
Ezgi Can Ozan
Vector Quantization Techniques for Approximate
Nearest Neighbor Search on Large-Scale Datasets

Julkaisu 1501 • Publication 1501

Tampere 2017

Tampereen teknillinen yliopisto. Julkaisu 1501
Tampere University of Technology. Publication 1501

Ezgi Can Ozan

Vector Quantization Techniques for Approximate
Nearest Neighbor Search on Large-Scale Datasets

Thesis for the degree of Doctor of Philosophy to be presented with due permission for
public examination and criticism in Sähkötalo Building, Auditorium SA203, at Tampere
University of Technology, on the 13th of October 2017, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2017

Doctoral candidate: Ezgi Can Ozan

Signal Processing
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Supervisor: Moncef Gabbouj, Professor
Signal Processing
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Pre-examiners: Niculae Sebe, Professor

Information Engineering and Computer Science
University of Trento
Italy

Wu-Jun Li, Associate Professor
Department of Computer Science and Technology Nanjing
University
China

Opponent: Petri Myllymäki, Professor
Department of Computer Science
University of Helsinki
Finland

ISBN 978-952-15-4012-7 (printed)
ISBN 978-952-15-4027-1 (PDF)
ISSN 1459-2045

i

Abstract

The technological developments of the last twenty years are leading the world to a new
era. The invention of the internet, mobile phones and smart devices are resulting in an
exponential increase in data. As the data is growing every day, finding similar patterns
or matching samples to a query is no longer a simple task because of its computational
costs and storage limitations. Special signal processing techniques are required in order
to handle the growth in data, as simply adding more and more computers cannot keep
up.

Nearest neighbor search, or similarity search, proximity search or near item search is the
problem of finding an item that is nearest or most similar to a query according to a dis-
tance or similarity measure. When the reference set is very large, or the distance or
similarity calculation is complex, performing the nearest neighbor search can be compu-
tationally demanding. Considering today’s ever-growing datasets, where the cardinality
of samples also keep increasing, a growing interest towards approximate methods has
emerged in the research community.

Vector Quantization for Approximate Nearest Neighbor Search (VQ for ANN) has proven
to be one of the most efficient and successful methods targeting the aforementioned
problem. It proposes to compress vectors into binary strings and approximate the dis-
tances between vectors using look-up tables. With this approach, the approximation of
distances is very fast, while the storage space requirement of the dataset is minimized
thanks to the extreme compression levels. The distance approximation performance of
VQ for ANN has been shown to be sufficiently well for retrieval and classification tasks
demonstrating that VQ for ANN techniques can be a good replacement for exact distance
calculation methods.

This thesis contributes to VQ for ANN literature by proposing five advanced techniques,
which aim to provide fast and efficient approximate nearest neighbor search on very
large-scale datasets. The proposed methods can be divided into two groups. The first
group consists of two techniques, which propose to introduce subspace clustering to VQ
for ANN. These methods are shown to give the state-of-the-art performance according
to tests on prevalent large-scale benchmarks. The second group consists of three meth-
ods, which propose improvements on residual vector quantization. These methods are
also shown to outperform their predecessors. Apart from these, a sixth contribution in
this thesis is a demonstration of VQ for ANN in an application of image classification on
large-scale datasets. It is shown that a k-NN classifier based on VQ for ANN performs
on par with the k-NN classifiers, but requires much less storage space and computations.

ii

Preface

This study has been carried out at MUVIS group of Tampere University of Technology
(TUT), Finland during the years 2012-2017.

First, I would like to express my gratitude to my supervisor Professor Moncef Gabbouj
and Professor Serkan Kiranyaz for their support and guidance. I would also like to thank
other co-authors and all members of the MUVIS group.

I would like to dedicate this thesis to my wife Gülcan. None of this would be possible
without her.

Tampere 1.9.2017

Ezgi Can Ozan

iii

Contents

ABSTRACT ... I

PREFACE .. II

CONTENTS .. III

LIST OF FIGURES ... VI

LIST OF TABLES .. VII

LIST OF SYMBOLS AND ABBREVIATIONS ... VIII

LIST OF PUBLICATIONS .. XIII

1 INTRODUCTION ... 1

1.1 Objectives and Outline of the Thesis ... 2

1.2 Publications and Author’s Contribution .. 3

2 VECTOR QUANTIZATION .. 4

2.1 Quantization: Rate, Distortion and Optimality .. 4

2.2 A Historical Review ... 6

3 APPROXIMATE NEAREST NEIGHBOR SEARCH .. 10

3.1 Nearest Neighbor Search .. 10

3.2 Approximate Nearest Neighbor Search ... 11

3.2.1 Partition Tree Structures for ANN ... 12

3.2.2 Hashing for ANN .. 14

3.2.3 Vector Quantization for ANN .. 20

3.2.4 Comparison of ANN Techniques .. 22

3.3 Prior Art in Vector Quantization for ANN ... 24

iv

3.3.1 Product Quantization Based Techniques ... 24

3.3.1.1 Product Quantization ... 25

3.3.1.2 Transform Coding .. 28

3.3.1.3 Optimized Product Quantization .. 30

3.3.1.4 Cartesian K-Means .. 31

3.3.2 Residual Vector Quantization Based Techniques 33

3.3.2.1 Residual Vector Quantization .. 33

3.3.2.2 Optimized Residual Vector Quantization ... 36

3.3.2.3 Additive Quantization ... 36

3.3.2.4 Composite Quantization .. 38

3.3.3 Hybrid Techniques ... 39

3.3.3.1 Locally Optimized Product Quantization .. 40

3.3.3.2 Additive Product Quantization.. 40

3.3.3.3 Optimized Cartesian K-Means ... 41

3.3.3.4 (Optimized) Tree Quantization ... 42

3.3.4 Comparison of Prior Art in Vector Quantization for ANN 43

4 CONTRIBUTIONS ... 47

4.1 Hybrid Techniques .. 47

4.1.1 M-PCA Binary Embedding for ANN .. 47

4.1.2 K-Subspaces Quantization for ANN ... 50

4.2 Residual Vector Quantization based Techniques .. 53

4.2.1 Self-Organized Binary Encoding for ANN ... 53

4.2.2 Joint K-Means Quantization for ANN .. 56

4.2.3 Competitive Quantization for ANN .. 60

v

4.3 Comparison of the Contributions with Prior Work .. 62

4.4 A Vector Quantization Based K-NN Approach for Large-Scale Image
Classification ... 66

5 CONCLUSIONS .. 70

REFERENCES ... 72

vi

List of Figures

Figure 1. A 2-dimensional Nearest Neighbor Search Illustration. For the given red query
point, the green point is the nearest neighbor. .. 11

Figure 2. A 2-dimensional K-d Tree Structure Illustration. On the left, the dataset points
are shown together with the lines separating the branches. On the right, the
corresponding three structure is shown... 13

Figure 3. A 2-dimensional LSH Illustration. Colored arrows represent random hash
functions. Red dot is the encoded sample point. ... 16

vii

List of Tables

Table 1: Comparison of ANN Techniques ... 24

Table 2: Performance Comparison for Prior-Art Methods in VQ for ANN 44

Table 3: Comparison of Computational Costs of Encoding ... 45

Table 4: Comparison of Additional Storage Requirements .. 46

Table 5: M-PCA Embedding Test Results ... 49

Table 6: Computational and Storage Costs of MPCA-E .. 49

Table 7: KSSQ Test Results ... 52

Table 8: Computational and Storage Costs of KSSQ .. 53

Table 9: SOBE Test Results ... 55

Table 10: Computational and Storage Costs of SOBE .. 56

Table 11: JKM Test Results .. 59

Table 12: Computational and Storage Costs of JKM ... 60

Table 13: CompQ Test Results ... 61

Table 14: CompQ Non-Exhaustive Search Test Results ... 62

Table 15: CompQ Non-Exhaustive Search Performance Comparison 62

Table 16: Comparison of Proposed Methods with Prior Work in Performance 64

Table 17: Comparison of Proposed Methods with Prior Work in Cost of Encoding 65

Table 18: Comparison of Proposed Methods with Prior Work in Storage Cost 66

Table 19: Properties of Datasets Tested in [P5] .. 68

Table 20: Classification Accuracies Obtained on Different Datasets 68

Table 21: Computational Costs and Storage Requirements .. 69

viii

List of Symbols and Abbreviations

Latin alphabet:

𝑎𝑘: 𝑘𝑡ℎ affine shift vector.

𝒃: a binary selection vector.

𝑩: a binary selection matrix.

𝒄: a codevector.

𝑪: a codebook matrix.

𝑑𝑖𝑚(𝑪(𝑙)): the number of centroids on the 𝑙𝑡ℎ dimension of codebook 𝑪.

𝐷: the number of dimensions.

𝑫: a block diagonal matrix.

𝑒(𝑚, 𝑙): the graph connection indicator.

𝐸[𝒙]: the expected value of random variable 𝒙.

𝐻: the number of codevector candidates.

𝐾: the number of codevectors.

𝑙𝑒𝑛(𝒚): the length of a binary string 𝒚.

𝑙2: the Euclidean norm.

𝐿: the number of dimensions after dimension reduction.

𝑳: a label set.

𝑀: the number of quantization layers.

𝑁: the number of samples.

𝒑: a nearest neighbor vector.

𝒑(𝑚): the vector 𝒑 projected to the 𝑚𝑡ℎ orthogonal subspace.

𝒒: a query vector.

ix

𝑄(𝒙): a quantizer.

𝒓𝑚: the residual vector at the 𝑚𝑡ℎ layer.

𝑹: the rotation matrix.

𝑹⊥: the null space of 𝑹.

𝑺𝑖,𝑗: a similarity value between 𝒙𝑖 and 𝒙𝑗.

𝒘𝑘: the 𝑘𝑡ℎ projection vector.

𝑾: the principal component matrix.

𝒙: a sample vector.

𝒙̂: a quantized vector.

𝑿: a set of sample vectors.

𝑿̅: ordered reference set

𝒚: a binary string.

Greek alphabet:

𝛼(𝒙): an encoder function.

𝛽(𝒙): a decoder function.

∇: the gradient operation.

𝜖: a small constant.

γ: the learning rate.

𝜘: the number of subquantizers for LOPQ.

𝜆: a penalty parameter.

𝝁: an affine shift vector.

𝜎: a standard deviation.

x

Symbols and scripts:

ℬ: the number of bits.

ℂ: a classifier.

𝒹(𝒙, 𝒙̂): the distortion measure between 𝒙 and 𝒙̂.

𝓕: an affine subspace.

ℋ𝒷: hash function for the 𝒷𝑡ℎ bit

𝒦: the number of subspaces for MPCA-E and KSSQ.

𝓜: a distance metric.

𝒩𝒘𝑘̇
: the neighbors of the winner neuron.

𝓇(𝑄(𝒙)): the instantaneous rate of a quantizer 𝑄.

xi

Abbreviations:

ANN: Approximate Nearest Neighbor Search

APQ: Additive Product Quantization

AQ: Additive Quantization

CKM: Cartesian K-Means

CompQ: Competitive Quantization

CQ: Composite Quantization

ERVQ: Optimized (Enhanced) Residual Vector Quantization

FLANN: Fast Library for Approximate Nearest Neighbors

ICM: Iterative Conditional Modes

ILP: Integer Linear Programming

IMI: Inverted Multi-Index

ITQ: Iterative Quantization

IVFADC: Inverted File with Asymmetric Distance Computation

JKM: Joint K-Means Quantization

KSSQ: K-Subspaces Quantization

LOPQ: Locally Optimized Product Quantization

LSH: Locality Sensitive Hashing

LUT: Look-up table

MPCA-E: M-PCA Binary Embedding

MSE: Mean-squared error

NN: Nearest Neighbor Search

OCKM: Optimized Cartesian K-Means

OPQ: Optimized Product Quantization

xii

OTQ: (Optimized) Tree Quantization

PCA: Principal Component Analysis

PCA-E: PCA-Embedding

PCM: Pulse Coded Modulation

PQ: Product Quantization

RVQ: Residual Vector Quantization

SH: Spectral Hashing

SOBE: Self-Organized Binary Encoding

SOM: Self-Organizing Maps

SVM: Support Vector Machine

TC: Transform Coding

VQ: Vector Quantization

xiii

List of Publications

[P1] E. C. Ozan, S. Kiranyaz and M. Gabbouj, "M-PCA Binary Embedding for Ap-
proximate Nearest Neighbor Search," 2015 IEEE Trustcom/BigDataSE/ISPA,
Helsinki, 2015, pp. 1-5.

[P2] E. C. Ozan, S. Kiranyaz and M. Gabbouj, "K-Subspaces Quantization for Ap-
proximate Nearest Neighbor Search," in IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 7, pp. 1722-1733, July 1 2016.

[P3] E. C. Ozan, S. Kiranyaz, M. Gabbouj and X. Hu, "Self-organizing binary encod-
ing for Approximate Nearest Neighbor search," 2016 24th European Signal Pro-
cessing Conference (EUSIPCO), Budapest, 2016, pp. 1103-1107.

[P4] E. C. Ozan, S. Kiranyaz and M. Gabbouj, "Joint K-Means quantization for Ap-
proximate Nearest Neighbor Search," 2016 23rd International Conference on
Pattern Recognition (ICPR), Cancun, Mexico, 2016, pp. 3645-3649.

[P5] E. C. Ozan, S. Kiranyaz and M. Gabbouj, "Competitive Quantization for Approx-
imate Nearest Neighbor Search," in IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 11, pp. 2884-2894, Nov. 1 2016.

[P6] E. C. Ozan, E. Riabchenko, S. Kiranyaz and M. Gabbouj, "A vector quantization
based k-NN approach for large-scale image classification," 2016 Sixth Interna-
tional Conference on Image Processing Theory, Tools and Applications (IPTA),
Oulu, 2016, pp. 1-6.

1

1 Introduction

With the arrival of the digital age, data became a part of our daily lives. In the beginning
we were on the consuming side, we listened to music on the radio, watched movies on
television, talked to our friends through cell phones while walking on the road and
browsed the internet to find the nearest restaurant. Then we started to contribute to data
ourselves, by writing comments about our favorite restaurants, joining social networks to
catch up with old pals and uploading videos to the internet. As the technology advanced,
more and more people gained access to data and it became easier to both consume and
contribute. This is how “Big Data” was born.

Although data analytics has been a research topic for almost a hundred years, with the
introduction of the term Big Data to our lives, it gained a new perspective, which also
caused data science to attract great attention. Of course, century old techniques were
not sufficient to extract the required information from the Big Data. They were either too
slow to handle such amount or had storage space issues. Hence, demand towards new
approaches, which are suitable for Big Data emerged. Especially, as the semiconductor
technology started to reach the limits of its power, providing more and faster servers
alone could not keep up with this growth. Therefore, new methods needed to be devel-
oped specifically for Big Data, methods that can scale up to billions of samples and run
in parallel in thousands of servers. Some came as updates to traditional techniques while
some are created from scratch.

With the exponential increase in the digital data, providing efficient similarity search has
gained greater importance. Besides the growth in the amount of data, with the improve-
ments in pattern recognition and machine learning, the descriptors also began to grow.
The learned descriptors obtained from state-of-the-art deep learning algorithms gener-
ated much bigger feature vectors than engineered features. These affected the similarity
search in three ways: First, there were more samples to compare. Second, each com-
parison demanded more computational power. The third and the last, the number of

2

samples, which could be compared and ordered at the same time, was limited by the
memory. Less samples could be loaded to RAM at once as the dimension of the samples
increased.

In this thesis, five novel methods, which aim to solve the problems aforementioned above,
are presented. The proposed methods perform fast and efficient similarity search on
large-scale datasets. Dataset compression is provided in extreme levels, reaching up to
hundreds. Distance calculation between samples is also accelerated; the computational
cost is reduced to a few look-ups from a pre-calculated table, whose size is negligible
compared to the size of the compressed set. The detailed tests performed on distin-
guished benchmarks show that the proposed methods outperform the prior work, leading
to the state-of-the-art results in this field. The application areas of the proposed methods
varies from query by example to instance based classification or regression. An example
application is presented as the sixth contribution, presenting the advantage of choosing
the selected approach on large-scale datasets.

1.1 Objectives and Outline of the Thesis

This thesis aims to provide novel methods with improved performance and efficiency in
the field of Vector Quantization for Approximate Nearest Neighbor Search. The objec-
tives of this thesis can be listed as given below:

x to give a detailed description of Approximate Nearest Neighbor Search prob-
lem and explain why it is so important.

x to investigate comprehensively the solutions proposed for this problem in the
literature.

x to propose novel methods in order to provide efficient and high performance
solutions.

The thesis is organized as follows: First, Vector Quantization problem is described in
Chapter 2, where also a brief historical review about quantization and vector quantization
is provided. In Chapter 3, the Approximate Nearest Neighbor Search problem is defined,
and several solution techniques from the literature are briefly investigated. In Chapter 4
the contributions of this thesis to the literature are presented in detail and finally, Chapter
5 concludes the thesis.

3

1.2 Publications and Author’s Contribution

In [P1], subspace clustering techniques are introduced to the vector quantization for ap-
proximate nearest neighbor search problem and the quantization performance is shown
to improve. The author implemented the proposed method, performed the tests and
wrote the paper, together with the supervisors’ fruitful discussions and reviews.

In [P2], the computational requirements of [P1] are improved and the idea that suggests
performing quantization in multiple subspaces is shown to be applicable. The proposed
scheme gives notably better results than the prior work. The author implemented the
proposed method, performed the tests and wrote the paper, together with the supervi-
sors’ fruitful discussions and reviews.

In [P3], Self-Organizing Maps, which is a popular data visualization and clustering algo-
rithm, is introduced to the approximate nearest neighbor search problem. The author
implemented the proposed method, performed the tests and wrote the paper, together
with the supervisors’ fruitful discussions and reviews.

In [P4], a hierarchical structure based method is proposed to improve the quality of code-
book generation for quantization, in order to achieve better nearest neighbor approxima-
tions. The author implemented the proposed method, performed the tests and wrote the
paper, together with the supervisors’ fruitful discussions and reviews.

In [P5], a detailed analysis of the vector quantization problem and the distance approxi-
mation approach based on vector quantization is provided. In addition, a solution to this
problem based on stochastic gradient descent optimization, which is a well-proven opti-
mization method is proposed. The author implemented the proposed method, performed
the tests and wrote the paper, together with the supervisors’ fruitful discussions and re-
views.

In [P6], a demonstration of the applicability of the aforementioned solutions to classifica-
tion problem is demonstrated by introducing a vector quantization based k-Nearest
Neighbor classifier. The author implemented the proposed method, performed the tests
together with Ekaterina Riabchenko and wrote the paper, together with the supervisors’
fruitful discussions and reviews.

4

2 Vector Quantization

Quantization can be defined as division of a continuous value into smaller discrete values
[1]. Usually, signals are continuous, which means that there are infinitely many possibil-
ities for the value of a signal. When it is not convenient or efficient to deal with so many
options, signals are digitized and the continuous signals are mapped to a smaller set of
predefined values. Quantization is the process of determination of these values. Hence,
quantization plays a very important role in building the bridge between the analogous
real life and its digital representation. Quantization finds applications in a wide range of
fields such as electronics [2], optics [3], biology [4], physics [5], chemistry [6], etc...

In this chapter, first, an introduction to the quantization problem is presented. Mathemat-
ical definition of the problem is provided, and important concepts of quantization are fur-
ther investigated. Then a summarized review is given, presenting the evolution of quan-
tization methods throughout the history.

2.1 Quantization: Rate, Distortion and Optimality

In the most general sense, the definition of quantization can be formulated as follows: A
quantizer 𝑄 transforms a 𝐷-dimensional sample 𝒙 ∈ ℝ𝐷 to its corresponding quantized
value 𝒙 ̂ ∈ ℝ𝐷. If 𝐷 = 1, the quantizer is called scalar, else it is a vector quantizer. The
quantizer is formed of three structures: an encoder, a decoder and a codebook. An en-
coder 𝛼: 𝒙 → 𝒚, maps the sample 𝒙 to its corresponding code 𝒚, which is usually a string
of bits. A decoder 𝛽: 𝒚 → 𝒙̂, maps the code 𝒚 to 𝒙 ̂, which is the reconstructed version of
𝒙. So, a quantizer 𝑄 is defined as

𝑄(𝒙) = 𝛽(𝛼(𝒙)) (2.1)

The rate of a quantizer is the length of the code, i.e., the number of bits that is required
for quantization of a sample. The instantaneous rate of a quantizer for a given input 𝒙
can be defined as follows:

𝓇(𝑄(𝒙)) =
1
𝐷 𝑙𝑒𝑛(𝛼(𝒙)) (2.2)

5

Distortion is a measure, which is defined to measure the quality of reconstruction, i.e.,
the similarity of the reconstructed sample 𝒙̂ to the actual sample 𝒙. An ideal distortion
measure is non-negative, easy to compute and perceptually meaningful. There are dif-
ferent distortion measure proposed in the literature [1], but the most frequently used one
is the 𝑙2-Norm, and it can be defined as follows:

𝒹(𝒙, 𝒙̂) = ‖𝒙 − 𝒙̂‖2 = (𝒙 − 𝒙̂)𝑇(𝒙 − 𝒙̂) (2.3)

Therefore, the performance of the quantizer can be measured by these two values: av-
erage rate and distortion. Both values are defined as follows:

𝑅𝑎𝑡𝑒: 𝐸[𝓇(𝒙)] =
1
𝐷 𝐸[𝑙𝑒𝑛(𝛼(𝒙))]

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛: 𝐸[𝒹(𝒙, 𝒙̂)] = 𝐸[‖𝒙 − 𝒙̂‖2]

(2.4)

It is often aimed to find an optimum point for the rate-distortion trade-off. The optimization
can be performed in various ways, for example, constraining one and optimizing the
other. However, for the fixed-rate problems1, the optimization problem reduces to mini-
mization of distortion only. The optimality conditions for a fixed-rate, fixed-dimension
quantizer is first defined by Lloyd [7]. These conditions can be summarized as follows:

x Given an encoder 𝛼, and a set of samples 𝑿 = {𝒙1, 𝒙2,… , 𝒙𝑁}, the optimal de-
coder 𝛽 is given by the minimization of the following equation:

𝛽(𝑖) = argmin
𝒛

𝐸[𝒹(𝑿, 𝒛)|𝛼(𝑿) = 𝑖] (2.5)

As shown above, the optimality condition is met when the conditional expectation of the
distortion is minimized, given the encoder output is 𝛼(𝑿) = 𝑖. 𝛽(𝑖) which satisfies the
above minimization is a Lloyd centroid [7]. Here note that, the optimal decoder output is

1 In this thesis, the focus is set on a special type of quantizers, where the rate is constant. In
other words, the number of bits that is used for quantization of each sample is the same.
These sort of quantizers are called fixed-rate or fixed-length quantizers.

6

also the optimal estimate of the given sample. The optimal estimate is given by the fol-
lowing equation:

𝛽(𝑖) = 𝐸[𝑿|𝛼(𝑿) = 𝑖] (2.6)

x Given a decoder 𝛽, and a sample 𝒙, the optimal encoder 𝛼 is given by the mini-
mization of the following equation:

𝛼(𝒙) = argmin
𝑖

𝒹(𝒙, 𝛽(𝑖)) (2.7)

According to the statement given above, for a given input, the optimality condition is met
when the code, which provides the minimum distortion, i.e., its corresponding nearest
neighbor, is selected.

Another important aspect of quantizers is complexity. Complexity can be investigated in
two ways: First is the computational complexity, which is related to the total number of
performed arithmetic operations. The second is the storage complexity, which is the
amount of additional space that is required2. Therefore, a quantizer can be defined and
evaluated in terms of three features: average rate, average distortion and complexity in
computation and storage.

2.2 A Historical Review

The first examples of quantization analysis go back to 19th century. Sheppard analyzed
rounding off the real numbers to their nearest integers in estimation of histogram densi-
ties, proposing the first uniform quantizer [8]. A quantizer is uniform if it has equal quan-
tization levels and the thresholds are between the adjacent levels. In 1938, Pulse Coded
Modulation (PCM), which is the first digital technique for conveying an analogue signal
through an analogue channel, is proposed [9]. The first PCM contained a sampler, a

2 There is often a trade-off between computational and storage complexity measures, for
example, arithmetic operations can sometimes be evaded using additional look-up tables,
which requires additional storage space.

7

quantizer and a binary pulse modulator3. Quantization of sampled signals provides an
approximation. Further analysis of PCMs set the stones for first attempts of theoretical
analysis of quantization [10]. The 6-dB rule, which states that the signal-to-noise ratio of
a uniform quantizer increases 6-dB for each one bit increase, is discovered by Bennet
during analysis of PCM for communication channels [11]. Bennet also showed that, un-
der certain assumptions, the quantization error could be modeled as an additive white
noise. This later led to quantization with addition of a dither signal, which is used to im-
prove the quality of quantized images [12]. A very important study on quantization is
published by Lloyd in 1982 [7]. In this publication, Lloyd defined the optimality conditions
for a fixed-rate quantizer. Then using this optimality, Lloyd proposed an iterative quan-
tizer using a minimum error mapping. This led to Lloyd’s quantizer, which is similar to
today’s popular K-Means algorithm [13].

When it is discovered that scalar quantization fails to exploit the redundancies, which
occur in quantization of correlated sources such as images and speech, it was proposed
to combine linear signal processing techniques with quantization, which lead to predic-
tive coding and transform coding [1]. Predictive quantizers have memory so that quanti-
zation of a sample depends on the previous samples [14]. Predictive coding has been
used in many coding standards including MPEG and H.26X series [1]. Transform coding
creates a vector form the samples and multiplies this vector with an orthogonal transform.
The resulting transforms are quantized separately [15]. Transform coding is used exten-
sively for image and video coding together with the discrete cosine transform [16].

When Shannon published his work about lossless coding theory in 1948 [17], he showed
that when equal number of bits are assigned for all quantization cells, it is not optimal
unless the cells have equal probabilities. This lead to variable-rate quantization. Huffman
proposed an algorithm [18], which provides the smallest binary codes for a set of given
probabilities. Today this is known as Huffman coding, which is used in current JPEG and
related standards [19]. One drawback of this technique is that the produced codes have
variable bit length and handling of this requires additional operations.

Earlier studies focused on scalar quantization as expected, and its generalization to
multi-dimensions was rather a theoretical discussion. Until 60s, the quantization problem
was mostly related with PCM, or analog-digital conversion. Vector Quantization (VQ)
acted as a model when the limits of quantization were discussed. VQ became an actual

3 Later PCMs converged to a point where binary pulse modulator is replaced with an encod-
ing module.

8

problem when naive applications of scalar quantization to vectors became infeasible, as
the number of dimensions started to increase. Before, permutations of scalar quantizer
coefficients were reconstructed as codevectors, and a vector was quantized by applying
brute-force nearest neighbor search among all the codevectors. This method is called
permutation coding [20]. The computational and storage requirements of permutation
coding motivated the researchers to seek for solutions that are more efficient [1]. The
first practical VQ methods were targeting the permutation coding directly and aiming to
improve the complexities requirements [21], [22]. One of the earliest studies, which tar-
gets the vector quantization as a coding problem belonged to Steinhaus [23]. In this work,
the scalar quantization problem was generalized to 3-dimensional space and this space
was partitioned into disjoint cells. Alternatively, clustering algorithms were introduced to
VQ problem [24]. With these algorithms, came the first examples of VQ in image and
audio processing [25], [26].

Later, structured designs were proposed in order to improve the coding efficiency. Lattice
quantization is a structured quantization method, where the reconstructed codevectors
are constrained to be from a lattice [27]. The final partitioning results in cells having the
same shape and orientation. Another structured method is product quantization, which
uses codevectors that are reconstructed as Cartesian products of lower dimensional
codevectors [28]. With separation of codebooks, obtaining lower computational complex-
ity is aimed. Product quantization has variants such as shape-gain quantizer [29] and
pyramid quantizer [30]. Transform coding is a special case of product quantization,
where the quantized vectors are transformed using an orthogonal transformation and
sub-vectors are scalars, i.e., the lower dimension is 1 [31]. Similarly, subband coding
and wavelet coding are also related to transform coding [32]. Subband codes perform
decomposition on an image by using linear filters to obtain the subband images. Wavelet
codes can be interpreted as subband codes with logarithmically varying subbands. Tree-
Structured VQ [33] generates a binary tree structure, where each node contains a
codevector. The quantized vector propagates in the tree by searching for the closer
codevector. Multistage vector quantization [34] is a form of tree-structured VQ, which
uses a single codebook for all the branches, and the residual error is propagated to the
next level.

So far, the pioneering algorithms have been addressed to provide an insight to the his-
torical evolution of quantization. Recent approaches mostly focus on application-based
optimizations of previous methods or derivation of new variants of old techniques [35]–
[41]. The reader is referred to two comprehensive surveys for further reading about quan-
tization and vector quantization [1], [42].

9

In this thesis, VQ for Approximate Nearest Neighbor Search (ANN), a recent approach,
which consists of VQ algorithms that are developed in order to solve the ANN problem
for very large datasets, is investigated. Chapter 3 presents in details the ANN problem
and the main challenges encountered when solving this problem especially for large-
scale data sets, and explores how VQ can be exploited in this direction.

10

3 Approximate Nearest Neighbor Search

In this chapter, an introduction to the Approximate Nearest Neighbor Search (ANN) prob-
lem is provided. First, the Nearest Neighbor Search (NN) problem is defined mathemat-
ically. Then the reasons of proposing approximate solutions for this problem are pre-
sented. Important approaches for ANN are grouped into three subchapters as Partition
Trees, Hashing and Vector Quantization, the latter being the main focus of the thesis.

3.1 Nearest Neighbor Search

The Nearest Neighbor Search (NN) problem is to find a point, which is “nearest” to a
given query, among a given set of points [43]. The “nearness” of two points is calculated
by a given distance metric [44]. NN is a significant problem in many research areas in-
cluding but not limited to computational geometry [45], computer vision [46], [47], data
mining, machine learning and pattern recognition [48]–[52]. NN forms the root of many
retrieval applications in various fields such as image ranking and retrieval [53], audio
information retrieval [54], multimedia information retrieval [55]. Moreover in machine
learning, the instance-based learning is derived from the nearest neighbor classifier,
which relies on NN [56].

The NN problem can be formulated as follows: given a set of samples 𝑿 = {𝒙1, 𝒙2,… , 𝒙𝑁},
(𝒙 ∈ ℝ𝐷) and a query 𝒒 ∈ ℝ𝐷, find the sample 𝒑 that is the nearest to the given query
𝒒, for a given metric 𝓜:𝐷 × 𝐷 → ℝ

𝒑 = argmin
𝒙∈𝑿

𝓜(𝒒, 𝒙). (3.1)

11

Figure 1. A 2-dimensional Nearest Neighbor Search Illustration. For the given red query
point, the green point is the nearest neighbor.

This problem has a naïve solution, which requires the calculation of 𝓜(𝒒, 𝒙) for all 𝒙 ∈
𝑿, resulting in a query time which is linear in 𝑁 and 𝐷 (𝑂(𝐷𝑁)) [43]. Data structures have
been proposed to reduce the query time to sublinear complexity, with some prepro-
cessing overhead. One of the first approaches to decrease this complexity was proposed
by Dobkin and Lipton [57], providing a query time of complexity 𝑂(2𝐷 log𝑁) and a pre-
processing cost of 𝑂(2𝐷+1). Similarly, following proposals [58], [59] all ended up with a
complexity that is exponential (or polynomial) with 𝐷 . This situation, which can be
phrased as the “curse of dimensionality” [43], shows that exact nearest neighbor solu-
tions are impractical for 𝐷 > 2 [43], [52], [60].

3.2 Approximate Nearest Neighbor Search

With the growth of datasets and descriptor cardinalities, the need for NN algorithms with
significantly smaller query time requirements emerged. This has led to the emergence
of approximate solutions for nearest neighbor search [43]. ANN can be formulated as
follows: given a set of samples 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁}, (sample 𝒙 ∈ ℝ𝐷 is a 𝐷-dimensional

12

vector) and a query 𝒒 ∈ ℝ𝐷, find a sample set 𝑷 ⊆ 𝑿 that is in a neighborhood of the
given query 𝒒, for a given metric 𝓜:𝐷 × 𝐷 → ℝ

𝑓𝑜𝑟 𝑎𝑙𝑙 𝒑 ∈ 𝑷 𝑎𝑛𝑑 𝒙 ∈ 𝑿, 𝓜(𝒒,𝒑) ≤ (1 + 𝜀)𝓜(𝒒, 𝒙). (3.2)

ANN relaxes the constraint in NN, which requires the resulting sample 𝒑 to be the exact
nearest to the given query 𝒒. In practice, when a wide range of applications for NN is
considered, the exact NN can easily be replaced by ANN, as the comprehensive body
of literature in ANN also suggests [61]–[65].

The simple formulation in (3.2) provides a generic mathematical definition for error-
bounded ANN [66]. ANN can also be defined as time-bounded if the time spent during
the search is limited [67]. These definitions can be extended or modified with additional
constraints depending on the use cases. In this chapter, we group ANN algorithms pro-
posed in the literature into three major categories: Partition Tree Structures for ANN,
Hashing for ANN and Vector Quantization for ANN. In the following subchapters, these
categories are discussed in detail.

3.2.1 Partition Tree Structures for ANN

Partition trees are data structures, which aim to divide the dataset hierarchically in order
to organize the samples. Each node of the tree corresponds to a subpartition of the da-
taset, forming a hierarchical organization. From the root node, which contains the whole
dataset, each traverse downwards lead to a disjoint subset. The leaf nodes may corre-
spond to either a single sample or a set of samples.

The methods discussed in this category are mainly derived from K-d Trees [68], which
is one of the earliest and most popular partition tree structures. Proposed in mid 70’s,
this method aims to extend the one-dimensional binary search to multi-dimensions. 𝐷-
dimensional vectors are stored in a K-d tree structure, in which every branch splits the
dataset into two, by using the median value of a selected dimension as a division thresh-
old [69]. The sample vectors are stored as leaves in the constructed tree. An illustration
of a 2-dimensional K-d tree is presented in Figure 2.

13

Figure 2. A 2-dimensional K-d Tree Structure Illustration. On the left, the dataset points
are shown together with the lines separating the branches. On the right, the
corresponding three structure is shown.

Given a novel query, the values in the selected dimensions are compared to the corre-
sponding threshold values and the tree is traversed according to the selected subbranch
at each node. The binary split is performed at each level; hence, the maximum depth of
the tree is bounded by log2 𝑁. As each split is decided by a selected dimension, it may
not be efficient to use K-d Trees on datasets where 𝐷 > log2 𝑁, as there will be discarded
dimensions. A rule of thumb is given in [68], K-d Trees might be used efficiently only if
𝑁 > 22𝐷.

As the first candidate obtained may not necessarily be the nearest neighbor, it is usually
followed by further searches, which look for better candidates, referred as “priority search”
or “backtracking” [66], [67], [69], [70]. It creates a priority queue using the sub-trees, in
order to access the data samples with greater probabilities being the true nearest neigh-
bor are accessed first. Several other methods are derived from K-d Trees. PCA-Trees
method [71] aims to use the direction of principal components, which are obtained from
Principal Component Analysis (PCA) [72]. RP-Trees [73] and Spill-Trees [74] generate
a set of random projections and use the best ones to form the partition hyperplanes. RP-
Trees, Spill-Trees and PCA-Trees all aim to propose better hyperplanes for partitioning.
Selecting among a set of projections or using the principal component directions lead to
better representation of the training set. However, an inner-product operation is required

14

at each node, which has a complexity of 𝑂(𝐷) while in K-d Trees the complexity of se-
lecting branches is 𝑂(1). Hierarchical K-Means Trees [75] proposes using Voronoi tes-
sellations to partition each layer. This approach relaxes the binary separation constraint
to obtain better separation performance, but at the expense of increasing the number of
operations required for branching. The complexity of each branching operation is 𝑂(𝐾𝐷),
where 𝐾 is the number of centroids. Multiple randomized K-d Trees [76] divides the
space using multiple trees, which results in more partitions. When a novel sample is
queried, the query is performed simultaneously in multiple trees, leading to a significant
performance improvement. FLANN [77] combines multiple randomized K-d Trees with
hierarchical K-Means and automatically finds the best parameters for the given dataset.
Trinary Projection Trees [78] uses a linear combination of coordinate axes weighted by
1, 0 and -1 in order to form the projection hyperplanes. They use the maximum variance
criterion to determine the trinary-projection directions.

As mentioned above, Partition Trees are data structures implemented on a dataset in
order to organize samples and provide fast access to a desired set of points. Because
of their organization schemes, Partition Trees usually keep the original dataset, espe-
cially if backtracking or priority search is used. They also require additional space to store
the partition hyperplane parameters, which can sometimes be comparable to the size of
the dataset itself, depending on the depth of the tree and used hyperplane functions [78].
While non-linear query times are observed for lower dimensional cases, as dimensions
grow, the query times may not be much less than the linear search [79]. According to
these properties of Partition Trees, it can be said that alternative approaches are required
for Big Data, which especially require much less storage space.

3.2.2 Hashing for ANN

Hashing is another branch of proposed solutions for ANN and it is well investigated in
the literature. Generally speaking, hashing can be described as a transformation or a
mapping between the dataset elements and binary codes [63]. Samples in a dataset are
encoded into binary strings using functions called hash functions. Unlike the traditional
hashing technique in computer science, where it is not desirable for two samples to share
the same hash code, here similar samples are aimed to have similar hash codes.

Given a sample 𝒙 ∈ ℝ𝐷, a ℬ-bit binary code 𝒚 = {𝒚[1], 𝒚[2], … , 𝒚[ℬ]} can be obtained
using ℬ hash functions as 𝒚 = {ℋ1(𝒙),ℋ2(𝒙),… ,ℋℬ(𝒙)}. So the hash function ℋ𝒷 is a
mapping from ℝ𝐷 → 𝔹ℬ. Once the binary codes are calculated, ANN search is performed

15

using the Hamming distance4. The advantage of the Hamming distance is that, it can be
implemented using very fast bitwise logic operations (XOR followed by pop-count [80]).
This improves the search speed significantly. The approximation of the original distance
by Hamming distance can be formulized as follows:

𝒚𝒒 = ℋ(𝑞)
𝒚𝒑 = ℋ(𝑝)

𝓜(𝒒, 𝒑)~‖𝒚𝒒 − 𝒚𝒑‖𝐻

(3.3)

Locality Sensitive Hashing (LSH) is initially proposed in [43] and a significant number of
hashing algorithms are derived from it. LSH proposes to find a family of hash functions,
which maps the similar samples to the same hash codes with a higher probability than
dissimilar samples. In other words, a family of hash functions ℋ has locality-sensitive-
ness for a radius 𝑅, a constant 𝑎 > 1 and two probabilities 𝑃1 and 𝑃2 (𝑃1 > 𝑃2) for two
given samples 𝑝 and 𝑞,

𝑖𝑓 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝑅, then 𝑃𝑟𝑜𝑏[ℋ(𝑝) = ℋ(𝑞)] ≥ 𝑃1
𝑖𝑓 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≥ 𝑎𝑅, then 𝑃𝑟𝑜𝑏[ℋ(𝑝) = ℋ(𝑞)] ≤ 𝑃2

 (3.4)

In an LSH scheme, with such a hash function family as described above, all data samples
are encoded according to the outputs of the hash functions. Each item is placed into its
corresponding “hash bucket”. In other words, for a given query 𝑞, all the dataset samples
placed in the bucket ℋ(𝑞) are considered as the nearest samples to 𝑞 [43]. An illustra-
tion of LSH is given in Figure 3.

4 Being the most frequently used metric, the Hamming distance is not the only alternative for
the hashing technique. There are other binary distances proposed for specific hashing algo-
rithms [63].

16

Figure 3. A 2-dimensional LSH Illustration. Colored arrows represent random hash func-
tions. Red dot is the encoded sample point.

LSH and its variants use randomly generated linear projections as hash functions. The
method used to generate these projections can vary, or there can be slight modifications
on the final hash function [63]. Nevertheless, the hash functions in general can be de-
fined as follows:

ℋ𝑘(𝒙) = 𝑠𝑔𝑛(𝒘𝑘
𝑇𝒙 + 𝑎𝑘) (3.5)

where, 𝒘𝑘 is a 𝐷-dimensional projection vector and 𝑎𝑘 is an affine shift. Different hash
methods are derived from LSH for different distances or similarities. For example, for
binary vectors, where a similarity measure can be defined using the Hamming distance,
a Binary LSH variant is proposed in [43]. Another LSH technique, which uses p-stable

17

distributions5 to generate hash functions for 𝑙𝑝 distance metrics, is presented in [81].
Spherical LSH [82], which uses randomly rotated polytopes to generate hash functions,
is proposed for vectors on a unit hypersphere of the Euclidean space. Similarly, Angle-
Based LSH [83] is proposed for angle-based distance approximation. Also in [84] 𝜒2-
LSH is presented for chi-squared distance metric. A more generic approach is presented
in [85], where learning a Mahalanobis metric using semi-supervised information is pro-
posed. The hash functions are then generated according to the learnt similarity.

The aforementioned methods are all based on random generations of hash functions;
hence, they are independent from the data itself6. However, this approach comes with a
major drawback. Because of the randomness of hash functions, too many hash functions
need to be generated in order to obtain a high precision. This leads to longer codes and
greater storage space requirements. In order to solve this problem, “learning-to-hash”
algorithms are proposed [64]. Learning-to-hash algorithms aim to use advanced machine
learning techniques to learn the hash function 𝒚 = ℋ(𝒙), which maps the input 𝒙 to the
corresponding binary code 𝒚, in a way such that the result of the nearest neighbor search
in the code space is an efficient approximation of the true nearest neighbor. While learn-
ing this mapping, the requirements given in (3.4) are still valid, yet in order to improve
the efficiency and performance, more constraints are defined.

One of the earliest and most significant learning-to-hash approaches is Spectral Hashing
(SH) [86]. Spectral Hashing defines a good code as the following: First, it should be easy
to compute for a novel input, it should not require too long codes to encode a full dataset
and it should map similar items to similar codes. In order to produce efficient codes, it is
proposed that each bit should have an equal probability of being 0 or 1. Also the bits
should be independent of each other [86]. The code generation problem turns into the
following optimization problem:

5 For example, Gaussian distribution is a p-stable distribution.
6 Except maybe the method proposed in [85], which includes semi-supervised distance learn-
ing. However, note that the learning affects the distance measure, not the generation of hash
functions.

18

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑𝑺𝑖,𝑗‖𝒚𝑖 − 𝒚𝑗‖
2

𝑖,𝑗

𝑠. 𝑡. 𝒚𝑖 ∈ {−1,1}ℬ

∑𝒚𝑖

𝑁

𝑖

= 𝟎

1
𝑁 ∑𝒚𝑖𝒚𝑖

𝑇 = 𝐼
𝑁

𝑖

(3.6)

where 𝑺𝑖,𝑗 = 𝑒𝑥𝑝 (−‖𝒙𝑖 − 𝒙𝑗‖
2 𝜖2⁄) defines the similarity between two samples in the

Euclidean space, and 𝜖 is a normalization constant. 𝑰 is the identity matrix. As it can be

seen, 𝑺𝑖,𝑗 grows with the similarity so the minimization requires ‖𝒚𝑖 − 𝒚𝑗‖
2 to be small.

Therefore, the algorithm keeps the neighbors in the original space also close in the code
space. The second constraint brings the equal probability while the final constraint re-
quires the bits to be uncorrelated. This optimization is a balanced graph partitioning prob-
lem for a single bit, which is NP hard [87]. Instead, another approximate solution for the
given optimization is proposed, which uses the 1D Laplacian eigenfunctions, with the
assumption that the input data are uniformly distributed. The resulting encoding is a si-
nusoidal function partitioning the data along the direction of the principal components.
SH has led to many variants in the literature. In [88], Self-Taught Hashing uses the same
optimization but solves it using spectral relaxation method similar to Ratio-Cut [89]. Then,
it trains Support Vector Machine (SVM) classifiers to learn this encoding scheme and
encodes the novel samples using these classifiers. Anchor Graph Hashing [90] improves
the cost of building the 𝑁 × 𝑁 similarity matrix 𝑺 by using an approximate similarity matrix
that is obtained by a small set of anchor points.

As mentioned above, SH and its variants try to keep the neighbors in the original space
also neighbors in the code space. Another approach in order to improve performance of
LSH is to find better projections. Among the first examples comes the Principal Compo-
nent Hashing [91]. It proposes using principal components instead of random projections
in LSH. Principal components are orthogonal to each other; hence, hash functions are
generated independently. In [92], it is shown that any random orthogonal projection ap-
plied on top of PCA provides better hash functions. Iterative Quantization7 [93] takes this

7 Although its name indicates otherwise, Iterative Quantization is a hashing method rather
than quantization. It starts with a cost definition similar to quantization error, but then ends

19

approach one step further and iteratively optimizes the rotation to provide the most effi-
cient encoding scheme. Double-bit Quantization [94] uses the same logic with [93] but
distributes two bits per projection instead of 1. Isotropic Hashing [95] also looks for a
better rotation after PCA, but instead it aims to equalize the variance at each dimension
after the rotation.

Although Hamming distance is the most popular distance used in the coding space, there
are other approaches, which propose using alternative distances. Manhattan Hashing
[96] proposes replacing Hamming distance with Manhattan distance. In [97], each bit of
the encoding is weighted in order to obtain a weighted Hamming distance. Furthermore,
a query-adaptive weighted Hamming distance scheme is proposed in [98]. Asymmetric
distances for several binary encoding methods are presented in [99]. Many other hashing
methods can be found in the literature, with different optimization criteria for different
purposes. For example, supervised and semi-supervised training8 are also introduced in
hashing [100]–[105]. There are hashing methods which aim to preserve the triplet rela-
tions [106], [107] or even the whole ranking order [108]. Deep Hashing [109] uses deep
neural networks to embed images directly into binary codes. For other methods and fur-
ther detailed information about hashing, the reader is referred to [63]–[65].

As discussed, hashing methods aim to transform a dataset from its original space into a
binary code space. By doing this, hashing methods aim to first provide fast and efficient
ANN, and second compress the dataset significantly. Calculation of Hamming distance
with logical bitwise operations considerably increases the speed, and storage of dataset
samples in binary codes instead of original space provides extreme level compression.
One significant drawback of using Hamming distance (or similar binary distances) arises
from its binary nature. Hamming distance is an integer value between zero and the length
of the binary string. For a ℬ-bit binary string, there are only ℬ − 1 different distances.
Therefore, when ranking is performed using Hamming distance as a metric, there are
too many samples having the exact same distance to the given query. This affects the
ranking performance crucially. Alternative approaches are proposed in the literature to
overcome this drawback.

up with binarized centroids and uses Hamming distance to calculate the neighborhood in the
code space.
8 Supervised or semi-supervised approaches are outside the scope of this thesis, as they
require manual labeling for the training set. This thesis focuses on unsupervised methods,
which produce generic solutions, and do not need manually annotated datasets.

20

3.2.3 Vector Quantization for ANN

The last branch of ANN algorithms proposes to use VQ techniques to compress datasets
and store them in the form of binary strings, similar to hashing methods. However con-
trary to hashing, approximation of distances between database samples and the query
is performed by look-up tables instead of binary distances. This gives a significant im-
provement in performance [110].

As mentioned in Chapter 2.2, vector quantization can be induced to an optimization prob-
lem, where minimization of mean-squared error (MSE) is the objective. MSE of a vector
quantizer can be defined as follows: Given a set of 𝑁 vectors 𝑿 = {𝒙1,… , 𝒙𝑁} (𝒙𝑖 ∈ ℝ𝐷),
for a vector quantizer 𝑄, the mean squared quantization error 𝑀𝑆𝐸𝑄 is defined as

𝑀𝑆𝐸𝑄 =
1
𝑁 ∑‖𝒙𝑖 − 𝑄(𝒙𝑖)‖2

2
𝑁

𝑖

(3.7)

The quantizer 𝑄 quantizes the input 𝒙𝑖 to its corresponding codevector 𝒙̂𝑖 as

𝑄(𝒙𝑖) = 𝑪𝒃𝑖 (3.8)

where, 𝒃𝑖 is the binary selection vector, and 𝑪 ∈ ℝ𝐷×𝐾 is the codebook matrix, which
contains 𝐾 codevectors as columns. Then the optimization problem can be formulized
as

𝑀𝑆𝐸𝑄 = min
{𝑪},{𝑩}

1
𝑁 ∑‖𝒙𝑖 − 𝑪𝒃𝑖‖2

2
𝑁

𝑖=1

(3.9)

where 𝑩 ∈ ℝ𝐾×𝑁 is the binary selection matrix. Here the optimization problem reduces
to finding the optimal matrices9 𝑩 and 𝑪, which minimize the quantization error.

9 The methods using VQ for ANN usually employs more than one quantizer and aim to min-
imize the quantization error simultaneously in all of them [63].

21

As mentioned in the beginning of this chapter, VQ-based ANN methods differ from hash-
ing methods by their distance approximations. In hashing approaches, the distance be-
tween a query vector 𝒒 and a database sample 𝒑 is approximated by the corresponding
binary distance between their codes 𝒚𝒑 and 𝒚𝒒, as given in (3.3). However, in VQ-based
ANN, the distance approximation is performed with the help of the codevectors in two
ways: Symmetric and Asymmetric [110]. The symmetric case is more similar to hashing,
it requires query 𝒒 to be quantized to its corresponding reconstructed vector 𝒒̂, so the
distance between 𝒒 and 𝒑 is approximated as

√‖𝒒 − 𝒑‖2
2~√‖𝒒̂ − 𝒑̂‖2

2
(3.10)

In the asymmetric case, the query does not have to be quantized and the distance ap-
proximation is formulized as

√‖𝒒 − 𝒑‖2
2~√‖𝒒 − 𝒑̂‖2

2
(3.11)

As observed in (3.10) and (3.11), the symmetric case is expected to be more prone to
quantization errors, since quantization is performed both on the database element 𝒑 and
the query 𝒒 [110]. However, in the asymmetric case, quantization error only applies to
database elements. The asymmetric case surpasses the symmetric case in terms of
retrieval performance [110], hence it is proposed as the default case in almost all VQ
approaches for ANN [63].

In both cases, the reconstruction of database elements is not necessary; instead, a look-
up table can be created with precomputed distances of the query vector and all the cen-
troids [110]. For the symmetric case, the look-up table is created only once, consisting
of 𝐾2 elements. The elements of the look-up table (LUT) for the symmetric case can be
calculated as follows:

𝐿𝑈𝑇[𝑘, 𝑙] = √‖𝑪[𝑘] − 𝑪[𝑙]‖2
2

(3.12)

22

where 𝐿𝑈𝑇[𝑘, 𝑙] is the distance between the 𝑘𝑡ℎ codevector 𝑪[𝑘] and the 𝑙𝑡ℎ codevector
𝑪[𝑙]. In the asymmetric case, the look-up table is created once for each query. The ele-
ments of the look-up table for the asymmetric case can be calculated as follows:

𝐿𝑈𝑇[𝑘] = √‖𝒒 − 𝑪[𝑘]‖2
2

(3.13)

As the contributions to the ANN literature proposed in this thesis belong to VQ for ANN,
the prior art of this branch is investigated in detail in Chapter 3.3.

