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ABSTRACT

Currently, people are used to getting accurate GNSS based positioning services.

However, in indoor environments, the GNSS cannot provide the accuracy and avail-

ability comparable to open outdoor environments. Therefore, alternatives to GNSS

are needed for indoor positioning. In this thesis, methods for pedestrian indoor po-

sitioning are proposed. With these novel methods, the mobile unit performs all the

required positioning measurements and no dedicated positioning infrastructure is re-

quired.

This thesis proposes novel radio map configuration methods for WLAN fingerprint-

ing based on received signal strength measurements. These methods with different

model parameters were studied in field tests to identify the best models with reason-

able positioning accuracy and moderate memory requirements. A histogram based

WLAN fingerprinting model is proposed to aid IMU based pedestrian dead reckon-

ing that is obtained using a gyro and a 3-axis accelerometer, both based on MEMS

technology. The sensor data is used to detect the steps taken by a person on foot and

to estimate the step length and the heading change during each step.

For the aiding of the PDR with WLAN positioning, this thesis proposes two different

configurations of complementary extended Kalman filters. The field tests show that

these configurations produce equivalent position estimates. Two particle filters are

proposed to implement the map aided PDR: one filter uses only the PDR and map

information, while the other uses also the WLAN positioning. Based on the field

tests, map aiding improves the positioning accuracy more than WLAN positioning.

Novel map checking algorithms based on the sequential re-selection of obstacle lines

are proposed to decrease the computation time required by the indoor map matching.

To present the map information, both unstructured and structured obstacle maps are

used. The feasibility of the proposed particle filter algorithms to real time navigation

were demonstrated in field tests.
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1. INTRODUCTION

During the last two decades, after the Global Positioning System (GPS) reached its

Full Operational Capability (FOC) (Misra and Enge, 2006), the importance of vari-

ous kinds of Location Based Services (LBS) relying on positioning and navigation

capabilities have increased tremendously. The existing GPS based positioning and

navigation applications range from consumer products, such as car navigation or di-

verse map, geotagging, and navigation applications in smart phones, through profes-

sional tools that enable, e.g., cost-effective cartography and accurate positioning of

various kinds of vehicles on air, roads, and waterways, to very precise scientific ob-

servation systems, such as the systems monitoring the movements of tectonic plates

or variations in the earth’s rotation.

After GPS, other Global Navigation Satellite Systems (GNSS) have emerged: the

FOC of the Russian GLONASS was restored on 2011 (Gibbons, 2012), and GALILEO,

the GNSS program of the EU and the ESA has reached its in-orbit-validation capabil-

ity (Falcone et al., 2013) and is proceeding towards FOC (Inside GNSS, 2014). The

Chinese BeiDou Satellite Navigation system already provides navigation services re-

gionally in Asia-Pacific Region, and China is planning to extend it to a global system

by expanding its constellation with more satellites in orbits that provide worldwide

coverage (Weirong, 2010).

Although the increasing number of GNSS with the growing number of navigation

satellites in the sky will improve the availability, coverage, and continuity of the

GNSS based positioning service to some extent even in severe urban canyons, the

performance will not be sufficient for many navigation applications in urban environ-

ments (Ji et al., 2010). Especially in indoor environments, GNSS based positioning

signals are known to suffer from serious attenuation or even total blockage: a GNSS

receiver has poor visibility to satellites and low signal-to-noise ratio. Together with

significant multipath effects on GNSS signals, these make the GNSS based indoor po-
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sitioning inaccurate. Therefore, even the increasing multitude of GNSS without any

additional aid cannot provide accurate positioning indoors. Due to these effects, even

though Assisted GNSS (AGNSS) effectively improves the indoor performance of

satellite positioning in the terms of availability and coverage, it is difficult to achieve

accuracy better than some tens of meters indoors (Mautz, 2012).

While GNSS and AGNSS provide positioning solution for outdoor environments,

the optimal strategy for indoor positioning is still an open issue. However, indoor

positioning is currently gaining commercial interest (Lessin, 2013; Panzarino, 2013;

Krulwich, 2013; Moyer, 2014; Dennehy, 2014). It is also a public safety issue. Nowa-

days it is very likely that also the emergency calls made indoors are wireless calls

from mobile handsets, which are not associated with one fixed location or address. In

USA, the Federal Communications Commission (FCC) has proposed to update E911

regulations to require carriers to be able to locate emergency calls that are made

indoors (Partyka, 2014). Therefore, alternatives to GNSS are needed for indoor posi-

tioning.

1.1 Scope and Objective of the Research

This thesis is concerned with positioning and navigation methods required for pedes-

trian indoor positioning. The scope of the thesis is on the methods and algorithms that

do not assume GNSS based positioning to be available indoors, and on methods that

do not require any dedicated positioning infrastructure to be installed indoors. More-

over, the scope is restricted to mobile applications, where the measurements required

for positioning are carried out solely by the mobile unit; e.g., collaborative position-

ing where several mobile units share their measurements, or network based methods

where infrastructure elements perform the measurements, are not considered in this

thesis. The main focus is on positioning based on WLAN fingerprints, Dead Reck-

oning (DR) sensors and their signal processing, and the fusion of the measurements

available from these sources with indoor map information.

The objective of this thesis is to find practical models for systems and algorithms

needed for personal indoor navigation, to provide workable solutions to cope with

imperfections of measurement devices, and to develop methods to combine posi-

tion related information from several sources that have complementary strengths and

weaknesses.
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Among the DR based navigation approaches, this thesis concentrates only on pedes-

trian dead reckoning, where the distance traveled is estimated using step detection

and without double integration of the acceleration. The availability of sensor based

dead reckoning estimates in the map aided indoor navigation is assumed, which al-

lows the complementary filter formulation of the data fusion algorithms. The benefit

of this is to avoid the modeling of the user movement as a random process, and the

only needed assumptions regarding the user movement are the pedestrian mode of

motion and the inability of the pedestrian to walk through walls.

The thesis concentrates on the following questions: (1) how to construct the WLAN

radio map model that provides accurate positioning results efficiently with respect to

computational load and required memory, (2) how to cope with the fact that different

mobile devices measure the RSS differently, (3) how to efficiently combine infor-

mation from dead reckoning sensors, indoor map, and WLAN for pedestrian indoor

positioning, and (4) finding suitable sensor error models to be used in the data fusion.

1.2 Main Contributions

The main contributions of the thesis can be summed up as follows:

• Novel methods and models for accurate indoor positioning using pedestrian

dead reckoning obtained using sensors based on microelectromechanical sys-

tems and fused together with WLAN signals and indoor map

• Novel methods to decrease the computational load of map checks in particle

filters

• Novel methods to combine the information sources using complementary filter

structure in extended Kalman filter (EKF) and particle filter

• Novel histogram configurations of radio maps for WLAN fingerprinting

• Normalization method for measurements of received WLAN signal strength to

allow different devices to be used for position estimation
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1.3 Author’s Contribution

The contributions of the author include design and implementation of the algorithms

for pedestrian indoor navigation and positioning, design of measurement campaigns

for sensor and signal modeling, design of field tests to verify the performance of

the proposed methods, and analysis and reporting of the results. In addition to this

thesis, the author’s contributions are reported in (Leppäkoski et al., 2013, 2012, 2010,

2009a,b; Leppäkoski and Takala, 2007), where the author was the main author of the

publications, and in (Perttula et al., 2009, 2014), to the contents of which the author

had a significant contribution.

The author introduced the Complementary Extended Kalman Filter (CEKF) used

to combine the PDR with WLAN positioning for indoor navigation as well as the

CEKF based process model used in the particle filter for data fusion of PDR and

WLAN positioning with indoor map information. The author carried out the im-

plementation together with the tests and analyses for the performance verication of

these algorithms (Leppäkoski et al., 2013, 2012) and the study on the complementary

Kalman filter congurations (Leppäkoski and Takala, 2007). The design and MAT-

LAB implementation of PF and map matching algorithms as well as the design of

the PDR preprocessing algorithm were carried out by the author, who also took part

into the planning and implementation of the field tests and analysis of the test results

(Perttula et al., 2014). While these publications include results on decreasing the

computational load of the map processing for unstructured obstacle maps, this thesis

includes also results on speeding up the map computations required for structured

obstacle map.

In the results reported in (Leppäkoski et al., 2009a,b; Perttula et al., 2009; Leppäkoski

et al., 2010), algorithms to generate the WLAN radio maps and to perform the fin-

gerprint based positioning were needed in order to analyze the accuracy of the devel-

oped methods. The design and MATLAB implementation of these algorithms were

carried out by the author. The modifications of the histogram configurations in the ra-

dio maps for WLAN fingerprinting were proposed and their performance evaluation

was carried out by the author (Leppäkoski et al., 2009a, 2010). For the normalization

of WLAN signal strength measurements the author proposed a novel approach and

took part in the planning of the measurement campaign and the analysis of the results

(Leppäkoski et al., 2009b). In the study on the effect of the grid point density of the
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radio maps to the accuracy of WLAN positioning, the author took part in the design

of the measurement campaign and the analysis of the measurements (Perttula et al.,

2009). This thesis includes unpublished results regarding the kNN method and its

comparisons with ML and MEE algorithms.

1.4 Thesis Outline

Chapter 2 presents the known positioning and navigation methods and algorithms

that are used as the basis to develop the indoor positioning algorithms presented in

this thesis. These preliminaries include: WLAN fingerprinting using radio maps

based on pattern matching and probabilistic models; pedestrian dead reckoning; uti-

lization of indoor maps; data fusion based on Bayesian filtering, including Kalman

and extended Kalman filtering, complementary filtering, and particle filtering; and

assessment of positioning accuracy.

Chapter 3 addresses WLAN based positioning using WLAN fingerprints. It reviews

the published results related to positioning based on WLAN and fingerprinting, de-

scribes in detail the data and test method used to analyze WLAN fingerprinting mod-

els. The results on experiments regarding the bin configuration of the radio map,

the effect of direction information in the radio map, the effect of combining corre-

lating WLAN sources, and the normalization among different WLAN devices are

presented. Finally the results of accuracy analysis are discussed.

Chapter 4 starts with the state-of-the-art presentation on map aided indoor navigation

including the review on motion sensors and dead reckoning, integration of navigation

systems, and pedestrian dead reckoning. This is followed by the description of the

methods used in this thesis to utilize the map information and for fusing map with

PDR estimates and WLAN positioning. Performance analysis based on field tests

is given, including comparison between unaided WLAN positioning, unaided PDR,

PDR aided by WLAN positioning, PDR aided with indoor map, and PDR aided with

both the indoor map and the WLAN positioning. Finally the results on the speeding

up the computations required for on-line processing of map information are given,

followed by the discussion of the results.

Chapter 5 concludes the thesis. It summarizes the main results of the thesis and

points out directions for future research.
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2. PRELIMINARIES

This Chapter presents well known positioning and navigation methods. First a review

on the models and algorithms suitable for positioning based on WLAN fingerprint-

ing is given, followed by the description of methods for pedestrian dead reckoning

based on inertial sensors. Then the usage of map information for indoor positioning

is reviewed. Finally, the common Bayesian filtering algorithms including Kalman

Filter, Extended Kalman Filter, and particle filter, used in this thesis for data fusion,

are summarized.

2.1 WLAN Fingerprinting

WLAN positioning methods based on Received Signal Strength (RSS) measurements

have been reported on numerous papers, e.g., (Bahl and Padmanabhan, 2000; Battiti

et al., 2002; Prasithsangaree et al., 2002; Roos et al., 2002; Smailagic and Kogan,

2002; Wallbaum and Wasch, 2004). To obtain the WLAN RSS measurement, a Mo-

bile Unit (MU) scans the available WLAN channels. Infrastructure Access Points

(AP) periodically emit beacon frames, which include their Medium Access Con-

trol (MAC) addresses, i.e., their unique identifiers (IEEE, 2012). Using the beacon

frames, the MU associates its RSS measurements to the MAC addresses of the lis-

tened APs before it carries out the position estimation. As the MUs can obtain the

RSS measurements by passive listening, without connecting to the APs, the number

of MUs that one AP can serve, is not restricted.

Fingerprinting approaches use mathematical models to relate the measured RSS lev-

els from different APs directly to the location of the MU (Bahl and Padmanabhan,

2000); these models are called radio maps (Youssef et al., 2003; Wallbaum and

Diepolder, 2005). In this way, the fingerprinting actually makes use of the location

dependent characteristics of radio signal propagation.
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Often the fingerprinting approaches use radio maps that are defined experimentally

(Bahl and Padmanabhan, 2000; Roos et al., 2002; Smailagic and Kogan, 2002; Castro

et al., 2001; Youssef et al., 2003), but also semi-analytical approaches are proposed

(Bahl and Padmanabhan, 2000; Wallbaum and Wasch, 2004). In semi-analytical

method the radio map is computed from the wall information obtained from the

floor plan and signal propagation model with attenuation terms for obstacles. The

attenuation properties of the materials are taken into account by using experimentally

determined wall attenuation factors (Bahl and Padmanabhan, 2000; Wallbaum and

Wasch, 2004). However, the experimental radio map provides better accuracy; for

example, Bahl and Padmanabhan (2000) reported average positioning errors 4.3 m

and 2.9 m for path loss based and experimental fingerprint models, respectively.

The experimental radio maps are based on off-line collected data from several loca-

tions that sufficiently cover the area where positioning service is to be performed.

The procedure for radio map generation is often called calibration or training, refer-

ring to calibration or training of the experimental model; the required data is called

calibration or training data, respectively. The locations where the calibration data is

collected are called calibration points (CP). In estimation phase, new measurement

vectors are compared with the information stored in the radio map to infer the MU

position.

Compared with other RSS-based methods, fingerprinting algorithms are considered

more robust against the signal propagation fluctuations generated by environment

characteristics. This is because fingerprinting makes use of the location-dependent

variation of RSS by assuming that the environments have unique signal propagation

characteristics and each location can be associated with a unique tuple of RSS values

(Hoshen, 2000; Wallbaum and Diepolder, 2005). As an example, averages of RSS

from two APs are shown in Fig. 2.1. The RSSs were measured in the library of

Tampere University of Technology in the locations shown with squares. It is clear that

the RSS does not decrease smoothly as the distance grows. The known disadvantages

of the fingerprinting approaches include the following: the collection of calibration

data is laborious and time consuming; the fingerprint databases get outdated due to

environment changes such as the relocations of furniture or APs and therefore regular

updating is needed; the environmental dynamics including the varying numbers and

positions of people should be similar in both the calibration and the estimation phases.
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Fig. 2.1. RSS averages from two access points.

Location fingerprinting has also been proposed using other signals than WLAN RSS.

For example, Bluetooth positioning based on RSSI fingerprints was studied by Pei

et al. (2010). Moghtadaiee et al. (2011) also proposed fingerprinting approach based

on FM radio signals. The potential of fingerprints based on magnetic field was stud-

ied by Storms and Raquet (2009) and Li et al. (2012); IndoorAtlas offers free mobile

phone applications to create magnetic indoor map and to use it for navigation (In-

doorAtlas).

2.1.1 Radio Map

WLAN fingerprinting consists of two phases: in the calibration phase, off-line-collected

RSS data is used to generate a radio map, and in the estimation phase new RSS

measurement vectors are related with the information stored in the radio map. This

process is illustrated in Fig. 2.2. For each CP, the radio map contains the known co-

ordinates (or other suitable location identifier) of the CP together with RSS features

extracted from RSS measurements collected in the CP. The CP coordinates together

with the extracted features is called a fingerprint.

The RSS features reported in the literature to have been used for positioning with

WLAN fingerprints include, for example, the sample mean of RSS measurements

(Bahl and Padmanabhan, 2000; Prasithsangaree et al., 2002; Leppäkoski et al., 2009a)

and approximations of the Probability Density Functions (PDF) of the RSS samples

(Roos et al., 2002; Youssef et al., 2003; Perttula et al., 2009; Leppäkoski et al., 2009a,
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(a)

(b)

Fig. 2.2. Phases of the fingerprinting based positioning: (a) Calibration and (b) Estimation.

2010). In each CP, the sample means or PDFs are computed separately for each AP.

Location fingerprinting methods can be categorized in pattern matching and proba-

bilistic algorithms. The fingerprint patterns stored into radio map could be individual

measured RSS vectors, but more commonly the information of several measured RSS

vectors are summarized to a pattern vector - sample mean of several RSS vectors is

used, e.g., in (Bahl and Padmanabhan, 2000; Prasithsangaree et al., 2002). A more

complex radio map model with perhaps less intuitive interpretation can be obtained

using neural network (Battiti et al., 2002).

With probabilistic algorithms, the information of calibration data is summarized to

PDFs. For each CP, the radio map contains the PDF of the measured RSS for each

AP. The PDFs can be approximated using, e.g., kernel functions (Roos et al., 2002)

or histograms (Castro et al., 2001; Roos et al., 2002; Youssef et al., 2003). The his-

togram approximates the PDF using a piecewise constant function, where the range
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Fig. 2.3. Examples of PDF approximations using histograms.

of the random variable is divided into non-overlapping bins; an example is shown

in Fig. 2.3. If the number of bins is small enough, the memory requirement with

histograms is significantly lower compared to kernel based approximations. Even

more compressed models have been proposed, where the PDF is approximated using

parametric functions (Honkavirta et al., 2009; Koski et al., 2010a,b). In the system

design, there is a trade-off between the accuracy and the memory compression.

With histogram based PDFs, position estimation algorithms using Maximum Likeli-

hood (ML) principle (Castro et al., 2001; Youssef et al., 2003), or Minimization of

Expected (distance) Error (MEE) (Roos et al., 2002) are proposed. The granularity of

estimates using ML algorithm is determined by the density of calibration point grid,

whereas the estimate by MEE algorithm can interpolate between CP locations.

2.1.2 Pattern Matching

For pattern matching, the calibration measurements from the CPs are collected into

vectors. The vector elements are the RSS measurements associated with different

MAC addresses, so that the order of MAC addresses is fixed. In calibration phase,

the RSS values zi, j measured in location l are collected into a matrix

Zl =

⎡

⎢

⎣

z1,1 . . . z1,nSl

...
. . .

...

znAP,1 . . . znAP,nSl

⎤

⎥

⎦

(2.1)
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where nSl
is the number of measurement vector samples in location l and nAP is

the number of APs. The location variable l represents discrete locations. It may be

expressed either by coordinates, index, or some other identifier. The elements of the

pattern vectors zFPl
= [zl,1, . . . ,zl,nAP ]

T for locations l = 1, . . . ,nCP are obtained by

taking averages of the rows of Zl:

zFPl,i =
1

nSl

nSl

∑
j=1

zi, j. (2.2)

Thus the size of the radio map is nCP · nAP elements. In estimation phase, new mea-

surement vectors z = [z1, . . . ,znAP ]
T are compared with pattern vectors zFPl

stored in

the radio map. The comparison is based on their distances in signal space. Prasithsangaree

et al. (2002) proposed the use of generalized weighted distance Lp for the compari-

son. One common choice for the distance measure is L2 with equal weights, i.e., the

normal Euclidean distance (Bahl and Padmanabhan, 2000):

d (z,zFPl
) =

√

nAP

∑
i=1

(

zi− zFPl,i

)2
. (2.3)

Using these, the position can be estimated by finding the nearest neighbor (NN) in

signal space, i.e., the pattern vector, which minimizes the distance:

l̂ = argmin
l

(d (z,zFPl
)) . (2.4)

From this algorithm there exists a version, where instead of the best matching pattern

vector, 2 or more best matching patterns, i.e., k-nearest neighbors (kNN), are taken

into account, and position estimate is computed as the average of their positions.

Prasithsangaree et al. (2002) reported that increasing k in the kNN method improves

the accuracy of the algorithm at least to k = 3, Bahl and Padmanabhan (2000) ob-

served the same and that the accuracy starts to deteriorate when k > 4.

2.1.3 Probabilistic Model

In histogram based approximation of PDF, the signal range is divided into nB bins

when the continuous or fine-resolution discrete RSS scale becomes discrete scale

with coarse resolution. The value nB is a design parameter of the algorithm. It has an

effect to the obtainable positioning accuracy, memory requirement of the radio map,
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and computational load of the position estimation. If the bin configuration, i.e., the

bin edges in RSS scale, is the same for all APs and CP locations, the radio map with

nB bins requires memory for nCP ·nAP ·nB elements.

A histogram based radio map stores marginal distributions p(z|l) for each CP loca-

tion l, i.e., the conditional probabilities that the measured RSS vector z can be ob-

served at location l. In estimation phase, the conditional probabilities are employed

to calculate the posterior probability p(l|z), i.e. the probability of being located at l,

given the measured RSS values z.

The posterior probabilities of the locations can be computed using Bayes’ Theorem

(Roos et al., 2002):

p(l|z) =
p(z|l) p(l)

p(z)
=

p(z|l) p(l)

∑l′∈L p(z|l′) p(l′)
(2.5)

where p(l) is the prior probability of being at location l. For snap-shot type of po-

sitioning, where prior information of the location is not available or not used, a non-

informative uniform distribution is used. The set L contains all the possible locations

and p(z) is the probability of the measurement vector z over all locations; p(z) does

not depend on location and can be treated as a normalizing constant.

The Maximum Likelihood (ML) estimate is obtained by finding the location l that

maximizes the likelihood p(z|l):

l̂ = argmax
l

p(z|l) . (2.6)

Assuming independence of observations zi, i.e., P(Z1 = z1, . . . ,ZnAP = znAP) =

∏
nAP
i=1 P(Zi = zi), where P(·) is the probability of an event, the ML estimate (2.6)

can be computed using the following (Youssef et al., 2003):

l̂ = argmax
l

(

nAP

∏
i=1

p(zi|l)

)

. (2.7)

As p(z) does not depend on l, and if the non-informative prior (equal p(l) for all l)

is assumed, then based on (2.5), the ML estimate (2.6) maximizes also the posterior

probability p(l|z).

If the location variable is numerical, which is the case when the location variable

consists of coordinates, the Minimization of the Expected squared location Error
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(MEE) is obtained with MEE estimate (Roos et al., 2002):

l̂ = E [l|z] = ∑
l′∈L

l′p
(

l′|z
)

, (2.8)

where E [·|·] is the conditional expectation. Assuming equal p(l) for all l and in-

dependence of the observations zi, the posterior probabilities p(l|z) in (2.8) can be

computed using Bayes’ theorem:

p(l|z) = ∏
nAP
i=1 p(zi|l)

∑ l′∈L

(

∏
nAP
i=1 p(zi|l′)

) . (2.9)

Compared to the ML algorithm, this algorithm has the advantage that it allows the

estimate to interpolate between the CPs. Its disadvantage is that the nominator in

(2.9) needs to be evaluated, which increases the computational load in the estimation

phase.

2.2 Pedestrian Dead Reckoning

Dead reckoning (DR) is a navigation technique where the position is estimated rel-

ative to the starting point by keeping track of the direction and distance traveled on

each section of the route, i.e., a new position estimate is computed by adding a newly

measured displacement to the previous position estimate (Misra and Enge, 2006).

The principle is illustrated in Fig. 2.4. Inertial sensors are well known devices for

providing the information on the direction and the distance traveled (Titterton and

Weston, 2004; Groves, 2008).

The process of keeping track of position and direction of travel using inertial sensors

is called mechanization. A 6 Degree-Of-Freedom (6DOF) Inertial Measurement Unit

(IMU) consists of a tri-axial accelerometer for measuring the specific force in three

dimensions and a tri-axial gyro for measuring the angular rates in three dimensions.

