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Abstract  
 

This thesis provides means to increase the statistical power of analysis in brain positron 

emission tomography (PET) neuroreceptor studies. Despite its importance, this topic has 

remained relatively unexplored. The most obvious way to enhance the power is to 

increase the sample size, i.e. the number of observations. However, with PET, there are 

both financial (high cost of a study) and ethical reasons (radiation dose to the patient) that 

restrict substantial increase in the sample size.  

 

We searched for ways to increase the statistical power in the analysis of PET brain 

studies by decreasing the measurement error (specifically, variation due to the 

measurement process) as well as by using a sensitive statistical technique of analysis. Our 

procedure was as follows: firstly, we reduced probably the greatest source of variation – 

the manual steps – by introducing an entirely automatic method for region-of-interest 

delineation. Secondly, we performed phantom simulations to determine the combination 

of image reconstruction methods and physiological model calculation methods that 

produced the least variation (and bias). Thirdly, we applied a statistical method which 

produces satisfactory statistical power with a very limited sample size. In the first two 

methods, we showed the enhancement in power by the better reproducibility and 

reliability, as well as lower variability, of the methods we applied. In the third method, 

the gain in power was illustrated by comparing the results with the standard method of 

analysis. If all three methods are performed, it may be possible to get satisfactory 

statistical power even with a limited sample size and possibly restrict the sample size 

even more. 

  

Our application was in PET receptor occupancy studies, which have been found to be 

useful in guiding the dose-finding procedures in early drug development. In addition to 

the gain in power to detect the effects of a drug, cost savings and an increase in speed can 

be achieved with the methods introduced in this thesis. The cost savings relate to pre-

planning: realistic simulations with numerical dynamic phantoms may save many 
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expensive pilot PET studies on humans. The increase in speed was obtained by 

automation of the region-of-interest delineation.  
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Chapter 1 Introduction 
 

Whenever measurements are made, errors always occur due to the measurement process. 

These errors are taken into account in the statistical analysis, which often deals with 

dividing the variation in variables of interest (i.e. dependent or response variables; treated 

as random variables) within the framework of the general linear model (GLM; e.g. 

Rencher, 2000; Cox and Hinkley, 1974). This division is performed between the 

experimental factors (i.e. independent variables), and the random errors that are often 

assumed to be independently and normally distributed with zero mean. In scientific 

experiments, the errors can be characterized as measurement errors that divide into 

random error (i.e. variability, or more commonly, noise) and systematic error (bias). 

Random error can further be classified into natural biological variation and variation due 

to the measurement process, i.e. methodological variation (e.g. Snedecor and Cochran, 

1967, p. 164-165; Carroll et al., 1995, p. 2). In many cases, statistical analyses involve a 

hypothesis testing framework (Neyman and Pearson, 1933), but there are multiple types 

of analyses that do not necessarily; e.g. principal component analysis and statistical shape 

analysis. In hypothesis testing, a null hypothesis and an alternative hypothesis are 

formulated. The latter is usually the hypothesis for which the researcher is searching 

support. The statistical testing is often based on specific distributions (Fig. 1). The 

statistical power means the probability that the test will reject a false null hypothesis. In 

other words, it gives the probability that truly existing differences will be detected. 

Assuming the correct model, there are three issues affecting the statistical power: the 

significance criterion (α), the reliability of the sample results, including its most 

important factor, the sample size, and the effect size, i.e. the degree to which the 

phenomenon exists (Cohen, 1969). In other words, this can be formulated as how much 

of a difference the experimental factors make.         
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Figure 1. An example of statistical hypothesis testing. Histogram of a sample of 3000 

observations from standard normal distribution (mean 0, variance 1) under null 

hypothesis is depicted. Values more extreme than the significance criterion (α/2) show 

when there is enough evidence to reject the null hypothesis.     

 

The motivation for this thesis was to attempt to increase the statistical power of the 

analysis of functional positron emission tomography (PET) imaging data. PET is 

increasingly used in drug development, in phase one of three-phase clinical trials. As a 

specific application, we dealt with receptor occupancy studies (Laruelle, 2000; Passchier 

et al., 2002) that guide the dose-finding procedures in early drug development. Increasing 

the power is relevant as the PET data are very noisy; see Pajevic et al. (1998) for noise 

characteristics of PET images. In this work, we did not try to enhance the statistical 

power by increasing the sample size, which is the most obvious choice to improve the 

reliability of sample results. The reason that we did not do this is related to the limitations 

of PET imaging that are described below. On the contrary, we aimed at reducing the 

errors derived from the applied methods, and also increased the statistical power by 

efficient techniques of analysis. In brief, we used signal and image analysis methods to 

improve the statistical analysis. Power analysis (e.g. calculation of sample size with fixed 

power) was not performed as the actual statistical analysis did not, in general, play a 
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remarkable role in the publications of this thesis. The improvement in power was shown 

by other indicators, such as reduced variability, improved reliability, or better 

reproducibility.        
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Chapter 2 The statistical power and related concepts 

2.1. Statistical inductive inference  

 

Statistics has, in some circumstances, been called a combination of mathematics, 

philosophy and computer science. The interpretation of the results of the statistical tests is 

based on inductive inference, which is a branch of logic. The formal theory of inductive 

inference was developed by the computer scientist, Solomonoff (1964a; 1964b). In 

inductive inference, the premises, or evidence statements, can be true, whereas the 

inferred conclusion may be false without logical contradiction: the conclusion is 

“evidence transcending” (Mayo and Cox, 2006). This is because probability plays a role 

in such inferences. Statistical inference (reasoning) may be regarded as a statistical 

version of the valid form of the argument called in deductive logic, modus tollens, i.e. 

proof by contra-positive (Mayo and Cox, 2006). In this form of inference, the denial of a 

hypothesis H is inferred as follows: If H then E. E is false. Therefore H is false. In 

statistical inductive inference, it is argued from the particular to the general, more 

specifically from a sample to a population.  

2.2. General issues on statistical hypothesis testing 

 

Statistical inference often involves hypothesis testing. In this thesis, we will treat 

hypothesis testing in the frequentist inference framework (e.g. by Neyman-Pearson and 

Fisher; see specific examples below). Frequentist statistics is based on long-run 

frequencies, one of the most difficult conceptual problems in statistical inference 

(Hacking, 1965). Hypothesis testing (or model selection) can, however, also be applied in 

other statistical and information theoretic frameworks, such as Bayesian inference (Aitkin 

et al., 2005; Lee, 1997), the minimum description length principle (Rissanen, 1978; 

Barron et al., 1998) and the Bayesian-like minimum message length approach (Wallace 

and Boulton, 1968; Wallace and Boulton, 1987). In this thesis, we deal with hypothesis 

testing in a test-retest (two repeated measurements from each subject) situation to 
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examine and reduce within subject and between subjects variability. The ultimate goal is 

to enhance the statistical power by reducing variability.   

2.2.1. Hypothesis testing approaches by Neyman-Pearson and Fisher and their 

differences  

 

The approach by Neyman-Pearson (Neyman and Pearson, 1933) is usually called just 

“hypothesis testing”. On the contrary, Fisher’s approach (Fisher, 1934; Fisher, 1973) is 

commonly titled “significance testing”, although Fisher was not the originator of 

significance testing (Royall, 1997). A central term in significance testing is the notion of 

p value. It is not a typical probability about the null hypothesis, but shows the probability 

that we have observed the data in hand, or more extreme data, given that the null 

hypothesis is true (Fisher, 1934; Cohen, 1994). The practical statistical analysis is 

currently typically a blend of both of these approaches, also in functional neuroimaging 

(e.g. Turkheimer, 2004). However, these different approaches may possibly be united 

(Lehmann, 1993).  

 

In this thesis, the most important difference between the two approaches concerns the 

statistical power. A central consideration of the Neyman-Pearson theory is that in 

addition to the null hypothesis, also the exact alternatives against which it is to be tested 

must be specified. In terms of alternatives, one can define the statistical power of the test. 

This approach is important in assessing the chance of detection of an effect, i.e. the 

departure from the null hypothesis. However, Fisher, although he acknowledged the 

importance of power, denied the possibility to assess it quantitatively. In his opinion, this 

was due to the unknown alternative. Other contradictions between the Fisher and 

Neyman-Pearson approaches were, e.g. conditioning, the use of likelihood (as opposed to 

probability), continuous versus fixed p values (significance criterions), decision-making, 

and philosophical controversies concerning just how “inductive” the statistical inference 

actually is. Especially the philosophical differences between the two schools were – and 

even still are – debated and argued extensively. All these issues are widely discussed in 

Lehmann (1993). 
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2.3. Hypotheses, errors, and analogues in statistical testing  

2.3.1. Null hypothesis and alternative hypothesis  

 

The statistical hypothesis test begins with the definition of the null hypothesis (H0) and 

the alternative hypothesis (H1), which is of greatest interest. This alternative hypothesis is 

not proved (and never can be), but the null hypothesis is tested instead. Usually it is of 

interest to find a significant departure from the null hypothesis to “reject” it. However, it 

should be kept in mind that the null hypothesis can not be proved correct either, although 

the data show no evidence for rejecting it. Let us take a simple example: testing the 

difference variable of two consecutive measurements from the same subjects measured at 

different time points (i.e. a test-retest study) using the paired t test. The null hypothesis 

states that the differenceµ  between the measurements at population level is some 

predefined value 0µ , whereas the alternative hypothesis argues that the difference is 

not 0µ , i.e.  

 

0 0 1 0H : ,  : .                                                           (1)Hµ µ µ µ= ≠  

                                          

The test statistic is 

 

                     0 ( 1),                                                                    (2)
/

X t n
S n

µ−
−∼  

 

where t(n-1) is t distribution with n-1 degrees of freedom. A formal definition of degrees 

of freedom is D(K) – D(H) (Good, 1973), where D(K) is the dimensionality of a broader 

hypothesis and D(H) is the dimensionality of the null hypothesis. From this example, we 

can also infer that we are dealing with a two-sided test; a one-sided test would only 

consider deviation in one direction, not both. 
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2.3.2. Type I error, type II error and the statistical power 

 
Statistical hypothesis testing is often based on specific probability distributions, 

depending on the question (in the case of the previous paragraph the t distribution). A 

simple hypothesis completely determines the probability distribution, whereas a 

composite hypothesis asserts only that the distribution belongs to a specified set of 

distributions. In this testing framework, one can make two kinds of errors: type I error (α) 

and type II error (β). A type I error means that a true hypothesis is rejected or, in a milder 

sense, the risk of a false decision. This can be formulated as P(“reject H0”| H0) = α. 

Usually the type I error is adequately taken into account in the analysis by fixing it to 

some significance criterion (conventionally 0.05, but this is arbitrary). A Type II error 

occurs when a false hypothesis is accepted and is defined as P(“accept H0”| H1) = β. The 

type II error is, unfortunately, not typically adequately considered in the statistical 

analysis. This occurs especially when the sample size is small, and no power calculation 

for the required sample size has been carried out. Then, the type II error may be 

considerable, but this can be avoided if prior power calculations have been carried out. 

