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Abstract

A problem when studying functional brain connectivity with EEG is that elec-
tromagnetic volume conduction introduces spurious correlations between any
pair of EEG sensors. The traditional solution is to map scalp potentials to
brain space before computing connectivity indices. The fundamental pitfall of
this approach is that the EEG inverse solution becomes unreliable when more
than a single compact brain area is actively involved in EEG generation. This
thesis proposes an analysis methodology that partially overcomes this limi-
tation. The underlying idea is that the inverse EEG problem is much easier
to solve, if tackled separately for functionally segregated brain networks. The
reason is that each of these EEG sources are likely to be spatially compact. In
order to separate the contribution of each source to the scalp measurements,
we use a blind source separation approach that takes into account that the
sources, although functionally segregated, are not mutually independent but
exchange information by means of functional integration mechanisms. Ad-
ditionally, we also introduce a new set of information theoretic indices able
to identify transient coupling between dynamical systems, and to accurately
characterize coupling dynamics.

The analysis techniques developed in this thesis were used to study brain
connectivity underlying the EEG-alpha rhythm, in a population of healthy el-
derly subjects, and in a group of patients suffering mild cognitive impairment
(MCI). MCI is a condition at risk of developing to dementia and often a pre-
clinical stage of Alzheimer’s disease. The results of the analysis for the control
population were in agreement with the previous literature on EEG-alpha, sup-
porting the validity of the analysis approach. On the other hand, we found
consistent connectivity differences between controls and MCIs, giving weight
to the hypothesis that neurodegeneration mechanisms are active years before a
patient is clinically diagnosed with dementia. Prospectively, these new analysis
tools could provide a rational basis for evaluating how new drugs affect neural
networks in early degeneration, which might have far-reaching implications for
therapeutic drug development.
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Introduction to the thesis

Outline of the thesis

This thesis is organized as follows. Chapter 1 gives the motivation of the thesis
and reviews the most important methods that have been previously used to
measure brain connectivity with EEG. Chapter 2 presents several algorithms
for solving the linear and instantaneous blind source separation (BSS) problem,
which plays a major role in the reconstruction of the neural sources underlying
scalp EEG potentials. The proposed algorithms are extensively compared with
other state-of-the-art BSS techniques using simulated sources and real EEG
time-series. In chapter 3 we review the most important information theoretic
indices that can be used to identify directional interactions between dynamical
systems. Subsequently, we introduce the concept of partial transfer entropy
and propose practical estimators that can be used to assess coupling dynamics
in an ensemble of repeated measurements. Chapter 4 contains the most im-
portant contribution of the thesis and describes all the steps of the proposed
connectivity analysis methodology. In chapter 5 we use the approach pre-
sented in chapter 4 to determine the differences in brain connectivity between
a population of normal elderly controls and a group of patients suffering mild
cognitive impairment. The concluding remarks and future research directions
are given in chapter 6.

Publications and author’s contribution

Most of the material presented in this monograph appears in the following
publications by the author:

[69] G. Gémez-Herrero, K. Rutanen, and K Egiazarian. Blind source separa-

ix
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tion by entropy rate minimization. IEEE Signal Processing Letters, 17
(2): 153-156, February 2010.
DOLI: 10.1109/LSP.2009.2035731

[20] J. L. Cantero, M. Atienza, G. Gémez-Herrero, A. Cruz-Vadell, E. Gil-
Neciga, R. Rodriguez-Romero, and D. Garcia-Solis. Functional integrity
of thalamocortical circuits differentiates normal aging from mild cogni-
tive impairment. Human Brain Mapping, 30 (12): 3944-3957, December
20009.

DOI: 10.1002/hbm.20819

[62] G. Gémez-Herrero, M. Atienza, K. Egiazarian, and J. L. Cantero. Mea-
suring directional coupling between EEG sources. Neuroimage, 43(3):
497-508, November 2008.

DOI: 10.1016/j.neuroimage.2008.07.032

[215] P. Tichavsky, Z. Koldovsky, A. Yeredor, G. Gémez-Herrero, and E. Doron.
A hybrid technique for blind separation of non-Gaussian and time-correlated
sources using a multicomponent approach. IEEE Transactions on Neu-
ral Networks, 19(3): 421-430, March 2008.

DOI: 10.1109/TNN.2007.908648

[67] G. Gémez-Herrero, Z. Koldovsky, P. Tichasvky, and K Egiazarian. A
fast algorithm for blind separation of non-Gaussian and time-correlated
signals. In Proceedings of the 15th European Signal Processing Con-
ference, EUSIPCO 2007, pages 1731-1735, Poznan, Poland, September
2007.

[66] G. Gémez-Herrero, E. Huupponen, A. Virri, K. Egiazarian, B. Vanrum-
ste, A. Vergult, W. De Clercq, S. Van Huffel, and W Van Paesschen.
Independent component analysis of single trial evoked brain responses:
Is it reliable? 1In Proceedings of the 2nd International Conference on
Computational Intelligence in Medicine and Healthcare, CIMED 2005,
Costa da Caparica, Portugal, June 2005

The contents of chapter 3 are still unpublished but parts of the chapter are
included in a manuscript that is currently under review:

[70] G. Gémez-Herrero, W. Wu, K. Rutanen, M. C. Soriano, G. Pipa , and R.
Vicente. Assessing coupling dynamics from an ensemble of time-series.
Submitted.

The contents of this thesis are also closely related to the following publications
by the author:
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[63] G. Gémez-Herrero, W. De Clercq, H. Anwar, O. Kara, K. Egiazarian,
S. Van Huffel, and W. Van Paesschen. Automatic removal of ocular
artifacts in the EEG without a reference EOG channel. In Proceedings of
the 7th Nordic Signal Processing Symposium NORSIG 2006, Reykjavik,
Iceland, June 2006.

DOI: 10.1109/NORSIG.2006.275210

[32] 1. Christov, G. Gémez-Herrero, V. Krasteva, 1. Jekova, and A. Gotchev.
Comparative study of morphological and time-frequency ECG descrip-
tors for heartbeat classification. Medical Engineering € Physics, 28(9):876—
887, November 2006.

DOI: 10.1016/j.medengphy.2005.12.010

[61] Gémez-Herrero, 1. Jekova, V. Krasteva, I. Christov, A. Gotchev, and
K. Egiazarian. Relative estimation of the Karhunen-Loéve transform
basis functions for detection of ventricular ectopic beats. In Proceed-
ings of Computers in Cardiology, CinC 2006, pages 569 — 572, Valencia,
Spain, September, 2006.

[87] E. Huupponen, W. De Clercq, G. Gémez-Herrero, A. Saastamoinen,
K. Egiazarian, A. Virri, A. Vanrumste, S. Van Huffel, W. Van Paess-
chen, J. Hasan, and S.-L. Himanen. Determination of dominant simu-
lated spindle frequency with different methods. Journal of Neuroscience
Methods, 156(1-2):275-283, September 2006.

DOI: 10.1016/j.jneumeth.2006.01.013

[65] G. Gémez-Herrero, A. Gotchev, I. Christov, and K. Egiazarian. Feature
extraction for heartbeat classification using matching pursuits and inde-
pendent component analysis. In Proceedings of the 30th International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2005,
Philadelphia, USA, pages 725-728, March 2005.

DOI: 10.1109/ICASSP.2005.1416111

The contribution of the author of this thesis to all the publications above has
been crucial. In [20], the connectivity analysis was done using software pro-
vided by the author of this thesis, who also wrote the description of the method
and had an active participation in writing the rest of the paper. However, the
electrophysiological and genetic measurements, the statistical analysis, and the
neurological interpretation of the results were done by the other co-authors.
In [215], the author of this thesis proposed the original idea of combining com-
plementary BSS algorithms based on the concept of multidimensional indepen-
dent components’. The author also had major contributions to the selection
of the clustering strategy and to the realization of the numerical experiments.
In [32], the author contributed the time-frequency descriptors and participated

IThis idea was first proposed in a research report by the author of this thesis [64].
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in writing the paper. In [87], the author of this thesis contributed one of the
compared methods (the best performing one) but most of the simulations and
the writing were carried out by E. Huupponen. In all other publications above
the author has been the main contributor.

Notation and conventions

Along the text of this thesis we try to explain any non-obvious notation when-
ever is first used. For convenience we summarize here the most important
conventions that have been adopted.

Matrix operands are denoted with uppercase boldface fonts (e.g. A), vec-
tors are in lowercase boldface fonts (e.g. v) and scalars are in italic fonts (e.g.
A or a). However, A;; means the scalar element of matrix A that is located
in the ith row and in the jth column. Unless otherwise stated in the text, any
vector is assumed to be a column vector so that A = [ay,...,ap] is a matrix
that has vectors ay, ...,aps as columns. The transpose of matrix A is denoted
by AT, the Moore-Penrose pseudoinverse is A* and the inverse A~'. In gen-
eral, we assume continuous-valued discrete-time variables and time varying
entities will be indexed by n (e.g. A(n), a(n), a(n)) with n a natural number
that denotes the corresponding sampling instant. Continuous-time equations
use the time index t.

The cardinality of a discrete set I' is denoted by |I'|. We denote the [P
norms as |||, The hat decoration " denotes estimated values (e.g. & is the
estimate of z).

In chapter 2 we use the interference-to-signal ratio (ISR) [23] as a stan-
dard measure of source estimation accuracy in blind source separation (BSS)
problems. The ISR between the kth and lth source estimate is given by
U, = G2,/G2, where G = BA, A being the true mixing matrix and B
an estimate of A~!. The total ISR for the kth source estimate is given by
U=, W

Random variables are denoted by uppercase italics (e.g. X) but in occasions
we also use the notation x to denote a random vector. For convenience we
often use indistinctly x or p(x) to refer to the probability density function
(pdf) of a random vector x. Notice the difference between x and x[n|, where
the latter denotes a realization of random vector x at the sampling instant
n. A discrete-time stochastic processes is denoted by {x(n)}, or {x(n)}, if it
is vector-valued. Then x(n) is used to refer to the distribution of stochastic
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process {x(n)}, at time-instant n, while a sample realization at time-instant
n is denoted with square brackets, i.e. x[n]. The M-dimensional Gaussian
distribution is denoted by N (u, ¥) where p = [p1, ..., MM]T is the mean vector

and X the covariance matrix of the distribution.

The differential entropy of a continuous random vector X (or x) can be
denoted by any of the following: H(X) = H(x) = H(p(x)) = Hx. Similarly,
the Kullback-Leibler divergence between the distributions of two random vec-
tors x and y can use any of the notations K (X|Y) = K(x]y) = K(p(x)|p(y))
or even K (p|q) if it has been previously specified that the pdf of x is denoted
by p(x) and the pdf of y is denoted by ¢(y). Conditional probabilities are
denoted by p(X|Y) which means the pdf of random variable X given Y.

In chapter 3 we use the notation Ix.,y to refer to the mutual information
between random variables X and Y. Similarly, Ix,y|z means partial mutual
information between X and Y given Z and T'x._y|z denotes partial transfer
entropy from Y towards X given Z. The operator (-),, stands for mean with
respect to index n.

In chapter 4 the overall estimation accuracy for the directed transfer func-
tion (DTF) is assessed using the following index (in percentage):

=100 o0 30 = () (1)

i f

where 7;;(f) denotes the true DTF from the jth source towards the ith source,
4i;(f) stands for the corresponding DTF estimate, M is the total number of
sources and N is the number of frequency bins of the DTF function. Since the
DTF at a certain frequency is within the range [0, 1], € ranges from 0% (best
case, no estimation error) to 100% (worst case, maximum possible estimation
error).

Table 1 below contains the most common acronyms and abbreviations used
in the thesis.
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AD Alzheimer’s disease
ANOVA Analysis of variance
AR Autoregressive model
BSS Blind source separation
CRLB Cramér-Rao lower bound
DC Directed coherence
DCM Dynamic causal modeling
DTF Directed transfer function
EEG Electroencephalography
EFICA Efficient FastICA [110]
ENRICA Entropy rate-based independent component analysis [69]
ERP Event-related potential
GC Granger causality
ICA Independent component analysis
ii.d. Independent and identically distributed
ISR Interference-to-signal ratio
JADE Joint approximate diagonalization of eigen-matrices [25]
JADE7p BSS using simultaneously JADE and TDSEP [154]

KL divergence
KL estimator
LORETA
LS

MCI

ME

MEG

MI
MILCA
ML
NpICA
PCA

pdf

PMI

PSI

PTE
RADICAL
SBNR
SNR

SOBI
TDSEP
TE

VAR
WASOBI

Kullback-Leibler divergence

Kozachenko-Leonenko estimator of differential entropy [112]
Low resolution brain electromagnetic tomography [170]
Least squares

Mild cognitive impairment

Marginal entropy

Magnetoencephalography

Mutual information

Mutual information least-dependent component analysis [210]
Maximum likelihood

Non-parametric independent component analysis [15]
Principal component analysis

Probability density function

Partial mutual information [55]

Phase-slope index [159]

Partial transfer entropy [70]

Robust accurate direct independent component analysis [122]
Signal-to-biological noise ratio

Signal-to-measurement noise ratio

Second order blind identification [13]

Temporal decorrelation separation [233]

Bi-variate transfer entropy [195]

Vector autoregressive model

Weights adjusted second order blind identification [228]

Table 1: List of frequently used acronyms and abbreviations.




Chapter 1

Background and rationale

The electroencephalogram (EEG) is a record of the temporal variations of brain
electric potentials recorded from electrodes on the human scalp. The EEG is
closely related to its magnetic counterpart, the magnetoencephalogram (MEG).
EEG and MEG measure the same underlying electrical phenomena and their
relative strenghts are still a matter of debate [121,127,139,140]. In this thesis
we focus on the EEG but most of the proposed techniques could be directly
applied to MEG as well.

The human brain is an extremely complicated network that probably con-
tains of the order of 10! interconnected neurons. Each neuron consists of a
central portion containing the nucleus, known as the cell body, and one or
more structures referred to as axons and dendrites. The dendrites are rather
short extensions of the cell body and are involved in the reception of stimuli.
The axon, by contrast, is usually a single elongated extension.

Rapid signaling within nerves and neurons occurs by means of action po-
tentials, which consist on a rapid swing (lasting around 1 ms) of the polarity of
the neuron transmembrane voltage from negative to positive and back. These
voltage changes result from changes in the permeability of the membrane to
specific ions, the internal and external concentration of which are in imbal-
ance. An action potential produces a current flow from the cell body to the
axon terminal. However, the effect of these currents on scalp EEG potentials
is probably negligible, since it is unlikely that enough spatially aligned neu-
rons would fire simultaneously during the short duration of action potentials
in order to form a measurable current dipole.
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An action potential reaching a synapse triggers the release of neurotrans-
mitters that bind to the receptors of a post-synaptic neuron. If the neuro-
transmitter is excitatory (resp. inhibitory), electrical current flows from the
postsynaptic cell to the environment (resp. the opposite), therefore depolar-
izing (resp. polarizing) the cell membrane. These post-synaptic potentials
produce a current flow (a dipole) that lasts tens or even hundreds of millisec-
onds. During this long time window, many spatially aligned dipoles (in the
order of hundreds of millions [160]) may become simultaneously active, making
such an event detectable at the scalp EEG sensors. Large pyramidal neurons
in the neocortex are a major source of scalp EEG potentials, due to the spa-
tial alignment of their dentritic trees perpendicular to the cortical surface [130]
(see Fig. 1.1). Nevertheless, contributions from deep sources have also been
reported [60,62,98,217].

Due to its non-invasive nature and low cost, the EEG has become the
method of choice for monitoring brain activity in many clinical and research
applications. Moreover, EEG (together with MEG) is the only functional neu-
roimaging technique with enough temporal resolution to study fast cognitive
processes. There are three basic neuroelectric examinations based on scalp
brain potentials: (i) EEG studies that involve inspection of spontaneous brain
activity in different experimental settings, (ii) event-related potential studies
(ERPs) that use signal-averaging and other processing techniques to extract
weak neural responses that are time-locked to specific sensory, motor or cog-
nitive events and (iii) studies of event-induced modulation of ongoing brain
activity. The methods developed in this thesis were mostly designed with
sights set at the analysis of spontaneous EEG activity!, but their generaliza-
tion to induced oscillatory brain activity is rather straightforward, using for
instance the same approach as in [211].

1.1 Brain connectivity analysis with EEG

The goal of cognitive neuroscience is to describe the neural mechanisms un-
derlying cognition. Compelling evidence has firmly established that brain cells
with common functional properties are grouped together into specialized (and
possibly anatomically segregated) brain areas. Based on this principle of func-
tional segregation [56], neuroimaging studies have traditionally aimed at iden-
tifying the brain areas that are dedicated to specific information processing
tasks. However, high-level cognitive functions are likely to require the func-
tional integration of many specialized brain networks [51] and neuroimaging
studies investigating dependencies between remote neurophysiological events

L An exception is chapter 3 where several connectivity indices specifically suited for ERPs
are introduced.
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Figure 1.1: The EEG signal results mainly from the postsynaptic activity of the
pyramidal neurons in the surface of the brain. Scalp potentials are especially sensitive
to radially oriented dipoles generated in pyramidal neurons in the gyri.

(i.e. functional connectivity) have become increasingly prevalent. This interest
has been further fostered by groundbreaking theories suggesting a major role
of systems-level brain connectivity in neurodegeneration [19, 166], and in the
emergence of consciousness [2,143].

A major problem when studying connectivity between brain areas with
EEG is that coupling between scalp EEG signals does not necessarily imply
coupling between the underlying neural sources. The reason is that scalp EEG
potentials do not exclusively reveal averaged postsynaptic activity from lo-
calized cortical regions beneath one electrode. On the contrary, they reflect
the superposition of all active coherent neural sources located anywhere in the
brain, due to conduction effects in the head volume [138,160]. This superposi-
tion inevitably leads to misinterpretations of the connectivity results obtained
between scalp EEG signals, especially when subcortical generators are actively
involved (see Fig. 1.2 for an illustration of these effects).

An elementary vector dipole q in the head volume is fully defined by its
location vector (ry), its magnitude (a scalar, m) and its orientation (i.e. a pair
of spherical coordinates © = {6, ¢}). The electric potential generated by such
elementary dipole at a scalp location r is given by [8]:

v(r) = a(r,ry, O)m (1.1)

where a(r,ry, ©) is the solution to the quasi-static approximation of the for-
ward electromagnetic problem [139], which, regardless of the head model con-
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(a) d=0.2, 6 = 10° (b) d=0.5, 6 = 10°

(c) d=0.2, § =90° (d) d =0.5, § = 90°

Figure 1.2: Distribution of scalp potentials generated on the surface of a single-
layer spherical head when varying the radial angle (9§, degrees) and the depth (d,
normalized with respect to the head radius) of four simulated dipoles. See Fig. 4.3
for an illustration of the locations of the dipoles. The figures clearly show that brain
activity generated in the same brain locations (left column) can lead to completely
different patterns of scalp potentials, depending on the orientation of the dipoles. At
the same time, when the dipoles are very deep (Fig. 1.2(d)) their activity propagates
across all scalp electrodes, making it difficult to identify at the scalp the number and
location of the underlying generators. Only for the case of radially oriented and very
shallow dipoles (Fig. 1.2(a)) one may study mutual interactions between the four
dipoles by simply looking for functional relationships between the four EEG sensors
located just above the dipoles.
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sidered, always depends linearly on © and non-linearly on rq [153]. The scalp
potential generated by R simultaneously active dipoles can be simply obtained
by linear superposition:

R

u(r) = Za(r, rqi,0;)m; (1.2)

i

In the case of simultaneous EEG measurements at K scalp sensors we can
write [8]:

v(ry) a(ry,rq1,01) -+ a(ri,rqr,OR) my
v({ri}) = : =

v(rg) a(rg,rq1,01) -+ a(rx,rer,OR) Mg

A({rgi, 0:})m s

where A({rq;, ©;}) is the leadfield matriz mapping dipole magnitudes to scalp
measurements. Each column of A is commonly referred to as the forward field
or scalp topography of the corresponding dipole. A discrete time component
n=1,2,..., L can be easily incorporated to (1.3) in order to account for time-
evolving dipole strengths:

v({ri},n) = A({rgi, ©:})m(n) (1.4)

Eq. (1.4) above defines a fized dipole model because the orientations of the
dipoles do not change with time. Although models with rotating dipoles are
also possible [152,190], we do not consider them in this thesis.

Based on the fixed dipole model, source connectivity analysis with EEG
involves using the measured time-series of scalp potentials v(ry,n), ..., v(rg,n)
to (i) assess mutual interactions between the underlying dipole activations
mi(n),...,mpr(n) and (ii) to determine the cerebral localizations rg1,...,rqr
of those signal generators. Current approaches to this problem fall within
two broad categories: parametric modeling and imaging methods. The former
is based on the assumption that brain activity can be well represented by
few equivalent current dipoles (ECDs) of unknown locations and orientations.
On the other hand, imaging approaches consider distributed current sources
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containing thousands of dipoles and impose only generic spatial constraints on
the inverse solution.

The most straightforward parametric approach to the inverse problem is to
find the set of R dipoles that minimizes the following least-squares contrast:

Jrs ({rgi O}, m) = |[v ({r:}) — A({ry:, ©:})mll; (1.5)

For any choice of {rq;,©®;}, the optimal (in the least-squares sense) dipole
magnitudes are:

m=A"v (1.6)

where T denotes pseudoinversion. Then, optimization of Jrg ({ry, ©;}, m) can
be more efficiently done in two steps. First, solve in {rq;, ©;} by minimizing
the following cost function:

Jis ({rg,0:)) = ||[v — AAT V2 (1.7)

and then obtain the dipole magnitudes with (1.6). By using an entire block of
data in the least-squares fit, the temporal activations of the underlying dipoles
can be reconstructed and source connectivity can be assessed using standard
synchronization measures [81]. The drawbacks of the least-squares method are
that the number of dipoles has to be decided a priori and that the nonconvexity
of the cost function increases rapidly with the number of dipoles. This prevents
using more than just few (e.g. 3 or 4) dipoles, if one wants to avoid getting
systematically trapped in local minima.

Another popular parametric approach to source connectivity is linearly
constrained minimum variance (LCMV) beamforming. LCMV beamformers
retrieve the activity generated by a dipole at location r, with orientation ©
by means of a spatial filter (a K x 1 vector of scalar coefficients) w that solves
the following linearly constrained optimization problem [74,219,220]:

m“i]n {wi's,w} (1.8)

subject to:
wla(r,,0) =1 (1.9)
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where X, is the covariance matrix of the scalp EEG potentials. Using the
method of Lagrange multipliers, the solution to (1.8) can be found be [220]:

w=>3,"'a [aTz;la] - (1.10)

The LCMYV beamformer tries to minimize the output variance of the spatial
filter while leaving untouched the activity originating in the dipole of interest.
Intuitively, this is equivalent to a spatial filter with a fixed passband and a data-
adaptive stop-band. Eq. (1.8) may also incorporate a linear transformation of
the scalp potentials in the time-domain. For instance, the Fourier transform
allows defining a frequency-dependent spatial filter, which is especially suitable
for the analysis of rhythmic brain activity. This is precisely the principle
behind the so-called dynamic imaging of coherent sources [74,117]. Other
transforms (e.g. the wavelet transform) could also be used to define filters that
let pass only activity located in certain area of the time-frequency plane [38,
120]. In practice, the ability of beamformers to remove interfering sources is
limited, due to the reduced number of degrees of freedom, and due to the
presence of cross-dependencies between brain sources.

Although beamformers can target brain areas selected a priori, this is a
rather risky strategy because imprecise dipole locations can result in signal
attenuation or even cancellation. A probably safer route is to define the
beamformer target based on the ratio between the output variance of the
beamformer at a given brain location and the output variance that would be
obtained in the presence of noise only [230]:

a’s 'a

—_— 1.11
aTE‘jla ( )

var(ry) =

where X is an estimate of the noise covariance. Clearly, localization of brain
activity can then be done by finding the maxima of ratio (1.11). An alter-
native approach to identify the brain locations of interest is multiple signal
classification (MUSIC) [152,192]. MUSIC starts by performing a singular
value decomposition (SVD) of the following K x L matrix of scalp potentials:

v(ry, 1) -+ w(ry, L)
v=|: Lo (1.12)
v(rg,1) -+ o(rg,L)

where the columns correspond to different sampling instants and the rows to
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EEG channels. The SVD decomposition yields the factorization V.= UX VT,
Assuming that K > R and that the signal-to-noise ratio (SNR) is sufficiently
large, the R first columns of U, denoted by Ug, form a basis for the signal
subspace, while the noise subspace is spanned by the remaining columns. Then,
MUSIC’s brain activity function is defined as:

_|[Pta(.0)3

J(r,0) a(r.©)

(1.13)

where P+ =1 — USU?; is the orthogonal projector onto the noise subspace,
and a(r, ©) is the scalp topography for a dipole at location r with orientation
©. Function J(r, ©) is zero when a(r, ©) corresponds to one of the true source
locations and, therefore, the reciprocal of J(r,©®) has R peaks at or near the
true locations of the R sources. Once the locations of the sources have been
found, their time activations can be estimated using a beamformer like LCMV
or simply using (1.6).

