized by transmitting an IP packet in case of completely reliable and semi-reliable

ARQ, respectively (see [P5] [P6] for details); v is the number of frames to which an IP packet is

segmented; r is the number of ARQ transmission attempts (including the original transmission

and subsequent retransmissions).

4.5.1 Step 1: Buffer Overflows Dominate the Data Transfer

As before, we assume that the buffer at the intermediate system is sized in such a way to provide

full utilization of the wireless channel, which implies that B C≥ and 3B C+ ≥ (see section 4.4

 88

for details). Then, the average network throughput is equal to MTU δ bits per second and the

average end-to-end path capacity (expressed in packets of MTU size) is given by

1 MTU MTU 1.
MTU

ττ
δ δ

⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

C (4.21)

Now let us consider the evolution of a TCP SACK connection as a sequence of cycles,

where a cycle is a period between two consecutive non-congestion losses separated by at least

one packet loss due to buffer overflow (Fig. 4.16). The expected duration of a congestion

avoidance phase in rounds (0CAE A⎡ ⎤⎣ ⎦), the expected number of packets sent during this phase

(0CAE Y⎡ ⎤⎣ ⎦), and the packet loss rate due to buffer overflow at the IP layer (Cp) can be found as

(4.2). Note that more than one non-congestion loss can occur within a single window of data. Let

1iW − denote the window size at the end of cycle 1i − . After the loss detection, the ssthresh will

be set as ()1ssthresh max 2,2−=i iW . For C Lp p> , we assume that the random variable iW is

uniformly distributed from () 2C B+ to C B+ . Then the values of []E W and []ssthreshE can

be obtained from (4.11).

Depending on 1iW − and the number of losses within a single window of data, the lost

segment(s) may be detected either via three duplicate ACKs or via expiration of the TCP

retransmission timer. As was demonstrated in [115], taking into account the probability of j

losses out of a window of w packets, the timeout probability for TCP SACK is

l () () () ()()
3

2 1

1, 4,

1 1 1 1 , 4.
w w

w j w j jj j
L L L L L

j w j

w
Q w w w

p p p p p w
j j

−
− −

= − =

<⎧
⎪= ⎛ ⎞ ⎛ ⎞⎨ − + − − − ≥⎜ ⎟ ⎜ ⎟⎪

⎝ ⎠ ⎝ ⎠⎩
∑ ∑

 (4.22)

+
2

C B⎛ ⎞
⎜ ⎟
⎝ ⎠

()C B+

()max 2, 2iW

iW1iW −

ssthresh i

CA0 CA0 CA0SS TO

in

Fig. 4. 16 TCP SACK window evolution in the presence of congestion and non-congestion

losses

 89

As in [67], we approximate:

l () [] l []()
1

Pr ,
w

Q Q w W w Q E W
∞

=

= = ≈∑ (4.23)

where Q is the probability that a non-congestion loss (or losses) will be detected via expiration

of the TCP retransmission timer.

The expected durations of phases CA1 and CA2 (see Fig. 4.16) and the expected number of

segments sent during these phases can be calculated as (4.12) and (4.13), respectively.

When the TCP retransmission timer expires (i.e., after RTO seconds), the cwnd is reduced to

one segment and the first unacknowledged segment is retransmitted. The TCP sender also

doubles the timeout value so that it will expire after 2RTO seconds. This doubling is repeated for

each unsuccessful retransmission until the maximum value of 64RTO is reached. After that, the

timeout value remains constant and equal to 64RTO seconds [45]. According to [67], the

expected duration of a sequence of timeouts (TO) can be defined as follows:

()2 3 4 5 61 2 4 8 16 32
RTO ,

1
+ + + + + +

⎡ ⎤ =⎣ ⎦ −
L L L L L LTO

L

p p p p p p
E Z

p
 (4.24)

where ()RTO RTT= f .

Considering that each data packet may be dropped with probability Lp due to an excessive

number of transmission attempts made for one of its frames at the data link layer or successfully

delivered to the IP layer with probability 1 Lp− , the expected number of packets sent during a

cycle can be defined as

[] () 1

1

11 .k
L L

k L

E Y p p k
p

∞
−

=

= − =∑ (4.25)

Then we define the TCP SACK long-term steady-state throughput as

()
()

MSS , 0,
MSS 1

, 0,
1

δ

δ

=⎧
⎪

= ⎨ >⎪ ⎡ ⎤+ ⎣ ⎦⎩

L

L
LTO

L

p
pT p

p QE Z
 (4.26)

where MSS MTU 40= − bytes; δ is from (4.20); Q is from (4.23); TOE Z⎡ ⎤⎣ ⎦ is from (4.24).

As it follows from Fig. 4.16, the total number of segments sent during the -thi cycle can be

approximated as 1 0 2SS CA CA CA
i i i i iY Y Y n Y Y= + + + , where the presence of the slow start phase

depends on the detection of non-congestion loss(es) (i.e., either via three duplicate ACKs or via

expiration of the TCP retransmission timer). Therefore, the derivation of the mean value of the

 90

RTT is similar to that presented in section 4.4, except the fact that the expected number of buffer

overflows within a cycle is given by

[]
[] 1 2

0
.

SS CA CA

CA

E Y QE Y E Y E Y
E n

E Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
⎡ ⎤⎣ ⎦

 (4.27)

4.5.2 Step 2: Non-congestion Losses Dominate the Data Transfer

Consider now the case when non-congestion losses are frequent enough (C Lp p≤) to restrict the

evolution of the cwnd below the sum of the end-to-end path capacity C and the buffer size B

(see Fig. 4.17).

()C B+

()max 2, 2iW

iW
1iW −

ssthresh i

TOCA CACA CA CASS

Fig. 4. 17 TCP SACK window evolution in the presence of non-congestion losses only

For small values of Lp , the derivation of []E W and CAE A⎡ ⎤⎣ ⎦ is similar to [65]:

[] []8 , .
3 2

CA

L

E W
E W E A b

bp
⎡ ⎤= =⎣ ⎦ (4.28)

Neglecting the slow start phase after a timeout, we get the expected queue size during the

subsequent congestion avoidance phase(s) as

[]

[] []

[]()
[] [] ()

[]

2

3
, 2 ,

4

, , 2 ,

.0

E W
C E W C

E W C
E R E W C C

E W

E W C

⎧⎛ ⎞
− ≥⎪⎜ ⎟

⎝ ⎠⎪
⎪

−⎪= ∈⎨
⎪
⎪
⎪

≤⎪
⎩

 (4.29)

Once the mean value of the RTT is obtained, we can calculate the mean duration of the first

timeout as (4.6) and substitute it into (4.24).

 91

Note that expressions (4.28) only hold when [] 4E W ≥ and, hence, 1 6Lp b≤ . In this case,

the TCP sender gets enough duplicate ACKs to trigger the SACK-based loss recovery algorithm.

However, when 1 6Lp b> , not enough duplicate ACKs arrive from the TCP receiver and a

timeout event is required to detect a lost segment (or segments). Thus, on average, every non-

congestion loss will be followed by a timeout. Then 1Q = and [] 0E R → . When 1Lp = , we

approximate the window size at loss events as [] 1E W = .

4.6 Numerical Analysis

In this section, we estimate various metrics characterizing TCP performance over wireless

channels with completely reliable and semi-reliable ARQ/FEC. To demonstrate the effect of

different FEC codes, we use the following BCH codes: (255,131,18), (511,250,31), (255,87,26),

and (511,157,51), where a triplet (), ,m n l denotes that in a codeword of size m bits and

containing n data bits up to l errors can be corrected. The code rate is equal to n m , so the code

rate of the first two FEC codes is approximately 1/2 and the code rate of the last two FEC codes

is roughly 1/3. Note that the number of frames per packet can be defined as

MTU ,v
n

⎡ ⎤= ⎢ ⎥⎢ ⎥
 (4.30)

where ⎡ ⎤⎢ ⎥ is the ceiling function.

Table 4.2 summarizes the values of v for the given FEC codes and MTU 1500= bytes.

Table 4. 2 Number of frames per packet

 (255,131,18) (511,250,31) (255,87,26) (511,157,51)

Frames per packet (v) 92 48 138 77

The BER of the wireless channel is set to vary between 0.01 and 0.10. Note that the latter

value corresponds to a very noisy wireless channel. The lag-1 NACF varies from 0.00 (the bit

error process has no autocorrelation at lag 1) to 0.95 (a high degree of autocorrelation at lag 1).

Values of the default system parameters used in the numerical analysis are listed in Table 4.3.

 92

Table 4. 3 Default system parameters

Input parameter Value

BER []()EE W 0.01, …, 0.11; step 0.001

lag-1 NACF ()()1EK 0.00, …, 0.95; step 0.05

FEC code (255,131,18), (511,250,31),

(255,87,26), (511,157,51)

MTU 1500 bytes

MSS 1460 bytes

Bottleneck link buffer size (B) 20 packets of MTU size

Data rate of the wireless channel (μ) 2 Mbit/s

Round-trip delay of the wired network (τ) 10 ms

Number of segments acknowledged by one ACK (b) 1

By how much does RTO exceed RTT (x) 2

Minimum value of the RTO (minRTO) 1 s

Number of transmission attempts per frame* (r)
* This parameter applies to semi-reliable ARQ only

3, 6, 9, 30

4.6.1 Completely Reliable ARQ

4.6.1.1 Service process of the wireless channel

First of all, let us consider the mean number of transmission attempts per frame (including failed

and successful transmissions) as a function of the BER, the lag-1 NACF, and different FEC

codes (Fig. 4.18). When the BER is sufficiently small, the FEC code can correct all errors in a

frame without requiring a retransmission. As a result, all the frames in an IP packet will be

successfully transmitted in their first attempts, which implies one transmission attempt per

frame. However, when the BER increases and not all transmission errors can be corrected, the

 93

erroneous frame is discarded and a retransmission is requested by the ARQ receiver. Obviously,

when the channel quality is relatively “bad”, more powerful FEC codes provide better

performance, requiring less transmission attempts (see Fig. 4.18b and Fig. 4.18d).

