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Abstract

In this thesis we develop a state space output regulation theory for linear infinite-dimensional

systems and bounded uniformly continuous exogenous reference/disturbance signals. The output

regulation problems that we study involve the construction of such controllers which (i) stabilize the

closed loop system consisting of the plant and the controller appropriately, (ii) achieve asymptotic

tracking of the reference signals and rejection of the disturbance signals, and (iii) preferrably do

this robustly with respect to small parameter variations in the control system.

We show how bounded uniformly continuous reference/disturbance signals are best generated

using a (possibly infinite-dimensional) exogenous system. This exosystem utilizes a strongly con-

tinuous group of isometries on some Banach space and two bounded observation operators. The

regulation of all signals in certain Banach subspaces of bounded uniformly continuous functions

is shown to be equivalent to the regulation of all signals generated by such exosystems, with a

suitable choice of the free parameters.

We conduct an extensive study of three controller configurations — feedforward controllers,

error feedback controllers and hybrid feedforward-feedback controllers — for output regulation

purposes. In particular, complete characterizations for the solvability of the three output regulation

problems are obtained in terms of solutions of certain constrained operator Sylvester equations

(regulator equations). We illustrate the abstract results with various examples and case studies,

particularly from repetitive control applications.

We study robustness of the devised error feedback controllers using perturbation techniques.

We also prove such a state space generalization of the Internal Model Principle which does not

utilize any purely finite-dimensional concepts. This result describes the necessary and sufficient

structure of all robustly regulating error feedback controllers, under appropriate closed loop stabi-

lity assumptions.

ix
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We introduce the practical output regulation problem in which asymptotic tracking and distur-

bance rejection with a given accuracy only is required. Using perturbation techniques we present

upper bounds for the norms of perturbations to the closed loop control systems’ parameters such

that practical output regulation with a desired accuracy occurs. Our results treat the above three

controller configurations in a unified way.

Finally, we present a general methodology for the solution of the regulator equations in two

(separate) cases. In the first case we assume that the plant is a single-input single-output (SISO)

system, whereas in the second case we assume that the spectrum of the exosystem’s generator is a

discrete set. Both of these cases are important in practice, and they cover most of the applications

that we have in mind — in particular the repetitive control problems for infinite-dimensional linear

systems.
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Chapter 1

Introduction

This thesis presents a state space output regulation theory for linear time-invariant control systems

(plants) described by the following set of equations in the mild sense:

ż(t) = Az(t) +Bu(t) + Udist(t), z(0) ∈ Z, t ≥ 0 (1.1a)

y(t) = Cz(t) +Du(t), t ≥ 0 (1.1b)

Here A generates a strongly continuous (i.e. C0−) semigroup TA(t), t ≥ 0, on a complex (possibly

infinite-dimensional) Banach space Z. The continuous input u : R+ = [0,∞) → H and the

continuous output y : R+ → H take values in a complex (possibly infinite-dimensional) Banach

spaceH, i.e. the output space of the plant (1.1) is the same as its input space. The state of the plant

(1.1) is denoted by z(t). The control operator B ∈ L(H,Z), the observation operator C ∈ L(Z,H)

and the feedthrough operator D ∈ L(H), where L denotes bounded linear operators. The bounded

uniformly continuous function Udist : R → Z is an external disturbance signal affecting the plant’s

dynamical behaviour.

In very general terms, the output regulation problems that we study in this thesis involve the

construction of such a controller for the plant (1.1) which

(i) stabilizes the closed loop system consisting of the plant and the controller appropriately;

(ii) drives the plant so that the output y(t) asymptotically (as t → ∞) tracks certain bounded

uniformly continuous reference signals yref : R → H in spite of the disturbances Udist;

1



CHAPTER 1. INTRODUCTION 2

(iii) preferrably does the above robustly, i.e. regardless of certain (small) perturbations to the

parameters of the plant and the controller.

Since many physical phenomena — e.g. vibration and heat conduction [17] — and also many

industrial processes [67] can be modelled by (possibly infinite-dimensional) linear systems of the

form (1.1), it is obvious that output regulation problems of the above type play a prominent role

in control theory. In Section 1.1 below we shall provide motivating examples of, as well as the

background for, the particular output regulation problems solved in this thesis. On the other

hand, Section 1.2 summarizes the contents and the main contributions of the present work, and in

Section 1.3 we shall collect some notation and definitions used throughout this thesis.

1.1 Background and motivation

A distinguishing feature in the existing approaches towards the solution of the above output regu-

lation problems is the assumption that the class of reference and/or disturbance signals consists

of outputs of some autonomous linear dynamical system. This system is often called an exoge-

nous system or exosystem in the literature, and many classical control problems can be formulated

as an output regulation problem for some particular exosystem. For example, in the set-point

control problems that occur frequently in applications the constant reference signals to be asymp-

totically tracked can be considered as outputs of an exosystem described by the differential equation

ẇ(t) = 0, such that yref (t) = w(t) for all t ∈ R. A particular constant reference signal is in this case

uniquely described by the initial state w(0) of the exosystem. The case of constant disturbance

signals can be treated in a completely analogous manner, and hence so can that case in which

there are both constant reference signals and constant disturbance signals to be regulated. It is

also easy to enlarge the class of exogenous signals under consideration from constants to linear

combinations of sinusoids. However, the actual solution of the corresponding output regulation

problem for such a class of exogenous signals is by no means a trivial procedure. The following

example combines various parts of the seminal article [12] by C. I. Byrnes, I. Laukó, D. Gilliam

and V. Shubov in order to illustrate some of the fundamental issues encountered in the solution of

such output regulation problems for infinite-dimensional systems (1.1).

Example 1.1. Consider a disturbance-free controlled one-dimensional heat equation on the unit
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interval [0, 1] with Neumann boundary conditions, as described by the partial differential equation

∂z(x, t)

∂t
=
∂2z(x, t)

∂2x
+ 2χ[ 12 ,1](x)u(t), (1.2a)

∂z(0, t)

∂x
=
∂z(1, t)

∂x
= 0, z(x, 0) = ψ(x), (1.2b)

y(t) =

∫ 1

0

z(x, t)2χ[0, 1
2 ](x)dx (1.2c)

Here χ[ε,δ](x) denotes the characteristic function of the interval [ε, δ], i.e. χ[ε,δ](x) = 1 if ε ≤ x ≤ δ

and 0 otherwise. The measured output y(t) represents the average temperature of the heated 1-D

rod on the interval [0, 1
2 ], and the problem is to design a control law u(t) for the system (1.2) such

that limt→∞ |y(t) − sin(2t)| = 0 for all initial temperature profiles z(·, 0) = ψ of the system (1.2).

According to (1.2a) this control law u(t) then specifies how the rod should be heated on the interval

[ 12 , 1] in order to achieve the desired output behaviour.

The first step in the solution of the above output regulation problem is to formulate the system

(1.2) as a plant (1.1). It is well-known (see [12, 17]) that this can be done by choosing Z = L2(0, 1),

H = C and by defining

Aψ =
d2ψ

dx2
, ∀ψ ∈ D(A) = {ψ ∈ H2(0, 1) | dψ

dx
(0) =

dψ

dx
(1) = 0 } ⊂ Z (1.3)

Bu = 2χ[ 12 ,1](x)u, ∀u ∈ C (1.4)

Cφ =

∫ 1

0

φ(x)2χ[0, 1
2 ](x)dx, ∀φ ∈ Z (1.5)

with D = 0 and Udist = 0. The operator A is an unbounded, self-adjoint, densely defined linear

operator which generates a C0−semigroup on Z. On the other hand, the operators B : C → Z and

C : Z → C are bounded and linear [12].

The remaining steps in the solution of the output regulation problem are the construction of an

exogenous system that can generate the reference signal yref (t) = sin(2t) and the construction of

a controller which can regulate all signals generated by this exosystem. It is easy to see that the

finite-dimensional linear exosystem

ẇ(t) = Sw(t), S =


 0 2

−2 0


 , w(0) ∈W = C2 (1.6a)

yref (t) = Qw(t), Q =
(
1 0

)
(1.6b)

utilized in [12] can generate the desired reference signal. Indeed, for w(0) =
(

0
1

)
∈W we have that

yref (t) = QeStw(0) = Qw(t) for all t ∈ R.
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As regards the controller design, the following observations were made in [12]:

(i) The natural first attempt, namely driving the system with the desired output, i.e. u(t) =

sin(2t) = Qw(t) for all t, results in a bounded output y(t) which does not oscillate about

zero. In other words, the plant output y(t) contains an undesirable dc-bias which must be

eliminated in order to achieve output regulation.

(ii) The aforementioned dc-bias in the plant output can be removed by incorporating the (expo-

nentially) stabilizing state feedback term Kz(t) = −0.5〈z(t),1〉Z in the control law. Here

〈·, ·〉Z is the inner product on Z and 1 ∈ Z is the constant function 1(x) = 1 for all

x ∈ [0, 1]. Moreover, A + BK generates an exponentially stable C0−semigroup TA+BK(t)

on Z, i.e. ‖TA+BK(t)‖ ≤ Me−ωt for some M ≥ 1, ω > 0 and all t ≥ 0. The control law

u(t) = Kz(t) + sin(2t) = Kz(t) + Qw(t), utilizing a stabilizing state feedback and the desi-

red output, results in a plant output y(t) which appears to converge to a periodic trajectory

oscillating about zero, as desired, but the resulting amplitude and phase are not those of the

desired output yref (t) = sin(2t).

(iii) The feedforward part Lw(t) of a control law u(t) = Kz(t)+Lw(t) which does achieve asymp-

totic tracking of yref (t) = Qw(t) for any w(0) ∈ W (in particular for w(0) =
(

0
1

)
) can be

found by solving the so called regulator equations

ΠS = AΠ +BΓ (1.7a)

CΠ = Q (1.7b)

for bounded linear operators Π ∈ L(W,Z) and Γ ∈ L(W,C), such that ran(Π) ⊂ D(A).

In this particular example we can take L = Γ − KΠ where K is the above exponentially

stabilizing state feedback operator, and the operators Π =
(

Π1(·) Π2(·)
)
, Γ =

(
γ1 γ2

)
=

( <(H(i2))

|H(i2)|2 −=(H(i2))

|H(i2)|2
)

are defined using

Π1(x) = γ1<([R(i2, A)B](x)) − γ2=([R(i2, A)B](x)), ∀x ∈ [0, 1] (1.8)

Π2(x) = γ1=([R(i2, A)B](x)) + γ2<([R(i2, A)B](x)), ∀x ∈ [0, 1] (1.9)

H(i2) =
2 sinh(

√
i2
2 )

i2
√
i2 cosh(

√
i2
2 )

(1.10)

with [R(i2, A)B](x) = cosh(
√

i2x)

i2 cosh(
√

i2
2 )

for 0 ≤ x ≤ 1
2 and [R(i2, A)B](x) = 2

i2 − cosh(
√

i2x)

i2 cosh(
√

i2
2 )

otherwise.
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(iv) If the state of the plant is not available for measurement but the tracking error e(t) =

y(t) − yref (t) = Cz(t) − Qw(t) is available for measurement, then a dynamic error feed-

back controller

ẋ(t) = Fx(t) +Ge(t), x(0) ∈ X, t ≥ 0 (1.11a)

u(t) = Jx(t) (1.11b)

on the state space X = L2(0, 1) × C2 (in the mild sense) can be utilized. If we take

F =


A+BK −G1C B(Γ −KΠ) +G1Q

−G2C S +G2Q


 , G =


G1

G2


 , J =

(
K Γ −KΠ

)

(1.12)

where (G1u)(x) = 1.9u1(x) for all u ∈ C and 0 ≤ x ≤ 1, G2 =
(−3
−3

)
, and the other operators

as in the above, then the closed loop system operator A =
(

A BJ
GC F

)
consisting of the plant and

the controller (1.11) (with the exosystem (1.6) detached) generates an exponentially stable

C0−semigroup on Z × X. Moreover, all reference signals Qw(t), for w(0) ∈ W , and in

particular yref (t) = sin(2t) if w(0) =
(

0
1

)
∈ W , can be asymptotically tracked regardless of

the initial states z(0) ∈ Z and x(0) ∈ X of the plant and the controller (1.11).

Alas, in many output regulation problems encountered in practice it is not sufficient to be able

to regulate sinusoidal signals — or their linear combinations — only. Instead, a more realistic

goal is to be able to asymptotically track and/or reject general periodic signals of some fixed

period length p > 0. For example, these general periodic signals can be repetitive commands

for mechanical systems such as industrial robots, or they can be periodic disturbances arising

from rotational motion. Unfortunately, vast majority of the otherwise very useful recent output

regulation results for infinite-dimensional systems, e.g. those in [12, 33], are not applicable in this

situation. This is because they utilize finite-dimensional exosystems described by linear matrix

differential equations, as in Example 1.1. Clearly such exosystems can only generate those periodic

signals which are linear combinations of sinusoids, i.e. trigonometric polynomials.

In the linear case an infinite-dimensional exogenous system must be used if such periodic signals

which have an infinite number of distinct frequency components are to be generated [47, 55]. The

so-called repetitive control scheme addresses the problem of asymptotically tracking arbitrary (but

sufficiently regular) p−periodic reference signals, as generated by a particular infinite-dimensional

exosystem, for finite-dimensional plants. This scheme employs frequency domain methods and it
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has proven to be quite effective in practice; see e.g. [36, 92, 96, 95] and the references therein. We

next illustrate the principles of repetitive control and the related design challenges for single-input

single-output (SISO) systems.

According to [36] any sufficiently regular scalar-valued p−periodic reference signal yref can be

generated by an infinite-dimensional exosystem including a time-lag element corresponding to the

period length p > 0, with an appropriate initial function y1
ref corresponding to a period of the

desired signal; see Figure 1.1 and [36, 96]. A closed loop error feedback control system incorporating

Figure 1.1: The initial state y1
ref of the exosystem generating a p−periodic reference signal yref

(top left), the generator of yref (top right), and a repetitive control system (bottom).

this generator of p−periodic signals is called a repetitive control system [36]. Figure 1.1 depicts

a repetitive control system where H(s) is the transfer function of a SISO linear time-invariant

finite-dimensional plant and a(s) is an appropriate proper stable rational function (a(s) = 0 is

also possible [96]). The following genuinely positive results about the repetitive control system of

Figure 1.1 are well-known:

• Assume that [1 + a(s)H(s)]−1H(s) is a proper stable rational transfer function and that

supω∈R

∣∣[1 + a(iω)H(iω)]−1[1 + (a(iω) − 1)H(iω)]
∣∣ < 1. Then the minimal state space rea-

lization of the closed loop repetitive control system in Figure 1.1 is exponentially stable and

limt→∞ e(t) = limt→∞[y(t)− yref (t)] = 0 for all continuous p−periodic reference signals yref

(Theorem 1 in [36]).
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• If the above assumptions hold for a(s) = 0, then e(t) = y(t)−yref (t) tends to 0 exponentially

for all continuous p−periodic reference signals yref (Theorem 5.9 in [96]).

However, it turns out that the assumptions of these positive results are notoriously difficult to

satisfy in practice. In particular, the following negative result is well-known:

• If H(s) is a strictly proper rational transfer function, then the closed loop repetitive control

system in Figure 1.1 (i.e. its minimal state space realization) cannot be exponentially stable

(Proposition 2 in [36]).

This general lack of exponential stabilizability of closed loop repetitive control systems also ge-

neralizes for multi-input multi-output (MIMO) systems [36]. It is known to be solely caused by

the infinite number of poles on the imaginary axis, resulting from the incorporation of the above

generator of p−periodic signals in the closed loop system [36, 96]. Unfortunately, in a sense it is

also necessary to incorporate this generator of p−periodic signals in any stable closed loop error

feedback control system achieving asymptotic tracking of p−periodic functions, as indicated by the

following generalization of the Internal Model Principle1 of Francis and Wonham [32]:

• Any pseudorational SISO unity feedback servo control system (see Figure 1.2 and [96]) which

is internally stable (i.e. the minimal state space realization is exponentially stable), and for

which e(t) = y(t)− yref (t) tends to 0 exponentially for any p−periodic reference signal yref ,

must contain the internal model (eps − 1)−1 of the dynamical behaviour of the reference

signals in the forward path of the closed loop system (Theorem 5.12 in [96]).

In the repetitive control literature the above dilemma is principally resolved by considering the

so-called modified repetitive control scheme [36, 92]. In this scheme the above exact internal model

(eps − 1)−1 is combined with a low-pass filter to facilitate exponential closed loop stabilization —

and hence also output regulation. Unfortunately, perfect output regulation is lost in the process as

the low-pass filter moves the high frequency poles of the internal model away from the imaginary

axis to the closed left-half complex plane [92].

Fortunately, the above dilemma is only related to the lack of exponential stabilizability of

closed loop error feedback repetitive control systems. Consequently, it is reasonable to inquire

1For finite-dimensional systems (1.1) and finite-dimensional exosystems this celebrated principle describes the

necessary and sufficient structure of robust (i.e. structurally stable) regulating error feedback controllers.



CHAPTER 1. INTRODUCTION 8

Figure 1.2: A pseudorational unity feedback servo system. Here D,P and Q are Laplace trans-

forms of compactly supported distributions, with supports in (−∞, 0], satisfying the conditions of

pseudorationality; they are entire functions satisfying certain growth estimates [95, 96].

whether the regulation of periodic signals is more generally possible if simpler open loop (i.e.

feedforward) control and/or some weaker notion of closed loop stability are utilized. Since the

existing repetitive control results only cover finite-dimensional plants [36, 92, 96, 95], it would be

particularly important to establish realistic and general conditions under which output regulation of

general periodic signals can also be achieved for infinite-dimensional plants. These open problems

were the initial motivation for the research described in the present thesis; we conclude this section

by elaborating some more on the possibilities and the difficulties related to solving them.

The state space output regulation theory developed by Byrnes et al. in [12] makes it possible

to utilize both error feedback controllers and simple open loop (feedforward) controllers for the

solution of certain output regulation problems for infinite-dimensional systems. As in item (iii)

of Example 1.1, for their feedforward controllers only exponential stabilizability of the plant —

and not the exogenous signal generator — is required; it is a separate feedforward control law

(Lw(t) in item (iii) of Example 1.1) that makes output regulation possible in this case. However,

the results of [12] only apply to signals generated by certain finite-dimensional linear exosystems,

and it is not at all trivial to generalize these results for infinite-dimensional linear exogenous

systems. Moreover, Byrnes et al. [12] do not address the issue of robustness, even in the case of

error feedback control (which is well-known to yield nice robustess properties in the case of finite-

dimensional plants [29]). These problems are compounded by the fact that prior to attempting a

generalization of the results of [12] for general periodic reference/disturbance signals, one should

first identify the simplest possible infinite-dimensional exosystem generating p−periodic signals in

the state space domain. To the author’s knowledge little research on this topic has been reported

in the literature [47, 55]; in particular, the repetitive control scheme is mostly based on frequency
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domain techniques.

As regards closed loop stability, in the state space domain there is a notion of strong stabi-

lity whose application in repetitive control problems has apparently not been studied before. A

C0−semigroup TA(t) on a Banach space Z is called strongly stable if limt→∞ TA(t)z = 0 for all

z ∈ Z. Since no uniform decay rate for ‖TA(t)z‖ needs to exist, strong stability is a considerably

milder requirement for a C0−semigroup than exponential stability. However, especially from the

point of view of systems theory, the concept of strong stability of a C0−semigroup is also conside-

rably less well-understood than that of exponential stability. This is quite unfortunate because it

seems to be a most natural stability notion for many systems described by partial differential equa-

tions [70]. The problem is that, unlike in the exponentially stable case, there seems to be no hope

for a general duality between state space and frequency domain methods for such systems (1.1)

where the operator A only generates a strongly stable C0−semigroup [2, 17, 70, 96]. Consequently,

it is not at all trivial to establish state space generalizations for the frequency domain repetitive

control results of [36, 92, 95, 96], by utilizing the concept of a strongly stable C0−semigroup. This

problem is compounded by the fact that the theory of strongly stable Banach space C0−semigroups

is a branch of abstract harmonic analysis, whose methods are occasionally quite involved from the

application point of view.

1.2 Contributions and organization

As was mentioned in Section 1.1, the initial motivation for the research described in this thesis

was to generalize the results of [12] and [36, 92, 95, 96] in an effort to develop an output regulation

theory for infinite-dimensional systems (1.1) and general periodic exogenous signals, by utilizing

state space methods and the concept of a strongly stable C0−semigroup. However, it turned out to

be possible to achieve somewhat more, as indicated in the following list of the main contributions

of this thesis:

• The construction and a detailed analysis of the simplest possible exogenous systems genera-

ting arbitrary bounded uniformly continuous reference/disturbance signals.

• The construction and a detailed analysis of three controllers (feedforward, error feedback and

hybrid feedforward-error feedback) for the asymptotic tracking/rejection of the exogenous sig-



CHAPTER 1. INTRODUCTION 10

nals generated by the above-mentioned exosystems, including complete characterizations for

the solvability of the related output regulation problems in terms of the corresponding regu-

lator equations, and including repetitive control even for strictly proper infinite-dimensional

plants.

• A detailed analysis of the stabilizability properties of the utilized exogenous systems, and a

detailed analysis of the strong stabilization of the closed loop system for two error feedback

controllers.

• A robustness (i.e. structural stability) analysis for the designed error feedback controllers,

including such a state space generalization of the Internal Model Principle [32] which does

not utilize any purely finite-dimensional concepts.

• The development of the mathematical foundations of practical output regulation, i.e. ap-

proximate asymptotic tracking/rejection of the exogenous signals generated by the above-

mentioned exosystems.

• A general treatment of the solution of the regulator equations for infinite-dimensional systems

(1.1) and the above-mentioned (possibly infinite-dimensional) exosystems.

• The presentation of several examples and case studies which illustrate, among other things,

the new discovery made in this thesis that the smoothness of the exogenous signals crucially

affects the solvability of the output regulation problem at hand, and also contributes to the

robustness properties of the devised controllers.

We point out, however, that the theory of this thesis is not applicable

• for unbounded reference/disturbance signals (e.g. polynomials),

• in those point control and point observation problems which would require the use of un-

bounded operators B and/or C in the plant (1.1).

From the practical point of view, the requirement for boundedness of the exogenous signals is

not at all restrictive. However, allowing for unbounded operators B and C in the plant (1.1)

would notably enlarge the class of systems to which the output regulation theory of this thesis is

applicable (see e.g. [84] and the references therein). Since the (possible) infinite-dimensionality
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of the exosystem and the (possible) lack of exponential stabilizability of the closed loop system

already introduce considerable mathematical complexity to the output regulation problems studied

in the present work, allowing for unbounded B and C seemed unneccessary at this stage, because

it would complicate the mathematics even more.

In the remainder of this section we shall provide a brief summary of the contents of this thesis

and we shall point out the author’s scientific publications contributing to the related parts of the

thesis. More detailed comparison to the related earlier work will be provided at the beginning of

each individual chapter.

Chapter 2: The exogenous system

We shall construct and analyse in detail the simplest possible exosystems generating various clas-

ses of bounded uniformly continuous exogenous reference/disturbance signals. These exosystems

always utilize the generator of an isometric C0−group on some Banach space W , plus one boun-

ded observation operator for the reference signals and one for the disturbance signals. While

conventionally the exogenous signals are assumed to be generated by some arbitrary (finite-

dimensional) exosystem [12], here we devise a new and completely opposite approach: Given

a class of exogenous signals we want to construct (i.e. realize) the exosystem such that preci-

sely the desired class of signals is generated. The results of this chapter are based on those in

[40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54].

Chapter 3: Feedforward output regulation theory

We shall pose and completely solve a feedforward output regulation problem (FRP) for infinite-

dimensional plants (1.1) and the exosystems of Chapter 2. We shall generalize the results of e.g.

[12, 29, 72] by completely characterizing the solvability of the FRP in terms of strong stabilizability

of the plant and the solvability of the regulator equations (3.10). Various applications and case

studies — including repetitive control, asymptotic tracking of individual signals and the effect of

system zeros on output regulation — as well as illustrative examples are presented. The results of

this chapter are based on those in [41, 42, 46, 49, 51, 52, 53, 54].
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Chapter 4: Error feedback output regulation theory

We shall pose and completely solve an error feedback output regulation problem (EFRP) for

infinite-dimensional plants (1.1) and the exosystems of Chapter 2. We shall generalize the results

of e.g. [12, 24, 29, 32, 33, 36, 80, 87, 92, 95, 96] by completely characterizing the solvability of the

EFRP in terms of strong stabilizability of the closed loop system consisting of the plant and the

controller, and in terms of the solvability of the extended regulator equations (4.3). We shall also

show that under certain assumptions it is necessary for output regulation that the exosystem’s

dynamics is embedded in the controller’s dynamics; this is well-known in the finite-dimensional

case [29]. Finally, we shall consider in detail the strong stabilization of the closed loop system for

certain infinite-dimensional generalizations of two widely used finite-dimensional controllers. This

turns out to be a delicate problem for infinite-dimensional exosystems. The results of this chapter

are based on those in [41, 42, 48, 49].

Chapter 5: A feedforward-error feedback controller

In order to avoid the difficulties encountered in the strong stabilization of the closed loop error

feedback control systems (Chapter 4), we shall introduce a hybrid controller utilizing both error

feedback and feedforward control for output regulation purposes. This controller is designed in

such a way that the two parts are completely independent of each other: The error feedback part is

designed to stabilize the closed loop system appropriately, whereas the feedforward part is tuned,

using the regulator equations (3.10), to achieve output regulation. We shall completely characterize

the existence of a feedforward-error feedback controller, and we shall present an example of its con-

struction. To the author’s knowledge the results of this chapter are new even for finite-dimensional

systems; they are based on those in [40].

Chapter 6: Robustness and the internal model structure

We shall study the robustness (structural stability) of the error feedback controllers designed in

Chapter 4. Our results show that the unique solvability of the extended regulator equations (4.3)

implies a degree of conditional robustness in output regulation. Here conditional robustness of

output regulation means robustness on condition that the closed loop stability is also robust; this

weak robustness notion is needed because strong stability of the closed loop system is not in
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general robust with respect to the perturbations that we consider. We shall also generalize the

Internal Model Principle [32] for infinite-dimensional systems (1.1) and the exosystems of Chapter

2 using state space techniques, without relying on any purely finite-dimensional concepts. Our

results (and methods) are new even for finite-dimensional systems. In particular they improve and

simplify those in [29], and they present sufficient conditions for robustness of the error feedback

controllers utilized in [12]. The results of this chapter are based on those in [43, 45].

Chapter 7: Practical output regulation

We shall develop the mathematical foundations of practical output regulation, i.e. approximate

asymptotic tracking/rejection of the signals generated by the exosystems of Chapter 2. Our idea

is to directly employ a perturbation analysis to an exactly regulating closed loop control system

and the corresponding (extended) regulator equations which in a certain sense describe its steady

state behaviour. Thus, the main results of this chapter are general upper bounds for the norms

of additive, bounded, linear perturbations to the the parameters of the plant, the exosystem and

the (hypothetical) controller, which solves the corresponding exact output regulation problem,

such that practical output regulation with a given accuracy occurs. Our results cover practical

state space output regulation for the controllers devised in Chapters 3, 4 and 5 in a unified way;

to our knowledge these results — and the methods utilized in their proofs — are new even for

finite-dimensional systems. These results should be particularly useful in the construction of finite-

dimensional approximations for the controllers designed in the previous chapters. The results of

this chapter are based on those in [44, 50].

Chapter 8 : Solving the regulator equations

We shall study the solution of the regulator equations (3.10); the same methods apply with obvious

changes for the extended regulator equations (4.3) too. We shall consider the following separate

cases: That of a SISO plant and that in which the spectrum of the exosystem generator is a

discrete set (this occurs e.g. in all repetitive control problems). The latter case can then be

easily modified to cover another separate case in which the spectrum of the exosystem generator

is not discrete but the signals are known to be in certain Banach spaces that we construct in

Chapter 2. The results of this chapter are extensively used in various examples throughout this
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thesis. They generalize the well-known finite-dimensional results (see e.g. [12]) which show that

the nonexistence of transmission zeros on the spectrum of the exosystem generator implies the

solvability of the regulator equations (3.10). The results of this chapter are based on those in

[40, 41, 54].

Chapter 9 : Conclusions

We shall draw the conclusions and we shall present some interesting directions for future investi-

gations.

Appendix A

We shall collect some well-known results from spectral theory of closed operators, the theory of

Sylvester operator equations and the theory of bi-continuous semigroups, for the reader’s conve-

nience.

1.3 Notation and definitions

For Banach spaces E and F , L(E,F ) denotes the space of bounded linear operators E → F .

If E is continuously embedded in F , then this is denoted by E ↪→ F . The resolvent set of a

closed linear operator A : E → F is denoted by ρ(A), whereas σ(A) denotes its spectrum. The

maximal connected component of ρ(A) containing +∞ is denoted by ρ∞(A). The point spectrum

of A is denoted by σP (A), whereas σA(A) denotes the approximate point spectrum of A. R(λ,A)

denotes (whenever it exists) the resolvent operator (λI − A)−1. If Ẽ is a subspace of E, then

A| eE denotes the restriction of A to Ẽ. If A : E → E generates a strongly continuous (or C0−)

semigroup in E, then this semigroup is in general denoted by TA(t). We say that TA(t) is strongly

stable if limt→∞‖TA(t)x‖ = 0 for each x ∈ E. The semigroup TA(t) is exponentially stable if

‖TA(t)‖ ≤Me−ωt for some M,ω > 0 and all t ≥ 0. For the sake of brevity in these circumstances

we sometimes say that A is strongly/exponentially stable. The norm on E is denoted by ‖·‖E

and if E is a Hilbert space, then its inner product is denoted by 〈·, ·〉E . Here the subscript E

is occasionally included to clarify the space on which the norm or the inner product is defined.

If TA(t) is a C0−semigroup on E and F ↪→ E, then we say that F is invariant for TA(t) (or
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TA(t)−invariant) if TA(t)x ∈ F for all x ∈ F . The real part of a complex number z is denoted by

<(z), and the imaginary part of z is denoted by =(z).



Chapter 2

The exogenous system

As stated in Chapter 1, it is a common — and mathematically convenient — assumption in

the output regulation literature that the reference signals yref and disturbance signals Udist are

generated by a so called exogenous system. Quite often this exosystem is assumed to be a linear,

finite-dimensional, neutrally stable1 autonomous system of the form

ẇ(t) = Sw(t), w(0) ∈W, (2.1a)

yref (t) = Qw(t) (2.1b)

Udist(t) = Pw(t) (2.1c)

where P,Q and S are matrices of appropriate dimensions and dim(W ) < ∞ (see e.g. [12, 24, 29,

32, 35, 80] and the references therein). Neutral stability of the exosystem (2.1) implies that the

eigenvalues of S are simple (S has no nontrivial Jordan blocks) and that they are located on the

imaginary axis iR [12]. Consequently the reference/disturbance signals that can be generated by

the exosystem (2.1) are constants or trigonometric polynomials (see Definition 2.8).

Unfortunately many interesting signals which occur in practice are not constants or trigono-

metric polynomials; they are general bounded and uniformly continuous functions. In this thesis

we shall develop a state space output regulation theory for such signals by utilizing the following

(possibly infinite-dimensional) exosystem, which is a direct generalization of the finite-dimensional

exosystem (2.1):

1According to [12] this is equivalent to the origin being Lyapunov stable forward and backward in time.

16
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Definition 2.1 (The exogenous system). Let W be any Banach space such that S generates an

isometric2 C0−group TS(t) on W . Let P ∈ L(W,Z) and let Q ∈ L(W,H). Then the exogenous

system is described by the following set of equations in the mild sense:

ẇ(t) = Sw(t), w(0) ∈W (2.2a)

yref (t) = Qw(t), t ∈ R (2.2b)

Udist(t) = Pw(t), t ∈ R (2.2c)

Remark 2.2. The free parameters of the exosystem are the state space W , the operators P,Q and

S, and the initial state w(0) ∈ W . However, in output regulation problems we often fix W,P,Q

and S at the outset. Then different reference/disturbance signals are generated by varying the

initial state w(0) ∈W .

It is clear that the reference and disturbance signals generated by the exosystem (2.2) are indeed

always bounded and uniformly continuous functions, because P and Q are bounded operators

and because TS(t) is an isometric C0−group. A remarkable property of the general exogenous

system (2.2) is that also the converse holds: We shall show in this chapter that all bounded

uniformly continuous reference/disturbance signals can be generated using the above exosystem

by an appropriate choice of the free parameters. Moreover, it turns out to be possible to choose

the exosystem’s free parameters in such a way that the generated reference/disturbance signals

are in prespecified subspaces of bounded uniformly continuous functions. This is a very useful

feature of the general exosystem (2.2), because then solvability of an abstract output regulation

problem implies that all exogenous signals in the prespecified function spaces can be regulated. In

particular, we can pose — and precisely answer — questions such as: What classes of bounded

uniformly continuous reference signals can the output of a given plant (1.1) asymptotically track?

We now briefly outline the contents of this chapter.

Section 2.1: We shall show how the exosystem (2.2) is best constructed in order to accomplish the genera-

tion of reference/disturbance signals in prespecified (possibly infinite-dimensional) function

spaces. The novel feature of our approach is that while in most of the related literature, e.g.

[10, 11, 12, 33, 87], the chosen exogenous system fixes the class of exogenous signals, here

the chosen class of exogenous signals determines the simplest possible exosystem capable

2The C0−group TS(t) is isometric if ‖TS(t)w‖ = ‖w‖ for all t ∈ R.
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of generating the desired signals. The methods of this section have been developed in the

author’s articles [40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54].

Section 2.2: We shall introduce some interesting function spaces whose elements can be generated by the

exosystem (2.2) if its parameters are chosen as indicated in Section 2.1. These function spaces

— and the related exosystems (2.2) — are used in various examples throughout this thesis.

A special case is an exogenous system which can generate p−periodic signals, i.e. a state

space analogue of the exosystems utilized in the repetitive control literature [36, 92, 95, 96].

However, we point out that, in contrast to [36, 92, 95, 96], the exosystems that we utilize

also make it possible to specify the required degree of smoothness of the periodic exogenous

signals. This additional feature will have an enormous impact on the solvability of certain

repetitive control problems later in this thesis.

2.1 Generation of prespecified spaces of signals

In this section we shall show how the free parameters of the exosystem (2.2) should be chosen

in order to accomplish the generation of prespecified subspaces of bounded uniformly continuous

signals. The reader is advised that in the subsequent chapters output regulation theory is often

formulated for the general exosystem (2.2) only, while interesting applications of this theory can

be directly found by fixing the exosystem’s free parameters as indicated in this section and Section

2.2. Consequently, the reader should bear in mind that the remainder of this chapter principally

consists of useful choices for the parameters of the exosystem (2.2).

2.1.1 Generation of reference signals in a prespecified space H

Suppose that we want to generate those reference signals yref which are in a Banach space H ↪→

BUC(R,H) using the exosystem (2.2). This notation means that H is continuously embedded in

the space of bounded uniformly continuous H−valued functions on R endowed with the sup−norm

(H need not have the sup−norm). Let us also assume that H s
↪→BUC(R,H), which means that, in

addition to H ↪→ BUC(R,H), the left translation operators TS(t)|H defined by TS(t)|Hf = f(·+t)

for every f ∈ H constitute an isometric C0−group on H. Denote by S|H the infinitesimal generator

of TS(t)|H. Of course, S|H is just the differential operator d
dx with a suitable domain of definition

D(S|H) ⊂ H. Now let us fix the exosystem’s free parameters as follows: The state space W = H,
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the operator S = S|H, Q = δ0 is the point evaluation operator defined by δ0f = f(0) for each

f ∈ H, P ∈ L(H, Z) is arbitrary and the initial state w(0) varies in H. Clearly δ0 ∈ L(H,H)

because ‖δ0f‖H = ‖f(0)‖H ≤ ‖f‖∞ ≤ c‖f‖H for some c ≥ 0 since H ↪→ BUC(R,H). Moreover,

the following result is obvious.

Proposition 2.3. Let H be as in the above. The exogenous system (2.2), with W = H, S = S|H,

Q = δ0 ∈ L(H,H), P ∈ L(H, Z) and w(0) ∈ H, can generate all reference functions in H and only

those. Moreover, every reference function yref ∈ H is generated by the choice w(0) = yref ∈ H.

Proof. Clearly δ0TS(t)|Hf = f(x + t)|x=0 = f(t) for every f ∈ H and t ∈ R. This shows that

the system (2.2) can generate every reference function yref ∈ H (and only those) by the choice

w(0) = yref ∈ H of the initial state.

Proposition 2.3 shows how to fix the exosystem’s free parameters to obtain the simplest possible

generator for the reference signals in H, in the sense that no superfluous reference signals (i.e. those

outside of H) are generated.

2.1.2 Generation of disturbance signals in a prespecified space Z

It is clear that Proposition 2.3 only reveals how the exosystem’s free parameters should be chosen

if the class of reference signals in question is known and if the disturbance signals are only required

to have dynamical properties which are similar to those of the reference signals. In this case

the disturbance signals are implicitly assumed to play a less prominent role than the reference

signals; P is only required to be a bounded linear operator H → Z. On the other hand, based

on the construction of Subsection 2.1.1 it is quite apparent how the exosystem’s free parameters

should be chosen if, instead, we are interested in asymptotically rejecting some prespecified space

of disturbance signals Z s
↪→BUC(R, Z) and if the reference signals are only required to have similar

dynamical properties as the disturbances:

Proposition 2.4. The exogenous system (2.2), with W = Z s
↪→BUC(R, Z), S = S|Z , Q ∈

L(Z,H), P = δ0 ∈ L(Z, Z) and w(0) ∈ Z, can generate all disturbance functions in Z and only

those. Moreover, every disturbance function Udist ∈ Z is generated by the choice w(0) = Udist ∈ Z.
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2.1.3 Generation of reference signals in H and disturbance signals in Z

It is now obvious that the above construction employing the translation group and point evaluation

at the origin can be further extended to the case in which both reference signals and disturbance

signals are in some prespecified spaces H s
↪→BUC(R,H) and Z s

↪→BUC(R, Z) respectively. In this

case we can let3 W = H × Z and define TS(t)
( f1

f2

)
=

( TS(t)|Hf1

TS(t)|Zf2

)
for all

( f1

f2

)
∈ H × Z and for

all t ∈ R. Then TS(t) is a strongly continuous and isometric group of linear operators on W .

Moreover, it is obvious that we should let Q =
(

δ0 0
)
∈ L(W,H) and P =

(
0 δ0

)
∈ L(W,Z) to

generate any given combination
( yref

Udist

)
∈ H×Z of reference and disturbance signals. In particular,

we have:

Proposition 2.5. Let H and Z be as in the above. The exogenous system (2.2), with W =

Y = H × Z, S =
( S|H 0

0 S|Z
)

(with D(S) = D(S|H) × D(S|Z)), Q =
(

δ0 0
)
∈ L(W,H) and

P =
(

0 δ0

)
∈ L(W,Z) and w(0) ∈ W , can generate all combinations of reference signals in

H and disturbance signals in Z, and only those. Moreover, every combination
( yref

Udist

)
∈ Y of

reference/disturbance signals is generated by the choice w(0) =
( yref

Udist

)
∈ Y.

In the remainder of this thesis script capital letters H and Z always refer to some Banach

function spaces of the above type. In addition, S|H and S|Z refer to the infinitesimal generators

of the (strongly continuous and isometric) left translation groups TS(t)|H and TS(t)|Z on H and

Z respectively.

2.1.4 Some additional remarks about generality of the exosystems

We have seen in Proposition 2.3, Proposition 2.4 and Proposition 2.5 that exogenous systems

employing the left translation operators and point evaluations at the origin on suitable function

spaces are the simplest possible in terms of signals that can be generated. Now we shall conclude

this section by showing that such exosystems are also the most general ones in the following sense:

• No additional generality is achieved by considering exosystems (2.2) where S need not gene-

rate a translation group and neither P nor Q need be the point evaluation operator δ0. In

fact, the exosystem (2.2) can always be embedded in some exosystem described in Proposition

2.5.

3We can endow W e.g. with the norm



� f1

f2

�


 =
q

‖f1‖
2

H
+ ‖f2‖2

Z
to obtain a Banach space.



CHAPTER 2. THE EXOGENOUS SYSTEM 21

• The state space W in Proposition 2.3, Proposition 2.4 and Proposition 2.5 cannot be any

larger if we want the translation group to be strongly continuous. Since our main tool in

this thesis is the theory of C0−semigroups, we shall not be able to consider more general

bounded exogenous signals than those which are also uniformly continuous.

Proposition 2.6. For every Banach space W , every generator S of a bounded C0−group TS(t),

every Q ∈ L(W,H) and every P ∈ L(W,Z) there exists a closed (left-) translation invariant

subspace Y ⊂ BUC(R,H)×BUC(R, Z) such that4 for every w ∈W we have
( yref

Udist

)
=

( QTS(·)w
PTS(·)w

)
∈

Y and

yref (t) = QTS(t)w =
(

δ0 0
)
TS(t)|Y

( yref

Udist

)
=

(
δ0 0

)( yref (·+t)

Udist(·+t)

)
(2.3)

Udist(t) = PTS(t)w =
(

0 δ0

)
TS(t)|Y

( yref

Udist

)
=

(
0 δ0

)( yref (·+t)

Udist(·+t)

)
(2.4)

Proof. Let Y = span{QTS(·)w0 | w0 ∈ W } × span{PTS(·)w0 | w0 ∈ W } = H × Z, where both

closures are taken with respect to the sup−norm. It is clear that Y ⊂ BUC(R,H) ×BUC(R, Z),

because TS(t) is a bounded C0−group, and because P ∈ L(W,Z) and Q ∈ L(W,H). Since

TS(t)|Y


QTS(·)w0

PTS(·)w0


 =


QTS(· + t)w0

PTS(· + t)w0


 =


QTS(·)T (t)w0

PTS(·)T (t)w0


 ∈ Y for all w0 ∈W (2.5)

by continuity and linearity the space Y is closed and translation invariant. As a consequence of

this, TS(t)|Y is an isometric C0−group on Y [28]. Let yref (t) = QTS(t)w and Udist(t) = PTS(t)w

for all t ∈ R and some arbitrary w ∈ W . Then
( yref

Udist

)
∈ Y and

( yref (t)

Udist(t)

)
=

( δ0TS(t)|Hyref

δ0TS(t)|ZUdist

)
=

(
δ0 δ0

)
TS(t)|Y

( QTS(·)w
PTS(·)w

)
=

(
δ0 δ0

)
TS(t)|Y

( yref

Udist

)
, which proves the result.

Proposition 2.7. Let E be a Banach space and let E ↪→ L∞(R, E). If the left translation operators

TS(t)|E constitute a C0−group on E, then E ⊂ BUC(R, E).

Proof. We only have to verify that every f ∈ E ↪→ L∞(R, E) is uniformly continuous. Clearly for

every such f we have that sups∈R‖f(s + t) − f(s)‖ = ‖TS(t)|Ef − f‖∞ ≤ c‖TS(t)|Ef − f‖E → 0

as t → 0, because E ↪→ L∞(R, E) and because TS(t)|E is strongly continuous. This shows that

f ∈ BUC(R, E).

4Here translation invariance on this product of function spaces is of course understood componentwise.
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2.2 Some practically relevant exogenous signal spaces

In Section 2.1 we showed how the free parameters of the exosystem (2.2) should be chosen in order

to generate signals in function spaces which are suitably embedded in related spaces of bounded

uniformly continuous functions. In the present section we shall provide some interesting examples

of such function spaces of exogenous signals. We have encountered three interesting scenarios; (i)

the class of reference signals H is prespecified, (ii) the class of disturbance signals Z is prespecified,

and (iii) both H and Z are prespecified. To cover all of these three possibilities, below we shall

consider general Banach spaces E s
↪→BUC(R, E) where E is any Banach space. We point out that

although many of the function spaces E that we consider below are well known in the harmonic

analysis literature (see e.g. [2, 38, 58]), they seem to be less known in the control theory literature.

2.2.1 Spaces of almost periodic and periodic signals

Many reference/disturbance signals which occur in practice are periodic functions or, more ge-

nerally, almost periodic functions. There are several equivalent definitions for almost periodic

functions (see [2, 38]), but we choose to give the following one from [2] which is quite intuitive and

which illustrates the relation between trigonometric polynomials, periodic functions and almost

periodic functions.

Definition 2.8. A trigonometric polynomial in BUC(R, E) is a function pN : R → E : t →

pN (t) =
∑N

n=1 ane
iλnt where N < ∞, and an ∈ E and λn ∈ R for each 1 ≤ n ≤ N . A function

f : R → E is called almost periodic if it can be approximated uniformly (i.e. in the sup−norm)

on R by trigonometric polynomials. We let AP (R, E) denote the linear space of almost periodic

functions R → E.

Proposition 2.9. The space E = AP (R, E) is a closed translation invariant subspace of BUC(R, E)

and TS(t)|E constitutes an isometric C0−group on E.

Proof. Since AP (R, E) is the sup−norm closure of the linear space of trigonometric polynomials in

BUC(R, E), it is a closed subspace of BUC(R, E). On the other hand, if a sequence (pn)n∈N of tri-

gonometric polynomials uniformly approximates f ∈ AP (R, E), then for every t ∈ R the sequence

(TS(t)|AP (R,E)pn)n∈N of trigonometric polynomials uniformly approximates TS(t)|AP (R,E)f . The
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result follows by Subsection I.5.12 in [28].

Example 2.10. The function f : t→ sin(t)+sin(
√

2t) is in AP (R,R). However f is not periodic.

The reader is referred to [15] for more details.

Example 2.11. It is clear that whenever dim(E) < ∞ and whenever the index set I is finite,

the Banach space E = span{ eiωn·y | y ∈ E,n ∈ I } s
↪→AP (R, E) ⊂ BUC(R, E) if we endow E

with the supremum norm. In this case E is a finite-dimensional space consisting of trigonometric

polynomials (including possibly constant functions). Moreover, the differential operator S|E can

be represented by a diagonal matrix. Signals in such spaces E are precisely those which can be

generated using finite-dimensional exosystems (2.1).

Example 2.12. The space Pp(R, E) of all p−periodic E−valued continuous functions (endowed

with the sup-norm) is a closed translation invariant subspace of AP (R, E) [2]. Hence clearly

E = Pp(R, E) s
↪→BUC(R, E) if we endow E with the sup-norm. We emphasize that AP (R, E)

contains all continuous periodic functions R → E, regardless of the period length.

The following example shows that AP (R, E) does not necessarily consitute all of BUC(R, E).

Example 2.13. Let E = c, the Banach space of all convergent complex sequences x = (xn)n∈N

with the supremum norm ‖x‖ = supn∈N |xn|. Consider the function t → f(t) = (ei t
n )n∈N for all

t ∈ R. Then f ∈ BUC(R, E), but f /∈ AP (R, E). We refer the reader to Example 4.6.5 in [2] for

more details.

Following [41], we shall next introduce a useful scale HAP (E, fn, ωn) of generalized Sobolev

spaces of almost periodic signals.

Definition 2.14. Let I ⊂ Z, let (ωn)n∈I ⊂ R be a sequence of distinct frequencies and let

(fn)n∈I ⊂ R such that fn ≥ 1 for each n ∈ I and (f−1
n )n∈I ∈ `2. The generalized Sobolev space

HAP (E, fn, ωn) of E−valued functions is defined as

{
u : R → E

∣∣ u(t) =
∑

n∈I

ane
iωnt for each t ∈ R and

∑

n∈I

|fn|2‖an‖2
E <∞ and (an)n∈I ⊂ E

}

(2.6)

The linear operations of addition and scalar multiplication on HAP (E, fn, ωn) are defined in the

obvious way.



CHAPTER 2. THE EXOGENOUS SYSTEM 24

Remark 2.15. In Definition 2.14 it is possible that the sequence (ωn)n∈I has also other points

of accumulation besides ±i∞, so that it need not consist of isolated points only. On the other

hand, the index set I may also be finite; in this case HAP (E, fn, ωn) is a finite-dimensional space

whenever dim(E) <∞.

Proposition 2.16. For all sequences (fn)n∈I and (ωn)n∈I as in Definition 2.14 we have that

HAP (E, fn, ωn) ⊂ AP (R, E). Moreover, HAP (E, fn, ωn) is a Banach space with the norm ‖u‖ =
√∑

n∈I‖û(n)‖2
E |fn|2. If E is a Hilbert space, then HAP (E, fn, ωn) is a Hilbert space with the inner

product 〈u, v〉 =
∑

n∈I〈û(n), v̂(n)〉E |fn|2. Here u(t) =
∑

n∈I û(n)eiωnt and v(t) =
∑

n∈I v̂(n)eiωnt

for every t ∈ R.

Proof. That HAP (E, fn, ωn) ⊂ AP (R, E) is evident because any function
∑

n∈I ane
iωn· in the

Sobolev space HAP (E, fn, ωn) can be uniformly approximated by trigonometric polynomials pN =
∑

|n|≤N ane
iωn·. Moreover, it is easy to see thatHAP (E, fn, ωn) is a normed space (or inner product

space if E is Hilbert space) with the norm ‖·‖. The completeness follows from the properties of the

so-called Fourier-Bohr transformation. In fact, HAP (E, fn, ωn) is the preimage of `2(E, fn, ωn),

the weighted (with weight (fn)n∈I) `
2−space of all vector-valued sequences on (ωn)n∈I , under the

Fourier-Bohr transformation, with the norm inherited from that `2−space; see [41] and also [2, 63]

for more details on the Fourier-Bohr transformation.

Clearly almost periodic functions in HAP (E, fn, ωn) have the useful property that the coef-

ficients in an approximation by trigonometric polynomials converge. Moreover, these generalized

Sobolev spaces are suitable for the state space of the exosystem (2.2):

Theorem 2.17. E = HAP (E, fn, ωn) s
↪→BUC(R, E) for all sequences (fn)n∈I and (ωn)n∈I as in

Definition 2.14.

Proof. Let u ∈ E be arbitrary, such that u(t) =
∑

n∈I û(n)eiωnt for all t ∈ R. Then by the Schwartz

inequality we have

sup
t∈R

‖u(t)‖E = sup
t∈R

∥∥∥∥∥
∑

n∈I

û(n)eiωnt

∥∥∥∥∥
E

≤
∑

n∈I

‖û(n)‖E (2.7)

≤
√∑

n∈I

‖û(n)‖2
E |f2

n|
√∑

n∈I

|f−2
n | = c‖u‖E (2.8)

for c =
√∑

n∈I |f−2
n | <∞. Hence E ↪→ BUC(R,C).
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It remains to show that the left translation operators TS(t)|E constitute an isometric C0−group

on E . The semigroup property is elementary to verify. Moreover, for every t ∈ R we have u(· +

t) =
∑

n∈I û(n)eiωn(·+t) =
∑

n∈I û(n)eiωnteiωn·. Then ‖TS(t)|Eu‖2
E =

∑
n∈I |fn|2‖û(n)eiωnt‖2

E =
∑

n∈I |fn|2‖û(n)‖2
E = ‖u‖2

E for each t ∈ R, so that the space E is invariant for TS(t)|BUC(R,E).

This also shows that TS(t)|E is an isometry for each t ∈ R.

We shall prove strong continuity of TS(t)|E to establish the result. To this end let ε > 0. Let

K = sup0≤t≤1,n∈I |eiωnt − 1|2. Then there exists N ∈ N such that
∑

|n|≥N‖û(n)‖2
E |fn|2 < ε2

2K and

there exists t0 > 0 such that for 0 < t < t0 it is true that sup|n|<N |eiωnt − 1|2 < ε2

2(1+‖u‖2
E)

. We

may then estimate for 0 < t < t0 as follows

‖TS(t)|Eu− u‖2
E =

∑

n∈I

|eiωnt − 1|2‖û(n)‖2
E |fn|2 (2.9)

=
∑

|n|<N

|eiωnt − 1|2‖û(n)‖2
E |fn|2 (2.10)

+
∑

|n|≥N

|eiωnt − 1|2‖û(n)‖2
E |fn|2 (2.11)

≤ sup
|n|<N

|eiωnt − 1|2
∑

|n|<N

‖û(n)‖2
E |fn|2 (2.12)

+K
∑

|n|≥N

‖û(n)‖2
E |fn|2 (2.13)

<
ε2

2
+
ε2

2
= ε2 (2.14)

This shows that TS(t)|E is strongly continuous and the proof is complete.

The following subclass of the spaces HAP (C, fn, ωn), consisting of p-periodic functions only, is

used as an illustrative example in many parts of this thesis.

Definition 2.18. Let I ⊂ Z, let p > 0 and let ωn = 2πn
p for all n ∈ I. Let (fn)n∈I ⊂ R such that

fn ≥ 1 for each n ∈ I and (f−1
n )n∈I ∈ `2. The Sobolev space H(fn, ωn) =

{
u : R → C

∣∣ u(t) =
∑

n∈I ane
iωnt for each t ∈ R,

∑
n∈I |fn|2|an|2 <∞ and (an)n∈I ⊂ C

}
.

Remark 2.19. If I = Z, γ > 1
2 , p > 0, ωn = 2πn

p and fn =
√

1 + ω2
n

γ
for each n ∈ Z,

then H(fn, ωn) reduces to the standard Sobolev space Hγ
per(0, p) of γ−differentiable p−periodic

functions [56].
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Remark 2.20. Whenever E is any one of the Sobolev spaces H(fn, ωn), the generator S|E of the

translation C0−group on E is a Riesz spectral operator in the sense of Curtain and Zwart [17]. A

Riesz spectral operator is a closed linear operator on a Hilbert space with the following properties:

It has simple eigenvalues {λn | n ∈ I }, I ⊂ Z, such that the closure {λn | n ∈ I } is totally

disconnected, and the corresponding eigenvectors (ψn)n∈I constitute a Riesz basis. In the case

of Sobolev spaces H(fn, ωn) the eigenvalues of S|E are just the complex frequencies iωn, n ∈ I,

and the Riesz basis (ψn)n∈I is in fact an orthonormal basis of weighted exponentials. Moreover,

[S|Eu](t) =
∑

n∈I iωn〈u, ψn〉ψn(t) =
∑

n∈I iωnû(n)eiωnt whenever u ∈ D(S|E).

2.2.2 The smallest closed translation invariant space containing a given

signal

In some practical situations it may be desirable to regulate some given individual signal f ∈ E

only. Hence an important question is: What is the simplest exosystem employing Proposition

2.3, Proposition 2.4 or Proposition 2.5 which is capable of generating at least the signal f? The

following result answers this question.

Proposition 2.21. Let f ∈ E s
↪→BUC(R, E). Then the restriction of TS(t)|E to the space Ef =

span{TS(t)|Ef | t ∈ R } (closure in E) constitutes an isometric C0−group. Moreover, Ef is the

smallest closed TS(t)|E−invariant subspace of E containing f .

Proof. It is clear that if we can establish that Ef is the smallest closed TS(t)|E−invariant subspace

of E containing f , then the restriction of TS(t)|E to the space Ef constitutes an isometric C0−group

(see Subsection I.5.12 in [28]). But it is evident by construction that Ef is a closed TS(t)|E−invariant

subspace contained in E such that f ∈ Ef . On the other hand, the space span{TS(t)|Ef | t ∈ R }

must be contained in every closed translation invariant subspace of E which contains f . Hence also

Ef = span{TS(t)f | t ∈ R } must be contained in every such space.

According to Proposition 2.21 the state space W of the exosystem (2.2) employing Proposition

2.3, Proposition 2.4 or Proposition 2.5 should be chosen to be Ef , if only f ∈ E is to be generated.

By the above result we can make the following useful convention.

Definition 2.22. We say that a given signal f ∈ E can be regulated if and only if all signals in

Ef can be regulated.
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For example, by this convention a given reference signal yref ∈ H can be asymptotically tracked

if and only if every reference signal in the function space Hyref
can be asymptotically tracked.

This convention is natural, especially so long as a linear exogenous system (2.2) is used: The

regulatability of a given signal is equivalent — by definition — to the regulatability of all signals

generated by the simplest exosystem (2.2) capable of generating the given signal. We point out that

if for some fixed Q ∈ L(W,H) and w ∈ W some exosystem (2.2) generates yref = QTS(·)w ∈ H,

then by only varying the initial state w ∈W , the same exosystem can always generate at least the

reference functions in span{TS(t)|Hyref | t ∈ R } which is always a dense subspace of Hyref
. On

the other hand, if this exosystem is also observable in the sense that QTS(·)wn → f ∈ H implies

wn → w ∈ W , then it can generate all reference functions in Hyref
. In fact, in this case every

y ∈ Hyref
is of the form QTS(·)w for some w ∈W .

Remark 2.23. Although the Banach space E need not in general be separable, for all f ∈ E the

space Ef of Proposition 2.21 is always separable (cf. Proposition 4.3.11 in [2]). This feature may

be important in some applications (see e.g. Theorem 4.22).

2.2.3 Signals having a prespecified spectral content

Some interesting and useful function spaces E s
↪→BUC(R, E) can also be constructed by restricting

the spectral properties of bounded uniformly continuous functions. In order to do this, we shall

need the concept of Carleman spectrum [2, 38, 90]:

Definition 2.24. The Carleman transform of an arbitrary f ∈ BUC(R, E) is defined by

f̃(λ) =





∫ ∞
0
e−λtf(t)dt, <(λ) > 0

−
∫ 0

−∞ e−λtf(t)dt, <(λ) < 0
(2.15)

A point λ0 ∈ R is called regular point of f if f̃ can be continued analytically into a neighbourhood

of iλ0. The complement in R of the set of regular points is called the Carleman spectrum of f and

it is denoted by spC(f).

We remark that spC(·) is a subset of R, but in this thesis we shall also employ its transformation

to iR which is induced by the map λ→ iλ.

Remark 2.25. By Lemma 4.6.8 in [2] for every f ∈ BUC(R, E) we have that ispC(f) = σ(S|Ef
).

Here Ef is as in Proposition 2.21 with closure taken in the sup-norm.
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Proposition 2.26. Let Λ ⊂ R be a closed set. Then E = Λ(R, E) = { f ∈ BUC(R, E) | spC(f) ⊂

Λ }, is a closed translation invariant subspace of BUC(R, E) and TS(t)|E constitutes an isometric

C0−group on E.

Proof. This result is just Corollary 1.3 in [38].

Example 2.27. If Λ = {ωn | n ∈ I } is a finite set of distinct frequencies, then Λ(R, E) consists

of trigonometric polynomials only (cf. Theorem 4.8.7 and Corollary 4.5.9 in [2]).

