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ABSTRACT

VER the last years, location-based services (LBS) have become popular due to the
O emergence of smartphones with capabilities of positioning their user’s location on
Earth at unprecedented speed and convenience. Behind such feat are the technological
advances in global navigation satellite systems (GNSS), such as Galileo, Globalnaya
Navigazionnaya Sputnikovaya Sistema (GLONASS), Global Positioning Service (GPS)
and Beidou. The easiness of smartphones and the improvement of positioning technol-
ogy has driven LBS to be at the core of many business models. Some of these business
models rely on the user’s location to pick him up on a car, relinquish a meal to him, offer
insights on sports performance, locate items to be picked up on a warehouse, among
many others.

While LBS are driving the need to continuously locate the user at higher degrees
of accuracy and across any environment, be it in a city park, an urban canyon or
inside a corporate office, some of these environments pose a challenge for GNSS. Indoor
environments are particularly challenging for GNSS due to the attenuation and strong
multipath imposed by walls and building materials. Such challenges and difficulties in
signal acquisition have led to the development of solutions and technologies to improve
positioning in indoor environments.

While there are several commercial systems available to fulfill the needs of most LBS
in indoor environments, most of these are not feasible to deploy at a global scale due to
their infrastructure costs. Hence, several solutions have sought to build upon existing
infrastructure to provide positioning information.

Building upon existing infrastructure is what leads to the main topic of this thesis,
the concept of signals of opportunity (SoO). A SoO is any wireless signal that can be
exploited for a positioning purpose despite its initial design seeking to fulfill a different
purpose. A few examples of these signals are IEEE 802.11 signals, commonly known
as WiFi, Bluetooth, digital video broadcasting - terrestrial (DVB-T) and many of the
cellular signals, such as long-term evolution (LTE), universal mobile telecommunications
system (UMTS) and global mobile system (GSM).

The goal of this thesis is to address various challenges related to SoO for position-
ing. From the identification of SoO at the physical layer, how to merge them at the
algorithmic level and how to put them in use for a cognitive positioning system (CPS).
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CHAPTER 1

INTRODUCTION

ACHINE-MADE signals have allowed human population to develop efficient mecha-
M nisms to exchange information and knowledge.

Daily, we interact with many of these signals, such as WiFi, Bluetooth, cellular, TV
and satellite signals with a given purpose, either to access the Internet, call another
person, watch or listen the news or locate oneself on Earth.

The goal of this thesis is to identify such signals and understand how to identify and
use them towards a positioning context.

1.1 Background and motivation

Location has always been an important aspect for human development. From the star
navigation days, we have progressed towards a time where artificial satellites allow us to
determine our location and time to an unprecedented degree of accuracy. While these
satellites are mostly useful in outdoor environments, they are one of the key drivers for
several applications, such as autonomous vehicles and aircrafts, smart agriculture, fleet
management, smart tolling, among many other location-based services at a worldwide
scale.

While outdoor environments have been the pinnacle of location-based services so
far, indoor environments have remained a challenge. Global navigation satellite systems
(GNSS) are unavailable in indoor environment due to strong multipath and attenuation
imposed by the building materials. The difficulty in acquiring GNSS signals in indoor
environments has fostered the creation and development of indoor specific systems,
which allow for the determination of a user’s location from an accuracy of several dozens
of meters to just a few decimeters. There are several commercially available indoor
positioning systems which rely on technologies such as WiFi [122,126], Bluetooth low
energy (BLE) [41,106,116], Internet of things (IoT) technologies [120,131,137] and ultra-
wideband (UWB) [40,103]. The problem behind these systems is the cost associated
with creating and maintaining a dedicated service infrastructure. It would also be quite
time consuming to roll out a worldwide infrastructure to provide users with a seamless
mechanism to acquire their location worldwide.
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One of the biggest hurdles for indoor environments is the cost of infrastructure.
Infrastructure refers to all the equipment necessary to have in place for the system to
offer a location of a user in a given environment. The infrastructure cost is bigger for
higher accuracy and precision systems, since such systems rely on dedicated hardware
and often require additional cabling to be added throughout the environment.

Overall, aiming for a seamless worldwide location in indoor environments, such as
GNSS for the outdoors, would require building on existing infrastructure to keep costs
low. This motivation is what has led the research community over the last years to
explore existing opportunities available through wireless communication systems, due
to their popularity in indoor environments, either corporate, commercial or residential.
One key technology driver for this has been WiFi, which has sprouted throughout indoor
environments to allow users to access the Internet or replace existing cable infrastruc-
ture. However, there are far more technologies other than WiFi, such as radio, digital
radio, digital TV, 3G, 4G, Bluetooth. There are also several other IoT opportunities
in the 2.4 GHz and sub-GHz spectrum, such as NB-IoT, SigFox, Wirepas, among other
presented and discussed in chapter 6.

The above-mentioned signals create an opportunity to use them outside their initial
purpose and derive useful information to locate a user seamlessly throughout any kind
of environment. This is the key driver behind this thesis, where the goal is to look at
the existing and future radio environment and look for what is known from now on as
signals of opportunity (SoO).

This thesis tries to find answers to the following questions:

Which signals among the available ones could be used?

e What are the limitations of available SoO in terms of positioning performance
metrics?

Which of the SoO features can be explored to support location and navigation?

How would an opportunity receiver look like?

How would a designer build a SoO-based positioning system?

1.2 Objectives and scope of the thesis

The main objective of this thesis is to study the applicability of SoO for wireless posi-
tioning. This includes looking at their properties in the time-frequency domain, allowing
for their identification among other signals reaching a receiver and building enhanced
cognitive positioning receivers with a focus on power preservation. In addition to this
objective, this thesis also looks at a few aspects of interference and how it impacts the
performance of a positioning algorithm. Moreover, this thesis investigates positioning
algorithms to hybridize sensor data from multiple SoO. Finally, it draws a panorama on
the status of several IoT technologies and on the needs and desires these impose during
the design and construction of a positioning system.



1.3 Thesis contributions and structure

1.3 Thesis contributions and structure

The main contributions of this thesis are enumerated below. The publications where
these contributions were presented are shown in brackets.

1. Deriving a detection algorithm to infer the presence of 802.11 signals at sub-
Nyquist rates [P1];

2. Providing a novel method to detect the presence of code division multiple access
(CDMA) and orthogonal frequency-division multiplexing (OFDM) in a signal mix-
ture [P2];

3. Proposing an architecture for a cognitive positioning system [P2];

4. Analyzing the impact of radio interference on the performance of a positioning
algorithm based on BLE beacons [P3];

5. Analyzing the benefits in terms of the positioning performance by hybridizing
multiple technologies, such as WiFi and radio-frequency identification (RFID)
[P4-P5];

6. Providing insights on the design of a positioning system based on wireless com-
munication systems, such as current and future WiFi and IoT systems [P6].

Publications [P1-P6] provide more details into the topics briefly described and pre-
sented in this thesis summary. Some of the notations and visual appearance of figures
included in the thesis differ slightly from the associated publications.

This thesis is organized in three different parts. The first part consists of chapter 2
which provides an insight on the background of SoO. The second part consists of chap-
ters 3 to 7, which contains the thesis contributions, namely on the realms of spectrum
sensing, interference mitigation, efficient positioning, design of positioning systems and
a summary. The third part is formed by a compilation of 6 publications by the thesis’
author.

1.4 Author’s contributions to the publications

The thesis topic was formulated by Assoc. Prof. Elena Simona-Lohan in the context
of the EU FP7 Marie Sktodowska Curie project Multitechnology Positioning Profes-
sionals (MUTI-POS). Assoc. Prof. Elena Simona-Lohan has guided and contributed to
all publications [P1-P6], where she was the main driver behind the publication ideas,
providing support during the research formulation and while writing the manuscripts.
The research work for most of the publications was carried out between 2013 and early
2016.

e In [P1] the thesis’ author analyzed the measurements acquired by M.Sc. Ondrej
Daniel with whom the paper was co-authored. The techniques and introduction
of main concepts was written by the thesis’s author, while M.Sc. Ondrej Daniel
wrote other introductory parts and helped write the conclusions. The remaining
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co-authors helped with the review of the document. The work was presented by
the thesis’ author;

In [P2] the thesis’ author created the simulation, wrote and presented the entirety
of the paper with the help and feedback from the remaining co-authors;

In [P3] the work was proposed by Prof. Terry Moore and PhD Anahid Basiri, PhD
James Pinchin shared access to the hardware. The thesis’ author acquired the
field measurement data, which included the development of specific tools for the
process. Moreover, the remaining analyses was performed by the thesis’ author,
who also wrote and presented the entirety of the document. The remaining co-
authors helped with the review of the document;

In [P4] the thesis’s author developed the simulator and tools to analyze the mea-
surement data set provided by Assoc. Prof. Elena Simona-Lohan. The paper was
written and presented by the thesis’ author;

In [P5] the thesis’s author developed the simulator, wrote and presented the
manuscript;

In [P6] the thesis’ author and Assoc. Prof. Elena Simona-Lohan acquired the
background information on the several technologies presented. Several simulations
were developed and co created among both authors. Dr. Tech. Ville Kaseva
contributed towards the discussion of the ideas and the review of the document.

1.5 Other contributions by the author

The author has also contributed actively to other studies in the area [10-12,32, 49,
54,83,84,107,135]. These studies are not included in this compilation to preserve the
compactness of the thesis. A brief description of the main contributions provided by
the thesis’ author is given instead:

In [11] the thesis’ author wrote the sections related to positioning with WiFi
systems;

In [107] the thesis’s author helped with the simulation analysis and helped writing
and reviewing the manuscript;

In [10, 12,54, 70,83, 84] the thesis’ author wrote some of the sections related to
positioning with WiFi, RFID and BLE systems;

In [135] the thesis’ author helped with the manuscript preparation and presented
the work;

In [32,49] the thesis’ author helped with the review of the manuscript.

In addition to the academic work and under the scope of the MULTI-POS project,
the thesis author contributed to the development of the local industry through a research
visit of 8 months during 2016 (Wirepas Oy, Finland). This work has led to the creation
and development of a positioning product [138].



CHAPTER 2

SIGNALS OF OPPORTUNITY

THIS chapter starts by introducing the concept of SoO for positioning. It continues by
presenting an overview of several common signals and moves on the implications
to use and exploit them in a positioning context.

2.1 Overview

As mentioned in chapter 1, SoO are any kind of signals which are used in a different
context from what they were initially meant for. In other words, SoO for positioning
are any signals whose initial intent was not for a positioning purpose, but which contain
rich features or are ubiquitous enough to be useful in a positioning context. These
are two of the main traits that ought to start an evaluation regarding which signals to
exploit for the development of a positioning system.

Due to their extensive coverage in urban environments, the most common type of
So0 to consider are WiFi and cellular signals. These signals were initially built and
designed for telecommunication purposes, hence their classification as SoO. Table 2.1
presents a few relevant SoO together with some of their key physical layer parameters,
which are relevant for positioning, such as bandwidth, carrier frequency and multiple
access. In addition to machine made signals (see Table 2.1), it is also important to
call attention to natural occurring fields, as well as artificial fields, such as geomagnetic
fields and lighting patterns in indoor environments [4, 33, 36].

To apply these signals in a positioning context, first of all, it is necessary to extract
from them a measurement to or from a reference point. Second, by associating this
measurement with the known coordinates of such reference points, it is possible to
obtain a position in the same reference frame. These two elements are the necessary
inputs for a positioning system, which is defined in more detail in section 2.2.
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Table 2.1: Machine-made signals of opportunity.

Signal Frequency Multiple access Bandwith
802.11ad 60 GHz OFDM 160 MHz
802.11ac 5.8 GHz OFDM 160 MHz
802.11n 5 GHz OFDM 40 MHz
802.11¢g 2.4 GHz OFDM 20 MHz
802.11a 5 GHz OFDM 20 MHz
802.11b 2.4 GHz DSSS 20 MHz
Bluetooth 2.4 GHz FHSS 1 MHz
Zigbee 2.4 GHz DSSS 2 MHz
DVB-T 40-200MHz OFDM 8 MHz
LTE 800, 900, 1800, 2600 MHz OFDM 20 MHz
UMTS 900, 2100 MHz CDMA 1.25 MHz
GMS 900, 1800 MHz TDMA 200 kHz

2.2 Elements of a positioning system

In a positioning system, the position of its users is provided through the algorithms
applied to measurements taken from the received signals. The basic blocks of such
system are illustrated in Figure 2.1. Figure 2.1, depicts a positioning system, where
the first block is the measurement layer and the second block is an algorithmic layer.
The output of the system is a position or location update, which often corresponds to a
coordinate point in a 2D or 3D space. The first block provides to the second block a set
of measurements extracted from the received signals. Depending on the signal design,
the measurement involves obtaining a power level, an angle or a time estimate. The most
popular techniques are time of arrival (TOA), time difference of arrival (TDOA), angle
of arrival (AOA) and received signal strength (RSS). For example, global navigation
satellite systems rely on TOA to compute the distance of the mobile to each satellite
in view [114]. In indoor systems, RSS is used frequently to provide an estimate of the
user’s position [79].

2.2.1 Measurement layer

The algorithmic block shown in Figure 2.1 depends on the type of measurement pro-
duced by the measurement layer. In this thesis, the measurements and corresponding
algorithms are classified in three distinct domains, time, power and space. Each of these
domains and their most important techniques are described in this section.



2.2 Elements of a positioning system

Received signals Measurements Positioning
TOA, TDOA, . Algorithm
AOA, RSS, ...

Position
Eg (x,v,2), (1,1, h)

Figure 2.1: Basic elements of a positioning system.

Time domain

This section introduces several time domain measurements, which rely on a time refer-
ence to understand how much the signals have travelled between devices. The major
drawback in time measurements is the necessity of having synchronized clocks, either
at the receiver or at the transmitter side. The problem appears at how the clocks keep
time. Higher precision clocks are expensive and thus unbearable for consumer minded
applications.

Round trip time

Round trip time (RTT) measures the time a message takes to travel from the source
to the destination and back. It does not require synchronization in the network, but it
increases the complexity of the overall system, since it requires each node to transmit a
message and wait for its return [95]. The distance between the emitter and the receiver,
Ra

(tRT - Atmessage ) C

R = 5 ,

(2.1)

is a function of the return trip time, tgT, minus the time taken by the device to process
the request, Atyessage, times the speed of the medium, c, divided by two.

Time of arrival

TOA provides the system with the time taken by the signal to travel from the emitter
to the receiver. The distance between the receiver and the emitter, R,

R = tc, (2.2)

is the travel time, t, it takes for the message to arrive times the speed of propagation
in the medium, which for electromagnetic waves is the speed of light, c.

Therefore, synchronization is necessary for an accurate computation of the distance,
since small timing errors, such as millisecond, will result in several hundred meters of
error.
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Time difference of arrival
TDOA measures the difference in TOA, t1 — t2, from the emitter to two receivers,

R, R
S22t (2.3)
& C

where Rq, Ro are the geometrical distance between the receiver and the emitter at times
t1 and to, respectively and c is the speed of light.

In TDOA, the goal is no longer to determine the arrival time of the emitter’s signal,
but instead to determine the difference in time at which the signal arrives at multiple
receivers and by consequence inferring the relative position of the emitter [24].

One major drawback of TDOA is that it still relies on synchronized clocks by one
of the parties involved in the process. Because of the synchronized clocks and its
inherent cost, the measurements are often taken at the network side allowing for the
end equipment to keep relying on cheaper components.

Virtual time difference of arrival

Virtual time difference of arrival (V-TDOA), [105], starts by assuming that the RF
transmitter is synchronized to an absolute time reference and that it transmits a periodic
beacon at every T period. A receiver acquires the k** beacon at time ¢, as describe
by,

tr =to + 2Ty + Aty + A7y, (2.4)

where Aty is the difference in propagation time, V-TDOA, between measurement 0
and measurement k, and A7, is the time offset due to local oscillator drift between
measurement 0 and measurement k.

The goal behind V-TDOA is to estimate Aty using the TOA measurements ¢, despite
of the local oscillator’s offset A7,. However, the local oscillator’s skew ought to be
modelled to allow accurate V-TDOA measurements.

Space domain

In the space domain, techniques require the presence of specialized antennas or antenna
arrays. This leads to challenges in terms of the hardware design regarding the physical
separation and number of antennas in the array. Nevertheless, the most critical aspect
in the space domain is to enable a precise discrimination of the angle of the incident
signal. Precise angle information is important since the error in the measurement grows
larger as the distance between emitter and receiver increases [35]. Besides that, strong
multipath and lack of line of sight pose additional challenges when determining the
principal wave front.

Angle of arrival

In AOA, determining the location of a device requires at least two angle measurements
[141]. One measurement is also enough if another measurement from another domain,
such as time or power, is used to infer the distance between the emitter and receiver.
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Hence, for the nt" device, it is possible to describe its measurement at the receiver
m as,

(Tns Yn) = Rimcos(0,) + Ry sin(6.y,), (2.5)

where R,, is the distance from m to n and 6 the angle of arrival determined at m.
A range measurement is obtained by solving the set of equations with regards to the
unknown coordinates. For the determination of @, an array of at least two elements is
required and its determination follows,

A
— 1 (b 2'
0 = cos (2 - > , (2.6)

where ® is the phase difference between the received signals at two antenna elements,
A is the wavelength at the operating frequency and r is the separation between antenna
elements, fulfilling the inequality

| >

(2.7)

Differential angle of arrival

In this technique the estimation of the emitter’s location is derived based on the differ-
ence of AOA between multiple emitters [5]. Differential angle of arrival (DAOA), A6,
is derived from AOA as,

A0 =0, —0,, (2.8)

where 6, and 0, are the AOA acquired at the receiver from emitters x and y, respectively.
DAOA’s major drawback is the necessity of an additional measurement, which means
that at least three observables are required for determining a 2D location. However, to
its advantage, there is no longer a need to know the antenna’s orientation.

Power domain

In the power domain, the observable is the RSS at a receiver’s antenna. This is a metric
that is feasible to extract from any system, since it is inherent to the signal propagation.
However, due to the propagation impairments it is also one that is difficult to model. In
addition to that, a lot of devices expose this information as an indicator, which maps to
a representation of the RSS in a discrete scale. This poses errors in the interpretation of
the incoming value as well as understanding what is the actual value that the emitter is
producing. Despite its weaknesses, its availability from any system, without additional
hardware requirements is its biggest advantage [79,145].

Received signal strength

RSS has a fundamental relationship with distance which results from the decrease of
power as its coverage area increases. Imagining a signal as a sphere whose center is at
the emitter’s antenna, as it travels through space, its surface scales as the square of the
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radius, while its power decays with the square of the distance. Despite this relationship,
the effects caused by channel impairments, system non linearities, either at the receiver’s
or transmitter’s side, leads to a complex problem to model properly.

In short, RSS behavior varies greatly depending on its environment but regardless of
that, the most popular models accepted follow empirical measurements, from which typ-
ical attenuation factors are derived for specific environments, such as offices, industrial
factories, rural and residential areas [68].

The popular Log distance model for the path losses and shadowing is given by,

d
P, = P,(dg) — 10nlog,, (do> +w, (2.9)

where P.(-) < 0 is the received signal power in logarithmic scale dependent on dis-
tance d, dg is a reference distance (usually 1 m), n > 0 is the path-loss exponent and
w ~ log(N(0,0?)) is a log-normally distributed random variable which models the slow
fading phenomenon (i.e. shadowing) and possible RSS measurements errors (e.g., due
to quantization). Both, n and w are dependent on the propagation environment and
are different for each device.

Differential received signal strength

If two emitters are placed away from the receiver and in similar propagation conditions,
it is possible to assume that the channel impairments they suffer are similar. In dif-
ferential received signal strength (DRSS), the subtraction of RSS equations for each
emitter allows one to write the relationship to the user’s location as [110],

d
Poy(d, f) — Pra(d, f) = 107 logy, (d) L AP (do) + W, (2.10)

where P,(dq, f) and Pyy(ds, f) are the RSS between the receivers and the selected
emitter, Py15(dg) is the difference between the apparent power at the reference distance
dg, 1 is the pathloss coefficient assumed to be the same for both paths, d; is the distance
between the receiver and emitter ¢ and W the combined fading component from each
signal path.

Summary

Regardless of the domain, the location to be determined from a given set of measure-
ments will only be as accurate as the measurements allow it to be. However, besides
accuracy, there are other factors that come into play in the selection of a certain domain.
Cost and complexity are often the main driver for the selection of the measurement do-
main, especially in resource constrained devices. To conclude this section, Table 2.2
presents a qualitative summary of the several techniques presented throughout Section
2.2.1.

10
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Table 2.2: A qualitative summary of each measurement domain.

Measurement

Advantages

Disadvantages

TOA / RTT

High precision.

The necessity of hav-
ing the emitters’ and re-
ceivers’ clocks’ synchro-
nized results in high hard-
ware costs.

TDOA

The receiver’s clock does
not need to be synchro-
nized.

Requires a synchronized
network of access points.

V-TDOA

The receiver’s clock does
not need to be synchro-
nized.

Susceptible to the emit-
ter’s jitter. The local os-
cillator needs to be con-
sidered through a local
model.

AOA

Does not require synchro-
nized emitters and offers a
2D location with a single
receiver.

Requires specialized hard-
ware such as antenna ar-
rays.

DAOA

No longer depends on the
antenna’s orientation.

As in AOA, it requires
dedicated hardware. Re-
quires an extra measure-
ment with respect to AOA
for a positioning solution
in the same positioning
domain.

RSS / DRSS

Low cost and complexity
since measurement is in-
herent to the system’s op-
eration.

Highly  susceptible to
fading phenomena as
small changes in the envi-
ronment lead to different
power measurements. It
is also dependent on the
hardware = manufacturer
and on the measurement
accuracy provided by it.

11
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2.2.2 Algorithmic layer

The algorithmic layer, as seen in Figure 2.1, is responsible for using the provided mea-
surements and translate that information into a set of coordinates. It is at this layer,
that the system should consider the needs of the user. If the user requires an infor-
mation about city block level, then the algorithmic layer should engage the system to
provide him the most efficient measurement in terms of resource consumption. For such
a lax accuracy requirement, a simple power measurement to the nearby base station
ought to be enough. However, if the user needs an accurate and precise measurement,
it should request a high performing measurement, such as a precise time measurement
or the second best available.

Moreover, a cognitive positioning system (CPS) must not simply select a single
measurement domain, instead it should aim to draw information from multiple domains
with different degrees of certainty and quality. Only this will allow the CPS to provide a
seamless positioning solution in indoor and outdoor scenarios. Therefore, as more SoO
are considered it is important to understand how to proceed towards the hybridization
of such different sources.

Measurement hybridization

If the data in use is commensurate, meaning both sensors are measuring the same
physical phenomena, then the data can be directly combined [2]. In such cases, typical
techniques involve classic estimation methods, such as Kalman filtering. Otherwise,
when the sensor data is non-commensurate, the data must be fused at the feature/state
vector or decision level.

For the non-commensurate case, feature level fusion involves the extraction of char-
acteristic features that are relevant to the process under analysis. These features can
then serve as an input to pattern recognition techniques, such as neural networks, clus-
tering algorithms or template methods.

Decision level fusion means that the sensor information is combined after each sensor
has made a preliminary determination of an entity’s location, attributes, and identity.
Examples of decision-level fusion methods include weighted decision methods, classical
inference, Bayesian inference and Dempster-Shafer’s method [2,125].

Outdoor environments

The works in [16,17, 30,51, 61] show applications and methods of applying multiple
sensor data with GNSS. Most of these studies focus on GNSS and inertial sensor units,
while [30] also adds another sensor, a video camera. To merge this information, feature
extraction is necessary before the fusion occurs. The study in [17] covers the usage of
a particle filter for handling the fusion of several sensors with the possibility of having
different observations models to handle, for example, sensor failures. An overview of
several techniques for vehicle navigation is provided in [61].

The work in [44] further presents a real-time positioning system that is based on
the tight integration of low-cost sensors and a consumer-grade GNSS receiver. The
work in [96] presents a hybrid data fusion of GNSS measurements in conditions of poor
signal coverage, such as urban canyons. This work relies on timing information from

12
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the long-term evolution (LTE) system to aid when the number of available satellites is
insufficient.

Indoor environments

The work in [144] presents a TDOA/RSS hybrid algorithm for localization using ultra-
wide band. In [112], an inertial measurement unit (IMU) and RFID measurements are
fused together with a tight Kalman filter where ranges are derived for both cases for
the estimation phase.

The work in [8] proposes a hybrid system for WiFi and RFID measurements, dis-
cussing its potentials and limitations. In [115] inertial data is fused with WiFi data
for indoor pedestrian navigation. [58] presents a joint estimation of range and angle
measurements for systems using ultra-wide band signals on a real scenario with both
line-of-sight and non-line-of-sight datasets.

In [80] a more specific application of data fusion is applied to smartphones, with
the objective of enabling several location-based services. The same is seen in [142],
where an indoor positioning system is evaluated in a supermarket scenario. The works
in [8,123] rely on Bluetooth beacons to enhance the performance of WiFi positioning
systems. In [48] proposes a method to correct RSS-based position estimates from a
Zigbee network with the help of a building graph model. The graph model consists of
building information, movement model and rules which to use for the RSS filtering.

Seamless - Outdoor/Indoor environments

The work [133] proposes an architecture for fusing inertial, GNSS and WiFi sensors. A
similar architecture is proposed in [87] where a barometer is added to improve the GNSS
solution. The work in [37] looks at the benefit of observing multiple sensor data, such
as LTE, WiFi and magnetometers and proposes a client-server architecture to provide a
mechanism for the decision making, regarding which signals to trust in a given location.
It also aims to solve inconsistency issues, such as when different systems report different
locations of the users.

In [134] the work discusses how a seamless positioning system was built to accom-
modate visually impair people. It provides an overview of hybrid navigation methods,
positioning techniques and lessons learned from building such system. The work in [50]
discusses existing technologies for indoor positioning from a services point of view and
how to switch between technologies when the scenarios change. The work [1] demon-
strates the use of UWB as a complement to a cognitive radio technology (5G). The use
of UWB is proposed to increase the accuracy of the system and to relieve the congestion
on the licensed bands. It shows one of the trends in the hybridization of data, since
the objective now is to understand which sensors to fuse and in which situations they
should be merged.