Observing Fig. 4.18, we conclude that FEC codes with different codeword lengths but the

same code rate perform similarly. The difference between the performance corresponding to the

codeword length of 255 and 511 bits is due to slight deviations in the code rate and the error

correcting capability of these FEC codes.

a) (255,131,18) b) (255,87,26)

c) (511,250,31) d) (511,157,51)

Fig. 4. 18 Mean number of transmission attempts per frame,

including failed and successful transmissions

 94

The mean time required to transmit an IP packet over the wireless channel as a function of

the BER, the lag-1 NACF, and different FEC codes is shown in Fig. 4.19. We note that the

increase in the strength of the FEC code results in higher delays when the BER is small. Of

course, FEC codes with greater redundancy result in more frames and, thus, more bits to

transmit. On the other hand, when the BER increases, more powerful FEC codes perform better.

We also note that the increase in the BER results in higher delay values, since those frames that

are dropped due to a large number of incorrectly received channel symbols require

retransmission and, consequently, increase the total time needed to successfully transmit all

frames to which the packet was segmented.

a) (255,131,18), min 0.012ε = , max 0.510ε = b) (255,87,26), min 0.018ε = , max 0.045ε =

c) (511,250,31), min 0.012ε = , max 11.334ε = d) (511,157,51), min 0.020ε = , max 0.077ε =

Fig. 4. 19 Mean time (in seconds) required to transmit an IP packet over the wireless channel

 95

The effect of autocorrelation is more complex. When the BER is small, the lag-1

autocorrelation of the bit error process almost does not affect the performance of the wireless

channel. But when the BER increases, the lag-1 autocorrelation of bit errors results in a smaller

delay. This behavior can be explained as follows. The lag-1 autocorrelation of the bit error

process manifests itself in clumping of errors (Fig. 4.20). Thus, higher values of the lag-1 NACF

result in a less deterministic process with a high variance around the mean number of errors per

frame (see Fig. 4.21b). On the other hand, lower values of the lag-1 NACF lead to a more

uniform distribution of errors over transmitted data, thus decreasing the spread in the number of

errors per frame (see Fig. 4.21a).

0 200 400 600 800 1 103×
0

1

2
0 = ok, 1 = error

Received channel symbols

In
di

ca
to

r

0 200 400 600 800 1 103×

0

1

2
0 = ok, 1 = error

Received channel symbols

In
di

ca
to

r

a) ()1 0.00EK = , [] 0.10EE W = b) ()1 0.95EK = , [] 0.10EE W =

Fig. 4. 20 Effect of autocorrelation on the bit error process

0 20 40 60 80 100
0

20

40

60

80

100
Errors
Error correcting capability of (255,131,18)
Error correcting capability of (255,87,26)

Received frames

Er
ro

rs
 p

er
 fr

am
e

0 20 40 60 80 100

0

20

40

60

80

100
Errors
Error correcting capability of (255,131,18)
Error correcting capability of (255,87,26)

Received frames

Er
ro

rs
 p

er
 fr

am
e

a) ()1 0.00EK = , [] 0.10EE W = b) ()1 0.95EK = , [] 0.10EE W =

Fig. 4. 21 Number of errors per frame versus the strength of the FEC codes under high BER

 96

As an example, let us consider the (255,131,18) FEC code. For large values of the BER and

small values of the lag-1 NACF, bit errors, even being well distributed, result in more incorrectly

received channel symbols per frame than the FEC code can correct, so almost all frames are

received incorrectly (Fig. 4.21a). As a result, this increases the amount of time required to

transmit an IP packet over the wireless channel. However, when the lag-1 autocorrelation of bit

errors is sufficiently high, bit errors tend to occur in groups. Given the same BER, this unequal

distribution leads to more frames received correctly (Fig. 4.21b). This effect remains the same

for all FEC codes.

At the same time, the lag-1 autocorrelation of the bit error process may affect performance

of the wireless channel even when the BER is small (this is more visible in Fig. 4.24a when

()1 0.95EK = and [] 0.01EE W =). More specifically, it leads to slightly worse performance for

FEC codes with a small error correcting capability. Indeed, large values of the lag-1 NACF lead

to more lengthy bursts of errors within a frame that the FEC code cannot correct (see Fig. 4.22b).

This, in turn, increases the number of transmission attempts required to successfully transmit an

IP packet over the wireless channel.

0 20 40 60 80 100
0

20

40

60

80

100
Errors
Error correcting capability of (255,131,18)
Error correcting capability of (255,87,26)

Received frames

Er
ro

rs
 p

er
 fr

am
e

0 20 40 60 80 100

0

20

40

60

80

100
Errors
Error correcting capability of (255,131,18)
Error correcting capability of (255,87,26)

Received frames

Er
ro

rs
 p

er
 fr

am
e

a) ()1 0.00EK = , [] 0.01EE W = b) ()1 0.95EK = , [] 0.01EE W =

Fig. 4. 22 Number of errors per frame versus the strength of the FEC codes under low BER

4.6.1.2 TCP spurious timeout probability

Now let us estimate the spurious timeout probability for a TCP SACK connection over a wireless

channel behaving in a covariance-stationary manner. As it was demonstrated in section 4.4, a

TCP spurious timeout occurs when the variability in the wireless channel quality introduces a

sudden delay in the service process of an IP packet which is equal to or larger than RTO seconds.

 97

The expected duration of the RTO can be defined as (4.7). Our numerical analysis shows that the

spurious timeout probability is negligibly small for 2M > . For instance, Fig. 4.23a illustrates

the probability functions (in log scale) of the time required to transmit an IP packet over the

wireless channel using the (255,131,18) FEC code for ()1 0.00EK = and different values of

[]EE W . It is easy to observe that the worst possible scenario for TCP is when the BER is high.

Fig. 4.23b shows the probability function for [] 0.07EE W = , as well as the mean of the

distribution (ε) and the quantity required to estimate the probability of a spurious retransmission

timeout for 2M = . According to the first case in (4.8), the probability mass beyond 2ε provides

an estimate for the TCP spurious timeout probability. Note that already for 2M = and

[] 0.07EE W = the probability of a spurious retransmission timeout is less than 10E-24.

Considering the other two cases in (4.8), we get that the probability of a spurious timeout is only

insignificantly larger. The obtained results allow us to conclude that completely reliable ARQ

does not lead to TCP spurious timeouts when wireless channel conditions are covariance-

stationary. This conclusion well agrees with the findings in [97] [98] [100].

0 0.02 0.04 0.06 0.08 0.1
1 10 40−×

1 10 36−×

1 10 32−×

1 10 28−×

1 10 24−×

1 10 20−×

1 10 16−×

1 10 12−×

1 10 8−×

1 10 4−×

1
E[We] = 0.03
E[We] = 0.05
E[We] = 0.07

Delay, s

Pr
ob

ab
ili

ty

0 0.02 0.04 0.06 0.08 0.1

1 10 40−×

1 10 36−×

1 10 32−×

1 10 28−×

1 10 24−×

1 10 20−×

1 10 16−×

1 10 12−×

1 10 8−×

1 10 4−×

1
E[We] = 0.07

Delay, s

Pr
ob

ab
ili

ty

1ε 2ε

a) (255,131,18) FEC code, ()1 0.00EK = b) (255,131,18) FEC code,

0.02ε = s, 2 0.04ε = s

Fig. 4. 23 Probability function (in log scale) of the time required to transmit an IP packet over

the wireless channel, ()1 0.00EK =

4.6.1.3 TCP SACK steady-state throughput

The TCP SACK long-term steady-state throughput as a function of the BER, the lag-1 NACF,

and different FEC codes is shown in Fig. 4.24. As one may note, it is inverse proportional to the

mean time required to transmit an IP packet over the wireless channel (Fig. 4.19). It is easy to

see that depending on the BER and the lag-1 autocorrelation of bit errors, different FEC codes

 98

provide better performance in terms of TCP throughput. As it was noted in [97] [98] [100], there

is a clear trade-off between the bandwidth consumed by FEC and the gain archived in TCP

performance. Therefore, an adaptive FEC scheme, allowing to adjust code parameters on the fly

as a function of the wireless channel quality, is the best choice for both TCP performance and

efficient resource utilization.

a) (255,131,18) b) (255,87,26)

c) (511,250,31) d) (511,157,51)

Fig. 4. 24 TCP SACK steady-state throughput (in Mbit/s), MTU 1500= bytes

Fig. 4.25 and Fig. 4.26 demonstrate the impact of the MTU size on the mean time required

to transmit an IP packet over the wireless channel and the TCP steady-state throughput,

respectively. For the sake of briefness, we present the results for the (255,131,18) and

(255,87,26) FEC codes only. The results for the (511,250,31) and (511,157,51) FEC codes are

 99

qualitatively similar. Comparing Fig. 4.19 and Fig. 4.25, it is easy to see that the change in the

MTU size simply affects the magnitude of the mean time required to transmit an IP packet over

the wireless channel, since the decrease in the IP packet size results in less bytes to transmit. On

the other hand, the change in the MTU size almost does not affect the TCP throughput because a

smaller MTU size implies a smaller MSS value. The small reduction in the TCP throughput is

due to the increased protocol header overhead: from 40 1500 0.027≈ to 40 576 0.069≈ .

a) (255,131,18) b) (255,87,26)

Fig. 4. 25 Mean time (in seconds) required to transmit an IP packet

over the wireless channel, MTU 576= bytes

a) (255,131,18) b) (255,87,26)

Fig. 4. 26 TCP SACK steady-state throughput (in Mbit/s), MTU 576= bytes

 100

4.6.2 Semi-reliable ARQ

4.6.2.1 Service process of the wireless channel

Now let us consider how the BER and the lag-1 autocorrelation of bit errors affect packet

transmission over wireless channels with semi-reliable ARQ. As it was demonstrated in section

4.6.1, FEC codes with different codeword lengths but the same code rate perform similarly, so

for the sake of briefness, we present the results only for one pair of the FEC codes: (255,131,18)

and (255,87,26). The results for the other pair of FEC codes are qualitatively similar.

a) 3r = b) 6r =

c) 9r = d) 30r =

Fig. 4. 27 Mean time (in seconds) during which an IP packet is transmitted

over the wireless channel, (255,131,18)

 101

The mean packet transmission delay (including failed and successful transmissions) for the

(255,131,18) and (255,87,26) FEC codes is shown in Fig. 4.27 and Fig. 4.28, respectively. Note

that this metric represents the average amount of time the wireless channel is seized by

transmitting an IP packet regardless of whether it is successfully transmitted or not. The packet

loss rate due to an excessive number of transmission attempts for the (255,131,18) and

(255,87,26) FEC codes is shown in Fig. 4.29 and Fig. 4.30, correspondingly.

a) 3r = b) 6r =

c) 9r = d) 30r =

Fig. 4. 28 Mean time (in seconds) during which an IP packet is transmitted

over the wireless channel, (255,87,26)

As expected, when the BER is small, the FEC code can correct almost all errors in a frame

without requiring a retransmission. Therefore, nearly all frames to which an IP packet was

 102

segmented will be successfully transmitted at the first try and the packet transmission delay will

be approximately v time slots (the duration of a time slot is assumed to be constant and equal to

m μ seconds). Next, when the BER increases and not all transmission errors in a received frame

can be corrected, the erroneous frame is dropped and a new copy is retransmitted, increasing the

total number of transmission attempts and, consequently, the packet transmission delay.