The accelerometer is unable to observe the acceleration caused by the gravitational

field but it observes the supporting force working against the gravitational field. How-

ever, it cannot distinguish between this supporting force and the total acceleration in

space. It provides measurements of the difference between the acceleration in space

and the gravitational acceleration; this quantity is called specific force. The tradi-

tional Inertial Navigation System (INS) mechanization includes the following tasks:

1) integration of the outputs of gyros to obtain the attitude of the system in the desired
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Fig. 2.4. Dead reckoning in two dimensions. Integer k ≥ 1.

coordinate reference frame, 2) using the obtained attitude of the system, transforma-

tion of the specific force measurements to the chosen reference frame, 3) computing

the local gravity in the chosen reference frame and adding it to the specific force to

obtain the device acceleration in space, 4) if required by the chosen reference frame,

the Coriolis correction is applied, 5) integration of the acceleration to obtain the ve-

locity and the position of the device (Titterton and Weston, 2004).

In the double-integration of accelerations, even a small error in acceleration measure-

ment yields a large position error drift in the output. Moreover, because the gravity

compensation of accelerations requires the coordinate transformation, any error in

gyroscope output causes errors in the transformed accelerations. As the coordinate

transformation is obtained by integrating the gyro outputs, the gyro errors produce a

position error which increases with time cubed. Therefore the gyro performance is

very critical in INS implementations. IMUs with high performance gyros are avail-

able at high price. For example, the price of a tactical grade IMU varies from 5,000

to 20,000 USD, and it can be used stand-alone for inertial navigation for only a few

minutes. A position solution accurate for one hour can be obtained by using a marine

grade IMU, which costs about one million USD (Misra and Enge, 2006).

As the accurate INS mechanization requires very high-quality and expensive sensor

units, the developers of mass-market applications are looking for solutions where

multiple integration of sensor errors can be avoided. Pedestrian Dead Reckoning

(PDR) is one way to reduce the effects of accelerated accumulation of sensor errors.
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Two different approaches can be found in inertial sensor-based PDRs: systems with

foot-mounted sensors, and systems with sensors placed elsewhere, for example sen-

sors attached on waist or torso. In both approaches, the heading is estimated by

integrating angular velocity measured with gyroscopes. However, the distances are

estimated using different techniques. With shoe mounted sensors the traditional INS

mechanization with Zero-Velocity Update (ZUPT) can be used (Elwell, 1999; Foxlin,

2005). In the ZUPT, the algorithm uses the stance phase between the steps, when the

foot stays stable for a short time, to reset the inertial errors. When sensors are not

placed on foot, the stance phase seen by the sensor is shorter and the estimation of

the inertial errors becomes less accurate. In these cases, instead of integration of

the accelerations, the displacement or the speed of the walk is estimated from the

periodical acceleration waveform produced by pedestrian movements. The speed

can be estimated either from the main frequency of the periodic signal or by detect-

ing individual steps and estimating their lengths and durations from the acceleration

waveform. This information along with the estimated heading is used to propagate

the estimate of user position. It can be shown that PDR mechanization is superior

to the traditional INS mechanization for a person on foot (Mezentsev et al., 2005).

The main drawback of PDR is its limitation to one motion mode; the mechaniza-

tion works only when walking, while traditional INS works without any assumptions

about the user motion. In this thesis, only PDR systems using torso mounted sensors

are considered in details.

In PDR using torso mounted sensors, the estimation of the distance traveled usually

consists of two tasks. In step detection, the accelerometer signal is analyzed to find

the instances where a new step starts and where it ends. In step length estimation

the distance traveled during the time interval between the start and end of the step is

estimated. In this thesis in the context of PDR, the step is defined as the displacement

of feet between two consecutive foot prints.

2.2.1 Step Detection

The occurrence of a step can be easily detected from the signal pattern of the verti-

cal acceleration component (Levi and Judd, 1996; Meriheinä, 2007). However, this

approach is sensitive to the orientation errors of the sensor unit, as it assumes that

one axis is aligned with vertical or that transformation to vertical is known. Other
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possibility it to compute the magnitude of the measured acceleration vector, i.e. the

norm of acceleration (Käppi et al., 2001).

The signal pattern varies according to where the user attaches the sensor unit (Ladetto,

2000). Typical choices to wear the sensor unit are on the belt, e.g., on the side of the

user or on lower back, or onto upper parts of the torso, e.g., attached to the shoulder

strap of a backpack or placing it in a chest pocket. Also with a shoe mounted sen-

sor unit the estimation of the distance traveled can be based on the analysis of the

acceleration waveform (Stirling et al., 2003).

Step detection is often based on the detection of signal peaks (Ladetto, 2000) or cross-

ings of the signal with its average (Käppi et al., 2001) or some other reference level

(Meriheinä, 2007). For example, step detection from acceleration norm, without

requiring knowledge of the orientation of the 3D-accelerometer or its alignment with

the vertical, consists of the following phases:

1. Low pass filtering and resampling the signal; sampling frequency in the range

20–25 Hz is high enough.

2. Computation of the Euclidean norm of the current acceleration sample, i.e.,

an (t) =
√

ax (t)
2 +ay (t)

2 +az (t)
2, (2.10)

where an (t) is the acceleration norm and ax (t), ay (t), and az (t) are the low-

pass filtered components of the measured acceleration. Within the sensor fab-

rication tolerances, the measured components are orthogonal to each other but

the orientation of the components with respect to the vertical is not fixed.

3. The step starts ts (k) are detected by observing the g-crossings, i.e., the in-

stances when the acceleration norm crosses the acceleration caused by gravity.

It can also be required that the g-crossing is followed by a rise rate and a peak

height that exceed the preset limits and that the time between the current and

previous g-crossings is long enough.

4. The step end te (k) is considered to be found when the next step starts or when

a predefined time, considered as the maximum duration of one step, has passed

after the start of the current step.
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Fig. 2.5. Detection of steps from acceleration norm.

An example with acceleration norm and the detected step starts is shown in Fig. 2.5.

The data for the figure was recorded using a sensor unit that was attached to the belt

and positioned to the back of the test walker.

2.2.2 Step Length Estimation

There are two main categories for methods to estimate step length. The first category

includes models that are based on the biomechanical principles while the models in

the second category are based on empirical relationships between acceleration signal

pattern and step length. With the biomechanical models certain user related parame-

ters, such as leg length are needed in addition to the empirically determined scaling

parameters (Jahn et al., 2010). In empirical models, acceleration norm an(t) or ver-

tical acceleration component av(t) are typically used for step length estimation. The

signal patterns that have good correlation with step length include the following:

• main frequency of the periodical signal (Levi and Judd, 1996; Ladetto, 2000)

which can be obtained using FFT or some other DFT methods or by computing

the inverse of step duration determined by step detection algorithm

p1 (k) = 1/(te (k)− ts (k)) (2.11)

• variance of the acceleration signal over a time window comparable to some
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step durations (Ladetto, 2000), e.g. variance over one step

p2 (k) = var(an (t)) , ts (k)≤ t < te (k) (2.12)

p3 (k) = var(av (t)) , ts (k)≤ t < te (k) (2.13)

• integral of the absolute value acceleration norm where local gravity has been

subtracted, integrated over the duration of the step (Käppi et al., 2001)

p4 (k) =
∫ te(k)

ts(k)
|an (t)−g|dt (2.14)

• difference between the maximum and minimum acceleration of a detected step

(Jahn et al., 2010)

p5 (k) = maxan (t)−minan (t) , ts (k)≤ t < te (k) (2.15)

p6 (k) = maxav (t)−minav (t) , ts (k)≤ t < te (k) (2.16)

Also the use of combinations of these signal patterns has been proposed (Ladetto,

2000; Jahn et al., 2010), as well as slightly different patterns from these (Meriheinä,

2007). The step length model often includes at least one empirically determined pa-

rameter. In many cases a non-linear function, such as raising to a power or extraction

of root, has to be applied to the signal pattern. A general model for step length is

∆sk = csc p j (k)
q +b (2.17)

where ∆sk is the distance traveled during the kth step, p j is the signal pattern computed

for the step, b is the constant offset and csc is the scaling factor that relates ∆sk with

p j (k)
q, q is the exponent to be applied on the signal pattern, and the subscript j

refers to the signal pattern type, e.g., one of the patterns given in (2.11) – (2.16).

An example comparing these signal patterns in step length estimation is presented in

Collin et al. (2013).

2.3 Indoor Map

The use of map information is a common practice in car navigation and similar prin-

ciples have also been proposed for indoor positioning. However, the use of an indoor
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map for pedestrian navigation differs from the way the street maps are used in car

navigation. The characteristic dimensions are different in indoor and outdoor maps:

the roads in outdoor environment are characterized by small width and large length

while the width-length ratio of the rooms inside the buildings is typically much larger

(Glanzer et al., 2009). In car navigation, the roads represent the possible locations of

the car, and the task of the positioning algorithm is to use some clever method to force

the position estimate to the most probable road segment (Quddus et al., 2007). In in-

door navigation, instead of defining possible routes the indoor map gives information

about impossible movements: the positioning algorithm uses information about walls

and obstacles that the pedestrian cannot walk though.

Two main approaches have been used to present the indoor map or floor plan in-

formation in pedestrian navigation algorithms. The first one is called here obstacle

model, which defines the locations of walls and obstacles, which are used to constrain

the position of the MU (Wang et al., 2007; Widyawan et al., 2008; Beauregard et al.,

2008; Woodman and Harle, 2008). The second approach transforms the indoor map

information to a form similar to the representation of road network; the information

about the walls and obstacles is used to compute a node-link model (Gilliéron et al.,

2004; Evennou et al., 2005).

The obstacle model can be unstructured or structured. An unstructured obstacle

model includes just a list of the walls and obstacles that are presented by line seg-

ments defined by the coordinates of their starting and ending nodes; an example can

be found e.g. in (Leppäkoski et al., 2012). Evennou et al. (2005) presents an algo-

rithm, where instead of the line segments, the obstacles are defined using pixels.

In a structured obstacle model, the walls are groupped as rooms: a room is a closed

polygon, where polygon edges represent both the walls and passages such as doors

and staircases. Each of the polygon lines is defined to be an obstacle or a passage

(Woodman and Harle, 2008). The structured obstacle model has benefits: if the room

where the transition of the MU begins is known, it is possible to decrease the number

of walls to be processed when checking whether the transition is possible or not.

With a structured model it is also possible to associate alphanumerical data with the

lines or the polygons representing rooms, staircases, or doors, which makes it easier

to present the positioning information to the user in a relevant form; for example, the

user may be more interested in the room number of her location than the geographic

coordinates of the room.
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However, the wall check algorithm is more complicated when the structured obstacle

model is used: instead of simply checking the crossings of the MU transition with all

the possible walls, this algorithm has to proceed the checks in a conditional sequence.

The checking starts from the polygon lines of the room including the initial location.

If polygon lines are not crossed in the transition of the MU, the map constraints are

not violated and the MU must be still located in the same room. If a polygon line

defining an obstacle is crossed, the transition is declared impossible. If a polygon

line defining a passage is crossed, the transition is possible and the MU has moved to

the other room. Now also the polygon lines of the new room need to be checked; the

sequence of obstacle and passage line checks has to be continued until no obstacle or

passage lines are crossed (the room where the transition ends has been found) or an

obstacle line is crossed (indicating an impossible movement) (Woodman and Harle,

2008).

In a node-link model, the links are the route segments where the MU can move only

along the segment, turn around, or stop. A link begins from a node and ends to

another node. The junctions and intersections, such as doors, are defined as nodes:

if there is more than one link ending to the same node, the node offers to the MU

a possibility to change from one link to another. The elevators and staircases are

presented as vertical links. In the model, the coordinates of the nodes need to be

defined, and for the links the properties such as horizontal or vertical need to be

defined. The node-link model can be obtained e.g. by computing a Voronoi diagram,

i.e., a set of edges that are equidistant to all the walls (Evennou et al., 2005).

2.4 Data Fusion Using Bayesian Filtering

Usually there is no single source of data that alone could provide a perfect and com-

plete knowledge about the problem of interest; rather the information must be ob-

tained indirectly from sources of imperfect and incomplete data. The goal of data

fusion is to combine or integrate data from various sources to provide improved

description of the process of interest (Durrant-Whyte, 2001). Estimation problems

in navigation and positioning belong to this category, where data fusion is usually

needed to obtain the required positioning accuracy.

In data fusion, the modeling of the uncertainties of both the process and the measure-

ments are necessary. The framework of Bayesian filtering, building on the probability
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theory, provides an extensive set of methods for describing and manipulating uncer-

tainty. The following subsections present Kalman filter, some of its variants, and

particle filter, which in this thesis are used to perform the Bayesian filtering task.

2.4.1 Kalman Filter

Since the invention of Kalman Filter (KF) in 1960 (Kalman, 1960), the KF and algo-

rithms derived from it have been in wide use in the field of navigation. The discrete-

time KF provides means to estimate dynamic, time-varying quantities that can be

presented using discrete time state space equations.

The KF and its derivation is presented in many text books, e.g., in Sorenson (1966);

Anderson and Moore (1979); Maybeck (1979); Mendel (1995); Brown and Hwang

(1997); Bar-Shalom and Li (1998); Kailath et al. (2000); Grewal and Andrews (2001).

In this thesis, the following formulation and assumptions are followed: the state equa-

tion describing the dynamics of a linear system is

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1, k = 1, ... (2.18)

where xk is the nx-dimensional process state vector at time tk, uk is the nu-dimensional

known input vector, Fk−1 is the nx×nx-dimensional state transition matrix from time

instance tk−1 to tk, and Gk−1 is the nx×nu-dimensional matrix that relates the deter-

ministic inputs at time tk−1 to the state vector at time tk. The nx-dimensional process

noise vector wk is assumed to be a white sequence of random variables, i.e., that are

zero-mean and uncorrelated timewise. The covariance matrix of wk, denoted by Qk,

is assumed to be known, thus

E
[

wkwT
i

]

=

{

Qk, i = k

0, i ̸= k.
(2.19)

The measurement (or observation) equation is

zk = Hkxk +vk, k = 1, ... (2.20)

where zk is the nz-dimensional measurement vector at time tk, Hk is the nx × nz-

dimensional measurement matrix, and vk is the nz-dimensional measurement noise

vector, which is assumed to be white sequence with known nz× nz-dimensional co-

variance Rk and to have zero cross-covariance with wk, i.e.,

E
[

vkvT
i

]

=

{

Rk, i = k

0, i ̸= k
(2.21)
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E
[

wkvT
i

]

= 0, for all k and i. (2.22)

In equations (2.18)–(2.21) the matrices Fk, Gk, Qk, Hk, and Rk are assumed to be

known and they can be time varying, i.e., the equations are able to describe time

varying system with nonstationary noises (Bar-Shalom and Li, 1998). Often the term

Gk−1uk−1 is omitted in (2.18); this is typical when the control actions are not known

to the signal processing system where the KF is used to interpret the measurements.

However, this term can be used in the formulation of a complementary filter config-

uration used in this thesis and is, therefore, included here.

The Minimum Mean-Square Error (MMSE) estimator, i.e., a linear filter that mini-

mizes the mean-square error Pk = E
[

(xk− x̂k)(xk− x̂k)
T
]

, where x̂k is the updated

estimate produced by the filter, can be written using the following equations:

State propagation (prediction) : x̂−k = Fk−1x̂k−1 +Gk−1uk−1 (2.23)

Covariance propagation : P−k = Fk−1Pk−1FT
k−1 +Qk−1 (2.24)

Gain computation : Kk = P−k HT
k

(

HkP−k HT
k +Rk

)−1
(2.25)

Measurement update of the state : x̂k = x̂−k +Kk

(

zk−Hkx̂−k
)

(2.26)

Covariance of the updated state : Pk = (I−KkHk)P−k (2.27)

where x̂−k is the best prediction (prior estimate) of the state without the knowledge

about the measurement at tk, P−k is the covariance of the predicted state, and I is

identity matrix. The filter is started from the initial conditions

Initial estimate : x̂0 (2.28)

Uncertainty of the initial estimate : P0. (2.29)

The covariance update in (2.27) is known as the standard form. The other form

Pk = (I−KkHk)P−k (I−KkHk)
T +KkRkKT

k (2.30)

is known as the stabilized form (Mendel, 1995) or as Joseph form (Grewal and An-

drews, 2001). Compared to (2.27), (2.30) is less sensitive to numerical errors and

maintains better the positive definiteness of the computed Pk. In addition, (2.27) is

valid only for optimal gain while (2.30) is valid also for suboptimal gains (Brown

and Hwang, 1997). The equations (2.23)–(2.29) present the KF algorithm in covari-

ance filter form. An alternative form for this is information filter where the inverse of



24 2. Preliminaries

the covariance is propagated instead of the covariance. The information filter is use-

ful especially in situations when the initial uncertainty is large. For both covariance

and information filters there exist also algorithms based on square root factorization

methods to improve the numerical stability of the filters (Kailath et al., 2000; Gre-

wal and Andrews, 2001). These are useful when the filter is implemented using a

computer with limited-precision arithmetics.

For a system described by (2.18)–(2.22), the KF algorithm (2.23)–(2.29) is the best

linear MMSE estimator. In addition, if all the noises and the initial state are Gaus-

sian random variables, the KF is the optimal MMSE estimator among all possible

filters (Brown and Hwang, 1997; Bar-Shalom and Li, 1998). Under the Gaussian

assumption the estimate x̂k by (2.26) is also the conditional mean E [xk|z1:k], where

the random variable x at tk is conditioned on the measurement stream z0, z1, . . ., zk,

denoted as z1:k. For the Gaussian variables, the conditional mean is also the point

where the density function p(xk|z1:k) gets its maximum (Brown and Hwang, 1997).

2.4.2 Extended Kalman Filter

Many practical dynamical estimation problems are nonlinear. Therefore, the linear

techniques presented in Section 2.4.1 cannot be directly applied to solve these. In

general, the implementation of the optimal nonlinear filter is infeasible, and filter de-

signers have to settle with suboptimal solutions (Bar-Shalom and Li, 1998). Many

estimation problems are nonlinear but ‘smooth’ in the sense that although the state

dynamics and the relation between the state and the measurement are nonlinear, they

are still approximately linear for small perturbations in the values of the state vari-

ables (Grewal and Andrews, 2001). A common suboptimal filter for this kind of

nonlinear problems is Extended Kalman Filter (EKF). It is based on the linearization

of the system and measurement models by using the first order series expansion.

For EKF, the following state and measurement models are assumed:

xk = fk−1 (xk−1,uk−1)+wk−1, k = 1, ... (2.31)

zk = hk (xk)+vk, k = 1, ... (2.32)

where noise properties are described by (2.19), (2.21), and (2.22).

The EKF algorithm has the similar look as the KF algorithm given in (2.23)–(2.27).

However, the state propagation and measurement update are obtained using the non-
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linear models (2.31) and (2.32), and the linear approximations of Fk−1 and Hk needed

in the covariance and gain computations are obtained by evaluating the partial deriva-

tives of fk−1 and hk with respect to the state x. In EKF, the prior estimate x̂−k serves

as the reference trajectory around which the linearization is performed.

State propagation (prediction) : x̂−k = fk−1 (x̂k−1,uk−1) (2.33)

Linearization of f : Fk−1 =
∂fk−1

∂x

∣

∣

∣

∣

x=x̂k−1

(2.34)

Linearization of h : Hk =
∂hk

∂x

∣

∣

∣

∣

x=x̂−k

(2.35)

Measurement update of the state : x̂k = x̂−k +Kk

(

zk−h
(

x̂−k
))

(2.36)

It can be noticed that in (2.33)–(2.36), the filter keeps track of the total estimates

x̂ rather than the incremental quantities ∆x̂ typical in linearized systems. This is al-

lowed by choosing the predicted state x̂−k as the linearization point, which reduces the

incremental ∆x̂k to zero (Mendel, 1995; Brown and Hwang, 1997). The covariance

propagation and the computation of the gain and covariance of the updated state are

obtained using (2.24), 2.25), and (2.27), respectively.

2.4.3 Complementary Filter

Kalman filter (KF) has been applied in wide variety of integrated navigation systems

for fusing information from diverse types of sensors (Brown and Hwang, 1997). In-

tegration of inertial measurements with radio navigation is a well-known example of

such systems (Kaplan, 1996; Parkinson and Spilker, 1996; Brown and Hwang, 1997;

Farrell and Barth, 1998; Groves, 2008). The main reasons to integrate redundant

measurement information from separate sensor systems are measurement errors and

temporary availability breaks of some measurements. The integration brings benefits

especially when the error dynamics of the systems are different as they are in radio

navigation and inertial navigation. In radio navigation systems - such as satellite po-

sitioning or WLAN based positioning - the noise is quite significant but the error is

bounded. Due to the relatively large random errors the ability of the radio navigation

to track dynamic changes is poor. The navigation relies on external signal sources;

breaks in the availability of the signal are possible, the signal is prone to interference,

and the availability of the signals is geographically limited – even the GNSS, which
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are built to have global coverage on the earth, suffer from poor availability indoors

and in urban canyons. In inertial navigation, the sensor noise is relatively small and

the system is able to track dynamic changes accurately, but its long term accuracy

is poor as the errors can grow without bounds. The sensors are self-contained, they

do not need any external fields and are practically immune to interference, and their

operation is unconstrained geographically.

When a Kalman filter in non-complementary form is used to integrate positioning

information from various sources, all the measurements are fed to the filter as mea-

surement updates. The prediction of the state is obtained using a motion model,

which describes the motion of the user as random process, i.e., the a priori statistics

of the driving input (2.19) need to be known. In personal positioning applications,

motion characteristics of the user may vary a lot. A proper model suitable for all

possible motion states of the user is not easy to find. An attempt to use one motion

model to cover all the possible motion states may lead to a solution that does not de-

scribe well any of the motion states. Multiple model approaches have been proposed

to solve this problem (Syrjärinne and Saarinen, 1999) but these approaches lead to a

more complex algorithm and the tuning of model change probabilities.

When complementary filtering is applied in integrated navigation systems, only the

noise parts of the signals are modeled as random processes. For the total dynamical

quantities, such as position and velocity, the a priori statistics are not needed (Brown,

1972-73). A complementary filter has the advantage that only the noise part of the

signals is filtered whereas the true dynamic signal passes the filter without any lags.

The principles and benefits of complementary filtering are described, e.g., in (Brown,

1972-73; Brown and Hwang, 1997; Farrell and Barth, 1998).

Complementary filter configurations for integrated navigation systems can be divided

in three main categories: feedforward (FFC) and feedback configurations (FBC) and

configuration with embedded reference trajectory (ERT). The configurations differ

in their hardware architectures; the conceptual block diagrams of these are shown in

Figs. 2.6–2.7.

The Inertial Navigation System (INS) in the FFC and FBC (Fig. 2.6) includes an In-

ertial Measurement Unit (IMU) and a navigation processor to produce position and

velocity outputs from the measurements of IMU. In these filters, the output of the in-

ertial system is compared with aiding positioning sources, such as radio navigation.
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(a) Feedforward configuration

(b) Feedback configuration

Fig. 2.6. Complementary filter in feedforward and feedback configurations.