The statistical power is then defined as 1-β, and it indicates the probability that the test 

will reject a false null hypothesis. In power calculations, the statistical power is 

commonly fixed to 0.8, thus β is 0.2. However, other values are also used, depending on 

the relative severity of type I and type II errors in the specific application. It is known that 

there is a trade-off between type I error and type II error. Most of the issues in this 

paragraph are covered in Lindgren (1968).  

2.3.3. Analogous examples of hypothesis testing in other fields 

 

There is an analogy between the statistical hypothesis testing and, e.g., with juridical 

issues, doping control in sports, and diagnostic tests in medicine. The famous statement 

in law “Innocent unless convicted” is analogous to a null hypothesis. Contrary to 

statistical testing, in law attempts are made to make the type I error negligible, i.e. 

approach zero. This tendency not to sentence innocent people inevitably leads to inflated 

type II errors, i.e. many criminals have not been sentenced. A similar strategy concerns 
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doping testing in sports. The inflated type II error makes it, e.g. impossible to know 

definitely which records are actually made with the aid of performance-enhancing drugs. 

On the contrary, concerning diagnostic tests in medicine, type II errors may be more 

harmful than type I errors. In statistical signal processing, the problem is related to 

finding the signal in noisy data, i.e. the null hypothesis is “noise only” (Kay, 1998).    

2.3.4. Binary classification tests  

 

The error types in statistical hypothesis testing can be easily described as a binary 

classification test (Table 1). There are differences in terminology, i.e., the same issue is 

formulated in different words for statistics, signal processing (Kay, 1998) and diagnostic 

tests (Pepe, 2003). In this thesis, we will mostly use statistical terms.    

 

 

Actual condition  

True False 

 

Positive True positive (TP) 

 

False positive 

(FP; Type I 

error) 

Positive predictive 

value (PPV) =  

TP / TP + FP 

Test result 

Negative False negative  

(FN; Type II error) 

True negative 

(TN) 

Negative predictive 

value (NPV) =  

TN / TN + FN   

Statistics Statistical power 

1-P(Type II error)  

1-P(type I error)

Signal 

processing 

P(detection) 1-P(false alarm) 

 

Diagnostic 

tests 

Sensitivity Specificity 
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Table 1. Binary classification test: result of a test versus actual condition. Also the 

relation of type I and type II errors to terms in the classification test are described. 

Distinct terms between statistics and signal processing and diagnostic tests are also 

presented.   

2.4. Factors affecting the statistical power  

 

The power of a statistical test is dependent on three factors (Cohen, 1969; Kraemer and 

Thiemann, 1987; Stevens, 1986). The first factor is the α level set by the experimenter. 

This is also called the significance criterion. The second factor is the reliability of the 

sample results, i.e. the expected accuracy to estimate the appropriate population value. 

Reliability may or may not be directly dependent on the unit of measurement, the 

population value, and the shape of the population distribution. However, the reliability is 

always dependent on the sample size, i.e. the number of observations. This is why the 

central interest in power calculations lies in the sample size. The third influencing factor 

is the effect size. This can mean, e.g. how much of a difference the treatments cause, or 

the extent to which the groups differ in the population (concerning the dependent 

variables). In other words, it is described as the degree to which the phenomenon exists. 

For example, in the paired t test, the effect size is written as  

 

      0( ) ,                                                                       (3)Dd µ µ
σ
−

=  

 

where d is the effect size, µD is the difference in means between the experimental and the 

control condition, 0µ  is the difference in means under the null hypothesis and σ is the 

standard deviation for the difference in means in the population (Kramer and Thiemann, 

1987). The paired t test is used as an example in this thesis, as it is a very common 

statistical test in PET neuroreceptor studies (see Aston et al., 2000). The assumptions of 

the paired t test include the independence and normality of the paired differences 

(residuals). Potential assumption violations include the lack of independence within a 
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sample, outliers, interactions between pairs and treatments, differing skewness between 

the two populations, non-normality and problems with small sample sizes.    

2.5. Power calculations, i.e., power analysis   

 

Statistical power, significance criterion, sample size, and effect size are so related that 

any one of them is a function of the other three (Cohen, 1969). This means that when any 

three of them are fixed, the fourth is known. This makes formally possible four types of 

power analysis, of which the sample size calculations to obtain specified power are 

probably most applied. The results of power calculations depend on the statistical tests 

and designs (see Cohen, 1969 for power tables in various statistical tests), but we will not 

go into details here. 

 

The power analysis is commonly performed in the planning stage of a study (Kraemer 

and Thiemann, 1987). This is the intended and recommended form for power analysis to 

control the balance of type I and type II errors. However, retrospective power analysis 

can be performed as well, although it is not universally accepted (Kraemer and 

Thiemann, 1987). In such cases, the power is typically low, owing to, e.g. small sample 

size. Power analysis is then only used to show that the absence of a significant effect is 

probably due to low power. 

2.6. Visualizations of types of error and power  

2.6.1. Receiver operating characteristic 

 

One way to visualize the relation between type I error and power is to use the receiver 

operating characteristic (ROC) (Hanley and McNeil, 1982; Pepe, 2003) that is frequently 

used, e.g. in diagnostic tests especially in radiology, and in detection theory in signal 

processing (Fig. 2). However, ROC is not widely used in power analysis in statistics. This 

is probably because, in statistics, only fairly small values of α are usually of interest. On 

the contrary, ROC analysis covers all the possible values of α and statistical power.  
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Figure 2. Example of a ROC curve. The statistical power (true positive fraction) is on the 

vertical axis and type I error (α; false positive fraction) on the horizontal axis. Usually the 

area under the curve (AUC) is of interest in ROC analysis.     

 2.6.2. Effect size versus power   

 
In statistics, statistical power is typically plotted against the effect size (e.g. Erdfelder et 

al., 1996; Fig. 3). Of course, power can also be visualized against the sample size (see 

Section 3.1; Fig. 4). 
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Figure 3. The relation between the effect size (d) and the statistical power. When the 

effect size increases, the statistical power always increases as well. The values for the 

figure have been taken from Fig. 5 of Erdfelder et al. (1996). The test is one-sided t test 

for means, the sample size is 100 and α is 0.05. Effect sizes from 0 to 0.2 have been 

interpolated by assuming a linear increase in power.        

2.7. Correction for multiple tests  

 
Correction for multiple comparisons, or tests, is developed for simultaneous testing of 

multiple null hypotheses. In these circumstances, the p values have to be corrected to 

control the familywise error rate (FWE), i.e. to keep the risk of a false decision in a single 

hypothesis at a predefined level α. FWE is defined as P(N>0), where N is the number of 

false decisions (Hochberg and Tamhane, 1987; Holmes, 1994). There are also various 

other error rates, but we do not deal with them here (see Holmes, 1994; Nichols and 

Hayasaka, 2003). Recently, a fundamentally different approach to control for multiple 

tests, the false discovery rate (FDR) has been presented (Benjamini and Hochberg, 1995). 

FDR has also been introduced in the context of neuroimaging (Genovese et al., 2002; see 

Chapter 5).  
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2.8. Other considerations  

 
A vast amount of criticism has been presented on statistical hypothesis testing in many 

application areas (e.g. Turkheimer et al., 2004; Krantz, 1999). At the present time, there 

is a recommendation by the International Committee of Medical Journal Editors to avoid 

relying solely on statistical hypothesis testing. A partial solution to this is to use 

confidence intervals (invented by Neyman) accompanying the p values. Although 

confidence intervals are connected with p values, they provide valuable information 

about the spread and magnitude of the effects. If one is not satisfied with these kinds of 

intervals, either intervals based on the maximum likelihood theory (invented by Fisher) 

or Bayesian statistics can be applied. It should also be noted that statistical significance is 

different from practical significance, e.g. clinical significance. In final decisions, practical 

significance should be more important than statistical significance. For example, if the 

result is statistically significant, but the confidence interval includes a clinical 

significance limit, the result is not adequate.   
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Chapter 3 General means to increase the statistical 
power  
  

The primary motivation for increasing the statistical power is to obtain more reliable 

conclusions resulting from statistical tests by means of advance planning. Careful 

planning is always beneficial in research, and necessary in drug development. Planning a 

study involves: 1) Specification of research goals in precise and realistic terms, 2) 

Identification of the design and measurement options available to address the research 

questions; see Publication I for specific application, 3) Evaluation of the resources, i.e. 

time, personnel and funding, available to the project. Statistical power considerations are 

only then used to compare the potential consequences of such alternatives. In addition, 

power analysis guides the most feasible and cost-effective choice in a particular research 

setting (Kraemer and Thiemann, 1987).   

3.1. Sample size and related issues  

 
 The most effective way to detect the intervention effects is to increase the sample size 

(Fig. 4). As the sample size increases, power also increases, because the standard error of 

the mean decreases by the square root of the sample size (Lindgren, 1968).  The effect of 

increased sample size on power depends on the statistical design (see, e.g. Cohen, 1969). 

However, there may be, e.g. financial, ethical or patient availability restrictions in 

increasing the sample size.   
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Figure 4. Sample size visualized as a function of statistical power. The increase in the 

sample size always implies enhanced power to detect the effects, other issues being 

similar. This example is taken from Cohen (1969, p. 53). The test is a two-group t test, 

the significance criterion is 0.05, and the effect size is moderate, i.e. 0.5.     

 

Meta-analysis (“multi-trials”) can be used to increase the sample size and thus the 

statistical power of the test (see Hedges et al., 2001) both in exploratory research and 

controlled, randomized clinical trials. Meta-analysis can be broadly defined as a 

statistical technique for combining estimated treatment effects from independent 

comparable studies (DerSimonian and Kacker, 2007). Concerning the statistical model, 

there are two types of meta-analysis: the fixed effects model (e.g. Mantel and Haenszel, 

1959; Peto et al., 1976; Peto et al., 1977) and the random effects model (e.g. 

DerSimonian and Kacker, 2007). The difference between the two lies in dealing with the 

treatment effect: the fixed effects model assumes the treatment effects to be the same in 

different studies, whereas the random effects model treats the variation in treatment 

effects as a random variable (O’Rourke, 2006). A meta-analysis can be done either from 

the literature or from individual patient data. Another, related, way to increase the sample 

size and power is to use randomized multicentre clinical trials (“mega-trials”) (Meinert, 
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1981; Fleiss, 1986). In a multicentre clinical trial, researchers from different locations are 

brought together to specify the crucial research questions, using the rationale and 

justification provided by prior single-location randomized clinical trials (Kraemer and 

Robinson, 2005). An interesting discussion about the pros and cons as well as 

comparison between meta-analysis and multicentre clinical trials can be found in Shrier 

et al. (2007). To summarize, it was suggested that multicentre clinical trials have a small 

advantage with respect to confounding by chance, but meta-analysis may represent a 

significant advantage in introducing inherent heterogeneity from smaller trials. However, 

the preference for meta-analysis or multicentre clinical trial is related to whether 

methodological heterogeneity is considered beneficial or detrimental.      