However, once r successive times any frame fails to be successfully transmitted, the whole IP

packet is dropped irrespective of the number of frames that have already been correctly received.

a) 3r = b) 6r =

c) 9r = d) 30r =

Fig. 4. 29 Packet loss rate due to an excessive number of transmission attempts, (255,131,18)

Therefore, a further increase in the BER results in a less number of transmission attempts per

packet, since a frame being dropped due to an excessive number of transmission attempts implies

 103

that the ARQ sender will drop all the subsequent frames belonging to that packet even not trying

to transmit them. Obviously, when the wireless channel conditions are extremely “bad”, so the

error correcting capability of the FEC code and the persistency of the ARQ scheme do not allow

to recover all transmission errors, the packet transmission delay tends to r time slots. In other

words, the first frame of every transmitted packet fails to be successfully transmitted in r

attempts, which means that every packet will be lost due to an excessive number of transmission

attempts and 1Lp = .

a) 3r = b) 6r =

c) 9r = d) 30r =

Fig. 4. 30 Packet loss rate due to an excessive number of transmission attempts, (255,87,26)

It is worthwhile to note that for a given range of BER values, the (255,87,26) FEC code

combined with the high-persistence ARQ scheme (30r =) provides completely reliable

 104

operation of the data link layer, so 0Lp = (see Fig. 4.30d).

To demonstrate how the lag-1 autocorrelation of the bit error process affects the

performance of the wireless channel, let us consider three different bit error processes, assuming

that the first process has no autocorrelation at lag 1 (()1 0.00EK =), the second exhibits a

moderate degree of autocorrelation at lag 1 (()1 0.50EK =), and the last one exhibits a very high

degree of autocorrelation at lag 1 (()EK 1 0.95=). Observing Fig. 4.31, we note that the lag-1

NACF significantly affects the packet loss rate due to an excessive number of transmission

attempts, while the magnitude of this effect greatly depends on the ARQ persistency.

First of all, when the BER is small, the lag-1 autocorrelation of the bit error process results

in higher packet loss rates due to an excessive number of transmission attempts. This effect is

most noticeable in case of a low-persistence ARQ scheme (e.g., 3r =). The observed behavior

can be explained as follows. The lag-1 autocorrelation of the bit error process manifests itself in

clumping of errors (see Fig. 4.20b). Therefore, higher values of the lag-1 NACF result in a less

deterministic process with a high variance around the mean number of errors per frame

(see Fig. 4.22b). On the other hand, lower values of the lag-1 NACF lead to a more uniform

distribution of errors over transmitted data (see Fig. 4.20a), thus decreasing the spread in the

number of errors per frame (see Fig. 4.22a). As a result, large values of the lag-1 NACF lead to

more lengthy bursts of errors within a frame than the FEC code can correct. This, in turn,

increases the number of transmission attempts required to successfully transmit an IP packet over

the wireless channel and, hence, increases the probability that a packet will be dropped due to an

excessive number of transmission attempts made for one of its frames.

At the same time, when the BER is high, the lag-1 autocorrelation of the bit error process

results in a lower packet loss rate due to an excessive number of transmission attempts. This

effect mainly occurs for high-persistence ARQ schemes (e.g., 6,9,30r =). As shown in

Fig. 4.20a and Fig. 4.21a, when the BER is high and the lag-1 NACF is small, bit errors, even

being well distributed over transmitted data, result in more incorrectly received channel symbols

per frame than the FEC code can correct, so almost all frames are received incorrectly.

Consequently, this increases the total number of transmission attempts required to successfully

transmit an IP packet over the wireless channel and naturally increases the probability that a

packet will be dropped due to an excessive number of transmission attempts made for one of its

frames. When the lag-1 autocorrelation of bit errors is sufficiently high, bit errors tend to occur

in groups. Given the same BER, it leads to more frames received correctly (see Fig. 4.21b).

 105

However, to take advantage of the error grouping effect, the ARQ scheme should be highly-

persistent in order to be able to cope with a large spread in the number of errors per frame.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3
r = 6
r = 9
r = 30

BER

Pa
ck

et
 lo

ss
 ra

te

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3
r = 6
r = 9
r = 30

BER

Pa
ck

et
 lo

ss
 ra

te

a) (255,131,18), ()1 0.00EK = b) (255,87,26), ()1 0.00EK =

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3
r = 6
r = 9
r = 30

BER

Pa
ck

et
 lo

ss
 ra

te

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3
r = 6
r = 9
r = 30

BER

Pa
ck

et
 lo

ss
 ra

te

c) (255,131,18), ()1 0.50EK = d) (255,87,26), ()1 0.50EK =

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3
r = 6
r = 9
r = 30

BER

Pa
ck

et
 lo

ss
 ra

te

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3
r = 6
r = 9
r = 30

BER

Pa
ck

et
 lo

ss
 ra

te

e) (255,131,18), ()1 0.95EK = f) (255,87,26), ()1 0.95EK =

Fig. 4. 31 Packet loss rate due to an excessive number of transmission attempts

 106

4.6.2.2 TCP SACK steady-state throughput

The TCP SACK long-term steady-state throughput as a function of the BER, the lag-1 NACF,

and the persistency of the ARQ scheme for the (255,131,18) and (255,87,26) FEC codes is

shown in Fig. 4.32 and Fig. 4.33, respectively. The major effect on the TCP steady-state

throughput is produced by the BER. However, influence of the lag-1 autocorrelation of the bit

error process is also noticeable. When only three transmission attempts are allowed for a single

frame (3r =), the TCP steady-state throughput drops significantly even for a moderate BER. As

it follows from Fig. 4.32 and Fig 4.33, the steady-state throughput of a TCP SACK connection

running over a noisy wireless channel is an increasing function of the persistency of the ARQ

scheme.

a) 3r = b) 6r =

c) 9r = d) 30r =

Fig. 4. 32 TCP SACK steady-state throughput (in Mbit/s), (255,131,18)

 107

As expected, the (255,131,18) FEC code results in better performance for small values of

the BER. However, when the BER increases, the (255,87,26) FEC code leads to a higher TCP

throughput compared to the (255,131,18) FEC code at the expense of greater code redundancy.

a) 3r = b) 6r =

c) 9r = d) 30r =

Fig. 4. 33 TCP SACK steady-state throughput (in Mbit/s), (255,87,26)

Considering Fig. 4.32 and Fig. 4.33, we notice a sharp drop in the TCP SACK steady-state

throughput which occurs when the BER is high and the ARQ scheme is low-persistent. This

behavior can be explained as follows. Firstly, the observed decrease in the TCP throughput

corresponds one-to-one to the growth in the packet loss rate due to an excessive number of

transmission attempts (see Fig. 4.29 and Fig. 4.30). Indeed, when the packet loss rate is very

high (1Lp →), so almost every transmitted packet will be lost due to an excessive number of

 108

transmission attempts made for one of its frames, the TCP throughput tends to zero. Secondly,

when non-congestion losses are sufficiently rare (C Lp p>), the window size at loss events

belongs to the range from () 2C B+ to C B+ and, on average, the TCP sender gets enough

duplicate ACKs to trigger the SACK-based loss recovery algorithm (see Fig. 4.34a). However,

when non-congestion losses dominate congestion losses (C Lp p≤), the window size at loss

events is inversely proportional to Lp and the probability that a non-congestion loss will be

detected via a timeout event rapidly increases (see Fig. 4.34b). In extreme case, every non-

congestion loss will be followed by a timeout. Thus, high values of the packet loss rate due to an

excessive number of transmission attempts together with lengthy TCP timeouts contribute a lot

to the degradation of TCP performance over wireless channels with semi-reliable ARQ/FEC.

a) The expected window size at loss events b) The timeout probability

Fig. 4. 34 TCP SACK performance, (255,131,18), 3r =

As it was mentioned in section 4.4, the buffer at the intermediate system should be sized at

least as large as the end-to-end path capacity (B C≥), while ensuring that the window size at

loss events due to buffer overflow is large enough to trigger a fast retransmission without the

need to wait for a timeout event (3B C+ ≥). At the same time, setting the size of the buffer to be

much larger than the end-to-end path capacity results in very long queuing delays, since TCP

does its best to fill the end-to-end path capacity and the bottleneck link buffer, thus increasing

the queue size and, consequently, the queuing delay. In turn, it leads to large values of the RTT

and the RTO. It should be also emphasized that such overprovisioning does not increase the TCP

throughput, which is mainly determined by the packet service process of the wireless channel

(see Fig. 4.13).