Example 2.28. If Λ ⊂ R is a closed countable set and if E does not contain an isomorphic copy

of c0 (the Banach space of numerical sequences converging to 0)5, then Λ(R, E) ⊂ AP (R, E) (see

e.g. Example 4 in [90]).

Remark 2.29. The spaces Λ(R, E) are useful in the construction of approximations for bounded

uniformly continuous functions R → E. In fact, by Remark 2.25, Proposition A.1 and Lemma

A.8, for every f ∈ E s
↪→BUC(R, E) and every ε > 0 there exists n ∈ N and fn ∈ E such that

spC(fn) ⊂ [−n, n] and ‖f − fn‖ < ε. Furthermore, according to Lemma A.8, this approximation

fn of f can be generated by an exosystem (2.2) where the operator S is bounded (although in

general W is still infinite-dimensional). As we shall see in the subsequent chapters, the output

regulation problems that we study are considerably easier to solve if S is a bounded operator.

In practice such approximations with bounded operators S can be constructed via convolutions

by suitable summability kernels; see [58] and Proposition A.9. In the scalar case (E = C), for

example, spC(µK(µx) ∗ f) ⊂ [−µ, µ] for each µ > 0. Here K denotes the Fejér kernel (see e.g. [58]

p. 159).

5This is the case, for example, whenever E is reflexive [2].



Chapter 3

Feedforward output regulation

In this chapter we shall introduce and completely solve a relatively simple feedforward output

regulation problem (FRP) using the exosystem (2.2). The simplicity of this problem is based on

the open loop structure of the controller: Assuming that the plant has been appropriately stabilized

by a state feedback, our goal is to find an input to the plant (i.e. a feedforward control) such that

its steady state output is equal to a prespecified reference function, regardless of the disturbance.

Although it is well-known that such feedforward controllers do not in general lead to a robust

(i.e. structurally stable) design, they have received noticeable attention in the literature during

the past three decades. Besides the aforementioned simplicity, a key motivation for their study is

the observation that more complex — and more realistic — error feedback regulation problems can

often be formulated as feedforward regulation problems for certain extended systems (see Chapter

4 for details). Moreover, there is some practical benefit in the use of feedforward controllers:

Control action is immediately taken with the onset of a disturbance, whereas with error feedback

controllers control action is not taken until there is a change in the outputs of the system [20].

Finally, we are interested in feedforward controllers because, in contrast to the classical repetitive

control scheme (see Chapter 1), it turns out that for such open loop controllers the stabilization of

the closed loop system is not an overwhelming problem even if the exogenous signals were general

p−periodic functions.

For finite-dimensional linear systems, feedforward output regulation problems were studied in

the 1970s e.g. by Davison, Francis, Wonham and others (see e.g. [20, 22, 25, 29] and the references

therein). In particular, the regulator equations characterizing the solvability of the feedforward

29
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regulation problem for appropriately stabilized finite-dimensional plants were first1 presented by

Francis in [29]. Similar methods were used by Davison in [25] in the construction of feedforward

controllers for output regulation purposes. In addition to this, the effect of transmission zeros on

the existence of regulating feedforward controllers were studied in [25]. Roughly stated, in the case

of stable finite-dimensional plants and (unstable) finite-dimensional exosystems (2.1), a regulating

feedforward controller exists provided that there are no transmission zeros on the spectrum of

the system operator of the exosystem. For plants (1.1) with dim(H) < ∞ this, by definition,

means that the transfer function H(s) of the plant should be invertible for every s ∈ σ(S), i.e.

det(H(s)) 6= 0 for all s ∈ σ(S) [12].

Many authors have also constructed feedforward controllers for infinite-dimensional systems and

finite-dimensional exosystems, e.g. Pohjolainen [72] and Byrnes et al. [12]. The finite-dimensional

feedforward regulation theory of Davison [20, 22] was generalized in [72] for exponentially stable

systems, under the additional assumption that the system operator A of the plant generates an

analytic C0−semigroup. Subsequently, in [12] Byrnes et al. generalized the finite-dimensional feed-

forward regulation theory of Francis [29] for infinite-dimensional plants having zero feedthrough,

i.e. D = 0. For exponentially stabilizable systems they proved a complete characterization for the

existence (and construction) of a regulating feedforward controller in terms of solvability of the

regulator equations. Furthermore, for square plants Byrnes et al. [12] established that under the

exponential stabilizability assumption (and under certain additional assumptions about the spectra

σ(A) and σ(S)) a feedforward output regulation problem is solvable regardless of the choice of the

matrices P and Q in the exosystem (2.1) if and only if there are no transmission zeros on σ(S).

In this chapter we shall generalize the feedforward regulation theory of infinite-dimensional sys-

tems and finite-dimensional exosystems in [12, 72] to allow for bounded uniformly continuous re-

ference/disturbance signals generated by the possibly infinite-dimensional exogenous system (2.2).

We shall also not require the pair (A,B) in the plant to be exponentially stabilizable; in certain

cases it is actually sufficient that the pair (A,B) is only weakly stabilizable. It should be pointed

out, however, that Pohjolainen [72] allows for a degree of unboundedness in the operators B and

C; this is not the case here.

We next review the contents of this chapter in more detail, and we shall more precisely indicate

1It should be pointed out, though, that the key Lemma 1 in [29] which leads to the regulator equations is due to

W. M. Wonham.
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the respective contributions of this thesis.

Section 3.1: We shall define the feedforward regulation problem FRP. This is the same problem as in [12],

except that we treat general bounded uniformly continuous reference/disturbance functions

under weaker stabilizability assumptions, and we allow for D 6= 0 in the plant.

Section 3.2: We shall show that if the pair (A,B) in the plant is strongly stabilizable using K ∈ L(Z,H)

and if the regulator equations (3.10) due to Francis [29] (see also [12]) have a solution (Π,Γ),

then the FRP can be solved. Morever, the control law u(t) = Kz(t) + (Γ −KΠ)w(t) solves

the FRP. The main result of this section, Theorem 3.6, was essentially proved for finite-

dimensional exosystems (2.1) in Theorem IV.1 of [12] under the additional assumptions that

(A,B) is exponentially stabilizable and D = 0. The results of this section are based on those

in [46, 51, 54]. We point out that the actual solution of the regulator equations (3.10) is

studied later in this thesis; see Chapter 8 and Section 3.5.

Section 3.3: We shall investigate whether the solvability of the regulator equations (3.10) is also necessary

for the solvability of the FRP. In order to do this, we shall first define regularity of an operator

∆ ∈ L(W,Z) for a C0−semigroup TA(t) and characterize this property of ∆ by the solvability

of the Sylvester operator equation ΠS = AΠ + ∆ in D(S). Thereafter, we shall define, and

present examples of, exosystems (2.2) which generate so called admissible reference signals.

Roughly stated, if the exosystem (2.2) generates admissible reference signals, then we do not

try to asymptotically track signals which vanish at +∞. Our main result (Theorem 3.16)

is: If a control law u(t) = Kz(t) + Lw(t) solves the FRP, if BL + P ∈ L(W,Z) is regular

for TA+BK(t) and if the exosystem (2.2) generates admissible reference signals, then the

regulator equations (3.10) necessarily have a solution (Π,Γ) and L = Γ−KΠ. If A+BK also

generates an exponentially stable C0−semigroup, then the regularity of BL+P for TA+BK(t)

need not be explicitly required. If, in addition, output regulation is exponentially fast (i.e.

‖e(t)‖ decays exponentially), then the exosystem need not even generate admissible reference

signals. Together with the results of Section 3.2 these results provide various generalizations

for Theorem IV.1 in [12] for bounded uniformly continuous reference/disturbance signals

and plants which are not necessarily exponentially stabilizable. Moreover, D may be nonzero

here. The results of this section are based on those in [41, 42, 49], and they completely

describe the extent to which it is necessary and sufficient for the solvability of the FRP to
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be able to solve the regulator equations (3.10).

Section 3.4: As a case study we shall consider regulation of a single given function f ∈ E s
↪→BUC(R, E)

for certain Banach spaces E and E as in Chapter 2. According to the convention made in

Definition 2.22 this amounts to solving the FRP for W = Ef = span{TS(t)|Ef | t ∈ R }.

We are then regulating all exogenous signals — namely those in Ef — generated by the

simplest exosystem (2.2) which can also generate the given signal f . While the elements of

the function space Ef are easy to work out if f is a trigonometric polynomial, this is not

necessarily the case if we only know that f ∈ BUC(R, E). In particular, Ef may in general

be an infinite-dimensional space even though it is the closure of spans of translates of one

single signal f only. The purpose of this case study is to characterize elements of the spaces

Ef using knowledge of f . This information can be used to find out what other signals —

besides f — can also necessarily be regulated. Although our methods employ fairly standard

vector-valued harmonic analysis, they seem to be entirely new in control literature. The

results of this section are based on those in [46].

Section 3.5: In this case study section we shall focus on a concrete application, namely the construction

of a feedforward control law which achieves the asymptotic tracking of p−periodic reference

signals in the (generalized) Sobolev spacesH(fn, ωn) introduced in Chapter 2. We shall apply

Proposition 2.3 for W = H = H(fn, ωn), and solve the corresponding FRP for exponentially

stabilizable SISO plants which do not have transmission zeros on σ(S|H) = { iωn | n ∈

I }. By making the formal method presented in [10, 11] mathematically rigorous we shall

first explicitly solve the regulator equations (3.10). This allows us to explicitly resolve the

regulating control law (in particular the operator L) in terms of the solution operators Π and

Γ of the regulator equations (3.10). We shall then derive a verifiable condition (3.55) which

completely characterizes both the solvability of the FRP and those periodic functions which a

given exponentially stabilizable plant can asymptotically track. Our results demonstrate an

interesting new phenomenon which is not present in the case of finite-dimensional exosystems

[12, 23, 29, 35, 72]: The nonexistence of transmission zeros on σ(S) is not enough to guarantee

the solvability of the output regulation problem. In fact, the reference functions must also be

smooth enough and the high frequency damping of the plant must also be modest enough in

order for output regulation to be possible. The necessary and sufficient smoothness-damping
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combination is completely characterized by the condition (3.55). The results of this section

are contained in [54].

Section 3.6: As shown in Section 3.5, the nonexistence of transmission zeros on σ(S) is not always sufficient

to guarantee the solvability of the FRP, unless W is finite-dimensional [12]. As regards the

necessity of nonexistence of zeros of the stabilized feedforward control system on σ(S) for

asymptotic tracking (using Proposition 2.3) of reference signals in some given Banach space

H ↪→ BUC(R,H), in this case study section we shall prove the following results under

Assumption 3.42:

– If yref ∈ AP (R,H) can be regulated (i.e. if Hyref
can be regulated), then the stabi-

lized feedforward control system does not have zeros on the Bohr spectrum of yref (cf.

Theorem 3.46).

– If yref ∈ BUC(R,H) is ergodic at λ ∈ R, with Mλyref 6= 0, and if yref can be regulated

(i.e. if Hyref
can be regulated), then the stabilized feedforward control system does not

have a zero at iλ (cf. Theorem 3.48).

– If yref ∈ BUC(R,H) can be regulated (i.e. if Hyref
can be regulated), then the stabi-

lized feedforward control system does not have a zero at iλ whenever λ ∈ spC(yref ) is

an isolated point (cf. Theorem 3.49).

– If for some space H the FRP is solvable, then the stabilized feedforward control system

does not have zeros on the point spectrum of S|H (cf. Theorem 3.47).

The above results have been developed in [46], and they are partial2 generalizations of those in

Section V of [12], because the neutrally stable finite-dimensional linear exosystems employed

in [12] always generate almost periodic (and hence also totally ergodic; see [2]) reference

signals. For SISO systems the results of this section fully generalize those in Section V of

[12]. We conclude Section 3.6 with a discussion of the limitations of the above results. This

discussion illustrates the inherent complexity of the relation between nonexistence of system

zeros and asymptotic tracking of reference signals, in the case of an infinite-dimensional

exosystem (2.2).

2The essential differences are the assumption that there are no disturbances and the use of a different, perhaps

more natural notion of a system zero.
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Section 3.7: We shall present some examples of feedforward output regulation in the setup of Proposition

2.3. The examples are mostly as in the papers [49, 54].

3.1 The feedforward regulation problem FRP

In this section we shall define the feedforward regulation problem FRP. Since output regulation

means closed loop stability and asymptotic tracking of reference signals under disturbances, in the

case of feedforward controllers we are led to study the following problem.

Definition 3.1 (FRP). The task in the feedforward regulation problem is to find operators K ∈

L(Z,H) and L ∈ L(W,H) having the following properties.

1. The pair (A,B) is strongly stabilizable using K, i.e. A + BK generates a strongly stable

C0−semigroup TA+BK(t) on Z.

2. As the control law u(t) = Kz(t) + Lw(t) is applied to the plant, in the extended system on

Z ×W described (in the mild sense) by the equations

ż(t) = (A+BK)z(t) + (BL+ P )w(t), t ≥ 0 (3.1a)

ẇ(t) = Sw(t), t ∈ R (3.1b)

the tracking error e(t) = y(t) − yref (t) = (C + DK)z(t) + (DL − Q)w(t) → 0 as t → ∞

regardless of the initial conditions z(0) ∈ Z and w(0) ∈W .

Remark 3.2. It is implicitly assumed in Definition 3.1 that the free parameters W,P,Q and S of

the exogenous system (2.2) are fixed. However, the initial state w(0) ∈ W of the exosystem need

not be fixed.

Remark 3.3. If some bounded operators K and L solve the FRP in the case that the exosys-

tem’s parameters are fixed as in Proposition 2.3, then all reference signals in the function space

H s
↪→BUC(R,H) can be asymptotically tracked in the presence of certain disturbances. Moreover,

by construction the control law u(t) = Kz(t) + Lw(t) = Kz(t) + LTS(t)|Hyref achieves asymp-

totic tracking of yref ∈ H. Similarly, the solvability of the FRP in the case that the exosystem’s

parameters are chosen as in Proposition 2.4 implies that all disturbance signals in Z s
↪→BUC(R, Z)

can be asymptotically rejected and certain reference signals can be tracked. Again by construction
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the control law u(t) = Kz(t) + Lw(t) = Kz(t) + LTS(t)|ZUdist achieves asymptotic rejection of

Udist ∈ Z. Finally, the solvability of the FRP in the case that the exosystem’s parameters are

chosen as in Proposition 2.5 implies that all reference signals in H can be asymptotically tracked

and all disturbance signals in Z can be asymptotically rejected. Moreover, by construction the

control law u(t) = Kz(t) +Lw(t) = Kz(t) +L
( TS(t)|Hyref

TS(t)|ZUdist

)
regulates any given exogenous signals

yref ∈ H and Udist ∈ Z

Remark 3.4. In Definition 3.1 we do not require exponential stabilizability of the pair (A,B) in

the FRP, as was done in [12, 72].

3.2 Sufficient conditions for the solvability of the FRP

In this section we shall show that if the regulator equations (3.10) can be solved, and if the pair

(A,B) can be strongly stabilized, then the FRP can be solved. Moreover, we shall explicitly

construct a control law u(t) = Kz(t) + Lw(t) which solves the FRP in this case. We shall need

the following lemma, which turns out to be of fundamental importance also later on in this thesis.

Lemma 3.5. Let X1 and X2 be Banach spaces, let A1 generate a C0−semigroup TA1
(t) on X1, let

A2 generate a C0−semigroup TA2
(t) on X2 and let A3 ∈ L(X2,X1). If there exists Π ∈ L(X2,X1)

such that Π(D(A2)) ⊂ D(A1) and Π satisfies the Sylvester type operator equation ΠA2 = A1Π+A3

in D(A2), then TA1
(t)x1(0)+

∫ t

0
TA1

(t−s)A3TA2
(s)x2(0)ds = ΠTA2

(t)x2(0)+TA1
(t)[x1(0)−Πx2(0)]

for all t ≥ 0, x1(0) ∈ X1 and x2(0) ∈ X2.

Proof. Since by our assumption A3 = ΠA2 −A1Π in D(A2), for each x2(0) ∈ D(A2) we have

∫ t

0

TA1
(t− s)A3TA2

(s)x2(0)ds =

∫ t

0

TA1
(t− s)

[
ΠA2 −A1Π]TA2

(s)x2(0)ds (3.2)

=

∫ t

0

d

ds
TA1

(t− s)ΠTA2
(s)x2(0)ds (3.3)

= ΠTA2
(t)x2(0) − TA1

(t)Πx2(0) ∀t ≥ 0 (3.4)

because D(A2) is invariant for TA2
(t). Since D(A2) is also dense in X2, we can extend the equality

∫ t

0

TA1
(t− s)A3TA2

(s)x2(0)ds = ΠTA2
(t)x2(0) − TA1

(t)Πx2(0) ∀t ≥ 0 (3.5)

to hold for every x2(0) ∈ X2. This is because for every x2(0) ∈ X2 there exists a sequence

(xk)k≥0 ⊂ D(A2) such that ‖xk − x2(0)‖X2
→ 0 as k → ∞. Now for every t ≥ 0 and every ε > 0
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there exists n ∈ N such that
∥∥∥∥
∫ t

0

TA1
(t− s)A3TA2

(s)x2(0)ds−
[
ΠTA2

(t)x2(0) − TA1
(t)Πx2(0)

]∥∥∥∥ ≤ (3.6)

∥∥∥∥
∫ t

0

TA1
(t− s)A3TA2

(s)x2(0)ds−
∫ t

0

TA1
(t− s)A3TA2

(s)xnds

∥∥∥∥ + (3.7)

∥∥∥∥
∫ t

0

TA1
(t− s)A3TA2

(s)xnds−
[
ΠTA2

(t)xn − TA1
(t)Πxn

]∥∥∥∥+ (3.8)

∥∥[
ΠTA2

(t)xn − TA1
(t)Πxn

]
−

[
ΠTA2

(t)x2(0) − TA1
(t)Πx2(0)

]∥∥ < ε (3.9)

The result now follows immediately.

Our main result in this section is the following.

Theorem 3.6. Assume that the pair (A,B) is strongly stabilizable using K ∈ L(H,Z). If there

exist Π ∈ L(W,Z) and Γ ∈ L(W,H) such that Π(D(S)) ⊂ D(A) and the following regulator

equations are satisfied:

AΠ +BΓ + P = ΠS in D(S) (3.10a)

CΠ +DΓ = Q in W (3.10b)

then the control law u(t) = Kz(t) + (Γ −KΠ)w(t) solves the FRP.

Before proving this result, we hasten to advice the reader that the actual solution of the

regulator equations (3.10) is deferred to Chapter 8, because those results are relatively independent

of any particular output regulation problem that we study in this thesis. As we shall see, similar

regulator equations also arise in other output regulation problems. Nonetheless, the reader is

invited to take a look at the results of Chapter 8 at any time.

Proof of Theorem 3.6. Since by assumption A+BK generates the strongly stable C0−semigroup

TA+BK(t), we only need to verify the condition 2 in Definition 3.1. Let L = Γ −KΠ ∈ L(W,H).

Since ΠS = (A+BK)Π +BL+ P in D(S), by Lemma 3.5 we have

∫ t

0

TA+BK(t− τ)(BL+ P )TS(τ)w(0)dτ = ΠTS(t)w(0) − TA+BK(t)Πw(0) (3.11)

for every w(0) ∈ W and every t ≥ 0. Consider then the composite operator A on the extended

state space Z ×W (see (3.1)) defined by

A =


A+BK BL+ P

0 S


 (3.12)
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with D(A) = D(A + BK) × D(S). Since A + BK generates the C0−semigroup TA+BK(t) on Z

and S generates the C0-group TS(t) on W , it is clear that A generates a C0−semigroup TA(t) on

Z ×W , because BL+ P ∈ L(W,Z) (see also [17] Lemma 3.2.2). An easy calculation reveals that

this semigroup is given by

TA(t) =


TA+BK(t)

∫ t

0
TA+BK(t− τ)(BL+ P )TS(τ)dτ

0 TS(t)


 (3.13)

=


TA+BK(t) ΠTS(t) − TA+BK(t)Π

0 TS(t)


 (3.14)

Let z(0) = z0 ∈ Z and w(0) = w0 ∈W be arbitrary. Then

TA(t)
(

z0
w0

)
=


TA+BK(t)(z0 − Πw0) + ΠTS(t)w0

TS(t)w0


 (3.15)

Since by (3.10b) we have (C +DK)Π +DL−Q = CΠ +DΓ −Q = 0, the explicit expression for

the tracking error e(t) is as follows:

e(t) = (C +DK)TA+BK(t)(z0 − Πw0) + (CΠ +DΓ −Q)TS(t)w0 (3.16)

= (C +DK)TA+BK(t)(z0 − Πw0) ∀t ≥ 0 (3.17)

Since TA+BK(t) is strongly stable and C +DK ∈ L(Z,H), we have that e(t) → 0 as t→ ∞. This

shows that the asymptotic tracking/rejection condition of Definition 3.1 is also satisfied. The proof

is then complete.

Remark 3.7. In the case that H = CM for some M ∈ N it is actually sufficient in Theorem 3.6

for the asymptotic tracking/rejection to occur that the pair (A,B) is merely weakly stabilizable

by K (i.e. that limt→∞ f(TA+BK(t)z) = 0 for all f ∈ L(Z,C) and all z ∈ Z) and that Π and Γ

solve the the regulator equations (3.10). In this case C +DK ∈ L(Z,CM ) and so for every z ∈ Z

limt→∞(C +DK)TA+BK(t)z = 0, as is easily seen by utilizing weak stability componentwise. The

conclusion follows via equations (3.16)-(3.17).

Remark 3.8. In order to be able to asymptotically track one given reference function yref ∈

H s
↪→BUC(R,H) in the case that the pair (A,B) is strongly stabilizable, by Proposition 2.3 and

the proof of Theorem 3.6 it is clearly sufficient to find operators Π ∈ L(H, Z) and Γ ∈ L(H,H) for
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which

AΠ +BΓ + P = ΠS|H in D(S|H) (3.18a)

CΠ +DΓ = δ0 in {TS(t)|Hyref | t ∈ R } (3.18b)

However, by continuity and linearity the regulator equation CΠ+DΓ = δ0 is then actually satisfied

in Hyref
= span{TS(t)|Hyref | t ∈ R }. Since in addition D(S|Hyref

) ⊂ D(S|H), all reference sig-

nals in Hyref
can be asymptotically tracked by Theorem 3.6. This observation provides additional

justification for the convention made Definition 2.22.

We again emphasize that the reader who wishes to learn about the actual solution of the

regulator equations (3.10) is invited to take a look at Chapter 8 at any time. That part of this

thesis is relatively independent of the other parts and it addresses the solvability of the equations

(3.10) in general. On the other hand, the reader is adviced that the regulator equations (3.10) will

be solved shortly in Section 3.5 for a simple special case of periodic signals and SISO systems in

an example-like fashion. Before doing that, however, we shall discuss necessity of solvability of the

regulator equations (3.10) for output regulation.

3.3 Necessary conditions for the solvability of the FRP

In Section 3.2 we proved that if strong stabilizability of (A,B) can be established then the output

regulation problem FRP is solvable provided that the regulator equations (3.10) are solvable. In

this section we discuss a converse question: Is it necessary to be able to solve the regulator equations

(3.10) in order to be able to solve the corresponding output regulation problem FRP? Although it

is well-known that Theorem 3.6 has a converse provided that the exosystem is finite-dimensional

and the plant is also exponentially stabilizable [12], the question as to whether or not such a

converse holds in the more general setting of Definition 3.1 turns out to be more difficult to answer

decisively. There are certain cases in which a converse of Theorem 3.6 does hold: If the FRP is

solvable and if certain additional assumptions hold, then the regulator equations (3.10) must have

a solution. In the present section we shall give such results.

In order to study the necessity of solvability of the regulator equations (3.10) for the solvability

of the FRP we have to identify the effect of both regulator equations on the dynamical behaviour of

the closed loop system (3.1). Fortunately, this has already been done in the proof of Theorem 3.6



CHAPTER 3. FEEDFORWARD OUTPUT REGULATION 39

under the assumption that A+BK generates a strongly stable C0−semigroup and L = Γ −KΠ.

In particular, the first regulator equation ΠS = AΠ + BΓ + P = (A + BK)Π + BL + P in D(S)

guarantees that the state z(t) of the controlled and disturbed plant can be decomposed into a sum

of two parts, one of which decays to 0 as t→ ∞ and the other can be generated by the exogenous

system (2.2) by an appropriate choice of its free parameters (see equation (3.15)). On the other

hand, the second regulator equation Q = CΠ + DΓ = (C + DK)Π + DL in W guarantees that

the unstable part of this decomposition of z(t) cancels out the effect of the desired output in the

tracking error e(t) (see equations (3.16)-(3.17)).

In what follows we shall employ the concept of a regular operator ∆ ∈ L(W,Z) to formalize

some of the above ideas (see Definition 3.9). This allows for a complete characterization of the

solvability of the Sylvester operator equation ΠS = AΠ + ∆ in D(S). The solvability of the

second regulator equation is subsequently obtained by imposing certain auxiliary conditions for

the reference signals or the speed of output regulation.

Definition 3.9. An operator ∆ ∈ L(W,Z) is said to be regular for the semigroup TA(t) if there

exists Π ∈ L(W,Z) such that Π(D(S)) ⊂ D(A) and such that for every w ∈ W the function

t → z(t) = ΠTS(t)w is a mild solution of the differential equation ż(t) = Az(t) + ∆TS(t)w on the

whole real line, i.e. z satisfies

z(t) = TA(t− s)z(s) +

∫ t

s

TA(t− τ)∆TS(τ)wdτ ∀t ≥ s (3.19)

Remark 3.10. In (3.19) t and s need not be nonnegative. Moreover, z(t) = ΠTS(t)w, with

w ∈W , need not be the only mild solution of the differential equation ż(t) = Az(t) + ∆TS(t)w on

the real line.

Remark 3.11. If an operator ∆ ∈ L(W,Z) is regular for TA(t), then some mild solution of the

differential equation ż(t) = Az(t) + ∆TS(t)w on the whole line can always be generated using the

exosystem (2.2) by an appropriate choice of the free parameters. For example, if W = Z is a closed

translation invariant and operator invariant3 subspace of BUC(R, Z) and if ∆ = δ0 ∈ L(Z, Z) is

regular for TA(t), then for all f = ∆TS(·)|Zf ∈ Z there exists a mild solution ΠTS(·)|Zf ∈ Z

of the differential equation ż(t) = Az(t) + f(t) on the real line. If this mild solution in Z is also

unique, then the space Z is sometimes called regularly admissible in the literature, see e.g. [90].

3Z is operator invariant if for all f ∈ Z and all P ∈ L(Z, Z) the function t → PTS(t)|Zf ∈ Z [90].
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Lemma 3.12 below is crucial for the development of the main results in this section. Observe

that we do have to assume any stability properties for TA(t) in it.

Lemma 3.12. The operator equation ΠS = AΠ + ∆ in D(S) has a solution Π ∈ L(W,Z) if and

only if ∆ ∈ L(W,Z) is regular for TA(t).

Proof. Let Π ∈ L(W,Z) such that Π(D(S)) ⊂ D(A) and ΠS = AΠ + ∆ in D(S). Let w ∈ W

be arbitrary and set z(t) = ΠTS(t)w. Then it is easy to see using Lemma 3.5 and an elementary

change of variables that

∫ t

s

TA(t− τ)∆TS(τ)wdτ = ΠTS(t)w − TA(t− s)ΠTS(s)w (3.20)

for every w ∈W and every t ≥ s. Hence for every t ≥ s, we have

z(t) = TA(t− s)ΠTS(s)w + ΠTS(t)w − TA(t− s)ΠTS(s)w (3.21)

= TA(t− s)z(s) +

∫ t

s

TA(t− τ)∆TS(τ)wdτ (3.22)

so that z(t) is a mild solution of the differential equation ż(t) = Az(t) + ∆TS(t)w on the whole

real line. In other words, ∆ is regular for TA(t).

Conversely, suppose that there exists Π ∈ L(W,Z) such that Π(D(S)) ⊂ D(A) and such that

for every w ∈ W the function t → z(t) = ΠTS(t)w is a mild solution of the differential equation

ż(t) = Az(t) + ∆TS(t)w on the whole real line. Let w ∈ D(S). Then since Π(D(S)) ⊂ D(A) and

since D(S) is invariant for TS(t), the function t→ ∆TS(t)w is continuously differentiable, and we

can differentiate both sides of the identity

ΠTS(t)w = TA(t)Πw +

∫ t

0

TA(t− τ)∆TS(τ)wdτ, ∀t ≥ 0 (3.23)

(cf. Proposition 1.3.6 in [2]) and set t = 0 to obtain ΠS = AΠ + ∆ in D(S). The proof is

complete.

Remark 3.13. If TA(t) is exponentially stable, then by Corollary 8 in [88] (see also Section A.2),

the operator equation ΠS = AΠ + ∆ in D(S) has a (unique) solution Π ∈ L(W,Z) for every

∆ ∈ L(W,Z). Consequently, every operator ∆ ∈ L(W,Z) is regular for an exponentially stable

C0−semigroup.

One way to obtain the necessity of solvability of the regulator equations (3.10) for the solvability

of the FRP is to restrict the class of reference signals as follows.
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Definition 3.14. The exogenous system (2.2) generates admissible reference signals if for every

w ∈ W and each Q ∈ L(W,H) it is true that QTS(·)w ∈ C+
0 (R,H) = { f ∈ BUC(R,H) | f(t) →

0 as t→ ∞} only if Qw = 0.

For example, if the operator S in (2.2) generates a periodic C0−group TS(t) on W , i.e. TS(t+

p) = TS(t) for each t ∈ R and some p > 0, then the exogenous system (2.2) generates admissible

reference signals. In fact, the function t→ QTS(t)w is p−periodic for each Q ∈ L(W,H) and every

w ∈W . Consequently, Qw = limn→∞QT (np)w = 0 for all Q ∈ L(W,H) and all w ∈W such that

QTS(·)w ∈ C+
0 (R,H). More generally, we have the following:

Proposition 3.15. The exogenous system (2.2) generates admissible reference signals provided

that at least one of the four conditions below holds.

1. The reference signals QTS(·)w are in AP (R,H) for all Q ∈ L(W,H) and all w ∈W .

2. The spectrum σ(S) is countable and H does not contain a closed subspace which is isomorphic

to c0 (the space of sequences converging to 0 with the sup-norm).

3. The spectrum σ(S) is discrete.

4. dim(W ) <∞.

Proof. It can be shown (see e.g. [2] p. 290) that for every f ∈ AP (R,H) there exists a sequence

(tn)n∈N ⊂ R such that tn → ∞ as n→ ∞, and ‖f(tn + s)− f(s)‖ ≤ 1
n for all n ∈ N and all s ∈ R.

Suppose that QTS(·)w ∈ C+
0 (R,H) for some Q ∈ L(W,H) and some w ∈W . That Qw = 0 follows

from the estimates ‖Qw‖ ≤ ‖QTS(0)w −QTS(tn)w‖ + ‖QTS(tn)w‖ → 0 as n→ ∞.

Next suppose that σ(S) is countable and that H does not contain a closed subspace which is

isomorphic to c0. Then for all Q ∈ L(W,H) and all w ∈W the function QTS(·)w ∈ BUC(R,H) is

such that its Carleman spectrum spC(QTS(·)w) satisfies ispC(QTS(·)w) ⊂ σ(S) (cf. Remark 4.6.2

in [2]). Consequently also spC(QTS(·)w) is countable. Hence by Theorem 4.6.3 in [2] the function

QTS(·)w ∈ AP (R,H). The conclusion now follows as in the above.

If σ(S) is a discrete set, then by the above reasoning so is always spC(QTS(·)w). Consequently,

by Theorem 4.8.7 in [2], in this case QTS(·)w ∈ AP (R,H) and so the conclusion follows.

Finally, if dim(W ) < ∞, then since S generates an isometric C0−group on W , σ(S) must be

discrete. The proof is complete.
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Restricting our attention to such exosystems (2.2) that only generate admissible reference

signals essentially means that we do not want to asymptotically track reference functions vanishing

at +∞. This assumption is natural and quite common in output regulation literature (see e.g.

[12, 29]). It is obvious that the control u(t) = Kz(t) would suffice for the asymptotic tracking of

vanishing signals, provided that A+BK generates a strongly stable C0−semigroup on Z. We point

out, however, that in contrast to the case dim(W ) < ∞, if dim(W ) = ∞, then the assumption

σ(S) ⊂ iR alone does not guarantee that exosystem (2.2) generates admissible reference signals.

For example, letW = BUC(R,C) and S = S|BUC(R,C) as in Proposition 2.3. Then every compactly

supported infinitely smooth function f is in W ∩C+
0 (R,C) while σ(S|BUC(R,C)) = iR. In this case

δ0TS(t)f = f(t) → 0 as t→ ∞ but δ0f = f(0) 6= 0 is possible.

We are now ready to present some conditions under which the solvability of the regulator

equations (3.10) is necessary for the solvability of the FRP.

Theorem 3.16. Assume that the exosystem (2.2) generates admissible reference signals. If the

FRP is solvable for some control law u(t) = Kz(t)+Lw(t) such that the operator BL+P ∈ L(W,Z)

is regular for the semigroup TA+BK(t), then there exist Π ∈ L(W,Z) and Γ ∈ L(W,H) such that

Π(D(S)) ⊂ D(A), L = Γ −KΠ and the regulator equations (3.10) are satisfied.

Proof. Since BL+ P is regular for TA+BK(t), by Lemma 3.12 there exists Π ∈ L(W,Z) such that

Π(D(S)) ⊂ D(A + BK) = D(A) and ΠS = (A + BK)Π + BL + P in D(S). Let Γ = L +KΠ ∈

L(W,H). Then Π and Γ solve the first regulator equation (3.10a).

We next show that also the second regulator equation is satisfied. Lemma 3.5 shows that since

ΠS = (A+BK)Π +BL+ P in D(S), we have for every w ∈W and every t ≥ 0 that

∫ t

0

TA+BK(t− τ)(BL+ P )TS(τ)wdτ = ΠTS(t)w − TA+BK(t)Πw (3.24)

Let w(0) = w ∈ W be arbitrary and take z(0) = Πw ∈ Z. Then the corresponding tracking error

e(t) is given by

e(t) = (C +DK)TA+BK(t)[z(0) − Πw] + [(C +DK)Π +DL−Q]TS(t)w (3.25)

= [(C +DK)Π +DL−Q]TS(t)w (3.26)

= [CΠ +DΓ −Q]TS(t)w, ∀t ≥ 0 (3.27)

Now [CΠ +DΓ − Q]TS(·)w ∈ C+
0 (R,H) because the FRP is solvable. Since the exosystem (2.2)

generates admissible reference signals and since CΠ + DΓ − Q ∈ L(W,H), we must have that
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CΠw + DΓw − Qw = 0. As w ∈ W is arbitrary, also the second regulator equation (3.10b) is

satisfied.

Remark 3.17. Since Theorem 3.16 generalizes the “necessity” part of Theorem IV.1 in [12] and

since the latter result relies on exponential stability of TA+BK(t), it is somewhat surprising that

the proof of Theorem 3.16 above does not explicitly employ even strong stability of TA+BK(t).

By combining the above result with those in Section 3.2 we obtain the following complete

characterization for the solvability of the regulator equations and the FRP.

Corollary 3.18. Let the pair (A,B) be strongly stabilizable using K ∈ L(Z,H) and assume that

the exogenous system (2.2) generates admissible reference signals. Then the FRP is solvable using

the control law u(t) = Kz(t) +Lw(t), where L ∈ L(W,H) and BL+P is regular for TA+BK(t), if

and only if there exists Π ∈ L(W,Z) and Γ ∈ L(W,H) such that Π(D(S)) ⊂ D(A), L = Γ −KΠ

and the regulator equations (3.10) are satisfied.

If the pair A + BK also generates an exponentially stable C0−semigroup, then the above

regularity condition for BL+ P ∈ L(W,Z) can be dropped:

Theorem 3.19. Assume that K ∈ L(Z,H) stabilizes the pair (A,B) exponentially and assume

also that the exosystem (2.2) generates admissible reference signals. Then the FRP is solvable using

the control law u(t) = Kz(t) + Lw(t), where L ∈ L(W,H), if and only if there exists Π ∈ L(W,Z)

and Γ ∈ L(W,H) such that Π(D(S)) ⊂ D(A), L = Γ −KΠ and the regulator equations (3.10) are

satisfied.

Proof. Theorem 3.6 covers the sufficiency part of this assertion. On the other hand, the necessity

part is proved as in the proof of Theorem 3.16; however, instead of Lemma 3.12 we rely on Corollary

8 in [88] (see also Section A.2) to ensure the unique solvability of the first regulator equation.

Finally, if A + BK generates an exponentially stable C0−semigroup and if we can solve the

FRP in such way that output regulation is exponentially fast, then we can also dispense with the

assumption that the exogenous system (2.2) only generates admissible reference signals. We arrive

at another complete characterization for the solvability of the FRP:

Theorem 3.20. Assume that K ∈ L(Z,H) stabilizes the pair (A,B) exponentially. Then there

exists L ∈ L(W,H) such that the control law u(t) = Kz(t) + Lw(t) solves the FRP and ‖e(t)‖ ≤
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Me−ωt[‖z(0)‖ + ‖w(0)‖] for all t ≥ 0 and some M,ω > 0 which do not depend on the initial

conditions z(0) ∈ Z and w(0) ∈W , if and only if L = Γ−KΠ where Π ∈ L(W,Z) and Γ ∈ L(W,H)

satisfy the regulator equations (3.10).

Proof. In the sufficiency part we refer the reader to the proof of Theorem 3.6. In particular, equa-

tion (3.17) yields ‖e(t)‖ ≤ ‖(C+DK)TA+BK(t)(z(0)−Πw(0))‖ ≤ ‖C+DK‖‖TA+BK(t)‖
[
‖z(0)‖+

‖Π‖‖w(0)‖
]
≤ Me−ωt[‖z(0)‖ + ‖w(0)‖] for all t ≥ 0 and some M,ω > 0 which do not depend on

the initial states z(0) ∈ Z and w(0) ∈W .

On the other hand, in the necessity part we first deduce (by exponential stability and Corollary 8

in [88]; see Section A.2) that there exists a unique Π ∈ L(W,Z) such that ΠS = (A+BK)Π+BL+P

in D(S). Moreover, e(t) = (C +DK)TA+BK(t)(z(0)−Πw(0)) + (C +DK)Π +DL−Q)TS(t)w(0)

for every z(0) ∈ Z and w(0) ∈W .

Assume that there exists w0 ∈W such that ‖[(C+DK)Π+DL−Q]w0‖ > 0. Let t0 > 0 be such

that Me−ωt0 [‖Π‖‖w0‖ + ‖w0‖] < ‖[(C +DK)Π +DL − Q]w0‖, and set w(0) = TS(−t0)w0 ∈ W

and z(0) = Πw(0) ∈ Z. Then the corresponding tracking error e(t) satisfies

‖e(t0)‖ = ‖[(C +DK)Π +DL−Q]TS(t0)w(0)‖ (3.28)

= ‖[(C +DK)Π +DL−Q]TS(t0)TS(−t0)w0‖ (3.29)

= ‖[(C +DK)Π +DL−Q]w0‖ (3.30)

≤Me−ωt0 [‖Π‖‖w0‖ + ‖w0‖] (3.31)

because ‖z(0)‖ = ‖Πw(0)‖ ≤ ‖Π‖‖TS(−t0)w0‖ = ‖Π‖‖w0‖ (recall that TS(t) is an isometric

group). But this is clearly a contradiction. Hence [(C + DK)Π + DL − Q]w0 = 0. The proof is

complete.

The above results show that the regulator equations (3.10) must often be solvable for Π and Γ,

and that it is often also necessary to choose L = Γ−KΠ in order to achieve output regulation in the

sense of the FRP. Consequently, although the feedforward controller is very simple — and hence

quite appealing — it not necessarily robust even with respect to perturbations in the stabilizing

feedback operator K.



CHAPTER 3. FEEDFORWARD OUTPUT REGULATION 45

3.4 A case study: Regulation of individual signals

Suppose that we are interested in regulating one given signal f in the sense of the FRP only.

Here f ∈ E s
↪→BUC(R, E) where the Banach spaces E and E are determined by the goal that we

have. For example, if f is some particular reference function that we want to asymptotically track,

then E = H and E ↪→ BUC(R,H). By the convention made in Definition 2.22, regulating f is

equivalent to regulating all signals generated by the simplest exosystem (2.2) capable of generating

f , i.e. regulating all signals in the smallest closed translation invariant space Ef ⊂ E containing

f . Using the constructions of Proposition 2.3, Proposition 2.4 or Proposition 2.5 the latter is then

equivalent to solving the FRP for W = Ef and appropriate choices of P,Q which also depend on

the regulation problem at hand. However, the space Ef may in general be infinite-dimensional in

spite of the fact that it is the closure of spans of translates of only one function f . Consequently it

is both important and interesting to investigate what other signals, besides f , can also necessarily

be regulated under these circumstances. This can be done by applying some standard methods of

harmonic analysis to study the content of Ef .

Recall in the following that almost periodic functions are those which can be uniformly ap-

proximated by trigonometric polynomials (see Definition 2.8).

Theorem 3.21. Let f ∈ AP (R, E) and define

a(λ, f) = lim
T→∞

1

2T

∫ T

−T

e−iλtf(t)dt ∀λ ∈ R (3.32)

Then for sup-norm closures we have Ef = span{ a(λ, f)eiλ· | λ ∈ spB(f) }, where the Bohr spectrum

spB(f) = {λ ∈ R | a(λ, f) 6= 0 } [38]. If in addition f is p−periodic and has the Fourier series
∑

n∈Z
ane

iωnt, then Ef = span{ ane
iωn· | an 6= 0 }.

Proof. The first part of the result is just Corollary 1.4 in [38]. If f is a p−periodic function with

the Fourier series
∑

n∈Z
ane

iωnt, then its Carleman spectrum spC(f) = {ωn | an 6= 0 } by Example

1.3 and Theorem 1.14 in [38]. But we also have that spC(f) = spB(f) by Proposition 1.2 in [38].

Hence trivially spB(f) = {ωn | an 6= 0 }. Moreover, it is not difficult to see that a(ωn, f) = an for

every n ∈ Z. By the first part of the theorem, we then have that Ef = span{ ane
iωn· | an 6= 0 }.

Corollary 3.22. Let f ∈ E ↪→ AP (R, E). Consider the space Ef with closure in E. Then

Ef ⊂ span{ a(λ, f)eiλ· | λ ∈ spB(f) } (closure in the sup-norm).



CHAPTER 3. FEEDFORWARD OUTPUT REGULATION 46

Proof. This result follows immediately, because E ↪→ AP (R, E).

As an example of the above we consider p−periodic scalar reference functions in a generalized

Sobolev space H(fn, ωn) (cf. Chapter 2).

Example 3.23. Consider a Sobolev space H = H(fn, ωn) for some sequences (ωn)n∈I and (fn)n∈I .

Let yref (t) =
∑

n∈I ŷ(n)eiωnt ∈ H. If ŷ(n) 6= 0 for each n ∈ I, then Hyref
= H. This fact

can be proved as follows. Since Hyref
⊂ H = span{ eiωn· | n ∈ I }, with closures in H, it is

sufficient to show that the functions t → eiωnt ∈ Hyref
for every n ∈ I. Since H is a Hil-

bert space, its closed subspace Hyref
is also a Hilbert space. Moreover, since TS(t)|Hyref

is a

uniformly bounded C0−group, according to Corollary 4.3.5 in [2], for each n ∈ I the C0−group

e−iωntTS(t)|Hyref
is Cesáro ergodic. This, on the other hand, by Proposition 4.3.1 in [2] means that

for each f ∈ Hyref
and n ∈ I the limit xn

f = limt→∞ 1
t

∫ t

0
e−iωnsTS(s)|Hyref

fds ∈ ker(−iωnI +

S|Hyref
) ⊂ Hyref

. Now for the particular choice f = yref ∈ Hyref
we have xn

f ∈ Hyref
and

xn
f (0) 6= 0 for every n ∈ I because in this case xn

f (0) = δ0 limt→∞ 1
t

∫ t

0
e−iωnsTS(s)|Hyref

yrefds =

limt→∞ 1
t

∫ t

0
e−iωnsyref (s)ds = ŷ(n). By Lemma II.1.9 in [28] we have e−iωntTS(t)|Hyref

xn
f = xn

f

for each n ∈ I and t ∈ R. This shows that the function t→ δ0TS(t)|Hyref
xn

f = xn
f (t) = eiωntxn

f (0) ∈

Hyref
for every n ∈ I.

The above example shows that in order to be able to track all reference signals in H(fn, ωn) in

the sense of the FRP, it is necessary and sufficient to be able to track one function yref ∈ H(fn, ωn)

with nonzero Fourier coefficients in the sense of the FRP.

We now turn to the general case, in which the function f to be regulated is not necessarily almost

periodic. Unfortunately, because of this extra generality we can only obtain partial information

on the space Ef .

Definition 3.24. A function f ∈ E ↪→ BUC(R, E) is called ergodic at η ∈ R with respect to

TS(t)|E if the mean Mηf = limt→∞ 1
t

∫ t

0
e−iητTS(τ)|Efdτ converges in E (cf. [2] Definition 4.3.10).

Proposition 3.25. Let f ∈ E ↪→ BUC(R, E) be ergodic at η ∈ R, with Mηf 6= 0. Then there

exists x ∈ E, x 6= 0, such that Mηf = eiη·x ∈ Ef (closure in E).

Proof. By the assumptions

Mηf = lim
t→∞

1

t

∫ t

0

e−iητTS(τ)|Efdτ 6= 0 (3.33)
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Since e−iηtTS(t)|E is a bounded C0−group generated by −iηI + S|H, by Proposition 4.3.1 in [2]

we have Mηf ∈ ker(−iηI + S|E). Hence for every t ∈ R, TS(t)|EMηf = eiηtMηf by Lemma II.1.9

in [28]. But this implies that

(Mηf)(t) = δ0TS(t)|EMηf = eiηtδ0Mηf = eiηtx (3.34)

for x = δ0Mηf = [Mηf ](0) ∈ E. Now Mηf ∈ Ef , since the integral in (3.33) can in fact be

calculated in Ef (by definition this space is closed in E). The claim now follows, because x 6= 0

(for otherwise Mηf = 0).

Corollary 3.26. Let f ∈ E ↪→ BUC(R, E) and define the set

Ωf = { η ∈ R | 0 6= Mηf = lim
t→∞

1

t

∫ t

0

e−iητTS(τ)|Efdτ ∈ E } (3.35)

Then for closures in E we have span{ [Mηf ](0)eiη· | η ∈ Ωf } ⊂ Ef .

The following result shows that isolated points λ in the Carleman spectrum spC(f) of f ∈

BUC(R, E) always induce a nontrivial element xeiλ· in Ef .

Proposition 3.27. Let f ∈ BUC(R, E) and assume that λ ∈ R is an isolated point in spC(f).

Then there exists a nonzero x ∈ E such that the function eiλ·x ∈ Ef (closure in the sup-norm).

Proof. By the results of Section A.1 we have ispC(f) = σ(S|Ef
), whenever Ef is closed in the

sup-norm. Consequently, under our assumptions iλ is an isolated point in σ(S|Ef
). Since S|Ef

generates a bounded C0−group on Ef , by Gelfand’s T = I Theorem (cf. Corollary 4.4.9 in [2] or

Section A.1) iλ is an eigenvalue of S|Ef
. This implies that there exists a nonzero y ∈ Ef such that

TS(t)|Ef
y = eiλty for every t ∈ R. Consequently y(t) = δ0TS(t)|Ef

y = eiλtδ0y = eiλty(0) for each

t ∈ R. The claim now follows upon the choice x = y(0), because x 6= 0 (otherwise y = 0).

We remark that a complete characterization of Ef , such as in Theorem 3.21, in terms of the Car-

leman spectrum spC(f) alone does not generally seem to exist for those functions f ∈ BUC(R, E)

which are not almost periodic. In fact, according to [58] (p. 170), even in the scalar-valued case it

is only possible to completely characterize the weak* closure of spans of translates of f (and not

Ef which is the ‖·‖E -closure of spans of translates of f) in terms of spC(f). In the framework of

this thesis we have to restrict our attention to Ef in order to use the theory of C0−semigroups in

the solution of the FRP.
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3.5 A case study: Periodic tracking for exponentially stabi-

lizable SISO systems

In order to convince the reader of the value and applicability of our general results, in this section

we shall we shall solve the FRP and the regulator equations (3.10) in the case that the reference

signals are in generalized Sobolev spaces H(fn, ωn) of p−periodic functions (see Chapter 2) and

the disturbance signals are also known to be p−periodic4. Throughout this section our standing

assumption for the plant is the following:

Assumption 3.28. The plant (1.1) is a SISO system (i.e. H = C), and the pair (A,B) is

exponentially stabilizable by a given (fixed) operator K ∈ L(Z,C).

According to Proposition 2.3 a feasible way to model the signals is to choose the free parameters

of the exosystem (2.2) as in the following assumption which we shall also pose throughout this

section.

Assumption 3.29. W = H = H(fn, ωn), S = S|H, Q = δ0 ∈ L(H,C), P ∈ L(H, Z) and

w(0) = yref ∈ H.

Under the above assumptions Theorem 3.19 ensures that output regulation in the sense of

the FRP is equivalent to the solvability of the regulator equations (3.10) for Π and Γ such that

L = Γ − KΠ. Below, we can sometimes explicitly solve these regulator equations provided that

the stabilized plant does not have transmission zeros at the complex Fourier frequencies iωn of the

reference signals. This allows us to explicitly resolve the regulating control law (i.e. the operator

L) in terms of the solution operators Π and Γ. Furthermore, we can derive the condition (3.55)

which completely characterizes the solvability of the FRP and simultaneously provides a verifiable

answer to the question: What periodic signals can an exponentially stabilizable SISO control

system asymptotically track?

Let us define φn(x) = eiωnx for each x ∈ R and n ∈ I. Clearly (φn)n∈I constitutes an orthogonal

basis in H, and φn ∈ D(S|H) with S|Hφn = iωnφn for each n ∈ I. Before proving our main

results we shall first introduce transmission zeros for SISO systems, and we shall prove a spectral

condition under which they are feedback invariant. By convention, throughout this section the

4A treatment of the solution of the regulator equations (3.10) in a considerably more general setup is to be

presented Chapter 8 and the reader is invited to take a look at those results at any time.
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transfer function H(s) of the plant is given by H(s) = CR(s,A)B +D for every s ∈ ρ(A) and the

transfer function HK(s) of the stabilized plant is given by HK(s) = (C+DK)R(s,A+BK)B+D

for each s ∈ ρ(A+BK).

Definition 3.30. The sequence of disturbance coefficients for the stabilized plant is defined by

(Hd(n))n∈I = ((C +DK)R(iωn, A+BK)Pφn)n∈I ⊂ C.

Definition 3.31. The plant (respectively stabilized plant) has a transmission zero at s = s0 if

H(s0) = 0 (respectively HK(s0) = 0).

For the case D = 0 the next result was stated in Lemma V.2 of [12].

Lemma 3.32. Let s0 ∈ ρ(A) ∩ ρ(A + BK). Then the plant has a transmission zero at s = s0 if

and only if the stabilized plant has a transmission zero at s = s0.

Proof. Let s = s0 be a transmission zero of the plant. Clearly CR(s0, A)B +D = 0 if and only if

ker


 C D

s0I −A −B


 6= {0} (3.36)

where the domain of definition of the operator R =
(

C D
s0I−A −B

)
is D(A)×C. Let 0 6=

(
x
u

)
∈ kerR.

Then since x = R(s0, A)Bu, we must have that u 6= 0. Moreover,


 C D

s0I −A −B





 I 0

K I





 I 0

−K I





x

u


 = 0 (3.37)

which implies 
 C +DK D

s0I −A−BK −B





 x

u−Kx


 = 0 (3.38)

Let RK =
(

C+DK D
s0I−A−BK −B

)
with D(RK) = D(R). If x = 0, then 0 6=

(
0
u

)
∈ kerRK . On the other

hand, if x 6= 0, then 0 6=
(

x
u−Kx

)
∈ kerRK . In any case kerRK 6= {0}. By the above this means

that (C +DK)R(s0, A+BK)B +D = 0, i.e. that the stabilized plant has a transmission zero at

s = s0.

Similar arguments show that also the converse holds. We omit the details.

The following result is the key to the solution of the regulator equations (3.10) in this special

case of SISO systems. It provides a means for solving these equations in finite-dimensional spaces

spanned by exponentials.
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Proposition 3.33. Let n ∈ I. If the stabilized plant does not have a transmission zero at s = iωn,

and if we define the operator L : span{φn} → C by L(aφn) = aHK(iωn)−1[1 −Hd(n)] ∈ C for all

a ∈ C then the operators Π : span{φn} → Z and Γ : span{φn} → C defined by

Π(aφn) = R(iωn, A+BK)
[
BL(aφn) + P (aφn)

]
∀a ∈ C (3.39)

Γ(aφn) = L(aφn) +KΠ(aφn) ∀a ∈ C (3.40)

satisfy ΠS|Hφn = AΠφn +BΓφn +Pφn and CΠφn +DΓφn = δ0φn = 1. Hence by linearity Π and

Γ satisfy the regulator equations (3.10) on the one-dimensional space span{φn}.

Proof. Since S|Hφn = iωnφn, it is clear that if we solve the equations

(A+BK)Πφn +BLφn + Pφn = iωnΠφn (3.41a)

(C +DK)Πφn +DLφn = 1 (3.41b)

for Πφn and Lφn, and then set Γφn = Lφn +KΠφn, we simultaneously have ΠS|Hφn = AΠφn +

BΓφn + Pφn and CΠφn +DΓφn = δ0φn = 1. From (3.41a) we obtain

(A+BK)Πφn +BLφn + Pφn = iωnΠφn ⇔ Πφn = R(iωn, A+BK)(BLφn + Pφn) (3.42)

because A + BK generates an exponentially stable C0−semigroup. Applying this expression for

Πφn to equation (3.41b) yields

(C +DK)R(iωn, A+BK)(BLφn + Pφn) +DLφn = 1 ⇔ (3.43)

[
(C +DK)R(iωn, A+BK)B +D

]
Lφn + (C +DK)R(iωn, A+BK)Pφn = 1 ⇔ (3.44)

HK(iωn)Lφn +Hd(n) = 1 ⇔ (3.45)

HK(iωn)−1
[
1 −Hd(n)

]
= Lφn (3.46)

by the assumption that HK(iωn) 6= 0. The proof is complete.

Remark 3.34. By the above proof Πφn = R(iωn, A+BK)
[
BLφn+Pφn

]
and Lφn = HK(iωn)−1[1−

Hd(n)] are in fact the unique solutions of the equations (3.41).

Theorem 3.35. Suppose that for every n ∈ I, s = iωn is not a transmission zero of the stabilized

plant. Let 〈·, ·〉 denote the L2 inner product on H and define

Ly =
∑

n∈I

HK(iωn)−1[1 −Hd(n)]〈y, φn〉 (3.47)
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for all such y ∈ H for which the series converges. Then the FRP is solvable using the control law

u(t) = Kz(t) + Lw(t) if and only if L ∈ L(H,C) (so that D(L) = H).

Proof. (Necessity.) If the control law u(t) = Kz(t) + Lw(t) solves the FRP, then by definition L

must be in L(H,C) and defined everywhere.

(Sufficiency.) Suppose that L ∈ L(H,C). Then the linear operator Π : H → Z defined by

Πw =
∫ ∞
0
TA+BK(τ)(BL + P )TS(−τ)|Hwdτ for each w ∈ H is in L(H, Z). Since TS(−t)|Hφn =

e−iωntφn and R(iωn, A+BK)z =
∫ ∞
0
e−iωntTA+BK(t)zdt for every z ∈ Z (Proposition 5.1.5 in [2]),

we have that Πφn = R(iωn, A + BK)(BL + P )φn for each n. In addition, since 〈φn, φm〉 = δm,n

(Kronecker delta), we have that Lφn = HK(iωn)−1
[
1 −Hd(n)

]
for each n ∈ I. Consequently the

restrictions of Π and L satisfy the equations (3.41) for each n ∈ I. Using the closedness of A, the

continuity of Π and Γ = L+KΠ and Remark 2.20, we obtain

ΠS|Hy =
∑

n∈I

iωn〈y, φn〉Πφn =
∑

n∈I

〈y, φn〉
[
AΠφn +BΓφn + Pφn

]
(3.48)

=
[
AΠ +BΓ + P

]
y ∀y ∈ D(S|H) (3.49)

[
CΠ +DΓ

]
y =

∑

n∈I

〈y, φn〉
[
CΠ +DΓ

]
φn =

∑

n∈I

〈y, φn〉 = y(0) = δ0y ∀y ∈ H (3.50)

by the fact that 〈y, φn〉 = ŷ(n) is the nth L2 Fourier coefficient of y ∈ H. Since now L = Γ −KΠ

where Π ∈ L(H, Z) and Γ ∈ L(H,C) solve the regulator equations (3.10), the result follows from

Theorem 3.19.

Remark 3.36. Under the assumptions of Theorem 3.35, for a given stabilizing state feedback

K ∈ L(Z,C) it is actually necessary to use the particular operator L defined in (3.47) in a

regulating feedforward control u(t) = Kz(t) + Lw(t). This is because L = Γ − KΠ where Π

and Γ solve the regulator equations (3.10), and in particular Lφn = Γφn −KΠφn for every n ∈ I.

But then L is unique, because Lφn is unique for every n ∈ I (by the above) and (φn)n∈I is an

orthogonal basis.

Corollary 3.37. Suppose that the assumptions of Theorem 3.35 are satisfied and that L defined

in (3.47) is in L(H,C), so that the FRP is solvable using u(t) = Kz(t) + Lw(t). Then for every

yref ∈ H(fn, ωn) the corresponding control law uyref
(t) which achieves the asymptotic tracking of

yref (t) in the presence of the disturbance Udist(t) is given by

uyref
(t) = Kz(t) +

∑

n∈I

HK(iωn)−1[1 −Hd(n)]ŷ(n)eiωnt, ∀t ≥ 0 (3.51)
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where yref (t) =
∑

n∈I ŷ(n)eiωnt for each t ∈ R.

Proof. By construction, u(t) = Kz(t) + Lw(t) = Kz(t) + LTS(t)|Hw(0) is the control law which

achieves asymptotic tracking of yref = w(0) ∈ H and asymptotic rejection of Udist = PTS(·)|Hw(0).