The inertial errors are estimated by the KF and then used to correct the inertial sys-

tem. As in these configurations the filter estimates only inertial errors, the filters are

also known as error state space filters or indirect filters (Maybeck, 1979). The main

difference between the FFC and FBC is the phase where the corrections to inertial

system are applied: in FFB, the corrections are available for the navigation processor

before it computes its outputs, while in FFC the corrections are added to the inertial

output after the navigation processor. A practical difference in their implementations

is state reset: to avoid the errors being integrated twice, the error states in the FBC

filter are set to zero always when error estimates are transferred to the navigation

processor.

With nonlinear problems, the KF needs to be replaced by EKF, and the filter needs the

reference trajectory input for the linearization, which is obtained from the output of

the INS. An important difference between FFC and FBC arises here: in the FBC, the

INS has corrected its outputs with the previous error estimates from the filter, while in

FFC the INS errors may be much larger as the corrections are not connected back to

the INS. Without the feedback corrections the growth of the inertial errors is unbound

and the reference trajectory used for linearization can drift far from the true trajectory,
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Fig. 2.7. Complementary filter in embedded reference trajectory (ERT) configuration.

which increases the approximation errors in Fk−1, Hk, and finally affects the estimate

x̂k though the gain Kk. Therefore, FBC suits better than FFC for nonlinear filtering

problems.

In the third complementary filter configuration, shown in Fig. 2.7, the reference tra-

jectory computation is embedded in the KF. Differently from the usual KF implemen-

tations, where all the available measurement information is processed in the measure-

ment update step of the filter, in ERT configuration, some measurements are used to

predict the state estimate while others provide the normal measurement update of

the state. The outputs of IMU provide information about the changes of state (e.g.,

position, velocity, and attitude) - therefore, they can be used directly to predict the

state. These transition related measurements are modeled as a sum of the true value

and noise, when they fit into the form of (2.18), where the deterministic input uk−1

represents the true value and wk−1 the noise. In ERT, the filter states include the

total dynamical states. If the system includes slowly varying error components, such

as biases or drifts, augmented states can be used to describe these non-white noise

processes – similarly as with the FFC and FBC. Similarly as in FBC, in ERT the

estimated effect of the noise history is taken into account in the prior estimate x̂−k ,

i.e., in the reference trajectory the large errors are mitigated, which makes also this

configuration suitable for nonlinear problems. Leppäkoski and Takala (2007) showed

that for a certain linear model all the three CKF configurations give equal estimation

results.
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2.4.4 Particle Filtering

Sometimes the characteristics of the estimation problem do not allow the successful

use of KF or EKF – the models may be highly nonlinear and then the ‘smoothness’

assumption for EKF does not hold, or the noise distributions may be difficult, e.g.,

with multimodal distributions the estimated mean may not give sufficient characteri-

zation of the state of the process. This deficiency has led to the development of new

state-space processors that are based on the idea that “it is easier to approximate a

distribution than to approximate an arbitrary nonlinear function of transformation”

(Candy, 2009). Unscented Kalman Filter (UKF) (Julier and Uhlmann, 2004) and

particle filters (Arulampalam et al., 2002) are examples of these new processor algo-

rithms.

The basic idea in using particle filter is to use random number generator to simulate

the effect of the state driving noises (2.19) to the state variables (2.31). Instead of

a single state estimate and its variance, the posterior PDF is approximated using a

particle cloud, which consists of N weighted state estimates, carried by distinct es-

timators and their weights
{(

x
( j)
k ,w

( j)
k

)

, j = 1, · · · ,N
}

. Using particles, the discrete

approximation of the posterior density at k can be written as

p(xk|z1:k)≈
N

∑
j=1

w
( j)
k δ
(

xk−x
( j)
k

)

(2.37)

where z1:k includes all the measurements up to the sample instance k and δ(·) is the

Dirac delta function. Theoretically, as the number of particles increases, the parti-

cle distribution approaches the posterior probability density function and the particle

filter approaches the optimal Bayesian estimate (Arulampalam et al., 2002).

As in Kalman filters, also in particle filters the operation consists of state propagation

and measurement update steps. In the state propagation, the states of the particles are

predicted by drawing samples for the time instance k from the proposal distribution

π:

x
( j)
k ∼ π

(

x
( j)
k |x( j)

k−1,z1:k−1

)

(2.38)

where z1:k−1 includes all the measurements before the sample instance k. The mea-

surement update in the particle filter is performed by updating the weights w
( j)
k of the
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particles using the measurement likelihood:

w
( j)
k = w

( j)
k−1

p
(

zk|x
( j)
k

)

p
(

x
( j)
k |x( j)

k−1

)

π
(

x
( j)
k |x( j)

k−1,z1:k−1

) , (2.39)

where p
(

zk|x
( j)
k

)

is the probability of the measurement zk given the state x
( j)
k . The

probability p
(

zk|x
( j)
k

)

is computed using the measurement equation (2.20) and the

properties of measurement noise (2.21). After the normalization of the weights,

i.e, w
( j)
k ← w

( j)
k /∑N

j=1 w
( j)
k , the MMSE estimate of the state can be computed as the

weighted average the particle states:

x̂MMSEk
=

N

∑
j=1

w
( j)
k x

( j)
k . (2.40)

The posterior distribution is approximated by resampling from the proposal distribu-

tion (2.38) so that the weight of the particle (2.39) defines the probability of a particle

to be included into the set approximating the posterior distribution. In a bootstrap

type of particle filter, the resampling is performed at every time-step, after which the

weights all the particles are set equal.

2.5 Assessment of Positioning Accuracy

Several error measures can be used to assess the accuracy of positioning. Here, Root

Mean Square Error (RMSE) is considered as it is a commonly used performance

measure in the navigation and positioning community (Misra and Enge, 2006, Sec-

tion 6.1.4). The two dimensional RMS position error is computed using

RMSE =

√

1

nS

nS

∑
k=1

(

δx2
k +δy2

k

)

(2.41)

where δxk and δyk are the errors of x and y coordinates of the position estimate sam-

ples, and nS is number of the samples. In WLAN positioning related literature, the

various statistics of error distance

δk =
√

δx2
k +δy2

k (2.42)

are often used as a basis of comparisons (e.g., Bahl and Padmanabhan, 2000; Roos

et al., 2002; Youssef et al., 2003). The commonly used statistics include the average
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and various percentiles, from which the 95th perecentile (E95) is the most commonly

used. Often the Cumulative Distribution Function (CDF) of the error distance δk is

also presented.

If the positioning error is assumed to follow a multivariate normal distribution, the co-

ordinate errors δx and δy are assumed to be uncorrelated, zero-mean, and identically

distributed with variance σ2, the error distance is Rayleigh distributed: δ∼ Rayleigh(σ).

The median (50th percentile), mean, and the RMS value of a Rayleigh(σ) distributed

random variable are the following (ITU, 2007):

E50 = σ
√

ln(4) = 1.1774σ, (2.43)

EMEAN = σ
√

π/2 = 1.2533σ, (2.44)

RMSE =
√

2σ2 = 1.4142σ. (2.45)

In practical error evaluation problems the true values are not known, and the error is

estimated using a reference that is assumed to be more accurate than the estimate. The

total uncertainty regarding the estimated parameter is the sum of the uncertainties:

σ2
tot = σ2

est +σ2
re f where σ2

tot is the total uncertainty of the estimate, σ2
est is the mean

square error RMSE2 computed from the estimate and the reference, and σ2
re f is the

uncertainty regarding the reference. In the following Chapters, σ2
re f is not taken into

account in error evaluations due to its small effect. If the difference between the

estimate and the reference is 1.0 m and the uncertainty in determining the reference

value is 0.1 m, then σtot = 1.005. If σ2
re f is neglected in the evaluation of the error

estimate, the introduced relative error in the error estimate is 0.5%. Considering the

tests carried out in this thesis, these example figures are conservative: the error of

the reference is at least ten times smaller than the average differences between the

reference and the estimate.

In addition to the accuracy, important aspects to the navigation performance are also

availability, continuity, and integrity, especially in safety critical applications (Prasad

and Rugieri, 2005; Pullen, 2008). Integrity is the ability of the navigation system to

provide timely warnings to users when the system should not be used to navigation,

i.e., when the accuracy does not meet its limits. In the navigation systems developed

in this thesis, integrity related information could be derived from the posterior co-

variances of the position provided by fusion filters. The feasibility of the covariance

for integrity monitoring requires the consistency of the filter, i.e., that the estimates
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are unbiased and the actual mean square error matches the covariance calculated by

the filter (Bar-Shalom and Li, 1998). Continuity means the capability of the navi-

gation system to perform its function without nonscheduled interruptions during the

intended operation. Availability of a navigation system is the long-term average of

the probability that the accuracy, integrity, and continuity conditions are simultane-

ously met. This thesis concentrates mainly on accuracy and does not further elaborate

these other performance characteristics.

2.6 Summary of Adopted Methods

The following approaches presented in this Chapter are chosen for further research.

In Chapter 3, WLAN fingerprinting is studied using average RSS patterns and kNN

estimation (2.1)–(2.4) and probabilistic ML and MEE algorithms (2.7)–(2.9) using

histogram approximations.

In Chapter 4, methods for aided PDR are studied. The PDR is based on step detection

(Fig. 2.5) and step length estimation based on step frequency (2.11). The aiding

information include indoor map presented using both unstructured and structured

obstacle models and WLAN positioning based on MEE algorithm. To implement

the PDR aiding, nonlinear filtering with particle filters and EKFs in both feedback

(Fig. 2.6b ) and ERT (Fig. 2.7) configurations are used. The EKF is implemented

using state propagation and linearization (2.33)–(2.35), covariance propagation and

gain computation (2.24)–(2.25), measurement update (2.36), and covariance update

in the standard form (2.27).
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This Chapter addresses indoor positioning using WLAN RSS fingerprints. The goal

is to find a WLAN positioning algorithm suitable for the use on a smart phone.

The work was restricted to algorithms, where the MU performs the required sig-

nal strength measurements and calculates the position estimate. While the mobile

application sets the accuracy requirements to the positioning, the smart phone as the

implementation platform sets restrictions to the computational complexity and the

memory usage of the algorithm. The performance of the probabilistic algorithms

studied here has been demonstrated on smart phones (Perttula et al., 2009; Pei et al.,

2009).

For fingerprint based positioning, a radio map model is needed. The model includes

knowledge about the WLAN radio signal properties as a function of the location. The

radio map is prior information that can be made available to the MU, e.g., by using

wireless internet connection. There are several choices and parameters of the model

that significantly affect the performance of the positioning. No clear-cut general

rules exist yet for the best choices of the model and its parameters. These have to

be decided based on the requirements of the positioning application and available

resources.

When an adequate radio map for fingerprint based positioning in a certain area is

obtained, it is desirable that the same radio map can be used by all devices that are

to position themselves. One challenge related to radio maps is the fact that different

MUs hear the RF signals differently, mainly due to the differences in their hardware

composition, e.g., their antenna size and placement. Therefore, methods to normalize

the RSS observations of different devices to a common scale are needed.

In this Chapter, the results of accuracy analysis and comparisons among different

model parameters and RSS normalization are presented and discussed.
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3.1 Related Work

Several information sources alternative to GNSS have been proposed for absolute

positioning in indoor environments. These include positioning systems that rely on

special positioning infrastructure installed into buildings and Signals of Opportunity

(SoOP), such as the signals of Wireless Local Area Network (WLAN).

3.1.1 Signals for Indoor Positioning

Examples of the special infrastructure dedicated to positioning include pseudolites,

i.e., pseudo satellites that are installed on the ground and use RF signal with a struc-

ture very similar to navigation satellites (Wang, 2002; Kuusniemi et al., 2012), trans-

mitters of different kinds of signals, such as Infra Red (IR) badges (Want et al., 1992),

ultra sound beacons (McCarthy et al., 2006), RFID tags (Fu and Retscher, 2009), and

combination of ultra sound beacons and Radio Frequency (RF) signals (Priyantha,

2005). The usage of indoor lightning based on Light-Emitting Diodes (LED) mod-

ulated to transmit optical signal that allows the identification of the light source has

also been proposed for indoor positioning Lou et al. (2012).

SoOP are signals that originally are intended for purposes other than navigation but

from which position related information can be extracted. It is desired that a SoOP

can be exploited for navigation without affecting their primary users (Eggert and

Raquet, 2004). Generally, there are more SoOP available in urban environments than

in rural areas (Raquet et al., 2007).

Several broadcast communication signals have been proposed for SoOP position-

ing, e.g., AM radio signals (Hall et al., 2002), digital television signals (Rabinowitz

and Spilker, 2004), analog television signals, (Eggert and Raquet, 2004), digital au-

dio broadcasting (Palmer et al., 2011), and mobile TV based on the DVB-SH stan-

dard (Thevenon et al., 2011). The accuracies of these systems range from 15 m to

more than 100 m, which are not sufficient for many indoor positioning applications.

Shorter range RF communication technologies available for positioning include Zig-

Bee (Blumenthal et al., 2007), Ultra Wide Band (UWB) (Sahinoglu et al., 2008),

Bluetooth (Kotanen et al., 2003a; Hallberg et al., 2003), and WLAN (also known as

Wi-Fi) (Bahl and Padmanabhan, 2000).
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Although some commercial applications exist, e.g., positioning systems using blue-

tooth (9solutions; Quuppa) and UWB (Time Domain; Ubisense), neither UWB nor

ZigBee have become common in everyday mobile devices, and although Bluetooth is

currently integrated into many devices, typically the positions of these are not known

accurately enough to allow their signals to be used for the positioning of other mobile

units nearby.

Contrary to Bluetooth, for WLAN communication there is nowadays stationary in-

frastructure hardware available almost everywhere in built environments such as pub-

lic, commercial or residential buildings. Compared to Bluetooth, WLAN signals are

generally more suitable for positioning as the WLAN networks include stationary

units, APs, and because they have larger coverage area.

3.1.2 Measurements for WLAN Positioning

WLAN offers several observables applicable for positioning. Detailed descriptions

of these methods can be found in, e.g., (Liu et al., 2007; Gezici, 2008; Gu et al.,

2009). Time of Arrival (TOA) measurements between the MU and APs require time

synchronization between the AP and the MU. This requires two-way messaging be-

tween the MU and the AP (Günther and Hoene, 2005; Izquierdo et al., 2006), adds

traffic to the network and restricts the number of possible MUs served by one AP.

For Time Difference of Arrival (TDOA) measurements between the APs and the MU,

the APs need to be synchronized with each other, which requires a special messaging

scheme between them (Günther and Hoene, 2005; Izquierdo et al., 2006; Golden and

Bateman, 2007; Yamasaki et al., 2005; Exel et al., 2010). As the orders of magnitudes

TDOA are below microseconds, they need to be estimated on hardware layer, which

is not supported by all WLAN hardware. In Differential Time Difference of Arrival

(DTDOA), the need to synchronize APs is avoided by installing reference nodes with

known distances and Line-of-Sight (LOS) to a master reference node which can be

an AP (Nur et al., 2012, 2013). Also this method requires extra hardware components

to be used in addition to the standard WLAN devices.

Angle of Arrival (AOA) measurements require antenna arrays to provide angle infor-

mation. For example, in the system described by Wong et al. (2008), the arrays in

both the transmitter and the receiver ends consisted of four antennas equally spaced
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at 2.65 cm. However, this method is sensitive to multipath and Non-Line-Of-Sight

(NLOS) propagation and also requires complex processing.

WLAN positioning methods based on Received Signal Strengths (RSS) and its vari-

ant Received Signal Strength Indicator (RSSI) have been reported on numerous pa-

pers, e.g., (Bahl and Padmanabhan, 2000; Battiti et al., 2002; Prasithsangaree et al.,

2002; Roos et al., 2002; Smailagic and Kogan, 2002; Wallbaum and Wasch, 2004).

Typically, in mobile devices these are available through Application Programming

Interfaces (API) of standard WLAN services without any extra hardware. The MU

can obtain the RSS by passive listening, without connecting to the AP. For outdoor

environments with poor GNSS reception, the WLAN based positioning services are

already available (e.g., Skyhook).

3.1.3 WLAN Positioning Methods

For producing WLAN RSS based position estimates there exist several types of algo-

rithms. A detailed taxonomy of the methods can be found in (Kjærgaard, 2007). The

simplest of these is the Cell Identifier (CID) method, where the position estimate of

the MU is the position of the AP to which the MU is connected (Hodes et al., 1997).

This is also the least accurate method, as the estimation accuracy is determined by the

distances between the APs. An improved CID can be obtained by using a list of the

APs and their RSSs that the MU listened (Hermersdorf, 2006; di Flora and Hermers-

dorf, 2008). In this method, the effect of measurement noise can be decreased using

RSS based weighting and counting to increase the reliability of the highly granular

positioning results. This also allows position to be estimated without connection to

the AP, which is required by the original CID.

In algorithms based on path loss model and trilateration, the path loss model is used

to convert the RSS measurements to distance estimates. Based on these distances and

the known positions of the APs, the trilateration method is used to estimate MU po-

sition (Bahl and Padmanabhan, 2000; Kotanen et al., 2003b; Nurminen et al., 2012).

Usually the parameters of the path loss model are experimentally defined. In in-

door environments the path loss modeling is complicated by NLOS propagation and

attenuation caused by walls and other structures. Even people cause significant fluc-

tuations to the RSS (Bahl and Padmanabhan, 2000). This makes the simple path

loss models too inaccurate in real life situations. To overcome this problem, the
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performance of triangulation can be enhanced using other methods, such as pattern

recognition (Smailagic and Kogan, 2002) and probabilistic filtering (Wallbaum and

Wasch, 2004; Nurminen et al., 2012).

Fingerprinting approaches are introduced to overcome the difficulties of indoor path

loss modeling. Instead of trying to apply a general model to relate RSS with distance,

they use mathematical models to relate the measured RSS levels from different APs

directly to the location of the MU (Bahl and Padmanabhan, 2000); these models are

called radio maps. In this way, the fingerprinting actually makes use of the location

dependent characteristics of radio signal propagation. Most often the radio map is de-

termined experimentally. Several different models, model structures, and algorithms

utilizing the models have been proposed for the radio maps (Bahl and Padmanab-

han, 2000; Roos et al., 2002; Honkavirta et al., 2009; Liu et al., 2010). The choice

of the model type, structure, and size determine the suitable positioning algorithm

and affect the obtainable accuracy, computational complexity, the memory required

to store the radio map, and also the amount of time and work required to collect the

experimental data for the radio map. In addition, the way how the data is collected

has an effect on the quality of the radio map.

The position estimation methods can be further categorized as snap-shot methods

and filtering methods. The snap-shot methods use only the latest set of available RSS

samples to infer the current position of the MU, without using the information from

the past RSS measurements. Methods to enhance these basic snap-shot estimates by

utilizing the measurement history with different kinds of filtering methods have been

presented in many papers, e.g., (Wallbaum and Wasch, 2004; Ciurana et al., 2007;

Nurminen et al., 2012).

3.1.4 WLAN Fingerprinting

Pattern recognition based WLAN fingerprinting is proposed in (Bahl and Padmanab-

han, 2000; Prasithsangaree et al., 2002) while neural network based fingerprinting is

proposed in (Battiti et al., 2002). Probabilistic fingerprinting are proposed in (Castro

et al., 2001; Roos et al., 2002; Youssef et al., 2003). In these works, the PDF of the

RSS is approximated using histograms or kernel functions. Fingerprinting with the

PDFs approximated using parametric functions have also been proposed (Honkavirta

et al., 2009; Koski et al., 2010a,b).



38 3. WLAN Positioning

Bahl and Padmanabhan (2000) introduced a pattern matching based fingerprinting

that utilizes the sample mean as the summarized signal pattern stored in the radio map

and the principle of the kNN in signal space to estimate the position. They observed

6% reduction in the median position errors when increasing k from 1 to 5: 2.94 m

with NN and 2.75 m with 5NN. In these tests, they had distinct radio map entries

for each measurement directions. Bahl and Padmanabhan (2000) also observed that

the measurement direction has a significant effect on the measured RSS. They tested

the effect of measurement orientation by summarizing the calibration data of one

CP over all the four measurement directions by computing first the RSS averages

separately for each directions and then saving the maximum of the four RSS averages

to the radio map. This treatment decreased the median positioning error by 9% with

NN. With the combined directions they obtained the best accuracy with 3NN; the

median error was decreased by 28% from the 2.94 m. The test area in (Bahl and

Padmanabhan, 2000) consisted of narrow corridors.

Roos et al. (2002) compared the accuracy of the histogram based algorithm with

the NN algorithm. With these algorithms, they obtained the average errors 2.76 m

and 3.71 m, respectively. The fingerprints in their NN algorithm were the individual

calibration measurements without summarizing samples from one AP in one CP. The

reporting in (Roos et al., 2002) does not mention the measurement directions and

their treatment in the tests, as well as not the number of histogram bins used in their

comparison.

As the measurements campaigns for obtaining the radio maps are time consuming,

it is important to solve the problem of RSS normalization between different devices,

i.e., the possibility to use radio map based on measurements of one device to esti-

mate position using measurements of another device. The normalization problem has

been addressed in recent works: Kjærgaard (2011) and Machaj et al. (2011) proposed

methods to avoid the normalization, and Laoudias et al. (2013) proposes a normal-

ization method based on the existing samples in the radio map and a small set of

calibration samples by the new device.

Kjærgaard (2011) proposed Hyperbolic Location Fingerprinting (HLF) to avoid the

normalization between heterogeneous WLAN devices. In HLF, instead of absolute

RSS values, the fingerprints and positioning measurements are based on RSS ratios

between two APs; these RSS ratios factor out the constant differences in RSS between

different devices. The drawback of this method is that instead of each individual
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AP, the parameters are required for the possible pairs of APs, which leads to the

increase of the radio map size. Machaj et al. (2011) avoids the normalization by using

Rank Based Fingerprinting (RBF): instead of RSS values, the fingerprints consist of

RSS based ranks of APs, because the rank information is invariant to any monotonic

increasing transformations such as bias and scale.

Laoudias et al. (2013) found that in both HLF and RBF, the omitting of the RSS

level information causes accuracy degradation. Instead of these methods, they pro-

pose a self-calibration method where a new mobile client self-calibrates itself against

the fingerprints stored in the radio map. The self-calibration is based on the RSS

histograms of ten sample scans by the new device and the RSS histogram derived

from the radio map data. The challenge with this method is the quality of the self-

calibration samples – if the samples are collected at a location where time variant,

local radio channel anomalies distort the RSS distribution severely, it is possible that

the obtained calibration parameters are not valid. However, the results of Laoudias

et al. (2013) on the RSS bias correction among the devices are consistent with the

RSS normalization results presented in this thesis.

Despite the advancements in normalization methods between heterogeneous WLAN

devices, the differences between the devices set significant limitations on WLAN

based positioning. One reason for this fundamental problem is the lack of standard-

ization: the existing standards do not require the device manufacturers to measure

and report the WLAN RSS in a standard way. Lui et al. (2011) found in their tests

with 17 different devices that some of the devices have either very small slope in their

RSS versus logarithmic distance curve or spurious, unexplainable temporal variations

in their reported RSS, which both mean that these devices are not suitable for any

positioning methods relying on location or distance dependence of the RSS levels.

However, they can still be useful in methods based on coverage areas (Koski et al.,

2010b).

In this thesis, the fingerprinting based on WLAN RSS was chosen for the better

accuracy of the fingerprinting and the easy availability of the RSS measurements.

They are available from the existing wireless communication infrastructure and they

can be obtained by passive listening of the APs. In the mobile devices they are

available through the standard APIs. Only the snap-shot methods are considered in

order to be able to analyze the effect of the measurement modeling in isolation from

the filter performance. The filtering and utilization of the past measurements in the
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context of multisensor data fusion are handled in Chapter 4.