 109

Fig. 4.35 and Fig. 4.36 demonstrate the impact of the MTU size on the TCP SACK steady-

state throughput for the (255,131,18) and (255,87,26) FEC codes, respectively. Here the yellow

(light) planes denote the case of MTU 1500= bytes and the grey (dark) planes correspond to the

case of MTU 296= bytes. It is easy to see that when the BER is small, the decrease in the MTU

size results in a smaller TCP throughput due to increased protocol header overhead: from

40 1500 0.027≈ to 40 296 0.135≈ .

a) 1500 bytes vs. 296 bytes, 3r = b) 1500 bytes vs. 296 bytes, 6r =

c) 1500 bytes vs. 296 bytes, 9r = d) 1500 bytes vs. 296 bytes, 30r =

Fig. 4. 35 TCP SACK steady-state throughput (in Mbit/s)

for different MTU sizes, (255,131,18)

On the other hand, as it was shown in [P6], the packet loss rate due to an excessive number

of transmission attempts (Lp) depends on the number of frames per packet (v). Thus, when the

 110

wireless channel quality is relatively “bad”, by decreasing the packet size and, consequently, the

number of frames to which an IP packet is segmented, we can slightly reduce non-congestion

losses and improve TCP performance. Of course, this effect does not take place in case of a high-

persistence ARQ scheme combined with a powerful FEC code (see Fig. 4.36c and Fig. 4.36d),

since such a combination ensures that the service provided by the data link layer is highly

reliable and the packet loss rate due to an excessive number of transmission attempts tends to

zero.

a) 1500 bytes vs. 296 bytes, 3r = b) 1500 bytes vs. 296 bytes, 6r =

c) 1500 bytes vs. 296 bytes, 9r = d) 1500 bytes vs. 296 bytes, 30r =

Fig. 4. 36 TCP SACK steady-state throughput (in Mbit/s)

for different MTU sizes, (255,87,26)

 111

4.7 Conclusions

In this chapter, we presented an analytical cross-layer model for a TCP SACK connection

running over a wireless channel either with completely reliable or semi-reliable ARQ/FEC. The

proposed model allows to evaluate the combined effect of many implementation-specific

parameters on TCP performance over both correlated and uncorrelated wireless channels, which

makes it suitable for performance optimization studies. These parameters include the BER, the

lag-1 NACF of bit error observations, the size of PDUs at different layers, the strength of the

FEC code, the persistency of the ARQ scheme, the raw data rate of the wireless channel, and the

bottleneck link buffer size. It should be emphasized that the developed model is a general

framework rather than a model for a particular wireless technology. To use it for practical

evaluation of different technologies, this framework should be extended by adding specific

details of state-of-the-art wireless systems.

The results of the study allow us to make the following conclusions:

• Although the major effect on the performance of a wireless channel with ARQ/FEC is

produced by the BER, the lag-1 autocorrelation of the bit error process can significantly

alter the reliability of the channel. Specifically, a bit error process with a high degree of

autocorrelation at lag 1 results in better performance of a high-persistence or perfectly-

persistent ARQ scheme, while considerably degrading the wireless channel quality for

ARQ schemes with low persistency.

• Since a large number of transmission attempts allowed for a frame greatly improves the

reliability of a wireless channel by reducing the number of non-congestion losses, a high-

persistence or perfectly-persistent ARQ scheme is the best choice for TCP data flows.

• The amount of FEC, required to maximize TCP performance, depends on both BER and

lag-1 NACF of the bit error process. However, FEC codes with different codeword

lengths but the same code rate provide almost similar performance.

• To ensure that the window size at loss events due to buffer overflow is large enough to

trigger a fast retransmission, the buffer at the intermediate system should be sized at least

as large as the end-to-end path capacity. However, setting the size of the buffer to be

much larger than this value does not increase the TCP steady-state throughput, which is

mainly determined by the packet service process of the wireless channel.

• When all packet losses (due to both buffer overflow at the IP layer and an excessive

number of transmission attempts at the data link layer) can be recovered using the

SACK-based loss recovery algorithm, the TCP throughput is mainly determined by the

 112

time required to transmit an IP packet over the wireless channel. But once the window

size at loss events becomes less than four segments, lengthy TCP timeouts contribute a

lot to the degradation of TCP performance.

• Using small packet sizes reduces the TCP throughput by increasing the protocol header

overheard but can slightly improve TCP performance when the wireless channel quality

is relatively “bad” and the ARQ scheme is low-persistent. This is because a small packet

size implies fewer frames per packet and, consequently, a smaller packet loss probability

due to an excessive number of transmission attempts made for one of these frames.

 113

 114

5. SUMMARY OF PUBLICATIONS
This chapter summarizes the publications incorporated in this dissertation and describes the

author’s contribution to them. In accordance with the structure of the thesis, all the publications

can be divided into two groups. The first group contains publications concerning TCP

performance evaluation and modeling over wired networks [P1] [P2] [P3] [P4]. The second

group includes publications about TCP performance over wired-cum-wireless networks [P5]

[P6].

5.1 Overview of the Publications

[P1] R. Dunaytsev, Y. Koucheryavy, J. Harju, The impact of RTT and delayed ACK timeout

ratio on the initial slow start phase, in: Proceedings of IPS-MoMe 2005, Warsaw, Poland,

March 2005, pp. 171-176.

Description

According to recent measurements, the Internet traffic is dominated by short-lived flows, i.e.,

flows that are short enough to experience any losses and that spend the most part of their lifetime

in the initial slow start phase. Therefore, it is important to estimate how the TCP initial slow start

affects the performance of short data transfers. In this paper, the impact of the RTT and delayed

ACK timeout ratio on the cwnd increase pattern is analyzed. Then, a comprehensive analytical

model of the initial slow start phase is introduced.

[P2] R. Dunaytsev, Y. Koucheryavy, J. Harju, The PFTK-model revised, Computer

Communications 29 (13-14) (2006) 2671-2679.

This is an extended version of the following paper:

R. Dunaytsev, Y. Koucheryavy, J. Harju, Refined PFTK-model of TCP Reno throughput

in the presence of correlated losses, in: Proceedings of WWIC 2005, Xanthi, Greece,

May 2005, pp. 42-53.

Description

This paper presents an analytical model of the steady-state throughput of a TCP Reno connection

as a function of the loss event rate, the mean RTT, the expected duration of the RTO, and the

rwnd size based on the model proposed by Padhye et al. (widely known as the PFTK-model in

correspondence with the initials of the authors) [67]. The presented model refines the previous

 115

work by careful examination of fast retransmit/fast recovery dynamics in the presence of

correlated losses and taking into consideration the slow start phase after a timeout event.

[P3] R. Dunaytsev, Y. Koucheryavy, J. Harju, TCP NewReno throughput in the presence of

correlated losses: the Slow-but-Steady variant, in: Proceedings of IEEE INFOCOM

Global Internet Workshop 2006, Barcelona, Spain, April 2006, pp. 115-120.

Description

Recent studies [48] show that the most widely used TCP implementation in today’s Internet is

TCP NewReno and its deployment has increased significantly in the last few years. However, the

majority of the proposed analytical models were developed for the TCP Reno implementation.

This paper presents an analytical model of the steady-state throughput of a TCP connection

based on the Slow-but-Steady variant of TCP NewReno as a function of the loss event rate, the

average loss burst length, the mean RTT, and the expected duration of the RTO.

[P4] R. Dunaytsev, K. Avrachenkov, Y. Koucheryavy, J. Harju, An analytical comparison of

the Slow-but-Steady and Impatient variants of TCP NewReno, in: Proceedings of WWIC

2007, Coimbra, Portugal, May 2007, pp. 30-42.

Description

The current standard [49] defines two variants of TCP NewReno: Slow-but-Steady and

Impatient. While the behavior of various TCP implementations has been extensively studied over

the last years, little attention has been paid to performance analysis of these variants of TCP

NewReno. In this paper, an analytical model of the Impatient variant is presented, which, being

combined with the earlier proposed model of the Slow-but-Steady variant [P3], gives a

comprehensive analytical model of TCP NewReno performance. This model provides the

possibility to study the steady-state throughput of both variants over the entire range of operating

conditions and protocol settings.

[P5] R. Dunaytsev, D. Moltchanov, Y. Koucheryavy, J. Harju, Modeling TCP SACK

performance over wireless channels with completely reliable ARQ/FEC, Submitted for

publication in International Journal of Communication Systems.

This is a revised and substantially extended version of the following paper:

 116

D. Moltchanov, R. Dunaytsev, Y. Koucheryavy, Cross-layer modeling of TCP SACK

performance over wireless channels with completely reliable ARQ/FEC, in: Proceedings

of WWIC 2008, Tampere, Finland, May 2008, pp. 13-26.

Description

In this paper, an analytical cross-layer model for a TCP SACK connection running over a

covariance-stationary wireless channel with completely reliable ARQ/FEC is introduced. The

model allows to evaluate the joint effect of many parameters of wireless channels on TCP

performance making it suitable for performance optimization studies. These parameters include

the performance characteristics of the wireless channel, the size of PDUs at different layers, the

strength of the FEC code, the use of ARQ, the raw data rate of the wireless channel, and the

bottleneck link buffer size.

[P6] D. Moltchanov, R. Dunaytsev, Modeling TCP SACK performance over wireless

channels with semi-reliable ARQ/FEC, Accepted for publication in Wireless Networks

(DOI: 10.1007/s11276-009-0231-9).

This is a revised and substantially extended version of the following paper:

D. Moltchanov, R. Dunaytsev, Modeling TCP performance over wireless channels with

a semi-reliable data link layer, in: Proceedings of IEEE ICCS 2008, Guangzhou, China,

November 2008, pp. 912-918.

Description

Most analytical models that studied the effect of ARQ and FEC on TCP performance assumed

that the ARQ scheme is perfectly-persistent (i.e., completely reliable), thus a frame is always

successfully transmitted irrespective of the number of transmission attempts it takes. This paper

presents an analytical cross-layer model for data transmission over a wireless channel that

explicitly takes into account the effect of a semi-reliable data link layer. Packet losses are

allowed to occur either due to buffer overflow at the IP layer or due to an excessive number of

transmission attempts at the data link layer. The performance metric of interest is the steady-state

throughput of a TCP SACK connection running over a wireless channel with semi-reliable

ARQ/FEC. The input parameters include the BER, the lag-1 NACF of bit error observations, the

strength of the FEC code, the persistency of ARQ, the size of PDUs at different layers, the raw

data rate of the wireless channel, and the bottleneck link buffer size.