 

Further improvement in power can be gained by increasing the degrees of freedom for 

better estimation in a statistical test. In many cases, the degrees of freedom depend on the 

number of observations and subjects. The increased degrees of freedom will yield better 

statistical power, i.e. sensitivity (e.g. Friston et al., 1999). 

3.2. Issues related to the parameters and type of statistical test    

 

In many cases, the sample size remains limited. In these situations, with, e.g. less than 20 

subjects per group one can do the following (Stevens, 1986): 1) Adopt a more lenient α 

level, perhaps α = 0.10 or α = 0.15, or 2) Use one-tailed tests where the literature supports 

a directional hypothesis. The subsequent test will be more powerful if the experimental 

results are in the predicted direction (Cohen, 1969).  

3.3. Reducing the within-group variability  

 

Large within-group variability is often the reason for low power. Therefore, considering 

ways of reducing within-group variability is beneficial to obtain a more sensitive design 

(Fisher, 1934; Stevens, 1986). For example, in the sample selection more homogenous 

subjects can be used as they vary less on the dependent variables. One should also ensure 

that there is a strong linkage between the independent variables and the dependent 
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variable(s), and that the independent variables extend over a long enough period of time 

to produce a large or at least fairly large effect size.  

 

Within-group variability can be also reduced by the experimental design (Fisher, 1934; 

Stevens, 1986). This can be accomplished, e.g. by using many kinds of factorial designs, 

analysis of covariance (covary out the confounder) or block designs (e.g. in randomized 

block design, the data are divided into more homogenous subgroups). Covariates, i.e. 

independent variables, which have low correlations with each other, are particularly 

useful. One can also use repeated measures designs. These designs are particularly useful, 

because all individual differences due to the average response of subjects are removed 

from the error term; individual differences contribute most of the within-group 

variability. Clinical cross-over trials are an example of a controlled repeated measures 

design (Pocock, 1993). In the most common type of cross-over trial, each patient receives 

two treatments one after the other, and the order of treatments is determined randomly. 

However, cross-over studies are not suitable for examining all kinds of diseases (see 

Pocock, 1993, p. 110). In addition, to cross-over patients from one treatment to another is 

generally not straightforward. There can be, for example, carry-over effects where the 

effect of the first treatment is propagated to the other treatment.  

 3.4. Reducing the measurement error 

 

Random measurement error, be it due to unreliability, observational carelessness, dirty 

test tubes, or any other source, reduces the precision of sample results, and thus reduces 

power. This is because the variability of the observations is increased beyond their 

necessary “true” variability (Cohen, 1969). The reduction of the random measurement 

error will, therefore, increase the statistical power. In general, anything which reduces the 

variability of the observations by the exclusion of sources of variability which are 

irrelevant to the assessment of the phenomenon under study, will serve to increase power 

(Cohen, 1969). Reducing the measurement error to increase statistical power is a key 

issue in this thesis. We will focus on this further when we deal with the specific 

applications in PET.  
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3.5. More efficient statistical tests  

 

The probability of the detection of the effects can be enhanced by using more sensitive 

techniques of analysis, i.e. more efficient statistical tests. Different FWE thresholding 

methods may also have an impact on power in neuroimaging (Nichols and Hayasaka, 

2003). This relates to the correction for multiple tests. For example, the simplest and 

most widely used Bonferroni correction, based just on the number of simultaneous tests, 

is known to yield more conservative results (greater p values) than many of its 

competitors (Nichols and Hayasaka, 2003).  

 

It should also be noted that if the distributional assumptions are not met, parametric 

statistical tests may not perform efficiently (or not even validly). These situations include, 

e.g. outlying observations or heavy tailed noise distributions. In such situations, 

nonparametric robust methods will yield higher efficiency (Hampel et al., 1986). This 

may also imply that the sample mean is not an especially sensitive measure for central 

tendency, and thus the use of a rank-order nonparametric test improves the statistical 

power (for application in neuroimaging, see Rorden et al., 2007). Similarly, robust 

parametric statistical methods will perform better in the presence of many outliers than 

ordinary parametric statistics. The presence of outliers influences the probability that the 

test will reject the null hypothesis (Hampel et al., 1986) and thus power. A transformation 

(e.g. logarithmic) can also be used to get the data to conform to normal distribution and 

subsequently use parametric statistics.  
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Chapter 4 Validation measures and their relation to 
power 
 

In all the publications of this thesis, we have used measures for validation of the methods, 

mostly in a test-retest context. We explore the relation of these applied measures to 

statistical power. We also introduce also measures for validation, but these are not 

addressed regarding power. Before dealing with the measures, we will briefly discuss 

validation and introduce the additive error model of measurements.  

4.1. Reliability theory: The additive error model 

 

We will briefly describe the additive error model that belongs to the classical reliability 

theory of measurements (see Shrout, 1998). It should be noted that the theory described 

here does not deal with the reliability theory of components or systems. We assume that 

there is a population of measures or measurement devices, and we sample measure j to 

evaluate a fixed person i. We denote that measurement Xij and treat is as a random 

variable. The measure j might be, e.g., an expert rater. We express Xij as the sum of a 

person parameter, ξi, and a residual term carrying the unique effect of the measure j 

 

          .                                                           (4)ij i ijX ξ ε= +     

 

The fixed person parameter, ξi, is defined as the expected value of X over the population 

of measures. There are various terms for the person parameter, such as the consensus 

score, true score and universe score. As ξi is E(Xij) for a fixed person, we get E(εij)=0. 

The variance for the measurement Xij is equal to Var(εij)=σ2(ε), which is known as the 

squared standard error of measurement for person i . The smaller the σ2(ε) is, the more 

precise the measurement. The main objective in this thesis is to make σ2(ε) smaller and 

subsequently increase power.  
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4.2. Validation: general issues in reproducibility, reliability and 
validity  

 

There are three major issues in validation of measurement methods: reproducibility, 

reliability and validity. All these aspects should be considered, but there is ambiguity in 

the literature, especially about which measures describe reproducibility and reliability. 

There is also obscurity about the terms reproducibility and repeatability. Repeatability is 

generally defined as the variation in measurements taken by a single person or instrument 

on the same item and under the same conditions. On the other hand, reproducibility refers 

to the ability of a test or experiment to be accurately reproduced, or replicated, by 

someone else working independently. Despite the fact that, according to the original 

description, we are here interested in repeatability, we will here use the term 

reproducibility, owing to its widespread use in the functional imaging community. 

Reproducibility is often called precision (International Organization of Standardization, 

1993; Fig. 5). The difference between reproducibility and reliability in test-retest studies 

is that reproducibility deals only with (average) within subject variation, whereas 

reliability also takes between subjects variation into account (see Laruelle, 1999). In this 

thesis, we deal only with test-retest reproducibility, whereas concerning reliability, we 

briefly introduce also other forms of reliability. In general, reliability is defined as the 

consistency of a test or measurement (Weir, 2005). Validity is, generally, the ability of 

the measurement tool to reflect what it is designed to measure (Atkinson and Nevill, 

1998). A measure may be reliable but not valid, but it cannot be valid without being 

reliable (see, e.g. Trochim, 2006). That is, reliability is a necessary but not sufficient 

condition for validity. A result is called valid if it is accurate and precise, i.e., unbiased 

and reproducible. In the fields of science, engineering, industry and statistics, accuracy is 

the degree of conformity of a measured or calculated quantity to its actual (true) value, 

thus being similar to bias (Fig. 5). Bias for an estimator µ̂  is formally defined as    

 

           ˆ ˆ( ) ( ) ,                                                      (5)bias Eµ µ µ= −  
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where µ is the true value of the parameter. However, one should note that accuracy is a 

qualitative term whereas bias is a quantitative term.  

 

 

 

 

 

 

 

Figure 5. Target analogy: accuracy versus precision. On the left there is fairly good 

accuracy (lack of bias) but poor precision (reproducibility). On the right, we find high 

precision yet low accuracy.     

4.3. Test-retest reproducibility  

 
The term test-retest refers to two consecutive measurements of the same subject 

measured at different time points. There are two types of test-retest reproducibility: 

change in the mean and within subject variation (Hopkins, 2000). Note that Hopkins 

(2000) is considering reliability, whereas we regard the test-retest quantities in question 

as reproducibility, owing to the focus on within subject variability (see Section 4.2). 

Change in the mean is composed of a systematic change (bias) and a random change 

(variance). The random change in the mean is due to sampling error that decreases with 

increasing sample size. Within subject variation is important for the researchers as it 

affects the precision of estimates of change in the variable of an experimental study 

(Hopkins, 2000). The smaller the within subject variation, the easier it will be to detect or 

measure a change. Usually the within subject variation is expressed as the standard 

deviation of repeated measurements on the same subject, which enables the measurement 

of the size of the measurement error (Bland and Altman, 1996a). In applied sciences, 

measurement error is sometimes characterized as the typical error (Hopkins, 2000). 

Measurement error itself is generally composed of natural biological variation in the 

subject and variation in the measurement process, i.e. methodological error (Bland and 
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Altman, 1996a, Snedecor and Cochran, 1967, p.164-165). We emphasize that the 

reduction of methodological error is the focus of this thesis, to increase the probability of 

the detection of intervention effects.         

4.3.1. Normalized absolute difference and its relation to power 

 

In Publications II, III and IV, we have used a measure for test-retest reproducibility that 

has not been used earlier. However, closely related methods have been applied. The name 

of the measure is normalized absolute difference (NAD), defined as     

 

                                         1 2

1

| | ,                                                           (6)i i
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X XNAD
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−
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where 1iX  is positive.  NAD, expressed as percentages and averages over the samples, 

has a very close relation to receptor occupancy (OCC) defined as  

 

              1 2
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X
−

=  

 

In Eq. 6, both measurements are performed at baseline, but in Eq. 7, the first 

measurement is performed at baseline and the second during intervention (e.g. drug). 

OCC is often expressed as percentages. X is typically the neurobiologically interesting 

parameter, binding potential (BP; see Chapter 5). NAD can be regarded as absolute 

variation of receptor occupancy in a test-retest setting, or a percentage signal change. 

Using average NAD and, e.g. 95% confidence interval for proportions, it can be inferred 

how accurately receptor occupancy can be computed in reality, i.e. taking test-retest 

variability into account. We have used the absolute sign in NAD to keep the 

reproducibility measure positive. The rationale for this is that regarding receptor 

occupancy, we can assume that the value at baseline is greater than the value during 

intervention (drug) as the drug occupies the receptors (see Chapter 5). NAD without the 
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absolute sign has been used by some authors (e.g. Hirvonen et al., 2003; Kim et al., 

2006).  