Both the pattern matching and histogram based fingerprinting algorithms were im-

plemented and compared. These methods were tested in an open library hall. The

calibration data from all CPs included samples measured from four directions. For

both the methods, the radio maps where the directions had separate entries were com-

pared to radio maps where the data from different orientations were combined. For

the pattern matching the data from orientations were combined using averaging, in-

stead of the maximum used in (Bahl and Padmanabhan, 2000). With the histogram

based method, the data from the orientations were combined to one histogram. With

the pattern matching method the comparisons were made using different k values

of kNN, and for histogram based methods the comparisons were made with several

numbers of bins.

This thesis also studies the problem of RSS normalization among different devices.

These results on RSS normalization were originally published in (Leppäkoski et al.,

2009b). In the proposed approach, the RSS offset parameter for the normalization

was determined in positioning tests, where the RSS values in the radio map were

corrected with the offset parameter before using the radio map in the position estima-

tion using the RSS measurements of another device. The offset value that provided

the best accuracy was chosen as the normalization parameter. Later, the normaliza-

tion problem has been addressed also by other researchers (Kjærgaard, 2011; Machaj

et al., 2011; Laoudias et al., 2013).

3.2 Accuracy Analysis

In indoor positioning with WLAN fingerprints, the positioning accuracy is affected

by the amount of RSS data details that are stored into the radio map. It has been

found that the CP grid density has an effect on the accuracy (Perttula et al., 2009);

the mean positioning error grows gradually but clearly as the distance between cal-

ibration points grows. It has also been found that when probabilistic methods are

used for position estimation and the RSS distribution in a calibration point is approx-

imated using a histogram, the number of histogram bins affects positioning accuracy

as well as the way how the information about the measurement direction is treated in

the radio map (Leppäkoski et al., 2009a). However, answers to some questions still

remain unclear:
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• What is the number of histogram bins after which the positioning accuracy

does not improve any more even if the number of bins is still increased?

• Is it beneficial to have a separate bin for missing samples, i.e. samples with

measurement value below the minimum of correct RSS measurement range?

• Does it improve the positioning accuracy if the information of the measurement

directions is included into the radio map?

• If there are transmitters very close to each other so that RSS measurements

from them are correlated, is it beneficial to combine the correlating signals in

the radio map and the estimation?

• Are the previously mentioned effects similar for histogram based methods and

the kNN based pattern recognition?

The tasks of finding proper parameters for radio propagation model or creating ra-

dio maps are complicated by the fact that different WLAN receiver implementations

commonly see and report the signal strengths differently. Partly this is due to unpre-

dictable noise; partly it is caused by the different designs of WLAN antennas and

receivers. The important question is how the propagation model parameters or radio

map defined using one WLAN device can be utilized when estimating position with

another WLAN device. This is essential especially considering the radio maps for

fingerprinting methods, because the experimental phase for creating the radio map is

laborious and time consuming. It would be of great benefit if a radio map created

using one WLAN receiver could be utilized in positioning with many different types

of WLAN devices.

In the next subsections, the effect of the model parameters used in the radio maps

and the RSS normalization among different devices are studied. The algorithms de-

scribed in Section 2.1 for the radio map generation and the position estimation were

implemented to carry out the tests and comparisons. The data sets used in the ana-

lysis are described in Section 3.2.1. The effects of radio map configurations to the

accuracy and memory requirements of the radio map are studied in Sections 3.2.2–

3.2.5 and the normalization of the WLAN RSS is studied in Section 3.2.6.
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Fig. 3.1. Floor plan of the library and the locations of calibration points (CP) and test points

(TP).

3.2.1 Data

In the following analyses two different data sets were used. The first one was col-

lected at the library of Tampere University of Technology using one mobile device

and the second one was collected in Tietotalo building at Tampere University of Tech-

nology using three different mobile devices simultaneously. From the data, the radio

maps and position estimates were computed using the equations given in Section 2.1.

All the computations were carried out using MATLAB.

Data Set #1: Library

The radio map configurations were studied using data that was collected at the li-

brary of Tampere University of Technology with a mobile unit (Nokia N800 Inter-

net Tablet) carried by a person. The measured RSS data files were transferred to a PC

for offline analysis with MATLAB. The data contains measurements from 287 CPs

and 77 test points (TPs). During the data collection in both the CPs and the TPs, the

user was standing holding the WLAN device and blocked the signals from behind.

Data was collected during day time when people used the library normally. The ef-

fects of other people were random disturbances in the collected data. Calibration data

were measured from four directions in each CP. Measurement time for each direction

in a CP was about 30 s, during which on average 13 samples were obtained. The TP

data was collected from only one direction that varied randomly from point to point,

and the average number of samples from each TP was 10. The coordinates of the CPs
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Fig. 3.2. Floor plan of the office building and the locations of calibration and test points.

and TPs and the measurement directions were manually recorded and saved with the

measured RSS samples. In total, the calibration and test data sets contain 15372 and

791 RSS vector samples. The test area and the CP and TP locations are shown in

Fig. 3.1. The separation between the CP grid lines varied between 1.5 and 2.1 m.

Data Set #2: Office building

To study the normalization of the RSS measurements, a measurement campaign was

conducted in the main corridor of the second floor of Tietotalo building at Tampere

University of Technology. The floor plan of the area with the CP and TP positions is

shown in Fig. 3.2. The number of measured CPs and TPs were 146 and 24, respec-

tively. The grid between CPs was 2 m.

In each point the data was simultaneously collected using three devices: Nokia N95 8GB

Symbian smartphone (Mobile1), Nokia N800 Internet Tablet (Mobile2), and laptop

PC, General Dynamics GoBook XR-1 with Windows XP (PC). During the measure-

ments, the devices were placed on a wheeled cart so that the user was not blocking the

signals to the devices. Data was collected during day time when people moved on the

area normally. The effects of other people were random disturbances in the collected

data. In each device, the data logger software scanned regularly the available WLAN

channels and saved the measured RSS values of the listened channels together with

their unique MAC addresses into a file. The coordinates of the measurement points

were manually recorded and saved with the measured RSS samples.

In Mobile1 the data logging was implemented using the WLAN API of S60 3rd Edi-

tion FP1 operating system. In Mobile2, the data logger software was written in C++
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and it used an open source software iwlist for WLAN access point scanning. With

the PC, the WLAN scans were performed using Network Stumbler, a freeware for

analyzing the wireless networks. From all the devices, the measured RSS data files

were transferred to a PC for offline analysis with MATLAB.

3.2.2 Preprocessing for Comparisons of Radio Map Configurations

To compare the effects of the several design choices, i.e., number of histogram bins,

separate bin for missing values, direction information in radio map, and combining of

the signals from adjacent transmitters, these options were varied and several different

radio maps were computed from the CP data. Radio maps were generated for several

numbers of bins, both uneven and even bin widths, and three different treatments of

the direction information. The TP data was used to estimate positions with these radio

maps and the obtained estimates were compared with the true coordinates saved in the

TP data. The true coordinates were used to compute the error distances to assess the

accuracy. Finally the positioning accuracies obtained with the different radio maps

and algorithms were compared with each other.

The effect of measurement direction was studied by generating three radio maps

where the direction information was treated differently. One radio map (rmap1) in-

cluded the direction information such that separate fingerprints (radio map entries)

were generated for each measurement direction in each CP. In the second radio map

(rmap2), the direction information was omitted, thus all the measurements from the

same CP regardless of the measurement direction were combined to one fingerprint.

The resulting radio map had a size of only a fourth of the size of the first radio map.

On the other hand, now there were four times larger amount of calibration data avail-

able for each radio map entry.

To analyze the effect of combining samples from all directions in isolation from the

sample size for a fingerprint, the third radio map (rmap3) was created, where only

one fourth of the samples from each direction were combined together to compute

one fingerprint. This yields approximately the same calibration set size for each

fingerprint as was available in rmap1, where each direction was treated separately.
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Fig. 3.3. Edges of six histogram bins, evenly and unevenly distributed.

3.2.3 Effect of Bin Configuration

To study the effect of the number of bins, radio maps were generated using 2 to 15

histogram bins. To investigate the effect of separate bin for missing samples, the

number of bins test was performed in two different ways. For each number of bins,

there was one bin configuration with even bin widths where the RSS minimum −96

dBm, which was used to indicate the missing samples, was classified to the same bin

with other small values. Another configuration was defined to have one narrow bin

for the minimum RSS value while the rest of the bins had equal widths. An example

of the used bin widths for six bins is shown in Fig. 3.3. The results of the bin con-

figuration tests are shown in Fig. 3.4, where average error distance (EMEAN), RMS

positioning error (RMSE), the 95th percentile of error distance (E95), and maximum

error distance (EMAX) are plotted for all the test cases. The results are presented

for all the three treatments of direction information (rmap1, rmap2, rmap3) to illus-

trate the fact that the bin configuration results do not depend significantly on how the

direction information is used.

According to the test results, the RMS position error as well as the average error

distance decrease as the number of bins increases until it gets the value seven or

eight, after which the errors stop decreasing (Figs. 3.4.a, 3.4.b). The number of bins

has very little impact, if any, on the maximum errors (Fig. 3.4.d). From the plots of

the 95th error percentile it can be observed that with ML algorithm, the errors clearly

drop as a function of the number of bins, but the effect is not so significant with

MEE algorithm (Fig. 3.4.c). The results in Fig. 3.4 also show that it depends on the

number of bins whether a separate bin for missing samples brings a benefit or not: if

the number of bins is six or less, the positioning errors are smaller with uneven bin

widths where there is a separate bin for RSS minimum. With numbers of bins seven
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Fig. 3.4. Positioning errors with different bin configurations (number of bins, even and un-

even bin widths) computed with different algorithms (ML, MEE) and radio maps

(rmap1, rmap2, rmap3).

or more, the differences between even and uneven bin widths are very small, and it

seems to vary randomly whether the positioning accuracy is better using uneven or

even bin widths. The effect of the number of bins on the accuracy is more significant

with even bin widths, as the errors with fewer bins are larger with this configuration.

From Fig. 3.4 it can also be seen that in general, the MEE algorithm is more accurate

than the ML algorithm.

To conclude the results on bin configurations, the main findings are summarized as

follows:

• The positioning accuracy of the histogram based algorithms improve when the

number of histogram bins increases until it reaches 8

• With less than 6 histogram bins, the accuracy can be improved if, instead of
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having all bins with equal widths, there is one narrow bin for the minimum

RSS.

• MEE algorithm is generally more accurate than the ML algorithm

3.2.4 Benefit of Direction Information in Radio Map

To test the effect of the direction information, three radio maps were compared:

rmap1 includes a separate fingerprint for each direction, therefore, less data per one

fingerprint than in rmap2, where CP data from all directions were lumped to one

fingerprint, therefore containing the largest amount of data per fingerprint. In rmap3

the CP data from all directions were lumped to one fingerprint, but only 25 % of the

data was used for radio map. Therefore it contains the same amount of data per one

fingerprint as rmap1. Position estimates using both the histogram based methods and

the pattern recognition method were computed using these radio maps.

The test results using histogram based radio maps where the direction information is

treated differently are shown in Fig. 3.5. In these figures, results are shown for both

the ML and the MEE algorithms and for configurations with uneven and even bin

widths.

The average distance error, RMS error and 95th error percentile are presented in

Figs. 3.5.a-c. The performance of rmap2 is equal or better than the performance of

rmap1 in most cases. However, with numbers of bins 2 and 3 the difference between

rmap1 and rmap2 is almost zero and starts to grow with increasing numbers of bins.

Throughout the figures the performance of rmap3 is comparable with rmap1; which

one is better, varies with the number of bins, but the variation appears to be random.

Hence the crucial factor to explain the differences between the accuracies provided

by the radio maps is the sample size used to compute one fingerprint. On average,

there are 13 samples per direction in CP data for estimating the radio map parameters.

With the small numbers of bins, the amount of data is enough to estimate separate

parameters for each direction. With larger numbers of bins, the number of required

model parameters increases resulting in decreased model accuracy with the restricted

amount of data. Now the combining of the directions decreases the number of param-

eters to be estimated and allows more calibration data for each parameter. Thus with

larger numbers of bins and restricted amount of calibration data, having a separate
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Fig. 3.5. Effect of direction information in radio maps (rmap1, rmap2, rmap3). Positioning

errors with different numbers of bins, ML and MEE algorithms, and uneven and

even bin widths.

fingerprint for each calibration measurement directions does not improve accuracy,

but increases the radio map size.

As with bin configuration tests, neither treatment of the direction information has ef-
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Fig. 3.6. kNN pattern recognition with sample means: effect of direction information in radio

maps on the average error distance (EMEAN), root mean square error (RMSE), and

the 95th percentile of positioning error (E95).

fect on maximum position error (Fig. 3.5.d); also here the superiority of radio maps

seems to behave randomly as the number of bins changes. The effect is similar re-

gardless of the positioning algorithm and the bin configurations.

The effect of different treatments of direction information in kNN pattern recognition

with sample means is illustrated in Fig. 3.6. Average error distance, RMS error, and

the 95th percentile of positioning error are shown for the three radio maps when the

number of nearest neighbors taken into account in position estimation varies from

1 to 5. For all error measures and numbers of NN, rmap1 gives the most accurate

results. With NN (k = 1), the differences between the radio maps are small, less

than 0.3 m. In the most cases the accuracy with rmap2 is better than with rmap3

but these differences are also smaller than 0.3 m. With respect to direction informa-

tion, pattern recognition algorithms differ from probabilistic models: best accuracy

is obtained with a radio map where the measurements from different directions are

used to form separate fingerprints. This does not contradict with the interpretation of

the direction results of Fig. 3.5: the direction information in the radio map decreased

the positioning accuracy with large numbers of model parameters. With kNN the

number of the required parameters is only one per direction and therefore it can be

determined accurately with the available calibration data. With all the radio maps, the

average error distance and RMS error decrease as the number of nearest neighbors
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Fig. 3.7. Comparison of pattern recognition and probabilistic algorithms: pattern recogni-

tion using 1 and 5 nearest neighbors, ML with 2 and 8 bins, and MEE algorithm

using 2, 3, and 8 bins, both ML and MEE with uneven bin widths.

used in the estimation increases; with the 95th error percentile, the effect is not clear

with 4NN and 5NN. With kNN the number of radio map parameters is not affected

by the number of NNs used.

To compare all the implemented algorithms, the average error distance, RMS error,

and the 95th percentile of positioning error obtained using pattern recognition with

1 and 5 NN, ML with 2 and 8 unevenly spaced bins, and MEE using 2, 3, and 8

unevenly spaced bins are shown in Fig. 3.7. The histograms with small numbers of

bins is chosen to the comparison because with two bins, the probabilities of RSS

belonging to these bins can be expressed using one parameter only, as the other prob-

ability can be obtained by subtracting the first from the probability 1. In this case the

memory size requirement of the radio map is the same as in pattern recognition with

sample means; with three bins, the memory size is already two times as large as with

pattern recognition.

From Fig. 3.7 (and also from Figs. 3.4 and 3.5) it is clear that the MEE algorithm has

better accuracy than the ML. An interesting observation is that the MEE algorithm

with two bins is more accurate than pattern recognition with NN. However, the ac-

curacy of the pattern recognition can be improved by taking more NNs into account

in the position estimation. With five NNs and rmap1, the accuracy is comparable

with ML using eight bins or MEE using three bins, both using rmap2. In pattern
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recognition, the change from NN to 5NN does not increase the radio map size, but

the complexity of the computations increases.

In these tests, the size of the rmap1 for pattern recognition is one half of the rmap2

with eight bins. Using five NNs in pattern recognition yields accuracy almost com-

parable with the MEE with eight bins, as the differences in the errors are less than

1 m. For most applications, trading off this small accuracy degradation for reduced

memory requirement is acceptable. The good performance of 5NN with respect to

MEE and 8 bins may be caused by the restricted amount of calibration data. However,

increasing the amount of the data may not be feasible in practical implementations

due to the high cost of the data collection.

To conclude the results on the direction information in radio maps, the main findings

are summarized as follows:

• The best accuracy with histogram based algorithms was obtained by combining

the calibration samples measured from different directions in the radio map

• With sample means as fingerprints and pattern matching with kNN, the posi-

tioning accuracy is better if there are separate fingerprints for each measure-

ment direction

• With small number of model parameters, better accuracy is obtained with sep-

arate fingerprints for different directions

• With larger number of model parameters, the accuracy is better if the RSS

information from all directions is combined one fingerprint

3.2.5 Effect of Combining Measurements from Adjacent Transmitters

In the test area, the infrastructure WLAN access points contain four antennas each.

Therefore, the measured data contains groups of four MAC-addresses, where the RSS

measurements within each group show high correlation due to the mutual proximity

of their sources. Fig. 3.8 shows the correlation coefficients computed for the RSS data

from different MACs where the higher correlations within the groups of four MACs

can clearly be observed. On the other hand, there is quite large amount of missing

samples in measurement sets (Leppäkoski et al., 2009a). One idea for mitigating the
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Fig. 3.8. Correlation coefficients between the RSS from different MACs.

problem of missing samples is to combine the measurements from the correlating

sources before the computations, both in the radio map and in the estimation.

The correlations between the RSS measurements from adjacent emitters were at-

tempted to be utilized to mitigate the problem of missing samples and to decrease the

size of the radio map. Five alternative methods were used to combine the four signals

from the same AP: mean (mean of the signals), mean2 (mean of the signals where the

minimum values below or equal to -96 dBm were excluded from the data), median

(median of the signals), median2 (median of the signals where the minimum values

were excluded from the data), and max (maximum of the signals). Radio maps were

computed for sample mean based pattern recognition and two different bin configu-

rations, i.e., eight bins using both even and uneven bin widths. For ML and MEE, the

rmap2 was used, i.e., the calibration samples from all measurement directions were

combined to one radio map entry, as this provided the best accuracy in the previously

described tests (Figs. 3.4, 3.5, and 3.7). For pattern recognition, the rmap1 with sep-

arate fingerprint entries for the four measurement directions was used, as it was the

most accurate for pattern recognition (Figs. 3.6 and 3.7).

Position estimates using these radio maps were computed using both the bin configu-

rations and sample mean based pattern recognition with four different kNN numbers.
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Fig. 3.9. Effect of combining signals from correlating sources: ML and MEE algorithms

with bins distributed unevenly (ML1, MEE1) and evenly (ML2, MEE2), and pattern

recognition with 2 – 5 NN.

The results of combined signals together with the original results without source com-

binations are shown in Fig. 3.9, where average error, RMS error, 95th percentile of

position error, and maximum error are shown. Based on Figs. 3.9a, 3.9b, and 3.9c,

it is clear that in most cases the original approach without signal combinations is the

most accurate, yielding always smaller position error than the combined versions.

This can be observed with all the radio maps, all three algorithms, all bin configura-

tions and all numbers on NN. However, in Fig. 3.9d some of the combined signals

provide smaller maximum errors than the uncombined version, i.e., the combination

of the signals provides slightly improved robustness. With ML algorithm the median
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of the correlated sources provides smaller error than uncombined signals with both

bin configurations, and with MEE improved maximum error is obtained using all the

combination functions except maximum. With pattern recognition the combination

of sources does not decrease even the maximum error.

With MEE algorithm the accuracy of the combination using mean2 is almost as good

as with the original signals; the RMSE and E95 are only about 0.6 m larger than with

uncombined signals. The difference is so small that in most cases the accuracy degra-

dation could be traded off for the decreased radio map size and improved robustness

that is obtained by using the combined signal sources. However, in the terms of

RMSE, E95 and EMAX, the accuracy is on about the same level as can be obtained

using pattern recognition with 4 or 5 NNs and uncombined signals. With 4NN and

5NN, the radio map size is two times as large as the radio map size when histograms

with eight bins and four combined signals are used: for one AP, the rmap1 includes

one fingerprint parameter for each calibration measurement direction, and these for

each of the uncombined signals from four transmitters, i.e., 16 parameters in total. At

the same time, in histogram with eight bins using rmap2 and combined signals from

one AP, there are only eight parameters.

From the results shown in Fig. 3.9, and considering the required radio map size, it

can be concluded that if the WLAN infrastructure includes multiple transmitters in

the same AP device, the MEE algorithm with eight bins and combining the calibration

samples from all the measurement directions in one CP and the samples from all the

transmitters of one AP is the most reasonable choice.

To conclude the results on combining of the measurements from adjacent correlating

transmitters, the main findings are summarized as follows:

• Combining of the correlating transmitters decreases the accuracy

• The savings obtained by decreasing the radio map size by 75% cost 1–2 m in

average error

3.2.6 Normalization of WLAN RSS

This Section addresses the problem of normalizing WLAN RSS measurements. The

goal is to make the radio map models obtained using one WLAN device applicable
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to position estimation with another WLAN device. The proposed method was tested

using a laptop PC and two hand-held devices. The normalization testing was based

on the comparison of the position estimation accuracy of two cases: in the first,

the estimation is based on measurements of the same device as was used to create

the radio map, and in the second, the estimation is based on normalization and the

measurements from different devices than what was used to create the radio map

models. Probabilistic fingerprinting algorithms were used in the positioning phase.

An interesting possibility is the case where the models are created using the measure-

ments of devices that are able to update their RSS readings more frequently, while the

estimation is carried out using the device where RSS updates are limited to slower

sampling. The time saving in modeling would be significant if the radio map model

generated using the data of faster device can also be used in estimation phase on the

slower measuring devices.

Data Preprocessing

Most of the standard 802.11 devices transmit power at roughly 20 dBm and can

receive power all the way to -96 dBm, which can be considered as the minimum

of correct RSS measurements (Bardwell, 2002). During the tests, it was found that

sometimes a measurement device reported a RSS value that indicates weaker signal

than the minimum -96 dBm, and sometimes the RSS was not reported at all. In

such a case, the RSS is replaced by a predefined number, which is out of the normal

measurement range, to indicate that the sample is actually missing.

In each CP, the data collection time was approximately five minutes with each device.

The number of received signal samples varied between devices as their average scan

intervals were different; they were approximately 8-10 s, 2.3 s, and 1.0 s for Mobile1,

Mobile2 and the PC, respectively.

In both CPs and TPs, the data was collected only in one direction, which varied

over the area. The TP data was collected in the same directions as data from nearby

CPs. In TPs, the data collection time was only one minute with each device. Both

the PC and Mobile2 report the received signal strengths in dBms, while Mobile1

reports Received Signal Strength Indicator (RSSI) values, which are positive and

where higher value means weak signal. The first task was to find suitable model for
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Fig. 3.10. Mobile1 and Mobile2 measurements compared. Unit conversion of Mobile1:

RSS =−RSSI.

conversion between these RSS dBm and RSSI values. The following equation was

used to convert RSSI values to RSS values:

RSS =−RSSI +b. (3.1)

Without the offset in (3.1), i.e., when b = 0, the time domain observations of RSS

values revealed significant differences between the devices. In Fig. 3.10, all the mea-

surements by the both mobiles from one AP and from all the CPs, i.e., when the

measurement location varies, are shown. The RSSs collected by Mobile2 are almost

all the time 5-10 units higher than RSSs of Mobile1, obtained using (3.1) with b = 0.

On the other hand, the number of missing samples is larger with Mobile2.