So far, most authors have been focused in fusing a couple of technologies together
to obtain a position solution but knowing which ones to select and when to use is still
lacking more research.
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CHAPTER 3

SPECTRUM SENSING

HIS chapter focus on the results in publications [P1, P2], where spectrum sensing
techniques were used to detect the presence of OFDM and CDMA signals. It starts
with a background introduction and progresses with the theoretical and simulation
framework of detecting OFDM and CDMA signals based on their cyclostationarity
features [P1] and moves on to practical considerations regarding the detection of IEEE
802.11g downsampled signals [P2].
In summary, the main contributions in this chapter consist of:

e Presentation of the detection algorithm derived in [P1] for the detection of 802.11
signals through downsampled samples;

e Summary of the method presented in [P2] to detect the presence of CDMA and
OFDM in a signal mixture;

e Overview of the proposed receiver architecture to build upon the methods pre-
sented and described in this chapter and in [P1] and [P2].

3.1 Background, state-of-the-art, and related work

A cognitive radio (CR) is a device aware of its environment, allowing the coexistence
with other radios that might lack cognition features [97]. The coexistence is guaranteed
by monitoring the spectrum for unused frequency sub-bands [19,139]. In some applica-
tions, knowing about its location is a valuable information for a CR. Unfortunately, it is
not equally easy for a CR to obtain its location seamlessly across any environment, with
indoor scenarios being particularly difficult ones. The reason behind the difficult in ac-
quiring a location in indoor scenarios is related to the strong attenuation and multipath
imposed by the environment. This places difficulties in acquiring a location estimate or
location fix from widely available signals such as those coming from the GNSS. Conse-
quently, it is important to seek better indoor positioning technology, to accommodate
further CR enhancements as well as to enable other end user applications. Hence, it
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is important to look at such environments, where cellular and WiFi signals are already
widely deployed and make use of them for positioning purposes.

Enabling navigation through SoO, requires a device capable of simultaneously ac-
quiring, tracking and decoding a multitude of signals, raising difficulties at the imple-
mentation level. Besides the physical limitations of current devices, power consumption
is an important concern which does not benefit from adding extra sensors. Since CR
and advanced signal processing techniques are becoming the norm for future telecom-
munication standards [6], it should be possible for positioning systems to build on the
information made available by the cognition layer. Such information would allow a CR
to manage more efficiently the hybridization of different sensor data [18,82].

The idea of using SoO for positioning purposes has led the research community
towards the concept of CPS [19-23,109,139]. These systems can understand the radio
frequency spectrum and identify signals present in it. In a way, this is like what CRs are
proposing for the communication protocols, however the main difference is that in CR,
the idea is to optimize the spectrum efficiently. The spectrum optimization is done by
allowing radio devices to operate in a band where they do not hold a license to operate
in, as long as their operation does not interfere or degrade significantly the operation
of the service intended for that frequency band [97]. CPS build on the same techniques
for signal identification and detection but aim to understand the spectrum contents
rather than simply understand if the spectrum is free or not. Knowing which signals
are available in the spectrum is useful for positioning systems, as well as to the hardware
controller, who might decide which signals are worthy to be acquired and tracked to
fulfill the necessary location requirements.

3.1.1 Spectrum sensing

Spectrum sensing techniques are an important and useful background for CPS. This field
has received the attention of the research community for several years and the works
done by [60,65,139] serve as a good introduction, in the author’s opinion, to this field.
[60] discusses the main design challenges and requirements of a spectrum sensing system.
The work done in [139] points out all the relevant radio spectrum and transmission
opportunities, continuing further with an overview, comparison and discussion of the
most common spectrum sensing algorithms in use. Some of the algorithms presented
in [139] are further explained and presented along with other state of the art detectors
in [65]. The work done in [65] provides an extensive overview on the most known
spectrum sensing algorithms, such as:

e Energy detector;

Cyclostationary-based detectors;

Higher order moment detectors;

e Filterbank-based detectors;

Multitaper detectors.
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From the start, [65] describes why energy detection falls short for detection in noisy
environments, where the signal to noise ratio (SNR) of the signal of interest is too
low to be recognized by the energy detector [27,38,132]. The major drawback of the
energy detector is that most of the times, the noise variance is not known, leading to
an incorrect threshold level, resulting in a false detection. This is mostly known in the
field as a SNR wall, which is the SNR limit to which the detector can provide accurate
detection. Also, this is something that every detector suffers from, not only the energy
detector. As mentioned in [65], the energy detector’s SNR wall will be higher than some
detectors that exploit known periodicities in the signals. Nevertheless, there are several
approaches, mentioned in [67], to reduce the SNR wall for signal detectors.

Another approach to signal detection, which usually involves an increase in complex-
ity, is the exploitation of second order statistics. Communication signals are possible
to be identified with these statistics since they are considered colored signals, contain-
ing a non-flat power spectrum density. Indeed, this is caused by characteristics of the
signals at hand and can be exploited in the detection stage to achieve better detection
performance and even circumvent the issue of the SNR wall. It does not mean the
detection will be possible at any SNR value, but only that the noise’s statistics does not
need to be properly known. In [65] the second order statistics methods are introduced
using an OFDM signal, a popular modulation method in current wireless systems. A
good introduction to second order statistics methods is also provided in [56], where it
is shown how features for a simple pulse amplitude modulated signal appear due to a
simple quadratic operation. These two works pave the way for cyclostationary-based
methods.

In [65], the discussion continues with more specific detectors, that rely on structures
of the sample co-variance matrix, blind detection, filterbank-based detectors and enters
in other challenges and design questions in the field, such as cooperative spectrum
sensing. Regarding cooperative spectrum sensing, where several sensors in different
locations communicate between each other, the work done in [104] points out the main
challenges, advantages and overhead when considering such situations.

3.1.2 Cyclostationary

Cyclostationary-based methods are one of the most popular methods in the field of
signal detection and classification. This is mostly because the increase in complexity
offers a good trade-off between detection accuracy and the decrease of the SNR wall,
allowing for detection in noisy environments.

In both works presented in [56] and [57] it is possible to get a better understanding
of cyclostationary theory and how it can be used to obtain useful features for detection
purposes. The work in [57] is quite extensive, covering most of the applications of the
cyclostationary, not only in the field of telecommunications, but also in other fields such
as econometrics and biology.

Regardless of that, the cyclostationary methods are usually divided in frequency
smoothing and time smoothing algorithms. The most efficient algorithms are the fast
Fourier transform accumulation method (FAM) and strip spectrum correlation algo-
rithm (SSCA), which belong to the time smoothing domain. While these two detectors
are covered in [56], the work done in [111] describes booth of them with the necessary
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detail for a correct and efficient implementation. An implementation of these methods
is available in [31].

3.1.3 Related work

The work in [21] proposes a CPS that relies on two blocks, one that determines the
necessary bandwidth to achieve a given accuracy and another that manages which
spectrum is available to achieve that end goal. The CPS under proposal in [21], relies on
TOA measurements to obtain the user’s location. The work in [20] outlines and presents
the multitude of cognition in several natural systems and brings the same methodology
towards the cognitive radio, where a cognitive positioning system is presented that
can adapt its accuracy requirements through different modes of operation. The work
in [19] provides a comprehensive overview of cognitive radio for efficient communications,
localization and radar systems.

The work in [130] proposes an enhancement to the CPS defined in [21] by increasing
the bandwidth efficiency through the usage of multiple receiver antennas. The work
presents a model based on the Cramer-Rao lower bound (CRLB) to derive the efficiency
relationship to the number of antennas at the receiver and to model the accuracy of
TOA measurements.

In [74], cellular CDMA signals are used in a positioning system built upon a software
defined radio. Furthermore, it looks at experimental results from ground and aerial
vehicles using the proposed receiver. The focus in [74] is placed upon the experiment
setup and analysis of the clock biases as well as a comparison between the GNSS receiver
pseudoranges and the ones obtained by the software defined radio.

3.2 Distinguishing signals in a mixture

Since there are plenty of SoO available to use, one of the goals of this thesis is to prove
that it is indeed possible to distinguish, using cyclostationary-based methods, between
CDMA and OFDM signals when mixed together in a baseband signal. This offers a
fast way to understand the spectrum contents, without the need to wait for a decision
from the dedicated hardware.

This section presents simulation results to distinguish between CDMA and OFDM
signals. These signals are considered since they are commonly used by communication
systems, such as IEEE 802.11ac/g/n/b signals. Recent studies show their applicability
in the positioning field, through the usage of timing-based estimators [43,117,129].

3.2.1 Signal modelling

The simulation under presentation in this section consists of a mixture of two signals
plus noise, z(t), denoted as,

z(t) = y(t) +o(t) +g(1), (3.1)

where y(t) is a CDMA signal, o(¢t) an OFDM signal and g(¢) is white Gaussian noise
(WGN) of double-sided power spectral density equal to No. When y(¢) or o(t) are
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assumed to be absent in the spectrum, their representation is set to zero. For simplicity,
the simulation assumes a channel with flat frequency response. These concepts could
also be applied to other types of channels, such as frequency-selective channels.

The CDMA signal (see Figure 3.1 for an illustration of its spectrum), y(t), is given
by,

+o0o SF
vty = B 2 2 aclmp(t = RTe = nSFTe), (3.2)

0, when signal absent,

where Ey, is the bit energy, ci(n) is the chip value (+1 or -1) for k' chip during n'®
symbol, p(t), a pulse shaping function, which is taken as a rectangular pulse with
amplitude one and width equal to the chip interval, T. and SF is the spreading factor.
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Figure 3.1: Example of a CDMA power spectrum.

As for the OFDM signal (see Figure 3.2 for an illustration of its power spectrum),
o(t), is described by,

N-1
6j27l’k7Aft —-n
o= [ AT S Xameet sty ), s

0, when signal absent,

where A = /(NTyE,,) is a multiplicative constant normalizing the OFDM symbol
energy, N is the number of subcarriers, E,, is the average energy of M-QAM data
symbols forming the OFDM symbols, X,,(k) is the n!” OFDM symbol expressed as a
vector consisting of data symbols, and q(¢), a pulse shaping function. X, (k) is the
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symbol period without the cyclic prefix. The total symbol period, Tsymbol, is defined as
Tsymbol =Tar + TU» (34)

where T is the duration of the guard interval, which is occupied by the cyclic prefix,
plus the duration of the useful symbols, Ty = Af~!, which is chosen to guarantee
orthogonality of the OFDM subcarriers for their given frequency spacing Af. In the
frequency domain, the signal occupies frequencies in the range [—B, B] MHz.
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Figure 3.2: An example of an OFDM power spectrum.

3.2.2 Cyclostationary features

A signal z(t) is wide-sense cyclostationary if its time-varying autocorrelation function
R(t, 7) is periodic in time, ¢, for each lag parameter, 7. Hence, it can be represented as

a Fourier series,
R(t,7) = E{z(t)z* (t + 7) Zm t,7)7 (1)l ¥t (3.5)

where the sum is taken over multiples of fundamental cyclic frequency  for which the
cyclic autocorrelation function is defined as,

R (1) = lim 7/ R(t,7)(t, 7)e 2™ dt, (3.6)

T—oo T

where T is the signal’s period. The spectral correlation function (SCF) [57], &7(f), is
the Fourier transform of R7(7) given as,

&V(f) = /R R (r)e 72T dr. (3.7)
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In [P1] and [P2] the FAM is used to estimate the SCF of the signals, with further
reading available from [57,111,124]. A representation of the SCF in the frequency and
cyclic domain is shown in Figure 3.3.

SCF

)

x 10

Figure 3.3: Example of a CDMA and OFDM SCF &7 (f) for fs = 60 MHz, Aa = 1exp —05
Fo,Af = 0.1fs.

Periodicities in the signal, such as those produced by the symbols or the repetitions
of the spreading sequence are responsible for the appearance of spectral lines in the
SCF domain. The location of such spectral lines is what is known as cyclic frequencies.
When a signal has no well-defined periodicities, or, in other words, a signal is random,
its SCF will be zero in all cyclic frequencies except for v = 0. Figure 3.4 shows an
example of a SCF for a mixture of CDMA and OFDM signals in noise. In Figure 3.4
the cyclic frequencies for the CDMA signal is shown as «,, and for the OFDM signal
as B,,. The definition of «,, and 3,, is presented over the following paragraphs.

The cyclic frequencies of interest are those specific to CDMA and OFDM signals,
which for the first can be expressed [55,82] as,

oo

SNYUNS - YD +3) D ( 6 (38)

2

0
+ -
k
[ y— —— TC> mod 1 EbSF

where Y(f) is the Fourier transform of y(¢), ¢ the Kronecker delta function

(v— %TC) mod 1
having value 1 when (y — %TC) mod1l = p, p € Z and zero otherwise, T, is the chip
interval length, T the symbol period. Its theoretical cyclic frequencies [55] are dependent
on both the chip rate, f., and SF and are contained in A,

[

A=A{ag, a1, ,am}t,m € LV, : a, € {k‘fc, kfc:I:nS;_,},k;,neZ. (3.9)
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SCF of signal mixture (CDMA + OFDM + WGN) at 0 dB
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Figure 3.4: SCF section at frequency zero &7(0).

The OFDM SCF [127] is estimated by,

ewf):(fng(f)(f— e (r-t--1). o

Tsymbol Tsymbol

k
Tsymbol
transform of the pulse shape function. The OFDM theoretical cyclic frequencies are

found to be in B,

which is non-zero for every v = and zero otherwise and Q(f) is the Fourier

B:{Bo,ﬁl,“',Bn},HGZ,V5n25n€{k ! },kEZa (311)

symbol

where each (3, location is related to the symbol period [88].

3.2.3 Cyeclic frequency detector

Building on the knowledge of the cyclic frequencies, the work in [P2] proposes an algo-
rithm to infer if CDMA or OFDM signals are present in a signal mixture. The algorithm
works by considering a window, W, with center point at a cyclic frequency, ~;, from
either sets A or B. The window’s size is set to,

W= [y — €~; + €] (3.12)

where € is set to a value that avoids overlapping with other cyclic frequencies of the
signals being tested. If such condition is not met, the algorithm reports a false positive.
Future work might address this issue or at least provide some insight to the correct size
of the window, according to the resolution in the cyclic domain.
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This resolution will impact the possible number of samples to acquire from the
vicinity of 7; therefore, in this study the condition was met and W is defined over the
range [y; —0.0305, v; +0.0305] Hz of the absolute value of the SCF. The range is defined
over the previous and next 100 frequencies in the cyclic domain.

Using the samples taken from W, the algorithm takes the mean, u, and standard
deviation, o, values of this region and computes an activity indicator, I, as,

=2

I
for each window centered in the cyclic frequencies under test, as seen in the right side of
3.5. Therefore, if a cyclic frequency is present and is contained in W, the peak value in
the SCF at that location will significantly increase the value of the standard deviation
and by consequence the value of the activity indicator I.

: (3.13)

Wy W,y Wy
]
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Figure 3.5: Algorithm’s window for a., (left) and detector’s diagram block (right).

3.2.4 Decision process

The detection mechanism consists of feeding the cyclic frequencies from an SCF into a
K out of M detector [136]. Hence by testing against the cyclic frequencies defined in
sets A and B, it is possible to infer the presence of a CDMA, OFDM or none of the
signals present in the spectrum’s digital representation.

However, as some cyclic frequencies are bound to overlap, the work in [P2] proposes
a detection test over two stages. The detection bases its decision on the following
hypotheses:

CDMA and OFDM with AWGN

1= { (t) = 2() + (1) + n(t), 314
CDMA with AWGN,

b { 2(t) = z(t) + n(t), (8.15)
OFDM with AWGN,

= { (t) = y(t) + n(t), (816)
AWGN only,

° - {z(t) = n(t). (3:17)

First, the test starts by evaluating the presence of M CDMA cyclic frequencies. If these
are flagged by the detector as being present, then, the process is done for M OFDM
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cyclic frequencies. If at this stage the detector also provides a positive response, then
both CDMA and OFDM signals are present in the spectrum. Otherwise, only a CDMA
signal would be present in the spectrum. Moreover, if the first test would be negative,
then the decision would carry on by testing against M OFDM cyclic frequencies. In this
case, a positive would point out that only an OFDM signals is present in the spectrum,
whereas a negative would mean that only noise is available. A flowchart of the decision
process is provided in Figure 3.6.

M CDMA
cyclic frequencies
present?

M OFDM
cyclic frequencies
present?

YES
YES
v
Positioning
CDMA is present OFDM solution
unavailable
v
Single signal
NO Positioning
solution available
Hybridisation A
YES: Positioning End
solution available

Figure 3.6: Cognitive positioning algorithm with SCF-based detection.

M OFDM
cyclic frequencies
present?

The cyclic frequency detector was also used in [P1] to detect the presence of IEEE802.11
signals using experimental data acquired through a USRP platform.

3.3 Receiver design aspects

The work in [P2] proposes a receiver architecture whose aim is to reduce the time
of acquisition, tracking and demodulation of the incoming signals, in comparison to
traditional approaches (see Figure 3.7.A).

The main difference between these two architectures is the presence of a spectrum
sensing block, which provides relevant input to the CPS about the available signals.
Thus, the CPS executes the signal selection based on this information exchange, con-
trolling which acquisition, tracking and demodulation blocks to enable. This allows for
better power management in the devices, which is further improved by the efficiency of
the spectrum sensing detection methods. One practical example is discussed in [P1].
The work in [140] refers to the contribution in [P2] for comparison of experimental
results.
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3.3 Receiver design aspects

A. Traditional Architecture

.| Acquisition Positioning
Front > R .
> Tracking > Engine
End > . L
Demodulation Hybridisation

B. Proposed Architecture

Available
Signals
Front Spectrum > iti
g l[@ ' - CO.gI:lItI\.Ie
n Sensing < Positioning
T Engin
Acquisition gine
) Tracking > T
i H
Demodulation ybridisation

Signal selection

Figure 3.7: Cognitive positioning system.

3.3.1 Measurement setup

The work in [P1] relied on field measurements of 802.11g OFDM signals. The acqui-
sition of such data was performed with a universal software radio peripheral (USRP)
B210, with a standard 2.4 GHz 3 dBi omnidirectional antenna attached to it. Several
acquisitions were performed at different sampling rates,

1

where fy = 2B = 20 MHz is the signal’s Nyquist rate. The signal under acquisi-
tion spans over the frequency range [—B,B] MHz, where B is the one-sided bandwidth
equal to 10 MHz. Hence, its Nyquist frequency is 10M Hz. Figure 3.8 illustrates the
measurement setup.

Analog L Analog-to-Digital : | Offline
Front End Converter —r Database Processing i
USRP B210 Computer

Figure 3.8: Setup used for the measurement of IEEE 802.11g OFDM signals.
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3.3.2 Understanding the impact of undersampling on cyclosta-
tionary analysis

One of the main disadvantages of cyclostationary methods is the complexity burden as-
sociated with them, which is also dependent on the sampling rate used at the receiver.
Most of the times, this sampling rate is high, to observe more easily the appearance of
certain spectral lines. Using real measurement data, the study in [P1] aims to under-
stand if cyclostationary properties are still preserved in undersampled signals, sampled
at rates below the Nyquist rate. Since these properties seem to be still visible, this result
means a reduction of the complexity through usage of lower sampling frequencies.

Effect of downsampling in cyclic properties

The measurement data from the measurement setup in Figure 3.8 was further split in
Tons ms segments. In [P1] Tops was set to 10ms which was arbitrarily chosen to contain
useful signal at each time.

Each of these time measurements were further fed into a cyclostationarity block to
obtain the corresponding cyclic frequencies and investigate the impact of each sampling
frequencies in the SCF defined by equation (3.11). The resulting spectrum, at 40 and
10 MHz, is presented in Figure 3.9, where several major spectral lines remain visible for
both sampling frequencies.

However, the amplitude of the spectral lines change based on the sampling frequen-

cies, with some intensifying and others diminishing towards the noise level. An example
of such phenomena is visible in Figure 3.9 at 1 MHz.

w— [, — A0M Hz
0.9 oo — — f,=10MHz |
' —X G

e

T

SO

R Bt e L B
= 04 |

5 403

-2 -1 0 1 2 3 4 5
Cyclic frequency (MHz)

Figure 3.9: G7(0) for measured data sampled at f; = 40 MHz and fs = 10 MHz.
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Statistical behavior

To further understand the impacts of the sampling frequencies in the cyclic frequencies,
the work in [P1] proposes looking at the statistical behavior coming out of the activity
indicator, I (as defined in equation 3.13). Hence, for each sampling frequency, Figures
3.10 - 3.11 present the boxplot of the values of the activity indicator I calculated over the
cyclic frequency interval of (-5, 5) MHz. The boxplots contain the median, mean, the
25th and the 75th percentiles of the activity indicator I. The 25th percentile is defined by
the box’s lower edge while the upper edge corresponds to the 75th percentile. The Vth
in the boxplot refers to the threshold used for calculating the probability of appearance
seen in Figure 3.12 and later explained in section 3.3.2

Based on Figures 3.10 - 3.11, the value changes in the activity indicator I are mostly
due to the cyclic frequencies located at integer values. In other location, the value of 1
remains close to the noise level activity of 0.5. It is also clear that for certain sampling
frequencies, such as 10 MHz, the value of the activity indicator I is well above the
threshold value for most of its cyclic frequencies at integer frequency values. This does
not seem to be so evident for the other sampling frequencies.

Overall, this observation should have an impact on setting the correct value of the
threshold. While such mechanism was out of scope in [P1], it will play an important
aspect in the correct classification of the spectrum contents as later presented in [P2].

Most frequent cyclic frequencies

Based on the results presented in Figures 3.10 - 3.11, the work in [P1] proposes looking
also at the probability of appearance of cyclic frequencies. The motivation behind this
is to allow further decision aids when determining the spectrum contents. In [P1], the
probability of appearance of a cyclic frequency is defined as the number of times its
value is above the threshold value of I for a set of N observation windows of Tgps ms
duration. Figure 3.12 shows the probability of appearance for all the expected cyclic
frequencies from B over N=5000 windows. It is visible from Figure 3.12 and Table 3.1
that the highest probability of appearance is associated to cyclic frequencies located at
integer frequencies.
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Figure 3.10: Boxplot of the activity indicator for fs = 40 MHz (A) and f, = 20 MHz (B).
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fs = 10 MHz
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Figure 3.11: Boxplot of the activity indicator for fs = 10 MHz.
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Figure 3.12: Probability of appearance for signals sampled by USRP, sampled at 40MHz,
20MHz, 10MHz.
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Table 3.1: Probability of appearance of cyclic frequency.

Sampling frequency
40 MHz 20 MHz 10 MHz

Cyclic frequency Probability
(MHz) (%)

4 62 68 86
3 81 71 87
2 6 45 87
1 69 3 16
0 100 100 100
-1 68 1 52
-2 1 61 87
-3 82 74 87
-4 75 69 85
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3.4 Discussion

3.4 Discussion

This chapter covered an introduction to the contributions done by the thesis’ author
in the field of spectrum sensing. The chapter was divided in two parts. The first
part introduced the background, state-of-the-art and parallel work. The second part
provided a short summary of the author’s contributions presented in [P1] and [P2],
where the main goal was to detect the presence of CDMA or OFDM signals at the
physical layer through a cyclostationarity framework. The reason to choose CDMA and
OFDM signals came from the fact that they represent, at the physical layer, popular
and commonly used telecommunication signals, such as WiFi and Bluetooth.

The contribution in [P1] demonstrated through an experimental setup that it is pos-
sible to infer the presence of a WiFi signal at sampling frequencies below the Nyquist
rate. While such result was known from [124], the results in [P1] provide further exper-
imental validation on an USRP platform, which has been cited by [140] for comparison
of experimental results.

Besides the experimental validation, the work in [P1] relied on the algorithm pre-
sented and discussed further in [P2]. The algorithm in [P2] provided a simple mechanism
to infer the detection of OFDM or CDMA signals.

While [P2] relied on actual measurement data acquired inside a typical office envi-
ronment, the work did not focus on the possible interference and degradation of results
imposed by other signals. Nevertheless, this is one of the reasons why cyclostationarity
was picked as the framework, since its characteristics allow to distinguish overlapping
signals in the spectrum.

Due to the complexity of the cyclostationarity methods, some of the benefits pointed
out by the works in [P1] and [P2] are difficult to achieve with off the shelf hardware.
For example, the trade-off between CPU power and battery savings might not justify
such complex hardware loops in a CPS.

Nevertheless, the goal of a CPS would be to adapt itself to its environment, hence,
understanding its radio environment will be of importance to maximize the usage effi-
ciency of future hardware, providing a better user experience to the end user.
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CHAPTER 4

CHANNEL IMPAIRMENTS

HIS chapter focuses on how to deal with the degradation in signal quality imposed

by radio interference in terms of a SoO positioning system. The chapter starts by

presenting key aspects of radio propagation and interference, the phenomena of fading.

There is a big emphasis on the intra-system interference mitigation as it was the main
topic under discussion in [P3].

The main contributions discussed in this chapter consist of:

e Summary of the analysis done in [P3] regarding the impact of intra-system inter-
ference regarding the RSS of commercial BLE tags;

e Demonstration on how to compensate for the impact of intra-system interference
and other channels impairments on ranging based on RSS measurements.

4.1 Background, state-of-the-art and related work

Interference is the process of two radio waves interacting with each other and producing
a new signal with different amplitude and phase properties. Intra-system interference
refers to interactions between signals belonging to the same system: they can be multiple
copies of the same signals (e.g, multipath interference) or different signals belonging to
the same system (e.g., multi-user interference). Inter-system interference is known as
the interaction between radio waves from different systems. As an example, two WiF'i
signals intra-interfere with each other, while a WiFi and Bluetooth signal inter-interfere
with each other.