   

The relation of NAD to power is not straightforward, as the test-retest measurements are 

dependent on each other. However, relation to power can be examined by investigating 

the effect size in a paired t test using Eq. 3 (e.g. we can compare the two methods 

presented in Publication II in terms of the effect size, and see empirically whether 

improved reproducibility coincides with smaller effect size). A small effect size here is 

beneficial, as there is no true intervention. It should also be noted that plotting the 

absolute difference and mean is equivalent to plotting the standard deviation of the 

difference and mean (Bland and Altman, 1996b). This gives a relation to power for 

reproducibility, but not exactly for NAD as in NAD the first value is used in the 

denominator instead of the mean.    

4.3.2. Variance and its relation to power 

 

Variance measures the test-retest reproducibility also in simulations with dynamic 

numerical phantoms as well; see Publication I, where there was no biological variability 

involved. Variance in a difference variable of two independent variables has a direct 

connection to power in a paired t test through standard deviation (square root of 

variance). This is evident from the equation of effect size (Eq. 3; Section 2.4).   

4.3.3. Other reproducibility measures used in functional neuroimaging 

 
There is a large variety of other reproducibility measures used in the context of functional 

neuroimaging.  

 

Coefficient of variation (CV) is defined as the sample standard deviation divided by the 

sample mean (Eq. 8)  

 

                           .                                                           (8)SCV
X

=  
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CV describes the typical error, i.e. the standard deviation of an individual’s repeated 

measurements (Griffin, 1962, p. 116, Hopkins, 2000). We define CV as measure 

reproducibility, if it concerns within subject measures. If between subjects measures are 

considered, CV is a measure of absolute reliability (consistency of scores of individuals). 

 

Test-retest variability (TRV; Parsey et al., 2000) is expressed as 
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The difference between NAD and TRV is small, if the test and retest values are close to 

each other, which is the case in PET neuroreceptor studies. 

  

Repeatability coefficient (RC; British standard institution, 1979) is defined as 

 

           1 22 ( ).                                            (10)i iRC S X X= −      

 

Of the differences, 95% are expected to be less than the repeatability coefficient (Bland 

and Altman, 1986). This is because the coefficient 2 in Eq. 10 is very near the 95% 

critical value, 1.96, of the normal distribution.    

 

The average parameter value (APV) is a measure of the coefficient of variation of the 

difference between methods:  
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To facilitate comparisons across the regions of interest, RC is calculated as a percentage 

of the mean to obtain the APV (Tauscher et al., 2001; Chow et al., 2007). Those studies 

call APV the RM%, but the abbreviation RM is not explained there.  

 

Root mean squared error (RMSE) is a combination of bias and variance (see 

Publication I). It is a square root of the mean squared error (MSE) defined for an 

estimator µ̂  to estimate the population parameter µ   as    

 

                2ˆ ˆ( ) (( ) ).                                                        (12)MSE Eµ µ µ= −  

 

Thus RMSE is 

                    2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( , ))  .             (13)RMSE MSE Var biasµ µ µ µ µ= = +   

 

In simulations, it is often useful to calculate the sample mean of RMSE 
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where ˆ jµ :s are the n realizations of the estimator µ̂ . In RMSE, bias refers to “change in 

the mean” type of reproducibility, or internal validity, and variance in simulations, e.g. of 

the kind in Publication I, the test-retest reproducibility. Therefore, we categorize RMSE 

here as a measure of reproducibility. However, RMSE is a general error measure applied 

extensively, e.g. in simulations, where MSE and RMSE are most useful. This is because 

the true value of the parameter has to be known.    

4.4. Reliability   

 

There are various forms of reliability; e.g. test-retest, intra-rater, inter-rater and internal 

consistency. The main emphasis in this thesis is on the test-retest reliability.  
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In classical reliability theory, the reliability coefficient (Rx) is defined as the ratio of the 

true score variance to the total variance of the observed measure, X (Shrout, 1998). The 

observed variance of X ( 2
Xσ ) can be formulated as the sum of the true score ( 2 ( )σ ξ ) and 

error ( 2 ( )σ ε ) variances 
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The reliability coefficient is interpreted as the proportion of 2
Xσ  that is due to replicable 

differences in subjects. Another equivalent formulation by, e.g. Bartko (1966) and 

Baumgartner (1969) is  

 

                      between subjects variability .                           (16)
between subjects variability + error variance XR =   

 

In Eq. 16, the between subjects variability, also known as between subjects mean sum of 

squares (BSMSS), is expressed in studies with repeated observations as:   
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where K is the number of repeated observations per subject, .nX  is the mean of 

observations for subject n, and ..X  is the mean of all observations. Correspondingly, the 

within subject variability, i.e. within subject mean sum of squares (WSMSS) is written as  
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 where nkX  is the k:th observation of a subject. 
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4.4.1. Test-retest reliability 

 

A common form of test-retest reliability is retest correlation. The correlation coefficients 

indicate the reproducibility of the rank order of subjects on retest. This is called the 

relative reliability (Weir, 2005). On the contrary, absolute reliability concerns the 

consistency of scores of individuals (Weir, 2005).  

 

There is an important difference between measurement error and retest correlation. 

Measurement error can be estimated from a sample of subjects that is not particularly 

representative of the population one wants to study (Hopkins, 2000). On the other hand, 

the retest correlation depends on the way the sample is chosen (Bland and Altman, 

1996b). 

4.4.1.1. Intra-class correlation coefficient 

 

Intraclass correlation coefficient (ICC) was introduced in its current form by Shrout and 

Fleiss (1979). There are three main forms of ICC, depending on the type of reliability 

study. In general, ICC concerns inter-rater reliability: each of a random sample of N 

targets is rated independently by K judges. In the first form, each target (test-retest: 

subjects) is rated by a different set of K judges, randomly selected from a larger 

population of judges, i.e. in the test-retest studies the repeated observations in time. In the 

second form, a random sample of K judges is selected from a larger population, and each 

judge rates each N target. On the contrary, the third case concerns the rating of each 

target by each of the same K judges, who are the only judges of interest. In this thesis, we 

have used exclusively the first form, denoted in Shrout and Fleiss (1979) by ICC(1,1). It 

is based on the one-way random effects analysis of variance model, and is the only 

suitable form of ICC for test-retest studies (K = 2):  
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The general form of the ICC is a ratio of variance due to differences between subjects 

(the signal) to the total variability in the data (the noise) (Weir, 2005). ICC measures the 

relative reliability (see Section 4.4.1).  

 

The increase in ICC will result in increased power to detect the effects (Perkins et al., 

2000; Charter, 1997). To assess how much an increase in ICC will increase power, see 

e.g. Figure 2 of Perkins et al. (2000). As a rule, the method with highest the ICC should 

be chosen (Laruelle, 1999). A drawback of ICC is that its value depends on the 

population from which the study subjects have been drawn, and this may lead to 

difficulties in comparing results from different studies (see Section 4.4.1). The advantage 

of ICC is that it is also possible to use it in more than two repeated measures per subject 

(Atkinson and Nevill, 1998). In general, ICC is a coefficient that ranges from -1 (no 

reliability; BSMSS = 0) to 1 (maximum reliability; WSMSS = 0) (Parsey et al., 2000). 

ICC also measures the relative homogeneity within groups relative to the total variation 

(Kelder et al., 1993; Publication II). An ICC value of at least 0.7 is regarded as acceptable 

reliability (Hripcsak and Heitjan, 2002). This is, however, arbitrary.   

4.4.1.2. Pearson’s product moment correlation coefficient 

 

Pearson’s product moment correlation coefficient (r) was introduced by Pearson (1896). 

This most common measure of correlation is not typically recommended to test the test-

retest reliability; however, the recommendation is not universal (Rousson et al., 2002). 

The main reason for the difference between r and ICC is the treatment of systematic 

error, which is often due to a learning effect on the test-retest data. It seems that ICC(1,1) 

applied in the publications of this thesis does not include a term for systematic error. In 

these circumstances, with two measurements made on the same subjects, the usual r is 

equivalent to ICC, with a slight restriction (Rousson et al., 2002). The restriction is that 

with r, the orders of any pairs affect the results, whereas ICC estimates the average 

correlation between all possible pairs of observations (Bland and Altman, 1996b). 

Pearson’s r cannot be used with more than two repeated measurements per subject 

(Atkinson and Nevill, 1998).    
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4.4.1.3. Other test-retest reliability measures 

 

There is a retest correlation measure that slightly differs from ICC: the reliability 

coefficient (ReC; Scheffe, 1959; Chan et al., 1998). The nominator in ReC does not have 

a within subject term: 

 

               Re .                                         (20)BSMSSC
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This measure can be regarded as a sample version of Eq. 15. The change in ICC will 

reflect a change in ReC in the same direction, but with a different magnitude. 

      

There is a widely used measure called limits of agreement (LOA) (Altman and Bland, 

1983; Bland and Altman, 1986), which is defined for differences as  

 

      2 .                                                      (21)LOA X S= ±  

 

This measure has been developed to examine the agreement between two different 

techniques of quantifying a certain variable. It has also been cited as a measure of 

absolute reliability (Atkinson and Nevill, 1998). The use of LOA as an index of reliability 

has been recognized (e.g. Atkinson and Nevill, 1998) but also criticized (e.g. Hopkins, 

2000), while Rousson et al. (2002) states that assessing reliability is different from 

comparing measurement methods. However, the assessment of these two notions has 

common aspects (Rousson et al., 2002).  

 

A further measure for measuring test-retest reliability is the standard error of 

measurements (SEM) (Weir, 2005). It is related to ICC as follows:    

 

    1 .                                                          (22)SEM S ICC= −  
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SEM is a measure of absolute reliability. Due to this property, SEM is more appropriate 

for comparing reliability between different measurement tools in different studies than 

ICC that indicates the relative reliability.   

4.4.2. Intra- and inter-rater reliability  

 

Intra-rater reliability is used to assess to what degree one rater gives consistent estimates 

of the same phenomenon, whereas inter-rater reliability concerns the same concept with 

multiple raters or observers.  

4.4.2.1. ICC and Pearson’s r 

 

In continuous measurements, intra- and inter-rater reliability are quantified typically with 

ICC, as introduced earlier (see Section 4.4.1.1. for different types of rater reliability). 

Pearson’s r is also sometimes used to assess rater reliability. However, caution must be 

used in the interpretation of r, as it is unaffected by the presence of any systematic biases   

(Hunt, 1986). A t test of the significance of r reveals whether inter-rater means differ, i.e. 

the presence of bias.  