Estimation Results

The main interest was to find out how much the positioning accuracy changes when

the radio map is created using the measurements of the PC or Mobile2, while the

measurements for positioning estimation are done using Mobile1. To study how well

a radio map that is computed using measurements of one device can be used for po-

sition estimation with RSS measurements from other device, we first evaluated the

position accuracies using the same devices for radio map generation and position esti-

mation. The radio maps were generated for Mobile1, Mobile2 and PC measurements

using all the calibration data, and estimation tests were done using all test point sam-
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Fig. 3.11. Radio map data and independent test measurements collected using the same de-

vice.

ples of the corresponding devices. No conversions were made to measurements, i.e.,

the radio map of Mobile1 and the estimation were based on reported RSSI values di-

rectly, while the computations with Mobile2 and PC data were conducted using RSS

measurements.

With each device, position was estimated using both ML and MEE algorithms. From

estimated positions, we computed estimation errors, i.e., distances between true and

estimated positions. From these, four error measures were computed: the mean value

of estimation errors and 75th, 90th, and 95th percentiles of position errors. The re-

sults are graphically illustrated in Fig. 3.11. With respect to all the error measures,

the best performance is obtained with Mobile1: mean errors below 3 m and 95th

percentiles approximately 8 m. With respect to mean values and the lower error per-

centiles, Mobile2 performs better than PC, while PC has the lowest 95th percentile.

In most cases, MEE algorithm yields smaller errors than ML. However, the differ-

ences are small, from a couple of centimeters to some tens of centimeters.

The applicability of Mobile2 or PC based radio map for position estimation with

Mobile1 data was studied by generating radio maps from the calibration point mea-

surements of Mobile2 and PC, estimating position with these radio maps and test

point measurements of Mobile1, and finally computing statistics from the obtained

position estimates. Both ML and MEE algorithms were used for estimation. The

number of histogram bins for both algorithms was seven.

Before the generation of radio maps, the RSS measurements of Mobile2 and PC were
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(b) Radio map by PC

Fig. 3.12. Positioning using measurements of Mobile1 and radio maps based on different

devices.

converted to RSSI values using

RSSI =−RSS+b. (3.2)

The radio maps were generated using several different values of offset b, and the

performance of the estimation was analyzed for each case. The mean errors and

90th percentile of error were computed for each test and both estimation algorithms.

The results from tests with Mobile2 based radio map are shown in Fig. 3.12a, while

Fig. 3.12b contains the results from tests with PC based radio map.

From Fig. 3.12 it can be observed that with the positioning measurements of Mobile1,

the radio map by Mobile2 gives better estimation accuracy than the radio map by the

PC. The smallest mean error with radio map of Mobile2 is approximately 3 m, at the

same level as with Mobile1’s own radio map. With the radio map by PC, the smallest

mean error is about 5 m – this is even higher than the mean error 4 m obtained by

using the measurements of the PC both in the radio map and in the estimation. With

Mobile2 based radio map the optimum value of offset b is between 5 and 6. With PC

based radio map, the range of b that yields errors that are very close to the minimum

values is between -6 and 3: the minimum mean error is obtained with b =−3 and the

minimum E90 is obtained with b = 1. The shapes of the error vs. offset value curves

are different for Mobile2 and the PC; with the PC the offset range, which yields errors

that are close to the minimum, is wider.

In the results shown in Figs. 3.11 and 3.12, the samples for radio map were taken

from the whole 5 min span of the calibration data. However, to find out how well the
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Fig. 3.13. Effect of the size of the calibration data set to the positioning accuracy of Mobile1,

when radio maps were obtained using Mobile1 and Mobile2.

faster sampling of Mobile2 could be utilized, the effect of the size of the calibration

data set was studied by computing the radio maps separately from the calibration data

of Mobile1 and Mobile2 using different numbers of calibration samples per CP. The

radio map by Mobile2 was calibrated for the use with measurements of Mobile1 by

applying (3.2) with b = 6. The results of the performance evaluation using the test

data of Mobile1 in the positioning phase are shown in Fig. 3.13.

In Fig. 3.13a, where both the radio map and position estimation were obtained using

Mobile1, the positioning accuracy gradually improves as the number of calibration

samples increases. To reach the levels of 3 m in the average error and 6 m in the

90th percentile of error obtained using all the calibration measurements (shown in

Fig. 3.11), about 20 samples are required, equivalent of 180 s of data collection

time. When radio map is based on Mobile2 and estimation is based on Mobile1

(Fig. 3.13b), in 30 samples or 70 s, the accuracy reaches the same level as which was

obtained when using both calibration and test data of Mobile2, shown in Fig. 3.11.

However, even with 40 samples and 92 s, the accuracy does not reach the same level

as obtained using all the calibration data from the 5 min measurement period, shown

in Fig. 3.12b. On the other hand, as this test does not include the results of calibration

data collection times between 92 s and 300 s, we cannot make confident conclusion

about whether the accuracy level close to the optimum shown in Fig. 3.12b could still

be obtained with calibration data collection significantly shorter than 300 s.

As a conclusion, it is shown that normalization can be found between the devices
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reported in the tests. Using a radio map based on 5 min calibration sets by Mobile2

that was normalized for Mobile1, the positioning accuracy with the test data of Mo-

bile1 was comparable to the accuracy obtained by Mobile1 test data and radio map

based on 3 min calibration data by Mobile1 itself. However, using only 1.5 min of

the Mobile2 calibration data, the accuracy was only on the same level as it was when

using both radio map and test data obtained with Mobile2. With positioning data of

Mobile1, better accuracy can be achieved with the radio map obtained using Mobile2

than with the radio map obtained using the PC. The accuracy obtainable using nor-

malized radio map depends on both the devices: the devise that was used to obtain

the radio map as well as on the device used to measure the test data. If the minor

degradation of the accuracy is acceptable, then the time savings obtained by using

normalization of the existing radio map is significant when compared to the situa-

tion when the calibration measurements for the radio map has to be repeated by all

different device types for which the positioning is needed.

To conclude the results on the RSS normalization among different devices, the main

findings are summarized as follows:

• The RSS normalization between different devices can be obtained using an

offset correction

• The positioning with a normalized radio map obtained using another device

can be as accurate as the positioning with the radio map generated using the

same device that is used for positioning

The following questions regarding the normalization were not studied: 1) how many

common CPs between the devices are needed in order to obtain adequate normaliza-

tion; 2) how accurately the measurement points with different devices need to match.

The cost of the normalization decreases as the number of required common CPs and

the required CP localization accuracy decreases. Therefore more research is needed

on these questions.

3.3 Discussion

In this Chapter, effects of several design parameters of fingerprinting based WLAN

positioning were studied and compared. The evaluations were based on the obtained
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positioning accuracy and memory requirements of the algorithms. The memory re-

quirement is also an indicator of the computational complexity of the estimation

phase, as the number of required unit operations is directly proportional to the stored

model parameters.

Two histogram based algorithms, ML and MEE, were studied and compared. In the

comparisons, the MEE algorithm mostly was more accurate than the ML algorithm.

In the studies regarding the histogram bin configurations, it was found that the accu-

racy of the position estimation improves when the number of bins increases. How-

ever, when the number of bins reaches 8, the accuracy does not improve any more. It

was also found that with numbers of bins less than 6, the accuracy is better, if instead

of having all bins with equal widths, there is one narrow bin for the minimum RSS

of the receiver and the other bins are wider and have equal widths.

In the tests using rmap1 (distinct radio map entries for each measurement directions)

the EMEAN and RMSE with 5NN were 6.87 m and 8.52 m, respectively, and the

improvements from NN were 18% and 21%. The improvements are clearly larger

than reported by Bahl and Padmanabhan (2000) for the similar setup but the errors

are on higher level. Possible factors that cause differences in accuracy levels include

e.g. the differences in the properties of the hardware and the radio propagation chan-

nel. To the latter, the shape of the test area has a significant contribution: in (Bahl

and Padmanabhan, 2000), the test area consisted of narrow corridors, while in this

thesis, the kNN method was tested in a more open library hall. In (Leppäkoski et al.,

2009a), the positioning errors in the test area consisting mainly corridors were only

about 60% of the errors in hall-like test area. A similar difference in accuracy levels

can be observed also in the results of histogram based algorithms presented in Sec-

tions 3.2.3 and 3.2.4 with hall-like test area and in 3.2.6 with a corridor-like test area,

the latter providing clearly better accuracy.

The measurements from different orientations were combined in rmap2 using averag-

ing. With NN the averaging over the directions improved the accuracy very slightly,

in the EMEAN by 0.01 m, and in RMSE by 0.06 m, which corresponds to less than

1% decrease. With 5NN, the accuracy with the combined orientations of rmap2 de-

grades: compared to the results with rmap1 (without averaging), the EMEAN and

RMSE increase by 0.5 m is 0.6 m, i.e., in both cases the errors are 7% larger with

rmap2. In Bahl and Padmanabhan (2000) the best accuracy with the combined direc-

tions was obtained using 3NN, when the accuracy improvement was clear. However,
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the results regarding the effect of the orientation in this thesis cannot directly be com-

bined with the results by Bahl and Padmanabhan (2000), as different functions were

used to summarize the RSS in these studies. With the histogram based algorithms,

the best accuracy was obtained using rmap2, where the measurements in one CP,

from one AP, and from all measurement directions were combined to one histogram.

A kNN algorithm, which used averaging to summarize the RSS measurements, was

compared with histogram based algorithms. Among kNN with k = 1, ...,5; the best

accuracy was obtained with k = 5, and this algorithm was compared with histogram

based ML and MEE algorithms using several different bin configurations. The most

important results are collected into Table 3.1, where the following algorithms are

presented:

• 5NN using rmap1: the most accurate kNN implementation studied in this the-

sis

• MEE algorithm using 8 bins with uneven bin widths, as MEE was more accu-

rate than ML, and increasing the number of bins from 8 did not significantly

improve the accuracy any more

• MEE algorithm using 3 bins with uneven bin widths: uneven bin width is

used because with small number of bins it gives better accuracy than even bin

widths, and with number of bins larger than 3, the accuracy improvement as a

function of the number of bins starts to settle

• MEE algorithm using 8 bins with uneven bin widths and combining in radio

map the measurements from correlating sources – in our case there were the 4

adjacent transmitters included in the same AP device

From the Table 3.1 it can be seen that the EMEAN with the best histogram based

implementation was about 1 m smaller than with 5NN algorithm. In RMSE and

E95 the differences between 5NN and MEE are smaller than in EMEAN, and with

EMAX the sign of the difference changes: the 5NN has smaller maximum errors

than the MEE implementations. Because in Table 3.1 the 5NN uses rmap1 with

separate entries for the measurement directions and MEE uses rmap2 with combined

directions, the MEE implementation required only twice the number of parameters

required by 5NN. It is also observed, that the number of parameters required by the
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Table 3.1. Comparison between 5NN and MEE algorithms

Algorithm 5NN MEE MEE MEE

Number of bins n/a 3 8 8

Radio map rmap1 rmap2 rmap2 rmap2

APs combined – – mean2 –

Parameters/CP/AP 4 3 2 8

EMEAN (m) 6.9 6.9 6.8 6.0

RMSE (m) 8.6 8.7 8.6 8.0

E95 (m) 17.5 17.8 17.6 17.2

EMAX (m) 27.1 28.8 28.8 30.6

histogram can be decreased below the number required by 5NN by using less bins or

by combining the highly correlated APs in the radio map, and still the accuracy is on

about the same level as with the 5NN algorithm. The results in the Table 3.1 can be

summarized as follows:

• With 2–4 parameters/CP/AP, the EMEAN is 6.9 m; with 8 parameters/CP/AP,

it is 6.0 m

• With 2–4 parameters/CP/AP, the RMSE is 8.6 m; with 8 parameters/CP/AP, it

is 8.0 m

• The benefit of doubling the radio map size is only less than 1 m

The main objective in the RSS normalization was to decrease the time required to

generate radio maps by using radio map data of one device also in the positioning

phase of other devices. It was shown that the normalization can be found, and with

some devices, the positioning with normalized radio map can be as accurate as with

the radio map generated by the same device that is used in the positioning phase.

However, in this work the offset parameter for the conversion was obtained in po-

sitioning tests using a large amount of data in search of the correct parameter. A

procedure requiring significantly fewer data samples for the parameter estimation is

needed to save time.

Scalability of the fingerprinting methods was not addressed in this thesis. However,

this is an important issue, as it is obvious that the limits exist to the size of the radio

map that can be handled in a smart phone. Youssef et al. (2003) proposed a clustering



64 3. WLAN Positioning

of the locations in a radio map and selecting the radio map portion to be used in

the estimation by using the set of the strongest hearable APs as a cluster key. As

the MAC addresses of the APs are unique, these can be used to globally search the

required radio map data to be downloaded to the phone. The smart phones can also

have a coarse estimate of their locations from the cellular network base station they

are connected to or from their previous available GNSS based position, which could

also be used as the key to find the local radio map.



4. AIDING PDR WITH INDOOR MAP AND WLAN POSITIONING

Several information sources alternative to GNSS have been proposed for pedestrian

indoor positioning. A DR system based on inertial MEMS sensors is ideal for indoor

navigation in many aspects: the inertial sensors are self-contained, they do not need

any external fields for their operation and they cannot be disturbed or spoofed by

external sources. The MEMS sensors are also small-sized, light-weight, and have

relatively low power consumption. However, the errors in unaided PDR systems

grow without bounds. To limit the error growth, other sources of position information

need to be combined with DR, e.g., WLAN or Bluetooth signals can be used to obtain

absolute position estimates and map based navigation aiding can be used to constrain

the PDR track.

All the mentioned approaches for indoor positioning have their strengths and weak-

nesses. Generally the combination of several sources brings better performance than

a single source alone. There are also situations where radio network based position-

ing is not practical. The radio network infrastructure is vulnerable to fire, power

outages and collapses, which could make radio network based positioning useless

when positioning fire fighters, first responders, police etc. in emergency conditions.

Therefore it is important to have also a possibility to navigate by using a PDR aided

with a map only.

Different variations of algorithms, mainly based on Bayesian filtering, have been pro-

posed for fusing the indoor navigation data from diverse types of sensors and signals

in different combinations. While the general principles of PDR, WLAN position-

ing, indoor map, and data fusion algorithms are presented in Section 2, this Chapter

reviews their applications in pedestrian and indoor navigation.

In this Chapter, models and algorithms are proposed for combining information from

low-cost MEMS inertial sensors, indoor map, and WLAN signals for pedestrian in-

door navigation. Several field tests show the potential of the proposed methods. Re-
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sults of the field tests are presented where MEMS based PDR estimates were fused

with WLAN RSS based positioning, indoor map information and both of them. Com-

plementary extended Kalman filter (CEKF) was used to fuse together WLAN RSS

based position estimates and PDR estimates based on an inertial sensor unit including

a heading gyro and three-axis accelerometer. Particle filters were used to combine the

PDR data with map information and WLAN position or map information only. In the

particle filters, the state model was the same as in the CEKF, i.e., the PDR estimates

were used to predict the new particle states.

One goal of this work was to design a filter and measurement processing that is suit-

able also for real time position estimation; this was demonstrated with a distributed

indoor positioning system including inertial measurements and map matching.

4.1 Related Work

In addition to the absolute positioning methods described in Section 3.1, the alterna-

tives to GNSS for indoor positioning include also relative positioning methods, such

as Dead Reckoning (DR) based on sensors that observe motion and direction. How-

ever, to improve the long term accuracy of DR, it is usually combined with some

absolute positioning method.

4.1.1 Motion Sensors and Dead Reckoning

Even with the most accurate WLAN RSS fingerprinting approaches large occasional

positioning errors are possible, especially indoors. The situation can be improved us-

ing filtering to mitigate the effect of large errors; even better results can be obtained

using a filtering scheme that utilizes the information about the motion characteristics

of the MU. The precise motion characteristics are generally unknown to the filter de-

signer. This can be taken into account by describing the MU motion using stochastic

motion models (Syrjärinne and Saarinen, 1999).

Another option to take into account the motion characteristics of the MU is to mea-

sure the MU movements using motion sensors, such as accelerometers or odometers

to obtain the distance traveled and gyroscopes or electromagnetic compasses to obtain

the direction of the travel. With these sensors, DR algorithm can be used to update
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the information about the previous known position with new measurements on the

direction and the distance traveled (Groves, 2008). Accelerometers, gyroscopes and

electromagnetic compasses based on MEMS technology are light-weight and low-

power devices and, therefore, well-suited for pedestrian navigation (Levi and Judd,

1996). Inertial sensors, i.e., accelerometers and gyroscopes have a special property:

they are self-contained, i.e., they do not require any external signals or fields for their

operation and external fields cannot interfere with them, and they perform equally

well both indoors and outdoors (Titterton and Weston, 2004).

Pedestrian dead reckoning takes into account the special characteristics of the move-

ments of a person on foot and provides better accuracy than the DR based on the

traditional INS mechanization (Mezentsev et al., 2005). When a foot mounted sensor

units are used in PDR, the traditional INS mechanization can be used to estimate the

distance traveled. During the stance phase between the steps, the algorithm performs

Zero-Velocity Update (ZUPT) to reset the inertial errors (Elwell, 1999; Foxlin, 2005).

When sensors are not placed on foot, the ZUPT cannot be used. In these cases, the

distance traveled can be estimated from the periodical acceleration waveform pro-

duced by pedestrian movements (Levi and Judd, 1996; Ladetto, 2000; Käppi et al.,

2001; Meriheinä, 2007).

DR type of data is also available in vision based navigation using camera cells. For

example, the processing of image sequences can be used to provide DR information

to aid some absolute positioning method (Veth, 2011) and odometry based position

estimate can be aided using a vision system to find the landmarks that are expected to

be visible from the current position of the robot (Borenstein et al., 1997). The vision

systems require high computational power and still are not capable of autonomous

navigation (Ruotsalainen, 2013).

4.1.2 Integration of Navigation Systems

With an ideal DR, the MU motion could be perfectly known. In the real world, the

sensor readings always suffer from measurement errors to some extent and the initial

estimates include some uncertainty. In a DR system, the accuracy of the position esti-

mate is affected by the accumulating effects of the errors in the initial estimates of the

position and heading and the sensor and modeling errors. Due to the accumulation of

the errors, the DR position error can grow without bounds. Therefore, the operation
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time of an unaided DR is limited. This problem can be mitigated by integrating with

a DR system some external position information, such as WLAN positioning, so that

the errors can be periodically corrected using the external source. Also maps provide

position information suitable for correcting DR errors. The use of map information

is common practice in car navigation (Quddus et al., 2007), and similar principles

can also be applied in indoor positioning (Evennou et al., 2005; Wang et al., 2007;

Widyawan et al., 2008; Woodman and Harle, 2009; Bhuiyan et al., 2012). The map

provides constraints to the position and can be used to correct DR errors when they

cause the MU track to violate the map constraints.

Data fusion algorithms are used to combine or integrate information from several

sources. For data fusion in position and navigation applications, Bayesian filtering

algorithms are commonly used, such as Kalman Filter (KF) or its nonlinear variant

Extended Kalman Filter (EKF) (Sorenson, 1966), and Sequential Monte Carlo (SMC)

based methods, such as particle filters (Arulampalam et al., 2002). When DR data is

available, the other sources are usually redundant, and in these cases complementary

filters can be used (Brown, 1972-73; Brown and Hwang, 1997). Applications of

CEKF to vehicular navigation have been presented, e.g., by Yang et al. (2000) and Qi

and Moore (2002).

In the data fusion algorithms, mathematical models are needed: process models that

describe how the new filter states depend on the previous ones, measurement models

that describe how the measurements depend on the filter states, and stochastic models

that describe the uncertainties regarding the initial states, state propagation, and mea-

surement errors. The basic filtering algorithms can be found easily from text books

(e.g., Brown and Hwang, 1997; Grewal and Andrews, 2001; Candy, 2009), but the

modeling is left to the implementers: how to choose the filter states and measure-

ments, what real world effects to include into the model, which less significant ef-

fects can be ignored, how to mathematically express the relations between the states,

measurements, and the uncertainties involved, and how to choose the adjustable pa-

rameters of the model. Also the implementation details need consideration, e.g., the

issues related to the computational load.

4.1.3 Pedestrian Indoor Navigation

Gabaglio (2001) proposed a CEKF in feedback configuration for pedestrian naviga-
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tion using a single-axis gyro, two-axis accelerometer, and GPS receiver. It can be

noticed that the authors of the reports do not necessarily mention that their filter is

a complementary filter; however, the complementary filter structure can be inferred

from the way how the filter states and its measurement inputs are chosen. Frank et al.

(2009) proposed an indoor pedestrian positioning system including a CEKF in ERT

configuration to combine WLAN fingerprinting and foot mounted sensor unit and

EKF with ZUPT to produce the PDR estimate.

Davidson and Takala (2013) proposed a body-mounted 6DOF IMU for pedestrian

navigation in a CEKF feedback configuration where the traditional strap-down mech-

anization of the IMU was used to produce the reference trajectory. This was corrected

using the velocity estimates obtained with step detection and step length estimation.

However, the heading cannot be corrected using this method.

The PDR combined with map matching but without particle filters has also been pro-

posed. (Gilliéron et al., 2004) proposed a body-mounted PDR unit that was aided

with node-link based map-matching using point-to-point and point-to-link matching

methods. Fang et al. (2005) proposed a system of a body-mounted sensor unit and

radio network based positioning, where the user can assist the positioning by ex-

ecuting a manual map-matching through the graphical user interface of the system.

Glanzer et al. (2009) proposed system that combines the track generated using a foot-

mounted IMU with the building information model consisting of polygons defining

rooms, staircases, doors, and transitions between them. The authors state that their

method is not based on particle filtering or any other known map matching method

but they do not describe the method in more detail.

The PDR combined with WLAN positioning and node-link based map-aiding with

particle filters has been proposed by e.g. Khan and Syrjärinne (2013). Evennou

et al. (2005) proposed the fusion of WLAN fingerprinting and node-link based map-

aiding by using particle filter without motion sensors. Indoor positioning systems

based on WLAN positioning and map-aiding particle filters without a PDR or with

only a partial PDR are proposed also by Wang et al. (2007) and Widyawan et al.

(2008). The former proposed a system with step lengths obtained from a sensor unit

but without sensor based heading estimate, while the latter proposed a system using

motion models without sensors.

Beauregard et al. (2008) and Woodman and Harle (2008) proposed very similar sys-
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tems to the one used in this thesis, based on particle filter and map-aiding with

obstacle models. However, in their systems, foot-mounted sensor units were used.

Although the foot-mounted PDR has some advantages, such as easier tuning and al-

gorithm development (Groves et al., 2007), it also has its disadvantages: due to its

position it is vulnerable to mechanical knocks and it is difficult to protect unless it

is not embedded into the structure of the shoe, in which case the power supply and

maintenance of the unit becomes difficult. The foot-mounted unit is also more sus-

ceptible to shocks, which significantly increase the gyro errors (Davidson and Takala,

2013).

The systems with similar components as in the one used in this thesis, including a

body-mounted PDR and map-aiding particle filter with obstacle map were proposed

by Woodman and Harle (2008), Kemppi et al. (2010), Kirkko-Jaakkola et al. (2013),

and Nurminen et al. (2013). In these works, the methods for decreasing the com-

putational load of the map checks were not considered, except in (Nurminen et al.,

2013), where MATLAB’s MEX-files were used to speed up the computation in the

most critical parts of the algorithm.