The amount of interference is characterized by the change this interaction causes in
the original signal. Understanding the effect of interference requires the understanding
of the propagation environment and the effects the signals are subject to throughout
their travel.
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4.1.1 Wireless propagation

Propagation of a radio wave is the behavior exhibited by a radio wave as it travels away
from its emitting source. In an ideal medium, known as free space, the losses follow the
Friis equation given by,

2
Pr(d7 f) =Py —10 1OglO <4ﬂcfd) ) (41)
where P,(d, f) is the received power at distance d (m) for the operating frequency f
(Hz), assuming a transmission power of Py in dBm and a propagation in free space at
the constant speed of light, ¢ (m/s). However, due to the channel impairments two
common ways to describe the behavior of a radio wave is through the Log distance
model, as defined in equation (2.9) or through the recommended ITU model described
by [68],
P.(d, f) = Py(do) + C — 201logy( (f) —nlog10(d) — w, (4.2)

where P.(-) < 0 is the received signal power in logarithmic scale dependent on distance
d in dBm, dj is a reference distance, C is a constant that models other system losses due,
n > 01is the path-loss exponent and w ~ N(0, 02) a normally distributed random variable
which models the fading phenomenon. Both, 1, w are dependent on the propagation
environment and should be considered different for each path between receiver and
transmitter.

Characterizing the propagation of a radio wave is not trivial and for more reliable
models, one needs to look at more complex methods such as ray tracing. In the ray-
tracing approach, multiple paths or rays are simulated from their origin until they are
captured. A ray-tracing technique also includes simulating reflection and refraction
of the rays in the surrounding environment. Nevertheless, while this technique does
offer a clear benefit over the standard methods, it is resource consuming. Besides
that, its effectiveness is also limited to the knowledge of the surrounding propagation
environment, meaning that one needs to know exactly the building materials to have
accurate refraction and absorption indexes.

4.1.2 Fading

Fading or small-scale fading describes the variations in the amplitude of a radio signal
over a short path or period, so that large-scale path loss effects may be ignored [108]. The
cause of fading is due to the interference between two or more versions of the transmitted
signal which arrive at the receiver at slightly different times. The combination of these
radio waves at the receiving antenna can result in a single signal which varies greatly
in amplitude and phase from the one that was initially sent, depending on the relative
propagation time and bandwidth of the transmitted signal.
According to [108], the most important effects caused by fading are:

e Rapid changes in signal strength;

e Random frequency modulation due to varying Doppler shifts on different multi-
path signals;
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e Time dispersion by multipath propagation delays.

In most telecommunication systems, fading happens due to the lack of line of sight
between receivers and transmitters. This means that the arrival signal is a version of
the original version that has suffered attenuation due to presence of an obstacle in this
primary path. Nevertheless, even in line of sight conditions, fading still occurs, as the
signals still gets reflected and refracted by the surrounding environment. However, in
a line of sight condition it is expected that the signal over the primary path is the one
with the highest received signal strength. In short, the major physical factors affecting
fading are [108]:

e multipath propagation - objects and changes in the surrounding transmission en-
vironment contribute to constant changes of the signal’s energy dissipation. This
also results in the creation and propagation of multiple versions of the transmitted
signal with random phases and amplitudes, resulting in fluctuations of the signal
strength or distortion of the signals;

e relative speed of receiver to the transmitter - the relative speed between trans-
mitter and receiver results in what is known as the Doppler shift. This associated
with multipath propagation results in multiple signal paths with random frequency
modulations;

e speed of surrounding objects - the motion of objects within the radio channel
induce a time varying Doppler shift on multipath components. This effect is only
relevant if the objects velocity is bigger than the receiver;

e transmission bandwidth of the signal - the bandwidth of the transmitted signal
relates to how the channel affects it over a small local area. Depending on the
coherence bandwidth of the channel, or simply the multipath bandwidth channel,
which is a measure of the maximum frequency distance between two correlated
frequencies, signals with a larger bandwidth will suffer distortion but their signal
strength will likely not be affected as much.

In summary the combination of these effects results in multiple types of fading:

e Flat fading;
e Frequency Selective Fading;
e Fast fading;

e Slow Fading.

The first two types, flat and frequency selective fading are due to the multipath time
delay spread, which results in time dispersion and frequency selective fading. Whereas
the last two, fast and slow fading, result from the Doppler spread which results in
frequency dispersion and time selective fading.

The presence of these channel impairments and the interference they impose on intra
and inter-system signals, result in errors, biases and inaccuracies at the measurement
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layer. For time-domain measurements, such errors in the measurement layer lead to
delays or a miss-detection of the signal. For space-domain measurements, such errors
can lead to several degrees of error, especially if what is detected by the receiver as the
main path is a multipath signal and not the original one. Finally, in terms of power-
domain measurements, the signal strength can vary greatly by the amount it is expected
to change. This has a big effect on ranging techniques for beacon applications, which
is discussed further in section 4.2.

4.1.3 Related work

The work in [93] provides experimental results from a fingerprinting approach relying
on channel frequency response as the training feature, as proposed in [25]. The work
in [93] proposes three distinct methods to increase the robustness of the fingerprints
with regards to channel impairment effects.

The work in [71] looks at the impact of several wireless protocols on the operation
of BLE devices in a hospital context. It also proposes and evaluates a mathematical
model for the interference of wireless technologies on BLE enabled devices. Moreover,
it offers recommendations on the spacing of the devices to minimize the symbol and
packet error rate.

The work in [15] proposes a cooperative mechanism to prevent overlap of IEEE
802.15.4 and BLE (in connection mode) packets. The proposal mechanism relies on the
tracking and adjustment of the periodic transmissions, based on the chance of collision
wither with 802.15.4 or with BLE.

The work in [46] investigates the impact of BLE on WiFi fingerprinting-based indoor
positioning systems. It looks at the signal characteristics of BLE, which due to its lower
bandwidth is more susceptible to fast fading with respect to WiFi. It also provides a
mechanism to mitigate multipath for the BLE signals and draws up an upper bound
on the beacon settings and deployments to observe a clear benefit in terms of combined
fingerprinting accuracy benefits.

The work presented in this chapter and based on [P3] offers an additional view on
the characteristics of BLE signals and effects caused by intra-system interference. In
addition, it provides a rule of thumb to minimize the impact of multipath interference
on the determination of BLE ranges.

4.2 Impact of intra-system interference on BLE sig-
nals

The contribution in [P3] discusses the impact on intra-system interference on BLE
signals. This study consisted of analyzing the RSS of multiple commercial BLE tags
and its impact on a ranging technique to determine the distance from the emitters to
the receiver.

BLE is an extension to the Bluetooth 4.x Core Specification, targeted to supporting
IoT applications. It contains a new physical layer, advertisement mechanism, asyn-
chronous connection-less MAC among other features to allow low cost and low power
operation in the 2.4GHz band [13]. However, since the 2.4GHz band is a contested
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4.2 Impact of intra-system interference on BLE signals

band by many wireless technologies, BLE has a built-in mechanism to fight off major
sources of interference, for example, WiFi. This mechanism is called adaptive frequency
hopping (AFH). Despite that, intra-system interference is inevitable, especially in the
connection-less mode, where the devices are simply advertising, in this mode, only 3
out of the 40 available channels are used for broadcasts.

Assuming Ny,es BLE advertiser devices operating over a period of ¢ seconds and
sharing Ncpannels channels, then, according to [59], the probability, B, that a channel is

occupied is given by,

Nc annels 1 (ng571)

P=1-— <hl> . (4.3)
Nchannels

While equation (4.3) assumes significant simplifications, such as the fact that devices
are synchronized and the time between frequency hops is always the same, it does show
the inherit limitation of the BLE protocol for large scale deployments. Such limitation
appears from the small number of advertisement channels, which means that, as the
number of devices in a single radio vicinity increases, higher is the probability of the
devices causing intra-system interference with each other. Based on equation (4.3), the
increase of probability when 3 BLE devices are broadcasting is approximately 56% and
it increases to 94% when the number of devices increases to 8.

Overall, despite AFH’s best effort to mitigate the interference with other in-band
systems, it cannot fully solve the intra-system problem as described above. Therefore,
the study in [P3] sets out to make an evaluation of the characteristics of RSS in different
scenarios of strong and weak interference. More specifically, the tests were undertaken
in two office environments, one inside an office room and another in an office corridor.

4.2.1 Measurement acquisition

Two different environments were used for the analysis in [P3]. One environment was in
a closed office environment in Finland and the other in an office corridor in the UK.
Office room

In the office room environment, a single BLE tag is set at distances of 0.05, 0.10, 0.5,
1, 1.5, 2, 2.5 and 3 meters from the receiver. The BLE reader was kept fixed, and the
acquisition at each point lasted at least 30 minutes.

Office corridor

In the office corridor scenario, the eight tags were deployed in a regular grid, with a 1.5
meter distance, all at the same height of 1.5 m from the floor. The corridor environment
is shown in Figure 4.1 along with a schematic of where the tags and the BLE reader
were placed throughout the measurement acquisition.

4.2.2 Model-fit evaluation

The goal of the analysis in [P3] was to understand which model to be used in applications
that require the knowledge of the BLE propagation signals. The root mean square error
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Figure 4.1: Corridor photo (A) and map (B) with tags and survey locations during the data
acquisition.

(RMSE) is used as an indicator to the goodness of the fit, by comparing the mean
observed value to the value reported by the model at that given distance.
The RMSE is defined as,

N

2 ( (()lt?served - yt(ejc)pected)2
RMSE = || = ,N>0 (4.4)
N
where yc()gserve q is taken as the mean of the power measurements and yg()pected the value

obtained through the fitted path loss model.

Tables 4.1 and 4.2 show the RMSE of the model fit for each of the two office en-
vironments considered. In both tables the log distance model is compared when the
estimation of the path loss coefficient is done using an estimated value or the reported
value by the tag (P,(dg) = —77 dBm is the value broadcast by the BLE tags). The
estimated value is assumed to be the mean RSS at 1 m from the tag over more than
one hour. The reported value is the transmit power reported by the protocol defined
by the manufacturer.

Table 4.1 compares the fit of both models inside the office room in Finland. In this
environment, a single tag was used throughout the study where its RSS was measured
at several distances for periods of 30 minutes. Based on Table 4.1 the smallest RMSE is
obtained when using the log distance model with estimated parameters. The worst fit
seems to be for the log distance model when the tag’s reported apparent power is con-
sidered. Regardless of that, the deviations can also be explained by the remaining error
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Table 4.1: Model fit for the measurements of 1 tag acquired in Finland.

RMSE (dB)
) log dist model ITU-R model
Distance (m)
P.(dp) = —77dBm  P.(dp) = —79.73dBm C=-24.76
n =1.02 n =0.98 n=1.08
0.50 0.95 1.87 4.60
1.00 3.59 0.87 3.78
1.50 8.57 5.91 6.74
2.00 7.69 5.07 4.42
2.50 8.95 6.37 4.58
3.00 5.33 2.78 0.05
Mean (dB) 5.85 3.81 4.03

Table 4.2: Model fit for the measurements of 1 to 8 tags acquired in the UK.

RMSE (dB)
log dist model ITU-R model
Distance (m)  p (d4y) = -77 dBm P,(dy) = -79.73 dBm C=-1596 C=-19.28
n=099 7n=097 1n=094 n = 0.96 n =1.09 n = 1.00
tags =8 tags=1 tags=8 tags=1 tags = 8 tags =1
1.39 1.15 2.48 1.40 5.04 4.05 2.06
1.90 3.19 3.08 5.87 5.76 4.07 1.09
3.22 2.23 2.06 0.39 4.70 7.87 0.71
Mean (dB) 2.19 2.54 2.55 5.17 5.33 1.29

due to the variance of the measurements. Figure 4.2 shows a graphical representation
of the three model fits alongside with the box plots for the measurement data.

Table 4.2 allows the same comparison for the office scenario in the UK. Three obser-
vations points defined with 1 and 8 tags broadcasting simultaneously and measurements
done for 15 minutes. In this environment and contrary to what was observed in Table
4.1, the log distance model now offers the lowest RMSE when the 8 tags are broadcasting
and the ITU-R model seems to perform better when a single tag is broadcasting.

Figures 4.3 - 4.4 show the box plot for the measurement data with 1 and 8 tags
broadcasting, respectively. The fitted models are plotted on top of it. In both, the
measurement data is skewed with only one balanced set in 4.4 for the measurement
made at 3.2 m. In 4.2 most of the data sets are balanced which is not only related to the
bigger observation period but also due to the differences in the propagation environment.
While both play an important role in the degradation of the signal, the systems losses
are estimated to be bigger in the closed office environment by approximately 10 dB (see
value of C in Tables 4.1 and 4.2). Indeed, in the closed office environment there are
many other objects present such as shelves located over the testing area.
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Figure 4.3: Measurement statistics with a single tag broadcasting, for the office corridor

environment.

Nevertheless, besides the environment and the observation period, there is a clear
offset in the fit of the ITU-R model when 8 tags are transmitting. The difference in the
overall RMSE is approximately of 4 dB. Figure 4.5 shows the statistics for the RSS of
tag 3 when up to 7 other tags were spread around it, spaced regularly on a half meter
grid. The observations lasted over 3 hours.

Figure 4.5 shows that the RSS starts to show significant degradation once more than
3 tags are broadcasting. It is possible to see in Figure 4.5 a reduction in the mean and
median values of the RSS up to 5 dB.
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Figure 4.4: Measurement statistics with 8 tags broadcasting, for the office corridor environ-
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Figure 4.5: RSS values for tag 3 at 1 meter versus the number of tags broadcasting.

Another interesting observation is the one present in Figure 4.6 which shows the
cumulative probability of the difference between the RSS at observation points A, B
and C in the office corridor environment. In this figure it is also clear that there is a
significant variability in the RSS when a larger number of tags is transmitting. It is
even more interesting to see that the bigger variability occurs at point B, middle of the
corridor (see Figure 4.1), where the difference in the RSS can reach 12 dB for about
20% of the data set. This is certainly due to the increase of multipath and reflections
at this point. At point C the difference is also significant, but less noticeable than at
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Figure 4.6: Difference between corridor points.

B, even though it is quite close to the end of the corridor. At point A the difference in
RSS seems to be the normal fluctuation associated with shadowing.

Overall, based on the results presented in this section, it is possible to conclude that
the environment has a significant impact on the fit of models and the translation of RSS
into a distance. It was shown that for an office environment the best model to use was
the ITU-R, while for the office corridor, the best fit was provided by the log distance
model using the apparent power broadcast by the tags. All considered, the log distance
model seems to be the one offering the best results and should be preferred for BLE
ranging over the ITU-R model.

4.2.3 Implications for ranging and trilateration

In this thesis ranging refers to the act of translating an RSS measurement (or an average
of several RSS measurements) into a distance. Trilateration refers to the process of
finding the location resulting from the intersection of several ranges. Often this location
is the result of a fit method, such as least squares.

In the field of indoor positioning, several applications can benefit from accurate path
loss modeling, for example, such as the creation of probabilistic fingerprint databases.
However, these models can also be used to obtain a distance instead of an expected RSS
value. BLE is interesting for such an application since several manufacturers report the
transmit power and not a manufacturer dependent indicator as in the case of WiFi. A
distance is obtained by solving (4.2) and (2.9) with the values of the observed RSS.

Figure 4.7 shows the obtained distance from each of the models considered in the
previous section in the closed office environment. The input to the model is an averaged
RSS value with the last observed 2 seconds. It is clear from it that the several other
tags broadcasting at the same time have a significant impact in the RMSE obtained for
each of the models. With a single tag broadcasting, all the models achieve a sub meter
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Figure 4.7: Ranging with BLE signal.

level accuracy, while the opposite is true when all 8 tags are broadcasting, increasing the
RMSE significantly. Of attention is the degradation of the RMSE of the log distance
model with the reported apparent power level. Its RMSE increases by more than 3
m while the RMSE for the other models increases, approximately, by one meter. This
is in accordance with the values presented in Table 4.1, where the overall accuracy of
the log distance model using the reported apparent power was the highest of the three.
However, the ITU-R model is performing quite well considering the RMSE values in
the same table, in particular when the 8 tags are broadcasting.

As expected, the impact of intra-system interference on ranging is significant and it
shows the lack of accuracy such methods can have. Besides intra-system interference the
lack of accuracy in ranging is also worse if other channel impairments are not mitigated
in the path loss models. However, since ranging is a simple technique, this can be one
easy way to get fast and coarse initial estimate on the location of the devices. Hence, if
one would indeed like to use ranging based on RSS, it would be necessary to mitigate
additional losses in the path loss models. Such feature would enable, as seen in Figure
4.8, a clear benefit in terms of accuracy, where for 8 simultaneous tags broadcasting, the
ranging accuracy drops closer to the ones seen when only a single tag is broadcasting.
However, mitigating such effects is not trivial and would require real time knowledge of
the propagation conditions.

With ranging allowing for the determination of a distance to one of several tags,
these distances can be put together in a trilateration problem to solve for the location
of the BLE reader. In trilateration, the error will get amplified as the uncertainty grows
with the inaccuracy of each range. To look at this problem, a simple setup was done in
the UK where the BLE reader was placed in a corridor at locations A, B and C for 600
seconds at a time (see Figure 4.1). The reader’s location was determined by solving for
each tag the following nonlinear equation:
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Figure 4.8: Mitigation of other tags interference.
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Table 4.3 summarizes the RMSE of the receiver’s location estimate at points A, B
and C in a 2D (fixed height) and a 3D space with ranges derived from the log distance
and ITU-R models. The overall accuracy is better for the 2D space as there is one less
error component coming from the vertical axis (see right most column in Table 4.3).
Despite that, the performance is similar for the estimates in 2D and 3D. Taking a look
at the accuracy per model, it is possible to see that the log distance using the reported
apparent power from the tags outperforms the other models.

All in all, calculating BLE ranges and solving the reader’s location through trilater-
ation seem to benefit most when the log distance model is used as the measurement’s
model. The addition of the apparent power in the BLE advertisements is also beneficial
towards improving the overall performance of the positioning algorithm.
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Table 4.3: RMSE values for 2D and 3D positioning in the office corridor at the UK.

Model RMSEA(m) RMSEp (m) RMSEc (m) Averagey g o
ITU-R 1.83 2.17 1.31 1.77

3D log distreported 1.36 1.20 0.60 1.05
log distestimated 2.03 2.14 0.94 1.70
ITU-R 1.68 2.05 1.11 1.61

2D logdistreported 1.55 1.13 0.15 0.94
log distestimated 1.53 1.93 0.57 1.35
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4.3 Discussion

The focus of this chapter was the contribution in [P3], where BLE intra-system interfer-
ence is looked at empirically. The study in [P3] relied on two measurement campaigns,
one executed in a small office room, while the other on a short section of a university
corridor.

The results from the experiment carried out in the office room in Finland, showed
that similar levels of performance for each model under consideration, whereas the re-
sults in the university corridor presented a better fit for the ITU-R model. In the first
and second scenarios, the tags were oriented differently with respect to the receiver. In
the office room trial, the tags were resting on a table while on the second trial they were
glued to a wall on a higher plan than the receiver. This difference in placement and
orientation certainly played a difference in the behavior of the signal, which contributed
to the difference between results. The results in the office room were also more signifi-
cantly attenuated by other environment elements and the multipath of the broadcasting
tags themselves.

One other aspect, is that given the amount of tags, the probability of collision is
still rather low. While the work in [P3] pointed out the nefarious contribution of intra-
system interference, it also does so without looking at the physical level and in fact
understand the amount of collisions that were indeed happening at that time.

While [P3] overlooks some of the physical channel phenomena, it discussed the ben-
efit of quantifying the amount of intra-inference imposed by the environment. In [P3],
for the office scenario under study, a compensation of -5 dBm in the signal allowed for
an error reduction of up to 50%.
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CHAPTER 5

EFFICIENT POSITIONING

HIS chapter focuses on the results from publications [P4, P5]. These publications
look at the algorithmic layer, where measurements of multiple SoO are combined
to provide an efficient positioning of a given user or device.
The main contributions in this chapter consist of:

e Theoretical discussion on the accuracy limitations for several SoO systems, in-
cluding 3G and several WiFi systems;

e Analysis of results obtained from the simulator open sourced at [52,53] and com-
parison against field measurements;

e Analysis on the improvement of the location performance by hybridizing Bluetooth
and WiFi signals.

5.1 Background, state-of-the-art and related work

The term efficient positioning means that one tries to capitalize on the existing resources
of the device, without causing a significant additional burden on it. Up until this chap-
ter, the focus has been on identifying opportunities in the spectrum and propagation
issues surrounding it. In this chapter, the focus falls on the usage of such opportunistic
measurements and on the actual implementation and design of a positioning system
based on them.

5.1.1 Model-based and model-free approaches

RSS exploitation is often categorized in two classes, a model-based and model-free
approaches [34,73].

In model-based approaches, the RSS is used to train the parameters of predefined
propagation models, such as the one presented in equations (2.9) and (4.2). Further-
more, in a model-based approach, the RSS is translated into ranges and the estimation
of the position determined through trilateration.
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In model-free approaches, the RSS measurements are compared against a previously
acquired database of RSS measurements. This database is known as a radio map, which
contains the RSS observed for each point in space on a given environment. [34,73]. The
work in [128] describes an approach to compress the fingerprint database using image
compression techniques. The resulting database offers a smaller storage size and as a
side effect it provides a significant improvement in the positioning performance.

5.1.2 Fingerprinting

Fingerprinting was initially introduced in [7] and has become the standard for indoor
positioning services which build upon existing infrastructure [73]. Fingerprinting has no
underlying requirement on the technology being measured, meaning it can be applied
to any SoO, if it is possible to measure and map them to a physical location. Popular
indoor positioning solutions rely on WiFi and natural occurring fields, such as the
geomagnetic field [28,33,36,45,98,102].

One of the major drawbacks of fingerprinting is that is requires two phases, com-
monly known as the training or learning phase and the online phase. In the training
phase, distinct features at each location are collected and stored in a database, which
later is used to compare received measurements against it.

Deterministic and probabilistic models

In deterministic models, the positioning problem is solved by acquiring information
about the range between devices and solving for the unknowns. These ranges are the
result of the observables made in the time, power or space domain. In a deterministic
manner the essence of the problem is reduced to finding the set of arguments that
minimizes the different between observations [34, 73].

In probabilistic models the positioning problem is solved by determining what is the
most likely point where the user is located, through the means of a cost function [34,73].

Learning phase

The main goal of the learning phase is to build the learning or training database.
The training database contains for each physical location a set of features observed at
that location. The features can be any quantifiable quantity, such as light intensity,
RSS from WiFi, Bluetooth, FM radio, geomagnetic fields, smell, temperature, pressure,
among others. For the initial construction of such database, it is necessary to physically
walk through the environment and make this one to one matching between local and
world coordinates to a set of features.

Building the learning database

When building the learning database, the most fundamental requirement is to have a
means of geo-referencing the measurements being acquired in the physical world. As
common applications of fingerprinting are in indoor environments, it is impossible to
rely on GNSS signals to provide us with an accurate coordinate in the global frame.
Hence, it is mandatory to obtain coordinates in a local frame and afterwards translate
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those to a global frame, if needed. One possibility to keep track of one’s indoor location
is to rely on IMU and reset them at known points to keep the measurement error
low [115].

However, since in the end fingerprinting tends to rely on inaccurate and easily accessi-
ble measurements such as RSS, practical approaches are often favored when building the
learning database. Nevertheless, if the operator, who is building the location database,
is capable of understanding its location in the physical world, the construction of the
database at each measurement point P consists of a measurement vector M defined as,

M = [(Addr, RSS)y, (Addr, RSS),, ..., (Addr, RSS)x], (5.1)

which contains the RSS receive towards a given device identified by its MAC address,
Addr,.

Finally, the learning database is the collection of all measurement vectors defined
as, L,

L=[P,M),(P,M),...,(P,M)uw], (5.2)

where P; = [z, y;, 2;] is the i-th point’s coordinate and m the total number of measure-
ment points. P; is defined over a local reference frame with an origin point selected by
the operator.

Online phase

The online phase consists of matching new observations with the ones stored in the
training database. The new observations are provided by the user’s equipment, which
will need to have means of capturing the features of interest. For each observation re-
ported by the user, a model-free network side algorithm will have to perform a database
look-up, where it compares the incoming observation with each database entry that it
deems relevant.

An important step in this phase is to decide on where the user is most likely to be
at. It is quite likely that the lookup will provide several options of where the user is
located, depending on the metrics used to rank the user’s expected locations. A well-
known method to acquire the most likely location of the user relies on the Gaussian
likelihood presented in equation (5.3). For each M entry in the training database the
likelihood of a user being at that given location is given by,

1 exp [ (F(k) — M, (P}, k))*
2702 207 ’
where o7 is the variance associated with the fading phenomena and P; a set of coor-
dinates. M,;(P;, k) is the j** fingerprint belonging to the k' access node and F(k) is
the reported measurement for each access node k.

After calculating the likelihood in equation (5.3) for each database entry, the cost
function J is obtained by summing each individual logarithmic likelihood,

E(Pjv k) =

(5.3)

J(P;) = log(L(P,k)). (5.4)
k=1
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The user’s estimated location will then be the cost function’s arguments of the maz-
ma,
P = argmaz; { T (P;)}. (5.5)
However, when it comes to select what is the user’s final location, it is possible that
there are many likely locations where to locate the user in. A simple approach is to
pick the best X solutions and provide the user’s location as the average of them, which
is known as the k nearest neighbors algorithm [34].

Shortcomings

Overall the main benefit of fingerprinting is its simplicity and flexibility to build upon
existing infrastructure. However, there are several challenges and disadvantages to
tackle [3,62,66,76,94]. A known issue around it is that, due to the dynamics of the
features it aims to capture, it is often necessary to re-acquire or continuously learn
them. This has an implication on the cost of maintenance and operation of such system.
Ideally, this learning ought to be kept automatic as new information is presented to the
system. Omne approach, such as crowdsourcing of the data raises other security and
privacy concerns, since it allows for the profile and tracking of individuals.

5.1.3 Related studies

The work in [85] presents a comparison between WiFi and RFID pathloss models.
Moreover, it provides better insight on the fading and channel parameters for RFID
signals, particularly in indoor scenario through an extensive field acquisition.

The work in [14] provides access to a fingerprinting database containing a multitude
of signals, such as WiFi, Bluetooth, BLE as well as magnetic flux values. This contri-
bution allows other researchers to compare their own algorithms and hybridization of
signals against a common scenario.

The work in [91] discusses a similarity metric for a BLE-based fingerprinting. The
metric under discussion in [91] is the Kendall Tau Correlation Coefficient and its perfor-
mance is compared to the Euclidean distance method to determine the best fingerprints.