 117

5.2 Author’s Contribution to the Publications

The author’s contribution to all the publications included in this dissertation is significant. He

has been the primary author in publications [P1] [P2] [P3] [P4] and has contributed a lot to the

content of publications [P5] [P6]. The main contribution of the author to these publications is as

follows.

In [P1], the author analyzed the impact of different RTT and delayed ACK timeout ratios on

the cwnd increase pattern and proposed a comprehensive analytical model of the TCP initial

slow start phase. The developed model takes into consideration both cases: when the RTT is

smaller than or equal to the doubled value of the delayed ACK timeout and when the RTT is

bigger than the last one.

In [P2], the author pointed out several mistakes in the PFTK-model and revised the model.

The ns-2 simulation results show that the new model gives a more accurate estimate of TCP

Reno throughput in the presence of correlated losses than the original one. Since new TCP

models are often compared with the PFTK-model and use its resultant formula, such inaccuracy

in throughput estimation can potentially lead to incorrect results or wrong conclusions.

In [P3], the author developed an analytical model of the steady-state throughput of a long-

lived TCP connection based on the Slow-but-Steady variant of TCP NewReno.

In [P4], the author proposed an analytical model of the Impatient variant of TCP NewReno

and performed an analytical comparison of the Impatient and Slow-but-Steady throughputs in the

presence of correlated losses.

In [P5], the author analyzed the evolution of a long-lived TCP SACK connection running

over a wireless channel with completely reliable ARQ/FEC and derived expressions for its

steady-state throughput, the mean RTT, and the spurious timeout probability.

In [P6], the author derived an expression for the steady-state throughput of a long-lived TCP

SACK connection running over a wireless channel with semi-reliable ARQ/FEC.

It should be emphasized that the wireless channel models used in [P5] [P6] have been

developed by Dmitri Moltchanov.

 118

6. CONCLUSIONS
From the early days of BSD Unix systems to desktop and server platforms of today, the Internet

Protocol Suite, and, hence, TCP is an integral part of any OS. Moreover, from the very beginning

of the Internet, it has been widely used by the most popular applications and services: from the

File Transfer Protocol (FTP) and Usenet before the dot com era, and up to the World Wide Web

(WWW) and peer-to-peer (P2P) file sharing nowadays. As a consequence, TCP controls about

90% of all bytes and packets carried over the Internet and there are no indications that its share

will significantly decline in the nearest future. Due to its widespread use, TCP performance has

been extensively studied over the last decade. Analytical modeling has proven to be a powerful

and cost-effective method for examining the behavior of TCP. To be useful, TCP analytical

models should be realistic and capture the most important TCP algorithms such as slow start,

congestion avoidance, fast retransmit and fast recovery, etc. In this dissertation, we made an

effort towards a better understanding of various aspects of TCP performance under different

conditions and in different environments. The contribution of the thesis includes the

development of the following models:

• a model for the TCP initial slow start phase. In networks with large bandwidth and long

delay, if the initial ssthresh is set too low relative to the bandwidth-delay product, a TCP

connection exits slow start and switches to the congestion avoidance phase with a linear

increase of the cwnd size prematurely, resulting in poor utilization of the available

bandwidth. Recently, a number of methods have been suggested for improving TCP

startup performance. In order to evaluate the efficiency of different proposals, an accurate

analytical model of the initial slow start was developed, which can predict the duration of

the initial slow start phase and the number of transmitted segments over a wide range of

operating conditions.

• a model of TCP Reno throughput under correlated losses. This model is based on the

model proposed by Padhye et al. (also known as the PFTK-model) and refines it by

careful examination of fast retransmit/fast recovery dynamics in case of multiple packet

losses within a window of data. We show that though the PFTK-model is very popular

and widely referenced, it contains a number of logical contradictions, which can result in

significant overestimation of the steady-state throughput of a long-lived TCP Reno

connection when packet losses occur in bursts.

• a model of the steady-state throughput of a long-lived TCP NewReno connection.

Although TCP performance has been widely investigated in the literature, the majority of

the analytical models were developed for TCP Reno. In the absence of sufficient

 119

analytical background, the current standard recommends the Impatient variant of TCP

NewReno based only on ns-2 simulations. The proposed model allows to evaluate the

performance of both TCP NewReno variants (Slow-but-Steady and Impatient) over a

wide range of operating conditions and different protocol settings.

• a model of TCP SACK performance over wireless channels with completely reliable or

semi-reliable ARQ/FEC. TCP was initially developed to operate over wired networks,

where the packet loss rate due to data corruption is very small, and is known to have poor

performance over noisy wireless channels, since packet losses due to transmission errors

are misinterpreted as congestion-induced packet drops. To improve communication

reliability and reduce packet losses by detecting and recovering corrupted bits, modern

wireless technologies take advantage of different error control techniques including

ARQ, FEC, and hybrid ARQ/FEC. Being combined with a wireless channel model, the

developed model allows to quantify the joint effect of different parameters of the

ARQ/FEC scheme in use on TCP performance over both correlated and uncorrelated

wireless channels, which makes it suitable for performance optimization studies.

Ultimately, the model can be used as the basis for a cross-layer performance control

system.

Future work includes extending the presented cross-layer model to incorporate different

ARQ and FEC schemes used in modern wireless communication systems. Moreover, it involves

experimental work to validate the model by simulations and real-life measurements. We also

plan to evaluate the performance of new TCP implementations, such as those developed

specifically for high-speed and wireless networks. Another important direction that is currently

under investigation is applying a fixed-point method to model the interaction between the

network and a number of long-lived TCP flows sharing a wireless bottleneck link.

 120

APPENDIX A
In [P1], to find the number of slow start rounds required to transfer a given number of segments,

we used the approach proposed in [79]. In fact, it is a new method of finding solutions of higher

degree and transcendental equations developed by M.A. Eremin. Unfortunately, this book is

available in Russian only, and, therefore, is mostly unknown outside of the Russian Federation.

Thus, in order to provide some insight into this method, we give a short introduction to it,

followed by examples of its use from [79].

A.1 Solving Polynomials Equations of Higher Degree

Let us consider a higher degree equation in the canonical form:

1 2 2
1 2 2 1 0,n n n

n n nx a x a x a x a x a− −
− −+ + + + + + =… (A.1)

where 2n ≥ ; 1 0na − ≠ ; 0na ≠ .

According to [79], this equation has the following determinant:

2
1

2 3 4
1 2 2

1

, ,n
n n n

n n

n

amp pa m a m a m am
a

−
− − −

−

−

−
= =

+ + + ++ …

(A.2)

where
1

0n

n

am
a −

+ ≠ ; 2 3 4
1 2 2 0n n n

nm a m a m a− − −
−+ + + + ≠… .

Theorem 1: If m is the real root of equation (A.1), then

2
1

2 3 4
1 2 2

1

.n
n n n

n n

n

amp a m a m a m am
a

−
− − −

−

−

−
= =

+ + + ++ …

(A.3)

Proof: As it follows from (A.3)

2
1

2 3 4
1 2 2

1

2
1

2 3 4
1 2 2

1

0.

n
n n n

n n

n

n
n n n

n n

n

am
a m a m a m am

a

am
a m a m a m am

a

−
− − −

−

−

−
− − −

−

−

−
− =

+ + + ++

= + =
+ + + ++

…

…

 (A.4)

Then

()2 2 3 4
1 2 2 1

1

0.n n n n
n n

n

am m a m a m a a m
a

− − −
− −

−

⎛ ⎞
+ + + + + + =⎜ ⎟

⎝ ⎠
… (A.5)

 121

Finally, we get:

1 2 2
1 2 2 1 0.n n n

n n nm a m a m a m a m a− −
− −+ + + + + + =… (A.6)

Since at x m= equation (A.1) becomes zero, then m is the root of (A.1).

Corollary: Based on Theorem 1, we can find the intervals containing real roots of equation

(A.1). In order to so, we need to solve the following sets of inequalities for 0p >

1
2 3 4

1 2 2 1

1
2 3 4

1 2 2 1

0,

0, if 0

0,

0, if 0,

n

n
n n n

n n

n

n
n n n

n n

am
a

m a m a m a a

am
a

m a m a m a a

−
− − −

− −

−
− − −

− −

⎧ + >⎪
⎨
⎪ + + + + < >⎩

⎧ + >⎪
⎨
⎪ + + + + > <⎩

…

…

 (A.7)

and for 0p <

1
2 3 4

1 2 2 1

1
2 3 4

1 2 2 1

0,

0, if 0,

0,

0, if 0.

n

n
n n n

n n

n

n
n n n

n n

am
a

m a m a m a a

am
a

m a m a m a a

−
− − −

− −

−
− − −

− −

⎧ + <⎪
⎨
⎪ + + + + > >⎩

⎧ + <⎪
⎨
⎪ + + + + < <⎩

…

…

 (A.8)

Example 1: Let us define the interval containing real roots of the following equation [79, p.36]:

4 3 22 4 5 6 0.x x x x+ − − − = (A.9)

Observing that 4n = and using (A.2), we obtain:

()
()

2 2

4 2 4 3 4 4 2

5 5, .6 6 2 4 2 4
5 5

m mp p
m m m m mm m

− − −

− −
= = = =

− + + − + −+ +
−

 (A.10)

Then we get two sets of inequalities:

2

66 ,0,
50, 1 5,5

2 4 0, 1 5,

mm
p m

m m m

⎧⎧ > −+ >⎪ ⎪> >⎨ ⎨
⎪ ⎪+ − > > − +⎩ ⎩

− + (A.11)

and

2

66 ,0, 650, 1 5 .5
52 4 0, 1 5 1 5,

mm
p m

m m m

⎧⎧ < −+ <⎪ ⎪< − − < < −⎨ ⎨
⎪ ⎪+ − < − − < < − +⎩ ⎩

 (A.12)

 122

Hence, the roots of equation (A.9) lie in the intervals 3.2361 1.2m− < < − and 1.2m > (Fig. A.1).