3.2.4 Comparison of ANN Techniques

So far, ANN techniques have been investigated in three major categories as Partition
Tree Structures for ANN, Hashing for ANN and Vector Quantization for ANN. All these
methods approach the ANN problem from a different perspective. In this subchapter, the
advantages and disadvantages of the aforementioned methods are presented in com-
parison with each other.

As discussed in Chapter 3.2.1, Partition Tree Structure based methods mainly propose
to reorganize the datasets using tree structures. The main concern here is to provide fast
access to the (approximate) nearest neighbor. The methods under this category usually
keep the dataset as is, i.e., the dataset is not compressed. In addition to the original
dataset, a tree structure is created to provide fast access to the samples, which requires
additional storage space. The nearest neighbor approximation is improved by using a
technique called backtracking (or priority search), where the candidates for the nearest
neighbor are collected from the nearest leaves of the tree and re-ranked. If enough
leaves are traversed, accessing the actual nearest neighbor can be guaranteed.

Hashing based methods investigated in Chapter 3.2.2 aim to encode dataset samples
as binary strings and use binary distance metrics to approximate the distances in the
original space. Encoding of the dataset as binary strings provides compression for the
dataset, so that a much greater number of samples can be searched at once. Further-
more, binary distance calculations are much faster than calculating distances between
vectors in the original space, so a significant increase in speed is also achieved by hash-
ing methods. However, approximation of original distances with binary metrics is inferior
and this affects the search performance.

In Chapter 3.2.3, VQ-based approaches for the ANN problem have been discussed.
Similar to hashing, VQ-based methods also propose to compress dataset samples using

23

binary strings. Instead of using binary distance metrics, it is proposed to use look-up
tables to approximate the distances. Using look-up tables is still much faster than actual
distance calculation, and provides a better approximation compared to binary distances.

In the case of Big Data, two major problems arise from the associated great number
samples and dimensions. First is the storage requirement. A dataset is required to be
loaded onto RAM before a search can be performed. The larger the dataset, the smaller
percentage of it can be loaded to the RAM at once. Loading the dataset to the RAM is a
time consuming process, so keeping the number of loads per search to a minimum is
recommended. The second problem is the computational complexity of the distance cal-
culation. The greater the vector dimension, the more computations are required in order
to calculate the distance between two given samples. The increase in the computational
cost of distance calculation is more noticeable when the size of the dataset grows bigger.
ANN methods have to be able to handle these problems while providing good approxi-
mations.

Comparing the given ANN categories while taking the very large dataset sizes and great
number of dimensions into account, Tree based approaches are the least favorable as
the hashing and VQ-based approaches provide dataset compressions, which give them
a great advantage in terms of storage space requirements. Sometimes the additional
space required for the tree structure grows even bigger than the dataset itself [78]. How-
ever, hashing and VQ-based approaches provide extreme compressions for the dataset,
and the required additional storage space is negligible for very large datasets [63], [64],
[110]. In general, VQ-based approaches are more demanding in terms of additional stor-
age space compared to hashing based methods but this amount is still negligible com-
pared to the dataset size [63], [64].

The growth in the vector dimensions also affect the search speed of tree based ap-
proaches, as this branch is the most prone to the effects of the “curse of dimensionality”
[43], [63], [111]. In some cases of high dimensions, it is stated that tree based ap-
proaches can become slower than exact nearest neighbor search [68] [79]. Hamming
distance is a very fast distance approximation as it is possible to use binary logical op-
erators, but sometimes it may be required to use look-up tables as well for Hashing
methods. This makes their speed comparable to VQ-based methods [110].

In terms of approximation performance, tree-based methods theoretically have the high-
est upper bound, but this strongly depends on the selection of the backtracking depth.
The deeper the backtracking is, the higher the computational requirements. However,
since the dataset is kept as is, the perfect reconstruction is still possible. Hashing based
approaches suffer from the limited number of possible distances, as a result of using

24

binary distance metrics. For a ℬ-bit hash code, there are only ℬ − 1 different distances.
VQ’s look-up tables provide much higher distance approximation resolution [110]. This
directly affects the retrieval performance. In [110], PQ is compared to SH [86] and
FLANN [77], and the PQ shows significant improvement in performance compared to the
other two methods. Also in [112], a comparison of OPQ with various hashing algorithms
is presented, showing that OPQ outperforms them all with a notable margin.

The comparisons discussed above in terms of storage space, speed and performance
are summarized in Table 1 given below. According to these comparisons, VQ-based
approaches are the most suitable for Big Data problem. For that reason, in this thesis,
the prior art for these methods are investigated extensively in Chapter 3.3, and five new
methods in this field have been proposed, which are presented in Chapter 4.

Table 1: Comparison of ANN Techniques
 Storage

Require-
ment

Computa-
tional
Complex-
ity

Retrieval
Perfor-
mance

Exact NN High 𝑫 Dataset
Compres-
sion

Tree High High Low Yes No No
Hashing Low Low Medium No Yes Yes
VQ Low Low High No Yes Yes

3.3 Prior Art in Vector Quantization for ANN

The algorithms using VQ techniques for ANN can be investigated in three major sub-
chapters. The first one consists of the algorithms which are based on a technique called
Product Quantization (PQ) [110]. The second subchapter is based on another quantiza-
tion technique called Residual Vector Quantization (RVQ) [113], while the third includes
hybrid methods, which have features borrowed from the first two techniques.

3.3.1 Product Quantization Based Techniques

Product Quantization has been a pioneering method of VQ for ANN, both historically and
methodologically. After the first proposal of PQ in 2009 [114], several methods have been
inspired from the proposed approach and modifications and variations of PQ have been
proposed in the literature. In this subchapter, first the original PQ [110] is discussed in
detail. Then its variations such as Transform Coding (TC) [115], Optimized Product
Quantization (OPQ) [116] and Cartesian K-Means (CKM) [117] are considered.

25

3.3.1.1 Product Quantization

The first algorithm that proposes to apply VQ techniques for ANN is Product Quantization
(PQ) [110]. PQ is already mentioned in Chapter 2.2, and it is actually one of the first
strategies to extend quantization to the multidimensional case [28]. In [110], Jégou et al.
propose to introduce this approach to the ANN problem. The main motivation behind the
idea of using the PQ technique for VQ can be explained with an example. For the popular
128-dimensional image descriptor SIFT [118], a 64-bit quantizer (with a rate of only 0.5
bits per component) contains 264 centroids. This number is too high to be produced by
Lloyd’s method directly. It requires brute force nearest neighbor search for all the cen-
troids. Even storing that many centroids is not feasible. PQ proposes an efficient solution
to this problem by splitting the input vector 𝒙 ∈ ℝ𝐷 into 𝑀 distinct 𝐷/𝑀 dimensional sub-
vectors of 𝒙(𝑚) ∈ ℝ𝐷/𝑀 (1 ≤ 𝑚 ≤ 𝑀). The subspace separation is formulized in (3.14).

𝒙 = {𝒙[1], 𝒙[2], … , 𝒙[𝐷]}𝑻

𝒙(1) = {𝒙[1], 𝒙[2],… , 𝒙[𝐷/𝑀]}𝑻

𝒙(𝑚) = {𝒙 [
(𝑚 − 1)𝐷

𝑀 + 1] ,… , 𝒙[𝑚𝐷/𝑀]}
𝑻 (3.14)

Since the 𝑙2 distance calculation allows the following calculation:

‖𝒑 − 𝒒‖2
2 = ∑‖𝒑(𝑚) − 𝒒(𝑚)‖2

2
𝑀

𝑚=1

 (3.15)

Then for each subvector, Lloyd’s quantization can be applied separately using 𝑀 quan-
tizers in total. This provides efficient encoding for vectors with high cardinality. The opti-
mization formula given in (3.9) can be modified for PQ as given in (3.16), where the
superscripts in parenthesis refer to orthogonal subspaces.

26

 𝑀𝑆𝐸𝑄
(𝑃𝑄(1)) = min

{𝑪(1)},{𝑩(1)}

1
𝑁 ∑‖𝒙𝑖

(1) − 𝑪(1)𝒃𝑖
(1)‖

2

2
𝑁

𝑖=1

 𝑀𝑆𝐸𝑄
(𝑃𝑄(2)) = min

{𝑪(2)},{𝑩(2)}

1
𝑁 ∑‖𝒙𝑖

(2) − 𝑪(2)𝒃𝑖
(2)‖

2

2
𝑁

𝑖=1

⋮

𝑀𝑆𝐸𝑄
(𝑃𝑄(𝑀)) = min

{𝑪(𝑀)},{𝑩(𝑀)}

1
𝑁 ∑‖𝒙𝑖

(𝑀) − 𝑪(𝑀)𝒃𝑖
(𝑀)‖

2

2
𝑁

𝑖=1

 (3.16)

𝑀𝑆𝐸𝑄
(𝑃𝑄) = ∑ 𝑀𝑆𝐸𝑄

(𝑃𝑄(𝑚))
𝑀

𝑚=1

 (3.17)

As observed in (3.16), the quantization problem is divided into 𝑀 independent subprob-
lems, and each one is solved separately. In other words, for each subspace, a subquan-
tizer is defined, each aiming to achieve the best quantization for their corresponding
subspace. Then as shown in (3.17), the total quantization error is found to be the sum of
the errors of each subquantizer.

As mentioned above, in PQ, Lloyd’s quantization method is selected as subquantizers.
For a fixed-rate quantization, the number of subquantizers 𝑀 and the number of cen-
troids of each Lloyd’s quantizer 𝐾 are related, as expressed below:

ℬ = 𝑀 log2 𝐾 (3.18)

As defined in (3.18), the number of bits ℬ is defined by the multiplication of the number
of subquantizers and the logarithm of the number of centroids per subquantizer. The
logarithm term gives the number of bits required to represent 𝐾 different centroids. Ac-
cording to this relation, if one chooses to have more subquantizers, a smaller number of
centroids must be used in each subquantizer. Using (3.18), the number of centroids for
a fixed number of bits can be derived as follows:

𝐾 = 2ℬ/𝑀 (3.19)

27

It is suggested in [110] to keep the number of subquantizers to a minimum, as long as
the number of centroids is small enough to perform Lloyd’s method efficiently. Note that
for 𝑀 = 1, the PQ algorithm reduces to Lloyd’s method.

As discussed in Chapter 3.2.3, PQ uses Asymmetric Distance to approximate the dis-
tance between the query and encoded database elements. The squared distance be-
tween a novel sample 𝒒 and a PQ encoded database element 𝒑̂ can be formulized as
follows:

‖𝒒 − 𝒑̂‖2
2 = ∑ ‖𝒒(𝑚) − 𝑪(𝑚)𝒃𝒑̂

(𝑚)‖
2

2
𝑀

𝑚=1

 (3.20)

PQ uses 𝑀 separate look-up tables, each of them is obtained using the codebook of a
subspace. The look-up tables for PQ are created as given below10 :

𝐿𝑈𝑇(𝑚)[𝑘] = ‖𝒒(𝑚) − 𝑪(𝑚)[𝑘]‖2
2 (3.21)

Similar to (3.16) and (3.17), the distance approximation is performed using (3.15) as
given below:

‖𝒒 − 𝒑̂‖2
2 = ∑ 𝐿𝑈𝑇(𝑚) [𝒃𝒑̂

(𝑚)]
𝑀

𝑚=1

 (3.22)

This means that the distance between a given query and a database point is approxi-
mated by 𝑀 table look-ups and additions. Compared to the actual computational cost of
the 𝑙2 distance calculation, which requires 𝐷 subtractions, multiplications and additions,
this is a major improvement [110] (𝐷 ≫ 𝑀). The construction of look-up tables however
has a computation complexity of 𝐾𝐷. Therefore, the number of database samples must
be significantly greater than the number of codevectors per codebook, i.e., 𝑁 ≫ 𝐾. The
number of computations required for encoding of a novel sample is also 𝐾𝐷. Even though

10 Note that for simplicity, the square root term is omitted in look-up tables.

28

this will be done only once for each database element, if this number is too large, then
scaling up the VQ method for very large datasets becomes problematic. Therefore, a VQ
algorithm should keep this number as small as possible.

As mentioned in Chapter 2.1, quantization methods are evaluated according to their
computational complexities and storage requirements. PQ requires an additional storage
of 𝐾𝐷 floating point numbers to store the codevectors. The look-up table additionally
consists of 𝑀𝐾 numbers. Comparing this to the original size of the dataset, 𝑁𝐷, as 𝑁 ≫
𝐾, and 𝐷 ≫ 𝑀, this storage is negligible11.

3.3.1.2 Transform Coding

Transform Coding (TC), similar to PQ, has its roots reaching to the early days of vector
quantization. The idea of applying transform coding technique to vector quantization was
proposed first in [31]. Then the same idea is applied to the VQ problem for ANN in 2010
[115]. It states that the assumption of statistically independent vector coefficients usually
does not hold. Therefore, when PQ partitions the space into subspaces, because of sta-
tistical dependency, inferior codebooks will be generated. TC proposes a solution to this
problem by applying a transformation on the vectors before quantization, in order to re-
duce the statistical dependence. The proposed transformation is Principal Component
Analysis (PCA). PCA is an orthogonal transform, which projects given samples onto a
new space where the statistical dependence between the coefficients of the vector are
minimized [72]. Using the sample covariance matrix, first the eigenvectors are calculated
and used to transform the samples12.

Using PCA transformation before quantization provides statistical independence but the
information is distributed unequally among coefficients. These eigenvectors are ar-
ranged in a decreasing order according to the eigenvalues, and the eigenvalues already
correspond to the sample variances for the new coefficients calculated on the trans-
formed space13. In other words, the first dimensions carry more information than the last
ones [72]. Hence, if each dimension is encoded using the same number of codes, then
the amount of information encoded by the first bits will be more than the last bits, again

11 This number can also be compared to the compressed size of the dataset, 𝑁ℬ
32

. (A floating-
point number is assumed to be stored in 32-bits.)
12 Note that, eigenvectors are orthogonal to each other, which makes this transformation an
orthogonal transformation.
13 This property of PCA makes it a good approach for dimension reduction. Keeping the
higher dimensions and getting rid of the lower dimensions provides minimum information loss.

29

resulting in inferior codebooks. To solve this problem, TC first proposes to reduce the
vector quantization problem into separate scalar quantization problems (similar to PQ,
but a special 1-D case). Then it allocates bits proportional to the variance of each princi-
pal component, i.e., dimensions corresponding to larger variances are allocated more
bits. With this data-driven approach, TC claims that the codebooks fit better to the data,
hence improving the quantization error [115]. This approach can be formulized as follows:

 𝑀𝑆𝐸𝑄
(𝑇𝐶(1)) = min

{𝑪(1)},{𝑩(1)}

1
𝑁 ∑|𝑾𝑇𝒙𝑖[1] − 𝑪(1)𝒃𝑖

(1)|
2

𝑁

𝑖=1

 𝑀𝑆𝐸𝑄
(𝑇𝐶(2)) = min

{𝑪(2)},{𝑩(2)}

1
𝑁

∑|𝑾𝑇𝒙𝑖[2] − 𝑪(2)𝒃𝑖
(2)|

2
𝑁

𝑖=1

⋮

 𝑀𝑆𝐸𝑄
(𝑇𝐶(𝐿)) = min

{𝑪(𝐿)},{𝑩(𝐿)}

1
𝑁 ∑|𝑾𝑇𝒙𝑖[𝐿] − 𝑪(𝐿)𝒃𝑖

(𝐿)|
2

𝑁

𝑖=1

 (3.23)

ℬ = ∑log2 𝑑𝑖𝑚(𝑪(𝑙))
𝐿

𝑙=1

 (3.24)

𝑀𝑆𝐸𝑄
(𝑇𝐶) = ∑ 𝑀𝑆𝐸𝑄

(𝑇𝐶(𝑙))
𝐿

𝑙=1

 (3.25)

where 𝑑𝑖𝑚(𝑪(𝑙)) is the number of centroids on the 𝑙𝑡ℎ dimension. 𝐿 is the number of di-
mensions, to which a bit is assigned. 𝑾 ∈ ℝ𝐷×𝐿 is the transformation matrix obtained
from PCA, in which the first 𝐿 principal components are stored column-wise.

The determination of 𝐿, or bit allocation, is another optimization problem. To minimize
the total distortion in (3.25), the bits should be allocated to 1-D quantizers so that each
assignment reduces the maximum quantization error, keeping in mind that the total num-
ber of bits, ℬ, is constant. In [115], it is stated that the optimal solution for the given
problem requires computationally prohibitive numerical search. Instead, an approximate
solution is proposed. If all components are assumed to be uniformly distributed, then the
optimal bit allocation would be achieved if the number of bits on the 𝑙𝑡ℎ dimension, ℬ(𝑙),
is proportional to the logarithm of the standard deviation, as shown below:

30

𝑑𝑖𝑚(𝑪(𝑙)) = 2ℬ(𝑙)

ℬ(𝑙) ~ log2 𝜎(𝑙)
 (3.26)

With these two solutions, TC improves the quantization performance of PQ significantly,
especially on datasets where the dimensions exhibit significant statistical dependence
[115]. Complexity wise, TC performs better than PQ in both computational and storage
requirements. The computational cost of encoding a novel sample for TC is Ο(𝐷𝐿 + ℬ),
where Ο(𝐷𝐿) is the cost of PCA transformation. TC also requires storing the transfor-
mation matrix, which requires O(𝐷𝐿) floating numbers. One drawback of TC is that, it
heavily relies on the statistical independence claim of PCA transformation. However this
claim holds only when the data exhibit Gaussian properties [119].

3.3.1.3 Optimized Product Quantization

Optimized Product Quantization (OPQ) [112], [116] is a variant of PQ. Similar to TC,
OPQ also proposes a solution to the statistical dependence problem in PQ. In fact, in
[116], two different approaches are proposed: A parametric and a non-parametric ap-
proach. In this subchapter, the parametric solution will be investigated. The non-para-
metric approach is identical with the Cartesian K-Means [117] method if the same initial-
ization is used [112]. Therefore, it will be discussed in the next subchapter, together with
Cartesian K-Means.

PQ’s efficient solution to vector quantization suffers from the statistical dependence of
vector coefficients, as mentioned earlier. An alternative solution to this problem is pro-
posed by OPQ. A transformation is applied to provide statistical independence first. Then
similar to PQ, the transformed space is partitioned into subspaces with lower dimensions.
The proposed transformation is again PCA. However, as noted for TC, the variances of
principal components are not equal. Instead of using different number of bits per compo-
nent, parametric approach of OPQ proposes to rearrange dimensions so that, the infor-
mation distributed to each subspace will be balanced. This is provided by an eigenvalue
based dimension allocation method. When a dimension is allocated to a subspace, the
corresponding eigenvalue, i.e., the variance on that dimension, is added to the sub-
space’s total variance. Starting from the dimension with the highest eigenvalue, each
dimension is added to the subspace with the lowest variance. If the maximum number of
dimensions for a subspace is reached, then that subspace is skipped. The proposed
quantization algorithm requires an orthogonal transformation matrix, which minimizes the
statistical dependency between the dimensions, a rotation matrix, which performs the

31

eigenvalue based allocation, and subquantizers, which are trained separately for each
subspace. The parametric OPQ algorithm can be formulized as follows:

 𝑀𝑆𝐸𝑄
(𝑂𝑃𝑄(1)) = min

{𝑪(1)},{𝑩(1)}

1
𝑁 ∑‖(𝑹𝑇𝑾𝑇𝒙)𝑖

(1) − 𝑪(1)𝒃𝑖
(1)‖

2

2
𝑁

𝑖=1

 𝑀𝑆𝐸𝑄
(𝑂𝑃𝑄(2)) = min

{𝑪(2)},{𝑩(2)}

1
𝑁 ∑‖(𝑹𝑇𝑾𝑇𝒙)𝑖

(2) − 𝑪(2)𝒃𝑖
(2)‖

2

2
𝑁

𝑖=1

⋮

𝑀𝑆𝐸𝑄
(𝑂𝑃𝑄(𝑀)) = min

{𝑪(𝑀)},{𝑩(𝑀)}

1
𝑁 ∑‖(𝑹𝑇𝑾𝑇𝒙)𝑖

(𝑀) − 𝑪(𝑀)𝒃𝑖
(𝑀)‖

2

2
𝑁

𝑖=1

 (3.27)

𝑀𝑆𝐸𝑄
(𝑂𝑃𝑄) = ∑ 𝑀𝑆𝐸𝑄

(𝑂𝑃𝑄(𝑚))
𝑀

𝑚=1

 (3.28)

where 𝑾 ∈ ℝ𝐷×𝐷 is the principal component matrix, and 𝑹 is the rotation matrix for di-
mension rearrangement.

As shown in [116], the proposed method improves the quantization performance com-
pared to both TC and PQ. Also in [116], the comparison of OPQ with popular Hashing
methods is presented. According to the given results, VQ-based OPQ outperforms hash-
ing methods drastically. Investigating OPQ with respect to complexity, an orthogonal
transformation is required for each novel sample to be encoded, which results in an en-
coding complexity of Ο(𝐷2 + 𝐾𝐷), where the Ο(𝐷2) term belongs to the transformation
cost. The same cost was also added as an additional storage requirement, as this trans-
formation matrix needs to be stored.

3.3.1.4 Cartesian K-Means

Cartesian K-Means (CKM) [117] is a very similar method to OPQ [116]. Both have been
published in the same conference and the same year. Unlike OPQ, CKM does not inspire
from PQ’s Cartesian product approach, but rather results in it. CKM formulizes the vector

32

quantization problem differently than PQ based methods14. Each quantization center is
formulized as the sum of one codevector from each codebook. This reduces the quanti-
zation optimization to the problem given below:

 𝑀𝑆𝐸𝑄
(𝐶𝐾𝑀) = min

{𝑪𝑚},{𝑩𝑚}

1
𝑁 ∑‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖
2

2𝑁

𝑖=1

 (3.29)

where 𝑪𝑚 is the 𝑚𝑡ℎ codebook, and 𝒃𝑚𝑖 is the binary selection vector for the 𝑖𝑡ℎ data-

base element which selects from the 𝑚𝑡ℎ codebook. The solution of the problem given
in (3.29) is not trivial. Therefore, further constraints are required. CKM proposes to im-
pose an orthogonality constraint to the subcodebooks, i.e., 𝑪𝑚

𝑇 𝑪𝑙 = 𝟎 𝑖𝑓 𝑚 ≠ 𝑙. As a re-
sult, each codebook matrix is generated from a subspace, which do not intersect with
other subspaces. The total codebook matrix 𝑪 is represented as a multiplication of two
matrices: a rotation matrix 𝑹 with orthonormal columns, and a block diagonal matrix 𝑫,
i.e., 𝑪 = 𝑹𝑫

𝑹 = [𝑹1 𝑹2 … 𝑹𝑀] 𝑫 = [

𝑫1 𝟎 … 𝟎
𝟎 𝑫2 𝟎
⋮ ⋱ ⋮
𝟎 𝟎 … 𝑫𝑀

]

(3.30)

Therefore, the optimization problem formulated in (3.29) can be rewritten as below, sim-
ilar to other PQ based methods. Note that, since 𝑹 is an orthogonal transformation matrix,

‖𝑹𝑚
𝑇 𝒙𝑖 − 𝑫𝑚𝒃𝑚,𝑖‖2

2 = ‖𝒙𝑖 − 𝑹𝑚𝑫𝑚𝒃𝑚,𝑖‖2
2 for a full rank 𝑹, i.e., 𝑹⊥ = ∅, where 𝑹⊥ is the

null space of 𝑹.

14 Due to its initial formulization, CKM can actually be classified as a Residual Vector Quan-
tization based method. However, by taking the additional constraints applied into account, it
is classified as a Product Quantization based algorithm.

33

 𝑀𝑆𝐸𝑄
(𝐶𝐾𝑀1) = min

{𝑫1},{𝑹1},{𝑩1}

1
𝑁 ∑‖𝑹1

𝑇𝒙𝑖 − 𝑫1𝒃1𝑖‖2
2

𝑁

𝑖=1

 𝑀𝑆𝐸𝑄
(𝐶𝐾𝑀2) = min

{𝑫2},{𝑹2},{𝑩2}

1
𝑁 ∑‖𝑹2

𝑇𝒙𝑖 − 𝑫2𝒃2𝑖‖2
2

𝑁

𝑖=1

⋮

 𝑀𝑆𝐸𝑄
(𝐶𝐾𝑀𝑀) = min

{𝑫𝑀},{𝑹𝑀},{𝑩𝑀}

1
𝑁 ∑‖𝑹𝑀

𝑇 𝒙𝑖 − 𝑫𝑀𝒃𝑀𝑖‖2
2

𝑁

𝑖=1

 (3.31)

𝑀𝑆𝐸𝑄
(𝐶𝐾𝑀) = ∑ 𝑀𝑆𝐸𝑄

(𝐶𝐾𝑀𝑚)
𝑀

𝑚=1

 (3.32)

CKM proposes an iterative solution for each of these subproblems. Starting with an initial
rotation 𝑹𝑚, a Lloyd’s quantizer is trained, giving a solution for 𝑫𝑚 and 𝑩𝑚. Then replac-
ing those back into (3.31), the optimal 𝑹𝑚 can be obtained by solving the orthogonal
Procrustes problem [93]. The iterations continue until a satisfactory convergence is ob-
tained.

Compared to OPQ’s parametric model, CKM generates slightly better transformations,
as observed in [112]. The difference is less noticeable when the data follows Gaussian
properties. CKM shares the same complexity with OPQ, both in computation and addi-
tional storage.

3.3.2 Residual Vector Quantization Based Techniques

Residual Vector Quantization (RVQ) is also among the pioneering methods of VQ for
ANN. It was proposed right after PQ in 2010 [113]. RVQ inspired several methods in the
literature. In this subchapter, first the original RVQ is investigated in detail and then its
variants such as Optimized (Enhanced) Residual Vector Quantization (ERVQ) [120], Ad-
ditive Quantization (AQ) [121] and Composite Quantization (CQ) [122] are examined.

3.3.2.1 Residual Vector Quantization

Similar to PQ, RVQ has its roots back in the early days of vector quantization. The first
examples of residual vector quantization was called multi-stage vector quantization, and

34

was proposed in 1980s [34]. RVQ is very similar to this initial proposal and it adapts the
quantization approach to the ANN problem.

Different from VQ for ANN approaches mentioned in Chapter 3.3.1, RVQ trains its code-
books in the original space, i.e., unlike PQ’s codebooks, where 𝑪𝑃𝑄 ∈ ℝ𝐷/𝑀×𝐾, RVQ
codebooks 𝑪𝑅𝑉𝑄 ∈ ℝ𝑀×𝐾. A Lloyd’s quantizer is trained for each codebook as in PQ
based methods, but each codebook is trained on the residuals of the previous codebook.
At its most generic case, the optimization problem can be formulized as follows:

 𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄) = min

{𝑪},{𝑩}

1
𝑁

∑‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖
2

2𝑁

𝑖=1

 (3.33)

Note that the equation above is identical to the initial formulization that is used in CKM,
which was given in (3.29). However, the optimization problem cannot be simply rewritten
as 𝑀 subproblems, as previously done in CKM, since there is no orthogonality constraint
imposed. Solving the problem in (3.33) for all 𝑀 codebooks at once is also intractable.
In order to propose a tractable solution, RVQ brings a hierarchical structure and follows
a top-down approach to generate the codebooks. The RVQ optimization problem can be
formulated as follows:

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄1) = min

{𝑪1},{𝑩1}

1
𝑁 ∑‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

1

𝑚=1

)‖
2

2𝑁

𝑖=1

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄2) = min

{𝑪2},{𝑩2}

1
𝑁 ∑‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

2

𝑚=1

)‖
2

2𝑁

𝑖=1
⋮

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄𝑀) = min

{𝑪𝑀},{𝑩𝑀}

1
𝑁 ∑‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

)‖
2

2𝑁

𝑖=1

 (3.34)

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄) = 𝑀𝑆𝐸𝑄

(𝑅𝑉𝑄𝑀) (3.35)

As it can be seen in (3.34), the optimization problem is divided into 𝑀 subproblems in a
hierarchical manner. First, the top-most layer’s codebook is obtained, using a Lloyd’s
quantizer. Then the corresponding residuals are moved to the next layer for codebook
generation. This continues for 𝑀 layers. Note that, unlike PQ based approaches, the final

35

quantization error is the quantization error of the last layer, as shown in (3.35). The hier-
archical structure of RVQ proposes a simple solution to the codebook generation prob-
lem defined in (3.33). The quantization is improved at every layer by quantizing the error
of the previous layer.

RVQ provides a better quantization error than PQ, but this comes at an additional cost.
Asymmetric distance calculation in RVQ is not as simple as it is in PQ because of the
missing orthogonality constraint. The distance between a novel query and an RVQ coded
database element can be formulated as follows:

‖𝒒 − 𝒑̂‖2
2 = ‖𝒒 − ∑ 𝑪𝑚𝒃𝑚𝒑̂

𝑀

𝑚=1

‖
2

2

 (3.36)

Using the distance given in (3.36), it is not possible to calculate it using look-up tables.
Without the look-up tables, this calculation is 𝑀 times more expensive than the distance
calculation in the original space. Therefore, (3.36) is modified so that, it is possible to
create look-up tables for distance calculation, as given below:

‖𝒒 − 𝒑̂‖2
2 = ‖𝒒 − ∑ 𝑪𝑚𝒃𝑚𝒑̂

𝑀

𝑚=1

‖
2

2

= ‖𝒒‖2
2 − 2 〈𝒒, ∑ 𝑪𝑚𝒃𝑚𝒑̂

𝑀

𝑚=1

〉 + ‖∑ 𝑪𝑚𝒃𝑚𝒑̂

𝑀

𝑚=1

‖
2

2

= ‖𝒒‖2
2 − 2 ∑ 〈𝒒,𝑪𝑚𝒃𝑚𝒑̂〉

𝑀

𝑚=1

+ ∑ ∑〈𝑪𝑚𝒃𝑚𝒑̂, 𝑪𝑙𝒃𝑙𝒑̂〉
𝑀

𝑙=1

𝑀

𝑚=1

 (3.37)

As shown in (3.37), the asymmetric distance is calculated in 𝑀
2

2
+ 𝑀 + 1 summations.

Note that each dot product term given in (3.37) can be pre-calculated and stored in a
look-up table. The first look-up table consists of dot products between the given query
and all codevectors. The second look-up table consists of dot products of all codevectors
among themselves. Therefore, the first table requires an additional storage of Ο(𝐾𝑀)
while the second requires Ο(𝐾𝑀2). In addition, RVQ requires the storage of the codevec-
tors, which has a size of Ο(𝑀𝐷𝐾). This is also 𝑀 times larger compared to PQ’s Ο(𝐾𝐷).
As a result, compared to PQ, RVQ requires more calculations and more storage.

36

3.3.2.2 Optimized Residual Vector Quantization

Optimized Residual Vector Quantization [120] was proposed first with the name En-
hanced RVQ (ERVQ) in [123]. As the name suggests ERVQ proposes to optimize RVQ
by targeting the independent training of codebooks. A “joint” training scheme is proposed
in order to minimize further the quantization error. The algorithm is developed on top of
RVQ, and it uses the same approach to perform encoding and distance approximation.
Hence, the complexity and storage requirements are the same with RVQ. In other words,
ERVQ only aims to propose better codebooks than RVQ.

In ERVQ, it is emphasized that only the last layer of RVQ corresponds to the overall
quantization error, as also shown in (3.35). The other layers only consider the quantiza-
tion error at their own layer, without taking the overall quantization error into account
[120]. Therefore, a codebook generation scheme, which considers the overall quantiza-
tion error at each layer, is proposed by the joint training algorithm. The algorithm initial-
izes the codebooks using RVQ. Instead of holding onto the top-down training approach
of RVQ, ERVQ proposes to update upper layer codebooks, keeping the lower layers
fixed, in an iterative fashion. Once encoding is performed, the “residuals” corresponding
to a given layer are calculated. Then using these residuals, the codebook of that layer is
updated, using the same approach in RVQ. The improvement in 𝑀𝑆𝐸𝑄 is observed and
if it is below a predefined percentage, the iterations are ended. With this approach, ERVQ
obtains a significant increase in performance, compared to RVQ, e.g. using 64-bits with
ERVQ produces the same performance with RVQ using 72-bits.

The hierarchical approach proposed by RVQ is a simple solution, but since each layer
quantizes the residuals of the previous layer, the improvement in quantization error de-
creases with every layer. In other words, in terms of quantization error, higher layers
have much greater contribution than lower layers, despite the fact that they have the
same rate for quantization [120]. This is an important drawback of RVQ, which ERVQ
proposes to fix by adding the iterative codebook update stage.

3.3.2.3 Additive Quantization

Proposed in 2014, Additive Quantization (AQ) [121], as the name suggests, propose to
quantize vectors as addition of codevectors, similar to RVQ and ERVQ. In other words,
the generic formulation of the quantization error minimization problem in AQ is the same
as RVQ, as given in (3.33). For the sake of completeness, the formulation for AQ is
repeated below:

37

 𝑀𝑆𝐸𝑄
(𝐴𝑄) = min

{𝑪𝑚},{𝑩𝑚}

1
𝑁 ∑‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖
2

2𝑁

𝑖=1

 (3.38)

Unlike RVQ, AQ does not use a hierarchical structure15. This means that, 𝑀 codevectors
will be selected from 𝑀 different codebooks, with almost no constraints. This relaxed
structure allows AQ to obtain much better codebooks for quantization, but also makes
the computation extremely demanding [121].

As AQ defines no hierarchy among the codebooks, encoding a novel sample is not as
simple as in RVQ. Instead, a heuristic search method is proposed to find the suitable
codevectors among all the codebooks. The proposed algorithm is the Beam Search [124].
AQ initializes the beam search by selecting the nearest 𝐻 codevector candidates among
𝑀𝐾 codevectors. Then the residuals for each candidate is calculated. For each residual,
𝐻 more nearest codevectors are selected as candidates among the remaining (𝑀 − 1)𝐾
codevectors, meaning that the codebook of the first codevector candidate is omitted.
This results in 𝐻2 candidates in total. In order to prevent the exponential growth of can-
didates, the top 𝐻 among the 𝐻2 candidates are picked in terms of the least quantization
error. Then again, the residuals are calculated and the nearest codevectors are obtained
among the remaining codebooks. This is repeated until 𝑀 codevectors are selected in
total. Since there are 𝑀𝐾 codevectors in total and 𝐻 candidates are kept, this operation
is computationally very demanding. AQ proposes to use look-up tables in order to de-
crease the computational requirements.

For codebook learning, AQ also follows the iterative scheme, which updates codes and
codebooks sequentially. To update the codebooks, AQ proposes to use a least-square
approach. Decomposing the least-square solution for (3.38) into 𝐷 dimensions, the prob-
lem can be written as 𝐷 least-square problems, which can be formulated as given below:

∀𝑖 = 1…𝑁 ∑ 𝑪𝒎𝒃𝑚𝑖[𝑑]
𝑀

𝑚=1

= 𝒙𝑖[𝑑] (3.39)

15 Actually, AQ does not even cite RVQ.

38

where 𝒙𝑖[𝑑] is the 𝑑𝑡ℎ component of 𝒙𝑖 . Using (3.39), 𝑁 equations over 𝑀𝐾 variables
are defined, and each are solved in the least-quadratic sense. After solving these equa-
tions, the codebooks are updated. Using the updated codebooks, encoding is repeated
for all 𝑁 samples. The iterations continue until convergence achieved.

As given in (3.37), RVQ requires 𝑀
2

2
+ 𝑀 + 1 additions to compute the distance approxi-

mation. In [121], an alternative approach is proposed to reduce this cost to 𝑀, which is
the cost of PQ based methods. The equation in (3.37) is composed of three parts. The
first is the norm of the query vector, the second is the sum of dot products of the query
and codevectors, and the third is the sum of the dot products of codevectors among
themselves. The third term also corresponds to the norm of the database element. AQ
proposes to encode this norm separately, using a scalar quantizer. 𝑀 − 1 layers are
used to quantize the given vector and the remaining bits are reserved for the norm quan-
tization. In the experiments given in [121], it is shown that this approach provides slightly
worse quantization performance than AQ itself.

AQ outperforms its successors drastically; however, this boost in quantization perfor-
mance comes with a significant increase in the computational complexity. The computa-
tional complexity of encoding with AQ is Ο(𝑀2𝐾2(𝑀 + log(𝑀𝐾)) + 𝐾𝐷). Compared to the
complexity of RVQ, which is Ο(𝑀𝐾𝐷), this is significantly higher. On the other hand, AQ’s
additional storage requirement is the same as that of RVQ, which is also Ο(𝑀𝐾𝐷).

3.3.2.4 Composite Quantization

Composite Quantization (CQ) [122] is the last of RVQ based methods that are discussed
in detail in this chapter. CQ also consists of additive codebooks, but the main motivation
behind CQ is to make distance approximation faster. This problem was mentioned in AQ,

as the distance approximation given in (3.37) requires 𝑀
2

2
+ 𝑀 + 1 additions. AQ pro-

posed encoding the norm of the database sample using a separate quantizer and re-
serving extra bits. Contrarily, CQ introduces this as a constraint to its optimization, letting
the third term in (3.37) be a constant. When this term is constant, the distance approxi-
mation can be calculated in Ο(𝑀) operations, without reserving extra bits for quantized
norms. The formulation presented by CQ is given as follows:

𝑀𝑆𝐸𝑄
(𝐶𝑄) = min

{𝑪𝑚},{𝑩𝑚},𝜖

1
𝑁 ∑‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖
2

2𝑁

𝑖=1

+ 𝜆 ∑ ∑ ∑ ((𝑪𝑚𝒃𝑚𝑖)
𝑇𝑪𝑙𝒃𝑙𝑖 − 𝜖)

2
𝑀

𝑙=1,𝑙≠𝑚

𝑀

𝑚=1

𝑁

𝑖=1

 (3.40)

39

where 𝜖 is a constant, i.e., 𝜖 = ∑ ∑ (𝑪𝑚𝒃𝑚𝑖)
𝑇𝑪𝑙𝒃𝑙𝑖

𝑀
𝑙=1,𝑙≠𝑚

𝑀
𝑚=1 , and 𝜆 is the penalty param-

eter.

Similar to AQ, CQ follows an iterative approach to solve the given optimization problem
for 𝑪, 𝑩 and 𝜖. Fixing 𝑩 and 𝜖, the problem turns into a unconstrained nonlinear optimi-
zation problem. CQ proposes to use a quasi-Newton solver to solve this problem. Fixing
𝑪 and 𝑩, 𝜖 can be simply calculated as given below:

𝜖 =
1
𝑁 ∑ ∑ ∑ (𝑪𝑚𝒃𝑚𝑖)

𝑇𝑪𝑙𝒃𝑙𝑖

𝑀

𝑙=1,𝑙≠𝑚

𝑀

𝑚=1

𝑁

𝑖=1

 (3.41)

Fixing 𝑪 and 𝜖, CQ encodes the samples using the Iterative Conditional Modes (ICM)
algorithm. ICM is very similar to codebook improvement proposed in ERVQ. Fixing all
the codes but one, the left out code is selected as the nearest among the codevectors in
the corresponding codebook. Then another code is updated the same way, keeping the
rest fixed. The iterations continue until the maximum number of iterations reached.

The complexity of ICM encoding depends on the number of iterations allowed. CQ keeps
this number very low, only three iterations, hence encoding of a novel sample requires
Ο(3𝑀𝐾𝐷) computations. And additional storage requirement is the same as RVQ and
ERVQ, Ο(𝑀𝐾𝐷). CQ successfully accelerates the distance approximation, with a slight
decrease in performance compared to AQ.

3.3.3 Hybrid Techniques

As discussed so far, two major branches of approaches are used in VQ for ANN. The
first one, PQ based approaches; aims to partition the original space into subspaces and
train separate quantizers in each subspace. The final quantization is obtained as the
Cartesian products of the subspaces. The second branch, RVQ based approaches; per-
forms the quantization of a sample by adding multiple codevectors, which belong to the
same space with the given sample. The basic methods and their variants have been
discussed in detail in Chapter 3.3.1 and Chapter 3.3.2. In this chapter, techniques, which
benefit from PQ based and RVQ based approaches will be discussed. Locally Optimized
Product Quantization (LOPQ) [125], Additive Product Quantization (APQ) [121], Opti-
mized Cartesian K-Means (OCKM) [126] and (Optimized) Tree Quantization (OTQ) [127]
are the methods, which will be discussed in this chapter in detail.

40

3.3.3.1 Locally Optimized Product Quantization

Locally Optimized Product Quantization (LOPQ) [125], as its name suggests, is a variant
of OPQ [112], which was discussed in detail in Chapter 3.3.1.3 . LOPQ proposes to train
locally optimized OPQs in order to improve the quantization error. The main motivation
behind generating local OPQs stems from inverted indexing methods such as Inverted
File with Asymmetric Distance Computation (IVFADC)[110] and Inverted Multi-Index (IMI)
[128]. These methods propose to implement quantization using a coarse quantizer first,
in order to provide inverted file indexing. It is possible to retrieve a subset of a dataset
by using the inverted indices. Then ANN can be performed only on this subset. This is
called non-exhaustive search [110]. Several quantization algorithms also propose non-
exhaustive versions of their methods. For example, RVQ and PQ propose using a Lloyd’s
quantizer as a coarse quantizer and their own quantization method to quantize the re-
siduals of the coarse quantizer. In IMI, PQ is used as both the coarse quantizer and the
subquantizer. Differently from the mentioned approaches, LOPQ uses a Lloyd’s quan-
tizer as the coarse quantizer; however, it proposes to train a different subquantizer for
each code obtained from the coarse quantizer.

In [110], IVFDAC first trains the coarse quantizer, calculates the residuals for each vector
and then trains one single PQ subquantizer using all the residuals. On the contrary,
LOPQ groups the samples according to their nearest codevector in the coarse quantiza-
tion stage, and then trains an OPQ per group. This is equivalent to cluster the data using
K-means and quantizing each cluster with a unique OPQ [125].

LOPQ improves the quantization performance of OPQ but this improvement comes with
a noteworthy price in terms of storage requirements. Compared to OPQ’s storage re-
quirement of Ο(𝐷2 + 𝐾𝐷), LOPQ requires 𝜘 times more space to store the codevectors,
Ο(𝜘(𝐾𝐷 + 𝐷2)), where 𝜘 is the number of codevectors of the coarse quantizer16. It also
requires 𝜘 look-up tables, one for each subquantizer. LOPQ is more expensive than
OPQ in terms of computational costs. LOPQ requires Ο(𝜘𝐷 + 𝐷2 + 𝐾𝐷) operations, 𝜘𝐷
more than OPQ.

3.3.3.2 Additive Product Quantization

The Additive Product Quantization (APQ) is a hybrid variant of AQ, which was explained
in detail in Chapter 3.3.2.3. As discussed above the Beam Search algorithm used in the

16 Note that 𝜘 ≥ 𝐾, so this is a very important increase.

41

encoding step of AQ is computationally expensive, and grows cubically with the number
of layers 𝑀. An alternative hybrid approach to AQ is proposed in [121] in order to de-
crease this computational cost.

Decomposing 𝑀 as 𝑀 = 𝑀1𝑀2, APQ first splits the dimensions of original space into 𝑀1
subspaces (As previously done in OPQ) and quantizes each subspace using with AQ
using 𝑀2 codebooks. In other words, APQ is a Cartesian product of 𝑀2 AQs, trained in
subspaces of ℝ𝐷/𝑀2. This provides a better computational complexity for the encoding
step with a slight drop in quantization performance. Compared to the computational com-

plexity of Ο(𝑀2𝐾2(𝑀 + log(𝑀𝐾)) + 𝐾𝐷) of AQ, APQ has a complexity of Ο(𝐷2 +
𝑀
𝑀2

(𝑀2
2𝐾2(𝑀2 + log(𝑀2𝐾)) + 𝐾𝐷)). Using OPQ to split the original space into subspaces

requires also a transformation matrix, and this adds an additional storage requirement of
𝐷2 to AQ’s requirement of Ο(𝑀𝐾𝐷), which results in Ο(𝐷2 + 𝑀𝐾𝐷) The authors in [121]
suggest using APQ instead of AQ when 𝑀 > 4.

3.3.3.3 Optimized Cartesian K-Means

Optimized Cartesian K-Means (OCKM) [126] is a hybrid variant of the Cartesian K-
Means [117], which was discussed in detail in Chapter 3.3.1.4. Similar to PQ based ap-
proaches, OCKM also partitions the original space into subspaces and the final quanti-
zation is a Cartesian product of subquantizers. Furthermore, similar to CKM, OCKM ro-
tates the data before subspace partitioning. However, OCKM proposes two codebooks
for each subspace and picking two codevectors and adding them up. The results of these
additions are concatenated and the quantized vector is obtained. The optimization prob-
lem formulation in OCKM can be presented as follows:

𝑀𝑆𝐸𝑄
(𝑂𝐶𝐾𝑀) = min

{𝑪𝑚},{𝑩𝑚},𝑹

1
𝑁 ∑

‖

‖

𝒙𝑖 − 𝑹

[

 ∑ 𝑪𝑐

(1)𝒃𝑐𝑖
(1)

2

𝑐=1 .
.

∑ 𝑪𝑐
(𝑀/2)𝒃𝑐𝑖

(M/2)
2

𝑐=1]

‖

‖

2

2

𝑁

𝑖=1

 (3.42)

where 𝑪𝑐
(𝑚) is the 𝑐𝑡ℎ codebook on the 𝑚𝑡ℎ subspace. The codebooks that OCKM gen-

erates in different subspaces are orthogonal to each other. However, for the codebooks
that are generated within the same subspace, there is no constraint defined. As men-
tioned in AQ, the solution of this problem requires complex computations. In order to

42

reduce this complexity, OCKM favors orthogonal codebooks to codebooks in the same
subspace, i.e., they keep the number of codebooks per subspace limited to 2.

OCKM follows an iterative approach that is similar to the one in CKM to solve the opti-
mization problem given in (3.42). First, the rotation matrix 𝑹 is obtained fixing the code-
books and binary codes. Then the codebooks are updated fixing the binary codes and
the rotation matrix by the least squares, as also proposed in AQ. Finally, fixing the code-
books and rotation, first the encodings are determined. The method proposed for encod-
ing is also Beam Search, similar to AQ. But since the number of codebooks is only two,
the encoding is much faster [126].

The motivation behind OCKM is similar to APQ, but while OCKM selects two codebooks
per subspace, APQ divides the space into two subspaces. Therefore, the codebooks
trained in OCKM have stronger orthogonality constraints compared to APQ. This can be
observed in the quantization performance as well. While OCKM outperforms CKM, it
cannot reach to the performance of APQ. In terms of computational complexity, however,
OCKM is the winner. The number of computations required for encoding in OCKM is
approximately Ο(𝐻𝐾𝐷), where 𝐻 is the number of selected codevectors for beam search.
OCKM is also better with respect to the additional storage space requirements, which is
Ο(𝐷2 + 2𝐾𝐷).

3.3.3.4 (Optimized) Tree Quantization

(Optimized) Tree Quantization (OTQ) [127] is the last hybrid method that is discussed in
this chapter. It is an improvement over AQ, mainly targeting the high computational cost
of encoding. As mentioned in Chapter 3.3.2.3, AQ imposes no constraints to its code-
books, hence finding the optimum encoding is computationally demanding. Here in OTQ,
a structure is imposed on the codebooks, based on a tree graph. The vertices of the tree
correspond to the codebooks and each dimension is assigned to an edge. Hence, each
codebook is trained on a space, which is spanned by only the dimensions that are as-
signed to the incident edges of its vertex. The optimization problem can be formulized
as follows:

𝑀𝑆𝐸𝑄
(𝑂𝑇𝑄) = min

{𝑪},{𝑩},{𝑒}
∑ ∑ ∑ ∑ 𝑒(𝑚, 𝑙)|𝑪𝑚𝒃𝑚𝑖[𝑑] + 𝑪𝑙𝒃𝑙𝑖[𝑑] − 𝒙𝑖[𝑑]|2

𝑀

𝑙=𝑚

𝑀

𝑚=1

𝐷

𝑑=1

𝑁

𝑖=1

 (3.43)

Here 𝑒(𝑚, 𝑙) describes the graph connections, i.e., 𝑒(𝑚, 𝑙) = 1 if dimension 𝑑 is assigned
to edge (𝑚, 𝑙).

43

Instead of using beam search, with the help of the given structure, OTQ proposes to use
dynamic programming (max-product algorithm) to optimize the encoding process. The
codebook learning of OTQ is iterative, similar to the other proposed algorithms. Firstly,
keeping the codes 𝑩 and graph connections 𝑒 fixed, the optimization problem given in
(3.43) turns into a sum of errors for independent dimensions, which can be reorganized
as a least squares problem. Solving this problem for 𝑪 gives the updated codebooks
[127]. Secondly, keeping 𝑪 and 𝑩 fixed, the problem reduces to a minimization over as-
signment variables, which is solved using an Integer Linear Programming (ILP) solver.
Finally keeping 𝑪 and 𝑒 fixed, the problem is the encoding problem, which is solved by
the max product algorithm for all training samples, as mentioned in the beginning of this
chapter. Furthermore, OTQ proposes to include OPQ’s optimal rotation in the beginning
so that each sample is rotated before quantization17.

OTQ outperforms AQ in quantization performance. In addition, with the help of the im-
posed structure, OTQ changes the beam search of AQ with max product algorithm,
which brings a boost to the encoding efficiency. OTQ’s encoding requires
Ο(𝐷2 + 𝐾𝐷 + 𝑀𝐾2) computations, which is significantly less than AQ’s requirement
of Ο(𝑀2𝐾2(𝑀 + log(𝑀𝐾)) + 𝐾𝐷). OTQ also requires slightly more additional storage
space than AQ to store the codevectors. The storage requirement of OTQ
is Ο(𝐷2 + 𝑀𝐾𝐷).

3.3.4 Comparison of Prior Art in Vector Quantization for ANN

So far, in Chapters 3.3.1, 3.3.2 and 3.3.3 several VQ-based ANN methods have been
investigated in detail. In this chapter, a comparison among those methods is provided.
The comparison of VQ-based methods can be performed in three aspects: quantization
performance, computational complexity for encoding and distance approximation and
additional storage requirements.