5.2 Fundamental limits on SoO positioning

When evaluating the performance of a positioning solution, it is important to understand
how far it is from its nominal performance in a perfect evaluation scenario. Hence, the
goal in [P5] was to use the CRLB to derive the minimum expected variance for time
measurements coming from different SoO, such as wideband code division multiple
access (WCDMA), 802.11b, 802.11g and 802.11ac. Hence, the study takes a look at
the best any system could achieve with a combination of these systems, assuming that
reliable TOA measurements are available for all of them.

In [P5] for each simulation point, timing measurements for each system, L,,, are
determined to each nt"-emitter as,

R,
Ln = TL + wna (56)
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where R,, is the geometrical distance between the emitter and the receiver, cis the speed
of light and ,, is the measurement error. R,, was determined in a 2D space to simplify
the simulation problem.

The measurement error, v, was obtained from a normal distribution, with its vari-
ance set according to the CRLB and the expected carrier to noise ratio (C/Np) at the
receiver’s location.

The measurement’s variance was drawn from the CRLB, which according to [72], is
given as,

1 1 =

var(Ly,) > £ — < var(L,) > ——F2, (5.7)
F2

C

No/2 No/2T
where, £ is the signal energy, No the noise spectral density, T the observation interval
and F2 the mean square bandwidth of the signal, given as,

o Jew (270)IS()Pf
Jioo IS(D)[2df

where S(f) is the Fourier transform of s(t).

The expected carrier to noise ratio is derived based on the ITU-R propagation model
presented in equation (4.2).

Figure 5.1 shows the minimum achievable accuracy for WCDMA, 802.11b, 802.11g
and 802.11ac measurements versus the signal’s carrier to noise ratio (C/N,). Since
WCDMA has the smallest bandwidth of all the signals under consideration, its variance
is the highest of all.

, (5.8)

10~2

—k— CRBwcbDMA
—6— CRBgp2.11b

CRBgp2.11g
—H— CRBgo2.11ac

10-3

10~4
£ 10
o i
X 10_6?
<
= -7 |
g 10 |
1078
1079
10_107 T T T T T T T T
5 10 15 20 25 30 35 40 45 50

C/N, (dB-Hz)

Figure 5.1: Cramer-Rao lower bounds for WCDMA and 802.11 ac/g/b.
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5.2.1 Time-domain hybridization

The work in [P5] presented multiple scenarios where different combinations of WCDMA,
802.11b, 802.11g and 802.11ac were used together to obtain the user’s estimated loca-
tion. These allows to interpret the benefit of creating a CPS based on the observation of
these signals and comparing the expected performance against positioning using solely
measurements from a single technology, as shown in Figure 5.2. In Figure, WCDMA is
one of the worst performing technologies since it is the one with the smallest bandwidth.
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Figure 5.2: Positioning using a single technology of those identified in the legend.

Figures 5.3 - 5.4 show the benefit of observing WCDMA plus a multitude of obser-
vations from several 802.11 signals. More specifically, the thicker line with the circle
marker represents the RMSE in meter obtained using only WCDMA, while the other
lines represent the combination of WCDMA with a given amount of 802.11 signals. As
an example, WCDMA + 3b means that N WCDMA emitters are available as well as
3 other 802.11b emitters. It is possible to conclude from these figures that assisting
timing measurements of WCDMA with a few other technologies contributes to a signifi-
cant performance improvement, especially between the 3 to 5 additional measurements.
After that point, adding more measurements becomes redundant in the sense, that the
contribution to an enhanced positioning performance is small.

In the end, when it comes to merge multiple SoO measurements and deciding on
the design of a CPS which would be able to tackle all these measurements, the question
boils down to which signals should it favor and to each point it should aim to track
and rely on more measurements. While in [P5] all the measurements were ideal in the
sense that they were not affected by strong channel impairments or other hardware non
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Figure 5.4: Positioning with multiple technologies: WCDMA, 802.11ac and 802.11b.

linearities, the fact is that in a real-case scenario these measurements would most likely
show biases and measurement errors due to fading.
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Figure 5.5: Simulated area and room.

5.2.2 Power-domain hybridization

This section tackles the hybridization of WiFi power measurements with measurements
from BLE and RFID. This hybridization relies on fingerprinting to select the most
probable location of the user according to a comparison between what the user’s device
is reporting and what has been acquired in the training phase.

Hybridization of WiFi and RFID measurements

In [P4] the discussion surrounded the hybridization of WiFi and RFID measurements
through fingerprinting. This work relied on the simulation of these two signals and
studies the contribution that observing RFID signals in two distinct scenarios, one
where WiFi is widely available and another one where WiFi is scarcely available.

The main motivation behind this question was the fact that RFID signals have a
limited coverage, since they rely on back-scattered signals, which means they have to
transverse twice the same distance. The simulator developed and freely available in [P4]
was modelled after the measurements taken in the studies [75,85].

Simulated scenarios

The work sets out to follow [75] regarding the room dimensions and the placement of
WiF1i emitters on its exterior only. Figure 5.5 shows an example of a simulation scenario.

The simulation creates multiple sets of observations inside the room where, for each
simulated random walk, RFID and WiFi measurements are generated according to their
propagation model. Figures 5.6.A-B and 5.7.A-B both display accuracy curves. The
curve makes the correspondence between the fraction of points whose average distance
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error is smaller than that reported on the x-axis. The fractional value is obtained by
calculating the number of points over which a location estimate is acquired P, over the
total amount of points defined in the random walk P;,;,;. Since for some parts of the
random walks some of the signals are unavailable, a location estimate for certain track
points is not available, which results in some of the accuracy curves not reaching 1.

The RFID signals are particularly susceptible to multipath as they rely on back-
scattered signals and directional antennas. Hence, it is impossible for a single reader to
cover the entirety of the room, which means that for some parts of the room, there is
simply no RFID coverage which causes the accuracy curves to converge at values below
1 as seen in Figures 5.6.A-B and 5.7.A-B. RFID’s signal propagation is further discussed
in [P4].

Despite the shortcomings of RFID, the motivation behind the work in [P4] was to
identify if the observation of a limited signal, would indeed bring considerable benefits
towards a WiFi-based positioning system. In this section we focus the presentation on a
specific setup, where 4 RFID readers are placed in opposite sides of the room at varying
WiF'i access point densities.

The density of the Wi-Fi emitters was determined by numbers reported by several
studies at university buildings in Finland, where reports show a density of 3-4 trans-
mitters per 10 m? [118,119]. Therefore, using this value, for the case of a high density
Wi-Fi scenario, the environment is built with 24 Wi-Fi emitters, while 8 emitters were
used for the medium to low density Wi-Fi scenario.

Figures 5.6.A-B showcase the error probability when the acquisition is done in a
high density WiFi and in a low density WiFi scenario, respectively. From these two
figures it is possible to conclude that even for a limited coverage signal such as RFID,
its measurement provides a boost in performance when the amount of WiFi or other 2.4
GHz signals are present as well. At a ratio of 90%, the average error for the combined
WiFi and RFID sees an improvement below 1m in Figure 5.6.A, while it is slightly over
3 m in Figure 5.6.B.

Experimental scenarios

From the same data set as [64], Figure 5.7.A and 5.7.B allow for a comparison with
the simulation work depicted in Figure 5.6. Figure 5.7.A shows the accuracy curves for
RFID, WiFi and RFID plus WiFi, where only one RFID emitter is placed in the middle
section of the wall. Figure 5.7.B considers four RFID readers in the middle sections
of the walls. In Figures 5.7.A-B, the WiFi only solution performs equally well in both
situations. In Figure 5.7.A the presence of the RFID signal makes almost no difference
in the overall performance. However, in Figure 5.7.B it is possible to see a performance
improvement due to the presence of RFID. This is seen by the difference between the
WiFi curve and the WiFi plus RFID curve, where the difference reaches over 1 m for
low ratio values.

Hybridization of WiFi and BLE

In this last part, the focus is on the hybridization of WiFi and BLE signals. BLE signals
are becoming more popular to connect small and inexpensive devices and have a role to
aid positioning in indoor environments, as well as achieving the last shelf promotion of a
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specific article or promotion. This makes these signals as another relevant measurement
source to look for in terms of SoO and does pave the way for other 2.4 operating
technologies in the same spectrum.

The data set in use for this study was collected via measurements at TUT were
several BLE tags were deployed throughout the university corridors. From this data set
it is interesting to understand what and if there is any relationship between RSS and
the RMSE of a fingerprinting method. To understand this, Figure 5.8 draws the RSS
against the RMSE of a ranked-based selection [92]. In this ranked-based selection, the
top n most likely solutions are taken as the user’s final location. It is possible to see
from the Figure 5.8 that stronger RSS (less negative) do match with a better RMSE.
In other words, it means that as the propagation fades, the RSS becomes more similar
in the edges, making it more difficult to distinguish where the user is.

One of the major issues when merging data from several sources is the lack of
uniformity in the actual reported value. A few preliminary studies reported in [63]
have indicated that a cosine similarity approach can indeed lead to quite good results
in comparison to a ranked based approach. The cosine similarity tackles this issue by
assuming that two points are similar if the angles described between them are smaller.
This is the reason why the metric fares quite well in comparison to the ranked based
approach, as seen in Figure 5.10. Mathematically, the cosine similarity is given as,

A-B

<os(®) = TATIBI

(5.9)
where O is the angle defined between the two vectors A and B of magnitude ||A|| and
[|B]|, respectively.

In equation (5.9) the similarity is applied to the set of heard RSS from the online
phase against each set under the training database. Similar sets will have a similarity
value closer to one, which means that the most likely location for the user to be in
is the one where the cosine of the angle is one. This is identified by the star marked
lined labeled sin weighted in Figure 5.9. Regarding the other CDFs in Figure 5.9,
these consist of an hybrid approach as proposed in [64], considering BLE signals as
another WiFi signals (in terms of fading variance) and the respective BLE and WiFi
only measurement sets.

Figure 5.9 the user’s location is derived as the average of the best 4 candidates, while
on 5.10 the average is done over the top 10 candidates.
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Figure 5.6: Accuracy curves with four RFID emitter in a high density WiFi (A) environment
and in a low density WiFi (B) environment.
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Experimental data: 1 RFID reader
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Figure 5.7: Experimental results using one RFID reader at a middle section of the wall (B)
and four RFID readers (A).
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Figure 5.8: RMSE versus RSS.
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5.3 Discussion

This chapter looked at contributions from [P4] and [P5], whose results relied on simula-
tions built and made publicly available by the user [121]. To strengthen the simulation
results, this chapter introduced results obtained from actual field measurements done
in TUT, complementing the simulation results from [P4].

The work in [P5] was meant as purely theoretical and looked at the added benefit of
observing multiple SoO. While it is well known that more independent and uncorrelated
sources of measurements will enhance the system’s performance, the motivation behind
the study was to understand the performance gain assuming near-ideal scenarios. De-
spite the performance improvement in terms of using higher bandwidth signals, [P5]
highlighted the small contributions that observing additional signals of that genre has
on the overall performance. Hence, having a more diversified set of signals tends to offer
the best trade-off between density and performance.

The work in [P4] looked at the benefit of measuring RFID signals in low and high
density WiFi environments. The motivation was similar as in [P5], where the goal
was to understand how worthy it was to observe certain signals. In the case of [P4],
the RFID short propagation coverage was quite visible, which lead to poor in-room
coverage. Acquisition of such weak signal was only relevant on an environment with
low coverage of other SoO, such as WiFi.

The chapter ended with hybridization results of WiFi and BLE signals where there
was a relationship between RMSE and RSS strength. It was seen that there was a
proportional relationship between the device’s proximity to the access point and the
estimation error. The error was smaller when devices were closer to access points.

The hybridization results from WiFi and BLE presented a lower accuracy perfor-
mance (see Figures 5.9) and 5.10), when compared to the results presented earlier in
Section 5.2 (see Figures 5.7.A-B). A comparison between both cases showed that for
the hybridization of WiFi and BLE, the average estimation error is approximately 10
m, while for the WiFi and RFID hybridization 90% of the points provided an error
below 5m. Based on these values, the observation of an unique signal such as RFID was
more valuable to the increase in accuracy than observing another signal with similar
properties (BLE) as the main signal (WiFi).
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CHAPTER 6

OPPORTUNITIES FOR INTERNET OF
THINGS

HIS chapter presents the work in [P6], which contains a discussion about current
IoT technologies and their place as current and future opportunities for CPS.
The main contributions in this chapter consist of:

e Presentation of key physical and logical features of current and future IoT tech-
nologies.

6.1 Background, state-of-the-art and related work

Over the last years, there has been a trend to connect most of our daily devices and
appliances to the Internet. There is clearly a trend in the consumer sector to allow the
acquisition of any kind of metrics, wash cycle times, refrigerator temperature, automatic
oven control, habit tracking, among many others. These are often systems that rely on
simple radio protocols to achieve message passing in the most efficient way possible.
Another drive and push for this kind of devices comes from the industry, where there is
a trend to digitize time consuming processes, such as automated inventories, continuous
tracking of environment parameters, automated lighting systems, among others. This
chapter focus on the work in [P6].

6.1.1 Related work

In [100] the work focus on wireless sensor network and proposes a method based on
the device’s capabilities to obtain ranges and positioning groups of nodes taking part
in certain message exchange. The work in [100] points out the benefits of positioning
towards network management.

The work in [99] also in the realm of wireless sensor networks provides an overview
of methods for positioning in GNSS-less networks. [99] proposes a method called lo-
cal positioning system, which uses the nodes’ capabilities for angle, range and motion
estimation to position specific groups of nodes involved in particular message exchanges.
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In [78] the authors focus on the LTE Machine type communications (LTE-M) and
Narrow Band Internet of Things (NB-IoT) standards and their positioning capabilities.
Another related study can be found in [77]. The focus in [77] is on indoor localization
via improved RSS fingerprinting in generic IoT devices.

In [26] IoT positioning is looked at from the perspective of security, privacy and
robustness of the localization technology. No positioning results are reported in there.

The work in [143] provides on overview of IoT positioning systems based on UWB
solutions and their resilience towards spoofing attacks of their TOA measurements.

The work in [P6] provides, to the knowledge of the thesis author and co-authors, a
comparative study between the positioning features of several IoT standards. Hence, it
allows for interested parties to compare different technologies regarding key features for
building positioning systems.

6.1.2 An overview of IoT technologies

The prospect of having so many connected devices means that there are many more op-
portunities to look out for in terms of SoO for positioning. Many of these opportunities
are present in the 2.4 GHz band, but there are also others available at sub-GHZ and
eventually at mmWave bands. Table 6.1 presents several IoT technologies with a focus
on their signal characteristics.

The proposed approach to classify these technologies is seen in [P6] and consists of
the following classes:

e licensed versus unlicensed bands: operation in a protected band, such as cellular
bands;

e operating frequency bands: where each technology is matched to sub-GHz, GHz,
or mmWave (with some technologies spreading over multiple ranges);

e protocols versus enablers: whether a technology is seen as a specific IoT commu-
nication protocol or a possible wireless positioning enabler;

e range: as Wireless Personal Area Network (WPAN), Local Area Network (WLAN)
or Wide Area Network (WWAN);

e rate: as Low-Rate (LR) or High-Rate (HR);

e power: as Low-Power (LP) or High-Power (HP).

This classification makes several assumptions: in the range category, we consider
WWAN for those protocols capable of delivering more than 10 km links, for rate we
assume HR as those able to achieve an uplink above 10 Mbit/s and for power we assume
LP all of those who can support at least non-routing devices on more than 2 years of
battery.
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6.2 IoT as enabler for future positioning systems

One key aspect of a positioning system is that it will need to have a connection to an
Internet backbone. This is required to pull assistance data for the positioning, such as
the location of the infrastructure. It is also possible that the devices would be allowed to
exchange this information among themselves, if they would have enough storage space
to accommodate for that.

IoT technologies can become essential in this aspect as their main goal is to enable
the connection and message passing among devices. Hence, besides being an interesting
opportunity for future positioning systems, their unique system characteristics might
also play a crucial role in terms of enabling such systems. These are not only physical
layer characteristics, but also those belonging to higher OSI layers, such as:

Topology relates to message passing from one node to another and it dictates where
the edge of the network is located, with two of the most common topologies being
star and mesh. Star topologies are quite common in telecommunication technologies,
where the access point or base station provide service to the other receivers. In a mesh
topology, the receivers exchange messages between each other and the servicing device
might change according to changes in the environment. From a positioning point of
view, a mesh topology brings added value in terms of network reliability and extending
the service coverage;

Range of an IoT system is important in the sense that it defines an upper bound
of the positioning error, which cannot be larger than the communication range. For
example, [oT systems with ranges of orders of meters are also expected to provide a
meter-level positioning accuracy. It also has a relationship with the carrier frequency,
as lower frequencies will allow for longer services ranges at the expense of power;

Positioning signaling or data exchange is the ability to use pilot signals or se-
quence of data packets to provide the location of nearby devices. This is important as
it makes positioning an inherent aspect of the technology in use;

Roaming is the ability to provide continuity of service across multiple networks, owned
or not by a single entity. As mobility is a keystone of most positioning applications, it
is important to take note of this when looking at IoT systems. In this aspect, proto-
cols such as Sigfox or Ingenu are at an advantage, as they operate similarly to cellular
systems and offer service across multi continents. Despite that, even proprietary solu-
tions start to provide open application interface specifications and open guest periods
in the radio access, which facilitate the exchange of data across multiple vendors and
technologies;

Network ownership raises security and privacy concerns, which are a strong require-
ment and must have in any current IoT system, especially as data access, transport and
storage become more and more regulated by international and European bodies [42].
Several technologies allow the end user to build and operate its own network, but some
technologies are aiming from the start to provide a bridge for data. Therefore, as these
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manufactures keep their grasp on the network data, it is also more difficult to acquire
information regarding the location of all serving points;

Power consumption is an important aspect for positioning applications. In the
end, power consumption is a tradeoff between the latency an user expects to have
its location updated and how much power it is willing to sacrifice. Despite that,
network operations such as uplink and downlink data ought to be power efficient to
keep consumption bounded by the number of location updates or attempts.

Several of these parameters are summarized on Table 6.2 in additional to other
beneficial factors for positioning systems.

In terms of power consumption, it is typical for positioning services to require a
powered infrastructure. However, there are indeed several industrial applications that
would benefit from a fully battery-operated network or a network harvesting energy
from surroundings (battery-less concept). Such applications are often found where an
electricity network might not yet be present, e.g., construction sites, or for facility of
service extension and maintainability.

In terms of positioning, most IoT systems are yet to offer specific signaling to support
accurate measurements for this purpose. The Few of them have already raised interest
in the academic field in terms of their positioning capabilities, as shown in the last
column of Table 6.2. Most of these studies focus on RSS-based approaches, several of
them relying on probabilistic methods such as fingerprinting. Few studies that focus on
time-based and spatial-based approaches are mostly targeting current and future LTE
derived signals, such as LTE-M and 5G, which are retaining some of LTE’s positioning
characteristics.

In addition, we have found that network-centric positioning solutions are being fa-
vored as opposed to device-centric ones. This mostly happens due to the limited re-
sources at the end devices and gateways. However, this centralized architecture places
an additional burden on the network capacity and latency as the number of devices
grow and, for many of the systems under review will have difficulties accommodating
real time location systems, especially due to the strict latency requirements of such sys-
tems. Integration with other higher capacity technologies, such as WiFi and 5G could
solve some of this concern at the expense of per unit cost and power consumption. On
the other hand, supporting positioning updates at sparse intervals ought to be feasible
for many of them, which will certainly find its application in several niche markets,
especially if the positioning system is supported fully by battery-powered networks over
a span of multiple years.

6.3 Discussion

This chapter covered an overview of IoT technologies and their possible role in future
CPS systems as they might function as additional SoQO.

The discussion and presentation of current IoT technologies focused on key network
parameters that considered important in a positioning context and in the signal detec-
tion realm. Overall, the biggest focus was placed on the physical and link layers with the
discussion of parameters such as signal modulation, bandwidth and network topology.
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Table 6.2: Summary of key technical specifications for several IoT protocols and IEEE 802.11x% family protocols.

Technology Nework  Network  Tumebuwed, Powerbuwsed Spucobused (SERE L Accurcy
pology ype positioning positioning positioning accuracy domain studies

ANT+ mesh LR/LP-WPAN  +,+++ +,+ ++,++ Low Power

BLEmesh mesh LR/LP-WPAN  +,+++ +,+ ++,+ Medium Power (34,45, 86]

Dash7 star LR/LP-WAN +,+++ +,+ ++,++ Low Power or space

EC-GSM-IOT star HR/LP-WAN +,+++ +,+ ++,++ Low Power

EnOcean mesh LR/LP-WAN +,+++ +,+ ++,++ Low Power or space

Ingenu /RPMA star LR/LP-WAN +,+++ +,+ ++,4++ Medium Power or space

ISA101.11a mesh LR/LP-WPAN  +,4+++ +,+ ++,++ Medium Power or space

LoRa star LR/LP-WAN +,++ +,+ ++,++ Medium Power [47]

LTE-M star LR/LP-WAN +,+ +,+ ++,++ Medium Time (78]

MiWi mesh LR/LP-WAN +,+++ +,+ ++,++ Medium Power

NB-IoT star LP-WAN +,+ +,+ ++,4++ Medium Time (78]

RFID star LP-WAN +,+++ +,+ ++,++ Medium Power [9,64,81,89,90]

Sigfox star LP-WAN +,4+++ +,+ +4,++ Medium Power (69,113]

Telensa star LP-WAN +,+++ +,+ +4,++ Low Power or space

Thread mesh LR-WPAN +,+++ +,+ ++,++ Medium Power

Weightless-N star LR/LP-WAN +,+++ +,+ ++,++ Medium Power or space

Weightless-P star LR/LP-WAN +,+++ +,+ ++,++ Low Power or space

Weightless-W star LR/LP-WAN +,+++ +,+ ++,4++ Medium Power

WirelessHART mesh LR-WPAN +,+++ +,+ ++,4++ Medium Power

Wirepas mesh HR-/LP-WLAN  +,4+++ +,+ +4+,++ Medium Power

WiSUN star,mesh LR/LP-WPAN  + +++ +,+ ++,++ Medium Power

ZigBee/ZigBee-NaN  mesh LR/LP-WPAN  +,4+++ +,+ ++,++ Medium Power [29,39,48,101]

Z-Wave mesh LR/LP-WPAN  +,+++ +,+ ++,++ Medium Power or space

%(+, 4) : low impact, (++, ++) :

medium, (+++, +++) : high impact
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A major shortcoming in the study was the lack of presentation regarding the protocol
level of each technology, which would have repercussions on how technologies operate in
crowded and congested radio environments and their ability to perform message passing
efficiently (capacity).

Overall, this chapter pointed out the fact that network-based positioning will most
likely be a key aspect of future IoT-based positioning solutions. This was seen as a
repercussion of the digitization of several industrial processes, where network ownership
and data privacy are critical operational aspects. In such cases, future IoT networks
can double as a communication infrastructure and offer positioning services. The role
of power-based solutions for deriving the location of certain industrial assets was seen
as valuable, as it imposes marginal impacts on the cost of the system when compared
with other solutions based on time and spatial solutions. It was also observed that most
IoT technologies are not offering any positioning specific signaling.

Based on this chapter and [P6], despite the difficulty in understanding all the local
radio phenomena, RSS based positioning will nevertheless offer a cheap alternative for
coarse based positioning. Other technologies, in the realm of time and space will cover
higher accuracy demands, at the expense of battery consumption and higher unit cost.
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CHAPTER 7

CONCLUSIONS

IGNALS of opportunity for positioning are those signals whose initial purpose was

meant for other tasks, such as communications and data exchange. This thesis
covered the concept of SoO and presented several studies surrounding this thematic,
with a special attention in the indoor positioning field.

This chapter serves as a compilation of what was presented in the previous chapters
and the main contributions provided by the studies under the scope of this thesis.
Furthermore, this section ends with a discussion and ideas for future enhancement and
improvement in the field of SoO for positioning.

7.1 Summary

The initial chapters, chapter 1 and 2, provided an overview of the whole thesis and the
theoretical background approach for publications [P1-P6]. These first chapters defined
the concept of SoO for positioning and provided several examples of commonly used
signals and key physical layer parameters which serves as a means for identification in the
later chapter 3. Chapter 2 also provided a classification of positioning techniques in the
algorithmic layer in three distinct domains, power, space and time. The contributions
on this thesis provided a discussion of several sets of results from the power domain.
Chapter 3 and publications [P1, P2| focused on the identification of SoO through
their unique cyclostationarity features imposed by their physical layer representations.
Section 3.1 provided a quick overview of several signal detection frameworks in sig-
nal processing, delving further in the realm of cyclostationarity. The cyclostationarity
framework was the one chosen to identify two types of physical signal modulations,
CDMA and OFDM. These two modulations were chosen as they cover several common
signals available throughout most indoor and outdoor scenarios, such as Bluetooth and
WiFi. Section 3.2 discussed the detection of CDMA and OFDM signals in a signal
mixture. The work in [P1] contributed with a set of results confirming the possibil-
ity to apply the method later described in [P2] to distinguish CDMA and OFDM, as
well as performing the detection at sub-Nyquist rates. Section 3.3 and publication
[P2] described in further detail an algorithm to perform the detection of CDMA and
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OFDM signals in a signal mixture and the role such algorithms could take in future
CPS receivers.

Chapter 4 and publication [P3] looked at channel impairments problems with an
intra-system interference case study presented for BLE systems. Section 4.1 laid the
foundation for [P3], presenting key concepts in terms of radio propagation and channel
impairment phenomena, in particular fading. Section 4.2 looked at in the intra-system
phenomena and its effect on translating RSS into a range for a BLE system. The work in
[P3] showed that such translation is mostly inaccurate and susceptible to several channel
phenomena, like intra-system interference in the case of BLE. This phenomena, was seen
to be visible in a small-scale experiment and to mitigate it, the work in [P3] suggested
compensating the channel phenomena by understanding its contribution towards the
degradation of the signal quality and applying it to the signal model. The conclusions
in [P3] showed that such mitigation improve the quality of the ranges calculated based
on the RSS information as well as sharing pre-calibrated measurements of the expected
signal loss.