6− 5− 4− 3− 2− 1− 0 1 2 3 4 5 6
50−

0

50

100

x

f(
x)

Fig. A. 1 () 4 3 22 4 5 6f x x x x x= + − − −

To find the exact values of the roots, let us compute p in these intervals. For 2m = − , we

have:

()
() ()

2

2

2 20 5 55, .6 4 42 2 2 42
5

p p
−

= = − = − = = −
− + − −− +

 (A.13)

3m = −And for , we get:

()
() ()

2

2

3 45 55, 5.6 9 3 2 3 43
5

p p
−

= = − = − = = −
− + − −− +

 (A.14)

3m = −Thus, according to Theorem 1, the first real root is .

Now let us check the interval 1 5m > − + . F m =or 2 , we obtain the second real root of

equation (A.9):

()
2

2

2 20 5 5 5, .6 16 4 2 2 2 4 42
5

p p= = = = =
+ −+

 (A.15)

, we get that while
2

6 5
mp

m
=

+
, 2

5
2 4

p
m m

=
+ −

 3, 4,5,m = … increases with mSubstituting

decreases. Therefore, we conclude that there are no real roots in the interval 2m > . This can be

proved by decomposing (A.9) as follows:

()()()4 3 2 22 4 5 6 3 2 1 0.x x x x x x x x+ − − − = + − + + = (A.16)

 123

Theorem 2: Let m be the range of values for the following sets of inequalities:

2

0,

1

1
2 3 4

1 2 2

2

1

1
2 3 4

1 2 2

0,

0,

0,

n

n

n
n n n

n

n

n

n
n n n

n

am
a

ap
m a m a m a

mp am
a

ap
m a m a m a

−

−
− − −

−

−

−
− − −

−

⎪
⎪ +⎪
⎨
⎪ −
⎪ = >

+ + + +⎪⎩

⎧
= <⎪

⎪ +⎪
⎨
⎪ −
⎪ = <

+ + + +⎪⎩

…

mp
⎧

= >

 (A.17)

…

1

0n

n

am
a −

+ ≠ ; 2 3 4
1 2 2 0n n n

nm a m a m a− − −
−+ + + +where ≠… .

If on []1 2,m m , belonging to m , expressions (A.18) differ in sign, then there is a real root of

equation (A.1) in this region.

()

()

2
11

1 2 3 4
1 1 1 2 1 2

1
1

2
12

2 2 3 4
2 1 2 2 2 2

2
1

,

.

n
n n n

n n

n

n
n n n

n n

n

amp mΔ = a m a m a m am
a

amp m a m a m a m am
a

−
− − −

−

−

−
− − −

−

−

−
−

+ + + ++

−
Δ = −

+ + + ++

…

…

 (A.18)

Proof: First of all, it is important to note that expressions (A.2) are fractional rational functions.

These functions are continuous in all points m for which the denominator is not zero. Hence,

()p mΔ is a continuous function as well (if two functions are continuous, then their sum is also

ous). And according to Cauchy’s theorem, if continu ()f x is continuous on [],a b and ()f a

and ()f b differ in sign, then, at some point []0 ,x a b∈ , ()0f x must equal zero.

A.2 Solving Transcendental Equations

cal form: Let us consider a transcendental equation in the canoni

()1 2
1 2

n n n d q
n d n qx a x a x a x a x f x− −
− − na 0,+ + + + + + + = … (A.19)

()f xwhere is a transcendental function.

 124

According to [79], this equation has the following determinant:

() () ()1 2
1 2

, ,
d

n q
n d n dn d

q n n d

n q

a f m m a m a m am
a

−

−

amp p −
− + − +−

−
= =

+ + + + ++ …

(A.20)

() 0nq

n q

a f m
m

a −

+
+ ≠ ; () ()1 2

1 2 0n d n dn d
n dm a m a m a− + − +−
−+ + + +where ≠… .

Example 2: Let us define the interval containing real roots of the following equation [79, p.215]:

23 28 12 2 8 0.xx x x+ + − + = (A.21)

() 2

2xf x = −Observing that and using (A.20), we obtain:

()2 2

2 2

3 2 13 2
1

12 12, .
888 2 8 2

12 12

m m

m
mm m

m m
− +−

−
=

mp p −
= = =

++− −
+ +

(A.22)

Based on Theorem 1, we can find the intervals containing real roots of equation (A.2

have:

1). We

2
28 2 12 8 2 ,0,0, no solutions ,12

8,8 0,

m
mmmp

mm

⎧ − ⎧ + >⎪ ⎪+ >> ⎨ ⎨
< −⎪⎪ ⎩+ <⎩

 (A.23)

and

2
28 2 2.44,12 8 2 ,0,0, 12 8 0.6.8,8 0,

m
m mmmp

mmm

⎧ − ⎧ >⎧+ <⎪ ⎪+ << ⎨ ⎨ ⎨− < < −> −⎪ ⎩⎪ ⎩+ >⎩

 (A.24)

Hence, the roots of equation (A.21) lie in the intervals 8 0.6m− < < − and 2.44m > (Fig. A.2).

3− 2− 1− 0 1 2 3
50−

0

50

100

x

f(
x)

Fig. A. 2 () 23 28 12 2 8xf x x x x= + + − +

 125

Based on Theorem 2, we can further specify the intervals containing the real roots of

equation (A.21). As an example, let us consider the interval . We compute ()p mΔ2.44m > for

1 2.5m = and 2 2.7m = :

() ()

() ()

2 2

2 2

2 2

1 2.5 2.5

2 2

2 2.7 2.7

2.5 12 2.5 122.5 0.825,
2.5 8 2.5 88 2 8 22.5 2.5

12 12

2.7 12 2.7 122.7 0.368.
2.5 8 2.7 88 2 8 22.7 2.7

12

p m p

p m p

−
Δ = Δ = − = + ≈ −

+ +− −
+ +

−
Δ = Δ = − = + ≈

+ +− −
+ +

 (A.25)

12

[]2.5, 2.7 , since ()2.5pΔ and ()2.7pΔIt is easy to see that the root belongs to differ in sign. We

then compute ()p mΔ for 1 2.6m = and 2 2.7m = :

() ()

() ()

2

2

2

1 2.6

2

2 2.7

2.6 122.6 0.04,
2.6 88 22.6

12

2.7 122.7 0.368.
2.7 88 22.7

12

p m p

p m p

Δ = Δ = + ≈ −
+−

+

Δ = Δ = + ≈
+−

+

 (A.26)

 differ in sign, thus the root lies in []2.6, 2.7()2.6pΔ and ()2.7pΔAgain we note that .

ated as to achi e requi

instance, let us consider

Note that these steps can be repe needed eve th red accuracy. For

[]2.6076, 2.6077 and []2.6077, 2.6078 . We get:

()

()

()

2

2

2

2

2.6076

2

2.6077

2.6078

2.6076 122.6076 0.0003,
2.6076 88 22.6076

12

2.6077 122.6077 0.0002,

2

2.6077 88 22.6077
12

2.6078 122.6078 0.0007.
2.6078 88 22.6078

12

p

p

Δ = + ≈
+−

+

Δ = + ≈
+−

+

−

−

+

(A.27)

pΔ = + ≈
+

Since ()p mΔ reverses its sign only in []2.6076, 2.6077 , then the root belongs to this interval.

 126

BIBLIOGRAPHY

[1] V. Cerf, R. Kahn, A protocol for packet network intercommunication, IEEE Transactions

on Communication 22 (5) (1974) 637-648.

[2] R. Zakon, Hobbes’ Internet Timeline, RFC 2235, IETF, November 1997.

[3] V. Cerf, Y. Dalal, C. Sunshine, Specification of Internet Transmission Control Program,

RFC 675, IETF, December 1974.

[4] V. Cerf, Specification of Internet Transmission Control Program TCP (version 2),

http:// chris/DIGITAL_www.cs.utexas.edu/users/ ARCHIVE/TCPIP/IEN5.pdf

[5] J. Postel (Ed.), DoD Standard Transmission Control Protocol, RFC 761, IETF, January

[6] J. Postel (Ed.), Transmission Control Protocol, RFC 793, IETF, September 1981.

[7] J. Postel (Ed.), Internet Protocol, RFC 791, IETF, September 1981.

rmation Technology – Open Systems

Interconnection – Basic Reference Model: the Basic Model, January 1994.

[9] J. Nagle, Congestion Control in IP/TCP Internetworks, RFC 896, IETF, January 1984.

dance and control, ACM SIGCOMM Computer

Communication Review 25 (1) (1988) 157-187.

t Recovery

Algorithms, RFC 2001, IETF, January 1997.

hulze, K. Mochalski, Internet study 2008/2009, ipoque GmbH, 2009,

http://www.ipoque.com/study/ipoque-Internet-Study-08-09.pdf

1980.

[8] ITU-T Recommendation X.200, Info

[10] V. Jacobson, Congestion avoi

[11] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fas

[12] H. Sc

[13] Internet2 NetFlow: Weekly reports, http://netflow.internet2.edu/weekly/

[14] CAIDA’s traffic analysis research: Analyzing UDP usage in Internet traffic,

http://www.caida.org/research/traffic-analysis/tcpudpratio/

[15] C. Barakat, E. Altman, W. Dabbous, On TCP performance in a heterogeneous network:

003.

a survey, IEEE Communications Magazine 38 (1) (2000) 40-46.

[16] H. Inamura, G. Montenegro (Eds.), TCP over Second (2.5G) and Third (3G) Generation

Wireless Networks, RFC 3481, IETF, February 2

 127

[17] Y. Tian, K. Xu, N. Ansari, TCP in wireless environments: problems and solutions, IEEE

Communications Magazine 43 (3) (2005) S27-S32.

 of ICNP 2001,

TCP-friendly window-based

08.

rsity of Technology, Finland,

2006.

ploiting the predictability of TCP steady-

state to speed up network simulation, Performance Evaluation 58 (2-3) (2004) 163-187.

gs of IEEE ISCAS 2004, Vancouver, Canada, May 2004, pp. 469-472.

reece, May 2004, pp. 52-63.

man, V. Paxson, W. Stevens, TCP Congestion Control, RFC 2581, IETF, April

[18] G. Appenzeller, I. Keslassy, N. McKeown, Sizing router buffers, ACM SIGCOMM

Computer Communication Review 34 (4) (2004) 281-292.

[19] L. Guo, I. Matta, The war between mice and elephants, in: Proceedings

Riverside, CA, November 2001, pp. 180-188.