To compare the aforementioned methods, two popular benchmark datasets are used,
SIFT1M and GIST1M [110], which are constructed in three parts: learning, base and
query. The learning set is designed for training of the quantizers. The base set is the
largest of all sets, which will be encoded and stored. The query set is the set of samples,
of which the nearest neighbors from the base set are retrieved. SIFT1M consists of SIFT
descriptors [118]. The learning set of SIFT1M includes 100.000 samples obtained from

17 This is the reason for the “Optimized” term in parenthesis in the beginning of the name of
the quantization method.

44

Flickr, and the base set, which consists of 1 Million samples; and the query set, which
consists of 10.000 samples, are from INRIA Holiday images dataset [129]. Similarly,
GIST1M consists of GIST descriptors [130]. The learning set of GIST1M includes
500.000 samples obtained from Tiny Image dataset [131], and the base, which consists
of 1 Million samples; and query set, which consists of 1000 samples, are again from
Flickr and INRIA Holiday images dataset [129].

In all the methods discussed above, the retrieval performances are presented using
these two datasets. During the tests, different sizes of encodings are investigated, from
16-bits to 128-bits. 32-bits and 64-bits are the most common ones; hence, the compari-
son among the methods is presented using these two lengths. To measure the perfor-
mance of the quantizer, recall@R is proposed [110] and used in all of the methods given
above. This metric measures the percentage of query vectors, of which the Euclidean
nearest neighbor is retrieved correctly in the first R rankings18. Usually the metric is cal-
culated for R=1, 10 and 100 [110]. The performances of the methods mentioned above
are given below, as presented in the original publications:

Table 2: Performance Comparison for Prior-Art Methods in VQ for ANN

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
PQ 0.052 0.230 0.595
TC 0.057 0.197 0.519
RVQ NA NA NA
CKM/OPQ 0.068 0.273 0.658
AQ 0.106 0.415 0.825
CQ NA NA NA
E-LOPQ 0.134 0.385 0.738
OCKM NA 0.348 0.742
ERVQ NA NA NA
OTQ 0.093 0.368 0.793

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
PQ 0.023 0.068 0.176
TC 0.053 0.104 0.291
RVQ NA NA NA
CKM/OPQ 0.054 0.142 0.396
AQ 0.069 0.189 0.467
CQ NA NA NA
E-LOPQ 0.049 0.131 0.362
OCKM NA 0.172 0.467
ERVQ NA NA NA
OTQ NA NA NA

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
PQ 0.224 0.599 0.924
TC 0.205 0.535 0.877
RVQ 0.257 0.659 0.952
CKM/OPQ 0.243 0.638 0.940
APQ 0.298 0.741 0.972
CQ 0.288 0.716 0.967
E-LOPQ 0.297 0.703 0.957
OCKM 0.274 0.680 0.945
ERVQ 0.276 0.694 0.962
OTQ 0.317 0.748 0.972

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
PQ 0.076 0.218 0.504
TC 0.096 0.223 0.547
RVQ 0.113 0.325 0.676
CKM/OPQ 0.118 0.334 0.715
AQ/APQ NA NA NA
CQ 0.135 0.377 0.729
E-LOPQ 0.116 0.331 0.656
OCKM 0.130 0.358 0.720
ERVQ 0.115 0.341 0.711
OTQ NA NA NA

18 When R=1, the metric corresponds to “precision”.

45

As presented above, Table 2 compares the nearest neighbor retrieval performance of
the prior-art methods in VQ for ANN19. Surprisingly; the best recall@1 is obtained by a
different method for each dataset. For recall@10 and recall@100 AQ gives the best per-
formance for 32-bit encoding. OTQ outperforms the other methods for 64-bit encoding
for SIFT1M, while CQ is the best method for the same length on GIST1M.

The computational complexity of encoding for the aforementioned methods are pre-
sented in Table 3.

Table 3: Comparison of Computational Costs of Encoding

Method Cost of Encoding Cost of Encoding for Different Datasets and

Code Lengths (Number of Operations)
 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64
PQ 𝛰(𝐾𝐷) 32768 32768 245760 245760
TC 𝛰(𝐷𝐿 + ℬ) 2592 5184 19232 38464
RVQ 𝛰(𝑀𝐾𝐷) 131072 262144 983040 1966080
CKM/OPQ 𝛰(𝐷2 + 𝐾𝐷) 49152 49152 1167360 1167360
AQ 𝛰(𝑀2𝐾2(𝑀 + 𝑙𝑜𝑔(𝑀𝐾)) + 𝐾𝐷) 14712832 79724544 14925824 79937536
APQ 𝛰(𝐷2 +

𝑀
4 (42𝐾2(4 + 𝑙𝑜𝑔(4𝐾)) + 𝐾𝐷)) 14729216 14761984 15847424 16093184

CQ 𝛰(3𝑀𝐾𝐷) 393216 786432 2949120 5898240
E-LOPQ 𝛰(𝐾𝐷 + 𝐾𝐷 + 𝐷2) 81920 81920 1413120 1413120
OCKM 𝛰(10𝐾𝐷) 327680 327680 2457600 2457600
ERVQ 𝛰(𝑀𝐾𝐷) 131072 262144 983040 1966080
OTQ 𝛰(𝐷2 + 𝐾𝐷 + 𝑀𝐾2) 311296 573440 1429504 1691648

𝑲: number of sub-codewords 256 256 256 256
𝑫: number of dimensions 128 128 960 960
𝑴: number of sub-codebooks 4 8 4 8
𝑳: number of reduced dimensions (on average) 20 40 20 40
𝓑: number of bits used for encoding. 32 64 32 64

As shown in Table 3, TC is the fastest method in terms of encoding and AQ is by far the
slowest. However, the numbers presented here must be considered together with the
retrieval performances given in Table 2, in order to have a proper evaluation for the
methods. Finally, Table 4 compares the additional storage requirements of the prior-art
methods. As it can be seen, TC requires the least amount of additional storage space,
while LOPQ is by far the most demanding one.

19 E-LOPQ is the exhaustive implementation of LOPQ. The results presented in [125] are
different from the ones presented here as the authors did not include the localization over-
head in the number of bits.

46

Table 4: Comparison of Additional Storage Requirements

Method Cost of Encoding Storage Cost for Different Datasets and Code

Lengths (MB)
 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64
PQ 𝛰(𝐾𝐷) 0.25 0.25 1.88 1.88
TC 𝛰(𝐷𝐿) 0.02 0.04 0.15 0.29
RVQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
CKM/OPQ 𝛰(𝐷2 + 𝐾𝐷) 0.38 0.38 8.91 8.91
AQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
APQ 𝛰(𝐷2 + 𝑀𝐾𝐷) 1.13 2.13 14.53 22.03
CQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
E-LOPQ 𝛰(𝐾(𝐾𝐷 + 𝐷2)) 96.00 96.00 2280.00 2280.00
OCKM 𝛰(𝐷2 + 2𝐾𝐷) 0.63 0.63 10.78 10.78
ERVQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
OTQ 𝛰(𝐷2 + 𝑀𝐾𝐷) 1.13 2.13 14.53 22.03

𝑲: number of sub-codewords 256 256 256 256
𝑫: number of dimensions 128 128 960 960
𝑴: number of sub-codebooks 4 8 4 8
𝑳: number of reduced dimensions (on average) 20 40 20 40

To summarize, in Chapter 3.3, the prior techniques in VQ for the ANN problem have
been investigated in detail, discussing the main motivation behind every algorithm, in-
cluding the novelties they propose in order to improve on the previous work. In 3.3.4, the
final subchapter of Chapter 3.3, these methods are compared using quantitative
measures. In the next chapter, Chapter 4, the contributions to the literature proposed in
this thesis will be explained in detail.

47

4 Contributions

This thesis proposes five new methods for ANN, following a vector quantization approach.
The methods in this thesis aim to outperform their predecessors or improve the encoding
complexity and/or the additional storage requirements. The contributions are first divided
into two subchapters as Hybrid Techniques and RVQ based Techniques, similar to the
classification given in Chapter 3.3. First, the Hybrid methods will be explained as they
were proposed before RVQ based ones.

As required by the compendium type of doctoral thesis followed here, this chapter aims
to only summarize the main methods, their merits and their performances with respect
to the state-of-the-art, while the details are included in the enclosed publications in the
Appendix and referred in the thesis as [P1], [P2], etc.

4.1 Hybrid Techniques

In this thesis, two Hybrid techniques are proposed. The first one is called M-PCA Binary
Embedding (MPCA-E) [P1] and the second one is K-Subspaces Quantization (KSSQ)
[P2]. In the following subchapters, both of these methods are discussed and their contri-
butions are summarized.

4.1.1 M-PCA Binary Embedding for ANN

Several methods in VQ literature benefit from PCA and the resulting transformation for
variance equalization or statistical dependence minimization. The first examples are TC,
OPQ and APQ, while CKM and OCKM also use PCA for initializations. However, the
performance of PCA in removing statistical dependence in real life data may not be as
high as desired since PCA relies on second-order statistics only, i.e., 𝐸[𝒙[𝑖]𝒙[𝑗]] = 0 . A
real-life dataset, which does not satisfy the Gaussian distribution properties, may have
significant third or higher order statistical dependencies present, i.e., 𝐸[𝒙[𝑖]𝒙[𝑗]𝒙[𝑘]] ≠ 0.

A well-known method to improve the performance of PCA is Local PCA [119]. This is an
iterative method, which aims to cluster the dataset into 𝒦 affine subspaces, with the aim
that each resulting cluster will be more Gaussian-like than the whole dataset itself. The
samples are assigned to their nearest subspaces, and for each cluster, a new affine
subspace is calculated using PCA. The distance of a sample 𝒙 to an affine subspace 𝓕,
which is defined by matrix 𝑹 and the affine shift vector 𝝁, can be formulated as follows:

48

𝑑(𝒙,𝓕) = ‖𝑹⊥𝑇(𝒙 − 𝝁)‖
2

2
 (4.1)

where 𝑹⊥ is the null space of 𝑹. Furthermore, the Local PCA can be formulated as an
optimization problem as follows:

min
{𝑹𝓀},{𝝁𝓀},{𝜹𝓀}

1
𝑁 ∑ ∑ 𝜹𝓀,𝑖 ‖𝑹𝓀

⊥𝑇(𝒙𝑖 − 𝝁𝓀)‖
2

2
𝒦

𝓀=1

𝑁

𝑖=1

 (4.2)

where

𝜹𝓀,𝑖 = 1 𝒊𝒇𝒇 𝑑(𝒙𝑖, 𝓕𝓀) ≤ 𝑑(𝒙𝑖, 𝓕ℓ) 𝒇𝒐𝒓 ℓ ∈ {1,2,… ,𝒦}
𝜹𝓀,𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4.3)

The Local-PCA tries to solve the optimization problem given in (4.2) for 𝑹𝓀, 𝝁𝓀 and 𝜹𝓀
in an iterative way. Keeping 𝑹𝓀, 𝝁𝓀 fixed, it solves for 𝜹𝓀 by simply assigning each sam-
ple to its closest subspace. Then keeping 𝜹𝓀 fixed, 𝑹𝓀 becomes the PCA transformation
matrix and 𝝁𝓀 is the mean value.

In M-PCA Binary Embedding [P1], several embedding methods, which use PCA as a
dimension reduction technique such as TC, Iterative Quantization (ITQ) [93] and PCA-
Embedding (PCA-E) [99] are investigated. It is proposed to replace the PCA with Local-
PCA, and show that this enhances the performance. For a given sample, the quantizer
on each subspace is used to generate an embedding candidate and the one with the
minimum error is chosen. Therefore, the first bits of encoding are reserved for the index
of the quantizer that is selected. Among the aforementioned methods, MPCA-E using
TC provides the best results, see [P1] for additional details.

As shown in [P1], the quantization performance is consistently improved when Local
PCA (or Multiple PCA) is used instead of a single PCA. The best performance is obtained
when TC is used. The performance of MPCA-E is tested in the datasets described in
Chapter 3.3.4, and the results are provided in Table 5 and Table 6 [P1]. As expected,
having multiple transformations instead of one brings extra computations and requires
more additional storage space. For comparison, the results of MPCA-E are presented
together with TC. TC is a special case of MPCA-E, where the number of affine subspaces
𝒦 = 1.

49

Table 5: M-PCA Embedding Test Results

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
TC 0.057 0.197 0.519
MPCA-E 0.124 0.404 0.784

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
TC 0.053 0.104 0.291
MPCA-E 0.054 0.149 0.345

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
TC 0.205 0.535 0.877
MPCA-E 0.286 0.710 0.923

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
TC 0.096 0.223 0.547
MPCA-E 0.110 0.312 0.662

Table 6: Computational and Storage Costs of MPCA-E

Method Encoding Cost Encoding Cost for Different Datasets and Code Lengths

(Number of Operations)
 SIFT1M-32 SIFT1M-64 GIST1M-

32
GIST1M-

64
TC Ο(𝐷𝐿 + ℬ) 2592 5184 19232 38464
MPCA-
E

Ο(2𝒦𝐷𝐿 + 𝒦𝓑) 1318912 2637824 1229824 2459648

Method Storage Cost Storage Cost for Different Datasets and Code Lengths

(MB)
 SIFT1M-32 SIFT1M-64 GIST1M-

32
GIST1M-

64
TC Ο(𝐷𝐿) 0.02 0.04 0.15 0.29
MPCA-
E

Ο(𝒦𝐷𝐿)
5.00 10.00 4.69 9.38

𝑫: number of dimensions 128 128 960 960
𝑳: number of reduced dimensions 20 40 20 40
𝓚: number of subspaces 256 256 32 32
𝓑: number of bits for encoding. 32 64 32 64

Table 6 shows the storage and computational costs for MPCA-E. A novel sample is
transformed onto each subspace and this requires 𝑂(𝒦𝐷𝐿) operations. The distance of
the novel sample to the subspace also plays an important role on the error so this needs
to be calculated as well. (4.1) can be modified as given below so that it will be computa-
tionally more efficient when 𝑟𝑎𝑛𝑘(𝑹⊥) ≫ 𝑟𝑎𝑛𝑘(𝑹) :

𝑑(𝒙,𝓕) = ‖(𝒙 − 𝝁) − 𝑹𝑹𝑇(𝒙 − 𝝁)‖2
2 (4.4)

The distance calculation in (4.4) brings an additional computation of 𝑂(𝒦𝐷𝐿). Therefore,
the final computational cost of encoding is 𝛰(2𝒦𝐷𝐿 + 𝒦ℬ). As all the transformation ma-
trices for all the subspaces are required to be stored, the additional storage space is
𝑂(𝒦𝐷𝐿).

50

As it can be seen in Table 5 and Table 6, the proposed method performs significantly
better than TC, but it also requires much more computational complexity and additional
storage space. More results of MPCA-E can be found in [P1] and [P2]. The comparison
of MPCA-E and the prior art are discussed in detail in Chapter 4.3, where the experi-
mental results and cost analysis are presented comparatively in Table 16, Table 17 and
Table 18.

4.1.2 K-Subspaces Quantization for ANN

Similar to [P1], K-Subspaces Quantization for ANN [P2] is another method proposed in
this thesis, which aims to partition the original space into 𝒦 affine subspaces and per-
form quantization afterwards. As discussed in [P1], already many methods in the litera-
ture use a transformation or projection onto a new subspace, where there is either di-
mension reduction, rotation or reordering. In [P2], a quantizer scheme is proposed,
where the dimension reduction and the quantization are optimized jointly.

The quantization error for a quantizer, which uses an orthogonal dimension reduction
transformation, can be formulized as follows:

𝑀𝑆𝐸𝑄 =
1
𝑁 ∑(‖𝑹𝑇𝒙𝑖 − 𝑄(𝑹𝑇𝒙𝑖)‖2

2 + ‖𝑹⊥𝑇𝒙𝑖‖2

2
)

𝑁

𝑖

 (4.5)

where 𝑄 is the quantizer, 𝑹 is an orthogonal transformation matrix with 𝑹 ∈ ℝ𝐷×𝐿 and
𝐿 ≤ 𝐷. 𝑹⊥ spans the orthogonal complement of the range space of 𝑹. This error can be
investigated in two terms. The first term comes from the quantizer and the quantization
itself, while the second term is a dimension reduction error, which is independent from
the quality of quantization. As mentioned in Chapter 4.1.1, in order to reduce the second
term of the error, there are alternative approaches to using a single PCA transformation
for dimension reduction in the literature [119], [132], [133]. They propose partitioning the
space into subspaces, using more than one PCA for each subspace generated.

Let 𝓕𝓀 ∈ ℝ𝐿𝓀 represent a subspace which is defined by the affine shift vector 𝝁𝓀
∈ ℝ𝐷 and the projection matrix 𝑹𝓀 ∈ ℝ𝐷×𝐿𝓀. Let 𝑿𝓀 ⊂ 𝑿 be a cluster of samples such that
⋃ 𝑿𝓀

𝒦
𝓀=1 = 𝑿 and 𝑿𝓀 ∩ 𝑿𝒿 = ∅ where 𝓀 ≠ 𝒿. Using the given variables, we obtain the fol-

lowing mean square error by modifying (4.5) for multiple affine subspaces:

51

𝑀𝑆𝐸𝑄 =
1
𝑁 ∑ ∑ (‖𝑹𝓀

𝑇(𝒙𝑖 − 𝝁𝓀) − 𝑄𝓀 (𝑹𝓀
𝑇(𝒙𝑖 − 𝝁𝓀))‖

2

2
+ ‖𝑹𝓀

⊥𝑇(𝒙𝑖 − 𝝁𝓀)‖
2

2
)

𝒙𝑖∈𝑿𝓀

𝒦

𝓀=1

 (4.6)

Here, note that (4.6) is an extension of (4.2) to the quantization problem. The minimiza-
tion of the quantization error given in (4.6) is an NP-Hard problem so an approximate
iterative solution is proposed. First 𝑿𝓀 is initialized using K-Means. Keeping 𝑿𝓀 fixed, 𝝁𝓀
is calculated as the mean of 𝑿𝓀, i.e., 𝝁𝓀 = 𝐸[𝑿𝓀]. Then 𝑹𝓀 is the PCA transformation
matrix calculated for 𝑿𝓀. The subquantizer 𝑄𝓀 is trained using the transformed samples
𝑹𝓀

𝑇(𝑿𝓀 − 𝝁𝓀). At the end of the first round of the iterations, the clusters are updated for
each 𝒙𝑖 using the following equation:

𝒙𝑖 ∈ 𝑿𝓀̇ 𝑤ℎ𝑒𝑟𝑒 𝓀̇ = argmin
𝓀

(‖𝑹𝓀
𝑇(𝒙𝑖 − 𝝁𝓀) − 𝑄𝓀 (𝑹𝓀

𝑇(𝒙𝑖 − 𝝁𝓀))‖2

2
+ ‖𝑹𝓀

⊥𝑇(𝒙𝑖 − 𝝁𝓀)‖2

2
) (4.7)

In this way, each sample 𝒙𝑖 is assigned to the cluster, where the minimum quantization
error is obtained. After the update of the clusters, iterations continue until a convergence
is achieved or a maximum number of iterations is reached.

As discussed in [P1], using multiple subspaces instead of one brings additional compu-
tational and storage requirements. Since there are 𝒦 subspaces, it is required to com-
pute 𝒦 transformations and store 𝒦 matrices. Also since there are 𝒦 subquantizers,
each of them needs additional storage space. The calculation of the quantization error
in each quantizer also brings significant computational cost. Such factors have to be
taken into account while selecting a suitable subquantizer. First of all, a subquantizer
which benefits from dimension reduction would decrease the computational cost of trans-
formation from 𝑂(𝒦𝐷2) to 𝑂(𝒦𝐷𝐿). Same applies to the additional storage space, where
a full rank transformation would require 𝑂(𝒦𝐷2) numbers to be stored, a low rank trans-
formation would require 𝑂(𝒦𝐷𝐿).

With these constraints, it is proposed to use a tailored variant of TC as it is the best in
terms of computational costs and storage requirements. The bit allocation method in TC
is slightly modified for KSSQ, allowing it to reserve more bits to higher dimensions. This
causes an increase in dimension reduction, but since the error acquired from dimension
reduction is minimized by the proposed joint iterative training scheme, this leads to an
improved quantization error in total.

52

To encode a novel sample in KSSQ, first the quantization error for each subquantizer
should be calculated. Then the encoding performed by the subquantizer, which provides
the minimum error, is returned as the final encoding. In order to accelerate this process,
KSSQ aims to keep the number of candidate subquantizers to a minimum. To select the
best candidates, first the distance between the sample and the affine shift vectors
‖𝒙𝑖 − 𝝁𝓀‖ is calculated. The subquantizers which correspond to the nearest affine shift
vectors are selected as candidates. This is controlled by an additional parameter 𝜅 < 𝒦.
So the encoding cost is reduced from 𝑂(2𝒦𝐷𝐿 + 𝒦𝓑) to 𝑂(𝒦𝐷 + 2𝜅𝐷𝐿 + 𝜅𝓑). 20

As discussed in detail in [P2], KSSQ outperforms the prior-art while providing compara-
ble computational cost and additional storage space requirements. The proposed sub-
space approach is shown to decrease the quantization error, while increasing the near-
est neighbor retrieval performance. The test results of KSSQ on the datasets described
in Chapter 3.3.4 are provided in Table 7, while the computational and storage costs are
presented in Table 8. The experimental results and the cost analysis of KSSQ are pre-
sented in comparison with the prior art in Table 16, Table 17 and Table 18, in Chapter
4.3.

Table 7: KSSQ Test Results

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
MPCA-E 0.124 0.404 0.784
KSSQ 0.145 0.434 0.802

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
MPCA-E 0.054 0.149 0.345
KSSQ 0.078 0.191 0.437

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
MPCA-E 0.286 0.710 0.923
KSSQ 0.325 0.754 0.976

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
MPCA-E 0.110 0.312 0.662
KSSQ 0.136 0.396 0.741

20 Note that 𝑂(2𝒦𝐷𝐿 + 𝒦𝓑) is the cost of MPCA-E.

53

Table 8: Computational and Storage Costs of KSSQ

Method Encoding Cost Encoding Cost for Different Datasets and Code Lengths

(Number of Operations)
 SIFT1M-32 SIFT1M-

64
GIST1M-

32
GIST1M-

64
MPCA-
E

𝛰(2𝒦𝐷𝐿 + 𝒦𝓑) 1318912 2637824 1229824 2459648

KSSQ 𝛰(𝒦𝐷 + 2𝜅𝐷𝐿 + 𝜅ℬ) 115200 197632 338176 645632

Method Storage Cost Storage Cost for Different Datasets and Code Lengths
(MB)

 SIFT1M-32 SIFT1M-
64

GIST1M-
32

GIST1M-
64

MPCA-
E

𝛰(𝒦𝐷𝐿)
5.00 10.00 4.69 9.38

KSSQ 𝛰(𝒦𝐷𝐿) 5.00 10.00 4.69 9.38

𝑫: number of dimensions 128 128 960 960
𝑳: number of reduced dimensions21 20 40 20 40
𝓚: number of subspaces 256 256 32 32
𝜿: number of candidate quantizers 16 16 8 8
𝓑: number of bits for encoding 32 64 32 64

4.2 Residual Vector Quantization based Techniques

In this thesis, three RVQ based techniques are proposed. The first one is called Self-
Organized Binary Encoding (SOBE) [P3], the second one is Joint K-Means Quantization
(JKM) [P4], and the last one is Competitive Quantization (CompQ) [P5]. In the following
subchapters, all of these methods are discussed and their performance is summarized.

4.2.1 Self-Organized Binary Encoding for ANN

The hierarchical scheme proposed in RVQ is an efficient solution for codebook genera-
tion and codevector selection. As discussed in Chapter 3.3.2.1, thanks to its hierarchy,
RVQ divides the codebook generation problem into subproblems, each of which can be
solved efficiently and easily using Lloyd’s quantizer. Yet this approach has some disad-
vantages. The hierarchical structure forces each layer to be solved separately and this
may lead to convergence to a local minimum for each layer. The inferiority of each layer
affects its lower layers, as the following layers quantize the residuals of the previous
layers. This makes overfitting a very important problem in RVQ.

21 The numbers presented here are the average number of dimensions for the subspaces
of KSSQ, which are on par with the predefined number of dimensions for MPCA-E

54

As discussed in Chapter 2.2, clustering techniques have been adapted to VQ problem
quite many times. A popular clustering method is Self-Organizing Maps (SOM) [134].
SOM is a neural network, which is used to map the high-dimensional distribution of sam-
ples onto a predefined low dimensional grid. It is inspired from the structure of the brain
cells, as the neighboring brain cells are discovered to respond to inputs together. SOM
usually forms a two dimensional grid of neurons and automatically reorganizes the sam-
ples and their association with these neurons. Training of SOM can be interpreted as a
competitive learning algorithm, as the weights of the neurons are updated iteratively ac-
cording to an error measure [134]. SOM brings the concept of “winner neuron” to the
neural nets, and updates the weights of the winner neurons and some of its neighbors’
weights. With this feature, it can be said that SOM’s are more robust against overfitting
[135].

In order to improve the performance of RVQ by eliminating the overfitted centroids, in
[P3], it is proposed to adapt SOM as a VQ for each layer of RVQ. The definition of SOM
starts with the definition of the winner neuron. For an input 𝒙, the winner neuron is de-
fined as given below:

𝑘̇ = argmin
𝑘

(‖𝒙 − 𝒘𝑘‖2
2) (4.8)

In this way, a winner neuron’s weight vector provides the minimum squared error to the
given input. SOM proposes to train the weights by using a stochastic gradient descent
approach, to minimize the error between a given sample and the corresponding winner
neuron. The iterative weight update equation for the winner neuron is given below:

𝒘𝑘̇(𝑡 + 1) = 𝒘𝑘̇(𝑡) − γ(𝑡)∇𝒘𝑘̇
(‖𝒙 − 𝒘𝑘̇‖2) (4.9)

where ∇𝒘𝑘̇
 is the gradient operation and γ(𝑡) is the learning rate. The gradient can be

calculated as:

∇𝒘𝑘̇
(‖𝒙 − 𝒘𝑘̇‖2

2) = 2(𝒘𝑘̇ − 𝒙) (4.10)

SOM also updates the neighbors of the winner neuron. Let 𝒩𝒘𝑘̇
 represent the set of

neighbors of the winner neuron. The weight update is performed as shown below:

55

𝒘𝑘(𝑡 + 1) = {𝒘𝑘(𝑡) − γ(𝑡)(𝒘𝑘 − 𝒙)
𝒘𝑘(𝑡)

𝑖𝑓 𝑘 ∈ 𝒩𝒘𝑘̇
𝑒𝑙𝑠𝑒

 (4.11)

Usually neighbors are defined by a 2-D Gaussian kernel, but alternatively the distance
between the neurons can also be used to define the neighborhood and control the neigh-
boring weight updates [134]. In [P3], a similar approach is followed. A number of nearest
neurons are defined as the neighboring neurons. However, since SOM usually defines
a 2-dimensional grid, a multidimensional SOM grid is proposed in [P3]. A transform cod-
ing based clustering is applied to initialize the neurons positions and weights. Then for
each neuron, a number of nearest neurons are assigned as neighbors. The neighboring
neurons are updated in relation to their distances to the winner neuron. The neighbor-
hood relation is preserved throughout the iterations.

In [P3], an improvement for the encoding algorithm is also proposed. RVQ’s encoding is
simple and layer based as it simply selects the nearest codevectors to residuals. SOBE
proposes to optimize the encoding iteratively, by keeping 𝑀 − 1 codevectors fixed and
updating the 𝑚𝑡ℎ one for all 𝑀 codevectors. This continues until the decrease in the
quantization error converges or a maximum number of iterations is reached.

Together with SOM based codebook generation and improved encoding scheme, SOBE
outperforms RVQ on tests performed on benchmark datasets of ANN. The test results
of SOBE are provided in Table 9 and the computational and storage costs are presented
in Table 10. SOBE is presented in comparison with the prior art in Table 16, Table 17
and Table 18, in Chapter 4.3.

Table 9: SOBE Test Results

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
RVQ NA NA NA
SOBE 0.100 0.348 0.731

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
RVQ NA NA NA
SOBE 0.064 0.189 0.403

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
RVQ 0.257 0.653 0.946
SOBE 0.282 0.701 0.962

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
RVQ 0.113 0.325 0.676
SOBE 0.136 0.360 0.705

56

Table 10: Computational and Storage Costs of SOBE

Method Encoding Cost Encoding Cost for Different Datasets and Code Lengths

(Number of Operations)
 SIFT1M-32 SIFT1M-

64
GIST1M-

32
GIST1M-

64
RVQ 𝛰(𝑀𝐾𝐷) 131072 262144 983040 1966080
SOBE 𝛰(2𝑀𝐾𝐷) 262144 524288 1966080 3932160

Method Storage Cost Storage Cost for Different Datasets and Code Lengths

(MB)
 SIFT1M-32 SIFT1M-

64
GIST1M-

32
GIST1M-

64
RVQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
SOBE 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15

𝑴: number of layers 128 128 960 960
𝑲: number of codevectors 256 256 256 256
𝑫: number of dimensions 8 8 4 4

As shown in Table 10, the iterative encoding converges in about two iterations on aver-
age, so the cost of encoding for SOBE is twice the cost of RVQ. Both methods require
the same amount of additional storage space. More details about SOBE can be found in
[P3].

4.2.2 Joint K-Means Quantization for ANN

Another RVQ based VQ method for ANN proposed in this thesis is Joint K-Means Quan-
tization (JKM). As mentioned in Chapter 3.3.2.1 and 4.2.1 RVQ’s hierarchical structure
separates the quantization problem into 𝑀 subproblems and the solution of each of prob-
lem strongly depend on the previous one. However, in its proposed solution, RVQ does
not consider this dependence. ERVQ claims to offer a joint training scheme, but the pro-
posed algorithm only provides an update on the codebooks generated by RVQ, which
are already obtained independently from each other. Hence, the proposed codebook
update does not really construct a joint scheme.

Nevertheless, a combination of the hierarchical structure with a joint codebook genera-
tion strategy would increase the performance while enjoying the low encoding complexity.
Following this claim, Joint K-Means is proposed [P4]. JKM expands the “K-means”22
training on one of RVQ’s layers to all layers, providing a joint training scheme. Investi-
gating the training scheme of K-Means23, first an “expectation” step is performed, where

22 K-Means clustering algorithm and Lloyd’s vector quantization are sometimes used inter-
changeably in the literature.
23 K-Means can be interpreted as an “Expectation-Maximization” approach.

57

the vectors are assigned to the nearest codevectors. Later a “maximization” step follows
the expectation step where the codevectors are updated with the means of the assigned
vectors. RVQ applies these steps for many iterations separately at each layer. In JKM, it
is proposed to extend this to all layers.

The “expectation-maximization” steps of JKM occurs as follows: in the “expectation” step,
each vector is assigned to its “selected” codevector and the residual is immediately cal-
culated and transferred to the next layer, where the same operation will be repeated until
the final layer is reached. Then in the maximization stage, codevectors at each layer are
updated with the means of assigned codevectors. Therefore, while RVQ waits for the
quantization on a layer to converge, JKM propagates the residuals through layers during
the iterations. Note that, JKM does not assign the given vector to the nearest codevector,
but instead it assigns to the “selected” codevector, and this selection is performed by the
encoding algorithm. JKM proposes a joint encoding algorithm, which takes also the layer
below the current layer into account, while selecting the codevector from the current layer.
Incorporating this encoding method into the training improves the codebook generation
even further.

Encoding in RVQ is also performed independently for each layer in a nearest neighbor
fashion. In other words, the nearest codevector from the corresponding codebook is se-
lected for each residual. However, this does not guarantee the minimum error. Let 𝒄1,𝑎
be the closest codevector to 𝒙 and 𝒄2,𝑎 is the closest codevector to the first residual 𝒓1 =
𝒙-𝒄1,𝑎. 𝒄1,𝑏 is a different codevector from the first codebook, i.e., 𝒄1,𝑎 ≠ 𝒄1,𝑏 and 𝒄2,𝑏 is a
codevector from the second codebook. The suboptimality of this encoding scheme can
be proven as follows:

lemma: Given ‖𝒙 − 𝒄1,𝑎‖2
2 ≤ ‖𝒙 − 𝒄1,𝑏‖2

2, and ‖(𝒙 − 𝒄1,𝑎) − 𝒄2,𝑎‖2
2 ≤ ‖(𝒙 − 𝒄1,𝑎) − 𝒄2,𝑏‖2

2

there exist at least one 𝒄1,𝑏 and 𝒄2,𝑏, which satisfy

‖(𝒙 − 𝒄1,𝑎) − 𝒄2,𝑎‖2
2 ≥ ‖(𝒙 − 𝒄1,𝑏) − 𝒄2,𝑏‖2

2 (4.12)

proof: Assume that 𝒙 = 𝒄1,𝑏 + 𝒄2,𝑏. Then (4.12) turns into the following:

‖(𝒙 − 𝒄1,𝑎) − 𝒄2,𝑎‖2
2 ≥ 0 (4.13)

58

which is always true. Now if one can show that the assumption for 𝒙 = 𝒄1,𝑏 + 𝒄2,𝑏 is valid,
the proof is complete. If 𝒙 = 𝒄1,𝑏 + 𝒄2,𝑏, then putting it in the first inequality given in lemma
gives the following:

‖𝒄1,𝑏 + 𝒄2,𝑏 − 𝒄1,𝑎‖2
2 ≤ ‖𝒄2,𝑏‖2

2 (4.14)

Rearranging the terms in (4.14), one can obtain the equation below:

‖𝒄2,𝑏 − (𝒄1,𝑎 − 𝒄1,𝑏)‖2
2 ≤ ‖𝒄2,𝑏‖2

2 (4.15)

which is true when ‖𝒄1,𝑎 − 𝒄1,𝑏‖2
2 ≤ 2〈𝒄2,𝑏, 𝒄1,𝑎 − 𝒄1,𝑏〉. For the second inequality in lemma,

when the proposed assumption for 𝒙 = 𝒄1,𝑏 + 𝒄2,𝑏 is put into the inequality, then the fol-
lowing inequality is obtained:

‖(𝒄1,𝑏 + 𝒄2,𝑏) − 𝒄1,𝑎 − 𝒄2,𝑎‖2
2 ≤ ‖𝒄1,𝑏 − 𝒄1,𝑎‖2

2 (4.16)

Rearranging the terms in (4.16), one can obtain the equation below:

‖(𝒄1,𝑏 − 𝒄1,𝑎) − (𝒄2,𝑎 − 𝒄2,𝑏)‖2
2 ≤ ‖𝒄1,𝑏 − 𝒄1,𝑎‖2

2 (4.17)

which is true when ‖(𝒄2,𝑎 − 𝒄2,𝑏)‖2
2 ≤ 2〈𝒄1,𝑏 − 𝒄1,𝑎, 𝒄2,𝑎 − 𝒄2,𝑏〉. Since (4.15) and (4.17)

can be true according to the selection of codevectors, in other words they are not always
false, then 𝒙 = 𝒄1,𝑏 + 𝒄2,𝑏 is a valid case, hence the proof is complete.

In order to improve the encoding performance, “joint encoding” is proposed in JKM. Joint
encoding is similar to beam search in AQ or OCKM, but much less complex since it
enjoys the hierarchical structure, which reduces the number of required computations
significantly. The joint encoding method searches for the codevector with the minimum
quantization error in a small neighborhood of the nearest codevector. So instead of the
nearest codevector, it is proposed to select the 𝐻 nearest codevectors and calculate the
residuals for each of them. Then the same operation is repeated for each residual, giving
𝐻2 candidates. The best 𝐻 according to the quantization error is selected and the oper-

59

ations proceed until the final layer is reached. To explain the computational costs of en-
coding in detail, the distance between the 𝑚𝑡ℎ layer residual 𝒓𝑚 of the given vector 𝒙,
and the 𝑘𝑡ℎ codevector on the 𝑚𝑡ℎ layer 𝒄𝑚,𝑘 can be rewritten as follows:

𝑑(𝒓𝑚, 𝒄𝑚,𝑘) = ‖𝒙 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

− 𝒄𝑚,𝑘‖
2

2

= ‖𝒙 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

‖
2

2

− 2 〈𝒙 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

, 𝒄𝑚,𝑘〉 + ‖𝒄𝑚,𝑘‖2
2

= ‖𝒙 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

‖
2

2

− 2〈𝒙, 𝒄𝑚,𝑘〉 + 2 ∑〈𝒄̇𝑙, 𝒄𝑚,𝑘〉
𝑚−1

𝑙=1

+ ‖𝒄𝑚,𝑘‖2
2

 (4.18)

where 𝒄̇𝑙 is the nearest codevector on the 𝑙𝑡ℎ layer. For each layer, note that the first
term is already calculated in the previous layers. The third and fourth terms can be re-
trieved from a look-up table. Hence, the second term should be calculated first for all the
codevectors, which requires 𝑂(𝐾𝐷) operations for one layer. The look-ups for the third
and fourth terms require 𝑂(𝑚𝐾𝐻) look-ups and additions for the 𝑚𝑡ℎ layer. Finally,
among all the distances the best 𝐻 are selected, which cost 𝑂(𝐾𝐻 log𝐻). This is re-

peated 𝑀 times so the final cost of encoding is 𝛰 (𝑀𝐷𝐾 + (𝑀−1)(𝑀−2)
2

𝐾𝐻 + 𝑀𝐾𝐻 𝑙𝑜𝑔𝐻).

More details on this encoding scheme can be found in [P4] and [P5].

To conclude, JKM takes the lower layers into account during both codebook generation
and vector encoding steps. This affects the quantization performance as expected. The
tests on ANN benchmarks are shown in Table 11 and Table 12. JKM is also presented
in comparison with the prior art in Table 16, Table 17 and Table 18, in Chapter 4.3.

Table 11: JKM Test Results

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
SOBE 0.100 0.348 0.731
JKM 0.121 0.402 0.790

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
SOBE 0.064 0.189 0.403
JKM 0.077 0.213 0.511

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
SOBE 0.282 0.701 0.962
JKM 0.323 0.759 0.980

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
SOBE 0.136 0.360 0.705
JKM 0.140 0.413 0.769

60

Table 12: Computational and Storage Costs of JKM

Method Encoding Cost Encoding Cost for Different Datasets and Code Lengths

(Number of Operations)
 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64
SOBE 𝛰(2𝑀𝐾𝐷) 262144 524288 1966080 3932160

JKM
𝛰 (𝑀𝐷𝐾 +

(𝑀 − 1)(𝑀 − 2)
2 𝐾𝐻

+ 𝑀𝐾𝐻 𝑙𝑜𝑔 𝐻)
319488 761856 1171456 2465792

Method Storage Cost Storage Cost for Different Datasets and Code Lengths

(MB)
 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64
SOBE Ο(𝑀𝐾𝐷) 1.00 2.00 7.5 15
JKM Ο(𝑀𝐾𝐷) 1.00 2.00 7.5 15

𝑴: number of layers 128 128 960 960
𝑲: number of codevectors 256 256 256 256
𝑫: number of dimensions 8 8 4 4
𝑯: number of candidates 32 32 32 32

4.2.3 Competitive Quantization for ANN

The last method proposed in this thesis is Competitive Quantization (CompQ) [P5]. As
discussed in Chapter 3.3.2.1, 4.2.1 and 4.2.2 RVQ suffers from suboptimality in its code-
book generation approach. In Chapter 4.2.2, JKM [P4] has shown that a joint codebook
training scheme may improve the quantization performance. In this proposed method, it
is aimed to take the joint codebook generation in JKM one step further. In [P4], JKM
extended the iterations of K-Means to multiple quantization layers. This approach al-
lowed higher level codebooks to take lower level codebooks into account. However, the
codevectors are still updated sequentially in JKM, from top to bottom. As shown in (3.33),
the quantization error is produced by the codevectors of all layers together, so all of them
should be updated simultaneously, to minimize this error. In [P4], a joint optimization for
codebook generation is proposed using the stochastic gradient descent. The codevec-
tors are updated using the gradient of the error as shown below:

𝒄̇𝑚(𝑡 + 1) = 𝒄̇𝑚(𝑡) − γ𝑚(𝑡)∇𝒄̇𝑚 (‖𝒙 − ∑𝒄̇𝑙

𝑀

𝑙=1

‖
2

2

) (4.19)

where ∇𝒄̇𝑚 is the gradient operation and γ𝑚(𝑡) is the learning rate of the 𝑚𝑡ℎ layer, which

decreases with time. 𝒄̇𝑚 is the selected codevector for the sample 𝒙 for the 𝑚𝑡ℎ layer.
The error gradient can be calculated as follows:

61

∇𝒄̇𝑚 (‖𝒙 − ∑𝒄̇𝑙

𝑀

𝑙=1

‖
2

2

) = 2(∑𝒄̇𝑙

𝑀

𝑙=1

− 𝒙) (4.20)

Therefore, each selected codevector for a sample 𝒙 can be updated as given in the
equation below, moving the corresponding codevector closer towards the input sample.

𝒄̇𝑚(𝑡 + 1) = 𝒄̇𝑚(𝑡) + 2γ𝑚(𝑡) (𝒙 − ∑𝒄̇𝑙

𝑀

𝑙=1

) (4.21)

CompQ proposes to have a smaller learning rate for lower layers, since the upper layers
correspond to larger quantization error. As discussed in Chapter 4.2.2, the nearest
codevector encoding at each level can be suboptimal, and in order to improve that a joint
encoding method is proposed in [P4]. In [P5] CompQ also uses the same encoding
scheme, and incorporates it into its training. In other words, CompQ updates the
codevector selected by the encoding algorithm. With this codebook generation approach
and encoding scheme, CompQ obtains the best quantization performance. The tests on
ANN benchmarks presented in Chapter 3.3.4 are shown in Table 13. The computational
cost and additional storage requirements of CompQ are identical with JKM, which are
presented in detail in Chapter 4.2.2 Table 12. CompQ is also presented in comparison
with the prior art methods in Table 16, Table 17 and Table 18, in Chapter 4.3. More
detailed discussion on CompQ can be found in [P5].

Table 13: CompQ Test Results

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
JKM 0.121 0.402 0.790
CompQ 0.135 0.435 0.818

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
JKM 0.077 0.213 0.511
CompQ 0.072 0.200 0.504

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
JKM 0.323 0.759 0.980
CompQ 0.352 0.795 0.987

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
JKM 0.140 0.413 0.769
CompQ 0.155 0.419 0.801

In [P5], CompQ also emphasizes an inherent property of the hierarchical structure of
quantization, which can be used for non-exhaustive search. Non-exhaustive versions of
PQ and OPQ using an additional coarse quantization layer are already present in the
literature [110]–[112], [125], [128]. However, CompQ can perform non-exhaustive search
without using an additional coarse quantizer, thanks to the hierarchical structure. The

62

upper layers of CompQ can be used as a coarse quantizer in order to improve the total
search speed. In [P5], it is shown that the same quantization performance can be ob-
tained with almost 9 times less comparisons, using the non-exhaustive search property
of CompQ.

Table 14: CompQ Non-Exhaustive Search Test Results

NON-EXHAUSTIVE SEARCH, SIFT1M 64-BIT CODES

 Avg. No. Comparisons Avg. Speed-Up recall
@1 @10 @100

Non-Exhaustive 108064 x 9 0.352 0.795 0.986
Exhaustive 1000000 x 1 0.352 0.795 0.988

The performance of non-exhaustive search with CompQ is also tested against other non-
exhaustive search methods. The test is performed on a very large scale dataset, SIFT1B,
which consists of 1 Billion samples [110]. CompQ outperforms the other methods such
as LOPQ [125], IVFADC [110] and non-exhaustive adaptation of OPQ (IOPQ) [112],
[125], with a slight increase in the total database storage24.

Table 15: CompQ Non-Exhaustive Search Performance Comparison

NON-EXHAUSTIVE SEARCH SIFT1B 80-BIT CODES
 #bits recall@1 recall@10 recall@100
IVFADC 77 0.088 0.372 0.733
I-OPQ 77 0.114 0.399 0.777
LOPQ 77 0.199 0.586 0.909

CompQ 80 0.222 0.626 0.914

4.3 Comparison of the Contributions with Prior Work

The proposed methods in this thesis for the problem of VQ-based ANN have been dis-
cussed in Chapter 4.1 and 4.2. In this chapter the proposed methods are compared with
the prior art. The first table, Table 16, compares the quantization performance of the

24 The compared results are presented in [125], where 77-bit codes are selected. To match
that CompQ is trained with 𝑀 = 10 layers, each layer consisting of 256 codevectors (8-bit).
3-bit increase in representation of each database elements increases the total size of
SIFT1B by only 3.9%.

63

proposed methods to the prior work. The second table, Table 17, presents the computa-
tional costs and finally the third table, Table 18, compares the additional storage require-
ments.

Being an intermediate method, MPCA-E [P1] shows that introducing more than one sub-
space improves the performance of quantization. MPCA-E’s improvement over TC was
shown in Table 5, and in Table 16, it can be observed that MPCA-E outperforms other
methods such as PQ, OPQ/CKM, OCKM, RVQ and ERVQ. KSSQ [P2] is shown to bor-
row the main idea of MPCA-E and apply further optimizations to improve the perfor-
mance as it produces the best results for recall@125 at 32-bit coding. SOBE [P3] is the
first proposed method targeting the suboptimality of RVQ and it is shown to perform
better than RVQ itself in Table 9.

25 recall@1 is considered as the most important metric among the three metrics used here
[110], where it measures the success rate of retrieving the real nearest neighbor on top of
the ranked list.

64

Table 16: Comparison of Proposed Methods with Prior Work in Performance

TEST RESULTS FOR SIFT1M, 32-BIT CODES
 recall@1 recall@10 recall@100
PQ 0.052 0.230 0.595
TC 0.057 0.197 0.519
RVQ NA NA NA
CKM/OPQ 0.068 0.273 0.658
AQ 0.106 0.415 0.825
CQ NA NA NA
E-LOPQ 0.134 0.385 0.738
OCKM NA 0.348 0.742
ERVQ NA NA NA
OTQ 0.093 0.368 0.793

MPCA-E 0.124 0.404 0.784
KSSQ 0.145 0.434 0.802
SOBE 0.100 0.348 0.731
JKM 0.121 0.402 0.790
CompQ 0.135 0.435 0.818

TEST RESULTS FOR GIST1M, 32-BIT CODES
 recall@1 recall@10 recall@100
PQ 0.023 0.068 0.176
TC 0.053 0.104 0.291
RVQ NA NA NA
CKM/OPQ 0.054 0.142 0.396
AQ 0.069 0.189 0.467
CQ NA NA NA
E-LOPQ 0.049 0.131 0.362
OCKM NA 0.172 0.467
ERVQ NA NA NA
OTQ NA NA NA

MPCA-E 0.054 0.149 0.345
KSSQ 0.078 0.191 0.437
SOBE 0.064 0.189 0.403
JKM 0.077 0.213 0.511
CompQ 0.072 0.200 0.504

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100
PQ 0.224 0.599 0.924
TC 0.205 0.535 0.877
RVQ 0.257 0.659 0.952
CKM/OPQ 0.243 0.638 0.940
APQ 0.298 0.741 0.972
CQ 0.288 0.716 0.967
E-LOPQ 0.297 0.703 0.957
OCKM 0.274 0.680 0.945
ERVQ 0.276 0.694 0.962
OTQ 0.317 0.748 0.972

MPCA-E 0.286 0.710 0.923
KSSQ 0.325 0.754 0.976
SOBE 0.282 0.701 0.962
JKM 0.323 0.759 0.980
CompQ 0.352 0.795 0.987

TEST RESULTS FOR GIST1M, 64-BIT CODES
 recall@1 recall@10 recall@100
PQ 0.076 0.218 0.504
TC 0.096 0.223 0.547
RVQ 0.113 0.325 0.676
CKM/OPQ 0.118 0.334 0.715
AQ/APQ NA NA NA
CQ 0.135 0.377 0.729
E-LOPQ 0.116 0.331 0.656
OCKM 0.130 0.358 0.720
ERVQ 0.115 0.341 0.711
OTQ NA NA NA

MPCA-E 0.110 0.312 0.662
KSSQ 0.136 0.396 0.741
SOBE 0.136 0.360 0.705
JKM 0.140 0.413 0.769
CompQ 0.155 0.419 0.801

As shown in Table 16, SOBE produces promising results as it outperforms all the prior
work in GIST1M for 64-bit codes. In general SOBE is better than methods such as TC,
PQ, OPQ/CKM, OCKM and ERVQ. JKM [P4] takes this one-step further and with the
proposed optimizations, JKM leaves all the prior work behind in quantization perfor-
mance as displayed in Table 16. Finally, CompQ [P5] is the last and the best method for
64-bit codes. It is only outperformed by KSSQ and JKM in 32-bit experiments.

65

Table 17: Comparison of Proposed Methods with Prior Work in Cost of Encoding

Method Cost of Encoding Cost of Encoding for Different Datasets and

Code Lengths (Number of Operations)
 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64
PQ 𝛰(𝐾𝐷) 32768 32768 245760 245760
TC 𝛰(𝐷𝐿 + ℬ) 2592 5184 19232 38464
RVQ 𝛰(𝑀𝐾𝐷) 131072 262144 983040 1966080
CKM/OPQ 𝛰(𝐷2 + 𝐾𝐷) 49152 49152 1167360 1167360
AQ 𝛰(𝑀2𝐾2(𝑀 + 𝑙𝑜𝑔(𝑀𝐾)) + 𝐾𝐷) 14712832 79724544 14925824 79937536
APQ 𝛰 (𝐷2 +

𝑀
4 (42𝐾2(4 + 𝑙𝑜𝑔(4𝐾)) + 𝐾𝐷)) 14729216 14761984 15847424 16093184

CQ 𝛰(3𝑀𝐾𝐷) 393216 786432 2949120 5898240
E-LOPQ 𝛰(𝐾𝐷 + 𝐾𝐷 + 𝐷2) 81920 81920 1413120 1413120
OCKM 𝛰(10𝐾𝐷) 327680 327680 2457600 2457600
ERVQ 𝛰(𝑀𝐾𝐷) 131072 262144 983040 1966080
OTQ 𝛰(𝐷2 + 𝐾𝐷 + 𝑀𝐾2) 311296 573440 1429504 1691648

MPCA-E 𝛰(2𝒦𝐷𝐿 + 𝒦ℬ) 1318912 2637824 1229824 2459648
KSSQ 𝛰(𝒦𝐷 + 2𝜅𝐷𝐿 + 𝜅ℬ) 115200 197632 338176 645632
SOBE 𝛰(2𝑀𝐾𝐷) 262144 524288 1966080 3932160

JKM
𝛰 (𝑀𝐷𝐾 +

(𝑀 − 1)(𝑀 − 2)
2 𝐾𝐻

+ 𝑀𝐾𝐻 𝑙𝑜𝑔 𝐻)
319488 761856 1171456 2465792

CompQ
𝛰 (𝑀𝐷𝐾 +

(𝑀 − 1)(𝑀 − 2)
2 𝐾𝐻

+ 𝑀𝐾𝐻 𝑙𝑜𝑔 𝐻)
319488 761856 1171456 2465792

𝑲: number of sub-codewords 256 256 256 256
𝓚: number of subspaces (KSSQ/MPCA-E) 256 256 32 32
𝜿: number of candidate quantizers (KSSQ) 16 16 8 8
𝑫: number of dimensions 128 128 960 960
𝑴: number of sub-codebooks 4 8 4 8
𝑳: number of reduced dimensions 20 40 20 40
𝓑: number of bits for encoding 32 64 32 64
𝑯: number of candidates (JKM/CompQ) 32 32 32 32

In terms of computational cost of encoding, TC is still the fastest, but the proposed meth-
ods also provide comparable costs to the prior work. As it can be seen in Table 17, the
improvements proposed for KSSQ decreases the computational cost significantly com-
pared to MPCA-E. Among the proposed methods, KSSQ is the fastest. It is also faster
than the best method in prior work, OTQ, but still produces better results. JKM and
CompQ provide significant increase in performance compared to OTQ, while they have
comparable computational costs.