Imaging approaches to the inverse EEG problem avoid altogether the esti-
mation of the location and orientation of the source dipoles. Instead, they build
a dense grid of dipoles covering all brain regions where EEG activity could be
plausibly generated. This grid is usually built upon an anatomical magnetic
resonance (MR) image of the subject, so that dipoles are allowed to lie only
within the cortex and few deep gray matter structures. Then, the imaging
problem reduces to solving the linear system v = A({rq;, ©;})m for the dipole
amplitudes m. Since the grid of brain locations contains of the order of ten
to one hundred thousand dipoles, the EEG imaging problem is hugely under-
determined and constraints need to be imposed on the allowed current source
distributions. Typically, this has been achieved through the use of regulariza-
tion or Bayesian image restoration methods. A detailed review on this type
of inverse solvers can be found elsewhere [8,146]. We will just say here that
the most common approaches enforce the sources to be smooth [165,169,170]
and therefore suffer of poor spatial resolution. As a result, the number of ac-
tive dipoles is typically very large and there is no obvious spatial separation
between different EEG sources. Thus, dipoles need to be grouped into regions
of interest (ROI) either manually using a priori knowledge [126, 211], or by
means of heuristic and rather ad-hoc procedures [40,116,117,124]. The lack
of objective and theoretically funded approaches for the selection of ROIs is a
major weakness of imaging techniques based on smoothness constraints.

Mapping scalp potentials to brain space is only half of the problem in
brain connectivity studies with EEG. Another important issue is how to iden-
tify and characterize functional relationships between EEG signals in brain
space. This is an especially difficult problem when we aim to study effective
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connectivity [56], i.e. directed causal connections between cerebral systems.
One approach is to use dynamical causal modeling (DCM) [58,108] to model
all data generation steps, from the neural signals to the transformation that
these signals undertake before becoming the observed EEG measurements. By
incorporating absolutely all the relevant parameters, DCM allows the infer-
ence of the specific neural mechanisms underlying a given effective connection.
However, DCM requires a great deal of a priori information, which is often
unavailable or inaccurate, especially when studying neurodegeneration. More-
over, the dynamical equations of EEG generators are still largely unknown
which explains why DCM has been only rarely used with EEG2. An alterna-
tive to DCM is based on the so-called Granger causality (GC) [73], which leans
on the simple idea that the cause occurs before the effect and, therefore, knowl-
edge of the cause helps forecasting the effect. Traditionally, GC-based methods
have used linear vector autoregressive (VAR) models to quantify directed in-
fluences between EEG sources in the frequency domain [7,49,104,119]. More
recently, several GC indices based on information theory have been proposed,
which are also sensitive to non-linear interactions [55,195]. In this thesis, the
analysis of real EEG data will be performed with linear GC indices, due to their
well-known properties and proven robustness [105]. Nevertheless, in chapter 3
we use simulations to investigate the promising properties of information the-
oretic approaches, and propose novel measures for the characterization of time
varying coupling patterns.

1.2 Proposed approach

In this thesis we use an extension of the fixed dipoles model (1.4). In our
model, brain sources are represented by clusters of synchronous dipoles rather
than by single dipoles. Let us consider M clusters and denote by I'; the set of
dipoles belonging to the ith cluster. Then:

2Moreover, EEG studies using DCM have involved almost exclusively evoked and induced
brain responses and not spontaneous EEG. See, however, recent works by Moran et al. [148,
149] for an approach to DCM of steady-state local field potentials.
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v({ri},n) =

Zjel"l a(ri,re;, ©;)m; - ZjeI‘M a(r1,rqj, O;)m; s1(n)

djer, A(Ti T, ©)m; o Y iop a(ri,Tes, ©5)m; sm(n)

= B({rg, ©;, m;})s(n) (1.14)

where each column of matrix B({rq;, ©;,m;}) now contains the scalp topog-
raphy of a cluster of synchronous dipoles, or brain source. Notice that the
temporal dynamics of all dipoles within a brain source are identical up to a
scaling factor. This thesis rests upon the assumption that functionally seg-
regated EEG sources can be approximately modeled by such dipole clusters,
i.e. they can be characterized by a single temporal activation and a single
scalp topography. If these scalp topographies are linearly independent then
model (1.14) is an instance of the well-known linear and instantaneous blind
source separation (BSS) problem®. Thus, the rationale of the proposed ap-
proach consists of the following steps:

e Use BSS techniques to estimate the temporal activation of the brain
sources and their corresponding scalp topographies, i.e. obtain s(n) and
B =[by, -, byl

e Assess connectivity between the time courses of the brain sources.

e Using the scalp topography of a single brain source b; solve the inverse
EEG problem, in order to obtain the magnitudes my,...mr, of the syn-
chronous dipoles associated to that source.

The three steps above are depicted in Fig. 1.3. The first step is discussed
in detail in chapter 2 where three novel BSS algorithms are also introduced.
Chapter 3 reviews the most common indices used for assessing connectivity
between dynamical systems and presents novel indices for the analysis of short-
duration event-related EEG potentials. An integrated analysis framework is
described and applied to real EEG in chapters 4 and 5.

31f K > M the problem is sometimes called blind source extraction [33]. However, in this
thesis we will enforce K = M by linearly projecting the observed scalp potentials to their
signal subspace using principal component analysis (PCA [100]).
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Chapter 2

Blind Source Separation

2.1 Introduction

Recall from chapter 1 that we assume that EEG potentials recorded at K
. T .

scalp locations v(n) = [v1(n), ...,vx(n)]" can be approximately modeled as a

linear and z'nstantaneoujq superposition of M < K underlying brain sources

s(n) = [s1(n),...,spm(n)] ", i.e:

v(n) = Qs(n) +n (2.1)

where €2 is an unknown K x M matrix having as columns the spatial distribu-

tion of scalp potentials generated by each source and n = [n, ..., nK]T denotes

additive measurement noise. We neglect for now the contribution of noise and

we assume that v(n) has been linearly projected to its M-dimensional signal
T

sub-space x(n) = [x1(n), ..., zp(n)]" so that:

M
x(n) = As(n) = > _a;s;(n) (2.2)
j=1
where A = [a1,...,ap] is an unknown M x M mixing matrix which is as-

sumed to be of full column rank. The goal of blind source separation (BSS)
is to estimate a separating matrix B such that the source signals can be ap-

13
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proximately recovered up to a permutation and scaling indeterminacy, i.e.
BA =~ PA where P and A are an arbitrary permutation matrix and an ar-
bitrary diagonal matrix, respectively. This problem is found not only in the
analysis of EEG data but also in a variety of applications ranging from wireless
communications [177] and the geosciences [171] to image processing [11]. The
term “blind” means that generic assumptions are made regarding the source
signals but no a priori knowledge on the mixing coefficients is available. Most
BSS algorithms are based on the common premise of mutually independent
sources. Then, separation is achieved by optimizing a suitable BSS contrast
that exploits either non-Gaussianity, spectral diversity or non-stationarity of
the independent sources [26,168]. For each of these three models, there exist
algorithms which are asymptotically optimal under certain conditions:

e Efficient FastICA (EFICA) [110] for ii.d. generalized-Gaussian dis-
tributed non-Gaussian sources.

o Weights-adjusted second-order blind identification (WASOBI) [228] for
wide sense stationary parametric Gaussian sources with spectral diver-
s1ty.

e Block Gaussian likelihood (BGL) [176] for Gaussian sources with time-
varying variances.

Indeed, EEG sources are likely to fit approximately more than one of these
models but probably none of them perfectly. Consequently, algorithms unify-
ing two [36,72,83,154] or even the three models [76,91] have been proposed in
the literature. In this chapter we present three BSS algorithms [67,69,215] that
combine the first two models above and that offer different trade-offs between
accuracy and computational complexity. The advantages of these novel algo-
rithms over the state-of-the-art are highlighted using simulated source signals
and real EEG data.

A fundamental pitfall of independence-based BSS contrasts is that they un-
derperform in the presence of cross-dependencies between EEG sources. Such
cross-dependencies are likely to occur due to (time-lagged) axonal flows of
information across distributed brain areas. This problem has been largely
overlooked in the literature but can seriously compromise the reliability of
the estimated EEG sources. Algorithms assuming i.i.d. sources are also nega-
tively affected by the characteristic 1/f spectrum of EEG signals making them
prone to overlearning [189]. Special precautions must be taken in the analysis
of single-trial event-related EEG potentials since the overlearned sources may
have biologically plausible shapes [66]. These concerns are also briefly studied
in this chapter and solutions are proposed.
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2.2 BSS of non-Gaussian i.i.d. sources

Most BSS algorithms for non-Gaussian i.i.d. sources are ultimately based on
the maximum likelihood (ML) principle. Due to the lack of temporal structure,
the sources can be treated as a random vector s which is fully characterized by
its probability density function (pdf), denoted by Ps. Then, given a set of N
realizations of the mixed observations x, the normalized log-likelihood is [25]:

1 N 1Y
Ly (Alx) £ + los [[rx|A) = N > logp(x[n]|A) (23)

and, by the law of large numbers, we have that:

Jim Ly (A1) = L(AR) 2 B [Ly (Ah9] = [ p(0)logplx | Ajix  (24)

and setting p(x|A) = |:p§:zl:’)\)i| p(x) in the equation above yields [22]:

L(Alx) = =K (p(x|A) || p(x)) — H(p(x)) (2.5)

where K denotes Kullback-Leibler (KL) divergence and H means differential
Shannon entropy'. The ML estimate of the mixing matrix is then obtained by
maximizing L(A|x):

Ay = argmgx L(A|X) = arg HEHK (p(x|A) I p(x)) (2.6)

Note that the term H (p(x)) in (2.5) was discarded because it does not depend
on the parameter A. So we finally obtain that the BSS contrast associated
with the ML estimator is [22]:

oup(A) = K(p(x\A) Hp(x)) :K(p(A‘IX) Hp(A‘1X)) (2.7)
= K (p(s)llp(s))

ISee appendix A for a summary of the information theoretic concepts and properties
used in this thesis.
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where p(8) is the joint pdf of the estimated sources § = A~1x. The KL diver-
gence is a (non-symmetric) measure of the difference between two probability
distributions and, therefore, optimizing contrast ¢a;z can be intuitively un-
derstood as finding the matrix A that makes the pdf of the estimated sources
as close as possible to the distribution of the true sources. A fundamental
limitation is that, if s is normally distributed, any rotation of the true sources
minimizes the ML contrast:

T _ T _
Sun(A) = dyp(AR) =0 if { ey (_uf{E)R =1 (2.8)

which means that i.i.d. Gaussian sources can be recovered only up to an
arbitrary unitary matrix R. One such arbitrarily rotated version of the source
estimates that minimizes the ML contrast is § = X~ 2x with v =F [XXT].
Thus, for the sources to be uniquely determined, at most one of them can be
Gaussian distributed. In the following, we will assume that this is the case.

2.2.1 The mutual information contrast

For i.i.d. sources, the basic premise of mutual independence means that p(s) =
1, »(ss) and we can rewrite the ML contrast as:

¢ML(A) = K( (é
" (p : (2.9)

A problem when trying to minimize ¢y, (A) is that the second term in the
right side of (2.9) depends on the true distribution of the sources, which is
unknown. The technically simplest solution is to assume a priori a plausible
distribution. This is the approach taken by Infomaz [12], which is a BSS
algorithm widely used among the neuroscientific community (see e.g. [46,135—
137]). A natural extension of Infomax consists in using a parametric pdf to
model the distribution of the sources [123]. A more general approach does
not assume any distribution for the sources but minimizes the ML contrast
by optimizing not only over A but also with respect to p(s). For any given
estimate of the mixing matrix, the distribution minimizing ¢z, (A) is p(s) =
[L; p(si), which leads to the following BSS contrast [25]:
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our(A) 2 Iﬁlsf)l ourL(A) =K (p(é)H HP(%)) =1(8) (2.10)

where I denotes mutual information (MI). Minimizing ¢ar7(A) is equivalent
to finding the independent component analysis (ICA) [34, 92, 103] projection
of the observed mixtures. This close connection between the linear and in-
stantaneous BSS problem and ICA explains why some neuroscientists wrongly
consider BSS and ICA to be equivalent terms. However, ICA is the solution
to the BSS problem only when the sources are non-Gaussian, mutually inde-
pendent and i.i.d., at least according to the definition of ICA given in [34]. As
will be discussed later in this chapter, other source models lead to BSS solu-
tions different from ICA. A remarkable algorithm based on contrast ¢ s (A) is
MILCA [210], which uses an MI estimator based on nearest-neighbors statis-
tics [115].

2.2.2 The marginal entropy contrast

Unfortunately, estimating MI on the basis of a finite sample is difficult because
it involves learning a multidimensional pdf. Thus, most ICA algorithms follow
an indirect route to MI minimization, which is based on expressing MI as:

16) = 3 H() -~ HE) =Y HE) ~loglA ™ - Hex)  (211)

Then, since H(x) is constant with respect to A, the MI objective function is
reduced to:

M
G (A) = H(s;) —log|A™| (2.12)

i=1

which involves only univariate densities that can be accurately and efficiently
estimated using kernel methods and the fast Fourier transform [101,203], as is
done by algorithm NpICA [15]. Similarly, the algorithm RADICAL [122] uses
another non-parametric estimator of entropy for univariate distributions due to
Vasicek [221]. An alternative to non-parametric methods are approximations
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of entropy based on the assumption that the pdf of the sources is not very
far from a Gaussian distribution. Two well-known ICA algorithms that use
different types of such approximations are FastICA [89] and JADE [25].

Contrast ¢}, I(A) can still be further simplified under the constraint that
the estimated sources are spatially white. This constrained can be enforced
by sphering the observed mixtures through the transformation z = 271/ 2
Then, the mlxmg matrix A minimizing contrast (2.12) is A= 21/ ZRT where
R = [F1,..., T M] is the unitary matrix that minimizes the following contrast:

M
ovp(R) =) H(t]z) (2.13)

which qualitatively means that the ICA projection is that minimizing the
marginal entropy of the estimated source signals. A major advantage of con-
trast ¢ns E(R) is that it involves optimization over the set of M x M orthogonal
matrices, which is significantly easier than optimization over the set RM*M
Indeed, most ICA algorithms discussed here are ultimately based on optimiza-
tion of (2.13). Another appealing property of the marginal entropy contrast is
that exhaustive search for the global minimum of ¢,z (R) might be feasible,
if the contrast can be evaluated efficiently. The reason is that the optimal M-
dimensional rotation can be found by rotating only two dimensions at a time
using what are known as Jacobi rotations (see Table 2.1). The only downside
of using the orthogonal contrast (2.13) is that it imposes a lower bound on the
asymptotic separation error. This is due to the blind trust put on the second
order statistics that are used for whitening the source estimates [21,23].

2.2.3 FastICA and EFICA

In this section we describe in more detail a variant of the popular FastICA algo-
rithm, termed EFICA (efficient FastICA) [110], which is an essential building
block of the BSS algorithms proposed in section 2.4.

FastICA is based on the marginal entropy contrast and approximates dif-
ferential entropy by assuming that the pdf of the sources is not very far from
the Gaussian distribution. This approximation takes the form [88]:

H($;)~ H(v) — —Z(E [Gr(s))? (2.14)
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Algorithm:
Input:

Parameters:

Procedure:

Output:

Jacobi rotations
Sphered observations: z(n) Vn =1,...,N.
Initial source estimates: § = [$1, ..., §M}T
Initial estimation of rotation: R = [F1, ..., f‘M]T
J : number of rotation angles to evaluate.
S: number of sweeps for Jacobi rotations
For each of S sweeps
For each of w pairs of data dimensions (p, q):
i. Find rotation angle ¢* such that:
& = argming (H(gy) + H(7,))
with
R alE
Go | = | sin(6) cos(@) | | 5
ii. Update source estimates:
$p «— cos(¢*)§, — sin(¢*)3,
Sq < sin(¢*)8, + cos(¢*)3,
iii. Update R:
) < cos(¢*)f, — sin(¢*)r,
g < sin(¢*)r, + cos(¢*)fy

R

Table 2.1: Exhaustive search of the optimum M-dimensional rotation through ele-
mentary 2-dimensional rotations



20 2. Blind Source Separation

where H(v) = 3 (1 + log(27)) is the entropy of the normal density and {G}} is
a set of non-linear functions. FastICA uses the simplest version of this entropy
estimator, which involves only one non-linearity (i.e. K = 1). If the density
of the sources p(s;) would be known, the optimal choice for this nonlinearity
would be —logp(s;). However, since the density of the sources is unknown,
FastICA requires the user to choose among a set of nonlinearities that fit well
some important and well-known densities [89]:

Go(u) = a—ll log cosh(aju)
Golu) = —Lexp (—“22“2) (2.15)
Ge(u) = qu?

where 1 < a; < 2 and as = 1 are constants. G is suitable for distributions
close to the exponential power family, G, may be better for highly super-
Gaussian distributions with outliers and G is recommended for estimating
sub-Gaussian independent components.

EFICA generalizes FastICA by using different non-linearities for estimating
the marginal entropy of each of the M sources. These M non-linearities are
chosen in a data-adaptive fashion so that EFICA’s residual error variance
attains the Cramér-Rao lower bound (CRLB), when the distribution of the
sources belongs to the class of generalized Gaussian distributions.

A common measure for evaluating separation accuracy is the interference-
to-signal ratio (ISR) [23]. For a given estimate of the separating matrix B =
A~ the corresponding ISR matrix is given (elementwise) by ¥y = G2,/G?2,.,
where G = BA. Under the assumption that the sources are i.i.d. non-
Gaussian random variables, the asymptotic ISR matrix for EFICA has the
form [110]:

L wn+7?)
By =~ 2.16
el s S ) (2.16)

with

n = E[GHe] - BlaGuon

Th |E [sxGi(s)] — E[Gl(sk)] (2.17)

where E[] denotes expectation, G}, is the non-linearity used with the kth
source estimate and G, denotes the derivative of G. A useful property of
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EFICA is that consistent estimates of the asymptotic ISR matrix can be ob-
tained by replacing in (2.16) the true sources with the estimated sources and
expectations with sample means.

2.2.4 Optimization and reliability of ICA contrasts

Most ICA algorithms use local optimization techniques that require computing
the gradient of the contrast function [12,15,89,93,110,175]. Local optimiza-
tion is appealing for computational reasons and because, asymptotically, the
ICA contrast has a unique minimum that corresponds to the BSS solution,
if the sources are truly independent, i.i.d., and their distribution is close to
Gaussian [16]. However, ICA contrasts are likely to have (potentially many)
spurious minima if at least one of these conditions is fulfilled [66, 189,225]:

1. The sample size is too small to consider asymptotic behavior.
2. The sources are not perfectly independent.

3. The sources are not i.i.d., i.e. they have temporal structure.

Spurious local minima can be avoided by global optimization techniques
based on Jacobi rotations [25,69, 122,210]. However, the global minimum
might also be spurious, invariably leading ICA to meaningless overfitted source
estimates [66,189]. This is a crucial issue in the analysis of EEG data since
brain sources are likely to exchange information through time-delayed axonal
pathways and perfect independence is probably unrealistic. One may argue
that, if EEG sources were truly independent, functional connectivity studies
using EEG would make no sense altogether.

Second-order temporal structure and time-lagged cross-dependencies can
be accounted for by modeling the sources as a vector autoregressive (VAR)
process:

p

s(n) =Y Bs(r)s(n — 1) + z(n) (2.18)

T=1

where Bg(7) V7 = 1, ..., p are the coefficient matrices of the VAR process and
z(n) = [z1(n), ..., zM(n)]T is the non-Gaussian i.i.d. innovation of the model?.

2Note that we require the innovation process to be non-Gaussian, contrary to the standard
definition of VAR models. This has implications on the estimation of the parameters of the
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In this thesis we consider mutually independent brain sources in the sense that
the 1-dimensional components of the innovation process in (2.18) behave like
mutually independent random variables. Then, the observed mixtures can be
written as:

x(n) = i ABs(T)A" ' x(n — 1) + Az(n) (2.19)
B win)

Obviously, if model (2.18) is a valid approximation of reality, a straightforward
solution to minimize mutual dependencies and temporal structure is to pre-
process the observed mixtures with the following VAR filter [62]:

W(n) =x(n) = Y By(r)x(n — 1) =~ Az(n) (2.20)

where By(7) V7 = 1,..p are the coefficients of a VAR model fitted to the
observed mixtures using least squares (LS) [193] or any other VAR estimation
algorithm [178]. VAR filtering is an effective approach for removing second
order temporal structure (including cross-correlations), even when the VAR
model is valid just approximately, as will be shown in section 2.6.

In order to illustrate finite-sample effects on ICA contrasts, we generate
two mixed signals by rotating (by an angle ¢s = 60°) two i.i.d. and mutually
independent Laplacian sources. Fig. 2.1 shows the shape of FastICA’s and
RADICAL’s contrasts for different rotations of the observed mixtures. When
the number of data samples is very large both contrasts are convex and have
a single minimum at the right solution (¢, = 30°). Notice that by rotating
the original sources first by 60° and then by 30°, the source estimates are just
90°-rotated versions of the original sources:

i.e. the estimates are just a permuted and scaled version of the true sources,
which is the desirable result. However, if we now repeat the experiment for

model from its observations since most estimation methods assume Gaussian innovations.
However, our numerical experiments in chapter 4 suggest that classical VAR estimators like
ARFit [193] work well, even when the innovation process is non-Gaussian.
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Figure 2.1: Finite-sample effects on the ICA contrasts of FastlCA and RADICAL.
Two mixtures were generated by rotating 60° two i.i.d. and mutually independent
Laplacian sources (N = 10000). The figures show the values of the ICA contrast for
different rotations of the observed mixtures. Perfect separation was achieved with
¢ = 30°. Note that with just 200 samples, the global minimum of the two contrasts
is spurious.

just N = 200 samples, the global minimum of both RADICAL’s and FastICA’s
contrast is spurious. Moreover, RADICAL’s contrast is not convex anymore
and contains several local minima (see Fig. 2.1). Similar experiments can be
performed to illustrate the negative effects of temporal structure in the sources
(Fig. 2.2) and of cross-dependencies between sources (Fig. 2.3). Although these
toy experiments do not allow drawing general conclusions, they lead to the
following intuitions:

e Limited data and cross-dependencies between sources are most prob-
lematic because they often lead to overfitting, i.e. to a spurious global
minimum in ICA contrasts.

e Non-parametric estimators of marginal entropy are more affected by local
minima than semi-parametric approaches. However, the global minimum
of the latter might be less reliable, especially for sources with large scale
temporal correlations.

e VAR estimation techniques that assume Gaussian innovations probably
produce valid estimates, even when the innovations are not Gaussian.

Further numerical assessment of these preliminary findings and of the advan-
tages of VAR pre-processing can be found in section 2.6.
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Figure 2.2: Values of the contrasts of FastICA and RADICAL for different rotations
of two mixed non-white sources. The sources were obtained by filtering two mutually
independent i.i.d. Laplacian noise processes (N = 10000) with a low-pass FIR filter
with normalized cutoff f. = 0.8 (dashed black line) and f. = 0.15 (solid red line).
The mixtures were obtained by rotating 60° the sources so that perfect separation
was achieved with ¢ = 30°. Notice how low-pass filtering introduces many spurious
local minima in RADICAL’s contrast but global optimization would nevertheless
lead to acceptable source estimates. On the other hand, FastICA is likely to be
less robust to source autocorrelations, due to convergence to local minima or to a
spurious global minimum when low frequencies dominate.