[20] S. Jin, L. Guo, I. Matta, A. Bestavros, A spectrum of

congestion control algorithms, IEEE/ACM Transactions on Networking 11 (3) (2003)

341-355.

[21] S. Floyd, M. Handley, J. Padhye, J. Widmer, TCP Friendly Rate Control (TFRC):

Protocol Specification, RFC 5348, IETF, September 20

[22] V. Srivastava, M. Motani, Cross-layer design: a survey and the road ahead, IEEE

Communications Magazine 43 (12) (2005) 112-119.

[23] D. Moltchanov, Cross-layer performance evaluation and control of wireless channels in

next generation all-IP networks, PhD thesis, Tampere Unive

[24] Q. He, M. Ammar, G. Riley, R. Fujimoto, Ex

[25] I. Khalifa, L. Trajković, An overview and comparison of analytical TCP models, in:

Proceedin

[26] J. Olsén, Stochastic modeling and simulation of the TCP protocol, PhD thesis, Uppsala

University, Sweden, 2003.

[27] P. Lassila, M. Mandjes, A multi-level TCP model with heterogeneous RTTs, in:

Proceedings of IFIP TC6 Networking 2004, Athens, G

[28] R. Braden (Ed.), Requirements for Internet Hosts – Communication Layers, RFC 1122,

IETF, October 1989.

[29] M. All

1999.

[30] RFC Index Search Engine, http://www.rfc-editor.org/rfcsearch.html

[31] M. Duke, R. Braden, W. Eddy, E. Blanton, A Roadmap for Transmission Control

Protocol (TCP) Specification Documents, RFC 4614, IETF, September 2006.

 128

[32] L. Eggert, F. Gont, TCP User Timeout Option, RFC 5482, IETF, March 2009.

[33] P. Sarolahti, M. Kojo, K. Yamamoto, M. Hata, Forward RTO-Recovery (F-RTO): An

bson, R. Braden, D. Borman, TCP Extensions for High Performance, RFC 1323,

FC 1071,

Algorithm for Detecting Spurious Retransmission Timeouts with TCP, RFC 5682, IETF,

September 2009.

[34] J. Postel, TCP Maximum Segment Size and Related Topics, RFC 879, IETF, November

1983.

[35] D. Clark, Window and Acknowledgment Strategy in TCP, RFC 813, IETF, July 1982.

[36] V. Jaco

IETF, May 1992.

[37] J. Mogul, S. Deering, Path MTU Discovery, RFC 1191, IETF, November 1990.

[38] J. Reynolds, J. Postel, Assigned Numbers, RFC 1700, IETF, October 1994.

[39] R. Braden, D. Borman, C. Partridge, Computing the Internet Checksum, R

IETF, September 1988.

[40] SpeedGuide.net: TCP optimizer, http://www.speedguide.net/downloads.php

[41] DrTCP: Windows TCP tuning and tweaking, http://www.dslreports.com/drtcp

this, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective Acknowledgement

Options, RFC 2018, IETF, October 1996.

[43] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, An Extension to the Selective

[44] E. Blanton, M. Allman, K. Fall, L. Wang, A Conservative Selective Acknowledgement

2988, IETF,

proving round-trip time estimates in reliable transport protocols,

90, IETF,

ring the evolution of transport protocol in the

[42] M. Ma

Acknowledgement (SACK) Option for TCP, RFC 2883, IETF, July 2000.

(SACK)-based Loss Recovery Algorithm for TCP, RFC 3517, IETF, April 2003.

[45] V. Paxson, M. Allman, Computing TCP’s Retransmission Timer, RFC

November 2000.

[46] P. Karn, C. Partridge, Im

ACM SIGCOMM Computer Communication Review 17 (5) (1987) 2-7.

[47] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s Initial Window, RFC 33

October 2002.

[48] A. Medina, M. Allman, S. Floyd, Measu

Internet, ACM SIGCOMM Computer Communication Review 35 (2) (2005) 37-52.

 129

[49] S. Floyd, T. Henderson, A. Gurtov, The NewReno Modification to TCP’s Fast Recovery

Algorithm, RFC 3782, IETF, April 2004.

[50] B. Braden et al., Recommendations on Queue Management and Congestion Avoidance in

the Internet, RFC 2309, IETF, April 1998.

as TCP congestion control, ACM SIGCOMM Computer Communication

ber

mance in highspeed wide area networks, ACM

ase congestion control (BIC) for fast, long-

. Peterson, TCP Vegas: new techniques for congestion

 24-35.

246-1259.

[51] K. Ramakrishnan, S. Floyd, D. Black, The Addition of Explicit Congestion Notification

(ECN) to IP, RFC 3168, IETF, September 2001.

[52] L. Grieco, S. Mascolo, Performance evaluation and comparison of Westwood+, New

Reno, and Veg

Review 34 (2) (2004) 25-38.

[53] S. Floyd, HighSpeed TCP for Large Congestion Windows, RFC 3649, IETF, Decem

2003.

[54] T. Kelly, Scalable TCP: improving perfor

SIGCOMM Computer Communication Review 32 (2) (2003) 83-91.

[55] L. Xu, K. Harfoush, I. Rhee, Binary incre

distance networks, in: Proceedings of IEEE INFOCOM 2004, Hong Kong, China, March

2004, pp. 2490-2501.

[56] S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant, ACM

SIGOPS Operating Systems Review 42 (5) (2008) 64-74.

[57] L. Brakmo, S. O’Malley, L

detection and avoidance, ACM SIGCOMM Computer Communication Review 24 (4)

(1994)

[58] D. Wei, C. Jin, S. Low, S. Hegde, FAST TCP: motivation, architecture, algorithms,

performance, IEEE/ACM Transactions on Networking 14 (6) (2006) 1

[59] The network simulator ns-2, http://www.isi.edu/nsnam/ns/

[60] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno, and SACK TCP, ACM

SIGCOMM Computer Communication Review 26 (3) (1996) 5-21.

[61] J. Padhye, S. Floyd, Identifying the TCP behavior of Web servers, in: ICSI, Technical

Report 01-002, February 2001.

[62] W3Schools: OS platform statistics,

http://www.w3schools.com/browsers/browsers_os.asp

[63] DistroWatch.com, http://distrowatch.com/stats.php

 130

[64] Wireshark: Go deep, http://www.wireshark.org

[65] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic behavior of the TCP

uter Communication Review

 a local network with

y, J. Kurose, Modeling TCP Reno performance: a simple

EEE/ACM Transactions on Networking 8 (2) (2000)

CP latency, in: Proceedings of IEEE

INFOCOM 2000, Tel-Aviv, Israel, March 2000, pp. 1742-1751.

[69] B. Sikdar, S. Kalyanaraman, K. Vastola, Analytic models for the latency and steady-state

[70] V. Paxson, Empirically derived analytic models of wide-area TCP connections,

[71] K. Thompson, G. Miller, R. Wilder, Wide-area Internet traffic patterns and

. Won, J. Hong, Characteristic analysis of internet traffic from the perspective

of flows, Computer Communications 29 (10) (2006) 1639-1652.

rvey of mice in elephant

shoes, in: University of Delaware, Technical Report, August 2003.

01) 392-403.

l Report, October 1998.

congestion avoidance algorithm, ACM SIGCOMM Comp

27 (3) (1997) 67-82.

[66] A. Kumar, Comparative performance analysis of versions of TCP in

a lossy link, IEEE/ACM Transactions on Networking 6 (4) (1998) 485-498.

[67] J. Padhye, V. Firoiu, D. Towsle

model and its empirical validation, I

133-145.

[68] N. Cardwell, S. Savage, T. Anderson, Modeling T

throughput of TCP Tahoe, Reno and SACK, IEEE/ACM Transactions on Networking 11

(6) (2003) 959-971.

IEEE/ACM Transactions on Networking 2 (4) (1994) 316-336.

characteristics, IEEE Network 11 (6) (1997) 10-23.

[72] M. Kim, Y

[73] J. Iyengar, A. Caro, P. Amer, Dealing with short TCP flows: a su

[74] S. Floyd, V. Paxson, Difficulties in simulating the Internet, IEEE/ACM Transactions on

Networking 9 (4) (20

[75] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s Initial Window, RFC 2414, IETF,

September 1998.

[76] N. Cardwell, S. Savage, T. Anderson, Modeling the performance of short TCP

connections, in: University of Washington, Technica

[77] S. Fortin, B. Sericola, A Markovian model for the stationary behavior of TCP, in: IRISA-

INRIA, Technical Report RR-4240. September 2001.

 131

[78] D. Zheng, G. Lazarou, R. Hu, A stochastic model for short-lived TCP flows, in:

Proceedings of IEEE ICC 2003, Anchorage, AK, May 2003.

[79] M. Eremin, Higher Degree Equations, Arzamas, 2003 (in Russian).

[80] CiteSeer.IST: Scientific Literature Digital Library, http://citeseer.ist.psu.edu/

queue management performance for bulk-data and Web-like Internet

niversity of

ghput from non-invasive network

s, transport protocols

 1996-016,

August 1996.

tions

on Networking 5 (1) (1997) 71-86.

C. Williamson, TCP NewReno: Slow-but-Steady or Impatient?,

in: Proceedings of IEEE ICC 2006, Istanbul, Turkey, June 2006, pp. 716-722.

) 1818-1820.

dows Server 2003 TCP/IP Implementation Details, Microsoft Corporation,

[81] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, M. May, Comparison of Tail

Drop and active

traffic, in: Proceedings of ISCC 2001, Hammamet, Tunisia, July 2001, pp. 122-131.

[82] D. Loguinov, Adaptive scalable Internet streaming, PhD thesis, The City U

New York, USA, 2002.

[83] M. Goyal, R. Guerin, R. Rajan, Predicting TCP throu

sampling, in: Proceedings of IEEE INFOCOM 2002, New York, NY, June 2002,

pp. 180-189.