66

Table 18: Comparison of Proposed Methods with Prior Work in Storage Cost

Method Cost of Encoding Storage Cost for Different Datasets and Code

Lengths (MB)
 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64
PQ 𝛰(𝐾𝐷) 0.25 0.25 1.88 1.88
TC 𝛰(𝐷𝐿) 0.02 0.04 0.15 0.29
RVQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
CKM/OPQ 𝛰(𝐷2 + 𝐾𝐷) 0.38 0.38 8.91 8.91
AQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
APQ 𝛰(𝐷2 + 𝑀𝐾𝐷) 1.13 2.13 14.53 22.03
CQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
E-LOPQ 𝛰(𝐾(𝐾𝐷 + 𝐷2)) 96.00 96.00 2280.00 2280.00
OCKM 𝛰(𝐷2 + 2𝐾𝐷) 0.63 0.63 10.78 10.78
ERVQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
OTQ 𝛰(𝐷2 + 𝑀𝐾𝐷) 1.13 2.13 14.53 22.03

MPCA-E 𝛰(𝒦𝐷𝐿) 5.00 10.00 4.69 9.38
KSSQ 𝛰(𝒦𝐷𝐿) 5.00 10.00 4.69 9.38
SOBE 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
JKM 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15
CompQ 𝛰(𝑀𝐾𝐷) 1.00 2.00 7.5 15

𝑲: number of sub-codewords 256 256 256 256
𝓚: number of subspaces 256 256 32 32
𝑫: number of dimensions 128 128 960 960
𝑴: number of sub-codebooks 4 8 4 8
𝑳: number of reduced dimensions (average for
KSSQ)

20 40 20 40

In terms of additional storage requirements, the proposed methods are comparable with
each other and the methods in the literature. Multiple subspace based methods MPCA-
E and KSSQ require more space compared to the other proposed methods for SIFT1M,
but this is not the case for GIST1M. SOBE, JKM and CompQ share the same storage
cost with methods like AQ and CQ, and even less cost than the best method in the prior
art, OTQ.

4.4 A Vector Quantization Based K-NN Approach for Large-
Scale Image Classification

The last contribution of this thesis to the VQ for ANN is a demonstration showing that
VQ-based ANN is an efficient replacement for NN in other problems, such as classifica-
tion on large-scale datasets [P6]. In [P6], it is proposed to develop a k-NN classifier,
which uses VQ-based distance approximations and compare the obtained results with

67

the traditional k-NN. The Support Vector Machines (SVM) [136], [137] is used as a base-
line.

The classification problem can be described as follows: Given a test sample 𝒒 ∈ ℝ𝐷,
and a set of 𝑁 reference samples 𝑿 = {𝒙1, 𝒙2,… , 𝒙𝑁} ∈ ℝ𝐷×𝑁 , a label set 𝑳 =
 {𝑙1, 𝑙2,… , 𝑙𝑁} ∈ ℝ1×𝑁 contains the labels of sample vectors. The label 𝑙𝑖 ∈ {1, 2, …𝐶} is
an integer between 1 and the number of classes 𝐶. A classifier ℂ uses the sample set 𝑿
and the label set 𝑳 to map a given input 𝒒 to its corresponding label, i.e., ℂ(𝒒) = 𝑙𝒒.

1-NN classifier ℂ1𝑁𝑁 maps a given input 𝒒 to its corresponding label using the sorted
reference set 𝑿̅, where 𝑑(𝒒, 𝒙̅𝑖) ≤ 𝑑(𝒒, 𝒙̅𝑗) ⇔ 𝑖 < 𝑗, i.e., ℂ1𝑁𝑁 (𝒒) = 𝑙1. And this can be
generalized to k-NN in a majority voting sense, which can be formulated as follows:

ℂ𝑘−𝑁𝑁(𝒒) = argmax
𝑐

∑ Θ(𝑐 = 𝑙𝑘)
𝐾

𝑘=1

Θ(𝑎) = {1 𝑎 = 𝑡𝑟𝑢𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . (4.22)

In other words, a k-NN classifier finds the k nearest neighbors to a given sample and
performs majority voting26 among the labels of the nearest neighbors. The class label
with the greatest number of votes is returned as the classification result [138].

k-NN’s greatest advantage compared to the other classification methods is that, it does
not require learning. However, this is also a disadvantage because k-NN needs to store
the reference sample set and perform NN for each given input [138]. This is costly in
terms of both computations and storage. In [P6], the adaptation of VQ-based ANN to k-
NN classifiers is proposed in order to overcome these drawbacks. VQ-based ANN ap-
proximates the distances while accelerating the distance calculation and compressing
the dataset, which solves the two major problems of k-NN classifiers.

[P6] compares the performance of VQ-based k-NN to traditional k-NN and SVM in three
datasets [139]. The “PascalVOC07” and “ImageNet” datasets are used with “decaf7”
features, and the “Bing” dataset is used with ”decaf6” features. The ”decaf” features are
convolutional neural network based features [140], extracted from the 6th (decaf6) and

26 Weighted voting schemes have also been proposed in the literature [141]–[145], and their
performances have been investigated in [P5].

68

the 7th (decaf6) layers of the network. Three quarters of each dataset is used as refer-
ence samples and the rest is used as the holdout test set. The properties of the datasets
are presented in Table 19.

Table 19: Properties of Datasets Tested in [P5]

Property Pascal Bing ImageNet
Number of Classes 20 257 118
Number of Training Samples 10740 90692 124200
Number of Test Samples 3580 30230 41400
Number of Dimension 4096 4096 4096
Feature Type decaf7 decaf6 decaf7

VQ adaptation of k-NN is performed by using an RVQ quantizer with 128 bits (16 layers,
256 codevectors per layer). The non-exhaustive search property of RVQ is also used to
accelerate the computations. Accuracy is used as the performance metric, which is the
ratio of the number of correctly classified samples to the total number of samples. The
obtained results are presented in Table 20.

Table 20: Classification Accuracies Obtained on Different Datasets
128-bit, K=64

Method Pascal Bing ImageNet
k-NN 0.520 0.255 0.645
VQ k-NN 0.532 0.241 0.647
SVM 0.363 0.260 0.701

Table 20 shows that VQ-based k-NN provides comparable results with traditional k-NN.
k-NN based methods outperform SVM notably in the Pascal dataset. In the Bing dataset,
the obtained accuracies are comparable, while in ImageNet, SVM outperforms k-NN
based methods. The computational costs and storage requirements of the aforemen-
tioned methods are presented in Table 21.

69

Table 21: Computational Costs and Storage Requirements

Method Computational Cost Pascal Bing ImageNet
k-NN 𝑂(𝑁𝐷 + 𝑁 log2 𝑘) 44055480 372018584 509468400

VQ k-NN 𝑂 ((
𝑀2

2 + 𝑀)
𝑁
𝑒 +

𝑁
𝑒 log2 𝑘 + 𝐾𝑀𝐷) 16877904 17627454 17941591

SVM 𝑂 ((
𝜍2 − 𝜍

2)𝐷) 778240 134742016 28274688

Method Storage Requirement Pascal Bing ImageNet
k-NN 𝑂(𝑁𝐷) 335MB 2834MB 3881MB
VQ k-NN 𝑂(𝑁ℬ + 𝐾𝑀𝐷) 128MB 129MB 130MB

SVM 𝑂 ((
𝜍2 − 𝜍

2)𝐷) 6MB 1028MB 216MB

Parameters Pascal Bing ImageNet
𝝇: Number of Classes 20 257 118
𝑵: Number of Samples 10740 90692 124200
𝑫: Number of Dimensions 4096 4096 4096
𝑴: Number of RVQ Layers 16 16 16
𝑲: Number of RVQ Codevectors 256 256 256
𝓑: RVQ Codelength (bytes) 16 16 16
𝒆: Non-Exhaustive Search Constant 16 16 16
𝒌: k-Nearest Neighbours 64 64 64

For a given novel input sample, VQ k-NN first initializes the RVQ, which requires
𝑂(𝐾𝑀𝐷) computations. Then RVQ method requires 𝑀2 2⁄ + 𝑀 look-ups for distance ap-
proximations and using the non-exhaustive search, only 𝑁/𝑒 approximations are calcu-

lated, resulting in a computational cost of 𝑂 ((𝑀2

2
+ 𝑀) 𝑁

𝑒
+ 𝐾𝑀𝐷). Compared to tradi-

tional k-NN’s cost of 𝑂(𝑁𝐷), this provides a significant improvement when 𝑁 is large.

Sorting the best 𝑘 among 𝑁/𝑒 takes 𝑂 (𝑁
𝑒
log2 𝑘) operations. The required number of op-

erations for SVM to predict the class of a given sample is 𝑂 ((𝜍2−𝜍
2

)𝐷) [137].

SVM’s storage requirement depends on the number of classes, so in Bing dataset,
where 𝜍 = 257, SVM requires almost 8 times more space than VQ-based k-NN. However,
in Pascal, where 𝜍 = 20, VQ-based k-NN requires 20 times more space than SVM. While
the traditional k-NN requires storing the whole reference set, RVQ stores a compressed
version of it. Although the difference is not that large in Pascal dataset where 𝑁 = 10740,
in ImageNet, where 𝑁 = 124200, traditional k-NN requires 20 times more space than its
VQ-based version. With these results, it is shown that VQ-based k-NN is an efficient
approximation for traditional k-NN, especially in large datasets.

70

5 Conclusions

This thesis aims to propose novel solutions for one of the most important problems of
our era, the similarity search problem on very large-scale datasets, which suffers from
the exponential growth in data size and dimensions drastically. Thanks to the Vector
Quantization based methods proposed in this thesis, it is possible to compress very
large-scale datasets in extreme levels. In addition, this approach provides fast distance
approximations. These two properties of the proposed methods target the Big Data prob-
lem, hence, this thesis is a direct effort to improve the efficiency of today’s similarity
search algorithms so that they will be able to handle Big Data. The methods proposed in
this thesis focus on a subset of similarity search problems (Euclidean similarity) but it is
possible to extend these methods to other distance metrics or similarity measures.

The first method proposed in this thesis [P1] aims to take advantage of subspace clus-
tering techniques and improve the quantization performance. Many methods in the liter-
ature limited themselves to only one space, which generated inferior results. It is shown
in the detailed experiments provided in [P1] that increasing the number of subspaces
improves the quantization performance. However, this operation comes with a heavy
computational cost, which needs further improvements.

The second algorithm [P2] improves the computational requirements of [P1], proving that
the idea of performing quantization in multiple subspaces is applicable. [P2] also pro-
poses a well-tailored optimization scheme for the proposed solution, which engages the
optimization of subspace generation with optimization of quantizers. The proposed
scheme performs better than the prior work, providing state-of-the-art approximate near-
est neighbor retrieval results.

In [P3], the popular data visualization and clustering algorithm Self-Organizing Maps is
introduced to the approximate nearest neighbor solution. The structure proposed in self-
organizing maps is coupled with another hierarchically structured method, Residual Vec-
tor Quantization, in order to provide better search performance. The results presented in
[P3] prove that the proposed structure enhances the quantization quality, by showing an
improvement in the nearest neighbor approximation.

Inspired by the success of [P3], [P4] proposes hierarchical schemes to improve the quan-
tization quality, in order to achieve better nearest neighbor approximations. Generalizing
the popular K-Means clustering method to multiple hierarchical layers, [P4] scales it up
to very large-scale datasets, enabling very efficient and successful clustering. The results

71

obtained in [P4] also proves that the proposed method outperforms the prior work for
the approximate nearest neighbor search problem.

The last method in this thesis [P5] provides a very detailed analysis of the vector quan-
tization problem and the distance approximation approach based on vector quantization.
Using this analysis, [P5] proposes a solution based on stochastic gradient descent opti-
mization, which is a well-proven optimization method. With this approach, state-of-the-
art results are achieved in terms of retrieval accuracy, keeping the computational costs
and additional storage requirements at a comparable level.

Finally, [P6] presents a demonstration of the applicability of the aforementioned solutions
to the classification problem, introducing a vector quantization based k-Nearest Neighbor
classifier. The method uses approximate distances to find the nearest neighbors to a
given input and using majority-voting, the classification of the input is performed. The
results provided in [P6] show that the proposed method is more efficient than traditional
k-NN and SVM on very large-scale datasets with a high number of classes.

To conclude, several methods have been proposed in this thesis to solve the approxi-
mate nearest neighbor search problem, which is gaining higher and higher importance
with today’s ever-growing data. The proposed approaches achieves significantly better
results than the prior art, proving the validity of the introduced concepts. Adaptation of
VQ-based ANN to classification problems on large-scale datasets is shown as an appli-
cable example of the benefits of the proposed ideas in this thesis. Even though the focus
is kept on the approximation of the Euclidean distance, in the future it is also aimed to
extend these approaches to other similarity measures such as cosine similarity, Manhat-
tan distance or even Minkowski distance, which is the generic case of the Euclidean
distance.

72

References

[1] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions on Information
Theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[2] P. Gautreau, T. Ragab, C. Yanbiao, and C. Basaran, “Phonon dispersion and
quantization tuning of strained carbon nanotubes for flexible electronics,” Journal
of Applied Physics, vol. 115, no. 24, 2014.

[3] T. Kodama, K. Morita, G. Cincotti, and K. Kitayama, “A low-power photonic
quantization approach using OFDM subcarrier spectral shifts,” Optics express, vol.
22, no. 23, pp. 28719–28730, 2014.

[4] J. P. Isaacs and J. C. Lamb, “Complementarity in biology; quantization of
molecular motion,” Johns Hopkins Press, 1969.

[5] J. E. Avron, R. Seiler, and B. Simon, “Homotopy and quantization in condensed
matter physics,” Physical review letters, vol. 51, no. 1, p. 51, 1983.

[6] P. Jørgensen, Second quantization-based methods in quantum chemistry.
Elsevier, 2012.

[7] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[8] W. F. Sheppard, “On the calculation of the most probable values of frequency-
constants, for data arranged according to equidistant division of a scale,”
Proceedings of the London Mathematical Society, vol. 1, no. 1, pp. 353–380, 1897.

[9] A. Reeves, “Pulse coded modulation,” French Patent, 852, 1938.

[10] B. M. Oliver, J. R. Pierce, and C. E. Shannon, “The philosophy of PCM,”
Proceedings of the IRE, vol. 36, no. 11, pp. 1324–1331, 1948.

[11] W. R. Bennett, “Spectra of quantized signals,” Bell Labs Technical Journal, vol.
27, no. 3, pp. 446–472, 1948.

[12] L. G. Roberts, “Picture coding using pseudo-random noise,” IRE Transactions on
Information Theory, vol. 8, no. 2, pp. 145–154, 1962.

[13] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition
Letters, vol. 31, no. 8, pp. 651–666, 2010.

[14] N. Jayant, “Digital coding of speech waveforms: PCM, DPCM, and DM quantizers,”
Proceedings of the IEEE, vol. 62, no. 5, pp. 611–632, 1974.

[15] H. Kramer and M. Mathews, “A linear coding for transmitting a set of correlated
signals,” IRE Transactions on Information Theory, vol. 2, no. 3, pp. 41–46, 1956.

73

[16] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson, 2007.

[17] C. E. Shannon, “A mathematical theory of communication,” Bell Labs Technical
Journal, vol. 27, pp. 379–423, 1948.

[18] D. A. Huffman, “A method for the construction of minimum redundancy codes,”
Proceedings of IRE, vol. 40, pp. 1098–1101, 1952.

[19] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Transactions
on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[20] D. Slepian, “Permutation modulation,” Proceedings of the IEEE, vol. 53, no. 3, pp.
228–236, 1965.

[21] T. Berger, “Minimum entropy quantizers and permutation codes,” IEEE
Transactions on Information Theory, vol. 28, no. 2, pp. 149–157, 1982.

[22] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation Codes for Sources,” IEEE
Transactions on Information Theory, vol. 18, no. 1, pp. 160–169, 1972.

[23] H. Steinhaus, “Sur la division des corps materiels en parties,” Bulletin of the Polish
Academy of Sciences, vol. 4, no. 3, pp. 801–804, 1956.

[24] D. L. Chaffee, “Applications of rate distortion theory to the bandwidth compression
of speech signals,” University of California, Los Angeles, 1975.

[25] E. E. Hilbert, “Cluster compression algorithm: a joint clustering/data compression
concept.,” Jet Propulsion Lab, vol. 77, no. 43, 1977.

[26] D. Chen, “On two or more dimensional optimum quantizers,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 1977.

[27] A. Gersho, “Asymptotically optimal block quantization,” IEEE Transactions on
Information Theory, vol. 25, no. 4, pp. 373–380, 1979.

[28] W.-Y. Chan and A. Gersho, “Generalized product code vector quantization: A
family of efficient techniques for signal compression,” Digital Signal Processing,
vol. 4, no. 2, pp. 95–126, 1994.

[29] M. L. Sabin and R. Gray, “Product code vector quantizers for waveform and voice
coding,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32,
no. 3, pp. 474–488, 1984.

[30] T. R. Fischer, “A pyramid vector quantizer,” IEEE Transactions on Information
Theory, vol. 32, no. 4, pp. 568–583, 1986.

[31] D. F. Lyons and D. L. Neuhoff, “A coding theorem for low-rate transform codes.,”
in IEEE International Symposium on Information Theory, 1993.

[32] M. Vetterli and J. Kovačević, Wavelets and subband coding. Prentice-Hall, 2007.

74

[33] A. Buzo, A. Gray, R. M. Gray, and J. D. Markel, “Speech coding based upon vector
quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 28, no. 5, pp. 562–574, 1980.

[34] J. Biing-Hwang and A. Gray, “Multiple stage vector quantization for speech
coding,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 1982, vol. 7, no. 3, pp. 597–600.

[35] A. D. Subramaniam and B. D. Rao, “PDF optimized parametric vector quantization
of speech line spectral frequencies,” in IEEE Workshop on Speech Coding:
Meeting the Challenges of the New Millennium, 2000, vol. 11, no. 2, pp. 87–89.

[36] C.-C. Chang, W.-L. Tai, and C.-C. Lin, “A reversible data hiding scheme based on
side match vector quantization,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 16, no. 10, pp. 1301–1308, 2006.

[37] J. S. Pan, Z. M. Lu, and S. H. Sun, “An efficient encoding algorithm for vector
quantization based on subvector technique,” IEEE Transactions on Image
Processing, vol. 12, no. 3, pp. 265–270, 2003.

[38] M. Fleming, Q. Zhao, and M. Effros, “Network vector quantization,” IEEE
Transactions on Information Theory, vol. 50, no. 8, pp. 1584–1604, 2004.

[39] S. Dasgupta and Y. Freund, “Random projection trees for vector quantization,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3229–3242, 2009.

[40] N. B. Karayiannis, “Soft learning vector quantization and clustering algorithms
based on ordered weighted aggregation operators,” IEEE Transactions on Neural
Networks, vol. 11, no. 5, pp. 1093–1105, 2000.

[41] V. A. Vaishampayan, N. J. A. Sloane, and S. D. Servetto, “Multiple-description
vector quantization with lattice codebooks: Design and analysis,” IEEE
Transactions on Information Theory, vol. 47, no. 5, pp. 1718–1734, 2001.

[42] A. Vasuki and P. T. Vanathi, “A review of vector quantization techniques,” IEEE
Potentials, vol. 25, no. 4, pp. 39–47, 2006.

[43] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the
curse of dimensionality,” in ACM Symposium on Theory of Computing, 1998, pp.
604–613.

[44] K. Q. Weinberger and K. S. Lawrence, “Distance metric learning for large margin
nearest neighbor classification,” Journal of Machine Learning Research, vol. 10,
no. May, pp. 207–244, 2009.

[45] M. de Berg, O. Cheong, M. van Krevald, and M. Overmars, Computational
geometry: algorithms and applications, 3rd ed. Berlin, Heidelberg: Springer-Verlag,
2008.

[46] R. Szeliski, Computer vision: algorithms and Applications, 1st ed. London:
Springer-Verlag, 2010.

75

[47] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-neighbor methods in learning
and vision: theory and practice. The MIT Press, 2006.

[48] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions
on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[49] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor based
image classification,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2008, no. i, pp. 1–8.

[50] X. Wu, V. Kumar, Q. J. Ross, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A.
Ng, B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top
10 algorithms in data mining,” Knowledge and Information Systems, vol. 14, no.
1, pp. 1–37, 2008.

[51] A. Dhurandhar and A. Dobra, “Probabilistic characterization of nearest neighbor
classifier,” International Journal of Machine Learning and Cybernetics, vol. 4, no.
4, pp. 259–272, 2013.

[52] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ‘nearest-
neighbor’ meaningful?,” in International Conference on Database Theory (ICDT),
1999, pp. 217–235.

[53] B. Siddiquie, R. Feris, and L. Davis, “Image ranking and retrieval based on multi-
attribute queries,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011, pp. 801–808.

[54] M. Davy and S. J. Godsill, Audio information retrieval: A bibliographical study.
Citeseer, 2002.

[55] M. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based multimedia information
retrieval: State of the art and challenges,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), vol. 2, no. 1, pp. 1–
19, 2006.

[56] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,”
Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[57] D. P. Dobkin and R. J. Lipton, “Multidimensional searching problems,” SIAM
Journal on Computing, vol. 5, no. 2, pp. 181–186, 1976.

[58] J. Matoušek, “Reporting points in halfspaces,” Computational Geometry: Theory
and Applications, vol. 2, no. 3, pp. 169–186, 1992.

[59] P. K. Agarwal and J. Matousek, “Ray shooting and parametric search,” SIAM J
Computing, vol. 22, no. 4, pp. 794–806, 1993.

[60] S. Har-Peled and N. Kumar, “Approximate nearest neighbor search for low
dimensional queries,” SIAM Journal on Computing, vol. 42, no. 1, pp. 138–159,
2011.

76

[61] N. Bhatia and V. Ashev, “Survey of nearest-neighbor techniques,” International
Journal of Computer Science and Information Security, vol. 8, no. 2, pp. 302–305,
2010.

[62] T. Mei, Y. Rui, S. Li, and Q. Tian, “Multimedia search reranking,” ACM Computing
Surveys, vol. 46, no. 3, pp. 1–38, 2014.

[63] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search: a survey,”
in arXiv preprint, 2014, p. :1408.2927.

[64] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for indexing big
bata-a survey,” Proceedings of the IEEE, vol. 104, no. 1, pp. 34–57, Jan. 2016.

[65] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A Survey on Learning to
Hash,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 9, 2017.

[66] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions,”
Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[67] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1997, pp. 1000–1006.

[68] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[69] J. H. Freidman, J. L. Bentley, and R. A. Finkel, “An Algorithm for Finding Best
Matches in Logarithmic Expected Time,” ACM Transactions on Mathematical
Software, vol. 3, no. 3, pp. 209–226, 1977.

[70] S. Arya, “Algorithms for fast vector quantization,” in Data Compression
Conference, 1993., 1993, pp. 1–17.

[71] R. F. Sproull, “Refinements to nearest-neighbor searching in k-dimensional trees,”
Algorithmica, vol. 6, no. 1–6, pp. 579–589, 1991.

[72] I. T. Jolliffe, Principal Component Analysis. John Wiley & Sons, 2002.

[73] S. Dasgupta and Y. Freund, “Random projection trees and low dimensional
manifolds,” in ACM Symposium on Theory of Computing, 2008, vol. 6, no. 1, p.
537.

[74] T. Liu, A. W. Moore, A. Gray, and K. Yang, “An investigation of practical
approximate nearest neighbor algorithms,” Advances in Neural Information
Processing Systemsnformation, p. 8, 2004.

[75] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 2,
pp. 2161–2168.

77

[76] C. Silpa-Anan and R. Hartley, “Optimised KD -trees for fast image descriptor
matching,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2008, pp. 1–8.

[77] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic
algorithm configuration,” in International Conference on Computer Vision Theory
and Applications (VISAPP), 2009, vol. 2, no. 331–340, pp. 1–10.

[78] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and X.-S. Hua, “Trinary-
Projection Trees for Approximate Nearest Neighbor Search,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 2, pp. 388–403, 2014.

[79] R. F. Lyon, M. Rehn, S. Bengio, T. C. Walters, and G. Chechik, “Sound retrieval
and ranking using sparse auditory representations,” Neural Computation, vol. 22,
no. 9, pp. 2390–416, Sep. 2010.

[80] D. Knuth, The art of computer programming. Addison-Wesley, 1997.

[81] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing
scheme based on p-stable distributions,” in ACM Symposium on Computational
Geometry, 2004, p. 253.

[82] K. Terasawa and Y. Tanaka, “Spherical LSH for approximate nearest-neighbor
search on unit hypersphere,” in Workshop on Algorithms and Data Structures,
2007, pp. 27–38.

[83] P. Indyk and A. Andoni, “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions,” in Foundations of Computer Science, 2006, vol. 51,
no. 1, pp. 117–122.

[84] David Gorisse and Matthieu Cord, “Locality-sensitive hashing for chi2 distance,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10,
pp. 2058–64, Oct. 2012.

[85] B. Kulis, P. Jain, and K. Grauman, “Fast similarity search for learned metrics,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12,
pp. 2143–2157, 2009.

[86] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in Neural
Information Processing Systems (NIPS), 2009, pp. 1753–1760.

[87] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. March, pp.
888–905, 2005.

[88] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast similarity
search,” in ACM SIGIR Conference on Research and Development in Information
Retrieval, 2010, pp. 18–25.

[89] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut partitioning and
clustering,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

78

and Systems, vol. 11, no. 9, pp. 1074–1085, 1992.

[90] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
International Conference on Machine Learning (ICML), 2011, pp. 1–8.

[91] Y. Matsushita, “Principal component hashing: An accelerated approximate
nearest neighbor search,” Advances in Image and Video Technology, pp. 374–
385, 2009.

[92] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating local descriptors into
a compact image representation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2010, pp. 3304–3311.

[93] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean approach to
learning binary codes,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011, pp. 817–824.

[94] W.-H. Kong and W.-J. Li, “Double-bit quantization for hashing,” in AAAI:
Conference on Artificial Intelligence, 2012, pp. 634–640.

[95] W. Kong and W.-J. Li, “Isotropic hashing,” in Advances in Neural Information
Processing Systems (NIPS), 2012, pp. 1–9.

[96] W. Kong, W. Li, and M. Guo, “Manhattan hashing for large-scale image retrieval
categories and subject descriptors,” in ACM SIGIR Conference on Research and
Development in Information Retrieval, 2012, pp. 45–54.

[97] L. Zhang, Y. Zhang, J. Tang, K. Lu, and Q. Tian, “Binary code ranking with
weighted hamming distance,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2013, no. 6, pp. 1586–1593.

[98] Y. G. Jiang, J. Wang, and S. F. Chang, “Lost in binarization: query-adaptive
ranking for similar image search with compact codes,” in ACM International
Conference on Multimedia Retrieval, 2011, p. 16.

[99] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik, “Asymmetric distances for
binary embeddings.,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 1, pp. 33–47, Jan. 2014.

[100] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, “Semi-supervised nonlinear hashing
using bootstrap sequential projection learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 6, pp. 1380–1393, 2013.

[101] W. Liu, J. Wang, R. Ji, and Y. J. S. Chang, “Supervised hashing with kernels,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp.
2074–2081.

[102] T. Ge, K. He, and J. Sun, “Graph cuts for supervised binary coding,” in European
Conference on Computer Vision (ECCV), 2014, pp. 250–264.

[103] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for large-scale

79

search.,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 12, pp. 2393–406, Dec. 2012.

[104] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable
image retrieval,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 3424–3431.

[105] J. Song, N. Sebe, D. Zhang, L. Gao, and Y. Yan, “Supervised Hashing with
Pseudo Labels for Scalable Multimedia Retrieval,” in ACM international
conference on Multimedia, 2015, pp. 827–830.

[106] A. Dick, “Learning hash functions using column generation,” in International
Conference on Machine Learning (ICML), 2013, vol. 28.

[107] M. Norouzi, D. J. D. D. J. Fleet, R. Salakhutdinov, and D. M. Blei, “Hamming
distance metric learning,” in Advances in Neural Information Processing Systems
(NIPS), 2012, pp. 1–9.

[108] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing for approximate
nearest neighbor search,” in ACM International Conference on Multimedia, 2013,
pp. 133–142.

[109] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for compact
binary codes learning,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, vol. 07–12–June, pp. 2475–2483.

[110] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor
search.,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 1, pp. 117–28, Jan. 2011.

[111] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one billion
vectors: re-rank with source coding,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2011, no. 3, pp. 861–864.

[112] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized Product Quantization.,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 4, pp.
744–755, Dec. 2014.

[113] Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor search by
residual vector quantization,” Sensors, vol. 10, no. 12, pp. 11259–11273, 2010.

[114] H. Jegou, M. Douze, and C. Schmid, “Searching with quantization: approximate
nearest neighbor search using short codes and distance estimators,” INRIA, 2009.

[115] J. Brandt, “Transform coding for fast approximate nearest neighbor search in high
dimensions,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 1815–1822.

[116] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized Product Quantization for Approximate
Nearest Neighbor Search,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013, pp. 2946–2953.

80

[117] M. Norouzi and D. J. Fleet, “Cartesian K-Means,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013, pp. 3017–3024.

[118] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[119] N. Kambhatla and T. K. Leen, “Dimension Reduction by Local Principal
Component Analysis,” Neural Computation, vol. 9, no. 7, pp. 1493–1516, Oct.
1997.

[120] L. Ai, J. Yu, Z. Wu, Y. He, and T. Guan, “Optimized residual vector quantization
for efficient approximate nearest neighbor search,” Multimedia Systems, Jun.
2015.

[121] A. Babenko and V. Lempitsky, “Additive quantization for extreme vector
compression,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 931–938.

[122] T. Zhang, D. Chao, and J. Wang, “Composite Quantization for Approximate
Nearest Neighbor Search,” in International Conference on Machine Learning
(ICML), 2014.

[123] Liefu Ai, Junqing Yu, T. Guan, and Yunfeng He, “Efficient approximate nearest
neighbor search by optimized residual vector quantization,” in International
Workshop on Content-Based Multimedia Indexing (CBMI), 2014, pp. 1–4.

[124] S. Shapiro, “Beam Search,” Encyclopedia of artificial intelligence. 1987.

[125] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization for
approximate nearest neighbor search,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

[126] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and S. Li, “Optimized cartesian
k-means,” IEEE Transactions on Knowledge & Data Engineering, vol. 27, no. 1,
pp. 180–192, Jan. 2015.

[127] A. Babenko and V. Lempitsky, “Tree quantization for large-scale similarity search
and classification,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[128] A. Babenko and V. Lempitsky, “The inverted multi-index,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, vol. 14, no. 1–3, pp.
3069–3076.

[129] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geometry
consistency for large scale image search,” in European Conference on Computer
Vision (ECCV), 2008, no. October, pp. 304–317.

[130] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International Journal of Computer Vision,
vol. 42, no. 3, pp. 145–175, 2001.

81

[131] a Torralba, R. Fergus, and F. W., “80 million tiny images: a large dataset for non-
parametric object and scene recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 30, no. 11, pp. 1958–1970, 2008.

[132] P. Agarwal and N. Mustafa, “K-means projective clustering,” in ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 2004, pp. 155–
165.

[133] V. Gassenbauer, J. Křivánek, K. Bouatouch, C. Bouville, and M. Ribardière,
“Improving performance and accuracy of local PCA,” Computer Graphics Forum,
vol. 30, no. 7, pp. 1903–1910, Sep. 2011.

[134] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp. 1–
6, 1998.

[135] J. Lampinen and T. Kostiainen, “Overtraining and model selection with the self-
organizing map,” in International Joint Conference on Neural Networks (IJCNN),
1999, vol. 3, pp. 1911–1915.

[136] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”
Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[137] C.-C. Chang and C.-J. Lin, “Libsvm,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 3, pp. 1–27, 2011.

[138] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” 2007.

[139] T. Tommasi and T. Tuytelaars, “A testbed for cross-dataset analysis,” in European
Conference on Computer Vision (ECCV), 2015, vol. 8927, pp. 18–31.

[140] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition,” in
International Conference on Machine Learning (ICML), 2014, pp. 647–655.

[141] J. Gou, T. Xiong, and Y. Kuang, “A novel weighted voting for K-nearest neighbor
rule,” Journal of Computers, vol. 6, no. 5, pp. 833–840, 2011.

[142] J. Gou, “A new distance-weighted k-nearest neighbor classifier,” Journal of
Information & Computational Science, vol. 6, no. June, pp. 1429–1436, 2012.

[143] E. Fix and J. L. Hodges, “Discriminatory analysis nonparametric discrimination:
consistency properties,” International Statistical Review / Revue Internationale de
Statistique, vol. 57, no. 3, p. 238, Dec. 1989.

[144] T.-L. Pao, Y.-T. Chen, J.-H. Yeh, Y.-M. Cheng, and Y.-Y. Lin, “A comparative
study of different weighting schemes on KNN-based emotion recognition in
Mandarin speech,” Advanced Intelligent Computing Theories and Applications.
With Aspects of Theoretical and Methodological Issues, pp. 997–1005, 2007.

[145] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE
Transactions on Systems, Man and Cybernetics, vol. SMC-6, no. 4, pp. 325–327,

82

1976.

ORIGINAL PAPERS

I

M-PCA BINARY EMBEDDING FOR APPROXIMATE NEAREST
NEIGHBOR SEARCH

by

E.C.Ozan, S. Kiranyaz & M. Gabbouj, August 2015

IEEE Trustcom/BigDataSE/ISPA (BigDataSE), Helsinki, 2015.

©2015 IEEE. Reprinted, with permission, from E.C.Ozan, S. Kiranyaz and M. Gabbouj, M-
PCA Binary Embedding For Approximate Nearest Neighbor Search, IEEE

Trustcom/BigDataSE/ISPA (BigDataSE), Helsinki, August 2015.

M-PCA Binary Embedding

For Approximate Nearest Neighbor Search

Ezgi Can Ozan Serkan Kiranyaz Moncef Gabbouj

Tampere University of Technology

Tampere, Finland

{name.surname}@tut.fi

Abstract—Principal Component Analysis (PCA) is widely used

within binary embedding methods for approximate nearest

neighbor search and has proven to have a significant effect on the

performance. Current methods aim to represent the whole data

using a single PCA however, considering the Gaussian distribution

requirements of PCA, this representation is not appropriate. In

this study we propose using Multiple PCA (M-PCA)

transformations to represent the whole data and show that it

increases the performance significantly compared to methods

using a single PCA.

Keywords—PCA, Binary Embedding, Hashing, Approximate

Nearest Neighbor Search, Retrieval on Big Data

I. INTRODUCTION

With the recent progresses in the multimedia technology,
there has been a tremendous increase in the amount of data
produced by users, making multimedia data the “biggest big
data”. The “big” term for multimedia data is used regarding to
its sheer size, and the amount of information it covers. Thanks
to today’s social media, almost everyone’s daily experiences are
carried onto the web, to be presented in an image, audio or video
format. As the amount of data produced everyday becomes
greater and greater, the problems of storage, indexing and
retrieval are gaining more importance. As the increase in the
dataset sizes creates major problems, researchers who have been
working on this problem have focused on two major aspects.
First, as the datasets become larger, they require more
computational power for indexing and retrieval. Second, these
datasets are represented by signatures with greater number of
dimensions, which also creates a storage problem. In other
words, as the number of items in a dataset and the dimensions of
the descriptors increase, the memory required to process all
items together at once also increases.

As a solution to this problem, binary code representations of
descriptors are proposed. The aim is to represent a given
descriptor in form of a much more compact binary string, such
that the distances and similarities between original descriptor
pairs are preserved. In other words, descriptors represented by
similar binary strings are also similar. This solution directly
targets both of the problems mentioned above. First, calculating
the distance between binary codes requires much less
computational cost then calculating the distance between vectors

of double precision numbers. Second, transforming a descriptor
into a binary string decreases the storage cost extremely. For
example, a widely used image descriptor GIST[1] is usually
represented by 512 double precision numbers. When this
descriptor is represented by a 64-bit binary string, the memory
footprint is reduced by 512 times. Also calculating the Euclidean
distance between two such descriptors takes 512 subtractions,
square and additions while Hamming distance is calculated by a
logical operator, which brings a significant decrease for the
required computational cost.

II. RELATED WORK

One of the earliest approaches for binary coded
representations of descriptors is Locality Sensitive Hashing [2]
(LSH). In LSH, Datar et al. propose projecting the data onto
random vectors generated by a probabilistic model and perform
binary embedding on these projections. LSH has been a
successful method and further extensions on LSH have been
proposed, as some important examples can be found in [3]–[5].
Another mile stone for binary embedding is Spectral Hashing
[6] (SH). In SH, Weiss et al. propose a method based on spectral
clustering. This method also has been very successful in the field
of binary embedding, and several extensions have been
proposed, as some examples can be found in [7]–[9].

A very simple but successful technique for hashing has been
proposed by Gordo et al. in [10] named PCA Embedding
(PCAE), where principal component analysis (PCA) is used to
reduce dimension and generate the projection vectors for
hashing. However, since the information is distributed non-
uniformly between principal components, several methods have
been proposed to balance the variance among the projections.
Performing random rotation on PCA (PCA-RR) is shown to be
a viable solution in [11] by Gong et al. Further in this study, an
iterative approach to optimize the rotation has been proposed,
named Iterative Quantization (ITQ). ITQ aims to rotate the data
after PCA to balance the variance on each principal component.
Another approach to balance the variance distribution has been
proposed by Brandt in [12] named Transform Coding (TC). In
TC, the bits are distributed non-uniformly among dimensions
after PCA.

As presented above PCA transformation has become an
important step for dimension reduction in binary embedding and

hashing methods. Yet PCA comes with an assumption that, the
data have Gaussian distribution properties, and this assumption
is highly likely to fail when large datasets are taken into
consideration. However, representing the data with multiple
PCA’s have been shown to be a better approximation of data, as
in [13]–[16].

Here in this study, we propose that using multiple PCA’s
instead of a single PCA increases the performance of hashing
systems using asymmetric distances. We propose M-PCA
versions of traditional hashing methods based on PCA such as
PCAE, PCA-RR, ITQ and TC and show that the performance is
significantly increased. The rest of the paper is organized as
follows: In the next section, the problem formulation is defined.
In Section IV, the proposed method is described in detail. In
Section V, experiments and obtained results are presented.
Finally in Section VI, the paper is concluded.

III. PROBLEM FORMULATION

In this section we present the problem formulation and

further discuss the selected binary embedding methods based

on PCA. The problem formulation for binary embedding can be

given as follows: Given a set of 𝑁 vectors 𝑿 = {𝒙1, … , 𝒙𝑁},

(𝒙𝑖 ∈ ℝ𝐷), a set of 𝐾 functions 𝐻 = {ℎ1, … , ℎ𝐾} is defined to

perform multidimensional binary embedding ℎ(𝒙𝑖) =
[ℎ1(𝒙𝑖), … , ℎ𝐾(𝒙𝑖)]𝑇, i.e. ℎ𝑘: ℝ → {0,1}, where ℎ𝑘(𝑥) ∈
 {0,1}, and ℎ(𝑥) ∈ {0,1}𝐾. Within the scope of this paper we

can further decompose ℎ𝑘(𝒙𝑖) as given in Eq. (1)

ℎ𝑘(𝒙𝑖) = 𝑠𝑘(𝑒𝑘(𝒙𝑖)) (1)

where 𝑒𝑘 is an embedding function and 𝑠𝑘 is a binarization

function, such that 𝑒𝑘(𝒙𝑖) ∈ ℝ and 𝑠𝑘(𝑒𝑘(𝒙𝑖)) ∈ {0,1}. We

select the embedding function 𝑒𝑘 such that it preserves the

Euclidean distance between two samples as presented in Eq. (2)

‖𝒙𝑖 , 𝒙𝑗‖
2

≅ ∑‖𝑒𝑘(𝒙𝑖), 𝑒𝑘(𝒙𝑗)‖
2

𝐾

𝑘

 (2)

A. PCA-Embedding (PCAE)

As presented in [10], PCAE aims to perform PCA
transformation on a training dataset then according to each
projected dimension, binary codes are generated. Following the
given descriptions above, PCAE can be formulated as given in
Eq. (3)

𝑒𝑘(𝒙𝑖) = 𝒘𝑘
𝑇(𝒙𝑖 − 𝝁)

𝑠𝑘(𝑦) = 𝑠𝑖𝑔𝑛(𝑦)
(3)

where 𝑾 is the PCA transformation matrix (𝑾 ∈ ℝ𝐷×𝐾), 𝒘𝑘
is the kth row of 𝑾 and 𝝁 is the sample mean of 𝑿.

B. PCA + Random Rotations (PCA-RR)

As a result of the PCA dimension reduction, the dimensions
are sorted with decreasing variance. A simple solution to
imbalanced distribution of variances among dimensions after
PCA transformation is presented in [11]. It is proposed that, the
PCA transformation matrix 𝑾 is multiplied by a random
orthogonal rotation matrix 𝑹 (𝑹 ∈ ℝ𝐷×𝐷) in order to obtain a

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Figure 1: A toy example showing the effect of using multiple PCAs. First row are the results of methods PCAE (a), PCA-RR (b), ITQ (c)

and TC (d) respectively. The second row is their M-PCA versions as M-PCAE (e), M-PCA-RR (f), M-PCA-ITQ (g) and M-PCA-TC (h).

(M=2, colors only represent different hash codes)

more balanced distribution of variances. Note that since 𝑹 is an
orthogonal rotation, it preserves Euclidean distance. PCA-RR
can be formulated as given in Eq. (4)

𝑾̃ = 𝑹𝑾

𝑒𝑘(𝒙𝑖) = 𝒘̃𝑘
𝑇(𝒙𝑖 − 𝝁)

𝑠𝑘(𝑦) = 𝑠𝑖𝑔𝑛(𝑦)

(4)

C. Iterative Quantization (ITQ)

ITQ [11] takes the random rotation approach presented
above one step further and using an iterative Procrustean
approach it tries optimize the orthogonal rotation minimizing the
quantization error. The ITQ can be simply formulated as given
in Eq. (5)

𝑾̃ = 𝑹𝐼𝑇𝑄𝑾

𝑒𝑘(𝒙𝑖) = 𝒘̃𝑘
𝑇(𝒙𝑖 − 𝝁)

𝑠𝑘(𝑦) = 𝑠𝑖𝑔𝑛(𝑦)

(5)

D. Transform Coding (TC)

In TC [12], instead of performing additional rotations as the
two methods given above, binary embedding is performed non-
uniformly on each dimension after PCA, i.e. each dimension can
be allocated different number of bits. The non-uniform
distribution of bits provides equal distribution of variance
among binary codes. The formulation of TC is given in Eq. (6)

𝑒𝑘(𝒙𝑖) = 𝒘𝑘
𝑇(𝒙𝑖 − 𝝁)

𝑠𝑘(𝑦) = argmin
𝑐∈𝐶𝑘

‖𝑦 − 𝑐‖ (6)

where 𝐶𝑘 is the set of centroids on a given dimension m.

The methods are illustrated in a toy example, as shown in Figure
1. As it can be seen, using multiple PCA’s improves the hashing
quality.

IV. PROPOSED METHOD

As explained in the previous section, PCA is widely used as
a binary embedding function and binary embedding is
performed on the projected space. However one single PCA may
not be sufficient to successfully represent the whole training set,
as the Gaussian distribution requirements may not hold. In such
cases, introducing more than one PCA transformation is proven
to provide better representations [13]–[16].

In our proposed approach we partition the training set into 𝑀
affine subspaces to introduce multiple PCA’s. We then perform
binary embedding on the obtained subspaces. We represent
each affine subspace 𝓕𝑚 with an affine shift 𝝁𝑚 and a
transformation matrix 𝑾𝑚. In the next subsection we explain the
subspace clustering approach followed in our method.

A. M-PCA Clustering

In order to cluster the training set into 𝑀 affine subspaces,
we follow an iterative approach. To initialize the clusters, we
first perform K-Means clustering. For each cluster obtained, we
perform PCA for dimension reduction and obtain the initial
affine subspaces. Then we update the clusters by calculating the
distance of each sample to subspaces and selecting the nearest
subspace. The distance of a sample 𝒙𝑖 to a given affine subspace
𝓕𝑚, defined by the projection matrix 𝑾𝑚 and affine shift
vector 𝝁𝑚 is calculated using the formula given in Eq. (7)

𝑑(𝒙𝑖 , 𝓕𝑚) = ‖𝑾𝑚
⊥𝑇

(𝒙𝑖 − 𝝁𝑚)‖ (7)

where 𝑾𝑚
⊥ spans the orthogonal complement of range space of

𝑾𝑚. For each updated cluster, 𝑾𝑚 and 𝝁𝑚 is calculated again
and the iterations continue until convergence or the maximum
number of iterations is reached. After subspaces are obtained,
any PCA-based binary embedding method can be further
applied.

B. Asymmetric Distance Calculation

In [10], Gordo et al. has shown that using asymmetric
distances for binary embedding methods boosts the performance
notably, so in our approach we also propose asymmetric
distances. One requirement of asymmetric distances is that, in
order to calculate the distances between a query and a set of
codes, the query should not be coded. Then reconstructing the
vectors from codes, asymmetric distances can be calculated.

Asymmetric distance calculation can be taken one step
further by mapping binary codes to pre-trained centroid values.
As also presented in [10], here we map every binary code to the
centroid it corresponds to. We use the sample mean as the
centroid value, i.e. for each dimension, we calculate the average
of samples that correspond to same bit value and store it in a
look-up table. In our proposed method, the asymmetric distance
of a given query vector 𝒙𝒊 to a given code 𝒄𝑚,𝑗 is calculated as

given in Eq. (8), (9) and (10). Here 𝒙𝑖,𝑚 is the projection of 𝒙𝒊

onto the subspace 𝓕𝑚, and subscript j represents different codes
in the given subspace.

𝑑(𝒙𝒊, 𝒄𝑚,𝑗) = √𝑑(𝒙𝒊 , 𝒙𝑖,𝑚)2 + 𝑑(𝒙𝑖,𝑚, 𝒄𝑚,𝑗)2 (8)

𝑑(𝒙𝑖,𝑚, 𝒄𝑚,𝑗) = ‖𝑾𝑚
𝑇 (𝒙𝑖 − 𝝁𝑚) − 𝒄𝑚,𝑗‖ (9)

𝑑(𝒙𝑖 , 𝒙𝑖,𝑚) = ‖(𝒙𝑖 − 𝝁𝑚) − 𝑾𝑚
𝑇 𝑾𝑚(𝒙𝑖 − 𝝁𝑚)‖ (10)

Here note that, the distance of a query vector to the
projection space has not been taken into account in any of the
asymmetric distance calculations given in [10], since there is
only one subspace it does not affect the nearest neighbor search.
In our method, as there are more than one subspaces, we also
take this distance into account.

C. Encoding of Vectors

In traditional binary embedding methods, encoding of a
database vector is performed as given in the Eq. (1). Here we
modify this in order to introduce our multiple subspace
approach. Since we introduce several affine subspaces to our
system, first we need to decide on which subspace to perform
binary embedding on. As we also choose to use asymmetric
distances, our selection of subspace also depends on the
asymmetric distance calculation. In order to determine the most
suitable subspace for projection, we first project the given vector
onto each subspace and apply binary embedding there. Then for
each alternative code we calculate the asymmetric distance and
we select the subspace which corresponds to the minimum
distance. Note that this also provides an encoding scheme with

minimum quantization error. The embedding function is
formulated in Eq. (11).

ℎ𝑚(𝒙𝑖) = argmin
𝑐∈𝐶

(𝑑(𝒙𝑖 , 𝑐)) (11)

where 𝐶 is the set of all codes from all subspaces and all
dimensions. 𝑑(𝒙𝑖 , 𝑐) is calculated as given in Eq. (8). The flow
of the whole binary encoding system is provided in TABLE 1.

TABLE 1

Algorithm of M-PCA Binary Embeddings

Given: 𝑋: a set of samples, 𝑀: number of PCA’s

𝑁𝑖𝑡: number of iterations

𝑰: PCA indices for all samples, 0 < 𝑰𝑖 ≤ 𝑀

 Initialize 𝑰 with M clusters using Κ-Means

 For 𝑁𝑖𝑡 iterations, (𝑖𝑡 = 1: 𝑁𝑖𝑡)

o For each cluster 𝑚 in 𝑀

 Perform PCA

 Perform dimension reduction

 Perform the PCA based binary

embedding method.

o For each sample 𝒙𝑖 in 𝑿

 Find the nearest subspace.

 Update cluster index 𝑰𝑖 in 𝑰

V. EXPERIMENTS

We test our proposed method on two publicly available
datasets SIFT1M and GIST1M [17]. SIFT1M consists of 1
Million 128-D SIFT vectors and GIST1M includes 1 Million
960-D GIST descriptors. There are 10,000 additional query
vectors in SIFT1M and 1,000 queries in GIST1M. We perform
exhaustive search on both datasets for all corresponding queries.
We use recall@𝑹 measure as our performance metric, which is
the recall value for the first 𝑅 samples in retrieval and we assume
the nearest neighbor is the ground truth for each query.

We compare our proposed method with traditional binary
embedding methods which use PCA for dimension reduction.
The selected baseline methods are PCAE [10], PCA-RR [11],
ITQ [11] and TC [12]. We test our system with 32-bit and 64-bit
code lengths. The results are presented in Figure 2.

In our experiments we choose the subspace number M as
256. Note that in order to index 256 different subspace, we use
8-bits from our bit allocation budget. For example, for 64-bit
coding, we use the first 8-bits for indexing and remaining 56-
bits for binary embedding. As it can be seen in the given results,
representing the data with M-PCA drastically increases the
retrieval performance for with asymmetric distances. In all of the
comparisons, M-PCA method performs better than methods
with one single PCA.