Hence it is sufficient to let w(0) = yref and work out Lw(t) = LTS(t)|Hw(0) as follows:

LTS(t)|Hw(0) =
∑

n∈I

ŷ(n)LTS(t)|Hφn =
∑

n∈I

ŷ(n)eiωntLφn (3.52)

=
∑

n∈I

HK(iωn)−1[1 −Hd(n)]ŷ(n)eiωnt, ∀t ≥ 0 (3.53)

because TS(t)|Hφn = eiωntφn for each n ∈ I and every t ∈ R.

In particular, if there are no disturbances (i.e. P = 0), and if the plant is already exponentially

stable then the control law (3.51) reduces to the remarkably simple one:

uyref
(t) =

∑

n∈I

H(iωn)−1ŷ(n)eiωnt (3.54)

The following corollary characterizes the solvability of the FRP by the asymptotic behaviour

of HK(iωn)−1[1 −Hd(n)] as n→ ±∞.

Corollary 3.38. Suppose that the assumptions of Theorem 3.35 are satisfied. Let L be defined as

in (3.47). Then u(t) = Kz(t) + Lw(t) solves the FRP if and only if

(
HK(iωn)−1[1 −Hd(n)]f−1

n

)
n∈I

∈ `2 (3.55)

In the disturbance free case (i.e. P = 0) this condition reads
(
HK(iωn)−1f−1

n

)
n∈I

∈ `2.

Proof. Let ψn = φn

‖φn‖ for every n ∈ I. Then (ψn)n∈I constitutes an orthonormal basis in H with

respect the natural inner product of H. Here we denote this inner product by 〈·, ·〉f . Observe that

we can write

L =
∑

n∈I

f−1
n HK(iωn)−1[1 −Hd(n)]〈·, ψn〉f (3.56)

because fnŷ(n) = fn〈y, φn〉L2 = 〈y, ψn〉f for each n ∈ I and y ∈ H. Since H is a Hilbert space,

by the Riesz Representation Theorem L ∈ L(H,C) if and only if there exists a unique element

l ∈ H such that Lw = 〈w, l〉f for every w ∈ H. Then we must have that Lψn = 〈ψn, l〉f =

f−1
n HK(iωn)−1[1 −Hd(n)], or, 〈l, ψn〉f = HK(iωn)−1[1 −Hd(n)]f−1

n for every n ∈ I. But by the

orthonormality of (ψn)n∈I the element l thus defined is in H if and only if

∑

n∈I

|〈l, ψn〉f |2 =
∑

n∈I

|HK(iωn)−1[1 −Hd(n)]|2|fn|−2 <∞ (3.57)
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This and Theorem 3.35 give the desired result.

Remark 3.39. In the case that H is finite-dimensional, the condition (3.55) is trivially satisfied

under the assumptions of Theorem 3.35.

The above results formalize the intuitive idea that in order to be able to asymptotically track

general p−periodic reference signals, the stabilized plant should not attenuate high frequency

oscillations too drastically and at the same time the reference signals should be smooth enough. By

the above, in the absence of transmission zeros it is true that all reference signals in H = H(fn, ωn)

can be regulated in the sense of the FRP if and only if the condition (3.55) holds, i.e. the operator

L defined in (3.47) is bounded. We point out that this operator L is not in general bounded for

all choices of the state space W = H of the exosystem; however, the condition (3.55) allows us to

choose such a topology for W that L becomes bounded. The choice of this topology amounts to

an appropriate choice of the sequence (fn)n∈I , which on the other hand completely determines the

degree of smoothness of the reference signals.

But what if the condition (3.55) is not satisfied? In that case there must exist yref ∈ H

which cannot be regulated in the sense of the FRP. Assume that there also exists some y1 ∈ H

which we can regulate in the sense that there exists L ∈ L(H,C) such that u(t) = Kz(t) +

LTS(t)|Hy1 achieves asymptotic tracking of y1 for each initial state z(0) ∈ Z of the plant. In the

absence of transmission zeros of the stabilized plant on σ(S|H), according to Theorem 3.19 and

Proposition 3.33 all exponential functions t → eiωnt = φn(t), n ∈ I can be regulated. Hence we

may in this case assume without loss of generality that y1 has nonvanishing Fourier coefficients5.

Exponential stability of A + BK now guarantees the solvability of the first regulator equation

ΠS|H = AΠ +BΓ +P = AΠ +B(L+KΠ) +P in D(S|H), whereas the second regulator equation

CΠ + DΓ = CΠ + D(L + KΠ) = δ0 is satisfied at least in the subset {TS(t)|Hy1 | t ∈ R } ⊂ H

by the periodicity of TS(t)|H and the tracking requirement6. Using extension by continuity and

linearity it is straightforward to show that it is then actually possible to regulate all reference

signals in Hy1
= span{TS(t)|Hy1 | t ∈ R }. But by Example 3.23 then the space H = Hy1

, so that

all reference signals in H can be regulated. This contradiction shows that the condition (3.55) also

characterizes those Sobolev spaces H(fn, ωn) which cannot be regulated (in the sense of the FRP),

5Otherwise we could always add missing individual frequency components to y1, because the individual

frequencies can be regulated.
6Apply the argument used in the proof of Theorem 3.16 to see that [CΠ + DΓ − δ0]TS(t)y1 = 0 for all t ∈ R.
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in the absence of transmission zeros of the stabilized plant on σ(S|H).

We conclude this section with some auxiliary results which in some cases simplify the verification

of the condition (3.55) (see also Theorem 8.2 and the discussion in Section 8.3 for related results).

Theorem 3.40. Let A generate an exponentially stable C0−semigroup and let A+BK, for K ∈

L(Z,C), also generate an exponentially stable C0−semigroup. Then there exist m,M ≥ 0 (which

do not depend on n ∈ I) such that ‖CR(iωn, A)B‖ ≤ m‖CR(iωn, A+BK)B‖ ≤M‖CR(iωn, A)B‖

for each n ∈ I.

Proof. By an elementary calculation, we have that CR(iωn, A + BK)B = CR(iωn, A)B[I +

KR(iωn, A + BK)B] and that CR(iωn, A)B = CR(iωn, A + BK)B[I −KR(iωn, A)B] for every

n ∈ I. Since A and A+BK both generate exponentially stable C0−semigroups, ‖R(iωn, A)‖ and

‖R(iωn, A+BK)‖ are uniformly bounded in n, according to the Riemann-Lebesgue Lemma [17].

The desired conclusion now follows by some obvious norm estimates.

According to Theorem 3.40, if D = 0, if there are no disturbances, and if both A and

A + BK generate exponentially stable C0−semigroups, then (H(iωn)f−1
n )n∈I ∈ `2 if and only

if (HK(iωn)f−1
n )n∈I ∈ `2. In particular, in this case the capability of asymptotic tracking is an

intrinsic property of the plant which is independent of the stabilizing feedback K. This can be

seen by applying the above result for A+BK1 and A+BK2 = (A+BK1) +B(K2 −K1) where

K1 and K2 are two different exponentially stabilizing state feedback operators for the pair (A,B).

Corollary 3.41. Let A and A + BK, where K ∈ L(Z,C), generate exponentially stable analytic

C0-semigroups. Then the following hold.

1. For D = 0 the condition (3.55) holds if
(
H(iωn)−1[1 −Hd(n)]f−1

n

)
n∈I

∈ `2.

2. For D 6= 0 the condition (3.55) holds if H(iωn) 6= 0 for each n ∈ I and if
(
[1−Hd(n)]f−1

n

)
n∈I

∈

`2; in particular, whenever H(iωn) 6= 0 for each n ∈ I and supn∈I |Hd(n)| <∞.

Proof. The case D = 0 is settled by Theorem 3.40 and Lemma 3.32 so we may let D 6= 0.

By exponential stability and Lemma 3.32, for all n ∈ I we have HK(iωn) 6= 0. Since A and

A+BK generate exponentially stable analytic semigroups, we have limn→±∞HK(iωn) = D 6= 0.

Consequently for some δ > 0 we have δ < infn∈I |HK(iωn)| < supn∈I |HK(iωn)| <∞, and so

∣∣HK(iωn)−1[1 −Hd(n)]f−1
n

∣∣ ≤ 1

δ

∣∣[1 −Hd(n)]f−1
n

∣∣ ∀n ∈ I (3.58)
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This shows that condition (3.55) holds if
(
[1 −Hd(n)]f−1

n

)
n∈I

∈ `2. Finally, if supn∈I |Hd(n)| =

M0 <∞, then we may estimate
∑

n∈I |fn|−2|1 −Hd(n)|2 < (1 +M0)
2
∑

n∈I |fn|−2 <∞.

3.6 A case study: Zeros and asymptotic tracking

We saw in Section 3.5 for periodic signals with W = H = H(fn, ωn) that whenever a suitably

stabilized SISO plant does not have transmission zeros on σ(S), i.e. HK(iωn) 6= 0 for all n ∈ I,

and also the condition (3.55) holds, all reference functions in H can be asymptotically tracked in

the presence of certain disturbances. On the other hand, for general MIMO systems and finite-

dimensional exosystems (2.1) it is well-known that a converse result also holds, at least if D = 0

and σ(S) ⊂ ρ∞(A) (cf. Corollary V.1 and Lemma V.2 in [12]): If there are transmission zeros

of the stabilized plant on σ(S), i.e. det(CR(iω,A + BK)B) = 0 for some iω ∈ σ(S), then

output regulation of all possible reference/disturbance signals cannot be achieved. But does this

converse result remain true for infinite-dimensional exosystems (2.2)? In other words, is it still

necessary for output regulation that there are no transmission zeros of the stabilized plant on σ(S)

if dim(W ) = ∞? This question turns out to be considerably more difficult to answer decisively

than the corresponding one for finite-dimensional exosystems (2.1). In the present section we

shall conduct a case study of this question under the following standing assumption, which by

Proposition 2.3 also shows that we are only interested in the asymptotic tracking of a class H ↪→

BUC(R,H) of reference signals, without disturbance rejection.

Assumption 3.42. The pair (A,B) is exponentially stabilizable using K ∈ L(Z,H), and the

exosystem’s free parameters are chosen as7 W = H s
↪→BUC(R,H), S = S|H, Q = δ0 ∈ L(H,H),

P = 0, w(0) = yref ∈ H. Moreover, the solvability of the FRP is equivalent to the solvability of

the regulator equations (3.10) for Π and Γ such that L = Γ −KΠ in the regulating control law.

Remark 3.43. Theorem 3.19 and Theorem 3.20 present conditions under which the solvability

of the FRP is equivalent to the solvability of the regulator equations (3.10) for Π and Γ such that

L = Γ−KΠ in the regulating control law. Moreover, by construction the solvability of the FRP in

this case implies that all reference signals in the Banach function space H can be asymptotically

tracked.

7The function space H will vary in the results of this section, and the exosystem is always assumed to be chosen

in this way, according to the specific H in question.
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In this section we shall be concerned of the following kind of system zeros:

Definition 3.44. Let L ∈ L(H,H) be nonzero. We say that the stabilized feedforward control

system (i.e. the plant (1.1) subject to the control u(t) = Kz(t)+Lw(t)) has a zero at λ ∈ ρ(A+BK)

if HK(λ)L =
[
(C +DK)R(λ,A+BK)B +D

]
L = 0.

It is clear that if H = CN (say), and if the stabilized plant does not have a transmission zero

at λ ∈ ρ(A + BK) (i.e. det(HK(λ)) 6= 0, as in [12]), then the stabilized feedforward control

system cannot have a zero at λ. Conversely, in this case all zeros λ ∈ ρ(A+BK) of the stabilized

feedforward control system are transmission zeros of the stabilized plant in the above sense. In the

SISO case the stabilized feedforward control system has a zero at λ ∈ ρ(A+BK) if and only if it

has a transmission zero at λ. In addition, in this case Lemma 3.32 guarantees that all transmission

zeros of the stabilized plant in λ ∈ ρ(A) ∩ ρ(A + BK) coincide with those of the plant without

stabilization. However, since a transmission zero of the stabilized (MIMO) plant need not be a zero

of the stabilized (MIMO) feedforward control system, it is appropriate to provide some motivation

for the above definition.

The reason why we do not, in general, employ the ordinary concept of a transmission zero

in this section is as follows. Byrnes, Laukó, Gilliam and Shubov have shown (Corollary V.1 in

[12]) for finite-dimensional exosystems (2.1) that under certain additional assumptions the FRP is

solvable for every operator P and Q in the exosystem if and only if the transfer function of the

stabilized plant is invertible on σ(S), i.e. there are no transmission zeros on σ(S) (this result also

appears in a different form in the earlier work of Schumacher [80]). However, in this case study

section we want to consider the particular problem where the asymptotic tracking of signals in

a given function space H, without disturbance rejection, is required; by Proposition 2.3 this can

be done by fixing the operators P = 0 and Q = δ0 as done in Assumption 3.42. Consequently,

according to the result of Byrnes et al. [12] cited above, even for a finite-dimensional H the

existence of transmission zeros on σ(S|H) does not — in our particular problem — in general

imply the impossibility of asymptotic tracking of signals in H. However, it turns out that the

existence of zeros of the stabilized feedforward control system, as in Definition 3.44, on σ(S|H)

does sometimes imply this. We again emphasize that these zeros constitute a subset, usually also

a proper one, of the transmission zeros of the stabilized plant.

The following lemma plays a key role in the proofs of the main results of this section.
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Lemma 3.45. Assume that for some L ∈ L(H,H) the control law u(t) = Kz(t) + Lw(t) solves

the FRP. If for some λ ∈ R and for some nonzero a ∈ H the function t→ y(t) = aeiλt ∈ H, then

HK(iλ)Ly = a.

Proof. By Assumption 3.42 there exist Π ∈ L(H, Z) and Γ ∈ L(H,H) which solve the regulator

equations (3.10) and L = Γ −KΠ. Consequently, we also have that ΠS|H = (A + BK)Π + BL

in D(S|H). But the solution X ∈ L(H, Z) of equation XS|H = (A + BK)X + BL in D(S|H) is

unique because A+BK generates an exponentially stable C0−semigroup (see e.g. [88], Corollary

8). This solution is given by

X =

∫ ∞

0

TA+BK(t)BLTS(−t)|Hdt = Π (3.59)

(the strong limit of a Riemann integral).

Let y = aeiλ· ∈ H. Then since CΠ +DΓ = δ0 in H, and L = Γ −KΠ, we also have that

(C +DK)Πy +DLy = δ0y = y(0) = a (3.60)

By the boundedness of C +DK this yields

∫ ∞

0

(C +DK)TA+BK(t)BLTS(−t)|Hydt+DLy = a (3.61)

and so

∫ ∞

0

(C +DK)TA+BK(t)BLaeiλ(·−t)dt+DLaeiλ· = (3.62)

[
(C +DK)R(iλ,A+BK)B +D

]
Laeiλ· = (3.63)

[
(C +DK)R(iλ,A+BK)B +D

]
Ly = a (3.64)

This shows that HK(iλ)Ly = a, as was claimed.

We next present the main results of this section. Recall the convention made in Definition

2.22; under Assumption 3.42 it says that a signal yref ∈ H can be asymptotically tracked iff all

signals in the smallest possible state space Hyref
⊂ H of the exosystem generating yref can be

asymptotically tracked.

Theorem 3.46. Suppose that a given signal yref ∈ AP (R,H) can be asymptotically tracked in the

sense of the FRP, using a control law u(t) = Kz(t) + Lw(t). Then there cannot be zeros of the
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stabilized feedforward control system on the Bohr spectrum of yref , i.e the following implication

holds for all λ ∈ R:

λ ∈ spB(yref ) =⇒ HK(iλ)L 6= 0 (3.65)

Proof. That yref ∈ AP (R,H) can be asymptotically tracked means, by the convention of Definition

2.22, that we can track all reference signals in Hyref
(where closure is taken with respect to the

norm of AP (R,H), i.e. the sup−norm). This, on the other hand, means the solvability of the

FRP for W = Hyref
using the control law u(t) = Kz(t) + Lw(t). Let λ ∈ spB(yref ). By Theorem

3.21, there exists a nonzero a ∈ H such that y = aeiλ· ∈ Hyref
. By Lemma 3.45, we have

HK(iλ)Ly = a 6= 0. Hence HK(iλ)L 6= 0.

In the following result the reference signals need not be almost periodic.

Theorem 3.47. Let H s
↪→BUC(R,H). If a control law u(t) = Kz(t)+Lw(t) solves the FRP, then

there cannot be zeros of the stabilized feedforward control system on the point spectrum of S|H, i.e.

the following implication holds for all λ ∈ R:

iλ ∈ σP (S|H) =⇒ HK(iλ)L 6= 0 (3.66)

Proof. Let iλ ∈ σP (S|H). Then S|Hf = iλf for some nonzero f ∈ D(S|H). Hence also TS(t)|Hf =

eiλtf for every t ∈ R. This shows that for every t ∈ R we have δ0TS(t)|Hf = f(t) = eiλtδ0f =

eiλtf(0) where f(0) 6= 0. Since f ∈ H, the result follows by Lemma 3.45.

The above results show in particular that the standing assumption of Section 3.5 (i.e. no

transmission zeros of the stabilized SISO plant on σ(S)) cannot in general be removed if output

regulation for H = H(fn, ωn) is to be achieved. Moreover, in the SISO case they generalize the

well-known results of output regulation theory for finite-dimensional exogenous systems (see e.g.

[12]).

Whereas in the above two theorems we could conclude that there are no zeros of the sta-

bilized feedforward control system on certain subsets of iR, the following two theorems are of

individual nature; they apply to single points on the imaginary axis. Recall that a function

yref ∈ H s
↪→BUC(R,H) is called ergodic at η ∈ R with respect to TS(t)|H if the mean Mηyref =

limt→∞ 1
t

∫ t

0
e−iητTS(τ)|Hyrefdτ converges in H (cf. Definition 3.24 and [2] Definition 4.3.10).
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Theorem 3.48. Suppose that a given signal yref ∈ H s
↪→BUC(R,H) can be regulated in the sense

of the FRP using a control law u(t) = Kz(t)+Lw(t). If yref is ergodic at λ ∈ R, with Mλyref 6= 0,

then HK(iλ)L 6= 0, i.e. the stabilized feedforward control system does not have a zero at iλ.

Proof. By convention Hyref
(closure in H) can be regulated in the sense of the FRP using the

control law u(t) = Kz(t) + Lw(t). By Proposition 3.25, there exists x ∈ H, x 6= 0, such that

y = eiλ·x ∈ Hyref
. By Lemma 3.45, HK(iλ)Ly 6= 0 from which the claim follows.

Theorem 3.49. Suppose that a given signal yref ∈ BUC(R,H) can be regulated in the sense of

the FRP using a control law u(t) = Kz(t) + Lw(t). Then for every isolated point λ ∈ spC(yref )

we have HK(iλ)L 6= 0, i.e. the stabilized feedforward control system does not have a zero at iλ.

Proof. By convention Hyref
(closure in the sup-norm) can be regulated in the sense of the FRP

using the control law u(t) = Kz(t) + Lw(t). By Proposition 3.27 there exists a nonzero x ∈ H

such that xeiλ· ∈ Hyref
. The claim immediately follows by Lemma 3.45.

Although the above results generalize some well-known ones from the output regulation theory

of finite-dimensional exosystems [12], there are, unfortunately, certain subtle limitations in them.

First of all, the Bohr spectrum spB(yref ) of an almost periodic function yref is not necessarily all

of the Carleman spectrum spC(yref ) of yref : In general, we only have the equality for closures,

i.e. spB(yref ) = spC(yref ) (cf. Proposition 1.2 in [38]). On the other hand spC(yref ) does not

necessarily consist entirely of isolated points [58]. Hence as regards Theorem 3.46 and Theorem

3.49, what one would like to have is the validity of an implication of the form

∀λ ∈ R : λ ∈ spC(yref ) =⇒ HK(iλ)L 6= 0 (3.67)

provided that a bounded uniformly continuous signal yref can be regulated using the control law

u(t) = Kz(t) + Lw(t) in the sense of the FRP (we call this the Setting 1).

On the other hand, since TS(t)|H is an isometric C0−group on H, we have σ(S|H) = σA(S|H)

(the approximate point spectrum of S|H) by Proposition IV.1.10 in [28]. However, Theorem 3.47

only applies to the point spectrum of S|H. What one wants to have, in general, is the validity of

an implication of the form

∀λ ∈ R : iλ ∈ σ(S|H) =⇒ HK(iλ)L 6= 0 (3.68)
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provided that a control law u(t) = Kz(t) + Lw(t) solves the FRP for W = H (we call this the

Setting 2).

It is remarkable that these two settings are equivalent for sup-normed spaces H, as shown

below.

Proposition 3.50. Let λ ∈ R and let H s
↪→BUC(R,H) be a closed subspace. Then λ ∈ spC(y) for

some y ∈ H if and only if iλ ∈ σ(S|H).

Proof. Let λ ∈ spC(y) for some y ∈ H and let S|Hy
denote the restriction of S|H to Hy, where as

usual Hy = span{TS(t)|Hy | t ∈ R } (closure in ‖·‖H = ‖·‖∞). By the results cited in Section A.1

we have that σ(S|Hy
) = ispC(y). Then by the above, iλ ∈ σ(S|Hy

). Hence by Corollary IV.2.16

in [28] iλ ∈ σ(S|H).

On the other hand, suppose that iλ ∈ σ(S|H). For each w ∈ H the map Rw : { η ∈ C | <(η) >

0 } → H : η → R(η, S|H)w is holomorphic. The local unitary spectrum [6] σu(S|H, w) of w is

defined as the set of points η ∈ iR to which Rw cannot be extended holomorphically. Since S|H
generates an isometric C0−group, by the Banach-Steinhaus Theorem, we have

σ(S|H) =
⋃

w∈H
σu(S|H, w) (3.69)

Hence there exists y ∈ H such that iλ ∈ σu(S|H, y). But for <(η) > 0 we have

R(η, S|H)y =

∫ ∞

0

e−ηtTS(t)|Hydt =

∫ ∞

0

e−ηtTS(t)|Hy
ydt = R(η, S|Hy

)y (3.70)

Consequently, R(η, S|Hy
)y cannot be extended holomorphically to iλ, so that iλ ∈ σu(S|Hy

, y).

Again, since σ(S|Hy
) = ∪w∈Hy

σu(S|Hy
, w), we have iλ ∈ σ(S|Hy

). By the results of Section A.1

then λ ∈ spC(y) and the proof is complete.

Theorem 3.51. Assume that H0
s

↪→BUC(R,H) is a given sup-norm closed subspace. Then the

following assertions are equivalent:

1. For every individual signal yref ∈ H0 which can be regulated in the sense of the FRP it is

true that the implication (3.67) is valid for the operators K,L in a regulating control law.

2. For every sup-norm closed subspace H s
↪→H0, such that for W = H the FRP is solvable, it is

true that the implication (3.68) is valid for the operators K,L in a regulating control law.
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Proof. Assume that the first assertion is true and that for an arbitrary W = H s
↪→H0 the FRP has

a solution u(t) = Kz(t) + Lw(t). In order to show that the implication (3.68) is valid (for these

operators K,L) we take an arbitrary iλ ∈ σ(S|H) and show that necessarily HK(iλ)L 6= 0. By

Proposition 3.50 there exists y ∈ H such that λ ∈ spC(y). But since Hy = span{TS(t)|Hy | t ∈

R } ⊂ H the same control law u(t) = Kz(t) + Lw(t) regulates the individual signal y, i.e. solves

the FRP for W = Hy. Since implication (3.67) is valid, it is true that HK(iλ)L 6= 0.

Assume then that the second assertion is true and that an arbitrary given individual signal

yref ∈ H0 can be regulated in the sense of the FRP, i.e. there exists a control law u(t) =

Kz(t) + Lw(t) which solves the FRP for W = Hyref
. In order to show that the implication

(3.67) is valid (for these operators K,L) we take an arbitrary λ ∈ spC(yref ) and show that

necessarily HK(iλ)L 6= 0. According to the results of Section A.1 iλ ∈ σ(S|Hyref
). Moreover,

u(t) = Kz(t) + Lw(t) solves the FRP for W = Hyref
according to our convention. But Hyref

is a

closed subspace of H0 and since the second assertion holds true, we must have that HK(iλ)L 6= 0.

Hence also the first assertion holds true.

Theorem 3.51 shows that the Setting 1 is equivalent to the Setting 2 in sup-normed spaces.

However, we do not know if these settings are in effect in general, i.e. we do not know if the

assertions of Theorem 3.51 are true for a general pivot space H0 ⊂ BUC(R,H). Based on the

concluding remarks of Section 3.4, we suspect that this is not the case in general. On the other

hand, in the future it would be very interesting to see what the most general conditions for H0 are

such that the above equivalent settings are in effect. Although this problem has not been solved in

the present case study section, we were able to illustrate the complex relationship between system

zeros and output regulation which only exists for infinite-dimensional exosystems.

3.7 Examples of feedforward output regulation

In this section we shall present various concrete examples to illustrate the feedforward output

regulation theory developed in this chapter. Throughout the section we assume, in accordance

with Proposition 2.3, that W = H ↪→ BUC(R,H), S = S|H, Q = δ0 ∈ L(H,H), P ∈ L(H, Z)

and w(0) = yref ∈ H. Hence we are interested in the asymptotic tracking of all reference signals

in some function space H, under such disturbances which are known to have similar dynamical

properties as the reference signals.
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Our first example concerns finite-dimensional systems and infinite-dimensional exosystems.

Example 3.52. Consider a finite-dimensional exponentially stable SISO-plant that is not subject

to any disturbances (i.e. P = 0). Consider reference signals in the Sobolev space Hγ
per(0, p), γ >

1
2 ,

i.e. set H = H(fn, ωn) for I = Z and fn =
√

1 + ω2
n

γ
and ωn = 2πn

p for each n ∈ Z. Let N

denote the relative degree of the transfer function H(s) of the plant, and assume that there are no

transmission zeros in the set of complex Fourier frequencies { iωn | n ∈ Z } of the reference signals.

By the relative degree condition, H(iωn)−1 is of order O(|ωn|N ) as n → ±∞. Let us define

L as in (3.47) (with K = 0 since the plant is already stable and with Hd(n) ≡ 0 because there

are no disturbances). Then for γ > N + 1
2 the condition (3.55) holds true. This implies that for

such γ, all reference signals yref ∈ Hγ
per(0, p) can be asymptotically tracked using the control law

u(t) = Lw(t) by Corollary 3.38.

In the next example we show that there exist infinite-dimensional systems which cannot track

all reference signals in Hγ
per(0, p) for any γ > 1

2 (in the sense of the FRP), even if there are no

transmission zeros in the set of complex Fourier frequencies of the reference signals. This is in

strong contrast to the finite-dimensional case, as is seen from Example 3.52 above. Moreover,

Example 3.53 illustrates the fact that transmission zeros are not the only cause of trouble in

output regulation problems for general bounded uniformly continuous exogenous signals: Output

regulation of periodic signals is only possible if the smoothness of these signals is “compatible”

with the high frequency damping rate of the plant. We refer the reader to [17, 78] for the relevant

notation and definitions of the below example.

Example 3.53. Let f ∈ D(R) be a test function such that supp(f) ⊂ [0, a], where 0 < a < ∞.

Let Z = { g ∈ H1(0, a) | g(a) = 0 } where H1(0, a) denotes the standard Sobolev space. Since Z is

the null space of a continuous linear functional, it is a closed subspace of H1(0, a). Let A be the

generator of the left shift semigroup TA(t) on Z defined by (TA(t)g)(x) = g(x+t) for x+t ≤ a, and

(TA(t)g)(x) = 0 otherwise, for every g ∈ Z. Clearly TA(t) is strongly continuous (cf. Example I.5.4

in [28]) and exponentially stable on Z. Let C be the point evaluation at the origin, i.e. Cg = g(0)

for every g ∈ Z. It is easy to show (see e.g. [55]) that C ∈ L(Z,C). Finally, let Bu = fu for

u ∈ C. Then evidently B ∈ L(C, Z). Moreover, in this case the system (1.1) (with D = 0 and

Udist = 0) has f(t) as its impulse response [17]. In fact, CTA(t)B =
[
f(x+ t)

]
x=0

= f(t) for every

t ≥ 0.
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By applying Fourier transforms, we see that the transfer function H(iω) = F(f)(iω) is a rapidly

decreasing function. Hence supω∈R(1 + ω2)N |H(iω)| < ∞ for every N ∈ N. For the purpose of

output regulation, we may assume that H(iωn) = H(i2πn
p ) 6= 0 for every n ∈ Z. Otherwise there

would exist m ∈ Z such that the regulator equations (3.10) are not solvable in the linear span of the

exponential function t→ eiωmt (see the proof of Proposition 3.33), and hence there would exist an

infinite-dimensional system which cannot track all reference signals in Hγ
per(0, p) for any γ > 1

2 .

But by the above, H(iωn)−1 grows faster than every polynomial in n as n → ±∞. By Corollary

3.38 and the fact that L (if it exists in L(Hγ
per(0, p),C)) is unique8 in this case, for arbitrary γ > 1

2

there always exists yref ∈ Hγ
per(0, p) which this system cannot asymptotically track using the control

law u(t) = Lw(t). This shows that the FRP is not solvable for any γ > 1
2 , or, in other words,

if the system can asymptotically track all signals in H(ωn, fn), then H(ωn, fn) ⊂ C∞(R,C) (the

space of infinitely smooth functions on R). Moreover, the situation cannot be remedied by using an

auxiliary stabilizing state feedback Kz(t) by Theorem 3.40.

The following example illustrates the results of Section 3.5 for an exponentially stable infinite-

dimensional system described by a delay differential equation.

Example 3.54. Let a > 0, r 6= 0, τ1 > τ2 > 0 and consider the following scalar delay differential

equation with control and observation [77]:

ẋ(t) = −ax(t) − b
[
x(t− τ1) + x(t− τ2)

]
+ u(t) (3.71a)

y(t) = rx(t), t ≥ 0 (3.71b)

Our goal is to study asymptotic tracking of the reference signals in the Sobolev spaces Hγ
per(0, p),

γ > 1
2 , in the disturbance-free case (P = 0).

Taking the initial condition into account, the pair (3.71) can be formulated as a plant of the form

(1.1) in which D = 0 and Udist = 0, using the techniques of Curtain and Zwart [17]. Moreover,

it can be shown (see e.g. [17] Lemma 4.3.9) that the transfer function H(s) = CR(s,A)B of this

plant is given by

H(s) =
r

s+ a+ b(e−sτ1 + e−sτ2)
(3.72)

for those s ∈ C at which the denominator is not equal to zero.

8because L = Γ − KΠ = Γ (since K = 0) and the elements Πφn and Γφn in (3.39) and (3.40) are unique for

each n ∈ I; see Remark 3.34.
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The semigroup generated by A is exponentially stable if and only if s+ a+ b(e−sτ1 + e−sτ2) 6= 0

for all s ∈ { z ∈ C | <(z) ≥ 0 } ([17] Theorem 5.1.7). Ruan and Wei [77] give a complete

characterization (in terms of a, b, τ1 and τ2) of those instances in which all roots of equation

s + a + b(e−sτ1 + e−sτ2) = 0 have negative real parts. In their characterization, the parameter b

lies on an interval (b−0 , b
+
0 ). We assume that the semigroup generated by A is exponentially stable.

By the above discussion, then iωn = i2πn
p ∈ ρ(A) and H(iωn) 6= 0 for every n ∈ Z.

It is evident that for every γ > 3
2 ,

∑∞
n=−∞ |H(iωn)−1|2(1 + ω2

n)−γ < ∞. Consequently, by

Corollary 3.38 the system can track all reference signals in Hγ
per(0, p) for γ > 3

2 . The actual

control law which achieves the asymptotic tracking of yref =
∑

n∈Z
ŷ(n)eiωn· ∈ Hγ

per(0, p) is given

by uyref
=

∑
n∈I H(iωn)−1ŷ(n)eiωn· (see Section 3.5).

A particularly important class of infinite-dimensional SISO systems, for which the solvability of

the regulator equations (3.10) and the FRP can be readily verified for an infinite-dimensional exo-

system, is furnished by exponentially stabilizable parabolic partial differential equations. In such

cases the semigroup governing the dynamical behaviour of the system is often analytic [17], and it is

well-known (see e.g. Theorem 2.47 in [65]) that whenever A generates an analytic C0−semigroup,

‖R(iω,A)‖ is of order O(|ω|−1) as ω → ±∞. The identity

HK(iω)−1 = (I −KR(iω,A)B)H(iω)−1 (3.73)

obtained in Theorem 8.2 — which is valid here for all iω ∈ ρ(A) ∩ ρ(A + BK) if H(iω) 6= 0 —

then readily shows that we only have to estimate |H(iω)| in order to use the methods of Section

3.5 in the solution of the output regulation problem. These methods apply for periodic exogenous

signals, but more general signals can be treated using the results of Section 8.1. The below example

illustrates periodic tracking for an exponentially stabilizable infinite-dimensional system governed

by a parabolic partial differential equation.

Example 3.55. Consider the same disturbance-free controlled one-dimensional heat equation on

the interval [0, 1] with Neumann boundary conditions as in Example 1.1. Our goal is to study

asymptotic tracking of the reference signals in the generalized Sobolev spaces H(fn, ωn), in the

disturbance-free case (P = 0).

It can be shown that the transfer function of this heat plant is H(s) = 2 sinh(
√

s/2)
s
√

s cosh(
√

s/2)
, for s ∈ ρ(A)

[12]. Now iωn = i2πn
p ∈ ρ(A) for n 6= 0 [12], and iωn is not a transmission zero of this plant
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for n 6= 0. Let I = Z \ {0}, and let fn =
√

1 + ω2
n

γ
for all n ∈ I and some γ > 1

2 which is to

be determined. Let K be the bounded exponentially stabilizing state feedback operator for the pair

(A,B) given in Example 1.1. Then by Lemma 3.32, HK(iωn)−1 exists for n 6= 0. Let us define L

as in (3.47) (with P = 0 and D = 0). By some elementary calculations we have that H(iωn)−1 and

HK(iωn)−1 are of order O(|ωn|
3
2 ) as n→ ±∞. Consequently

(
HK(iωn)−1

√
1 + ω2

n

−γ)
n∈I

∈ `2 if

γ > 2. By Corollary 3.38, this system is capable of asymptotically tracking those periodic reference

signals in Hγ
per(0, p), with γ > 2, that lack the constant term in the Fourier series description.

More accurate information on the signals which can be asymptotically tracked could possibly be

obtained by working out the explicit expression for HK(s).

As pointed out already in Example 1.1, Byrnes, Laukó, Gilliam and Shubov have thoroughly

studied and simulated output regulation problems for the above heat plant in the case of constant

and sinusoidal reference/disturbance signals (see Section III and Section VI of [12]). Here we

extended their analysis for general periodic functions in certain Sobolev spaces.

Many infinite-dimensional SISO systems which occur e.g. as models of flexible structures have

the following properties [70]:

• The state space Z is a Hilbert space.

• The actuators and sensors are collocated, i.e. B = C∗.

• The operator A−BB∗ generates a strongly stable C0−semigroup on Z.

• σ(A−BB∗) ∩ iR = ∅.

• ±i∞ are points of accumulation for σ(A−BB∗).

Although the last property above implies that the system is not exponentially stable, for such

systems the solvability of the FRP can still be fairly easily verified whenever S ∈ L(W ), using

Corollary 8.6. In fact, in this case it is sufficient that σ(S) ⊂ ρ(A) and H(iω) = CR(iω,A)B +

D 6= 0 for all iω in the compact subset σ(S) ⊂ iR. We emphasize that here W can be infinite-

dimensional, too. In particular, Lemma A.8 and Proposition A.9 provide a useful and sensible

way to approximate the reference signals in order to obtain a bounded system operator S in the

infinite-dimensional exosystem (2.2). In the following example we shall explicitly work out the

actual control law achieving output regulation in the simpler case in which A already generates a

strongly stable C0−semigroup (i.e. no state feedback stabilization is needed):
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Example 3.56. The following is a model for the displacement in a weakly damped vibrating string

of unit length, with clamped ends (see [70] and the references therein):

∂2v(x, t)

∂t2
+M

∂v(x, t)

∂t
=
∂2v(x, t)

∂x2
, for t ≥ 0 and 0 ≤ x ≤ 1 (3.74a)

v(0, t) = v(1, t) = 0, for t ≥ 0 (3.74b)

Here M is a damping operator which will be defined shortly. We define the operator U by Uv =

− ∂2v
∂x2 with D(U) = { v ∈ H2(0, 1) | v(0) = v(1) = 0 }, where H2(0, 1) denotes the standard Sobolev

space on the unit interval. It can be shown that U has eigenvalues λk = k2π2, k = 1, 2, . . . and the

corresponding eigenvectors φk(x) =
√

2 sin(kπx) constitute an orthonormal basis in L2(0, 1).

The damping operator M is defined by Mv = ε〈g, v〉L2(0,1)g where ε > 0 and

g =

∞∑

k=1

γkφk (3.75)

with γk satisfying 0 < |γk| ≤ m√
λk

(for example, γk = 1
k ) for some m > 0. Next we define the

Hilbert space Z = L2(0, 1) × L2(0, 1) with the natural inner product 〈·, ·〉 and introduce

z(t) =


U

1
2 v(x, t)

∂v(x,t)
∂t


 , and A =


 0 U

1
2

−U 1
2 M


 (3.76)

Then equation (3.74) can be rewritten as ż(t) = Az(t), z(0) ∈ Z, and it can be shown that A

generates a strongly (but not exponentially) stable C0−semigroup TA(t) on Z. Furthermore, the

eigenvalues νk of A satisfy

νk = ikπ − ε

2
γ2
|k| + O(

ε2

k2π2
), k 6= 0 (3.77)

all of which have a negative real part. The corresponding eigenvectors (ψk)k 6=0 form a Riesz basis

in Z (the biorthogonal sequence is denoted by (ψ∗
k)k 6=0).

Consider then the application of distributed control and observation to the system (3.74) in

the following sense. For a control operator B =
(

0
b

)
∈ L(C, Z) and the observation operator

C = B∗ ∈ L(Z,C) the (disturbance-free) SISO plant is described by the equations

ż(t) = Az(t) +Bu(t), z(0) ∈ Z, t ≥ 0 (3.78a)

y(t) = B∗z(t), t ≥ 0 (3.78b)

Let Λ ⊂ R be a given compact set and consider the reference signals in H = Λ(R,C) (see

Chapter 2); in this case the Carleman spectrum of any reference signal is contained in the set
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Λ ⊂ R. According to Proposition 2.3 we choose the exosystem (2.2) such that W = H, S = S|H,

Q = δ0, P = 0 and w(0) = yref ∈ H. We assume that H(iω) = B∗R(iω,A)B 6= 0 for all ω ∈ Λ.

This condition can be verified, at least in principle, using the series representation

R(λ,A) =
∑

n

〈·, ψ∗
n〉ψn

λ− νn
, λ ∈ ρ(A) (3.79)

if the operator B ∈ L(C, Z) can be chosen freely.

By Theorem 3.6 it is then sufficient to use the control law u(t) = ΓTS(t)|Hyref , where Γ ∈

L(H,C) is one of the operators Π,Γ solving the regulator equations (3.10), for the asymptotic

tracking of the reference signals yref ∈ H. Proposition 8.5 together with Lemma 8.4 (for K = 0

and Pn = 0) and Theorem V.8.2 in [86] give

Γyref =
1

2πi

∮

γ

H(λ)−1δ0R(λ, S|H)yrefdλ, ∀yref ∈ H (3.80)

Here γ is a suitable contour in ρ(A) enclosing σ(S|H). Observe that now S|H ∈ L(H) because Λ

is a compact set (see Lemma A.8). Consequently, such a contour γ indeed exists because ρ(A) =

{λ ∈ C | infk |λ − νk| > 0 } (this can be shown precisely as in the proof of Theorem 2.3.5 in [17]

using the Riesz basis property of the eigenvectors of A).

Since yref (t) = δ0TS(t)|Hyref for all t ∈ R and all yref ∈ H, the Laplace transform ŷref (λ) =

δ0R(λ, S|H)yref for λ ∈ ρ(S|H) (by analytic continuation). Hence

Γyref =
1

2πi

∮

γ

H(λ)−1ŷref (λ)dλ, ∀yref ∈ H (3.81)

Moreover, since by [2] p. 293 for all λ ∈ C \ iR we have that ̂TS(t)|Hyref (λ) = ̂yref (· + t)(λ) =

eλt
(
ŷref (λ)−

∫ t

0
e−λsyref (s)ds

)
, and since the function λ→

∫ t

0
e−λsyref (s)ds is holomorphic, the

control law which achieves asymptotic tracking of yref is given by

ΓTS(t)|Hyref =
1

2πi

∮

γ

H(λ)−1 ̂TS(t)|Hyref (λ)dλ (3.82)

=
1

2πi

∮

γ

H(λ)−1eλt
(
ŷref (λ) −

∫ t

0

e−λsyref (s)ds
)
dλ (3.83)

=
1

2πi

∮

γ

H(λ)−1eλtŷref (λ)dλ, ∀t ≥ 0 (3.84)

Clearly if Λ = {ωn | n ∈ I, I is finite and ωn 6= ωm for n 6= m }, then the above control law

u(t) = ΓTS(t)|Hyref reduces to

u(t) =
∑

n∈I

yn

H(iωn)
eiωnt (3.85)
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which is analogous to the one found in Section 3.5. Here we have used the unique representation

yref =
∑

n∈I yne
iωn·. On the other hand, if Λ = [−n, n], then the reference signals in Λ(R,C) can

be constructed e.g. by taking convolutions of general bounded uniformly continuous signals with the

Fejér kernel, as described in Remark 2.29 and Proposition A.9.

In the previous examples we did not allow for any overlap between the spectra of the (stabilized)

plant and the exosystem operator S at ±i∞. We conclude this section with an example illustrating

the case in which such overlap exists. In this case the complex frequencies of the reference signals

“mix” with those of the plant at infinity. To the author’s knowledge, none of the existing methods

found in the output regulation literature apply to such a situation.

Example 3.57. Let p > 0, let ωn = 2πn
p for all n ∈ Z, let H = C and let Z be a Hilbert space with

an inner product 〈·, ·〉 and an orthonormal basis (ψn)n∈Z. Consider a linear control system (1.1)

where A =
∑

n∈Z

[
− 1

|n|+1 +iωn

]
〈·, ψn〉ψn, with D(A) = { z ∈ Z | ∑

n∈Z

∣∣− 1
|n|+1 +iωn

∣∣2|〈z, ψn〉|2 <

∞}, Bu = ψ0u for all u ∈ C, C = 〈·, ψ0〉 and P = 0, D = 0. By [17] it is clear that A generates a

C0−semigroup TA(t) on Z. In addition, TA(t) is strongly stable by the Arendt-Batty-Lyubich-Vũ

Theorem [28].

We shall consider asymptotic tracking of the p−periodic reference signals in the Sobolev spaces

H = Hγ
per(0, p), γ >

1
2 , in the sense of the FRP using Proposition 2.3. Although rather artificial,

this output regulation problem is interesting because σ(A) and σ(S|H) intersect at ±i∞.

Since A is a Riesz spectral operator [17], clearly

R(λ,A) =
∑

n∈Z

1

λ+ 1
|n|+1 − iωn

〈·, ψn〉ψn, λ ∈ ρ(A) (3.86)

Hence we have R(λ,A)B = 1
λ+1ψ0 and the transfer function H(λ) of the plant satisfies

H(iωk) = CR(iωk, A)B =
1

iωk + 1
6= 0, ∀k ∈ Z (3.87)

by the orthonormality of the basis (ψn)n∈Z.

Using the techniques of Section 3.5 we readily see that the following operators Π,Γ — whenever
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bounded — solve the regulator equations (3.10) (with S = S|H and Q = δ0):

Γyref =
∑

n∈Z

ŷref (n)

H(iωn)
=

∑

n∈Z

ŷref (n)
[
iωn + 1

]
, ∀yref ∈ H (3.88)

Πyref =
∑

n∈Z

ŷref (n)R(iωn, A)BΓeiωn· =
∑

n∈Z

ŷref (n)

H(iωn)
R(iωn, A)B (3.89)

=
∑

n∈Z

ŷref (n)
[
iωn + 1

] 1

iωn + 1
ψ0 = ψ0δ0yref , ∀yref ∈ H (3.90)

Here ŷref (n) is the nth L2-Fourier coefficient of yref ∈ H. Hence it remains to show the boun-

dedness of Γ for a suitable γ > 1
2 . This can be done by employing the Schwartz inequality as

follows:

‖Γyref‖ ≤
∑

n∈Z

∣∣ŷref (n)
[
iωn + 1

]∣∣ ≤
√∑

n∈Z

|ŷref (n)|2(1 + ω2
n)γ

√∑

n∈Z

1 + ω2
n

(1 + ω2
n)γ

(3.91)

So that ‖Γyref‖ ≤ M‖yref‖H for all yref ∈ H whenever γ > 3
2 . Then by Theorem 3.6, for γ > 3

2

the control law u(t) = ΓTS(t)|Hyref =
∑

n∈Z
ŷref (n)eiωnt[iωn + 1] achieves asymptotic tracking of

an arbitrary yref ∈ H = Hγ
per(0, p).



Chapter 4

Error feedback output regulation

Although the resulting controllers are relatively simple, and hence quite appealing, the feedforward

output regulation theory developed in Chapter 3 is not applicable in many practical problems.

There are two principal reasons for this: The state of the plant may not be directly available

for measurement — state feedback cannot be used in the stabilization of the closed loop system

— and the controller does not lead to a robust (i.e. structurally stable) design. In the present

chapter we shall study a more realistic output regulation problem, the error feedback regulation

problem (EFRP). In the EFRP the state of the plant need not be explicitly available to us; the

controller only incorporates feedback from the tracking error signal, which is directly available for

measurement. Furthermore, as we shall see in Chapter 6, once we have solved the EFRP, it is

often not very difficult to also achieve a degree of robustness in output regulation.

As opposed to the static controllers solving the FRP in Chapter 3, a solution of the EFRP

involves the construction of a dynamic controller on some Banach state space X. The dynamic

controller should appropriately stabilize the closed loop system consisting of the plant and the

controller, and it should achieve the asymptotic tracking/rejection of the signals generated by the

exosystem (2.2). Thus the solution of the EFRP is a similar, but a somewhat more complex,

process than the solution of the FRP.

For finite-dimensional linear systems and simple reference/disturbance signals generated by

systems of linear ordinary differential equations, error feedback regulation problems analogous to

the EFRP were studied intensively in the 1970s. Complete solutions now exist e.g. in the work

of Francis, Wonham and Davison [24, 29, 32, 93]. While Davison (with his coworkers) prima-

70
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rily studied error feedback regulation problems using the so-called servocompensators, Francis and

Wonham initiated what is nowadays known as geometric output regulation theory. The terminology

here stems from the fact that these authors studied output regulation problems using geometric

terms, such as subspace inclusions. The geometric approach allows for a general treatment of the

output regulation problems without any regard to the choice of the controller’s parameters. A

particularly important result, due to Francis (see Proposition 3 of [29]), arising from the geomet-

ric output regulation theory of finite-dimensional systems is the necessary structure of an error

feedback controller achieving output regulation: Under certain observability assumptions the exo-

system dynamics must be embedded in the controller dynamics. A concrete version of this result

was also obtained by Davison in [21].

During the past three decades several authors have generalized the work of Francis and Wonham

for infinite-dimensional linear systems and finite-dimensional exosystems. Already in the 1970s

Bhat [7] generalized the results of [29] with an emphasis on time-delay systems. In the early

1980s Schumacher [80] constructed finite-dimensional error feedback controllers for such infinite-

dimensional plants in which the system operator A has compact resolvent and a complete set

of generalized eigenfunctions. His solution of the output regulation problem is also expressed in

geometric terms (cf. Theorem 3.1 in [80]). In [79] Schumacher studied the regulator problem

somewhat more indirectly from the compensator design point of view; among his assumptions was

discreteness of σ(A). Several years later Byrnes et al. [12] generalized sections 1-3 of [29] for

infinite-dimensional systems in such a way that the geometric conditions were explicitly replaced

by the regulator equations (3.10) (with D = 0). These equations — which are in another form

also present in the finite-dimensional work [29, 31] and in the paper [80] of Schumacher — express

the geometric conditions for output regulation in an operator-theoretic way. This is particularly

useful for the application of semigroup methods. Byrnes et al. [12] showed that the solvability of

a feedforward regulation problem, the solvability of an error feedback regulation problem and the

solvability of the regulator equations (3.10) (with D = 0) are all equivalent to each other provided

that the plant and the finite-dimensional neutrally stable linear exogenous signal generator (2.1)

have sufficient stabilizability properties. The dynamic controller of Byrnes et al. [12] solving

the error feedback regulation problem is obtained from a direct generalization of the “synthesis

algorithm” (SA) of Francis [29].

During the past few decades several authors have also generalized the finite-dimensional results
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of Davison for infinite-dimensional systems and finite-dimensional exosystems. We mention Pohjo-

lainen [73, 74], Hämäläinen and Pohjolainen [35, 34], Ukai and Iwazumi [87] and refer the reader to

the monograph [33] of Timo Hämäläinen for a detailed description of the respective contributions

of these (and other related) papers.

In this chapter we shall extend the error feedback regulation theory cited above for bounded

uniformly continuous reference/disturbance signals generated by the exosystem (2.2). Our basic

strategy is to generalize the marvelous argument of Wonham [93], Francis [29] and Byrnes et al.

[12] which casts the error feedback regulation problem as a feedforward regulation problem for an

extended system. Once we have accomplished this, the feedforward methods developed in Chapter

3 immediately yield necessary and sufficient conditions — in terms of closed loop stability and

an extended set (4.3) of regulator equations — for the solvability of the EFRP. We shall also see

that if the controller’s parameters are chosen appropriately, then the solvability of these extended

regulator equations (4.3) reduces to the solvability of the same simpler (feedforward) regulator

equations (3.10) as were utilized in Chapter 3.

However, in contrast to the FRP, it turns out that if the exosystem (2.2) is infinite-dimensional,

then the closed loop in an error feedback control system is notoriously difficult to stabilize expo-

nentially. This is the same phenomenon that occurs in the classical repetitive control literature (see

Chapter 1), and it is a consequence of the fact that the dynamical behaviour of the exosystem must

— under certain assumptions — be embedded in any controller which solves the EFRP. As we

shall show in this chapter, an infinite-dimensional exosystem (2.2) is often impossible to stabilize

exponentially; hence exponential closed loop stability cannot be required in the EFRP either if W

is infinite-dimensional.

In view of the above negative result it is quite fortunate that the strong stabilizability of closed

loop (EFRP) control systems can very often in practice be achieved under certain realistic condi-

tions. Hence error feedback output regulation of general bounded uniformly continuous exogenous

signals is often possible in the framework of this thesis, even for such infinite-dimensional plants

(1.1) for which D = 0. We point out that in the repetitive control scheme the asymptotic tracking

of p−periodic reference signals cannot be achieved even for finite-dimensional plants (1.1) if there

is no feedthrough, i.e. D = 0 [36, 92, 95, 96]. We also emphasize that as was the case with the FRP,

also in the case of the EFRP we can study output regulation for prespecified spaces of reference

and disturbance functions using the techniques of Chapter 2. In addition to this, in our framework
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it is possible to take into account the smoothness of the regulated exogenous signals. This is crucial

because we saw in Chapter 3 that in certain cases even a simpler feedforward controller can only

achieve output regulation if the exogenous signals are smooth enough. The existing solutions of

repetitive control problems are based on such frequency domain techniques which do not take into

account the smoothness of the periodic signals to be regulated.

In the following we shall review the contents of this chapter in more detail, and we shall more

precisely indicate the respective contributions of this thesis.

Section 4.1: We shall define the EFRP. This is the same error feedback regulation problem as studied

in [12] except that we allow for general bounded uniformly continuous reference/disturbance

signals generated by the (possibly infinite-dimensional) exosystem (2.2). Moreover, here

D 6= 0 is possible, and we only require that the closed loop system operator, consisting of the

plant and the controller, with the exogenous system detached, generates a strongly stable

C0−semigroup (exponential stability was required in [12]).

Section 4.2: We shall show in Theorem 4.4 that the following is a sufficient condition for the solvability of

the EFRP: The closed loop system operator generates a strongly stable C0−semigroup and

the extended regulator equations (4.3) have a solution. A key feature in this result is that

the controller structure is fixed, but the parameters F,G and J of the dynamic controller

can be freely chosen as long as the above conditions are met. Theorem 4.4 generalizes

Corollary to Lemma 1 in [29] and Lemma 1 in [31] for infinite-dimensional systems and

infinite-dimensional exosystems. Moreover, it generalizes Theorem IV.2 in [12] where the

parameters of the controller are fixed as in the synthesis algorithm of Francis [29]. The

results of this section are contained in [49].

Section 4.3: Assuming that the exosystem (2.2) generates admissible reference signals, we shall first show

that the solvability of the extended regulator equations (4.3) is necessary for the solvability

of the EFRP and the regularity of an operator
(

P
−GQ

)
for the closed loop semigroup. If

the closed loop system is also exponentially stable, then the solvability of the EFRP is

equivalent to the solvability of the extended regulator equations (4.3). Here we do not need

the above regularity condition for the operator
(

P
−GQ

)
, but the exosystem (2.2) must still

generate admissible reference signals. Finally, assuming that the closed loop system has been

exponentially stabilized, then the solvability of the EFRP with an exponentially fast decay
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rate of the tracking/rejection error is equivalent to the solvability of the extended regulator

equations (4.3). In this last result we do not have to explicitly require either the admissibility

of the reference signals generated by the exosystem (2.2) or the regularity of the operator
(

P
−GQ

)
for the closed loop semigroup.

The results of this section are based on the work in [49]; they generalize Lemma 1 in [31] and

the Corollary to Lemma 1 in [29] for infinite-dimensional systems and infinite-dimensional

exosystems (2.2). In addition, they generalize Theorem IV.2 of Byrnes et al. [12] for infinite-

dimensional exosystems (2.2) in such a way that the parameters F,G and J of the controller

(4.1) need not be fixed a priori.

Section 4.4: Under an approximate observability assumption and under the assumption that the solva-

bility of the extended regulator equations (4.3) is necessary for the solvability of the EFRP,

in this section we shall prove the following additional necessary condition for the solvabi-

lity of the EFRP: There must exist a subspace X0 ⊂ X of the controller’s state space X

which is invariant for the controller semigroup TF (t), and there must exist a linear bijection

M : W → X0 such that M ∈ L(W,X) and TS(t) = M−1TF (t)M for all t ≥ 0. Roughly

stated, this result reads: In order to achieve output regulation in the sense of the EFRP, the

exosystem dynamics must be embedded in the controller. This is a generalization of Proposi-

tion 3 in [29] for infinite-dimensional systems (1.1) and infinite-dimensional exosystems (2.2);

to the author’s knowledge no comparable results have appeared in the state space domain for

infinite-dimensional systems and finite-dimensional exosystems. The results of this section

have been principally developed in [49].

Section 4.5: We shall present two dynamic controllers (4.1) which solve the EFRP under certain assump-

tions.

– In Subsection 4.5.1 we shall generalize the synthesis algorithm of Francis [29] for infinite-

dimensional systems (1.1) and infinite-dimensional exosystems (2.2). The assumptions

under which the resulting controller solves the EFRP are as follows: The regulator equa-

tions (3.10) have a solution, D = 0, the pair (A,B) is exponentially stabilizable, and

there exists G =
(

G1

G2

)
∈ L(H,Z × G) for which AF =

(
A P
0 S

)
−

(
G1

G2

)(
C −Q

)
generates

a strongly stable C0−semigroup on Z ×W . The main result, Theorem 4.15, genera-

lizes Theorem IV.2 in [12] because the latter result only applies for finite-dimensional
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exosystems (2.1). The results of this subsection are essentially contained in [49].

– In Subsection 4.5.2 we shall briefly introduce a generalization of Davison’s dynamic state

feedback controller (see e.g. [39]) for infinite-dimensional systems (1.1) and infinite-

dimensional exosystems (2.2). Sufficient conditions for output regulation to occur are,

however, deferred to Chapter 6 where they arise as natural consequences of a general

robustness theory.

Section 4.6: We shall study the stabilization of the exogenous system (2.2) and the closed loop system

resulting from the controllers of Subsection 4.5.1 and Subsection 4.5.2.

– In Subsection 4.6.1 we shall show that if dim(W ) = ∞, then S + ∆ does not generate

an exponentially stable C0−group for any compact operator ∆ ∈ L(W ). Moreover, a

similar argument shows that the situation cannot be improved very much by allowing for

an unbounded but S−compact1 operator ∆, because in this case S+∆ can only generate

an exponentially stable C0−semigroup if S has compact resolvent. These results are

well-known (Corollary 3.58 in [65] and Theorem IV.5.35 in [57]), but our proofs seem to

be new. In the literature these results are proved using the theory of essential spectra,

whereas we rely on an argument based on Sylvester operator equations.

– In Subsection 4.6.2 we shall present some general sufficient conditions for the strong

stabilizability of the exosystem (2.2). In particular, in Theorem 4.22 we shall prove that

S|E − εδ∗0δ0 generates a strongly stable C0-semigroup on a Hilbert space E s
↪→BUC(R, E)

for all ε > 0. As shown in Chapter 2, S = S|E and Q = δ0 or P = δ0 is an important

special case for the exosystem (2.2). The results of this subsection are new, although

they rely heavily on [61, 85, 94]. Of the results of this subsection only Lemma 4.28 has

been submitted for publication in [43].

– The remainder of this section is devoted to presenting such methods which can be used

to establish the strong stability of the C0−semigroups TAF
(t) and TADK

(t) generated by

the operators AF and ADK
introduced in Section 4.5, respectively. As regards AF , the

results of this section are essentially contained in [49]; however the results concerning

the strong stability of TADK
(t) have not been submitted for publication.

1A linear operator ∆ : D(W ) → W is S−compact if ∆R(λ, S) is a compact operator for one/all λ ∈ ρ(S) (see

Exercise III.2.18(1) in [28]). Such an operator ∆ may be unbounded.
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Section 4.7: We shall present an example of error feedback output regulation for a delay-differential equa-

tion. This example is from [49], and here the plant is precisely the same as in Example 3.54

of Chapter 3.

4.1 The error feedback regulation problem EFRP

In this section we shall formulate the error feedback regulation problem EFRP. It involves the

construction of such a dynamic controller for the plant (1.1) on some Banach space X which

achieves strong stability of the closed loop system (consisting of the plant and the controller without

exosignals) and the asymptotic tracking of the reference signals in the presence of disturbances.