—iid. o(VAR = 307
---VAR Bt min K
08f - |—AR ’ 08 6AR =307

- - VAR filtered mn K

= pVAR = 117

o° 0.6f " : > 06 min K

© i) e N ' i

Z:’ emin =28 \ ) Q(Hq) =31,
> \‘ é min +
Loar oVAR Z 40° v e 04f /
min Y o
\ ---VAR \
(AR) _ 9g° R —AR B
L 0" =28 ‘| L Y|
02 mn \ 0.2y, - - VAR filtered
(VAR = 28"
O L L min L L O hd 1 L L L
0 15 30 45 60 75 90 0 15 30 45 60 75 90
6 (degrees) 6 (degrees)

(a) FastICA - Kurtosis (b) RADICAL

Figure 2.3: Effects of cross-dependencies between sources on the contrasts of FastICA
and RADICAL. The mixtures were obtained by rotating 60° the sources so that
perfect separation was achieved with ¢ = 30°. Three types of sources were used to
generate the figures: (i) i.i.d. Laplacian sources (denoted as ”i.i.d.” in the legend),
(ii) VAR sources with i.i.d. Laplacian innovations (denoted "VAR”), (iii) AR sources
with i.i.d. Laplacian innovations (denoted "AR”). The blue dash-dotted line shows
the values of the contrast when the mixtures of VAR sources are pre-processed with
a VAR filter. The coefficients of the VAR filter were estimated using ARfit [193].
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2.3 BSS of spectrally diverse sources

BSS can also be approached by considering mutually uncorrelated sources with
second-order autocorrelations. This means that the time-lagged covariance of
the sources is:

3(7) = E [s(n)s” (n — 7)] = Rs(7) (2.22)

where Rg(7) is a diagonal matrix having as diagonal entries the autocorrelation
of each source at time-lag 7. Thus, the time-lagged covariance matrices of the
observed mixtures satisfy 3:

Sx(7) = E [As(n)s” (n — 7)AT] = ARg(m)A” (2.23)

which clearly shows that A alone explains cross-correlations of the mixtures
at any lag. In this case, solving the BSS problem requires finding at least
two lags for which the source signals have distinct autocorrelations so that the
following system of linear equations has a unique solution [147, 168]:

Ex(Tl) = ARS(Tl)AT
b))

x(12) = ARg(r2)AT } = Tu(n)A T = () ATIA (2.24)

where A = Rg(m1)R5!(72) is a diagonal matrix. Eq. (2.24) is a generalized
eigenvalue problem which determines uniquely (up to permutation and scal-
ing of its columns) the separating matrix A~! as long as the corresponding
eigenvalues are all distinct. Note that this is equivalent to requiring that the
ratios between the diagonal elements of the two time-lagged source covariance
matrices are all different: R{™ (7’1)/Rgii)(7’2) # R{? (71)/joj) (12) Vi # 3.
As noted by Parra and Sajda [168], blind source separation of non-Gaussian
and non-stationary sources can also be formulated as a generalized eigenvalue
decomposition by replacing Rs(71) and Rg(71) with matrices that have the
same properties upon those alternative source models.

In practice, blind separation using just two covariance matrices is not ro-
bust due to errors in the estimation of covariances from a limited amount

3In this thesis we consider only real-valued variables.
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of noisy observations. A considerably more robust approach is based on ap-
prozimate* joint diagonalization (AJD) of many estimated time-lagged co-
variance matrices Re(71), Rs(72), ..., Rs(7,). BSS algorithms SOBI [13] and
TDSEP [233] diagonalize these matrices using successive Jacobi rotations [27].
WASOBI [228] formulates AJD as a weighted least squares problem [216,229]
with weights that are asymptotically optimal for the case of Gaussian sources.
Namely, if all sources are Gaussian autoregressive (AR) processes of order p,
then, under asymptotic conditions, the ISR matrix attained by WASOBI can
be shown to reach the CRLB [47]:

Y opRi[0]

1
E[Wy] = —
(@] N Yk — 1 oy R, [0]

(2.25)

where Ry [m] denotes the autocorrelation of the kth source at lag m, o7 is the
variance of the innovations of the kth source and ~y; are given by:

1 < o
Vel = —5 Z ailaﬂRk[z — 7] (2.26)
ki =0
where {a;}!_, are the AR coefficients of the Ith source with ag = 1 for

k,l=1,..,M. As a final remark, we stress the fact that the autocorrelation
sequence (i.e. the power spectrum) of the sources need to be different for
separation to be feasible using only second-order statistics.

2.4 Hybrid BSS algorithms

In a mixture of non-Gaussian i.i.d. sources with Gaussian non-white sources,
ICA and SOBI-like algorithms will be (at best) able to separate just some of
the sources but never all of them. A compromise solution to this problem is
to try to optimize a weighted average of both types of BSS contrasts. Sev-
eral algorithms have been proposed in this direction, including JADEp [154],
JCC [72], ThinICA [36] and the unifying model of [91]. An alternative ap-
proach is to successively use different contrasts to separate the sub-sets of
sources for which they are more suitable [64]. The BSS algorithms EFWS [214],
COMBI [214], M-COMBI [215] and F-COMBI [63] implement this idea by
combining the strengths of EFICA and WASOBI.

4While the set of true covariance matrices admits exact diagonalization, it is almost surely
impossible to jointly diagonalize the set of estimated matrices.
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Recall that, given a realization of the sources, a common way of evalu-
ating the accuracy of the separation produced by any BSS algorithm is the
realization® ISR matrix, which is defined (element-wise) as ¥y, = G%,/G3,
where G = BA. B is the estimated separating matrix and A is the true
mixing matrix. Wy, measures the level of residual interference between the
kth and [th estimated components. The total ISR of the kth estimated source
is defined as 9, = Zl]\iuygk W;,;. If the realization ISR matrix obtained by
WASOBI and EFICA would be known, a straightforward combination of the
separation abilities of the two algorithms would consist in selecting, for each
source, the reconstructed version (either EFICA’s or WASOBI’s) with better
ISR. This simple principle can then be extended into a successive scheme such
that, in each interaction, only the best separated sources are accepted, and
the remaining ones are subjected to an additional iteration of separation and
selection.

Although the realization ISR matrices of WASOBI (¥W*) and EFICA
(WY are obviously unknown (nor can they be consistently estimated from the
data), it is possible to approximate them with the (asymptotically) expected
ISR matrices, thereby producing a selection strategy which performs well "on
average”. Consistent estimates of ¥ = E [T""] and "~ F [BWVA]
can be obtained by replacing in (2.16) and (2.25) the true sources with the
estimated sources and expectations with sample means. Then, the total ISR
for each source obtained by each algorithm can be approximated by leA ~

TWA _ M 3 WA EF . JEF _ \~M 5, EF
Yt = Zl:l,l#k ¥, and 7 =T = 21:1,17&1@ W -

2.4.1 COMBI

Algorithm COMBI [214] uses consistent estimates of 17)WA and 'JJEF in the
following procedure:

1. Let x be the observed mixtures and let z = x.

2. Apply both EFICA and WASOBI to z and denote the estimated sources
as 8P and W4, respectively. Approximate the corresponding ISR for

. - - WA
all estimated sources as ¥™" ~ 1/)EF and VA ~ 1/:W .
3. Let E = ming ¢FF and W = miny, VA,

4. If £ < W then:

5We use the term realization ISR (denoted ¥) to refer to the ISR matrix obtained by a
single run of a BSS algorithm on a specific realization of the mixtures. This is to differentiate
it from the (asymptotically) ezpected value of the ISR matrix (denoted ¥ = E [¥]).
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e Accept source estimates { 3£ | ¥ < W} and redefine z as the set
of rejected source estimates {§EF Vk | pEF > W}

Otherwise

e Accept source estimates {§,‘:,VA | pWVA < B } and redefine z as the
set of rejected source estimates {8}V4 Vk | VA > E}

5. If z contains more than one rejected source estimate, go to step (2).
Otherwise, accept the rejected source estimate (if there is any) and ter-
minate.

The asymptotic ISR expressions in (2.16) and (2.25) were derived under
the assumption that all sources comply with their respective source models,
which raises concerns on their reliability in hybrid scenarios of non-Gaussian
and non-i.i.d. sources. However, it was empirically verified in [215] that those
expressions remain reasonably accurate, even when their respective model as-
sumptions are mildly violated. Moreover, exact ISR values are of little interest
for COMBI, since only their comparative relations are used during the selec-
tion of the best source estimates. Such selection could also be performed
using other empirical estimates of the realization ISR, such as those based on
bootstrap resampling [64, 144]. However, bootstrap techniques are computa-
tionally expensive and their application to sources with time structure is far
from trivial.

2.4.2 M-COMBI

A fundamental limitation of COMBI is that, at each selection step, it accepts
or rejects individual source estimates. Consider the hypothetical case that
EFICA (resp. WASOBI) would be able to attain a nearly block-diagonal ISR
matrix, effectively separating the mixtures into groups of sources with poor
intra~-group separation but minimal inter-group interferences. A subsequent
application of WASOBI (resp. EFICA) to each of these groups separately
may be able to attain good separation of all sources, but COMBI is unaware
of this possibility. In this section we present an extended version of COMBI,
termed M-COMBI [215], that is able to account for multidimensional source
estimates.

Standard BSS assumes that the one-dimensional unknown sources are mu-
tually independent according to the independency contrast used (e.g. sta-
tistical independence or time-lagged uncorrelation). A straightforward gen-
eralization of this principle assumes that not all the M sources are mutu-
ally independent but they form D higher dimensional independent compo-
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nents [24,43]. Let d; denote the dimensionality of the /th multidimensional
component that groups together the one-dimensional source signals with in-
dexes Iy = {l1, ..., 1q,}. Then, the Ith multidimensional component is given by
si(n) = [s1,(n), .., 1, (n))T, where I = 1,....D and dy +dy + ... + dp = M.

Therefore, we can rewrite the sources in (2.2) as s(n) = [s{ (n), ...,s], (n)]T =

P [s1(n), ..., sapr(n)]" where P is a permutation matrix. Using the notation
above and dropping matrix P under the permutation indeterminacy of ICA,
we can reformulate (2.2) as:

s(n) = A" 'x(n) = [x" ()BT, ... x"(n)B5]" = [sT(n),...sh(n)]" (2.27)
Then the goal of multidimensional BSS is to estimate the set of matrices
{Bi}i=1,....p, each of which is of dimension d; x M. Since the sub-components
of a multidimensional independent component are arbitrarily mixed we can

recover {B;};=1_ p only up to an invertible matrix factor [24].

A multidimensional component according to certain independency con-
trast (e.g. non-Gaussianity) might be separable into one-dimensional com-
ponents using an alternative independency measure (e.g. time-lagged cross-
correlations). This suggests a procedure for combining complementary inde-
pendency criteria:

1. Try BSS using certain independency-based contrast.

2. Detect the presence of multidimensional components in the source signals
estimated in step (1).

3. Try BSS using an alternative BSS contrast in each multidimensional
component found in step (2).

This is the idea underlying M-COMBI [215] and F-COMBI [67], which com-
bine the complementary strengths of the non-Gaussianity contrast of EFICA
and the criterion based on cross-correlations of WASOBI. For notational con-
venience, we identify a multidimensional source (or a cluster of sources) I'
either by the set of indices of the sources that it contains, denoted by I' =
{li,lo,....;la} C{1,2,..., M} or by the corresponding sources I' = [s;,, ..., sld]T C
s. Given the same approximations of the ISR matrix used by COMBI, the total
ISR of cluster I" can be defined as:

P =ar > ¥y (2.28)
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where ar is a normalization coefficient that depends on the cluster’s cardinality
(denoted as |T'|) and on the total number of sources M. In [215] it was proposed
to use:

d—1

T @)

(2.29)

so that ¢(I") is d — 1 times the average of the entries of matrix ¥ that are
included in the sum in (2.28). Note that this definition of ¥ (I") is compati-
ble with the original definition for one-dimensional sources: ¥ ({k}) = ¢ =

M =
D10k Y-

M-COMBI works iteratively with a stack of clusters C. In each iteration,
one of the clusters in the stack that is not a singleton® is decomposed into two
or more smaller clusters, until all clusters are singletons. The algorithm steps
are summarized below:

1. Initialize the stack of clusters with just one cluster that contains all the
observed mixtures, i.e. S = {F(()s)} with FE)S) = {1,2,...M}. Initialize

the source estimates § = x.

2. Pick any cluster in S, say I'*, that is not a singleton and denote the cor-
responding source estimates as z. Obviously z = x in the first iteration.

3. Apply EFICA and WASOBI to z in order to obtain the corresponding
source estimates ¥ and 84 as well as the estimated asymptotic ISR

. — EF - WA
matrices ¥ and ¥ .

4. Build the set C of possible sub-clusters within I'*: C = {Fgc), ...,F(Ig)}

with FEC) Cc I'™*Vi=1,..,K. For example, if I'* = {2,5,8} then C =
{{2}, {5}, {8},{2,5},{2,8},{5,8}}.

5. Based on the estimated asymptotic ISR matrices T and ¥ obtain
the corresponding approximations for the cluster ISR: wEF(FEC)) and
VAT for alli = 1,..., K.

6. Let £ = min; ¢FF (I'9) and W = min; WA (T().
7. If E < W, define the set of "best” separated clusters as follows:

CBEST _ pEF _ {DEF,TEF, TEF) (2.30)

6We denote by singleton a cluster that contains a single 1-dimensional source estimate.
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with
EF __ : EF
Iy = argminy™"(I) (2.31)

and, for k=1,2,...,. R—1:

PE = arg min P (T 2.32
EF, = arg min 05" (1) (232

with T(k) =C—{T' |3l € [1,k] | Ty NT # 0}, and with R the value such
that EF(T'gr) > W or T(R — 1) is empty. This procedure picks up
the best clusters in a greedy scheme by selecting at each step the best
remaining cluster in C, among those disjoint with the clusters that have
been already picked.

Else (for E > W) define the set of best separated clusters as CBFST =
CWA where CW4 is obtained in an analogous manner to C¥¥.

8. Update S by S = (S — I'*) uCBFST

9. If all clusters in S are already singletons terminate. Otherwise, return
to step (2).

The total number of possible sub-clusters in step (4) is 212 which might
be prohibitively large when cluster I'* contains many sources. For such high-
dimensional cases, say for [[**| > 20, we take an alternative approach based on
hierarchical clustering [206] 7. A symmetric similarity matrix between clusters
is defined as D 2 ¥ + ¥ and the set C is built recursively so that initially C
contains all singletons. At each subsequent step, we look for the couple (k,1)
for which Dy; obtains its maximum value and add to C the cluster formed
by the union of the most recently created cluster containing signal k£ and the
most recently created cluster containing source estimate [. Then we make
Dy = Dy = 0 so that the same couple of source estimates are not reused
in the next iterations. The update of C terminates after |[I'*| — 1 steps and
contains 2|['*| — 2 entries at the end. Note that this procedure will usually
lead to set C being significantly smaller than the number of all possible sub-
clusters 2/l — 2. This clustering scheme is an ad hoc approach that could
be replaced by more sophisticated algorithms in the future. However, in our
simulations, the proposed procedure worked well and usually outperformed the
spectral clustering method advocated in [144] in a similar context.

"If z was obtained with EFICA, no clustering is actually required, as C can be simply
defined as the set of all singletons. This is because, in the case of EFICA, at most one cluster
of unresolved (Gaussian) components may exist. By contrary, many clusters of spectrally
identical sources can be found within the estimates produced by WASOBI.
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24.3 F-COMBI

A practical limitation of M-COMBI [215] is its iterative nature, which may
lead to relatively lengthy computations for high-dimensional problems. In this
section we propose a simplified variant of M-COMBI with similar separation
performance but significantly smaller computational load.

As M-COMBI, F-COMBI is also based on detecting the presence of clus-
ters of sources with high mutual interference. A symmetric similarity matrix
between clusters, defined as D = ¥ + T is used to define a set of M partition
levels of the estimated sources into different clusters by means of agglomerative
hierarchical clustering with single linkage. By single linkage we mean that the
similarity between clusters of sources is defined as the similarity between the
closest pair of source estimates. The output of this clustering algorithm is a
set of i = 1,2, .., M possible partition levels of the estimated sources. At each
particular level the method joins together the two clusters from the previous
level which are most similar. Therefore, at level i = 1 each source forms a
cluster whereas at level i = d all the sources belong to the same cluster. For
assessing the goodness-of-fit of the ¢ = 2, ..., M — 1 partition levels we propose
using the validity index I; = Dintre/Dinter where Dire and D" roughly
measure the average intra-cluster and inter-cluster similarities, respectively.
They are defined, for 1 < i < M, as follows:

M—it1
Zj=1,\rg” [>1 Zker§”,ler§” Dy

Dintre — : (2.33)
i Z]VI—i+1 ‘F(l)| (\l"y)\*l)
j=1,|r§7 > 10 2
M—it1
_ » D
piser — T T e Du 230

S (- r)

J=1

where 1";2) is the set of indices of the sources belonging to the j** cluster at the
it" partition level. We also define I; = 1/ (max;; D;;) and Ips = 10. Finally we
choose the best cluster partition to be that one corresponding to the maximum
of the validity index I. By setting Ip; = 10 we consider that the separation
failed completely (there is just one M-dimensional cluster) if D" < 10 -
Dinter i = 2. ..., M — 1. The definition of I implies that all estimated sources
will be considered to be 1-dimensional (perfect separation) if (max;; D;;) <
min;so(1/I;). Since we have set Ip; = 10, a necessary condition for perfect
separation is that the maximum ISR between any pair of 1-dimensional source
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estimates is below -10 dB. Based on this heuristic index of cluster quality,
F-COMBI uses a simple combination strategy:

1. Apply WASOBI to the observed mixtures.

2. If the maximum entry in the estimated ISR matrix is below a very small
threshold (e.g. -30 dB) then all sources were accurately estimated and
we are finished.

3. If the minimum value in the ISR matrix is above a high threshold (-
10 dB) then WASOBI was not able to produce any separation of the
observed data, i.e. C"W4 = {T'1} with I'y = {1,2,..., M}. In this case we
skip step (4) and go directly to step five.

4. Use hierarchical clustering and the quality index I defined above to de-
termine the optimal partition of the sources estimated by WASOBI into
1 < R < M clusters, i.e. CWA ={I';,Ty,....,Tr}.

5. Apply EFICA to each cluster in C'V4.

The reason for using WASOBI first, instead of EFICA, is that the former is
considerably faster than the latter for high dimensional mixtures, which is the
target application of F-COMBI. Moreover, WASOBI is often able to break the
original high-dimensional problem into more multidimensional clusters than
EFICA (which, asymptotically, can produce at most one cluster of Gaussian
components).

2.5 BSS by entropy rate minimization

As we saw in section 2.2, for sources that behave like i.i.d. non-Gaussian
random variables, the linear and instantaneous BSS problem can be solved
using ICA [34]. Recall that, if the observed mixtures have a covariance matrix
.=F [XXTL the ICA-based separating matrix is By = Ropt2;1/2 where
R,y is the M x M unitary matrix that minimizes:

M M
barp(R) =Y H (rfz;l/Zx) =Y H(3) (2.35)
i=1 i=1
where R = [r1,...,r M}T. But in most practical applications, and especially in

the case of EEG, the sources are not i.i.d. and are better modeled as stochas-
tic processes with (second and higher-order) temporal correlations. Let us
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consider sources that behave like mutually independent stationary Markov
processes of order d so that their temporal structure is confined within the
vector sgd) = [si(n),si(n —1),...,8;(n— (d —1))]. Note that, due to the sta-
tionarity of s;, the joint distribution of sl(-d) is invariant with respect to shifts
in the time index. The amount of temporal structure in s; (i.e. its temporal
predictability) can then be assessed by its entropy rate [35]:

H.(s;)=H (sgd)) - H (sgd_l)) (2.36)

Indeed, in the case of Markovian sources of order d, a maximum likelihood
estimate of the separating matrix is obtained by minimizing the entropy rate
of the estimated sources [83]. However, estimating the entropy rate requires the
combination of two different estimates of joint entropy, whose estimation errors
might not cancel each other. Instead, we propose minimizing the following BSS
contrast [69]:

M
¢pr(R) =Y H (é@) (2.37)
=1

Intuitively, minimizing (2.37) will lead to source estimates that are maximally
non-Gaussian (i.e. spatially independent) and that have maximum temporal
structure. This intuition stems from the basic information-theoretic equality:

L
H(Xy, X, ., Xp) = > H(X;) = I(X1, X, ..., X1) (2.38)

i=1

where X1, Xo,..., X[, is any set of random variables. If X, X, ..., X denote
the state probabilities of a source estimate at L correlative time instants, then
minimizing (2.38) is equivalent to making source estimates as non-Gaussian
as possible while maximizing information sharing between correlative time-
instants.

Constrast (2.37) is a valid BSS contrast because, if Sgd) and sg-d) are mu-
tually independent and at least one of them is not Gaussian distributed, then
the following inequality holds [35,225]:

o (o 34%) 2 min (0 (47) 0 (47))

with equality if and only if @« = 0 and ¢ggr (sgd)) < QER (sgd)), g =0
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and ¢pgr (sgd)) < OER (sgd)), or af = 0 and ¢pgr (s;d)) = ¢pr (sgd)). A
generalization of this inequality to more than two sources can be found in [37].
However, if the sources are not perfectly independent, local minima will appear
and even the global minimum of the proposed contrast might be spurious [225].
Moreover, broad autocorrelations of the sources also contribute to the presence
of local minima by effectively increasing the memory of the Markov sources
beyond the assumed model order. These two problems can be significantly
minimized by pre-processing the observed mixtures with a VAR filter, as was
discussed in section 2.2. One may argue that second order autocorrelations are
part of the temporal structure that contrast ¢ g is based on. Indeed, there is a
trade-off between too broad temporal structure (beyond the assumed Markov
order) and too narrow structure (insufficient for ¢gr to be able to exploit
it). Nevertheless, contrast ¢pr is also sensitive to temporal dependencies of
higher order than those removed by the VAR filter, which explains why VAR
pre-processing is beneficial in most cases (see section 2.6).

Evaluation of the BSS contrast (2.37) requires the estimation of multi-
variate Shannon entropies. We use an estimator based on k-nearest-neighbor
distances [112]:

a (§§d>) = hj_1 — hy_1 + dE [log 2¢] (2.39)

A . . .
where hy = — 3, _; v~ and € is the maximum-norm distance from a sample

realization of vector él(-d) (corresponding to a time instant n = n*) to its k:th
nearest neighbor realization (corresponding to a time instant ng # n*). The
expectation operator E[] can be approximated by the sample mean. In the
numerical experiments performed in section 2.6 below we always used k£ = 20
and d = 4. We preferred this estimator instead of fixed-bandwidth kernel-
based approaches due to its higher sensitivity to finer (high-order) details of
the distributions [210]. The optimum rotation minimizing (2.37) is found us-
ing Jacobi rotations [34]. The resulting ENRICA (ENtropy Rate-based ICA)

algorithm can be summarized in the following steps:

~—1/2
1. Whiten the data through the transformation z = % / x where ¥y =
1Ly T
1 21 X(n)x7 (n).

2. Perform a temporal whitening by fitting a VAR model to z using ARfit [193]
and computing the residuals of the model. Denote the residuals by
qn)vn=1,...,N.

3. Using Jacobi rotations (see Table 2.1), find the unitary matrix R =
[f1,%2,...,%a]" minimizing Zi\il H (89), where §;(n) = t7q(n).
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L —1)2
4. Estimate the separating matrix as B = R3 / .

2.6 Experiments and results

All the numerical experiments and the figures shown below can be reproduced
using MATLAB code and datasets available online at the URL:

http://www.cs.tut.fi/~gomezher /bss.htm.

2.6.1 Non-Gaussian and spectrally diverse sources

In this section we use simulations to show the ability of F-COMBI and M-
COMBI to separate both non-Gaussian and time-correlated sources. Due to
their computational simplicity, the target application of these algorithms are
high-dimensional mixtures and, therefore, we used mixtures of up to 30 sources.
This prevented us to include in the comparison non-parametric ICA algorithms
that, due to their computational demands, are hardly applicable to these high-
dimensional problems. The performance of non-parametric algorithms such as
ENRICA [69], RADICAL [122] or MILCA [210] is assessed in sections 2.6.2
and 2.6.3, where low-dimensional mixtures are used. The following algorithms
were included in this first set of experiments:

e BSS algorithms for time-correlated sources. Namely, SOBI [13] and WA-
SOBI [228].

e Popular ICA algorithms based on approximations of differential entropy:
EFICA [110] and JADE [25].

e A hybrid algorithm that is able to separate both non-Gaussian and time-
correlated sources: JADE7p [154]. We did not include in this first set of
experiments other algorithms of this type like JCC [72] and ThinICA [36],
due to their extremely high computational demands, and due to the fact
that, in a set of similar experiments [67,215], they did not outperform
JADErp. Nevertheless, JCC and ThinlCA were included in the perfor-
mance analysis for the low-dimensional problem in section 2.6.2.

The implementations of these algorithms were obtained from their respective
authors’ public web-pages or provided directly to us by the authors. The only
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exception was JADErp which we implemented using the publicly available
implementations of JADE and TDSEP. The unifying model of [91] was not
included in the comparison because the implementation kindly provided by
Prof. Hyvérinen did not allow the separation of AR sources of order greater
than 1. JADErp is based on joint diagonalization of quadricovariance eigen
matrices and time-delayed correlation matrices. We selected the time lags of
the cross-correlations to be 0, 1, ..., K where K denotes the maximum AR order
of the source signals (see Table 2.2).