Figure 2: Experimental results. Vertical axis indicates recall@R, while horizontal axis is the R value.

0

0.2

0.4

0.6

0.8

1

6 4 - B I T S I F T 1 M

0

0.2

0.4

0.6

0.8

1

6 4 - B I T G I S T 1 M

0

0.2

0.4

0.6

0.8

1

3 2 - B I T S I F T 1 M

0

0.2

0.4

0.6

0.8

1

3 2 - B I T G I S T 1 M

VI. CONCLUSION

In this paper, we propose introducing multiple PCA
transformations to represent the data for binary embedding
methods and prove that it provides a major increase in the
performance when asymmetric distances are used. In our future
work, we will focus on testing our method on labeled datasets
and adapting the same idea for supervised approaches which rely
on single PCA transformations.

REFERENCES

[1] A. Oliva and A. Torralba, “Modeling the shape of the

scene: A holistic representation of the spatial

envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp.

145–175, 2001.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,

“Locality-Sensitive Hashing Scheme Based on P-

stable Distributions,” in SCG, 2004, p. 253.

[3] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality

sensitive hashing: A comparison of hash function

types and querying mechanisms,” Pattern Recognit.

Lett., vol. 31, no. 11, pp. 1348–1358, Aug. 2010.

[4] K. Terasawa and Y. Tanaka, “Spherical LSH for

Approximate Nearest Neighbor Search on Unit

Hypersphere,” in WADS, 2007, pp. 27–38.

[5] J. Buhler, “Efficient Large-Scale Sequence

Comparison by Locality-Sensitive Hashing,”

Bioinformatics, vol. 17, pp. 419–428, 2001.

[6] Y. Weiss, A. Torralba, and R. Fergus, “Spectral

Hashing,” in NIPS, 2009, pp. 1753–1760.

[7] P. Li, M. Wang, and J. Cheng, “Spectral hashing with

semantically consistent graph for image indexing,”

IEEE Trans. Multimed., vol. 15, no. 1, pp. 141–152,

2013.

[8] Y. Wang, S. Tang, Y. Zhang, J. Li, and D. Chen,

“Fitted spectral hashing,” in Proceedings of the 21st

ACM international conference on Multimedia - MM

’13, 2013, pp. 645–648.

[9] J. Wang, S. Kumar, and S.-F. Chang, “Semi-

supervised hashing for large-scale search.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12, pp.

2393–406, Dec. 2012.

[10] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik,

“Asymmetric distances for binary embeddings.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 36, no. 1, pp.

33–47, Jan. 2014.

[11] Y. Gong and S. Lazebnik, “Iterative quantization: A

procrustean approach to learning binary codes,” in

CVPR, 2011, pp. 817–824.

[12] J. Brandt, “Transform coding for fast approximate

nearest neighbor search in high dimensions,” in

CVPR, 2010, pp. 1815–1822.

[13] N. Kambhatla and T. K. Leen, “Dimension Reduction

by Local Principal Component Analysis,” Neural

Comput., vol. 9, no. 7, pp. 1493–1516, Oct. 1997.

[14] P. Agarwal and N. Mustafa, “k-Means Projective

Clustering,” in SIGMOD, 2004, pp. 155–165.

[15] V. Gassenbauer, J. Křivánek, K. Bouatouch, C.

Bouville, and M. Ribardière, “Improving Performance

and Accuracy of Local PCA,” Comput. Graph.

Forum, vol. 30, no. 7, pp. 1903–1910, Sep. 2011.

[16] C. M. Bishop, “Bayesian PCA,” in NIPS, 1999, vol.

11, pp. 382–388.

[17] H. Jégou, M. Douze, and C. Schmid, “Product

quantization for nearest neighbor search.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp.

117–28, Jan. 2011.

II

K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST
NEIGHBOR SEARCH

by

E.C.Ozan, S. Kiranyaz & M. Gabbouj, July 2016

IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 28, no. 7, pp. 1722-
1733.

©2016 IEEE. Reprinted, with permission, from E.C.Ozan, S. Kiranyaz and M. Gabbouj, K-

Subspaces Quantization for Approximate Nearest Neighbor, IEEE Transactions on
Knowledge and Data Engineering (TKDE), July 2016.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

K-Subspaces Quantization

for Approximate Nearest Neighbor Search
Ezgi Can Ozan, Serkan Kiranyaz, Senior, IEEE and Moncef Gabbouj, Fellow, IEEE

Abstract— Approximate Nearest Neighbor (ANN) search has become a popular approach for performing fast and efficient

retrieval on very large-scale datasets in recent years, as the size and dimension of data grow continuously. In this paper, we

propose a novel vector quantization method for ANN search which enables faster and more accurate retrieval on publicly available

datasets. We define vector quantization as a multiple affine subspace learning problem and explore the quantization centroids on

multiple affine subspaces. We propose an iterative approach to minimize the quantization error in order to create a novel

quantization scheme, which outperforms the state-of-the-art algorithms. The computational cost of our method is also comparable

to that of the competing methods.

Index Terms— Approximate Nearest Neighbor Search, Binary Codes, Large-Scale Retrieval, Subspace Clustering, Vector

Quantization

——————————  ——————————

1 INTRODUCTION

HE Nearest Neighbor (NN) search aims to find a sample

in a given dataset that is closest to a given query, which is

called the nearest neighbor. It is widely used in different areas

of signal processing such as information retrieval, computer

vision, machine learning, pattern recognition and recommen-

dation systems. However, the traditional NN search is not

tractable for today’s very large-scale datasets. Both the search

on the dataset and the distance calculation between sample

pairs are computationally costly, considering the number of

samples and the dimension of the feature space. In order to

overcome these limitations of NN search and make it feasible

for large-scale problems, Approximate Nearest Neighbor

(ANN) search has been proposed [1]. ANN search uses com-

pact representations in order to approximate pair-wise dis-

tances between pairs of data points. It has proved to be a via-

ble alternative and has so far achieved promising results [2].

Many of the existing algorithms in this field rely on the

concept of “hashing”. Hashing methods aim to create binary

strings from sample vectors and compare those strings using

the Hamming distance representing the proximity neighbor-

hood or some given similarity [3]–[7]. The binary string com-

parison has also evolved from the simple Hamming distance

to asymmetrical distance measures [8], [9] and the usage of

look-up tables has enabled more accurate approximations, di-

recting the research on ANN search towards vector quantiza-

tion [2]. The focus of this paper is on vector quantization

based approaches, and the reader is referred to [2] for a more

detailed review on hashing.

The idea of quantization goes back to 1980’s. Lloyd de-

fined the concept of “good quantization” [10], which is

closely related to the Κ-Means algorithm [11]. Yet Lloyd’s

quantization method, or Κ-Means is not directly applicable to

large-scale data, for very large number of centroids. For ex-

ample, considering a quantization using a binary string of 64-

bits, the desired number of centroids is 264. Obviously, it is

neither possible to find nor to store such amount of data.

A great improvement on Lloyd's approach for quantization

has been proposed by Jegou et al. [12] for ANN. In their

method called Product Quantization (PQ), the authors divide

the sample vector into subvectors and quantize each of them

independently using subquantizers. This makes the quantiza-

tion codebook a Cartesian product, where each centroid in this

codebook is represented as a concatenation of the correspond-

ing centroids from the subcodebooks. Therefore, for a small

number of subquantizers, while each of them having a feasi-

ble number of centroids, obtaining the desired total number

of centroids is made possible. Referring to the example above,

thanks to the Cartesian product, selecting the number of

subquantizers as 8 and the number of centroids for each

subquantizer as 256 would be enough to reach 264. This ap-

proach however suffers from the statistical dependency of

subvectors, since they are quantized independently.

Another approach for efficient coding on high dimensional

vectors has been proposed by Jegou et al. [6] and later by

Gordo et al. [8]. In both papers, the data is decorrelated by

applying the Principal Component Analysis (PCA), and its di-

mension is reduced to a desired value. Then, quantization is

applied independently on each of the remaining principal

components. This, with a Gaussian distribution assumption,

solves the statistical dependency problem among the dimen-

sions of vectors; however, it brings the problem of an unbal-

anced distribution of information (variance) among dimen-

sions.

As a result of PCA, the principal components are ranked in

a decreasing order according to the corresponding variances,

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Ezgi Can Ozan, is with the Department of Signal Processing, Tampere
University of Technology, Tampere, Finland (e-mail: ezgi.ozan@tut.fi).

 Prof. Serkan Kiranyaz, is with Electrical Engineering Department, College
of Engineering, Qatar University, Qatar. (e-mail: mkiranyaz@qu.edu.qa).

 Prof. Moncef Gabbouj, is with the Department of Signal Processing, Tam-
pere University of Technology, Tampere, Finland (e-mail: moncef.gab-
bouj@tut.fi).

T

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

yet each component is quantized by two centroids only. Gong

et al. [13] propose a two-step method called Iterative Quanti-

zation (ITQ). In the first step, a PCA transformation is applied

for dimension reduction as in [6], while in the second step, an

orthogonal rotation on the data is applied iteratively for a bal-

anced distribution of the variance among the principal com-

ponents. The data are quantized on the principal components

of the rotated space independently. While orthogonal rota-

tions preserve the Euclidean distance between pairs of sam-

ples, here again, the problem of statistical dependency reap-

pears, since the dimensions are no longer decorrelated.

Brandt in [14] proposes a method called Transform Coding

(TC), to balance the variance corresponding to each code sep-

arately after PCA. TC is a special case of PQ, where each di-

mension itself is a subvector. However, in TC, each dimen-

sion is allocated a variable number of bits, and a scalar quan-

tization is performed on each principal component inde-

pendently. Following the rotation idea in [13], Optimized

Product Quantization [15] (OPQ) and Cartesian Κ-Means

(CKM) [16] both produce an improvement over PQ by apply-

ing an iterative optimization process in order to balance the

dimension variances. In [17] Heo et al. improve OPQ by en-

coding the distances to centroids separately in their algorithm

called Distance Encoded Product Quantization (DEPQ). Lo-

cally Optimized Quantization (LOPQ) [18] introduces local

optimization before OPQ and further improves the perfor-

mance.

Recently summation based multi-stage vector quantization

methods such as Optimized Cartesian Κ-Means (OCK) [19],

Additive Quantization (AQ) [20], Composite Quantization

(CQ) [21] and (Optimized) Tree Quantization (OTQ) [22]

which aim to use the summation of several dictionary items

to represent the approximation of a vector, have been pro-

posed. These methods produce the state-of-the-art results alt-

hough the theory behind such quantization methods has been

well studied in the past [23].

Many of the proposed methods so far transform or project

the data into a new (sub)space, where vector dimensions are

reduced, reordered or rotated using PCA. Decorrelating the

data using a single PCA step may not bring the desired statis-

tical independency among dimensions, especially if the data

do not follow a Gaussian distribution, which is the core inher-

ent assumption of PCA. A better transformation however,

may be designed by representing the data with more than one

subspace. Local-PCA [24], [25], Κ-Means Projective Cluster-

ing [26] and Bayesian PCA [27] all propose different solu-

tions to this problem based on PCA. In our recent study enti-

tled M-PCA Binary Embedding (MPCA-E) [28], we have

also shown that using traditional PCA based embedding ap-

proaches, such as [6], [8], [13], [14], with multiple PCAs in-

stead of only a single PCA, the performance is improved sig-

nificantly. In this paper this result is taken one step further, by

developing an iterative approach to obtain the affine sub-

spaces and codebooks at the same time. In this way, the pro-

posed method achieves lower quantization error, which leads

to a better encoding scheme with state-of-the-art perfor-

mance. The main contributions of the proposed method are

the following:

 Vector quantization is defined as a multiple sub-

space learning problem, where the objective is to

minimize the quantization error of the training

samples in the learnt subspaces, while also mini-

mizing the projection error of the samples to the

corresponding subspaces.

 An optimization problem that jointly minimizes

both errors defined above is formulated as an iter-

ative process.

 A simple, yet effective scheme for faster sample

encoding is proposed, by efficiently selecting a

limited number of subspaces, thus decreasing the

computational cost required for evaluating all

possible encodings.

 The proposed approach is evaluated on publicly

available datasets, and shown to achieve state-of-

the-art performance.

The rest of the paper is organized as follows: The problem

formulation is given in Section 2 and the detailed steps in the

proposed method are described in Section 3. In Section 4, ex-

periments on publicly available benchmark datasets are pre-

sented and in Section 5, the parameter selection, scalability

and the computational and storage costs of the method are

discussed. Finally in Section 6, the paper is concluded.

2 PROBLEM FORMULATION

The problem of vector quantization for ANN search can be

formulated as follows: Given a set of 𝑁 𝐷-dimensional vec-

tors 𝑿 = {𝒙1, … , 𝒙𝑁} and a query vector 𝒒, (𝒒, 𝒙𝑖 ∈ ℝ𝐷) the

nearest neighbor search aims to find argmin
𝑖

𝑑(𝒙𝑖 , 𝒒), where

𝑑(𝒙𝑖, 𝒒) is a distance computed between 𝒙𝑖 and 𝒒. The ap-

proximate nearest neighbor search however aims to find a

point 𝒙𝐴𝑁𝑁 such that,

𝑑(𝒙𝐴𝑁𝑁 , 𝒒) ≤ (1 + 𝜖) 𝑑(𝒙𝑁𝑁 , 𝒒) (1)

where 𝒙𝑁𝑁 is the true nearest neighbor and 𝜖 > 0. A quantizer

𝑄 quantizes the vector to its corresponding codevector 𝒄𝑗 ∈

 ℝ𝐷 within the codebook 𝑪 = {𝒄1, … , 𝒄𝑀}, where 𝑀 is the

number of codevectors. The mean squared quantization error

𝑀𝑆𝐸𝑄 is defined by

𝑀𝑆𝐸𝑄 =
1

𝑁
∑‖𝒙𝑖 − 𝑄(𝒙𝑖)‖2

𝑁

𝑖

 (2)

The equation in (2) can be extended to (3), where

𝑹 ∈ ℝ𝐷×𝐿 (𝐿 ≤ 𝐷) is an orthogonal projection matrix and 𝑹⊥

spans the orthogonal complement of the range space of 𝑹.

With this extension, it is possible to define 𝑀𝑆𝐸𝑄 also for [6],

[8], [13], [14], where the quantization is performed after di-

mension reduction or transformation. Equation (2) is a special

case of (3), where 𝑹 = 𝑰 and 𝐷 = 𝐿.

𝑀𝑆𝐸𝑄 =
1

𝑁
∑ (‖𝑹𝑇𝒙𝑖 − 𝑄(𝑹𝑇𝒙𝑖)‖2 + ‖𝑹⊥𝑇

𝒙𝑖‖
2

)

𝑁

𝑖

 (3)

OZAN ET AL.: K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 3

It is clear from (3) that the quantization error 𝑀𝑆𝐸𝑄 is di-

rectly affected by the selection of the projection matrix 𝑹. The

second term in the summation adds a non-negative value to

the quantization error, unless 𝑹⊥ is zero. No matter how close

codevector 𝒄𝑗 is to the sample 𝒙𝑖 , there is a non-zero quanti-

zation error depending on 𝑹⊥ and 𝒙𝑖. Thus, in order to mini-

mize this error, an appropriate projection matrix 𝑹 should be

chosen.

Gong et al. in [13] propose a method which performs an

orthogonal rotation in the feature space in order to minimize

the quantization error. First, they apply PCA on the data and

iteratively rotate the principal components in order to match

the samples with their corresponding codevectors, resulting

in smaller quantization error. Let 𝑹 ∈ ℝ𝐷×𝐿 be the PCA di-

mension reduction matrix. The error given in (4) is minimized

by introducing another orthogonal rotation matrix 𝑷 ∈ ℝ𝐿×𝐿

and following the Procrustean approach [13].

𝑀𝑆𝐸𝑄 =
1

𝑁
∑ (‖(𝑹𝑷)𝑇𝒙𝑖 − 𝑄((𝑹𝑷)𝑇𝒙𝑖)‖2

𝑁

𝑖

+ ‖𝑹⊥𝑇
𝒙𝑖‖

2
)

(4)

In [13], Gong et al. proposed a method to select 𝑹 in (3),

but the selection aims to improve mainly the first term of the

summation. The second term of the summation is also mini-

mized with the selection of 𝑹 as PCA dimension reduction

matrix, since the principal components are ordered with de-

creasing variance. In [15], [16] and [18]; the authors are in-

spired from the rotation of [13] to fit the data better to

codevectors, and combine this approach with PQ. They fol-

low the same iterative approach to find the optimal rotation.

In [16], the quantization error is defined as given in (5), where

𝐻 is the number of subvectors and the subscript ℎ represents

the matrix for the subvector in question. 𝑫 is a diagonal scal-

ing matrix.

𝑀𝑆𝐸𝑄 =
1

𝑁
∑ ∑‖𝑹ℎ

𝑇𝒙𝑖 − 𝑫ℎ𝑄ℎ(𝑹ℎ
𝑇𝒙𝑖)‖

2
+ ‖𝑹⊥𝑇

𝒙𝑖‖
2

𝐻

ℎ

𝑁

𝑖

 (5)

The algorithm first keeps 𝑹 fixed and solves for 𝑫 and 𝑄,

then keeping 𝑫 and 𝑄 constant, it optimizes 𝑹. Since a full

rank 𝑹 ∈ ℝ𝐷×𝐷 is used, the second term in the summation is

0. Although putting a rank constraint on 𝑹 for high dimen-

sional data is suggested in [16], it is not clearly stated how to

decrease the transformation error, which will always be non-

zero as long as 𝑟𝑎𝑛𝑘(𝑹) < 𝐷.

Brandt in [14] selects the projection matrix 𝑹 ∈ ℝ𝐷×𝐿 as

the PCA dimension reduction matrix, similar to [13]. How-

ever, instead of searching for a better 𝑹, the bits are distrib-

uted non-uniformly among dimensions using the fact that the

variances are sorted in a decreasing order for each dimension.

That is, multiple centroids are assigned to the dimensions with

high variances, while some of the dimensions with lower var-

iances are omitted.

As mentioned above, the necessity of searching for an ap-

propriate matrix 𝑹 is evident, but so far the researchers have

limited themselves to a single transformation matrix for the

purpose of minimizing the quantization error. However, a sin-

gle matrix may not be sufficient to transform the data into a

new space where a better representation is possible. In our

previous study [28], a two-step solution to this problem is pro-

posed. First the whole space is divided into subspaces using

multiple PCAs. Then for each subspace, a PCA based

subquantizer is trained. This approach provides a better rep-

resentation of the data and reduces the total transformation

error at the same time. In [18], the authors also propose a sim-

ilar approach, by dividing the data into local clusters and

training quantizers on each cluster separately. However, tak-

ing those two steps of clustering and quantization into account

separately yields a suboptimal solution. For this reason, in this

paper, an iterative joint optimization scheme for both steps is

proposed.

3 THE PROPOSED METHOD

As explained in the previous section, the proposed solution

starts by extending the equation (3) further introducing mul-

tiple affine subspaces into the quantization system. Each sub-

space is allowed to have a different number of dimensions and

a separate subquantizer is present in each subspace. Let 𝓕𝑘 ∈

ℝ𝐿𝑘 , 𝑘 = {1, … , 𝐾} be a subspace defined by the affine shift

vector 𝝁𝑘 ∈ ℝ𝐷 and the projection matrix 𝑹𝑘 ∈ ℝ𝐷×𝐿𝑘,

where 𝐿𝑘 is the number of dimensions of the subspace 𝓕𝑘.

Let 𝑿𝑘 ⊂ 𝑿 be a subset of samples (a cluster) such that

⋃ 𝑿𝑘
𝐾
𝑘=1 = 𝑿 and 𝑿𝑘 ∩ 𝑿𝑗 = ∅ where 𝑘 ≠ 𝑗. 𝓕𝑘 is the se-

lected affine subspace for each sample 𝒙𝑖 ∈ 𝑿𝑘. Finally, let

𝑄𝑘 be a subquantizer which maps a given vector 𝒙𝑖 to its cor-

responding codevector 𝒄𝑗,𝑘 ∈ ℝ𝐿𝑘 within the codebook 𝑪𝑘 =

 {𝒄1,𝑘, … , 𝒄𝑀𝑘,𝑘}, where 𝑀𝑘 is the number of codevectors for

the codebook 𝑪𝑘. We redefine the mean squared quantization

error 𝑀𝑆𝐸𝑄, as formulated in (6). Note that (3) is a special

case of (6), where 𝐾 = 1 and 𝝁𝑘 = 𝟎.

𝑀𝑆𝐸𝑄 =
1

𝑁
∑ ∑ (‖𝑹𝑘

𝑇(𝒙𝑖 − 𝝁𝑘)

𝒙𝑖∈𝑿𝑘

𝐾

𝑘

− 𝑄𝑘(𝑹𝑘
𝑇(𝒙𝑖 − 𝝁𝑘))‖

2
+ ‖𝑹𝑘

⊥𝑇
(𝒙𝑖 − 𝝁𝑘)‖

2
)

(6)

The minimization of (6) for a fixed 𝐾 > 1 is an NP-Hard

problem to solve. So in the proposed method, an approximate

solution to minimize the error term given in (6) is proposed

by following an iterative approach. Each iteration consists of

four steps:

i. determination of subspaces,

ii. bit allocation,

iii. scalar quantization,

iv. cluster updates.

With this iterative approach, first it is aimed to find 𝐾 suit-

able affine subspaces 𝓕𝑘, each defined by a matrix 𝑹𝑘 and an

affine shift vector 𝝁𝑘. Then for each 𝓕𝑘, the bits are distrib-

uted among dimensions and the subquantizer 𝑄𝑘 is obtained.

Finally the cluster index for each sample is updated by the

most suitable cluster. The input samples are initially assigned

to 𝐾 different clusters. The initial cluster indices are obtained

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

by using Κ-Means. After the initialization, the iterations

begin.

3.1 Determination of Subspaces

In the proposed method, an affine subspace 𝓕𝑘 is defined

for each cluster 𝑿𝑘. First, the mean of 𝑿𝑘 is calculated to ob-

tain the affine shift vector 𝝁𝑘 =
1

𝑁𝑘
∑ 𝒙𝑖𝒙𝑖∈𝑿𝑘

; and then PCA

is applied using the samples 𝑿𝑘, in order to obtain the trans-

formation matrix 𝑹𝑘, as proposed in [24]–[26]. Here it should

be emphasized that each subspace 𝓕𝑘 may have a variable

number of dimensions 𝐿𝑘 and this number is constrained only

by the number of bits and their allocation among dimensions.

Therefore, the number of dimensions of a subspace is deter-

mined according to the bit allocation strategy, which is ex-

plained in Section 3.3. In the next section the selection of the

scalar quantization for the proposed method is defined and

justified.

3.2 Scalar Quantization

In the formulation of the problem above, it has been stated

that multiple affine subspaces are introduced in order to min-

imize the error generated by the projection onto a subspace.

Since multiple PCAs are used to generate the projection ma-

trices, the statistical dependencies between dimensions have

been minimized [24]–[26], i.e., quantization can be per-

formed independently on each dimension and the codevector

can be obtained as a Cartesian product of quantized values

similar to [8],[13] or [14].

Let 𝒙𝑖,𝑘 be the projection of 𝒙𝒊 onto the corresponding sub-

space 𝑘, i.e., 𝒙𝑖,𝑘 = 𝑹𝑘
𝑇(𝒙𝑖 − 𝝁𝑘). For the 𝑙th dimension

𝒙𝑖,𝑘
𝑙 ∈ ℝ1 of a projected vector 𝒙𝑖,𝑘 , and a centroid 𝒄̇𝑘

𝑙 ∈ ℝ1,

i.e., 𝒄̇𝑘
𝑙 = 𝑄𝑘(𝒙𝑘,𝑖)

𝑙
; the mean squared scalar quantization er-

ror on dimension 𝑙, 𝑀𝑆𝐸𝑄𝑠
𝑙 , can be formulated as:

𝑀𝑆𝐸𝑄𝑠
𝑙 =

1

𝑁𝑘

∑ ‖𝒙𝑖,𝑘
𝑙 − 𝒄̇𝑘

𝑙 ‖
2

𝒙𝑖∈𝑿𝑘

 (7)

Note that, if 𝒄̇𝑘
𝑙 is selected as the expected value of 𝑿𝑘

𝑙 , i.e.,

𝒄̇𝑘
𝑙 =

1

𝑁𝑘
∑ 𝒙𝑖,𝑘

𝑙
𝒙𝑖∈𝑿𝑘

, then 𝑀𝑆𝐸𝑄𝑠
𝑙 corresponds to the variance

of 𝑿𝑘
𝑙 . Since the variance among the dimensions is not bal-

anced after PCA, the bits are distributed among dimensions

non-uniformly, as also done in [14]. After the number of bits

for each dimension is determined as described in the next sec-

tion, Max-Lloyd quantization is applied independently for

each dimension, obtaining 2𝑏𝑙 centroids, where 𝑏𝑙 is the num-

ber of bits assigned for dimension 𝑙. The centroids are stored

to create a quantization codebook.

3.3 Bit Allocation

As mentioned earlier, since the variance is not distributed

uniformly among the dimensions after PCA (the dimensions

are ordered with decreasing variances), a non-uniform bit al-

location scheme is proposed. In this paper a bit-wise adapta-

tion of the Modified-d´Hondt method [29] is proposed, which

is a widely used seat distribution method in parliamentary

elections. If the bit allocation was a parliamentary election,

then bits would be the seats in the parliament and the standard

deviations would be the votes for each party. The standard

deviations of discarded dimensions would correspond to

votes given to parties who could not enter the parliament.

In d’Hondt method, the votes for the candidates are stored

in a vector. These values are divided by the number of seats

already assigned to the candidates. After the division, the can-

didate with the highest value is given another seat. In the pro-

posed adaptation, candidates are the dimensions, votes are the

standard deviations and number of seats correspond to the

number of centroids. The algorithm starts by taking the

square root of the eigenvalues to obtain the standard devia-

tions. For each dimension, the standard deviation is divided

by the number of centroids corresponding to that dimension.

For the dimension that yields the largest division, a bit is ap-

pointed and this continues until all bits are assigned. Note

that, for 𝒃𝑙 bits appointed to dimension 𝑙, the number of cen-

troids is 2𝒃𝑙.

The d’Hondt method penalizes the dimensions for each bit

they receive, but in order to make it harder for dimensions

with low standard deviations to get their first bit, hence keep-

ing the dimension of the transformed vector as small as pos-

sible, d’Hondt method is modified and the standard deviations

are divided by √2 instead of 1 when 𝒃𝑙 is equal to 0. The

pseudo-code for the bit allocation is given in TABLE 1, and

an example demonstrating the bit distribution steps for 4 bits

on a 4-dimensional vector is given in TABLE 2. Also the dif-

ference between the d’Hondt and the Modified d’Hondt meth-

ods, and their comparison with TC [14] are presented in Fig.

1 for 32-bits.

TABLE 1

PSEUDO-CODE FOR MODIFIED-D’HONDT METHOD

Given: 𝑽: vector of standard deviations, 𝐵: number of bits

Return: 𝒃: number of allocated bits for each dimension

𝒃𝑙: The number of bits assigned to dimension 𝑙
𝑽𝑙: The standard deviation for dimension 𝑙
𝒑𝑙: The standard deviation per centroid for dimension 𝑙

 𝒃 = 𝟎

 𝑤ℎ𝑖𝑙𝑒 ∑ 𝒃𝑙 < 𝐵

o 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ dimension 𝑙
 𝑖𝑓(𝒃𝑙 = 0)

 𝒑𝑙 = 𝑽𝑙 √2⁄

 𝑒𝑙𝑠𝑒

 𝒑𝑙 = 𝑽𝑙 √2𝒃𝑙⁄

o Allocate 1 bit to max
𝑙

𝒑𝑙, (𝒃𝑙 = 𝒃𝑙 + 1)

OZAN ET AL.: K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 5

TABLE 2

BIT ALLOCATION EXAMPLE FOR 4 BITS ON A 4D VECTOR.

Principal

Comp. 1
Principal

Comp. 2
Principal

Comp. 3
Principal

Comp. 4

 Std. Dev. 100 75 50 10
 Allocate: 0 0 0 0

Iter.

1
Divide:

100

√2
= 70.7

75

√2
= 53.1

50

√2
= 35.4

10

√2
= 7.07

 Allocate: 1 0 0 0

Iter.

2
Divide:

100

21
= 50

75

√2
= 53.1

50

√2
= 35.4

10

√2
= 7.07

 Allocate: 1 1 0 0

Iter.

3
Divide:

100

21
= 50

75

21

= 37.5

50

√2
= 35.4

10

√2
= 7.07

 Allocate: 2 1 0 0

Iter.

4
Divide:

100

22
= 25

75

21

= 37.5

50

√2
= 35.4

10

√2
= 7.07

 Allocate: 2 2 0 0

Fig. 1: Bit allocation as given in TC [14], by d’Hondt and Modified
d’Hondt methods. (left vertical axis: bits per dimension, right vertical
axis: standard deviation, horizontal axis: dimensions)

As it can be seen in Fig. 1, the Modified d’Hondt method

emphasizes more the dimensions with higher variances. Since

there is a limited number of bits, assigning multiple bits to

one dimension means that another dimension is discarded

from quantization, so this dimension can also be removed

from the subspace. In other words, the reduced number of di-

mensions 𝐿𝑘 for a subspace is the number of dimensions

which has at least one allocated bit.

3.4 Cluster Updates

 Once the subspaces and their number of dimensions are

established, the quantizers are obtained and each sample from

the training set is assigned to its new cluster. The new sub-

space of a sample 𝒙𝑖 is determined by (8) and each sample is

assigned to the cluster that gives the lowest quantization error.

argmin
𝑘

(‖𝑹𝑘
𝑇(𝒙𝑖 − 𝝁𝑘) − 𝑄𝑘(𝑹𝑘

𝑇(𝒙𝑖 − 𝝁𝑘))‖
2

+ ‖(𝒙𝑖 − 𝝁𝑘) − 𝑹𝑘𝑹𝑘
𝑇(𝒙𝑖 − 𝝁𝑘)‖

2
)

(8)

Note that the second term in (8) is identical to the second

term in (6). This term represents the distance of a sample 𝒙𝑖

to the affine subspace 𝓕𝑘, which is defined by matrix 𝑹𝑘 and

the affine shift vector 𝝁𝑘, as follows:

𝑑(𝒙𝑖 , 𝓕𝑘) = ‖𝑹𝑘
⊥𝑇

(𝒙𝑖 − 𝝁𝑘)‖ (9)

This distance can be equivalently calculated using (10) if 𝑹𝑘

is an orthogonal projection matrix. Here it is recommended to

use (10) instead of (9), because (9) requires the storage of

𝑹𝑘
⊥, which brings additional memory cost, especially when

𝐷 ≫ 𝐿𝑘.

𝑑(𝒙𝑖 , 𝓕𝑘) = ‖(𝒙𝑖 − 𝝁𝑘) − 𝑹𝑘𝑹𝑘
𝑇(𝒙𝑖 − 𝝁𝑘)‖ (10)

3.5 Filtering Outliers

In order to prevent early convergence to a local minimum,

in the proposed method, a percentage of the samples are fil-

tered out according to the quantization error, before updating

the corresponding PCA, similar to [26]. It starts with 25% and

is reduced by 1% at each iteration.

Up to now, in Section 3, the proposed iterative approach to

obtain the codevectors while minimizing the error in (6) is

described. The whole training algorithm is given as a pseudo-

code in TABLE 3.

TABLE 3

TRAINING FOR K-SUBSPACE QUANTIZATION

Given: 𝑿: set of samples, 𝐾: number of subspaces

𝑁𝑖𝑡: number of iterations

Return: 𝑪𝑘, 𝑹𝑘 and 𝝁𝑘 for all 𝑘 : codebooks, transfor-

mation matrices and affine shift vectors for all subspaces

𝒄𝒍: Vector of cluster indices for all samples, 0 < 𝒄𝒍𝑖 ≤ 𝐾

 Initialize 𝒄𝒍 for 𝐾 clusters using K-Means

 For 𝑁𝑖𝑡 iterations,

o 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ cluster 𝑿𝑘

 Perform PCA to obtain 𝑹𝑘 and 𝝁𝑘

 Distribute bits as in Section 3.3

 Perform dimension reduction

 Obtain the codebook 𝑪𝑘

o 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ sample 𝒙𝑖 in 𝑿

 Find the cluster with the minimum

quantization error.

 Update cluster index 𝒄𝒍𝑖

o Filter outliers.

3.6 Sample Encoding

The process of sample encoding is performed as follows:

The given sample 𝒗 ∈ ℝ𝐷 is projected onto the subspace 𝓕𝑘

to obtain 𝒗̂𝑘 ∈ ℝ𝐿𝑘 which corresponds to the minimum quan-

tization error, as given in (8). For each dimension 𝑙, the near-

est centroid 𝒄𝑘,𝑗
𝑙 among 2𝑏𝑙 centroids is determined by the

subquantizer. The binary string representing the chosen cen-

troids is concatenated to the index 𝑘 of the subspace 𝓕𝑘 in

order to generate the final binary code.

0

75

150

225

300

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Total σ

d'Hondt Distribution

Mod-d'Hondt Distribution

TC Distribution

d'Hondt σ per centroid

Mod-d'Hondt σ per centroid

TC σ per centroid

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

3.7 Speeding up the Encoding Process

In order to calculate the quantization error for all sub-

spaces, the sample should be projected onto each subspace

and quantized by the corresponding subquantizer. However,

to improve the encoding speed, instead of looking for the

nearest code in all 𝐾 subspaces, the distance between the

given vector 𝒗 and the affine shift vector 𝝁𝑘 of each affine

subspace is calculated and the first 𝒦 subspaces with the

smallest distances are selected. Then 𝒗 is only projected onto

those subspaces and the quantization errors are calculated.

Experimentally it has been observed that, for a limited num-

ber of subspace projections, almost the same quantization er-

ror (less than 1% difference) can be obtained. Using this ap-

proach, the encoding process is accelarated by approximately

16 times. The pseudo-code for encoding a new sample vector

is presented in TABLE 4.
TABLE 4

ENCODING A NEW SAMPLE

Given: 𝒗: a sample to be quantized,

Return: 𝝇: binary code string

 Select 𝒦 subspaces with closest centers to 𝒗

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 in 𝒦

o Project sample 𝑣 to the subspace 𝓕𝑘 and calculate

the quantization error as in (8).

 Append the binary string which corresponds to the

smallest distance, to the binary string 𝝇

 Append index 𝑘 to the binary string 𝝇

3.8 Distance Approximation for ANN

In this study, an asymmetric distance calculation method is

proposed in order to approximate the distance between a

query vector and a code. Asymmetric distances have proved

to outperform symmetric approaches [8], but it is required to

have the uncompressed query vector at hand. The proposed

distance calculation method is formulated in (11), where 𝒙𝑘

is the projection of 𝒙 onto the corresponding subspace, i.e.,

𝒙𝑘 = 𝑹𝑘
𝑇(𝒙 − 𝝁𝑘). 𝑑(𝒙 , 𝒙𝑘) represents the distance to a

subspace, as given in (6) and 𝑑(𝒙𝑘 , 𝒄𝑘) corresponds to the Eu-

clidean distance to a code 𝒄𝑘 in 𝓕𝑘. 𝑑(𝒙𝑘 , 𝒄𝑘) is formulated

as in (12).

𝑑(𝒙, 𝒄𝑘) = √𝑑(𝒙 , 𝒙𝑘)2 + 𝑑(𝒙𝑘, 𝒄𝑘)2 (11)

𝑑(𝒙𝑘 , 𝒄𝑘) = ‖𝑹𝑘
𝑇(𝒙 − 𝝁𝑘) − 𝒄𝑘‖ (12)

3.9 Relations with Other Methods

In this section the links between the proposed method and

other related methods from the literature are discussed in or-

der to emphasize the novelties of the proposed method.

3.9.1 Transform Coding

As mentioned in Sections 1 and 2, Transform Coding (TC)

[14] is a vector quantization method which proposes to per-

form quantization as a Cartesian product of subquantizers

trained independently for each principal component. TC is a

special case of the proposed algorithm, where the number of

subspace clusters 𝐾 = 1. Both algorithms perform scalar

quantization on principal components and allocate bits among

dimensions non-uniformly. The novelty of the proposed

method comes from the definition and minimization of the er-

ror term in (6). The proposed method introduces multiple sub-

spaces and iteratively searches for the quantization centers in

those subspaces while jointly minimizing the quantization er-

ror. Since multiple subspace representation provides a mini-

mized distance to a subspace for each sample in the dataset,

this distance can be introduced in the distance approximation

for ANN, as explained in Section 3.8. However, in TC, this

distance does not have any effect since it is constant for all

samples and does not change ANN search order. In the pro-

posed approach an improved bit allocation procedure differ-

ent than TC is presented, as explained in Section 3.3. The per-

formance comparison of both methods is also given in Sec-

tion 4.

3.9.2 Product Quantization

Due to the links of the proposed method with TC, a relation

with Product Quantization (PQ) [12] can also be mentioned.

Both methods define subspaces but the two definitions are

quite different. In PQ, subspaces are defined using subvec-

tors, and subquantizers quantize these subvectors and then a

Cartesian product is calculated in order to obtain the final vec-

tor. However, in the proposed method, subspaces are defined

by affine shift vectors and transformation matrices. The pro-

posed method does not involve any Cartesian product calcu-

lations as in PQ, and the subquantizers are independent from

each other in that sense.

3.9.3 Locally Optimized Product Quantization

If each cluster in Locally Optimized Product Quantization

(LOPQ) [18] is considered as an affine (sub)space with 𝐷 di-

mensions, a relation can be established between LOPQ and

the proposed method. However, the two methods are different

in many aspects. Firstly, in the proposed method the dimen-

sions of subspaces are allowed to be less than 𝐷, and each

subspace may have a different number of dimensions. In other

words, the clustering in LOPQ is a specific case, where 𝐿 =
𝐷, while the proposed method is more generic, allowing 𝐿 ≤
𝐷.

Another difference between the two methods is the purpose

of clustering. LOPQ achieves localization by a coarse quan-

tizer first, and later quantizes the residuals separately, using

the coarse quantizer for indexing. In the proposed method,

however, the subspace clustering is not a coarse quantization

step, but part of an iterative approach to obtain different quan-

tization centers located in different affine subspaces. The

samples are quantized to the corresponding nearest cluster

centers, whereas in LOPQ, they are quantized to the nearest

subspace first then to the nearest center within that space.

Finally, in LOPQ, after coarse quantization, each cluster is

further quantized by a local Optimized Product Quantizer

(OPQ) [15], while in the proposed method, the quantization

centers are searched within different subspaces using a vari-

ant of Transform Coding (TC) [14]. Both OPQ and TC rely

OZAN ET AL.: K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 7

on PCA, however, since bits are allcoated non-uniformly in

TC, it has a natural dimension reduction property, while OPQ

uses all dimensions. This property of TC is quite beneficial

for the proposed method as the dimension reduction is com-

bined with subspace clustering, i.e., the dimension of the sub-

space in question is decided according to the proposed bit al-

location method. By using such subquantizers, the required

storage overhead is reduced significantly. For example, for

the GIST feature, for each subquantizer, one needs to store a

960x960 PCA transformation matrix for OPQ, while the TC

variant requires only a matrix of 960x40 (64-bit coding, on

average).

3.9.4 M-PCA Binary Embedding

As stated above, in our recent study [28] (MPCA-E), we

have further optimized the second error term in (3), by using

multiple PCA clustering as a preprocessing step. Then we

train a subquantizer for each cluster. However, in this paper,

we take it one step further by performing the optimization of

the quantizers and the subspaces jointly, with the help of the

proposed iterative approach.

In MPCA-E, the data is clustered according to the distance

of samples to subspaces. This reduces the transformation er-

ror, which also affects the total quantization error. However,

in this approach, clustering is performed using the quantiza-

tion error obtained in the corresponding subspaces. In other

words, each sample is assigned to the cluster that results in

the lowest quantization error. This iterative approach de-

creases the overall quantization error directly.

Since multiple PCA clustering is a preprocessing step for

MPCA-E, all subspaces have the same predefined dimension.

Yet, in this paper, thanks to the joint optimization scheme,

each subspace is allowed to have different number of dimen-

sions, hence removing an important restriction from the opti-

mization process. Furthermore, in this study, a subspace se-

lection scheme is developed, which does not require projec-

tion onto all subspaces. This improves the encoding speed of

the proposed method considerably.

Finally, a variant of Transform Coding is developed for a

non-uniform bit allocation in this paper, while (MPCA-E) fo-

cuses on and compares only traditional PCA based methods.

All these provide a much better quantization scheme, with a

lower quantization error and a state-of-the-art performance,

as will be presented in the experiments.

3.9.5 Performance Evaluation Using a Toy Example

The application of the proposed method along with a set of

recent methods from the literature on a toy example is shown

in Fig. 2. Each method is tested on a small 2D dataset, and 2-

bit quantization is performed. For LOPQ and KSSQ, the num-

ber of subquantizers is 2 and for K-Means there are obviously

4 centroids. Samples encoded by different codevectors, are

presented with different colors. Since these methods are de-

signed for large-scale datasets with a high number of dimen-

sions, this toy example does not provide a quantization per-

formance comparison but it is beneficial to visualize the main

differences between the methods. For example, it is evident

that TC uses only one dimension to perform the quantization,

since the variance in the first principal component is much

greater than the second one. Another observation could be the

rotation in OPQ with respect to PQ, as the principal compo-

nents are not aligned with the coordinate axes. Since the num-

ber of subquantizers is 2, LOPQ first coarsely divides the data

into two clusters, then each cluster is quantized with an OPQ.

The proposed method, KSSQ, also starts with the same two

subspaces, but then iterates to minimize the quantization er-

ror, and yields a quantization scheme more similar to the one

obtained by K-Means.

3.9.6 Relations with Summation Based Algorithms

As mentioned in Section 1, recent state-of-the-art methods

use summation based quantization as in [19]–[22]. In these

methods, a quantized vector is represented as a sum of several

centroids. This representation can be formulated as given in

(13). Here 𝑄𝑘 is the subquantizer which quantizes a given

vector 𝒙 to one of the centroids in the codebook 𝑘.

𝑄(𝒙) = ∑ 𝑄𝑘(𝒙)

𝐾

𝑘=1

(13)

Among these methods, Optimized Cartesian K-Means

(OCKM) [19] starts with the rotation of the Cartesian K-

Means, then instead of chosing one centroid to quantize the

given vector in the subspace in question, the quantized sub-

vector is represented by the addition of two centroids. Addi-

tive Quantization (AQ) [20] proposes the addition of

codevectors obtained from many different codebooks, but

since the computational complexity is quadratically depend-

ent on the number of subcodebooks, an Additive Product

Quantization (APQ) [20] method is proposed, which per-

forms Additive Quantization on subspaces of Product Quan-

tization seperately. Composite Quantization (CQ) [21] pro-

poses an additional constraint on the generation of centroids

in order to reduce the asymmetric distance calculation com-

plexity. Moreover, Tree Quantization (TQ) [22] brings a

graph structure to codewords called the “coding tree”, where

each vertex corresponds to a subcodebook of AQ. Each di-

mension of the given vector is assigned to an edge, resulting

in disjoint edges. So any codewords coming from any code-

books, which are not adjacent in the tree, are orthogonal. Fi-

nally a global rotation as in [15] for further optimization is

proposed resulting in a variant of TQ called Optimized Tree

Quantization (OTQ).

 The main difference between such methods and the proposed

method is, while summation based methods require the addi-

tion of the codevectors from subcodebooks, in KSSQ, the

most suitable one among them is selected, i.e.,

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Fig. 2: A comparison of the methods (a) K-Means, (b) TC, (c) PQ, (d) OPQParametric, (e) LOPQ and our method (f) KSSQ for 2-bit quantization,
obtained by running the algorithms on a 2-D toy example. For LOPQ and KSSQ there are 2 subquantizers and for K-Means obviously the
number of centroids is 4. Gray arrows are the principal components.

the one with the lowest quantization error, as given in (8).

This is first of all, computationally advantageous because the

summation based algorithms are usually computationally ex-

pensive as shown in TABLE 13. This is due to the limited

constraints put on the generation and selection of codevectors

in order to obtain better quantization performance.

In the proposed method however, the constraints of many

Cartesian product based approaches such as [12], [14], [16]

are retained, which require much less computations. Thanks

to the jointly optimized subspace generation approach, the as-

sumptions of the given constraints are much more realistic for

the given dataset, resulting in a quantization scheme with im-

proved performance.

As discussed later in Section 5.7, the distance calculation

complexity of the proposed method is comparable to other

Cartesian product based approaches. Besides, one big disad-

vantage of the summation based approaches is that, the dis-

tance calculation is more expensive than the Cartesian prod-

uct based approaches, because of the nonorthogonality be-

tween subcodebooks, as also stated in [22]. Hence using the

proposed method, a faster exhaustive search is possible.

4 EXPERIMENTS

The proposed approach is tested on two publicly available

datasets, SIFT1M and GIST1M [12]. SIFT1M consists of 1

Million samples of 128-dimensional SIFT vectors for test,

100,000 vectors for training and 10,000 for queries. GIST1M

consists of 1 Million samples of 960-dimensional GIST vec-

tors for test, 500,000 vectors for training and 1,000 queries.

The proposed method is trained using the given training

sets and exhaustive search is performed on both datasets for

all queries. 𝐾 = 256 and 𝒦 = 16 for SIFT1M, and 𝐾 = 32

and 𝒦 = 8 for GIST1M are selected, as later justified in Sec-

tion 5. The proposed method (KSSQ) is compared with the

recent state-of-the-art methods from the literature such as,

Transform Coding (TC*) [14], Product Quantization (PQ)

[12], Cartesian K-Means/Optimized Product Quantization

(CKM/OPQ) [15], [16], Distance Encoded Product Quanti-

zation (DEPQ) [17], an exhaustive implementation of Lo-

cally Optimized Product Quantization (E-LOPQ*) [18], Op-

timized Cartesian K-Means (OCK) [19], Additive Quantiza-

tion (AQ/APQ) [20], Composite Quantization (CQ) [21],

Optimized Tree Quantization (OTQ) [22] and MPCA Binary

Embedding (MPCA-E*) [28].

The results for most of the competing methods are obtained

from the figures in the original publications while our own

implementations of TC*, DEPQ*, E-LOPQ* and MPCA-E*

are used. For DEPQ*, 𝐾 = 128 is selected and 1 bit is allo-

cated for distance encoding as suggested in [17]. For E-

LOPQ* an exhaustive version of LOPQ is developed for fair

comparison with other exhaustive methods. 𝐾 = 256 is se-

lected, allocating 8 bits for cluster index overhead. For

MPCA-E, the multiple PCA version of the Transform Coding

is selected as it provides the best retrieval performance [28].

For AQ/APQ, AQ is compared for 32-bits coding and APQ

for 64-bits as suggested by the authors. NA indicates that the

corresponding results are not presented in the original publi-

cation for the corresponding method.

OZAN ET AL.: K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 9

TABLE 5

RECALL@R RESULTS FOR SIFT1M, 32-BIT CODES

 recall@1 recall@10 recall@100

PQ 0.052 0.230 0.595

TC* 0.057 0.197 0.519

CKM/OPQ 0.068 0.273 0.658

OCK NA 0.348 0.742

AQ 0.106 0.415 0.825

DEPQ* 0.017 0.086 0.310

CQ NA NA NA

E-LOPQ* 0.134 0.385 0.738

OTQ 0.093 0.368 0.793

MPCA-E* 0.124 0.404 0.784

KSSQ 0.145 0.434 0.802

TABLE 6

RECALL@R RESULTS FOR GIST1M, 32-BIT CODES

 recall@1 recall@10 recall@100

PQ 0.023 0.068 0.176

TC* 0.053 0.104 0.291

CKM/OPQ 0.054 0.142 0.396

OCK NA 0.172 0.467

AQ 0.069 0.189 0.467

DEPQ* 0.025 0.092 0.323

CQ NA NA NA

E-LOPQ* 0.049 0.131 0.362

OTQ NA NA NA

MPCA-E* 0.054 0.149 0.345

KSSQ 0.078 0.191 0.437

TABLE 7

RECALL@R RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100

PQ 0.224 0.599 0.924

TC* 0.205 0.535 0.877

CKM/OPQ 0.243 0.638 0.940

OCK 0.274 0.680 0.945

APQ 0.298 0.741 0.972

DEPQ* 0.139 0.432 0.806

CQ 0.288 0.716 0.967

E-LOPQ* 0.297 0.703 0.957

OTQ 0.317 0.748 0.972

MPCA-E* 0.286 0.710 0.923

KSSQ 0.325 0.754 0.976

TABLE 8

RECALL@R RESULTS FOR GIST1M, 64-BIT CODES

 recall@1 recall@10 recall@100

PQ 0.076 0.218 0.504

TC* 0.096 0.223 0.547

CKM/OPQ 0.118 0.334 0.715

OCK 0.130 0.358 0.720

AQ/APQ NA NA NA

DEPQ* 0.096 0.308 0.668

CQ 0.135 0.377 0.729

E-LOPQ* 0.116 0.331 0.656

OTQ NA NA NA

MPCA-E* 0.110 0.312 0.662

KSSQ 0.136 0.396 0.741

The recall@𝑹 measure is selected as the performance met-

ric, which is the recall value for the first 𝑅 retrieved samples.

It is assumed that the nearest sample in the test set is the

ground truth for each query, as in [16], [18]–[22], [28]. The

results for recall@1, recall@10 and recall@100 arecalcu-

lated. The results obtained on SIFT1M and GIST1M datasets

for 32-bit coding are presented in TABLE 5 and TABLE 6

and the results obtained on SIFT1M and GIST1M datasets for

64-bit coding are presented in TABLE 7 and TABLE 8, re-

spectively.

As observed from the results presented above, the proposed

method outperforms all recent state-of-the-art methods for re-

call@1 and recall@10 scores, for all datasets and all code

lengths. Only for recall@100 scores in 32-bit codes, the pro-

posed method has been outperformed by AQ/APQ, which is

computationally much more expensive as discussed in the

next section.

Here it should again be emphasized that the results pre-

sented for E-LOPQ* are different from the ones presented in

[18], for several reasons. First of all, since we test the methods

for exhaustive search, in the exhaustive implementation of

[18], all the cells have been visited for fair comparison, i.e.,

the number of visited cells w = K. Another reason of the dif-

ference is that, the authors did not include the localization

overhead into the number of bits in [18], i.e., a sample is en-

coded with 10+64 = 74-bits in total, because of the coarse

quantizer with 𝐾 = 1024. For fair comparison of E-LOPQ*

with other methods, this overhead is included to the total

number of bits, by sparing 8 bits for coarse quantization and

the remaining 56 (24) bits for subquantizers for 64-bit (32-

bit) coding.