Chapter 5 and publications [P4, P5] focused at a theoretical and practical level on
the benefits of acquiring multiple SoO. Section 5.1 provided an overview on popular
positioning techniques, with interest placed in the fingerprinting method. Section 5.2
reviewed the results from [P4, P5]. The work in [P5] showed that while acquiring more
independent sources of information leads towards a better accuracy, the accuracy trade-
off in doing so is smaller if the measurement quality is equally good among these sources.
Hence, the study in [P5] demonstrated that a CPS will benefit from acquiring at least
a higher accuracy signal (higher bandwidth) in regions where lower accuracy (smaller
bandwidth) signals proliferate. The work in [P4] provided an open source simulator to
generate indoor scenarios for RFID and WiF1i signals. The simulator allows the user to
create room distributed over a pre-defined area with different degrees of WiFi density.
The placement of RFID signals was contained to the room. The study showed that in
the simulation and experimental based results, the observation of RFID signals only
offered an accuracy gain when the density of WiFi signals was low.

Finally, chapter 6 and [P6] looked at the current technology landscape in terms of ToT
technologies and discussed their fit towards the design of CPS. Section 6.1 identified
several IoT technologies and their key physical aspects, as previously done for other
S00. Section 6.2 discussed several link layer parameters that were seen needed and
relevant for IoT technologies aiming to offer the backbone for a positioning service.
The IoT technologies discussed throughout chapter 6 were classified and placed in a
comparison table. The aim of such table is to aid the decision making of system designers
when picking a technology on which to build future CPS. Based on the observations of
chapter 6 and [P6], IoT positioning systems will most likely tend to rely on inexpensive
measurement layer solutions, such as those from the power domain. This domain is the
one that will allow for the least impact on cost and battery life, as it will be an inherent
functional parameter of the network. Whereas time and space solutions will provide
enhanced positioning accuracy, the use case will in the end determine the most suitable
domain and algorithms to use.
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7.2 Discussion and further development

A future fully functional CPS will build on the understanding of its surrounding to
capture and decode the necessary SoO to meet the necessary service levels that are
required by its users. These requirements might change according to needs, requiring the
adaptation of the radio interfaces for acquiring specific segments of the spectrum. Hence,
understanding and characterizing the available SoO is important for such receivers and
has been one of the main contributions of this thesis. This thesis has also contributed
with valuable inputs regarding the selection of SoO and which ones to favor in terms of
accuracy expectations.

The main challenges in terms of a CPS will be the channel phenomena affecting
sections of the spectrum, which will cause simple solutions to malfunction. This is the
case of power-based measurements, which will suffer greatly with the introduction of
more and more radio interference, either from their own system or other systems. This
phenomenon has been highlighted in this thesis, where mitigation at the signal model is
discussed. Nevertheless, mitigation alone will not suffice, and better radio discipline will
need to be looked after, especially as the IoT trend brings forward a massive number of
connected devices.

As IoT increases the changes for future SoO signals, it also becomes clear that some
of these signals could be even more useful if a global and distributed database could
serve as the basis for future CPS. Having a public, distributed and regulated database
with the location of multiple SoO’s access points, would lead to a better quality of
service and seamless localization throughout any environment.

In terms of quality of service for future CPS, RSS will remain as a relevant source
of information, especially due to its low cost and small footprint in terms of resource
utilization, but a rise of angle and timing approaches will become more common place
as technology advances. Future cellular networks like 5G are looking at combination of
angle and time-based methods to offer positioning services to its subscribers.

Nevertheless, while there are clear paths with respect to future trends in the accuracy
domain, such as moving to higher accuracy domains as angle and time, the focus on
minimizing the resource utilization will remain. In terms of resources, such as RAM
and CPU, future devices will continue to see an upgrade as the silicon cost drops down,
however in terms of battery, the utilization of the radio will remain a challenge. When to
scan and how often to scan are costly actions that deplete the device’s battery. Future
advances in areas such as wake on radio and energy harvesting will allow for better
energy preservation and management.

In a nutshell, this thesis has contributed with novel means of identifying SoO based
on their physical layers characteristics as well as based on reduced observation of their
spectrum and time properties. Furthermore, this thesis has contributed with a suite of
tests regarding the use of SoO in indoor environments, based on simulations as well as on
actual experimentation. This thesis has also contributed with a discussion surrounding
future SoO (IoT technologies) and the choices that should be weighted when picking
certain technologies towards a positioning context. Overall, the joint knowledge of this
thesis aims to help the design of future positioning systems, CPS, built with a purpose
of making the correct signal acquisition choices to meet the accuracy requirements while
preserving the system’s resources.
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Abstract—In cognitive positioning systems, spectrum sensing
methods play an important role to understand the surround-
ing spectrum. Due to their good performance under noisy
environments, cyclostationary methods are commonly used to
characterise the received signals. These methods require a higher
computational cost and high sampling rates [1]. With that in
mind, this paper uses real measurement data, acquired in an
office environment, at different sampling rates, including rates
below the Nyquist rate. The motivation is to show that the
implementation burden of these methods can be reduced by using
lower sampling frequencies, since the cyclic properties of the
signals are still visible.

Index Terms—Cognitive positioning systems, downsampling,
cyclostationary, signals of opportunity.

I. INTRODUCTION

Spectrum sensing and signal identification methods are
essential building blocks of cognitive radio and cognitive
positioning systems. In cognitive radio the detection objective
is primarily to infer whether the primary user’s signal is absent,
in order to better utilize the available spectrum resources by
secondary users’ signals. In cognitive positioning systems, the
information about available spectrum resources is continuously
delivered to the cognitive positioning engine, which attempts
to exploit it in order to fulfill the localisation requirements
of the user or system. As an example, if there are unused
parts of the spectrum, a request to extend the bandwith of the
navigation signals under use could be done by the cognitive
positioning engine [2]

As opposed to the spectrum sensing methods, the identi-
fication methods can reveal more details about the available
signals. Knowing which particular types of signals are present
in the spectrum surrounding a receiver can be exploited, for
example, to improve the accuracy of its localisation. Further-
more, the cognitive positioning systems may profit from the
fact that the number of navigation signals, as well as signals of
opportunity present in the spectrum, has increased significantly
over the last years. The proliferation of these signals means
an opportunity for positioning systems to provide its users
with seamless operation throughout indoor and outdoor envi-
ronments. However, exploiting all these signals in parallel can
be too computationally demanding. Hence, it is important to
select only the most relevant signals with respect to the current

978-1-4799-5863-4/14/$31.00 (© 2014 IEEE

Sampling Frequency |

Spectrum
Sensing

Cognitive
Analog Positioning
Front End Converter Acquisition Engine
Tracking
Demodulation

Fig. 1. An example of a cognitive positioning architecture.

localisation requirements. If a method allowing the signal iden-
tification of the spectrum without using a standard procedure
(acquisition, tracking, and demodulation) is incorporated in
a positioning system, it can lead to faster operational times
with a smaller power footprint. Fig.1 presents an example of
a cognitive positioning system, where the spectrum sensing
block provides to the cognitive positioning engine, necessary
information regarding the spectrum. This information is used
by the cognitive positioning engine to control the entire system
and fulfill the local positioning requirements. Over this paper,
the focus falls solely in the spectrum sensing block.

A common approach to sense, as well as, to identify signals
in the spectrum relies on their cyclostationarity properties.
Such properties appear due to periodicities present in the sig-
nals, imposed by, for example, modulation, coding, spreading,
among others. It can be inferred that these features vary for
different signals, allowing their identification and classifica-
tion. The mathematical tool describing the cyclostationarity
properties is called Spectral Correlation Function (SCF). An
advantage of using cyclostationarity-based methods is that
it can distinguish between wide sense stationary noise and
useful user’s signals, since the noise does not exhibit peri-
odic features. However, they also require more computational
resources.

Currently, OFDM signals are relatively ubiquitous in the
spectrum, since they are being used in several wireless net-
works systems, such as LTE and WiFi and have shown good
positioning capabilities. In the particular case of LTE, pilot
signals are already being thought to improve its positioning
capabilities, on top of its communication purposes [3], [4].
As for WiFi signals, studies using timing [5], [6] and power
information [7] have also shown the potential of these signals
for navigation purposes.

The objective of this paper is to show that the periodic
features of the SCF of IEEE 802.11g OFDM signals, measured



in an office environment, are still visible and detectable when
using sampling frequencies below the Nyquist rate. It has been
reported that high sampling frequencies are usually necessary
to observe cyclic frequencies [1], however the work in [8]
suggests that sampling frequencies below Nyquist rates can
still be used to identify the signals based on cyclostationary
features. Besides this, the reduction in sampling frequencies
leads to a lower complexity [9], by a factor proportinal to the
downsampling factor, which is important from an implemen-
tation point of view.

II. CYCLOSTATIONARITY

A signal z(t) is wide-sense cyclostationary if its time
varying autocorrelation function R(t,7) defined as,

R(t,7) = E{z(t)z"(t + 1)}, [€))

is periodic in time, ¢, for each lag parameter, 7. Hence, it can
be represented as a Fourier series,

R(t.7) =) R(r)e*™", 6)
B

where the sum is taken over integer multiples of fundamental
cyclic frequency f, for which cyclic autocorrelation function
is defined as,

T
1 [z
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The SCFE, S#(f), is the Fourier transform of R® and is given
as,

R(t,7)e 7278t dt. 3)

S = [ R (e, @

In this paper the fast Fourier transform Accumulation
Method (FAM) is being used to estimate the SCF of the IEEE
802.11g OFDM signal. Other methods can be used and should
provide comparable results and further information can be
found in [8]-[10].

A. IEEE 802.11g cyclostationary properties

The cyclostationary properties of the IEEE 802.11g OFDM
signal appear due to the pilots and cyclic prefix present in the
signal’s design. From a mathematical point of view, the IEEE
802.11g signal, y(t), can be seen as,

N
y(t) = AVE DY Y Xp(k)e>™ A h(t —nTy),  (5)

n k=1

where A = (N TUEd)fl/ % is a multiplicative constant nor-
malizing the OFDM symbol energy, F; represents the average
energy of OFDM symbols, N is the number of subcarriers, E,
is the average energy of 16-QAM data symbols which form
the OFDM symbols, X, is n-th OFDM symbol expressed as
a vector consisting of N data symbols, and h(t) represents a

unity rectangular pulse on the interval [0, Ty;) and zero other-
wise. The signal is further extended through the cyclic prefix.
In the frequency domain, the signal occupies frequencies in the
range [— B, B] MHz, where B is the one-sided bandwith equal
to 10 MHz. Hence, the signal’s Nyquist rate is fy = 2B = 20
MHz and, in this case, the Nyquist frequency is 10M H z.
Under the FAM implementation, the cyclic frequencies are
dependent on the symbol duration [11]. Theoretically, the
cyclic frequencies, Sy, of such a signal are determined by,

Br = ki keZ, ©

Tsym,bol
where the symbol period, Tsympot = Tar + Ty, consists of
guard interval, Ty, which is occupied by cyclic prefix and
duration of useful symbol, Ty = A7, which is chosen to
guarantee orthogonality of OFDM subcarriers for their given
frequency spacing Aj.

B. Probability of appearance

From the previous discussion, it is expected that the cyclic
frequencies will appear at well defined positions. Therefore, to
understand which of these cyclic frequencies are more frequent
in the SCEF, the probability of appearance is defined as the num-
ber of times a given cyclic frequency is distinguishable over
several input data windows. Distinguishing cyclic frequencies
is done by using an activity indicator, [12], [13], I, computed
as,

=7 7)
,IL

where the mean, p, and standard deviation, o, are obtained
from a segment of the input window’s absolute SCF, centered
at each cyclic frequency, 8. For each (5 the segment is taken
over the region [B, — 0.01f;, By + 0.01f,], where f, is the
sampling frequency. It is also assumed that over this region
only one ) is present. This metric offers a X-square test of
the segment samples’ distribution, which is true when only
noise is present at the input. Therefore, if a cyclic frequency is
present, the resulting outlier allows for its identification. This
is done by comparing the value of I to the defined threshold
Vin, which is, approximately, two times the value observed
when noise only is present. This information can be further
exploited by a signal detector to identify the present of one or
more signals, however, this paper aims to offer an insight on
which cyclic frequencies might be considered for such goal.

III. MEASUREMENT OF IEEE 802.11G OFDM SIGNALS

Real IEEE 802.11g OFDM signals were captured using an
inexpensive (below € 1000) acquisition hardware platform.
The platform is called Universal Software Radio Peripheral
(USRP) B210. Its main components include RF integrated
circuit AD9361 consisting of two channel transceiver with
integrated 12 bit DACs/ADCs and Spartan 6 FPGA. Moreover,
it incorporates a programmable analog filter which is automat-
ically sets the appropriate bandwidth for the given sampling
rate, minimising the effect of antialising. No additional RF
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Fig. 2. Setup used for the measurement of IEEE 802.11g OFDM signals.

hardware was used besides a standard 3 dBi omnidirectional
antenna working in 2.4 GHz band. The received signals were
captured at sampling rates,

fs= {szv =40, fx =20, %fN = 10} MHz,  (8)

and stored in a computer for subsequent off-line processing.
Some relevant parameters are summarised in table L.

The signals were measured in corridors and offices in Tieto-
talo building at Tampere University of Technology. Individual
802.11 frames captured in those signals do not keep a constant
SNR value. However, it was roughly estimated that the SNR
varies in range from 3 to 16 dB, where SNR is defined as the
ratio of powers of useful signal and noise. Fig.2 illustrates the
setup used for the measurements.

A. Effect of downsampling in cyclic properties

In order to investigate the possibility of using downsampled
signals for cyclic features detection, the input data was split
in 10 ms segments. These segments were used in the cyclo-
stationary algorithm to investigate the behaviour and presence
of the cyclic frequencies expected from (6). The length of
this segment was arbitrary chosen in order to contain useful
signal at each time. Since the measurements were made in an
office environment, the high density traffic should fulfill this
assumption.

Fig.3 shows an example of the SCF of the 10 ms time win-
dows, at different sampling frequencies, 40MHz and 10MHz,
respectively. In both cases it can be seen that the downsam-
pling keeps the cyclic frequencies in the expected positions,
but the values are slightly changed. This is particularly visible
when comparing the values at 1 MHz. It is also possible to
observe in the figure, that most cyclic frequencies, expected
from (6), are not visible or its value too low and considered
as noise.

B. Statistical behaviour

Fig.4-6 show a box plot containing the value of I, (7),
for the segment defined over the cyclic frequencies contained
in the interval (—5,5) MHz, for sampling frequencies 40
MHz, 20 MHz and 10 MHz, respectively. These figures allow
a better understanding of how the value of I is changing
throughut time for each cyclic frequency expected from (6).
The boxplots show the median value (central mark in the
box) and mean of I at the given cyclic frequencies, as well
as the 25th and 75th percentiles, defined by the box lower

TABLE 1
PARAMETERS USED IN THE MEASUREMENT AND PROCESSING OF THE
IEEE 802.11G SIGNALS.

Value

Number of random trials, T 5000
Activity threshold, Vi, 1

Parameter

Observation time 10 ms

Cyclic resolution le=* x fsHz
Frequency resolution 0.1 x fsHz
Bandwidth (two-sided), 2B 20 MHz
Modulation 16-QAM

Number of carriers, N 64

Symbol interval, Tsympol 4 s

Sub-carrier spacing, A¢ B/N = 312.5kHz
Guard interval, Tg; A;l /4's

First cyclic frequency, 81 250 kHz
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Fig. 3. SP(0) for measured data sampled at fs = 40MHz and fs = 10MHz.

and upper edges, respectively. The minimun and maximum
values are represented by the vertical lines extended from
the box and remaining dots mark the outliers, defined as the
observations with values abov 30. The threshold used for the
later probabilities of appearance is also plotted for reference.

One main conclusion from these figures is that the cyclic
frequencies at integer values are the ones causing the biggest
changes in the value of I. Otherwise, the mean of I remains
close to 0.5 as it has also been observed when only noise is
present at the input. It is also interesting to note that almost
all the values of I, for 10 MHz sampling frequency, are clearly
above the defined the threshold. While for the other sampling
frequencies this only happens at some cyclic frequencies, such
as 3 MHz. Regardless of that, the threshold can be tweaked
which will have impact on the porbability of identifying the
cyclic frequencies, however the proper way to set this value
is outside the scope of this paper.

C. Most frequent cyclic frequencies

Supporting the discussion above, the probability of ap-
pearence at integer cyclic frequencies is obtained by counting
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Fig. 7. Probability of appearence for signals sampled by USRP, sampled at
40MHz, 20MHz, 10MHz.

the number of times the cyclic frequency is present in the 5000

. . . . .. TABLE II
input data windows of 10 ms duration. In Fig.7 the probability PROBABILITY OF APPEARANCE FOR CYCLIC FREQUENCIES IN
of appearence for all the expected cyclic frequencies from (6) UNDERSAMPLED SIGNALS FROM USRP.
is shown. This figure shows, as expected from the previous
discussion, that the cyclic frequencies with higher probability Sampling frequency  40MHZ 20MHZ  10MHZ
of appearance are located at integer frequencies. Table II con- Cyclic frequency (MHz) Probability %
tains the probability of appearence for these cyclic frequencies 4 62 68 86
located inside the region (—5,5) MHz. 3 81 71 87
2 6 45 87
IV. CONCLUSION 1 69 3 16
. . . 0 100 100 100
Over this paper, a stream of IEEE 802.11g signals, acquired -1 68 1 52
by an USRP B210 in an office environment, was used to inves- 2 1 61 87
tigate the behaviour of cyclic frequencies when downsamplin 3 82 e 87
g Yy q pling -4 75 69 85

the input signal. The motivation behind this is to reduce the
complexity of the cyclostationary methods, since the number
of samples is reduced.



The main conclusions from this paper are that cyclic spectral
analysis can be used to identify the presence of a IEEE
802.11g OFDM signal, since this signal exhibits clear cyclic
peaks at n MHz, n € Z. Besides that, even when using a
reduced sampling frequency, such as 0.5 fn, cyclic frequencies
can still be identified. Therefore, sampling frequencies below
the Nyquist rate can be chosen in order to design a reliable
signal detector, however the design and performance of such
detector has not been considered over this study.
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Abstract—This paper proposes a cognitive positioning ar-
chitecture. This architecture uses cyclostationary analysis to
understand the contents of the spectrum surrounding the receiver
and exploit this information for activating the necessary tracking
and demodulation loops. This paper assumes the presence of
CDMA and OFDM signals. The results show the performance
of the spectrum sensing technique used along with the expected
positioning accuracy.

Index Terms—Cognitive positioning architecture, spectrum
sensing, signals of opportunity, approximate maximum likelihood.

A cognitive radio (CR) is a device aware of its environ-
ment, allowing the coexistence with other radios that might
lack cognition features [1]. The coexistence is guaranteed
by monitoring the spectrum for unused frequency subbands
[2], [3]. In some cases, the CR may need to know its
location. However, while a position fix is easy to obtain in
an outdoor environment, indoor environments are particularly
difficult for current positioning technologies, such as global
navigation satellite systems (GNSS). Consequently, there is a
need for better indoor navigation, at a reasonable price. In
indoor environments cellular and Wi-Fi signals are already
widely deployed, their use for indoor positioning systems is
an alternative to other dedicated systems. The main purpose
of Wifi and celular signals is to provide data and voice
communication links, therefore they are known as signals of
opportunity (SoO) when used in a navigation context.

Enabling navigation through SoO, requires a device capable
of simultaneously acquiring, tracking and decoding a multitude
of signals, raising difficulties at the implementation level.
Besides the physical limitations of current devices, the power
consumption is another concern, and it does not benefit from
adding extra sensors. Since cognitive radios and advanced
signal processing techniques are becoming the norm for future
telecommunication standards [4], it should be possible for
positioning systems to tap into this cognition layer. With
such information, these systems could manage the existing
hardware and provide more efficient hybridisation of different
sensor data [5], [6].

The architecture proposed in this paper, aims to speed up
the acquisition, tracking and demodulation of the incoming
signals in comparison to the traditional approach illustrated in
Fig. 1.A. To fulfil that objective, the signals at the input of the
front end are merged in a single digital representation and fed

A. Traditional Architecture

Acquisition Positionin
Front > q . . 6
> Tracking P> Engine
End > A o
Demodulation Hybridisation

B. Proposed Architecture

Available
Signals
Front "e Spectrum > Cognitive
End [ Sensing [+ positioning
— Engine
Acquisition &
] Tracking >
Q .
A Hybridisation
Demodulation Y
Signal selection
Fig. 1. Example of a possible cognitive positioning system.

to the spectrum sensing block Fig. 1.B. These signals can be,
for example, Wi-Fi, Bluetooth, RFID, LTE, as well as other
signals and the goal of the block is to identify which signals
are present in the spectrum at a given time. This information
is carried over to the cognitive positioning engine, which is
responsible for performing the signal selection for the acquisi-
tion and tracking stages. The reason of performing such signal
selection is either to increase the performance requirements or
improve the power and resource usage of the device. Later on,
this is exemplified with an example where ditferent number
of orthogonal frequency-division multiplexing (OFDM) and
code division multiple access (CDMA) emitters are used to
determine the location of a mobile receiver.

I. PROPOSED ARCHITECTURE

The following discussion focuses on signal detection and
signals using their cyclostationary features, at the cognitive
positioning engine. CDMA and OFDM signals are considered
due to their popularity in current and future communication
systems. Besides that, the authors of [7], [8] have found them
suitable for positioning based on timing and received signal
strength (RSS) estimates [9], [10].



A. Signal model

CDMA and OFDM signals are assumed to be present in the
surrounding spectrum of a receiver, such as the one depicted
in Fig. 1.B, and at the spectrum sensing block input, their
representation is given by z(t),

z(t) = d(t) + m(t) + n(t), (1)

where d(t) is a CDMA signal, m(t) a OFDM signal and n(t)
is white Gaussian noise (WGN) of double-sided power spectral
density equal to % If either one of the signals is absent during
a period of time, their representation is set to zero. For clarity,
the channel is assumed to have flat frequency response, but
the ideas can be extended to frequency-selective channels as
well.

The CDMA signal, d(t), is given by,

foo  SF
d(t) = Be % k; ck(n)p(t — kTe — nJT) o

0, when signal absent.

where F is the chip energy, SF is the spreading factor, ct(n)
is the chip value (+1 or -1) for k** chip during nt” symbol,
p(t), a pulse shaping function, T, the chip interval.

As for the OFDM signal, m(t), is described by,

N-1

AY Y Xy (k)el2™ 8 stq(t — nTy)
n k=0

0, when signal absent,

where A = \/(NTy E,,) is a multiplicative constant normalis-
ing the OFDM symbol energy, [N is the number of subcarriers,
E,, is the average energy of M-QAM data symbols which
forms the OFDM symbols, X, (k) is n-th OFDM symbol
expressed as a vector consisting of 1 data symbols, and ¢(¢), a
pulse shaping function. 77; is the symbol period before being
extended with the cyclic prefix. With the introductuion of the
cyclic prefix, the total symbol period, Tgympor. is defined as

Toymbol = Tar + Ty, 4)

where Ty is the duration of the guard interval, which is
occupied by the cyclic prefix, plus the duration of the useful
symbols, Ty = A;l, which is chosen to guarantee orthogonal-
ity of the OFDM subcarriers for their given frequency spacing
Ay. In the frequency domain, the signal occupies frequencies
in the range [— DB, B] MHz.

m(t) = 3

B. Cyclostationary features

A signal z(t) is wide-sense cyclostationary if its time
varying autocorrelation function R(#,7) is periodic in time,
t, for each lag parameter, 7. Hence, it can be represented as
a Fourier series,

R(t,7) = E{=(t)z"(t + 1)} =Y R ()™, (5)

where the sum is taken over multiples of fundamental cyclic
frequency v for which the cyclic autocorrelation function is

defined as,
Y 1 1 z
Fo=tmz),

R(t.7)e 2™ gt (6)

The spectral correlation function (SCF) [11], S7(f), is the
Fourier transform of R” given as,

SY(f) = /RRv’(T)e*ﬂ"deT. )

Periodicities in the signal, such as those produced by the
symbols or the repetitions of the spreading sequence are
responsible for the appearance of spectral lines in the SCF
domain. The locations of the spectral lines are referred to as
cyclic frequencies. When the signal is purely random, as it is
the case with AWGN, the value of the SCF is zero for every
cyclic frequency, except at v = 0. An example of SCF for a
mixture of CDMA and OFDM signals with noise is shown in
Fig.2, where o, and f,, are the cyclic frequencies for each
signal type. respectively, which are defined in the following
paragraphs.

In the context of this study, the cyclic frequencies of interest
are those specific to CDMA and OFDM signals. For the
CDMA signal the SCF can be expressed [6], [12] as

Yy ~ _1 * 1
$(f)=D(f = D" (1 + )

oc No
Y et rmonr T Esp0 @

b —no symbol

D(f) is the Fourier
the Kronecker

where

d k
(= Tiymbol T) mod 1

transform  of  d(¥),
delta function having

k

value 1 when (y — Twmbu]Tc> modl = p,p € 7 and zero
otherwise, T, is the chip interval length, Tqyppo the symbol
period. Its theoretical cyclic frequencies [12] are dependent
on both the chip rate, f., and SF and are contained in A,

A ={a(],o¢1,~~~ ,OQ,J,TTLEZ, (9)

Vay, : am€ {kfc . kfcztng;

The OFDM SCF [13] is estimated by,
s -2 (f e 1)
T Tsymbol 2

n=0

* _ n _ Z
Q (f Tsymbol 2) ’

which is non-zero for every v = ’“h - and zero otherwise and
p—

Q(f) is the Fourier transform of the pulse shape function. The
OFDM theoretical cyclic frequencies are found to be in B,

B= {507/311"' 1671}7”627 (12)
VB i Pn€ {k } Nk € Z,

where each (3, location is related to the symbol period [14].

} ANk,neZ. (10)

(1n

(13)
Rymhol

The proposed detector requires the knowledge of both .4
and B. For that reason, parameters for both signals need to
be known by the algorithm. Regarding the CDMA signal, the
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chip rate and spreading factor are necessary. As for OFDM
signal, the total number of carriers and bandwidth.