The initialization of the navigation states, such as the coordinates and the heading,

has a significant effect on the performance of the navigation filter. If the initial infor-

mation is known to be inaccurate, the diagonal elements of the initial covariance of

the EKF are set to large values and in particle filter, the initial values are drawn from

distributions with large variances. In this case, the convergence of the filter states

towards their true values is slow. Therefore, methods for decreasing the initial un-

certainty has been discussed by many researches, e.g., Woodman and Harle (2009);

Kemppi et al. (2010); Kirkko-Jaakkola et al. (2013); Nurminen et al. (2013). RF-

based methods to intialize the particle filters are used in (Woodman and Harle, 2009)

and (Kemppi et al., 2010); in (Kirkko-Jaakkola et al., 2013) the filter is initialized

indoors using a high- sensitivity GNSS receiver.

In this thesis, WLAN positioning and map matching were used to limit the PDR error

growth. The well-developed Bayesian approach in the form of particle filters was

chosen to allow automatic map-aiding and map-aiding without WLAN positioning

was also studied. To present the map information, an obstacle model is preferred

over the node-link model. Although the node-link model requires less particles and

is computationally less demanding, in PDR integration the latter has the advantage

that it allows the estimates to use all the available space: with the obstacle model only
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the impossible transitions are prohibited while in node-link model all the estimates

are forced to the most probable routes. The map matching without PDR was not

considered, because the PDR allows the map-aided indoor navigation even without

the aid of a radio network based positioning. Due to its mechanical robustness and

the ease of its maintenance, the body-mounted sensor unit was chosen to provide the

PDR information.

The computational load of the map checks was decreased by developing novel al-

gorithms for map checks. With these, the obstacle lines that are outside the area

where the collisions with the particles are possible, were left out of the map checks.

A CEKF fusing WLAN positioning and PDR estimates from a body-mounted IMU

was compared to map matching particle filters. The alternative CEKF configurations,

i.e., the ERF and the feedback configurations, were also compared with each other.

The availability of the methods to decrease the initial uncertainty of navigation states

was assumed: the GPS was used in one test, while in others the errors of the initial

values from their true values and the initial variances were simulated based on the

assumed outdoor-to-indoor entrance scenario.

4.2 Methods for Data Processing and Fusion

This Section describes the methods used in the performance evaluations of the map

aided indoor navigation. The emphasis is on the implementation details and modifi-

cations to the general methods described in Section 2.

4.2.1 PDR Preprocessing

In order to use step detection based PDR, the step length estimate is needed. In this

thesis, the step length estimate was computed using a linear model relating the step

frequency, i.e., the inverse of step duration (2.11) to the step length. With this signal

pattern, the exponent q = 1 was used in model (2.17):

∆sk =
csc

te (k)− ts (k)
+b. (4.1)

To obtain the calibration parameters csc and b, ten sets of walking data were collected

in a straight corridor using an accelerometer triad. The straight path of a known
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Fig. 4.1. Step length calibration using 10 test data sets to obtain csc and b. Observations

shown with circles.

length was walked ten times. As it is known that the step length is also a function

of the walking speed (Levi and Judd, 1996), the walking speed was varied in the test

walks in order to collect step samples with different step lengths. The walker tried

to adjust the walking speed to normal, slower than normal, slow, faster than normal,

and fast; each of the speeds were used in two test walks.

With the data, the steps were detected from the acceleration norms and step inter-

vals were determined. Using step intervals averaged over each walk, the number of

detected steps per walk, and the known length of total traveled distance per walk, a

linear fit can be found between average step frequencies and step lengths of each test

data set, as shown in Fig. 4.1. These parameters can be used in real-time to estimate

step length. In regular walking, this gives fairly good estimates and other methods,

e.g., map matching, can be used to fix small errors.

For the distributed indoor positioning system the algorithms for step detection and

step length estimation, described in Section 2.2, were needed in real time. The state-

machine description of the implemented step detection algorithm is shown in Fig. 4.2.

In the figure, the binary states are indicated by circles. In the states drawn with dotted

double line, the algorithm produces output, and in the state drawn with solid double

line, all the memory variables are zeros. The possible state transitions are indicated

by the arrows connecting the states. The text associated to the arrows consists of two

parts: before the slash (/) is shown the event or the condition that activates the state

transition and after the slash the actions related to the state transition are listed. In

this algorithm, the actions are changes to the memory variables.
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Fig. 4.2. State diagram of the step detection algorithm. The function outputs the ‘Step de-

tected’ status and the values of tstepStart and tstepEnd when the state is stepEnd or

nextStep. The current time is denoted by ti. The notation is described in Table 4.1.

The events that activate the state transitions, the required threshold parameters, and

the memory variables are described in Table 4.1. The step detection algorithm in-

cludes constraints for proper steps, such as thresholds for minimum time between

g-crossings (ttrMin) and minimum value for peak acceleration in detected step (atrMin).

The algorithm considers g-crossings as possible new step starts and checks the con-

straints to accept or reject the start. The end of the current step is found in two

situations: when the start of the next step is accepted, or when the start of the next

step does not follow the current step in the predefined time frame (ttrMax). The lat-

ter occurs when the user stops walking. The algorithm outputs both the start time

ts (k)← tstepStart and the end time te (k)← tstepEnd of the kth step either when the start

of the next step is detected or when step end is concluded from the detection timeout.

The symbols used in Fig. 4.2 and Table 4.1 are defined as follows: ti is the measure-

ment time of the current sample, ai is the norm of the filtered acceleration at ti, g is the

gravitational acceleration, and ttrMax, ttrMin, and atrMin are the threshold parameters of

the algorithm. Variables tgCross, tstepStart, tnextStep, and tstepEnd include the memory of

the algorithm.
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Table 4.1. Events that activate the state transitions, threshold parameters, and memory vari-

ables of the step detection algorithm described in Fig. 4.2

EgCrossing g-crossing found on rising signal: ai−1 < g≤ ai

EtgCrossMax timeout, time from g-crossing exceeds limit: ti− tgCross > ttrMax

EtStepMax timeout, time from step start exceeds limit: ti− tstepStart > ttrMax

EtStepMin new step start possible: ti− tstepStart ≥ ttrMin

ElocalMax found peak high enough: ai−2 < ai−1 & ai−1 ≥ ai & ai−1 ≥ atrMin

EnextSample new sample ai+1 at ti+1 available

ttrMax maximum duration of a step

ttrMin minimum duration of a step

atrMin peak minimum during walk

tgCross time of g-crossing

tstepStart time of step start

tnextStep time of the next step start

tstepEnd time of detected step end

The heading change estimation relies also on the step detection; in order to use the

estimated heading change and step length together in the dead reckoning process,

their sampling intervals must be the same. Therefore, the results of the step detection

are used to obtain the integration limits for the angular rate ωi to estimate the heading

change ∆ψk:

∆ψk =
1

fg
∑

i

ωi,

(

ts(k)

fg
≤ i <

te(k)

fg

)

(4.2)

where fg is the sampling frequency of the gyro measurements and i is the sample

counter.

After obtaining the heading change during a step using (4.2), the PDR preprocessing

algorithm outputs it together with the step length. However, gyro output needs to

be integrated also during the stops between the intervals of continuous walk. For

example, in order to walk through a closed door, the user usually needs to stop in

order to open the door, and the opening action typically causes the user body and

the body mounted gyro to turn slightly, after which the walking can continue before

the body angle has fully bounced back from the door opening. If the gyro readings

during this stop are not taken into account, a permanent error is introduced into the

heading estimate. Therefore, the implemented algorithm restarts the integration of

gyro outputs after each step end, and continues integration even if a step start does
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not follow immediately. After a stop, when the algorithm eventually detects the start

of a new step, it outputs zero step length and the heading change integrated over the

stop time; this does not affect the total distance traveled, but ensures that the heading

estimate is up to date.

In the PDR mechanization in two dimensions (see Fig. 2.4), the position estimate

is computed by starting from the initial coordinates, x0, y0, and the initial heading

angle ψ0. As the DR method is not able to determine absolute positions, these initial

estimates have to be determined using alternative positioning methods, such as radio

navigation or satellite based positioning.

In unaided PDR, the heading and horizontal coordinates can be propagated using

ψk = ψk−1 +∆ψk−1 (4.3a)

xk = xk−1 +∆sk−1 cos(ψk−1) (4.3b)

yk = yk−1 +∆sk−1 sin(ψk−1) . (4.3c)

In (4.3) the estimates based on step detection and step length estimation are available

at step intervals ∆tk; ∆tk is the time span between tk and tk+1. Generally the step

interval is time-variant as it is affected by the walking style and the speed of the

pedestrian.

In this thesis, the estimated step length and the heading changes are also used in the

the fusion filter, i.e., CEKF or particle filter, to keep track of the accumulating total

heading and coordinates. The initial heading and coordinates are defined as the initial

conditions of the filter.

As the estimation of the distance traveled is based on the shape of the acceleration

signal rather than the integration of the signal, the algorithm is quite robust against

the usual accelerometer bias or scale factor errors. However, gyro errors are more

critical. When the sensor unit is attached to the torso, the sensitive axis of the gyro is

often tilted from the vertical, which is seen as a scale factor error in the gyro output.

The tilt also varies slightly during the walk movement. In this thesis the average of

this error was estimated and used to correct the heading change estimates. The tilt

correction needs to be estimated once for each user, because even when the unit is

attached to the same position on the torso, the tilts are different on different users. In

the systems implemented in this thesis, the correction of the effects of the other gyro

errors, such as bias and noise were left to the fusion filter.
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4.2.2 Complementary Extended Kalman Filter

In this thesis, the complementary filter is used to integrate PDR estimate with WLAN

positioning. As the model is non-linear, EKF is used, and due to the complementary

filter formulation, the resulting filter is CEKF. The CEKF can be implemented in two

different forms: it can be formulated as a feedback configuration, sometimes called

an error state KF, or as an Embedded Reference Trajectory (ERT) form. The models

for both the alternatives are derived in the following.

Embedded Reference Trajectory Configuration

The process model for the CEKF is based on the DR equations (4.3). If the initial

state [∆ψk−1,xk−1,yk−1]
T was perfectly known and the heading change and the step

length estimated without errors, the system state after next step could be determined

accurately using (4.3). However, the PDR outputs are corrupted by errors and the

initial states are uncertain to some extent. As the errors of the PDR outputs are

difficult to predict and they vary in time, they are modeled as white noise processes.

They can be expressed as the sums of their true values and their errors:

∆ψk = ∆ψ∗k +n∆ψk
(4.4a)

∆sk = ∆s∗k +n∆sk
(4.4b)

where ∆ψ∗k and ∆s∗k are the true values of the heading change and the step length,

respectively, and n∆ψk
and n∆sk

are the errors in their PDR based estimates.

By expressing the true (but unknown) DR outputs using the known estimated DR

outputs and their unknown errors, the PRD equations can be written as

ψk = ψk−1 +∆ψk−1−n∆ψk−1
(4.5a)

xk = xk−1 +∆sk−1 cos(ψk−1)−n∆sk−1
cos(ψk−1) (4.5b)

yk = yk−1 +∆sk−1 sin(ψk−1)−n∆sk−1
sin(ψk−1) . (4.5c)

By denoting

xk =

⎡

⎢

⎣

ψk

xk

yk

⎤

⎥

⎦

,uk =

[

∆ψk

∆sk

]

,wk =−

⎡

⎢

⎣

1 0

0 cos(ψk)

0 sin(ψk)

⎤

⎥

⎦

[

n∆ψk

n∆sk

]

, (4.6)
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the propagation of the state can be expressed a function of uk−1 and wk−1. The

equations (4.5) written in the form of the EKF state model (2.31) are

xk = xk−1 +

⎡

⎢

⎣

1 0

0 cos(x1,k−1)

0 sin(x1,k−1)

⎤

⎥

⎦

uk−1 +wk−1, k = 1, ... (4.7)

where the noise variance E
[

wk−1wT
k−1

]

= Qk−1. The mth element of the vector x at tk

is denoted by xm,k. The input uk−1 is deterministic, as its values are perfectly known

once estimated by the PDR preprocessing algorithm. However, these known values

differ from the true values. This is taken into account by the noise input wk−1. The

sine and cosine terms make the noise model adaptive to the heading.

The state prediction (2.33) of the filter is

x̂−k = x̂k−1 +Gk−1uk−1 (4.8)

where

Gk−1 =

⎡

⎢

⎣

1 0

0 cos(x̂1,k−1)

0 sin(x̂1,k−1)

⎤

⎥

⎦

. (4.9)

For covariance prediction, (4.8) is linearized using (2.34) to obtain the approximation

of the state transition matrix:

Fk−1 =

⎡

⎢

⎣

1 0 0

−sin(x̂1,k−1)u2,k−1 1 0

cos(x̂1,k−1)u2,k−1 0 1

⎤

⎥

⎦

. (4.10)

The variance Qk−1 is approximated as functions of the variance of step length noise

σ2
∆s, the variance of heading change noise σ2

∆ψ, and the estimated heading x̂1,k−1:

Qk−1 = Gk−1

[

σ2
∆ψ 0

0 σ2
∆s

]

GT
k−1 =

⎡

⎢

⎣

σ2
∆ψ 0 0

0 cos2 (x̂1,k−1)σ2
∆s sin(x̂1,k−1)cos(x̂1,k−1)σ2

∆s

0 sin(x̂1,k−1)cos(x̂1,k−1)σ2
∆s sin2 (x̂1,k−1)σ2

∆s

⎤

⎥

⎦

.

(4.11)

The variances σ2
∆s and σ2

∆ψ are adjusted to match with the observed uncertainty in

the heading change and the step length estimated from the IMU measurements. The
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approximation of the heading as a constant during a step causes some errors and

the possible sensor unit tilts during the walk cause small misscalings to the angular

rate measurements of the vertical axis gyro. Therefore, in the filtering algorithm the

heading change uncertainty σ2
∆ψ has to be larger than effect of the pure sensor errors.

In σ2
∆s the main contributors are the modeling errors in the step detection and step

length estimation.

In this filter, the measurement input is zk = [xWk
,yWk

]T where xWk
and yWk

are the

x and y coordinates estimated using WLAN fingerprints, respectively. The same

variance σ2
W is used for both the coordinates. The measurement equation is

zk = Hxk +vk (4.12)

where

H =

[

0 1 0

0 0 1

]

and E
[

vkvT
k

]

= R =

[

σ2
W 0

0 σ2
W

]

.

No linearization is needed for (4.12) as it is already linear. The derived CEKF algo-

rithm is summarized in Algorithm 4.1. The pseudocode is written using the syntax

described in (Brito, 2009) and comments are indicated by enclosing them between /*

and */. The filter is started from the initial estimate x̂0 and the initial covariance P0,

which are set according to the best available estimate about the initial position and

heading and the uncertainty of their initial information.

Feedback Configuration

To derive the equations for the CEKF in feedback configuration, also known as the

error state filter, the heading and the coordinates are expressed as the sums of DR

estimates and estimation errors

ψ∗k = ψk +δψk (4.13a)

x∗k = xk +δxk (4.13b)

y∗k = yk +δyk (4.13c)

where ψ∗k , x∗k , and y∗k are the true heading and coordinates, ψk, xk, and yk are the

estimates obtained by the DR algorithm running on the change estimates ∆ψk and

∆sk defined in (4.4), and δψk, δxk, and δyk are the errors in the DR estimates. In
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Algorithm 4.1 CEKF in embedded reference trajectory configuration

1) Initialize state x̂0, variance P0, step counter k = 0

2) Wait until new estimate from PDR or WLAN positioning available

3) if New PDR estimates uk−1 available (step detected) then

4) k← k+1 /* step counter */

5) Prediction

Predict state using (4.8)

Linearize state equation using (4.10)

Compute state noise covariance using (4.11)

Predict state covariance: P−k = Fk−1Pk−1FT
k−1 +Qk−1

6) else if New WLAN positioning estimate available then

7) Measurement update

Compute the gain Kk = P−k HT
k

(

HkP−k HT
k +R

)−1

Update the state x̂k = x̂−k +Kk

(

zk−Hkx̂−k
)

Update the state covariance Pk = (I−KkHk)P−k

8) end if

9) Go to line 2

the filter, the knowledge on the error states δψk, δxk, and δyk is used to correct the

DR estimates. Thus the algorithm is split into two parts: DR algorithm based on the

incomplete sensor information and error state filter that provides corrections to the

DR estimates.

By using (4.13), (4.5) can be rewritten as

ψ∗k = ψk−1 +δψk−1 +∆ψk−1−n∆ψk−1
(4.14a)

x∗k = xk−1 +δxk−1 +
(

∆sk−1−n∆sk−1

)

cos(ψk−1 +δψk−1) (4.14b)

y∗k = yk−1 +δyk−1 +
(

∆sk−1−n∆sk−1

)

sin(ψk−1 +δψk−1) . (4.14c)

Using the first order Taylor’s series expansion the sine and cosine terms in (4.14) can

be approximated as

cos(ψk−1 +δψk−1)≈ cos(ψk−1)− sin(ψk−1)δψk−1 (4.15a)

sin(ψk−1 +δψk−1)≈ sin(ψk−1)+ cos(ψk−1)δψk−1. (4.15b)
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By substituting (4.15) into (4.14) and rearranging the terms the following is obtained:

x∗k ≈ xk−1 +∆sk−1 cos(ψk−1)+δxk−1−∆sk−1 sin(ψk−1)δψk−1

− cos(ψk−1)n∆sk−1
+ sin(ψk−1)δψk−1n∆sk−1

(4.16a)

y∗k ≈ yk−1 +∆sk−1 sin(ψk−1)+δyk−1 +∆sk−1 cos(ψk−1)δψk−1

− sin(ψk−1)n∆sk−1
− cos(ψk−1)δψk−1n∆sk−1

. (4.16b)

Now (4.14a) and (4.16) can be expressed as two recursive systems containing the DR

part and error state part, as proposed in (4.13). The dead reckoning part contains all

the terms without error and noise variables:

ψk = ψk−1 +∆ψk−1 (4.17a)

xk = xk−1 +∆sk−1 cos(ψk−1) (4.17b)

yk = yk−1 +∆sk−1 sin(ψk−1) . (4.17c)

The error state equations are formed from the terms the error and noise variables:

δψk = δψk−1 +n∆ψk−1
(4.18a)

δxk = δxk−1−∆sk−1 sin(ψk−1)δψk−1

− cos(ψk−1)n∆sk−1
+ sin(ψk−1)δψk−1n∆sk−1

(4.18b)

δyk = δyk−1 +∆sk−1 cos(ψk−1)δψk−1

− sin(ψk−1)n∆sk−1
− cos(ψk−1)δψk−1n∆sk−1

. (4.18c)

By denoting δxk = [δψk,δxk,δyk]
T , (4.18) can be written as

δxk =

⎡

⎢

⎣

1 0 0

−∆sk−1 sin(ψk−1) 1 0

∆sk−1 cos(ψk−1) 0 1

⎤

⎥

⎦

δxk−1

+

⎡

⎢

⎣

1 0

0 −cos(ψk−1)+ sin(ψk−1)δx1,k−1

0 −sin(ψk−1)− cos(ψk−1)δx1,k−1

⎤

⎥

⎦

[

n∆ψk−1

n∆sk−1

]

(4.19)

In the feedback configuration of the complementary filter for DR system, the error

states get non-zero values only after measurement update. After that the error states

are used to correct the DR estimate and then immediately set back to zeros, i.e.,

δxk−1 = 0. Therefore the last terms in (4.18b) and (4.18c) and in the coefficients of
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n∆sk−1
in (4.19) are zeros and can be omitted. The error state system (4.19) conforms

with the KF state propagation model (2.18) with adaptive, time variant system matrix

and noise:

δxk = Fk−1δxk−1 +wk−1 (4.20)

where

Fk−1 =

⎡

⎢

⎣

1 0 0

−∆sk−1 sin(ψk−1) 1 0

∆sk−1 cos(ψk−1) 0 1

⎤

⎥

⎦

(4.21)

and

wk−1 =

⎡

⎢

⎣

1 0

0 −cos(ψk−1)

0 −sin(ψk−1)

⎤

⎥

⎦

[

n∆ψk−1

n∆sk−1

]

. (4.22)

In the feedback configuration of the CEKF, the prediction part (4.20) of the EKF is

applied only to the state covariance. The covariance is propagated using (2.24). The

covariance Qk−1 of the state noise is computed using

Qk−1 = E
[

wk−1wT
k−1

]

=

⎡

⎢

⎣

σ2
∆ψ 0 0

0 cos2 (ψk−1)σ2
∆s sin(ψk−1)cos(ψk−1)σ2

∆s

0 sin(ψk−1)cos(ψk−1)σ2
∆s sin2 (ψk−1)σ2

∆s

⎤

⎥

⎦

. (4.23)

The measurement input of the filter is the difference between the WLAN based posi-

tion estimate and the DR estimate obtained using (4.17). Taking into account (4.13),

the difference can be written as

zk =

[

xWk
− xk

yWk
− yk

]

=

[

x∗k +nxWk
−
(

x∗k−δxk

)

y∗k +nyWk
−
(

y∗k−δyk

)

]

=

[

δxk +nxWk

δyk +nyWk

]

= H

⎡

⎢

⎣

δψk

δxk

δyk

⎤

⎥

⎦

+vk

(4.24)

where H and vk are the same as in (4.12). The derived algorithm for CEKF in feed-

back configuration is summarized in Algorithm 4.2.
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Algorithm 4.2 CEKF in feedback configuration

1) Initialize PDR estimates ψ0, x0, y0, state variance P0, step

counter k = 0

2) Wait until new estimate from PDR or WLAN positioning available

3) if New PDR estimates ∆ψk−1 and ∆sk−1 available (step detected)

then

4) k← k+1 /* step counter */

5) PDR propagation

Propagate estimates using (4.17)

Linearize state equation using (4.21)

Compute state noise covariance using (4.23)

Propagate state covariance: P−k = Fk−1Pk−1FT
k−1 +Qk−1

6) else if New WLAN positioning estimate available then

7) Measurement update

Compute zk using (4.24)

Compute the gain Kk = P−k HT
k

(

HkP−k HT
k +R

)−1

Update the state (correction to PRD) δx̂k = Kkzk

Update the state covariance Pk = (I−KkHk)P−k

8) Apply estimated correction to PDR estimate

⎡

⎢

⎣

ψk

xk

yk

⎤

⎥

⎦

←

⎡

⎢

⎣

ψk

xk

yk

⎤

⎥

⎦

+δx̂k

9) δx̂−k ← 0 /* Reset error states */

10) end if

11) Go to line 2

4.2.3 Particle Filter for Map Aided Navigation

For indoor map aiding of DR, the general EKF is not applicable. The EKF approach

assumes measurements which can take several values on a certain range, such that the

filter can compare the actual measurement to its predicted value and use the difference

to correct the estimate. With indoor maps the available information is of different
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type: for a given MU transition, we can conclude from the wall information whether a

certain transition is possible or not, i.e., we have an on/off type of measurement. From

this, it may be possible to conclude whether the estimate needs to be corrected, but it

is very hard to say how much and to which direction. Now there is also a discontinuity

at the point of linearization, and the partial derivative needed for the linearization of

the measurement equation (2.35) does not exist. Therefore the covariance cannot be

predicted (Julier and Uhlmann, 1996).