4.4.2.2. Kappa measures for categorical measurements 

 

In categorical measurements, Cohen’s Kappa (κ; Cohen, 1960) is suitable for assessing 

the inter-rater reliability of two raters. The equation for κ is  
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where P(a) is the relative observed agreement among raters, and P(e) is the probability 

that the agreement is due to chance. Fleiss’s Kappa (Fleiss, 1971) is an extension of 

Cohen’s kappa for more than two raters. It is equivalent to ICC (e.g. Rae, 1988).   
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4.4.3. Internal consistency 

 

Internal consistency can be formulated as the extent to which tests or procedures assess 

the same skill, characteristic or quality. There are many forms of internal consistency: 

average inter-item correlation, average item total correlation and split-half reliability 

(Trochim, 2006). The average inter-item correlation uses all the items on our instrument 

that are designed to measure the same construct. The average inter-item correlation is 

simply the average or mean of all these correlations. The average item total correlation 

also uses the inter-item correlations. In addition, a total score for all items is computed 

and used as a variable in the analysis. In split-half reliability, all items intended to 

measure the same construct, are randomly divided into two sets. All items are 

administered to a sample of people, and the total score is calculated for each randomly 

divided half.    

4.4.3.1. Cronbach’s alpha 

 

Cronbach's Alpha (α; Cronbach, 1951) is mathematically equivalent to the average of all 

possible split-half estimates, and also equivalent to one form of ICC, namely ICC(3,k), 

defined in Shrout and Fleiss (1979). It is a classical measure for internal consistency type 

reliability, and is based on earlier works by Spearman (1910) and Brown (1910) as well 

as Kuder and Richardson (1937). It has become a universal procedure for estimating 

reliability and is defined as  
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where N is the number of components (items or testlets), 2
Xσ  is the variance of the 

observed total test scores, and 2
iYσ  is the variance of component i for person y. There are 

various modifications of Cronbach’s Alpha. The estimation in internal consistency is 

based on the correlation among the variables comprising the set. Cronbach’s Alpha was 

applied in Publication V in the validation of subjective ratings.   
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4.4.3.2. Recent measures for internal consistency  

 

Recently, a more general, multivariate measure has been developed for internal 

consistency, Tarkkonen’s ρ (Tarkkonen and Vehkalahti, 2005). Chronbach’s α is a 

special case of Tarkkonen’s ρ in certain one-dimensional measurement models.  Another 

alternative measure to Cronbach’s α is provided by Werts et al. (1978).     

4.5. Validity  

4.5.1. General issues on validity 

 

There are multiple types of validity. Some of them are related to statistics, others are not. 

As we have noted above, perhaps the most important statistical terms related to 

measurement validity are precision (reproducibility) and accuracy (lack of bias). 

Sometimes also the validity of the statistical conclusion is investigated. This refers to the 

degree to which one’s analysis allows one to make the correct decision regarding the 

truth or approximate truth of the null hypothesis. There are also multiple types of issues 

where validity is applied, namely the validity of measurement, design and sampling. 

Validity of measurement is called the construct validity, validity of design the internal 

validity, and validity of sampling the external validity. Most of the material in this 

subsection has been condensed from Trochim (2006).  

  

We define here the terms concerning validity of measurement, i.e. construct validity. This 

type of validity refers to the inferences that can be made from the operationalizations of 

the study to the theoretical constructs. Construct validity involves generalizing from the 

programme or measures to the concept of the programme or measures. The types of 

construct validity are translation validity and criteria-related validity. In translation 

validity, an attempt is made to assess the degree to which the construct can be accurately 

translated into the operationalization. In criteria-related validity, the performance of 

operationalization is checked against some criteria. Translation validity and criteria-

related validity are further divided into subcategories. Translation validity comprises face 

validity and content validity. Face validity involves investigating whether the 
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operationalization seems to be a good translation of the construct. Content validity, on the 

other hand, is related to checking the operationalization against the relevant content 

domain for the construct. Criteria-related validity is composed of predictive validity, 

concurrent validity, convergent validity and discriminant validity. In predictive validity, 

we assess the operationalization's ability to predict something which it should 

theoretically be able to predict. Concurrent validity refers to the operationalization's 

ability to distinguish between groups that it should theoretically be able to distinguish 

between. Convergent validity describes the degree to which the operationalization is 

similar to other operationalizations that it theoretically should be similar to. Finally, the 

discriminant validity refers to the degree to which the operationalization is not similar to 

other operationalizations that it theoretically should not be similar to.  

 

The validity of design is called the internal validity.  It can be characterized as the degree 

to which the results of an experimental method lead to clear-cut conclusions. Internal 

validity is the approximate truth about inferences regarding cause-effect or causal 

relationships, and thus is relevant only in studies that try to establish a causal relationship.  

Internal validity refers to biases in statistical design. These biases can be reduced by 

random assignment of subjects, or by using counterbalancing for interfering variables. 

Internal validity can be also threatened by experimenter bias. There are also other threats 

to internal validity. 

 

The validity of sampling can be characterized as external validity. This involves the 

extent to which the result can be generalized beyond the sample. Thus, external validity 

refers to the approximate truth of conclusions that involve generalizations. Sometimes, 

external validity is further divided into population validity and ecological validity. 

Population validity refers to the extent to which the findings can be generalized to other 

populations of people. On the contrary, ecological validity (mentioned in Publication V) 

is present when the experimental procedures resemble real-world conditions. Some 

authors think that ecological validity does not belong to external validity, because they 

are independent: a study may be externally valid but not ecologically valid and vice versa 

(Brewer, 2000; Shadish et al., 2002). It has also been noted that ecological validity is not 
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necessary for the overall validity of an experiment, unlike internal and external validity 

(Shadish et al., 2002).    

4.5.2. Bias 

 

Bias (Eq. 5, Section 4.2) measures the quantitative accuracy of measurement in validity, 

or assesses the systematic change in reproducibility. It also refers to internal validity 

(experimenter bias). In this thesis, we have used average bias over the noise realizations 

in a simulation study (Publication I): 

                         

ˆ ( ),                                                          (25)iaverage bias g µ µ= −   

 

where g(.) was either the sample mean or the sample median. Bias is useful only in 

simulations, because the true value of the parameter has to be known. Bias has no direct 

connection to power as such. It affects power only if bias is different in different classes 

of independent variable(s). This may be true in some circumstances in neuroimaging, so 

care must be taken in interpretation of results. 

4.5.3. Positive predictive value     

 

Positive predictive value (PPV) is a validity measure in a binary classification test (Pepe, 

2003; Publication II). It refers to criteria-related validity of measurements. PPV is defined 

as  
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where |TP| (|FP|) is the number of true positives (false positives). In this thesis, we have 

used PPV in the evaluation of validity of the automatic and manual region of interest 

segmentation methods in PET. In this context, the use of PPV (and the Jaccard 

coefficient, Section 4.5.4) requires that the other set is “ground truth”, as is the case with 
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the phantom simulations. PPV was the most appropriate measure of validity for our 

purposes (see Publication II for details). The relation of PPV to power can be seen in 

Table 1 (p. 17, Section 2.3.4).  

4.5.4. Jaccard coefficient  

 

Another measure for testing validity is the Jaccard coefficient (see, e.g. Jackson et al., 

1989). This measure (Eq. 27) is also known as the Tanimoto coefficient and is expressed 

as the ratio between the size of the intersection and the size of the union of sets   
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A and B are binary volumes. The Jaccard coefficient is generally a similarity coefficient 

that can, in some circumstances, also be applied to assess validity.  
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Chapter 5 Positron emission tomography – issues on 
statistical power  

5.1. PET – Introduction  

 

PET is a functional medical imaging modality. This means that with PET imaging, 

images can be obtained that depict some biologically or medically relevant function (Fig. 

6), not anatomy, unlike, e.g. in magnetic resonance imaging. With PET, it is possible to 

quantitatively measure biochemical and physiological processes in vivo using 

radiopharmaceuticals labelled with positron-emitting radionuclides, i.e. tracers (Paans et 

al., 2002). After injecting these radionuclides into the body, the regional concentration of 

the labelled compound can be imaged as a function of time (Cherry, 2001). To obtain a 

dynamic image with multiple time frames and thereafter calculate corresponding time-

activity curves in particular regions (Fig. 7), image reconstruction has to be carried out. 

This is because the measurements obtained from PET scanners are in a sinogram matrix 

containing the measured projections. Imaging data are then combined with a measure of 

the time course of the plasma probe concentration, which reflects its delivery to tissue. 

Thereafter, the data are processed with a compartmental model that includes equations 

describing the transport and reaction processes the probe undergoes (Phelps, 2000).  
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Figure 6. A sample example of a dynamic PET image. The transaxial slice is shown in 

the middle of data acquisition (time frame 7 of 13). The PET tracer is [11C]raclopride. 

Picture courtesy of Turku PET Centre.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. PET time-radioactivity curve in brain region cerebellum. The unit of activity is 

kiloBecquerel per milliliter (kBq /ml) and the PET tracer is [18F]SPA-RQ. The data for 

the curve were obtained from Turku PET Centre.   
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PET is being used in various applications such as studies of blood flow and glucose 

metabolism in the heart and brain, receptor systems in the brain, oncology in whole-body 

scans, and recently also reporter gene expression. PET is also recognized as an important 

clinical tool, e.g. in cancer, cardiovascular disease, neurodegenerative disease, epilepsy, 

and brain injury (Cherry, 2001). Earlier, PET was also used in studying cognition, but 

now these studies are mostly performed with functional magnetic resonance imaging 

(D’Esposito, 2000). The most important application of PET concerning this thesis is, 

however, early drug development. PET offers possibilities to accelerate the drug 

development process from preclinical discovery to phase III clinical trials (Eckelman, 

2002). PET is being used in preclinical and phase I clinical trials mostly in the central 

neural system (psychiatry), in anti-cancer (oncology) and small-animal PET-related drug 

development (Lee and Farde, 2006; Saleem et al., 2006; Cherry, 2001). In this thesis, we 

deal specifically with methodological properties of receptor occupancy (Fig. 8), which 

guides the dose-finding procedures for a drug (see, e.g. Passchier et al., 2002 for review). 

In receptor occupancy, there is a competition between the drug and the PET tracer. 

Occupancy gives the proportion of receptors that the drug has occupied, thus defeating 

the tracer. In conclusion, the advantages of PET are the excellent sensitivity, flexible 

chemistry and decay scheme that lead to favourable imaging properties. The drawbacks 

include cost and accessibility (Cherry, 2001). 
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Figure 8. Example of receptor occupancy % (vertical axis) as a function of the dose of a 

drug L-759-274 (horizontal axis) in the occipital cortex of the brain. The PET tracer is 

[18F]SPA-RQ, which binds to NK1 receptors. Picture courtesy of Turku PET Centre.  

 

With real PET data, it is impossible to separate the biological and methodological sources 

of variation and errors in the images. Therefore, real PET data are not suitable for testing 

different sources of variation and errors. To simulate these, both numerical and physical 

phantom images have been developed, i.e. artificial PET images. The phantom 

simulations are also very important in developing and testing models. In this thesis, we 

dealt with dynamic numerical phantoms. In Publication I, we first investigated the 

dynamic behaviour of the PET tracer by utilizing values from real PET studies. 