The source signals are generated by feeding AR filters with random i.i.d.
samples with different distributions. The mixtures are obtained using ran-
domly generated well-conditioned mixing matrices. The characteristics of the
sources are summarized in Table 2.2 where we can see that the simulated
dataset consists of d = 3 - K sources. The first K sources have a Gaussian dis-
tribution and therefore cannot be separated by means of typical ICA contrasts.
On the contrary, sources K + 1 to 3 - K are all easily separated by exploiting
their non-Gaussianity. It can also be observed that for a fixed value of m,
the sources with indexes n - K +m for n = 0, 1, 2 all have the same spectrum
and therefore cannot be separated by means of SOBI, WASOBI or other algo-
rithms exploiting different spectra of the source signals. The multidimensional
structure of the simulated dataset for K = 3 can be observed in Fig. 2.4. Sep-
aration accuracy of the ith source was assessed using the interference-to-signal

ratio (ISR) [23]:

ISR; = 10log | Y G}/G}, (2.40)
ki

where Gy = (EA) with A the true mixing matrix and B the estimated

k
separating matrix. In general, ISR values above -10 dBs are probably unac-
ceptable in most applications.

Overall separation accuracy is assessed with the average (across sources)
ISR. Fig. 2.5 depicts the 90th percentile® of the average ISR for different
number of data samples when the dimensionality of the dataset is fixed to
9 (i.e. K = 3). The results indicate that M-COMBI and F-COMBI perform
almost identically well for this dataset, and that both of them significantly
outperform the benchmark algorithms, in terms of estimation accuracy. As
shown in Fig. 2.6, computation times? for mixtures of 9 sources are very small
in all cases and M-COMBI is only slightly slower than the other algorithms.
Fig. 2.7 shows the quality of individual source estimates in terms of the 90th

8Percentiles were obtained by generating 100 random surrogates of the sources and of
the mixing matrices.

9All computations were performed under MATLAB 7.8.0 (R2009a) for Windows XP,
running on a Dell Optiplex 960 (Intel Core2 Quad CPU 2.83 GHz, 3.21 GB of RAM).
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Source # distribution AR filter coefficients

1 Gaussian [1, p]

2 Gaussian [1,0,p]

K Gaussian [1,0,---,0,p]
K+1 Laplacian [1, p]
2-K Laplacian [1,0,---,0,p]
2-K+1 Uniform 1, p]
3-K Uniform [1,0,---,0,p]

Table 2.2: Characteristics of the source signals used in the experiments shown in
Section 2.6.1. Note that by modifying K we can set the dimensionality of the dataset
to any multiple of three.

percentile value of the corresponding ISR. Clearly, F-COMBI and M-COMBI
are the most robust algorithms and they are the only ones able to separate the
Gaussian sources with different spectra.

As was shown in section 2.2.4, temporal structure in the source signals has
a negative impact on ICA contrasts that assume i.i.d. sources. By applying
ICA on the residuals of a VAR model fitted to the observed mixtures, we can
minimize this negative impact and increase overall separation accuracy [69)].
Fig. 2.8 shows the benefits of using VAR pre-processing for i.i.d. based al-
gorithms like EFICA and JADE. These benefits are especially evident in the
case of EFICA, boosting the average ISR to values close to those obtained by
M-COMBI and F-COMBI. However, Fig. 2.9 shows that VAR pre-processing
improves only the estimates of the non-Gaussian sources and that F-COMBI
and M-COMBI remain as the only alternatives to separate the Gaussian com-
ponents.

A major advantage of M-COMBI and F-COMBI is that they offer excellent
performance for high-dimensional mixtures (See Fig. 2.10). F-COMBI is faster
(see Fig. 2.12) but M-COMBI is more reliable and stable, due to its exhaustive
search for multidimensional components. The differences in terms of reliability
are evident in Fig. 2.13 where M-COMBI outperforms F-COMBI when the AR
sources have a very weak temporal structure. This is due to the fixed order that
F-COMBI uses to apply its two complementary BSS contrasts: first temporal
structure and, subsequently, non-Gaussianity. Thus, a poor (but acceptable)
separation in the first stage will necessarily have a negative impact on the final
source estimates. However, notice from Fig. 2.13 that this does not mean that
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Figure 2.4: The results of clustering the ISR matrices estimated by WASOBI (left)
and EFICA (right) for the simulated dataset of section 2.6.1 when K = 3, N = 3000,
and p = 0.6. The scale is in dBs. The dashed lines mark the clusters of unresolvable
components, which in the case of WASOBI correspond to components having the
same spectrum. In the case of EFICA there is only one multidimensional cluster of
unresolvable components that corresponds to the Gaussian sources.

F-COMBI fails to separate some of the sources, but just that M-COMBI is
able to separate much more accurately the non-Gaussian components.

2.6.2 Non-linear sources with cross-dependencies

In this set of experiments we generate the hidden sources using three identi-
cal Lorenz oscillators ®; : (Xz(t), Yi(t), Zz(t)), Vi = 1,2, 3, described by the

differential equations:

Xi(t) = 10(Yi(t) — X;(t))

Yi(t) = 28X;(t) —Yi(t) — X;(t)Zi(t)
. + 305 Ky (Yi(t = 750))
Zi(t) = Xi(t)Yi(t) — §Zi(t)

We integrate these equations using a fourth order Runge-Kutta method with
a time step of 0.003 but we record only every 100th point leading to an effec-
tive time step of 0.3. The sources are obtained from the Y components of the
oscillators, i.e. s;(t) = Y;(t) Vi = 1,2,3. In total 3000 samples are generated
for each source. We consider the case of uncoupled (K;; = 0 Vi, j) and unidi-
rectionally coupled oscillators (K21 =1, K32 = 1, K;; = 0 otherwise). In the
latter case the coupling delays are 791 = 10 and 732 = 15. In order to obtain
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Figure 2.5: 90th percentile value (across 100 random repetitions of the mixtures) of
the mean ISR for random mixtures of the sources described in Table 2.2. Separation
accuracy is displayed for different sample sizes.
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Figure 2.6: Average computation time versus the number of observations for the
dataset described in Table 2.2 with K = 3.
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Figure 2.7: 90th percentile value of the ISR obtained for each source. The sample
size was fixed to NV = 10000 data samples.
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Figure 2.8: 90th percentile value of the average ISR with and without VAR pre-

processing.
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Figure 2.9: 90th percentile value of the ISR obtained for each source with and without
VAR pre-processing. The sources contained 10000 data samples.
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Figure 2.10: 90th percentile of the average ISR (in dBs) across 100 random surrogates
of the mixtures of 3 to 30 sources.
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Figure 2.12: 90th percentile of the average ISR (in dBs) across 100 random surrogates
of the mixtures for different values of the AR coefficient p (See table 2.2 for the
meaning of this simulation parameter).
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Figure 2.13: 90th percentile value of the ISR obtained for each source when N =
10000 samples and p = 0.1. Notice that, contrary to JADErp, F-COMBI successfully
separated all sources with acceptable accuracy (with an ISR well below -10 dBs in
all cases).

average results, we generate 200 realizations of the mixtures by using different
initial conditions for the Lorenz systems and random well-conditioned mixing
matrices.

The results in table 2.3 show that, both for the coupled and uncoupled
cases, the optimal separating matrix corresponds to a robust global minimum
of the contrast function used by the algorithm ENRICA [69]. For coupled
Lorenz oscillators, VAR filtering is quite effective in removing spurious global
minima in ICA-based contrasts, but it is not able to remove the numerous
local minima, which explains the poor results of ICA algorithms based on local
optimization (e.g. Infomax, EfICA and NpICA). Moreover, the fact that the
distribution of the Lorenz sources is far from Gaussian and multimodal explains
the poor performance of algorithms based on parametric or semi-parametric
approximations of entropy (e.g. Infomax, JADE, and EFICA) . Indeed, VAR
pre-processing is especially useful for non-parametric ICA algorithms that use
brute-force optimization to find the global minimum of the contrast function
(RADICAL [122] and MILCA [210]).
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BSS Algorithm uncoupled SR (A1) coupled
2.5% 50% 97.5% 2.5% 50% 97.5%
Infomax [12] VAR :?? -_143 (1) :é -(; -01
Ext. Infomax [123] o :i j (1) :;2 _(;, 1
JADE [25] VAR B o4 .
EfICA [110] 1VAR __392 :; 8 -_212 -(; -01
SOBI [13] VAR __55 :;, (1) __173 :g 15
WASOBI[228) o0 0 2] D6 a2 4
RADICAL [122] VAR :g? 333 :g? :gg _-211 _01
MILCA [210] VAR se a0 0 a8 ¢
NpICA [15] VAR :g‘g B o4 9
MCOMBI [215] VAR ‘3; :g 8 j§§ __224 j
FCOMBI [67] VAR s ot e
ThinICA [36] VAR e Dr s
JADErp (154 in o er a5 0 Boa 5
JCC [72] AR o e 4 4 o
ENRICA [69] VAR :ﬁ :gj j§§ ﬁf;ﬁ I§§ :gg

Table 2.3: Accuracy of the tested algorithms in the blind separation of three Lorenz
oscillators. The different columns denote the 2.5%, the 50% and the 97.5% percentiles
of the average ISR. Percentile values were obtained by generating 200 random sur-
rogates of the Lorenz mixtures. The rows marked with the term "+VAR” indicate
that VAR filtering was used to pre-process the observed mixtures. ISR values above

-10 dB are probably unacceptable.
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Figure 2.14: 90th percentile of the median ISR (in dBs) across 200 random surrogates
of the three EEG sources. For clarity we show only the results of some of the best
performing algorithms. Full results of this experiment are available online [68].

2.6.3 Real EEG data

In order to assess the expected performance on real EEG data, we test the BSS
algorithms in table 2.3 using mixtures of three time-series extracted from a real
EEG dataset [42,223]. Mutually independent EEG sources are emulated by
selecting, from different electrodes, EEG epochs that did not overlap in time.
This approach ensures that the time-courses of the sources mimic the dynam-
ics of the underlying true sources. However, the lack of cross-dependencies
between sources is probably unrealistic and, therefore, the numerical results of
this experiment should be taken as positively biased estimates. From Fig. 2.14
it is obvious that BSS based on temporal structure clearly outperforms i.i.d.-
based approaches, at least for realistic sample sizes. The poor convergence
of Infomax raises concerns on common practices among the EEG research
community. For instance, [45] recommends to use about 30M?2 samples to es-
timate M sources but, in our experiments, Infomax needed at least 10 times
more samples to produce reliable source estimates. Fig. 2.16 shows the 90th
percentile of the median ISR for mixtures of more than three EEG sources.
Even in high-dimensional problems, ENRICA consistently outperforms the
benchmark algorithms. The major disadvantage of ENRICA with respect
to its closer competitor (M-COMBI) is computation time. Separation of 10
sources with 5000 samples, requires about 14 minutes for ENRICA compared
to less than 1 second for M-COMBI. However, lengthy computations are often
acceptable for offline analysis of EEG data.
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Figure 2.15: Computation times for different sample sizes of mixtures of 3 EEG

sources.
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Figure 2.16: 90th percentile of median ISR (in dBs) across 100 random surrogates of

mixtures of 2 to 10 EEG sources. Each source contained 5000 data samples.
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Figure 2.17: Computation times for mixtures of 2 to 10 EEG sources. Each source
contained 5000 data samples.

2.7 Conclusions to the chapter

In this chapter we have reviewed the most common approaches to the blind
separation of neural sources underlying scalp EEG measurements. Further-
more, we have proposed three novel algorithms (M-COMBI, F-COMBI and
ENRICA) with attractive features for the analysis of EEG data. M-COMBI
and F-COMBI combine the strengths of two complementary BSS methods
(WASOBI and EFICA) in order to improve separation accuracy in hybrid
mixtures of non-Gaussian and time-correlated sources. Apart from their ro-
bustness, the main advantage of these two algorithms is their computational
simplicity, in contrast to the computational burden imposed by non-parametric
approaches like ENRICA. This is especially the case of F-COMBI that allows
for almost real-time separation (e.g. in less than 1 second) of mixtures of up
to 10 sources in a powerful personal computer. Moreover, parallel implemen-
tations of F-COMBI are straightforward, and could easily boost separation
speed in modern multicore machines. Although M-COMBI is more reliable
for offline applications, F-COMBI may be more appropriate for applications
in which speed is critical, like brain computer interfaces [199] or neuropros-
thetics [80].

F-COMBI and M-COMBI are useful mainly for high-dimensional mix-
tures for two reasons. First, because multidimensional clusters of components
that cannot be separated by WASOBI and EFICA are more easily found in
high-dimensional mixtures. Second, because their computational burden is
affordable. With respect to similar algorithms aiming at the separation of hy-
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brid mixtures of non-Gaussian and spectrally diverse Gaussian sources (e.g.
ThinICA, JCC or JADErp), M-COMBI and F-COMBI are clearly faster.
The results shown in [215] and [67] with mixtures of 40 sources show that
M-COMBI and F-COMBI can be up to 10 and 100 times faster, respectively.

The brain sources underlying EEG measurements are likely to be connected
by neuroelectric pathways, especially in experimental paradigms that aim to
study functional brain connectivity. Time-lagged information exchange be-
tween the hidden sources can have a very negative impact on BSS algorithms
that assume mutual independence, as shown in this chapter with coupled
Lorenz oscillators, and as will be confirmed in chapter 4 with VAR sources.
In our experience, BSS algorithms based on temporal structure (e.g. WA-
SOBI) are less affected by this problem than ICA methods. For the latter,
pre-processing the mixtures using a VAR filter can be helpful, especially in the
case of ICA algorithms based on brute-force global optimization of the contrast
function (e.g. RADICAL and MILCA). The poor performance of parametric
and semiparametric ICA algorithms with the Lorenz dataset is mainly ex-
plained by the distribution of the data, which is multimodal and very far from
Gaussian. We have to admit that this distribution is rather uncommon and
these results do not imply poor performance in real-life applications, including
the analysis of EEG data. In fact, in chapter 4 we found that the combina-
tion of VAR filtering and EfICA obtains excellent results in the separation of
sources with characteristics similar to those of real EEG.

Our experiments with real EEG time-series have raised concerns on whether
it is possible to accurately separate many EEG sources (e.g. more than 10)
from relatively short EEG epochs (e.g. in the order of 10 to 20 seconds).
We found that the common rule-of-thumb of requiring 302 samples [45] to
separate M sources is overoptimistic. We would recommend using of the order
of ten times as many samples, assuming a standard sampling rate of 250 Hz.
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Chapter 3

Measures of effective
connectivity

3.1 Introduction

The intriguing ability of neuronal populations to establish oscillatory coupling
at large-scale levels has been potentially regarded as one of the brain mecha-
nisms underlying cognition (e.g. [218]). These large-scale interactions are due
to a complex pattern of underlying brain connectivity. In this macroscale con-
text, anatomical connectivity refers to the specific arrangement of macroscopic
fiber pathways linking different brain regions. In contrast, functional connec-
tivity is a fundamentally statistical concept, which refers to the existence of
synchronized patterns between the temporal activations of often spatially re-
mote neural systems. By this definition, functional connectivity can be mea-
sured e.g. by cross correlation, cross-spectra [164] or mutual information [201].

In highly interconnected cerebral systems it is relevant not only to iden-
tify anatomical and functional links, but also to measure to what extent the
individual brain networks contribute to information production, and at what
rate they exchange information among each other. These directional interac-
tions form a pattern of effective brain connectivity [56] that carries important
information on the functional integration mechanisms of the brain.

There are several distinct approaches to understanding and measuring ef-
fective connectivity. One approach - dynamic causal modeling (DCM) [57,58|

o1
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- uses state-space continuous-time models for each and every step of the phys-
iological and biophysical chain of events leading to the observed functional
measurements. These detailed models are then used to characterize dynam-
ical and structural perturbations in the system due to known deterministic
inputs. DCM is especially suitable for functional magnetic resonance imaging
(fMRI) studies, due to the relatively simple models involved, and due to the
fact that fMRI records responses to deterministic experimental manipulations.
However, electrophysiological DCM models (see e.g. [40,41]) are complex and
still largely speculative (even more in the case of neurological disorders), mak-
ing DCM much less suitable for EEG studies. In addition, application of DCM
methods to spontaneous EEG signals is not straightforward [148, 149].

An alternative to DCM is to consider that an effective connection between
two neural networks exists whenever the prediction of the neural states of one
of the networks can be improved by incorporating information from the other.
This so-called Granger causality (GC) was originally proposed by Wiener [227],
and later formalized by Granger [73], in the context of linear regression mod-
els of stochastic processes. Since then, linear GC has also been extended to
non-linear models [30,54,191] and to non-parametric GC indices derived from
information theory [29,55,195,222].

Closely related to linear GC is the concept of directed coherence (DC) in-
troduced by Saito and Harashima [186] in the early 1980s. Like linear GC,
effective connectivity indices based on DC rely heavily on vector autoregres-
sive (VAR) models to infer causal relationships between temporally structured
time-series. The most prominent DC-based connectivity measure is the di-
rected transfer function (DTF) [104], which roughly measures to what extent
a spectral component in a neural signal induces the generation of the same
spectral component in another neural signal. The DTF has been used in pre-
vious EEG studies (see e.g. [6,52,111,119]) and we will use it in chapters 4
and 5 to characterize flows of oscillatory activity underlying the generation of
the human alpha rhythm.

Lastly, Nolte et al. have recently proposed the so-called phase-slope index
(PSI) [159] as a new method to estimate the direction of causal interactions
between time-series. The idea behind the PSI is that a time-lagged interaction
between a pair of systems induces a slope in the phase of the cross-spectra
of those systems. The existence of this slope allows detecting the interaction.
The PSI is a promising tool for assessing effective connectivity, and has been
tentatively applied to EEG data [159]. However, a major limitation of the PSI
is that it is a bivariate measure and, therefore, might be confounded by the
presence of common drivers in systems consisting of more than two variates.

In this chapter, we review the most important information theoretic ap-
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proaches that have been proposed in the literature to assess effective connec-
tivity between dynamical systems. We then present partial transfer entropy
(PTE) as a natural extension of the well-known bivariate transfer entropy [195]
for assessing causality in multivariate systems. Finally, we propose several
practical estimators of PTE that (i) effectively integrate the information avail-
able in an ensemble of repeated measurements and (i) are able to identify
time-varying coupling patterns.

3.2 Information-theoretic indices

The average number of information units' needed to encode a discrete random
variable Z with states {z1, ..., zps } and a probability mass function p(z) is given
by the Shannon entropy [201]:

M
Hy = —Zp(zi)logp(zi) (3.1)

i=1

Shannon entropy can be understood as the average information carried by
Z. For a continuous d-dimensional random vector X with pdf f(x), a similar
information measure can be defined by discretizing X using some bins in R<.
If we denote by Y the binned variable then we have that [114]:

HY %HX 7d10gA (3.2)

where A is the Lebesgue measure of the bins and Hx is the differential entropy
of the continuous random vector X:

Hyx 2~ | f(x)log f(x)dx (3.3)
Sy

where Sy is the support of f(x). Notice that Hx is not a true information
measure and that it can be negative. Moreover, Hx is not invariant under
homeomorphisms of X.

I The units of information depend on the base of the logarithm in (3.1). In this thesis we
use natural logarithms so that the units of information are nats.
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The Kullback-Leibler (KL) divergence [118] measures the average excess
number of information units that would have been used to encode the discrete
variable Z, if one would have wrongly assumed that the probability mass
function of Z was ¢(z) instead of p(z):

= zi)lo p(z)
K (pllg) = Zi:p( i) log o

(3.4)

The KL divergence can also be defined for continuous random variables with
pdfs f and g:

Kl 2 [ seoopl®ax (35)

5;08, (%)
! 9

Although the KL divergence is not a distance metric, it can be intuitively
understood as a measure of how different the pdfs f and g are. The reason
is that the KL divergence between two pdfs is zero, if and only if the two
distributions are identical.

Since we aim to measure information transfer in multivariate dynamical
systems, we will consider in the following three stochastic processes X, Y
and Z, that can be approximately modeled with a stationary Markov model
of finite order. Thus, the phase-space® of process X can be reconstructed
using the embedded vector x(n) = (z(n),...,z(n — K, + 1)), where K, is the
corresponding Markov order. Similarly, we could construct y(n) and z(n) for
processes Y and Z, respectively. A useful notational convention is that p(x(n))
denotes the probability to find X in the state x(n) at time n, i.e. the joint
probability of finding X at states x(n),...,z(n — K, + 1) during time instants
n,n—1,...,n—K;+1. Due to stationarity, p(x(n)) does not depend on the time
index and we can simply write p(x). In the absence of any direct or indirect
transfer of information between X and Y, one can argue that the joint pdf of
their corresponding state-vectors can be factorized as follows:

p(x,y) = p(x)p(y) (3.6)

indicating that knowledge of the outcome of one of the systems does not provide
any information on the outcome of the other. By measuring the KL divergence

2See appendix B for information regarding the concept of phase-space and phase-space
reconstruction through delay embedding.
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between the pdfs at both sides of the equality (3.6) we can assess how far from
the truth our null hypothesis that X and Y are not mutually related is. This
leads to the definition of mutual information (MI) [35]:

p(x,y)

Ixey =1(x,y) :/p(x’y)logm

dxdy (3.7)

MI can be used for detecting synchronization between two time-series. How-
ever, since MI does not incorporate any dynamical information, it cannot iden-
tify directional interactions. A somewhat ad-hoc solution to this limitation is
to introduce a delay in one of the two signals:

Ixoy (1) 2 I(x(n),y(n — 7)) (3.8)

which is one of the few information-theoretic indices commonly used in neu-
roscience (e.g. [96,97]). Even if Iy .,y (7) can identify directionality, it cannot
determine whether there is a true information transfer between X and Y, or
if their time-lagged synchronization is due to an indirect connection mediated
by Z. This is a limitation inherent to the bivariate nature of MI.

A natural extension of MI-based connectivity analysis is to consider that,
in the absence of any direct interaction between X and Y, the following fac-
torization must hold:

p(y,x|z)=p(ylz)p(x|z2) (3.9)

which conceptually means that x (resp. y) does not contain any additional
information regarding y (resp. x) apart from the information that is also
shared with z. Again, the validity of this null-hypothesis can be assessed using
the KL divergence, which leads to the definition of partial mutual information
(PMI) [55]:

p(X,y,2)p(z)

P (x.2)p(y.2) dxdydz (3.10)

IX<—>Y\Z éI(Xay | Z) :/p(X7YaZ)10g

PMI has the appealing property of being able to discriminate between a di-
rect link between X and Y and an indirect relationship mediated by Z. As
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with MI, we can introduce a delay in the PMI definition, in order to identify
directionality in the information exchange:

Ixeviz (1) = 1(x(n),y(n =) | z(n)) (3.11)

An alternative to the static probabilities used by MI and PMI is to study
transition probabilities and consider that, in the absence of a direct information
transfer in the direction X <— Y, any forecast of X based on knowledge of the
present and past of X and Z is not affected by the additional knowledge of
the present and past of Y, that is:

p(z(n+1) [x(n),z(n)) = p(z(n+1) | x(n),y(n - 7),2(n)) (3.12)

with 7 > 0. The term p(z(n+ 1) | x(n),z(n)) denotes the probability of
finding the Markov process X in state z(n+1) at time-instant n+ 1, given that
X and Y are in states x(n) and y(n) at time-instant n. The right side of the
equality can be understood in an analogous manner. Then, the KL divergence
between the distributions at both sides of (3.12) leads to the definition of
partial transfer entropy (PTE)3:

p(z(n+1)[x(n),y(n —7),2(n))
p(z(n+1) [ x(n),2z(n))

Toviz(n) = [ p(v)log v (313)

with v = (z(n+1),x(n),y(n —7),z(n)). PTE is a multivariate extension
of bivariate transfer entropy [195] and, like PMI, it is a directed measure of
information transfer. But, contrary to PMI, PTE is not confounded by the
presence of static correlations due to the common history or common input
signals. Nevertheless, PMI and PTE are indeed very closely related:

Txeyiz(T) = Ix+oyx,2(T) (3.14)

with 7 > 0 and Xt = z(n +1). Thus, PTE simply extends PMI by including
in the condition the history of X.

3Notice that in the formulas of PTE and PMI we have omitted the lag of the condition
for notational simplicity. Ideally, the state-space z(n) should be shifted by a lag 7. such
that Tx .y |z (resp. Ixy|z) is minimized. For the PTE, the lag 7> must be positive, i.e.
only delays are considered.
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3.2.1 Estimation

Let V = (V4,..., V) denote a random variable. Then, an entropy combination
is defined by [70,185]*:

C(Vey, o Ve,) =Y siH(Vz,) — H(V) (3.15)

i=1

where Vi € [1,p] : £; C [1,m] and s; € {—1,1} such that Y-, sixz, = X[1,m]
where xs is the characteristic function of a set S. It can be easily checked that
MI, PMI and PTE are all entropy combinations (see Table 3.1):

Ixoy = —Hxy+Hx+ Hy (3.16)
Ixeyiz = —Hxzy +Hxz+Hzy — Hz (3.17)
Txcyiz = —Hwxzy +Hwxz+ Hxzy —Hxz (3.18)

where W = Xt =z(n+1).