A solution is to use particle filters: instead of one filter, several distinct particles can

simultaneously try to estimate the same quantities. The states of the particles are

driven by the same process model, but their states differ due to their simulated noise

inputs. Now each of the particles can probe the walls individually and get the ’tran-

sition impossible’ or ’transition possible’ result depending on whether the transition

crosses the wall or not. The particles with impossible transition will not survive into

the next iteration cycle; the algorithm will replace them by picking replacements from

the group of particles with feasible transitions. The positions of the particles in this

group provide an approximate distribution of the position of the MU, and statistical

functions such as mean, median, or mode can be used to obtain the position estimate

of the MU. In this thesis, a bootstrap particle filter (Candy, 2009) is used for map

aided navigation. The block diagram of the particle filter algorithm is shown Fig. 4.3.

Propagation of Particles

The particles are propagated using an equation similar to (4.5) in CEKF, except that

now the noise components of the PDR outputs are simulated using a random number

generator and then added to the particle states. The proposal distribution (2.38) is

obtained using the simulated noise sequences n∆ψ and n∆s together with the PDR

outputs, step length ∆sk−1 and the heading change ∆ψk−1, estimated using (4.1) and

(4.2), respectively. The samples from the proposal distribution are obtained by

x
( j)
k = x

( j)
k−1 +

⎡

⎢

⎢

⎣

∆ψk−1 +n
( j)
∆ψ

(

∆sk−1 +n
( j)
∆s

)

cosx
( j)
1,k−1

(

∆sk−1 +n
( j)
∆s

)

sinx
( j)
1,k−1

⎤

⎥

⎥

⎦

(4.25)
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Fig. 4.3. Block diagram of the signal processing system including the PDR preprocessing

of the sensor data and particle filter to perform the PDR state propagation and

measurement update using WLAN positioning and indoor map matching.

where the elements of the state vectors x
( j)
k are heading, x-coordinate, and y-coordinate.

If the structured map model is used, the room identifier of particle location is included

into the particle state vector as the fourth element. The superscript j is the index of

the particle; the subscript k is the index of the detected step and grows with time.

The state variable x
( j)
1,k is the first element of the state of particle ( j), i.e., its heading

estimate. The variances of the noise sequences introduced through n∆ψ and n∆s are

adjusted to match with the observed uncertainty in ∆ψ and ∆s.

Measurement Updates and Resampling

The measurement update is performed in two different cases: when new WLAN

position estimates become available or when new PDR estimates are ready. In WLAN

based measurement update the coordinates of the WLAN based position estimates are
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assumed to be independent and identically Gaussian distributed with variance σ2
W . In

bootstrap filter the resampling is performed at every time step and the weights w
( j)
k

are proportional to the likelihoods p
(

zk|x
( j)
k

)

:

w
( j)
k = exp

⎧

⎪

⎨

⎪

⎩

−

(

x
( j)
2,k− xWk

)2
+
(

x
( j)
3,k− yWk

)2

2σ2
W

⎫

⎪

⎬

⎪

⎭

(4.26)

where x
( j)
2,k and x

( j)
3,k are the x and y coordinates of the particles, xWk

and yWk
are the

WLAN based coordinate estimates, and σ2
W is the uncertainty of xWk

and yWk
. Before

the next particle state propagation, importance resampling is performed. For the

resampling, the weights are normalized:

w
( j)
k ←

w
( j)
k

∑N
j=1 w

( j)
k

(4.27)

where N is the number of particles. In the resampling after WLAN updates, N parti-

cles are sampled with replacement from the population of
{

x
( j)
k

}

. The probability of

the jth particle to be selected and continue to the next propagation step is w
( j)
k .

After new PDR estimates, the particle likelihoods are based on the map based obsta-

cle checks. This weight update is performed every time the algorithm has propagated

particles using (4.25) and the PDR information. The obstacle information from the

map fits easily into particle filtering. As it is impossible to walk through obstacles,

the probability of a particle transition that intersects the line segment defined by ob-

stacle line coordinates is very small. A measurement update with binary likelihood

is used:

w
( j)
k = p

(

zk|x
( j)
k

)

=

{

0, if the particle crosses an obstacle

1 otherwise.
(4.28)

If a particle goes through an obstacle, its weight goes to zero and it dies; only the par-

ticles with feasible transition history survive. After the obstacle based weight update,

the remaining particles are resampled so that the number of particles is returned to the

original. This choice to let the particles that survived the obstacle checks to continue

directly to the next propagation step without the risk of not getting selected in sam-

pling with replacement is adopted from the field of genetic algorithms. In genetic

algorithms, a principle of elitism may be used, when a certain number of the best
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members of the population are always kept to the next generation without selection,

crossover, and mutations among them (Jang et al., 1997). As the obstacle checking is

computationally the heaviest part of the filter, the elitism is applied to all the survived

particles to ensure that no diversity among this group will be lost. If WLAN based

estimates are not available at all, then (4.26) and (4.27) are omitted and only the map

based measurement update (4.28) is performed.

Initialization of Particles

In the initialization of the particle filter, the states of the particles (x
( j)
0 ) are given

values that are generated from the distribution with the statistical properties (mean

and covariance) best reflecting the available knowledge about the initial position and

heading. If the initial information is inaccurate, the initial coordinates and heading

are drawn from distributions with large variances, and if the knowledge is fairly ac-

curate, the variances are small. For example, if we only know that the user is inside

a building, the initial coordinates can be spread all over the building floor plan and

the initial headings are spread to cover the whole circle (360◦). On the other hand,

if the user has just entered the building, and the GPS coordinates of the user device

are known few seconds earlier, we may conclude that the user coordinates indoors

are near the entrance closest to the last GPS coordinates and the standard deviations

of the initial coordinate states can be set to few meters. If the device also has tracked

the heading of the user all the way from outdoors to indoors, we can also have quite

good estimate of the initial heading indoors, and the standard deviation of the initial

heading can be set to some tens of degrees. In the tests performed in this thesis,

this outdoor/indoor transition scenario in the initialization is assumed. The particle

initialization for navigation system is explained in more detail in (Kirkko-Jaakkola

et al., 2013).

For large buildings, a modest number of particles (e.g. some hundreds) is not large

enough to cover the whole area of the building and all possible directions adequately.

One solution would be adding more particles to the initial cloud and then gradually

decrease the number to its normal value, but that could induce significant problems

with the computational load, especially in real time applications, causing the wall

check processing of the first steps to take much longer time than it takes for the user

to walk the next steps. Therefore, methods for decreasing the initial uncertainty are
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needed. These may include a positioning method that is capable of giving coordinate

estimates indoors with reasonable accuracy, i.e., with accuracy level of a room and its

neighbors (Kirkko-Jaakkola et al., 2013), or the utilization of radio navigation aids

prior to indoor entrance. A reliable means for detecting the environmental context

of the user, especially the separation between indoor and outdoor environments, is

essential for the utilization of the prior outdoor location in particle initialization when

entering indoors; methods for indoor/outdoor detection have been described, e.g., in

(Eronen et al., 2013) and (Zhou et al., 2012).

Sometimes a re-initialization of the particles is needed during a particle filter run.

Due to the unmodeled effects, such as small errors in the map data or a possible

small sliding of the sensor unit with respect to the user’s body, it occurs that due to

the error all the particles get trapped into a dead end. In order to allow the particles

to escape the dead end, in these situations the propagation step (4.25) is re-iterated

from x
( j)
k−1 (when the particles were not yet trapped) with noise variances significantly

larger than n∆ψ and n∆s.

4.2.4 Map Information

In a particle filter using an obstacle map, the obstacle check is based on the compu-

tation of the intersection of the line segment that define a wall or an obstacle and the

line segment that define the transition of a particle. In the crossing checks the x and y

coordinates of the particles are used, defined by the 2nd and the 3rd particle states, i.e.,

x
( j)
2,k and x

( j)
3,k, respectively. With the structured obstacle map the 4th state x

( j)
4,k, defining

the room identifier of the particle location is also needed. The room identifier x
( j)
4,k is

not changed in the prediction equation (4.25). Its value is updated only in the obstacle

check performed using sequential re-selection described in Algorithm 4.3. The par-

ticle transition is defined by the line segment that connects the previous and current

particle positions, i.e., x
( j)
2:3,k−1 and x

( j)
2:3,k, respectively. The symbol x

( j)
2:3,k denotes the

vector containing only the 2nd and the 3rd elements of x
( j)
k . If the intersection exists,

the algorithm interprets it as an obstacle crossing.

The obstacle crossing checks are the most computationally intensive part of the po-

sitioning algorithm, as the total number of possible obstacle crossings is N ×No,

where N is the number of particles and No is the number of obstacle lines. For good

performance, we would like to have as many particles in the filter as possible, but
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increasing N also increases the computational load and risks the real-time operation,

as the time required for particle computations must not exceed the duration of one

step. Fortunately, not all of these No lines need to be checked in order to detect all the

actual obstacle crossings; to keep the number of obstacle checks as small as possible

and still have enough particles for robustness of the filter, the set of the lines to be

checked can be reduced using an obstacle line selection logic. The selection logic

depends on the data structure where the map data is stored.

When the map information is presented with an unstructured obstacle model, the

data structure is a simple array consisting of the coordinates of the start and end

nodes of each obstacle line, without any defined dependencies between the lines. In

the structured obstacle map used in this thesis, the data structure for a room included

the room identifier, obstacle lines of the room, and passage lines of the room, where

each passage line is associated with the identifier of the room where the passage

leads to. In this thesis, two approaches were tested to reduce the number of walls to

be checked when using unstructured obstacle model. With structured obstacle one

model was tested.

Line Grouping with Unstructured Obstacle Model

In this approach, the obstacle lines are divided into groups, each group including

obstacle lines close to each other. For the grouping of the obstacle lines, square-

shaped cells with defined cell widths were used. Instead of checking crossings with

all the possible line segments, the algorithm first searches for each of the particles the

line groups that cover the area where the particle transition happens, and checks the

line crossings only with the line segments of these groups (Leppäkoski et al., 2013).

Line Re-Selection with Unstructured Obstacle Model

In this approach, the set of the lines to be checked is re-selected after each IMU

step update (Perttula et al., 2014), without line grouping in advance. With the line

grouping the lines to be checked were selected separately for each particle. The

computational load can be further decreased by making a common selection of lines

for the whole particle cloud. In this method, the set of the walls to be checked is

re-selected for each PDR step update. Only the obstacle lines that are inside or cross
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Fig. 4.4. Choice of the walls to be included in the crossing check: the walls to be checked are

indicated by thick lines, other walls shown with thin lines.

the box limited by xmin, xmax, ymin, and ymax are selected for checking. The limits

are the minimums and maximums of the x and y coordinates of all the current and

previous particle positions (see Fig. 4.4).

Sequential Line Re-Selection with Structured Obstacle Model

With structured obstacle model, the obstacle lines are already grouped based on the

rooms they border. Using this type of map, the obstacle checking can be restricted

to the rooms where the particle transition happens. In small office rooms this works

well. However, for example with long corridors visible in Fig. 4.17, the polygon

including all the surrounding walls and doors may consist of many lines that are

not located near the current particle transitions. Using re-selection to exclude these

distant lines from the checks can reduce the computational load significantly.

The simple line selection logic sufficient for unstructured obstacle model requires

modifications when a structured obstacle model is used. It is difficult to choose the

lines to be checked at one time, as before the line checking only the rooms where the

particle transitions start are known, but the other rooms visited by the particles during

their transitions are not known yet. Therefore, similarly as the obstacle checking in

general, this model follows the sequence of rooms along the particle transition. At

the same time when checking the obstacle lines in a room based sequence, the lines
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Algorithm 4.3 Sequential line re-selection with structured obstacle model

Require: Particle state predictions
{(

x
( j)
k ,w

( j)
k−1

)

, j = 1, · · · ,N
}

after kth step done

Require: Limits [xmin,xmax,ymin,ymax] defining the box B computed

nR ← 0 /* Initialize the number of elements in structure arrays

R (room ids), W (obstacle lines), and D (passage lines) */

for j = 1 to N do /* Particles loop */

dx← Line segment defining transition from x
( j)
2:3,k−1 to x

( j)
2:3,k

m← 1 /* First room */

lastRoomAlongTransitionChecked← false/* Initialize status */

repeat /* ’Rooms along transition’ loop */

if (nR = 0) or
(

x
( j)
4,k not in R(1 : nR)

)

then /* Add current

room to temporary structure */

nR← nR +1

R(nR)← x
( j)
4,k /* Room id */

W (nR)← Obstacle lines of R(nR) inside or crossing B

D(nR)← Passage lines of R(nR) inside or crossing B

end if

if dx crosses a passage line included in D(1 : nR) then

x
( j)
4,k ← The id of the room connected to the crossed passage

line

m← m+1 /* Next room along the particle transition */

else if dx crosses an obstacle line in W (1 : nR) then

w
( j)
k ← 0 /* Update particle weight */

lastRoomAlongTransitionChecked← true

else

w
( j)
k ← w

( j)
k−1 /* Update particle weight */

lastRoomAlongTransitionChecked← true

end if

until lastRoomAlongTransitionChecked

end for

to be checked are collected into a data structure. The process including the sequential

line re-selection and line checks is described in Algorithm 4.3; this algorithm uses
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Fig. 4.5. System architecture of the distributed positioning system.

and updates also x
( j)
4,k, the room identifier of the jth particle.

4.2.5 Distributed Indoor Positioning System

The signal processing system described in Fig. 4.3 is well-suited for a distributed

positioning system. The estimation of the PDR outputs is computationally relatively

light, and significantly less data is transferred from PDR to particle filter than from

the sensors to the PDR estimation.

A microcontroller based system was used in real time tests to perform the PDR pre-

processing, while the particle filter processing and location display were performed

on a server. The PDR outputs were sent over a wireless link to the server. The or-

ganization of the different functions are shown in Fig. 4.5. The goal of the system

architecture is to process the sensor data efficiently on the sensor unit while keeping

the amount of data transmissions as low as possible.

For data transmission, the estimation outputs of three steps, i.e., three step lengths
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Table 4.2. Data sets for performance evaluation of map aided indoor positioning

Data WLAN Map Test Track Distributed

set positioning type duration length system

#3 Yes Unstructured 8.8 min 480 m No

#4 No Structured 7.5 min 480 m No

6.7 min 380 m

#5 No Structured 8.5 min 400 m Yes

9.0 min 420 m

#6 No Unstructured 6.0 min 300 m Yes

and the corresponding heading changes, were packed into a single message. Because

each data transmission requires architecture specific metadata, e.g., packet header,

and handshaking procedures, this arrangement allowed the reduction of the overhead

of the metadata transmission and handshaking and still kept the delay in the position

display within acceptable limits. In regular walking, this produces a message once in

1.8 s on average, with standard deviation of 0.3 s and minimum 0.6 s in the message

intervals.

On the server, the packet of the estimates from three steps is given as an input to

the particle filter. The filter processes the data step by step using (4.25) and (4.28)

to allow accurate position estimation also when the user is skirting a corner. As the

sensor unit transmits the step data only after every three steps, in the worst case the

estimate shown on the server may be three steps delayed from the actual user position.

4.3 Performance Analysis

The performance of the proposed indoor navigation methods were evaluated using

data from test walks. In this Section the tests and their results are described.

4.3.1 Data

Four data sets were used for performance evaluations of the proposed algorithms.

The data was collected from six test walks; the main characteristics of the test data

and the walks are listed in Table 4.2. In all of the tests, the accelerations and the
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angular rate were measured using the MEMS based IMU described in (Murata Elec-

tronics). It includes Murata SCC1300-D04 chip with 1-axis gyroscope and 3-axis

accelerometer. The measurement ranges of the sensors are ±300◦/s and ±6g, and

their sensitivities are 1
18

◦
/s and 1

650 g. This sensor was selected as it had the lowest

bias instability among the available MEMS gyroscopes. The sensors were read and

the PDR preprocessing computations were performed at 200Hz sampling frequency.

In addition to the sensors, the IMU contains also 32MHz 8-bit microcontroller (Atmel

ATxmega128A1) for data processing. In off-line tests, the microcontroller sampled

the sensor data and stored it to the memory card, from which the data was read to a PC

and processed there with MATLAB running the PDR preprocessing and data fusion

functions, i.e., the CEKF or the particle filters. In real time tests with the distributed

navigation system it took care of the measurement sampling, PRD pre-processing,

creating data package after every third detected step, and sending the package to the

server that uses MATLAB to run the particle filter. During the test walks, the sensor

unit was attached to the back of the test walker and aligned so that the sensitive axis

of the gyro was vertical, i.e., it was able to measure heading changes.

The test walk of data set #3 was conducted in the library of the Tampere University

of Technology, where the test route consisted of four loops in the library. This is the

only data set that includes also WLAN positioning data. In the library, only the outer

walls of the building totally block radio signals, but the inner walls that border the

library hall and the book shelves in there cause either strong attenuations or non-line-

of-sight conditions for the radio signal propagation. On the other hand, as the book

shelves are obstacles that the pedestrian cannot walk though, they provide useful map

information for the particle filter. The obstacle model with this data was unstructured,

and the PDR sensor data was collected using the microcontroller of the IMU and the

PDR processing was performed off-line on PC.

The test walks of data sets #4 and #5 were conducted in the Tietotalo building of

Tampere University of Technology. For this building, a structured obstacle map was

available. The IMU measurements of the data set #4 were stored on the memory card

of the IMU and post-processed on a PC, while in the data set #5 the PDR processing

was carried out in the IMU and only the estimated step lengths and heading changes

were transferred to the PC. However, in these tests the PRD estimates were trans-

ferred through a wired link. The data set #6 was a real time demonstration, where

the PDR estimates were transferred to the server PC over wireless channel provided
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by TErrestrial Truncated RAdio (TETRA) network. For the wireless communica-

tion, both the IMU and the server were each connected to a handset equipped with

a TETRA radio. The data from this test includes screen shots of the server display

showing the user track and a video (TUT insnavgroup, 2013); numerical data was not

recorded.

4.3.2 Comparison of Different Combinations of Data Sources

In this Section, the navigation performance using different combinations of sensor

information is compared: the estimates by WLAN positioning only, PDR only, PDR

and WLAN positioning fused together with CEKF, PDR and map information fused

with particle filter, and finally PDR, WLAN positioning, and map information all

fused with particle filter. The comparisons are performed using the test data set #3.

WLAN Positioning

The WLAN signal strengths were collected using a mobile handset, which produces

WLAN scan results at 2.3 s intervals. The position estimates were computed using

the MEE algorithm described in Section 2.1.3 with radio map including seven evenly

distributed histogram bins for RSS PDF approximation (see Section 3.2.3). The po-

sition estimates computed from WLAN signal strengths that were collected along the

test walk are shown in Fig. 4.6. From the figure we can see that the estimates are

not evenly spread along the route, but rather concentrated in the center of the library

area. The RMSE position error is about 10 m.

PDR Positioning

The result of the unaided PDR estimate is shown in Fig. 4.7. It can be seen that

during the first loop the traveled distance gets longer and the heading starts to get

distorted. After the first loop, the three following loops seem to be quite similar in

size and orientation. The maximum distance error is 5 m and the absolute heading

error is mostly below 23◦. The mean heading error is−9◦; this counterclockwise bias

is clearly visible in the estimated track.
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Fig. 4.6. WLAN based position estimates shown with triangles. Transitions between consec-

utive estimates shown with narrow dotted lines, the true track with thick dotted line,

and obstacles (rectangles) with light solid lines.

WLAN and PDR Positioning with CEKF

The result of CEKF processing of the PDR and WLAN based position estimates is

shown in Fig. 4.8. The CEKF was initialized with the same initial heading and coor-

dinates as the unaided PDR estimate. It can be seen that CEKF can correct some of

Fig. 4.7. Unaided pedestrian dead reckoning.
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Fig. 4.8. Complementary EKF using PDR and WLAN data.

the skewness in PDR loops. The maximum distance error is 4 m; the average heading

error is−1.1◦, which is significantly lower than with PDR only. The CEKF estimates

were computed using both the ERT and the feedback configurations, described in

Section 4.2.2. The order of magnitude of the differences between the estimates by

these configurations was 10−12 m, which can be considered as the effect of numerical

inaccuracy of the computations. It can be concluded that for this nonlinear navigation

model, the ERT and feedback configurations are practically the same.

Map Aided PDR through Particle Filtering

In the first particle filter test, the filter was used to fuse PDR and map information,

while in the second test, it was used to fuse also WLAN estimates with PDR and map

information. The number of particles used in the tests was 500. The particle states

were initialized with the same initial values as the CEKF. The results of the tests

are shown in Figures 4.9 and 4.10. The plotted particle filter track is the Minimum

Mean Square Estimate (MMSE) computed using (2.40) from particle positions at

each sampling instance. The maximum distance errors of both particle filters are

less than 4 m. The average distance errors and RMSE are smaller than with CEKF,

and with the second particle filter (PF2, shown in Fig. 4.10) these errors are slightly

smaller than with the first particle filter (PF1, shown in Fig. 4.9). The mean heading

error with PF1 is −1.9◦ while with PF2 it is −0.6◦. The estimated track of PF2
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Fig. 4.9. Particle filter using PDR and map information.

seems to follow the true track better than the track of PF1. Therefore, the WLAN

estimates are able to improve the particle filtering result. However, the improvement

in accuracy is not significant, especially given the effort required to build the radio

maps. On the other hand, the WLAN positioning could improve the robustness of

the algorithm by serving as a fall-back system, which is valuable if the particle filter

needs to be re-initialized during an indoor navigation mission.

Fig. 4.10. Particle filter using PDR, WLAN positioning, and map information.
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Fig. 4.11. Mapping from the estimated track (red line) to the true track (green thick line)

shown by the blue line segments connecting the tracks.

Approximated Error Statistics

Because the true track of the test presented in this section (Figures 4.6-4.10) is not

time tagged, the mapping of the points on the estimated track to the true track cannot

be performed in a straight forward way. However, the turns of the track are clearly de-

tectable in the estimated tracks of PDR, CEKF, and particle filters (Figures 4.7-4.10).

This enables an approximate, shape matching based mapping between the tracks. For

the points between two consecutive turns on an estimated track, the mapping to the

true track is interpolated between the corresponding edges of the true track as a func-

tion of the estimated distance traveled between the turns. An example of the mapping

is shown in Fig. 4.11. This method is not directly applicable to the track based on

WLAN positioning, because its high noise content makes it impossible to reliably

detect the turns. However, as both the WLAN and the PDR track are time tagged and

synchronized, mapping from the WLAN track to the true track can be obtained by

interpolating the PDR-to-true-track mapping with the time tags. The error statistics

obtained like this can bring forth the cumulative effects of the errors in the estimated

step length and the heading which transform length or direction of the track segments.

However, it cannot detect the errors in the parameters of individual steps.

The approximated statistics of the distance errors are shown in Table 4.3. The values

in the table conform to the visual observations from Figures 4.6-4.10. Clearly the
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Table 4.3. Approximated distance errors (m) using different algorithms

WLAN PDR CEKF PF1 PF2

EMEAN 7.1 3.1 1.9 1.4 1.3

RMSE 9.8 3.3 2.1 1.6 1.5

E95 21.6 5.0 3.4 2.5 2.5

EMAX 32.8 6.6 3.8 2.9 3.9

errors of the WLAN based track are larger than with the other methods. From the

PDR column to the right, i.e., adding more information sources to the estimator, the

errors decrease. Although the average error and the RMSE of the particle filter with

WLAN positioning (PF2) are smaller than these errors with the particle filter without

WLAN (PF1), the maximum error with PF2 is still larger than with PF1.