Definition 4.1 (EFRP). The task in the error feedback regulation problem EFRP is to find an

error feedback controller of the form

ẋ(t) = Fx(t) +Ge(t), x(0) ∈ X, t ≥ 0 (4.1a)

u(t) = Jx(t) (4.1b)

(in the mild sense) on some Banach state spaceX where F generates a C0−semigroup, G ∈ L(H,X)

and J ∈ L(X,H). The controller (4.1) must satisfy the following requirements:

1. In the closed loop system

ż(t) = Az(t) +BJx(t) + Pw(t), t ≥ 0 (4.2a)

ẋ(t) = GCz(t) + (F +GDJ)x(t) −GQw(t), t ≥ 0 (4.2b)

ẇ(t) = Sw(t), t ∈ R (4.2c)

e(t) = Cz(t) +DJx(t) −Qw(t) (4.2d)

the C0−semigroup TA(t) generated by the closed loop operator A =
(

A BJ
GC F+GDJ

)
, with

D(A) = D(A) ×D(F ), on Z ×X is strongly stable.

2. The tracking error e(t) → 0 as t → ∞ for any initial conditions z(0) ∈ Z, x(0) ∈ X and

w(0) ∈W .

Remark 4.2. As in the case of the FRP it is implicitly assumed in Definition 4.1 that the

exosystem’s free parameters W,S, P and Q are fixed, but its initial state w(0) ∈W may vary.
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Remark 4.3. Byrnes et al. [12] considered a similar error feedback regulation problem for finite-

dimensional exosystems (2.1). However, they required exponential stability of TA(t) and D = 0.

It turns out that in the case of an infinite-dimensional exosystem (2.2) exponential stability of

TA(t) is usually impossible to achieve in practice, because the operator F often contains a copy

of S (see Section 4.4). The problems is — as we shall show in Subsection 4.6.1 — that if W is

infinite-dimensional, then S + ∆ does not generate an exponentially stable C0−semigroup for any

compact operator ∆ ∈ L(W ) (see also Corollary 3.58 in [65]).

4.2 Sufficient conditions for the solvability of the EFRP

The following result provides sufficient conditions for the solvability of the EFRP. We point out

that, as opposed to [12], in Theorem 4.4 below we do not fix the parameters F,G and J of the

controller (4.1). Instead, we prove for general operators F,G and J that if the closed loop system

operator A generates a strongly stable C0−semigroup, then output regulation follows if certain

extended regulator equations (4.3) are satisfied. Our proof generalizes the marvelous argument

utilized by Francis and Wonham in [29, 32, 31] and Byrnes et al. in [12], in which the EFRP is

formulated as an FRP for the extended system (4.2). This enables the direct use of the feedforward

output regulation theory of Chapter 3.

Theorem 4.4. Assume that F,G and J in the controller (4.1) have been chosen such that the

closed loop operator A =
(

A BJ
GC F+GDJ

)
generates a strongly stable C0−semigroup TA(t) on Z×X.

If in addition there exist Π ∈ L(W,Z) and Λ ∈ L(W,X) such that Π(D(S)) ⊂ D(A) and Λ(D(S)) ⊂

D(F ), and the following extended regulator equations are satisfied

AΠ +BJΛ + P = ΠS in D(S) (4.3a)

FΛ = ΛS in D(S) (4.3b)

CΠ +DJΛ = Q in W (4.3c)

then this triplet (F,G, J) solves the EFRP.

Proof. Let Θ(t) =
( z(t)

x(t)

)
∈ Z ×X and define

A =


 A BJ

GC F +GDJ


 , B =


0

0


 , P =


 P

−GQ


 , C =

(
C DJ

)
, D = 0 (4.4)
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with obvious domains of definition. Then write the closed loop system (4.2), with y(t) = Cz(t) +

DJx(t) = CΘ(t), as

Θ̇(t) = AΘ(t) + Bu(t) + Pw(t), Θ(0) ∈ Z ×X (4.5a)

ẇ(t) = Sw(t) (4.5b)

e(t) = CΘ(t) + Du(t) −Qw(t) (4.5c)

Since the extended regulator equations (4.3) are satisfied, we have ΠS = AΠ + BJΛ + P and

ΛS = FΛ = GCΠ + (F +GDJ)Λ −GQ in D(S). Hence


Π

Λ


S =


 A BJ

GC F +GDJ





Π

Λ


 +


 P

−GQ


 in D(S) (4.6)

Q =
(
C DJ

)

Π

Λ


 in W (4.7)

or, using the above notation, for Γ = 0 ∈ L(W,H)


Π

Λ


S = A


Π

Λ


 + BΓ + P in D(S) (4.8)

Q = C


Π

Λ


 + DΓ in W (4.9)

Since for K = 0 ∈ L(Z×X,H) the operator A = A+BK generates a strongly stable C0−semigroup,

by Theorem 3.6 the control law u(t) = KΘ(t) + [Γ − K
(

Π
Λ

)
]w(t) ≡ 0 solves the corresponding

FRP. This means that in the system (4.2) the tracking error limt→∞ e(t) = 0 for all initial states

Θ(0) ∈ Z×X (i.e. for all z(0) ∈ Z and all x(0) ∈ X) and all w(0) ∈W . The proof is complete.

Remark 4.5. It is clear that the solvability of the extended regulator equations (4.3) implies the

solvability of the regulator equations (3.10) (take Γ = JΛ). On the other hand, if the regulator

equations (3.10) have a solution (Π,Γ), then so do the extended regulator equations (4.3), provided

that also the following regulator equations for the error feedback controller (4.1) have a solution:

ΛS = FΛ in D(S) (4.10a)

JΛ = Γ in W (4.10b)
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Remark 4.6. If TA(t) is exponentially stable, then also the decay rate of ‖e(t)‖ to 0 as t → ∞

is exponentially fast in Theorem 4.4. In fact, under the assumptions of Theorem 4.4 we have that

e(t) = CTA(t)
[( z(0)

x(0)

)
−

( Πw(0)
Λw(0)

)]
for all t ≥ 0. This can be proved as in Theorem 3.6.

For finite-dimensional exosystems (2.1), explicit operators F,G, J satisfying the conditions of

Theorem 4.4 can be found in Theorem IV.2 of [12]. For general infinite-dimensional exosystems

(2.2) such operators F,G, J will be provided in Section 4.5; as we shall see, the idea is to choose

F,G and J in such a way that the solvability of the regulator equations (3.10) implies the solvability

of the extended regulator equations (4.3), too2. However, before proceeding to the construction

of F,G and J we shall first present some necessary conditions for the solvability of the EFRP in

Section 4.3 below.

4.3 Necessary conditions for the solvability of the EFRP

We saw in Section 4.2 that if a controller (4.1) achieves strong stability of the C0−semigroup TA(t)

generated by the closed loop operator A, then the same controller also solves the EFRP provided

that the extended regulator equations (4.3) have a solution. In this section we discuss a converse

question: Is it necessary to be able to solve the extended regulator equations (4.3) in order to be

able to solve the EFRP?

Since we can cast the EFRP as an FRP for the extended system (4.2), based on the results

of Section 3.3 the reader should not be very surprised to learn that a complete characterization

of the solvability of the EFRP in terms of the extended regulator equations (4.3) alone is, in

general, rather difficult unless additional assumptions are made e.g. about the reference signals.

This is because the extended regulator equations (4.3) play the role of the regulator equations

(3.10) for the extended system (4.2). Consequently, their solvability may imply such state space

behaviour of the closed loop system which cannot be guaranteed by strong stability and asymptotic

tracking/rejection alone. Of course, we can employ regularity (cf. Definition 3.9) and Lemma 3.12

to overcome this difficulty, but some additional care is necessary here: The uniform boundedness

of TA(t) and the (unique) solvability of the operator equation ΠS = AΠ + ∆ for certain operators

∆ ∈ L(W,Z) sometimes already necessitate exponential stability of the closed loop semigroup

TA(t) (see e.g. Theorem 4.2 in [90]). This may result in a contradictory situation if dim(W ) = ∞,

2We remind the reader that the solvability of the regulator equations (3.10) is treated in Chapter 8.
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because exponential closed loop stability is then often impossible to achieve in practice. On the

other hand, we shall see that if the closed loop system is exponentially stable, then complete

characterizations for the solvability of the EFRP in terms of the extended regulator equations

(4.3) can be proved. In this section shall extensively employ the notation and definitions of Section

3.3.

Theorem 4.7. Assume that the exogenous system (2.2) generates admissible reference signals. If

the EFRP is solvable for some triplet (F,G, J) and if the operator P =
(

P
−GQ

)
is regular for the

semigroup TA(t) generated by A =
(

A BJ
GC F+GDJ

)
on Z × X, then there exist Π ∈ L(W,Z) such

that Π(D(S)) ⊂ D(A) and Λ ∈ L(W,X) such that Λ(D(S)) ⊂ D(F ) which satisfy the extended

regulator equations (4.3).

Proof. Assume that the EFRP is solvable using a controller of the form (4.1). Let Θ(t) =
( z(t)

x(t)

)
∈

Z × X and consider the closed loop system (4.2) in the form (4.5), with the relevant operators

defined in (4.4). Let K ∈ L(Z × X,H) and L ∈ L(W,H) be arbitrary. Then since B = 0 and

D = 0, the control law u(t) = KΘ(t) + Lw(t) solves the FRP for the system (4.5). Moreover, by

our assumption P = BL + P is regular for the semigroup generated by A + BK = A. Hence by

Theorem 3.16 there exist
(

Π
Λ

)
∈ L(W,Z×X) and Γ ∈ L(W,H) such that

(
Π
Λ

)
(D(S)) ⊂ D(A) and

(
Π
Λ

)
S = A

(
Π
Λ

)
+ BΓ + P in D(S) (4.11)

Q = C
(

Π
Λ

)
+ DΓ in W (4.12)

Expanding these equations gives

Π

Λ


S =


 A BJ

GC F +GDJ





Π

Λ


 +


0

0


 Γ +


 P

−GQ


 (4.13)

=


 A BJ

GC F +GDJ





Π

Λ


 +


 P

−GQ


 (4.14)

=


A BJ

0 F





Π

Λ


 +


P

0


 in D(S) (4.15)

Q =
(
C DJ

)

Π

Λ


 + 0Γ =

(
C DJ

)

Π

Λ


 in W (4.16)

We now immediately see that the extended regulator equations (4.3) are satisfied for Π and Λ as

in the above.
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Corollary 4.8. Assume that the exogenous system (2.2) generates admissible reference signals

and that the controller (4.1) has been chosen in such a way that A generates a strongly stable

C0−semigroup on Z×X. Then the same controller also solves the EFRP and P =
(

P
−GQ

)
is regular

for TA(t) if and only if there exist Π ∈ L(W,Z) such that Π(D(S)) ⊂ D(A) and Λ ∈ L(W,X) such

that Λ(D(S)) ⊂ D(F ) which satisfy the extended regulator equations (4.3).

Proof. To prove sufficiency, we observe that if Π and Λ satisfy the extended regulator equations

(4.3), then the EFRP is solvable according to Theorem 4.4. Moreover,


Π

Λ


S =


 A BJ

GC F +GDJ





Π

Λ


 +


 P

−GQ


 in D(S) (4.17)

or
(

Π
Λ

)
S = A

(
Π
Λ

)
+ P in D(S). Hence P is regular for TA(t) by Lemma 3.12.

The necessity part of the result follows directly from Theorem 4.7.

Below we shall employ the fact that good enough stability properties for TA(t) automatically

imply regularity of every operator P ∈ L(W,Z ×X) for TA(t).

Theorem 4.9. Assume that the exogenous system (2.2) generates admissible reference signals and

assume that the operators F,G and J in (4.1) are chosen such that A generates an exponentially

stable C0-semigroup on Z × X. Then the same controller solves the EFRP if and only if there

exist Π ∈ L(W,Z) such that Π(D(S)) ⊂ D(A) and Λ ∈ L(W,X) such that Λ(D(S)) ⊂ D(F ) which

satisfy the extended regulator equations (4.3).

Proof. Sufficiency part of the result is contained in Theorem 4.4. In order to prove necessity, let

Θ(t) =
( z(t)

x(t)

)
∈ Z ×X and write the closed loop system (4.2) in the form (4.5), with the relevant

operators defined in (4.4). Let K ∈ L(Z ×X,H) and L ∈ L(W,H) be arbitrary. Then the control

law u(t) = KΘ(t) + Lw(t) solves the FRP for the system (4.5) and A = A + BK generates an

exponentially stable C0−semigroup. The result now follows from Theorem 3.19 as in the proof of

Theorem 4.7.

In analogy with the FRP, also here it is possible to dispense with the above requirement for

admissibility of the reference signals if both ‖TA(t)‖ and ‖e(t)‖ decay exponentially as t→ ∞:

Theorem 4.10. Assume that the controller (4.1) is chosen such that A generates an exponentially

stable C0-semigroup on Z × X. Then the same controller solves the EFRP in such a way that



CHAPTER 4. ERROR FEEDBACK OUTPUT REGULATION 82

‖e(t)‖ ≤ Me−ωt[‖z(0)‖ + ‖x(0)‖ + ‖w(0)‖] for all t ≥ 0 and some M,ω > 0 which do not depend

on the initial conditions z(0) ∈ Z, x(0) ∈ X, and w(0) ∈W , if and only if there exists Π ∈ L(W,Z)

and Λ ∈ L(W,X) such that Π(D(S)) ⊂ D(A) and Λ(D(S)) ⊂ D(F ) and the extended regulator

equations (4.3) are satisfied.

Proof. This result follows from Theorem 3.20 using the above methods and Remark 4.6. We omit

the details.

Remark 4.11. In Theorem 4.10 we have endowed the product space Z × X with the 1−norm.

Obviously we could also have used the 2−norm or the ∞−norm without altering the result (the

value of the constant M would have been altered, though).

It is possible that Theorem 4.9 and Theorem 4.10 may only be applicable when W is finite-

dimensional because exponential closed loop stability may be impossible to achieve for an infinite-

dimensional W . We shall return to this matter in Subsection 4.6.1, but we emphasize that these

results are new even for finite-dimensional spaces W .

4.4 On the necessity of reduplication of S in F

In the previous two sections we have derived general necessary and sufficient conditions for the

solvability of the EFRP in terms of strong closed loop stability and the extended regulator equa-

tions (4.3). In this section we shall further investigate the necessary structure of error feedback

controllers (4.1) that solve the EFRP. In particular, we shall generalize Proposition 3 in [29] for

infinite-dimensional systems and exosystems (2.2). For finite-dimensional plants and exosystems

Proposition 3 in [29] establishes, using a commutative diagram, the fact that under certain as-

sumptions any controller solving the EFRP must incorporate the exosystem dynamics.

Theorem 4.12. Let the pair
((

A P
0 S

)
,
(

C −Q
))

be approximately observable3. Moreover, assume

that the extended regulator equations (4.3) have a solution. Then there exists a subspace X0 ⊂ X

which is invariant for the semigroup TF (t) generated by F on X, and there exists a linear bijection

M : W → X0 such that M ∈ L(W,X) and TS(t) = M−1TF (t)M .

3By definition this means that
�

C −Q
�
T (t)

� z0
w0

�
= 0 for all t ≥ 0 implies z0 = 0 ∈ Z and w0 = 0 ∈ W [17].

Here T (t) is the C0−semigroup generated by
�

A P
0 S

�
on Z × W .
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Proof. By our assumptions there exist bounded linear operators Π and Λ such that

ΠS = AΠ +BJΛ + P in D(S) (4.18a)

ΛS = FΛ in D(S) (4.18b)

Q = CΠ +DJΛ in W (4.18c)

Since Λ(D(S)) ⊂ D(F ), from (4.18b) we see that for every w ∈ D(S) and every t ≥ 0

ΛTS(t)w − TF (t)Λw =

∣∣∣∣
t

0

TF (t− τ)ΛTS(τ)w =

∫ t

0

d

dτ
TF (t− τ)ΛTS(τ)wdτ (4.19)

=

∫ t

0

TF (t− τ)[ΛS − FΛ]TS(τ)wdτ = 0 (4.20)

A suitable denseness argument (see Lemma 3.5) shows that ΛTS(t)w − TF (t)Λw = 0 for every

w ∈W and every t ≥ 0.

We now show that Λ : W → ran(Λ) is injective. If Λw = 0 for some w 6= 0, then by the above

BJΛTS(t)w = BJTF (t)Λw = 0 and DJΛTS(t)w = DJTF (t)Λw = 0 for every t ≥ 0. Consider the

semigroup

T (t) =


TA(t)

∫ t

0
TA(t− s)PTS(s)ds

0 TS(t)


 (4.21)

generated by
(

A P
0 S

)
on Z ×W . We immediately see by (4.18a) and Lemma 3.5 that

T (t)
(

Πw
w

)
=


TA(t)Πw +

∫ t

0
TA(t− s)(BJΛ + P )TS(s)wds

TS(t)w


 (4.22)

=


TA(t)Πw + ΠTS(t)w − TA(t)Πw

TS(t)w


 (4.23)

=


ΠTS(t)w

TS(t)w


 (4.24)

Hence by (4.18c) we have (C −Q)T (t)
(

Πw
w

)
= (CΠ +DJΛ−Q)TS(t)w = 0 for every t ≥ 0. This

violates the approximate observability assumption. Hence Λ is injective.

By the fact that ΛTS(t) = TF (t)Λ inW , it is evident thatX0 = ran(Λ) is a TF (t)-invariant subs-

pace of X. Consequently M = Λ is a bounded linear bijection W → X0 and TS(t) = M−1TF (t)M ,

as was claimed.
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Remark 4.13. In finite dimensions the (approximate) observability of the pair
((

A P
0 S

)
,
(

C −Q
))

implies the exponential detectability of the pair
((

A P
0 S

)
,
(

C −Q
))

; the latter was also assumed in

Proposition 3 of [29] which the above result generalizes.

4.5 Some explicit controllers solving the EFRP

Thus far in this chapter we have only presented some necessary and sufficient conditions for the

solvability of the EFRP without any regard to the actual choice of the parameters F,G and J in

the controller (4.1). In this section we shall construct two dynamic controllers (4.1) which solve the

EFRP under certain assumptions. These controllers employ infinite-dimensional generalizations of

some classical constructions of Francis and Davison.

4.5.1 A generalization of the synthesis algorithm of Francis

In [29] Francis presented a synthesis algorithm (SA) for the construction of a dynamic controller

(4.1) which solves the EFRP if both the plant (1.1) and the exosystem (2.1) are finite-dimensional.

Subsequently Byrnes et al. [12] have generalized this procedure for infinite-dimensional plants.

In the present subsection we shall generalize the SA for infinite-dimensional systems (1.1) and

infinite-dimensional exosystems (2.2). Throughout this subsection we make the following standing

assumptions:

1. There is no feedthrough, i.e. D = 0.

2. There exists G =
(

G1

G2

)
∈ L(H,Z ×W ) for which AF =

(
A P
0 S

)
−

(
G1

G2

)(
C −Q

)
generates a

strongly stable C0−semigroup TAF
(t) on Z ×W .

3. There existsK ∈ L(Z,H) such that A+BK generates an exponentially stable C0−semigroup.

4. There exist Π ∈ L(W,Z), such that Π(D(S)) ⊂ D(A), and Γ ∈ L(W,H) which satisfy the

regulator equations (3.10).

Remark 4.14. In Subsection 4.6.3 we shall discuss how the assumption 2 above can be satisfied,

whereas in Chapter 8 we shall study solvability of the regulator equations (3.10) (i.e. we show how

the assumption 4 above can be satisfied). The assumptions 1 and 3 above are often comparably

easy to verify in applications.
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It has been shown in [12, 29] for finite-dimensional exosystems that the above assumptions

and exponential stability of TAF
(t) make it possible to solve the error feedback regulation problem

using an observer-based construction. The idea is to use an observer to generate an estimate

Θ(t) =
( θ1(t)

θ2(t)

)
of the state

( z(t)
w(t)

)
of the system


 ż(t)

ẇ(t)


 =


A P

0 S





z(t)

w(t)


 +


B

0


u(t) (4.25a)

e(t) =
(
C −Q

)

z(t)

w(t)


 (4.25b)

and then apply the control u(t) = JΘ(t) = J1θ1(t)+J2θ2(t) where J1 ∈ L(Z,H) and J2 ∈ L(W,H)

are chosen so that they solve a corresponding FRP. This amounts to choosing J1 = K and J2 =

Γ −KΠ (see [29] for more details).

As will be demonstrated in Subsection 4.6.1, if W is infinite-dimensional, then S+∆ cannot ge-

nerate an exponentially stable C0−semigroup for any compact operator ∆ ∈ L(W ). Consequently,

in the general setup of this thesis we cannot assume exponential stability of TAF
(t) as was done in

[12, 29]. However, the following result shows that we do not need exponential stability of TAF
(t)

to solve the EFRP.

Theorem 4.15. Let the assumptions 1 − 4 above hold. Then the dynamic controller (4.1) given

on the state space X = Z ×W by

F =


A+BK −G1C P +B(Γ −KΠ) +G1Q

−G2C S +G2Q


 , G =


G1

G2


 and J =

(
K Γ −KΠ

)

(4.26)

solves the EFRP.

Proof. It is easy to see that the operators Π and Λ =
(

Π
I

)
∈ L(W,Z ×W ) satisfy the extended

regulator equations (4.3). On the other hand, the closed loop system operator is given by

A =


 A BJ

GC F


 =




A BK B(Γ −KΠ)

G1C A+BK −G1C P +B(Γ −KΠ) +G1Q

G2C −G2C S +G2Q


 (4.27)

If we can establish that A generates a strongly stable C0−semigroup TA(t), then the error feedback

controller (4.26) solves the EFRP by Theorem 4.4.
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Applying a similarity transform U given as

U =




I 0 0

I −I 0

0 0 −I


 (4.28)

on Z × Z ×W to A we see that A is similar to the operator Ã = UAU having the expression

Ã =




A+BK −BK −B(Γ −KΠ)

0 A−G1C P +G1Q

0 −G2C S +G2Q


 =


A+BK M

0 AF


 (4.29)

forM =
(
−BK −B(Γ −KΠ)

)
. By our assumption AF generates a strongly stable C0−semigroup

onX andA+BK generates an exponentially stable C0−semigroup on Z. Clearly the C0−semigroup

generated by Ã on Z ×X is given by

T eA(t) =


TA+BK(t)

∫ t

0
TA+BK(t− s)MTAF

(s)ds

0 TAF
(t)


 (4.30)

Consequently T eA(t) is strongly stable if

lim
t→∞

∫ t

0

TA+BK(t− s)MTAF
(s)xds = 0 ∀x ∈ X (4.31)

But (4.31) holds by Proposition 5.6.1 in [2]. This proves that also TA(t) is strongly stable.

Although Theorem 4.15 provides a solution to the EFRP without assuming exponential stability

of TAF
(t), we point out that it may not be easy to verify the strong stability of TAF

(t) in practice

either. Before discussing the verification of strong stability of TAF
(t) in Section 4.6, we shall first

introduce another explicit solution of the EFRP.

4.5.2 A generalization of Davison’s dynamic state feedback controller

A generalization of Davison’s dynamic state feedback controller (see [39]) is described (in the mild

sense) by the equations

ẋ(t) = Sx(t) +G0e(t), x(0) ∈W (4.32a)

u(t) = K1z(t) +K2x(t) (4.32b)
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on the state space X = W . Here the parameters K1 ∈ L(Z,H), K2 ∈ L(W,H) and G0 ∈ L(H,W )

should be chosen such that the closed loop system operator

A = ADK
=


 A+BK1 BK2

G0(C +DK1) S +G0DK2


 (4.33)

generates a strongly stable C0−semigroup on Z × W and asymptotic tracking/rejection of the

exogenous signals generated by the exosystem (2.2) occurs.

The controller (4.32) is clearly simpler than the one with parameters as in (4.26) in the sense

that the state space X is smaller. Moreover, here it is also possible to have D 6= 0. However, in

order to achieve sufficient closed loop stability, we cannot in general assume that K1 6= 0, i.e. state

feedback must be allowed [39].

It turns out that under certain assumptions4 on the operators S, K1, K2 and G0 strong closed

loop stability, i.e. strong stability of TADK
(t), already implies output regulation in the sense that

the dynamic controller

ẋ(t) = Sx(t) +G0e(t), x(0) ∈W (4.34a)

u(t) = K2x(t) (4.34b)

(which does not employ state feedback) solves the EFRP for a plant in which A is replaced by

A+BK1 and C is replaced by C +DK1. We choose to defer the proof of this result to Chapter 6

because it arises as a natural consequence of the general robustness theory employing the so called

internal model structure. Moreover, in Chapter 6 we shall be able to derive additional conditions

under which the use of direct state feedback can be avoided. Strong stability of the C0−semigroup

TADK
(t) generated by ADK

will be discussed in Subsection 4.6.4.

We point out that in [35] Hämäläinen and Pohjolainen generalized (using frequency domain

techniques) some finite-dimensional output regulation results of Davison for stable plants in the

Callier-Desoer algebra5 and for certain finite-dimensional exogenous systems which also allow for

polynomial reference signals. In the case of trigonometric polynomial reference/disturbance signals

their controller has the transfer function HC(s) =
∑2n

k=0
εKk0

s−iωk
, for s 6= iωk and for certain ε > 0,

4See Subsection 6.5.2.
5The systems studied in [35] exclude e.g. that in Example 3.56. However, the systems studied in [35] can also

have a more general impulse response than CTA(t)B + Dδ(t) which is the impulse response of the plant (1.1). We

refer the reader to [17] for more details.
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matrices Kk0
and some fixed n ∈ N. Here ωk are the frequencies of the exogenous signals. If

H = CN and if in (4.34) we can take W = H = HAP (CN , fn, ωn) for some N ∈ N, (fn)n∈I ⊂ R

and (ωn)n∈I ⊂ R, with S = S|H, P ∈ L(H, Z), Q = δ0 ∈ L(H,CN ) and w(0) = yref ∈ H

as in Proposition 2.3, then the transfer function of the controller (4.34) is given by the strongly

convergent series

HC(s) = K2R(s, S|H)G0 =
∑

n∈I

K2PnG0

s− iωn
, s ∈ ρ(S|H) (4.35)

where the bounded linear operator Pn : H → H, n ∈ I, is defined6 by Pny = ŷ(n)eiωn· for every

y =
∑

n∈I ŷ(n)eiωn· ∈ H. Observe that the series (4.35) of operators indeed converges strongly,

because PnG0e = (Ĝ0e)(n)eiωn· ∈ H and
∑

n∈I f
2
n‖(Ĝ0e)(n)‖2 < ∞ for all e ∈ H. Moreover,

since S|HPny = iωnPny for all y ∈ H, clearly R(s, S|H)Pny = 1
s−iωn

Pny for all y ∈ H and all

s ∈ ρ(S|H). We emphasize that although the transfer function in (4.35) is more general than the

corresponding one in [35], at this stage we have no guarantee of output regulation; conditions for

this to occur will be provided in Chapter 6.

4.6 On the stabilization of the closed loop system

One of the most delicate issues in the solution of the EFRP for an infinite-dimensional exogenous

system (2.2) turns out to be appropriate stabilization of the closed loop system. We saw in Section

4.5 that the operator

AF =


A P

0 S


 −


G1

G2




(
C −Q

)
(4.36)

should generate a strongly stable C0−semigroup on Z ×W , if a controller with parameters as in

(4.26) is to be used in the solution of the EFRP. On the other hand, if state feedback from the

plant is allowed, then we need the strong stability of the semigroup generated by the operator

ADK
=


 A 0

G0C S


 +


 B

G0D




(
K1 K2

)
(4.37)

on Z ×W , in order to use the controller (4.32) for output regulation purposes.

6Since HAP (CN , fn, ωn) ⊂ AP (R, CN ) we can obviously use the Fourier-Bohr transform to define the operators

Pn [63]. If {ωn | n ∈ I } is also a discrete set, then they can also be defined via the spectral projections corresponding

to the isolated points iωn.
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Noteworthy in the above operators AF and ADK
is that they both incorporate a copy of the

exosystem’s operator S. This feature is a source of severe stabilizability problems if dim(W ) = ∞.

In fact, in Subsection 4.6.1 we will prove in a novel way the well-known result that whenever

dim(W ) = ∞, the operator S cannot be compactly additively perturbed to obtain a generator

of an exponentially stable C0−semigroup on W . Moreover, the situation is not much better if

we allow for a degree of unboundedness in the perturbation; S must have compact resolvent in

order that S−compact perturbations can exponentially stabilize it. In Subsection 4.6.2 we shall

provide general sufficient conditions that S + ∆ generates a strongly stable C0−semigroup for

certain ∆ ∈ L(W ). The remainder of this section is then devoted to methods which can be used

to establish the strong stability of the semigroups generated by AF and ADK
. We hasten to

emphasize that although some of the results of this section may seem difficult to apply in practice,

the robustness results of Chapter 6 show their relatively wide applicability.

4.6.1 The lack of exponential stabilizability of the exosystem

In this subsection we shall prove the following negative results about the lack of exponential

stabilizability of the exogenous system (2.2):

1. Assuming that ∆ ∈ L(W ) is compact, the operator S+∆ can only generate an exponentially

stable C0−semigroup if dim(W ) <∞.

2. Assuming that ∆ is S−compact, the operator S + ∆ can only generate an exponentially

stable C0−semigroup if R(λ, S) is compact for one/all λ ∈ ρ(S).

Here, as before, S generates an isometric C0−group on a Banach space W . These results are

well-known (see Corollary 3.58 in [65] and Theorem IV.5.35 in [57]), but our method of proof

is new. While the earlier proofs of these results employ conservation of the so called essential

spectrum under (relatively) compact perturbations, our proof here relies on a direct operator

equation method.

We shall begin with two lemmata. In what follows K(W ) denotes the Banach space of compact

operators in L(W ).

Lemma 4.16. Let E and F generate C0−groups TE(t) and TF (t) on a Banach space W , and let
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G ∈ K(W ). Then the operator

w →
∫ t

0

TE(s)GTF (−s)wds, ∀w ∈W (4.38)

is compact for each (fixed) t > 0.

Proof. We imitate the proof of Theorem 3.53 in [65]. Let Ω1 = {TF (−s)w | w ∈ W, ‖w‖ ≤ 1, 0 ≤

s ≤ t }, which is a bounded subset of W . Then Ω2 = G(Ω1) is precompact, since G is a compact

operator. We show that Ω3 = {TE(s)w | w ∈ Ω2, 0 ≤ s ≤ t } is also precompact. Let C > 0 be a

constant such that ‖TE(s)‖ ≤ C for all s ∈ [0, t]. Let ε > 0. Then there exist w1, w2, . . . , wn ∈ Ω2

such that whenever w ∈ Ω2 it is true that ‖w−wi‖ < ε
2C for some 1 ≤ i ≤ n. Since TE(t) is strongly

continuous, there exist si
1, s

i
2, . . . , s

i
k ∈ [0, t] such that if s ∈ [0, t] then ‖TE(si

j)wi − TE(s)wi‖ < ε
2

for some index j. Hence for every w ∈ Ω2 and every 0 ≤ s ≤ t there exist indices i and j such that

‖TE(s)w − TE(si
j)wi‖ ≤ ‖TE(s)w − TE(s)wi‖ + ‖TE(s)wi − TE(si

j)wi‖ <
ε

2
+
ε

2
= ε (4.39)

and so Ω3 is precompact. Then by Mazur’s Theorem (cf. [27]), the closed convex hull co(Ω3) is a

compact set.

Now, it is well known (see p. 48 of [26]) that whenever Ω is a closed and convex set in W , ν

is a positive Borel measure on [0,∞), B ⊂ [0,∞) is ν−measurable such that 0 < ν(B) < ∞, and

f : B → W is Bochner integrable with respect to ν such that f(s) ∈ Ω for almost every s ∈ B,

then

1

ν(B)

∫

B

fdν ∈ Ω (4.40)

Since for every w ∈W such that ‖w‖ ≤ 1 the (continuous and hence Bochner integrable) function

s : [0, t] → TE(s)GTF (−s)w ∈ co(Ω3), by the above,
∫ t

0
TE(s)GTF (−s)wds ∈ tco(Ω3). Con-

sequently the bounded linear operator w →
∫ t

0
TE(s)GTF (−s)wds is compact for all t > 0.

Lemma 4.17. Let E and F generate C0−groups TE(t) and TF (t) on a Banach space W , and let

G ∈ K(W ). For all t ≥ 0 define the families of operators QY,t and Rt as follows:

QY,tw = TE(t)Y TF (−t)w, ∀Y ∈ L(W ), ∀w ∈W (4.41)

Rtw =

∫ t

0

QG,swds =

∫ t

0

TE(s)GTF (−s)wds, ∀w ∈W (4.42)

If for all Y ∈ L(W ) we have limt→∞ QY,t = 0 in the uniform operator topology and if there exists

X ∈ L(W ) such that X(D(F )) ⊂ D(E) and EX −XF = G in D(F ), then limt→∞ Rt = −X in

the uniform operator topology.
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Proof. As in Lemma 3.5 it is easy to show that

Rtw =

∫ t

0

TE(s)[EX −XF ]TF (−s)wds = TE(t)XTF (−t)w −Xw = QX,tw −Xw (4.43)

for all w ∈W and all t > 0. Hence limt→∞ Rt = −X in the uniform operator topology.

The following two theorems are the main results of this subsection.

Theorem 4.18. Let ∆ ∈ K(W ). If S + ∆ generates an exponentially stable C0−semigroup, then

dim(W ) <∞.

Proof. First observe that since ∆ ∈ L(W ), the operator S + ∆ also generates an exponentially

stable C0−group. It is clear that X = I solves the operator equation (S + ∆)X − XS = ∆ in

D(S). Moreover, since TS(t) is an isometry for all t ∈ R and since TS+∆(t) is exponentially stable,

we have for some M,ω > 0 that

‖TS+∆(t)Y TS(−t)‖ ≤Me−ωt‖Y ‖, ∀t ≥ 0 (4.44)

so that limt→∞ TS+∆(t)Y TS(−t) = 0 in the uniform operator topology for all Y ∈ L(W ). By

Lemma 4.17 we have that

lim
t→∞

∫ t

0

TS+∆(s)∆TS(−s)wds = −Iw = −w ∀w ∈W (4.45)

in the uniform operator topology. But the operators w →
∫ t

0
TS+∆(s)∆TS(−s)wds are compact

for every t > 0 by Lemma 4.16. Since K(W ) is closed with respect to the uniform operator norm,

the identity operator I ∈ K(W ). This is possible only if dim(W ) <∞.

Theorem 4.19. Let ∆ be S−compact. If S + ∆ generates an exponentially stable C0-semigroup,

then R(λ, S) is compact for one/all λ ∈ ρ(S).

Proof. First observe that since ∆ is S−compact, so is −∆. Hence the operator −S − ∆ also

generates a C0−semigroup, and so S + ∆ generates an exponentially stable C0−group. Since ∆

is S−compact, the operator ∆R(λ, S) ∈ K(W ) for some λ ∈ ρ(S). It is clear that X = R(λ, S)

solves the operator equation (S + ∆)X −XS = ∆R(λ, S) in D(S). Moreover, as in the above we

have for some M,ω > 0 that

‖TS+∆(t)Y TS(−t)‖ ≤Me−ωt‖Y ‖, ∀t ≥ 0 (4.46)
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for all Y ∈ L(W ) so that limt→∞ TS+∆(t)Y TS(−t) = 0 in the uniform operator topology. By

Lemma 4.17 we have that

lim
t→∞

∫ t

0

TS+∆(s)∆R(λ, S)TS(−s)wds = −R(λ, S)w ∀w ∈W (4.47)

in the uniform operator topology. But the operators w →
∫ t

0
TS+∆(s)∆R(λ, S)TS(−s)wds are

compact for every t > 0 by Lemma 4.16. Since K(W ) is closed with respect to the uniform

operator norm, the resolvent operator R(λ, S) ∈ K(W ). That R(µ, S) is compact for all µ ∈ ρ(S)

now follows easily from the resolvent identity [28].

In view of the above negative results it is interesting to observe that for every ε > 0 the bounded

(but noncompact) additive perturbation ∆ = −εI to S results in the generator of an exponentially

stable C0−semigroup. Hence, although a compact perturbation never stabilizes S exponentially,

exponential stabilization of S can be accomplished by a bounded perturbation whose norm is

arbitrarily small.

Remark 4.20. If the exogenous system (2.2) represents some physical system, then its exponential

stabilization can sometimes be achieved under (more or less) realistic assumptions. Consider, for

example, the following one-dimensional wave equation with distributed damping :

∂2

∂t2
w(x, t) =

∂2

∂x2
w(x, t) − d(x)

∂

∂t
w(x, t), 0 < x < L, t ∈ R (4.48a)

w(0, t) =
∂

∂x
w(L, t) = 0 (4.48b)

w(x, 0) = φ(x), 0 ≤ x ≤ L (4.48c)

where d(x) ≥ 0, d(x) > d0 on a subinterval of (0, L), and d(·) is bounded and continuous. It has

been shown by Chen et al. [14] that the partial differential equation (4.48) can be described by an

abstract Cauchy problem ẇ(t) = Sw(t) + ∆w(t) on a certain Hilbert space W . Here S represents

the “wave equation” part of (4.48) and it generates an isometric C0−group on W — hence it

is suitable for the exosystem (2.2). On the other hand, ∆ ∈ L(W ) represents the “distributed

damping” part of (4.48) and it is dissipative, i.e. <〈∆w,w〉 ≤ 0 for all w ∈W . It has been shown

in [14] that S + ∆ generates an exponentially stable C0−semigroup on W . However, an obvious

drawback in the use of this operator S in the exosystem (2.2) is that it may not be possible to

obtain a useful description of the signals that can be generated as in Chapter 2.
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4.6.2 On the strong stabilizability of the exosystem

A decisive conclusion that can be made based on the results of Subsection 4.6.1 is that in practice

it is often impossible to stabilize the exogenous system (i.e. the operator S) exponentially unless

R(λ, S) is compact for some/all λ ∈ ρ(S). Unfortunately, since S−compact additive perturbations

to S do not alter the essential spectrum of S (see [57] Theorem IV.5.35, p. 244), also the strong

stabilizability of the exosystem seems to be difficult to verify in many interesting cases. This is

because all nonisolated boundary points of ρ(S) — which in our case are precisely the nonisolated

points of σ(S) — belong to the essential spectrum of S (see [57] Problem IV.5.37, p. 244). The

problem is illustrated in the following example.

Example 4.21. The celebrated Arendt-Batty-Lyubich-Vũ (ABLV) Theorem ([28] Theorem V.5.21)

is one of the most powerful tools available for the verification of strong stability of a given Banach

space C0−semigroup. However, in order to use it, we need the countability of the imaginary

spectrum of the generator. The fact that the essential spectrum of S is invariant under S−compact

perturbations renders the ABLV Theorem useless in some of our most general setups. For example,

let E = AP (R, E) for some Banach space E and consider the left translation C0−group TS(t)|E
generated by S|E on E. Since the functions t → φ(t) = aeiωt, a ∈ E, are in E for all ω ∈ R,

and S|Eφ = iωφ, we have that iR = σ(S|E). Hence for all S−compact perturbations ∆ we have

σ(S+∆) = iR, which is uncountable. Consequently, the ABLV Theorem does not apply. However,

we point out that this does not imply that S + ∆ cannot generate a strongly stable C0−semigroup.

Fortunately, the above problems only appear to arise in the Banach space setup: If W is

a Hilbert space, then we have the powerful decomposition of contractive C0-semigroups due to

Szökefalvi-Nagy and Foias7 at our disposal [85]. The Szökefalvi-Nagy-Foias theory enables us

to prove the following genuinely positive result, which shows that any generator of an isometric

translation C0−group on a separable Hilbert function space can be strongly stabilized by feedback

operators employing point evaluations and their adjoints only. This result is very useful for our

considerations, because, as we saw in Chapter 2, in output regulation problems the exosystem

operator S is often chosen such that it generates the isometric left translation C0−group on some

prespecified function space E s
↪→BUC(R, E), and the operators P and/or Q are constructed using

suitable point evaluation operators δ0.

7The abbreviation Sz.Nagy-Foias is often used in the literature.
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Theorem 4.22. Let E and E s
↪→BUC(R, E) be (separable complex) Hilbert spaces. Consider the

generator S|E of the isometric left translation C0−group TS(t)|E on E, the point evaluation operator

δ0 ∈ L(E , E) and its adjoint δ∗0 ∈ L(E, E). Then S|E − εδ∗0δ0 generates a strongly stable C0−group

on E for all ε > 0.

Proof. Let ε > 0. By Stone’s Theorem (Theorem 2.32 in [65]) and Definition 2.6.3 in [17] the

adjoint S|∗E = −S|E so that D(S|∗E) = D(S|E) and TS(t)|∗E = TS(−t)|E . Moreover, since TS(t)|E is

an isometric (i.e. unitary) group, by Theorem 3.2 in [61] S|E − εδ∗0δ0 also generates a contraction

group on E .

Since TS(t)|E is the translation group, it is clear that the unitary space Hu(TS|E ) = { f ∈ E |

‖TS(t)|Ef‖ = ‖f‖ = ‖TS(t)|∗Ef‖, t ≥ 0 } of the Szökefalvi-Nagy-Foias canonical decomposition [85]

is the entire space E . By Theorem 3.2 in [61] we then have for the unitary space corresponding to the

semigroup generated by S|E − εδ∗0δ0 that Hu(TS|E−εδ∗
0δ0

) = Hu(TS|E−(
√

εδ0)∗(
√

εδ0)) ⊂ ker(
√
εδ0).

But the unitary space Hu(TS|E−εδ∗
0δ0

) also reduces8 TS(t)|E (see p. 724 of [62] or the proof of

Theorem 3.2 in [61]) so that by Lemma 2.1 (ii) in [61] it must be true that

Hu(TS|E−εδ∗
0δ0

) ⊂
[
∩t≥0 ker(

√
εδ0TS(t)|∗E)

]
∩

[
∩t≥0 ker(

√
εδ0TS(t)|E)

]
(4.49)

=
[
∩t≥0 ker(δ0TS(t)|∗E)

]
∩

[
∩t≥0 ker(δ0TS(t)|E)

]
(4.50)

=
[
∩t≥0 { f ∈ E | δ0TS(−t)|Ef = 0 }

]
∩

[
∩t≥0 { f ∈ E | δ0TS(t)|Ef = 0 }

]
(4.51)

= ∩t∈R{ f ∈ E | δ0TS(t)|Ef = 0 } (4.52)

= { f ∈ E | f(t) = 0 ∀t ∈ R } = {0} (4.53)

Hence according to the canonical decomposition of contraction semigroups [85], TS|E−εδ∗
0δ0

(t) is

completely nonunitary, i.e. the completely nonunitary space Hcnu(TS|E−εδ∗
0δ0

) = E . It remains

to show that TS|E−εδ∗
0δ0

(t) is strongly stable on Hcnu(TS|E−εδ∗
0δ0

). But this follows directly from

Lemma 4.1 in [61] because TS(t)|E and TS(t)|∗E are strongly stable on the completely nonunitary

space Hcnu(TS|E ) = {0}.

Remark 4.23. For an arbitrary Banach spaceE and for an arbitrary uniformly bounded C0−group

T (t) generated by Y on E we can always describe TY (t)e, e ∈ E, by the (strongly continuous

and isometric) left translation group TS(t)|E on E = span{TY (·)e | e ∈ E } ⊂ BUC(R, E) as

8A subspace M ⊂ E reduces TS(t)|E if it is invariant for both TS(t)|E and TS(t)|∗
E

[61].
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TY (t)e = δ0TS(t)|E [TY (·)e]. The above result suggests that in order to be able to strongly stabilize

the general operator Y , it is sufficient to strongly stabilize S|E . In certain cases this can be done

using the feedback −εδ∗0δ0 as in Theorem 4.22.

Remark 4.24. Theorem 4.22 shows that the norm of a strongly stabilizing feedback for the pair

(S|E , δ∗0) can be made arbitrarily small.

Remark 4.25. If σ(S|E) is countable, then the result of Theorem 4.22 also follows from Theorem

14 of [5] using a more elementary reasoning.

Corollary 4.26. Let E be a (separable and complex) Hilbert space and consider the generalized

Sobolev space E = HAP (E, fn, ωn) introduced in Chapter 2. Then S|E − εδ∗0δ0 generates a strongly

stable C0−semigroup on E for all ε > 0.

The following auxiliary result provides sufficient conditions that the operator S|E (and hence

also S|E − εδ∗0δ0 by [28] p. 159) in Corollary 4.26 has compact resolvent. This information turns

out to be quite useful in the strong stabilization of any closed loop system containing a copy of

S|E (see e.g. Subsection 4.6.3 and Section 6.7).

Proposition 4.27. Let E be a finite-dimensional space and consider the generalized Sobolev space

E = HAP (E, fn, ωn) introduced in Chapter 2. If
(

1
λ−iωn

)
n∈I

∈ `2 for some λ ∈ ρ(S|E), then S|E has

compact resolvent. This is the case, in particular, if (ωn)n∈I ⊂ { 2πn
p | n ∈ Z }, i.e. E ↪→ Pp(R, E),

for some p > 0.

Proof. Let us define (using e.g. the Fourier-Bohr transformation [63]) the family (Pn)n∈I ⊂ L(E)

of finite rank operators by

Pny = ŷ(n)eiωn· for each y =
∑

n∈I

ŷ(n)eiωn· ∈ E (4.54)

Since S|EPny = iωnPny for all y ∈ E , it is evident that R(λ, S|E)Pny = 1
λ−iωn

Pny for all λ ∈ ρ(S|E)

and all y ∈ E . As a result, we have

R(λ, S|E)y = R(λ, S|E)
∑

n∈I

Pny =
∑

n∈I

1

λ− iωn
Pny, ∀y ∈ E , λ ∈ ρ(S|E) (4.55)

We show that R(λ, S|E) is the uniform limit of the finite rank operators
∑

|n|≤N
1

λ−iωn
Pn, hence

compact. To this end, let λ ∈ ρ(S|E) be such that
(

1
λ−iωn

)
n∈I

∈ `2. Then, by the Schwartz
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inequality, for all y ∈ E we have

∥∥∥∥∥∥
R(λ, S|E)y −

∑

|n|≤N

1

λ− iωn
Pny

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
∑

|n|>N

1

λ− iωn
ŷ(n)eiωn·

∥∥∥∥∥∥
E

(4.56)

≤
∑

|n|>N

∥∥∥∥
1

λ− iωn
ŷ(n)eiωn·

∥∥∥∥
E

(4.57)

=
∑

|n|>N

∣∣∣∣
1

λ− iωn

∣∣∣∣ fn ‖ŷ(n)‖E (4.58)

≤
√√√√

∑

|n|>N

∣∣∣∣
1

λ− iωn

∣∣∣∣
2√ ∑

|n|>N

f2
n‖ŷ(n)‖2

E (4.59)

≤
√√√√

∑

|n|>N

∣∣∣∣
1

λ− iωn

∣∣∣∣
2√∑

n∈I

f2
n‖ŷ(n)‖2

E (4.60)

= M(N)‖y‖E (4.61)

where M(N) =
√∑

|n|>N | 1
λ−iωn

|2 → 0 as N → ∞. Hence R(λ, S|E), being the uniform limit of

the finite rank operators
∑

|n|≤N
1

λ−iωn
Pn, is compact.

Many authors have also solved the strong stabilization problem for bounded C0-semigroups

using so-called pole-placement techniques (see e.g. [94] and the references therein). In the case of

the exosystem operator S, the idea behind such techniques is to design a perturbation operator

∆ such that S + ∆ has a prespecified spectrum contained in the left half of the complex plane.

Although such techniques generally result in more complicated feedback operators than the remar-

kably simple one provided by Theorem 4.22 and Corollary 4.26, and although such techniques often

only work under rather restricted assumptions on S,W and H, they have the advantage that the

growth rate of the norm ‖R(iω, S + ∆)‖ as |ω| → ∞ can often be easily estimated. We conclude

this subsection by illustrating this very useful feature in a result, which plays an important role in

the robustness considerations of certain repetitive control applications later on in this thesis (see

Section 6.7):

Proposition 4.28. Let W = G = Hα
per(0, p) for some α > 1

2 and let S = S|G, Q = δ0 ∈ L(G,C),

in accordance with Proposition 2.3. Let γ > α+ 1
2 . Then there exists L ∈ L(C,G) such that

1. S|G + Lδ0 generates a strongly stable C0−semigroup on G,

2. The resolvent satisfies ‖R(iωn, S|G +Lδ0)‖ ≤ C ′√1 + ω2
n

γ
for some C ′ > 0 and every n ∈ Z,
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3. There exists a unique l ∈ G such that Lu = lu for every u ∈ C and 〈l, φn〉G 6= 0 for every

n ∈ Z.

Here ωn = 2πn
p for all n ∈ Z and (φn)n∈Z denotes the orthonormal basis of (weighted) exponentials

cne
iωn· = eiωn·√

1+ω2
n

α , n ∈ Z, for G, which are also the eigenvectors of S|G corresponding to the

eigenvalues iωn.

Proof. 1. We shall first employ the theory of Xu and Sallet [94] to find L ∈ L(C,G) such that

S|∗G + δ∗0L
∗ generates a strongly stable C0−semigroup9. To this end, we have to show that

the standing assumptions H1 −H3 in [94] are satisfied.

First of all, H1 amounts to verifying that S|∗G has compact resolvent and simple spectrum.

This follows easily from the equality S|∗G = −S|G (cf. Stone’s Theorem [65]), Proposition

4.27 and the fact that σ(S|G) = { iωn | n ∈ Z }, where each eigenvalue iωn is simple: The

range of any spectral projection P
S|G
iωn

is just { aeiωn· | a ∈ C }, which is one-dimensional.

Thus, hypothesis H1 in [94] is satisfied.

Secondly, H2 amounts to showing that D(S|G) is a Hilbert space in the graph norm and

that δ∗0 (when interpreted as an input element) satisfies δ∗0 ∈ D(S|G)′ (the topological dual

of D(S|G)). The first assertion is evident because by Section II.5.a of [28] D(S|G) with the

graph norm is just the Sobolev space Hα+1
per (0, p). The second assertion follows from the fact

that δ∗0 ∈ L(C,G); then δ∗0u ∈ Hα
per(0, p) for all u ∈ C.

Finally, in order to meet assumption H3 in [94] we first point out that the eigenvectors φn

of S|∗G = −S|G constitute an orthonormal basis in G. Then for H3 to hold it suffices to show

that 〈φn, δ
∗
0〉G 6= 0 for each n ∈ Z and that there exists a positive constant M such that10

∑

n∈Z

∣∣∣∣
〈φn, δ

∗
0〉

λ+ iωn

∣∣∣∣
2

≤M and sup
m∈Z

∑

n6=m

∣∣∣∣
〈φn, δ

∗
0〉

−iωm + iωn

∣∣∣∣
2

≤M (4.62)

whenever the distance from λ to σ(S|∗G) is at least 2π
3p . Since φn(·) = cne

iωn·, with cn =

1√
1+ω2

n

α , for each f ∈ G we have δ0f = f(0) =
∑

n∈Z
〈f, φn〉Gφn(0) =

∑
n∈Z

cn〈f, φn〉G =

〈f,∑n∈Z
cnφn〉G , so that the adjoint of δ0 satisfies δ∗0u = u

∑
n∈Z

cnφn for every u ∈ C.

9Here and elsewhere the superscript ∗ denotes the operator adjoint; recall that G is a Hilbert space.
10The fact that in [94] Xu and Sallet employ summation over positive integers does not play any role; only the

elements that are summed matter because we can bijectively transform the summation such that it is carried out

over positive integers.
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Obviously then 〈φn, δ
∗
0〉G = cn 6= 0 for every n ∈ Z. Moreover, for λ as in the above, we have

(since α > 1
2 )

∑

n∈Z

∣∣∣∣
〈φn, δ

∗
0〉G

λ+ iωn

∣∣∣∣
2

≤ 9p2

4π2

∑

n∈Z

|cn|2 =
9p2

4π2

∑

n∈Z

(1 + ω2
n)−α = M <∞ (4.63)

and

sup
m∈Z

∑

n6=m

∣∣∣∣
〈φn, δ

∗
0〉G

−iωm + iωn

∣∣∣∣
2

= sup
m∈Z

∑

n6=m

∣∣∣∣∣
cn

2πi
p (n−m)

∣∣∣∣∣

2

≤ p2

4π2

∑

n∈Z

(1 + ω2
n)−α < M (4.64)

In conclusion, the assumptions H1 −H3 in [94] are satisfied.

Let us now define µn = −iωn − 1√
1+ω2

n

γ for every n ∈ Z. We next design a feedback L∗ ∈

L(G,C) such that it assigns the spectrum σ(S|∗G + δ∗0L
∗) = {µn | n ∈ Z } ⊂ { z ∈ C | <(z) <

0 }. If we can accomplish this, then S|∗G + δ∗0L
∗ generates a strongly stable C0−semigroup on

G. In fact, the operator S|∗G + δ∗0L
∗ is regular spectral [94], i.e. it has compact resolvent and

its eigenvectors (θn)n∈Z, with (S|∗G +δ∗0L
∗)θn = µnθn for every n ∈ Z, constitute a Riesz basis

in G. Hence the C0−semigroup TS|∗G+δ∗
0L∗(t) is uniformly bounded; strong stability follows

from the Arendt-Batty-Lyubich-Vũ Theorem (see e.g. Theorem V.2.21 in [28]) because S|∗G +

δ∗0L
∗ has no spectrum on iR. In order to show that such an L∗ indeed exists, we aim to

apply Theorem 1 in [94]. To this end, we observe that the assigned spectral points µn

satisfy the necessary and sufficient condition (3) on p. 522 of [94]:
∑

n∈Z

∣∣∣ µn+iωn

〈φn,δ∗
0 〉G

∣∣∣
2

=
∑

n∈Z
| 1
cn

1√
1+ω2

n

γ |2 =
∑

n∈Z
|
√

1 + ω2
n

α−γ |2 =
∑

n∈Z
(1 + ω2

n)α−γ < ∞ because γ > α + 1
2 .

Theorem 1 in [94] now implies that the claim follows for the particular choice L∗ = 〈·, l〉

where l ∈ G is given by

l =
∑

n∈Z

lnφn where ln = −
√

1 + ω2
n

α

√
1 + ω2

n

γ

∞∏

k=−∞,k 6=n

−iωn + iωk +
√

1 + ω2
k

−γ

−iωn + iωk
(4.65)

The convergence of this infinite product is explained on p. 524 of [94]. Our final task in item

1 is to show that the adjoint S|G+Lδ0 is also the generator of a strongly stable C0−semigroup

on G. Clearly S|G + Lδ0 generates at least a weakly stable C0−semigroup on G. Since S|G
has compact resolvent, so has S|G + Lδ0 (see [28] p. 159). For such semigroup generators

weak stability implies strong stability (see Proposition 3.21 in [65]).

2. According to Theorem 1 in [94] the operator S|∗G + δ∗0L
∗ above is regular spectral, i.e. it has

compact resolvent and its eigenvectors (θn)n∈Z, with (S|∗G + δ∗0L
∗)θn = µnθn for every n ∈ Z,
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constitute a Riesz basis in G. We remark that the eigenvalues (µn)n∈Z of S|∗G +δ∗0L
∗ need not

be simple in general. Let (ψn)n∈Z denote the sequence in G which is biorthogonal to (θn)n∈Z

[17]. Whenever λ 6= µn for each n ∈ Z we have (λI − S|∗G − δ∗0L
∗)θn = (λ − µn)θn, whence

R(λ, S|∗G + δ∗0L
∗)θn = 1

λ−µn
θn, and so for every such λ ∈ C

R(λ, S|∗G + δ∗0L
∗)f =

∑

n∈Z

〈f, ψn〉GR(λ, S|∗G + δ∗0L
∗)θn =

∑

n∈Z

〈f, ψn〉Gθn

λ− µn
∀f ∈ G (4.66)

For every m ∈ Z and each f ∈ G we may now estimate using well-known properties of Riesz

bases [17] as follows:

‖R(−iωm, S|∗G + δ∗0L
∗)f‖2 =

∥∥∥∥∥
∑

n∈Z

〈f, ψn〉Gθn

−iωm − µn

∥∥∥∥∥

2

≤ D′ ∑

n∈Z

∣∣∣∣
〈f, ψn〉G

−iωm − µn

∣∣∣∣
2

(4.67)

= D′
[ ∑

n∈Im

∣∣∣∣
〈f, ψn〉G

−iωm − µm

∣∣∣∣
2

+
∑

n/∈Im

∣∣∣∣
〈f, ψn〉G

−iωm − µn

∣∣∣∣
2 ]

(4.68)

≤ D′
[
(1 + ω2

m)γ
∑

n∈Z

|〈f, ψn〉G |2 + c′
∑

n∈Z

|〈f, ψn〉G |2
]

(4.69)

≤ C ′2(1 + ω2
m)γ‖f‖2 (4.70)

where Im is the finite (cf. Corollary IV.1.19 in [28]) multiplicity of the eigenvalue µm, and

c′,D′, C ′ are positive constants. This shows that ‖R(−iωn, S|∗G + δ∗0L
∗)‖ ≤ C ′√1 + ω2

n

γ
for

each n ∈ Z. But according to Lemma A.3.65 in [17] and Lemma A.3.60 in [17], ‖R(iωn, S|G +

Lδ0)‖ = ‖R(−iωn, S|∗G + δ∗0L
∗)‖ ≤ C ′√1 + ω2

n

γ
for each n ∈ Z.

3. If we choose L∗ according to (4.65), then evidently Lu = lu for the unique l ∈ G. Moreover,

〈φn, l〉G = ln for each n ∈ Z. Now by Theorem 1 in [94] we have

lim
M,N→∞

µn + iωn

cn

N∏

k=−M,k 6=n

−iωn + iωk + 1√
1+ω2

k

γ

−iωn + iωk
(4.71)

=
µn + iωn

cn
lim

M,N→∞

N∏

k=−M,k 6=n

[
1 +

1

i(ωk − ωn)
√

1 + ω2
k

γ

]

= ln (4.72)

Since

∣∣∣∣
∏N

k=−M,k 6=n

[
1 + 1

i(ωk−ωn)
√

1+ω2
k

γ

]∣∣∣∣ =
∏N

k=−M,k 6=n

∣∣∣∣1 − i

(ωk−ωn)
√

1+ω2
k

γ

∣∣∣∣ > 1 for every

M,N ∈ N, the above infinite product cannot converge to 0. Hence we have ln 6= 0 for each

n ∈ Z.
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4.6.3 Strong stability of the C0−semigroup generated by AF

In this subsection we shall discuss the strong detectability of the pair (A0, C) where A0 =
(

A P
0 S

)
and

C =
(

C −Q
)
. In other words, we want to find G =

(
G1

G2

)
∈ L(H,Z ×W ) such that AF = A0 − GC

generates a strongly stable C0−semigroup TAF
(t) on Z ×W .