Accordingly, there, we constructed the virtual radioactivity distribution on the chosen 

anatomy. We were then able to imitate for the first time the whole procedure and 
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methodological errors of receptor occupancy studies by phantom simulations. To a 

limited extent, also Monte Carlo-simulated dynamic numerical phantom images (Reilhac 

et. al, 2004) were used in Publication I, as well as in Publications II, III and IV. The 

Monte Carlo-based simulator introduced in Reilhac et al. (2004) provides a realistic 

model for data acquisition that takes into account the system dead time, random and 

scatter coincidences, detector normalization, and attenuation.     

     

5.2. Challenges in PET concerning the statistical power  

 

There are many challenges concerning the statistical power in PET. Abundant noise 

appears in the measured PET projections that impair the quality of the reconstructed 

images (Ollinger and Fessler, 1997). The noise originates from the statistical nature of 

PET data acquisition: two photons are simultaneously detected yielding a “coincidence´” 

event in a line of response between two detectors in the PET scanner (Turkington, 2001). 

This means that the PET measurements are based on a counting process yielding 

independent Poisson distributions for the measurements (Ollinger and Fessler, 1997). 

Moreover, the quality of PET images is degraded by various physical factors, some of 

which can be corrected. The degrading factors include scatter, attenuation, random events 

(accidental coincidences), detector dead time, and detector normalization (see 

Turkington, 2001 for descriptions and details). In the statistical sense, the most important 

factor is random events, the current correction of which renders the data non-Poisson, 

with variance greater than the mean (Fessler, 1994, Yavuz and Fessler, 1998). With PET, 

there is also an ethical limiting factor: the radiation dose to the study subjects. This 

radiation restricts increasing the study sample size (with a few exceptions). Therefore, 

many PET studies suffer from low statistical power. Further factors that impair statistical 

power in PET studies can be easily found. There are, namely, many preprocessing steps 

before the images to be analyzed can be obtained. In general, the variation in PET studies 

consists of inherent biological variation in the populations under study, and the 

preprocessing steps: errors due to instrumentation and image reconstruction, 

physiological quantification inaccuracies, and errors in extraction of regional information 
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from the imaging data (Carson, 1991). Except for biological variation, these errors can be 

classified as errors arising from the applied methods. As the methodological errors can be 

considerable, they may have a substantial effect on statistical power.  

5.3. Statistical analysis of PET image data  

5.3.1. Preprocessing of PET image data for statistical analysis 

 
Roughly speaking, there are two distinct ways to statistically analyze brain PET image 

data: region of interest (ROI) -based analysis and voxel-based analysis (a voxel is a three-

dimensional volume element). Actually, the ROI-based analysis concerns three-

dimensional volumes of interest (VOIs) instead of regions, but we will use the 

conventional name ROI. Before the data can be statistically analyzed, various 

preprocessing steps have to be performed.  

 

The PET measurements are acquired in sinogram matrices that cannot yet be analyzed as 

such, although some noise reduction in them has been performed through radial (see, e.g. 

Kao et al., 1998; La Riviére and Pan, 2000) and sinusoidal trajectory based filtering 

(Happonen and Alenius, 2005; Peltonen and Ruotsalainen, 2006) . An image is created 

from sinogram matrices using image reconstruction. There are, roughly, two types of 

reconstruction methods, analytical (Jain, 1989) and statistical iterative reconstructions 

(e.g. Yavuz and Fessler 1998; Alenius and Ruotsalainen, 2002). Thereafter, the obtained 

dynamic emission image is computed through compartmental modelling to a parametric 

brain image (voxel-based analysis) or parametric values in specific brain areas of interest 

(ROI-based analysis), using the time-activity values. The parametric images or values can 

be obtained using various methods (see, e.g. Logan et al., 1996; Gunn et al., 1997; 

Cselényi et. al., 2006), some of which cannot be used with every PET tracer.  

 

Usually, image registration is also done prior to analysis (e.g. realignment: same subject 

at different times, co-registration: same subject, different imaging modalities, spatial 

normalization: different subjects, same imaging modality). Co-registration between PET 

and magnetic resonance (MR) image is typically used in ROI-based analysis, and spatial 
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normalization in voxel-based analysis to fit the images into some standard stereotaxic 

space (Ashburner and Friston, 2005). Then, there is the extraction of ROIs (possible in 

both types of analyses), and spatial smoothing, typically performed only in voxel-based 

analysis. It should also be noted that PET quantification is hampered by partial volume 

effect and spillover (e.g. Rousset et al., 1998; Hoffmann 1979), which are due to limited 

spatial resolution (partial volume) and its reciprocal effects (spillover). Moreover, their 

effect on quantification is different; partial volume decreases tracer uptake, whereas 

spillover increases it. Due to these degrading factors, outliers appear in the PET image 

data. This implies that without the partial volume correction - which can be performed in 

some cases - the sample mean may not be adequate to estimate the central tendency. This 

was obvious in Publication II, where the Monte Carlo phantom results with anatomical 

ground truth structures provided poor mean quantification, and also in Publication I, 

although partial volume was not explicitly modelled there. All these causes produce 

errors that increase the measurement error, and thus may have even a significant effect on 

power. In this sense, the fewer modifications to the data to be analyzed the better. 

However, some modifications are required in PET, depending on the goal of the analysis.   

5.3.2. ROI-based statistical analysis 

 

The conventional ROI-based statistical analysis is based on average (e.g. mean, median) 

intensity values in specific ROIs (e.g. Huesman, 1984). In PET neuroreceptor studies, 

this is typically performed from BP values (see Hirvonen et al., 2003 for typical practical 

implementation). From BP values of the baseline and drug intervention scan, we can then 

calculate the receptor occupancy in ROIs, which depict the percentage of receptors that 

the drug has occupied. The use of average intensity values in a ROI means that there is 

only one value in a ROI to be analyzed from an image. Therefore, the data need not 

necessarily be presented in the image domain, thus enabling the use of standard statistical 

packages in the analysis. Because these can be used, the generalizability of the results of 

ROI-based analysis is at the same level as in typical statistical analyses. In most cases, 

this means that the results can be generalized from the sample to the population level, 

provided that the sample selection is appropriate. Due to the averaging of voxels inside a 
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ROI, statistical uncertainty is also reduced (Huesman, 1984). The drawback of ROI-based 

analysis is that it is not as spatially specific as voxel-based analysis, i.e. the differences 

within ROIs cannot be studied. In addition, it may not be very suitable for finding new 

brain areas, where significant effects might be found. In many cases, the ROIs to be 

analyzed are chosen on the basis of the earlier literature. 

 

In this thesis, ROI-based statistical analysis was not used as such. However, all 

publications, except Publication V, use a hybrid approach in the evaluations: parametric 

images were calculated as in voxel-based analysis, but these were averaged in individual 

ROIs. This is known to produce comparable results with the conventional ROI approach 

with [11C]raclopride tracer, and according to evaluations also with [18F]SPA-RQ 

(evaluations were not included in the final version of Publication I). It should be noted 

that in these publications, conventional statistical analysis was not performed, only 

methodological evaluations (bias, variance, reproducibility, reliability, etc.).   

5.3.3. Voxel-based statistical analysis 

 
Compared to the ROI-based analysis, the voxel-based technique is a more recent way to 

analyze PET imaging data. The idea of voxel-based analysis is to examine each voxel in 

the entire brain simultaneously (i.e. each voxel has a null hypothesis of no effect on its 

own). This massively univariate approach is based on GLM that allows the residuals to 

have a variance that varies from voxel to voxel; otherwise residuals have the usual 

assumptions of normal and independent distribution with zero mean (Friston et al., 1995). 

There are also other strong assumptions (see Section 5.4.2). The results are called 

statistical parametric maps, defined as spatially extended stochastic processes that are 

used to test hypotheses about regionally specific effects in neuroimaging data.  The whole 

approach is called statistical parametric mapping (SPM). There is a statistical package, 

SPM (e.g. Friston et al., 1995), for voxel-based analysis in functional neuroimaging, as 

well as various competing packages, such as FSL (Smith et al., 2004), AFNI (Saad et al., 

2006) and others. Within the voxel-based analysis framework in SPM, the inference can 

also be based on clusters of voxels instead of single voxels, i.e. cluster-based inference 

can be performed (Friston et al., 1994). In this inference, the spatial extent of activated 
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regions is taken into account when determining the height threshold corresponding to the 

significance criterion. Cluster-based inference is suitable for detecting effects in different 

kinds of signals from voxel-based inference: cluster-based inference favours large but 

subtle effects, whereas voxel-based inference more easily detects peaked effects with 

high statistical scores (see Friston et al., 1996 for theory and details). In voxel-based 

analyses, the search volume can also be kept smaller than the entire brain, using the small 

volume correction (SVC; Worsley et al., 1996). The generalizability of SPM analyses is 

limited, i.e. they are fixed effects analyses rendering the studies “case studies” (Holmes 

and Friston, 1998). Therefore, the preceding authors developed a two-stage analysis (in 

functional neuroimaging, called random effects analysis) to extend the inference to the 

population level. In this thesis, Publication V uses a voxel-based statistical analysis, the 

results of which can be generalized at the population level. 

 

In the voxel-based analysis, spatial normalization has to be applied to fit the images from 

different subjects into a standard space. This leads to errors in localization of effects, 

especially in small brain regions. The images are also typically smoothed to increase 

signal-to-noise ratio (which is inherently worse in voxel-based than in ROI-based 

analysis), and due to distributional assumptions of voxel-based analysis. This further 

hampers the localization of effects due to the spreading of the effects. Despite the 

aforementioned reasons, voxel-based analysis is, generally, more spatially specific than 

ROI-based analysis. In some cases, the voxel-based analysis also has limited 

generalizability of results. Voxel-based analysis can be considered as a more exploratory 

tool than ROI-based analysis. It is suitable for finding new brain areas, where effects 

might be found. This could be accomplished by performing a voxel-based analysis, at a 

low threshold, without correction for multiple tests, as a pre-phase for ROI selection and 

analysis (Holmes, 1994). An alternative to ROI analysis is to use voxel-based small 

volume correction (SVC) analysis (Worsley et al., 1996), but then the selection of ROIs 

should be made similarly as in ROI analysis, not directly based on the results of the 

analysis. It is not reasonable to “confirm” the results of ROI-based analysis by voxel-

based analysis that uses SVC. The hypothesis testing is different, and they are thus 

alternatives or complementary to, but not confirmatory of each other.   
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5.4. Power of statistical analysis in PET and ways to enhance it   

5.4.1. ROI-based analysis: power 

 
Concerning the statistical power, ROI-based analysis is known to be more sensitive in 

detecting the effects than voxel-based analysis (Holmes, 1994). This is partially due to 

the fact that the correction for multiple tests corresponds to the number of chosen ROIs of 

simultaneous interest, and is less severe than in voxel-based analysis. Moreover, the 

averaging inside a ROI effectively reduces the statistical uncertainty, especially if the 

ROI is large. To increase the power in ROI-based analysis, standard methods can be used 

as such (Chapter 3). However, due to the ethical and financial restrictions in PET, the 

sample size cannot be substantially increased unless meta-analyses or multicentre clinical 

trials are carried out. There is literature on how to determine the adequate sample size and 

power in ROI analysis with PET (e.g. Wahl and Nahmias, 1998). It should also be noted 

that the partial volume effect influences the statistical analysis and power if the effect of 

partial volume is different in different treatments, subjects or groups. At least the spill-

over effect is dependent on the magnitude of intensity values: high intensity values 

spread more than low ones. This is true for both types of PET statistical analyses.   