C. Feature detector

The proposed feature detector, inspired in [15] and [16],
determines if certain cyclic frequencies are present or not in
the SCF. The algorithm starts by defining several windows,
W, over the absolute value of the SCF. These windows are
placed over the SCF at specific cyclic frequencies, 7,

W =[yi—€7+¢ (14)

and with € set to a value that guarantees, 7; is the only
cyclic frequency present (Table I). This is the input to the
algorithm (Fig.3). Afterwards, the algorithm computes the
standard deviation, o, and mean, p, within each window. The
ratio between the standard deviation and the mean result in an
activity indicator, I,

I'=-, (15)

which is compared to a threshold, V;;, to decide whether a
cyclic frequency is present or not. When no cyclic frequency
is present the values over W remain close to zero, as per
definition of the SCF. Therefore, from (15) is understandable
that for in case of a cyclic frequency, the standard deviation
will significantly increase the value of I, since the mean
will be less sensitive to this outlier. When cyclic frequencies
are absent in W, the value of I is consistent throughout
the windows and relates the mean and variance of the x?2
distribution of W. W is X2 distributed, due to the absolute
square (magnitude) operation. For a more robust approach, a
goodness of fit to the x? distribution should be done [17].
When the test fails, no cyclic frequency should be present in
w.

o4
I

“fo}-{o -7}

Algorithm’s window (left) and detector’s diagram block (right).

AW

Ym2 Ym1 Ym

Fig. 3.

D. Decision process

The detection mechanism is used to test the presence of
certain cyclic frequencies in sets A and B. This information
is used by a K out of M detector [18] to point out whether a
CDMA or an OFDM signal is present or not. Since some
of the cyclic frequencies might overlap, as it is the case
in this work, the detection is performed over two stages.
Therefore, the decision about whether a signal is present or not
is taken following the flow chart in Fig. 4, where the following
definitions have been used:

CDMA and OFDM with AWGN

b { (1) = a(t) + y(t) + (o), (e

. { CDMA with AWGN, an

z(t) = x(t) + n(t).
OFDM with AWGN,

v { A0) = (1) + n(t). e
AWGN only,

o ={ %o, 9

the decision of whether a signal is present and the sub-sequent
positioning options is done by the process in Fig. 4.

In more detail, a CDMA signal is present if no OFDM
cyclic frequencies are detected in the set B — (B N A). If
cyclic frequencies are observed in such a set it means that an
OFDM signal is also present in the mixture. However, both
signals are only present if K cyclic frequencies from both B
and A are detected.

In this approach, it is not possible to look only at the
exclusive set of CDMA cyclic frequencies, since the set
A— (BN A) is an empty set.

E. Hybridisation algorithm

Time of arrival (TOA) positioning methods became quite
popular in the navigation field due to several systems, such
as the global positioning service (GPS), however their main
disavantage is the requirement of a synchronised network. For
example, for GNSS the satellites are synchronised through
the ground control stations and the receiver clock offset
is estimated along with the position estimates. In mobile
telecommunications systems, the synchronisation is provided
by the control at the base stations.

In this paper, an approximate maximum likelihood (AML)
approach is used to solve a 2D position estimate of a receiver
[19]. Lack of synchronisation is assumed among CDMA and
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Fig. 4. Cognitive positioning algorithm with SCF-based detection.

OFDM emitters, but each emitter of the same technology is
assumed to be synchronised. In addition, CDMA and OFDM
measurements are considered to have different levels of qual-
ity, with OFDM leading to more noise time-delay estimates.

Assuming the presence of N emitters, F, the distance, 7,
between them and the receiver is given by,

ri=+vz—z)2+ (y—v:)? i=12 ... Ng. (20)
The measured distances are given by,
li=ri+e,i=12,..,Ng 21

where, €, represents the timing errors associated with the
underlying signal used to compute the pseudoranges ;. There-
fore, the magnitude of ¢ is set from a normal distribution
with zero mean mean and variances ccpnyra and corpar,
depending on whether a CDMA or an OFDM signal is
used. TOA estimators with CDMA offer better performance
than TOA estimators with OFDM, thus the assumption of
ocorpMm > ocpara [20]. Nevertheless, this is not a require-
ment for the algorithm to work. The essential is that different
signals will have different noise variances.

A TOA vector, T, can be obtained by diving (21) by the
speed of the medium, v, resulting in,

T-"4S 10, 2)
v v
where,
r=[r. ..ot = 1(O), © = [a,y], (23)
and
e=ler,..eny]t. (24)

The conditional probability density function of T' given ® is

given by,

fTe) (20 ¥ @) Pap{ G} @9
where,
T
J= {T - 7’“(8)} Q" {T - —T(e)} . @6
v v
and
Q = Elee”] = diagloy - - - o, ). @27

The maximum likelihood estimate of the receiver position is
the © that minimises .J [19], which can be obtained as follows,

AO=b<
Soiri gl [r] _ [X gi(s + K —13)
=2 [X hiwi > hiyi] ly] [ hi(s+ K — lf) 28
where,
s= o249?  Kp=a2? +97 (29)
T — Tq —Yi
gi = Loy (30)

oZri(ri + L) T ot )
with (z,y) the receiver estimated location and (z;,y;) the
location of each emitter.

In an AML algorithm, there is at least one © which
corresponds to the minimum value of J. For that reason,
the AML can provide a position estimate when only two
measurements are available. The lack of synchronisation leads
to a wider uncertainty region. However, in this paper, the
problem is solved by computing the value of J for the entire
grid. The global minimum and a local minimum closest to
the mean location of the emitters is used to compare the
performance of estimation of ®. This offers a baseline of how
good the AML can performe, when iteratively solving 28.

II. RESULTS

Table I provides the most relevant parameters used through-
out the simulations. The SCF was estimated using the fast
Fourier transform accumulation method (FAM) [11], [21].

A. Probability of detection

Fig.5 shows the probability of detection for OFDM signals
versus the signal to noise ratio (SNR), considered as the ratio
between signal and noise powers.

Fig.5 compares hypotheses 1.1 through #; 3. The prob-
ability is obtained by counting how many times K, K = 5,
cyclic frequencies are observed in the SCF, for each simulation
iteration. The total number of simulation iterations is present
in Table I. The noise-only case has been omitted since its
probability is close to zero.

Similar results have been obtained for CDMA signal detec-
tion, the only observed exception was that the CDMA signal
curves start at a lower SNR level (-3 dB).

B. Positioning performance

Table Il and Table Il provide results on the expected
performance of the proposed architecture. These tables contain
the root mean square error (RMSE) over 10? iterations in a



TABLE T
SIMULATION PARAMETERS

Common parameters

Number of random trials, T 5000
Activity threshold, Vi1, 0.75
Observation time 2ms
Cyclic resolution, A« 0.5 pHz
Window length, ¢ 100A«
Frequency resolution 0.1Hz
Sampling frequency, fs 40 MHz
Receiver filter bandwith, B 20 MHz
CDMA parameters (IEEE 802.11b)
Modulation DQPSK
Chip rate, fc 11 MHz
Data rate, f}, 2 MHz

Spreading Sequence

Barker code (11 chips), [22], [23]

OFDM parameters

Modulation 16-QAM

Number of carriers, N 64

Symbol period, Tsympol 4 ps

Sub-carrier spacing, A¢ B/N = 312.5kHz
Guard interval, Tg; A;l /4s

Useful symbol period, Ty ATl

Pilot power boost +3dB [24]
Bandwith 20 MHz

Probability of identifying OFDM in a mixed signal
LI e I SRR

—— S(‘FObDM+CDMA+NUM
— 88— SCF e p onoise
| —— SCF,

OFDM+Noise

Probability

e
-10 -5 0 5 10 15 20
SNR (dB)

Fig. 5.

Probability of detection under H1.1 — H1.3.

25 by 25 m square room. In every iteration the emitters and
user positions were obtained from an uniform distribution. To
simplify the problem, it was considered that the CDMA and
OFDM sytems were synchronised among each other, but a
clock bias to the receiver is still present. This bias was assumed
to be bigger for OFDM emitters. The position estimate is taken
in Table II as the global minimum and in Table II as the local
minimum closest to the mean location of the emitters.

In both tables, the addition of more emitters, in general,
leads to an accuracy improvement, eg, over the diagonal of
the tables. In some cases, the addition of more emitters,

TABLE 1T
ROOT MEAN SQUARE ERROR FOR AML ALGORITHM, WITH 0cppra = 1
AND 0o rpas = 10 OVER 10% RUNS INSIDE A 25 X 25 M GRID AND A
CLOCK BIAS OF 2 AND 8 M RESPECTIVELY. GLOBAL MINIMUM
CONSIDERED FOR THE POSITION ESTIMATE.

RMSE (m) Number of OFDM emitters Npg OFDM
0 1 2 3 4 5
0 - - 11.82 1097 1026 9.74
Number of 1 - 9.56  8.56 7.96 778 751
CDMA 2 590 582 553 547 547 554
emitters 3 360 385  4.00 4.10 419 421
Npscpaa 40 295 312 331 3.38 352 3.63
5 270 283 295 3.05 317 331
TABLE III

ROOT MEAN SQUARE ERROR FOR AML ALGORITHM, WITH ocparga = 1
AND oorpasr = 10 OVER 10% RUNS INSIDE A 25 X 25 M GRID AND A
CLOCK BIAS OF 2 AND 8 M RESPECTIVELY. MINIMUM TAKEN AS THE

CLOSEST TO THE MEAN BASE STATIONS POSITIONS

RMSE (m) Number of OFDM emitters Nps, .y,
0 1 2 3 4 5

0 - - 1078 9.72 885 823
Number of 1 - 737 732 668 633 597
CDMA 2 574 491 4.56 437 430 4.27
emitters 3 331 322 315 313 315 315
Npsepua 4 246 242 250 250 256 2.60
5 208 212 217 218 224 233

especially with noisy OFDM emitters, seems to lead to a
higher RMSE (see the values along the diagonal of the tables).
However, most of these differences are quite small, which
means it is safe to assume that by adding more noisy emitters
the performance should improve or remain approximately the
same.

III. CONCLUSION

This paper proposes a cognitive positioning architecture
for CDMA and OFDM signals. The architecture relies on
a spectrum sensing block to detect the presence of CDMA
and OFDM signals in the surrounding spectrum. The proposal
suggests the use of cyclostationary algorithms to distinguish
the signals present in an unique digital representation. The
paper provides results that show how such signals could be
distinguished, by suggesting a simple detection and decision
algorithm. This detection would be useful to activate only the
required acquisition loops, allowing the receiver to save energy
and computational resources.

After a successful characterisation of the spectral contents,
the cognitive positioning system utilises this information to
extract from the signals timing information to compute TOA
measurements. After that, assuming the locations of the emit-
ters to be known, an AML algorithm combines the information
from several SoO emitters. The performance of the algorithm
was studied by comparing the estimate obtained from the
global minimum and the minimum closest to the mean location
of the emitters over the entire grid space.

In the end, the goal of this architecture is to use the
cognition layers appearing in future communications standards



and use this information to improve user positioning and
resource management of the mobile devices.
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ABSTRACT

This paper focuses on the study of intra-system interfer-
ence for ranging and positioning applications using Blue-
tooth Low Energy (BLE). While BLE tries to avoid inter-
ference with other protocols in the same frequency band,
such as Wi-Fi, the intra-system interference is unavoidable,
either due to multipath or simultaneous transmissions in the
same channel. This study shows that intra-system interfer-
ence contributes with a deviation of approximately 5 dBm
in the Received Signal Strength (RSS) and by taking this
into account the ranging and positioning accuracy can be
significantly improved. The study uses data collected from
two different environments.

Categories and Subject Descriptors
D.2.1.3 [Reusable Software]: Reuse models

Keywords

Bluetooth Low Energy (BLE), Received Signal Strength (RSS),

Interference, Indoor Positioning

1. INTRODUCTION

The Global Navigation Satellite System (GNSS) is the
most widely-used positioning technology for outdoor use,
however in deep urban canyons and indoor environments
GNSS may fail to provide the positioning service due to
stronger multipath, signal attenuation and blockage (7, 8].
In these environments other opportunistic signals, such as
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Wi-Fi are commonly used for positioning. However, in ad-
dition to the privacy concerns and the high power consump-
tion, the positioning accuracy provided by Wi-Fi is highly
correlated with the density of Wi-Fi access points. Hence,
indoor localization is still a big challenge for many Location
Based Services (LBS) applications, such as emergency and
safety, navigation and tracking [3].

Lately, BLE has been enabling several indoor LBS appli-
cations thanks to its low power consumption and cheap hard-
ware. Its popularity is growing, particularly where beacons
are being deployed throughout the environment, to broad-
cast location specific information. These beacons are the
BLE devices, most of the times, operating with batteries
with a life span of months or even years, depending on its
duty cycle. However, the major disadvantage of the BLE is
the operation in the crowded 2.4 GHz band [2], where other
systems, such as Wi-Fi, interfere with the BLE signals. Be-
sides the interference from other systems, the number of
available channels for the operation of BLE signals is lim-
ited. This limit is particularly small when the devices are
operating in the advertisement mode, where 3 channels are
available for broadcasting the advertisement packets. This
is the case for BLE beacons. For that reason, this study in-
vestigates the interference caused by other beacons and its
impact on received signal strength applications.

2. BLUETOOTH LOW ENERGY

BLE is designed for lower power operation, low complexity
and cost. BLE devices operate according to several profiles
defined by the Bluetooth SIG. These define how a device
behaves in a particular application, e.g. the heart rate mon-
itor or the battery level indicator. The Generic Attribute
Profile (GATT) is a common profile adopted by the major-
ity of BLE applications allowing them to receive and send
short pieces of data, known as attributes, over a BLE link.
These profiles are used to define specific protocols on top of
it, such as Apple’s iBeacon [1,2].

For medium access, BLE relies on Adaptive Frequency
Hopping (AFH) to avoid interference from other systems, for
example, Wi-Fi, operating in the same frequency band [1].



BLE operates over forty channels, with a 2 MHz bandwidth,
three of which are being reserved for advertisement packets,
for device discovery and connection establishment purposes.
While a BLE device can operate under several modes, how-
ever this paper is focus on the unconnected mode. In this
mode, the BLE devices are operating, exclusively, over three
advertisement channels. While in a connected mode, the de-
vices would use the advertisement channel for discovery and
to establish connection, with the remaining channels being
used for data exchange.

Even though AFH minimises the interference to other sys-
tems, it cannot guarantee the lack of interference from other
Bluetooth devices. This would be more critical if the BLE
devices operate solely in advertisement mode, as the number
of channels is reduced to three, as it increases the likelihood
of picking a channel where another beacon is already sending
an advertisement packet. These three channels are located
at 2.402, 2.426 and 2.480 GHz.

As reported in [4], for s BLE devices operating solely in
the advertisement mode and sharing n advertisement chan-
nels, the probability that at a given time ¢ the given channel
will be occupied will be given by,

For n = 3 there is a 56% chance of picking a channel
that is occupied by another BLE beacon and with n = 8
the probability increases to 94%. However, this assumes a
simplified scenario where the devices are synchronised with
each other and the time between jumps is considered to be
the same. however in real world applications, the random
delays in the hopping structure can reduce this probability,
but in a massive deployment of such devices, interference
between each other will inevitability happen.

3. PATH LOSS MODELS

This study uses two path loss models, the ITU-R model
defined as,

P.(d) = P, + C — 20logy (?) — 205 logyy (d) + v (2)
and the log distance model described by,

P:(d) = P:(do) — 10n1log,, ((%) + w, (3)
where P, (d) is the RSS at a given distance d in meters, Py
the transmission power, f the operating frequency in Hertz,
7 is a constant that models additional losses in the path of
the signal, v,w ~ log(N(0, 5%)), are log-normal distributed
random variable which model the slow fading phenomenon.
Both models offer an equivalent interpretation to the ex-
pected RSS at a given distance, but the ITU-R tries to take
into account all the losses in the signal’s path, while the log
distance model, assumes an apparent transmission power,
P:(do), at a reference distance, do. For that reason, the
meaning of 7 differs in both models. For the ITU-R model,
this parameter must be bigger than 1, since that represents
the free space propagation. For the log distance model, this
value has to be bigger than 0. Therefore, C is a constant
that models additional system losses for the ITU-R model,
while in the log distance model, it is lumped together with
the apparent power.

Both models are used to fit measurement data obtained at
Tampere University of Technology in Finland and at Univer-
sity of Nottingham in the UK. The beacons were deployed
on regular grids over a corridor and over a table in a closed
office room. For the first one, 8 beacons were deployed every
1.5 m from each other and from the floor, while for the later
one, a single beacon was deployed at several distances from
the receiver; 0.10, 0.5, 1, 1.5, 2, 2.5 and 3 meters from the
receiver. The data from the beacons were captured using a
laptop running Ubuntu 14.04. The beacons were manufac-
tured by Kontakt.io and left at their default transmission
power (-12 dBm) [5].

Using the models (2) and (3), tables 1 and 2 show the
root mean square error (RMSE) for each environment and
model. The RMSE is defined as,

) 0} 2
Zo (Yobservea — yexpected)

MSE = \| =
RMS N

,N>0 (4)

(@) ;
where Y.y . oq 1S taken as the mean of the measurements

and yéi)pcctcd the value obtained through the fitted path loss
model.

In both tables the columns contain the RMSE for the log
distance model and the ITU-R model. However, since the
BLE beacons report the apparent power, the log distance
column is divide in two. In the first column, the reported
apparent power of -77 dBm is used in (3), while the second
column shows the results when the apparent power in (3) is
set to -79.73 dBm. This value is the measured mean RSS
value, over 1 hour, for a single beacon (beacon 3) at 1 meter
distance.

Table 1: Fit of the two models for the measurement
data obtained in Finland

RMSE (dBm)
Distance (m) log dist ITU-R
P:(do) = —77dBm P.(do) = —79.73dBm C = —24.76

n=1.02 7 =0.98 n=1.08
0.50 0.95 1.87 4.60
1.00 3.59 0.87 3.78
1.50 8.57 5.91 6.74
2.00 7.69 5.07 4.42
2.50 8.95 6.37 4.58
3.00 5.33 2.78 0.05
Mean 5.85 3.81 4.03

Table 2: Fit of the two models for the measurement
data obtained in the UK.

RMSE (dBm)
log dist ITU-R

Py(do) = -79.73 dBm C=-1596 C=-19.28
=099 =097 7=094 7=0.96 7=109 n=1.00
beacons = 8 beacons = 1 beacons = 8 beacons = 1 beacons = 8 beacons = 1
1.39 115 248 1.40 5.04 1.05 2.06
1.90 319 3.08 5.87 5.76 407 1.09
3.22 2.23 2.06 0.39 470 787 0.71
Mean 2.19 2.54 2.55 5.17 5.33 1.29

Distance (m) P.(do) = -77 dBm

Table 1 compares the fit of the log distance model and
ITU-R model for the office room, where a single beacon
(beacon 3) RSS was measured at several distances for pe-
riods of 30 minutes. The overall RMSE is the smallest for
the log distance model with the estimated apparent power.
With the ITU-R the overall RMSE is approximately the
same and the worst fit happens when the apparent power is
set to the reported value.
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Figure 1: RSS values for beacon 3 at 1 meter versus
the number of beacons broadcasting.

Table 2 shows the results in the office corridor, where data
was collected for periods of 15 minutes in three different
points. The acquisition was done with 1 and 8 beacons in
advertisement mode. In contrast with office scenario, here,
the log distance model with the reported apparent power
is now the one with the lowest overall RMSE. While the
fit with the log distance still offers an accurate fit for the
case where 8 beacons are transmitting, it is quite poor when
solely one is transmitting. On the other hand the ITU-R
error for only one beacon is low, approximately 1 dBm error.

To understand the impact of other beacons on the RSS
value of a single beacon, Fig. 1 shows the statistics for the
RSS of beacon 3 when up to 7 other beacons are spread
around it. The 7 other beacons are regularly spaced on a
half meter grid around it and the observations lasted over 3
hours.

From Fig. 1 there seems to be no relevant degradation
of the signal up to the presence of three beacons. Above
this number, i.e. 3, the mean value drops by 4 dBm. With
4, 5 and 8 beacons broadcasting simultaneously, the mean
and median values are approximately 5 dBm lower than for
cases 1, 2 and 3. With 6 and 7 beacons broadcasting there
are changes of 3 dBm and 1 dBm in the metrics, respectively.
More interestingly, with 3 simultaneous beacons, the value
is increased by 1 dBm, which is probably due to channel
phenomena specific to that observation period. Therefore,
with more than 3 beacons on advertisement mode, there is
a degradation of the RSS that can reach up to 5 dBm.

Application for ranging and positioning

Many applications of the indoor positioning, such as creation
of probabilistic fingerprint databases, can benefit from accu-
rate path loss models. Since BLE, unlike Wi-Fi, can report
the transmit power, rather than a manufacturer dependent
indicator, such models can calculate the distance by solving
(2) and (3) with the values of the observed RSS. Fig. 2
shows the distance from the beacon to the receiver in the
closed office environment, using (2) and (3). The input to
the model is an averaged RSS value with the last observed
2 seconds. With the addition of more beacons there is a
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Figure 2: Ranging to beacon 3 with 1 and 8 beacons
broadcasting.
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Figure 3: Ranging to beacon 3 with 8 beacons broad-
casting and interference offset added to model.

significant impact in the RMSE for each model. With a sin-
gle beacon broadcasting all the models achieve a sub meter
level accuracy, while the opposite is true when all 8 beacons
are broadcasting, increasing the RMSE significantly. Of par-
ticular interest is the degradation of the RMSE of the log
distance model with the reported apparent power level by
the beacons. Its RMSE increases by more than 3 m while
the RMSE for the other models increases, approximately, by
one meter.

However, if the interference contribution is taken into ac-
count by summing to the left side of (2) and (3) an addition
term I = -5 dBm, the accuracy of the ranging approximates



the one observed when a single beacon is broadcasting, as
seen in Fig. 3.

For positioning applications there are more challenges to
tackle, since the lack of line of sight will reduce the RSS fur-
ther, for example due to people and environment objects [6].
For example, in this study, the data was collected in the UK
during off hours, with the receiver set at the beginning of
corridor (A), middle of the corridor (B) and end of the cor-
ridor (C). The position of the receiver is obtained by solving
and minimizing the following non linear equation for each
beacon,

V@ con = 8+ Ucon = D)+ (2acon = D)~ Lcon =0 (5)
where (z&)amn, y&)&wn, zé?awn) are the known coordinates to
the i-th beacon, (Z, 9, 2) the unknown receiver position and
L](:e)acon the distance to the i-th beacon obtained through the
path loss model.

Table 3 contains the RMSE of the positioning in 2D (as-
suming the height is known) and 3D of the receiver’s loca-
tion, using ranges to the 8 available beacons. These results
are a mean over 1000 observations. With no surprise, the
RMSE values are better in most cases for the 2D position-
ing, however the difference between them is almost none in
some cases, for example, at point B the results are quite the
same in both scenarios. The overall performance, mean of
the three points, (last column) for 3D is quite similar for
the ITU-R model and the log distance using the estimated
apparent power. With the log distance model using the re-
ported apparent power, the performance increases by 70%,
with the RMSE decreasing from 1.7 m to 1 m. For the 2D
case, the best performance is still achieved by the log dis-
tance model using the reported apparent power, but now the
performance is slightly worse when using the ITU-R model.

With the introduction of the interference offset in the
models, the overall accuracy improves significantly by more
than 50% in some cases, for either a positioning in 3D or 2D.
This also shows, that the estimated interference offset can
be calibrated in a different scenario from where it is used.

Table 3: RMSE (m) values for 2D and 3D position-
ing in the office corridor at the UK.

Model RMSEa (m) RMSEg (m) RMSEc (m) RMSEModeimean (m)
1.82 2.14 1.30 1.75
3D 1.35 118 0.60 1.04
est 1.95 2.18 0.95 1.69
ITU-R 1.75 2.07 119 1.67
2D log distrep 1.52 1.24 0.22 0.99
log distest. 1.61 2.01 0.67 1.43
3D ITU-R 1.20 1.21 1.35 1.25
(interf. log distrep 0.47 0.57 0.57 0.54
corrected) log distest 0.79 1.05 1.32 1.05
2D ITU-R 1.21 1.20 1.31 1.25
(interf. log distrep 0.47 0.57 0.57 0.53
corrected)  log distes 0.79 1.06 1.32 1.06

4. CONCLUSION

This paper focuses on the study of the signal behaviour
for BLE devices, under two office environments. The study
focuses on the interference caused between beacons in ad-
vertisement mode, where more than three beacons cause a
deviation on the RSS of, approximately, 5 dBm.

In addition, this paper compares two path loss models to
identify the best fit to the measured data. It was seen that
the log distance model, using an apparent power equal to the
one reported to the beacons, was performing better in most

situations than the log distance model with an estimated
apparent power and the ITU-R model. When applying the
models for ranging purposes, it was possible to see that the
ITU-R and the log distance model using an estimated appar-
ent power were indeed performing better in a closed office
scenario, particularly when all the 8 beacons were broad-
casting. In the office corridor, where the ranges were used
to position the reader, all the three models performed in
a similar manner, but the log distance model using the re-
ported apparent power, did manage to outperform the other
two. It was also seen, that taking the 5 dBm offset into ac-
count leads to a better positioning and ranging performance
in either of the scenarios.

In the end, this paper shows that intra-system interference
has a negative effect in the observed RSS and path-loss de-
pendent applications, such as ranging and positioning. This
effect can be removed by taking it into account in the path
loss models, which should hold across different scenarios.
Future studies should focus on mechanisms to monitor and
compensate for intra-system interference.
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ABSTRACT

This paper shows the advantages and limitations of combin-
ing RFID and Wi-Fi technology for estimating the location
of a user in an indoor environment. The paper relies on
a simulated environment, with one or several RFID read-
ers being deployed inside a room and several Wi-Fi devices
spread, exclusively, around the surrounding area. The pa-
rameters of the simulated environment were drawn from a
real measurements.

Categories and Subject Descriptors

D.2.m [Software Engineering]: Miscellaneous—reusable
software

General Terms

Design, Performance, Theory

Keywords
Wi-Fi, RFID, fingerprinting

1. INTRODUCTION

This study considers RFID due to its popularity in var-
ious indoor scenarios, such as commuting hallways, office
buildings, schools, hospitals, among others [2]. It is an at-
tractive signal for indoor positioning and tracking, since it
offers, contactless communication, non line-of-sight readabil-
ity, compactness and low cost [3]. Passive elements are par-
ticularly attractive as they can be used to mark a wide range
of objects, e.g., clothes, but raise more privacy concerns.
However, the coverage of this technology is, by definition,
smaller than traditional Wi-Fi networks [4, 3, 2] as the in-
formation is carried in the back-scattered power.