Algebraic Riccati equations provide a useful direct method for the study of the strong detecta-

bility of the pair (A0, C) [18]. Using this approach, in Proposition 4.29 below we present sufficient

conditions for the existence of a strongly stabilizing output injection operator G; the operator itself

can be found by solving a suitable Riccati equation. Recall that if H is a Hilbert space then

U ∈ L(H) is coercive provided 〈Uh, h〉 ≥ ε‖h‖2 for some ε > 0 and all h ∈ H [18]. In the following

A∗
0 denotes the adjoint operator of A0.

Proposition 4.29. Assume the following.

1. H and Z ×W are (separable) Hilbert spaces.

2. A0 =
(

A P
0 S

)
generates a contraction C0−semigroup on Z ×W .

3. The pair (A∗
0, C) is approximately observable (here C =

(
C −Q

)
).

4. A0 has compact resolvent.

Then for any coercive operators U = U∗ ∈ L(H) and R = R∗ ∈ L(H) the Riccati equation

A0∆z + ∆A∗
0z − ∆C∗R−1C∆z + C∗U−1Cz = 0 ∀z ∈ D(A∗

0) (4.73)

has a unique self-adjoint solution ∆ ∈ L(Z × W ) such that AF = A0 − ∆C∗R−1C generates a

strongly stable C0−semigroup.

Proof. It is evident that since A0 has compact resolvent, so has A∗
0 because for real α ∈ ρ(A0)

we have R(α,A∗
0) = R(α,A0)

∗ (cf. Lemma A.3.65 in [17], Theorem 7.3 in [86] and equality

(A.3.15) in [17]). Furthermore, also A∗
0 generates a contraction semigroup on Z × W because

‖TA0
(t)‖ = ‖TA∗

0
(t)‖ ≤ 1 for each t ≥ 0. By Theorem 4 in [18], the algebraic Riccati equation

(4.73) has a unique self-adjoint solution ∆ ∈ L(Z × W ). By Corollary 5 in [18] the operator

A∗
F = A∗

0 − C∗R−1C∆ generates a strongly stable C0−semigroup. Consequently its adjoint AF =

A0 − ∆C∗(R−1)∗C = A0 − ∆C∗R−1C generates a weakly stable C0−semigroup. But since A0 has

compact resolvent, the boundedly perturbed operator AF also has compact resolvent (cf. [28] p.
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159). This implies that the semigroup generated by AF is in fact strongly stable (see e.g. [18]

Lemma 1 or [65] Proposition 3.21).

Remark 4.30. If the assumptions of Proposition 4.29 are met, then we may choose the strongly

stabilizing output injection operator G for the pair (A0, C) as G =
(

G1

G2

)
= ∆C∗R−1.

Although neither exponential stabilizability nor exponential detectability is required of the

plant, the assumptions of Proposition 4.29 may seem quite restrictive from the practical point of

view. However, its assumption 1 can be met, for example, if Z is a Hilbert space and if we study

asymptotic tracking of the reference signals in the Sobolev spaces W = HAP (CN , fn, ωn), N ∈ N,

using Proposition 2.3. The product space Z ×W can then be endowed with the natural inner

product to obtain a Hilbert space. The assumptions 2 and 3 in Proposition 4.29 are of technical

nature, but they are easy to verify if, say, we may let P = 0 (which often is the case once we

incorporate robustness; see Chapter 6 and in particular Subsection 6.5.1). Observe that S always

generates an isometric — hence contractive — C0−group. Finally, A0 has compact resolvent if S

and A have compact resolvents. Proposition 4.27 presents fairly general conditions under which S

has compact resolvent in output regulation applications. Moreover quite often in practice A is also

a differential operator with compact resolvent [28]. Hence the assumptions of Proposition 4.29 can

be met in many important special cases.

It turns out that sometimes it is not necessary to solve the Riccati equation (4.73) in order to

achieve the strong stability of TAF
(t):

Proposition 4.31. Assume the following.

1. H and Z ×W are (separable) Hilbert spaces.

2. A0 =
(

A P
0 S

)
generates a contraction C0−semigroup on Z ×W .

3. ker(µI −A∗
0) ∩ ker(C) = {0} for all µ ∈ iR ∩ σP (A∗

0) (here C =
(

C −Q
)
).

4. A0 has compact resolvent.

then AF = A0 − C∗C generates a strongly stable C0−semigroup on Z ×W .

Proof. It suffices to apply Theorem VI.8.28 in [28] to the strong stabilization of the pair (A0, C∗).
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We again point out that the robustness theory of Chapter 6 often allows us to choose the

operators P and Q which are contained in the operator AF (see Subsection 6.5.1 for more details).

In this case the assumptions of Proposition 4.31 are fairly straightforward to verify.

In the following result we demonstrate that good stabilizability properties of the plant can

compensate the difficult stabilizability of the exosystem (and vice versa) in the stabilization of

TAF
(t).

Theorem 4.32. Assume that either

• there exists G1 ∈ L(H,Z) such that A−G1C generates an exponentially stable C0-semigroup

on Z and there exist G2 ∈ L(H,W ) and L ∈ L(W,H) such that S+G2L generates a strongly

stable C0−semigroup on W ,

or

• there exists G1 ∈ L(H,Z) such that A−G1C generates a strongly stable C0−semigroup on Z

and there exist G2 ∈ L(H,W ) and L ∈ L(W,H) such that S+G2L generates an exponentially

stable C0−semigroup on W .

If in addition there exists Y ∈ L(W,Z) such that Y (D(S)) ⊂ D(A) and the following operator

equations are satisfied

Y S = AY −G1L− P in D(S) (4.74a)

CY = L−Q in W (4.74b)

then AF = A− GC generates a strongly stable C0−semigroup on Z ×W whenever

G =


G1 − Y G2

G2


 (4.75)

Proof. It is a straightforward calculation to show using the operator equations (4.74) that


I Y

0 I




[ 
A P

0 S


 −


G1 − Y G2

G2




(
C −Q

) ] 
I −Y

0 I


 = (4.76)


A−G1C 0

−G2C S +G2L


 = As (4.77)
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so that AF is similar to the operator As in (4.77). The semigroup TAs(t) generated by As on

Z ×W is given by

TAs(t) =


 TA−G1C(t) 0

−
∫ t

0
TS+G2L(t− s)G2CTA−G1C(s)ds TS+G2L(t)


 , t ≥ 0 (4.78)

where TS+G2L(t) is the strongly (exponentially) stable C0−semigroup generated by S + G2L on

W . Since by our assumption TA−G1C(t) is exponentially (strongly) stable on Z, we only need to

show that

lim
t→∞

∫ t

0

TS+G2L(t− s)G2CTA−G1C(s)wds = 0 ∀w ∈W (4.79)

to ensure that As (and hence also AF ) generates a strongly stable C0−semigroup. That (4.79)

holds in both of the above cases for each w ∈ W follows immediately from Theorem 5.1.2 and

Proposition 5.6.4 in [2].

Remark 4.33. The operator equations (4.74) are of the same form as the regulator equations

(3.10). Their solution is discussed in Chapter 8.

Remark 4.34. If A generates an exponentially stable C0−semigroup and if we may let P = 0

(which is often the case if robustness is present), then we may let G1 = 0 and take Y = 0

in Theorem 4.32. Hence in this case it is sufficient to find G2 ∈ L(H,W ) such that S + G2Q

generates a strongly stable C0−semigroup on W . Sufficient conditions for the existence of such G2

were presented in Section 4.6.2.

Remark 4.35. If under the assumptions of Theorem 4.32 both A −G1C and S +G2L generate

exponentially stable C0−semigroups, then so does TAF
(t).

Remark 4.36. In Chapter 6 we shall derive conditions under which output regulation is robust

with respect to the choice of P and Q in the operator AF . Under such conditions these operators

P and Q need not coincide with those in the exosystem (2.2); they can be regarded as design

parameters in Proposition 4.29, Proposition 4.31 and Theorem 4.32.

4.6.4 Strong stability of the C0−semigroup generated by ADK

Since the strong stability of TADK
(t) means the existence of G0 ∈ L(H,W ) and a strongly stabi-

lizing feedback K =
(

K1 K2

)
for the pair (A0,B), where A0 =

(
A 0

G0C S

)
and B =

(
B

G0D

)
, it is not
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very surprising that methods “dual” to those presented in Subsection 4.6.3 apply directly here. As

regards the method employing Riccati equations we have:

Proposition 4.37. Assume the following.

1. H and Z ×W are (separable) Hilbert spaces.

2. A0 =
(

A 0
G0C S

)
generates a contraction C0−semigroup on Z ×W .

3. The pair (A0,B∗) is approximately observable (here B =
(

B
G0D

)
).

4. A0 has compact resolvent.

Then for any coercive operators U = U∗ ∈ L(H) and R = R∗ ∈ L(H) the Riccati equation

A∗
0∆z + ∆A0z − ∆BR−1B∗∆z + BU−1B∗z = 0 ∀z ∈ D(A0) (4.80)

has a unique self-adjoint solution ∆ ∈ L(Z ×W ) such that ADK
= A0 − BR−1B∗∆ generates a

strongly stable C0−semigroup.

Proof. This is essentially the same result as in Proposition 4.29. It also follows directly from [18].

We omit the details.

Remark 4.38. If the assumptions of Proposition 4.37 are met, then we may choose as the strongly

stabilizing feedback for the pair (A0,B) the operator K =
(

K1 K2

)
= −R−1B∗∆ ∈ L(Z ×W,H).

The dual version of Proposition 4.31 is given next.

Proposition 4.39. Assume the following.

1. H and Z ×W are (separable) Hilbert spaces.

2. A0 =
(

A 0
G0C S

)
generates a contraction C0−semigroup on Z ×W .

3. ker(µI −A∗
0) ∩ ker(B∗) = {0} for all µ ∈ iR ∩ σP (A∗

0) (here B =
(

B
G0D

)
).

4. A0 has compact resolvent.

then ADK
= A0 − BB∗ generates a strongly stable C0−semigroup on Z ×W .

Proof. This result is just Theorem VI.8.28 in [28].
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Finally, we arrive at a dual version of Theorem 4.32 below.

Theorem 4.40. Assume that there exist K ∈ L(Z,H), K2 ∈ L(W,H) and L ∈ L(H,W ) such

that either

• A + BK generates an exponentially stable C0−semigroup on Z and S + LK2 generates a

strongly stable C0−semigroup on W ,

or

• A+BK generates a strongly stable C0−semigroup on Z and S+LK2 generates an exponen-

tially stable C0−semigroup on W .

If there exist G0 ∈ L(H,W ) and Y ∈ L(Z,W ) such that Y (D(A)) ⊂ D(S) and

SY = Y (A+BK) +G0(C +DK) in D(A) (4.81a)

L = Y B +G0D in H (4.81b)

then for K1 = K + K2Y the operator ADK
=

( A+BK1 BK2

G0(C+DK1) S+G0DK2

)
generates a strongly stable

C0-semigroup on Z ×W .

Proof. With the above choices we have ADK
=

( A+B(K+K2Y ) BK2

G0(C+D[K+K2Y ]) S+G0DK2

)
. Then a direct calcu-

lation shows that


 I 0

Y I





 A+B(K +K2Y ) BK2

G0(C +D[K +K2Y ]) S +G0DK2





 I 0

−Y I


 =


A+BK BK2

0 S + LK2


 (4.82)

which shows (see Theorem 5.1.2 and Proposition 5.6.4 in [2]) that ADK
generates a strongly stable

C0−semigroup.

Remark 4.41. If under the assumptions of Theorem 4.40 both A+BK and S+LK2 also generate

exponentially stable C0−semigroups, then so does the operator ADK
on Z ×W .

Remark 4.42. Strictly speaking, the operator equations (4.81) are not of the same form as the

regulator equations (3.10). However, if we work in Hilbert spaces, then we can take adjoints of the

equations (4.81) and solve them for Y ∗ and G∗
0 using precisely the same methods which apply for

the regulator equations (3.10) (see Chapter 8).
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4.7 An example of error feedback output regulation

In this section we shall present an example to illustrate the error feedback output regulation theory

developed in this chapter. More specifically, we study the same output regulation problem as in

Example 3.54, but we want to use error feedback to achieve the asymptotic tracking of p−periodic

reference signals in certain Sobolev spaces whenever there are no disturbances. The reader will

observe, in particular, that in the example below we solve a repetitive control problem for such

an infinite-dimensional system which does not have a direct feedthrough term (i.e. D = 0). This

would not be possible — even for finite-dimensional systems — using the error feedback controllers

of the classical repetitive control literature [36, 96].

Example 4.43. Let a > 0, r 6= 0, τ1 > τ2 > 0 and consider the disturbance-free scalar delay

differential equation

ẋ(t) = −ax(t) − b
[
x(t− τ1) + x(t− τ2)

]
+ u(t) (4.83a)

y(t) = rx(t), t ≥ 0 (4.83b)

of Example 3.54. Our goal is to build, using Theorem 4.15, a dynamic controller (4.1) which

solves the EFRP for this plant and an exosystem (2.2) which is constructed using Proposition 2.3

for W = H = Hα
per(0, p), where α > 1

2 is to be fixed, with Q = δ0, P = 0 and w(0) = yref ∈ H.

We assume that the system operator of (4.83) generates an exponentially stable C0−semigroup as

in Example 3.54. Then there are no transmission zeros of the plant in the set { 2πni
p | n ∈ Z }.

By Example 3.54, for α > 3
2 we can solve the regulator equations (3.10) for bounded operators

Π and Γ. Using the methods of Section 3.5 we obtain

Γyref =
∑

n∈Z

ŷref (n)

H(iωn)
, ∀yref ∈ H (4.84)

Πyref =
∑

n∈Z

ŷref (n)R(iωn, A)BΓφn, ∀yref ∈ H (4.85)

where (φn)n∈Z = (eiωn·)n∈Z is the natural orthogonal basis for H and ŷref (n) is the nth L2 Fourier

coefficient of yref ∈ H ⊂ L2(0, p).

By Theorem 4.22 S|H−δ∗0δ0 generates a strongly stable C0−semigroup on W = H = Hα
per(0, p)

(with α > 3
2). Hence we may use Theorem 4.15 and Remark 4.34 to deduce that an error feedback
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controller (4.1) with

F =


 A BΓ

δ∗0C S|H − δ∗0δ0


 , J =

(
0 Γ

)
and G =


 0

−δ∗0


 (4.86)

solves the EFRP in question.

A concrete example of the generalization (4.32) of Davison’s dynamic state feedback controller

[39] (and its extension which does not employ state feedback) will be provided in Chapter 6. We

cannot present these examples here because we have not yet provided a proof of output regulation.

In Chapter 6, examples robust error feedback output regulation for systems described by partial

differential equations will also be provided.



Chapter 5

A feedforward-error feedback

controller

In Chapter 3 and Chapter 4 we have studied the existence and construction of feedforward and

error feedback controllers for the regulation of bounded uniformly continuous signals generated by

the exosystem (2.2). Unfortunately there are some practical issues which may sometimes limit the

applicability of these controllers.

First of all, although the feedforward controllers resulting from Theorem 3.6 are very simple

(and hence quite appealing), they employ direct feedback from the state of the plant; this may

be unrealistic in many applications. Moreover, under various assumptions the results of Section

3.3 show that in the case of the FRP it is actually also necessary to use a controller u(t) =

Kz(t)+(Γ−KΠ)w(t), where K stabilizes the pair (A,B) strongly and Π and Γ solve the regulator

equations (3.10). Since the operator Γ − KΠ in this controller in general depends on both the

plant data and the stabilizing feedback K, this open loop controller does not provide robust (i.e.

structurally stable) output regulation — even with respect to K.

On the other hand, the error feedback controller (4.1) does not utilize state feedback from the

plant directly, and it is perhaps the more realistic one in applications. Moreover, in the finite-

dimensional case it is well-known that error feedback controllers can provide robustness in output

regulation [24, 29, 32, 60]. However, for an infinite-dimensional exosystem (2.2) designing error

feedback controllers is not a very easy task — in particular, sufficient closed loop stability can be

108
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difficult to achieve in practice. As we have seen in Section 4.6, this is chiefly because the system

operator S of the exosystem is often in some form embedded in the system operator F of the

controller, and because S is difficult to stabilize by compact feedback.

In order to overcome the above problems and also to illustrate the wide applicability of methods

based on the regulator equations, in the present chapter we shall design a two-degrees-of-freedom

(2-DOF) hybrid controller, employing both error feedback and feedforward control, for output

regulation purposes. In our design the stabilizing state feedback Kz(t) of an FRP controller is

replaced by an output from a stabilizing dynamic controller, while the feedforward part of the

controller is again tuned using the regulator equations (3.10). This procedure essentially results in

a controller with two degrees of freedom, because it turns out that we can resolve the feedback and

feedforward parts of the controller independently of each other. However, the resulting controller

is not a 2-DOF controller in the conventional sense (see e.g. [69] p. 26), because 2-DOF controllers

are commonly utilized to handle those cases where disturbance signal dynamics is different from

the reference signal dynamics.

A key feature in our design is that we deliberately avoid the inclusion of the exosystem generator

S — which causes the stabilizability problems — in the controller generator F . It turns out that,

even if the exosystem (2.2) is infinite-dimensional, in this case exponential closed loop stability

can often be achieved (as opposed to the error feedback controllers of Chapter 4). Moreover, our

construction always guarantees robustness with respect to the stabilizing feedback part (as opposed

to the feedforward controllers of Chapter 3).

In the following we shall review the contents of this chapter in more detail, and we shall more

precisely indicate the respective contributions of this thesis.

Section 5.1: We shall define the feedforward-feedback regulation problem FFRP. This is a combination of

the FRP and the EFRP; both error feedback and feedforward control are employed to achive

output regulation. To our knowledge, this problem has not been explicitly studied before.

Section 5.2: We shall present sufficient conditions for the solvability of the FFRP. In particular, we shall

show that if the operators F,G and J of the dynamic part of the controller can be chosen such

that the closed loop system is strongly stable, then the operator Γ in the static feedforward

part of this controller can be chosen according to solutions of the regulator equations (3.10),

without any regard to the choice of the operators F,G or J .
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Section 5.3: We shall present necessary conditions for the solvability of the FFRP. In particular, if the

exogenous system (2.2) generates admissible reference signals (see Definition 3.14), and if

some operators F,G, J and Γ solve the FFRP in such a way that σ(F ) ∩ σ(S) = ∅ and the

operator PΓ =
( P+BΓ

G(DΓ−Q)

)
∈ L(W,Z×X) is regular for the closed loop semigroup, then there

exists Π ∈ L(W,Z), with Π(D(S)) ⊂ D(A), such that Π and Γ satisfy the regulator equations

(3.10). In particular, in this case it is necessary to tune the feedforward part of the controller

using solutions of the regulator equations (3.10).

Section 5.4: We shall present an example of feedforward-feedback output regulation.

The results of this chapter rely heavily on our earlier constructions in Chapter 3 and Chapter 4.

They are based on those in [40].

5.1 The feedforward-feedback regulation problem FFRP

In this section we shall formulate the feedforward-feedback output regulation problem FFRP. It

involves the construction of a dynamic controller on some Banach space X, such that also direct

feedforward control from the exosystem (2.2) is permitted.

Definition 5.1 (FFRP). The task in the FFRP is to find a controller of the form

ẋ(t) = Fx(t) +G(y(t) − yref (t)), x(0) ∈ X, t ≥ 0 (5.1a)

u(t) = Jx(t) + Γw(t) (5.1b)

on some Banach state space X where F generates a C0−semigroup, G ∈ L(H,X), J ∈ L(X,H)

and Γ ∈ L(W,H). We require the following.

1. In the closed loop system

ż(t) = Az(t) +BJx(t) + (BΓ + P )w(t), t ≥ 0 (5.2a)

ẋ(t) = GCz(t) + (F +GDJ)x(t) +G(DΓ −Q)w(t), t ≥ 0 (5.2b)

ẇ(t) = Sw(t), t ∈ R (5.2c)

e(t) = Cz(t) +DJx(t) + (DΓ −Q)w(t), t ≥ 0 (5.2d)

the semigroup TA(t) generated by the closed loop operator A =
(

A BJ
GC F+GDJ

)
, with D(A) ⊂

Z ×X, on Z ×X is strongly stable.
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2. In the closed loop system (5.2) the tracking error e(t) = y(t) − yref (t) → 0 as t → ∞

regardless of the initial conditions z(0) ∈ Z, x(0) ∈ X and w(0) ∈W .

Remark 5.2. The FFRP defined above is clearly a mixture of the EFRP and the FRP. The key

difference between the FFRP and the FRP is the use of dynamic control to achieve closed loop

stability. On the other hand, the key difference between the FFRP and the EFRP is the additional

use of static feedforward control Γw(t) to enhance asymptotic tracking and disturbance rejection.

5.2 Sufficient conditions for the solvability of the FFRP

In Theorem 5.3 we shall prove that the solvability of the regulator equations (3.10) provides a

sufficient condition for the solvability of the FFRP under the assumption of strong closed loop

stability.

Theorem 5.3. Assume that A =
(

A BJ
GC F+GDJ

)
generates a strongly stable semigroup on Z ×X.

If Γ ∈ L(W,H) can be chosen such that there exists Π ∈ L(W,Z), with Π(D(S)) ⊂ D(A), and Π,Γ

satisfy the regulator equations (3.10), then a controller (5.1) with these parameters F,G, J and Γ

solves the FFRP.

Proof. Let Θ(t) =
( z(t)

x(t)

)
∈ Z ×X and define

A =


 A BJ

GC F +GDJ


 , B =


0

0


 , PΓ =


 P +BΓ

G(DΓ −Q)


 , C =

(
C DJ

)
, D = 0

(5.3)

with obvious domains of definition. Then write the closed loop system (5.2) as

Θ̇(t) = AΘ(t) + Bu(t) + PΓw(t), Θ(0) ∈ Z ×X (5.4a)

ẇ(t) = Sw(t) (5.4b)

e(t) = CΘ(t) + Du(t) + [DΓ −Q]w(t) (5.4c)

For appropriate operators this closed loop system is precisely of the same form as in the EFRP.

Thus it is clear by Theorem 4.4 that we only have to verify the existence of Π0 ∈ L(W,Z) and

Λ ∈ L(W,X) such that Π0(D(S)) ⊂ D(A) and Λ(D(S)) ⊂ D(F ), and the following extended
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regulator equations are satisfied

AΠ0 +BJΛ + P +BΓ = Π0S in D(S) (5.5a)

FΛ = ΛS in D(S) (5.5b)

CΠ0 +DJΛ = Q−DΓ in W (5.5c)

Clearly Π0 = Π and Λ = 0 is a possible choice since Π and Γ satisfy the regulator equations

(3.10).

Remark 5.4. If TA(t) is exponentially stable, then also the decay of ‖e(t)‖ to 0 as t → ∞

is exponentially fast in Theorem 5.3 (see also Remark 4.6). In fact, under the assumptions of

Theorem 5.3 we have that e(t) =
(

C DJ
)
TA(t)

[( z(0)
x(0)

)
−

(
Πw(0)

0

)]
for all t ≥ 0. This can be proved

as in Theorem 3.6.

We point out that the proof of Theorem 5.3 is based on the solution of the extended regulator

equations (4.3) in such a way that Λ = 0. This means that, in contrast to the controllers of Section

4.5, S need not be reduplicated in F . This feature of the controller can drastically simplify the

stabilization of the closed loop system; as opposed to the EFRP, exponential closed loop stability

is often possible in the FFRP even if the exosystem (2.2) is infinite-dimensional. However, we

shall see in Chapter 6 that it is precisely the reduplication of S in F which makes robust output

regulation possible in certain cases.

Another remarkable feature in Theorem 5.3 above is that the feedforward part (i.e. Γ) and the

feedback part (i.e. F,G and J) of the controller (5.1) can be designed completely independently of

each other. In fact, the operator Γ is chosen so that the regulator equations (3.10) are satisfied for

some Π. These equations do not depend on the parameters F , G and J of the feedback controller,

and hence it is possible to use any F,G and J in (5.1) which yield a generator A of a strongly

stable semigroup. Consequently, Theorem 5.3 above is particularly suitable for the design of add-

on controllers (see e.g. [83]), in which the stabilizing feedback part may have to be designed with

also other constraints in mind.

5.3 Necessary conditions for the solvability of the FFRP

We next show that if the closed loop operator A generates a strongly stable semigroup on Z ×X

and if the spectra of S and F are disjoint, then the above structure for the feedforward part
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v(t) = Γw(t) of a controller solving the FFRP is actually also necessary in the same practically

important cases as in Chapter 3 and Chapter 4.

Theorem 5.5. Assume that the exogenous system (2.2) generates admissible reference signals (see

Definition 3.14). If some operators F,G, J and Γ solve the FFRP in such a way that σ(F )∩σ(S) =

∅ and the operator PΓ =
( P+BΓ

G(DΓ−Q)

)
∈ L(W,Z ×X) is regular (see Definition 3.9) for TA(t), then

there exists Π ∈ L(W,Z), with Π(D(S)) ⊂ D(A), such that Π and Γ satisfy the regulator equations

(3.10).

Proof. According to the equations (5.4), the closed loop FFRP system (5.2) represents such a

closed loop EFRP system where P is replaced by P + BΓ and Q is replaced by Q −DΓ. Hence

by Theorem 4.7 there exists Π ∈ L(W,Z) such that Π(D(S)) ⊂ D(A) and Λ ∈ L(W,X) such that

Λ(D(S)) ⊂ D(F ) satisfying

ΠS = AΠ +BJΛ + P +BΓ in D(S) (5.6a)

ΛS = FΛ in D(S) (5.6b)

Q−DΓ = CΠ +DJΛ in W (5.6c)

It remains to show that Λ = 0. By Lemma A.8 there exists a sequence (Wn)n∈N ⊂ W of closed

TS(t)−invariant subspaces such that Wn ⊂ Wn+1 for every n ∈ N, σ(S|Wn
) ⊂ σ(S), Sn = S|Wn

∈

L(Wn), and ∪n∈NWn = W . Consequently for an arbitrary n ∈ N we have ΛSf = ΛSnf = FΛf

for each f ∈ Wn, so that ΛSn = FΛ in D(Sn) = Wn. But σ(Sn) ∩ σ(F ) ⊂ σ(S) ∩ σ(F ) = ∅, so

that the solution of this operator equation is unique (cf. Section 2 in [90]). Consequently Λ = 0

in Wn for each n ∈ N. By continuity of Λ and denseness of ∪n∈NWn, we must have that Λ = 0 in

W . This shows that Π and Γ satisfy the regulator equations (3.10).

Corollary 5.6. Assume that the exogenous system (2.2) generates admissible reference signals.

If some operators F,G, J and Γ solve the FFRP in such a way that F and A generate exponen-

tially stable C0−semigroups on X and Z × X respectively. Then there exists Π ∈ L(W,Z), with

Π(D(S)) ⊂ D(A), such that Π and Γ satisfy the regulator equations (3.10).

Proof. If F generates an exponentially stable C0−semigroup, then σ(F ) ∩ σ(S) ⊂ σ(F ) ∩ iR = ∅.

If A generates an exponentially stable C0−semigroup, then every operator PΓ ∈ L(W,Z ×X) is

regular for TA(t). The result follows by the above.
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5.4 An example of feedforward-feedback output regulation

In this section we shall present a fairly simple example to illustrate the solution of the FFRP. A

noteworthy feature in the example is that the stabilizing dynamic feedback part of the controller

(5.1) is finite-dimensional, although the exosystem (2.2) is infinite-dimensional.

Example 5.7. Let x1, x2 ∈ (0, 1), let ε > 0 and consider the SISO process

∂z(x, t)

∂t
=
∂2z(x, t)

∂x2
+ 2π2z(x, t) + bε(x)u(t), 0 ≤ x ≤ 1, t ≥ 0 (5.7a)

z(0, t) = z(1, t) = 0 (5.7b)

y(t) =

∫ 1

0

cε(x)z(x, t)dx (5.7c)

Here bε(x) = 1
ε for x1 − ε ≤ x ≤ x1 and bε(x) = 0 otherwise, and cε(x) = 1

ε for x2 − ε ≤

x ≤ x2 and cε(x) = 0 otherwise. Our goal is to construct a feedforward-feedback controller (5.1)

for the asymptotic tracking of p−periodic reference signals in certain generalized Sobolev spaces

H = HAP (C, fn,
2πn

p ) = H(fn, ωn) (see Definition 2.18), assuming that there are no disturbances.

To this end, we shall construct the exosystem (2.2) as in Proposition 2.3, with W = H, S = S|H,

P = 0 and Q = δ0 ∈ L(H,C).

Let Z = L2(0, 1) and define Af = d2

dx2 f + 2π2f with D(A) = { f ∈ Z | d2

dx2 f ∈ Z, f(0) = f(1) =

0 }. Also define B ∈ L(C, Z) such that Bu = bεu for every u ∈ C, and C ∈ L(Z,C) such that

Cf =
∫ 1

0
cε(x)f(x)dx for each f ∈ Z. With these operators A, B and C, and D = 0 the system

(5.7) takes the form (1.1) with Udist(t) = 0 for each t.

It is easy to see that A has a self-adjoint compact inverse, and that the eigenvalues of A are

λn = (2 − n2)π2, n ∈ N. These eigenvalues are real and the corresponding eigenvectors constitute

an orthonormal basis in Z. Moreover, A has only one eigenvalue in the closed right half plane,

namely λ = π2. The corresponding eigenfunction is φ(x) =
√

2 sin(πx).

Assume that x1, x2 and ε > 0 have been chosen such that b =
∫ 1

0
bε(x)φ(x)dx 6= 0 and c =

∫ 1

0
cε(x)φ(x)dx 6= 0. Then the state feedback operator J = 〈·,− 3π2

b φ〉 ∈ L(Z,C) exponentially

stabilizes the pair (A,B). Moreover, the output injection operator L ∈ L(C, Z) defined by Ly =

y−5π2

c φ for each y ∈ C is such that A + LC generates an exponentially stable C0−semigroup.

Consequently, as we let X = Z, we see that the closed loop operator

A =


 A BJ

−LC A+ LC +BJ


 (5.8)
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generates an exponentially stable C0−semigroup in Z × X so that we may choose G = −L and

F = A+ LC +BJ in the controller (5.1).

Having constructed the operators F,G and J of the controller (5.1), we may now proceed to the

construction of the feedforward part of the controller as demonstrated in Section 3.5 and Chapter

8. We assume that the transfer function H(s) = CR(s,A)B of the plant does not vanish at the

points iωn for any n ∈ I. Let φn(x) = eiωnx for each n ∈ I and x ∈ R. We then immediately see

that the following operators Γ,Π solve the regulator equations (3.10) whenever they are in L(H,C)

and L(H, Z) respectively:

Γyref =
∑

n∈I

ŷref (n)

H(iωn)
, ∀yref ∈ H (5.9)

Πyref =
∑

n∈I

ŷref (n)R(iωn, A)BΓφn =
∑

n∈I

ŷref (n)

H(iωn)
R(iωn, A)B, ∀yref ∈ H (5.10)

Here ωn = 2πn
p , n ∈ I, and ŷref (n) is the nth L2-Fourier coefficient of yref ∈ H. For a suitable

weighting sequence (fn)n∈I in the space H the coefficients ŷref (n) tend to 0 so fast that the operators

Π and Γ above are indeed bounded; for example, by the Schwartz inequality

‖Γyref‖ ≤
∑

n∈I

∣∣∣∣
ŷref (n)

H(iωn)

∣∣∣∣ ≤
√∑

n∈I

|ŷref (n)|2|fn|2
√∑

n∈I

1

|fn|2|H(iωn)|2 = M‖yref‖H (5.11)

for all yref ∈ H whenever
∑

n∈I |fn|−2|H(iωn)|−2 = M2 < ∞. As a matter of fact, the condition

(f−1
n H(iωn)−1)n∈I ∈ `2 for the sequence (fn)n∈I also guarantees the boundedness of Π because

clearly ‖R(iωn, A)B‖ is uniformly bounded in n (use e.g. the eigenfunction expansion of A, hence

TA(t) and R(iωn, A), to see this).

For the sake of a numerical example, we let x1 = 1, x2 = 1
2 , ε = 1

2 (this is obviously a valid

choice as regards the constants b and c above). Using the method in [17] (pp. 184-186) it is

straightforward to verify that in this case the transfer function H(s) of the plant is given by

H(s) =
4
[
cosh(

√
s−2π2

2 ) − 1
]2

(s− 2π2)
3
2 sinh(

√
s− 2π2)

, s ∈ ρ(A) (5.12)

so that indeed H(iωn) 6= 0 for all n ∈ I. Since the term

∣∣∣∣∣
sinh(

√
iω − 2π2)

[
cosh(

√
iω−2π2

2 ) − 1
]2

∣∣∣∣∣ (5.13)

is uniformly bounded in ω ∈ R, we have that |H(iω)|−2 is of order O(|ω|3) as |ω| → ∞. This

shows that it is sufficient to choose the sequence (fn)n∈I such that fn ≥ 1 for all n ∈ I and — if
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the index set I is not finite — such that (f−1
n )n∈I ∈ `2 and f2

n grows faster than |ωn|4+γ for some

(arbitrary) γ > 0 as |ωn| → ∞.

Whenever the space H (i.e. the sequence (fn)n∈I) is chosen such that the operators Π and Γ

above are bounded, for any given reference function yref ∈ H we should choose the feedforward

part Γw(t) of the controller (5.1) as

Γw(t) = ΓTS(t)|Hyref =
∑

n∈I

ŷref (n)

H(iωn)
eiωnt, yref ∈ H (5.14)

We point out that this feedforward control law is similar — but not equal — to the feedforward

control law used in Section 3.5 where knowledge of the transfer function of the stabilized plant is in

general required. Here we only need knowledge of the transfer function of the original plant because

the stabilizing feedback part of the controller can be designed independently of the feedforward part

of the controller.



Chapter 6

Robustness and the internal model

structure

In the previous chapters we have designed feedforward controllers, error feedback controllers and

feedforward-feedback controllers for output regulation purposes. In practice, however, it is also

desirable to achieve a degree of robustness in output regulation. In very general terms robustness

means tolerance for uncertainty. In this thesis robustness is understood in the sense that perturba-

tions to some of the parameters of the plant (1.1), the employed controller and the exogenous signal

generator (2.2) should not affect the closed loop stability and the asymptotic tracking/rejection of

the exogenous signals (see Definition 6.4). This type of robustness is often referred to as structural

stability in the literature [29, 32, 93]; it covers e.g. small modelling errors but it does not cover

e.g. the effect of small time delays on output regulation [64, 76].

Because of their practical importance it is not at all surprising that robust controllers of the

above type have been subject to a vast amount of research during the past three decades. The

problem of robust output regulation was solved for finite-dimensional linear systems and exosystems

by Davison [24], Davison and Goldenberg [19], Francis [29], Francis and Wonham [32], Sebakhy and

Wonham [82], Wonham [93] and others in the 1970s. It is now well known that error feedback must

be utilized in order to achieve robust output regulation. In fact, we saw in Chapter 3 and Chapter

5 respectively that feedforward controllers do not in general achieve robust output regulation, and

that a feedforward-feedback controller is often only guaranteed to be robust with respect to the

117
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stabilizing part of the controller.

According to Kwatny and Kalnitsky [60], the finite-dimensional linear error feedback control

methods which achieve robust output regulation can be quite generally grouped into two distinct

categories — those employing estimates of (possibly artificial) disturbance states (e.g. [29]), and

those employing dynamic error augmentation (e.g. [24]). Moreover, these two categories arise as

special instances of the general robust output regulation paradigm for finite-dimensional systems,

the celebrated Internal Model Principle due to Francis and Wonham [32] (see also [24]). This

principle asserts that an error feedback controller which stabilizes the closed loop system also

achieves robust output regulation if and only if the controller utilizes a suitably reduplicated copy

of the maximal cyclic component of the exogenous system matrix S. For a survey of these (and

related) results, with an emphasis on the differences between the above two categories, the reader

should see [60].

During the past several decades many authors have also extended portions of the above finite-

dimensional robust output regulation theory for infinite-dimensional plants and finite-dimensional

exogenous systems. The finite-dimensional results of Davison and his coworkers have been gene-

ralized by Pohjolainen [73, 74], Hämäläinen and Pohjolainen [34, 35], Ukai and Iwazumi [87] and

others (see [33] for more detailed information). On the other hand, the finite-dimensional results

of Francis [29] have been generalized to this setting by Bhat [7] who focused on applications in

time-delay systems. However, it is interesting to observe that although the papers [12, 80] do

generalize the error feedback output regulation theory of Francis [29] and Wonham [93] for certain

infinite-dimensional systems, they do not address the issue of robustness.

To the author’s knowledge so far no one has generalized the Internal Model Principle for infinite-

dimensional systems in the state space domain. Yamamoto and Hara have proved in Theorem 4.10

of [96] a frequency domain analogue of the Internal Model Principle for systems having a pseu-

dorational impulse response (e.g. repetitive control systems): Under the hypothesis of internal

closed loop stability1, the existence of an internal model in the controller is equivalent to stable

tracking. However, the theory of Yamamoto and Hara [96] seems to suffer from relatively nar-

row applicability because the hypothesis of internal closed loop stability is impossible to meet in

many applications (see Chapter 1 for more details). Moreover, the plant in the repetitive control

1Yamamoto and Hara show in Theorem 3.5 of [96] that for suitably observable realizations of their class of

systems this stability notion is equivalent to exponential stability.
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applications [36, 92, 95, 96] is invariably finite-dimensional.

The lack of a general Internal Model Principle for infinite-dimensional state space systems

may be a consequence of the fact that the principle, when formulated precisely in the state space

domain, employs purely finite-dimensional concepts such as minimal polynomials and rational

canonical decompositions of matrices [32]. Thus, although there is evidence that the Internal

Model Principle also holds for infinite-dimensional state space systems [96], it is not at all trivial

what a reasonable formulation — and interpretation — of this principle for such systems is in the

state space domain.

In the present chapter we shall develop a robustness theory for error feedback (EFRP) out-

put regulation of infinite-dimensional systems (1.1) and (possibly infinite-dimensional) exosystems

(2.2). In particular, we shall present such an operator-theoretic state space generalization for the

Internal Model Principle which does not employ any purely finite-dimensional concepts. The core

of this infinite-dimensional Internal Model Principle lies in the observation that any closed loop

error feedback (EFRP) control system, when appropriately stabilized, in a sense already contains

the error zeroing dynamics. A suitable choice of the controller’s parameters F and G resulting

in the so called internal model structure (see Definition 6.19) then realizes the desired dynamical

behaviour of robust output regulation. In fact, error feedback controllers which have the internal

model structure also have the crucial property that sufficient closed loop stability already implies

the solvability of the extended regulator equations (4.3); this has been shown to guarantee output

regulation in Theorem 4.4.

Before reviewing the contents of this chapter in more detail it is appropriate to precisely define

the robustness concepts that we are going to employ. The following assumption holds throughout

this chapter.

Assumption 6.1 (Perturbations). All perturbations to the parameters of the plant, the controller

and the exosystem are bounded, linear and additive. Moreover, all perturbations are independent of

each other in the sense that no perturbation to any given parameter affects the other parameters of

the closed loop system. Perturbations are denoted by ∆M where M is the parameter that is subject

to perturbation2.

Remark 6.2. The reason why we restrict our attention to bounded perturbations only is their

2For example, A can be subject to a perturbation ∆A ∈ L(Z) such that the perturbed operator is A + ∆A.
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simplicity. The so-called relatively bounded perturbations are also important e.g. for differential

operators [28, 57], but the theory developed in this chapter does not apply to them.

Quite often we shall employ the following self-explanatory notion of smallness in perturbations:

Definition 6.3 (Small perturbations). A perturbation ∆M to a parameter M of the plant, the

controller or the exosystem is called small (enough) if ‖∆M‖ is small (enough).

Definition 6.4 (Robust output regulation). Let Ω be a class of perturbations to the parameters

of the plant, the controller and/or the exosystem3. Then output regulation is

• robust with respect to Ω if all perturbations in Ω, when applied to the corresponding parts

of the closed loop control system, preserve strong closed loop stability and asymptotic trac-

king/disturbance rejection for all initial states of the plant, the controller and the exosystem;

• conditionally robust with respect to Ω if all perturbations in Ω, when applied to the corres-

ponding parts of the closed loop control system, have the following property: If they preserve

strong closed loop stability, then they also preserve asymptotic tracking/disturbance rejection

for all initial states of the plant, the controller and the exosystem.

Conditional robustness in the above sense is a rephrasement of the widely used finite-dimensional

robustness criterion: Closed loop stability implies output regulation. Clearly any purely finite-

dimensional control system having this property achieves a degree of robustness in output regu-

lation, with respect to certain sufficiently small perturbations. However, we point out that in

infinite dimensions strong stability of a C0−semigroup can sometimes be destroyed by arbitrarily

small bounded perturbations to its generator — hence the study of conditional robustness and

robustness separately is reasonable for infinite-dimensional systems:

Example 6.5. Let Z be a Hilbert space with an orthonormal basis (φn)n≥1 and consider the

bounded diagonal operator A on Z defined by Az =
∑

n≥1(− 1
n )〈z, φn〉φn for all z ∈ Z. Clearly A

generates a strongly stable C0−semigroup on Z by the Arendt-Batty-Lyubich-Vũ Theorem (Theorem

V.2.21 in [28]), but the semigroup generated by A+ εI is unbounded for all ε > 0.

Remark 6.6. A potentially useful result in the study of conditional robustness is the following

one due to Casarino and Piazzera [13]: Assuming that an operator E generates a strongly stable

3For example, if A is subject to perturbations, one possibility is Ω = {∆A ∈ L(Z) | ‖∆A‖ < ε } for some ε > 0.
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C0−semigroup TE(t) on a Banach space Y , a sufficient condition that the perturbed operator

E + ∆E , where ∆E ∈ L(Y )4, still generates a strongly stable C0−semigroup on Y is

sup
t≥0

∫ t

0

‖∆ETE(s)y‖ds ≤ C‖y‖, ∀y ∈ D(E) (6.1)

for some 0 < C < 1.

Based on the above discussion we choose as our basic strategy in this chapter to establish

conditional robustness results for output regulation; these results then immediately yield robustness

results if the closed loop system is also exponentially stable and if we only consider small enough

perturbations. Moreover, our focus in the present chapter will be on controllers solving the EFRP

of Chapter 4, because they do not incorporate feedforward control. This makes (conditionally)

robust output regulation possible.

We shall now review the contents of this chapter in more detail, and we shall more precisely

indicate the respective contributions of this thesis.

Section 6.1: We shall prove general conditional robustness results for dynamic controllers (4.1) which

solve the EFRP. Here generality refers to the fact that we do not fix the parameters F,G

and J of the controller (4.1) in any specific way, as opposed to e.g. [7, 33, 87]. The condi-

tional robustness results are obtained by studying the persistence of the unique solvability

of the extended regulator equations (4.3) under perturbations to some of the parameters

A,B,C,D, P,Q,G and J of the plant (1.1), the exosystem (2.2) and the controller (4.1) (ob-

serve that S and F cannot be perturbed). These results, together with Theorem 4.4, readily

imply conditional robustness of output regulation. Our proofs employ operator-theoretic ge-

neralizations of some finite-dimensional methods of Francis [29]. However, they seem to be

new even for finite-dimensional systems. In fact, although the conditions of the main result

(Theorem 6.16) resemble those found in the finite-dimensional control literature, it genera-

lizes the work of Francis [29] and Francis and Wonham [32] by allowing for perturbations

also in C, D and Q. Moreover, it generalizes the results of Davison [24] by allowing for the

parameters F,G and J of the controller to be free modulo strong closed loop stability and

the unique solvability of the extended regulator equations (4.3). The results of this section

are contained in [45].

4In [13] the additive perturbation ∆E may actually be of the more general Miyadera-Voigt type.
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Section 6.2: We shall define the internal model structure, and we shall prove (cf. Theorem 6.20) that

under exponential closed loop stability this structure is both necessary and sufficient for

any dynamic controller (4.1) which achieves robust output regulation in the sense of the

EFRP. This result is an infinite-dimensional state space generalization of the Internal Model

Principle of Francis and Wonham [32]. By allowing for conditional robustness we shall also

extend its sufficiency part for such control systems for which the closed loop operator A only

generates a strongly stable C0−semigroup (cf. Theorem 6.25 and Theorem 6.32). In this case

we shall need an additional assumption about the unique solvability of a Sylvester operator

equation; it turns out that this can often be verified without explicitly calculating the solution

operator (cf. Corollary 6.26 and Corollary 6.33). The results of this section are essentially

contained in [43, 45]; to the author’s knowledge they are new even for finite-dimensional

exosystems.

Section 6.3: In order to gain a deeper understanding of controllers having the internal model structure

we shall derive general characterizations for this structure using geometric methods, spectral

theory and an interplay of ergodic theory and the recent theory of implemented semigroups

due to Alber and Kühnemund [1, 59]. Although the results of this section are rather abstract

from the application point of view, they show, in particular, that the finite-dimensional struc-

turally stable synthesis algorithm of Francis [29], whenever applied to a finite-dimensional

EFRP with S as in Proposition 2.3, results in a dynamic controller having the internal model

structure (cf. Example 6.36). These results are new even for finite-dimensional systems; they

are contained in [45].

Section 6.4: We shall continue the study of controllers which have the internal model structure by con-

sidering the special case where F generates an isometric C0−group such that σ(S) = σ(F ).

It turns out (cf. Section 6.5) that in practice the verification of the internal model struc-

ture can often be reduced to this special case; it then corresponds to the finite-dimensional

procedure of embedding suitable reduplications of the maximal cyclic component of S in

F [29]. Theorem 6.46 shows how the operator G in (4.1) should be chosen to obtain the

internal model structure if nothing extra is known about σ(S) = σ(F ) but X and W are

Hilbert spaces, and S and F are bounded. Theorem 6.47, on the other hand, shows that
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whenever σ(S) = σ(F ) are also discrete5 sets the controller has the internal model structure

if PF
iωG : H → ran(PF

iω) is injective for all iω ∈ σ(F ). Here PF
iω is the spectral projection

corresponding to an isolated point iω ∈ σ(F ), and neither S nor F need be bounded. An

example shows a special case in which this injectivity condition is equivalent to the approxi-

mate controllability of the pair (F,G). Theorem 6.47 is contained in [43] while Theorem 6.46

is new even for finite-dimensional systems.

Section 6.5: In this section we shall prove conditional robustness results for the controllers of Section 4.5

which generalize certain finite-dimensional controllers of Davison (cf. [39]) and Francis [29].

Our standing assumptions are mostly the same as those in Section 4.5; however a fundamental

difference is that the operator S in (4.26) and (4.32) is replaced by an auxiliary operator Sa

defined on another Banach space Wa, such that in a sense Sa resembles S. As will be shown,

this replacement is quite benefical, because it allows us to design the controllers in such a

way that they have the internal model structure, and because it is then possible to regard

the operators P and Q in the controller (4.26) as design parameters — a feature which is

very convenient in the (otherwise quite difficult) process of stabilization of the closed loop

system. In Subsection 6.5.1 we shall prove conditional robustness results for the Francis-

type controllers of Subsection 4.5.1. The Davison-type controllers of Subsection 4.5.2 are

then treated in Subsection 6.5.2 where the dynamic state feedback controller (4.32) is also

generalized so that the use of state feedback is not necessary. The results of this section

are mostly contained in [43]; they generalize the finite-dimensional robust output regulation

theory, e.g. [24, 19, 29, 32], for infinite dimensional systems. Moreover, they provide a

robustness theory for the controllers utilized in [12].

Section 6.6: In some applications it may be sensible to trade perfect output regulation without guaranteed

robustness to almost perfect output regulation with guaranteed robustness. In this case study

section we shall illustrate how this can be done in the case that the reference signals are in

some infinite-dimensional Sobolev space G = HAP (CM , fn, ωn) with fixed sequences (ωn)n∈I

and (fn)n∈I (see Chapter 2). In Theorem 6.65 we propose a controller which achieves robust

approximate output regulation of every yref ∈ G in the sense that lim supt→∞‖e(t)‖ ≤

ε‖yref‖G where ε > 0 is a prespecified accuracy. A remarkable feature of the controller is

5A discrete spectrum consists of isolated points only [57].
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that it is guaranteed to work under the assumptions of nonexistence of transmission zeros

on a certain finite subset of { iωn | n ∈ I }, D = 0, the exponential stabilizability of the

pair (A,B) and the exponential detectability of the pair (A,C). These requirements may be

simpler to verify in practice than those utilized in [12], which are also applicable here (but

do not guarantee robustness of output regulation).

Section 6.7: In this case study section we shall focus on a repetitive control application for exponentially

stable SISO plants. We shall prove that in our framework it is possible to conditionally

robustly regulate p−periodic signals with an infinite number of distinct frequency components

even if D = 0 in the plant. In the conventional repetitive control scheme [36, 96] this is not

possible, because internal (i.e. exponential) closed loop stability — which implies output

regulation — can only be attained if the finite-dimensional plant is not strictly proper (cf.

Section V of [96] or Chapter 1). Theorem 6.70 proposes a controller which achieves strong

stability of the closed loop semigroup TA(t) by utilizing a stabilized copy of the generator of

the p−periodic translation group on a suitably larger space than on which output regulation

is required. Moreover, if the reference signals are smooth enough with respect to the above

copy, then output regulation is conditionally robust with respect to certain perturbations

∆A to the closed loop operator A satisfying supn∈Z‖∆AR( 2πin
p ,A)‖ < 1. The results of this

section are mostly contained in [43].

Section 6.8: In this section we shall provide some simple but concrete examples of (conditionally) robust

output regulation for infinite-dimensional systems.

6.1 General conditional robustness results for error feed-

back controllers

In this section we shall present general conditional robustness results for dynamic controllers (4.1)

solving the EFRP. Here the term “general” refers to the fact that the only restrictions for the choice

of the parameters F,G and J of a controller (4.1) solving the EFRP are strong closed loop stability

and the unique solvability of the extended regulator equations (4.3) for certain operators P and Q.

We emphasize that this section only contains sufficient conditions for conditionally robust output

regulation; that these conditions can (and sometimes must) be satisfied in practice is the topic of
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the subsequent sections.

We begin by introducing a number of auxiliary operators.

Definition 6.7. Let the Banach space X and the operators F,G and J be as in the controller

(4.1)6. Then

• The linear Sylvester operator TA,S is defined on a subspace of L(W,Z) by

D(TA,S) = {Π ∈ L(W,Z) | Π(D(S)) ⊂ D(A),∃Y ∈ L(W,Z) :

Y w = AΠw − ΠSw ∀w ∈ D(S) } (6.2)

TA,SΠ = Y (6.3)

• The linear Sylvester operator TF,S is defined on a subspace of L(W,X) by

D(TF,S) = {Λ ∈ L(W,X) | Λ(D(S)) ⊂ D(F ),∃Y ∈ L(W,X) :

Y w = FΛw − ΛSw ∀w ∈ D(S) } (6.4)

TF,SΛ = Y (6.5)

• The linear multiplication operator C : L(W,Z) → L(W,H) is defined by CΠ = CΠ for each

Π ∈ L(W,Z).

• The linear multiplication operator B : L(W,X) → L(W,Z) is defined by BΛ = BJΛ for each

Λ ∈ L(W,X).

• The linear multiplication operator D : L(W,X) → L(W,H) is defined by DΛ = DJΛ for

each Λ ∈ L(W,X).

From [1, 3, 59] it follows that the Sylvester operators TA,S and TF,S in Definition 6.7 are closed

on L(W,Z) and L(W,X) respectively. Furthermore, it is easy to see that B, C and D are bounded

operators because B,C,D and J are bounded operators. We shall need the following combined

operators:

Definition 6.8. Let TA,S , TF,S ,B,C and D be as in Definition 6.7. Then

• the linear operator [TA,S&B] : D(TA,S) × L(W,X) → L(W,Z) is defined by

[TA,S&B]
(

Π
Λ

)
= TA,SΠ + BΛ ∀Π ∈ D(TA,S) and ∀Λ ∈ L(W,X) (6.6)

6At this point we do not assume that the controller (4.1) solves any output regulation problem.
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• the linear operator [&TF,S ] : L(W,Z) ×D(TF,S) → L(W,X) is defined by

[&TF,S ]
(

Π
Λ

)
= TF,SΛ ∀Π ∈ L(W,Z) and ∀Λ ∈ D(TF,S) (6.7)

• the linear operator [C&D] : L(W,Z) × L(W,X) → L(W,H) is defined by [C&D]
(

Π
Λ

)
=

CΠ + DΛ for each Π ∈ L(W,Z) and every Λ ∈ L(W,X).

It is straightforward to show that [TA,S&B] and [&TF,S ] are closed operators on L(W,Z) ×

L(W,X). Furthermore, since C and D are bounded operators, so is [C&D].

We are now ready to turn to the conditional robustness results of this section. The first one is

an elementary sufficient condition that the EFRP is solvable regardless of the disturbance operator

P in the exosystem (2.2).

Proposition 6.9. Assume that C has a right inverse C− ∈ L(H,Z) such that C−Q ∈ D(TA,S). If

F,G and J in (4.1) are chosen so that the closed loop system operator A =
(

A BJ
GC F+GDJ

)
generates

a strongly stable C0−semigroup on Z ×X and if for every P ∈ L(W,Z) there exist Π ∈ L(W,Z)

and Λ ∈ L(W,X) such that Π(D(S)) ⊂ D(A) and Λ(D(S)) ⊂ D(F ), and the following extended

regulator equations are satisfied

AΠ +BJΛ + P = ΠS in D(S) (6.8a)

FΛ = ΛS in D(S) (6.8b)

CΠ +DJΛ = 0 in W (6.8c)

then with this triplet (F,G, J) the EFRP is solvable regardless of P in the exosystem (2.2).

Proof. Let P ∈ L(W,Z) be arbitrary and set M = P + TA,SC
−Q. Since M ∈ L(W,Z), by our

assumption there exist operators Π ∈ L(W,Z) and Λ ∈ L(W,X) such that Π(D(S)) ⊂ D(A) and

Λ(D(S)) ⊂ D(F ), and

AΠ +BJΛ +M = ΠS in D(S) (6.9a)

FΛ = ΛS in D(S) (6.9b)

CΠ +DJΛ = 0 in W (6.9c)

Here equation (6.9a) reads AΠ+BJΛ+P + TA,SC
−Q = AΠ+BJΛ+AC−Q−C−QS+P = ΠS
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in D(S). Consequently we have that

A(Π + C−Q) +BJΛ + P = (Π + C−Q)S in D(S) (6.10a)

FΛ = ΛS in D(S) (6.10b)

C(Π + C−Q) +DJΛ = Q in W (6.10c)

This shows that the conditions of Theorem 4.4 hold, and hence the EFRP is solvable for every

P .

In the finite-dimensional case the existence of a right inverse C− for C ∈ L(Z,H) is equivalent

to C being surjective — a standard assumption [24, 29, 32]. Moreover, in the finite-dimensional

setting the Sylvester operator TA,S is bounded (and hence everywhere defined). Consequently

the technical assumptions of Proposition 6.9 about C− and C−Q involve no loss of generality if

the spaces H, W , X and Z are finite-dimensional. An example of an infinite-dimensional setup

in which the technical assumptions of Proposition 6.9 are satisfied is given next. If the reader

is not familiar with bi-continuous and implemented semigroups, it may be worthwhile to look at

Appendix A.3 at this point.

Example 6.10. Let H = C, W = H s
↪→BUC(R,H) and assume that S = S|H ∈ L(H), Q =

δ0 ∈ L(H,H) as in Proposition 2.3. Let Z be a Hilbert space with inner product 〈·, ·〉 and take

C = 〈·, c〉 for some 0 6= c ∈ D(A). Clearly we can define the bounded linear operator C− : C → Z

by C−y = y c
‖c‖2 for each y ∈ C, then CC−y = y 〈c,c〉

‖c‖2 = y for each y ∈ C (i.e. C− is a right inverse

of C). Furthermore, ran(C−) ⊂ D(A).

It remains to show that C−δ0 ∈ D(TA,S|H). By the results of [1, 59] we know that TA,S|H

generates the so-called implemented semigroup G(t) on L(H, Z) given by G(t)Π = TA(t)ΠTS(−t)|H,

Π ∈ L(H, Z), where TA(t) is the C0−semigroup generated by A on Z and TS(−t)|H is the C0−group

generated by −S|H on H. This implemented semigroup is strongly continuous in the strong operator

topology, and by Theorem 1.17 in [59] it suffices to show that the limit limh→0+
G(h)C−δ0−C−δ0

h exists

in the strong operator topology of L(H, Z).

Let f ∈ H be arbitrary. Then f ∈ D(S|H) because S|H ∈ L(H). Furthermore, since S|H is the
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differential operator, the limit limh→0
f(t+h)−f(t)

h exists for all t ∈ R. Then

lim
h→0+

G(h)C−δ0f − C−δ0f
h

= lim
h→0+

TA(h)C−δ0TS(−h)|Hf − C−δ0f
h

(6.11)

= lim
h→0+

TA(h)C−f(−h) − C−f(0)

h
(6.12)

= lim
h→0+

TA(h)C−[f(−h) − f(0)] + TA(h)C−f(0) − C−f(0)

h
(6.13)

It is evident that limh→0+
TA(h)C−[f(−h)−f(0)]

h = limh→0+ TA(h)C− [f(−h)−f(0)]
h exists, because TA(t)

is a C0−semigroup and C− is continuous. Similarly limh→0+
TA(h)C−f(0)−C−f(0)

h exists because

ran(C−) ∈ D(A). Consequently the limit limh→0+
G(h)C−δ0−C−δ0

h exists in the strong operator

topology of L(H, Z), and so C−δ0 ∈ D(TA,S|H).

In Proposition 6.9 we only allowed the operator P in the exosystem vary. Next we shall also

consider perturbations to the parameters A,B and G of the plant and the controller. The following

elementary lemma will be important in the subsequent proofs.

Lemma 6.11. Let U and V be Banach spaces, let R ⊂ U be a closed subspace and let M : D(M) ⊂

U → V be a closed linear operator. Then ker(M) is a closed subspace of U and the restriction

M |R : D(M |R) = D(M) ∩R→ V : M |Ru = Mu ∀u ∈ D(M |R) is a closed operator.