As it can be seen, formulating vector quantization as a joint

optimization problem has resulted in an improved perfor-

mance as expected. While [28] proves that the use of multiple

PCAs improves the retrieval performance, optimizing the

centroids together with affine subspace clustering as proposed

in this paper has shown to outperform the state-of-the-art

methods. Note that, [28] is outperformed by many state-of-

the-art methods and the proposed solution brings a very sig-

nificant improvement over it.

5 DISCUSSIONS

In this section, the parameter selections, quantization error,

computational and storage costs of the proposed algorithm are

discussed and compared with other methods.

5.1 Parameter Selection

The only parameters for the proposed method are the num-

ber of affine subspaces 𝐾 and the number of selected sub-

spaces for encoding, 𝒦. In the experiments, it has been ob-

served that, there is an upper limit for the number of affine

subspaces 𝐾, which is brought by the training set. As the num-

ber of clusters is increased exponentially, after a certain point,

empty clusters are generated, which are not assigned any sam-

ples in the update stage of the training. So the number 𝐾 is

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

selected as the highest number for which none of the clusters

is empty.

The proposed method is tested for values of 𝐾 from 16 to

256 (4-bit to 8-bit) and the recall@10 scores for 64-bit coding

on both SIFT1M and GIST1M dataset are presented in Fig. 3.

As it can be seen, after 𝐾 = 32 in GIST1M dataset, the oc-

currence of empty clusters brings down the performance. For

SIFT1M dataset, no empty clusters are observed until 𝐾=256.

Considering the number of samples in the training set, and the

number of samples per cluster, cases with 𝐾 ≥ 512 are not

tested. For 32-bit and 64-bit coding, 𝐾 = 256 (8 bits) for

SIFT1M and 𝐾 = 32 (5 bits) for GIST1M are selected. Here

note that, each bit spent on indexing the subspace is deduced

from the bits spent for quantization. For example, a 64-bit

code consists of 8 bits for subspace indexing and 56 bits for

quantization.

Fig. 3: recall@10 vs. K on SIFT1M and GIST1M with 64-bit codes.
(left vertical axis: recall@10 for SIFT1M, right vertical axis: recall@10
for GIST1M, horizontal axis: number of subspaces 𝐾)

In order to determine 𝒦, the quantization error on the train-

ing set for the proposed method is calculated. Starting from

𝒦 = 𝐾, 𝒦 is decreased exponentially while keeping the in-

crease in the quantization error less than 1% compared to the

initial error where 𝒦 = 𝐾. The change in quantization error

for different datasets and different code lengths is presented

in TABLE 9. According to this, for SIFT1M dataset 𝒦 = 16

and for GIST1M 𝒦 = 8 is chosen.
TABLE 9

CHANGE IN QUANTIZATION ERROR WITH 𝓚

 SIFT1M

64-bits

SIFT1M

32-bits

GIST1M

64-bits

GIST1M

32-bits

Encoding (K) 15253.1 26341.1 0.644 0.826

Encoding (𝓚) 15313.9 26406.2 0.645 0.833

Difference (%) 0.398 0.247 0.155 0.847

5.2 Breakdown of Quantization Error

As stated in Section 3, in the proposed method the error

term in (6) is minimized by optimizing both terms. The errors

obtained separately from the first and the second terms are

shown in TABLE 10. It is compared with the case of 𝐾 = 1,

i.e., TC variant, 𝐾 = 256, MPCA-E and OPQ using 64-bit

codes. As observed from the results, the quantization error is

decreased significantly, and an important part of this decrease

comes from the transformation error. Comparison with

MPCA-E also shows that, joint minimization of both terms

results in less quantization error in total as expected. The de-

crease in the quantization error is presented in Fig. 4.
TABLE 10

BREAKDOWN OF QUANTIZATION ERROR ON SIFT1M

 ‖𝑹𝑇𝒙𝑖 − 𝑄(𝑹𝑇𝒙𝑖)‖2 ‖𝑹⊥𝑇
𝒙𝑖‖

2
 Total

TC 16724.1 16346.1 33070.2

OPQ 22239.8 0 22239.8

MPCA-E 8988.2 7350.9 16339.1

KSSQ 5560.7 9692.4 15253.1

Fig. 4: The decrease in MSEQ on SIFT1M, MSEQ vs Iterations. (left
vertical axis: MSEQ, horizontal axis: iterations)

5.3 Comparison of Bit Allocation Methods

As mentioned in Section 3.3, in this paper it is proposed to

use Modified d’Hondt method instead the greedy bit alloca-

tion procedure which was proposed in [14]. Note that the

d’Hondt method creates allocation schemes which are similar

to [14], but the Modified d’Hondt method emphasizes the di-

mensions with higher standard deviations more, creating sub-

spaces with a reduced number of dimensions. This creates a

more suitable bit allocation scheme for the proposed method,

since the transformation error is already taken into account in

the iterative minimization. A comparison of performances of

the proposed method using the d’Hondt and the Modified

d’Hondt allocation schemes is presented in TABLE 11. As it

can be seen, KSSQ with the Modified d’Hondt scheme per-

forms better than KSSQ with d’Hondt.
TABLE 11

RECALL@R RESULTS FOR DIFFERENT BIT ALLOCATION METHODS

ON SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100

d’Hondt 0.312 0.733 0.974

Modified d’Hondt 0.325 0.754 0.976

5.4 Indexing and Non-Exhaustive Search

Scalibility of binary embedding methods for billion scale

datasets is usually provided by indexing methods as in [15],

[18], [30], [31] . In these methods, first a coarse quantizer is

applied to create an inverse file list, then, except LOPQ, the

residuals of the coarse quantizer are quantized by a subquan-

tizer. In LOPQ, separate subquantizers are trained for each

coarse quantizer codeword. So a given query is compared to

only a subset of the original dataset, which corresponds to the

samples of the nearest cells. This provides faster, non-exhaus-

tive search. The proposed method can be easily replaced with

the subquantizer (PQ in [30], [31] or OPQ in [15]) and scale

up for large scale datasets.

0.37

0.38

0.39

0.40

0.41

0.68

0.7

0.72

0.74

0.76

16 32 64 128 256

SIFT GIST

14500

15000

15500

16000

16500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

OZAN ET AL.: K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 11

As an example, we follow the approach in [31] and replace

the residual quantizer 𝑞𝑟 with the proposed method and test

the performance for non-exhaustive search on SIFT1B dataset

[12]. SIFT1B consists of 1 billion samples with 128 dimen-

sions. The results of the proposed method are compared with

the state-of-the-art single index methods such as IVFADC

[31], I-OPQ [18] and LOPQ [18], as presented in [18]. Sim-

ilar to [18], 8192 clusters are used for indexing, and the search

is performed in the nearest 64 cells. The results are presented

in TABLE 12.
TABLE 12

RECALL@R RESULTS FOR SIFT1B, 64-BIT CODES, 13-BIT INDEXES

 recall@1 recall@10 recall@100

IVFADC 0.088 0.372 0.733

I-OPQ 0.114 0.399 0.777

LOPQ 0.199 0.586 0.909

I-KSSQ 0.141 0.472 0.840

 As it can be seen, the proposed method performs better

than other global methods, yet it is outperformed by LOPQ.

Here it should be emphasized that, the local optimization re-

quires a great amount of additional storage, around 3GB with

these parameters [18], while the proposed method requires

only around 20MB. Since in this paper the focus is drawn on

the quality of quantization, the improvements on non-exhaus-

tive search for KSSQ are left for future work.

5.5 Computational Cost of Training

The computational cost of the proposed training scheme

can be calculated as follows. For each of the 𝐾 affine sub-

spaces, 𝐾 PCAs are calculated, each with a cost of

Ο(𝐷3 + 𝐷2𝑁). Then, each sample is projected onto each af-

fine subspace with a cost of Ο(𝐷𝐿), where 𝐿 is the number of

dimensions after dimension reduction. To calculate the dis-

tance to the corresponding subspace, another projection with

the same cost is needed. The cost of obtaining centroids in

each subspace is Ο(𝑁𝐺𝑇𝑀𝐿), where 𝑇𝑀𝐿 is the number of it-

erations for Max-Lloyd algorithm and 𝐺 is the number of bits.

To update the subspaces each sample is encoded, with a cost

of Ο(2𝐾𝐷𝐿) as explained below. These steps are repeated for

𝑇𝑇𝑅 iterations. 𝑇𝑀𝐿 = 10 and 𝑇𝑇𝑅 = 50 are chosen. The total

training cost can thus be computed as follows:

𝑂 (𝑇𝑇𝑅(𝐾(𝐷3 + 𝑁𝐷2) + 𝑁(2𝐷𝐿 + 𝐺𝑇𝑀𝐿 + 2𝐾𝐷𝐿))) (14)

5.6 Computational Cost of Encoding

The encoding cost for the proposed method can be calcu-

lated as follows. First the first 𝒦 subspaces among 𝐾 are

found with centers closest to the given sample, with a cost of

Ο(𝐾𝐷) (𝒦 ≪ 𝐷). For a given sample, 𝒦 projections are per-

formed and each projection costs Ο(2𝐷𝐿), including the dis-

tance calculation to a given subspace. After projecting the

sample to the subspace, approximately 𝐺 comparisons are

needed to find the corresponding code. So the total encoding

cost is Ο(2𝒦𝐷𝐿 + 𝐾𝐷 + 𝒦𝐺). The cost comparison of the

proposed method is presented in TABLE 13. As observed,

KSSQ has comparable cost with respect to most of the com-

peting methods and much less cost than the best performing

competitors AQ/APQ and OTQ. For example, for 32-bit cod-

ing on GIST1M dataset, the proposed method is 4 times less

costly than OTQ and 44 times less costly than AQ/APQ.

5.7 Computational Cost of the Distance
Calculation

Given that projections on different subspaces are precom-

puted and stored for a given sample, the asymmetric distance

can be calculated in less than 𝐿 table lookups, i.e., one lookup

for each dimension. However, if some dimensions are stored

together in the lookup table, the number of lookups can be

decreased to the same level as in [12], [15], [16].

5.8 Additional Storage Costs

The additional storage cost of the proposed method is com-

parable to that of the competing methods. For KSSQ, it is re-

quired to store the transformation matrix, the affine shift vec-

tor and the centroids for each affine subspace. The cost can

be approximately expressed as Ο(𝐾𝐷𝐿). Note that this cost is

independent from the size of the dataset, but depends on the

number of subspaces, the dimension of the input space and

the number of bits used for coding. For example, for the 960-

dimensional dataset GIST1M, KSSQ requires an additional

space of about 9 𝑀𝐵. However, for example, the storage cost

of OPQ can be approximately expressed as Ο(𝐷2 + 𝐻𝐷) and

for LOPQ it is Ο(𝐾(𝐷2 + 𝐻𝐷)), resulting in 9 𝑀𝐵 for OPQ

and 2 𝐺𝐵 for LOPQ. OTQ has a storage cost of Ο(𝐷2 +
𝑀𝐻𝐷) corresponding to 22 𝑀𝐵. Considering these figures, it

can be said that the storage costs of KSSQ are comparable to

the competing methods. A detailed comparison of the storage

space requirements of KSSQ and the competing methods is

given in TABLE 13.

6 CONCLUSION

In this study a novel vector quantization algorithm is pro-

posed for the approximate nearest neighbor search problem.

The proposed method explores the quantization centers in af-

fine subspaces through an iterative technique, which jointly

attempts to minimize the quantization error of the training

samples in the learnt subspaces, while minimizing the projec-

tion error of the samples to the corresponding subspaces. The

proposed method has proven to outperform the state-of-the-

art-methods, with comparable computational cost and addi-

tional storage. In this paper it is also shown that, dimension

reduction is an important source of quantization error, and by

exploiting subspace clustering techniques the quantization er-

ror can be reduced, leading to a better quantization perfor-

mance.

So far we have focused mainly on exhaustive search but an

index-based non-exhaustive extension for the proposed

method can be further investigated. Our approach can also be

extended to labeled datasets in order to test k-nearest neighbor

classification performance. These will be the topics of our fu-

ture work.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

TABLE 13

COMPARISON OF COMPUTATIONAL AND STORAGE COSTS

Method Encoding Cost Encoding Cost for Different Datasets and Code Lengths

 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64

PQ Ο(𝐻𝐷) 32768 32768 245760 245760

TC Ο(𝐷𝐿 + 𝐺) 2592 5184 19232 38464

CKM/OPQ Ο(𝐷2 + 𝐻𝐷) 49152 49152 1167360 1167360

OCK Ο(𝑇𝐻𝐷) 327680 327680 2457600 2457600

AQ Ο(𝑀2𝐻2(𝑀 + log(𝑀𝐻)) + 𝐻𝐷) 14712832 79724544 14925824 79937536

APQ Ο (𝐷2 +
𝑀

4
(42𝐻2(4 + log(4𝐻)) + 𝐻𝐷)) 14729216 14761984 15847424 16093184

DEPQ Ο(𝐷2 + 𝐻𝐷/2) 32768 32768 1044480 1044480

CQ Ο(3𝑀𝐻𝐷) 393216 786432 2949120 5898240

E-LOPQ Ο(𝜘𝐷 + 𝐻𝐷 + 𝐷2) 81920 81920 1413120 1413120

OTQ Ο(𝐷2 + 𝐻𝐷 + 𝑀𝐻2) 311296 573440 1429504 1691648

MPCA-E Ο(2𝐾𝐷𝐿 + 𝐾𝐺) 1318912 2637824 1229824 2459648

KSSQ Ο(𝐾𝐷 + 2𝒦𝐷𝐿 + 𝒦𝐺) 115200 197632 338176 645632

Method Storage Cost Storage Cost for Different Datasets and Code Lengths (MB)

 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64

PQ Ο(𝐻𝐷) 0.25 0.25 1.88 1.88

TC Ο(𝐷𝐿) 0.02 0.04 0.15 0.29

CKM/OPQ Ο(𝐷2 + 𝐻𝐷) 0.38 0.38 8.91 8.91

OCK Ο(𝐷2 + 2𝐻𝐷) 0.63 0.63 10.78 10.78

AQ Ο(𝑀𝐻𝐷) 1.00 2.00 7.50 15.00

APQ O(𝐷2 + 𝑀𝐻𝐷) 1.13 2.13 14.53 22.03

DEPQ Ο(𝐷2 + 𝐻𝐷/2) 0.25 0.25 7.97 7.97

CQ Ο(𝑀𝐻𝐷) 1.00 2.00 7.50 15.00

E-LOPQ Ο(𝜘(𝐻𝐷 + 𝐷2)) 96.00 96.00 2280.00 2280.00

OTQ Ο(𝐷2 + 𝑀𝐻𝐷) 1.13 2.13 14.53 22.03

MPCA-E Ο(𝐾𝐷𝐿) 5.00 10.00 4.69 9.38

KSSQ Ο(𝐾𝐷𝐿) 5.00 10.00 4.69 9.38

𝑯: number of subcodevectors 256 256 256 256

𝑫: number of dimensions 128 128 960 960

𝑴: number of subcodebooks 4 8 4 8

𝑳: number of reduced dimensions (on average) 20 40 20 40

𝝒: number of subspaces for LOPQ 256 256 256 256

𝑲: number of subspaces for KSSQ and MPCA-E 256 256 32 32

𝓚: number of selected subspaces for encoding 16 16 8 8

G: number of bits used for encoding. 32 64 32 64

𝑻: search depth for OCK 10 10 10 10

REFERENCES

[1] P. Indyk and R. Motwani, “Approximate nearest

neighbors: towards removing the curse of

dimensionality,” Proc. thirtieth Annu. ACM Symp.

Theory Comput., pp. 604–613, 1998.

[2] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for

Similarity Search: A Survey,” in arXiv preprint, 2014,

p. :1408.2927.

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,

“Locality-Sensitive Hashing Scheme Based on P-

stable Distributions,” in SCG, 2004, p. 253.

[4] K. Terasawa and Y. Tanaka, “Spherical LSH for

Approximate Nearest Neighbor Search on Unit

Hypersphere,” in WADS, 2007, pp. 27–38.

[5] X. He, D. Cai, S. Yan, and H. Zhang, “Neighborhood

Preserving Embedding,” in ICCV, 2005.

OZAN ET AL.: K-SUBSPACES QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 13

[6] H. Jegou, M. Douze, C. Schmid, and P. Perez,

“Aggregating local descriptors into a compact image

representation,” in CVPR, 2010, pp. 3304–3311.

[7] J. Heo, Y. Lee, and J. He, “Spherical hashing,” in

CVPR, 2012.

[8] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik,

“Asymmetric distances for binary embeddings.,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no.

1, pp. 33–47, Jan. 2014.

[9] W. Dong, M. Charikar, and K. Li, “Asymmetric

distance estimation with sketches for similarity

search in high-dimensional spaces,” in SIGIR, 2008,

p. 123.

[10] S. Lloyd, “Least squares quantization in PCM,” IEEE

Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, 1982.

[11] A. K. Jain, “Data clustering: 50 years beyond K-

means,” Pattern Recognit. Lett., vol. 31, no. 8, pp.

651–666, 2010.

[12] H. Jégou, M. Douze, and C. Schmid, “Product

quantization for nearest neighbor search.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp.

117–28, Jan. 2011.

[13] Y. Gong and S. Lazebnik, “Iterative quantization: A

procrustean approach to learning binary codes,” in

CVPR, 2011, pp. 817–824.

[14] J. Brandt, “Transform coding for fast approximate

nearest neighbor search in high dimensions,” in

CVPR, 2010, pp. 1815–1822.

[15] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized Product

Quantization.,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 36, pp. 1–12, Dec. 2014.

[16] M. Norouzi and D. J. Fleet, “Cartesian K-Means,” in

CVPR, 2013, pp. 3017–3024.

[17] J.-P. Heo, Z. Lin, and S.-E. Yoon, “Distance Encoded

Product Quantization,” in CVPR, 2014, pp. 2139–

2146.

[18] Y. Kalantidis and Y. Avrithis, “Locally Optimized

Product Quantization for Approximate Nearest

Neighbor Search,” in CVPR, 2014.

[19] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and

S. Li, “Optimized Cartesian K-Means,” IEEE Trans.

Knowl. Data Eng., vol. 27, no. 1, pp. 180–192, Jan.

2015.

[20] A. Babenko and V. Lempitsky, “Additive

Quantization for Extreme Vector Compression,” in

CVPR, 2014, pp. 931–938.

[21] T. Zhang, D. Chao, and J. Wang, “Composite

Quantization for Approximate Nearest Neighbor

Search,” in ICML, 2014.

[22] A. Babenko and V. Lempitsky, “Tree Quantization for

Large-Scale Similarity Search and Classification,” in

CVPR, 2015.

[23] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE

Trans. Inf. Theory, vol. 44, no. 6, pp. 2325–2383,

1998.

[24] N. Kambhatla and T. K. Leen, “Dimension Reduction

by Local Principal Component Analysis,” Neural

Comput., vol. 9, no. 7, pp. 1493–1516, Oct. 1997.

[25] V. Gassenbauer, J. Křivánek, K. Bouatouch, C.

Bouville, and M. Ribardière, “Improving

Performance and Accuracy of Local PCA,” Comput.

Graph. Forum, vol. 30, no. 7, pp. 1903–1910, Sep.

2011.

[26] P. Agarwal and N. Mustafa, “k-Means Projective

Clustering,” in SIGMOD, 2004, pp. 155–165.

[27] C. M. Bishop, “Bayesian PCA,” in NIPS, 1999, vol.

11, pp. 382–388.

[28] E. C. Ozan, S. Kiranyaz, and M. Gabbouj, “M-PCA

Binary Embedding For Approximate Nearest

Neighbor Search,” in BigDataSE, 2015.

[29] M. Gallagher, “Proportionality, disproportionality

and electoral systems,” Electoral Studies, vol. 10. pp.

33–51, 1991.

[30] A. Babenko and V. Lempitsky, “The inverted multi-

index,” in CVPR, 2012, vol. 14, no. 1–3, pp. 3069–

3076.

[31] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg,

“Searching in one billion vectors: Re-rank with

source coding,” ICASSP, no. 3, pp. 861–864, 2011.

Ezgi Can Ozan received his BS degree in
Electrical and Electronics Department at Mid-
dle East Technical University, Ankara, Turkey,
in 2007 and MS degree in Signal Processing
from the same University, in 2011. He is cur-
rently a Ph.D candidate and working as a re-
searcher at Tampere University of Technology,
Tampere, Finland. His areas of interest include
large-scale multimedia search, pattern recog-
nition, machine learning, and computer vision.

Serkan Kiranyaz received his BS degree in
Electrical and Electronics Department at
Bilkent University, Ankara, Turkey, in 1994 and
MS degree in Signal and Video Processing
from the same University, in 1996. He worked
as a Senior Researcher in Nokia Research
Center and later in Nokia Mobile Phones, Tam-
pere, Finland. He received his PhD degree
from Tampere University of Technology; Insti-
tute of Signal Processing in 2005 and his Do-
cency at 2007 respectively. He is currently

working as a Professor in Electrical Engineering Department of Qatar
University. Prof. Kiranyaz published 2 books, more than 35 journal pa-
pers on several IEEE Transactions and some other high impact jour-
nals and 80+ papers in international conferences. His recent publica-
tion, “Automatic Object Segmentation by Quantum Cuts” won the IBM

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Best Paper Award in ICPR’14. Prof. Kiranyaz is a senior of IEEE.

Moncef Gabbouj received his BS degree in
electrical engineering in 1985 from Oklahoma
State University, Stillwater, and his MS and
PhD degrees in electrical engineering from
Purdue University, West Lafayette, Indiana, in
1986 and 1989, respectively. Dr. Gabbouj is a
Professor of Signal Processing at the Depart-
ment of Signal Processing, Tampere University
of Technology, Tampere, Finland. He was
Academy of Finland Professor during 2011-
2015. He held several visiting professorships at

different universities. His research interests include multimedia con-
tent-based analysis, indexing and retrieval, machine learning, nonlin-
ear signal and image processing and analysis, voice conversion, and
video processing and coding. Dr. Gabbouj is a Fellow of the IEEE and
member of the Academia Europaea and the Finnish Academy of Sci-
ence and Letters. He is the past Chairman of the IEEE CAS TC on
DSP and committee member of the IEEE Fourier Award for Signal
Processing. He served as Distinguished Lecturer for the IEEE CASS.
He served as associate editor and guest editor of many IEEE, and
international journals. Dr. Gabbouj was the recipient of the 2015 TUT
Foundation Grand Award, the 2012 Nokia Foundation Visiting Profes-
sor Award, the 2005 Nokia Foundation Recognition Award, and sev-
eral Best Paper Awards. He published over 650 publications and su-
pervised 40 doctoral theses.

III

SELF-ORGANIZED BINARY ENCODING FOR APPROXIMATE NEAREST
NEIGHBOR SEARCH

by

E.C.Ozan, S. Kiranyaz, M. Gabbouj & X. Hu, August 2016

24th European Signal Processing Conference (EUSIPCO), Budapest, 2016, pp. 1103-
1107.

©2016 IEEE. Reprinted, with permission, from E.C.Ozan, S. Kiranyaz, M. Gabbouj and X.
Hu, Self-Organized Binary Encoding for Approximate Nearest Neighbor Search, European

Signal Processing Conference (EUSIPCO), August 2016.

Self-Organizing Binary Encoding for Approximate

Nearest Neighbor Search

Ezgi Can Ozan

Signal Processing Department

Tampere University of

Technology

Tampere, Finland

ezgi.ozan@tut.fi

Serkan Kiranyaz

Electrical Engineering Department,

College of Engineering

 Qatar University

Qatar

mkiranyaz@qu.edu.qa

Moncef Gabbouj

Signal Processing Department

Tampere University of

Technology

Tampere, Finland

moncef.gabbouj@tut.fi

Xiaohua Hu

College of Computing and

Informatics

Drexel University

Philadelphia, PA, USA

xh29@drexel.edu

Abstract—Approximate Nearest Neighbor (ANN) search for

indexing and retrieval has become very popular with the recent

growth of the databases in both size and dimension. In this paper,

we propose a novel method for fast approximate distance

calculation among the compressed samples. Inspiring from

Kohonen’s self-organizing maps, we propose a structured

hierarchical quantization scheme in order to compress database

samples in a more efficient way. Moreover, we introduce an error

correction stage for encoding, which further improves the

performance of the proposed method. The results on publicly

available benchmark datasets demonstrate that the proposed

method outperforms many well-known methods with comparable

computational cost and storage space.

Keywords- Approximate Nearest Neighbor Search;

Quantization; Binary Feature Synthesis; Vector Compression, Self-

Organizing Maps.

I. INTRODUCTION

The increase in the amount of daily generated data has become
a significant research problem in recent years. As the size and
dimension of the generated data grew, traditional methods began
to fail to produce satisfactory results; therefore, new solutions
specific for very large-scale datasets are desired. An important
approach to handle the aforementioned problem is to develop
approximate solutions. Approximate Nearest Neighbor Search
(ANN) has become a noteworthy research topic in recent years
for indexing and retrieval in very large-scale datasets [1]. ANN
aims to compress the dataset samples as binary strings, then
estimate the distance between the dataset samples and novel
queries in a computationally efficient way.

Methods in the literature for ANN can be split into two main
branches: Hashing and Vector Quantization (VQ). Hashing
methods aim to approximate the distance between samples by
calculating the Hamming distance between binary strings.
Calculation of Hamming distance is very fast but since distances
are integer values, the accuracy is inferior [2]–[6]. VQ based
methods aim to approximate the distance between samples by
using look-up tables of pre-calculated distances between learned

codevectors and have proven to outperform Hashing based
methods in terms of retrieval accuracy [7]–[11].

In this paper, we propose a novel VQ based binary encoding
method, which performs ANN search on very large-scale
datasets in a computationally efficient way. We inspire from
Kohonen’s self-organizing maps [12] and propose a hierarchical
structure of several layers of quantization. We compare our
method with well-known methods from the literature and our
method outperforms those methods with comparable
computational and storage costs.

The rest of the paper is organized as follows: In Section II,
the problem formulation is defined and related works in the
literature are introduced. In Section III, the proposed method is
explained in detail. Section IV represents the findings of
experiments on large scale datasets and finally in Section V the
paper is concluded.

II. PROBLEM FORMULATION AND RELATED WORK

In this section, we first define VQ as an optimization problem.

For a quantizer 𝑄, given a set of 𝐷 dimensional 𝑁 input

vectors 𝑿 = {𝒙1, … , 𝒙𝑁} ∈ ℝ𝐷×𝑁, the mean squared

quantization error 𝑀𝑆𝐸𝑄 is defined as in (1).

𝑀𝑆𝐸𝑄 =
1

𝑁
∑‖𝒙𝑖 − 𝑄(𝒙𝑖)‖2

𝑁

𝑖

(1)

Among the 𝐾 codevectors in the codebook matrix 𝑪 ∈ ℝ𝐷×𝐾
 of

𝑄, the suitable one is selected by a binary selection vector 𝒃𝑖 ∈

 {0,1}𝐾 is the binary selection vector, with ‖𝒃𝑖 ‖ = 1.

𝑄(𝒙𝑖) = 𝑪𝒃𝑖
(2)

In ANN adaptations of VQ, the number of codevectors
should be much greater than the traditional VQ. This is obtained
by using several codebooks for quantization [1]. By using 𝑀
different codebooks, the number of codevectors can be increased
from 𝐾 to 𝐾𝑀.

Product Quantization (PQ) by Jégou et al. [7] is among the
first examples of VQ for ANN. The authors propose to divide
the feature space into 𝑀 subspaces, therefore, the optimization

is split into 𝑀 problems and solved in each subspace separately.
However, the division of the feature space requires the
assumption of statistical independency among the subspaces,
which is not realistic in practice. Several improvements on PQ
have been proposed in order to overcome this drawback such as
[8], [9]. The optimization problem can be formulated as given in
(3).

𝑀𝑆𝐸𝑄
(𝑃𝑄1)

= min
{𝑪1},{𝑩1}

1

𝑁
∑ ‖𝒙𝑖 − 𝑪1𝒃1𝑖‖

2𝑁
𝑖=1

.

.

𝑀𝑆𝐸𝑄
(𝑃𝑄𝑀)

= min
{𝑪𝑀},{𝑩𝑀}

1

𝑁
∑ ‖𝒙𝑖 − 𝑪𝑀𝒃𝑀𝑖‖

2𝑁
𝑖=1

(3)

A. Residual Vector Quantization

Residual Vector Quantization (RVQ) by Chen et al. [11] is
another significant example for VQ for ANN, which follows a
totally different approach than PQ. The authors propose to create
hierarchical layers of quantization, where in each layer the
residuals of the previous layers are quantized. So the
optimization problem is again split into 𝑀 problems and solved
separately. RVQ can be formulated as given in (4).

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄1)

= min
{𝑪1},{𝑩1}

1

𝑁
∑ ‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

1

𝑚=1

)‖

𝑁

𝑖=1

2

.

.

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄𝑀)

= min
{𝑪𝑀},{𝑩𝑀}

1

𝑁
∑ ‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

)‖

𝑁

𝑖=1

2

(4)

As it can be seen in the equation above, even the problem is
split into 𝑀 layers, the optimization in each layer depends on the
solutions of the previous layers. In other words, the selection of
codevectors in each layer highly affects the selection of the
codevectors in the next layers.

In RVQ, each problem is solved using the K-Means
algorithm. K-Means algorithm converges to a local minima in
each layer, but when upper layers overfit to the data, the
contribution of lower layers decreases, leading to inferior
codebooks. In this paper, we introduce a structure for each
codebook, to prevent overfitting in higher layers and obtain
better overall quantization.

III. THE PROPOSED METHOD

The proposed method aims to improve the training of
codebooks by imposing a structure which is inspired from the
self-organizing maps in order to prevent overfitting.

A. Self-Organizing Maps

Self-organizing maps (SOM) can be considered as neural
networks, which spatially order the responses of neurons. It is
inspired from the biological fact that, in brain, the cells which
are together generally respond together. In this iterative
algorithm, the neurons are connected to each other by a
predefined topology. When one neuron is updated, the neurons
within the predefined neighborhood are updated as well as a
result of the imposed structure.

Figure 1. Illustration of SOM neuron update.

Training of SOM is a competitive learning process, i.e., for
each input vector, the best matching neuron is updated to match
even more closely to the corresponding vector. For an input
vector 𝒙, the best matching neuron is defined as given in (5).

k∗ = argmin
𝑘

(‖𝒙 − 𝒄𝑘‖2) (5)

As no closed form solution is available for the problem
above, iterative approximations are used. Using the stochastic
gradient descent approach, the update equation can be
formulated as given in (6).

𝒄𝑘(𝑡 + 1) = 𝒄𝑘(𝑡) − γ(𝑡)∇𝒄𝑘
(‖𝒙 − 𝒄𝑘‖2)

(6)

where ∇𝒄𝑘
 is the gradient operation and γ(𝑡) is the learning rate.

The corresponding gradient can be formulated as given in (7).

∇𝒄𝑘
(‖𝒙 − 𝒄𝑘‖2

2) = 2(𝒄𝑘 − 𝒙)
(7)

Using (5), (6) and (7), the update equation for the self-
organizing maps with the imposed topology can be formulated
as given in (8), where 𝒄𝑘∗ is the winner neuron and

𝒩𝒄𝑘∗ represents the set of neighboring neurons, as defined by the

topology [12].

𝒄𝑘(𝑡 + 1) = {
𝒄𝑘(𝑡) − γ(𝑡)(𝒄𝑘 − 𝒙)

𝒄𝑘(𝑡)
}

𝑖𝑓 𝑘 ∈ 𝒩𝒄𝑘∗

𝑒𝑙𝑠𝑒

(8)

The neighborhood can be defined by a Gaussian kernel
function as given in (9) and (10), where h(𝑘,𝑘∗)(𝑡) is the kernel

function, 𝑟𝑘 is the position vector of the 𝑘𝑡ℎ neuron, ℎ0(𝑡) and
𝜎(𝑡) are two suitable functions which decrease with time.

𝒄𝑘(𝑡 + 1) = 𝒄𝑘(𝑡) − ℎ(𝑘,𝑘∗)(𝑡)(𝒄𝑘 − 𝒙)
(9)

ℎ(𝑘,𝑘∗)(𝑡) = ℎ0(𝑡)𝑒−‖𝑟𝑘−𝑟𝑘∗‖
2

/𝜎(𝑡)2

(10)

Alternatively, the distance between neurons can be used to
define the neighborhood relations [12]. In our approach we
follow this method in order to discard the parameter 𝜎(𝑡), which
is dataset dependent. We define a number of nearest neurons to

This work is funded by the TEKES project “Big Data Analysis” 32.20.40.2/15
and Tieto Finland Oy.

TABLE I. PSEUDO-CODE FOR MULTI-DIMENSIONAL TOPOLOGY

Given: 𝑿: the set of input samples

 𝐾: total number of neurons

𝑘𝑙: The number of centroids assigned to

dimension 𝑙.
𝑽: vector of standard deviations,

𝑉𝑙: The standard deviation for dimension 𝑙.

 Apply PCA on 𝑿 and obtain 𝑽

 while ∏ 2𝑘𝑙 < 𝐾,

o 𝑙∗ = max
𝒍

𝑉𝒍,

o 𝑉𝑙∗ = 𝑉𝑙∗/2

o 𝑘𝑙∗ = 𝑘𝑙∗ + 1

 Obtain 2𝑘𝑙 centroids on each dimension 𝑙

 Concatenate all permutations of obtained

centroids to initialize the positions of

neurons.

the winner neuron as the neighbor set and decrease this number
exponentially with the iterations.

The neuron update process for SOM is illustrated in Figure
1. As it can be seen, the winner neuron (green disc) and all the
neighboring neurons around it (blue discs) are updated to match
even better (to move closer) to the given sample (yellow disc).

B. Multi-Dimensional Topology

Generally self-organizing maps define the network topology
in a 2D form [13]. Here in this paper, we propose a
multidimensional initialization for the imposed structure based
on the Principal Component Analysis (PCA). As the number of
neurons are predefined in SOM, we aim to distribute these
neurons uniformly within the feature space.

The proposed algorithm starts with transforming the training
data using PCA, in order to obtain the principal components and
the corresponding standard deviations. On each principal
component, we perform 1D clustering using Max-Lloyd
quantization, which is very similar to K-Means [14]. To achieve
the uniform distribution the number of centroids for each
dimension is kept directly proportional to the standard deviation.
After the centroids are distributed uniformly in the transform
space, concatenating the centroids of each dimension for all the
permutations, initial positions of the neurons are obtained.

Here note that, the number of all the permutations is, λ1 ×
λ2 × … × λ𝐿 , where λ𝑙 is the number of centroids on the 𝑙𝑡ℎ
dimension and 𝐿 is the number of centroid appointed
dimensions. In order to ensure that the total number of neurons
𝐾 = ∏ λ𝑙

𝐿
1 , we select 𝐾 to be a power of 2, and we also distribute

the centroids to the dimensions with the powers of 2. The
algorithm that is used for the distribution of neurons among the
feature space is given in TABLE I.

In RVQ’s top down hierarchical scheme [11], each
codevector in a lower layer is a residual of the corresponding
upper layer. In other words, we can consider the lower layer
codevectors as replicated and put around each and every one of
the higher layer codevectors. This is illustrated in Figure 2. As a
result of this scheme, the positions of lower layer codevectors

Figure 2. RVQ connections (left) vs SOBE connections (right).

are highly dependent on the positions of higher layer
codevectors in the feature space. While this method has proved
to be a very efficient way of exponentially increasing the total
number of codevectors, the connection between the higher and
lower layers also helps the distribution of codevectors among the
space [11].

However, in the proposed method, we aim to add another
connection among the codevectors which are in the same layer,
by using SOMs. It is an intuitive expectation that, the
connections between the codevectors of the same and different
layers will improve the quality of training, leading to lower
quantization error and better retrieval results.

C. Self-Organized Binary Embedding (SOBE)

As mentioned earlier, the proposed method uses SOMs in a
top-down hierarchical order to perform quantization on vectors.
At each layer, codevectors are calculated by training a SOM and
then the best matching codevector (neuron weight) is subtracted
from each sample in order to obtain the residuals similar to [11].
The residuals are carried to the next layer of quantization. Again
for this layer, a SOM is trained and the best matching codevector
of the new SOM is subtracted from the residuals in order to
obtain the next set of residuals and so on. This is repeated until
the final layer is reached.

Each layer of SOM is trained on the residuals of the previous
layer, hence decreases the quantization error. Thanks to the
initial structure of SOM, overfitting is evaded at each layer.
Preventing the overfitting on upper layers, we can obtain a better
quantization scheme, which utilizes the lower layers more
efficiently.

D. Encoding Correction

Since our method uses the same hierarchical structure with
RVQ, it is possible to propose a similar encoding method. The
hierarchical encoding in RVQ takes place as follows: First the
winner codevector for a layer is obtained, then the corresponding
residual is calculated and passed on to the next layer. This is
repeated for each layer.

In order to further improve the quality of encoding, we
propose an additional encoding correction step on top of the
hierarchical encoding approach mentioned above. For each
layer, all the winner codevectors except the codevector of a
given layer are subtracted from the given sample and the winner
codevector for the given layer is recalculated. If the distance

TABLE II. RESULTS FOR SIFT1M, 32-BIT CODES

recall@1 recall@10 recall@100

PQ 0.052 0.230 0.595

CKM 0.068 0.273 0.658

OCKM NA 0.348 0.742

RVQ NA NA NA

SOBE 0.010 0.348 0.731

TABLE III. RESULTS FOR SIFT1M, 64-BIT CODES

recall@1 recall@10 recall@100

PQ 0.224 0.599 0.924

CKM 0.243 0.638 0.940

OCKM 0.273 0.680 0.945

RVQ 0.257 0.653 0.946

SOBE 0.282 0.701 0.962

TABLE IV. RESULTS FOR GIST1M, 32-BIT CODES

recall@1 recall@10 recall@100

PQ 0.023 0.068 0.176

CKM 0.054 0.142 0.396

OCKM NA 0.172 0.468

RVQ NA NA NA

SOBE 0.064 0.189 0.403

TABLE V. RESULTS FOR GIST1M, 64-BIT CODES

recall@1 recall@10 recall@100

PQ 0.076 0.218 0.504

CKM 0.118 0.334 0.715

OCKM 0.130 0.358 0.719

RVQ 0.113 0.325 0.676

SOBE 0.136 0.360 0.705

between the given sample and the corrected encoding is less

than the initial encoding, then the corrected one is proposed as

the final encoding.

IV. EXPERIMENTS

We test the performance of the proposed method in two

publicly available datasets, SIFT1M and GIST1M [7]. Both

datasets consist of 1 Million samples. SIFT1M consists of 128-

dimensional SIFT vectors and GIST1M consists of 960-

dimensional GIST vectors. We use the given training sets for

training the codebooks and perform exhaustive search with the

given queries. We use the parameters of 𝐾 = 256, 𝑀 = 8 for

64-bits and 𝑀 = 4 for 32-bits coding.

A. ANN Search

The performance of the proposed method, SOBE, is

compared against Product Quantization (PQ) [7], Cartesian K-

Means (CKM) [9], Optimized Cartesian K-Means (OCKM)

[10] and Residual Vector Quantization (RVQ) [11]. We also

use recall@R performance metric, which is the average recall

for the nearest neighbor in the first r retrievals, similar to the

other methods in literature [1]. The results of the competing

methods are taken from the provided figures in the original

publications. The 32-bit and 64-bit encoding performances for

SIFT1M dataset are given in TABLE II. and in TABLE III. .

For GIST1M, the results are presented in TABLE IV. and in

TABLE V. respectively.

As it can be seen in the results from the corresponding tables,

the proposed method outperforms the compared methods for

recall@1 and recall@10 in all tests. For recall@100 the

proposed method is outperformed by OCKM except SIFT1M

64-Bit test. The tests prove that the proposed enhancements on

training and encoding have improved the nearest neighbor

search performance.

In TABLE VI. the effect of encoding correction

improvement has been shown in comparison with standard

encoding on Sift1M dataset using 64-bit codes. As it can be

seen, the proposed encoding method significantly improves the

performance.

TABLE VI. EFFECT OF ENCODING CORRECTION ON

SIFT1M, 64-BIT CODES

recall@1 recall@10 recall@100

Standard 0.275 0.691 0.961

Corrected 0.282 0.701 0.962

B. Computational and Storage Costs

The computational cost of encoding of the proposed

algorithm can be analyzed as follows: There are 𝑀 hierarchical

layers and for each layer, a given sample is compared with 𝐾

codevectors of 𝐷 dimensions each. The correction stage costs

almost the same as encoding stage, so in total the cost of

encoding is, 𝑂(2𝑀𝐾𝐷).

As it can be seen in TABLE VII. , the computational cost of

encoding of the proposed method is higher than RVQ, PQ and

CKM and comparable to OCKM, whereas the proposed method

performs significantly better. In terms of storage costs, our

method has the same requirements with RVQ, which is

comparable to the storage requirements of the compared

methods. The detailed comparison of storage costs are

represented in TABLE VIII.

TABLE VII. COMPUTATIONAL COSTS FOR ENCODING

PQ Ο(𝐾𝐷)

CKM Ο(𝐷2 + 𝐾𝐷)

OCKM Ο(10𝐾𝐷)

RVQ Ο(𝑀𝐾𝐷)

SOBE Ο(2𝑀𝐾𝐷)

TABLE VIII. STORAGE COSTS

PQ Ο(𝐾𝐷)

CKM Ο(𝐷2 + 𝐾𝐷)

OCKM Ο(𝐷2 + 2𝐾𝐷)

RVQ Ο(𝑀𝐾𝐷)

SOBE Ο(𝑀𝐾𝐷)

V. CONCLUSIONS

In this paper, we propose a novel hierarchical vector

quantization method, which splits the quantization problem into

hierarchical layers and trains a SOM at each layer. The obtained

residuals are quantized in the next layer, providing reduction in

quantization error and efficient encoding. Moreover, we

propose a code correction step in order to decrease the

quantization error further. The experimental results show that

our method performs better than the compared methods with

comparable encoding and storage costs. As a future work we

aim to investigate the performance of our method on billion

scale datasets, and further test our algorithm on class labeled

datasets using k-NN classification.

REFERENCES

[1] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for

Similarity Search: A Survey,” in arXiv preprint, 2014,

p. :1408.2927.

[2] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised

hashing for scalable image retrieval,” in CVPR, 2010,

pp. 3424–3431.

[3] Y. Gong and S. Lazebnik, “Iterative quantization: A

procrustean approach to learning binary codes,” in

CVPR, 2011, pp. 817–824.

[4] P. Li, M. Wang, and J. Cheng, “Spectral hashing with

semantically consistent graph for image indexing,”

IEEE Trans. Multimed., vol. 15, no. 1, pp. 141–152,

2013.

[5] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality

sensitive hashing: A comparison of hash function types

and querying mechanisms,” Pattern Recognit. Lett.,

vol. 31, no. 11, pp. 1348–1358, Aug. 2010.

[6] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik,

“Asymmetric distances for binary embeddings.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 36, no. 1, pp.

33–47, Jan. 2014.

[7] H. Jégou, M. Douze, and C. Schmid, “Product

quantization for nearest neighbor search.,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 117–28,

Jan. 2011.

[8] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized Product

Quantization.,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 36, pp. 1–12, Dec. 2014.

[9] M. Norouzi and D. J. Fleet, “Cartesian K-Means,” in

CVPR, 2013, pp. 3017–3024.

[10] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and

S. Li, “Optimized Cartesian K-Means,” IEEE Trans.

Knowl. Data Eng., vol. 27, no. 1, pp. 180–192, Jan.

2015.

[11] Y. Chen, T. Guan, and C. Wang, “Approximate nearest

neighbor search by residual vector quantization,”

Sensors, vol. 10, no. 12, pp. 11259–11273, 2010.

[12] T. Kohonen, “The self-organizing map,”

Neurocomputing, vol. 21, no. 1–3, pp. 1–6, 1998.

[13] M. Attik and L. Bougrain, “Self-organizing Map

Initialization,” in ICANN, 2005, pp. 357–362.

[14] S. Lloyd, “Least squares quantization in PCM,” IEEE

Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, 1982.

IV

JOINT K-MEANS QUANTIZATION FOR APPROXIMATE NEAREST
NEIGHBOR SEARCH

by

E. C. Ozan, S. Kiranyaz & M. Gabbouj, 2016

23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 2016, pp.
3645-3649.

©2016 IEEE. Reprinted, with permission, from E.C.Ozan, S. Kiranyaz and M. Gabbouj,

Joint K-Means Quantization for Approximate Nearest Neighbor Search, International
Conference on Pattern Recognition (ICPR), 2016.

Joint K-Means Quantization for Approximate Nearest Neighbor Search

Ezgi Can Ozan

Signal Processing Department

Tampere University of

Technology

Tampere, Finland

ezgi.ozan@tut.fi

Serkan Kiranyaz

Electrical Engineering

Department, College of

Engineering,

Qatar University ,Qatar

mkiranyaz@qu.edu.qa

Moncef Gabbouj

Signal Processing Department

Tampere University of

Technology

Tampere, Finland

moncef.gabbouj@tut.fi

Abstract
Recently, Approximate Nearest Neighbor (ANN) Search

has become a very popular approach for similarity search on

large-scale datasets. In this paper, we propose a novel vector

quantization method for ANN, which introduces a joint multi-

layer K-Means clustering solution for determination of the

codebooks. The performance of the proposed method is

improved further by a joint encoding scheme. Experimental

results verify the success of the proposed algorithm as it

outperforms the state-of-the-art methods.

1 Introduction

With the growth of the cardinality and the size of current
datasets, traditional methods for similarity search have begun to
fail in providing satisfactory performances. In spite of the
improvements in the computer hardware technology, the
growth of the datasets is too fast that these improvements alone
cannot catch up. One leg of this problem consists of the required
storage space. As the datasets grow bigger and bigger both in
number and cardinality, it gets harder to fit them into the RAM
of a single computer. This brings the necessity of either dividing
the datasets into multiple computers or performing search
sequentially on smaller subsets of the entire dataset. Both
solutions add significant computational overhead. The second
leg of the problem is the computational complexity, as
similarity search distance metrics such as Euclidean or Cosine
distances are computationally very expensive to calculate on
samples with high cardinality. This cost is also linear with the
number of samples for exhaustive search, which makes it even
harder for large-scale datasets.

In order to propose a solution to the aforementioned
problem, approximate methods are investigated. The most
popular approach is to encode the vectors using binary strings
and approximate the distance between these encodings. This
approach is called “hashing” [1]. These methods generally aim
to find hyperplanes which divide the feature space into balanced
partitions, to maximize the entropy and minimize the mutual
information for binary encoding [2]–[7]. The main advantage
of the hashing methods is their computational efficiency in
distance calculations, as the Hamming distance calculation is
performed by XOR operations followed by a ‘popcount’ [8].
However, the Hamming distance is very limited in performance
as the obtained distances are integers. The proposed alternative

“weighted Hamming distance” brings a solution to this problem
[9] by adjusting the contribution of each bit to the distance
calculation. The performance is increased, but the distance
calculations are performed using look-up tables instead of XOR
operations [7]–[11].

Similar to weighted Hamming distances, another look-up
based distance calculation method is proposed by Jègou et al.
which opens a new era for binary embedding methods, called
the Product Quantization (PQ) [8]. In this method, the feature
space is divided into several subspaces and for each subspace,
a separate quantizer is trained on each subspace. The
codevectors obtained from the subspaces are then concatenated
in order to form the final quantized vector. With this
quantization based binary encoding approach, PQ significantly
outperforms the Hamming distance based methods [8]. Several
improvements on PQ have been proposed such as [12]–[15]
carrying the performance to the state-of-the-art.

Another quantization based approach for binary encoding of
feature vectors is proposed by Chen et al. called Residual
Vector Quantization (RVQ) [16]. In this approach, the authors
propose to perform quantization on the feature space using
several residual layers, i.e., each layer of quantization uses the
residuals of the previous layer. RVQ also outperforms the
Hamming distance based methods with a significant margin
[16].

The quantization based approaches mentioned above can be
observed as an approximate representation of a sample vector
by addition of several codevectors. PQ and variations introduce
orthogonality on subvectors where as RVQ imposes a
hierarchical layer structure. Recent methods such as [17]–[20]
aim to find a more generic representation for the codebooks by
relaxing the aforementioned constraints. The obtained results
outperforms the former ones, but the search space for encoding
expands as a result of the relaxed constraints, hence the
computational complexity for encoding is increased.

In this paper, we propose a well-constrained method, which
follows the layered structure of RVQ, but improves the
performance significantly thanks to a joint approach. Our
method is shown to outperform the state-of-the-art methods, by
experiments conducted on publicly available benchmark
datasets. The rest of the paper is organized as follows: In
Section 2, the problem definition is presented together with
related works from the literature. In Section 3, the proposed

method is explained in detail. Section 4 presents the
experimental results and finally the paper is concluded in
Section 5.

2 Problem Definition and Related Work

2.1 Vector Quantization Problem

Given a set 𝑿 of 𝑁 vectors with 𝐷 dimensions 𝑿 =
{𝒙1, … , 𝒙𝑁} ∈ ℝ𝐷×𝑁, the Vector Quantization (VQ) problem
can be expressed as the minimization of the Mean Squared
Quantization Error, 𝑀𝑆𝐸𝑄, as defined in (1), where 𝑄(𝒙𝑖) is

the corresponding quantized vector for given the sample vector
𝒙𝑖.

𝑀𝑆𝐸𝑄 =
1

𝑁
∑‖𝒙𝑖 − 𝑄(𝒙𝑖)‖2

𝑁

𝑖

 (1)

The main difference between traditional VQ algorithms and
the VQ approaches proposed for ANN is that, the latter consists
of 𝑀 different codebooks and each codebook has 𝐾

codevectors, i.e., 𝑪𝑚 = {𝒄𝑚1
… 𝒄𝑚𝐾

} ∈ ℝ𝐷×𝐾, so that the

total number of codevectors is increased from 𝐾 to 𝐾𝑀. These
different codebooks can either be obtained in different
subspaces as in PQ [8] or in the same space as in RVQ [16].
The quantized vector output for a quantizer can be formulated
as given in (2), where 𝒃𝑖 ∈ {0,1}𝐾 is the binary selection
vector, with ‖𝒃𝑖 ‖ = 1.

𝑄(𝒙𝑖) = ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

 (2)

Combining (1) and (2), the optimization problem is
transformed into the following:

𝑀𝑆𝐸𝑄
∗ = min

{𝑪𝑚},{𝑩𝑚}

1

𝑁
∑ ‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖

2𝑁

𝑖

 (3)

As it can be seen in (3), a closed form solution for the given
minimization does not exist, hence approximate solutions are
investigated. In the literature, many iterative approximations
with different constraints and heuristics can be found [16]–[20].
In this section of the paper, we focus on RVQ [16] as the
proposed method is mainly founded on its layered structure.