The aim of this study is to understand how RFID emitters,
deployed inside a room, improve the performance of a Wi-Fi
based indoor positioning method taking into account low
and high density Wi-Fi scenarios. In addition to this, the
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Figure 1: Simulated area and room.

study offers advice for possible deployment of such system,
regarding the best location for the RFID emitters and the
environment where they should be deployed. Furthermore,
the software developed for this study is available at [1].

2. SIMULATION DESCRIPTION

The simulation is done over a M; X N; m area with a
room of M> x N> m randomly placed inside this area. In
this simulation M; and N; were set to 25 m and M> and N»
to 6 m. The simulation defines several user paths inside the
room, where RFID emitters are deployed in different config-
urations, as shown in Fig. 1. The Wi-Fi emitters are exclu-
sively deployed on the outside of the room, with a density
according to the studies carried out in university buildings
in Finland (7, 6]. For high density scenarios the number of
Wi-Fi emitters was set to 24 and 8 for low density scenarios.
The user movement follows a random walk [5] model with 1
meter fixed steps. For each scenario, the simulation defines
1000 paths of 100 steps in inside the room.

Regarding the RFID, the simulator assumes the user is
wearing a passive tag, being tracked by the network. For
this paper, up to four readers are deployed inside the room
at specific locations. These readers are responsible for cap-
turing the back-scattered power sent by the antenna or tag
placed at the user. The tag can be placed, for example,
directly in the garments of the user [2]. Afterwards, the
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emitter configurations.

read values are communicated over a network with possi-
ble synchronization issues left out of this study. The back-
scatteredpower of RFID has been modeled according to the
real-field measurement analysis in [2, 4, 3].

3. RESULTS AND CONCLUSIONS

In high density Wi-Fi environments (Fig. 2), the com-
bination of Wi-Fi and RFID fingerprints leads to an esti-
mation error below 4 m for 95% of the times when using
Wi-Fi and RFID, compared to 85% of the times when only
Wi-Fi is used. For low density Wi-Fi environments (Fig.
3), the presence of in-room emitters leads to a significant
accuracy improvement. An estimation error below 4 m is
reported 70% of the times when Wi-Fi and RFID are used,
in comparison to 30% of the times when only Wi-Fi is used.

Hence, the deployment of RFID emitters for hybrid Wi-
Fi-RFID localization is highly recommended in low density
Wi-Fi environments (e.g., density below 1 emitter per 50
m?), because, in such scenarios, the accuracy is expected to
improve by 40%. Table 1 summarises the root mean square
error for the several configurations considered over a larger
number of environments. Also, while in the table the config-
uration with RFID only is showing better performance than
Wi-FI for some scenarios, one should take into mind that
the coverage area of the technology is smaller.
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Abstract—This paper presents a study on the benefit of
observing several signals of opportunity for positioning purposes.
Several static emitters are placed over a defined area where an
user is moving and acquiring measurements to each of these
emitters. The simulation considers that the user is capable of
acquiring time of arrival measurements from several wireless
protocols, such as WCDMA, 802.11b, 802.11g and 802.11ac. The
variance in the measurements is modelled through the Cramer-
Rao bound and a propagation model for each technology. As
conclusions, this paper discusses the benefits of using multiple
signals of opportunity in the context of positioning and how much
the positioning performance is affected by considering different
measurements combinations from several wireless technologies.

Index Terms—Cramér-Rao Lower Bound, signals of opportu-
nity, approximate maximum likelihood.

I. INTRDUCTION

Location based services have pushed the need to localize
user’s in any environment, either in urban canyons or indoor
facilities, such as office buildings, hospitals, schools among
others [1], [2]. While global navigation services are commonly
relied on for providing the location of an user, these services
are meant to be used in obstruction-less environments and
a clear view of the sky. For that reason, positioning with
signals of opportunity, any signal designed for something else
than positioning, aims to be an alternative to complement the
existing positioning services [3], [4].

The proliferation of Wi-Fi networks has contributed to the
appearance of several techniques for estimating the location
of an user. Fingerprinting is one of the most widely used
approaches [5], whose popularity arises from the fact that the
required infrastructure is already in place and no significant
investments are required [6], [7]. However, one of its disad-
vantages is the requirement of a prior training phase, which
can be expensive and difficult to deal with.

Therefore, relying on one stage estimators, such as those
that employ angle of arrival, time of arrival and time differ-
ence of arrival measurements is more desirable. This is the
motivation for the study, which focuses on time of arrival
measurements to obtain the location of a mobile receiver [8].

The goal of the study is to provide a bound for the
performance of a positioning system, which is assumed to rely
on time of arrival measurements of several widely available
wireless protocols, such as Wi-Fi and UMTS signals. This
work is of interest, for example, for future microlocation for
the Internet of things [9] or for energy-efficient cooperative
opportunistic positioning systems [10]

II. RELATED WORK

Related works can be found for example in [11]-[14].

In [11], a similar problem of hybrid localization with
heterogeneous networks is addressed. The authors combine
cellular and WiFi signals with TOA, AOA and RSS and the
focus is only on the overall performance, rather than on the
incremental performance of adding one additional system or
emitter at a time, as done here.

In [12] the authors compare the Wi-Fi-based positioning
with UMTS-based positioning by using RSS measurements,
but the two systems are not considered together. They conclude
that similar indoor accuracies can be achieved with Wi-Fi and
UMTS when RSS measurements are used.

The work in [14] looks into positioning with a 3GPP-LTE
signal and what is the gain obtained by considering several
signals of opportunity, such as digital television and Wi-Fi.
When aided by signals of opportunity, the gain in accuracy
was seen to be 40 % to 70% better than standalone positioning
with 3GPP-LTE. These gains were observed for scenarios with
more than 40 user equipments and 1 to 4 additional signals of
opportunity, respectively.

III. SIMULATION

In this study, the simulation model assumes the exis-
tence of several Wi-Fi signals, based on the standards IEEE
802.11ac/b/g (simply refered as 802.11ac/b/g from now on)
and WCDMA signals, based on UMTS signals. Table I sum-
marises a few key parameters of each technology, including the
signal structure type, OFDM and CDMA and bandwidth. The
simulation assumes an environment where several emitters,
from each of these technologies, are randomly distributed
inside a defined area.

TABLE 1
SIGNALS UNDER CONSIDERATION

Signal Type Bandwidth (MHz)
802.11ac OFDM 60
802.11g OFDM 20
802.11b CDMA 22
WCDMA CDMA 5

For the given area, the user movement is modeled through a
random walk in a two dimensional space [15], with a fixed step
length of one meter. Each new position, X(¢), at simulation
time, ¢, was obtained by summing a movement vector, M(s),



to the previous position. The movement vector is randomly
chosen by drawing the step decision variable s, from a random
integer generator. Hence, the movement model is defined by,

X(f) = X(t — 1) + M(s), where s = {1,2,3,4}, (1)
and,
(-1,0) ,ifs=1,
a0 Lits=2,
MO =Y 0.21) L ifs=3, @
0,1) ,ifs=4.

On each new location, the timing measurements, L,,, to each
nth-emitter are computed by assuming their location known
as well as the variance in the measurement error. Hence, L,,
is obtained by

L, =R, +en, 3)

where R,, is the geometrical distance to the emitter and ¢,, is
the measurement error. R,, is obtained by,

R, = \/(xgzxittcr — Tuser)? + ((y(():x)littcr — Yuser)? (4)
where (Zyser, Yuser) are the coordinates of the user at a given
time and (Zemitter, Yemitter) " the position for the i-th emitter.

The measurement noise, €,, is modelled through a normal
distributed distribution, with its variance set according to the
Cramer-Rao lower and the expected carrier to noise ratio
(C/N,) at the receiver’s location. Regarding the variance, the
Cramer-Rao lower bounds are computed using the result in
[16], where the variance for an unbiased estimator for range <
measurements is given as,

1
¢ 72
No/2
1
C
No/2T
where, ¢ is the signal energy, [Ny the noise spectral density,
T the observation interval and 2 the mean square bandwidth
of the signal, given as,

var(7p) > & )

& var(7y) > F2,

(6)
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Fig.1 shows the expected accuracy for the signals under con-
sideration, WCDMA, 802.11b, 802.11g and 802.11ac, plotted
against the signal’s carrier to noise ratio (C/N). As expected,
the WCDMA is the signal showing the worst performance
for timing estimates, since it is the one with the smallest
bandwidth. A narrow band signal in the frequency domain
equates to a larger signal in the time domain, which is unde-
sirable for positioning purposes. Since the receiver relies on
the correlation of the incoming signal with a locally generated
replica to obtain a time of arrival (TOA) measurement, the
larger or flatter this area is, the worse the timing estimate will
be.
Therefore, besides considering each signal design individ-

)

(m)

var(f) x ¢

ually, regarding its transmission power and bandwidth, the
simulator also relies on the ITU-R propagation model to
describe the expected C/N, at the receiver [17]. The ITU-
R model is derived from the Friis equation and given as,

P.(d) = Py+L—20log, (#) —20nlog;, (d)+v, (8)

where the RSS at a distance of d (meters) is given by P.(d),
the device’s transmission power by Py, the operating frequency
in Hertz as f, the propagation speed, considered as the speed
of light in vacuum, as c, losses in the path of the signal are
translated into 7 while L are other system losses. The model
considers a slow fading phenomenon, described by the log-
normal distributed random variable v ~ N(0, o'2).

While the ITU-R model is used for the propagation loss,
the noise component is modelled as thermal noise [17]. Fig.2
presents a diagram with the steps taken by the simulator in
order to provide a measurement for the given location of the
user. Afterwards, this measurement is used to estimate the
user’s location.
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Fig. 1. Cramer-Rao lower bounds for WCDMA and 802.11 ac/g/b
Since the goal of the simulation is to infer the accuracy in a
best case scenario, the network is assumed to be synchronized,
meaning that no clock bias or offset is modelled and added to
the measurement. Therefore, one should keep in mind that in
a real system, these constrains would not hold. Nevertheless,
they can give a clear image of the relative performance of the
different considered approaches.

IV. ESTIMATION

By using the measurements acquired at each point the user
moves to (Fig.2), the simulation estimates the location of
the user, (z,y), through an approximate maximum likelihood
(AML) [18], [19]. Hence, assume each of these measurements,
as in (3), define the measurement vector, r, given as

r=[L,Ly, ..., Ly], ©))
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with n being the number of available emitters.
Assuming a vector of TOA as,

T:[t17"'7tn]7
T:T0+e,

(10)
11
where T is the vector of true TOA, and e is a vector of
additive measurement errors, assumed independent random

variables with a with a zero mena Gaussian distribution. The
covariance matrix of e is given as,

Q = E{ee”} = diag(o?,...,02). (12)
Finally, let © be,

O = [z,y]. (13)

Approximate Maximum Likelihood

The maximum likelihood (ML) estimate is the © that
minimizes the Jacobian J in the probability density function
of T given O,

N
2

11/0) = ) o) F e (-3). a9

Setting the gradient of J with respect to © to zero, gives
the two ML equations

(= 8i) (@ — i) _
;:1 I 0, (15)
(i =0y —w)
) M o, (16)

i=1
Due to the non linearity of (16), the AML solution, as
presented in [18], in matrix form can be represented as,

9 Z:L:1 9iZi 21;1 9iYi| || _ ZZLI gi(s + ki — 612) a7
S hiw Yoy hayil y sy hils + ki = 67) |
where,

xr —x;

R el 18

g ’V‘i(T‘i + (51) ’ as
Y—Yi

hj=—"——. 19

i 7“7;(7'1' + 62) ( )

The AML treats (17) as a set of linear equations. Starting
from an initial (x,y), it first computes g;, h;, and the least
squares for (z,y) from (17), in terms of s. Putting them into

s=a"+y°, (20)

leads to a quadratic in s. Therefore, the correct root needs to
be chosen. For that to happen the AML acts differently on
three scenarios, one root is positive, both roots are positive
and both roots are either negative or imaginary. For the first
case, the root with a positive value is taken as the value to
replace s in the least squares solution of (17). For the second
case, the favored root is the one providing a smaller J. On the
third case, it takes the absolute values of the real parts.

After k iterations, the AML will have k values of J and in
the end, the one that provides the smallest value of J [18],
[19].

V. RESULTS

This section covers a set of illustrative results obtained
through the simulator. The first results show a direct con-
sequence from the fact that narrow band signals provide
an overall lower accuracy regarding timing estimates. This
is seen through Fig.3 where the root mean square error is
plotted against the number of emitters available for a given
technology. As expected, the lowest RMSE is obtained by
using 802.11ac emitters and the biggest RMSE when only
WCDMA emitters are present.

Since the study sets out to understand the benefit of observ-
ing and exploiting several technologies, Fig.4 - 6 illustrate the
benefit of obtaining measurements from additional emitters.
In each figure, the thicker line with a circle marker represents
the RMSE in meter obtained using only several WCDMA
emitters, while the remaing lines represent the RMSE obtained
when merging WCDMA with N other emitters of a different
technology. As an example, WCDMA + 3b means that N
WCDMA emitters are availalbe (read from the x axis) as well
as 3 other 802.11b emitters.
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Fig.4 shows the benefit in the performance of a system
that uses primarily WCDMA and when available uses either
802.11g, 802.11ac or both. As it can be seen from the
plot, the curve is obtained when both 802.11ac and 802.11g
are combined together with WCDMA. Furthermore, one can
also observe that when using WCDMA with 10 emitters
of 802.11ac. There is no necessity of using more emitters
of 802.11g, since the achievable performance is the same.
However, using 10 802.11g emitters with WCDMA achieves
the same performance when 3 emitters of 802.1lac and
802.11g are available. Even though 802.11ac provides more
accurate measurements, it does not offset the fact that with 10
emitters, the system still has more 4 distinct measurements.
Moreover, when merging WCDMA with a single other tech-
nology, regardless of the one that is picked, going from 3 to 5
emitters results in a significant improvement in performance.
On the contrary, when WCDMA is merged with the other two
technologies, the increase in the number of emitters has little
impact on the overall performance of the system. Bottom line,
the main conclusions to draw from this plot are the fact that
increasing the number of observables is desirable in general,
but the cost of adding and managing those does not translate to
a significant increase improvement on the overall performance.

Fig.5 follows a similar approach, but now WCDMA is
merged with the other technologies in this simulation with
higher variance, 802.11b and 802.11g. As expected, the re-
sults also show better performance when the full number of
emitters is used. It also shows the combination with 802.11g
is less accurate than the one with 802.11b. This difference is
particularly noticeable when 3 emitters of each technology are
available, with the difference fading as the number increases.
As for the best achievable performance, this seems to be attain-
able when using WCDMA in addition to 10 other 802.11g. The
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combination of the three technologies seems to fare equally
well. Overall, the addition of 802.11b and 802.11g improves
the performance of the system, but in some circumstances
802.11b provides the best performance.
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Fig. 5. Positioning with WCDMA, 802.11b and 802.11g

Fig.6 presents WCDMA measurements, being merged with
the next less accurate measurement, 802.11b and with the
more accurate timing measurements from 802.11ac. The best
performance is achieved when the three technologies are all
merged together. From the plot one can see that adding 3
emitther from either 802.11b or 802.11ac seems to provide
a similar performance. This means the WCDMA is setting a



limit on the performance of the system.
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In the end, all these plots, Fig.4 - 6, show that increasing
the number of observables leads to an increase in performance.
However, for some combinations of technologies, this benefit
might not be worth the added complexity in terms of power
consumption or processing power, due to the higher bandwidth
of the signals, such as preferring 5 additional measurement
from a 802.11g source rather than 3 from a 802.1lac one
(Fig.6). Besides that, the signal structure should also be taken
into account, for example, OFDM signals are prone to phane
noise and frequency offset.

VI. CONCLUSIONS

This paper has presented a study on the impact of merging
several TOA measurements for different signals of opportunity,
WCDMA, 802.11b, 802.11g and 802.11ac. The measurements
were acquired from a simulator which derives the timing
estimates from the Crdmer-Rao lower bounds for each signal.
In addition to that, the simulator uses a propagation model
to match the received signal power to the distance the user
is from the receiver. Furthermore, the simulator assumes all
the systems to be synchronised, which, in reality, would be
difficult to achieve. Therefore, the results provide an insight
on the best case scenario that a user could experience.

As main conclusions, while adding more emitters is often
desirable, the benefit in the overall accuracy is small and
in some situations less accurate systems might lead to the
same or comparable results. In particular, the paper shows that
when observing 5 emitters of 802.11b, the overall accuracy
is equivalent to the one when 10 emitters of 802.11ac are
available.

Overall, for a practical system relying on signals of op-
portunity, some combinations, pointed out in the paper, might
not be worth pursuing since it will require more resources

from the user device for little added benefit in the system’s
performance.

It is therefore of utmost importance to first perform a
theoretical analysis, as the one illustrated here in order to
pre-evaluate the possible positioning gain by using multiple
emitters from heterogeneous systems. Only if the gain is
large enough, the hybridization of signals from heterogeneous
networks should be employed, otherwise a single system may
still bring enough benefit with a lower complexity.
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Abstract: Connectivity solutions for the Internet of Things (IoT) aim to support the needs
imposed by several applications or use cases across multiple sectors, such as logistics, agriculture,
asset management, or smart lighting. Each of these applications has its own challenges to solve,
such as dealing with large or massive networks, low and ultra-low latency requirements, long battery
life requirements (i.e., more than ten years operation on battery), continuously monitoring of the
location of certain nodes, security, and authentication. Hence, a part of picking a connectivity
solution for a certain application depends on how well its features solve the specific needs of the end
application. One key feature that we see as a need for future IoT networks is the ability to provide
location-based information for large-scale IoT applications. The goal of this paper is to highlight
the importance of positioning features for IoT applications and to provide means of comparing and
evaluating different connectivity protocols in terms of their positioning capabilities. Our compact
and unified analysis ends with several case studies, both simulation-based and measurement-based,
which show that high positioning accuracy on low-cost low-power devices is feasible if one designs
the system properly.

Keywords: Internet of Things (IoT); wireless positioning; indoor location

1. Introduction

Nowadays, the amount of connected wireless devices is growing, e.g., smart watches, smart light
bulbs, smart toothbrushes, smart coffee mugs, etc. The trend in the information technology industry is
towards connecting and extracting analytics from a variety of inter-connected wireless devices.

While many IoT applications have so far focused on the consumer realm, more and more
industrial applications are also appearing, such as utilities measurement (e.g., water, electricity and
gas), industrial lighting, logistics and smart agriculture. Enabling such industrial applications means
that IoT networks need to support large amounts of devices, multiple years of operation on battery,
different latency requirements and low costs per unit.

We believe that, on top of the communications and reliability requirements of a wireless
link, many IoT applications will require or benefit from knowing the location of certain devices.
Such location information will be needed seamlessly, both indoors and outdoors, and without the
battery-draining Global Navigation Satellite Systems (GNSS) chipsets. The need for localization and
tracking appears not only from the network management point of view, but also from a business
perspective, driving new business models and new business avenues.

Nevertheless, enabling or creating a positioning system with an IoT network is not a trivial task.
The reason behind this is that industrial applications seek a low per unit cost of their IoT devices,
which results in devices with very limited hardware components, such as CPU, memory and battery.

Sensors 2018, 18, 2470; doi:10.3390/s18082470 www.mdpi.com/journal/sensors
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The limited hardware has an impact on the number of devices that a single device can serve and how
fast it can process network and application requests. However, while CPU and memory will have an
important impact on the scale of the network, the biggest challenge for enabling a positioning system
lies on the proper management of the devices’ radio.

The need for proper radio management becomes evident as there are devices with known
coordinates which will broadcast specific payloads on a regular basis and other devices whose locations
are to be determined, which will need to scan the spectrum frequently. Hence, too frequent broadcasting
will lead to spectrum congestion and increased packet collision, whereas frequent scanning leads to
high battery consumption, which is particularly problematic for battery-operated devices.

Overall, the biggest challenge to tackle for an IoT positioning network is to balance the power
consumption against the performance of the system. A very reactive system will have to rely on
frequent scanning and broadcasting of its members, which means that devices will need to draw large
quantities of power. A low reactive system will draw less power with devices scanning very seldom.

The goal of this paper is to provide an insight on positioning capabilities of the current IoT technologies
and other relevant IoT-enabling wireless technologies, such as WiFi. The paper starts by classifying
three domains of positioning and discussing the main shortcomings of each of these domains for
IoT devices. It then classifies the different IoT solutions according to six classification criteria and it
provides a discussion on the main system parameters relevant to positioning and tracking purposes.
This discussion acts as a basis for comparison between the different IoT wireless solutions. To further
complement this discussion, we present positioning results based on simulation-based scenarios and
field experiments with a platform built on top of the Wirepas Mesh connectivity solution. In the end,
we provide a short summary and conclusions of our findings.

2. Related Work

At this moment, to the best of the authors’ best knowledge, there are no comprehensive comparisons
in the literature between different IoT protocols in terms of their positioning capabilities. There
are, however, other studies that compare specific IoT technologies and which look at IoT from
the communications point of view, as well as studies focusing on positioning with a particular
technology, such as narrow-band IoT (NB-IoT) or BLE. In this section, we highlight the related work
from literature studies.

A survey of localization methods for 5G, having a short section also on IoT positioning has been
recently published as a white paper in COST action CA15104 [1]. It has also been emphasized in this
paper that localization will become a key component of future 5G systems and it has been pointed out
that accurate future localization solutions in 5G should exploit the multipath and non-line-of-sight
information and should put more emphasis on heterogeneous data fusion mechanisms. However, such
advanced solutions would also increase the power consumption on the devices and are not well-suited
for the majority of IoT systems. By distinction with the work in [1], our paper focuses mostly on
low-cost low-power consumption IoT solutions.

The authors in [2] focus on the Long-Term Evolution (LTE) Machine type communications (LTE-M)
and Narrow Band Internet of Things (NB-IoT) protocols and their positioning capabilities. It was
shown in [2] that at 46 dBm power of the transmit AN, positioning accuracy goes to around 10 m and
that NB-IoT protocol supports better positioning accuracy than LTE-M protocol. A related study can
be found in [3]. The focus in [3] is on indoor localization via improved received signal strength (RSS)
fingerprinting in generic IoT devices. The results are based on 802.117n/b/g signals where location
errors below 5 m are achieved in more than 50% of the studied cases.

In [4], the authors investigate a time-domain based positioning with additional frequency
hopping for the NB-IoT system. The obtained positioning accuracy is down to 30-50 m under strong
signal-to-noise ratio conditions, and it deteriorates quickly for medium and low signal-to-noise ratios.

A study complementary to our work is found in [5], where IoT positioning is looked at from the
perspective of security, privacy and robustness of the localization technology. No positioning results
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were reported in the study. Another complementary study is found in [6] in which the authors focused
on existing and emerging software and hardware platforms for IoT applications, but positioning was
not part of that study. IoT positioning has recently been considered in [7] from the point of view of
spoofing resistance in time of arrival (TOA) ultra-wideband (UWB) for IoT systems.

Other complementary comprehensive studies, focusing solely on the communication aspects of
IoT, are found for example in [8,9].

3. Designing an IoT Positioning System

In its essence, a positioning system translates a set of measurements from well-known reference
points into a coordinate pair. The reference points, known as anchors in localization terminology or
Access Nodes (AN) in IoT terminology, act as a means for the device of interests, a mobile or an IoT tag,
to be in a local or global reference frame. Depending on who makes the measurements, the positioning
is considered to be network centric (i.e., when the anchors make the positioning-related measurements)
or device centric (i.e., when the IoT end nodes or tags perform the positioning-related measurements).

These two types of positioning have very different implications on security and privacy, which
should always be carefully considered regarding the final application. For example, privacy-preserving
positioning solutions are easier to be achieved in a device-centric approach than in a network-centric
approach as the device would not need to disclose its position to the network.

3.1. Positioning Domains

In terms of measurements, there are multiple domains from which they can be extracted from, as
long as there are means to do so in the devices. For that reason, we briefly present three of the main
domains we consider of interest for an IoT positioning system:

e  Power or signal strength-based;
e Time-based;
e  Space-based.

Other domains, such as natural or artificial fields, e.g., geo-magnetic field, light, sounds, or smell
are out of the scope of our study, but could also serve as relevant sources of information for future IoT
positioning systems.

The following subsections provide a short summary of main challenges in each of these three
positioning domains and their system-wide impacts.

3.1.1. Power Domain

Signal strength measurements are derived from the protocol operation, which most of the times
results in a measurement of no additional cost to the device and battery consumption. However,
positioning solutions in the power domain must tackle several challenges, in particular those related
to the fast fluctuations of the Received Signal Strength (RSS) or of the backscattered power (BP), due to
fading and shadowing caused by the surrounding environment. One key factor to model the RSS
measurements relies on the possibility of understanding, with a given degree of accuracy, how the
signal power changes in its surrounding environments. The signal power models as a function of the
distance between the transmitter and the receiver are known as path-loss models, [10,11]. A typical
empirical Log distance model is the single-slope path loss model [11]:

d
P:(d) = Pr(do) — 1077 10gy, <d—0> +w, (1)
where Pr(-) < 0 is the received signal power in logarithmic scale dependent on distance d, d is

a reference distance (usually 1 m), 7 > 0 is the path-loss exponent and w ~ log(N(0,0?)) is a
log-normally distributed random variable that models the slow fading phenomenon and possible
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RSS measurements errors (e.g., due to quantization). Both # and w are dependent on the propagation
environment and are typically dependent on the device type and environment type. In addition, w can
depend on factors such as device orientation and the amount of people present in the measurement
area at the time of acquisition.

In terms of an IoT positioning system, the fact that one can extrapolate this information directly
from the communication’s signal, which means that there is no additional cost for the device. In terms
of battery, the cost will depend on the amount of positioning location requests demanded per second.
Ideally, if the requirement is to have an opportunistic location, based on the sporadic communication
of the device, acquiring the RSS-based positioning will have no impact on the battery life. However,
if the device or the infrastructure will have to listen periodically for a specific pilot signal, acquiring
the RSS-based positioning will cause further demands in terms of battery consumption. One limitation
of RSS-based approaches is that some current IoT standards support only a coarse RSS measurement
(e.g., in steps of 6 dB), which can adversely impact the positioning accuracy, as the noise variance ¢
will increase.