A straightforward approach to estimate entropy combinations would be
to combine separate estimates of each of the involved multidimensional en-
tropies. The differential entropy of a random vector can be estimated using
plug-in estimators that perform numerical integration of an estimate of the
random vector’s pdf. However, estimation of the density of a (probably high-
dimensional) random vector is a complex problem, which involves the selection
of crucial parameters such as bin width for histogram methods, or kernel type
and number of components for methods based on mixtures models. An alter-
native that we have found to be generally more robust and accurate is to use
the nearest-neighbor entropy estimator by Kozachenko and Leonenko [112].
For N realizations x[1],x[2], ..., x[N] of a d-dimensional random vector X, this
estimator takes the form:

Hx = —() + (N) + log(va) + & D log(e(i)  (3.19)

i=1

4The term entropy combination and its definition in (3.15) were proposed by my colleague
K. Rutanen [185].
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Index Entropy combination parameters
Vv = (Vh VQ) = (X7 Y)
p = 2
Ly = {1}
L = 2

Ixoy 512 _ {1}
59 = 1

C(X,Y) = —Hxy +Hx + Hy

1% = (Vi,Va,V3) = (X, Z,Y)
p = 3
Ly = {1,2}

I EQ - {273}

XY |Z £3 _ {2}
S1 = 1
S9 = 1
S3 = —1

c(X,z,y) = —Hxzy +Hxz +Hzy — Hy

V = (‘/17‘/27‘/37‘/21):(WaX727Y)
p = 3
El - {17273}
£2 = {27374}

TX<—>Y|Z L _ {273}
S1 = 1
59 = 1
S3 = —1

CW,X,Z)Y) = —Hwxzy +Hwxz+Hxzy — Hxz

Table 3.1: Equivalence between the definition of entropy combination (3.15) and
the definitions of MI, PMI, and PTE. This table has been adapted with permission
from [185].
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where v is the digamma function®, v, is the volume of the d-dimensional unit
ball®, and €(4) is the distance from x[i] to its kth nearest neighbor in the set
{x[il}y - The Kozachenko-Leonenko estimator is based on the assumption
that the density p(X) is constant within an e-ball. The validity of this as-
sumption determines the bias of the final entropy estimate. Therefore, the
number of neighbors k£ and the number of available data samples N control
the trade-off between bias and variance of the estimator. In general, the larger
the sample size the smaller one should choose the parameter k. Below we
will use numerical experiments to assess the bias and variance of MI and PTE
estimators based on the Kozachenko-Leonenko entropy estimator.

The size of the e-balls used by the Kozachenko-Leonenko estimator depends
directly on the dimensionality of the random vector. Thus, the bias of esti-
mates of the differential entropies in (3.15) will, in general, not cancel, leading
to a poor estimator of entropy combinations. This problem can be partially
overcome by noticing that (3.19) holds for any value of k so that we do not
need to have a fixed k. Therefore, we fix the number of neighbors in the joint
space but use a pointwise adaptive value of k£ in the marginal spaces, so that
the corresponding e-balls approximately match the size of the balls in the joint
space. By using the maximum norm to compute distances between points
we guarantee that this approximation holds at least for one of the marginal
spaces. This idea was originally proposed in [114] for estimating mutual infor-
mation and was generalized in [70, 185] to the following estimator of entropy
combinations:

C(Veys o Vi,) = F(k) — .257‘ (F (ki(n))),, (3.20)

where F(k) = ¢(k) —4(N) and (---), = + ij:l(' -+ ) denotes averaging with
respect to the time index. The term k;(n) accounts for the number of neighbors
of the nth realization of the marginal vector V., located at a distance strictly
less than e(n), where ¢(n) denotes the radius of the e-ball in the joint space.
The point itself is included in this counting. From (3.20) and using Table 3.1
we can write the following estimator for MI [114]:

Sep(z) = T(x)~! dl;—gf) with T'(z) = [ t*"!e~*dt. The digamma function satisfies the
recursion ¢ (z + 1) = ¢ (x) + % and (1) = —0.5772156... is the Euler-Mascheroni constant.
6The volume of the unit ball depends on the used norm. In this thesis we assume an [*°

norm so that vy = 2% for any dimensionality d. If we would have used the Euclidean norm
d

then the volume of the unit ball in d dimensions would be ¢4 = with I" denoting

_m2
T(1+d/2)
the Gamma function.
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Loy = (k) + (V) = (@ (ka(n)) + 4 (ky(n))),, (3.21)

Similarly for PMI [55]:

Ixoyiz = k) = (W (kox () + 9 (ksy(n) — ¥ (2 (n))),, (3.22)

and for PTE [70]:

where W = X* = z(n+1) and (), = 3,0, ().

3.3 Ensemble estimators

A practical pitfall common to all the non-parametric indices described in the
previous section is that their estimation require many stationary data sam-
ples. This limits significantly their use in the analysis of experimental datasets
involving time-varying or short-duration causal links. For instance, fast brain
responses to different types of external stimuli — or event-related potentials
(ERPs) — are likely to cause rapid topological reorganization of information
processing pathways. Typically, an ensemble of repeated measurements is ob-
tained in ERP experiments by presenting the stimuli many times. However,
to date, there is not an efficient strategy for integrating the coupling infor-
mation across data trials, in order to produce a more accurate estimation of
information-theoretic GC indices. In this section we extend the estimators of
MI, PMI and PTE for the characterization of coupling dynamics in an ensem-
ble of repeated measurements. These extensions are based on the following
time-adaptive version of the entropy combination estimator in (3.20):

C{Vzyses Vi, }on) = F(k) — ZsiF(ki(n)) (3.24)

This naive time-adaptive estimator is not useful in practice due to its large
variance, which stems from the fact that a single data point is used for pro-
ducing the estimate at each time instant. However, let us consider the case
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of an ensemble of 7’ repeated measurements (trials) from the dynamics of
V. Let us also denote by {V(’”) [n] } the measured dynamics for those trials

(r=1,2,...r"). Similarly, we denote by {v(r)[ ]}» the measured dynamics for

the marginal vector Vp,. A straightforward approach for integrating the in-
formation from different trials is to average together estimates obtained from
individual trials:

’
T

A 1 ~
CE({Vers oo Ve, o) = > C{Veys o Vi, bon) (3.25)

r=1

where C({V,, ..., Ve, },n) is the estimate obtained from the rth trial. How-
ever, this approach makes a poor use of the available data and will typically
produce useless estimates, as will be shown in the experimental section of this
chapter. A more effective procedure takes into account the multi-trial nature
of our data by searching for neighbors across ensemble members, rather than
from within each individual trial. This nearest ensemble neighbors [113] ap-
proach is illustrated in Fig. 3.1 and leads to the following ensemble estimator
of entropy combinations:

’
”

P
écrl({vﬁ17 ey Vﬁp}a ’I'L) = - % Z SZF (k(r) ) (326)

r=11i=1

where the counts of marginal neighbors {kl(')(n) ::::11 7»‘---5/ are computed as

shown in Fig. 3.1.

3.4 Experiments and results

In this section we use simulations and experimental data from electronic cir-
cuits to assess the validity of estimators (3.20) and (3.26). All the experiments
and figures shown in this section have been produced and can be replicated
using MATLAB code and datasets publicly available online at:

http://www.cs.tut.fi/~gomezher/causality/

This MATLAB code relies on efficient C++ implementations of estimators (3.20)
and (3.26) that are included in the TIM library [184], a software package de-
veloped by my colleague K. Rutanen.
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Figure 3.1: For each time instant n = n* and for each member of the ensemble
1<n<N
of joint phase-space trajectories {v”) [n]} we define the neighborhood size
1<r<r’/

€™ [n*] as the maximum norm distance between v("™ [n*] and its kth nearest neighbor
in the set {v(j)[n} [1<ji<7;|n—n"|<0o } This is illustrated in Fig. 3.1(a) for

k = 5 neighbors. Then we denote by k" [n*] the number of neighbors of v{”[n*] in
the set {vI[n] | 1 <j <+ ; |n —n*| < o} which are within the radius €™ [n*], as
depicted in Fig. 3.1(b). These neighbor counts are obtained for all ¢ = 1, ...p marginal
trajectories. For rapidly changing connectivity patterns, small values of ¢ might be
needed to track the coupling dynamics. On the other hand, larger values of o will
generally lead to lower variance of the estimates.
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3.4.1 Multivariate Gaussian distribution

In this first set of numerical experiments we assess the bias and variance of
entropy combination estimates for the case of Gaussian-distributed data. We
consider an m-dimensional Gaussian random variable V' ~ N(0,3X) and the
following entropy combination of its marginal components:

C(Veys o Ve,) =Y siH(Ve,) = H(V) (3.27)

i=1

where V., is the random vector formed by selecting from V' the dimensions
specified by the set of indices £; C [1,m] and s € {—1,1}" subject to >.0_, sixz,
X[1,m]- Then, the analytical value of such an entropy combination can be easily
found to be:

1 P |y, |sien(s)
C(Veys o Ve,) = §log< izt l;' ) (3.28)

where 3., denotes the covariance matrix between the marginal components of
V' corresponding to the set of indices £;. Using the expression above and Ta-
ble 3.1 we can easily obtain the analytical values of the MI, PMI and PTE for
Gaussian distributed variables. Fig. 3.2 shows the bias and variance of the MI
estimator (3.21) for different sample sizes and different cross-correlation coeffi-
cient between the marginal components of a 2-dimensional Gaussian variable.
It can be clearly observed that the bias of the MI estimator is mainly affected
by the cross-correlation coefficient and that very accurate estimates can be
obtained, even with very small sample sizes, as long as the cross-correlation
is small. As shown by Fig. 3.3, the null-distribution of the MI estimator (i.e.
the bias and variance for mutually independent marginal components) is very
tightly located around zero, which suggests that the estimator will lead to
very few type I errors, when assessing information flow between a pair of ran-
dom variables. In contrast, Fig. 3.4 shows that classical estimators based on
fixed-size binning of the data” require extremely large sample sizes to produce
estimates with low bias and variance, even for perfectly uncorrelated variables.
Due to the typically non-stationary nature of brain activity, it is often impos-
sible to use long data epochs to characterize functional connectivity between
EEG time series, suggesting that estimators based on nearest neighbors are
much more appropriate for EEG applications than binning-based approaches.

"Namely, Fig. 3.4 was obtained using the mutual information estimator included in the
MATLAB toolbox EEGLAB [46], which is a popular software package among EEG researchers.
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1 2 3 4
x10*

(a) —20logyo E(|f — I|) (b) —10log,o E((I — E(]))?)

Figure 3.2: Bias (left) and variance (right) of the MI estimator (with k& = 10 nearest
neighbors) for different sample sizes (N) and for different levels of cross-correlation
between two Gaussian random variables. The results are the average of 100 indepen-
dent realizations. Figures are in inverted dB, i.e. the larger the plotted values, the
smaller the bias (resp. variance) of the estimator.

In the case of the PTE we have that V = (XT, X, Z)Y) = (W, X, Z,Y)
and the null-hypothesis that there is no flow from Y towards X is the same as
saying that the covariance between Y and X T is zero. Therefore, we obtained
the null-distribution of the PTE estimator (see Fig. 3.5) by using a random
positive definite covariance matrix 3 with o, = 0. Fig. 3.6 shows the bias
and variance of the PTE estimator for different cross-correlation coefficient
between Y and X1, i.e. for different levels of information sharing between
Y and X*. The amount of information transfer has an important impact on
the accuracy of the estimates and, therefore, comparisons between large PTE
values must be made with caution. However, the good localization around
zero of the null distribution confirms that large PTE values can be used with
confidence to reject the null hypothesis that there is no transfer of information.

3.4.2 Coupled Lorenz oscillators

In this set of experiments we use, as in section 2.6.2, three identical Lorenz
oscillators ®; : (Xi(t), Yi(t), Zi(t)), Vi = 1,2,3, described by the differential

equations:
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130

1 2 3 4 5
x10*

(a) ~20logyo E(|T — 1)) (b) —10logyo E(( — E(1))2)

Figure 3.3: Bias (left) and variance (right) of the null distribution of the MI estimator
for different number of nearest neighbors (k) and for different sample sizes (N). The
results were obtained from 100 independent realizations. Figures are in inverted
dB, i.e. the larger the plotted values, the smaller the bias (resp. variance) of the
estimator.

x10*
(a) —201og;o E(|] - 1)) (b) —101logy E(I — B(D))?)

Figure 3.4: Bias (left) and variance (right) of the MI estimator based on fixed-size
binning for different sample sizes (N) and for different levels of cross-correlation
between two Gaussian random variables. The results were obtained from 100 inde-
pendent realizations. Figures are in inverted dB, i.e. the larger the plotted values,
the smaller the bias (resp. variance) of the estimator.
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x10*
(a) —201ogyq E(|T — T1) (b) —101logyo E((T — E(D))?)

Figure 3.5: Bias (left) and variance (right) of the PTE estimator for mutually inde-
pendent Gaussian-distributed random variables. The figures were obtained from 100
independent realizations. The figures are in inverted dB, i.e. the larger the plotted
values, the smaller the bias (resp. variance) of the estimator.

x 10
(a) —20logy o B(|T — 1) (b) —101og,o E((T - E(1))?)

Figure 3.6: Bias (left) and variance (right) of the PTE estimator for a 4-dimensional
random vector V = (XT, X, Z,Y) and different values of the cross-correlation co-
efficient between X' and Y. The other entries in the covariance matrix of C' were
randomized but we ensured that the diagonal entries were fixed to one and that the
matrix was positive definite. The values shown were obtained from 100 independent
realizations of v[1], ..., v[N]. The figures are in inverted dB, i.e. the larger the plotted
values, the smaller the bias (resp. variance) of the estimator.
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Xi(t) = 10(Yi(t) — X;(t))

Yi(t) = 28X(t) - Yi(t) — Xi(t)Zi(1)
] + Ej;éi K (Y;(t = 735))
Zi(t) = X)Yi(t) - $Z:(t)

We integrate these equations using a fourth order Runge-Kutta method with a
time step of 0.003, but we keep only every 100th point leading to an actual time
step of 0.3. We cut away transient dynamics at the beginning and consider
only the time-series of the Y component of the oscillators as representative of
each dynamical node. We generate N = 3000 samples for each time-series and
consider the case of a chain of unidirectionally coupled oscillators (K21 = 1,
K3y =1, K;; = 0 otherwise) with delays 721 = 10 and 732 = 15.

The goal of our connectivity analysis is to reveal the pattern of effective
connectivity underlying this network of Lorenz systems. Fig. 3.7 (left column)
shows that time-lagged MI shows two peaks roughly at the correct lags, there-
fore revealing the direction of information flow between nodes. However, the
MI analysis alone is not able to tell whether the information shared between
@, and ®3 is due to a direct interaction between the two systems, or due to
an indirect connection mediated by ®5. On the other hand, a PTE analysis
(Fig. 3.7, right column) clearly shows that ®; and ®3 are not directly con-
nected and that the information shared by ®; and ®3 is actually mediated by
®,. Similar results can be obtained with the PMI [55].

An inherent limitation of PTE, PMI and, in general, of GC indices is that
temporal precedence does not necessarily imply effective information exchange
but simply time-lagged synchronized dynamics [57]. Such synchronization can
be due to unidirectional coupling (effective connectivity) but can also be due
to other synchronization mechanisms. To prove this point, we simulated the
case of the second Lorenz system driving the other two systems, i.e. K15 =1,
K3y =1, and K;; = 0 otherwise. The delays are set to 712 = 10 and 735 = 15.
The coupling in this case is strong enough so that the driving system (®3)
enforces lag synchronization between the two driven systems (®; and ®3)
with a lag 731 = 739 — 712 = 5 time steps. This synchronization, which occurs
without any direct effective connection between the driven systems, is robust
to small differences in the parameters of the Lorenz systems and in the coupling
factors (as long as the coupling is not too weak [141]). From a PMI perspective
(Fig. 3.8, left column) the underlying coupling structure is ®; — ®3 with
731 = 5. On the other hand, a PTE analysis (Fig. 3.8, right column) reveals
information transfer in the directions ®5 — ®; and ®; — ®3 with 715 = 10
and 731 = 5. Hence, neither the PMI nor the PTE alone can reveal the true
underlying effective connectivity. However, a pairwise MI analysis (not shown
here) reveals that the three systems share information between each other,
therefore rejecting the possibility that ®5 is truly disconnected from the other
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two oscillators, as suggested by the PMI analysis. Indeed, the PTE found a flow
of information from ®5 towards ®;. The fact that the PMI did not detect this
flow can only be explained by the presence of an identical flow from ®5 towards
®;. Ultimately, without making assumptions about the motion equations of
the three systems, we cannot unequivocally tell whether the coupling ®; — P53
is real or if it is just due to synchronization via a common source. Nevertheless,
the principle of parsimony would tell that the most likely explanation for the
observed PMI and PTE is a coupling pattern consisting of the links ® — ®4
with 712 = 10 and @9 — P35 with 735 = 15. This toy example supports the idea
that MI, PMI and PTE offer complementary information about the underlying
coupling structure and that a simultaneous MI/PMI/PTE analysis increases
the chances of revealing the true effective connectivity pattern.

3.4.3 Gaussian processes with time-varying coupling

In order to demonstrate that (3.26) can be used to characterize time-varying
coupling patterns, we simulated three non-linearly coupled Gaussian processes
with a time-varying coupling factor:

zMn] = 0420 [n—1]+n,
y(") [n] = 0.5y(r)[n — 1] + Kyz[n]sin (x(r) [n — Tym]) + 1y
2] = 05200 1]+ Kay[n]sin (y(’")[n — sz]) /N

where the index r = 1, ..., 50 corresponds to the trial number and n = 1, ..., 1500
denote time instants. The terms 7,, 1, and 7, are normally distributed noise
processes, which are mutually independent across trials and time instants. The
coupling delays were 7, = 10, 7, = 15 and the dynamics of the coupling were
described by:

kyoln] = sin (0.0047n) for 250 < n < 750
yEE T 0 otherwise

oy ln] = cos (0.0047n) for 750 < n < 1250
M =99 otherwise

Fig. 3.9 shows the time-varying PTEs obtained with the ensemble estimator
of entropy combinations given in (3.26), and Fig 3.9 shows the corresponding
results for the naive average estimator (3.25). The significance of PTE val-
ues (at each time-instant) was assessed using a non-parametric permutation
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test [172]. Before PTE estimation, each time-series was time-delayed so that
they had maximum mutual information with the destination of the flow. That
is, before computing some Taeb|c(n), the time-series b and ¢ were delayed so
that they shared as much information as possible with the future of time-
series a. In addition, the PTE series shown in Fig. 3.9 and Fig. 3.10 have been
smoothed with a moving average filter of order 20, as a simple way of reducing
estimator variance. As long as the order of the filter is not too large, this
post-processing does not affect crucially the temporal resolution of the PTE
estimates. The latter is mainly determined by the size of the time window used
in the nearest neighbor search (parameter o in Fig. 3.1). Notice from Fig. 3.9
that the proposed ensemble estimator accurately characterized the coupling
dynamics. On the other hand, the naive average estimator (Fig. 3.10) did not
detect any significant information flow between the three Gaussian processes.

3.4.4 Mackey-Glass electronic circuits

In this last experiment we assess the performance of estimator (3.26) using
voltage measurements obtained from two one-way coupled Mackey-Glass (MG)
electronic circuits [134]. The drive system generated a chaotic signal thanks
to a time-delayed feedback line [187]. A time-varying coupling factor was
simulated by modulating the drive signal with a sinusoid of period 100 samples.
The second MG circuit did not have any feedback and, therefore, its output
voltage was determined by the input signal, by errors in the A/D and D/C
blocks, by the presence of electrical noise and by its non-linear input-output
transfer function. The experimental setup is illustrated in Fig. 3.11. This
dataset was provided by M. C. Soriano from the Institute for Cross-Disciplinary
Physics and Complex Systems at Palma de Mallorca (Spain).

Fig. 3.12 shows the results of the TE analysis for different lags between the
outputs of the two MG circuits and for different time-instants. The TE reveals
that, indeed, there is a strong transfer of information in the direction MG1 —
MG2 around lag 7 = 20 samples. A zoomed view of the coupling dynamics for
that lag (Fig. 3.12, bottom) shows a clear sinusoidal pattern with an approxi-
mate period of 100 samples. TE estimates for the opposite direction (MG1 +
MG?2) were non-significant for the vast majority of lags and time-instants. A
linear analysis using lagged correlations in sliding time-windows did not reveal
significant coupling at any lag. These results are encouraging and suggest that
the time-adaptive estimator (3.26) is able to accurately characterize informa-
tion transfer between real-life complex physical systems. Nevertheless, we have
to admit that the experimental setup used here is rather artificial and still too
simple to be able to draw conclusions on the expected performance on EEG
time-series.
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3.5 Conclusions to the chapter

In this chapter we have reviewed the most important information theoretic
indices that can be used for characterizing information transfer between time-
series and have introduced partial transfer entropy as a natural extension of
bivariate transfer entropy (TE). Moreover, we have presented practical esti-
mators of entropy combinations (e.g. MI, PMI or PTE) that can be used to
identify time-varying coupling patterns from an ensemble of repeated mea-
surements. Using simulated data we showed the benefits of these estimators
with respect to simple averaging of individual trial estimates. We are currently
investigating the application of these ensemble estimators to study the gen-
eration mechanisms of auditory event-related potentials in humans. Another
topic for future research is the definition of automatic rules for adaptive se-
lection of the temporal window size in the time-varying estimator of entropy
combinations (i.e. the parameter o in Fig. 3.1).

The two major advantages of non-parametric information-transfer mea-
sures over more traditional parametric approaches like those based on VAR
models is that they are less affected by model misspecification and that are
sensitive also to non-linear interactions. The downside is that estimation of
information theoretic quantities is a delicate issue and large number of station-
ary data samples might be needed to obtain accurate estimates. This problem
is partially overcome by the ensemble estimators proposed in this chapter, at
the expense of requiring stationarity across a set of repeated measurements.
In practice, perfect stationarity across time or across trials is unlikely, which
raises concerns regarding the applicability of these indices to real electrophys-
iological datasets. A more accurate description of the relative strengths and
weaknesses of these measures will require the analysis of both realistically
simulated data and real ERPs. We are currently working on these two issues
and our preliminary results suggest that the key to success lies in the pre-
processing before information-theoretic indices are estimated. In particular,
pervasive long-term correlations in EEG time-series can render impossible the
reconstruction of their phase-space using simple delay embedding, or may re-
quire high-dimensional embedded vectors, which complicates the estimation
from short duration EEG epochs. In agreement with the results in chap-
ter 2, we have found that calculation of information-theoretic quantities is
typically improved by diminishing long-range second-order temporal structure
using VAR filters, provided of course that the interactions between time-series
are not purely linear.

A practical pitfall of the PTE (and also of the PMI) and in general of mul-
tivariate indices is that partialization over a large number of variables is un-
feasible, due to the difficulty of estimating high-dimensional pdfs. This means
that PTE and PMI can only be applied to networks with few nodes (e.g. less
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than 10). In the case of stationary EEG rhythms such small networks might be
enough to accurately describe the underlying brain dynamics. However, this
is obviously a limiting factor, if one aims to apply these techniques to fMRI
data, or if one wants to compute information flow at the sensor level. A partial
solution consists on using first the TE or MI to assess pairwise connectivity
between all network nodes. Then PTE (or PMI) is used iteratively in subsets
of network nodes (e.g. at most 10 nodes), in order to remove indirect con-
nections. Consider for instance a network with K nodes (X1, Xs, ..., Xk) and
that using pairwise TE we have obtained that the jth node receives inflows
(direct or indirect) from the subset of nodes {X;}, . with I' C [1, K. In order
to determine the underlying effective connectivity pattern, one would like to
assess whether the flow X; <— X; with ¢ € I' is due to a true direct connection
between the two nodes or the influence has been mediated by another inter-
mediate node. When K is too large to directly apply the PTE, we suggest the
following approximation:

TXjexl\{Xz}zeu,x]—{i,j} ~ min {TX_,eXf,I{Xz}lepmcr,{i,“ } (3.29)

where m =1, ..., and {I';,} are all unordered subsets of I' containing

|
«@
some a < |I'| elements. That is, we try to determine whether the flow from
X; towards X; can be explained by some of the other nodes sending inflows
to X; but partializing at a time only with respect to subsets of v < |I'| nodes.
By using a small value of a@ we make feasible the estimation of the PTEs at
the right side of Eq. 3.29. There is no guarantee, however, that this approach
will remove all indirect flows, but one would expect to remove at least some
of them.