The approximated statistics of the heading errors are shown in Table 4.4. The an-

gles are computed from the estimated tracks. As with the error distances, also with

the heading errors the absolute mean values decrease as more information sources

are taken into account by the algorithm. With all the algorithms the mean error is

negative, biasing the estimated tracks counterclockwise. This is clearly visible in

the PDR track (Fig. 4.7). As the other algorithms are also using the PDR informa-

tion, they inherit the problem, although they are able to mitigate it significantly. The

WLAN updates introduce fast instantaneous heading changes to the estimated track,

which can be observed from the larger standard deviations with CEKF and PF2 when

compared with PDR and PF1. This is also visible in the RMSE errors. With PDR, 90

percent of the heading errors are within 30◦ range, with PF1 the 90 percent range is

almost 40◦, and with CEKF and PF2 it is almost 60◦. The maximum absolute errors

Table 4.4. Approximated heading errors (degrees) using different algorithms

PDR CEKF PF1 PF2

EMIN -43.2 -85.5 -35.4 -156.3

E05 -23.0 -19.4 -19.4 -23.9

EMEAN -9.0 -1.1 -1.9 -0.6

E95 7.1 37.7 16.7 35.9

EMAX 37.4 175.6 59.1 90.0

RMSE 13.2 21.3 11.8 19.3

STD 9.7 21.3 11.6 19.3
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are relatively large, especially with CEKF and PF2. However, these are occasional

situations that do not persist over many steps. This can be concluded from the Fig-

ures 4.7-4.10, where the estimated tracks do not propagate long distances to totally

wrong directions.

4.3.3 Distributed Indoor Positioning System

To analyze the accuracy of the indoor navigation system, two tests were carried out

to obtain the data set #5, where the routes included control points with known coor-

dinates. In test #5.1 there were 33 control point stops while in test #5.2 the number

was 35. The sensor unit sent the step lengths and heading changes in packages of

three steps to the PC, which was carried by the user. The particle filter processing

was carried out in the PC and the estimation results were saved to a file; from the

particle filter results, the average coordinates of the particles were recorded together

with the variances of the particle coordinates. The unaided PDR estimate was also

computed from the step lengths and heading changes. The tracks of the tests are

shown in Figs. 4.12 and 4.13. The total length of the tracks was about 400 m; the first

track took about 8.5 min and the second about 9 min to walk.

A field showing the number of the current step was added to the particle filter display.

During the test walks, the user stopped at the control points, and the step number

shown in the screen was manually recorded. The recorded step numbers made it

possible to afterwards identify the saved estimates of the particle filter and unaided

PDR at the control points. The positioning errors were obtained by computing the

error distances

dp f =
√

(xp f − xcp)
2 +(yp f − ycp)

2

dpdr =
√

(xpdr− xcp)
2 +(ypdr− ycp)

2

where dp f and dpd f are the positioning errors of particle filter and unaided PDR, re-

spectively, (xp f ,yp f ) and (xpdr,ypdr) the coordinate estimates by the both methods,

and (xcp,ycp) the true coordinates of the control points. The errors are shown in

Fig. 4.14. The estimation errors can be also compared with the positioning uncer-

tainty 2σ assessed by the particle filter itself. It is computed as 2σ = 2
√

σ2
x +σ2

y ,

where σ2
x and σ2

y are the coordinate variances of the particles recorded at the control

points. The error statistics are shown in Table 4.5.
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Fig. 4.12. Track of field test #5.1 with control points. PDR: unaided PDR estimate, PF:

particle filter, circles: control points.

From the Figs. 4.12–4.14 it is clear that the error of the unaided PRD estimate grows

fast when compared to the error of the particle filter; the map constraints realized

through the particle filter significantly reduce the positioning error. The average dis-

tance errors of the PDR estimates are 9.9 m and 10.3 m in tests #5.1 and #5.2, respec-

tively, while with the particle filter the average distance errors are 1.4 m and 1.7 m.

When comparing the position error of the particle filter to the uncertainty indicator

2σ, it can be observed that the uncertainty assessment of the filter increases when the

actual error increases.

Comparing the unaided PDR tracks in Figs. 4.7, 4.12, and 4.13, it can be observed

20 m

 

 
PDR
PF
Control points

Fig. 4.13. Track of field test #5.2 with control points. PDR: unaided PDR estimate, PF:

particle filter, circles: control points.
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Table 4.5. Distance errors (m) at control points

Test# 5.1 Test# 5.2

PDR PF PDR PF

EMEAN 9.9 1.4 10.3 1.7

RMSE 10.1 1.6 10.9 1.9

E95 14.8 3.2 16.2 3.9

EMAX 15.5 3.5 18.4 4.1

that the heading bias behaves differently in these. In Fig. 4.7, the bias is almost

consistent, while in Figs. 4.12 and 4.13 the bias and its direction varies more. This

may be due to the differences in the test tracks. In Fig. 4.7, all the turns are 90◦ in

size while the tracks in Figs. 4.12 and 4.13 include also turns of 180◦. In these full

turns, the user’s movements are larger. This poses two risks: 1) the instantaneous
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Fig. 4.14. Estimation errors at control points. PDR: unaided PDR estimate, PF: average

position of particles, 2σ: 2×RMS error estimate based on the coordinate variances

of the particles.
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Fig. 4.15. Example track of real time demonstration.

angular rate may occasionally exceed the limits of the angular rate range of the gyro;

2) in larger movements, the sliding of the sensor unit with respect to the user body

is more probable. These both result in sudden heading error changes that become

visible after the turns.

The real time demonstration of the prototype navigation system was given indoors.

The initial position in the front door of the building was obtained with the aid of

GPS. The test person with the sensors attached to his belt walked around an office

building in hallway, corridors, stairs, and several rooms. During the walk the sensor

unit transmitted its PDR outputs to the server PC located in a meeting room.

Fig. 4.15 shows a track of a test route for a 6-minute walk. The starting point is on the

left side at entrance door to hallway and the end point is in the middle of the figure

in the meeting room where the red particle cloud is located. The shown track is the

average of particles. A couple of times the test track seems to go through the walls.

This happens because also the particles which die in the near future, i.e., particles

that are not on the correct track, affect the average as well as the ”proper” particles.

There were three points where most of the particles were in a wrong room – these

locations are indicated with the orange background color in the map. However, these

particles died soon and the rest of the position track remained reliable. A video of the

demonstration session is available in (TUT insnavgroup, 2013).
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4.3.4 Map Processing and Computation Time

Three different methods were developed to decrease the computation time of obstacle

crossing checks, described in Section 4.2.4: two methods for unstructured and one

method for structured obstacle model. The speeding up of the algorithms for the

obstacle crossing checks is based on screening out the unnecessary checkings that

would not have any possibility to change the positioning results. Therefore, in all

the tests regarding the computation time, the actual position estimates obtained with

the modified faster algorithms were equal to the estimates obtained with the basic

map processing without the processing time savings. In the following, the results are

reported.

Line Grouping with Unstructured Obstacle Model

To group the obstacle lines, shown e.g. in Fig. (4.10), square-shaped cells were used.

The groupings were formed with different cell widths, growing in 1 m steps from 2

to 41 m. To find the best cell width for the grouping, the particle filter using PDR,

WLAN and map information was run in MATLAB to process all the measurement

data of the data set #3. The run times of the computations were recorded, and the

results are shown in Fig. 4.16. From the figure it can be concluded that the map

data processing is the fastest when the cell width is 14 m. The grouping of map data

clearly brings benefits: the run time without grouping, i.e., with the cell width 41 m

when all the obstacle lines belong to the same group, is more than 400 s, while with

the best grouping the run time is only 150 s.

For comparison, the computation times of other methods presented in this paper are

listed here: position computation using WLAN data only takes 1 s, PRD prepro-

cessing computations to detect steps, to estimate the step lengths, and to integrate the

angular rates takes about 15 s for the whole data set, DR processing from step lengths

and delta headings takes less than 0.001 s, and CEKF processing from step lengths,

delta headings, and WLAN based positions takes about 0.2 s. The particle filter run

times given in Fig. 4.16 do not include the run times of the necessary preprocessing

phases, i.e., step detection, step length estimation, angular rate integration, or WLAN

positioning.
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Fig. 4.16. Run time of the particle filter processing as a function of the width of the cells in

map grid.

Line Re-Selection with Unstructured Obstacle Model

The line re-selection method was tested using the same data that was used in line

grouping tests. Using the re-selection of line sets after each step, the computation

time of the particle filter processing for PDR, WLAN and map information took

110 s; without WLAN information the time for particle filter processing was 104 s.

Compared to the fastest line grouping requiring 150 s with both WLAN and map

based positining in use, the re-selection provides 26.7 % decrease in the computation

time. This improvement provided extra margin for the real time operation in dis-

tributed indoor positioning system. Using this wall selection logic and running the

MATLAB implementation of the particle filter on a laptop PC, it was found that a fil-

ter with 500 particles can perform all the needed computations in real-time between

the consecutive IMU step data inputs.

Sequential Line Re-Selection with Structured Obstacle Model

The effect of the sequential line re-selection on the computation times with struc-

tured obstacle model was evaluated by comparing the sequential line re-selection,

described in Algorithm 4.3, with the basic obstacle check algorithm, described in

Section 2.3. In the latter, only the room information is used as the line selection

criterion, i.e., all the polygon lines associated with the rooms along the particle tran-

sition are checked, while in the former only the lines which are inside or cross the 2D

rectangular limits of the particle cloud positions are checked from the rooms that are

visited along the particle transition. The algorithms were compared using the data

set #4, comprising of two test walks, shown on the map in Fig. 4.17. In the tests,

particle filters with 500 particles were used to process PDR and map data; WLAN
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20 m

(a) Test route #4.1

20 m

(b) Test route #4.2

Fig. 4.17. Test data used to evaluate the computation times with sequential line re-selection.

positioning was not used.

The results of the computation time comparisons are shown in Table 4.6 where also

the durations of the actual test walks are recorded as well as the number of steps

detected by the PDR preprocessing. The number of steps is also the number of times

the obstacle checks are performed for the particle cloud with these data. It can be

Table 4.6. Comparison between line selection algorithms

Data
Line selection algorithm

and computation time

Test Duration Number Based on Sequential Relative

route of walk of steps room id only re-selection improvement

#1 441 s 661 526 s 107 s 79.6 %

#2 403 s 552 280 s 82 s 70.7 %
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seen that with these data, the sequential re-selection of lines reduces significantly the

computation time compared to the line selection based on the room only: the relative

improvement is 70 % – 80 %. Comparing the computation times with the durations

of the test walks it can also be noticed that without this improvement, on the test

route #4.1 the map based particle filtering would not be able to operate in real time.

It is also clear that the computation times of the test routes are not proportional to the

numbers of steps on the routes: the number of obstacle line checks increases, if the

variance of particle cloud increases, especially in the direction where there are more

walls. The relative improvement in computation time obtained with sequential re-

selection with test route #4.1 is larger than with test route #4.2 because on the route

#4.1 the relative proportion of long corridors is higher.

4.4 Discussion

In this Chapter, the methods for combining information from inertial sensors, indoor

map, and WLAN signals for pedestrian indoor navigation were proposed. The target

applications of the methods include location based services and tracking of a user in

an office environment or in open indoor spaces such as libraries or retail stores where

fixed obstacles, such as shelves, divide the space into corridors. In these applications,

room level accuracy or accuracy of 2–3 m is required and the processing speed of the

algorithms must be high enough to allow real time processing.

Table 4.7. Summary of accuracy results from Sections 3.2 and 4.3

Data fusion Information Environment User Average

algorithm sources static / moving distance error

unaided WLAN Office Static 3.0–4.0 m

unaided WLAN Library Static 6.0 m

unaided WLAN Library Moving 7.1 m

unaided PDR Library Moving 3.1 m

CEKF PDR, WLAN Library Moving 1.9 m

Particle filter PDR, map Library Moving 1.4 m

Particle filter PDR, map, WLAN Library Moving 1.5 m

unaided PDR Office Moving ≤ 10.3 m

Particle filter PDR, map Office Moving ≤ 1.7 m
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4.4.1 Results on Aided PDR

Table 4.7 summarizes the accuracies obtained in the field tests when different algo-

rithms and different measurement sources have been used. The following observa-

tions can be made from these figures:

• The WLAN positioning for a static user is more accurate than for a moving

user

• In the library, unaided PDR is more accurate than WLAN positioning, while in

the office environment the WLAN positioning is more accurate

• Compared to the accuracies of the unaided PDR or WLAN positioning, com-

bining these two using CEKF improves the accuracy

• As an aiding source for PDR, indoor map improves the accuracy more than

WLAN positioning

• The average distance errors in the aided PDR algorithms meet the accuracy

requirements

In the field tests, the comparisons of the different combinations of the available sensor

information show that both the map information and WLAN signals can be used to

improve the PDR estimate based on inertial sensors. In the comparison of the two

alternative configurations of the CEKF, both configurations produced the same results

with the nonlinear navigation model used in this thesis.

To enable the real-time operation of the system, the computational load caused by the

map matching had to be decreased. The speeding up of the map checking algorithms

was based on avoiding unnecessary line checks. With the developed algorithms, the

computation times needed for the map checks were significantly reduced and the real-

time functionality of the algorithms was demonstrated in the field tests. The speeding

up of the map processing did not affect the position estimates. In this thesis, the

speeding up of the map processing was performed only by improving the algorithms.

In future, the speed could be further improved by implementing the computations

using a programming language faster than MATLAB.

The inertial sensor unit used in these tests performed relatively well even as an un-

aided PDR system. However, fusing it with either WLAN positioning or with map
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information improves accuracy. With map aided PDR the maximum position errors

were below 4 m and average distance errors less than 2 m in the tests both in the

library and in the office environment. The quality of the WLAN position data used in

the library tests seemed to be quite poor: the average distance error was 7.1 m. Fur-

thermore, the error for a moving user in the library is about 1 m larger than the error

for a static user, which in turn is 2–3 m larger than the average error for the static user

in office environment. Still the WLAN based position estimate in the library included

some useful information for the data fusion filter. The WLAN based positioning was

also complementary with map information: map information is relatively useless in

open areas, where walls and obstacles cannot guide the particles, while in areas with

high density of obstacles this information is frequently available and useful. Just the

opposite, in areas dense with obstacles there are lot of disturbances present in WLAN

signals which distort the positioning, while in open areas the quality of WLAN based

position estimate is better. However, due to the special characteristics of the test

area, it is difficult to generalize the results of this system directly to other types of

environments without new field tests.

4.4.2 Future Developments

In the WLAN based likelihood computations of the particle filter, the WLAN based

positioning was taken into account as estimated coordinates. This resembles loosely

coupled integration architectures in integrated navigation systems including a GNSS

receiver. Here, a tighter integration could be implemented using the approximated

conditional probabilities of WLAN RSS stored in the radio map to determine the

particle likelihoods. However, this approach would require some mechanism to map

the particle positions with continuous range to the radio map CPs with discrete loca-

tions. The algorithm should also take into account the fact that the probabilities in

the radio map are approximations and in addition to this, may include errors due to

the temporal variations of the radio environment.

The accuracy of the map aided PDR, proposed in this Chapter, is sufficient also for

providing reference position for example when collecting the calibration samples for

fingerprinting with WLAN signals (Woodman and Harle, 2009) or magnetic field.

On the other hand, when the fingerprint database exists, the fingerprints can be used

to aid the initialization of the particle filter by providing a coarse initial distribution
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of the position (Kemppi et al., 2010). This ability is also useful if the particles need

to be re-initialized during the estimation (Nurminen et al., 2013).

Although the results of the map aided PDR were promising, the system has limita-

tions. The usage of only one gyro does not allow real time tilt corrections of angular

rate, the motion mode is restricted to normal walk, and orientation change of the

gyro with respect to the walking person causes a bias change in heading. The first

issue can be solved by using a 3-axis gyro. To mitigate the problems caused by other

motion modes, such as climbing stairs or taking sidesteps, using a 3-axis gyro and

combining the step detection based PDR and 6DOF mechanization of the IMU can be

used (Davidson and Takala, 2013). The effects of large changes in gyro orientation

are difficult to correct even for particle filter, where re-initialization may be required.

A signal processing method to detect the orientation of the sensor unit with respect

to the direction of the walk also exists (Parviainen and Collin, 2014). The models for

step detection and step length estimation should also be verified with the larger group

of users with varying properties, e.g. heights and ages.

In this work, the good quality of the gyro allowed the simplification of the process

model by neglecting the gyro bias from the state vector. In the tests, the particle filter

was able to take care of the effect of the remaining small bias component. However,

the gyro bias state may be required with gyros with different specifications. The

measurement range of the gyro used in the tests could be a limiting factor, as it

is known that a pedestrian can perform very quick turns, where the instantaneous

angular speed may exceed 300 ◦/s.

In the testing of the indoor positioning method a single floor problem was assumed.

With the used hardware, the system could have problems in multi-floor positioning

tasks, especially if the floor plans of different floors do not differ significantly, and

if the WLAN positioning is not available. Adding a barometer to the system would

solve this problem.



5. CONCLUSIONS

In this thesis, methods for pedestrian indoor positioning were studied. With the pro-

posed methods, the mobile unit performs all the required positioning measurements.

The methods consist of WLAN fingerprinting based positioning, dead reckoning us-

ing gyro and accelerometers, indoor map, and the filtering algorithms for combining

these to improve the positioning accuracy.

In WLAN fingerprinting, received signal strength measurements were used and two

different types of algorithms were used for position estimation. One was based on

the received signal strength averages stored in the radio map and pattern matching

using kNN while the other was based on probabilistic models with histogram ap-

proximations of signal strength distributions. The dead reckoning was implemented

using MEMS based sensor unit including a gyro and a 3-axis accelerometer. These

were used to estimate the step length and the heading change during each step and

these estimates were used to propagate the position estimate. The estimates of the

step length and the heading change were computed in variable intervals which were

determined by using step detection based on the acceleration signal pattern.

The WLAN positioning was combined with pedestrian dead reckoning using comple-

mentary extended Kalman filters in two different configurations. Particle filters were

used to fuse the pedestrian dead reckoning with indoor map information, WLAN po-

sitioning, or both of them. For indoor map matching, both unstructured and structured

obstacle maps were used.

5.1 Main Results

With map aided PDR navigation, the typical accuracy was couple of meters. The

maximum position errors were below 4 m and RMS errors less than 2 m in the tests

both in the library and in the office environment. In the library, where WLAN posi-
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tioning was also available, the integration of WLAN with map aided PDR improved

the overall accuracy, although the maximum error did not decrease significantly. In

the library, the map information was complementary to WLAN: in open areas where

there was no obstacles that could correct the estimates, the accuracy of WLAN was

better. In the areas dense with obstacles the accuracy of WLAN positioning de-

creased, but the map corrections were available.

Three methods were tested for decreasing the computational load caused by the map

matching. In field tests, map checks based on sequential re-selection of obstacle lines

after each PDR step were used. The method was shown to decrease the computational

load enough to allow real time navigation with 500 particles in the particle lter. The

required computation speed was obtained with both the unstructured and structured

obstacle maps.

Complementary EKF was used to combine the PDR with the WLAN positioning

without map constraints. Algorithms for the two alternative complementary filter

configurations were derived and implemented. For the process and measurement

models used in this thesis, the estimates produced by both configurations were the

same within the numerical accuracy of the computations.

Field tests on WLAN positioning were performed to determine the radio map config-

urations with reasonable positioning accuracy and moderate memory requirements. It

was found that from two histogram based algorithms, the MEE algorithm was gener-

ally more accurate than the ML algorithm. The positioning accuracy improves when

the number of histogram bins increases until it reaches 8. After that, increasing the

number of bins does not improve the accuracy but increases the memory requirements

of the radio map. With less than 6 histogram bins, the accuracy can be improved if,

instead of having all bins with equal widths, there is one narrow bin for the minimum

RSS. The best accuracy with histograms was obtained by combining the calibration

samples measured from different directions in the radio map. The number of parame-

ters for the histograms can be further decreased, if APs are correlating and they can be

combined into one histogram. Using sample means as fingerprints and pattern match-

ing with kNN, the positioning accuracy is better if there are separate fingerprints for

each measurement direction.

In the WLAN positioning tests, the RSS normalization between different devices was

obtained by determining the RSS offset for the radio map that provides the best posi-
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tioning accuracy when RSS measurements of another device are used for positioning.

It was also found that the positioning with a normalized radio map obtained using an-

other device can be as accurate as the positioning with the radio map generated using

the RSS measured by the same device that is used for positioning.

In this thesis, the following assumptions and simplifications were made: 1) the mo-

tion modes of the user are either normal walk or static – the other modes, such as

climbing stairs or taking sidesteps, were not considered; 2) in the PDR processing, it

was assumed that the orientation of the sensor unit with respect to the user body is

fixed; 3) single floor navigation problem was assumed, methods for multi-floor nav-

igation were not studied; 4) in the state models of the CEKF and particle filters no

sensor errors or biases were included; 5) in fusion filters, the same WLAN device was

used both to the collect of the radio map data and to obtain the RSS measurements in

the positioning phase.

5.2 Future Work

Although this thesis provides promising results regarding the methods for pedestrian

indoor positioning, further research is still required to develop these into reliable ap-

plications. In WLAN based positioning, compromises with the positioning accuracy

may be required to obtain a method, where the scalability of radio map and the RSS

normalization are reliably obtained using heterogeneous user devices.

For the data fusion of WLAN based positioning in the particle filter, a tighter integra-

tion model could be developed. In the likelihood computations of the measurement

update, the tighter integration could use directly the approximated RSS probabilities

conditioned to the location, stored in the histograms of the radio map.

In the PDR processing, a 3-axis gyro could be used to provide more accurate tilt cor-

rections to the heading estimation. It would also allow running a 6DOF INS mech-

anization in parallel to the step detection based estimation. This combination could

be used to detect unusual motion modes, such as climbing or side steps. To improve

the accuracy of the estimation of the traveled distance, models to estimate the step

lengths in more unusual motion modes are also needed. For multifloor positioning, a

reliable floor detection is needed. This can be obtained for example by using barom-

eter.
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The optimal choices of methods and their parameters depend on the requirements

of the application, and it is possible that the integrated indoor positioning system

benefit from the deploying of some emerging new positioning techniques. These new

techniques include, e.g., magnetic fingerprinting and generating fingerprint databases

though crowdsourcing.
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H. Leppäkoski, J. Collin, and J. Takala, “Pedestrian navigation based on inertial sen-

sors, indoor map, and WLAN signals,” in Proc. ICASSP 2012, Kyoto, Japan, Mar.

2012, pp. 1569–1572.
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2011, pp. 1–7.

B. Moyer. (2014, Jul.) And then there was one: InvenSense scoops up Movea,

Trusted Positioning. EE Journal, feature article. Referred 12 Feb 2015. [Online].

Available: http://www.eejournal.com/archives/articles/20140714-fusion

Murata Electronics, “SCC1300-D04 - Combined gyroscope and 3-axis accelerometer

with digital SPI interfaces,” Datasheet, Doc.Nr. 82113100, rev. D.

K. Nur, S. Feng, C. Ling, and W. Ochieng, “Application of the improved FOCUSS

for arrival time estimation (IFATE) algorithm to WLAN high accuracy positioning

services,” in Proc. UPIN 2012, Helsinki, Finland, Oct. 2012, pp. 1–8.

K. Nur, S. Feng, C. Ling, and W. Ochieng, “Integration of GPS with a WiFi high

accuracy ranging functionality,” Geo-spatial Information Science, vol. 16, no. 3,

pp. 155–168, 2013.
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