Another interesting aspect of the RSS measurements is that, based on simulations, RSS-based
positioning errors are shown to be frequency independent (as shown later in Figure 1). However,
one would expect different levels of location-based service at different frequency ranges. The frequency
ranges can be coarsely divided into three categories: sub-GHz (i.e., carrier frequencies less than 1 GHz),
GHz (1 to 30 GHz) and mmWave (above 30 GHz). The scattering becomes more prominent as frequency
increases, thus one would expect different target positioning accuracy according to the frequency
range. In addition, as the operating frequency increases, the antenna’s effective area is smaller, and
the signal coverage decreases. This is possible to see in Figure 2 where the ideal signal propagation in
drawn over a 100 by 100 square area, based on the Friis equation and assuming zero system gains, G,

P (d) = Py + G + 20log;, (j%n) —20l0g,, (d) 2)

where P is the transmission power, f the operating frequency and c the speed of light.
Based on the signal’s behavior, it is easy to understand that a sparser infrastructure at higher
frequencies will likely result in a degradation of the positioning performance (as shown later in Figure 1).

8 RSS-based positioning error
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Figure 1. Comparative analysis of RSS-based estimates at various carrier frequencies and various
AN densities.
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Figure 2. Ideal radio signal propagation at 0.5, 2.4, 30 and 60 GHz.

3.1.2. Time Domain

Positioning estimation based on timing information is based on estimating the time-of-arrival
(TOA) or the time-difference-of-arrival (TDOA) from three or more fixed access nodes and then
converting those timing estimates into distances. For example, 3D location based on TOA is possible
with three synchronized measurements from three known devices. The goal is to solve the following
set of equations and find out the node’s location, &, = (x4, Yn, zn), assuming that &, = (x4, Ya, z4) are

known coordinates:
L, = \/ (ga - gn)2~ 3)

For TDOA, the range is now a difference of ranges, based on the TOA at the measurement device.
Hence, the TDOA from a node # to a measurement device m would be written as

Lym = Ly, — Ly 4)

Due to this difference, the range measurement is free of errors imposed by the measurement
device’s clock, since it cancels out when subtracting the two TOA measurements.

Overall, the time measurements require synchronized clocks, either at the receiver or at the
transmitter side, leading to a significant burden on device cost. This does not play well for IoT
applications, which are driven by the need of having low-cost devices.

It is also important to keep in mind the relationship between bandwidth and accuracy for TOA
measurements. This is illustrated in Figure 3, where the positioning error is plotted against the available
channel bandwidth at different Signal-to-Noise Ratio (SNR) values. Clearly, sub-m positioning accuracy
with time-based approaches is achievable only with high bandwidths (of the order of 100 MHz), but it
is very challenging for narrowband and ultra-narrowband systems even at very high SNR.
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Figure 3. Comparative analysis of TOA-based position estimates at various bandwidths.

3.1.3. Space Domain

In the space domain, the ranges are estimated by measuring the angle (or direction) of arrival
(AoA) for the signal of interest. Often, this is done by the means of an antenna array or a sectorized
antenna. For a given device , it is possible to describe its measurement at m as

(xn/yn) = T’mCOS(Qm) + rmSin(em)/ ()

where r,;, is the distance from m to n and 6 the angle of arrival determined at m. Hence, by solving for
the unknown coordinates, one can obtain a range estimate.

In summary, AoA is particularly interesting for IoT, as the major constraint for achieving angle
measurements relies only on the antenna design. However, its major drawback is that the error
increases with the distance to the transmitter, which means that a small deviation in the angle results
in a large error for the devices at the service edge.

3.2. 10T Classifications

While there are several domains from where to extract measurements for building knowledge of
a device’s location, several limitations arise from the actual IoT system that is built upon. The goal
of this subsection is to introduce the IoT technologies, by classifying them into six main categories
(see Figure 4):

o Licensed versus unlicensed: which refers to the operation in a protected band, such as cellular bands
versus operation in unlicensed bands, such as industrial, scientific and medical (ISM) bands;

o Operating frequency bands: which refers to the carrier frequency of each IoT technology; here, we
divide the frequency spectrum into three parts: sub-GHz, GHz, and mmWave bands. Some IoT
technologies spread over multiple ranges;

e Protocols versus enablers: which refers to whether a technology is seen as a specific IoT communication
protocol or a possible wireless positioning enabler;

e Range-based classification: which refers to short-, medium-, or long-range operation;
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o Rate-based classification: which refers to Low-Rate (LR) or High-Rate (HR) data rates. Typically,
most IoT connectivity solutions are meant for LR high delay applications, while solutions such as
WiFi and 5G cover HR and low latency applications;

e Power-based classification: which refers to Low-Power (LP) versus High-Power (HP) operation.
Typically, LP approaches go hand in hand with LR approaches, while HP approaches go hand in
hand with HP approaches. In LP operation, the devices can function for several years on batteries.

We make the following assumptions: in the range category, we consider long-range for those
protocols capable of delivering more than 10 km links; for the rate category, we assume HR as those
able to achieve an uplink above 10 Mbit/s and, for power consumption category, we assume as LP all
those IoT systems who can support at least non-routing devices on more than two years of battery.

- Z-wave - BLE Mesh -56 - Wirepas - NB-IOT - NB-I0T -BLE

- Sigfox - ZigBee - WiFi - Ingenu -LTEM - LoRA - WiFi

-LoRa -LTEM - Sigfox - EC-GSM - Sigfox -56

-RFID - Wirepas - B - Telensa - Telensa

. - Ingenu .
Range Rate Power

WPAN WLAN WWAN Low (LR) High (HR) Low (LP) High (HP)
- Z-wave - ZigBee -5G - Sigfox - WiFi - Wirepas - WiFi
~ANT - Wirepas - WiFi - ZigBee - 56 - LoRA -56

- Ingenu -LoRa - BLE Mesh . - Sigfox
- Sigfox . - Telensa

Figure 4. Classification of IoT networks.

3.3. 10T System Parameters

This subsection discusses the relevant parameters for a positioning fit in an IoT system.

Topology relates to a message passing from one node to another and the possibility to discover
new nodes in the network. The network topology, illustrated in Figure 5, has a significant impact
on how nodes with known locations are discovered by others. On a mesh topology, any node
can be set as a reference node, whereas, on a star topology, only the access nodes can be defined
as such. The density of the fixed nodes also plays an important role in the location accuracy.
For example, a denser network with a well-spread distribution of nodes is likely to provide a
better location accuracy than a network with few reference nodes all placed in the same direction
from the device to be located. An IoT network typically has a star or mesh topology. In a star
topology, devices can only talk to their parent device, while, in a mesh topology, nodes can
exchange messages between each other. Star topologies are susceptible to single points of failure,
since losing the connection to the parent means that the node will be outside the network. In a
mesh topology, if a link fault occurs, the device can look for any other neighbor to connect to. Thus,
mesh networks provide better coverage and, implicitly, they are likely to offer better positioning
accuracy than star networks;
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Figure 5. Comparison of a simplified IoT mesh and star network topology.

Range of an IoT system is important in the sense that it defines an upper bound of the positioning
error, which cannot be larger than the communication range. In this aspect, mesh-capable
networks have a better footing for positioning purposes as any device can extend service without
the need to have specific and dedicated infrastructure;

Channel bandwidth is directly related to the achievable accuracy in positioning when a
TOA-based estimation is used. The Cramer-Rao lower bound for any unbiased estimator [12] of
a time delay 19 of a signal S is given as

1
e [T BN2IS(HPdf
No/2  [2318(p) 2t

var(fy) >

6)

where ¢ is the signal energy, Ny the noise spectral density and [*2 (28f)2[S(f)|%df is the mean
square bandwidth of the signal. However, since we have do not have all the necessary information
to accurately determine each IoT signal’s spectrum density, we provide instead the multipath
resolution or time-frequency resolution defined as follows:
27

At > Ao 7)
Equation (7) determines how the time duration At and the spectral bandwidth Aw relate to each
other. The spectral bandwidth is defined as the bandwidth that includes most of the signal’s
energy. In this study, we assume it to be equal to the channel bandwidth. Overall, what both
Equations (6) and (7) show is that, for time-based approaches, it is favorable to have signals with
high SNR and short time duration (i.e., higher bandwidth);

Carrier frequency is inversely proportional to the signal wavelength and to the path losses
exhibited by the signal. As we move from sub-GHz carriers towards mmWave carriers, the path
losses are stronger and stronger, which results in smaller communication ranges. The differences in
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path losses are due to a multitude of phenomena, but, as frequency increases, they are especially
due to the smaller effective area of the devices” antennae. Overall, combining lower carrier
frequencies and mesh topologies results in an enhanced service coverage;

Modulation types in IoT systems rely on various digital modulation types, from Ultra Narrow Band
(UNB), defined as systems with bandwidths below 1 kHz, to Ultra Wide Band (UWB) modulations,
i.e., bandwidths above 500 MHz. In addition, spread spectrum (SS) or Orthogonal Frequency
Division Multiplexing (OFDM) modulations are also widely encountered. The modulation type
plays a big role in the achievable positioning accuracy when TOA, TDOA, or AOA methods
are used, but it has little or no impact when RSS methods are used. Certain modulation-based
characteristics can be exploited for positioning purposes. For example, this is the case of SS signals
(e.g., LoRa, ZigBee, etc.), where the spreading pseudo-random sequence can be used to infer the
signal’s travel time in a similar fashion to GNSS;

Positioning signaling or data exchange is the ability to use either pilot signals or sequences
of data packets to provide the location of nearby devices. However, few of the existing IoT
technologies support positioning-related signaling, except for most of the cellular IoT technologies
(e.g., NB-IoT), which rely on the observed time difference of arrival (OTDOA), introduced in
the LTE radio. Apart from the cellular IoT technologies, the future WiFi 802.11az standards also
showcase a dedicated data exchange regarding the time-of-flight information to determine the
location of its devices;

Roaming is the ability to provide continuity of service across multiple networks, owned or not by
a single entity. As mobility is a keystone of most positioning applications, it is important to take
note of this when looking at IoT systems. In this aspect, protocols such as Sigfox or Ingenu are at
an advantage, as they operate similarly to cellular systems and they offer service across multi
continents. Despite that, even proprietary solutions start to provide open application interface
specifications and open guest periods in the radio access, which facilitate the exchange of data
across multiple vendors and technologies;

Network ownership raises security and privacy concerns. Security is becoming a strong requirement
in IoT systems, especially as the data access, transport and storage become more and more
regulated by international and European bodies [13]. Technologies such as Ingenu and Sigfox
own the entirety of the network, meaning that the transportation of data is under their full
responsibility. Thus, positioning solutions enabled by such systems will be protected by the
system provider, as the infrastructure device’s location will not be known to the user;

Power consumption is a main topic for all IoT technologies. For positioning applications,
low-power consumption is crucial for the viability of several systems, especially when the goal is
to continuously track and monitor inexpensive items. For example, low-power consumption is
mandatory in several use cases from the logistics and construction sectors.

3.4. Comparing IoT Technologies and IoT Enablers

After discussing the positioning domain and the main system parameters relevant to positioning,
here we present two comparative tables between 29 IoT solutions (see Tables 1 and 2), whose goal is
to sum up the key points mentioned so far and to enable an easy comparison between the different
technologies. Throughout the rest of this subsection, our goal is to make comparisons and drive the
reader towards a better understanding of how a certain technology would fare as the backbone of a
positioning system, in a GNSS-free case.

Table 1 presents for each technology, from left to right, the network topology, network type,
the impact of each measurement domain on the device battery life and cost, the achievable positioning
accuracy, the most suitable domain and reported accuracy studies.

The first column maps each technology’s topology to either a star or mesh topology.
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The second column presents the network type, where each entry starts with the rate, power
consumption and maximum operating range offered by the technology (see section ). The operating
range has a correlation with the frequency bands in Table 2.

The third column presents the impact on battery consumption and device cost for each measurement
domain in discussion. While most of the technologies do not offer such capabilities, this classification
assumes that it would be possible to couple the necessary measurement units to provide such
information. Hence, the classification of low impact (+), medium (++) or high impact (+ + +)
are based on what the authors expect to be the addition burden in terms of device cost and battery
burden. The power domain is seen to be the one with the smallest impact, due to the fact that it would
be easily available to all of these technologies.

The fourth column provides a qualitative indicator for the expected accuracy based on what the
technology currently offers. When available, this information is based on the related studies.

The fifth column states the most suitable measurement domain to use with each technology.
The domain is attributed based on the technology’s signal characteristics presented in Table 2 and its
current capabilities.

Table 2 describes each technologies’ key physical aspects, such as frequency bands, channel
bandwidth and modulation type.

Positioning services often have a high demand for power consumption. Operating a positioning
based infrastructure is often tied to the need of having a fully plugged-in (powered) infrastructure.
However, there are several industrial applications that would benefit from a fully battery-operated
network, especially where an electricity network might not yet be present, e.g., construction sites, or
for facility of service extension and maintainability.

In terms of positioning, we found that most IoT systems are yet to offer specific signaling to
support accurate measurements for localization. Few of the existing IoT systems have already raised
interest in the academic field in terms of their positioning capabilities, as shown in the last column
of Table 1. Most of the existing studies focus on RSS-based approaches and several of them rely on
low-cost probabilistic methods requiring an underlying path loss model. Few studies that focus on
time-based and space-based approaches are mostly targeting the current and future cellular IoT signals,
derived from LTE, such as LTE-M, which are retaining some of LTE’s positioning characteristics such
as positioning-specific signaling. In addition, future 5G networks are likely to rely on time-based and
space-based positioning approaches. Our paper further contributes with additional results based on
RSS and time-based approaches as shown in the next sections.
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Table 1. Summary of key positioning related aspects for several IoT protocols and TEEE 802.11+ family protocols.

Impact on (Battery, Device Cost) per Domain

1

Technology 'II:IOetv;ork N?rtwork gim.ejBa.sed Pow.e{hBefsed Spac'e'-Ba'sed Ié:::f::ﬂ; Slll\;‘t‘;;tle Accur.acy
pology ype ositioning Positioning Positioning Accuracy 2 Domain Studies

5G star HR/HP-Short range +, + ++ ++ High Time [14,15]

ANT+ mesh LR/LP-Short range +,4+++ +,+ ++,4++ Low Power

BLEmesh mesh LR/LP-Short range +,4+++ +,+ ++,+ Medium Power [11,16,17]

Dash?7 star LR/LP-Long range +,4++ ++ ++ 4 Low Power or Space

EC-GSM-IOT star HR/LP-Long range +,4+++ +,+ ++, 4+ Low Power

EnOcean mesh LR/LP-Long range +,+++ +,+ ++,4++ Low Power or Space

Ingenu /RPMA star LR/LP-Long range +,4+++ +,+ ++,4++ Medium Power or Space

ISA101.11a mesh LR/LP-Short range +,4+++ +,+ ++,4++ Medium Power or Space

LoRa star LR/LP-Long range +,4++ +,+ ++, 44 Medium Power [18]

LTE-M star LR/LP-Long range +,+ ++ +4, Medium Time 2]

MiWi mesh LR/LP-Long range +,+++ +,+ ++,4+4+ Medium Power

NB-IoT star LR/LP-Long range ++ ++ ++,4++ Medium Time 2]

RFID star LR/LP-Short range +,4+++ +,+ ++,4++ Medium Power [19-23]

Sigfox star LR/LP-Long range + 4+t ++ ++,4++ Medium Power [24,25]

Telensa star LR/LP-Long range +,4+++ +,+ ++,4++ Low Power or Space

Thread mesh LR/LP-Short range +,4+++ +,+ ++,4+4+ Medium Power

Weightless-N star LR/LP-Long range + ++ ERrans Medium Power or Space

Weightless-P star LR/LP-Long range +,4+++ +,+ ++,4++ Low Power or Space

Weightless-W star LR/LP-Long range +A+E ++ A Medium Power
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Impact on (Battery, Device Cost) per Domain

1

Technology _l;f) ehn{ork N?rtwork ;i N .n N d P are B . d Spac. . B . d If’\;:‘l‘:;’::’:; S\ll\/iltl;ille Accur'acy
pology ype ositioning Positioning Positioning Accuracy 2 Domain Studies

WirelessHART mesh LR/LP-Short range +, 4+ ++ ++, 4+ Medium Power

WiFi802.11af star HR/HP-Long range +,+ +,+ ++,4++ High Time

'WiFi802.11ah/HaLoW star LR/LP-Long range ++ ++ ++, 4+ High Time

WiFi802.11az star HR/HP-Short range +,+ +,+ ++,4++ High Time

WiFig802.11p (V2X) mesh HR/HP-Short range ++ ++ ++,4++ High Time [26,27]

Wirepas mesh HR-Long range +,4+++ +,+ ++,++ Medium Power

WiSUN mesh LR/LP-Long range +, 4+ ++ +4,4++ Medium Power

ZigBee/ZigBee-NaN mesh LR/LP-Long range o ++ 4+ Medium Power [28-30]

Z-Wave mesh LR/LP-Long range +,4++ +,+ +4+,4++ Medium Power or Space

T (+, +): low impact, (++, ++): medium, (+++, +++): high impact; 2 assuming implementation without external sensors, such as GNSS.
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Table 2. Summary of key physical layer parameters for several IoT protocols.

Technology Frequency Bands  Channel Bandwidth (MHz) (UNBII\I/{I%C}uSlg;iC‘));I];rK/B:JWB)
5G GHz, mmWave <100 OFDM
ANT+ GHz 1 NB
BLE mesh GHz 1 NB
Dash?7 sub-GHz 0.025, 0.200 NB
EC-GSM-IOT sub-GHz 0.2 NB
EnOcean sub-GHz 0.0625 NB
Ingenu sub-GHz and GHz 1 SS
ISA101.11a GHz 5 SS
LoRa sub-GHz 0.125, 0.500 SS
LTE-M sub-GHz and GHz 1.08,1.4 OFDM
MiWi sub-GHz and GHz 0.040, 0.250 NB
NB-IoT sub-GHz and GHz 0.18 NB, OFDM
RFID sub-GHz and GHz 0.2 NB
Sigfox sub-GHz 0.2 UNB
Telensa sub-GHz 0.1 NB
Thread GHz 5 NB
Weightless-N sub-GHz 0.2 UNB
Weightless-P sub-GHz 0.0125 NB
Weightless-W sub-GHz 5 SS
WirelessHART GHz 0.25 SS
WiFi802.11af sub-GHz 8 OFDM
WiFi802.11ah sub-GHz 1,2,4,8,16 OFDM
WiFi802.11az GHz, mmWave 20, 40, 60, 80, 160 OFDM
WiFi802.11p (V2X) GHz 10 OFDM
Wirepas sub-GHz and GHz 0.126, 0.5 NB
WiSUN sub-GHz and GHz 0.2-1.2 NB, SS and OFDM
ZigBee sub-GHz and GHz 0.6,1.2,2 SS
ZigBee-NaN sub-GHz 0.6,1.2,2 SS
Z-Wave sub-GHz 0.2 NB

In addition, we have found that network-centric positioning solutions are being favored as opposed
to device-centric ones, which is often related to the limited resources at the end nodes. However,
a centralized architecture places an additional burden on the network capacity and latency as the

number of devices grow. For many of the IoT systems, a centralized architecture will have difficulties

accommodating real-time location systems, especially due to the strict latency requirements of such
systems. Integration with other high-capacity technologies, such as WiFi and 5G, could decrease the
latency at the expense of per unit cost and power consumption. The support of positioning updates
at very sparse intervals ought to be feasible for many IoT technologies, which will certainly find

its application in several niche markets, especially if the positioning system is supported fully by
battery-powered networks over a span of multiple years.
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To further complement our study, we end with a perspective on what the achievable positioning
accuracy is. The next two sections focus on measurement-based and simulation-based studies,
respectively. We introduce simulation-based results from two systems whose performance was difficult
to find as benchmarks in the existing literature, namely IEEE 802.11az and LoRa. Then, we present
measurement-based results from an office environment of a positioning system built on top of the
Wirepas” mesh solution.

4. Simulation-Based Performance Metrics

4.1. Case Study 1: 802.11az IoT Enabler, Simulation-Based Results, Time Domain

In 802.11az, a position estimate is obtained by solving the hyperbolic location based on the
measured TOA t,, at the mobile side from several ANs, where a is the AN index,a =1,..., Ngn.

tA,l— s

d(Tag, AN,) NaN /d(AN,_;, AN,)
et ) () ®)

a=2

where t; is the starting time of transmission from one AN in the network, taken arbitrarily as the
first AN (ANj), c is the speed of light, d(Tag, AN,) is the geometric distance between the mobile
device and the a-th AN,a =1,...,Nyn, t f is the forwarding time of the signaling message between
two access nodes, and d(AN,_1, AN,) is the geometric distance between the a2 — 1-th AN and a-th
AN. With several noisy observations of the measured time of arrivals, the IoT device can compute
its position (as well as the unknown t;). It is assumed that the AN positions and the forwarding
time are known and transmitted in the signaling message. In addition to that, a minimum of four
synchronized access points are needed to estimate the four unknowns (x,y, z, fs), with the (x,y, z) the
device location.

To understand an achievable location performance, we defined a simulation over a square area of
0.4 km? at the highest bandwidth available (160 MHz). We observe in Figure 6 that this solution would
be able to offer sub-meter accuracies 80% of the times when at least seven ANs are available.

CDF of positionin, at SNR=10 dB

—5—TOA, N, =4
—4—TOA,N, =7
—+—TOA,N, =10
TOA, N, (=20
—+—TOA,N, =50 ||
—&—TOA, N, =100

Error [m]

Figure 6. Example of 802.11az performance at various number of access nodes at signal to noise ration
(SNR), SNR = 10 dB.
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4.2. Case-Study 2: LoRa, Simulation-Based Results, Time Domain

A chirp spread spectrum (CSS) system with a 125 kHz bandwidth and a spreading factor of
7 was used in the simulations. It was assumed that we have a single-floor square indoor area of
200 m x 200 m size, in which N4y access nodes are distributed uniformly, with N4y between 3 and
100. Ten thousand Monte Carlo iterations were used to generate randomly the position of the ANs and
of the IoT device. The positioning was based on TOA principle, where the TOA was estimated based
on the correlation between the incoming signal and a reference CSS code. The results are shown in
Figure 7 in terms of cumulative distribution function (CDF) of error, for a different number of LoRA
access nodes, respectively. For three access nodes and at an SNR = —18 dB, the positioning error is
higher than 50 m in more than 50% of cases. On the other hand, with 100 access nodes distributed in
the 0.4 km? area, we can reach below 10 m accuracy in more than 50% of cases.
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Figure 7. Example of LoRa performance at various numbers of access nodes.

5. Measurement-Based Performance Metrics with Wirepas IoT Platform

This section presents experimental results from an IoT positioning system built with Wirepas IoT
mesh solution. The results presented in this section that were obtained are Wirepas’ offices and are
based on power measurements.

The environment where measurements took place, with a total area of 180 m? (10 by 18 meters),
is a typical work environment with few small rooms and a large open areas (see Figure 8). Several
battery powered operated devices were placed across the floor extending the network coverage in and
outside the rooms. Some of these devices acted as known reference points while others as tracked
devices. The reference points are identified in Figure 8 as routing devices (blue squares) and the
measurement devices as yellow dots. All the devices were operating in the 2.4 GHz using Nordic’s
NRF51 as the radio chipset.

In this setup, the measurement devices were statically collecting information about network
beacons’ broadcast periodically by the routing devices. The information about the routing devices’
beacons, as seen by the measurement devices, was sent regularly towards the network sink. In turn,
the network sink and gateway communicated the measurements to a positioning engine running on a
local computer. The position engine provided a location estimate based on the known location of the
routing devices and the RSS observed by the measurement devices. A location estimate was calculated
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by one-shot runs of a weighted centroid algorithm, meaning that no average or filtering were applied
to the location estimates. However, the RSS measurements were averaged over a window of time to
mitigate the channel propagation effects.

In addition to a location estimate on a global or local reference frame, the position engine also
provided an area-based location. The area-based location consists of matching the location estimate
to a set of geographical areas of interest (shaded areas in Figure 8). For a device to be in such area,
it meant that its location estimate was found to be inside the geographic area defined by the four
coordinate points of each area.
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Figure 8. Office environment where the measurements were acquired.

The results on Table 3 show the probability of correctly classifying the measurement devices in
the areas of interest. The percentage is calculated by summing the amount of location estimates in the
node’s correct area versus the total amount of location estimates in any other area of interest.

The results on Table 3 show that, during a day, the devices were correctly located inside the logical
area where they were known to be at more than 90% of the time.



Sensors 2018, 18, 2470 17 of 19

Table 3. Experimental results with an IoT testbed using Wirepas connectivity with 60 fixes per second
and static nodes.

Office Hours Outside Office Hours  All Day

Area (m?)
% of Correct Location Area Classification
10 95.41 89.47 91.16
10 96.16 97.59 97.18
2 91.56 94.85 93.90
3 96.76 99.20 98.50
Mean 95.51 95.61 95.57

6. Conclusions

We believe positioning is important not only for IoT end applications, but also to support network
self-management. Our paper addresses the lack of comprehensive studies comparing IoT solutions
and their fit-for-positioning applications. The paper first covered three possible measurement domains
from which IoT devices could derive their location. Afterwards, we focused on classification of the
IoT solutions and we discussed several system parameters that should be considered when designing
a positioning system. We concluded our study with a comparative table and discussion between
multiple IoT and other wireless solutions. We also provided an overview of achievable system
performance with unique results for three positioning systems built on top of IEEE 802.11az, LoRa and
Wirepas, respectively.

Opverall, based on our study, we conclude that power-domain positioning currently offers the best
trade-off between implementation cost and positioning accuracy for low-power systems. Dedicated
positioning signaling as well as space-based approaches are some of the feasible ways to push for
higher accuracy and still offer low-power operation. Cooperation with other wireless technologies,
such as WiFi and 5G, could allow for mobility support and ability to operate at large scales when
low-power operation is not critical.
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