In summary, we can conclude that information theory provides a sound and
flexible framework for assessing information exchange in dynamical systems.
However, the theoretical advantages of indices like MI, PMI or PTE might
be counterbalanced by the difficulties involved in their estimation from real
EEG data, which is an issue currently under investigation. These difficulties
might be partially overcome by careful pre-processing and the use of accurate
estimators but, in any case, information-theoretic indices are likely to offer
real advantages only in those cases where information exchange cannot be
described by simpler parametric models of Granger causality.
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Figure 3.7: MI (left column) and PTE (right column) estimates for the simulation
using a chain ®; — ®5 — P3 of unidirectionally coupled Lorenz oscillators. In all
cases, the number of nearest neighbors was k = 20. The figures show the average MI
and PTE values obtained in 100 repetitions of the time-series, which were obtained

using different random initializations of the Lorenz oscillators.
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Figure 3.9: Time-varying PTE estimates obtained with the ensemble estimator (3.26)
for the Gaussian processes with time-varying underlying connectivity. In all cases,
the number of nearest neighbors was k = 20 and the window size was o = 5 samples.
The time-varying PTE estimates shown in the figures have been temporally smoothed
using a moving average filter of order 20. The significance thresholds were obtained

with a permutation test [172].
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Figure 3.10: Time-varying PTE estimates obtained with the average estimator (3.25)
for the Gaussian processes with time-varying underlying connectivity. In all cases,
the number of nearest neighbors was k = 20. The time-varying PTE estimates shown
in the figures have been temporally smoothed using a moving average filter of order
20. The significance thresholds were obtained with a permutation test [172].
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Figure 3.11: Experimental setup with two Mackey-Glass (MG) circuits unidirection-
ally coupled. The modulation signal was m(n) = % + isin(%"n) with 7" = 100
samples. Fig. 3.12 below depicts the amount of information transfer from si(n) to
s2(n), as measured by the TE.
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Figure 3.12: TE from the first electronic circuit towards the second. The upper figure
shows time-varying TE versus the lag introduced in the temporal activation of the
first circuit. Clearly, there is a directional flow of information time-locked at lag 7 =
20 samples, which is significant for all time-instants (p < 0.01). On the other hand,
the flow of information in the opposite direction was much smaller (712 < 0.0795
nats V(¢, 7)) and only reached significance (p < 0.01) for about 1% of the (n, 7) tuplas.
Moreover, the location of the significant tuplas were discountinuous and displayed a
random pattern in the (n,7) plane. The lower figure shows the temporal pattern of
information flow for 7 = 20, i.e. To1(n,7 = 20), which resembles a sinusoid with a

period of roughly 100 data samples.



Chapter 4

Measuring directional
coupling between EEG
sources

4.1 Introduction

Oscillatory synchronization between distant brain areas is a key mechanism
underlying information processing in the human brain [218]. These systems-
level interactions can be studied by means of (symmetric) synchronization
measures but, in profusely interconnected cerebral systems, it is of major im-
portance to characterize also the directionality of these interactions. That is,
to be able to infer causal (drive-response) relationships between the studied
subsystems. Analysis techniques based on Granger causality criteria identify
causality by measuring how the history of a neural signal predicts the future
of another [7,73,195]. A closely related concept consists in measuring to what
extent a spectral component in a neural signal induces the generation of the
same spectral component in another neural signal [49,104]. To date, all these
information-flow measures have been typically computed between scalp EEG
signals recorded in humans [7,82,104,119] and from intracranial recordings
both in humans and animals [52,54,105]. Only recently they have started to
be applied in brain source space [4,9,211].

EEG connectivity analysis at the sensor level is seriously compromised by
the field spread caused by volume conduction effects. As was discussed in

7
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chapter 1, a straightforward solution to these problems is to assess connec-
tivity between a small number of equivalent intracranial current dipoles [81].
However, estimating the number, locations and orientations of multiple dis-
crete neuroelectric dipoles is not easy, due to the high number of possible
model configurations that fit well the measured scalp potentials. A different
approach is to compute coherence between regions of interest (ROI) of a brain
activation map, obtained either with a linear imaging method [124, 211], or
with a beamformer [75]. All these approaches to brain connectivity analysis
find the location of the cerebral EEG generators first and, only afterwards, es-
timate the corresponding temporal activations. As a result, their performance
is very dependent on how accurate the EEG inverse solution is, since errors
in this first analysis stage will propagate and probably ruin the whole analy-
sis. At the same time, solving the EEG inverse problem is extremely difficult,
if the underlying current source distribution does not exhibit some desirable
properties, such as being spatially smooth and compact.

In this chapter we propose an alternative strategy to brain connectivity
analysis with EEG. Instead of attempting to solve the EEG inverse problem
directly, we use blind source separation (BSS) methods to separate the rele-
vant brain sources into separate spatio-temporal components. Then, we sep-
arately map each of these components to brain space using a state-of-the-art
inverse solver. BSS algorithms make mild assumptions about the mixing pro-
cess but impose strong requirements on the statistical properties of the source
signals. A prototypical example of BSS techniques is independent component
analysis (ICA), which assumes that the sources are mutually independent non-
Gaussian random variables (see [92] for a review). Multiple studies have shown
the usefulness of ICA techniques to remove artifacts (e.g. [63,102]), to separate
physiological sources (e.g. [137]), and even to study directional connectivity
between cortical areas [3,9]. However, if we aim at determining causality re-
lationships between different spatiotemporal EEG sources, we are implicitly
assuming that those sources are functionally interrelated, which violates the
assumption of independence made by ICA. Several methods have been pre-
viously proposed to overcome this pitfall [145, 157-159], but they allow only
pairwise connectivity analysis and, with the exception of [159], they are not
able to identify directionality.
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4.2 Materials and methods

4.2.1 EEG model

The time-varying neural current density responsible for the scalp EEG po-
tentials can be modeled by a discrete set of M signal generators with dis-
tinct spatial properties (see chapter 1 for further details). Let us denote by
s(n) = [s1(n), ..., SM(n)]T the multivariate activation pattern of those genera-
tors at time instant n. We assume that source dynamics can be approximately
described by a vector autoregressive (VAR) model of order p, at least for a
certain time window n = 1, ..., L. Then, we have that:

p

s(n) => Bs(r)s(n —7) +h(n) (4.1)

T=1

where Bg(7) V7 = 1, ..., p are the coefficient matrices of the VAR model and
h(n) = [h1(n), ..., har(n)]" represents the corresponding multivariate innova-
tion process. We assume that each EEG generator is a source of indepen-
dent activity in the sense that the elements of the residual vector h(n) be-
have like mutually independent random variables. Functional relationships
between EEG sources are therefore exclusively caused by time-lagged axonal
propagation of macroscopic neural behavior among distant regions of the brain
(modeled by the coefficient matrices Bg(7) V7 =1, ..., p).

Several Granger-causality measures can be directly computed from esti-
mates of Bg(7), as explained in the following section. However, scalp EEG
sensors do not record the multivariate vector s(n) but a linear mixture of its
components. Therefore, the EEG recorded at time instant n using K elec-
trodes is a multivariate signal x(n) satisfying:

x(n) = Qs(n) +n + Ppoisce(n) (4.2)

where € is an unknown K x M matrix whose columns contain the spatial
distribution of scalp potentials generated by each EEG source, n = [, ..., nK]T
denotes the additive noise at each electrode (measurement noise), which is
assumed to be white and Gaussian, and the term ®,,,,5.€(n) represents the
contribution of noisy EEG sources (biological noise). By noisy sources we
refer to temporally structured sources unrelated to the EEG features under
study (e.g. unrelated to the generation of the EEG-alpha if this rhythm is
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the target of the study). We further assume that K > M. Especially for
high-density EEG recordings and stationary brain rhythms, it is relatively
safe to assume that the number of electrodes is greater than the number of
spatially distinct sources contributing to the scalp EEG. Furthermore, for the
sake of simplicity, we neglect the contribution of measurement and biological
noise in the derivations below. However, we will study the effects of noise in
section 4.2.4 using simulations. By combining (4.1) and the noiseless version
of (4.2), we obtain that the EEG measurements follow the VAR model:

x(n) = Zp: QB (1)Q" x(n — 7) + Qh(n) (4.3)

=1 Bx (1) v(n)

where T denotes Moore-Penrose pseudoinversion®. Granger causality stud-

ies applied to human EEG signals have typically used estimates of Bx(7) to
measure directional flows of macroscopic synaptic activity between scalp EEG
electrodes, with the implicit assumption that causal relationships between elec-
trodes imply functional connectivity between their respective underlying cor-
tical regions. This is equivalent to assuming that Bx(7) ~ Bg(7). Indeed, this
assumption is not valid in general because the VAR model that best fits the
observed EEG data might be strongly affected by volume conduction effects
(matrix € in Eq. 4.3).

4.2.2 Analysis procedure: VAR-ICA

In this section we describe the components of the proposed methodology for
measuring source connectivity with EEG. Our approach, called VAR-ICA, is
depicted in Fig. 4.1 and consists of the following steps:

Principal Component Analysis (PCA)

We first apply PCA on the measured scalp potentials because previous studies
have demonstrated its ability to integrate brain activity spread across EEG
leads, reducing the effects of measurement noise, and removing second-order
instantaneous cross-correlations caused by volume conduction (see e.g. [179]).
Even more important, PCA reduces the dimensionality of the data and avoids
ill-conditioned covariance matrices, which results in a faster and more robust
estimation of the VAR model in the next analysis step.

LIf M is a real matrix of full column rank then Mt = M7 (MMT)_1
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Figure 4.1: Block diagram of the proposed VAR-ICA methodology. The PCA and
ICA blocks model instantaneous cross-dependencies between scalp EEG signals,
which are exclusively caused by field spread due to volume conduction (matrix
in the diagram). The PCA block takes care of second order correlations whereas
the ICA block models dependencies of greater orders. On the other hand, the VAR
block models time-lagged covariances between scalp EEG signals (matrices Bx(7) in
the diagram), which are partially caused by time-lagged flows of activity between
EEG sources (matrices Bs(7) in the diagram). By combining the PCA, VAR and
ICA models it is possible to obtain an estimate of the leadfield matrix and of the
coefficients of the VAR model driving the EEG sources. From the columns of matrix
fl, swLORETA obtains the cerebral activation map for each EEG source separately.
From the coefficients of the source VAR model it is straightforward to compute the
DTF and other VAR-based information flow indices. The dashed rectangle identifies
the blocks that are modified when ICASSO is introduced (see section 4.2.7 for more
details).



82 4. Directional coupling between EEG sources

PCA linearly transforms the scalp EEG signals into a set of mutually uncor-
related principal components. From (4.3) it obviously follows that the PCA-
transformed data is also a VAR process:

xpca(n) =Y CQBy(7) (CQ) ' xpca(n—7)+ CQh(n)  (44)
T=1 —

BPCA(T) I‘(TL)

where C is an M x K matrix implementing the PCA transformation. We
suggest using as many principal components as necessary to reconstruct most
(e.g. 99%) of the variance contained in the EEG signals.

Vector Autoregressive (VAR) modeling

Time-delayed cross-dependencies between the estimated principal components
cannot be explained by instantaneous volume conduction effects. Consequently,
they are likely to be of neural origin, i.e. caused by time-delayed axonal prop-
agation of information between brain generators. To disclose the dynamical
characteristics of these time-delayed cross-dependencies, a VAR model is fit-
ted to xpca(t) using the algorithm ARfit [193]. We denote by Bpea (1) V7 =
1, ..., p the estimated model coefficients. The model order is automatically se-
lected using Swartz’s Bayesian Criterion (SBC) [198]. Traditionally, the order
is determined by locating the minimum of the SBC as a function of model
order (p values varied between 2 and 30 in our case). Instead, we select the
order that guarantees that greater model orders do not significantly reduce
the SBC, i.e. the order for which the reduction in the SBC has reached 90%
of the maximum reduction achievable within the tested range of model orders.
This modification is motivated by the fact that, for our EEG data, both SBC
and Akaike’s information criterion [1] dropped monotonically with increasing
model order, which is in agreement with previous EEG studies [18,211].

Independent Component Analysis (ICA)

The instantaneous higher-order cross-dependencies remaining in the residuals
of the VAR model that were estimated in the previous step are likely to be
of non-neural origin, i.e. caused by volume conduction effects?. Based on this

2 Assuming that there is not any instantaneous flow of activity between brain generators.
This is a plausible assumption since instantaneous flows between brain EEG sources located
more than few mm apart are unlikely, because of axonal propagations delays [53]. Despite
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assumption, we use ICA to estimate an M x M matrix W ~ (CQ)~" that
minimizes the mutual dependencies between the components of the multivari-
ate residual r(n) in (4.4)3. Namely, we use the ICA algorithm EfICA [110].
This choice is motivated by EfICA’s robustness and computational efficiency
and by the fact that, for the large sample sizes used in this study, EfICA’s
performance is excellent (see the numerical results in chapter 2). However,
for studies that require shorter analysis windows, ENRICA [69] might be a
more suitable choice. BSS algorithms that exploit lagged cross-correlations
(e.g. M-COMBI [215] and F-COMBI [67]) are a bad choice since such second-
order temporal structure is absent, or at least very diminished, in the residuals

of the VAR model.

The idea of applying ICA to the residuals of a linear predictor has been
proposed elsewhere [90,189)], although in an univariate context. A combination
of VAR modeling and ICA was previously used in the field of audio signal
processing [31]. After VAR-ICA was introduced in [62] we have become aware
of similar combinations of VAR models and ICA [94].

DTF computation between EEG sources

We use W ~ (CQ)~! and model (4.4) to estimate the VAR parameters of
the underlying EEG sources: Bg(7) = WBpca ()W ™! & By(7). Then, the
spatiotemporal spectral properties of the EEG sources can be uncovered by
transforming (4.1) to the frequency domain:

(IZB ) H(P) (45)

T(f)

where H(f) is the discrete Fourier transform of the residual process h(n), fs is
the sampling frequency and I denotes the identity matrix. The transfer matrix
T(f) describes transfer of spectral properties between EEG sources.

The directed transfer function (DTF) [104] from the j** EEG source to the

i'" source at certain frequency f is denoted by 7;;(f) and is defined as the

reports of zero-lag synchronization between distant brain areas (e.g. [180,181]), such instan-
taneous dependencies must necessarily involve time-lagged interactions with intermediate
neural systems [224].

3Note that the permutation indeterminacy of ICA becomes irrelevant once the brain
sources are localized in section 4.2.2.
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ratio of influence of s;(t) on s;(t), with respect to the combined influence of
s1(t), .., sp(t) on s;(t). The DTF can be compactly expressed in terms of
elements of the transfer matrix as:

T3 ()1

W)= P

(4.6)

DTF values are in the interval [0, 1]. The DTF can also be defined for a band
of frequencies, e.g. for the alpha-rhythm frequency band (7.5 — 12.5 Hz) by

integrating the DTF across alpha frequencies: 7;;(7.5 Hz < f < 12.5 Hz) =
12.5 Hz

7.5 Hz %J(f)df

Although the DTF is a good indicator of the total spectral influence from
one electromagnetic source to another, it is noteworthy mentioning that knowl-
edge of the VAR model underlying the source signals is all we need to compute
other alternative measures of information flow in the frequency domain. An
example is the partial directed coherence (PDC) [7] which, contrary to the
DTF, allows to discriminate between direct and indirect flows between EEG
sources. Both DTF and PDC have somewhat complementary advantages and
limitations [49,119]. Probably, the best approach would be to compute several
such complementary measures simultaneously [49], which is a topic for further
research. The DTF was chosen here only for illustration purposes and any
other VAR-based information flow measure could be used in combination with
the proposed VAR-ICA methodology.

Cerebral activation maps of EEG sources

N ~ +
Each column of matrix € = (WC) ~ 2 contains the distribution of scalp

potentials generated by a single EEG source and, therefore, it is everything
that is needed to estimate its corresponding current source distribution. Prac-
tically any inverse method in the literature could be used to estimate the
corresponding brain activation maps. Given that we are mainly interested on
the EEG-alpha rhythm, we use swLORETA, which has shown a better perfor-
mance when compared with other similar techniques for the reconstruction of
deep EEG sources [165].

We used a realistic head model based on the 3D magnetic resonance (MR)
images of the Collin’s brain provided by the Montreal Neurological Institute
(MNT). This model was built using the boundary element method and consisted
of three tissue types (scalp, skull and brain) with conductivities 0.33, 0.0042
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and 0.33. The location of the electrodes were obtained from the standard
electrode coordinates included in the ASA analysis package (ANT software
BV, Enschede, The Netherlands) [231] for the Collin’s brain template. The
brain activation maps produced by the ASA software displayed probabilities
of source activation based on Fisher’s F-test.

4.2.3 Alternative approaches to VAR-ICA

Most previous studies of effective brain connectivity with EEG have assumed
that Granger causality between scalp EEG signals is equivalent to connec-
tivity between the cortical regions underlying the corresponding electrodes,
completely disregarding volume conduction effects and the presence of deep
or non-normally oriented sources [7,14,105,119]. If the locations of the EEG
sources are known a priori, a conceptually equivalent approach is to fit a VAR
model only to the signals recorded from the electrodes closest to the underlying
EEG sources. In the following we refer to this traditional strategy as the low-
dimensional VAR approach. Actually, low-dimensional VAR can be regarded
as the optimal case of sensor-level DTF estimators since the locations of the
underlying neuroelectrical sources are typically unknown in real experiments.

Astolfi et al. [3] used ThinICA [36] to remove volume conduction effects
before estimating the PDC. The DTF and the PDC are both based on VAR
modeling and therefore, the same approach can be directly extrapolated to
the estimation of the DTF. The approach of Astolfi and colleagues differs from
ours in two important factors. First, it applies ThinICA on the principal
components directly, rather than on the residuals of the VAR model that
fits best the principal components. Second, both ThinlCA and EfICA are
able to separate non-Gaussian i.i.d. sources but only ThinICA is also able to
separate Gaussian sources with temporal structure and zero time-lagged cross-
correlations. As will be shown later with simulations, the presence of time-
delayed cross-correlations between EEG sources has an important negative
effect on the accuracy of ThinICA and, therefore, on the estimation of the
DTF. In the simulations we refer to the method of Astolfi and colleagues simply
as ThinlCA-VAR in order to stress the fact that VAR modeling is applied
after ThinICA. Since the number of time-delayed covariance matrices used by
ThinICA was not specified in [3], we tested two possibilities: ThinlCA1-VAR,
which uses only a single covariance matrix for time-lag 0 and ThinICA5-VAR,
which uses covariances for time-lags 0, 1, 2, 3, 4.
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4.2.4 Simulations

The proposed methodology was evaluated by studying the effects of the follow-
ing simulation parameters: L (number of temporal data samples), d (depth of
the source dipoles, using the head radius as reference unit), ¢ (orientation an-
gle of the source dipoles, in degrees), SNR (signal-to-measurement-noise ratio,
in dBs), SBNR (signal-to-biological noise ratio, in dBs) and a (Gaussianity
of the residuals). Each tested set of values for those parameters resulted in a
simulation instance. In order to assess average performance, each simulation
instance was repeated 200 times with random spatial and temporal character-
istics of the noise. In addition, any parameter that was not under evaluation
during certain simulation instance was either fixed to some favorable values
(L = 38400, SNR=15 dB, SBNR= 15 dB) or varied randomly within certain
plausible ranges (0.2 < d < 0.8, 0° < § < 90°, 1 < a < 3). This simulation
set-up allowed us to assess the average effects of each tested parameter for an
arbitrary combination of the remaining parameters.

We used a one-shell spherical head of normalized radius (r = 1). Inside
this simulated head we located four source dipoles q;(t) = s;(t)-€; Vj =
1,2,3,4 Vt =1, ..., L with orientations €; = [¢; », €j.y, ej,z]T and time-varying
activations s;(t) following a VAR model as in (4.1). Both the residuals and
the coefficients of the VAR model (the coupling strengths between sources)
were random in each simulation surrogate, with the only requirement that
the resulting VAR model had to be stable. In order to assess the amount of
data needed by different techniques to reach their asymptotic performance,
we ran simulations using 1280 < L < 38400 samples. Fig. 4.2 (left) and
Fig. 4.3 show the positions of the simulated electrodes (K = 16) and the
positions and orientations of the simulated source dipoles (M = 4). As shown
in Fig. 4.3, the spatial characteristics of the source dipoles could be varied
using two parameters: the distance to the scalp (d) and the angle that they
formed with their radial component (§). The rotation angles of the dipoles
around their radial components also affected the performance of the different
methods but the effect of the angle § was much more pronounced. Because of
this, only § was used to vary the orientation of the dipoles and the rotation
angles of the dipoles were random in each simulation surrogate.

The residual processes driving the source dipoles, which are denoted by
hi(n),...,har(n) in model (4.1), followed a generalized Gaussian distribution
with probability density function (pdf): p(h;) o e~1"!”. By varying o between
1 and 3 we varied the Gaussianity of the residuals. If @ < 2, they showed a
super-Gaussian distribution (acute peak around the mean and “fat” tails). If
a = 2 they were exactly Gaussian, and if @ > 2 they were sub-Gaussian
(smaller peak around the mean and "thin” tails).
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Figure 4.2: (Left) Location of the electrodes in the simulated head with normalized
radius r = 1. The black-filled circles illustrate the positions of the electrodes. The
position of the corner electrodes E1,E4, E13, E16 were fixed. The other electrodes
were placed uniformly in # and g in such a way that the angular differences between
two neighboring electrodes were A = A = 70°/3. This electrode grid is similar
to that used in [109]. (Right) Possible locations of the noisy dipoles. The valid
locations (in gray) were within the volume generated by the intersection of the head
sphere with a cone whose vertex is located in the center of the head and whose lateral
surface contains the four corner electrodes Ei1, E4, E13, E16. Additionally, the noisy
dipoles were required to be located at a minimum distance of 0.2 from the scalp and
at the same minimum distance from the center of the head.

The signal-to-measurement-noise ratio (SNR) and the signal-to-biological-
noise ratio (SBNR) were defined as the mean standard deviation of the signal
across EEG channels, divided by the standard deviation of the Gaussian ther-
mal noise introduced by the EEG sensors (measurement noise) and by the
mean standard deviation of the biological noise across EEG channels, respec-
tively. The biological noise was simulated using four noisy dipoles which were
randomly located in each simulation surrogate within the volume depicted in
Fig. 4.2 (right). The orientations of the noisy dipoles also varied randomly
across simulation surrogates and their individual temporal activations were
obtained with an autoregressive (AR) model of order 5 driven by white Gaus-
sian residuals. Both the residuals and the coefficients of these AR models
were randomized in each simulation surrogate. The simulation setup can be
replicated using MATLAB code publicly available online at:

http://www.cs.tut.fi/~gomezher /varica.htm
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Figure 4.3: Anterior frontal view of the simulated head with the positions of the two
frontal source dipoles (QQ, Q4) marked with filled black circles and with the position
of the two frontal corner electrodes (E4, E16) marked with empty circles. The source
dipoles were located in the radii that connected the center of the head with the corner
electrodes. The distance d between the dipoles and the scalp was a free parameter of
the simulations and its value was normalized according to the head radius (r = 1).
The dipoles orientation vectors €2, €4 formed an angle § with their corresponding
location vectors Qz, Q4. Their rotation angle around their radial component was
random in each simulation surrogate. If § = 0° the dipoles were radial whereas if
0 = 90° they were tangential to the scalp surface. The positions and orientations of
dipoles 1 and 3 were exactly symmetrical to those of dipoles 2 and 4 in respect of
the midline coronal plane.
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Figure 4.4: An illustration of the true absolute value of the DTF (blue filled areas),
an accurate estimate (red solid line) and a poor estimate (green dashed line). The
horizontal axis of each subplot is normalized frequencies and the vertical axis is
absolute DTF values. The numbers indicate the source index. The connectivity
graph in the lower right corner shows the true activity flows (red solid arrows) as
well as the spurious flows corresponding to the low quality DTF estimate (green
dashed arrows).

4.2.5 Assessing the accuracy of DTF estimates

The overall estimation accuracy for the source DTF was measured using the
following index (in percentage):

=10 e S0 =30 @)

where 7;;(f) denotes the true DTF between the it and j** simulated dipoles,
4i; (f) stands for the DTF estimate obtained with any of the tested methods,
M is the total number of source dipoles (in our case, M = 4) and N is the
number of frequency bins employed in the DTF analysis (in our simulations,
N = 10 uniformly distributed bins). Since the DTF at a certain frequency is
within the range [0 1], € ranges from 0% (best case, no estimation error) to
100% (worst case, maximum possible estimation error). Fig. 4.4 shows two
sample DTF estimates and their corresponding estimation error.

As was said in the previous section, each simulation instance (corresponding
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to a set of values of the simulation parameters) was repeated 200 times. The
results obtained from these simulation surrogates were summarized by means
of two indexes:

. . _ 200
1. The mean DTF estimation error, defined as € = =+ €;, where ¢;

200 21
is the DTF error obtained in the i** simulation surrogate. Clearly, €
varies between 0% (perfect DTF estimation in every surrogate) and 100%

(worst possible estimation in every surrogate).

2. The p-value of the paired t-test for the null hypothesis €y < €, where
€o is the mean DTF estimation error obtained with the traditional low-
dimensional VAR methodology and € is the mean DTF error for an alter-
native method. We denoted this performance index by €.va. A very low
value of this index allows to confidently reject the null hypothesis that
the corresponding method does not perform better than the traiditional
approach.