Proof. Let (un)n∈N ⊂ ker(M) be such that limn→∞ un = u ∈ U . Then (Mun)n∈N = (0)n∈N ⊂ V

is a Cauchy sequence, hence convergent in V , i.e. limn→∞Mun = y for some y ∈ V . But it is

easy to see that necessarily y = 0. Since M is a closed operator, u ∈ D(M) and Mu = y = 0, i.e.

u ∈ ker(M). Consequently ker(M) is a closed subspace of U .

Let (rn)n∈N ⊂ D(M |R) = D(M) ∩ R be such that limn→∞ rn = r ∈ R and such that

limn→∞M |Rrn = y ∈ V . Then limn→∞ rn = r ∈ U and limn→∞Mrn = y ∈ V . Since

M is a closed operator D(M) ⊂ U → V , we must have that r ∈ D(M) ∩ R = D(M |R) and

Mr = M |Rr = y.

Theorem 6.12. Assume that C has a right inverse C− ∈ L(H,Z) such that C−Q ∈ D(TA,S). Let

F,G and J in (4.1) be such that the closed loop operator A generates a strongly stable C0-semigroup

on Z×X and for every P ∈ L(W,Z) there exist a unique Π ∈ L(W,Z) and a unique Λ ∈ L(W,X)

such that Π(D(S)) ⊂ D(A) and Λ(D(S)) ⊂ D(F ), and the extended regulator equations (6.8) are

satisfied. Then the controller (4.1) solves the EFRP for every P ∈ L(W,Z) in such a way that
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output regulation is conditionally robust with respect to all perturbations to G, and all small enough

perturbations to A and B.

Proof. Our first observation is that the regulator equations (6.8) do not depend on G. Hence we

may perturb G arbitrarily as long as closed loop stability is preserved, according to Proposition

6.9 and according to our assumption about the independence of the perturbations (Assumption

6.1).

Let M = ker([C&D])∩ker([&TF,S ]). Then by Lemma 6.11 M is a closed subspace of L(W,Z)×

L(W,X), and the restriction [TA,S&B]|M is a closed operator.

The crucial steps of the proof are the following.

(i) We show that the extended regulator equations (6.8) have a unique solution for every P ∈

L(W,Z) if and only if the the restriction [TA,S&B]|M is a closed bijection M → L(W,Z).

(ii) Bounded additive perturbations to A and B result in a bounded additive perturbation to

[TA,S&B], whereas the space M is not affected by these perturbations. Thus such perturba-

tions to A and B result in a bounded additive perturbation to [TA,S&B]|M.

(iii) If the perturbations to A and B are small enough, then the perturbed operator [TA,S&B]|pM
is still a closed bijection M → L(W,Z).

The desired result then follows via another application of item (i) and Proposition 6.9. We now

proceed to the proofs.

(i) Let P ∈ L(W,Z) be arbitrary. If the extended regulator equations (6.8) have a unique

solution, then there exists a unique element
(

Π
Λ

)
∈ D(TA,S) × D(TF,S) ⊂ D([TA,S&B]) ∩

D([&TF,S ]) such that

[TA,S&B]
(

Π
Λ

)
= TA,SΠ + BΛ = AΠ − ΠS +BJΛ = −P (6.14)

[&TF,S ]
(

Π
Λ

)
= FΛ − ΛS = 0 (6.15)

[C&D]
(

Π
Λ

)
= CΠ +DJΛ = 0 (6.16)

Consequently
(

Π
Λ

)
∈ M, and [TA,S&B]|M is a closed bijection M → L(W,Z).

On the other hand, if the restriction [TA,S&B]|M is a closed bijection M → L(W,Z), then

for every P ∈ L(W,Z) there exists a unique element
(

Π
Λ

)
∈ M ∩ D([TA,S&B]) such that
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[TA,S&B]
(

Π
Λ

)
= −P . Equations (6.14)-(6.16) then show that the extended regulator equa-

tions (6.8) have a unique solution for every such P .

(ii) Let Ap = A+ ∆A and Bp = B + ∆B , where ∆A ∈ L(Z) and ∆B ∈ L(H,Z). Then since the

perturbations are independent of each other and since the Banach space M does not depend

on A or B, it is not affected by these perturbations. Moreover clearly D(TA,S) = D(TAp,S).

In fact, TAp,SΠ = (A+ ∆A)Π − ΠS = TA,SΠ + ∆AΠ for each Π ∈ D(TA,S), so that TAp,S =

TA,S + ∆T . Here the bounded linear operator ∆T ∈ L(L(W,Z)) is defined as ∆T Π = ∆AΠ

for each Π ∈ L(W,Z). Similarly, the perturbed operator Bp = B + ∆B where the bounded

linear operator ∆BΛ = ∆BJΛ for each Λ ∈ L(W,X). Hence for all
(

Π
Λ

)
∈ D([TA,S&B]) we

have that the perturbed operator is

[TA,S&B]p
(

Π
Λ

)
= TAp,SΠ + BpΛ = TA,SΠ + BΛ + ∆

(
Π
Λ

)
(6.17)

where the bounded linear operator ∆ : L(W,Z) × L(W,X) → L(W,Z) is given by ∆
(

Π
Λ

)
=

∆T Π+∆BΛ = ∆AΠ+∆BJΛ for each
(

Π
Λ

)
∈ L(W,Z)×L(W,X). In conclusion D([TA,S&B]p) =

D([TA,S&B]) and [TA,S&B]p = [TA,S&B] + ∆.

(iii) From item (ii) we immediately see that as ‖∆A‖ → 0 and ‖∆B‖ → 0, so must ‖∆‖ → 0. Since

M and L(W,Z) are Banach spaces and [TA,S&B]|M is a closed bijection M → L(W,Z),

by the Open Mapping Theorem it must be boundedly invertible. By Theorem IV.1.16 in

[57], if ‖∆‖ is (i.e. if ‖∆A‖ and ‖∆B‖ are) sufficiently small, then the perturbed operator

[TA,S&B]|pM is still boundedly invertible, that is, a closed bijection M → L(W,Z).

Corollary 6.13. Let the assumptions of Theorem 6.12 hold. If in addition the closed loop operator

A generates an exponentially stable C0−semigroup, then the controller (4.1) solves the EFRP for

every P ∈ L(W,Z) in such a way that output regulation is robust with respect to all small enough

perturbations to A,B and G.

We now turn our attention to the case in which the operators C,D,G and Q undergo pertur-

bations while the other operators in the closed loop system are held fixed.

Theorem 6.14. Assume that the operators F,G and J in (4.1) are such that the conditions of

Theorem 4.4 hold for some Q = Q0 ∈ L(W,H). Assume, in addition, that for every Q ∈ L(W,H)
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there exist unique operators Π ∈ L(W,Z) and Λ ∈ L(W,X) such that Π(D(S)) ⊂ D(A) and

Λ(D(S)) ⊂ D(F ), and the extended regulator equations

AΠ +BJΛ = ΠS in D(S) (6.18a)

FΛ = ΛS in D(S) (6.18b)

CΠ +DJΛ = Q in W (6.18c)

are satisfied. Then the controller (4.1) solves the EFRP for every Q ∈ L(W,H) in such a way

that output regulation is conditionally robust with respect to all perturbations to G, and all small

enough perturbations to C and D.

Proof. The proof of this result closely parallels the proof of Theorem 6.12. Again, since the

extended regulator equations (4.3) do not depend on G and since all perturbations are assumed

to be independent of each other (Assumption 6.1), we may perturb G arbitrarily as long as closed

loop stability is preserved, according to Theorem 4.4.

Let N = ker([TA,S&B]) ∩ ker([&TF,S ]). Then, by Lemma 6.11, N is a closed subspace of

L(W,Z) × L(W,X), and the restriction [C&D]|N is a bounded linear operator.

The crucial steps of the proof are the following.

(i) We show that the extended regulator equations (6.18) have a unique solution for each Q ∈

L(W,H) if and only if the the restriction [C&D]|N is a bijection N → L(W,H).

(ii) Bounded additive perturbations to C and D result in a bounded additive perturbation to

[C&D], whereas the space N is not affected by these perturbations. Thus, these perturba-

tions result in a bounded and additive perturbation to [C&D]|N .

(iii) If the perturbations to C and D are small enough, then the perturbed operator [C&D]|pN is

still a bounded bijection N → L(W,H).

(iv) The extended regulator equations (4.3), with C andD replaced by Cp andDp, have a solution

for each Q whenever the perturbations to C and D are small enough.

The desired result then follows from Theorem 4.4. We now proceed to the proofs.

(i) Let Q ∈ L(W,H) be arbitrary. If the extended regulator equations (6.18) have a unique

solution, then there exists a unique element
(

Π
Λ

)
∈ D(TA,S) × D(TF,S) ⊂ D([TA,S&B]) ∩
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D([&TF,S ]) such that

[TA,S&B]
(

Π
Λ

)
= TA,SΠ + BΛ = AΠ − ΠS +BJΛ = 0 (6.19)

[&TF,S ]
(

Π
Λ

)
= FΛ − ΛS = 0 (6.20)

[C&D]
(

Π
Λ

)
= CΠ +DJΛ = Q (6.21)

Consequently
(

Π
Λ

)
∈ N , and [C&D]|N is a bounded bijection N → L(W,H).

On the other hand, if the restriction [C&D]|N is a bounded bijection N → L(W,H), then

for every Q ∈ L(W,H) there exists a unique element
(

Π
Λ

)
∈ N such that [C&D]|N

(
Π
Λ

)
= Q.

Equations (6.19)-(6.21) then show that the extended regulator equations (6.18) have a unique

solution for every Q ∈ L(W,H).

(ii) Let Cp = C + ∆C and Dp = D + ∆D, where ∆C ∈ L(Z,H) and ∆D ∈ L(H). Then

since perturbations are independent of each other and since the Banach space N does not

depend on C or D, N is not affected by these perturbations. Moreover clearly [C&D]p
(

Π
Λ

)
=

CpΠ+DpΛ = (C+∆C)Π+(D+∆D)JΛ = [C&D]
(

Π
Λ

)
+∆CD

(
Π
Λ

)
for each Π ∈ L(W,Z) and

Λ ∈ L(W,X). Here the bounded linear operator ∆CD ∈ L(L(W,Z) × L(W,X),L(W,H)) is

defined by ∆CD

(
Π
Λ

)
= ∆CΠ + ∆DJΛ for each Π ∈ L(W,Z) and Λ ∈ L(W,X).

(iii) From item (ii) we immediately see that as ‖∆C‖ → 0 and ‖∆D‖ → 0, so must ‖∆CD‖ → 0.

Since N and L(W,H) are Banach spaces and [C&D]|N is a bounded bijection N → L(W,H),

by the Open Mapping Theorem it must be boundedly invertible. By Theorem IV.1.16 in

[57], if ‖∆CD‖ is (i.e. if ‖∆C‖ and ‖∆D‖ are) sufficiently small, then the perturbed operator

[C&D]|pN is still boundedly invertible, that is, a bounded bijection N → L(W,H).

(iv) Let
(

Π0

Λ0

)
∈ D(TA,S)×D(TF,S) denote a solution of the extended regulator equations (4.3) for

the nominal value Q = Q0. Let Q ∈ L(W,H) be arbitrary and set Qp = Q−CpΠ0−DpJΛ0.

Assuming that the perturbations to C and D are small enough, applying items (iii) and (i)

again shows that for this Qp ∈ L(W,H) the extended regulator equations (6.18), with C and
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D replaced by Cp and Dp respectively, have a unique solution
(

Πp

Λp

)
. Moreover

[TA,S&B]
(

Π0+Πp

Λ0+Λp

)
= TA,S(Π0 + Πp) + B(Λ0 + Λp) = TA,SΠ0 + BΛ0 = −P (6.22)

[&TF,S ]
(

Π0+Πp

Λ0+Λp

)
= F (Λ0 + Λp) − (Λ0 + Λp)S = 0 (6.23)

[C&D]p
(

Π0+Πp

Λ0+Λp

)
= Cp(Π0 + Πp) +DpJ(Λ0 + Λp) (6.24)

= CpΠ0 +DpJΛ0 +Q− CpΠ0 −DpJΛ0 = Q (6.25)

Consequently the operators Π0 + Πp and Λ0 + Λp solve the extended regulator equations

(4.3), with C and D replaced by Cp and Dp respectively.

Corollary 6.15. Let the assumptions of Theorem 6.14 hold. If in addition the closed loop operator

A generates an exponentially stable C0−semigroup, then the controller (4.1) solves the EFRP for

every Q ∈ L(W,H) in such a way that output regulation is robust with respect to all small enough

perturbations to C,D and G.

The following theorem is the main result of this section. It provides a sufficient condition that

small perturbations to the operators A,B,C,D,G, J, P and Q do not destroy EFRP type output

regulation. A remarkable feature in the result is that, in contrast to Theorem 6.12, we obtain

conditional robustness — even with respect to more general perturbations — without having to

assume the existence of a right inverse C− for C such that C−Q ∈ D(TA,S). However, we do have

to assume a more restricted kind of unique solvability of the extended regulator equations (4.3)

than in either Theorem 6.12 or Theorem 6.14.

Theorem 6.16. Let F,G and J in the controller (4.1) be such that the closed loop operator A

generates a strongly stable C0−semigroup TA(t) on Z × X. Assume that, in addition, for every

P ∈ L(W,Z) and every Q ∈ L(W,H) there exist unique operators Π ∈ L(W,Z) and Λ ∈ L(W,X)

such that Π(D(S)) ⊂ D(A) and Λ(D(S)) ⊂ D(F ), and the extended regulator equations (4.3) are

satisfied. Then the controller (4.1) solves the EFRP for every P ∈ L(W,Z) and every Q ∈ L(W,H)

in such a way that output regulation is conditionally robust with respect to all perturbations to G,

and all small enough perturbations to A,B,C,D and J .

Proof. As before, since the extended regulator equations (4.3) do not depend on G, by the indepen-

dece of the perturbations we may perturb G arbitrarily as long as closed loop stability is preserved,
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according to Theorem 4.4. Moreover, by Lemma 6.11 the restriction [TA,S&B]|ker([&TF,S ]) of the

closed operator [TA,S&B] to the closed subspace ker([&TF,S ]) of L(W,Z) × L(W,X) is again a

closed operator.

We can now define a linear operator matrix K : D(K) = D([TA,S&B]) ∩ ker([&TF,S ]) ⊂

L(W,Z) × L(W,X) → L(W,Z) × L(W,H) by

K


Π

Λ


 =


TA,S B

C D





Π

Λ


 =


TA,SΠ + BΛ

CΠ + DΛ


 =


[TA,S&B]

(
Π
Λ

)

[C&D]
(

Π
Λ

)


 (6.26)

for each
(

Π
Λ

)
∈ D(K).

In analogy with the previous proofs, we proceed by showing the following:

(i) K is a closed operator D(K) = D([TA,S&B]) ∩ ker([&TF,S ]) → L(W,Z) × L(W,H).

(ii) The extended regulator equations (4.3) have a unique solution for each P ∈ L(W,Z) and

every Q ∈ L(W,H) if and only if K is a bijection D(K) → L(W,Z) × L(W,H).

(iii) Bounded linear additive perturbations to A,B,C,D and J result in a bounded linear addi-

tive perturbation ∆K to K, which is independent of the perturbations to G, such that the

perturbed operator is Kp = K + ∆K with D(Kp) = D(K).

(iv) If the perturbations to A,B,C,D and J are small enough, then the perturbed operator Kp

is still a bounded bijection D(K) → L(W,Z) × L(W,H).

The desired result then follows via another application of item (ii) above and Theorem 4.4. It

remains to prove the above properties.

(i) Let
((

Πn

Λn

))
n∈N

⊂ D(K) be such that limn→∞
(

Πn

Λn

)
=

(
Π
Λ

)
∈ L(W,Z) × L(W,X) and

limn→∞ K
(

Πn

Λn

)
=

(
P
Q

)
∈ L(W,Z) × L(W,H). Then for each n ∈ N we have

(
Πn

Λn

)
∈

D([TA,S&B])∩ ker([&TF,S ]) = D([TA,S&B]|ker([&TF,S ])). Moreover, limn→∞[TA,S&B]
(

Πn

Λn

)
=

limn→∞[TA,S&B]|ker([&TF,S ])

(
Πn

Λn

)
= P . Since the operator [TA,S&B]|ker([&TF,S ]) is closed

(cf. Lemma 6.11),
(

Π
Λ

)
∈ D([TA,S&B]) ∩ ker([&TF,S ]) and we also have [TA,S&B]

(
Π
Λ

)
=

[TA,S&B]|ker([&TF,S ])

(
Π
Λ

)
= P . Furthermore, since [C&D] is bounded, [C&D]

(
Π
Λ

)
= Q.

Putting things back together we obtain
(

Π
Λ

)
∈ D(K) and K

(
Π
Λ

)
=

(
P
Q

)
, which shows that

K is closed.
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(ii) By a direct calculation it can be shown that for all P ∈ L(W,Z) and all Q ∈ L(W,H) the

extended regulator equations (4.3) have a unique solution Π,Λ if and only if

[TA,S&B]
(

Π
Λ

)
= −P (6.27)

[C&D]
(

Π
Λ

)
= Q (6.28)

for a unique
(

Π
Λ

)
∈ D([TA,S&B]) ∩ ker([&TF,S ]). Hence the extended regulator equations

(4.3) have a unique solution for each P ∈ L(W,Z) and every Q ∈ L(W,H) if and only if K

is a bijection D(K) → L(W,Z) × L(W,H).

(iii) Let Ap = A + ∆A, B
p = B + ∆B , C

p = C + ∆C ,D
p = D + ∆D, J

p = J + ∆J , where

the perturbations are bounded and linear on suitable spaces. These perturbations induce a

perturbation to K. The resulting perturbed operator Kp is given by

Kp


Π

Λ


 =


[TA,S&B]p

(
Π
Λ

)

[C&D]p
(

Π
Λ

)


 =


 TA+∆A,SΠ + (B + ∆B)(J + ∆J )Λ

(C + ∆C)Π + (D + ∆D)(J + ∆J )Λ


 (6.29)

=


TA,SΠ +BJΛ

CΠ +DJΛ


 +


∆AΠ +B∆JΛ + ∆B(J + ∆J )Λ

∆CΠ +D∆JΛ + ∆D(J + ∆J)Λ


 (6.30)

= K


Π

Λ


 +


∆A B∆J + ∆B(J + ∆J )

∆C D∆J + ∆D(J + ∆J )





Π

Λ


 (6.31)

for every
(

Π
Λ

)
∈ D(K). Hence bounded linear additive perturbations to A,B,C,D and J

result in a bounded linear additive perturbation ∆K =
( ∆A B∆J+∆B(J+∆J )

∆C D∆J+∆D(J+∆J )

)
to K, such

that for the perturbed operator we have D(Kp) = D(K + ∆K) = D(K). Moreover, by the

independence of the perturbations ∆K does not depend on the perturbations to G.

(iv) From item (iii) we immediately see that as ‖∆A‖ → 0, ‖∆B‖ → 0, ‖∆C‖ → 0, ‖∆D‖ → 0 and

‖∆J‖ → 0, so must ‖∆K‖ → 0. Since K with domain D(K) is a closed bijection between two

Banach spaces, by the Open Mapping Theorem it must be boundedly invertible. By Theorem

IV.1.16 in [57], if ‖∆K‖ is (i.e. if ‖∆A‖, ‖∆B‖, ‖∆C‖, ‖∆D‖ and ‖∆J‖ are) sufficiently small,

then the perturbed operator Kp is still boundedly invertible, that is, a closed bijection.

The following corollary is particularly useful in the case that the exosystem is finite-dimensional.
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Corollary 6.17. Let the assumptions of Theorem 6.16 hold. If in addition the closed loop operator

A generates an exponentially stable C0−semigroup, then the controller (4.1) solves the EFRP for

each P ∈ L(W,Z) and Q ∈ L(W,H) in such a way that output regulation is robust with respect to

all small enough perturbations to A,B,C,D,G and J .

Remark 6.18. A converse for Corollary 6.17 will be proved in Corollary 6.23. In particular,

it turns out that in this case the unique solvability of the extended regulator equations (4.3) is

actually necessary for robust output regulation.

We point out that Corollary 6.17 is new even for finite-dimensional systems, although its as-

sumptions resemble those found in the finite-dimensional control literature. In particular, Corollary

6.17 generalizes the work of Francis [29] and Francis and Wonham [32] by allowing for perturba-

tions also in C, D and Q. Moreover, it generalizes the results of Davison [24] by allowing for

the parameters F,G and J of the controller to be free modulo closed loop stability and unique

solvability of the extended regulator equations (4.3) (in Davison’s work the matrix F contains a

suitable reduplication of the maximal cyclic component of the matrix S, for example).

We emphasize that the results of this section are general perturbation results in the sense that

we have not made any specific choice of the parameters F,G and J in the error feedback controller

(4.1). Unfortunately, at this stage it is not at all clear how the operators F,G and J should be

chosen in order to meet the assumptions of these results. Of course, we can always reformulate the

extended regulator equations (4.3) as


Π

Λ


S =


 A BJ

GC F +GDJ





Π

Λ


 +


 P

−GQ


 in D(S) (6.32a)

Q =
(
C DJ

)

Π

Λ


 in W (6.32b)

and then attempt to directly apply the results of Chapter 8 to obtain unique solutions; this is

possible because the equations (6.32) are of the form (3.10). However, as we shall see in Section

6.2 below, a better approach is to observe that the equation (6.32b) is embedded in the equation

(6.32a). Hence, all we really need is the solvability of (6.32a) and some additional condition which

ensures that (6.32b) is also satisfied. This additional requirement turns out to be an internal model

condition, as suggested by the finite-dimensional theory (see Section 6.2 below).
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6.2 The internal model structure

In this section we shall study the necessary and sufficient structure of error feedback controllers

(4.1) which achieve conditionally robust output regulation in the sense of the EFRP. A crucial

observation that we make (see the proof of Theorem 6.20) is that every sufficiently stable closed

loop EFRP control system in a sense contains the error zeroing dynamics even without assuming

the solvability of the extended regulator equations (4.3). The main results of this section show

that the desired dynamical behaviour of conditionally robust output regulation is then realized if

(and sometimes only if) the dynamic controller (4.1) has the following structure:

Definition 6.19 (Internal model structure). A controller (4.1) has the internal model structure if

the following implication holds:

∀Λ ∈ D(TF,S), ∀∆ ∈ L(W,H) : ΛS = FΛ +G∆ in D(S) =⇒ ∆ = 0 (6.33)

Here D(TF,S) is as in Definition 6.7.

We shall see shortly that sufficient closed loop stability and the internal model structure together

imply the solvability of the extended regulator equations (4.3) — and thus also output regulation

by Theorem 4.4.

6.2.1 A generalization of the Internal Model Principle

Theorem 6.20 below generalizes the Internal Model Principle of Francis and Wonham [32] in such a

way that no purely finite-dimensional concepts are utilized. We have to assume exponential closed

loop stability — which may be unreasonable if dim(W ) = ∞ — in order to achieve the desired

equivalence, but we emphasize that this assumption will be weakened in Subsection 6.2.2 where

we shall present more sufficient conditions for conditionally robust output regulation. Moreover,

the following result is new even for finite-dimensional exosystems (2.1).

Theorem 6.20. Let F,G and J in (4.1) be chosen such that the closed loop operator A =
(

A BJ
GC F+GDJ

)
generates an exponentially stable C0−semigroup on Z × X. Then the controller

(4.1) solves the EFRP for every P ∈ L(W,Z) and every Q ∈ L(W,H) in the exosystem (2.2) in

such a way that

1. ‖e(t)‖ ≤ Me−ωt[‖z(0)‖ + ‖x(0)‖ + ‖w(0)‖] for all t ≥ 0 and some M,ω > 0 which do not

depend on the initial conditions z(0) ∈ Z, x(0) ∈ X, and w(0) ∈W ,



CHAPTER 6. ROBUSTNESS AND THE INTERNAL MODEL STRUCTURE 138

2. output regulation is robust with respect all such perturbations to A,B,C,D,G and J which

preserve the exponential closed loop stability,

if and only if the controller has the internal model structure.

Proof. (Necessity.) Assume that for every P ∈ L(W,Z) and every Q ∈ L(W,H) in the exosystem

(2.2) we achieve robust output regulation with respect all such independent perturbations to the

operators A,B,C,D,G and J which preserve exponential closed loop stability. Let ∆ ∈ L(W,H)

and Λ ∈ D(TF,S) be arbitrary operators such that ΛS = FΛ + G∆ in D(S). We must show that

this implies ∆ = 0.

Observe that by our assumptions, output regulation in the sense of the EFRP occurs for the

particular operators Q = ∆ − DJΛ ∈ L(W,H) and for P = BJΛ ∈ L(W,Z) in the exosystem

(2.2). Let Θ(t) =
( z(t)

x(t)

)
∈ Z ×X and define the operators

A =


 A BJ

GC F +GDJ


 , P =


 BJΛ

−G(∆ −DJΛ)


 , C =

(
C DJ

)
(6.34)

with suitable domains of definition. Then we may write the closed loop system (4.2) (with P = BJΛ

and Q = ∆ −DJΛ) as


Θ̇(t)

ẇ(t)


 =


A P

0 S





Θ(t)

w(t)


 , Θ(0) ∈ Z ×X, w(0) ∈W, t ≥ 0 (6.35a)

e(t) = CΘ(t) − (∆ −DJΛ)w(t), t ≥ 0 (6.35b)

Since A generates an exponentially stable C0−semigroup and since S generates an isometric

C0−group, by the results in [88, 90] (see also Section A.2) there exists a unique operator
(

Π0

Λ0

)
∈

L(W,Z ×X) such that
(

Π0

Λ0

)
S = A

(
Π0

Λ0

)
+ P in D(S), i.e.


Π0

Λ0


S =


 A BJ

GC F +GDJ





Π0

Λ0


 +


 BJΛ

−G∆ +GDJΛ


 in D(S) (6.36)

Let w(0) ∈W be arbitrary and let Θ(0) =
( z(0)

x(0)

)
=

(
Π0

Λ0

)
w(0). Using Lemma 3.5 it is then straight

forward to show that for every every t ≥ 0

∫ t

0

TA(t− τ)PTS(τ)w(0)dτ =
(

Π0

Λ0

)
TS(t)w(0) − TA(t)

(
Π0

Λ0

)
w(0) (6.37)
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and that the corresponding tracking error e(t) is as follows:

e(t) = CΘ(t) − (∆ −DJΛ)w(t) (6.38)

= CTA(t)Θ(0) + C
∫ t

0

TA(t− τ)PTS(τ)w(0)dτ − (∆ −DJΛ)TS(t)w(0) (6.39)

= CTA(t)
[
Θ(0) −

(
Π0

Λ0

)
w(0)

]
+

[
C
(

Π0

Λ0

)
− (∆ −DJΛ)

]
TS(t)w(0) (6.40)

= (CΠ0 +DJΛ0 − ∆ +DJΛ)TS(t)w(0) (6.41)

Precisely as in the proof of Theorem 3.20 we deduce using the exponential decay of ‖e(t)‖ that

necessarily CΠ0 +DJΛ0 −∆ +DJΛ = 0 in W . However, clearly Π0 = 0 and Λ0 = −Λ satisfy the

equation (6.36). By uniqueness we must then have that ∆ = C0 +DJΛ −DJΛ = 0. This shows

that the controller necessarily has the internal model structure.

(Sufficiency.) Let P ∈ L(W,Z) and Q ∈ L(W,H) be arbitrary and set P =
(

P
−GQ

)
. Let

Ap = A+ ∆A, B
p = B + ∆B , C

p = C + ∆C ,D
p = D + ∆D, J

p = J + ∆J , where the independent

perturbations are bounded and linear on suitable spaces. Assume that the exponential stability

of the closed loop system is not affected by these perturbations. Let the perturbed closed loop

operator be denoted by Ap. Since Ap generates an exponentially stable C0−semigroup and since

S generates an isometric C0−group, by the results in [88, 90] (see also Section A.2) there exists a

unique operator
(

Π
Λ

)
∈ L(W,Z ×X) such that

(
Π
Λ

)
S = Ap

(
Π
Λ

)
+ P in D(S), i.e.


Π

Λ


S =


 Ap BpJp

GCp F +GDpJp





Π

Λ


 +


 P

−GQ


 in D(S) (6.42)

But this shows that ΛS = FΛ + G(CpΠ + DpJpΛ − Q) in D(S), and since the controller has

the internal model structure, ultimately CpΠ + DpJpΛ = Q in W and the extended regulator

equations (4.3) for the perturbed operators are satisfied. The result now follows by Theorem 4.10.

We remark that since the extended regulator equations (4.3) do not depend on G, this operator

may be subject to arbitrary independent perturbations as long as closed loop exponential stability

holds.

Remark 6.21. Taking a glance at the proof of Theorem 4 in [32]7 immediately reveals that if

dim(W ) <∞, if dim(Z) <∞ and if dim(H) <∞, then every dynamic controller (4.1) solving the

7This is the classical finite-dimensional result showing that a degree of robustness in output regulation can be

obtained by incorporating a suitably reduplicated (and suitably controllable and observable) copy of the maximal

cyclic component of the exosystem matrix S in F .
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EFRP by utilizing the classical Internal Model Principle (i.e. Theorem 4 in [32]) has the internal

model structure. However, it should be pointed out that in this case Theorem 6.20 above also

guarantees robustness with respect to C,D and Q which is not the case in [32]. On the other hand,

Francis and Wonham [32] also consider the case in which the tracking error e(t) is only readable

from some other signal; we shall not do that here.

Remark 6.22. In Theorem 6.20 the operators S and F cannot be perturbed if robust output

regulation is to be maintained. This is in accordance with the the finite-dimensional robust output

regulation theory where it is well-known that the system matrix S of the exosystem and the

suitably reduplicated copy of its maximal cyclic component in the matrix F cannot be subject to

perturbations if robust output regulation is to be maintained [24, 29, 32]. Although some parts of

F may in practice tolerate perturbations, by convention (and for the sake of simplicity) nowhere

in this chapter do we allow for perturbations to the operators S and F .

Recall from Section 6.1 that the unique solvability of the extended regulator equations (4.3)

is a precursor for conditionally robust output regulation. Now Theorem 6.20 immediately yields

the following result which illustrates a degree of necessity of the unique solvability of the extended

regulator equations (4.3) for robust output regulation. In particular, Corollary 6.23 below is a

partial converse for Corollary 6.17.

Corollary 6.23. Let F,G and J in (4.1) be chosen such that the closed loop operator A generates

an exponentially stable C0−semigroup on Z × X and such that the controller (4.1) solves the

EFRP for every P ∈ L(W,Z) and every Q ∈ L(W,H) robustly as described in items 1 and 2 of

Theorem 6.20. Then the extended regulator equations (4.3) have a unique solution Π ∈ L(W,Z),

Λ ∈ L(W,X) for each P ∈ L(W,Z) and every Q ∈ L(W,H).

Proof. Under the assumptions the controller (4.1) must have the internal model structure, accor-

ding to Theorem 6.20. The sufficiency part of the proof of Theorem 6.20 then readily shows that

the extended regulator equations (4.3) have a solution Π ∈ L(W,Z),Λ ∈ L(W,X). On the other

hand, any such solution operators Π̂, Λ̂ also satisfy the equation

Π

Λ


S =


 A BJ

GC F +GDJ





Π

Λ


 +


 P

−GQ


 in D(S) (6.43)

But the solution of this equation is unique because the closed loop system is exponentially stable

and S generates an isometric C0−group (see Section A.2).
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Remark 6.24. Let D = 0. If dim(W ) < ∞, if dim(Z) < ∞ and if dim(H) < ∞ then under

the assumptions of Corollary 6.23 for every P ∈ L(W,Z) there exist operators Π ∈ L(W,Z) and

Γ ∈ L(W,H) such that

P = AΠ − ΠS +BΓ (6.44a)

0 = CΠ (6.44b)

This condition has been shown to be necessary for robust output regulation with respect to P in

Theorem 2a of [29]. Francis [29] has also demonstrated that this condition is equivalent to

ran


A− λI B

C 0


 = Z ×H, ∀λ ∈ σ(S) (6.45)

which is the one arising in the work of Davison and Goldenberg [19] and Wonham [93].

6.2.2 Conditional robustness results based on the internal model struc-

ture

We shall next present some more sufficient conditions for conditionally robust output regulation. In

contrast to the previous subsection, here we shall only require that the closed loop system operator

A generates a strongly stable C0−semigroup TA(t) on Z×X. Our results again utilize the concept

of internal model structure, but we shall also need an assumption about the unique solvability of

a Sylvester type operator equation. This assumption is always satisfied for an exponentially stable

TA(t), but need not be so for a strongly stable TA(t).

Theorem 6.25. Let F,G and J in the controller (4.1) be chosen such that

1. the closed loop system operator A =
(

A BJ
GC F+GDJ

)
generates a strongly stable C0-semigroup

on Z ×X,

2. the controller (4.1) has the internal model structure,

3. for every P ∈ L(W,Z×X) there exists a unique Y ∈ L(W,Z×X) such that Y (D(S)) ⊂ D(A)

and Y S = AY + P in D(S).

Then the controller (4.1) solves the EFRP for all P ∈ L(W,Z) and all Q ∈ L(W,H) in such

a way that output regulation is conditionally robust with respect to small enough perturbations to

A,B,C,D,G and J .
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Proof. Let P ∈ L(W,Z) and Q ∈ L(W,H) be arbitrary and set P =
(

P
−GQ

)
. Let Ap = A +

∆A, B
p = B + ∆B , C

p = C + ∆C ,D
p = D + ∆D, J

p = J + ∆J , where the perturbations are

bounded and linear on suitable spaces. For conditional robustness, we assume that the perturbed

closed loop operator Ap is still the generator of a strongly stable C0−semigroup on Z×X. By our

assumptions the linear Sylvester operator TA,S defined by

D(TA,S) = {Y ∈ L(W,Z ×X) | Y (D(S)) ⊂ D(A),∃P ∈ L(W,Z ×X) :

Pw = AY w − Y Sw ∀w ∈ D(S) } (6.46a)

TA,SY = P (6.46b)

is a boundedly invertible closed operator D(TA,S) ⊂ L(W,Z×X) → L(W,Z×X) [3]; consequently

so is TAp,S as long as the above perturbations to A,B,C,D and J are small enough ([57] p. 196).

Hence there exists a unique operator
(

Π
Λ

)
∈ L(W,Z×X) such that

(
Π
Λ

)
S = Ap

(
Π1

Π2

)
+P in D(S).

As in the proof of the sufficiency part of Theorem 6.20 this and the internal model structure show

that the extended regulator equations (4.3) for the perturbed parameters have a solution. Observe

that G can then also be perturbed because these equations do not depend on it. The result follows

by Theorem 4.4.

We emphasize that in practice the unique solvability of the Sylvester type operator equation

Y S = AY + P in D(S) for all P ∈ L(W,Z ×X), which is required in Theorem 6.25, can often be

established without any knowledge of the actual solution operator Y (see Section A.2 and [3, 8,

88, 90]). One such case is that in which A also generates an exponentially stable C0−semigroup;

another such case is presented below.

Corollary 6.26. Let S ∈ L(W ). Let F,G and J in the controller (4.1) be chosen such that

1. the closed loop operator A generates a strongly stable C0−semigroup on Z ×X,

2. the controller (4.1) has the internal model structure,

3. σ(A) ∩ σ(S) = ∅.

Then the controller (4.1) solves the EFRP for all P ∈ L(W,Z) and all Q ∈ L(W,H) in such a way

that output regulation is conditionally robust with respect to those perturbations to A,B,C,D,G

and J for which the corresponding perturbation ∆A to the closed loop operator A satisfies ‖∆A‖ <

minλ∈σ(S)‖R(λ,A)‖−1.
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Proof. By [90] (see also Section A.2) for every P ∈ L(W,Z × X) there exists a unique Y ∈

L(W,Z × X) such that Y (D(S)) ⊂ D(A) and Y S = AY + P in D(S). The result follows by

Theorem 6.25 and Remark IV.3.2 in [57] which guarantees that the assumption in item 3 is not

altered by the perturbations (observe that σ(S) ⊂ iR∩ ρ(A) is a compact set). We point out that

by the independence of the perturbations, G can be treated separately of the other operators, as

in Theorem 6.25.

Remark 6.27. It is not assumed in Corollary 6.26 that dim(W ) <∞.

If the spectra of the closed loop operator A and the exosystem operator S are not disjoint,

i.e. σ(A) ∩ σ(S) 6= ∅, then the Sylvester operator equation Y S = AY + P in D(S) does not have

a unique solution for every P ∈ L(W,Z × X) [90]. On the other hand, even if it is true that

σ(A) ∩ σ(S) = ∅ then this Sylvester equation does not necessarily have a unique solution unless

S ∈ L(W ) [90]. Hence Theorem 6.25 and its Corollary 6.26 are not always applicable in practice

(they are applicable and new for finite-dimensional exosystems (2.1)). However, it is still possible

that the above operator equation does have a unique solution for every P ∈ L(W,Z ×X) which is

also in some smaller subspace L(W0, Z ×X) of L(W,Z ×X). This situation occurs e.g. in certain

repetitive control applications (see Section 6.7). We next show how Theorem 6.25 can be extended

to this case. We need some elementary preliminary lemmata.

Lemma 6.28. Let W0 be a Banach space such that W ↪→ W0. Let U be a Banach space. Then

L(W0, U) ↪→ L(W,U).

Proof. Let Y ∈ L(W0, U) and let w ∈W ↪→W0. Then

‖Y w‖U ≤ ‖Y ‖L(W0,U)‖w‖W0
≤ c‖Y ‖L(W0,U)‖w‖W (6.47)

for some constant c > 0. Hence Y ∈ L(W,U). Moreover, we have

‖Y ‖L(W,U) = sup
w∈W,‖w‖W ≤1

‖Y w‖U ≤ sup
w∈W,‖w‖W ≤1

c‖Y ‖L(W0,U)‖w‖W (6.48)

= c‖Y ‖L(W0,U) (6.49)

so that the identity operator L(W0, U) → L(W,U) is indeed continuous.

Now assume that W0 is some fixed Banach space such that W ↪→ W0. Then the Sylvester

operator TA,S : D(TA,S) ⊂ L(W,Z ×X) → L(W,Z ×X) defined in (6.46) can be restricted to an
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operator TA,S | whose image is in L(W0, Z ×X) as follows:

D(TA,S |) = {Y ∈ D(TA,S) | TA,SY ∈ L(W0, Z ×X) } (6.50a)

TA,S |Y = TA,SY, ∀Y ∈ D(TA,S |) (6.50b)

Lemma 6.29. The above operator TA,S | is a closed operator W → L(W0, Z × X), where W =

D(TA,S |)
‖·‖L(W,Z×X)

.

Proof. Let (Yn)n∈N ⊂ D(TA,S |) ⊂ D(TA,S) be such that limn→∞ Yn = Y (convergence in L(W,Z×

X)) and limn→∞ TA,S |Yn = P (convergence in L(W0, Z × X)). Then Y ∈ L(W,Z × X) and

P ∈ L(W0, Z ×X) because these spaces are Banach spaces. Moreover,

lim
n→∞

‖TA,SYn − P‖L(W,Z×X) ≤ c lim
n→∞

‖TA,S |Yn − P‖L(W0,Z×X) = 0 (6.51)

for some constant c > 0 because L(W0, Z ×X) ↪→ L(W,Z ×X), according to Lemma 6.28. Hence

by the closedness of TA,S in L(W,Z × X) (cf. [3]) we have Y ∈ D(TA,S) and TA,SY = P . But

P ∈ L(W0, Z × X), so that by definition Y ∈ D(TA,S |) and TA,S |Y = P , i.e. TA,S | is a closed

operator W → L(W0, Z ×X).

By the Open Mapping Theorem and by above it is clear that TA,S | is a boundedly invertible

operator D(TA,S |) → L(W0, Z ×X) if and only if for all P ∈ L(W0, Z ×X) the operator equation

Y S = AY + P in D(S) has a unique solution Y ∈ L(W,Z × X), with Y (D(S)) ⊂ D(A). This

motivates us to define (W,W0)−admissible perturbations to the closed loop system as such operators

∆A ∈ L(Z ×X) which do not destroy the unique solvability of this operator equation:

Definition 6.30. Let W and W0 be as in the above. Let 0 ∈ ρ(TA,S |). We say that an operator

∆A ∈ L(Z×X) is (W,W0)−admissible if 0 ∈ ρ(TA+∆A,S |). Here the perturbed operator TA+∆A,S | :

D(TA+∆A,S |) ⊂ L(W,Z ×X) → L(W0, Z ×X) is defined by

D(TA+∆A,S |) = {Y ∈ D(TA+∆A,S) | TA+∆A,SY ∈ L(W0, Z ×X) } (6.52a)

TA+∆A,S |Y = TA+∆A,SY, ∀Y ∈ D(TA+∆A,S |) (6.52b)

and the perturbed Sylvester operator TA+∆A,S is defined in the obvious analogy with (6.46).

Remark 6.31. If W = W0 then every sufficiently small operator ∆A ∈ L(Z × X) is (W,W0)-

admissible by [57] p. 196 and by the fact that D(TA+∆A,S |) = D(TA+∆A,S) = D(TA,S) = D(TA,S |)
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and TA+∆A,S | = TA+∆A,S = TA,S + ∆T where ∆T Y = ∆AY for all Y ∈ L(W,Z ×X). However,

in the general case that W ↪→ W0 we shall need some additional structure for the perturbations

∆A to ensure that 0 ∈ ρ(TA+∆A,S |).

The following result generalizes Theorem 6.25 for (W,W0)−admissible perturbations.

Theorem 6.32. Let W and W0 be as in the above. Let F,G and J in the controller (4.1) be

chosen such that

1. the closed loop operator A generates a strongly stable C0−semigroup on Z ×X,

2. the controller (4.1) has the internal model structure,

3. for every P ∈ L(W0, Z×X) there exists a unique Y ∈ L(W,Z×X) such that Y (D(S)) ⊂ D(A)

and Y S = AY + P in D(S).

Then the controller (4.1) solves the EFRP for all P ∈ L(W0, Z) and all Q ∈ L(W0,H) in the

following way: Output regulation is conditionally robust with respect to such perturbations to

A,B,C,D,G and J for which the corresponding perturbation ∆A to the closed loop operator A

is (W,W0)−admissible.

Proof. Let P ∈ L(W0, Z) ↪→ L(W,Z) and Q ∈ L(W0,H) ↪→ L(W,H) be arbitrary and set P =
(

P
−GQ

)
∈ L(W0, Z×X). Let Ap = A+∆A, B

p = B+∆B , C
p = C+∆C ,D

p = D+∆D, J
p = J+∆J ,

where the perturbations are bounded and linear on suitable spaces. We assume for conditional

robustness that the corresponding perturbed closed loop operator Ap = A+∆A is still the generator

of a strongly stable C0−semigroup on Z ×X. By our assumptions there exists a unique operator
(

Π
Λ

)
∈ D(TA+∆A,S |) ⊂ L(W,Z ×X) such that

(
Π
Λ

)
S = Ap

(
Π
Λ

)
+ P in D(S). As in the proof of

the sufficiency part of Theorem 6.20 this and the internal model structure show that the extended

regulator equations (4.3) for the perturbed parameters have a solution. The result now follows, as

G can also be perturbed; the extended regulator equations (4.3) do not depend on G.

The following corollary demonstrates the usefulness of the concept of (W,W0)−admissible per-

turbations in such output regulation problems where the exosystem (2.2) is infinite-dimensional.

Corollary 6.33. Let E be a Banach space and for a given sequence (ωn)n∈I ⊂ R of distinct

frequencies consider the function spaces W = E = HAP (E, fn, ωn), W0 = HAP (E, gn, ωn), with
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fn ≥ gn for all n ∈ I. Let S = S|E generate the left translation C0−group on E. Let the sequences

(fn)n∈I and (gn)n∈I , and the operators F,G and J in (4.1) be such that

1. the closed loop operator A generates a strongly stable C0−semigroup on Z ×X,

2. the controller (4.1) has the internal model structure,

3. σ(A) ∩ { iωn | n ∈ I } = ∅ and
∑

n∈I
‖R(iωn,A)‖2g2

n

f2
n

<∞.

Then the controller (4.1) solves the EFRP for all P ∈ L(W0, Z) and all Q ∈ L(W0,H) in the

following way: Output regulation is conditionally robust with respect to such perturbations to

A,B,C,D,G and J for which the corresponding perturbation ∆A to the closed loop operator A

satisfies supn∈I‖∆AR(iωn,A)‖ < 1.

Proof. By Proposition 2.16 it is evident that W ↪→W0. For every n ∈ I define the bounded linear

operator Pn : E → E such that Pnh = ĥ(n)eiωn· for all h =
∑

n∈I ĥ(n)eiωn· ∈ E (the operators Pn

can be explicitly defined using e.g. the Fourier-Bohr transform [63]; observe that the coefficients

ĥ(n) are unique by construction). Let P ∈ L(W0, Z ×X) be arbitrary. Then the linear operator

Y : E → Z ×X defined by Y h =
∑

n∈I R(iωn,A)PPnh for all h ∈ E is bounded:

‖Y h‖Z×X ≤
∑

n∈I

‖R(iωn,A)PPnh‖Z×X (6.53)

≤
∑

n∈I

‖R(iωn,A)‖L(Z×X)‖Pĥ(n)eiωn·‖Z×X (6.54)

≤
∑

n∈I

‖R(iωn,A)‖L(Z×X)‖P‖L(W0,Z×X)‖ĥ(n)‖Egn (6.55)

= ‖P‖L(W0,Z×X)

∑

n∈I

‖R(iωn,A)‖L(Z×X)
gn

fn
‖ĥ(n)‖Efn (6.56)

≤ ‖P‖L(W0,Z×X)

√√√√∑

n∈I

‖R(iωn,A)‖2
L(Z×X)g

2
n

f2
n

√∑

n∈I

‖ĥ(n)‖2
Ef

2
n (6.57)

≤ ‖P‖L(W0,Z×X)

√√√√∑

n∈I

‖R(iωn,A)‖2
L(Z×X)g

2
n

f2
n

‖h‖E (6.58)

by the Schwartz inequality, because clearly Pnh = ĥ(n)eiωn· ∈W0 for all n ∈ I.

Since S|E is just the differential operator, it is clear that Y ∈ L(E , Z × X) is the unique

operator satisfying Y S|Eh = AY h + Ph for each h ∈ span{ ane
iωn· | an ∈ E,n ∈ Ik }, where

the index set Ik is finite. Using the boundedness of Y , the closedness of A and the fact that
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PnS|Eh = iωnPnh = S|EPnh for all h ∈ D(S|E) it is not difficult to show that Y (D(S|E)) ⊂ D(A)

and that Y is the unique solution of the operator equation Y S|E = AY + P in D(S|E) (see also

Theorem 8.11). Consequently 0 ∈ ρ(TA,S |) in the notation (6.50).

In order to be able to apply Theorem 6.32 it remains to show that the perturbation ∆A is

(W,W0)−admissible under the assumption supn∈I‖∆AR(iωn,A)‖ < 1. Since for all n ∈ I we have

iωnI −A− ∆A = [I − ∆AR(iωn,A)](iωnI −A), under our assumption iωn ∈ ρ(A + ∆A) and we

can expand R(iωn,A + ∆A) using a Neumann series as

R(iωn,A + ∆A) = R(iωn,A)

∞∑

k=0

[
∆AR(iωn,A)

]k
(6.59)

Hence there existsm > 0 which is independent of n ∈ I such that ‖R(iωn,A+∆A)‖ ≤ m‖R(iωn,A)‖

for all n ∈ I. A reasoning similar to the one given above then immediately shows that the opera-

tor equation Y S|E = [A + ∆A]Y + P in D(S|E) also has a unique solution Y ∈ L(E , Z × X) for

all P ∈ L(W0, Z × X). Thus the perturbation ∆A is (W,W0)−admissible and the desired result

follows from Theorem 6.32.

Remark 6.34. In Corollary 6.33 ‖R(iωn,A)‖ need not be uniformly bounded in n unless A

generates an exponentially stable C0−semigroup or the index set I is finite. Thus, in general it is

possible that σ(S) and σ(A) overlap at ±i∞. To the author’s knowledge this has not been possible

in any earlier robustness result in the existing output regulation theory.

It is probably appropriate to conclude this section with a rough-and-ready summary and prac-

tical interpretation of the above (conditional) robustness results. So, assuming that a given error

feedback controller (4.1) has the internal model structure and that it achieves strong closed loop

stability, we have the following:

• Output regulation is exponentially fast and robust with respect to certain stability-preserving

perturbations if the closed loop system is also exponentially stable (cf. Theorem 6.20).

• Output regulation is conditionally robust with respect to certain small perturbations, if the

exogenous signals do not contain arbitrarily high frequencies and if the (complex) spectrum

of these signals does not mix with that of the closed loop system operator (cf. Corollary

6.26).

• If the exogenous signals do contain arbitrarily high frequencies, but none of these (complex)

frequencies iωn is part of the spectrum of the closed loop operator A, if P , Q and the
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exogenous signals are sufficiently continuous, and if the order of growth of ‖R(iωn,A)‖ as

|ωn| → ∞ is in a sense controlled, then output regulation is conditionally robust with respect

to certain perturbations which do not increase this order of growth (cf. Corollary 6.33).

In the above, of course, only certain parts of the closed loop system are allowed to be subject to

perturbations.

6.3 Characterizations for the internal model structure

Having (hopefully) convinced the reader that such dynamic controllers (4.1) which have the in-

ternal model structure play a central role in linear robust output regulation problems, in this

section we shall establish general characterizations for those controllers which have this structure.

Our approach is mostly based on the recent theory of implemented semigroups due to Alber and

Kühnemund [1, 59]; a brief review of this theory can be found in Appendix A.3. However, we

shall begin with a simple but useful geometric characterization for the internal model structure.

In a subsequent example this geometric characterization will reveal the relation of our robustness

results to the (finite-dimensional) structurally stable synthesis algorithm of Francis [29].

Theorem 6.35. Let G ∈ L(L(W,H),L(W,X)) be defined such that G∆ = G∆ for each ∆ ∈

L(W,H). A controller (4.1) has the internal model structure if and only if ker(G) = {0} and

ran(TF,S) ∩ ran(G) = {0}.

Proof. Assume first that the controller has the internal model structure. If G∆ = 0 for some

∆ ∈ L(W,H), then ΛS = FΛ + G∆ in D(S) for Λ = 0, which implies ∆ = 0, and hence G is

injective. On the other hand, for arbitrary Y ∈ ran(TF,S) ∩ ran(G) we have Y = FΛ − ΛS = G∆

for some Λ ∈ D(TF,S) and some ∆ ∈ L(W,H). Whence Y = 0 because ∆ = 0 by the internal

model structure.

Assume then that ker(G) = {0} and ran(TF,S) ∩ ran(G) = {0}. Let ΛS = FΛ + G∆ in D(S)

for some Λ ∈ D(TF,S) and some ∆ ∈ L(W,H). Then ΛS − FΛ = G∆ ∈ ran(TF,S) ∩ ran(G) = {0}.

However, G is injective, and so ∆ = 0. This implies that the controller has the internal model

structure.

Example 6.36. Let the spaces Z,H and W = H ⊂ BUC(R,H) be finite-dimensional and let us

take S = S|H in accordance with Proposition 2.3. In this example we show, using Theorem 6.35,



CHAPTER 6. ROBUSTNESS AND THE INTERNAL MODEL STRUCTURE 149

that the structurally stable synthesis algorithm (SSSA) of Francis (see Theorem 2b in [29]), when

applied to any EFRP where S = S|H, results in a controller having the internal model structure.

Recall from [29] that the SSSA essentially amounts to (i) designing an observer for an extended

system containing the plant and a dim(H)−fold direct sum of the maximal cyclic component S0 of

S, and then (ii) applying a control which is obtained from a related pure gain synthesis.

Let us assume that the SSSA can be used to solve a given EFRP where S = S|H. Observe

that S|H generates the isometric left shift group on the finite-dimensional space H ⊂ BUC(R,H).

Consequently there exists a finite set { iωn | n ∈ I } of complex frequencies such that iωn 6= iωm for

n 6= m and such that the exponentials (eiωn·)n∈I form a basis in H. This implies that TS(t)|Hf =
∑

n∈I fne
iωn(·+t) =

∑
n∈I fne

iωn·eiωnt for every t ∈ R and every f ∈ H (for some unique sequence

(fn)n∈I ⊂ H). Thus the differential operator S = S|H can be represented by a diagonal matrix

having a dim(H)−fold reduplication of each of the frequencies iωn, n ∈ I, on the diagonal. Then

according to the Corollary on p. 306 of [9] the minimal polynomial p(λ) of S is just the product

Πn∈I(λ − iωn) of distinct linear factors. Since the minimal polynomial of S0 is the same as that

of S [29], the matrix representation of S = S|H is similar8 to a block diagonal matrix SD having

a dim(H)−fold reduplication of the maximal cyclic component S0 of S on the block diagonal [29].

Also observe that the space W = H that we use here is just the space H2e = H21 ⊕ · · · ⊕ H21

(dim(H)−fold copy) employed in [29].

Using the notation of Theorem 6.35, from the relations (48) and (49) in [29] we readily see that

ker(G) = {0} and that ran(TF,SD
) ∩ ran(G) = {0} (in the notation of Francis we have G = Bcze

and TF,SD
= Ace). It is then evident that also ran(TF,S) ∩ ran(G) = {0}. By Theorem 6.35 the

resulting controller has the internal model structure.

Remark 6.37. In [29] Francis proved that the SSSA results in a controller which is robust (struc-

turally stable) with respect to small perturbations to the parameters A,B, P,G and J of the closed

loop system. However, by Theorem 6.20, in the setting of Example 6.36 we also achieve robustness

with respect to small perturbations to C and arbitrary perturbations to Q. To the author’s know-

ledge, this has not been explicitly pointed out before in the finite-dimensional output regulation

literature (although the result is probably known in the folklore).

Clearly the injectivity of the operator G in Theorem 6.35 is easy to verify; in particular, if G is

8The similarity transform is given in the Corollary on p. 306 of [9].
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injective, then so is G. However, the range intersection property in Theorem 6.35 may be far from

trivial to verify in practice. Consequently, it is appropriate to present also other characterizations

for the internal model structure. The next one is of spectral nature:

Theorem 6.38. Let F generate a uniformly bounded C0−semigroup TF (t) on X. If

sup
λ>0

‖R(λ, TF,S)G∆‖ = ∞ ∀∆ ∈ L(W,H) \ {0} (6.60)

then the controller (4.1) has the internal model structure. Conversely, if X is reflexive and if the

controller (4.1) has the internal model structure, then condition (6.60) holds.

Proof. Let ΛS = FΛ+G∆ in D(S) for some Λ ∈ D(TF,S) and some ∆ ∈ L(W,H). Then according

to Theorem 12 in [88] the family ∆λ, λ > 0, of bounded linear operators defined by

∆λw =

∫ ∞

0

e−λtTF (t)G∆TS(−t)wdt ∀λ > 0 ∀w ∈W (6.61)

is uniformly bounded for λ > 0. However, by the Alber-Kühnemund theory [1, 59] (see in particular

p. 372 of [1] and Remark 2.15 in [1]), the Sylvester operator TF,S generates the uniformly bounded

implemented semigroup F(t) = TF (t) · TS(−t) on the operator space L(W,X). Hence for each

λ > 0 the resolvent R(λ, TF,S) can be given in terms of a Laplace integral:

[
R(λ, TF,S)G∆

]
w =

∫ ∞

0

e−λt[F(t)G∆]wdt (6.62)

=

∫ ∞

0

e−λtTF (t)G∆TS(−t)wdt (6.63)

= ∆λw ∀λ > 0 ∀w ∈W (6.64)

Consequently if

sup
λ>0

‖R(λ, TF,S)G∆‖ = ∞ ∀∆ ∈ L(W,H) \ {0} (6.65)

we must have that ∆ = 0, i.e. the controller has the internal model structure.

Conversely, if X is reflexive, if the controller has the internal model structure and if we also

have supλ>0‖R(λ, TF,S)G∆‖ < ∞ for some nonzero ∆ ∈ L(W,H), then the family of operators

∆λ defined above is uniformly bounded for λ > 0. According to Theorem 12 in [88] this implies

that there exists Λ ∈ L(W,X) such that ΛS = FΛ + G∆ in D(S). However, since the controller

has the internal model structure, necessarily ∆ = 0, which is a contradiction. This shows that the

condition (6.60) holds.
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Remark 6.39. In the dynamic state feedback controller of Subsection 4.5.2 we chose F = S which

always generates a uniformly bounded C0−semigroup on X = W . Consequently, the assumption

in Theorem 6.38 about the uniform boundedness of TF (t) is realistic in many applications.

Assuming that F generates a uniformly bounded C0−semigroup TF (t) on X, the condition

(6.60) clearly holds if G∆ is an eigenvector, corresponding to the eigenvalue λ = 0, of the linear

Sylvester operator TF,S for all nonzero ∆ ∈ L(W,H). In this case R(λ, TF,S)G∆ = 1
λG∆ for all ∆ ∈

L(W,H) and all λ > 0. However, in general the condition (6.60) and the uniform boundedness of

TF (t) only imply that 0 ∈ σA(TF,S) (the approximate point spectrum). In fact, for all nonzero ∆ ∈

L(W,H) the operators G∆ can be used to construct a corresponding approximate eigenvector for

TF,S (see Proposition IV.1.10 in [28]). In the remainder of this section we shall further investigate

the interesting case in which the internal model structure property of a controller (4.1) can be

reduced to (part of) G∆ being an eigenvector of TF,S for all operators ∆. It turns out to be

possible to drop the above explicit assumption about the uniform boundedness of TF (t). We shall

employ the following assumption throughout the remainder of this section.

Assumption 6.40. There exists λ0 > 0 such that (0, λ0) ∈ ρ(TF,S) and

sup
0<λ<λ0

‖λR(λ, TF,S)‖ <∞ (6.66)

Assumption 6.40 covers the case of a uniformly bounded TF (t):

Proposition 6.41. If F generates a uniformly bounded C0−semigroup TF (t), then Assumption

6.40 holds.

Proof. By the Alber-Kühnemund theory [1, 59], the Sylvester operator TF,S generates the imple-

mented semigroup F(t) = TF (t)·TS(−t) on L(W,X) which is strongly continuous in the strong ope-

rator topology. Furthermore, by Lemma 3.14 in [59] supt≥0‖F(t)‖ = supt≥0‖TF (t)‖‖TS(−t)‖ <∞,

so that F(t) is uniformly bounded. By Theorem 1.28 in [59], TF,S is a Hille-Yosida operator such

that

‖R(λ, TF,S)k‖ ≤ M

λk
∀k ∈ N,∀λ > 0 (6.67)

for some M ≥ 1. Consequently Assumption 6.40 holds.