2.2 Residual Vector Quantization

Residual Quantization is a well-studied quantization
method in the past [21]. The aim is to add several layers of
quantizers, which operate on the residuals of the previous
layers, in order to decrease the quantization error. Recent
adaptations of residual quantization to VQ for ANN search have
been proposed, as RVQ [16] being the first method which
adapts this hierarchical structure of residual quantization for
ANN. The optimization problem for RVQ can be formulated as
given in (4).

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄1)

= min
{𝑪1},{𝑩1}

1

𝑁
∑ ‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

1

𝑚=1

)‖

𝑁

𝑖=1

2

.

.

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄𝑀)

= min
{𝑪𝑀},{𝑩𝑀}

1

𝑁
∑ ‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

)‖

𝑁

𝑖=1

2

 (4)

As shown in (4), the optimization problem in (3) is divided
into 𝑀 sub-problems, which are solved in an order. Each layer
takes the codebooks of the previous layers as fixed, hence the
optimization problem is solved only for the codebook of the
corresponding layer. RVQ starts with quantization of the first
layer using K-Means. After each vector is quantized to its
nearest codevector, the residuals are calculated and transferred
to the next layer, where they will be quantized again using K-
Means. This operation continues repeatedly for all layers.

The same approach is also followed in the encoding stage.
When a novel sample is given, first it is encoded in the upmost
layer by the index of the nearest codevector, and the
corresponding residual is calculated. This residual is transferred
to the next layer and this operation is repeated for all layers.

When examined in detail, RVQ has a major flow in its
solution to the optimization problem defined in (4). In RVQ,
each layer is trained separately, keeping the previous layers
fixed. Since each layer only aims to minimize the quantization
error of its own, it does not take neither upper nor lower layers
into account. This results in generation of inferior codebooks,
as the interlayer correlations are neglected. Similarly, encoding
is performed separately in each layer, leading to a suboptimal
encoding scheme.

3 Proposed Method

In this study, we aim to fix the aforementioned flow of RVQ
by introducing a joint training and encoding scheme. As
mentioned above, in RVQ the codebooks are trained separately,
keeping the codebooks of the previous layers fixed, hence
neglecting the interlayer correlations. In order to solve this
problem, we propose an iterative joint training scheme which
we call the Joint K-Means.

3.1 Joint K-Means Training

K-Means algorithm is a well-known clustering method,
which aims to minimize the quantization error iteratively [22].
The iterations of K-Means follow an “Expectation-
Maximization” approach. In the “Expectation” stage of
iterations, each vector is appointed to its nearest codevector, in
other words each vector is “encoded”. In the “Maximization”
stage, the codevectors are updated with the means of the
appointed vectors. This greedy algorithm converges to a local
minimum. In RVQ, this iterative process is applied separately
at each layer. In the proposed method however, we adapt this
iterative approach of K-Means to the hierarchical layer structure
of RVQ.

As in K-Means, we start with random initializations of
codevectors. We use the initialization scheme proposed in K-

Means++ [23]. First we initialize the upper layers, calculate the
residual for each sample and move on to the next layer,
repeating this for all the layers. After the initialization, the
iterations start with the first stage, where each vector is assigned
to its corresponding codevector. Then the residual is calculated
and transferred to the next layer. Again this process is repeated
for all layers. Note that, this corresponds to “encoding” the
sample vectors using the codebooks at hand for that iteration.
Next comes the second stage, where codevectors are updated
with the means of the assigned vectors, according to the
assignments calculated in the first stage. This process is
repeated iteratively. The pseudo-code for the iterative joint
training algorithm is given in TABLE I.

As it can be seen, the training process of Joint K-Means is
quite straightforward. It is an extension of the Expectation-
Maximization algorithm to multi-layer VQ for ANN. Thanks to
the proposed joint scheme, the upper layers are taken into
account in the training of lower layers, which generates better
codebooks and prevents overfitting. Another advantage of the
proposed training algorithm is that, it includes the encoding step
into the training stage. In this study, we propose also an
alternative encoding method called Joint Encoding, which takes
the lower layers into account in encoding of upper layers.
Incorporating this encoding method into the training results in
even better codebooks.

TABLE I. PSEUDO CODE FOR JOINT TRAINING ALGORITHM

Given: Samples, Number of Layers, Number of Codevectors

Returns: Codebooks

 Initialize Codebooks

 For 1:NIterations

o Codes = encode(Samples)
o Residuals = Samples

o CodebookUpdate = 0

o ClusterPopulation = 0
o For l = 1:length(Codebooks)

 For r = 1:length(Residuals)

 i = Code[r][l]

 CodebookUpdate[l][i] += Residuals[r]

 Residuals[r] -= Codebook[l][i]

 ClusterPopulation[l][i]++
 For k = 1:length(Codebook[l])

 CodebookUpdate[l][k] /=

 ClusterPopulation[l][k]
o Codebooks = CodebookUpdate

 return Codebooks

3.2 Joint Encoding

As mentioned above, in RVQ the encoding is performed
separately in each layer. However, selection of the best
codevector for each layer strongly depends on the selection of
previous codevectors, as the residual for a layer is obtained by
subtraction of previously selected codevector from the given
sample. RVQ assumes that, selecting the nearest codevector for
a given residual in each layer provides a near optimal solution
for the codevector selection. Here we propose an encoding
scheme, which uses a heuristic search, in order to obtain a better
selection.

In the proposed encoding method we assume that the
codevector, which will result in the minimum quantization

error, should be among a small neighborhood of the nearest
codevector of the given sample. So instead of picking the
nearest codevector and moving to the next layer, we select the
nearest 𝐻 codevectors and calculate corresponding residuals.
As the residuals are transferred to the next layer, for each of
them, again best 𝐻 residuals are calculated. Among the 𝐻2
options, we keep the best 𝐻 with the minimum quantization
error. This is repeated for all the layers. Note that this encoding
scheme is similar to the beam search encoding proposed in [17],
but thanks to the hierarchical structure, the search space is much
more limited, hence it is computationally much cheaper. The
pseudocode for the encoding scheme is given in TABLE II.

As explained above, the proposed Joint Encoding scheme
takes into the lower layers account, resulting in lower
quantization errors. Together with the proposed training
scheme, final quantization error is reduced significantly. In the
next section we show that the proposed performs significantly
better than RVQ and the other state-of-the-art methods.

TABLE II. PSEUDO CODE FOR JOINT ENCODING ALGORITHM

Given: Sample, Codebooks
Returns: Code

 Codes = FindNearestHCodevectors(Sample,Codebooks[1])

 For m = 2:length(Codebooks)
o For h = 1:H

 For c = 1:length(Codes[h])

 i = Codes[h][c]

 Residuals[h] = Sample –
Codebooks[c][i]

o For h = 1:H

 Codes [h] ←
FindNearestHCodevectors(Residuals[h],

Codebooks[m])
o Codes = FindBestHCodes(Codes)

 return Codes[1]

4 Experiments

The proposed method is experimentally tested on two
publicly available large-scale datasets: SIFT1M and GIST1M
[8]. Both datasets consist of 1 Million samples. SIFT1M dataset
contains 128-dimensional SIFT vectors, whereas GIST1M
contains 960-dimensional GIST vectors. Each dataset has a
separate training and a query set. The number of vectors in the
training set for SIFT1M dataset is 100.000 and for the GIST1M
dataset it is 500.000. SIFT1M consists of 10.000 queries while
GIST1M includes 1000 query vectors.

4.1 Parameters

We use the given training sets to train our method and

perform exhaustive search on both datasets. We use 𝐾 = 256

codevectors for each layer, and 𝑀 = 8 (4) layers for 64-bit

(32-bit) encoding, as commonly preferred in the literature

[16]–[19]. During our experiments, we observed that using

higher number of residual candidates in the training stage

causes only a certain number of codevectors to be updated,

resulting in diverging quantization error. Hence we choose to

use 𝐻 = 8 for SIFT1M and 𝐻 = 4 for GIST1M datasets in the

training stage, as these parameters provide the lowest

quantization error. We use 𝐻 = 32 in the encoding step for

both datasets.

4.2 Retrieval Performance

The performance of the proposed method Joint K-Means

(JKM) is compared against the recent state-of-the-art

methods such as Product Quantization (PQ) [8], Cartesian K-

Means (CKM) [14], Transform Coding (TC) [15], Residual

Vector Quantization (RVQ) [16], Additive Quantization

(AQ/APQ) [17], Composite Quantization (CQ) [18],

Optimized Tree Quantization (OTQ) [19] and Optimized

Cartesian K-Means (OCK) [20]. The results of the competing

methods are taken from the figures presented in the original

publications. We use the recall@R measure as proposed in

[8]. recall@R can be defined as the average recall score for the

true nearest neighbor in the top R retrievals. The results using

64-bit encoding for the SIFT1M and GIST1M datasets are

presented in TABLE III. and TABLE IV. The results using

64-bit encoding are presented in TABLE V. and TABLE VI.

TABLE III. RESULTS ON SIFT1M FOR 64-BIT ENCODING

Method recall@1 recall@10 recall@100

TC 0.205 0.534 0.876

RVQ 0.257 0.659 0.952

PQ 0.224 0.599 0.924

CKM 0.243 0.638 0.940

OCK 0.274 0.680 0.945

CQ 0.288 0.716 0.966

APQ 0.298 0.741 0.972

OTQ 0.317 0.748 0.972

JKM 0.323 0.759 0.980

TABLE IV. RESULTS ON GIST1M FOR 64-BIT ENCODING

Method recall@1 recall@10 recall@100

TC 0.096 0.223 0.547

RVQ 0.113 0.325 0.676

PQ 0.076 0.218 0.504

CKM 0.118 0.334 0.715

OCK 0.130 0.358 0.720

CQ 0.135 0.377 0.729

AQ/APQ N/A N/A N/A

OTQ N/A N/A N/A

JKM 0.140 0.413 0.769

TABLE V. RESULTS ON SIFT1M FOR 32-BIT ENCODING

Method recall@1 recall@10 recall@100

TC 0.057 0.197 0.519

RVQ N/A N/A N/A

PQ 0.052 0.230 0.595

CKM 0.068 0.273 0.658

OCK N/A 0.348 0.742

CQ N/A N/A N/A

AQ 0.106 0.415 0.825

OTQ 0.093 0.368 0.793

JKM 0.121 0.402 0.790

TABLE VI. RESULTS ON GIST1M FOR 32-BIT ENCODING

Method recall@1 recall@10 recall@100

TC 0.053 0.104 0.291

RVQ N/A N/A N/A

PQ 0.023 0.068 0.176

CKM 0.054 0.142 0.396

OCK N/A 0.172 0.467

CQ N/A N/A N/A

AQ 0.069 0.189 0.467

OTQ N/A N/A N/A

JKM 0.077 0.213 0.511

As it can be observed in the presented results, the proposed

method JKM improves the performance of RVQ considerably.

JKM also outperforms the state-of-the-art methods on both

datasets using 64-bit encoding. JKM also performs better than

all the compared methods for all performance measures, using

32-bit encoding on GIST1M. For 32-bit encoding on SIFT1M,

JKM obtains the best result only for recall@1.

In order to emphasize the effectiveness of the proposed
training and encoding methods, we compare the contributions
of training and encoding separately, taking the performance of
RVQ as a baseline. The comparison is presented in TABLE
VII. First we compare RVQ with JKM using joint training
only, i.e., the number of candidates for residuals 𝐻 = 1. As it
can be seen, the joint training itself without the joint encoding
improves the performance of RVQ. We also test RVQ with joint
encoding. The joint encoding increases the performance of
RVQ significantly, yet it is not enough to outperform the state-
of-the-art. Together with joint training, the state-of-the-art
performance is achieved.

TABLE VII. EFFECTIVENESS OF JOINT APPROACHES, 64-BIT

ENCODING, SIFT1M

Method recall@1 recall@10 recall@100

RVQ 0.257 0.659 0.952

JKM H = 1 0.279 0.684 0.959

RVQ H = 32 0.306 0.733 0.974

JKM H = 32 0.323 0.759 0.980

5 Conclusion

In this paper, a novel vector quantization algorithm called
Joint K-Means is proposed for approximate nearest neighbor

search on large-scale datasets. The proposed algorithm
integrates the Expectation-Maximization approach to the multi-
layer structure of RVQ, resulting in a joint training scheme. An
alternative encoding method is also proposed where the
codevector selection is performed taking the lower layers into
account. The experiments conducted on publicly available
datasets show that the Joint K-Means outperforms the state-of-
the-art methods. In the future, we aim to investigate the
scalability of this algorithm for billion scale datasets.

References

[1] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for

Similarity Search: A Survey,” in arXiv preprint, 2014,

p. :1408.2927.

[2] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer,

“Compact hashing with joint optimization of search

accuracy and time,” in CVPR, 2011, pp. 753–760.

[3] J. Heo, Y. Lee, and J. He, “Spherical hashing,” in

CVPR, 2012.

[4] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality

sensitive hashing: A comparison of hash function types

and querying mechanisms,” Pattern Recognit. Lett.,

vol. 31, no. 11, pp. 1348–1358, Aug. 2010.

[5] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-Taught

Hashing for Fast Similarity Search,” in ACM SIGIR

Conference on Research and Development in

Information Retrieval, 2010, pp. 18–25.

[6] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai,

“Harmonious hashing,” in International Joint

Conference on Artificial Intelligence, 2013, pp. 1820–

1826.

[7] G. Lin, C. Shen, D. Suter, and A. van den Hengel, “A

General Two-Step Approach to Learning-Based

Hashing,” in ICCV, 2013, pp. 2552–2559.

[8] H. Jégou, M. Douze, and C. Schmid, “Product

quantization for nearest neighbor search.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp.

117–28, Jan. 2011.

[9] L. Zhang, Y. Zhang, J. Tang, K. Lu, and Q. Tian,

“Binary code ranking with weighted hamming

distance,” in CVPR, 2013, no. 6, pp. 1586–1593.

[10] H. Jegou, M. Douze, C. Schmid, and P. Perez,

“Aggregating local descriptors into a compact image

representation,” in CVPR, 2010, pp. 3304–3311.

[11] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik,

“Asymmetric distances for binary embeddings.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 36, no. 1, pp.

33–47, Jan. 2014.

[12] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized Product

Quantization for Approximate Nearest Neighbor

Search,” in CVPR, 2013, pp. 2946–2953.

[13] J.-P. Heo, Z. Lin, and S.-E. Yoon, “Distance Encoded

Product Quantization,” in CVPR, 2014, pp. 2139–

2146.

[14] M. Norouzi and D. J. Fleet, “Cartesian K-Means,” in

CVPR, 2013, pp. 3017–3024.

[15] J. Brandt, “Transform coding for fast approximate

nearest neighbor search in high dimensions,” in CVPR,

2010, pp. 1815–1822.

[16] Y. Chen, T. Guan, and C. Wang, “Approximate nearest

neighbor search by residual vector quantization,”

Sensors, vol. 10, no. 12, pp. 11259–11273, 2010.

[17] A. Babenko and V. Lempitsky, “Additive Quantization

for Extreme Vector Compression,” in CVPR, 2014, pp.

931–938.

[18] T. Zhang, D. Chao, and J. Wang, “Composite

Quantization for Approximate Nearest Neighbor

Search,” in ICML, 2014.

[19] A. Babenko and V. Lempitsky, “Tree Quantization for

Large-Scale Similarity Search and Classification,” in

CVPR, 2015.

[20] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and

S. Li, “Optimized Cartesian K-Means,” IEEE Trans.

Knowl. Data Eng., vol. 27, no. 1, pp. 180–192, Jan.

2015.

[21] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE

Trans. Inf. Theory, vol. 44, no. 6, pp. 2325–2383,

1998.

[22] A. K. Jain, “Data clustering: 50 years beyond K-

means,” Pattern Recognit. Lett., vol. 31, no. 8, pp.

651–666, 2010.

[23] D. Arthur, D. Arthur, S. Vassilvitskii, and S.

Vassilvitskii, “k-means++: The advantages of careful

seeding,” in SODA, 2007, vol. 8, pp. 1027–1035.

V

COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST
NEIGHBOR SEARCH

by

E.C.Ozan, S. Kiranyaz and M. Gabbouj, 2016

IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 28, no. 11, pp. 2884
- 2894.

©2016 IEEE. Reprinted, with permission, from E.C.Ozan, S. Kiranyaz and M. Gabbouj,

Competitive Quantization for Approximate Nearest Neighbor, IEEE Transactions on
Knowledge and Data Engineering (TKDE), November 2016.

OZAN ET AL.: COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 1

Competitive Quantization for Approximate
Nearest Neighbor Search

Ezgi Can Ozan, Serkan Kiranyaz, Senior, IEEE and Moncef Gabbouj, Fellow, IEEE

Abstract—In this study, we propose a novel vector quantization algorithm for Approximate Nearest Neighbor (ANN) search, based

on a joint competitive learning strategy and hence called as competitive quantization (CompQ). CompQ is a hierarchical algorithm,

which iteratively minimizes the quantization error by jointly optimizing the codebooks in each layer, using a gradient decent

approach. An extensive set of experimental results and comparative evaluations show that CompQ outperforms the-state-of-the-

art while retaining a comparable computational complexity.

Index Terms— Approximate Nearest Neighbor Search, Binary Codes, Large-Scale Retrieval, Vector Quantization

——————————  ——————————

HE vast increase in size and dimension of today’s datasets

bring about new problems, as traditional methods fail to

satisfy the present-day requirements. Like many others, the

problem of fast and efficient distance calculations between

pairs of samples leads researchers to approximate solutions.

Binary embedding of descriptor vectors for faster distance

calculations has become a highly popular research topic in re-

cent years, drawing a significant attention [1]. The common

approach is to encode the vectors as binary strings and com-

press very large datasets in much smaller sizes, decreasing the

storage cost. Furthermore, the approximation of the distance

between two vectors by using pre-calculated distance values

gives a significant boost in terms of the search speed.

Binary embedding methods can be divided into two major

branches as hashing and vector quantization. Hashing based

approaches aim to approximate the distance between vectors

using the Hamming distance [2]–[6]. These approaches are

proved to be fast, as the Hamming distance calculation be-

tween two binary strings is basically an XOR operation, but

since the Hamming distance is an integer between 0 and the

length of the binary string, several vector pairs end up with

the exact same distance approximation, which is a disad-

vantage in terms of retrieval rankings. Approaches such as

[7]–[9] apply weighted Hamming distances, in order to add

more variety to the results of the distance approximation by

using look-up tables, which improves the performance; how-

ever, this slows down the search since distance approxima-

tions cannot be calculated simply by an XOR operation.

The introduction of weighted distances and look-up tables

for hashing opened the doors for new binary embedding ap-

proaches, which constitutes the second major branch: the

Vector Quantization (VQ). VQ is a very well-studied area in

many fields such as electronics, telecommunication and sig-

nal processing. The application of VQ in binary embedding

methods for approximate distance calculations, or as more

formally stated in the literature, Approximate Nearest Neigh-

bor (ANN) search starts with the Product Quantization (PQ)

proposed in [10]. In this study, Jégou et al. propose a division

among the dimensions of the vector. They perform quantiza-

tion separately at each subspace, and obtain the final quan-

tized vector as the Cartesian products of the sub-quantized

vectors. This opens a new era in quantization for ANN as with

this method, the number of quantization centers can scale up

to very large numbers. Several improvements have been ap-

plied on top of PQ such as [11]–[15], obtaining significant

increase in performance.
Besides PQ and its variants, for the purpose of scaling up

the number of quantization codevectors exponentially, an-

other approach is to quantize a given vector as the addition of

several codevectors. Chen et al. in [16] propose this approach

to ANN search problems. The authors introduce several lay-

ers of quantization, as each layer quantizes the residuals of

the previous layer. Improvements on this method have been

proposed in [17], [18]. In [19], Babenko et al. propose a

method again based on quantization by addition of several

codevectors, yet they remove the hierarchy between layers of

residual quantization, providing a high level of freedom for

the quantization codevectors. However, this freedom requires

an encoding step, which is computationally very expensive,

but still it outperforms the state-of-the-art methods. Other

methods such as [20]–[22] add further constraints on the se-

lection of codevectors, in order to obtain a more efficient en-

coding step.

In summary, many recent methods propose quantization

through the addition of several codevectors, but they have to

choose between using either highly constrained codevector

proposals as in [16], which results in inferior performance; or

leaving more freedom for codevectors while looking for a

heuristic search, which results in computationally expensive

encoding. To address this drawback in an efficient way we

propose a novel VQ approach, which outperforms the state-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Ezgi Can Ozan, is with the Department of Signal Processing, Tam-
pere University of Technology, Tampere, Finland (e-mail:
ezgi.ozan@tut.fi).

 Prof. Serkan Kiranyaz, is with Electrical Engineering Department,
College of Engineering, Qatar University, Qatar. (e-mail: mkiran-
yaz@qu.edu.qa).

 Prof. Moncef Gabbouj, is with the Department of Signal Processing,
Tampere University of Technology, Tampere, Finland (e-mail:
moncef.gabbouj@tut.fi).

T

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

of-the-art quantization methods, with a comparable computa-

tional complexity. The novel contributions in this paper can

be summarized as follows:

 Proposing a novel addition based quantization

method, which preserves the layer hierarchy as in

[16], consisting of a novel method which jointly

trains all the codebooks, and minimizes the quanti-

zation error together in all layers.

 Proposing a better encoding approach by redefining

‘the winner codevector’, which provides lower

quantization error.

The rest of the paper is organized as follows. In Section

1, the problem formulation is given together with a more de-

tailed explanation of the related work. In Section 2, the pro-

posed method is presented in detail. Section 3 presents the

experimental results and comparisons with the state-of-the-

art. In Section 0, the method and the obtained results are dis-

cussed thoroughly, and finally Section 5 concludes the paper.

1 PROBLEM FORMULATION AND RELATED WORK

Vector quantization (VQ) can be seen as an optimization

problem, where the optimization criterion is to minimize the

mean squared quantization error. The quantization error of a

quantizer 𝑄 can be described as follows: Given a set of 𝑁

vectors 𝑿 = {𝒙1, … , 𝒙𝑁}, the mean squared quantization er-

ror 𝑀𝑆𝐸𝑄 is defined as in (1).

𝑀𝑆𝐸𝑄 =
1

𝑁
∑‖𝒙𝑖 − 𝑄(𝒙𝑖)‖2

2

𝑁

𝑖

 (1)

The quantizer 𝑄 quantizes the given feature vector 𝒙𝑖 to its

corresponding codevector as,

𝑄(𝒙𝑖) = 𝑪𝒃𝑖 (2)

where 𝒃𝑖 ∈ {0,1}𝐾 is the binary selection vector, with

‖𝒃𝑖 ‖1 = 1. The main difference between traditional VQ and

VQ for ANN is that, the number of codevectors for ANN is

much greater than traditional vector quantization, because

VQ for ANN targets large-scale datasets. As mentioned ear-

lier, in order to increase the number of codevectors exponen-

tially, VQ methods for ANN usually use several codebooks

for quantization [1]. The use of 𝑀 codebooks increase the

number of codevectors from 𝐾 to 𝐾𝑀. Codevectors from dif-

ferent codebooks are combined either by concatenation (Car-

tesian products) as in [10], [12]–[14], or by addition as in [16],

[19]–[22].

Vector quantization by Cartesian product of codevectors

can be formulated as,

𝒙𝑖̂ =

[

 𝑪(1)𝒃𝑖

(1)

.

.

𝑪(𝑀)𝒃𝑖
(𝑀)

]

 𝑪(𝑚)𝒃𝑖
(𝑚)

∈ ℝ𝐷/𝑀 (3)

where vector, 𝒙, is the quantization output of vector 𝒙. 𝑪(𝑚) =

{𝒄1
(𝑚)

… 𝒄(𝑚)
𝐾} ∈ ℝ𝐷/𝑀×𝐾 is the corresponding codebook

of the 𝑚𝑡ℎ subspace, 𝑚 ∈ {1… 𝑀}, where 𝑀 is the number of

codebooks (one codebook per subspace) and 𝐾 is the number

of codevectors per codebook. 𝑩(𝑚) = {𝒃1
(𝑚)

… 𝒃𝑁
(𝑚)

} ∈

 ℝ𝐾×𝑁 is the set of K-dimensional, binary codevector selec-

tion vectors for the 𝑚𝑡ℎ codebook, where 𝒃𝑖
(𝑚)

∈

 {0,1}𝐾 with ‖𝒃𝑖
(𝑚)

 ‖
1

= 1.

Similarly, vector quantization by addition of codevectors

can be formulated as given in (4). The main difference from

(3) is that here all codebooks come from the original feature

space, i.e., 𝑪𝑚 = {𝒄𝑚1
… 𝒄𝑚𝐾

} ∈ ℝ𝐷×𝐾. Note that in this

paper, codebooks obtained from the same feature space are

represented using a subscript (𝑪𝑚), while codebooks belong-

ing to different subspaces are represented using a superscript

in parenthesis (𝑪(𝑚)). The corresponding binary selection

vectors are also represented accordingly.

𝒙𝑖̂ = ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

 𝑪𝑚𝒃𝑚𝑖
∈ ℝ𝐷 (4)

Different codevectors obtained from different codebooks

are combined in order to obtain 𝒙, the final approximation of

vector 𝒙, providing the minimum quantization error. This op-

timization problem can be formulated for the Cartesian prod-

uct based VQ as given in (5), and for the addition based VQ

as given in (6).

𝑀𝑆𝐸𝑄
(𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛)

= min
{𝑪(𝑚)},{𝑩(𝑚)}

1

𝑁
∑‖‖𝒙𝑖 −

[

 𝑪(1)𝒃𝑖

(1)

.

.

𝑪(𝑀)𝒃𝑖
(𝑀)

]

‖‖

2

2

𝑁

𝑖=1

 (5)

𝑀𝑆𝐸𝑄
(𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛)

= min
{𝑪𝑚},{𝑩𝑚}

1

𝑁
∑‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖

2

2𝑁

𝑖=1

 (6)

Closed form solutions for the above problems do not exist,

hence the recent methods approach this minimization using

approximate techniques with different constraints and differ-

ent heuristics. Constraints limit the search space and heuris-

tics enable a more feasible and divergent search. In the next

subsection, the state-of-the-art methods will be examined in

terms of such constraints and the heuristics they define.

1.1 Product Quantization

Product Quantization (PQ) [10] proposed by Jegou et al. is

a Cartesian product based VQ method. It uses subspaces of

the feature space to create different layers of quantization. On

each subspace, a different codebook is trained separately. In

other words, PQ divides the original feature space into 𝑀 sub-

spaces, and each codevector 𝒄𝑘
(𝑚)

∈ ℝ𝐷/𝑀 obtained on this

subspace is a subvector. This approach splits the optimization

problem into 𝑀 independent problems. However, the assump-

tion of subspaces being statistically independent does not usu-

ally hold in practice, and many variants of PQ have been pro-

posed [11]–[14] in order to overcome this drawback. The op-

timization problem of PQ can be formulated as given in (7),

where 𝒙𝑖
(𝑚)

 is the subvector of 𝒙𝑖 corresponding to the 𝑚𝑡ℎ

OZAN ET AL.: COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 3

subspace.

 𝑀𝑆𝐸𝑄
(𝑃𝑄1) = min

{𝑪(1)},{𝑩(1)}

1

𝑁
∑‖𝒙𝑖

(1)
− 𝑪(1)𝒃𝑖

(1)
‖

2

2
𝑁

𝑖=1.
.

𝑀𝑆𝐸𝑄
(𝑃𝑄𝑀)

= min
{𝑪(𝑀)},{𝑩(𝑀)}

1

𝑁
∑‖𝒙𝑖

(𝑀)
− 𝑪(𝑀)𝒃𝑖

(𝑀)
‖

2

2
𝑁

𝑖=1

 (7)

1.2 K-Subspace Quantization

In Cartesian product based approaches, the creation of sub-

spaces is problematic because of the unrealistic assumption

that subspaces are statistically independent. The proposed so-

lution to this problem is a PCA transformation [11]–[14],

which brings another problem of unbalanced distribution of

information among dimensions. In [15], Ozan et al. also tar-

get this problem and propose to introduce more than one af-

fine subspace, train a Transform Coding [11] variant in each

and choose the best among them to quantize the samples. In-

troduction of multiple affine subspaces improves the assump-

tion of independent subspaces after PCA. Besides, they pro-

pose to update codebooks in an iterative way, in order to min-

imize the quantization error further and obtain the state-of-

the-art performance. The optimization problem for KSSQ can

be formulated as given in (8). 𝑿𝑚 ⊂ 𝑿 is a subset of samples

such that ⋃ 𝑿𝑚
𝑀
𝑚=1 = 𝑿 and 𝑿𝑚 ∩ 𝑿𝑗 = ∅ where 𝑚 ≠ 𝑗. L𝑚

is the number of dimensions for the 𝑚th subspace.

𝑀𝑆𝐸𝑄
(𝐾𝑆𝑆𝑄)

= min
{𝑪𝑚

(l𝑚)
},{𝑩𝑚

(l𝑚)
},{𝑿𝑚},{L𝑚}

1

𝑁
∑ ∑ ‖‖𝒙𝑖

𝒙𝑖∈𝑿𝑚

𝑀

𝑚=1

−

[

 𝑪𝑚

(1)
𝒃𝑚𝑖

(1)

.

.

𝑪𝑚
(L𝑚)

𝒃𝑚𝑖

(L𝑚)
]

‖‖

2

2

(8)

1.3 Residual Vector Quantization

Residual Vector Quantization (RVQ) [16] proposed by

Chen et al. is an addition based VQ method, which dictates a

hierarchy among the codebooks. As the name suggests, each

succeeding codebook is trained on the residuals of the previ-

ous layer. The optimization problem is separated into 𝑀 sub-

problems, which are solved consecutively. The optimization

problem of RVQ can be formulated as,

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄1) = min

{𝑪1},{𝑩1}

1

𝑁
∑‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

1

𝑚=1

)‖

2

2𝑁

𝑖=1
.
.

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄𝑀)

= min
{𝑪𝑀},{𝑩𝑀}

1

𝑁
∑‖(𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

)‖

2

2𝑁

𝑖=1

 (9)

This hierarchy simplifies the encoding process, as each

codevector depends on the selection of the previous codevec-

tors. However, the contribution of each layer to the minimi-

zation of the quantization error is not the same, as the last lay-

ers contribute much less than the first ones. This algorithm

has been extended by several other methods [17], [18].

1.4 Optimized Cartesian K-Means

Optimized Cartesian K-Means (OCKM) [20] proposed by

Wang et al. is an improvement over the Cartesian K-Means

(CKM) [13], which forms the quantization vector as a Carte-

sian product of subvectors obtained from subspaces of the

original feature space. Similar to CKM, OCKM proposes a

multiplication with a rotation matrix 𝑹 before dividing the in-

itial vector space into subspaces. OCKM is a transition be-

tween the Cartesian product based vector quantization algo-

rithms and the addition based vector quantization algorithms.

Wang et al. propose to apply the same rotation and subspace

division in CKM, but instead of picking one codevector per

subspace, the authors suggest training two codebooks per sub-

space, hence picking two codevectors and adding them up.

The optimization performed by OCKM can be formulated by

(10).

𝑀𝑆𝐸𝑄
(𝑂𝐶𝐾𝑀)

= min
{𝑪𝑐

(𝑚)
},{𝑩𝑐

(𝑚)
},{𝑹}

1

𝑁
∑

‖

‖

𝒙𝑖 − 𝑹

[

 ∑𝑪𝑐

(1)
𝒃𝑐𝑖

(1)

2

𝑐=1 .
.

∑𝑪𝑐
(𝑀/2)

𝒃𝑐𝑖

(M/2)

2

𝑐=1]

‖

‖

2

2

𝑁

𝑖=1

 (10)

OCKM generates the codebooks in different subspaces, yet

within each subspace, there is no constraint on the codebooks

and the codevectors they contain. In order to avoid the com-

plexity of this unconstrained situation, they opt for more sub-

spaces rather than codebooks i.e., they keep the number of

codebooks per subspace limited to 2.

1.5 Additive Quantization

Additive Quantization (AQ) [19] is an unconstrained ap-

proach to addition based VQ. Babenko et al. propose to gen-

erate the quantized vectors using the addition of several dif-

ferent codevectors, each from a different codebook, trained

without any constraints on the original feature space. The lack

of constraints provides a boost in the quantization perfor-

mance, yet the training and more importantly encoding pro-

cedure is extremely costly, as they propose to use “heuristic

beam search” in the encoding process. Since there are no spe-

cific constraints, the optimization problem can be represented

as in (6).

The complexity of the proposed beam search in [19] is pro-

portional to the cubic order of the number of codebooks, the

authors propose a PQ variant of the additive quantization, Ad-

ditive Product Quantization (APQ) [19], which divides the

feature space into two subspaces and performs AQ in each

subspace independently, then concatenates both vectors to

obtain the final quantized vector. This splits the optimization

problem into two independent problems similar to PQ. The

optimization problem for APQ can be formulated as given in

(11).

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

𝑀𝑆𝐸𝑄
(𝐴𝑃𝑄1) = min

{𝑪𝑚
(1)

},{𝑩𝑚
(1)

}

1

𝑁
∑‖𝒙(1)

𝑖 − ∑ 𝑪𝑚
(1)

𝒃𝑚𝑖

(1)

𝑀/2

𝑚=1

‖

2

2
𝑁

𝑖=1

𝑀𝑆𝐸𝑄
(𝐴𝑃𝑄2) = min

{𝑪𝑚
(2)

},{𝑩𝑚
(2)

}

1

𝑁
∑‖𝒙(2)

𝑖 − ∑ 𝑪𝑚
(2)

𝒃𝑚𝑖

(2)

𝑀/2

𝑚=1

‖

2

2
𝑁

𝑖=1

 (11)

1.6 Composite Quantization

Composite Quantization (CQ) [21] proposed by Zhang et

al. is yet another addition based vector quantization method

with constraints. CQ differs from the previous methods by the

purpose of the selected constraints. Compared to the Carte-

sian product based methods, one serious drawback of the ad-

dition based VQ techniques is the computational cost of

asymmetric distance calculation. Usually, Cartesian product

based methods can calculate the approximate distance be-

tween an encoded database element and a given query vector

in 𝑀 look-ups and additions, i.e., one look-up and addition for

each codebook [10], [12], [13]. However, the computational

cost for addition based methods has usually the complexity of

𝑂(𝑀2) [16], [17], [19]. Zhang et al. propose bringing addi-

tional constraints in the codebook generation process so that

the sum of the dot products of all codevectors from two dif-

ferent codebooks is equal to a constant value, i.e.,

∑ ∑ (𝑪𝑚𝒃𝑚𝑖
)
𝑇
𝑪𝑙𝒃𝑙 𝑖

𝑀
𝑙=1,𝑙≠𝑚 = 𝜖𝑀

𝑚=1 . They include this con-

straint into the optimization via a penalty factor. The formu-

lation of the optimization problem can be given as in (12),

where 𝜇 is the penalty parameter.

𝑀𝑆𝐸𝑄
(𝐶𝑄)

= min
{𝑪𝑚},{𝑩𝑚},{𝜖}

1

𝑁
∑‖𝒙𝑖 − ∑ 𝑪𝑚𝒃𝑚𝑖

𝑀

𝑚=1

‖

2

2𝑁

𝑖=1

+ 𝜇 ∑ ∑ ∑ ((𝑪𝑚𝒃𝑚𝑖
)
𝑇
𝑪𝑙𝒃𝑙𝑖

− 𝜖)
2

𝑀

𝑙=1,𝑙≠𝑚

𝑀

𝑚=1

𝑁

𝑖=1

(12)

1.7 (Optimized) Tree Quantization

Babenko et al. extended their previous work AQ, by adding

more constraints on the codebooks and a rotation as in OPQ

for the feature space, resulting with (Optimized) Tree Quan-

tization (OTQ) [22]. In OTQ, a tree structure is introduced

where each vertex of the tree is a codebook. Each dimension

of the feature space is assigned to an edge in the tree, so each

dimension is coded by two codebooks. It is assumed that any

dimension that is not in the edge of a codebook is equal to

zero. This brings orthogonality between the codevectors of

any two codebooks that are not adjacent in the tree. The in-

troduced tree structure significantly decreased the encoding

complexity, while obtaining a comparable quantization per-

formance with AQ. The optimization problem for OTQ can

be formulated by (13). Here [𝑑] represents the 𝑑th dimension

of the feature space and 𝑎(𝑚, 𝑛) = 1 if dimension 𝑑 is as-

signed to edge (𝑚, 𝑛).

𝑀𝑆𝐸𝑄
(𝑂𝑇𝑄)

= min
{𝑪𝑚},{𝑩𝑚},{𝑎(𝑚,𝑛)}

∑ ∑ ∑ ∑ 𝑎(𝑚, 𝑛)

𝑀

𝑛=𝑚

𝑀

𝑚=1

𝐷

𝑑=1

𝑁

𝑖=1

× |𝑪𝑚𝒃𝑚𝑖
[𝑑] + 𝑪𝑛𝒃𝑛𝑖

[𝑑] − 𝒙𝑖[𝑑]|
2

(13)

A noteworthy observation from the aforementioned prior

studies in this domain is that the methods with less constraints

offer a better quantization performance, whereas the com-

plexity of the encoding and distance calculation increases.

The methods with stronger constraints are faster yet perform

worse. In this study, we aim to achieve a superior perfor-

mance without increasing the computational complexity. In

order to accomplish this we start from a well-constrained

quantization with a hierarchical formation and then we shall

relax these constraints for a better quantization performance

whilst having a comparable computational complexity.

2 THE PROPOSED METHOD: COMPETITIVE

QUANTIZATION

As we discussed in the previous section, constraint selec-

tion is crucial as it significantly effects the quantization per-

formance, computational complexity and search speed. In this

paper, we focus on the hierarchical structure imposed by

RVQ. The biggest advantage of RVQ’s hierarchical approach

is that, the codebooks have a given order, so encoding is

simply selecting the nearest codevector in the current layer,

calculating the residual and proceeding to the next layer.

However, each codebook is trained separately, independent

from the others, resulting in a suboptimal solution. In other

words, the codebook training in the upper layers does not take

the quantization error produced by the lower layers into ac-

count. In this study, we propose a joint optimization scheme

updating all layers at the same time.

2.1 Competitive Codebook Learning

For addition based hierarchically connected quantization

methods, for a given vector 𝒙, a residual vector 𝒓𝑚 at the 𝑚𝑡ℎ

level can be represented as given in (14).

𝒓𝑚 = 𝒙 − ∑ 𝑪𝑙𝒃𝑙

𝑚−1

𝑙=1

 (14)

“Competitive Learning” with a winner-takes-all strategy is

one way to obtain the codebooks for such a connectionist

quantization scheme [23]. In this scheme, each layer responds

to its corresponding input by determining a winner codevec-

tor. The winner codevectors are updated and moved towards

the input to minimize the error. As (14) shows, all the

codevectors from all the levels are responsible from the ob-

tained quantization error, meaning that all the codevectors

should be updated together accordingly, to minimize this er-

ror.

In this paper, the codebooks are jointly optimized using the

stochastic gradient decent, following the aforementioned

competitive learning approach. With the stochastic gradient

decent method, the codevectors are updated using the formula

in (15).

𝒄̇𝑚(𝑡 + 1) = 𝒄̇𝑚(𝑡) − γ𝑚(𝑡)∇𝒄̇𝑚
(‖𝒙 − ∑𝒄̇𝑙

𝑀

𝑙=1

‖

2

2

) (15)

OZAN ET AL.: COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 5

Here, the parameter γ𝑚(𝑡) is the learning rate at iteration 𝑡,

which is decreased with every iteration. 𝒄̇𝑚 stands for the

winner codevector for the sample vector 𝒙 at the 𝑚𝑡ℎ layer,

i.e., 𝒄̇𝑚 = 𝑪𝑚𝒃𝑚 or equivalently;

𝒄̇𝑚 = argmin
𝒄𝑚𝑘

‖(𝒙 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

) − 𝒄𝑚𝑘
‖

2

2

 (16)

According to (16) the gradient of the error for the sample vec-

tor 𝒙 can be calculated as,

∇𝒄̇𝑚
(‖𝒙 − ∑𝒄̇𝑙

𝑀

𝑙=1

‖

2

2

) = 2(∑𝒄̇𝑙

𝑀

𝑙=1

− 𝒙) (17)

So, for each winner codevector at each level, the update

rule, which is going to move the corresponding codevector

towards the input can be formulated as,

𝒄̇𝑚(𝑡 + 1) = 𝒄̇𝑚(𝑡) + 2γ𝑚(𝑡) (𝒙 − ∑𝒄̇𝑙

𝑀

𝑙=1

) (18)

As the equation in (18) shows, at each iteration and for each

sample, the winner codevectors in each layer should be up-

dated by multiplying the learning rate with the error vector in

order to minimize the total quantization error, as the result of

the stochastic gradient descent approach. Note that, unlike

RVQ, the codevectors from all layers are updated jointly. This

prevents overfitting in upper levels and increases the contri-

bution of lower levels to the minimization of the quantization

error. The training algorithm including the iterative codevec-

tor updates is presented in TABLE 1.

TABLE 1

COMPQ TRAINING ALGORITHM

INPUT: Training set 𝑿 = {𝒙𝟏, … , 𝒙𝑵}
OUTPUT: Quantization codebooks 𝑪𝒎

 Initialize the codebooks.

 for 𝑵𝒊𝒕 iterations

o for each sample 𝒙𝒊

 Encode 𝒙𝒊 in order to obtain the

winner codevectors as given in

Section 2.3

 Calculate the quantization error

vector 𝒙𝒊 − ∑ 𝒄̇𝒎
𝑴
𝒎=𝟏

 Update the winner codevectors

with the error vector according

to the equation in (18).

o Decrease the learning rate by 1%.

 Return the quantization codebooks.

2.2 Initialization of Codebooks

CompQ starts with a broad initialization of the codebooks.

We use Transform Coding [11] in order to generate the initial

codebooks for each layer. Transform Coding (TC) is also a

VQ method for ANN. Using PCA, TC transforms the feature

space into a new one, in which the dimensions are orthogonal.

Centroids are then determined in the transform domain for

each dimension. Combining these centroids yields the

codevectors. The number of centroids for each dimension is

proportional to the variance of the corresponding dimension,

providing a balanced distribution of codevectors in the feature

space. Initially, coarsely computed codebooks are selected in

order to prevent early overfitting. We follow the hierarchy as

formulated in (9). We train the TC for a layer, and obtain the

initial codevectors, then calculate the residual vectors and

proceed to the next layer.

2.3 Sample Encoding and Winner Codevector

Encoding of a new sample consists of finding out the win-

ner codevector for each layer. The winner codevector 𝒄̇𝑚 can

be defined as,

𝒄̇𝑚 = argmin
𝒄𝑚𝑘

‖(𝒙 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

) − 𝒄𝑚𝑘
‖

2

2

 (19)

Recall that in hierarchical structure based approaches such

as RVQ and its variants, for each layer, the nearest codevector

on the corresponding layer is chosen as the winner codevec-

tor. However, this may not be the best choice as it may lead

to higher quantization errors. A toy example for the aforemen-

tioned problem is presented in Fig. 1. In this figure, the given

sample (X) is encoded with (A3), since it is closer to the (A)

in the upper layer than (B). However, (B1) would have been

a better choice, as it is the nearest code to the given sample.

Fig. 1: Illustration of inferior encoding using hierarchical layers. The

sample (X) is encoded with (A3) instead of the nearest code (B1).

CompQ follows an alternative approach for the determina-

tion of the winner codevector. For each layer, instead of one

codevector, the best 𝛨 candidates are picked and then the re-

sidual for each candidate is calculated. Then among 𝐻𝐾 re-

siduals, again the best 𝛨 are stored for the next layer. When

the final layer is reached the winner codevectors for each

layer have been obtained. Going back to Fig. 1, if (A) and (B)

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

were considered as candidate codevectors for the first layer,

then in the second layer (B1) would eventually be selected, as

it gives the minimum quantization error. Note that, this is a

special case of the beam search algorithm used in the encod-

ing step of AQ [19]. A very similar approach is also proposed

in OCKM [20]. In this paper, the hierarchical structure is im-

posed on the beam search and it limits the search space, hence

reduces the computational complexity drastically. Since AQ

is not inclusive of any structure, the beam search in AQ

searches for the best 𝛨 among (𝑀 − 𝑚 + 1)𝐻𝐾 codevectors

for the 𝑚𝑡ℎ layer. Thanks to the hierarchy in our case there

are always 𝐻𝐾 vectors to compare.

The distance calculation between a codevector and a resid-

ual is formulated in (20). After some mathematical manipula-

tions, this equation can be rewritten to enable the use of look-

up tables, and accelerate the encoding, as given in (21) and

(22).

𝑑(𝒓𝑚𝑖 , 𝒄𝑚,𝑘) = (‖(𝒙𝑖 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

− 𝒄𝑚,𝑘)‖

2

2

) (20)

𝑑(𝒓𝑚𝑖
, 𝒄𝑚,𝑘) = (‖𝒙𝑖 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

‖

2

2

− 2 〈𝒙𝑖 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

, 𝒄𝑚,𝑘〉 + ‖𝒄𝑚,𝑘‖
2

2
)

(21)

𝑑(𝒓𝑚𝑖 , 𝒄𝑚,𝑘) = (‖𝒙𝑖 − ∑ 𝒄̇𝑙

𝑚−1

𝑙=1

‖

2

2

− 2〈𝒙𝑖 , 𝒄𝑚,𝑘〉

+ 2 ∑〈𝒄̇𝑙 , 𝒄𝑚,𝑘〉

𝑚−1

𝑙=1

+ ‖𝒄𝑚,𝑘‖
2

2
)

(22)

Note that in (22), the first term is already calculated in the

previous layer for all 𝛨 candidates. The third and fourth term

can be obtained from a look-up table. Only the second term

should be calculated for each encoding operation.

2.4 Asymmetric Distance Calculation

The Asymmetric Distance [9], [24] is calculated between

an encoded database element and a given query vector. For

simplicity we omit the square root and represent the formula-

tion of the square of the asymmetric distance, as given below:

𝑑(𝒙, 𝒙̅)2 = ‖𝒙 − 𝒙̅‖2
2 = ‖𝒙 − ∑ 𝒄̇𝑚

𝑀

𝑚=1

‖

2

2

 (23)

𝑑(𝒙, 𝒙̅)2 = ‖𝒙‖2
2 − 2 〈𝒙, ∑ 𝒄̇𝑚

𝑀

𝑚=1

〉 + ‖∑ 𝒄̇𝑚

𝑀

𝑚=1

‖

2

2

 (24)

𝑑(𝒙, 𝒙̅)2 = ‖𝒙‖2
2 − 2 ∑〈𝒙, 𝒄̇𝑚〉

𝑀

𝑚=1

+ ∑ ∑〈𝒄̇𝑚, 𝒄̇𝑙〉

𝑀

𝑙=1

𝑀

𝑚=1

 (25)

As shown in (25), two look-up tables must be prepared for

distance calculation beforehand. The first look-up table con-

sists of dot-products of the query vector 𝒙 with all codevec-

tors. The second look-up table stores the dot-products calcu-

lated between pairs of codevectors. Since the first term of (25)

is the same for all database elements, it can be neglected. The

distance can be then calculated by 𝑀 + 𝑀2 look-ups and ad-

ditions as in [16]–[19].

3 EXPERIMENTAL RESULTS

3.1 Exhaustive Search

Our approach is first tested on two publicly available da-

tasets of 1 Million samples, SIFT1M and GIST1M [10] for

exhaustive search. SIFT1M consists of 128-dimensional SIFT

vectors and GIST1M consists of 960-dimensional GIST vec-

tors.

We train our method using the given training sets and per-

form exhaustive search on both datasets for all given queries.

We use 𝐾 = 256, 𝐻 = 32, 𝑀 = 8 for 64-bits and 𝑀 = 4 for

32-bits coding. The performance of CompQ is compared

against the recent state-of-the-art methods such as, Residual

Vector Quantization (RVQ) [16], Cartesian K-Means/Opti-

mized Product Quantization (CKM/OPQ) [12], [13], Addi-

tive Quantization (AQ/APQ) [19], Composite Quantization

(CQ) [21], Extended Residual Vector Quantization (ERVQ)

[17], Optimized Cartesian K-Means (OCK) [20] and Opti-

mized Tree Quantization (OTQ) [22]. We do not compare

against Transform Coding [11], Product Quantization [10],

Projected Residual Vector Quantization [18] and Distance

Encoded Product Quantization [25] since their results were

already outperformed by the other compared methods. The

results of the competing methods are taken from the original

publications. For AQ/APQ, AQ is used for 32-bits coding and

APQ for 64-bits as suggested by the authors. NA corresponds

to missing results in the original publications.

The recall@𝑹 measure is used for the experiments, which

is the recall value for the first 𝑅 samples in retrieval. The near-

est sample in the test set is taken as the ground truth for each

query. We present the results for recall@𝟏, recall@𝟏𝟎 and

recall@𝟏𝟎𝟎 for 32-bit coding in TABLE 2 and TABLE 3

and for 64-bit coding in TABLE 4 and TABLE 5, respec-

tively.

As observed from the results, the proposed method,

CompQ, outperforms all recent state-of-the-art methods for

all scores, on both datasets for 64-bits encoding. For 32-bits

encoding, CompQ still has the best performance for re-

call@10 for SIFT1M and also for recall@10 and recall@100

for GIST1M. KSSQ gives slightly better results than CompQ

for recall@1 in both datasets for 32-bits encoding.