A simulation framework such as the one described above is necessary to
demonstrate the validity of VAR-ICA, that is, to demonstrate that if the as-
sumed model is approximately fulfilled the connectivity analysis results will
be valid. However, there is a large gap between simulations and real-life data
and simulations alone can hardly be enough to assess the full potential of
VAR-ICA. Thus, we will further validate VAR-ICA by analyzing real record-
ings of human EEG-alpha rhythm. Although little can be said for sure about
the EEG generation mechanisms, EEG-alpha is one of the best studied EEG
phenomena, allowing us to compare our findings with those of the previous
literature.

4.2.6 EEG recordings and preprocessing

EEG recordings were obtained from 20 cognitively normal volunteers (10 fe-
males, mean age: 68.4 £ 6.1 yr). Inclusion criteria for this study were (i)
no cognitive dysfunctions corroborated by neuropsychological exploration, (ii)
clinical dementia rating global score of 0 (no dementia), and (iii) normal inde-
pendent function both judged clinically and by means of a standardized scale
for the activities of daily living. None of them had a history of neurological,
psychiatric disorders and/or major medical illness.

EEG recordings were obtained between 9-10 AM in all participants in a
relaxed wakefulness state with eyes closed. Vigilance level was constantly con-
trolled based on EEG patterns characteristic of drowsiness [188]. EEG was
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continuously acquired and referenced to linked mastoids from 59 scalp loca-
tions according to the International 10-20 system. Vertical ocular movements
were recorded with a pair of electrodes placed above and below the left eye.
The horizontal electrooculogram was acquired with another pair 1 cm apart
from the outer canthus of each eye. Electrophysiological measurements were
recorded with 10 mm diameter gold disk electrodes (Grass, Inc.). Electrode-
scalp impedance was always kept below 5 K. All electrophysiological vari-
ables were amplified (BrainAmp MR, Brain Vision), filtered (0.1 — 100 Hz
bandpass), digitized (250 Hz, 16-bit resolution), and stored in digital format
for off-line analysis.

EEG epochs containing prominent ocular, muscular and/or any other type
of artifacts were manually identified and eliminated by an experimented re-
searcher with expertise in human neurophysiology*. Residual ocular artifacts
present in the remaining EEG epochs were corrected by adaptively regress-
ing out the signals recorded at the peri-ocular electrodes [77]. A total of 150 s
(37500 samples) of artifact-free EEG containing alpha rhythm were then avail-
able for each participant. The selected epochs were filtered within 6 — 13 Hz
using a finite impulse response (FIR) filter of order 100. The average DTF
for alpha-EEG frequencies was obtained as the average of the DTF values ob-
tained in 10 equally spaced frequency bins within the alpha band (7.5 Hz -
12.5 Hz).

4.2.7 Reliability assessment

In the analysis of real EEG data, we used ICASSO [78,79] to assess the signif-
icance of the ICA estimates obtained in the VAR-ICA procedure. EfICA, Fas-
tICA and many other ICA algorithms involve stochastic optimization, which
raises concerns about the repeatability and reliability of the analysis with real
data [79,189]. ICASSO overcomes these concerns by identifying clusters of
ICA estimates that are consistently found across random initializations of the
ICA algorithm and across random bootstrap surrogates of the input data.

We introduced three modifications in the standard ICASSO procedure orig-
inally proposed in [79]. First, we used EfICA as ICA algorithm instead of
FastICA, which was motivated by the generally better performance of the for-
mer, as reported in [110] and confirmed by our own numerical experiments.
Second, ICA estimates were clustered according to the cross-correlation coeffi-
cients between their corresponding spatial patterns of scalp potentials. Third,

4This was done by Prof. Cantero from the laboratory of functional neuroscience at Uni-
versity Pablo de Olavide (Seville, Spain). All data acquisition and pre-processing described
in section 4.2.6 was performed at Prof. Cantero’s group.
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we clustered together ICA estimates obtained from all available subjects. This
latter modification allowed the detection of stable clusters of spatial compo-
nents across the group of studied subjects. ICASSO was set-up to run EfICA
75 times on each subject’s EEG with random initial conditions and with ran-
dom bootstrap re-sampling. We used ICASSO’s default agglomerative clus-
tering with average-linkage criterion. The number of clusters in the data was
automatically selected with the R-index [79]. Each cluster was uniquely rep-
resented by a single centrotype ICA estimate, which is just the estimate in
the cluster that has the maximum sum of similarities to other points in the
cluster. Only centrotypes of significant clusters were considered as valid ICA-
estimates. A cluster was considered significant if it contained ICA estimates
from at least 50% of the subjects (high inter-subject repeatability) and from at
least 50% of the ICA-runs corresponding to those subjects (high intra-subject
reliability).

Since the significant centrotype ICA estimates might have been obtained
from different subjects and/or different ICA runs, we had to redefine the com-
putation of the DTF between EEG sources and we had to find a unique matrix
2 representative of the whole population of subjects. This was done by noting
that the 1-dimensional temporal activation of the ith centrotype EEG source,
denoted by s} (t), can be retrieved from the EEG measurements of the corre-
sponding subject by:

si(t) = v;-rx(i)(t) Vi=1,..,K (4.8)

3

where v! is a spatial filter that corresponds to certain row of the matrix

V = W;C;) where W ;) and C;y denote the ICA separating matrix and the
PCA transformation matrix corresponding to the analysis run in which the ith
centrotype was found. Similarly, x(;)(n) denotes the EEG measurements of the
subject from which the ith centrotype ICA-estimate was obtained. Then, the
whole population of subjects can be characterized with R centrotype EEG
sources that are defined by the set of spatial topographies Q= (Wi, ..., wh)
and the set of spatial filters V* = [v],...,v}]. The former can be used to
obtain the brain activity maps characterizing the whole population and the
latter to estimate the temporal courses of the EEG sources in a single-subject
basis. Using the temporal activations of the sources in each subject, we re-
estimate the coefficients of the VAR model that best fit their mutual dynamics
and compute the DTF for individual subjects. Lilliefors’ test [125] was used
to reject the null hypothesis that the time courses of the residuals of the EEG
sources were normally distributed.

Since the distribution of DTF estimates obtained from a VAR model is not
well established [105,119], we used bootstrap surrogates to determine whether
the obtained DTF estimates were statistically significant [105]. Recall that
the DTF measures the ratio between the outflow from the EEG source j to
the EEG source i, in respect to all the inflows to the destination EEG source.
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Therefore, if v;;(f) > vir(f) Yk # {i,j} then we can infer that the ith EEG
source is mainly driven by the jth EEG source. However, for these inferences
to be valid we need to define statistical tests able to reject the null hypothesis
that v (f) < vix(f) for some k # {i,j}. Approaching this task analytically
is complex due to (i) the highly non-linear relationship between data samples
and DTF estimates and (ii) the interdependence between DTF values that were
obtained from the same subject at the same frequency. Thus, we employed a
numerical approach consisting of the following steps:

1. After the VAR-ICA analysis, we have estimates of all the unknowns in
model (4.1), that is the order and the coefficients of the VAR model that
best fit the centrotype EEG sources: By(7) &~ By(7) Vr = 1,...,p and
h(n) ~ h(n) Vn = 1,..., L. By randomly shuffling time instants of the
estimated multivariate residual process fl(n) we generated J surrogates
of the EEG sources:

P
s () = By(r)s™(n—1) +hM () Ym=1,..,J (4.9
T=1

where (™ indexes the surrogates.

2. We re-estimated the coefficients of the VAR model for each surrogate:
Bgm)(r) s Vr=1,..,p; Ym=1,..,J.

3. Using E( ™) , we re-estimated the DTF in the alpha band for each surro-
gate: ’y s Vm=1,..,JVi,j=1,... M.

4. For each EEG source, we computed the differences between inflows of
different origin:

A%(Jml;c = %(]m) %k ; Yk #{i,7} (4.10)

5. Finally we computed the maximum and minimum inflow differences:

AN = ming, (Mﬂfﬁc) R U (4.11)

Only if both AWM IN and AWM 4X were positive we were confident that, for
the ith EEG source, the 1nﬂow from the jth source was proportionally larger
than the inflow from the kth source since this was true for every surrogate.
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4.3 Results

4.3.1 Simulations

Fig. 4.5 shows that VAR-ICA is reliable even for small data lengths, outper-
forming the traditional low-dimensional VAR approach with as few as 6400
data samples (€p—pq < 0.001). The poor performance of ThinICA-VAR is
caused by the presence of time-delayed covariances between the source signals,
in violation of the source model used by ThinICA. This explanation is sup-
ported by the fact that including more time-lagged covariance matrices did not
improve the asymptotic performance of ThinlCA-VAR but, actually, made it
worse.

A major pitfall of the traditional low-dimensional VAR approach is its
sensitivity to volume conduction effects. Namely, Fig. 4.6 shows that DTF
estimation accuracy is seriously compromised even for very shallow cortical
dipoles, if they were not radially oriented. On the other hand, VAR-ICA
is considerably more robust to the presence of non-radially oriented dipoles.
Fig. 4.6 also shows that we can safely reject the null hypothesis that VAR-ICA
does not outperform the traditional approach.

From Fig. 4.7 we can conclude that VAR-ICA is largely undisturbed by the
presence of measurement noise and that it compares favorably with respect to
the traditional approach for low levels of biological noise. As expected, the
latter type of noise was more problematic and all methods produced very poor
DTF estimates for SBR values under 10 dBs. This result shows the relevant
role of structured noise on the performance of brain connectivity analyses,
suggesting that this type of noise should always be considered when evaluating
new analysis methodologies.

VAR-ICA is quite robust to mild violations of the assumption of non-
Gaussian residuals and VAR-ICA fails only when the residuals are almost
perfectly Gaussian (see the sharp peak around o = 2 in Fig. 4.8). On the
other hand, ThinICA-VAR is was much more affected by the distribution of
the residuals and the hypothesis that the traditional approach performs better
could only be rejected with confidence (€p—ypqr < 0.001) when the distribution
was clearly super-Gaussian (see the fat tails around o = 2 in Fig. 4.8).
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Figure 4.5: (Left) Mean DTF estimation error for the low-dimensional VAR ap-
proach, the two variants of ThinlCA-VAR, and VAR-ICA| versus the number of sim-
ulated data samples. (Right) Probability (p-value) that low-dimensional VAR per-
formed better (achieved a lower mean DTF error) than VAR-ICA and/or ThinICA-

VAR.
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Figure 4.6: Volume conduction effects. (Left) The color scale shows the value of
the difference €9 — év ar—1ca, where € denotes the mean DTF error obtained with
the traditional low-dimensional VAR approach and éyvar—rca denotes the error of
the proposed VAR-ICA approach. The more positive this value, the greater the

average improvement obtained with VAR-ICA. (Right) Probability (p-value) that

low-dimensional VAR is more accurate than VAR-ICA, i.e. the probability of the

event €g < EvArR—1CcA.
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Figure 4.7: Effects of Gaussian thermal noise at the EEG sensors (SNR) and bi-

ological noise (SBNR). The interpretation of this figure is analogous to that of
Fig. 4.6.
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Figure 4.8: (Left) Effects of the Gaussianity of the VAR model residuals on the aver-
age DTF error. If a < 2, the residuals showed a super-Gaussian distribution, if « = 2
they were exactly Gaussian, and if o > 2 they were sub-Gaussian. (Right) Proba-

bility (p-value) that the traditional low-dimensional VAR approach outperforms the
alternative techniques.
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4.3.2 EEG Alpha

Fig. 4.9 depicts the results of the ICASSO analysis applied to alpha EEG
recordings from 20 healthy elderly subjects. The R-index suggested an opti-
mal partition of 12 clusters in the data. Clusters 10, 11 and 12 were the only
significant ones according to the criteria given in section 4.2.7 and contained
1125, 1050 and 825 ICA estimates, respectively (out of a total of 4425 esti-
mates). Those three clusters exhibited a high repeatability within the same
subject and across subjects. In particular, ICA-estimates within cluster 10
were obtained from 15 different subjects while 14 and 11 subjects contributed
to clusters 11 and 12, respectively. All remaining clusters were much smaller
and had high cross-similarities with one or more of the three major clusters.
Clusters 10, 11 and 12 were selected for further analysis since they conveyed
the most reproducible and stable features of the EEG-alpha rhythm.

The normalized scalp topographies corresponding to the representative cen-
trotypes of clusters 10, 11 and 12 are shown in Fig. 4.9 (right panel). According
the brain activation probability map obtained with swLORETA (see Fig. 4.10),
the single electrical dipoles most likely to be generating each of those topogra-
phies were located in caudal regions of the thalamus (cluster 10), in the pre-
cuneus (cluster 11), and in the middle occipital gyrus, within the limits of the
cuneus (cluster 12). Lillieford’s test rejected the Gaussianity hypothesis for
the centrotype ICA estimates of clusters 10, 11 and 12 (p < 0.01).

Fig. 4.11 summarizes the results regarding directed flows between the alpha
generators in the pre-cuneus (P), the cuneus (C) and the thalamus (T). There
was a clear bidirectional link between the generation of EEG-alpha in the tha-
lamus and the precuneus. EEG-alpha oscillations originating in the thalamus
were mainly driven by the cuneus generator in 12 subjects (p < 0.01). By con-
trary, the thalamic source was mainly driven by EEG-alpha generation in the
precuneus only in 1 subject (p < 0.01). Similarly, the thalamic source had a
main effect on the generation of EEG-alpha in the cuneus in 12 of the subjects
(p < 0.01) whereas the hypothesis that the inflow to the cuneus was larger from
the precuneus than from the thalamus did not reach significance (p > 0.01) in
any of the subjects. Moreover, the participation of the precuneus in the EEG
alpha generation did not exert a major effect on either the thalamus or the
cuneus, which rules out the possibility that the bidirectional flow between tha-
lamus and cuneus might be due to indirect flows through the precuneus. Only
in 1 subject the flow of EEG-alpha activity from precuneus to thalamus was
significantly larger (p < 0.01) than the flow from the cuneus to the thalamus.
Overall, the precuneus seemed to behave like a sink of EEG-alpha activity
generated in the thalamus and/or the cuneus, whereas the major mechanism
regulating EEG-alpha generation was a strong bidirectional causal feedback
between thalamus and cuneus. The origin of the EEG-alpha activity inflow
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Figure 4.9: (Left) Dendrogram illustrating the arrangement in 12 clusters (as sug-
gested by the R-index) of the ICA-estimates obtained with ICASSO. The horizontal
axis represents the dissimilarity values at which clusters are merged at each pos-
sible partition level. The vertical axis indexes ICA-estimates. (Middle) Similarity
matrix. The color scale indicates the cross-correlation coefficient between the scalp
topographies of individual ICA-estimates. Clusters of ICA-estimates are indicated
with red lines and their corresponding labels are depicted in the left vertical axis.
(Right) Normalized distributions of scalp potentials corresponding to the centrotypes
of clusters 10, 11 and 12, which are, by far, the largest and most compact.

to the precuneus is uncertain because the strong bidirectional link between
thalamus and cuneus does not allow us to discard the possibility that the flow
from thalamus to precuneus (from cuneus to precuneus) is actually caused by
an indirect flow through the cuneus (thalamus). This issue could be clarified
by incorporating to the analysis additional connectivity indices like the PDC
or the partial transfer entropy proposed in chapter 3. This is a topic for future
research.

4.4 Conclusions to the chapter

In this chapter we have presented a new methodology for estimating directional
flows of activity between EEG sources. The major features of the proposed
VAR-ICA approach are that (i) it removes spurious flows between scalp EEG
signals due to volume conduction effects and (ii) it does not make a-priori
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Figure 4.10: Localization obtained with swLORETA of electric dipole sources for
the scalp distribution of alpha oscillations associated with clusters 10, 11 and 12
(thalamus, precuneus and cuneus, respectively).

assumptions about the cerebral localization of the underlying EEG generators.

An advantage of VAR-ICA is that it allows solving the inverse EEG problem
separately for each source. It has been previously reported that, by localizing
each independent source of activity separately, the localization error can be
significantly reduced [213]. In this context, we have to admit that, although the
conductivity values of scalp, skull and brain that we used can be considered
as a de-facto standard in head modeling, they might be far from the true
values [71]. This problem could be overcome by measuring tissue connectivity
in vivo for each subject. One possibility is to relate tissue conductivity with
water diffusion maps obtained with diffusion-tensor imaging (DT-MRI) [183].
However, we discarded this idea in the present study because it would have
meant a qualitative increase in the complexity of the analysis.

The poor performance of ThinICA-VAR is mainly explained by the fact
that high-order ICA contrasts are very disturbed by the presence of time-lagged
cross-correlations between the sources. Such correlations violate not only the
premise of independent sources but also the assumption that the sources lack
temporal structure. VAR-ICA gets around this problem by applying ICA on
the residuals of the VAR model, which are (ideally) free of second-order tem-
poral structure and still contain the same instantaneous spatial dependencies
as the original source signals.

Only few source space studies have attempted to provide a global pattern of
directional connectivity across a population of subjects [3,211]. In this chapter,
ICASSO was used to integrate the information obtained from several subjects,
in order to provide a concise and simple description of the whole population.
This comes at the cost of requiring that the number of active EEG sources and
their cerebral activation maps are similar across subjects. This is probably the
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Figure 4.11: (Left) Causal flows between EEG-alpha generators in the precuneus
(P), cuneus (C) and thalamus (T). Each flow is characterized by three numbers.
The first number corresponds to the number of subjects for which the directed flow
was significant (p < 0.01). The second number is the number of subjects for which
the flow was identified as the most important inflow to the destination EEG source
(p < 0.01). The third number is the median DTF value across subjects. Based on the
results, the directional flows were ranked according to their qualitative significance
into three groups (identified by different line widths in the diagram): (i) the bidirec-
tional flow between thalamus and cuneus, (ii) the inflows to the precuneus originated
in cuneus and thalamus, (iii) the outflows from precuneus to cuneus and thalamus.
(Right) Spread across subjects of DTF values corresponding to directional flows of
activity between EEG-alpha generators in the precuneus (P), the cuneus (C) and
the thalamus (T). The horizontal axis depicts the six possible directional flows, with
X,Y meaning an inflow to generator X originated in generator Y. The vertical axis
represents corresponding DTF values (in percentages). The lines within the boxes
indicate the lower quartile, median and upper quartile values. The lines extending
from each end of the boxes show the extent of the spread of DTF values across sub-
jects. The notches in each box represent a robust estimate of the uncertainty about
the medians of each box.
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case of EEG-alpha, given the positive results obtained here. However, the same
might not hold for more complex EEG patterns and/or more heterogeneous
subject populations.

The proposed analysis methodology disregards the possibility of instanta-
neous flows of information between cerebral EEG generators. Additionally, the
innovation processes driving each EEG source are assumed to be non-Gaussian.
Instantaneous synaptic communication between neuronal populations located
more than few mm apart are unlikely, due to axonal propagation delays [53].
Although there is no fundamental reason to believe that the innovation pro-
cess is non-Gaussian, several previous studies have also found meaningful non-
Gaussian sources of brain activity (e.g. [3,85,137]), suggesting the existence of
non-Gaussian generators in the brain. A limitation of VAR-ICA is the use of
VAR models to describe brain dynamics. If the model does not fit well the data
or if the model parameters cannot be accurately estimated, VAR-ICA will fail
to produce reliable results. Indeed, this pitfall is shared with all connectivity
analyses that are based on VAR models.

Brain oscillations in the range of alpha activity are one of the fundamental
electrophysiological phenomena of the human EEG. This brain activity can
be easily identified by its topographic distribution (maximum amplitude over
parieto-occipital regions), frequency range (8 —13 Hz), and reactivity (it suffers
a dramatic amplitude attenuation with the opening of the eyes [95]). The
study of alpha oscillations has generated a vast amount of literature related
with physiological, maturational, clinical, and cognitive aspects [156,174,196].

Highly coherent alpha oscillations with significant phase shifts have been
observed in both the visual cortex and the lateral geniculate nucleus in non-
human mammals [28, 131, 133], supporting the involvement role of thalamo-
cortical circuits in the generation of waking-alpha rhythm. Neocortical neu-
rons located in the layer V of the occipital cortex seem to be intrinsic alpha
generators, as revealed by results from in vitro preparations [202] and in vivo
recordings [132]. They may receive thalamic inputs in order to maintain acti-
vation of cortical columns at an optimal level depending on the brain activation
state. The number and exact location of alpha generators remain, however,
unclear.

From the analysis of the EEG-alpha rhythm recorded from 20 volunteers
under resting conditions, we found that the bidirectional feedback between tha-
lamus and cuneus was crucial in the EEG-alpha generation. The precuneus
seemed to play a secondary (or independent) role and was not the source of any
causal inflow neither to the thalamus nor to the cuneus. This finding is con-
sistent with [194] reporting a positive correlation between EEG-alpha power
and metabolism of the lateral thalamus, as well as occipital cortex (cuneus)
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and adjacent parts of the parietal cortex (precuneus) in humans. Our results
also revealed that thalamocortical synaptic transmission remained alike from
thalamus to cortex and vice-versa, which is in agreement with neural simula-
tions showing that bidirectional coupling between distant brain areas engen-
ders strong oscillatory activity [39]. These findings, together with results from
human studies employing 3D equivalent dipole modeling [10,98,197], support
the notion that complex interactions between local and non-local EEG sources,
instead of a single or multiple isolated neural generators, are responsible for
the genesis of the human alpha rhythm [161].

In conclusion, in this chapter we presented a novel methodology for mea-
suring directed interactions between EEG sources. The proposed approach is
based on well-established techniques such as VAR modeling, ICA, clustering
and swLORETA. Simulated experiments showed improved robustness and ac-
curacy with respect to more traditional approaches. We further evaluated the
validity of our method using EEG recordings of alpha waves from a set of 20
control subjects. The proposed technique estimated current source distribu-
tions and directed flows of brain activity in agreement with the most recent
findings about the generation mechanisms of the alpha rhythm in humans.



Chapter 5

The connectivity profile of
neurodegeneration

5.1 Introduction

Cognitive impairment leading to dementia is among the most important haz-
ards associated with population aging in developed countries. The European
Community Concerted Action on the Epidemiology and Prevention of Demen-
tia group (EURODEM) has estimated that 5.3 million people are affected by
dementia in Europe, being Alzheimer’s disease (AD) its most prevalent form.
The annual cost attributable to dementia care across Europe are probably no
less than 90 billion euros [232]. These overwhelming financial costs and the
dramatic effects on the well-being of dementia patients and their families call
for recognizing dementia as a major health scourge.

Functional integration of spatially distributed brain regions is a well-known
mechanism underlying various cognitive and perceptual tasks. Indeed, mount-
ing evidence suggests that impairment of such mechanisms might be the first
step of a chain of events triggering neurodegeneration in AD and other neu-
rological disorders. Namely, it has been recently confirmed that synaptic dys-
function rather than cell death is the pivotal event in AD initiation [166,200],
which has raised novel theories about the key mechanisms underlying cogni-
tive deterioration. For instance, it has been postulated that accumulation of
certain neurotoxins (Beta-amyloid protein) in the brain may trigger a process
of synaptic reorganization which in turn would increase the vulnerability of
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healthy neurons to those neurotoxins [204]. New evidence obtained in a ro-
dent model of AD confirms such a redistribution of synaptic drive in early
stages of AD [19]. Thus, in-vivo assessment of systems-level connectivity in
the brain might be the key to new breakthroughs in our understanding of
neurodegeneration and specifically of AD.

Cell death and synaptic loss caused by AD affects mainly association areas
and the pyramidal cells that supply long projections among distant neocorti-
cal regions [151]. This neuropathological pattern results in a global disruption
of long-range neural circuits that is revealed by changes in brain oscillations
recorded with the electroencephalogram (EEG). Namely, abnormal EEG ac-
tivity in the alpha band has been repeatedly reported in AD [5,84,162]. In
the generation of EEG alpha rhythm, the thalamus plays a crucial role by
means of intrinsic mechanisms [86] and dynamical interactions of thalamocor-
tical networks [129]. Postmortem studies in AD patients have revealed amyloid
deposits and neurofibrillary tangles in the thalamus [17,142] as well as signifi-
cant loss of its gray matter [107], postulating a mild involvement of this subcor-
tical structure in neurodegeneration. Moreover, it has been reported [44] that
human alpha response of the thalamus precedes that of the cortex, predicating
the existence of causal flows of information (in the Granger sense) between the
neural generators of alpha rhythm. Damage of cortical pyramidal cells and
thalamic neurons might affect the pattern of communication between cortex
and thalamus during the generation of alpha rhythm even in preclinical stages
of AD. The analysis methodology presented in chapter 4 is used in this chapter
to test this hypothesis by assessing functional connections between thalamic
and cortical EEG-alpha sources in patients suffering mild cognitive impairment
(MCTI), a condition considered to be a transitional stage between normal aging
and AD [173].