5.4.2. Voxel-based analysis: power 

 

There are multiple problems with statistical power in voxel-based statistical analysis. 

Firstly, because p values are arranged as images, they have a spatial interrelationship and   

spatial patterns of varying size (Turkheimer et al., 2004). This hampers estimation of the 

adequate sample size. Many previous articles on statistical power have thus used 

repeatability of effects as a criterion for determining the sample size instead of actual 

power analysis. There are various articles that deal with power in voxel-based functional 

neuroimaging (Grabowski et al., 1996; Andreasen et al., 1996; Van Horn et al., 1998; 

Petersson et al., 1999; Desmond and Glover, 2002), but all of them concern activation 

studies, not PET neuroreceptor studies.   
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Secondly, there are a large number of multiple tests in voxel-based statistical analysis 

(there are about 200 000 voxels in the brain). The correction for multiple tests in SPM 

voxel-based analysis is based on the theory of Gaussian random fields (Adler, 1981). The 

correction is not, however, based directly on the number of voxels, but the expectation of 

the Euler characteristic and the number of resolution elements that determine the p value 

(Worsley et al., 1996). The approximative equation is 

 

  
3

0
( ) ( ) ( ),                                                 (28)D D

D
P M u R SV uρ

=

≥ ≈ ∑  

 

where M is the global maximum, u the height threshold value, D the dimension, SV the 

search volume, RD the number of resolution elements, and ρD the probability density 

function for the Euler characteristic. This correction is severe and makes the statistical 

power fairly low (see Nichols and Hayasaka, 2003 for comparison of various 

thresholding methods). It also makes many strong assumptions, especially about the 

smoothness of random fields. This is one of the reasons why scans from functional 

imaging experiments are typically smoothed with a Gaussian kernel prior to SPM 

analysis.    

 

On the basis of previously described theory (Worsley et al., 1996), it is possible to restrict 

the inferences to a smaller volume than the entire brain using a priori hypothesis, i.e. 

using small volume corrected SVC analysis. It increases power in the hypothesized areas 

due to less severe correction for multiple tests. However, SVC is not unproblematic 

regarding power (Turkheimer et al., 2004), because there is a loss of power elsewhere in 

the brain. Another way to increase the statistical power is to use nonparametric methods 

in the correction for multiple tests (Holmes et al., 1996; Nichols and Holmes, 2002). This 

approach, called statistical nonparametric mapping (SnPM), uses a less severe 

permutation based correction for multiple tests, thus gaining more power (Fig. 9), and 

having less stringent assumptions than SPM (see Appendix of Publication V). It also 

enables the pooling of variance estimates over neighbouring voxels (“variance 

smoothing”), under the mild assertion that the true variance image is smooth, thus giving 
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additional degrees of freedom. Although the correction for multiple tests is 

nonparametric, the approach still uses the GLM in the estimation of effects. This 

approach is also suitable for PET receptor studies with small sample size (although 

Publication V is not a receptor study but a PET activation study).  

 

 

 

 

 

 

 

 

 

 

Figure 9. SPM versus SnPM results of voxel-based regression analysis in sagittal (upper 

row; left), coronal (upper row; right) and axial (lower row) views. The results concern 

responses to amusing film clips. On the left, SPM results, and on the right SnPM results. 

Increase in power with SnPM can be clearly seen by more statistically significant results, 

most of it due to variance smoothing. The significance level corrected for multiple tests 

was the same, 0.05, for both analyses. SnPM results are the same as in Publication V.   

    

In addition to the nonparametric methods, the correction for multiple tests can be made 

more lenient by estimation of the “true” null hypotheses (Turkheimer et al., 2001). In this 

way, the number of tests can be reduced. A Bayesian perspective on multiple hypothesis 

testing can also be used (Turkheimer et al., 2004; Friston et al., 2002). In that approach, 

there is a separate model for the signal and the noise (Turkheimer et al., 2004). An 

attracting approach is to use false discovery rate (FDR) based correction for multiple tests 

(Genovese et al., 2002). It is adaptive and generally has better power to detect effects 

than, e.g. correction based on the theory of random fields. Unfortunately, the statistical 

inference in FDR does not obey FWE. Instead, it allows that a pre-specified proportion of 

statistically significant results will be false positives, but we do not know which part. 



 63

Some authors have claimed that FDR is an exploratory tool (e.g. Turkheimer et al., 

2004), but this is not universally agreed.  

 

Besides the correction for multiple tests, statistical power can be enhanced by various 

other analysis techniques. In the context of neuroimaging, the newest of these are truly 

nonparametric methods based on ranks (Rorden et al., 2007). Even in SnPM, the tests are 

based on mean statistics, which is not the most optimal choice in many situations, e.g. 

many outlying observations or skewed distributions. In such circumstances, methods 

based on ranks are more appropriate and have more power (Rorden et al., 2007). Another 

way to gain more power is to use a statistical method designed specifically for PET 

neuroreceptor studies (Aston et al., 2000). This method, called the residuals t test, 

provides increased degrees of freedom by utilizing dynamic, time-varying information 

from the residuals of the fit of compartmental model, and associated standard deviation 

images. A fundamentally different approach is provided by the wavelets-based methods 

in statistical analysis (Cselényi et al., 2002; Turkheimer et al., 2000). Wavelets are well 

known in image processing for their noise reduction properties. However, their problem 

lies in the statistical inference that can possibly be made implicitly (Jernigan et al., 2003).  

5.4.3. Methods of this thesis concerning the power in PET statistical analysis 

 

Our ultimate aim is to reduce confounding test-retest variation in PET by better 

methodology, and thus increase the statistical power to detect effects. Reducing 

methodological errors plays a remarkable role in the publications of this thesis 

(Publication I focuses on errors due to image reconstruction and physiological 

quantification, whereas Publications II, III and IV examine the errors derived from the 

extraction of regional information). Publication V, on the other hand, attempts to improve 

the statistical power by using a sensitive statistical technique for analysis. In other words, 

the first four publications try to reduce the noise, whereas Publication V tries to enhance 

the detection of the signal, without explicitly reducing the noise before the statistical 

analysis. Both approaches lead to similar results. Although Publication V concerns PET 
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activation studies on emotion, the same statistical method can also be used in PET 

neuroreceptor studies with small sample sizes.   

  

In this section, we show in more detail the improvements made in this thesis concerning 

the statistical power. In a paired t test, the denominator has a standard deviation (square 

root of the variance) of a difference variable (Eq. 2). In Publication I it has been shown 

that the median root prior (MRP) (Alenius and Ruotsalainen, 1997; Alenius and 

Ruotsalainen, 2002) image reconstruction method has smaller standard deviation than 

filtered back-projection (FBP) (Jain, 1989) reconstruction in the dynamic PET images 

and receptor occupancy. This is the case also with BP images with both baseline and 

intervention scans. This implies improved statistical power, as in simulations the variance 

of a difference variable can be written as 

 

                    ( ) ( ) ( ),                                       (29)Var X Y Var X Var Y− = +  

 

where X is here the baseline scan and Y the intervention scan (Lindgren, 1968). This is 

because in simulations, we can assume that X and Y are independent. However, in 

reality, this does not hold, as X and Y are dependent due to two measurements per 

subject. In that case, a different measure should be used (Lindgren, 1968): 

 

          ( ) ( ) ( ) 2 ( , ),                            (30)Var X Y Var X Var Y Cov X Y− = + −  

 

where Cov(X,Y) is the covariance between X and Y. In Publication I, we also found the 

smallest average bias using a simplified reference tissue model with basis functions 

(SRTM BF; Gunn et al., 1997) for physiological quantification. Although average bias 

does not have an unambiguous connection to power, we recommend using MRP image 

reconstruction in conjunction with the SRTM BF physiological calculation method with 

[18F]SPA-RQ tracer (Publication I). Concerning the automatic segmentation of striatum 

ROI used in Publications II, III and IV, we have above shown that increased 

reproducibility and reliability imply better power with automatic ROI extraction methods 

compared to manual extraction methods. Additional support for increased power in 
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automatic segmentation is given in Table 2, in terms of average standard deviation (S) of 

BP and NAD in a test-retest study (n = 8) utilized in the publications (II-IV) of this 

thesis. 

 

 Pairwise DSM-OS DSM-OS coreg DSM-OS manual orig manual coreg

Average S BP 0.3465 0.3326 0.3244 0.3968 0.3558

Average S NAD 2.7646 1.8876 2.2482 3.7173 2.9315

 

Table 2. Average standard deviation of a reproducibility measure NAD and binding 

potential (BP) in brain structure striatum.  Various ROI extraction methods, introduced in 

publications (II-IV) of this thesis, were applied. The first three columns describe the 

different automatic extraction methods (Pairwise DSM-OS [dual surface minimization – 

outer surface], DSM-OS coreg [with PET-to-PET co-registration] and DSM-OS), and the 

last two columns manual extraction methods (manual orig [original] and manual coreg 

[with PET-to-PET co-registration]).  

 

Table 2 shows that the point estimates of average standard deviations were always 

smaller with the automatic methods than with the manual methods. Statistically 

significant differences in NAD S were found between DSM-OS coreg and manual orig 

(p=0.0175, 95 % confidence interval [0.48,3.18]) and  DSM-OS coreg and manual coreg 

(p=0.0453, [0.03,2.06]). With BP S statistically significant differences were seen between 

DSM-OS and manual orig (p=0.0064,[0.03,0.11]), and between DSM-OS coreg and 

manual orig (p=0.0271,[0.01,0.11]). In calculation of the effect size, standard deviation of 

the difference variable should be used (Eq. 2). Concerning the voxel-based statistical 

analysis in Publication V, the improvement in power has already been shown (Fig. 9).  