[84] K. Park, G. Kim, M. Crovella, On the relationship between file size

and self-similar network traffic, in: Boston University, Technical Report

[85] W. Willinger, M. Taqqu, R. Sherman, D. Wilson, Self-similarity through high variability:

statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Transac

[86] N. Parvez, A. Mahanti,

[87] C. Joo, S. Bahk, Start-up transition behaviour of TCP NewReno, IEE Electronic Letters

35 (21) (1999

[88] S. Kim, S. Choi, C. Kim, Instantaneous variant of TCP NewReno, IEE Electronics

Letters 36 (19) (2000) 1669-1670.

[89] Microsoft Win

December 2007, http://download.microsoft.com/download/f/0/f/f0f28365-bd9a-4ff8-

a5d4-fc0f94ae7371/TCPIP_2003.doc

[90] P. Sarolahti, A. Kuznetsov, Congestion control in Linux TCP, in: Proceedings of

at reQuest

(ARQ), RFC 3366, IETF, August 2002.

USENIX/FREENIX 2002, Monterey, CA, June 2002, pp. 49-62.

[91] G. Fairhurst, L. Wood, Advice to Link Designers on Link Automatic Repe

 132

[92] M. Schiff, Introduction to Communication Systems Simulation. Artech House, Inc.,

2006.

[93] Y. Guo, Advances in Mobile Radio Access Networks. Artech House, Inc., 2004.

[94] S. Fu, M. Atiquzzaman, Modelling TCP Reno with spurious timeouts in wireless mobile

CP

with queueing, IEEE Transactions on Wireless

rmance of TCP, IEEE

uzi, TCP optimization through FEC, ARQ and

ry 2004, pp. 87-98.

nks and

r

ading, IEEE Transactions on Mobile Computing

n approach to alleviate link overload as

in, ARQ error control for fading mobile radio channels, IEEE

nels with

environments, in: Proceedings of ICCCN 2003, Dallas, TX, October 2003, pp. 391-396.

[95] A. Abouzeid, S. Roy, M. Azizoglou, Comprehensive performance analysis of a T

session over a wireless fading link

Communications 2 (2) (2003) 344-356.

[96] M. Zorzi, R. Rao, The effect of correlated errors on the perfo

Communication Letters 1 (5) (1997) 127-129.

[97] D. Barman, I. Matta, E. Altman, R. Azo

transmission power tradeoffs, in: Proceedings of WWIC 2004, Frankfurt, Germany,

Februa

[98] C. Barakat, A. Fawal, Analysis of link-level hybrid FEC/ARQ-SR for wireless li

long-lived TCP traffic, Performance Evaluation Journal 57 (4) (2004) 453-476.

[99] Y. Wu, Z. Niu, J. Zheng, Cross-layer analysis of wireless TCP/ARQ systems ove

correlated channels, Journal of Communication and Networks 7 (1) (2005) 45-53.

[100] F. Vacirca, A. Vendictis, A. Baiocchi, Optimal design of hybrid FEC/ARQ schemes for

TCP over wireless links with Rayleigh f

5 (4) (2006) 289-302.

[101] S. Iyer, S. Bhattacharyya, N. Taft, C. Diot, A

observed on an IP backbone, in: Proceedings of IEEE INFOCOM 2003, San Francisco,

CA, April 2003, pp. 406-416.

[102] M. Zorzi, R. Rao, L. Milste

Transactions on Vehicular Technology 46 (2) (1997) 445-455.

[103] M. Zorzi, R. Rao, Throughput analysis of Go-Back-N ARQ in Markov chan

unreliable feedback, in: Proceedings of IEEE ICC 1995, Seattle, WA, June 1995,

pp. 1232-1237.

[104] M. Krunz, J. Kim, Fluid analysis of delay and packet discard performance for QoS

support in wireless networks, IEEE Journal on Selected Areas in Communications 19 (2)

(2001) 384-395.

 133

[105] A. Fantacci, Queuing analysis of the selective repeat automatic repeat request protocol

for wireless packet networks, IEEE Transactions on Vehicular Technology 45 (2) (1996)

258-264.

[106] W. Stallings, Data and Computer Communications, 8th Edition. Prentice Hall, 2007.

[107] J. Aikat, J. Kaur, F. Smith, K. Jeffay, Variability in TCP round-trip times, in: Proceedings

he Internet and its impact on TCP-based flow control, in: CAIDA,

s by delay injection, in: Proceedings of IEEE GLOBECOM 2004,

005.

the

dings of

of ACM SIGCOMM IMC 2003, Miami Beach, FL, October 2003, pp. 279-284.

[108] S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, k. claffy, The RTT distribution of

TCP flows in t

Technical Report TR-2004-02, February 2004.

[109] T. Klein, K. Leung, R. Parkinson, L. Samuel, Avoiding spurious TCP timeouts in

wireless network

Dallas, TX, December 2004, pp. 2754-2759.

[110] R. Ludwig, A. Gurtov, The Eifel Response Algorithm for TCP, RFC 4015, IETF,

February 2

[111] J. Blanton, E. Blanton, M. Allman, Using spurious retransmissions to adapt

retransmission timeout, in: ICSI, Technical Report TR-08-005, August 2008.

[112] M. Welzl, Using the ECN nonce to detect spurious loss events in TCP, in: Procee

IEEE GLOBECOM 2008, New Orleans, LA, November 2008, pp. 2525-2530.

[113] xjperf: Graphical frontend for IPERF written in Java, http://code.google.com/p/xjperf/

[114] Y. Guan, B. Broeck, J. Potemans, J. Theunis, D. Li, E. Lil, A. Capelle, Simulation study

[115] A. Wierman, T. Osogami, J. Olsén, A unified framework for modeling TCP-Vegas, TCP-

. 269-278.

of TCP Eifel algorithms, in: Proceedings of OPNETWORK 2005, Washington, DC,

August 2005.

SACK, and TCP-Reno, in: Proceedings of IEEE/ACM MASCOTS 2003, Orlando, FL,

October 2003, pp

 134

 135

PUBLICATIONS

Publication P1

R. Dunaytsev, Y. Koucheryavy, J. Harju, The impact of RTT and delayed ACK timeout ratio on

the initial slow start phase, in: Proceedings of IPS-MoMe 2005, Warsaw, Poland, March 2005,

pp. 171-176.

Publication P2

R. Dunaytsev, Y. Koucheryavy, J. Harju, The PFTK-model revised, Computer Communications

29 (13-14) (2006) 2671-2679.

Copyright © 2006 Elsevier B.V. Reprinted, with permission, from Computer Communications

Journal 2006.

Publication P3

R. Dunaytsev, Y. Koucheryavy, J. Harju, TCP NewReno throughput in the presence of

correlated losses: the Slow-but-Steady variant, in: Proceedings of IEEE INFOCOM Global

Internet Workshop 2006, Barcelona, Spain, April 2006, pp. 115-120.

Publication P4

R. Dunaytsev, K. Avrachenkov, Y. Koucheryavy, J. Harju, An analytical comparison of the

Slow-but-Steady and Impatient variants of TCP NewReno, in: Proceedings of WWIC 2007,

Coimbra, Portugal, May 2007, pp. 30-42.

Copyright © 2007 Springer-Verlag Berlin Heidelberg. Reprinted, with permission, from the

proceedings of WWIC 2007.

Publication P5

R. Dunaytsev, D. Moltchanov, Y. Koucheryavy, J. Harju, Modeling TCP SACK performance

over wireless channels with completely reliable ARQ/FEC, Submitted for publication in

International Journal of Communication Systems.

Publication P6

D. Moltchanov, R. Dunaytsev, Modeling TCP SACK performance over wireless channels with

semi-reliable ARQ/FEC, Accepted for publication in Wireless Networks (in press).

Copyright © 2010 Springer. Part of Springer Science+Business Media. Reprinted, with

permission, from Wireless Networks Journal 2010.

	Manuscript
	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	LIST OF PUBLICATIONS
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	1.1 Background and Motivation
	1.2 Objective and Outline of the Thesis

	2. TCP OPERATION
	2.1 TCP Functions
	2.1.1 Data Transfer
	2.1.2 Multiplexing/Demultiplexing
	2.1.3 Flow Control
	2.1.4 Error Control
	2.1.5 Congestion Control

	2.2 TCP Congestion Control Mechanisms
	2.2.1 Acknowledgements
	2.2.2 Retransmission Timer
	2.2.3 Initial Window
	2.2.4 Slow Start
	2.2.5 Congestion Avoidance
	2.2.6 Fast Retransmit and Fast Recovery
	2.2.7 Explicit Congestion Notification

	2.3 TCP Implementations
	2.3.1 Comparison of TCP Implementations
	2.3.2 Deployment of TCP implementations and TCP options

	2.4 Conclusions

	3. TCP PERFORMANCE IN WIRED NETWORKS
	3.1 Short-Lived TCP Flows
	3.1.1 Motivation and Related Work
	3.1.2 Model Building
	3.1.3 Model Validation and Conclusions

	3.2 TCP Reno Performance and the PFTK-model
	3.2.1 Motivation and Model Building
	3.2.2 Model Validation and Conclusions

	3.3 TCP NewReno Performance
	3.3.1 Motivation and Model Building
	3.3.2 Numerical Analysis and Conclusions

	4. TCP PERFORMANCE IN WIRED-CUM-WIRELESS NETWORKS
	4.1 Background and Related Work
	4.2 System Model and Assumptions
	4.3 Cross-layer Model
	4.4 TCP SACK Model: Completely Reliable ARQ
	4.5 TCP SACK Model: Semi-reliable ARQ
	4.5.1 Step 1: Buffer Overflows Dominate the Data Transfer
	4.5.2 Step 2: Non-congestion Losses Dominate the Data Transfer

	4.6 Numerical Analysis
	4.6.1 Completely Reliable ARQ
	4.6.2 Semi-reliable ARQ

	4.7 Conclusions

	5. SUMMARY OF PUBLICATIONS
	5.1 Overview of the Publications
	5.2 Author’s Contribution to the Publications

	6. CONCLUSIONS
	APPENDIX A
	A.1 Solving Polynomials Equations of Higher Degree
	A.2 Solving Transcendental Equations

	BIBLIOGRAPHY
	PUBLICATIONS

	Publication 1
	Publication 2
	Publication 3
	Publication 4
	Publication 5
	Publication 6