5.2 Methods

5.2.1 Subjects

The data consisted of EEG recordings from twenty MCI patients (nine females,
mean age: 66.8+4.7 years) and from twenty cognitively normal volunteers (ten
females, mean age: 68.4 £ 6.1 years). The latter were the same subjects that
were analyzed in chapter 4. Patients with MCI and controls were matched in
educational years and handedness. The demographics and neuropsychological
profile of the participants of this study are summarized in Table 5.1. The
recruitment and selection of subjects as well as all neuropsychological tests
were performed by researchers from the Laboratory of Functional Neuroscience
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Controls MCI

(n=20) (n=20) P
Age, years (mean + SD) 66.8+4.7 68.4+6.1 <0.3
Gender (F/M) 10/10 9/11 N/A
Education, years (mean + SD) 13.5+5.6 11.8+6.5 <04
MMSSE (mean + SD) 284+14 26.6+27 0.01
CDR (sum of boxes) 0 0.5 N/A

Immediate recall (mean + SD) 14.44+2.9 99+22 <107°
Delayed recall (mean + SD) 13.3+£24 64435 <1077

Table 5.1: Subject demographics. F, females; M, males; MMSE, mini-mental state
exam (where the range from best to worst performance is 30 — 0); CDR, clinical
dementia rating (where CDR=0 no dementia, CDR=0.5, questionable or very mild
dementia); N/A, not applicable.

at the University Pablo de Olavide (Seville, Spain) and by the Dementia Unit
of the Neurology Service at the University Hospital Virgen del Rocio (Seville,
Spain).

The diagnosis of MCI was based on consensus criteria [173]: (i) subjective
memory complaints confirmed by the informant, (ii) objective memory decline
on neuropsychological tests evidenced by scores greater or equal than 1.5 stan-
dard deviations below the age-appropriate mean, (iii) clinical dementia rating
(CDR) global score of 0.5 (questionable dementia), (iv) normal independent
function both judged clinically and by means of a standardized scale for the
activities of daily living, and (v) not meeting DSM-IV criteria for dementia.
Depression was excluded by clinical interview and the Geriatric Depression
Scale (GDS) of Yesavage (shorter form). The cutoff to be included in the
study was 0 — 5. The diagnosis of MCI was finally based on a clinical consen-
sus following evaluation in the Dementia Unit by a senior neurologist and a
clinical neuropsychologist.

Inclusion criteria for the healthy elderly group were: (i) no subjective
memory complaints corroborated by neuropsychological exploration, (ii) CDR
global score of 0 (no dementia), and (iii) normal independent function both
judged clinically and by means of standardized scale for the activities of daily
living. None of them had history of neurological, psychiatric disorders and/or
major medical illness.

To avoid interference on EEG recordings and neuropsychological perfor-
mance, the uptake of pharmacological compounds known to significantly af-
fect any cognitive domain was considered cause of exclusion, both in healthy
controls and patients with MCI. Individuals with medical conditions that may
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affect brain structure or function were also excluded.

5.2.2 EEG recordings and pre-processing

Continuous EEG recordings were obtained at the facilities of the Laboratory
of Functional Neuroscience of University Pablo de Olavide with all partici-
pants in relaxed wakefulness and eyes closed between 9 and 10 AM. Vigilance
level was constantly controlled to avoid intermittent alpha oscillatory behavior
caused by the drowsiness state. EEG was referenced to linked mastoids from 59
scalp locations according to the International 10-20 system!. Vertical and hor-
izontal ocular movements were also simultaneously recorded. Electrode-scalp
impedance was always kept below 5 k(2. All electrophysiological variables were
amplified (BrainAmp MR, Brain VisionVR), filtered (0.1-100 Hz bandpass),
digitized (250 Hz, 16-bit resolution), and stored in digital format for off-line
analysis. EEG epochs containing prominent ocular, muscular, and/or any
other type of artifacts were manually identified and eliminated. A total of 150
s of artifact-free EEG containing alpha rhythm were then available for each
participant. The selected epochs were filtered within 6-13 Hz using an FIR
bandpass filter.

5.2.3 Connectivity analysis

In order to allow for comparisons between two different populations of sub-
jects, we had to assume that the spatial characteristics of EEG sources were
approximately the same in both populations. This is plausible since neuronal
loss in MCI patients is mild and a drastic spatial reorganization of the current
source distribution underlying EEG-alpha is unlikely. Based on this premise,
we identified stable clusters of EEG-alpha sources in the control population
and characterized each cluster using a single centrotype source (see chapter 4
for details). The final outcomes of VAR-ICA were:

e The distribution of scalp potentials for the centrotypes of three significant
clusters of EEG-sources: wy,...,ws. These distributions were used by
swLORETA to obtain a brain activation probability map for each source.

e Three spatial filters retrieving the time-course of the centrotype EEG
sources from their corresponding subject and ICA run: vy, ..., vs.

I The locations were Fpl, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4,
Fe6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FCe6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6,
T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5,P3, P1, Pz, P2 P4, P6, P8,
PO7, PO3, POz, PO4, PO8, O1, and O2.
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For an arbitrary subject (control or MCI), an estimate of the activation
of the ith centrotype source was obtained as s;(n) = vIx(n), where x(n) =
[21(n), ..., x50 (n)]" are the time-courses of the potentials at each scalp sensor.
Subsequently, a VAR model was fitted to these sources using ARfit [195] and,
based on the VAR model coefficients, the normalized directed transfer function
(DTF, [105]) between sources was computed for both healthy elderly subjects
and patients with MCI. The steps of the connectivity analysis are illustrated

in Fig. 5.1.

5.2.4 Alpha peak frequency

The alpha peak frequency was computed for the temporal activation of each
EEG-alpha source. Spectral power was estimated using the Welch’s peri-
odogram (4-s segments, 1 Hz resolution, 50% overlapping and Hanning win-
dowing) as implemented in MATLAB v.7.4.0. Alpha peak frequency was iden-
tified as the maximum spectral power value within the defined alpha band
(7.5-12.5 Hz).

5.2.5 Statistical analysis

The statistical significance of the normalized DTF values was assessed using
data surrogates as described in section 4.2.7. DTF values that did not reach
the p < 0.01 threshold were considered not significant and removed from the
analysis.

Alpha peak frequency, probability of source activation, and directionality of
the synaptic flow were evaluated with two types of mixed ANOVAs: (i) without
including covariates; and (ii) with scores provided by the Mini Mental State
Examination (MMSE) and age as covariates (if they were significant; otherwise
this ANOVA was not performed). Each covariate was tested independently
for significance and only significant covariates (p < 0.05) were included in
the final ANOVA. Mauchly’s W was computed to check for violations of the
spherity assumption. When Mauchly’s test was significant, the Greenhouse-
Geisser correction was applied to all repeated-measures analysis. Homogeneity
of variance was evaluated with Levene’s test. The Student-Newman-Keuls or
the Games-Howell procedures were applied for multiple post hoc comparisons
depending on population variances.

To confirm previous reports on alpha slowing in patients with MCI, alpha
peak frequency was evaluated with a mixed ANOVA including, as the within-



108 5. Connectivity and neurodegeneration

VAR-ICA

Control EEG
PCA MCI EEG

Remove instantaneous
cross-correlations

v

VAR filter

Remove time-lagged

|
1
1
1
1
|
1
1
|
|
1 correlations
1
|
|
1
1
1
|
1
1
|
1

Pre-processed EEG

A
NLVIPWA

Pre-processed EEG

A
RUVIPWA

v

ICA

Remove instantaneous
high-order dependencies

!

ICASSO

Identify prevalent clusters
of EEG sources

!
Temporal activation of EEG sources
[ Vi Vi Vi } \t\/\/\,\/\f\/\ IV"N\/\/V\}'\
X = e
m MWW W

Spatial filters Pre-processed EEG EEG sources

vtl 2 V\iZ v’lﬂ\

DTF between sources

c LAl 1]
Ca(A A
P -

c, C, c,

Figure 5.1: Flow chart displaying the main steps of the connectivity analysis. Note
that VAR-ICA was applied only to the control population in order to obtain (i) the
patterns of scalp potentials of prevalent EEG-alpha sources and (ii) a set of spatial
filters retrieving the temporal activation of the those sources. The former were used
by swLORETA to compute the brain activation maps while the latter were used to
estimate the temporal activation of the EEG sources both in the control population
and in the MCI population.
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Thalamus Cuneus Precuneus

Controls 9.47+0.19 9.62+£0.18 9.57+0.22
MCI 8.72+£0.21 897+£0.25 9.10+£0.30

Table 5.2: Means and standard deviations of alpha peak frequency in healthy elderly
subjects and MCI patients for the centrotypes of the three clusters (thalamus, cuneus,
and precuneus). Adapted with permission from [20].

subject factor, the electrodes showing the maximum amplitude within the
alpha band for each EEG-alpha centrotype, and group (healthy elderly and
MCI) as the between-subject factor.

Directionality of the synaptic flow between EEG-alpha sources was ana-
lyzed for the lower and upper alpha band separately in controls and patients
with MCI. The ANOVA included EEG-alpha source as the within-subject fac-
tor and group (healthy elderly and MCI) as the between-subject factor.

5.3 Results

The spatial patterns of the EEG-alpha sources are shown in Fig. 4.9. The
brain activation maps of the centrotypes of the three significant clusters of
EEG sources are shown in Fig. 4.10. The maximum activation of each of these
sources was located in caudal regions of the thalamus (z =9, y = —25, 2 = 9),
in the precuneus (z = 2, y = —60, z = 28), and in the middle occipital gyrus,
within the limits of the cuneus (x = 11, y = =97, z = 13).

5.3.1 Alpha peak frequency

The alpha peak frequency corresponding to the thalamic, precuneus, and
cuneus EEG-alpha sources was obtained for controls and patients with MCI.
As there were no significant main effects of the MMSE scores and age on the
alpha peak frequency, these two covariates were not included in the ANOVA.
As expected, patients with MCI showed a significant decrease in the alpha
peak frequency as compared to controls [F(1,38) = 7.02 ; p < 0.02]. On the
average, the alpha peak frequency in patients with MCI was 0.6 Hz (SE =
0.17) lower than in controls. This abnormal slowing was evident for the three
EEG-alpha sources (see Table 5.2).
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Figure 5.2: Effects of normal and pathological aging on synaptic flow between EEG-
alpha sources. Mean strength of the directionality (absolute value of the DTF) of
the synaptic flow between thalamus and cortex (cuneus and precuneus) and be-
tween cortico-cortical structures involved in the generation of the lower alpha band
in healthy elderly controls and patients with MCI. Error bars denote mean standard
errors. CTX = cortex, THAL = thalamus, CUN = cuneus, PREC = precuneus.
*p < 0.008. This figure has been adapted with permission from [20].

5.3.2 Connectivity between EEG-alpha sources

The two-way ANOVA (with MMSE as covariate) performed to evaluate the
directionality of the synaptic flow between thalamus, cuneus, and precuneus
within the lower alpha band showed a significant group effect and a signif-
icant directionality x group interaction (p < 0.04). Namely, the synaptic
transfer was abnormally facilitated in these patients (~ 24 % higher) rela-
tive to controls, particularly from thalamus to cortex (~ 38 % higher in MCI,
p < 0.008). No differences between controls and patients with MCI were ob-
tained for cortico-cortical interactions in the lower alpha band. Analysis only
revealed a higher flow of synaptic activity from cuneus to precuneus than in
the opposite direction [F(1,38) = 22.61, p < 0.00003]. Fig. 5.2 shows com-
parisons of DTF values obtained between brain sources participating in the
generation of lower alpha oscillations.

For the upper alpha subdivision, the three-way ANOVA (with age as co-
variate) revealed a significant group effect [F'(1,37) = 9.32, p < 0.005]. In
particular, patients with MCI showed a decreased bidirectional synaptic flow
of about 32% between thalamic and cortical sources when compared to healthy
elderly subjects. Analysis also showed a significant interaction between the fac-
tors group and age [F'(2,37) = 8.17, p < 0.002]. In agreement with this finding,
we found that the bidirectional synaptic flow between thalamocortical sources
of the upper alpha band significantly decreased with age in healthy elderly sub-
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Figure 5.3: Effects of age on thalamocortical synaptic flow in the upper alpha band.
Scatter plot showing the degree of relationship between thalamocortical DTF val-
ues within the upper alpha band and age in healthy elderly controls (black circles)
and patients with MCI (gray empty circles). The value represented for each circle
results from averaging the DTF values obtained between thalamus-cuneus, thalamus-
precuneus, cuneus-thalamus, and precuneus-thalamus for the upper alpha band in
one specific subject. The black and gray lines reflect the best fit for controls and
patients with MCI, respectively. Note that only healthy elderly controls showed a
significant decrease of the synaptic transmission from thalamus to cortex with age.
This figure has been adapted with permission from [20].

jects but not in patients with MCI. The scatter plot shown in Fig. 5.3 shows
the degree of linear relationship between these two factors in both groups
as derived from Pearson’s correlation. Regression fitness reached statistical
significance only for healthy elderly subjects (p < 0.01) suggesting that the
strength of the thalamocortical synaptic flow within the upper alpha decreases
with age as a result of normal aging processes. No significant effects were
found for cortico-cortical interactions in the upper alpha band in any of the
groups.

5.4 Discussion

In this chapter we have investigated synaptic flow in normal elderly subjects
and amnesic MCI patients. The VAR-ICA methodology presented in chap-
ter 4 was applied to the control population in order to obtain a set of spa-
tial filters able to selectively enhance scalp activity due to different cerebral
sources. These filters were then used to approximate the temporal activation
of the neural sources underlying EEG-alpha in controls and MCI patients. Fi-
nally, information flow at brain level was quantified in both controls and MCI
patients using the DTF. In addition to the typical EEG-alpha slowing associ-
ated with neurodegeneration, patients with MCI showed a profile of synaptic
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transmission between neural sources significantly distinct from that of normal
elderly. In particular, the MCI population was characterized by an abnormal
enhancement of the thalamic source together with a facilitation of information
flow from thalamus to cortex in the lower alpha range (7.5 — 10 Hz).

It has been repeatedly reported in animals that synchronizing pacemakers
within thalamocortical networks play a major role in the generation of alpha
rhythm [129,207]. In humans, a PET study by Schreckenberger et al. [194]
found a positive correlation between EEG-alpha power and metabolism of the
lateral thalamus, the occipital cortex (cuneus) and adjacent parts of the pari-
etal cortex (precuneus). These results are in agreement with the localization
of EEG-alpha sources reported here.

The contribution of deep brain structures to EEG and MEG measurements
is usually negligible in comparison with the field generated by post-synaptic
currents in pyramidal neurons of the cortical mantle. Moreover, the three-
dimensional symmetry of dendritic organization in thalamic neurons signifi-
cantly diminishes the contribution of the thalamus to scalp-recorded electro-
physiological measurements [48, 130, 160]. Nevertheless, unambiguous thala-
mic sources of EEG and MEG activity have been reported in a number of
occasions [60,98,128,217] and the possibility that highly synchronous thala-
mic oscillations can be captured under specific experimental manipulations
cannot be ruled out. Further evidence has shown that the highest degree of
cross-correlation in the alpha range between the lateral pulvinar nucleus and
different cortical regions was observed in the precentral area [59], where the
thalamic centrotype source that we found was best represented.

Our analyses did not show any preferential direction in the flow of infor-
mation between thalamus and cortex, in agreement with the notion that the
human alpha rhythm is not the result of one or more isolated neural genera-
tors but arises from complex interactions between spatially distributed brain
sources [161].

Alpha slowing is typically considered as a definitive indication of an under-
lying neurological pathology [155] and has been consistently reported in AD
patients (e.g. [150]). However, only Fernandez et al. [50] has reported such a
slowing in MCI patients and most other studies have either found no differences
between MCI and controls [84,99] or identified only a non-significant tendency
toward a reduction of alpha peak frequency [163]. The mechanisms by which
neurodegeneration slows down EEG-alpha are still unknown. One hypothesis
is that S-amyloid plaques in deep gray matter may slow down high-threshold
bursting neurons by disrupting the glutamatergic system [20, 86, 167]. How-
ever, it is not possible to determine at this point whether the alpha slowing
that we found in the MCI population is specific to AD or is just a consequence
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of neurological deterioration. To discard this possibility will require a follow-
up analysis of the same MCI subjects after some of them have converted to
AD.

Animal studies have confirmed that the posterior parietal gyri and the oc-
cipital lobes are densely connected with caudal portions of the thalamus [209)].
Therefore, aberrant behavior of large ensembles of thalamocortical relay cells
are reflected in EEG oscillations [208], which constitute an in-vivo global in-
dex of thalamocortical integrity. This idea is supported by our finding that
normal information flow between thalamic and cortical EEG-alpha sources is
disrupted in MCI patients. A bidirectional decrease in information exchange
in high-alpha is expected in normal aging (see Fig. 5.3) but the key to cognitive
deterioration in MCI might be in the increased influence of the thalamus on
the generation of cortical alpha activity. This hypothesis is in agreement with
the abnormal enhancement of functional connectivity that has been detected
in AD patients [226] as well as with the results of Rombouts et al. [182] re-
porting that MCI patients show less deactivation of the default mode network
when compared to controls but higher deactivation than AD patients.

In summary, in this chapter we used VAR-ICA to characterize information
flow in normal aging and MCI. Based on the results, we postulate that deteri-
oration of communication pathways between cortex and thalamus accounts for
the more rapid slowing of EEG-alpha in MCI patients than in healthy elderly
subjects. In a future follow-up study we will confirm whether these connec-
tivity changes correlate with the prognosis of MCI patients, thereby providing
an in-vivo functional marker for early diagnosis of AD.
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Chapter 6

Concluding remarks

In this thesis we have presented a novel methodology for measuring functional
source connectivity with scalp EEG. The proposed approach is based on es-
timating the temporal activation and spatial characteristics of each relevant
neural source using BSS techniques. Then, finding the cerebral localization of
each of these sources at a time is much easier than solving the EEG inverse
problem directly from raw scalp potentials. In this way, we avoid imposing
very restrictive prior requirements on the location of the EEG sources. This
localization "blindness” comes at the expense of assuming that the dynamics of
the EEG sources can be approximately described with a VAR model driven by
non-Gaussian innovations. The plausibility of this assumption was assessed by
studying the human EEG-alpha rhythm in a population of healthy elderly sub-
jects. Our analysis found cerebral current source distributions in agreement
with the most recent findings on the generators of EEG-alpha, supporting the
notion that the novel approach is valid, at least for the analysis of stationary
EEG rhythms.

This thesis has made technical contributions to the linear and instanta-
neous BSS problem in the form of three novel algorithms. The first two algo-
rithms (M-COMBI and F-COMBI) allow for the separation of non-Gaussian
and (possibly Gaussian) spectrally diverse sources. Their computational sim-
plicity makes these algorithms suitable for the separation of high-dimensional
mixtures. This is especially the case of F-COMBI, which can be several orders
of magnitude faster than some state-of-the-art competitors. The third algo-
rithm, called ENRICA, is based on the minimization of the entropy rate of the
source estimates. ENRICA is computationally demanding but not much more
than other well-known non-parametric BSS algorithms. Computation time is
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rarely the crucial factor in offline analysis of EEG data and ENRICA is an
attractive choice in these cases, due to the superior accuracy and reliability
that has shown in our experiments with real EEG.

Several time-adaptive estimators of information transfer were presented in
chapter 3. Using simulated data it was shown that these estimators can ac-
curately describe time-varying coupling dynamics in an ensemble of repeated
measurements. We anticipate that these new connectivity indices might pro-
vide useful information on the generation mechanisms of event related brain
potentials, which is a topic for further research.

In the last chapter of the thesis we identified aberrant connectivity pat-
terns that differentiate normal aging from mild cognitive impairment (MCI),
a clinical condition at risk of developing Alzheimer’s disease (AD). The fact
that these connectivity differences can be detected years before diagnosis of
AD are encouraging, and suggest that they could be used as a non-invasive
tool to improve early diagnosis in clinical settings. Prospectively, the analysis
methods developed in this thesis could provide a rational basis for evaluating
how new drugs affect neural networks in early degeneration, which might have
far-reaching implications for therapeutic drug development.



Appendix A

Information theory

In this appendix we summarize the most important concepts and relationships
from information theory that are used in this thesis. For a comprehensive
reference on information theory see [35].

A.1 Basic definitions

Definition: The differential entropy of a continuous random vector X with a
probability density function (pdf) p is defined as:

H(p) = — / p(x) log (p(x)) dx (A1)

p

where S, is the support of p.

Definition: The Kullback-Leibler divergence between two pdfs p and ¢ is
defined as:

K (pllg) = /5 ply)tog ’;gdy (A2)

where S, and S, are the supports of p and g, respectively.
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For convenience, we use in this thesis the notational equivalences H (p)
H(x) = H(p(x)) = Hx and K (pllg) = K (x[ly) = K (p(x)[[p(y)) = Kx))v
p and ¢ are the densities of the random vectors x and y, respectively.

-
=

Definition: The mutual information between the marginal components of a
continuous random vector x is defined as:

160 = K <p<x>|| Hmﬂci)) -/

where §; is the support of p;.

Definition: A stochastic process {z(n)},, is said to be stationary if the joint
distribution of any subset of the sequence of random variables is invariant with
respect to shifts in the time index, i.e.,

p(z(1),2(2),...,2(n))
=p (@1 +1),22+1),..,z(n+1)) (A4)

Definition: A discrete stochastic process z(1),z(2), ... is said to be a Markov
process of order d if, for n =1,2...,

p(x(n+ 1) z(n),...,z(n —d+1))
— p(2(n+1)| 2(n), . 2(n— d+ 1), 2(n — d)) (A-5)

Definition: The entropy rate of a stochastic process {z(n)},, is defined by:

.1
Hraie({a()},) = Tim —H (2(1), 2(2), ., o(n) (A.6)
For a stationary Markov process of order d, the entropy rate is given by:
Hyare({(n)}) = H (x@) = H (x40 (A7)

with x(9) = [z(d), z(d — 1), ...,z(1)].
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A.2 Properties and relationships

e H(x,y) = H(y|x) + H(x) = H(x|y) + H(y)
e H(x,y) = H(x)+ H(y) - I(x,y)
e H(Ax) = H(x) + log|A| for any invertible matrix A

o H(x) < 1log((2me)™|Zx|) with equality iif x is jointly Gaussian with
mean zero and covariance matrix 2.

e K (p||lg) > 0 with equality iff p and ¢ agree p-almost everywhere.

o K(xlly) = K(f|I£(y)) = K(f ()£~} (y)) for any invertible trans-
formation f of the sample space.

e If the pdf of random vector z has support (0,1)" and u is a random
vector uniformly distributed on (0,1)™ then H(z) = —K (z||u).

o K(p)llp(s)) = K (p(y)IITL; (y:)) + K (I1; p(yi)llp(s)) for any distri-
bution p(s) with independent components, i.e. ps(s) =[], p(si)-
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Appendix B

The concept of state-space

Dynamical systems are often described using a set of state variables so that the
state of the system at a given time n corresponds to a point z(n) € M C R?
where R? is the state-space of the system and d is the state-space dimension.
The state-space is often called a phase-space when M forms a smooth finite-
dimensional manifold that consists of an infinite number of points.

A discrete-time dynamical system is said to be deterministic when there is
a deterministic evolution operator ® : M x Z — M such that ®(z(n),7) =
z(n + 7). In other words, when one can write some mathematical rule by
which future states of the system can be precisely determined from the current
state. Moreover, the dynamical system is said to be stationary if the evolution
operator does not change with time. On the contrary, a non-stationary system
is one whose temporal evolution is subject to some outside influence that is not
accounted for in the evolution operator ®. Note that for any non-stationary
evolution operator, a new evolution operator ® can be constructed which is
stationary by including in the system definition all outside influences, i.e. by
simply increasing the state-space dimension.

Typically, we cannot observe directly the true states z(n) of a dynamical
system. Instead, we usually have an observation function g : M — R that
provides us with a scalar time-series of system measurements. Obviously g(-)
cannot offer a complete description of the system but, according to Taken’s
theorem [212], if d is sufficiently large, the evolution of the embedded vector:

z(n) = x(n) = [z(n),z(n —1),...,z(n — d.)] (B.1)
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will be the same as z(n). In practice, such reconstruction of the state-space
is typically not possible due to the presence of noise and finite quantisation
errors but it can be presumed that the data embeded by (B.1) approximates
the topology of the underlying manifold attractor.

The most common approach to reconstruct the state-space of a dynamical
system is to to use time-delayed embedding:

x(n) = [z(n),z(n — 7),x(n — 27), ..., x(n — (m — 1)7)] (B.2)

where 7 is the difference in samples between successive components of the em-
bedded vector or embedding delay and m is the embedding dimension. Choos-
ing the right values for 7 and m can be a tricky issue but the most commonly
employed method is to take 7 = 1 and successively embed in higher dimen-
sions until the results of the analysis are consistent. See however [106,205] for
comprehensive overviews on how to find good embedding parameters.
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