The next result provides additional conditions under which the internal model structure pro-

perty of a controller (4.1) follows from G∆ being an eigenvector (corresponding to the eigenva-

lue 0) of TF,S for all nonzero operators ∆ ∈ L(W,H). For such controllers, ran(G) ⊂ X is a
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TF (t)−invariant subspace on which the dynamical behaviour of the semigroup TF (t) is in a sense

described by that of TS(t). Observe that below TF (t) need not be uniformly bounded.

Proposition 6.42. Let the operator G (cf. Theorem 6.35) be injective. If, in addition, for every

∆ ∈ L(W,H) and every t ≥ 0, it is true that TF (t)G∆ = G∆TS(t), or equivalently G∆ ∈ ker(TF,S),

then the controller (4.1) has the internal model structure.

Proof. Since Assumption 6.40 holds, for every 0 < λ < λ0 and for each Λ ∈ L(W,X) we have that

TF,SR(λ, TF,S)Λ = λR(λ, TF,S)Λ−Λ. Thus Λ ∈ ran(TF,S) if and only if limλ↘0 λR(λ, TF,S)Λ = 0.

Moreover, λR(λ, TF,S)Λ = Λ for all 0 < λ < λ0 if and only if Λ ∈ ker(TF,S) (see p. 263 of [2]

for more details). In particular we have ker(TF,S) ∩ ran(TF,S) = {0}. Hence whenever ran(G) ⊂

ker(TF,S) is true, we also have ran(G) ∩ ran(TF,S) ⊂ ker(TF,S) ∩ ran(TF,S) = {0}, from which the

result immediately follows by Theorem 6.35. Thus it only remains to show that G∆ ∈ ker(TF,S) if

and only if TF (t)G∆ = G∆TS(t) for all t ≥ 0.

Let ∆ ∈ L(W,H) be such that TF (t)G∆ = G∆TS(t) for every t ≥ 0. Then we also have that

F(t)G∆ = TF (t)G∆TS(−t) = G∆ for all t ≥ 0 and all ∆ ∈ L(W,H). Here F(t) is again the

semigroup implemented by TF (t) and TS(−t) on L(W,X) [59]. Consequently,

[TF,SG∆]w = lim
t↘0

[F(t)G∆]w −G∆w

t
= 0 ∀w ∈W (6.68)

so that indeed G∆ ∈ ker(TF,S). Conversely, if G∆ ∈ ker(TF,S), then F(t)G∆ = G∆ by Proposition

1.16 (b) in [59]. The result now follows.

Unfortunately, in applications the assumption that G∆ is an eigenvector of TF,S for every

0 6= ∆ ∈ L(W,H) may be a severe restriction; we do not know if it can be satisfied in any nontrivial

situation. However, assuming the injectivity of G and a considerable amount of additional structure

for TF,S we can prove that it is in fact necessary and sufficient for the internal model structure

that for every nonzero ∆ ∈ L(W,H) some part of G∆ is an eigenvector of TF,S (corresponding to

the eigenvalue 0). This condition can be quite easily verified e.g. in the finite-dimensional case,

as will be demonstrated shortly in an example. We then obtain our last complete characterization

for those controllers which have the internal model structure:

Theorem 6.43. Assume that TF,S is uniformly Abel-ergodic, i.e. limλ↘0 λR(λ, TF,S) converges

in L(L(W,X)). Then the controller (4.1) has the internal model structure if and only if for all

nonzero ∆ ∈ L(W,H) limλ↘0 λR(λ, TF,S)G∆ 6= 0, and the operator G is injective.
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Proof. If the controller (4.1) has the internal model structure, then G is injective by Theorem 6.35.

By Proposition 4.3.15 in [2], ran(TF,S) is closed in L(W,X). The uniform Abel-ergodicity of TF,S

and Proposition 4.3.2 in [2] immediately give the decomposition L(W,X) = ker(TF,S)⊕ ran(TF,S).

Hence for every nonzero ∆ ∈ L(W,H) we have G∆ = FΛ − ΛS + M for some Λ ∈ D(TF,S) and

some M ∈ ker(TF,S). By the internal model structure, M 6= 0 (for otherwise ∆ = 0). On the

other hand, by Corollary 4.3.2 in [2] the operator Pker = limλ↘0 λR(λ, TF,S) is the projection onto

ker(TF,S) along ran(TF,S). Hence limλ↘0 λR(λ, TF,S)G∆ = M 6= 0.

Conversely, assume that for all nonzero ∆ ∈ L(W,H) we have limλ↘0 λR(λ, TF,S)G∆ 6= 0 and

that G is injective. Let Λ ∈ D(TF,S) and ∆ ∈ L(W,H) be such that ΛS = FΛ +G∆. Then by the

above direct sum decomposition of L(W,X), it is true that limλ↘0 λR(λ, TF,S)G∆ = 0. But this

is possible only if ∆ = 0. Hence the controller has the internal model structure.

Corollary 6.44. Let W,H and X be finite-dimensional spaces. Let F generate a uniformly boun-

ded C0−semigroup on X. Then the controller (4.1) has the internal model structure if and only if

for all nonzero ∆ ∈ L(W,H) limλ↘0 λR(λ, TF,S)G∆ 6= 0, and G is injective.

Proof. Under our assumptions L(W,X) is also finite-dimensional. Moreover, the semigroup F(t)

implemented by TF (t) and TS(−t) on L(W,X) is C0 and uniformly bounded [1, 59]. Since every

generator of a bounded C0−semigroup on a reflexive Banach space is (strongly) Abel-ergodic (by

Corollary 4.3.5 in [2] and Proposition 4.3.4 in [2]), and since in finite-dimensional spaces strong

convergence implies uniform convergence, the operator TF,S is uniformly Abel-ergodic. The result

follows by Theorem 6.43.

Example 6.45. Let us consider the Davison-type controller introduced in Subsection 4.5.2 in the

special finite-dimensional case W = C2, H = C and

S =


iω1 0

0 iω2


 , ω1 6= ω2, ω1, ω2 ∈ R (6.69)

We shall find sufficient conditions for the internal model structure of the controller (4.32) using

Theorem 6.43. In this setup the dynamic state feedback controller (4.32) utilizes F = S and G = G0

for some G0 ∈ L(H,W ). Let G0 =
( g1

g2

)
and ∆ =

(
d1 d2

)
so that G0∆ =

( g1d1 g1d2

g2d1 g2d2

)
. According to
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Proposition 4.3.4 in [2] we have that

lim
λ↘0

λR(λ, TS,S)G0∆ = lim
t→∞

1

t

∫ t

0

TS(t)G0∆TS(−t)dt (6.70)

= lim
t→∞

1

t

∫ t

0


e

iω1t 0

0 eiω2t





g1d1 g1d2

g2d1 g2d2





e

−iω1t 0

0 e−iω2t


 dt (6.71)

=


g1d1 0

0 g2d2


 (6.72)

because TS,S generates the implemented (uniformly bounded and strongly continuous) semigroup

F(t) = TS(t) · TS(−t) on L(W ). Clearly whenever we choose G0 such that g1 6= 0 and g2 6= 0, we

have that limλ↘0 λR(λ, TS,S)G0∆ 6= 0 unless ∆ = 0, i.e. d1 = d2 = 0. For this choice of G0 the

controller (4.32) has the internal model structure.

6.4 The internal model structure in the case σ(F ) = σ(S)

In Section 6.3 we presented some abstract characterizations for the internal model structure for

general operators F and G in the controller (4.1). However, in practice the particular case σ(F ) =

σ(S) turns out to be very important. For example, the generalizations of Davison’s dynamic state

feedback controller presented in Subsection 4.5.2 employ the choices X = W and F = S. On the

other hand, later on in this chapter we shall also prove that the verification of the internal model

structure property for the Francis-type controllers of Subsection 4.5.1 can often be reduced to the

case σ(F ) = σ(S). Hence this special case deserves additional attention.

Recall that we assume throughout this thesis that S generates an isometric C0−group on some

Banach space W . Suppose that S is also bounded, that X and W are actually Hilbert spaces and

that F ∈ L(X) also generates an isometric C0−group on X. Then since the operators S and F are

also normal, there exists unique spectral measures ES and EF associated with S and F [86]. Thus,

for example, if ξ is any Borel measurable set in the plane, then ES(ξ) is a projection that reduces

S, and the spectrum of the restriction of S to the range of ES(ξ) is contained in the closure of ξ

[81, 86]. In the following we let ξk
λ denote the open disk with center iλ ∈ iR and radius 1

k , k ∈ N.

Theorem 6.46. Assume that X and W are Hilbert spaces, that S ∈ L(W ) and that F ∈ L(X)

generates an isometric C0−group on X. Let ES and EF be the spectral measures as in the above
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and assume that σ(F ) = σ(S). If G ∈ L(H,X) is such that for all ∆ ∈ L(W,H) the implication

[
lim

k→∞
‖EF (ξk

λ)G∆ES(ξk
λ)‖ = 0 ∀iλ ∈ σ(S) = σ(F )

]
=⇒ ∆ = 0 (6.73)

holds true, then also the implication (6.33) holds true, i.e. the controller (4.1) with F and G as in

the above has the internal model structure.

Proof. Let Λ ∈ D(TF,S) = L(W,X) and ∆ ∈ L(W,H) be such that ΛS = FΛ +G∆ in D(S) = W .

Then G∆ ∈ ran(TF,S) and according to Theorem 2.2 in [81] this implies that for every iλ ∈ σ(S) =

σ(F ) we have limk→∞‖EF (ξk
λ)G∆ES(ξk

λ)‖ = 0. By our assumptions this implies ∆ = 0.

It is a well-known (but nontrivial9) fact that the generator of an isometric C0−group on a

Banach space Y is decomposable, i.e. for every compact set γ ⊂ iR there exists a maximal spectral

subspace MY (γ) (a maximal closed invariant subspace of Y on which the generator is bounded

and has spectrum contained in γ). Since ∪n∈NMY ([−in, in]) is also dense in Y [90] we suspect

that the boundedness assumption for S and F in Theorem 6.46 can be generally removed without

much effort. However, since in many interesting output regulation applications (e.g. in repetitive

control) the spectrum σ(S) is known to be a discrete set, the following result suffices for our

purposes; observe that neither S nor F need be bounded in it.

Theorem 6.47. Let F generate an isometric C0−group on a Banach space X such that σ(F ) =

σ(S) are discrete. Let PF
iλ denote the spectral projection on X corresponding to any (isolated)

point iλ ∈ σ(F ). If G ∈ L(H,X) is such that for all isolated points iλ of σ(F ) the operators

PF
iλG : H → ran(PF

iλ) are injective, then the implication (6.33) holds true, i.e. the controller (4.1)

with these parameters F and G has the internal model structure.

Proof. Let PS
iλ denote the spectral projection on W corresponding to any isolated point iλ ∈ σ(S).

Then by Gelfand’s Theorem ([2] Corollary 4.4.8) and our assumptions the spectra σp(S) = σ(S) =

σ(F ) = σp(F ) consist of isolated points only, such that PS
iλS = iλPS

iλ = SPS
iλ and PF

iλF = iλPF
iλ =

FPF
iλ for all iλ ∈ σ(S) = σ(F ). If Λ ∈ D(TF,S) and ∆ ∈ L(W,H) are such that ΛS = FΛ + G∆

in D(S), then for all iλ ∈ σ(S) = σ(F ) we have 0 = PF
iλ[ΛS − FΛ − G∆]PS

iλw = PF
iλG∆PS

iλw for

all w ∈ W . But by our assumption the operators PF
iλG are injective, so that ∆PS

iλw = 0 for all

w ∈ W and all iλ ∈ σ(S). Since the spectra σ(S) = σ(F ) are discrete, now the maximal spectral

subspace MW ([−in, in]) = span{ ranPS
iλk

| k ∈ In } for some finite set In of indices, and hence

9see Appendix A and [90] p. 400.
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∆ = 0 in MW ([−in, in]) for all n ∈ N. An extension by continuity then implies ∆ = 0 in W

because ∪n∈NMW ([−in, in]) is dense in W (see Appendix A).

Example 6.48. Let H = CN for some N ∈ N and take X = H s
↪→BUC(R,CN ), with F = S|H,

in accordance with Proposition 2.3. Assume that σ(F ) is discrete and G ∈ L(CN ,X). Then for

each iλ ∈ σ(F ) the operator PF
iλ maps H to { aeiλ· | a ∈ CN }, which is an N−dimensional linear

space. Since G : CN → H, the operator PF
iλG can be represented by an N × N matrix. In fact,

each y ∈ CN has the representation y =
∑N

n=1〈y, en〉CN en in terms of the natural orthornormal

basis for CN . Upon defining ψn = Gen ∈ H for each 1 ≤ n ≤ N we have

PF
iλGy =

N∑

n=1

〈y, en〉PF
iλψn =

(
PF

iλψ1 · · · PF
iλψN

)




〈y, e1〉
...

〈y, eN 〉




(6.74)

= eiλ·




ψ̂11(iλ) · · · ψ̂1N (iλ)

...
...

...

ψ̂N1(iλ) · · · ψ̂NN (iλ)







〈y, e1〉
...

〈y, eN 〉




(6.75)

where for each 1 ≤ n ≤ N we have defined

PF
iλψn =




ψ̂1n(iλ)

...

ψ̂Nn(iλ)



eiλ· ∈ { aeiλ· | a ∈ CN } = ran(PF

iλ) (6.76)

Consequently, in order that PF
iλG is injective for all iλ ∈ σ(F ), the N × N matrix in (6.75) —

consisting of the “combined λth Fourier coefficients” of the functions ψn = Gen ∈ H for 1 ≤ n ≤ N

— must be nonsingular for all iλ ∈ σ(F ). This is of course reflected in an appropriate choice of

the operator G.

Example 6.49. Let α > 1
2 , p > 0, H = C and let X = Hα

per(0, p) (the Sobolev space of

α−differentiable p−periodic scalar functions, see Chapter 2). Let F = S|Hα
per(0,p) in accordance

with Proposition 2.3. If we take any G ∈ L(C,X), with Gu = gu for some g ∈ X and all u ∈ C,

such that the pair (F,G) is approximately controllable, then the operator PF
iλG is injective for all

iλ ∈ σ(F ) = { i 2πn
p | n ∈ Z }. In fact, X is a Hilbert space and F is a Riesz spectral operator

(cf. [17]) whose eigenvectors constitute an orthonormal basis (φn)n∈Z of (weighted) exponentials

on X. By Theorem 4.2.3 in [17] the approximate controllability of the pair (F,G) is equivalent
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to 〈g, φn〉 6= 0 for all n ∈ Z. But a direct calculation shows that PF
iλGu = 〈g, φn〉φnu for each

iλ = i2πn
p ∈ σ(F ) and all u ∈ C; hence PF

iλG is indeed injective for all iλ ∈ σ(F ).

6.5 Conditional robustness results for the controllers of Sec-

tion 4.5

We are finally in a position to present verifiable sufficient conditions under which conditionally

robust output regulation occurs for the two dynamic controllers introduced in Section 4.5. Our

key idea is to replace the copy of the operator S in (4.26) and (4.32) by an auxiliary operator

Sa defined on an auxiliary Banach space Wa, such that in a sense Sa “resembles10” S. This

approach makes it possible, for example, to regard the operators P and Q which are embedded in

the operator F in (4.26) as design parameters. This feature is very convenient in the stabilization

of the closed loop system; observe that it is not present e.g. in Theorem 4.15 where P and Q must

coincide with the corresponding operators of the exosystem (2.2), as Wa = W .

In the present section conditionally robust output regulation with respect to certain pertur-

bations is obtained by stabilizing the closed loop system (containing Sa) strongly and by relying

on the internal model structure. We shall provide conditions under which the verification of the

internal model structure can be traced to Theorem 6.47 for F = Sa.

6.5.1 Conditional robustness results for the Francis-type controllers

We begin our study with the controller (4.26) which generalizes those of Francis [29] and Byrnes et

al. [12]. In Assumption 6.50 below the items 1-5 are natural infinite-dimensional generalizations

of the requirements in the structurally stable synthesis algorithm (SSSA) of Francis [29]. On the

other hand, the item 6 in Assumption 6.50 below arises naturally from the results of Section 6.4.

Assumption 6.50. There exists an operator Sa which generates an isometric C0−group on a

Banach space Wa, and the following are true:

1. There is no feedthrough, i.e. D = 0,

2. The spectra σ(Sa) = σ(S) are discrete,

10Of course, we do not exclude the possibility that Wa = W and Sa = S.
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3. There exist Pa ∈ L(Wa, Z) and Qa ∈ L(Wa,H) and G =
(

G1

G2

)
∈ L(H,Z ×Wa) such that

(
A Pa

0 Sa

)
−

(
G1

G2

)(
C −Qa

)
generates a strongly stable C0-semigroup on Z ×Wa,

4. There exists K ∈ L(Z,H) such that A+BK generates an exponentially stable C0-semigroup

on Z,

5. There exist Π ∈ L(Wa, Z), such that Π(D(Sa)) ⊂ D(A), and Γ ∈ L(Wa,H) satisfying the

following regulator equations:

ΠSa = AΠ +BΓ + Pa in D(Sa) (6.77a)

Qa = CΠ in Wa (6.77b)

6. For every iω ∈ σ(Sa) the operator PSa

iω G2 : H → ran(PSa

iω ) is injective. Here PSa

iω is the

spectral projection corresponding to the (isolated) point iω ∈ σ(Sa).

Remark 6.51. The methods of Subsection 4.6.3 are directly applicable in verifying item 3 of

Assumption 6.50; observe that here Pa and Qa can be freely chosen (modulo item 5). The methods

of Chapter 8 then apply to item 5 of this assumption.

Lemma 6.52. Under Assumption 6.50 the dynamic controller (4.1) with

F =


A+BK −G1C Pa +B(Γ −KΠ) +G1Qa

−G2C Sa +G2Qa


 , G =


G1

G2


 , J =

(
K Γ −KΠ

)

(6.78)

on the state space X = Z×Wa has the internal model structure. Moreover, the closed loop operator

A =
(

A BJ
GC F

)
generates a strongly stable C0−semigroup on Z ×X.

Remark 6.53. In (6.78) the operators Pa ∈ L(Wa, Z) and Qa ∈ L(Wa,H) need not coincide with

the operators P ∈ L(W,Z) and Q ∈ L(W,H) of the exosystem (2.2).

Proof of Lemma 6.52. Assume that ∆ ∈ L(W,H) and Λ =
(

Λ1

Λ2

)
∈ D(TF,S) ⊂ L(W,X) are such

that ΛS = FΛ +G∆ in D(S). Then


Λ1

Λ2


S =


A+BK −G1C Pa +B(Γ −KΠ) +G1Qa

−G2C Sa +G2Qa





Λ1

Λ2


 +


G1

G2


 ∆ in D(S) (6.79)

whence Λ2S = SaΛ2 +G2(QaΛ2 −CΛ1 + ∆) in D(S). It follows from Theorem 6.47 that QaΛ2 −

CΛ1 + ∆ = 0 in W . Hence also Λ2S = SaΛ2 in D(S).
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On the other hand, by (6.79) we also have

Λ1S = (A+BK −G1C)Λ1 + (Pa +B(Γ −KΠ) +G1Qa)Λ2 +G1∆ (6.80)

= (A+BK)Λ1 + (Pa +B(Γ −KΠ))Λ2 +G1(QaΛ2 − CΛ1 + ∆) (6.81)

= (A+BK)Λ1 + (Pa +B(Γ −KΠ))Λ2 in D(S) (6.82)

Consequently
(

Λ1

Λ2

)
S =

(
A+BK B(Γ−KΠ)+Pa

0 Sa

)(
Λ1

Λ2

)
in D(S). But since by our assumptions the

regulator equations (6.77) are satisfied, we have


I Π

0 I





A+BK 0

0 Sa





I −Π

0 I


 =


A+BK B(Γ −KΠ) + Pa

0 Sa


 (6.83)

so that
(

I −Π
0 I

)(
Λ1

Λ2

)
S =

(
A+BK 0

0 Sa

)(
I −Π
0 I

)(
Λ1

Λ2

)
in D(S). Therefore (Λ1−ΠΛ2)S = (A+BK)(Λ1−

ΠΛ2) in D(S). But A + BK generates an exponentially stable C0−semigroup, so that by the

uniqueness the only operator M ∈ L(W,Z) satisfying MS = (A + BK)M in D(S) is M = 0 (see

[90] and Section A.2). We thus have Λ1 = ΠΛ2 in W .

Finally recall from the above that QaΛ2−CΛ1+∆ = 0 in W , so that by the regulator equations

(6.77) we have QaΛ2 − CΠΛ2 + ∆ = QaΛ2 −QaΛ2 + ∆ = ∆ = 0. This shows that the controller

(4.1) with the above parameters has the internal model structure. The strong stability of the closed

loop semigroup TA(t) follows as in the proof of Theorem 4.15, upon replacing S by Sa, P by Pa

and Q by Qa.

The next result follows immediately from Theorem 6.20, Theorem 6.25 and Theorem 6.32 using

Lemma 6.52.

Corollary 6.54. Let Assumption 6.50 hold such that W ↪→ Wa. Let A =
(

A BJ
GC F

)
, with the

operators F,G and J of (4.1) as in (6.78). Then the following hold.

• If for every P ∈ L(Wa, Z ×X) there exists a unique Y ∈ L(W,Z ×X) such that Y (D(S)) ⊂

D(A) and Y S = AY + P in D(S), then the controller (4.1) solves the EFRP for every

P ∈ L(Wa, Z) ⊂ L(W,Z) and Q ∈ L(Wa,H) ⊂ L(W,H) in the exosystem, and the fol-

lowing holds: Output regulation is conditionally robust with respect to such perturbations to

A,B,C,G and J for which the corresponding perturbation ∆A to the closed loop operator A

is (W,Wa)−admissible.
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• If for every P ∈ L(W,Z ×X) there exists a unique Y ∈ L(W,Z ×X) such that Y (D(S)) ⊂

D(A) and Y S = AY + P in D(S), then the controller (4.1) solves the EFRP for every

P ∈ L(W,Z) and Q ∈ L(W,H) in the exosystem, in such a way that output regulation is

conditionally robust with respect to all small enough perturbations to A,B,C,G and J .

• If A generates an exponentially stable C0−semigroup on Z × X, then the controller (4.1)

solves the EFRP for every P ∈ L(W,Z) and Q ∈ L(W,H) in the exosystem, in such a way

that output regulation is robust with respect to small enough perturbations to A,B,C,G and

J . Moreover, asymptotic tracking of the reference signals in the presence of disturbances is

exponentially fast.

The special case Wa = W and Sa = S is of course possible in Corollary 6.54. However, if

dim(W ) = ∞, then it is in general wise to only have W ↪→ Wa. In the case of p−periodic scalar

reference signals, for example, we should consider choosing W = Hβ
per(0, p) and Wa = Hα

per(0, p),

with S = S|Hβ
per(0,p) and Sa = S|Hα

per(0,p), in accordance with Proposition 2.3. Here β > α > 1
2

guarantees that W ↪→ Wa, and the idea is that if β is considerably larger than α, then the

reference signals are much smoother than what the error feedback controller (6.78) is prepared to

asymptotically track. Corollary 6.33 then reveals that in some cases sufficient smoothness of the

reference signals implies a degree of conditional robustness. We refer the reader to Section 6.7 for

an application of this principle, and we point out that this feature is of course only interesting in

the case of an infinite-dimensional exosystem (2.2).

Remark 6.55. In [12] (Theorem IV.2) Byrnes et al. have proved a complete characterization for

the existence and construction of error feedback controllers achieving (possibly nonrobust) output

regulation for a given finite-dimensional exogenous system (2.1) with fixed operators P and Q.

They employed controllers (4.1) with parameters as in (4.26). In their work the closed loop system

operator A generates an exponentially stable C0−semigroup; hence Corollary 6.54 above reveals

that if G2 is chosen appropriately in their controller, then the controller does not have to be

changed if the matrices P and Q in the exosystem are changed. Moreover, in this case output

regulation is in fact robust with respect to sufficiently small perturbations to certain parameters

of the closed loop system.

Remark 6.56. If Z,X,H and W = Wa = H ⊂ BUC(R,H) are finite-dimensional spaces and if

S = Sa = S|H in accordance with Proposition 2.3, then by Example 6.36 the matrix F in (6.78)
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contains the matrix Sa which is similar to a block diagonal matrix SD utilizing a dim(H)−fold

reduplication of the maximal cyclic component of S. Hence the above robustness results are in

accordance with the corresponding finite-dimensional theory [29].

6.5.2 Conditional robustness results for the Davison-type controllers

We shall now establish conditions under which the generalization (4.32) of Davison’s dynamic state

feedback controller (cf. [39]) achieves conditionally robust output regulation. We shall also show

how this state feedback controller can be used in the design of a dynamic controller (4.1) which

does not employ direct feedback from the state of the plant. As in Subsection 6.5.1 also here it

will be useful to prove the results in the more general case that the operator S in (4.32) is replaced

by an auxiliary operator Sa which “resembles” S (of course Sa = S is again possible).

The items 1 and 2 in Assumption 6.57 below are natural generalizations of the corresponding

finite-dimensional assumptions in [39]. On the other hand, the third item in Assumption 6.57

below arises naturally from the results of Section 6.4.

Assumption 6.57. There exists an operator Sa which generates an isometric C0−group on a

Banach space Wa, and the following are true:

1. The spectra σ(S) = σ(Sa) are discrete,

2. There exist K1 ∈ L(Z,H), K2 ∈ L(Wa,H) and G0 ∈ L(H,Wa) such that the operator
( A+BK1 BK2

G0(C+DK1) Sa+G0DK2

)
generates a strongly stable C0−semigroup on Z ×Wa,

3. For every isolated point iω ∈ σ(Sa) the operator PSa

iω G0 : H → ran(PSa

iω ) is injective. Here

PSa

iω is the spectral projection corresponding to the (isolated) point iω ∈ σ(Sa).

Remark 6.58. The methods of Subsection 4.6.4 are readily applicable in verifying item 2 above.

Under Assumption 6.57 we shall consider the dynamic state feedback controller

ẋ(t) = Sax(t) +G0e(t), x(0) ∈Wa, t ≥ 0 (6.84a)

u(t) = K1z(t) +K2x(t) (6.84b)

which for W = Wa and S = Sa reduces to that in (4.32). It is evident that an error feedback

output regulation problem for the controller (6.84) can be studied as an EFRP for a plant (1.1)

where A is replaced by A+BK1 and C is replaced by C +DK1. We obtain:
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Lemma 6.59. Let Assumption 6.57 hold and consider a plant (1.1) where A is replaced by A+BK1

and C is replaced by C + DK1. Set X = Wa with F = Sa, G = G0, J = K2. Then the

resulting dynamic controller (4.1) has the internal model structure, and the closed loop operator

A =
( A+BK1 BJ

G(C+DK1) F+GDJ

)
generates a strongly stable C0−semigroup on Z ×Wa.

Proof. This result follows directly from Theorem 6.47 and Assumption 6.57.

The next result follows immediately from Theorem 6.20, Theorem 6.25 and Theorem 6.32 using

Lemma 6.59.

Corollary 6.60. Let Assumption 6.57 hold such that W ↪→ Wa. Consider a plant where A

is replaced by A + BK1 and C is replaced by C + DK1. Consider the controller (4.1) whose

parameters F,G and J are as in Lemma 6.59.

• If for every P ∈ L(Wa, Z ×X) there exists a unique Y ∈ L(W,Z ×X) such that Y (D(S)) ⊂

D(A) and Y S = AY + P in D(S), then the controller (4.1) solves the EFRP for every

P ∈ L(Wa, Z) ⊂ L(W,Z) and Q ∈ L(Wa,H) ⊂ L(W,H) in the exosystem, in the fol-

lowing way: Output regulation is conditionally robust with respect to such perturbations to

A,B,C,D,K1,K2 and G0 for which the corresponding perturbation ∆A to the closed loop

operator A is (W,Wa)−admissible.

• If for every P ∈ L(W,Z ×X) there exists a unique Y ∈ L(W,Z ×X) such that Y (D(S)) ⊂

D(A) and Y S = AY + P in D(S), then the controller (4.1) solves the EFRP for every

P ∈ L(W,Z) and Q ∈ L(W,H) in the exosystem, in such a way that output regulation is

conditionally robust with respect to all small enough perturbations to A,B,C,D,K1,K2 and

G0.

• If A generates an exponentially stable C0−semigroup on Z×X, then the controller (4.1) solves

the EFRP for every P ∈ L(W,Z) and Q ∈ L(W,H) in the exosystem, in such a way that

output regulation is robust with respect to all small enough perturbations to A,B,C,D,K1,K2

and G0. Moreover, asymptotic tracking of the reference signals in the presence of disturbances

is exponentially fast.

Now that we have studied conditionally robust output regulation for the dynamic state feedback

controller (6.84), we turn to the construction of a dynamic controller (4.1) which does not involve
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direct feedback from the state of the plant. In addition to Assumption 6.57 we shall need the

exponential detectability of the pair (A,C).

Lemma 6.61. Let Assumption 6.57 hold such that W ↪→ Wa. Assume, in addition, that there

exists L ∈ L(H,Z) such that A − LC generates an exponentially stable C0−semigroup on Z. Let

X = Z ×Wa and choose the parameters of the controller (4.1) as follows:

F =


A+BK1 − L(C +DK1) (B − LD)K2

0 Sa


 , G =


 L

G0


 , J =

(
K1 K2

)
(6.85)

Then the controller (4.1) has the internal model structure and the closed loop operator A =
(

A BJ
GC F+GDJ

)
generates a strongly stable C0−semigroup on Z ×X.

Proof. If Λ =
(

Λ1

Λ2

)
∈ D(TF,S) and ∆ ∈ L(W,H) are such that ΛS = FΛ +G∆ in D(S), then


Λ1

Λ2


S =


A+BK1 − L(C +DK1) (B − LD)K2

0 Sa





Λ1

Λ2


 +


 L

G0


 ∆ in D(S) (6.86)

Hence Λ2S = SaΛ2 +G0∆ in D(S). The internal model structure of the controller (4.1) can now

be easily verified as in Theorem 6.47. We prove that the closed loop system operator A generates

a strongly stable C0−semigroup on Z ×X. With F,G and J as in (6.85), the closed loop system

operator becomes

A =


 A BJ

GC F +GDJ


 =




A BK1 BK2

LC A+BK1 − LC BK2

G0C G0DK1 Sa +G0DK2


 (6.87)

Applying the similarity transform U given as

U =




I −I 0

0 I 0

0 0 I


 (6.88)

we see that A is similar to the operator Ã = UAU−1 having the expression

Ã =




A− LC 0 0

LC A+BK1 BK2

G0C G0(C +DK1) Sa +G0DK2


 (6.89)
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which — by Assumption 6.57 and the assumption that A− LC generates an exponentially stable

C0−semigroup on Z — generates a strongly stable C0−semigroup on Z ×Wa. Consequently, the

similar closed loop semigroup TA(t) is also strongly stable.

The next result follows immediately from Theorem 6.20, Theorem 6.25 and Theorem 6.32 using

Lemma 6.61.

Corollary 6.62. Let Assumption 6.57 hold such that W ↪→ Wa. Assume, in addition, that there

exists L ∈ L(H,Z) such that A − LC generates an exponentially stable C0−semigroup on Z.

Consider the controller (4.1) whose parameters F,G and J are as in (6.85).

• If for every P ∈ L(Wa, Z ×X) there exists a unique Y ∈ L(W,Z ×X) such that Y (D(S)) ⊂

D(A) and Y S = AY + P in D(S), then the controller (4.1) solves the EFRP for every

P ∈ L(Wa, Z) ⊂ L(W,Z) and Q ∈ L(Wa,H) ⊂ L(W,H) in the exosystem, in the fol-

lowing way: Output regulation is conditionally robust with respect to such perturbations to

A,B,C,D,G and J for which the corresponding perturbation ∆A to the closed loop operator

A is (W,Wa)−admissible.

• If for every P ∈ L(W,Z ×X) there exists a unique Y ∈ L(W,Z ×X) such that Y (D(S)) ⊂

D(A) and Y S = AY + P in D(S), then the controller (4.1) solves the EFRP for every

P ∈ L(W,Z) and Q ∈ L(W,H) in the exosystem, in such a way that output regulation is

conditionally robust with respect to all small enough perturbations to A,B,C,D,G and J .

• If A generates an exponentially stable C0−semigroup on Z × X, then the controller (4.1)

solves the EFRP for every P ∈ L(W,Z) and Q ∈ L(W,H) in the exosystem, in such a way

that output regulation is robust with respect to all small enough perturbations to A,B,C,D,G

and J . Moreover, asymptotic tracking of the reference signals in the presence of disturbances

is exponentially fast.

6.6 A case study: Robustification of output regulation

In some applications it may be sensible to trade perfect output regulation without guaranteed

robustness to almost perfect output regulation with guaranteed robustness. The purpose of the

present case study section is to illustrate how this can be done in the case that H = CM for some
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M ∈ N and in the case that the true reference signals — for which perfect regulation is not required

— are in some generalized Sobolev space G = HAP (H, fn, ωn) with fixed sequences (ωn)n∈I and

(fn)n∈I (see Chapter 2). In order to avoid trivialities, we assume in this section that I is an infinite

set of indices, so that G is an infinite-dimensional space.

Let ε > 0 be the desired tracking accuracy in the sense that lim supt→∞‖e(t)‖ < ε‖yref‖G is

required for all reference signals yref ∈ G and all initial states z(0) ∈ Z and x(0) ∈ X of the plant

(1.1) and the error feedback controller (4.1). By our construction there exists N ∈ N such that
∑

|n|>N f−2
n < ε2. Then for all yref =

∑
n∈I ŷref (n)eiωn· ∈ G we have by the Schwartz inequality

that

‖yref −
∑

|n|≤N

ŷref (n)eiωn·‖∞ ≤
∑

|n|>N

∥∥ŷref (n)eiωn·∥∥
∞ ≤

∑

|n|>N

‖ŷref (n)‖H (6.90)

≤
√ ∑

|n|>N

f−2
n

√∑

n∈I

‖ŷref (n)‖Hf2
n ≤ ε‖yref‖G (6.91)

Consequently, whenever it is possible to asymptotically track the approximation signal yN
ref =

∑
|n|≤N ŷref (n)eiωn· of yref =

∑
n∈I ŷref (n)eiωn· in the sense of the EFRP, it is also possible to

asymptotically track yref with accuracy ε > 0 in the above sense. In fact, in this case

lim sup
t→∞

‖y(t) − yref (t)‖ ≤ lim sup
t→∞

‖y(t) − yN
ref (t)‖ + lim sup

t→∞
‖yN

ref (t) − yref (t)‖ < ε‖yref‖G (6.92)

for all yref ∈ G and for all initial states z(0) ∈ Z and x(0) ∈ X of the plant (1.1) and the error

feedback controller (4.1) achieving the asymptotic tracking of the approximations yN
ref (t).

Let N ∈ N be fixed as in the above, and define gn = fn for all |n| ≤ N and gn = 0 for

|n| > N . We shall next provide sufficient conditions that the above approximations yN
ref can

be asymptotically tracked robustly with respect to perturbations to some of the control system’s

parameters. In accordance with Proposition 2.3 this amounts to solving the EFRP robustly for

W = H = HAP (H, gn, ωn) and S = S|H (observe that dim(H) < ∞). In order to accomplish this

we make the following standing assumption.

Assumption 6.63. There is no feedthrough, i.e. D = 0, and there exist K ∈ L(Z,H) and

L ∈ L(H,Z) such that A + BK and A − LC generate exponentially stable C0−semigroups on Z.

Moreover, the set { iωn | |n| ≤ N } ⊂ ρ(A) and the matrix H(iωn) = CR(iωn, A)B is nonsingular

for all |n| ≤ N (recall that we have assumed that H = CM for some M ∈ N).
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Let us define the bounded linear operators Pn : H → H, |n| ≤ N , by Pnf = f̂(n)eiωn· for

all f =
∑

|n|≤N f̂(n)eiωn· ∈ H. In the main result of this section we shall utilize the following

operators (which are well-defined under Assumption 6.63):

Γ0 =
∑

|n|≤N

H(iωn)−1δ0Pn ∈ L(H,H) (6.93)

Π0 =
∑

|n|≤N

R(iωn, A)BΓ0Pn ∈ L(H, Z) (6.94)

P̂ = BΓ0 − Lδ0 ∈ L(H, Z) (6.95)

Q̂ = 2δ0 ∈ L(H,H) (6.96)

Γ =
∑

|n|≤N

H(iωn)−1[Q̂− CR(iωn, A)P̂ ]Pn ∈ L(H,H) (6.97)

Π =
∑

|n|≤N

R(iωn, A)[BΓ + P̂ ]Pn ∈ L(H, Z) (6.98)

G2 = −δ∗0 ∈ L(H,H) (6.99)

G1 = L− Π0δ
∗
0 ∈ L(H,Z) (6.100)

where δ0f = f(0) for all f ∈ H and δ∗0 is the adjoint operator of δ0 with respect to the inner

product on H given in Proposition 2.16.

Remark 6.64. It is an elementary calculation to verify that

Π0S|H = AΠ0 +BΓ0 in D(S|H) = H (6.101a)

δ0 = CΠ0 in H (6.101b)

and that

ΠS|H = AΠ +BΓ + P̂ in D(S|H) = H (6.102a)

Q̂ = CΠ in H (6.102b)

Theorem 6.65 below is our main result in this section. It presents one possible choice for the

dynamic controller (4.1) for robust asymptotic tracking of the above approximations yN
ref in the

presence of certain disturbances.
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Theorem 6.65. Under Assumption 6.63 the dynamic controller (4.1) with X = Z ×H and

F =


A+BK −G1C P̂ +B(Γ −KΠ) +G1Q̂

−G2C S|H +G2Q̂


 , G =


G1

G2


 , J =

(
K Γ −KΠ

)

(6.103)

where the related operators are defined in (6.93)-(6.100), solves the EFRP (with W = H) for all

P ∈ L(H, Z) and Q ∈ L(H,H) in the exosystem (2.2). Moreover, output regulation is exponentially

fast and robust with respect to small enough perturbations to the operators A,B,C,G and J .

Proof. We show that all requirements of Assumption 6.50 are satisfied forWa = W = H, Sa = S|H,

Pa = P̂ and Qa = Q̂, and that the closed loop operator A =
(

A BJ
GC F

)
generates an exponentially

stable C0−semigroup on Z × X. That robust and exponentially fast output regulation indeed

occurs follows by Corollary 6.54.

The items 1,2,4 and 5 of Assumption 6.50 follow easily from Assumption 6.63 and the fact that

dim(H) <∞. As in the proof of Proposition 4.28 we see that δ∗0 : H → H : u→ ∑
|n|≤N f−1

n ueiωn·

for all u ∈ H. Consequently for every iωn ∈ σ(S|H) the operator P
S|H
iωn

G2 : H → ran(P
S|H
iωn

) is

injective (i.e. item 6 of Assumption 6.50 is true) because P
S|H
iωn

G2u = −PS|H
iωn

∑
|k|≤N f−1

k ueiωk· =

−f−1
n ueiωn·. Here P

S|H
iωn

is of course the spectral projection corresponding to the (isolated) point

iωn ∈ σ(S|H), for |n| ≤ N .

As in the proof of Theorem 4.15 we can show that the closed loop operator A is similar to the

operator

Ã =




A+BK −BK −B(Γ −KΠ)

0 A−G1C P̂ +G1Q̂

0 −G2C S|H +G2Q̂


 =


A+BK ∆

0 AF


 (6.104)

where the operator AF =
( A−G1C P̂+G1Q̂

−G2C S|H+G2Q̂

)
satisfies


I −Π0

0 I





A−G1C P̂ +G1Q̂

−G2C S|H +G2Q̂





I Π0

0 I


 = (6.105)


A−G1C + Π0G2C AΠ0 −G1CΠ0 + Π0G2CΠ0 + P̂ +G1Q̂− Π0S|H − Π0G2Q̂

−G2C S|H +G2Q̂−G2CΠ0


 = (6.106)


A− LC 0

δ∗0C S|H − δ∗0δ0


 (6.107)
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so that by the finite-dimensionality of H and by Corollary 4.26 AF generates an exponentially stable

C0−semigroup on Z ×H. Hence also item 3 of Assumption 6.50 is true. Finally, by similarity and

the assumption that A + BK generates an exponentially stable C0−semigroup on Z the closed

loop operator A also generates an exponentially stable C0−semigroup on Z ×X.

Since in Theorem 6.65 we regulate signals generated by a particular finite-dimensional neutrally

stable exosystem (2.1), also the error feedback output regulation theory of Byrnes et al. [12]

(Theorem IV.2 in [12] in particular) is applicable in this situation. Thus, in order to justify

Theorem 6.65 as being new and useful, it is important to accentuate the following differences

between Theorem 6.65 and the results in [12]:

• Exponential detectability of the pair
((

A P
0 S

)
,
(

C −Q
))

, i.e. hypothesis H3 in [12], does not

have to be postulated here; it is part of the conclusion. In particular, here the operators P

and Q correspond to the above design parameters P̂ and Q̂, while in [12] they correspond to

the particular operators of the exosystem for which output regulation is to be achieved.

• The regulator equations (3.10) have been a priori solved here, whereas the use of Theorem

IV.2 in [12] explicitly requires the solution of these regulator equations. Moreover, in [12] the

operators P and Q in these equations must correspond to the particular operators utilized

in the exosystem (2.1).

• Output regulation is guaranteed to be robust here, while the issue of robustness is not

addressed in [12].

• We achieve approximate (with a desired accuracy ε > 0) asymptotic tracking of all reference

signals in the infinite-dimensional Sobolev space HAP (H, fn, ωn), while no approximation

results are presented in [12].

On the other hand, it has been proved in [12] that the nonsingularity of H(iω) for all iω ∈ σ(S)

(which is assumed in the above) already implies the solvability of the regulator equations (3.10)

regardless of the operators P and Q, whenever dim(W ) <∞. Moreover, we point out that in [12] it

is not explicitly assumed that the pair (A,C) is exponentially detectable, as is done in the above.

Nonetheless, Theorem 6.65 above may sometimes be easier to apply in practice than Theorem
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IV.2 in [12] because of the additional design parameters P̂ and Q̂ which need not coincide with

the operators P and Q utilized in the exosystem.

6.7 A case study: Conditionally robust repetitive control

for SISO systems

We now turn our attention to certain repetitive control applications. In this section we make the

following standing assumption, which shows that our aim is to study the asymptotic tracking of all

p−periodic scalar-valued reference signals in certain Sobolev spaces Hβ
per(0, p), p > 0 and β > 1

2 ,

using error feedback control.

Assumption 6.66. The plant is a SISO system, i.e. H = C, the operator A generates an

exponentially stable C0−semigroup on Z, D = 0, W = H = Hβ
per(0, p), Wa = G = Hα

per(0, p)

for some β > α > 1
2 (where α is fixed at the outset and β is to be determined), p > 0 and S = S|H,

Sa = S|G, Q = δ0 ∈ L(G,C) ∩ L(H,C), in accordance with Proposition 2.3.

Remark 6.67. The assumption that there is no feedthrough in the plant, i.e. D = 0, is deliberate.

We aim to show that, contrary to the conventional repetitive control scheme [36, 96], in our

framework conditionally robust output regulation of p−periodic signals with an infinite number of

distinct frequency components is possible even if D = 0. This is a consequence of the fact that

we do not require exponential closed loop stability. In the conventional repetitive control scheme

internal (i.e. exponential) closed loop stability — which implies output regulation — can only be

attained if the finite-dimensional plant is not strictly proper (cf. Chapter 1 or Section V of [96]

and Proposition 2 of [36]).

In order to achieve output regulation with a degree of conditional robustness, we shall construct

a dynamic controller (4.1) with parameters as in (6.78). We begin the controller design process by

stabilizing the pair (S|G , δ0) strongly using the pole-placement techniques of Chapter 4. Below, we

denote iωn = i2πn
p for all n ∈ Z. The following result is just a rephrasement of Proposition 4.28:

Lemma 6.68. Let γ > α+ 1
2 . Then there exists L ∈ L(C,G) such that

1. S|G + Lδ0 generates a strongly stable C0−semigroup on G,

2. The resolvent satisfies ‖R(iωn, S|G +Lδ0)‖ ≤ C ′√1 + ω2
n

γ
for some C ′ > 0 and every n ∈ Z,
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3. There exists a unique l ∈ G such that Lu = lu for every u ∈ C and 〈l, φn〉 6= 0 for every

n ∈ Z.

Here (φn)n∈Z denotes the orthonormal basis of (weighted) exponentials cne
iωn· = eiωn·√

1+ω2
n

α , n ∈ Z,

for G, which are also the eigenvectors of S|G corresponding to the eigenvalues iωn.

Remark 6.69. The above strongly stabilizing feedback L for the pair (S|G , δ0) is constructed in

the proof of Proposition 4.28; see in particular (4.65).

The following is the main result of this section.

Theorem 6.70. Let G, γ and L be as in Lemma 6.68. Let β > γ + α + ε for arbitrary ε > 1
2 .

Assume that there exist Π ∈ L(G, Z) and Γ ∈ L(G,C) such that Π(D(S|G)) ⊂ D(A) and the

following regulator equations are satisfied:

AΠ +BΓ = ΠS|G in D(S|G) (6.108a)

CΠ = δ0 in G (6.108b)

Let X = Z × G and set F =
(

A BΓ
−LC S|G+Lδ0

)
, J =

(
0 Γ

)
and G =

(
0
L

)
. Then the controller

(4.1) with these parameters solves the EFRP for every P ∈ L(G, Z) and each Q ∈ L(G,C) in the

exosystem, in the following sense: Output regulation is conditionally robust with respect to such

perturbations to A,B,C,G and J for which the corresponding perturbation ∆A to the closed loop

operator A =
(

A BJ
GC F

)
satisfies supn∈Z‖∆AR(iωn,A)‖ < 1.

Proof. By Assumption 6.66 and Lemma 6.68 all conditions of Assumption 6.50 are satisfied for

Pa = 0 and Qa = δ0 ∈ L(G,C). In particular,
(

A 0
0 S|G

)
−

(
0
L

)(
C −δ0

)
generates a strongly stable

C0−semigroup on Z × G, and in the notation of Lemma 6.68 and Assumption 6.50 we have that

P
S|G
iωn

Lu = 〈l, φn〉φnu for all u ∈ C and n ∈ Z, so that P
S|G
iωn

L is injective because 〈l, φn〉 6= 0 for all

n ∈ Z. Thus by Lemma 6.52 the closed loop operator A generates a strongly stable C0−semigroup

on Z×X. Moreover, a controller (4.1) with the above parameters has the internal model structure.

Applying the procedure in the proof of Theorem 4.15 we immediately see that the closed loop

operator

A =


 A BJ

GC F


 =




A 0 BΓ

0 A BΓ

LC −LC S|G + Lδ0


 (6.109)
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is similar to the operator Ã given by

Ã =




A 0 −BΓ

0 A 0

0 −LC S|G + Lδ0


 =


A −BJ

0 As


 (6.110)

where we have defined As =
(

A 0
−LC S|G+Lδ0

)
. By the triangular structure of the operators As

and Ã, by the exponential stability of TA(t) and by Lemma 6.68, { iωn | n ∈ Z } ⊂ ρ(A).

Moreover, a direct calculation utilizing the triangular structure of As and the second item of

Lemma 6.68 shows that ‖R(iωn,As)‖ ≤ M
√

1 + ω2
n

γ
for some M > 0 and all n ∈ Z. Simi-

larly, ‖R(iωn, Ã)‖ ≤ Ma

√
1 + ω2

n

γ
for some Ma > 0 and all n ∈ Z. Finally, by similarity also

‖R(iωn,A)‖ ≤M ′√1 + ω2
n

γ
for some M ′ > 0 and all n ∈ Z. Then

∑

n∈Z

‖R(iωn,A)‖2(1 + ω2
n)α

(1 + ω2
n)β

≤M ′2 ∑

n∈Z

(1 + ω2
n)α+γ

(1 + ω2
n)β

<∞ (6.111)

The result now follows by Corollary 6.33 with fn =
√

1 + ω2
n

β
and gn =

√
1 + ω2

n

α
.

Remark 6.71. The logic and order behind the choice of the scalar parameters α, β and γ in

Theorem 6.70 is this:

1. α > 1
2 is chosen to be sufficiently large to obtain bounded solutions to the regulator equations

(6.108) (see e.g. condition (3.55) in Section 3.5); this choice of α also fixes G.

2. γ is any real number larger than α+ 1
2 (the smaller the better).

3. β is any real number larger than α+ γ+ ε for ε > 1
2 ; this parameter β fixes H and hence the

degree of smoothness required for the reference signals.

Remark 6.72. It is crucial in Theorem 6.70 that the closed loop system contains a stabilized copy

of the differential operator S|G on a larger space G = Hα
per(0, p) than the space H = Hβ

per(0, p)

on which we require output regulation. Thus, here sufficient smoothness of the exogenous signals

(with respect to the pivot space G) implies a degree of conditional robustness in output regulation.

Remark 6.73. The regulator equations (6.108) can be solved using the methods of Chapter 8

or Section 3.5. In particular, the condition (3.55) completely characterizes the solvability of these

equations if there are no transmission zeros of the plant on { iωn | n ∈ Z }.
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6.8 Some concrete examples

The purpose of the present section is to provide some simple but concrete examples of (conditio-

nally) robust output regulation for infinite-dimensional systems.

Example 6.74. Consider the same disturbance-free controlled one-dimensional heat equation on

the interval [0, 1], with Neumann boundary conditions, as in Example 1.1. In [12] (Example VI.2)

Byrnes et al. designed a dynamic error feedback controller (4.1) such that the output of this heat

plant asymptotically tracks the reference signal yref (t) = sin(2t) for all initial states of the plant.

This controller is explicitly reproduced in the item (iv) of Example 1.1.

However, Byrnes et al. [12] did not study the robustness of their controller, so we shall here

provide an addendum to Example 1.1 and Example VI.2 in [12] by proving its robustness. Observe

that the items 1-5 in Assumption 6.50 are satisfied for W = Wa, Sa = S and P = 0, because evi-

dently S generates an isometric C0−group on W ,
(

A 0
0 S

)
−

(
G1

G2

)(
C −Q

)
generates an exponentially

stable C0−semigroup and

ΠS = AΠ +BΓ in W (6.112a)

CΠ = Q in W (6.112b)

(see [12] for more details). In order to be able to apply Corollary 6.54 we must show that PS
iγG2 :

R → ran(PS
iγ) is injective for γ = ±2. But for γ = 2 and for all u ∈ R we have

PS
iγG2u =

1

2πi

∮

γ

R(λ, S)G2dλu (6.113)

=
1

2πi

∮

γ


i −i

1 1







1
λ+i2 0

0 1
λ−i2





− i

2
1
2

i
2

1
2





−3

−3


 dλu (6.114)

=


i −i

1 1





 0

− 3
2 − 3

2 i


u (6.115)

=


− 3

2 + 3
2 i

− 3
2 − 3

2 i


u (6.116)

and similarly for γ = 2 and all u ∈ R

PS
iγG2u =

1

2πi

∮

γ

R(λ, S)G2dλu =


− 3

2 − 3
2 i

− 3
2 + 3

2 i


u (6.117)
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so that indeed PS
iγG2 : R → ran(PS

iγ) is injective for γ = ±2. In conclusion all items in Assumption

6.50 are satisfied. Since the closed loop system is exponentially stable, robust output regulation

as described in Corollary 6.54 occurs. We remark, in particular, that the dynamic controller of

Example 1.1 studied above can also be used to simultaneously reject disturbances Pw(t) generated by

the above exosystem; this feature is not pointed out in [12] where the controller was first introduced.

Example 6.75. Let a > 0, r 6= 0, τ1 > τ2 > 0 and consider the disturbance-free scalar delay

differential equation

ẋ(t) = −ax(t) − b
[
x(t− τ1) + x(t− τ2)

]
+ u(t) (6.118a)

y(t) = rx(t), t ≥ 0 (6.118b)

of Example 3.54 and Example 4.43. We assume that the system operator of (6.118) generates

an exponentially stable C0−semigroup as in Example 3.54 and Example 4.43. Then there are no

transmission zeros of the plant on the imaginary axis.

Let Wa = G = Hα
per(0, p) for α = 5

3 and p > 0. We can then easily solve the regulator equations

(6.108) for Π ∈ L(Wa, Z) and Γ ∈ L(Wa,C) as in Section 3.5. Let the stabilizing operator L be as

in Lemma 6.68 for γ = α+1. Then by Theorem 6.70 the dynamic controller (4.1) with X = Z×G

and parameters

F =


 A BΓ

−LC S|G + Lδ0


 , J =

(
0 Γ

)
and G =


0

L


 (6.119)

achieves the asymptotic tracking of all reference signals in Hβ
per(0, p) for (say) β > 5. Moreo-

ver, output regulation is conditionally robust with respect to certain admissible perturbations, as

described in Theorem 6.70.

Example 6.76. Consider the controlled and observed weakly damped SISO string system described

in Example 3.56. Assume that the reference signals to be asymptotically tracked are in some finite-

dimensional Sobolev space H = HAP (C, fn, ωn), with (fn)n∈I ⊂ R, (ωn)n∈I ⊂ R for some finite

set I of indices. Let φn(x) = f−1
n eiωnx for all x ∈ R and n ∈ I. It is clear that (φn)n∈I constitutes

an orthonormal basis in H.

Assume that H(iωn) = B∗R(iωn, A)B 6= 0 for all n ∈ I. Let us take W = H and S = S|H as
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in Proposition 2.3, and define

G0 =
∑

n∈I

f−1
n H(iωn)−1φn ∈ L(C,H) (6.120)

Π0 =
∑

n∈I

R(−iωn, A
∗)BG∗

0φn〈·, φn〉 ∈ L(H, Z) (6.121)

where ∗ denotes the operator adjoint (recall that Z and H are both Hilbert spaces). Then it is a

straightforward calculation to show that Π0(H) ⊂ D(A∗) and

−Π0S|H = A∗Π0 +BG∗
0 in H (6.122a)

B∗Π0 = δ0 in H (6.122b)

whence for Π = Π∗
0 ∈ L(Z,H) the following regulator equations are satisfied:

S|HΠ = ΠA+G0B
∗ in D(A) (6.123a)

ΠB = δ∗0 in C (6.123b)

because S|∗H = −S|H.

A regulating Davison-type dynamic state feedback controller is then given on the state space

X = H by the equations

ẋ(t) = S|Hx(t) +G0e(t), x(0) ∈ H (6.124a)

u(t) = −δ0Πz(t) − δ0x(t) (6.124b)

In fact, since D = 0 the resulting closed loop system operator A =
( A−Bδ0Π −Bδ0

G0B∗ S|H
)

satisfies


I 0

Π I





A−Bδ0Π −Bδ0

G0B
∗ S|H





 I 0

−Π I


 =


A −Bδ0

0 S|H − δ∗0δ0


 (6.125)

Hence by similarity A generates a strongly stable C0−semigroup on Z ×X, because A generates a

strongly stable C0−semigroup on Z (see Example 3.56) and because S|H − δ∗0δ0 generates an expo-

nentially stable C0−semigroup on H (by Theorem 4.22 and the fact that dim(H) <∞). Moreover,

since P
S|H
iωn

G0u = f−1
n H(iωn)−1φnu for all u ∈ C and all n ∈ I, Assumption 6.57 holds true.

Finally, by similarity and the above triangular structure, σ(A) ∩ iR = ∅, because σ(A) ∩ iR = ∅

and σ(S|H − δ∗0δ0)∩ iR = ∅. Lemma 6.59 and Corollary 6.26 then show that the controller (6.124)

solves the EFRP for a plant (which is also subject to the state feedback −δ0Π) for all P ∈ L(H, Z)
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and all Q ∈ L(H,H) in such a way that output regulation is conditionally robust with respect to

those perturbations to A,B,C,G0,Π and δ0 for which the corresponding perturbation ∆A to the

closed loop operator A satisfies ‖∆A‖ < minλ∈σ(SH)‖R(λ,A)‖−1 = minn∈I‖R(iωn,A)‖−1.



Chapter 7

Practical output regulation

Since virtually all real world control systems are subject to unpredictable disturbances and uncer-

tainties, exact output regulation is, strictly speaking, very often beyond reach in practice. For

infinite-dimensional systems matters are made worse by the fact that all computer simulations

must be conducted using finite-dimensional approximations, e.g. as in the finite element analysis

of partial differential equations.

Fortunately, one can often achieve a satisfactory degree of accuracy in output regulation in

practice using robust controllers, as is now well known. However, certain issues should be borne in

mind when considering the application of robust controllers in output regulation problems. First

of all, as we have seen in Chapter 6, a robust controller often utilizes a suitable reduplication of

the exosystem operator S — or at least some operator Sa with similar properties — but this part

of the controller cannot sustain any perturbations if output regulation is to be maintained (see [32]

for a discussion of this topic). Secondly, the more general the reference/disturbance signals are, the

more difficult it is to design error feedback controllers achieving even conditionally robust output

regulation, because sufficient closed loop stability becomes more difficult to achieve. Finally, a

robust controller which solves an output regulation problem often explicitly incorporates some

solutions (Π,Γ) of the regulator equations (3.10) (see e.g. Subsection 6.5.1). However, in the

most general setup of this thesis the regulator equations (3.10) are operator equations on infinite-

dimensional spaces. In practice they can only be solved approximately — a fact that can introduce

intolerable uncertainty in the control system, especially if the robustness margin (i.e. the degree

of tolerance for perturbations) for the controller is small or unknown.

176
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Because of the above issues, in applications it is often sensible to content oneself with prac-

tical output regulation instead of explicitly requiring exact output regulation. In practical output

regulation the goal is to achieve asymptotic tracking/rejection of the exogenous signals with a

given accuracy. More specifically, if e(t) denotes the corresponding tracking error (in the presence

of disturbances) and if ε > 0 is the desired tracking accuracy, then the goal in practical output

regulation is to have lim supt→∞‖e(t)‖ < Mε where M ≥ 0 only depends on the particular refe-

rence/disturbance signals for which practical regulation is desired, i.e. the initial condition of the

exosystem. We have actually already touched upon this topic in Section 6.6 where we explicitly

designed robust (EFRP) controllers which approximately regulate all reference signals in a given

infinite-dimensional Sobolev space HAP (H, fn, ωn).