OZAN ET AL.: COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 7

TABLE 2

TEST RESULTS FOR SIFT1M, 32-BIT CODES

 recall@1 recall@10 recall@100

RVQ NA NA NA

CKM/OPQ 0.068 0.273 0.658

AQ 0.106 0.415 0.825

CQ NA NA NA

OCK NA 0.348 0.742

ERVQ NA NA NA

OTQ 0.093 0.368 0.793

KSSQ 0.145 0.434 0.802

CompQ 0.135 0.435 0.818

TABLE 3

TEST RESULTS FOR GIST1M, 32-BIT CODES

 recall@1 recall@10 recall@100

RVQ NA NA NA

CKM/OPQ 0.054 0.142 0.396

AQ 0.069 0.189 0.467

CQ NA NA NA

OCK NA 0.172 0.467

ERVQ NA NA NA

OTQ NA NA NA

KSSQ 0.078 0.191 0.437

CompQ 0.072 0.200 0.504

TABLE 4

TEST RESULTS FOR SIFT1M, 64-BIT CODES

 recall@1 recall@10 recall@100

RVQ 0.257 0.659 0.952

CKM/OPQ 0.243 0.638 0.940

APQ 0.298 0.741 0.972

CQ 0.288 0.716 0.967

OCK 0.274 0.680 0.945

ERVQ 0.276 0.694 0.962

OTQ 0.317 0.748 0.972

KSSQ 0.325 0.754 0.976

CompQ 0.352 0.795 0.987

TABLE 5

TEST RESULTS FOR GIST1M, 64-BIT CODES

 recall@1 recall@10 recall@100

RVQ 0.113 0.325 0.676

CKM/OPQ 0.118 0.334 0.715

AQ/APQ NA NA NA

CQ 0.135 0.377 0.729

OCK 0.130 0.358 0.720

ERVQ 0.115 0.341 0.711

OTQ NA NA NA

KSSQ 0.136 0.396 0.741

CompQ 0.155 0.419 0.801

3.2 Non-Exhaustive Search

As mentioned above in Section 2.4, the asymmetric dis-

tance calculation requires 𝑀 + 𝑀2 look-ups and additions as

in many addition based methods such as [16]–[19]. This

means the exhaustive search using those methods takes longer

time compared to the Cartesian product based methods, which

generally requires 𝑀 look-ups and additions. Methods such

as CQ and OTQ propose additional constraints on codebooks

to decrease this cost. In our method, we propose non-exhaus-

tive search as a solution to this problem.

Non-exhaustive versions of methods such as PQ, OPQ

have been implemented and tested using an additional coarse

quantization layer as in [10], [12], [14], [26], [27]. However,

in our method, a non-exhaustive search scheme can be imple-

mented using the hierarchical structure. Since at each layer,

residuals of the previous layers are quantized, upper layers

can be used as coarse quantization layers and an inverted file

list can be created, i.e., no additional coarse quantizer re-

quired.

Here we should state that, other non-exhaustive search al-

gorithms such as [14], [26]–[29] can also be applied on top of

the proposed method, where the proposed method can be used

as a subquantizer or for re-ranking purposes. Here we only

discuss the non-exhaustive implementation of the proposed

method, as this is an inherent property of it. We do not aim to

propose a new indexing algorithm, as it would be beyond the

scope of this paper.

A non-exhaustive version of RVQ (IVFRVQ) has been

also proposed in [16], which uses the first 𝐿 layers as inverted

file indexes. The query vector is compared to 𝐾𝐿 codevectors

and the nearest 𝑊 codevectors are selected (𝑊 < 𝐾). In our

method, we propose a minor modification to decrease this in-

itial comparison overhead. The query vector is compared to

the codevectors of the initial layer and the best 𝑊 of them are

selected, and residuals for the second layer are calculated.

Then among 𝐾𝑊 residuals, the nearest 𝑊2 are selected as

target inverted file indexes, while in [16], the query is com-

pared to all codevectors in the first two layers, resulting in 𝐾2

comparisons. The comparison of the proposed non-exhaus-

tive search algorithm with different 𝑊 values is given in TA-

BLE 6.

TABLE 6

NON-EXHAUSTIVE SEARCH, SIFT1M, 𝑳 = 𝟐 , 64-BIT

CODES

 Avg. No.

Compar-

isons

Avg.

Speed-

Up

recall

@1 @10 @100

W=8 4115 x 146 0.305 0.622 0.707

W=16 12788 x 65 0.343 0.742 0.886

W=32 37951 x 25 0.351 0.786 0.964

W=64 108064 x 9 0.352 0.795 0.986

Exhaustive 1000000 x 1 0.352 0.795 0.988

As it can be seen, non-exhaustive search significantly de-

creases the number of comparisons, with a negligible drop in

the performance. For example, for 𝑊 = 32, almost exhaustive

search performance is achieved for 25 times faster search. The

overall search time is proportional to the number of compari-

sons, as long as the overhead of indexing is negligible com-

pared to the overall search time. As the number of compari-

sons decreases, the search time also decreases. Hence the

overhead is no longer negligible and the obtained speed-up is

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

less compared to the decrease in the number of comparisons.

We also compare our method with the state-of-the-art non-

exhaustive search methods in the literature. This time, the per-

formance of our method is tested on SIFT1B dataset [10],

which consists of 1 Billion samples. We compare against the

state-of-the-art indexing based non-exhaustive search method

Locally Optimized Product Quantization (LOPQ) [14], In-

verted File System with Asymmetric Distance Calculation

(IVFADC) [10] and IVFADC adaptation of OPQ (I-OPQ)

[12], [14]. The compared methods use 64-bits for the codes

and 13-bits for the coarse quantizer (𝐾 = 8192), visiting the

nearest 64 cells (𝑊 = 64). In order to use approximately the

same amount of bits, we use 10 layers (𝑀 = 10) and the first

two layers are used for indexing. The compared methods visit

64 cells among 8192, which is approximately the same as vis-

iting 22 cells for two layers of 256, hence we select 𝑊 = 22

(64 8192⁄ ≅ 222 2562⁄). The results are presented in TA-

BLE 7. Here note that, the total length of the binary code is

not different in non-exhaustive search tests, unlike the most

common cases in the literature, where the coarse quantizer in-

dexes are calculated as an extra cost, i.e., [10], [12], [14], [16],

[26], [27].

TABLE 7

RECALL@R RESULTS FOR SIFT1B

 #bits recall@1 recall@10 recall@100

IVFADC 77 0.088 0.372 0.733

I-OPQ 77 0.114 0.399 0.777

LOPQ 77 0.199 0.586 0.909

CompQ 80 0.222 0.626 0.914

As it can be seen, our algorithm outperforms the state-of-

the-art methods for all three scores, using 3 more bits per sam-

ple. This corresponds to an increase in storage around 3.9%

only.

4 DISCUSSIONS

As explained in detail in Section 2, CompQ presents a

quantization scheme based on the addition of several

codevectors. A joint optimization scheme is proposed on top

of a hierarchical structure. This structure is similar to the hi-

erarchy of RVQ and its variants, but CompQ outperforms

these methods thanks to the jointly computed codebooks.

Other state-of-the-art methods such as OCKM and AQ also

propose a joint optimization for codebook generation, but the

lack of codebook hierarchy leads to more complex search

spaces for encoding. OTQ and CQ instead, limit the search

space with stronger constraints, decreasing the search com-

plexity but resulting in inferior codebooks. CompQ is a viable

compromise, where the search complexity is reduced by

adopting a hierarchical structure while the codebook genera-

tion is improved with the proposed joint optimization scheme.

4.1 Joint Optimization

Investigating the behavior of the quantization errors in each

layer is a good way to visualize the advantage of joint optimi-

zation against training all codebooks separately. As it can be

seen in Fig. 2, the first layers reduce the quantization error the

most, while the contributions of the last layers are more lim-

ited. It is worth mentioning that, obtaining a perfectly equal

distribution of quantization error cannot be expected. Because

at each layer, the residuals from the previous layers are quan-

tized, hence the norms are decreased. However, a better dis-

tribution of the workload between the layers is shown to be

possible with the proposed joint optimization scheme.

Fig. 2: Quantization error on SIFT1M as a function of the quantization

levels for 64-bit encoding.

Fig. 3 Quantization error on SIFT1M as a function of training iterations

for 64-bit encoding.

Fig. 3 shows the decrease in the quantization error for 250

iterations. As it can be seen, there is a steep drop right after

the first iteration, then the error keeps decreasing slowly and

converges around 13700. That also shows that the proposed

initialization prevents overfitting and allows further iterations

to improve the quantization performance.

4.2 Impact of the Proposed Novelties on the
Performance

In TABLE 8, the impact of the proposed novelties on the

performance are individually presented. The joint optimiza-

tion scheme for codebook generation is compared to code-

book generation scheme of RVQ. Also the winner codevector

improvement is tested with RVQ and the performance is com-

pared with CompQ. Both novelties are shown to provide sig-

nificant improvement.

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8

Q
U

A
N

TI
ZA

TI
O

N
 E

R
R

O
R

QUANTIZATION LEVELS

TC (Initial) RVQ ERVQ CompQ

0

5000

10000

15000

20000

25000

30000

35000

1 51 101 151 201Q
U

A
N

TI
ZA

TI
O

N
 E

R
R

O
R

ITERATION

OZAN ET AL.: COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 9

TABLE 8

IMPACT OF THE PROPOSED NOVELTIES ON THE PERFORMANCE

SIFT1M, 64-BIT CODES

 MSEQ recall@1 recall@10 recall@100

RVQ 20302.1 0.257 0.659 0.952

CompQ H=1 17765.9 0.286 0.709 0.966

RVQ H=8 18735.3 0.298 0.726 0.973

CompQ H=8 14418.1 0.339 0.783 0.983

CompQ H=16 13964.2 0.347 0.786 0.986

CompQ H=32 13671.2 0.352 0.795 0.988

4.3 Parameter Selection

CompQ consists of several parameters, such as the number

of quantization levels 𝑀, the number of codevectors per layer

𝐾, the learning rate 𝛾, and the number of candidates for the

winner codevector, 𝐻. For 𝑀 and 𝐾 we follow the same set-

tings as in the literature, i.e., 𝑀 = 8 for 64-bits code and 𝑀 =
4 for 32-bits code. Similarly, we set 𝐾 = 256.

Selecting a suitable number for the candidates of winner

codevectors is a tradeoff between the encoding complexity

and the quantization performance. The quantization perfor-

mance increases with 𝐻 and so as the complexity. Hence we

select 𝐻 = 32 since it gives the comparable encoding com-

plexity with the competeing methods as shown in TABLE 10.

We present the performance of our method for different val-

ues of 𝐻 in TABLE 8. with codebooks trained with RVQ.

Note that when 𝐻 = 1, the encoding scheme is the same as

in RVQ. TABLE 8 also shows the increase in the perfor-

mance when our encoding scheme is used. For the learning

rates, since the upper layers correspond to greater quantiza-

tion errors, the weight of the corresponding update should be

also greater. In order to do that, we select the corresponding

learning rate of each layer using the equation in (26).

𝛾𝑚 =
1

⌈log2 𝑚 + 1⌉
𝛾0 (26)

Then we define a total value 𝛾𝑇𝑜𝑡𝑎𝑙 = ∑𝛾𝑚 and normalize 𝛾𝑚

so that 𝛾𝑇𝑜𝑡𝑎𝑙 is equal to the predefined value. The quantiza-

tion performance for different values of 𝛾𝑇𝑜𝑡𝑎𝑙 is presented in

Fig. 4.

As it can be seen, there is no significant change in the quanti-

zation error for the tested values of 𝛾𝑇𝑜𝑡𝑎𝑙 and hence we pick

𝛾𝑇𝑜𝑡𝑎𝑙 = 0.5 which corresponds to a slightly improved quan-

tization error according to our simulations.

Fig. 4: Quantization error on SIFT1M as a function of the learning rate

parameter 𝛾𝑇𝑜𝑡𝑎𝑙 for 64-bit encoding, H=1.

4.4 Initialization Methods

The importance of initialization for the proposed codebook

training method is tested using different initialization

schemes. Randomly initialized codebooks, RVQ initialized

codebooks and the proposed codebook initialization, which is

based on TC, are compared and the results are presented in

TABLE 9.

TABLE 9

COMPARISON OF INITIALIZATION METHODS, SIFT1M, 64-BIT

CODES, H=1

 MSEQ recall@1 recall@10 recall@100

CompQ Rand Init 21568 0.227 0.614 0.931

CompQ RVQ Init 17823 0.278 0.704 0.963

CompQ TC Init 17765 0.286 0.709 0.966

As it can be seen, random initialization provides inferior

results as some codevectors are not updated during the train-

ing procedure. RVQ initialization is also outperformed by the

proposed TC initialization, as the former overfits the training

data at each layer while the latter provides a more balanced

distribution of codevectors throughout the feature space.

4.5 Computational Complexity Analysis

The computational cost of encoding for CompQ can be cal-

culated as in (22). The first term in (22) is the distance of the

given query to the codevectors of the previous layer, so at this

layer no extra calculations are required. The third and fourth

terms are obtained using a look-up table. This requires 𝑚𝐾𝐻

look-ups and additions for the 𝑚𝑡ℎlayer. The second term is

the dot product of the given query with each codevector of the

current layer, which costs 𝑂(𝐷𝐾). Finally, among the dis-

tances calculated between all codevectors and the previous

residual candidates, the best 𝐻 are selected. This operation

costs 𝑂(𝐾𝐻 log𝐻). These calculations are repeated for all 𝑀

layers, and the code corresponding to the best quantization

error is returned. The final cost can be expressed as,

 𝑂 (𝑀𝐷𝐾 +
(𝑀−1)(𝑀−2)

2
𝐾𝐻 + 𝑀𝐾𝐻 log𝐻) (27)

As it can be seen in TABLE 10, the computational cost of

our method is comparable to the other methods, but signifi-

cantly lower than AQ/APQ. A detailed analysis of the storage

requirements is also presented in TABLE 10. CompQ re-

quires to store 𝐾 vectors of dimension 𝐷 for each of the 𝑀

layers, resulting in a storage cost of 𝑂(𝑀𝐷𝐾), which corre-

sponds to 2𝑀𝐵 for the SIFT dataset for 64-bits encoding. It

can be observed from the table that the storage requirement

of our method is also comparable with the other methods.

4.6 Relations with the Enhanced Residual Vector
Quantization Method

ERVQ [17] is an extension over RVQ [16], which aims to

improve the quantization quality by an iterative enhancement

process over RVQ’s training scheme. ERVQ starts with an

RVQ initialization, and after that while keeping 𝑀 − 1 code-

books fixed, it recalculates the codebook of the 𝑀𝑡ℎ layer.

Several iterations are performed until convergence is reached.

17750

17760

17770

17780

17790

0,25 0,5 0,75 1

Q
u

an
ti

za
ti

o
n

 E
rr

o
r

Learning Rate

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

TABLE 10

COMPARISON OF COMPUTATIONAL AND STORAGE COSTS

Method Cost of Encoding Cost of Encoding for Different Datasets and Code Lengths

 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64

RVQ/ERVQ Ο(𝑀𝐾𝐷) 131072 262144 983040 1966080

CKM/OPQ Ο(𝐷2 + 𝐾𝐷) 49152 49152 1167360 1167360

OCK Ο(𝑇𝐾𝐷) 327680 327680 2457600 2457600

AQ Ο(𝑀2𝐾2(𝑀 + log(𝑀𝐾)) + 𝐾𝐷) 14712832 79724544 14925824 79937536

APQ Ο(𝐷2 +
𝑀

4
(42𝐾2(4 + log(4𝐾)) + 𝐾𝐷)) 14729216 14761984 15847424 16093184

CQ Ο(3𝑀𝐾𝐷) 393216 786432 2949120 5898240

OTQ Ο(𝐷2 + 𝐾𝐷 + 𝑀𝐾2) 311296 573440 1429504 1691648

KSSQ 𝛰(𝐾𝐷 + 2𝒦𝐷𝐿 + 8𝒦𝑀) 115200 197632 338176 645632

CompQ Ο(𝑀𝐷𝐾 +
(𝑀 − 1)(𝑀 − 2)

2
𝐾𝐻 + 𝑀𝐾𝐻 log𝐻) 319488 761856 1171456 2465792

Method Storage Cost Storage Costs for Different Datasets and Code Lengths (MB)

 SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64

RVQ/ERVQ Ο(𝑀𝐾𝐷) 1.00 2.00 7.5 15

CKM/OPQ Ο(𝐷2 + 𝐾𝐷) 0.38 0.38 8.91 8.91

OCK Ο(𝐷2 + 2𝐾𝐷) 0.63 0.63 10.78 10.78

AQ Ο(𝑀𝐾𝐷) 1.00 2.00 7.50 15.00

APQ Ο(𝐷2 + 𝑀𝐾𝐷) 1.13 2.13 14.53 22.03

CQ Ο(𝑀𝐾𝐷) 1.00 2.00 7.50 15.00

OTQ Ο(𝐷2 + 𝑀𝐾𝐷) 1.13 2.13 14.53 22.03

KSSQ Ο(𝐾𝐷𝐿) 5.00 10.00 4.69 9.38

CompQ Ο(𝑀𝐾𝐷) 1.00 2.00 7.50 15.00

𝑲: number of sub-codewords 256 256 256 256

𝑫: number of dimensions 128 128 960 960

𝑴: number of sub-codebooks 4 8 4 8

𝑻: search depth for OCK 10 10 10 10

𝑯: number of winner candidates 32 32 32 32

𝓚: number of selected subspaces for KSSQ encoding 16 16 8 8

𝑳: number of reduced dimensions (on average) for KSSQ 20 40 20 40

Compared to ERVQ, the proposed method has three signif-

icant differences. The first one is the proposed initialization

scheme, which is based on TC [11] instead of RVQ. TABLE

9 shows the improvement in the performance provided by the

TC based initialization method. The second difference is the

training scheme. While ERVQ can only update one codebook

per iteration, in the proposed method, all 𝑀 codebooks are

updated according to the quantization error, as explained in

Section 2.1, using the formula given in (18). The contribution

of the proposed training method on RVQ is shown in TABLE

8. As it can be seen, the proposed method already performs

better than ERVQ with these two improvements. The third

and the last difference between the proposed method and

ERVQ is the encoding scheme. The contribution of the pro-

posed encoding scheme is also shown in in TABLE 8. Com-

bining these three new features, the proposed method outper-

forms ERVQ with an important margin (a relative improve-

ment of 27.5% for SIFT1M and 34.8% for GIST1M), clearly

demonstrating the significance of the proposed contributions.

5 CONCLUSIONS

In this paper, a novel vector quantization method based on

the addition of codevectors is presented. A novel training al-

gorithm, which minimizes the quantization error using a joint

optimization among different codebook layers is proposed.

The proposed method, CompQ, also improves the traditional

encoding scheme of RVQ by redefining the winner codevec-

tor. By means of such novel improvements, CompQ achieves

the state-of-the-art performance with comparable computa-

tional and storage costs. In the future, we aim to test the per-

formance of CompQ for different distance metrics and for k-

Nearest Neighbor classification problems.

REFERENCES

[1] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for

Similarity Search: A Survey,” in arXiv preprint, 2014,

p. :1408.2927.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,

“Locality-Sensitive Hashing Scheme Based on P-

OZAN ET AL.: COMPETITIVE QUANTIZATION FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 11

stable Distributions,” in SCG, 2004, p. 253.

[3] X. He, D. Cai, S. Yan, and H. Zhang, “Neighborhood

Preserving Embedding,” in ICCV, 2005.

[4] Y. Weiss, A. Torralba, and R. Fergus, “Spectral

Hashing,” in NIPS, 2009, pp. 1753–1760.

[5] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality

sensitive hashing: A comparison of hash function

types and querying mechanisms,” Pattern Recognit.

Lett., vol. 31, no. 11, pp. 1348–1358, Aug. 2010.

[6] Y. Gong and S. Lazebnik, “Iterative quantization: A

procrustean approach to learning binary codes,” in

CVPR, 2011, pp. 817–824.

[7] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-Taught

Hashing for Fast Similarity Search,” in ACM SIGIR

Conference on Research and Development in

Information Retrieval, 2010, pp. 18–25.

[8] G. Lin, C. Shen, D. Suter, and A. van den Hengel, “A

General Two-Step Approach to Learning-Based

Hashing,” in ICCV, 2013, pp. 2552–2559.

[9] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik,

“Asymmetric distances for binary embeddings.,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no.

1, pp. 33–47, Jan. 2014.

[10] H. Jégou, M. Douze, and C. Schmid, “Product

quantization for nearest neighbor search.,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp.

117–28, Jan. 2011.

[11] J. Brandt, “Transform coding for fast approximate

nearest neighbor search in high dimensions,” in

CVPR, 2010, pp. 1815–1822.

[12] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized Product

Quantization.,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 36, no. 4, pp. 744–755, Dec. 2014.

[13] M. Norouzi and D. J. Fleet, “Cartesian K-Means,” in

CVPR, 2013, pp. 3017–3024.

[14] Y. Kalantidis and Y. Avrithis, “Locally Optimized

Product Quantization for Approximate Nearest

Neighbor Search,” in CVPR, 2014.

[15] E. C. Ozan, S. Kiranyaz, and M. Gabbouj, “K -

Subspaces Quantization for Approximate Nearest

Neighbor Search,” IEEE Trans. Knowl. Data Eng.,

2016.

[16] Y. Chen, T. Guan, and C. Wang, “Approximate

nearest neighbor search by residual vector

quantization,” Sensors, vol. 10, no. 12, pp. 11259–

11273, 2010.

[17] L. Ai, J. Yu, Z. Wu, Y. He, and T. Guan, “Optimized

residual vector quantization for efficient approximate

nearest neighbor search,” Multimed. Syst., Jun. 2015.

[18] B. Wei, T. Guan, and J. Yu, “Projected Residual

Vector Quantization for ANN Search,” IEEE

Multimed., vol. 21, no. 3, pp. 41–51, Jul. 2014.

[19] A. Babenko and V. Lempitsky, “Additive

Quantization for Extreme Vector Compression,” in

CVPR, 2014, pp. 931–938.

[20] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and

S. Li, “Optimized Cartesian K-Means,” IEEE Trans.

Knowl. Data Eng., vol. 27, no. 1, pp. 180–192, Jan.

2015.

[21] T. Zhang, D. Chao, and J. Wang, “Composite

Quantization for Approximate Nearest Neighbor

Search,” in ICML, 2014.

[22] A. Babenko and V. Lempitsky, “Tree Quantization for

Large-Scale Similarity Search and Classification,” in

CVPR, 2015.

[23] J. a Hertz, A. S. Krogh, R. G. Palmer, and A. S.

Weigend, Introduction to the Theory of Neural

Computation. 1993.

[24] W. Dong, M. Charikar, and K. Li, “Asymmetric

distance estimation with sketches for similarity

search in high-dimensional spaces,” in SIGIR, 2008,

p. 123.

[25] J.-P. Heo, Z. Lin, and S.-E. Yoon, “Distance Encoded

Product Quantization,” in CVPR, 2014, pp. 2139–

2146.

[26] A. Babenko and V. Lempitsky, “The inverted multi-

index,” in CVPR, 2012, vol. 14, no. 1–3, pp. 3069–

3076.

[27] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg,

“Searching in one billion vectors: Re-rank with

source coding,” ICASSP, no. 3, pp. 861–864, 2011.

[28] J. Song, H. T. Shen, J. Wang, Z. Huang, N. Sebe, and

J. Wang, “A Distance-Computation-Free Search

Scheme for Binary Code Databases,” IEEE Trans.

Multimed., vol. 18, no. 3, pp. 484–495, 2016.

[29] A. Punjani and D. J. Fleet, “Fast Search in Hamming

Space with Multi-Index Hashing Mohammad

Norouzi,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 36, no. 6, pp. 1107–1119, 2014.

Ezgi Can Ozan received his BS degree in
Electrical and Electronics Department at Mid-
dle East Technical University, Ankara, Turkey,
in 2007 and MS degree in Signal Processing
from the same University, in 2011. He is cur-
rently a Ph.D. candidate and working as a re-
searcher at Tampere University of Technology,
Tampere, Finland. His areas of interest include
large-scale multimedia search, pattern recog-
nition, machine learning, and computer vision.

Serkan Kiranyaz received his BS degree in
Electrical and Electronics Department at
Bilkent University, Ankara, Turkey, in 1994 and
MS degree in Signal and Video Processing
from the same University, in 1996. He worked
as a Senior Researcher in Nokia Research
Center and later in Nokia Mobile Phones, Tam-
pere, Finland. He received his PhD degree
from Tampere University of Technology; Insti-
tute of Signal Processing in 2005 and his Do-
cency at 2007 respectively. He is currently

working as a Professor in Electrical Engineering Department of Qatar
University. Prof. Kiranyaz published 2 books, more than 35 journal pa-
pers on several IEEE Transactions and some other high impact jour-
nals and 80+ papers in international conferences. His recent publica-
tion, “Automatic Object Segmentation by Quantum Cuts” won the IBM
Best Paper Award in ICPR’14. Prof. Kiranyaz is a senior of IEEE.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Moncef Gabbouj received his BS degree in
electrical engineering in 1985 from Oklahoma
State University, Stillwater, and his MS and
PhD degrees in electrical engineering from
Purdue University, West Lafayette, Indiana, in
1986 and 1989, respectively. Dr. Gabbouj is a
Professor of Signal Processing at the Depart-
ment of Signal Processing, Tampere University
of Technology, Tampere, Finland. He was
Academy of Finland Professor during 2011-
2015. He held several visiting professorships at

different universities. His research interests include multimedia con-
tent-based analysis, indexing and retrieval, machine learning, nonlin-
ear signal and image processing and analysis, voice conversion, and
video processing and coding. Dr. Gabbouj is a Fellow of the IEEE and
member of the Academia Europa and the Finnish Academy of Science
and Letters. He is the past Chairman of the IEEE CAS TC on DSP and
committee member of the IEEE Fourier Award for Signal Processing.
He served as Distinguished Lecturer for the IEEE CASS. He served
as associate editor and guest editor of many IEEE, and international
journals. Dr. Gabbouj was the recipient of the 2015 TUT Foundation
Grand Award, the 2012 Nokia Foundation Visiting Professor Award,
the 2005 Nokia Foundation Recognition Award, and several Best Pa-
per Awards. He published over 650 publications and supervised 40
doctoral theses.

VI

A VECTOR QUANTIZATION BASED K-NN APPROACH FOR LARGE-
SCALE IMAGE CLASSIFICATION

by

E.C.Ozan, E.Riabchenko, S. Kiranyaz and M. Gabbouj, 2016

Sixth International Conference on Image Processing Theory, Tools and Applications
(IPTA), Oulu, 2016, pp. 1-6.

©2016 IEEE. Reprinted, with permission, from E.C.Ozan, E.Riabchenko, S. Kiranyaz and

M. Gabbouj, VQ-Based K-NN for Classification Of Large-Scale Datasets, IEEE
International Conference on Image Processing Theory, Tools and Applications (IPTA)

2016.

A Vector Quantization Based k-NN Approach for

Large-Scale Image Classification

Ezgi Can Ozan1, Ekaterina Riabchenko1, Serkan Kiranyaz2 and Moncef Gabbouj1
1Department of Signal Processing, Tampere University of Technology, Tampere, Finland

e-mail: {ezgi.ozan, ekaterina.riabchenko, moncef.gabbouj}@tut.fi
2Electrical Engineering Department, College of Engineering, Qatar University, Qatar

e-mail: mkiranyaz@qu.edu.qa

Abstract— The k-nearest-neighbour classifiers (k-NN)

have been one of the simplest yet most effective approaches to

instance based learning problem for image classification.

However, with the growth of the size of image datasets and the

number of dimensions of image descriptors, popularity of k-NNs

has decreased due to their significant storage requirements and

computational costs. In this paper we propose a vector

quantization (VQ) based k-NN classifier, which has improved

efficiency for both storage requirements and computational costs.

We test the proposed method on publicly available large scale

image datasets and show that the proposed method performs

comparable to traditional k-NN with significantly better

complexity and storage requirements.

Keywords— k-NN Classifier; Vector Quantization; Large-

Scale Image Classification.

I. INTRODUCTION

The Nearest Neighbour classification is one of the most

popular methods in data mining [1]. This idea is very simple

and easy to envision. Many statistical classification

methods aim to estimate the underlying model which

generated the corresponding sample set. In most cases, the

only information about this model is inferred from the set

of samples at hand. Hence, this may not be a simple task, as

the obtained model strictly depends on the previously made

assumptions. However, it is always reasonable to assume

that, samples which are close to each other by an

appropriate distance metric, also have the same class labels.

In other words, if there are enough reference samples at

hand and the reference set is a good representation of the

test set, then the test samples can be classified according to

the nearest reference samples. This intuitive method is

called the Nearest Neighbour (1-NN) classification [2]. It

classifies a given input according to the class of its nearest

neighbour, among a stored set of reference samples.

 Obviously, 1-NN algorithm is highly susceptible to

noise, as the classification decision is based on only one

reference sample. In order to improve the robustness

against the noise, the main idea behind the 1-NN can be

naturally extended to k-NN, where k nearest neighbours are

found and the classification decision is given after a

majority voting among the obtained nearest reference

samples [3]. A comparison of 1-NN and k-NN on a toy

dataset is shown in Fig. 1.

One can also suggest that, the reference samples which

are closer to the test sample should have a higher impact on

the class decision. This idea leads to the weighted k-NN,

where the votes of the reference samples are weighted

according to their distance to the test sample. Dudani

proposes several weighting schemes in [4] and shows that

the weighted k-NN outperforms the majority voting based

k-NN. After Dudani, Pao et al. uses Fibonacci series as the

weighting function in [5]. They show that Fibonacci

weighted voting for k-NN outperforms the linear mapping

proposed by Dudani. Gou et al. extends the linear mapping

of Dudani with the reciprocal of the ranking and proposes a

new weighting scheme in [6]. Gou et al. also proposes

another method in [7], which adds nonlinearity to Dudani’s

method and shows that his method outperforms 1-NN,

majority voting and Dudani’s linear weighting methods.

Fig. 1. 1-NN vs k-NN on a toy dataset.

One major drawback of NN based algorithms is that,

they require to store the whole reference set. Learning based

classification algorithms aim to estimate the parameters

using the given training set in order to obtain a statistical

model, while as an instance based classification algorithm,

NN stores the whole training set. Besides the storage

problem, NN based methods are computationally very

complex, as retrieval of the nearest neighbours for a given

sample is linearly proportional to both the size and the

cardinality of the training set [1]. As the number of samples

and their dimensions increase, the computational and

storage requirements also increase, hence the popularity of

NN based methods decrease due to this practical

challenges.

In this paper, we propose a Vector Quantization (VQ)

based k-NN solution to the image classification problem.

Vector Quantization for Approximate Nearest Neighbour

Search (VQ-ANN) is a well-studied field, which aims to

compress vectors with high number of dimensions into

binary strings. With this compression, both the storage

space requirements and computational costs are

significantly decreased [8]. In the proposed method, we

show that, a more efficient k-NN classifier can be obtained

by the help of the aforementioned VQ-ANN techniques.

The proposed classifier uses approximated distances

between the test sample and the reference set, resulting in

significantly better computational costs and storage

requirements, while having a comparable classification

performance.

The rest of the paper is organized as follows. In Section

II, problem formulation is presented and background

information for the terms used in the proposed method are

presented. In Section III, the proposed method is explained

more in detail. Section IV presents the experiments and

finally in Section V the paper is concluded.

II. PROBLEM FORMULATION

In this section, we present the formulation for the k-NN

problem and provide some background information about

the terms used in the proposed method.

A. The Approximate Nearest Neighbour Search

Given a sample 𝒚 ∈ ℝ𝐷 and a set of N samples 𝑿 =
 {𝒙1, 𝒙2, … , 𝒙𝑁} ∈ ℝ𝐷×𝑁, the nearest neighbor search aims

to find the nearest sample for 𝒚 among 𝑿 as

𝒙̅ = argmin
𝒙𝑖∈𝑿

𝑑(𝒚, 𝒙𝑖) (1)

where 𝑑(𝒚, 𝒙𝑖) is the distance between 𝒚 and 𝒙𝑖.The nearest

neighbour search can be extended to k-Nearest Neighbour

search by simply retrieving the first 𝑘 samples as

𝒙̅𝑘 = argmin
𝒙𝑖∈(𝑿/ ⋃ 𝒙̅𝑚)𝑘−1

𝑚=1

𝑑(𝒚, 𝒙𝑖).
(2)

The nearest neighbour search can be accelerated using

an approximate method to calculate the distance 𝑑(𝒚, 𝒙𝑖).

This is called the Approximate Nearest Neighbor (ANN)

search. Normally, the distance 𝑑(𝒚, 𝒙𝑖) between the

samples 𝑦 and 𝑥𝑖 is calculated for every 𝒙𝑖 ∈ 𝑿. The

complexity of this operation is linearly dependent on the

number of dimensions 𝐷 and the number of samples 𝑁. In

order to approximate the distances, ANNs use the quantized

versions of reference samples. For a given sample 𝒙𝑖, let the

quantizer ℚ quantize 𝒙𝑖 to be a set of codevectors 𝑽 =
{𝒗1, 𝒗2 … 𝒗𝐻} as

𝒙𝑖̂ = ℚ(𝒙𝑖) 𝒙𝑖̂ ∈𝑉, (3)

meaning that there are 𝐻 different codevectors, so once the

distance between the test sample 𝑦 and these codevectors

are calculated, then the approximated distance 𝑑̂(𝒚, 𝒙𝑖) =
 𝑑(𝒚, 𝒙𝑖̂) can be calculated using a look-up table.

B. The Nearest Neighbour Classification

Given a sample 𝒚 ∈ ℝ𝐷, the set of N reference samples

𝑿̅ = {𝒙̅1, 𝒙̅2, … , 𝒙̅𝑁} ∈ ℝ𝐷×𝑁 is the sorted set of reference

samples according to the distance, i.e., 𝑑(𝒚, 𝒙̅𝑖) ≤
𝑑(𝒚, 𝒙̅𝑗) ⇔ 𝑖 < 𝑗. Also given a corresponding label set

𝑳 = {𝑙1, 𝑙2, … , 𝑙𝑁} ∈ ℝ1×𝑁, where 𝑙𝑖 ∈ {1, 2, … 𝐶} , 𝑙𝑖

shows the label of sample vector 𝒙̅𝑖. 1-NN classifier ℂ1𝑁𝑁

classifies the given sample 𝒚 as given below:

ℂ1𝑁𝑁 (𝒚) = 𝑙1. (4)

Similarly a majority voting k-NN classifier ℂ𝑘𝑁𝑁

classifies the given sample 𝑦 to its corresponding class as

follows:

ℂ𝑘𝑁𝑁(𝒙) = argmax
𝑐

∑ Θ(𝑐 = 𝑙𝑘)

𝐾

𝑘=1

, (5)

where Θ is the indicator function defined as follows:

Θ(𝑎) = {
1 𝑎 = 𝑡𝑟𝑢𝑒
0 𝑎 = 𝑓𝑎𝑙𝑠𝑒

} . (6)

Furthermore, a weighted k-NN classifier ℂ𝑤𝑘𝑁𝑁

classifies the given sample 𝒚 to its corresponding class as

given below:

ℂ𝑘𝑁𝑁(𝒙) = argmax
𝑐

∑ 𝑤𝑘Θ(𝑐 = 𝑙𝑘)

𝐾

𝑘=1

, (7)

where 𝑤𝑘 is the corresponding weight for the 𝑘𝑡ℎ neighbor.

As explained above, for k-NN classification, a nearest

neighbour search is required for every given test sample,

meaning that the classification of a given sample requires

𝑁 distance calculations, each of them is linearly dependent

on the number of dimensions 𝐷. This procedure is

computationally very expensive, especially for large values

of 𝑁 and 𝐷. Besides, k-NN requires a reference sample set

to be stored. The size of this set is also proportional to 𝑁

and 𝐷. As the number of samples and the dimensions

increase, k-NN becomes infeasible. In this paper we

propose to introduce vector quantization methods to k-NN

classifiers in order to approximate the distance calculation,

and store the reference samples as a set of compressed

binary strings. In the next section, we explain the proposed

method more in detail.

III. PROPOSED METHOD

In this section, we explain the details of the proposed

method. In our method, we aim to overcome the main

disadvantages of k-NN classifiers, by introducing VQ based

ANNs. As mentioned above, for a given test sample, a k-

NN classifier first finds the nearest k reference samples

from a stored set. Then using a voting approach, the

decision is made for the classification of the given sample.

In our method, we propose approximate nearest neighbour

search to find the nearest k samples.

A. Residual Vector Quantization for ANN

There are many different VQ methods in the literature

[8], and in our method we propose to use Residual Vector

Quantization for Approximate Nearest Neighbour Search

(RVQ) [9]. Residual vector quantization is a well-studied

quantization scheme [10] and it has been adapted to ANN

by Chen et al. [9].

RVQ performs quantization using a layer based

hierarchical structure. As the name implies, the

quantization is performed on the residuals of the previous

layer. The final quantized vector is obtained by summation

of the codevectors of each layer. For an 𝑀 layer RVQ, the

quantization process can be formulized as:

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄1)

= min
{𝑽1},{𝑩1}

1

𝑁
∑ ‖(𝒙𝑖 − ∑ 𝑽𝑚𝒃𝑚𝑖

1

𝑚=1

)‖

𝑁

𝑖=1

2

.

.

𝑀𝑆𝐸𝑄
(𝑅𝑉𝑄𝑀)

= min
{𝑽𝑀},{𝑩𝑀}

1

𝑁
∑ ‖(𝒙𝑖 − ∑ 𝑽𝑚𝒃𝑚𝑖

𝑀

𝑚=1

)‖

𝑁

𝑖=1

2

 (8)

Here 𝑽𝑚 represents the codebook matrix for the layer 𝑚,

and 𝒃𝑚𝑖
 is a binary selection vector, which selects only one

codevector from the given codebook.

As it can be seen in above, RVQ separates the VQ

problem into 𝑀 sub-problems and solves it in a hierarchical

way. RVQ requires a training stage in order to learn the

codebooks. For each layer, one codebook is obtained using

K-Means on the given set of training vectors. Then each

sample vector is appointed to the nearest codevector, and

the residuals are calculated. The residuals are then passed

to the next layer and this process is repeated for all the

layers. The encoding scheme proposed in RVQ [9] stems

from the same idea used in the training stage. For a given

novel sample, the nearest codevector of the first codebook

is found, then the residual is calculated and passed to the

next layer. Finally 𝑀 codevectors, one from each layer, are

obtained. Their indices for the corresponding layers are

stored as binary strings. The length of this binary string is

obtained as given as:

𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ = 𝑀 log2 𝒦, (9)

where 𝒦 represents the number of codevectors in a

codebook.

The Euclidean distance between a given test sample

and a compressed reference vector 𝑑(𝒚, 𝒙̂) is calculated as

presented as:

𝒙̂ = ∑ 𝒗̇𝑚

𝑀

𝑚=1

𝑑(𝒚, 𝒙̂)2 = ‖𝒚‖2 − 2 ∑ 〈𝒚, 𝒗̇𝑚〉

𝑀

𝑚=1

+ ∑ ∑〈𝒗̇𝑚, 𝒗̇𝑙〉

𝑀

𝑙=1

𝑀

𝑚=1

 (10)

Here 𝒗̇𝑚 is the codevector corresponding to the code at the

𝑀𝑡ℎ layer.

As it can be seen, if a look-up table for the dot-products

of each codevector and the given test sample 〈𝒚, 𝒗̇𝑚〉 is

prepared, the approximated distance can be calculated using

𝑀2 2⁄ + 𝑀 look-ups (𝑀2 ≪ 𝑁). Note that, the dot-

products of codevectors 〈𝒗̇𝑚, 𝒗̇𝑙〉 are already calculated and

stored in a look-up table in the training stage.

Another property of the layered structure of RVQ is

that, it can inherently perform indexing, which is required

for non-exhaustive search [9]. The first layers of RVQ can

be used for indexing of the database elements so that nearest

neighbour search is performed only on a small subset. This

accelerates the search time significantly.

B. Voting Based Classification

After finding the (approximate) k-nearest neighbours,

the next step is to define a voting scheme and classify the

given sample. Apart from the basic majority voting, several

different methods have been proposed for the weighting

scheme [3]–[7]. Here we explain Majority Voting [2],

Dudani [4] and Dual Distance [7] methods in detail.

1) Majority Voting: In this method [2], the k-nearest

neighbours contribute to voting with equal votes. Their

distance to the given test sample or their rank in the ordering

does not affect the final result. The class which has the most

votes is selected.

2) Dudani Weights: In [4], Dudani proposes to impose a

weighting scheme for the votes of each neighbour,

according to their distance to the given test sample. This

weighting is linear, and the weight of each neighbour is

linearly mapped between [0, 1]. This weighting function

can be formulated as given below:

𝑤𝑘 = {
(

𝑑𝐾 − 𝑑𝑘

𝑑𝐾 − 𝑑1
) 𝑑𝐾 ≠ 𝑑1

1 𝑑𝐾 = 𝑑1

}, (11)

where 𝑑𝑘 is the distance between the given sample 𝒚

and the 𝑘𝑡ℎ nearest neighbor 𝒙̅𝑘, i.e., 𝑑𝑘 = 𝑑(𝒚, 𝒙̅𝑘).

3) Dual Distance Weights: The Dual Distance method is

proposed by Gou in [7]. In this weighting scheme, the

contributions of the neighbours to the class decision is

weighted as follows:

𝑤𝑘 = {
(

𝑑𝐾 − 𝑑𝑘

𝑑𝐾 − 𝑑1
) (

𝑑𝐾 + 𝑑1

𝑑𝐾 + 𝑑𝑘
) 𝑑𝐾 ≠ 𝑑1

1 𝑑𝐾 = 𝑑1

}. (12)

As it can be seen, Dual Distance is a modified version of

Dudani’s weighting scheme, where the mapping of

distances to the interval [0, 1] is no longer linear.

IV. EXPERIMENTS

We evaluate the performance of the proposed method

on three publicly available image datasets. The datasets are

obtained from [11], [12]. We use PascalVOC07 and

ImageNet datasets with ”decaf7” features, and Bing dataset

with ”decaf6” features. We use the 25% of each dataset as

the holdout test set. The ”decaf” features are extracted from

layers of a convolutional neural network [13]. ”Decaf6” is

extracted from the 6th layer and ”decaf7” is extracted from

the 7th layer. The details of the datasets used in the

experiments is presented in in Table 1.

Table 1. Properties of the Selected Datasets

Property Pascal Bing ImageNet

#Classes 20 257 118

#Training

Samples 10740 90692 124200

#Test Samples 3580 30230 41400

#Dimension 4096 4096 4096

Feature Type decaf7 decaf6 decaf7

Here we present the VQ based k-NN classifier results

using three different voting schemes mentioned above. We

compare these results to the traditional k-NNs using the

corresponding voting scheme. In these experiments, SVMs

serve as a baseline, thus we use the Python scikit-learn [14]

wrapper for libSVM [15] with default parameters. In order

to obtain the best performance with SVMs, parameters

should be optimized for each dataset separately. The

performance metric used for evaluating the classification

accuracy is defined as given below:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒𝑠

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (13)

The results for the datasets Pascal, Bing and ImageNet

are presented in Table 2. The majority voting method is

denoted as (MV), Dudani weighting scheme as (D) and Dual

Distance weighting scheme as (DD). As it can be seen, the

VQ based k-NN performs comparable to the traditional k-

NN. For Bing and ImageNet, weighted distance based k-

NN methods are shown to perform better than majority

voting, however for a smaller and noisier dataset Pascal,

majority voting k-NN method is significantly better than

weighted distance based methods.

k-NN methods are shown to outperform SVM on the

Pascal, while SVM performs better on the ImageNet. For

the Bing dataset, the obtained performances are

comparable. Note that, SVMs or any learning based

classifier can exploit the correlations among the dimensions

of the feature vector, while k-NN classifiers require a

proper distance metric to be defined beforehand. In our

experiments, we use the Euclidean distance, yet any other

distance metric can also be used. Furthermore, this distance

metric can also be learned for a given dataset [16], but

selection of the proper distance metric is beyond the scope

of our paper.

 Table 2. Classification accuracies obtained on

different datasets, 128-bit encoding, K=64

Method Pascal Bing ImageNet

k-NN (MV) 0.520 0.255 0.645

k-NN (D) 0.406 0.293 0.674

k-NN (DD) 0.381 0.294 0.675

VQ k-NN

(MV) 0.532 0.241 0.647

VQ k-NN

(D) 0.471 0.264 0.667

VQ k-NN

(DD) 0.451 0.265 0.668

SVM 0.363 0.260 0.701

The effect of K on the performance of a VQ based k-

NN classifier is represented in Fig. 2. As the value of K

increases, the accuracy also increases up to a point. After

that the accuracy starts to decline.

Fig. 2. Performance of VQ based k-NN using Dual

Distance for different values of K on ImageNet Dataset

(bit length = 128)

The effect of quantization bit length on the performance

of the VQ based k-NN classifier is shown in Fig. 3. As the

bit length increases, the accuracy also increases but together

with the computational costs and storage requirements.

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

8 16 32 64 128 256

A
cc

u
ra

cy

K

Table 3. Computational Costs and Storage Requirements

Complexity Formulation Pascal Bing ImageNet

k-NN 𝑁𝐷 + 𝑁 log2 𝐾 44055480 372018584 509468400

VQ k-NN (
𝑀2

2
+ 𝑀)

𝑁

𝐸
+

𝑁

𝐸
log2 𝐾 + 256𝑀𝐷 16877904 17627454 17941591

SVM (
𝐶2 − 𝐶

2
) 𝐷 778240 134742016 28274688

Storage Formulation Pascal Bing ImageNet

k-NN 𝑁𝐷 335 MB 2834 MB 3881 MB

VQ k-NN
𝑁𝑀

8
+ 256𝑀𝐷 2.3 MB 4.7 MB 5.8 MB

SVM (
𝐶2 − 𝐶

2
) 𝐷 5.9MB 1028 MB 216 MB

Parameters Pascal Bing ImageNet

C: #Classes 20 257 118

N: #Samples 10740 90692 124200

D: #Dimensions 4096 4096 4096

M: #RVQ Layers 16 16 16

K: #Nearest Neighbours 64 64 64

E: #Non-Exhaustive Search Constant 16 16 16

Fig. 3. Performance of VQ based k-NN using Majority

Voting for different bit lengths on Bing Dataset (k=64)

The formulizations of computational cost and storage

requirements are presented in Table 3. The traditional k-

NN first calculates the Euclidean distances for the given N

reference samples, then sorts the best K of them. VQ based

k-NN performs the same operation but much faster. RVQ

method requires 𝑀2 2⁄ + 𝑀 look-ups for distance

calculation and thanks to the non-exhaustive search, it

calculates only 𝑁/𝐸 distances. 256𝑀𝐷 is the initialization

cost of RVQ for a given sample [9]. SVM requires

(𝐶2 − 𝐶) 2⁄ dot-products to predict the class of a given

sample [15]. As it can be seen, VQ approach significantly

decreases the computational complexity of k-NN.

Traditional k-NN requires the whole reference set to be

stored, while the VQ based k-NN stores a compressed

version of it. 256𝑀𝐷 is the space required for the RVQ

itself [9]. SVM requires to store (𝐶2 − 𝐶)𝐷 2⁄ dimensional

hyperplanes [15]. The formulations use 8 bytes (double

precision) as the unit memory.

V. CONCLUSION

In this paper, we introduce VQ-ANN search to k-NN

classifiers for image classification. We show that, the two

most significant drawbacks of k-NN classifiers, the storage

requirement and computational cost, have been overcome.

The experiments conducted on publicly available image

datasets of different scales show that the proposed method

provides comparable classification performance to

traditional k-NN methods, with significantly lower

computational costs and storage requirements, especially

for large-scale datasets. We also compare our method with

SVMs and show that the proposed method produces

comparable results, with lower complexity and storage

requirements on datasets with high number of classes. The

gain in complexity and storage with respect to SVMs

increases as the number of classes increase, keeping the

number of samples in the reference set the same. However,

the gain with respect to the traditional k-NNs increase as

the number of reference samples increase, independent

from the number of classes, until a convergence point is

0

0.05

0.1

0.15

0.2

0.25

0.3

16 32 64 128

A
cc

u
ra

cy

Bit Length

reached. As a future work, we aim to introduce the class

labels into the quantization in order to obtain a supervised

quantization scheme, which is expected to improve the

performance of the classifier.

REFERENCES

 [1] X. Wu, V. Kumar, Q. J. Ross, J. Ghosh, Q. Yang,

H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S.

Yu, Z. H. Zhou, M. Steinbach, D. J. Hand, and D.

Steinberg, Top 10 algorithms in data mining, vol.

14, no. 1. 2008.

[2] T. Cover and P. Hart, “Nearest neighbor pattern

classification,” IEEE Trans. Inf. Theory, vol. 13,

no. 1, pp. 21–27, 1967.

[3] E. Fix and J. L. Hodges, “Discriminatory Analysis.

Nonparametric Discrimination: Consistency

Properties,” Int. Stat. Rev. / Rev. Int. Stat., vol. 57,

no. 3, p. 238, Dec. 1989.

[4] S. A. Dudani, “The Distance-Weighted k-Nearest-

Neighbor Rule,” IEEE Trans. Syst. Man Cybern.,

vol. SMC-6, no. 4, pp. 325–327, 1976.

[5] T.-L. Pao, Y.-T. Chen, J.-H. Yeh, Y.-M. Cheng,

and Y.-Y. Lin, “A comparative study of different

weighting schemes on KNN-based emotion

recognition in Mandarin speech,” Adv. Intell.

Comput. Theor. Appl. With Asp. Theor. Methodol.

Issues, pp. 997–1005, 2007.

[6] J. Gou, T. Xiong, and Y. Kuang, “A novel

weighted voting for K-nearest neighbor rule,” J.

Comput., vol. 6, no. 5, pp. 833–840, 2011.

[7] J. Gou, “A New Distance-weighted k -nearest

Neighbor Classifier,” J. Inf. Comput. Sci., vol. 6,

no. June, pp. 1429–1436, 2012.

[8] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing

for Similarity Search: A Survey,” in arXiv

preprint, 2014, p. :1408.2927.

[9] Y. Chen, T. Guan, and C. Wang, “Approximate

nearest neighbor search by residual vector

quantization,” Sensors, vol. 10, no. 12, pp. 11259–

11273, 2010.

[10] R. M. Gray and D. L. Neuhoff, “Quantization,”

IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2325–

2383, 1998.

[11] T. Tommasi and T. Tuytelaars, “A Testbed for

Cross-Dataset Analysis,” in Computer Vision -

Eccv 2014 Workshops, vol. 8927, 2015, pp. 18–31.

[12] T. Tommasi and T. Tuytelaars, “A Testbed for

Cross-Dataset Analysis,”

https://sites.google.com/site/crossdataset/home/fil

es, 2016. .

[13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N.

Zhang, E. Tzeng, and T. Darrell, “Decaf: A deep

convolutional activation feature for generic visual

recognition,” in ICML, 2014, pp. 647–655.

[14] F. Pedregosa, O. Grisel, R. Weiss, A. Passos, and

M. Brucher, “Scikit-learn : Machine Learning in

Python,” J. Mach. Learn. Res., vol. 12, no. 1, pp.

2825–2830, 2011.

[15] C.-C. Chang and C.-J. Lin, “Libsvm,” ACM Trans.

Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27, 2011.

[16] K. Q. Weinberger and K. S. Lawrence, “Distance

metric learning for large margin nearest neighbor

classification,” J. Mach. Learn. Res., vol. 10, no.

May, pp. 207–244, 2009.

ISBN 978-952-15-4012-7
ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