5.4.4. A proper statistical design to detect the effects of a drug with PET 

 

A proper design for testing the effects of intervention (e.g. drug) with PET can be 

obtained by a 2 x 2 factorial design: a test-retest group (two baseline scans from each 

subject) and a drug group (a baseline scan and a drug scan from each subject). To test the 

effects of a drug, an interaction between replication and group is of interest. In an 
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appropriate test for an effect of drug, the confounding test-retest variation must be taken 

into account. Therefore, just testing the simple difference between baseline and drug is 

not acceptable. Another way to incorporate the test-retest variation in the statistical 

testing is to include it as a covariate while testing the effects of the intervention. A 

drawback in this design is that there are no replications concerning the drug scans of the 

same subject. This can be accomplished in the later stages of the drug development, as 

PET is currently used only in phase I of three-stage clinical trials.          
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Chapter 6 Summary of publications  

Publication I 

 
Publication I is the core of this thesis. We developed a procedure for comparing image 

reconstruction methods and physiological model calculation methods in PET receptor 

occupancy studies. However, the procedure can be used generally for examining 

methodological errors in PET receptor occupancy studies with any PET tracer. Average 

bias, variance and root mean squared error were used as error measures in a simulation 

study that utilized dynamic numerical phantoms. A total of eight combinations of 

reconstruction and physiological calculation methods were compared. The statistical 

iterative reconstruction method MRP produced the lowest variances, and the 

physiological model calculation method SRTM BF yielded the lowest average biases in 

receptor occupancy values. Low variance of iterative reconstruction implies greater 

power to detect effects in statistical analysis.  

Publication II  

 
An entirely automatic, novel method for the extraction of brain regions, the caudate and 

putamen, from PET BP images was introduced. We also validated the automatic method 

and compared it with the conventional manual extraction of the caudate and putamen, 

using test-retest (baseline) PET images and a Monte Carlo-simulated image. The 

automatic method was based on deformable surface models and normalized cuts. The 

global optimization-based algorithms in deformable models can be thought as 

applications of the algorithms presented in the PhD thesis of Tohka (2003). Those applied 

in the present thesis are abbreviated in Tohka’s work as DSM-OS and DSM-IS. The most 

important part of the publication concerning this thesis is, however, the validation. The 

reproducibility was assessed using average NAD, the reliability using ICC, and the 

validity using PPV. The automatic method was found to be considerably better than 

manual method in terms of reproducibility, somewhat better in terms of point estimates of 
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reliability (indicating greater power with the automatic method), and comparable 

concerning validity.     

Publication III 

 
The automatic segmentation method introduced in Publication II was extended to serve 

the needs of receptor occupancy studies. This was achieved by assuming two scans per 

subject (baseline study and intervention study), and developing two modified automatic 

segmentation methods. The segmentation result of the baseline study was utilized in the 

segmentation of the intervention study, which is a challenging task due to the 

considerably reduced uptake of the tracer compared with the baseline study. The data 

consisted of real occupancy studies in addition to the data in Publication II. We validated 

the new methods (two variants of DSM-OS) similarly as in Publication II (with the 

exception that instead of validity, receptor occupancy was examined), and compared the 

segmentation methods with each other. Also in this case, the validation results were 

generally favourable for the automatic segmentation as compared to the manual one.  

Publication IV  

 
This study is complementary to Publication III. A third method for automatic 

segmentation of striatum was developed for receptor occupancy studies, which guide the 

dose-finding procedures in early drug development. This time, the deformable model- 

based algorithm was different (DSM-IS) from that in Publication III (DSM-OS), but the 

data were the same. The third automatic method was found to be comparable to the 

methods in Publication III and remained somewhat better than the manual segmentation, 

thus indicating enhanced power.  

Publication V  

 
A voxel-based subject-specific regression analysis in studies on emotion was presented. 

This was the first application of the method in PET studies on emotions, although the 

theory was developed earlier. The advantages and drawbacks of the method were 

discussed. However, the most important contribution of the publication to this thesis lies 
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elsewhere. Namely, in regression analysis, we used a voxel-based statistical method, 

which uses non-parametric permutation-based correction for multiple tests. It has more 

statistical power than parametric methods to detect effects when sample size is small (e.g. 

n<15). Moreover, we used a procedure enabling results that can be generalized to 

population level, unlike standard voxel-based analyses.       

Author’s contribution to the publications  

 
The major issue of this overview and the connecting topic of the publications of this 

thesis – increasing the statistical power in the analysis of PET data – was the idea of E. 

Wallius. However, the initial ideas for the individual publications were proposed by the 

supervisor, U. Ruotsalainen (Publication I), in collaboration with the supervisor and the 

instructor J. Tohka (Publications II, III and IV), and by S. Aalto (first author of 

Publication V). In Publication I, the author conducted all the experiments and 

simulations, and wrote most of the article, while getting advice and comments from the 

supervisor and other authors. Publication I was a learning process; the aims of the study 

developed gradually in discussions between the author and the supervisor. In Publication 

II, the author wrote most of the Introduction, all the “Experiments with test-retest human 

studies” and related results, and participated in writing the Abstract, Discussion and 

Conclusion. In addition, the author performed all the experiments concerning the 

automatic segmentation in the test-retest human studies. In Publications III and IV, the 

author wrote the most part of the articles in guidance with the other authors, implemented 

the required modifications for the segmentation algorithm, and performed all the 

experiments. Publication V was initiated already during the author’s M. Soc. Sc. thesis, 

and was written in tandem with S. Aalto. The main contribution and responsibility of the 

author was to perform the voxel-based statistical analyses and report their results, as well 

as write the theoretical Appendix and those parts of the Discussion that are related to 

statistics.                      
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Chapter 7 Discussion  

7.1. The statistical power 

 

We have shown that the increase of power in the statistical analysis of PET imaging data 

can be obtained without increasing the sample size. To achieve this, we used methods 

broadly characterized as image analysis methods to reduce the measurement error. In 

Publication V, another approach, based on improved detection of effects in statistical 

analysis, was presented. The resulting increased statistical power benefits drug 

development. In the current thesis, drug development is explored through dealing with 

the methodological properties of receptor occupancy studies that guide the dose-finding 

procedures (Fig. 7). There are previous theses that have, as a minor part, dealt with 

statistical power in PET studies (e.g. Holmes, 1994; Reinders, 2004). Recently, test-retest 

studies for almost every PET tracer have also been performed, but the increased power is 

not typically emphasized in those studies, although it is known that the test-retest 

variation has an impact on power.  

 

The finding of Publication I that the use of statistical iterative reconstruction (e.g. MRP) 

increases the statistical power in PET compared to analytical reconstruction methods is 

not new (Reinders et al., 2002; Mesina et al., 2003). However, these publications dealing 

with the voxel-based analysis have used a different statistical iterative image 

reconstruction method from this thesis, and also they are PET activation studies unlike 

most of the publications of this thesis. In Publication I, physiological model calculation 

methods were found to have an impact on average bias, which can, but does not 

necessarily affect power. We also found better power using completely automatic ROI 

extraction than the conventional manual ROI extraction (Table 2, Publications II, III, and 

IV). Other automatic and semi-automatic ROI extraction methods exist for PET 

neuroreceptor studies  (e.g., Rusjan et al., 2006; Chow et al., 2007), but these rely on MR 

images in addition to PET images, whereas our method utilizes solely PET images. Chow 

et al. (2007) have previously investigated effect size in the context of semi-automated 

extraction of ROIs, and reproducibility is assessed in various articles.  
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7.2. Applications in drug development  

 

The methods applied in this thesis may be especially useful in receptor occupancy type 

multicentre clinical trials and meta-analyses. In addition to the gain in power, such 

studies greatly benefit from automation and careful pre-planning of experiments. 

Normally, pre-planning also involves power analysis, which may be difficult with PET as 

we have discussed above. The automation of ROI extraction (Publications II, III and IV) 

can possibly substantially speed up early drug development together with PET. The 

development of new PET scanners with better resolution makes automated ROI 

extraction even more useful, as the burden for manual extraction increases enormously. 

Automation can also help to relieve intra- and inter-observer variability to increase the 

reproducibility (e.g. Zijdenbos et al, 1998; Ruotsalainen et al., 2001) and power. In 

manual segmentation, different experts have divergent opinions and individual working 

habits, all of which reduce reproducibility. On the other hand, pre-planning of PET 

receptor occupancy experiments can yield substantial cost savings, and can also improve 

power (Publication I). This is because the use of dynamic numerical phantom studies to 

select the most appropriate image reconstruction and physiological calculation methods 

may save many expensive pilot PET studies with humans. Possibly, time can also be 

saved, as the methods applied in the studies do not have to be tested with human studies 

but with realistic simulations. As far as we know, the best way to do this pre-planning is 

to use the Monte Carlo-simulations with dynamic numerical phantoms (Reilhac et al., 

2004). These were to a limited extent also used in Publication I. When Publication I was 

in preparation, there were no test-retest studies on [18F]SPA-RQ PET tracer. Recently, a 

test-retest study for this tracer has been published (Yasuno et al., 2007). Publication I in a 

way examines test-retest variability in a situation where there is only methodological 

variation. 

7.3. Validation measures  

 

Validation measures, especially reproducibility and reliability, as well as their relation to 

the statistical power, are one of the focuses of this thesis. TRV is, in general, probably a 
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better measure for reproducibility than the NAD we used, as the denominator includes the 

mean. This is because the absolute subject difference versus subject mean is equivalent to 

a standard deviation of the difference versus mean when there are only two 

measurements per subject (Bland and Altman, 1996b), thus indicating a relation to 

power. However, NAD suits better than TRV for examining receptor occupancy, owing 

to the similar form of the corresponding equations (Eq. 6 and Eq. 7). With NAD one can 

determine the absolute effect of test-retest variation to measured receptor occupancy 

(Publication II). This is valid, if we assume that the intervention (drug) BP scan always 

has a smaller value than the baseline BP scan. This is a reasonable assumption, as it 

ensures that the receptor occupancy cannot be negative. However, in proper 

examinations, NADs should be complemented with, e.g. 95% confidence intervals for 

proportions. The investigations in this thesis showed that the average NADs were in most 

cases under 10%. This is in line with Passchier et al. (2002), who stated that the test-

retest variation in PET is 5-10%. Concerning neuroreceptor PET reliability studies, ICC 

has become a gold standard (Laruelle, 1999). Because we compared methods in this 

thesis, we could, in principle, have utilized LOA, but we decided to stick to reliability 

measured by ICC. With ICC, there is no learning effect in neuroreceptor PET, as BP is a 

quantitative measure. Thus, it is not a task that can be learned, unlike, e.g. in 

neuropsychology, where the systematic error (change) between test-retest experiments 

can cause problems. If needed for absolute reliability, ICC can be complemented with a 

related measure, SEM (e.g. Weir, 2005). In addition, there are no human raters in the case 

of automatic segmentation and usually only one trained specialist in manual extraction. 

But with PET test-retest experiments, the different time points at which the 

measurements are made can be regarded as the raters as the PET measurements are 

statistical in nature and vary from time to time. Of course, natural biological variation is 

also included. For these reasons, we conclude that with PET test-retest studies, the 

problems relate both to the test-retest and inter-rater reliability. 
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