For finite-dimensional nonlinear systems much research has been devoted to the practical out-

put regulation problem, because it turns out to be considerably simpler and more convenient to

solve than its exact counterpart. This is largely due to the fact that the so-called nonlinear regu-

lator equations — whose solvability in part guarantees output regulation for nonlinear systems —

are difficult to solve precisely [71]. A survey of various approximative methods for the solution of

the nonlinear regulator equations and their use in practical output regulation can be found in [91],

while some general existence results for the nonlinear practical output regulation problem can be

found in [75].

On the other hand, only little research seems to have been reported on practical output regu-

lation specifically for linear systems. This is quite surprising, because the linear problem is not a

trivial one even for finite-dimensional systems — although in this case the above cited nonlinear

theory is of course applicable, and although in this case robustness sometimes guarantees even

exact output regulation. Vast majority of the knowledge related to practical output regulation for

linear infinite-dimensional systems seems to exist in the form of model reduction techniques (see

e.g. [16, 68] and the references therein). This is quite natural, because model reduction deals with

one of the key sources of model uncertainty in practice, namely that of approximating infinite-

dimensional systems by finite-dimensional ones. As regards other related research, we mention

that practical output regulation of general p−periodic (p > 0) signals for linear finite-dimensional

systems has been studied in [36, 92] as “modified” repetitive control problems (see Chapter 1 for

more details).

In this chapter we shall develop the mathematical foundations of practical output regulation for
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exponentially stabilizable linear state space control systems, both finite-dimensional and infinite-

dimensional. Instead of directly designing controllers which achieve practical output regulation

with a desired accuracy1, our approach here is to assume that there already exists a (hypothetical)

exactly regulating controller, which we may not be able to construct in practice due to modelling

errors et cetera. Under exponential closed loop stability this existence assumption can, as we

have seen in the previous chapters, be reduced to the solvability of the regulator equations (3.10)

or the extended regulator equations (4.3), depending on the controller type in question. Our

idea is then to directly employ a perturbation analysis to the closed loop control system and the

corresponding (extended) regulator equations which in a certain sense describe the system’s steady

state behaviour. Our main results in the present chapter are general upper bounds for the norms of

additive, bounded, linear perturbations to the the parameters of the plant, the exosystem and the

(hypothetical) controller, which solves the corresponding exact output regulation problem, such

that practical output regulation with a given accuracy ε occurs. Our results cover in a unified way

practical output regulation for the FRP, the EFRP and the FFRP, which have been studied in

detail in the previous chapters.

We shall next review the contents of this chapter in more detail. However, we emphasize

that the results of this chapter are difficult to compare to the existing literature, because our

operator-theoretic approach seems to be entirely new even in the output regulation theory of

linear finite-dimensional systems. The results of this chapter are based on those in [44, 50].

Section 7.1: We shall first recall how the output regulation problems FRP, EFRP and FFRP can be

studied as output stabilization problems for certain triangular dynamical systems on products

of Banach spaces. Thereafter in Theorem 7.2 we shall prove an abstract perturbation result

which can be used to study practical output stability of such triangular systems.

Section 7.2: We shall show that the abstract perturbation result, Theorem 7.2, of Section 7.1 can readily

be used in practical output regulation. In particular:

– In Corollary 7.7 we shall establish such upper bounds for the norms of the perturba-

tions to the parameters A,B,C,D, P,Q,K and L of the closed loop feedforward control

system (3.1) which guarantee that practical (FRP) output regulation with a desired

1As is usually done in the nonlinear systems literature, see e.g. [91], and as was done in the case study of Section

6.6 of this thesis.
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accuracy ε > 0 occurs.

– In Corollary 7.8 we shall establish such upper bounds for the norms of the perturbations

to the parameters A,P, Q and C of the closed loop system (4.2) (see also the proof of

Theorem 4.4) which guarantee that practical (EFRP) output regulation with a desired

accuracy ε > 0 occurs.

– In Corollary 7.9 we shall establish such upper bounds for the norms of the perturbations

to the parameters A,PΓ, Q, Γ and C of the closed loop system (5.2) (see also the proof of

Theorem 5.3) which guarantee that practical (FFRP) output regulation with a desired

accuracy ε > 0 occurs.

Section 7.3: We shall consider two illustrative applications of the results of Section 7.2, namely:

– In Subsection 7.3.1 we shall study quantitatively the effect of bounded linear additive

perturbations to the internal model of the exogenous signals, as utilized in the robust

error feedback controllers of Subsection 6.5.1. It should be pointed out that the robust-

ness results of Chapter 6 do not allow for perturbations in F if exact output regulation

is to be maintained; however this example shows that practical output regulation can

sometimes be achieved even if the critical part of F is subject to perturbations.

– In Subsection 7.3.2 we shall study practical periodic tracking/disturbance rejection in

the sense of the FRP for exponentially stabilizable SISO systems and reference signals

in the generalized Sobolev spaces H(fn, ωn), using Proposition 2.3. In Section 3.5 (see

in particular (3.47)) we derived a series expansion for the operator L in a regulating

feedforward control law u(t) = Kz(t) + Lw(t). Given a desired asymptotic tracking

accuracy ε > 0, here we shall establish how many terms should be included in the

truncation of this series expansion for L such that practical output regulation with

accuracy ε occurs.

In general, the results of this chapter improve the existing ones in the following ways:

• The source of uncertainties and perturbations to the parameters of the plant, the exosystem

and the controller is irrelevant here, as opposed to e.g. specific techniques for model reduction

where uncertainty is a result of finite-dimensional approximation.
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• Our results cover practical output regulation for several different controller configurations,

as opposed to [36, 92] which only cover practical error feedback regulation.

• Our results allow for the use of approximate solutions of the regulator equations (3.10)

in the controller, as opposed to [7, 12, 29, 80] where exact solutions are needed for exact

output regulation. Moreover, here it is irrelevant how the regulator equations (3.10) are

approximated.

• Our results allow for arbitrary bounded uniformly continuous reference/disturbance signals

generated by the exosystem (2.2), as opposed to p−periodic signals in [36, 92] and trigono-

metric polynomial signals in [12].

• Our results can be used to establish practical output regulation with a desired accuracy in

the case that the internal model of the exogenous signals in the system operator F of a robust

controller is subject to perturbations. In the related existing work it is well-known that this

internal model cannot be perturbed if exact output regulation is to be maintained; however,

no general quantitative information on the control systems’ dynamical behaviour seems to

exist even for finite-dimensional systems, in the case that the internal model is perturbed

[7, 24, 29, 32, 33]. For repetitive control systems such information does exist e.g. in [36, 92].

• In the literature related to the approximate solution of the regulator equations, see e.g.

[50, 91], the plant data need not be explicitly known in the controller design, but the resul-

ting (approximate) controller is only guaranteed to achieve practical output regulation for

a plant whose parameters are explicitly known (i.e. they are at their nominal values). Our

general results can be used to guarantee practical output regulation in the case that a cont-

roller employing approximate solutions of the regulator equations is applied to a plant which

has uncertain parameters and which is subject to uncertain disturbances. To the author’s

knowledge this has not been possible in any related earlier work, linear or nonlinear.

However, it should be pointed out that, as in Chapter 6, throughout this chapter we shall only

consider bounded perturbations to the control system’s parameters. This may be restrictive in some

applications, because certain parts of the control system can in practice be subject to unbounded

perturbations too. Moreover, here we confine our attention to exponentially stable closed loop
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systems only2, which may restrict the applicability of the results of this chapter to the EFRP if

the exosystem (2.2) is not finite-dimensional.

7.1 Practical output stability of triangular systems

Let X1,X2 and H be Banach spaces, let A1 generate an exponentially stable C0−semigroup TA1
(t)

on X1, let A2 generate a uniformly bounded C0−group TA2
(t) on X2 and let A3 ∈ L(X2,X1).

Furthermore, let C1 ∈ L(X1,H), let C2 ∈ L(X2,H) and consider the following dynamical system

on X1 ×X2:


ẋ1(t)

ẋ2(t)


 =


A1 A3

0 A2





x1(t)

x2(t)


 , t ≥ 0,


x1(0)

x2(0)


 ∈ X1 ×X2 (7.1a)

e(t) =
(
C1 C2

)

x1(t)

x2(t)


 , t ≥ 0 (7.1b)

in the mild sense. The system (7.1) is said to be output stable if limt→∞ e(t) = 0 for all x1(0) ∈ X1

and all x2 ∈ X2(0).

As we have seen in the previous chapters, in many output regulation problems the extended

system consisting of the plant and the controller, with the exogenous signals present, can be

described by such a triangular dynamical system (see Theorem 3.6, Theorem 4.4 and Theorem

5.3). For example, in the case of the FRP, we can choose X1 = Z, X2 = W , A1 = A+BK, A2 = S,

A3 = BL + P etc. provided that A + BK generates an exponentially stable C0−semigroup. In

such cases the output stability of the triangular system in question means asymptotic tracking of

the reference signals in the presence of disturbances generated by the exosystem (2.2).

Now let us apply certain perturbations to the system (7.1). More specifically, let ∆A1 ∈

L(X1),∆A3 ∈ L(X2,X1),∆C1 ∈ L(X1,H) and ∆C2 ∈ L(X2,H) and consider the perturbed

dynamical system described by the equations


ẏ1(t)

ẏ2(t)


 =


A1 + ∆A1 A3 + ∆A3

0 A2





y1(t)

y2(t)


 , t ≥ 0,


y1(0)

y2(0)


 ∈ X1 ×X2 (7.2a)

ẽ(t) =
(
C1 + ∆C1 C2 + ∆C2

)

y1(t)

y2(t)


 , t ≥ 0 (7.2b)

2See Remark 7.6 for the motivation behind this choice.
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in the mild sense. It is clear by the above that if we can prove a general perturbation result which

gives upper bounds for the norms ‖∆A1‖, ‖∆A3‖, ‖∆C1‖ and ‖∆C2‖ such that lim supt→∞‖ẽ(t)‖ <

Mε where M only depends on the initial state y2(0) and ε > 0 is given, then that result would

immediately yield practical output regulation results for the FRP, the EFRP and the FFRP. The

main result of this section is precisely such a general perturbation theorem. In order to prove it,

we shall need the following addendum to Lemma 3.5, which is easy to prove using the techniques

developed in this thesis; we leave the details to the reader.

Lemma 7.1. Under the above assumptions, if there exists Π ∈ L(X2,X1), with Π(D(A2)) ⊂

D(A1), such that the following operator equations are satisfied:

ΠA2 = A1Π +A3 in D(A2) (7.3a)

0 = C1Π + C2 in X2 (7.3b)

then limt→∞ e(t) = 0 for all initial states x1(0) ∈ X1 and x2(0) ∈ X2.

The following is the main result of this section.

Theorem 7.2. Assume that Π ∈ L(X2,X1) is such that Π(D(A2)) ⊂ D(A1) and the operator

equations (7.3) are satisfied. Let ‖TA1
(t)‖ ≤ Me−ωt for some M ≥ 1 and ω > 0 and all t ≥ 0.

Let ε > 0 be given and let 0 ≤ a < ω
MN where 1 ≤ N = supt∈R‖TA2

(t)‖ < ∞. Then whenever the

above perturbations satisfy

‖∆A1‖ ≤ a (7.4a)

MN

ω
‖∆A3‖ +

M2N2a

ω2

(
1 − MNa

ω

)−1

‖A3 + ∆A3‖ <
ε

3(1 + ‖C1 + ∆C1‖)
(7.4b)

‖∆C1‖ <
ε

3(1 + ‖Π‖) (7.4c)

‖∆C2‖ <
ε

3
(7.4d)

we have lim supt→∞‖ẽ(t)‖ < εN‖y2(0)‖ for every y1(0) ∈ X1 and every y2(0) ∈ X2.

Proof. Let us define the linear Sylvester operator TA1,A2
on a subspace of L(X2,X1) by

D(TA1,A2
) = {Λ ∈ L(X2,X1) | Λ(D(A2)) ⊂ D(A1),∃Y ∈ L(X2,X1) :

Y x = A1Λx− ΛA2x ∀x ∈ D(A2) } (7.5)

TA1,A2
Λ = Y (7.6)
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Since TA1
(t) is (by assumption) exponentially stable and since TA2

(t) is a uniformly bounded

group, the operator equation (7.3a) has a unique solution for each A3 ∈ L(X2,X1) (see [88, 90]

and Section A.2). Thus the operator TA1,A2
is a closed bijection D(TA1,A2

) → L(X2,X1) and

0 ∈ ρ(TA1,A2
) [3, 88]. Moreover, Π = −T −1

A1,A2
A3, and by Corollary 8 in [88] we must have

‖T −1
A1,A2

‖ = sup
‖A3‖=1

sup
‖x‖=1

∥∥∥∥
∫ ∞

0

TA1
(t)A3T−A2

(t)xdt

∥∥∥∥ ≤ MN

ω
(7.7)

Next define the operator ∆ ∈ L(L(X2,X1)) such that ∆Λ = ∆A1Λ for each Λ ∈ L(X2,X1).

Obviously we may consider the perturbed Sylvester operator TA1+∆A1,A2
as TA1+∆A1,A2

Λ = (A1 +

∆A1)Λ − ΛA2 = TA1,A2
Λ + ∆Λ for each Λ ∈ D(TA1,A2

). Now ‖∆‖ ≤ ‖∆A1
‖ ≤ a < ω

MN , and

a‖T −1
A1,A2

‖ < 1. Consequently, by Theorem IV.1.16 in [57] (p. 196) it is true that 0 ∈ ρ(TA1+∆A1,A2
)

and that ‖T −1
A1+∆A1,A2

− T −1
A1,A2

‖ ≤ a‖T −1
A1,A2

‖2

1−a‖T −1
A1,A2

‖ . Thus whenever the above inequalities (7.4) are

satisfied, there exists a unique Π̃ ∈ L(X2,X1) such that Π̃(D(A2)) ⊂ D(A1) and Π̃A2 = (A1 +

∆A1)Π̃ + (A3 + ∆A3) in D(A2). Moreover, necessarily Π̃ = −T −1
A1+∆A1,A2

(A3 + ∆A3), so that

‖Π̃ − Π‖ = ‖T −1
A1,A2

A3 − T −1
A1+∆A1,A2

(A3 + ∆A3)‖ (7.8)

≤ ‖T −1
A1,A2

(A3 −A3 − ∆A3)‖ + ‖[T −1
A1,A2

− T −1
A1+∆A1,A2

](A3 + ∆A3)‖ (7.9)

≤ MN

ω
‖∆A3‖ +

a‖T −1
A1,A2

‖2

1 − a‖T −1
A1,A2

‖‖A3 + ∆A3‖ (7.10)

≤ MN

ω
‖∆A3‖ +

aM2N2

ω2

(
1 − a

MN

ω

)−1

‖A3 + ∆A3‖ (7.11)

<
ε

3

(
1 + ‖C1 + ∆C1‖

)−1

(7.12)

by (7.4b). Hence also

‖(C1 + ∆C1)Π̃ + (C2 + ∆C2)‖ ≤ ‖(C1 + ∆C1)(Π̃ − Π)‖ + ‖(C1 + ∆C1 − C1)Π‖ (7.13)

+ ‖C1Π + C2‖ + ‖−C2 + C2 + ∆C2‖ (7.14)

≤ ‖C1 + ∆C1‖
ε

3

(
1 + ‖C1 + ∆C1‖

)−1

(7.15)

+ ‖∆C1‖‖Π‖ + ‖∆C2‖ (7.16)

< ε (7.17)

because C1Π + C2 = 0. As in the proof of Lemma 3.5 we then deduce that for every y1(0) ∈ X1
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and every y2(0) ∈ X2

lim sup
t→∞

‖ẽ(t)‖ = lim sup
t→∞

‖(C1 + ∆C1)y1(t) + (C2 + ∆C2)y2(t)‖ (7.18)

≤ lim sup
t→∞

‖(C1 + ∆C1)TA1+∆A1
(t)[y1(0) − Π̃y2(0)]‖ (7.19)

+ lim sup
t→∞

‖
[
(C1 + ∆C1)Π̃ + (C2 + ∆C2)

]
TA2

(t)y2(0)‖ (7.20)

≤ lim sup
t→∞

‖C1 + ∆C1‖Me(−ω+M‖∆A1‖)t‖y1(0) − Π̃y2(0)‖ (7.21)

+N‖(C1 + ∆C1)Π̃ + (C2 + ∆C2)‖‖y2(0)‖ (7.22)

< εN‖y2(0)‖ (7.23)

since ‖TA1+∆A1
(t)‖ ≤Me(−ω+M‖∆A1‖)t → 0 as t→ ∞, by Theorem III.1.3 in [28].

Remark 7.3. The bounds (7.4) are not optimized; the right hand sides of the inequalities (7.4b)

and (7.4c) are chosen as such to accommodate the possibility that one or more of the relevant

operators is zero. We also emphasize that if some of the perturbation operators are zero, then the

factors ε
3 can obviously be modified to take into account these changes (see Section 7.3 for some

examples).

Remark 7.4. It is clear from the proof of Theorem 7.2 that whenever the perturbations satisfy

the bounds (7.4), we have that

‖ẽ(t)‖ = ‖(C1 + ∆C1)TA1+∆A1
(t)[y1(0) − Π̃y2(0)] (7.24)

+
[
(C1 + ∆C1)Π̃ + (C2 + ∆C2)

]
TA2

(t)y2(0)‖ (7.25)

≤ ‖C1 + ∆C1‖‖TA1+∆A1
(t)‖‖y1(0) − Π̃y2(0)‖ + εN‖y2(0)‖ (7.26)

for all y1(0), y2(0), and t ≥ 0. Moreover, ‖TA1+∆A1
(t)‖ ≤ Me(−ω+M‖∆A1‖)t for all t ≥ 0. These

inequalities can be used to determine the smallest t ≥ 0 for which ‖ẽ(t)‖ < 2εN‖y2(0)‖ (say).

Observe that Theorem IV.1.16 in [57] provides the useful estimates ‖Π̃‖ = ‖T −1
A1+∆A1,A2

(A3 +

∆A3)‖ ≤ ‖T −1
A1,A2

‖
1−a‖T −1

A1,A2
‖‖A3 + ∆A3‖ ≤ MN

ω (1 − MNa
ω )−1‖A3 + ∆A3‖.

Remark 7.5. The reason why we do not allow for perturbations to A2 in Theorem 7.2 is because

often in output regulation problems we may let X2 = W and A2 = S. In output regulation

problems it is reasonable to assume that the exosystem dynamics is not perturbed or uncertain,

because otherwise we could — up to a certain point — enlarge the state space W of the exosystem
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to accommodate these perturbations. For example, in the setting of Proposition 2.3, if the period

length of periodic reference signals is not exactly known, we can at least in principle take W =

H = AP (R,H) which contains all continuous periodic H−valued functions (regardless of the

period length).

Remark 7.6. The reason why we require exponential stability of TA1
(t) in Theorem 7.2 is two-

fold. First of all, in this case it is possible to find an upper bound for the norms of additive

bounded perturbations to the generator A1 such that they do not destroy exponential stability of

TA1
(t). Secondly, in this case we can quantitatively specify how much the solution operator Π of

the Sylvester operator equation ΠA2 = A1Π + A3 in D(A2) is perturbed if A1 and A3 undergo

small bounded perturbations. This would not have been possible if we had only required that A1

generates a strongly stable C0−semigroup3. However, we must acknowledge that the requirement

that TA1
(t) is exponentially stable limits the applicability of the results of this chapter in the EFRP

whenever the exosystem (2.2) is infinite-dimensional. This is because in the case of the EFRP,

TA1
(t) will represent the closed loop semigroup, which may be impossible to stabilize exponentially

if dim(W ) = ∞ (see Chapter 4).

7.2 Practical output regulation

In this section we shall apply the abstract perturbation result (Theorem 7.2) to certain practical

output regulation problems. We shall treat the FRP, the EFRP and the FFRP separately, but in

a unified way.

7.2.1 Practical feedforward output regulation

In this subsection we assume that there exist operators K and L which solve the FRP in such a way

that the closed loop system (i.e. TA+BK(t)) is exponentially stable. Our aim is to apply Theorem

7.2 to obtain bounds for the norms of the perturbations to the parameters A,B,C,D,K,L, P

and Q of the plant, the controller and the exosystem for which practical output regulation with a

desired accuracy occurs. In the following we indicate the perturbed operators by primes, and all

perturbations (denoted by ∆R, with R = A,B,C,D,K,L, P or Q) are assumed to be bounded,

3In fact, in this case even the solvability of the Sylvester operator equation ΠA2 = A1Π + A3 in D(A2) under

small perturbations to A1 and A3 is not guaranteed [90].
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linear and additive. For example, A′ = A+ ∆A for some ∆A ∈ L(Z). Moreover, ỹ(t) denotes the

output of the perturbed closed loop system.

Corollary 7.7. Assume that u(t) = Kz(t) + Lw(t) solves the FRP such that L = Γ −KΠ where

Π ∈ L(W,Z) and Γ ∈ L(W,H) solve the regulator equations (3.10). Let ‖TA+BK(t)‖ ≤Me−ωt for

some M ≥ 1 and ω > 0 and all t ≥ 0. Let ε > 0 be given, let 0 ≤ a < ω
M and let A,B,C,D,K,L, P

and/or Q be subject to perturbations. Then whenever these perturbations satisfy

‖A′ +B′K ′ −A−BK‖ ≤ a (7.27a)

M

ω
‖B′L′ + P ′ −BL− P‖ +

M2a

ω2

(
1 − Ma

ω

)−1

‖B′L′ + P ′‖ < ε

3(1 + ‖C ′ +D′K ′‖) (7.27b)

‖C ′ +D′K ′ − C −DK‖ < ε

3(1 + ‖Π‖) (7.27c)

‖D′L′ −Q′ −DL+Q‖ < ε

3
(7.27d)

we have lim supt→∞‖ỹ(t) −Q′TS(t)w(0)‖ < ε‖w(0)‖ for every z(0) ∈ Z and every w(0) ∈W .

Proof. First observe that since Π and Γ solve the regulator equations (3.10), the operators Π and

L = Γ −KΠ solve the following operator equations:

ΠS = (A+BK)Π +BL+ P in D(S) (7.28a)

0 = (C +DK)Π +DL−Q in W (7.28b)

Now, as the control law u(t) = Kz(t)+Lw(t) is applied to the plant, the extended system consisting

of the plant and the exosystem on Z ×W can be described (in the mild sense) as follows:


 ż(t)

ẇ(t)


 =


A+BK BL+ P

0 S





z(t)

w(t)


 , t ≥ 0,


z(0)

w(0)


 ∈ Z ×W (7.29a)

e(t) =
(
C +DK DL−Q

)

z(t)

w(t)


 , t ≥ 0 (7.29b)

This system is of the form (7.1) with X1 = Z, X2 = W , A1 = A + BK, A2 = S, A3 = BL + P ,

C1 = C + DK and C2 = DL − Q. In this notation, by the operator equations (7.28), we have

ΠA2 = A1Π + A3 in D(A2) and C1Π + C2 = 0 in X2. The result then follows immediately from

Theorem 7.2 because TS(t) is an isometry, i.e. N = supt∈R‖TS(t)‖ = 1.
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7.2.2 Practical error feedback output regulation

In this subsection we shall study practical output regulation in the sense of the EFRP. It turns out

that we can again apply Theorem 7.2 to obtain upper bounds for the norms of the perturbations to

the parameters of the plant, the controller and the exosystem such that practical output regulation

with a desired accuracy occurs. Let us recall some operators from Chapter 4:

A =


 A BJ

GC F +GDJ


 , P =


 P

−GQ


 and C =

(
C DJ

)
(7.30)

with obvious domains of definition. In the following we again indicate the perturbed operators

by primes, and all perturbations (denoted by ∆R, with R = A,P, Q and C) are assumed to be

bounded, linear and additive. For example, A′ = A + ∆A for some ∆A ∈ L(Z ×X). Moreover,

we denote by ỹ(t) the output of the perturbed closed loop system.

Corollary 7.8. Let the operators F,G and J in (4.1) be such that ‖TA(t)‖ ≤ Me−ωt for some

M ≥ 1 and ω > 0 and all t ≥ 0. Also assume that there exist Π ∈ L(W,Z) and Λ ∈ L(W,X)

satisfying the extended regulator equations (4.3), so that the dynamic controller (4.1) with these

parameters F,G, J solves the EFRP. Let ε > 0 be given, let 0 ≤ a < ω
M and let the operators

A, C, Q and P be subject to perturbations. Then whenever the perturbations satisfy

‖∆A‖ ≤ a (7.31a)

M

ω
‖∆P‖ +

M2a

ω2

(
1 − Ma

ω

)−1

‖P ′‖ < ε

3(1 + ‖C′‖) (7.31b)

‖∆C‖ <
ε

3(1 + ‖
(

Π
Λ

)
‖) (7.31c)

‖∆Q‖ <
ε

3
(7.31d)

we have lim supt→∞‖ỹ(t) − Q′TS(t)w(0)‖ < ε‖w(0)‖ for every z(0) ∈ Z, x(0) ∈ X and every

w(0) ∈W .

Proof. The extended system consisting of the plant, the controller and the exosystem is given by

ż(t) = Az(t) +BJx(t) + Pw(t) (7.32a)

ẋ(t) = GCz(t) + (F +GDJ)x(t) −GQw(t) (7.32b)

ẇ(t) = Sw(t) (7.32c)

e(t) = y(t) − yref (t) = Cz(t) +DJx(t) −Qw(t) (7.32d)
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on the state space Z ×X ×W . If we let Θ(t) =
( z(t)

x(t)

)
∈ Z ×X and define A, C and P as in the

above, then we can write the extended system (7.32) as


Θ̇(t)

ẇ(t)


 =


A P

0 S





Θ(t)

w(t)


 , t ≥ 0,


Θ(0)

w(0)


 ∈ Z ×X ×W (7.33a)

e(t) =
(
C −Q

)

Θ(t)

w(t)


 , t ≥ 0 (7.33b)

which is precisely of the desired form (7.1) for X1 = Z ×X, X2 = W , A1 = A, A2 = S, A3 = P,

C1 = C and C2 = −Q. Moreover, since Π and Λ satisfy the regulator equations (4.3), it is

elementary to verify that
(

Π
Λ

)
S = A

(
Π
Λ

)
+P in D(S) and C

(
Π
Λ

)
−Q = 0 in W . Hence the operator

(
Π
Λ

)
satisfies the operator equations (7.3). The result now follows immediately by Theorem 7.2.

7.2.3 Practical feedforward-error feedback output regulation

In this subsection we shall study practical output regulation in the sense of the FFRP using an

analysis similar to that in Subsection 7.2.2. Let us recall the following operators from Theorem

5.3:

A =


 A BJ

GC F +GDJ


 , PΓ =


 P +BΓ

G(DΓ −Q)


 and C =

(
C DJ

)
(7.34)

with obvious domains of definition. In the following we again indicate the perturbed operators

by primes, and all perturbations (denoted by ∆R, with R = A,PΓ, Q and C) are assumed to be

bounded, linear and additive. For example, A′ = A + ∆A for some ∆A ∈ L(Z ×X). Moreover,

we denote by ỹ(t) the output of the perturbed closed loop system.

Corollary 7.9. Assume that the operators F,G and J in (5.1) have been chosen such that

‖TA(t)‖ ≤ Me−ωt for some M ≥ 1 and ω > 0 and all t ≥ 0. Also assume that Π ∈ L(W,Z)

and Γ ∈ L(W,H) satisfy the regulator equations (3.10), so that the controller (5.1) with these

parameters F,G, J,Γ solves the FFRP. Let ε > 0 be given, let 0 ≤ a < ω
M and let the operators
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A, C, Q and PΓ be subject to perturbations. If these perturbations satisfy

‖∆A‖ ≤ a (7.35a)

M

ω
‖∆PΓ

‖ +
M2a

ω2

(
1 − Ma

ω

)−1

‖P ′
Γ‖ <

ε

3(1 + ‖C′‖) (7.35b)

‖∆C‖ <
ε

3(1 + ‖Π‖) (7.35c)

‖D′Γ′ −Q′ −DΓ +Q‖ < ε

3
(7.35d)

we have lim supt→∞‖ỹ(t) − Q′TS(t)w(0)‖ < ε‖w(0)‖ for every z(0) ∈ Z, x(0) ∈ X and every

w(0) ∈W .

Proof. The extended system consisting of the plant, the controller and the exosystem is given by

ż(t) = Az(t) +BJx(t) + (P +BΓ)w(t) (7.36a)

ẋ(t) = GCz(t) + (F +GDJ)x(t) +G(DΓ −Q)w(t) (7.36b)

ẇ(t) = Sw(t) (7.36c)

e(t) = y(t) − yref (t) = Cz(t) +DJx(t) + (DΓ −Q)w(t) (7.36d)

on the state space Z ×X ×W . If we let Θ(t) =
( z(t)

x(t)

)
∈ Z ×X and define A, C and PΓ as in the

above, then we can write the extended system (7.36) as


Θ̇(t)

ẇ(t)


 =


A PΓ

0 S





Θ(t)

w(t)


 , t ≥ 0,


Θ(0)

w(0)


 ∈ Z ×X ×W (7.37a)

e(t) =
(
C DΓ −Q

)

Θ(t)

w(t)


 , t ≥ 0 (7.37b)

which is precisely of the desired form (7.1) for X1 = Z ×X, X2 = W , A1 = A, A2 = S, A3 = PΓ,

C1 = C and C2 = DΓ − Q. Moreover, since Π and Γ satisfy the regulator equations (3.10), it is

elementary to verify that
(

Π
0

)
S = A

(
Π
0

)
+ PΓ in D(S) and C

(
Π
0

)
+ DΓ − Q = 0 in W . Hence

the operator
(

Π
0

)
satisfies the operator equations (7.3). The result now follows by Theorem 7.2

because ‖Π‖ = ‖
(

Π
0

)
‖ in any reasonable product space norm.

7.3 Applications

In this section we shall present some applications of the above theory.
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7.3.1 Practical error feedback regulation under perturbations to the in-

ternal model

As we have seen in Chapter 6, error feedback controllers (4.1) utilizing the internal model struc-

ture achieve a degree of robustness in output regulation if the closed loop system is exponentially

stable and if none of the perturbations affect the system operator F of the controller. In the

all-finite-dimensional case it is well-known that, more precisely, the reduplication of the maximal

cyclic component of the exosystem matrix S in the controller’s system matrix F cannot be per-

turbed if robust output regulation is to be maintained [24, 29, 32, 93]. In this subsection we show

that practical output regulation with a prescribed accuracy can sometimes still be achieved if the

perturbations to the critical parts of F are sufficiently small.

Let us consider the Francis-type error feedback controllers of Subsection 6.5.1 (cf. Lemma 6.52).

Instead of those in (6.78) we are using the following perturbed parameters F ′, G, J in a dynamic

controller (4.1) on the state space X = Z ×Wa:

F ′ =


A+BK −G1C Pa +B(Γ −KΠ) +G1Qa

−G2C Sa + ∆S +G2Qa


 , G =


G1

G2


 , J =

(
K Γ −KΠ

)

(7.38)

Our goal is to achieve practical output regulation of signals generated the exosystem (2.2) which

utilizes the (unperturbed) system operator S, with σ(Sa) = σ(S) as in Lemma 6.52.

Let the assumptions of Lemma 6.52 be satisfied for ∆S = 0 and assume that the closed loop

operator A =
(

A BJ
GC F ′

)
generates an exponentially stable C0−semigroup whenever ∆S = 04. More

specifically, for ∆S = 0 we require ‖TA(t)‖ ≤ Me−ωt for some M ≥ 1, ω > 0 and all t ≥ 0. Since

this is a practical error feedback (EFRP) regulation problem, we can use Corollary 7.8 directly: If

0 ≤ a < ω
M and if the perturbation ∆S to the operator Sa in F ′ both satisfy

‖∆S‖ ≤ a (7.39a)

M2a

ω2

(
1 − Ma

ω

)−1
∥∥∥∥
( P

−G1Q
−G2Q

)∥∥∥∥ <
ε

(1 + ‖C‖) (7.39b)

then lim supt→∞‖ỹ(t)−QTS(t)w(0)‖ < ε‖w(0)‖ for every z(0) ∈ Z, x(0) ∈ X and every w(0) ∈W .

Here ỹ(t) is the output of the plant when it is subject to the perturbed control and ε > 0 is

the desired accuracy. Observe that in the above we may assume ‖∆A‖ = ‖∆S‖ because only

4It is possible that this closed loop stability assumption can only be met for a finite-dimensional exosystem (2.2)

in practice; see Chapter 4.
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the operator Sa in F ′ (in A) is perturbed; similarly ‖C′‖ = ‖C‖ = ‖C‖ because D = 0 under

the assumptions of Lemma 6.52. Moreover, it is clearly possible to replace the factors ε
3 in the

inequalities (7.31) by ε since only A is subject to perturbations5.

We shall now reward the patient reader with a real, albeit very simple, simulation example

which demonstrates the use of the bounds (7.39) in practice; these bounds are new even in this

simple finite-dimensional situation.

Example 7.10. Consider the stable finite-dimensional SISO system

ż(t) = −4z(t) + 2u(t) + 3, z(0) = 1, t ≥ 0 (7.40a)

y(t) = 5z(t) (7.40b)

Our goal is to study a set point control problem where asymptotic tracking of the constant reference

signal yref (t) = 1 as t→ ∞, in spite of the constant disturbance Udist(t) = 3, is desired.

We can formulate the above control problem in our framework by choosing Z = H = W = C

and the parameters of the plant (1.1) as A = −4, B = 2, C = 5,D = 0. The parameters of the

exosystem (2.2) are chosen as S = 0, Q = 1, P = 3, w(0) = 1.

According to the robustness theory of Chapter 6, for the nominal case ∆S = 0 we can regard

the elements Pa and Qa in the matrix F = F ′ of (7.38) as design parameters (i.e. they need not

coincide with the above choices of P and Q in the exosystem) as long as closed loop stability is

achieved and the controller has the internal model structure. Since the plant is already stable, it is

convenient to take Wa = C, Pa = 0, Qa = Q, Sa = S, K = 0, G1 = 0 and G2 = −1. Then we

can choose the unperturbed operator F =
(

A BΓ
−G2C S+G2Q

)
such that Γ and Π satisfy the regulator

equations

ΠS = AΠ +BΓ (7.41a)

CΠ = Q (7.41b)

For this very simple problem Π and Γ are elementary to work out; we have Π = −A−1BΓ = 1
5 and

Γ = −[CA−1B]−1Q = 2
5 . In conclusion we obtain the nominal controller (4.1) with state space

5Here the inequalities (7.31c) and (7.31d) are satisfied regardless of the choice of ε > 0. Hence the ε
3
-argument

in the equations (7.13)-(7.17) in the proof of Theorem 7.2 can be reduced to an ε−argument utilizing the triangle

inequality only once.
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X = C2 and the parameters

F =


−4 4

5

5 −1


 , G =


 0

−1


 , J =

(
0 2

5

)
(7.42)

The closed loop operator is given by

A =


 A BJ

GC F


 =




−4 0 4
5

0 −4 4
5

−5 5 −1


 (7.43)

which is exponentially stable such that ‖TA(t)‖ ≤ Me−ωt approximately for M = 1.5 and ω = 1.

Figure 7.1 shows a MATLAB simulation for the controller’s initial state x(0) =
(

2
3

)
; it is obvious

that asymptotic tracking of the desired constant reference signal occurs in spite of the disturbance.

0 2 4 6 8 10
1

2

3

4

5

6

7
The plant output

Figure 7.1: The nominal controller (7.42) solves the set point control problem.

Now let us fix the desired tracking accuracy as ε = 1
2 and introduce nonzero perturbations

∆S ∈ C to the element Sa = 0 in the (2, 2)−block of the matrix F in (7.42). We obtain the

perturbed controller matrix F ′ =
(−4 4

5

5 −1+∆S

)
. For this particularly simple example it is easy apply

the inequalities (7.39) and work out an upper bound for the constant a (as a function of ε) such

that all perturbations satisfying |∆S | ≤ a are tolerated. We have that approximately a < 0.0115 is

sufficient; this bound clearly also satisfies a < ω
M . Figure 7.2 presents a MATLAB simulation of a

critical case ∆S = i0.0115 for the same initial values as in the above. Clearly the absolute value of

the tracking error in Figure 7.2 is bounded by ε‖w(0)‖ = ε, and even ε
2 , which illustrates the fact

that our bounds are not sharp (as has been indicated in Remark 7.3).

Let us finally enlarge the perturbation to ∆S = 0.4 + 0.5i. Now |∆S | is larger than the above

bound for a. A MATLAB simulation for the same initial values as in the above is presented in
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The real part of the plant output for delta
s
 = 0.0115i

0 1 2 3 4 5 6 7 8 9 10
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

The imaginary part of the plant output for delta
s
 = 0.0115i
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The absolute value of the tracking error for delta
s
 = 0.0115i

Figure 7.2: Small enough perturbations to the internal model result in practical output regulation

with a desired accuracy.

Figure 7.3. In this case the closed loop system remains stable, but the absolute value of the tracking

error e(t) is not bounded by ε.

It is illustrative to view the above results in light of the inequality

‖ỹ(t) − yref (t)‖ = ‖CΘ′(t) −QTS(t)w(0)‖ (7.44)

≤ ‖CΘ′(t) − CΘ(t)‖ + ‖CΘ(t) −QTS(t)w(0)‖ (7.45)

where Θ(t) =
( z(t)

x(t)

)
∈ Z ×X, t ≥ 0, is the state of the closed loop system and Θ′(t) denotes its

perturbation when ∆S 6= 0. Roughly stated, small bounded perturbations ∆S to the operator Sa

in F ′ result in small perturbations to the closed loop state; hence the first term in (7.45) is small on

the whole nonnegative real axis. Since by assumption the nominal plant achieves output regulation,

the second term in (7.45) decays to zero as t→ ∞. Altogether lim supt→∞‖CΘ′(t)−QTS(t)w(0)‖ is

small regardless of the initial states Θ(0) and w(0), which is precisely what is required for practical

output regulation.
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The real part of the plant output for delta
s
 = 0.4+0.5i
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 = 0.4+0.5i

Figure 7.3: Large enough perturbations to the internal model destroy practical output regulation

with a desired accuracy.

7.3.2 Practical feedforward regulation of periodic signals in generalized

Sobolev spaces

In this subection we shall consider a practical aspect of the feedforward regulation problem discus-

sed in Section 3.5, where the reference signals are in some of the generalized Sobolev spaces

H = H(fn, ωn). As in Section 3.5, here we shall also assume that the plant is a SISO sys-

tem, that A + BK generates an exponentially stable C0−semigroup on Z, and that HK(iωn) =

(C + DK)R(iωn, A + BK)B + D 6= 0 for all n ∈ I. Moreover, as in Section 3.5 here we take

W = H, S = S|H, Q = δ0 ∈ L(H,C), P ∈ L(H, Z) and w(0) = yref ∈ W in accordance with

Proposition 2.3.

In Theorem 3.35 we showed that under the above assumptions the control law u(t) = Kz(t) +

Lw(t) where

L =
∑

n∈I

HK(iωn)−1[1 −Hd(n)]〈·, φn〉 (7.46)
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solves the FRP if and only if L ∈ L(H,C). This in turn was shown to be equivalent to the condition

(3.55). Here φn(x) = eiωnx for each n ∈ I and x ∈ R, and 〈·, ·〉 is the L2 inner product on H.

Unfortunately, if the index set I is not finite, then in practice the series expansion (7.46) for

L cannot be precisely evaluated, and we cannot apply the control law u(t) = Kz(t) + Lw(t)

which would be required for exact output regulation. On the other hand, we can use the obvious

truncation approximation LN for L defined by

LN =
∑

|n|≤N

HK(iωn)−1[1 −Hd(n)]〈·, φn〉, N ∈ N (7.47)

An important question immediately arises: How big must N be in order that we achieve practical

output regulation with some given accuracy ε > 0? The following result answers this question. As

before, we let ỹ(t) denote the output of the plant subject to a perturbed control law.

Corollary 7.11. Let ‖TA+BK(t)‖ ≤ Me−ωt for some M ≥ 1 and ω > 0 and all t ≥ 0. Let ε > 0

be given and let L ∈ L(H,C) and LN ∈ L(H,C) be as in the above. If u(t) = Kz(t) + LNw(t)

where N is such that

√ ∑

|n|>N

|HK(iωn)|−2|1 −Hd(n)|2f−2
n < min

{ εω

2M(1 + ‖B‖)(1 + ‖C +DK‖) ,
ε

2(1 + ‖D‖)
}

(7.48)

then lim supt→∞‖ỹ(t) − yref (t)‖ < ε‖yref‖H for every z(0) ∈ Z and every yref ∈ H.

Proof. Since in this case we may let a = 0 in Corollary 7.7, it is sufficient to show that M
ω ‖BLN −

BL‖ < ε
2(1+‖C+DK‖) and ‖DLN −DL‖ < ε

2 ; observe that since only L is subject to perturbations

in the entire control system, we may trivially change the factor ε
3 to ε

2 in the bounds (7.27) in

analogy with the procedure of Subsection 7.3.1. Hence it is sufficient to show that

‖LN − L‖L(H,C) < min
{ εω

2M(1 + ‖B‖)(1 + ‖C +DK‖) ,
ε

2(1 + ‖D‖)
}

(7.49)

A direct calculation shows that for every yref ∈ H

|LNyref − Lyref | ≤
∑

|n|>N

|HK(iωn)|−1|1 −Hd(n)|f−1
n fn|〈yref , φn〉| (7.50)

≤
√ ∑

|n|>N

|HK(iωn)|−2|1 −Hd(n)|2f−2
n

√ ∑

|n|>N

f2
n|ŷref (n)|2 (7.51)

< min
{ εω

2M(1 + ‖B‖)(1 + ‖C +DK‖) ,
ε

2(1 + ‖D‖)
}
‖yref‖H (7.52)
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by the Schwartz inequality and the fact that

√∑

n∈I

|〈yref , eiωn·〉L2 |2f2
n =

√∑

n∈I

|ŷref (n)|2f2
n = ‖yref‖H (7.53)

This establishes the result.

Remark 7.12. The bound (7.48) in Corollary 7.11 is not optimized. For instance, if B 6= 0, C 6= 0

and D = 0, then it is clearly sufficient that

√ ∑

|n|>N

|HK(iωn)|−2|1 −Hd(n)|2f−2
n <

εω

M‖B‖‖C‖ (7.54)

as can be easily seen by modifying the proof of Theorem 7.2, in particular the argument in (7.13)-

(7.17), appropriately.

In the case that K = 0 and P = 0 (i.e. the exponentially stable disturbance-free case) the

above procedure results in the remarkably simple approximative feedforward control law u(t) =
∑

|n|≤N
dyref (n)
H(iωn) e

iωnt, t ≥ 0, for the practical output regulation of any yref ∈ H. We conclude this

discussion by pointing out that uncertainties in the values HK(iωn) and Hd(n), for |n| ≤ N , can

also be easily accommodated in the above bounds because ‖L̃N − L‖ ≤ ‖L̃N − LN‖ + ‖LN + L‖.

Here the operator L̃N incorporates these uncertainties and ‖L̃N − LN‖ needs to be estimated.



Chapter 8

Solving the regulator equations

By now the reader has without doubt realized that the solvability of the regulator equations

(3.10) and the extended regulator equations (4.3) is crucial for the existence and construction of

controllers achieving output regulation of bounded uniformly continuous exogenous signals. We

have conducted a preliminary study of the solution of the regulator equations (3.10) in the SISO

case in Section 3.5 in order to convince the reader that our treatment of infinite-dimensional

exosystems is indeed useful. On the other hand, in this chapter we shall present considerably

more general methods for the solution of these regulator equations (3.10). Since the extended

regulator equations (4.3) play the role of the regulator equations (3.10) for an extended system

with zero control and zero feedthrough (see the proof of Theorem 4.4), the same methods apply

for the extended regulator equations (4.3) with obvious changes. Moreover, as seen in Chapter 4

and Chapter 6, the solvability of the regulator equations (3.10) guarantees the existence of such

operators F,G and J for which the extended regulator equations (4.3) also have a solution. Hence

the equations (4.3) do not have to be explicitly solved in many output regulation applications;

restricting our attention to the equations (3.10) is thus justified.

The regulator equations (3.10) first appeared in the finite-dimensional work of Francis and

Wonham [29, 30, 31], and their solvability has also been studied in that setting by Hautus [37]

(among others). For infinite-dimensional linear systems (1.1), with D = 0 and dim(H) < ∞,

and for finite-dimensional exosystems (2.1), Byrnes et al. [12] showed that the solvability of the

regulator equations (3.10) is guaranteed (under a certain additional assumption on the structure of

σ(A)) for every P ∈ L(W,Z) and every Q ∈ L(W,H) whenever no eigenvalue of S is a transmission

197
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zero of the plant, i.e. iω ∈ σ(S) implies det(H(iω)) 6= 0 for all ω ∈ R. Here H(λ) = CR(λ,A)B for

each λ ∈ ρ(A). It should be emphasized, however, that in a slightly different form the above-cited

result of Byrnes et al. also appears in the earlier work of Schumacher (cf. Proposition 3.2 of [80])

where the regulator equations (3.10) are written in a geometric form.

On the other hand, if the exosystem is not finite-dimensional, then the nonexistence of trans-

mission zeros on σ(S) is in general not sufficient for the solvability of the regulator equations

(3.10). This was first suggested in [10, 11] where some examples of output regulation for infinite-

dimensional exosystems were studied. In Section 3.5 of this thesis we made the formal arguments

in [10, 11] mathematically rigorous, whereas in Section 3.6 we illustrated the necessity of no-

nexistence of certain system zeros on σ(S) for output regulation of bounded uniformly continuous

signals. The key implication of these results is that also the high frequency (i.e. |ω| → ∞) beha-

viour of the transfer function of the (stabilized) plant must in a sense be “compatible” with that

of the exogenous signals to be regulated, in order that the regulator equations (3.10) possess a

solution.

The purpose of the present chapter is to extend the solvability criteria of Section 3.5 for the

two (separate) cases in which σ(S) is not necessarily discrete or H 6= C, under the following

standing assumption which covers all of our cases but which can sometimes also be weakened in

applications1:

Assumption 8.1. There exists K ∈ L(Z,H) such that iR ⊂ ρ(A+BK).

Clearly Assumption 8.1 holds whenever the pair (A,B) is exponentially stabilizable by K,

because then σ(A + BK) ⊂ { z ∈ C | <(z) < −ε } for some ε > 0. However, the exponential

stabilizability of the pair (A,B) is not necessary for the above kind of removability of the imaginary

spectrum. In fact, there exist pairs (A,B) which can only be stabilized strongly by a bounded

feedback K, such that σ(A+BK) ∩ iR = ∅ but ±i∞ are points of accumulation for σ(A+BK).

Such pairs (A,B) also satisfy Assumption 8.1; we refer the reader to Section 6.7 for an example

of this phenomenon. Finally, we point out that K = 0 is also possible in Assumption 8.1, and

we emphasize that A + BK does not have to generate a strongly stable C0−semigroup under

Assumption 8.1.

1In particular, the whole imaginary spectrum need not always be removable in such applications in which the

exosystem is very simple (e.g. finite-dimensional).
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As was done in Section 3.5, also here we will explicitly use the feedback operator K of As-

sumption 8.1 in the solution of the regulator equations (3.10). This approach is quite natural,

because often K can be chosen as a stabilizing state feedback for the plant, and such an operator

is also needed for output regulation purposes. This was the case, for example, in Section 3.5 where

the regulator equations (3.10) were solved for exponentially stabilizable SISO systems and perio-

dic signals in H(fn, ωn), with the help of an exponentially stabilizing state feedback operator K.

However, it is often also necessary to transform the obtained solvability criteria to such conditions

which only utilize the original data or to such conditions which are readily derivable from these.

Before outlining the contents of this chapter, we present a result which is very useful in this respect

throughout this chapter2.

Theorem 8.2. Let s ∈ ρ(A) ∩ ρ(A + BK), and denote H(s) = CR(s,A)B + D and HK(s) =

(C +DK)R(s,A+BK)B +D as usual. If H(s)−1 ∈ L(H), then HK(s)−1 ∈ L(H) and

HK(s)−1 = (I −KR(s,A)B)H(s)−1 (8.1)

Proof. We have to verify that HK(s)[I −KR(s,A)B]H(s)−1 = I, or, equivalently, that

HK(s)[I −KR(s,A)B] = H(s) (8.2)

In order to do that, first observe that R(s,A) = R(s,A+BK)−R(s,A+BK)BKR(s,A). Hence

HK(s)[I −KR(s,A)B] = [(C +DK)R(s,A+BK)B +D][I −KR(s,A)B] (8.3)

= (C +DK)R(s,A+BK)B +D (8.4)

− (C +DK)R(s,A+BK)BKR(s,A)B −DKR(s,A)B (8.5)

= (C +DK)[R(s,A+BK) −R(s,A+BK)BKR(s,A)]B (8.6)

−DKR(s,A)B +D (8.7)

= (C +DK)R(s,A)B −DKR(s,A)B +D (8.8)

= H(s) (8.9)

and the proof is complete.

This chapter is organized as follows.

2This result was suggested to the author by Prof. Ruth Curtain (personal communication).



CHAPTER 8. SOLVING THE REGULATOR EQUATIONS 200

Section 8.1: We shall present such a method for the solution of the regulator equations (3.10) which applies

for SISO plants (1.1) (i.e. H = C) without any additional assumptions on the exosystem

(2.2), in particular on σ(S). The results of this section generalize those of Section 3.5 and

[10, 11, 12]. They are contained in [40].

Section 8.2: We shall present two results showing how the regulator equations (3.10) can be solved if the

plant (1.1) is not a SISO system. In this case we have to assume that either σ(S) is discrete

or W = HAP (H, fn, ωn) (see Chapter 2). Our results generalize those of Section 3.5 and

those in [10, 11, 12] by using the ideas of Section 8.1. They have not been submitted for

publication.

Section 8.3: We shall discuss some shortcuts and simplifications for the solution of the regulator equations

(3.10). The results of this section have been pointed to the author by Prof. Ruth Curtain

(personal communication).

8.1 A general method for SISO plants

In this section we shall present such a method for the solution of the regulator equations (3.10)

which applies for SISO plants (1.1) (i.e. H = C) only, but without any additional assumptions on

the exosystem (2.2), in particular on σ(S). Our strategy is based on the general decomposition

W = ∪n∈NWn of the state space W of the exosystem (2.2) into the maximal spectral subspaces

Wn = M([−in, in]), n ∈ N, as given in Lemma A.83. We shall first solve the regulator equations

(3.10) in Wn ⊂ D(S) for each n ∈ N. This is relatively easy to do because of the boundedness

of Sn = S|Wn
. Lemma A.8 then guarantees that in a sense Sn → S as n → ∞. If the limiting

behaviour, as n → ∞, of the corresponding sequence of solutions (Πn)n∈N and (Γn)n∈N of the

regulator equations (3.10) in Wn is sufficiently good, then Π = limn→∞ Πn and Γ = limn→∞ Γn

(strong limits) solve the regulator equations (3.10) in the entire spaces D(S) and W .

The following two lemmata form the basis of our approach. The first one follows easily from

well-known results [8, 88, 90], but we reproduce a proof here for the sake of completeness.

Lemma 8.3. Let Wn = M([−in, in]) and Sn = S|Wn
for all n ∈ N be as in Lemma A.8. Let

n ∈ N and let ∆ ∈ L(Wn, Z) be arbitrary. Let γn denote a smooth contour enclosing σ(Sn) in

3See also Proposition A.9 for a concrete example of how the elements of Wn are constructed.
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such a way that it and its interior do not contain any points in σ(A + BK), and γn is traversed

counterclockwise. Then the bounded linear operator Πn : Wn → Z defined by

Πnw =
1

2πi

∮

γn

R(λ,A+BK)∆R(λ, Sn)wdλ ∀w ∈Wn (8.10)

is the unique solution of the operator equation ΠSn = (A+BK)Π + ∆ in Wn.

Proof. By our assumptions on K the contour γn can be chosen so that the operator Πn is well

defined. It is also evident that Πn ∈ L(Wn, Z) and that Πn(Wn) ⊂ D(A + BK). For every

λ ∈ ρ(A+BK) we have (A+BK)R(λ,A+BK) = λR(λ,A+BK) − I. Hence

(A+BK)Πnw =
1

2πi

∮

γn

λR(λ,A+BK)∆R(λ, Sn)wdλ− 1

2πi

∮

γn

∆R(λ, Sn)wdλ (8.11)

= ΠnSnw − ∆w ∀w ∈Wn (8.12)

because similarly R(λ, Sn)Sn = λR(λ, Sn) − I for each λ ∈ ρ(Sn), and so

ΠnSnw =
1

2πi

∮

γn

λR(λ,A+BK)∆R(λ, Sn)wdλ− 1

2πi

∮

γn

R(λ,A+BK)∆wdλ (8.13)

=
1

2πi

∮

γn

λR(λ,A+BK)∆R(λ, Sn)wdλ ∀w ∈Wn (8.14)

where the fact that R(λ,A + BK)∆w is analytic inside an on γn has been used. The uniqueness

of the solution follows from the boundedness of Sn and the fact that σ(Sn) ∩ σ(A + BK) ⊂

σ(S) ∩ σ(A+BK) ⊂ σ(A+BK) ∩ iR = ∅, according to the results in [3, 90].

Lemma 8.4. Let the sequences (Wn)n∈N and (Sn)n∈N be as in Lemma 8.3. Let n ∈ N. Define the

linear operators Fn ∈ L(Wn) and Pn ∈ L(Wn,C) by

Fnw =
1

2πi

∮

γn

(C +DK)R(λ,A+BK)BR(λ, Sn)wdλ+Dw ∀w ∈Wn (8.15)

Pnw =
1

2πi

∮

γn

(C +DK)R(λ,A+BK)PR(λ, Sn)wdλ ∀w ∈Wn (8.16)

where the contour γn is as in Lemma 8.3. If Fn is boundedly invertible, i.e. F−1
n ∈ L(Wn), then

the following define operators in L(Wn,C) and L(Wn, Z) respectively:

Lnw = (Q− Pn)F−1
n w ∀w ∈Wn (8.17)

Πnw =
1

2πi

∮

γn

R(λ,A+BK)(BLn + P )R(λ, Sn)wdλ ∀w ∈Wn (8.18)

Moreover, Πn and Γn = Ln +KΠn ∈ L(Wn,C) solve the regulator equations (3.10) in Wn.
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Proof. Clearly Fn is indeed a bounded linear operator Wn → Wn because Wn is invariant for

R(λ, Sn) and because the plant is assumed to be SISO. Similarly Pn ∈ L(Wn,C) and Πn ∈

L(Wn, Z). Since Sn ∈ L(Wn) and since Ln ∈ L(Wn,C), by Lemma 8.3 the operator Π = Πn

satisfies the equation ΠSn = (A+BK)Π +BLn + P in D(Sn) = Wn.

On the other hand, for each w ∈Wn we have that

(C +DK)Πnw +DLnw =
1

2πi

∮

γn

(C +DK)R(λ,A+BK)(BLn + P )R(λ, Sn)wdλ (8.19)

+DLnw (8.20)

= Ln

[ 1

2πi

∮

γn

(C +DK)R(λ,A+BK)BR(λ, Sn)wdλ+Dw
]

(8.21)

+
1

2πi

∮

γn

(C +DK)R(λ,A+BK)PR(λ, Sn)wdλ (8.22)

= LnFnw + Pnw (8.23)

= (Q− Pn)F−1
n Fnw + Pnw (8.24)

= Qw (8.25)

since the plant (1.1) is assumed to be a SISO system. Consequently Πn and Γn = Ln +KΠn solve

the regulator equations (3.10) in Wn.

Before proceeding any further, we hasten to show that the bounded invertibility of the operator

Fn in Lemma 8.4 holds provided that the system, which is obtained after the application of the

state feedback K to the plant, does not have transmission zeros on σ(Sn).

Proposition 8.5. Let K and the sequences (Wn)n∈N and (Sn)n∈N be as in the above. Let n ∈ N

and assume that HK(s) = (C+DK)R(s,A+BK)B+D 6= 0 for all s ∈ σ(Sn). Then the operator

Fn ∈ L(Wn) defined in (8.15) is boundedly invertible and thus the regulator equations (3.10) are

solvable in Wn.

Proof. By definition, for each w ∈Wn, we have that

Fnw =
1

2πi

∮

γn

(C +DK)R(λ,A+BK)BR(λ, Sn)wdλ+Dw (8.26)

=
1

2πi

∮

γn

[
(C +DK)R(λ,A+BK)B +D

]
R(λ, Sn)wdλ (8.27)

=
1

2πi

∮

γn

HK(λ)R(λ, Sn)wdλ (8.28)
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because w = 1
2πi

∮
γn
R(λ, Sn)wdλ for all w ∈ Wn. Since HK is an analytic scalar function in

the neighbourhood of σ(Sn), for which HK(s) 6= 0 for all s ∈ σ(Sn), by the standard results in

operational calculus, e.g. Theorem V.8.2 in [86], Fn is a bijection on Wn. Since Fn ∈ L(Wn), by

the Open Mapping Theorem (see e.g. Theorem IV.5.5 in [86]) Fn must be boundedly invertible on

Wn.

Corollary 8.6. Let K and the sequences (Wn)n∈N and (Sn)n∈N be as in the above. Let n ∈ N and

assume that σ(Sn) ⊂ ρ(A) ∩ ρ(A + BK). If H(s) = CR(s,A)B +D 6= 0 for all s ∈ σ(Sn), then

the operator Fn ∈ L(Wn) defined in (8.15) is boundedly invertible and thus the regulator equations

(3.10) are solvable in Wn.

Proof. This result follows from Proposition 8.6 and Theorem 8.2.

It is easy to see that with the definitions and notation of Lemma 8.4 we have Πn+1|Wn
= Πn

and Γn+1|Wn
= Γn, provided that the assumptions of Lemma 8.4 are satisfied for every n ∈ N.

In this case we can define a linear operator Π0 : ∪n∈NWn → Z by Π0w = Πnw for w ∈ Wn and

a linear operator Γ0 : ∪n∈NWn → C by Γ0w = Γnw for w ∈ Wn. As we shall see below, this

construction allows us to solve the regulator equations (3.10) in the dense subspace ∪n∈NWn of

W . It is then only a matter of continuous extension (if it exists) to solve these equations in D(S)

and W respectively:

Theorem 8.7. Let the assumptions of Lemma 8.4 hold for all n ∈ N. Assume (in the above

notation) that supn∈N‖Γn‖ < ∞ and supn∈N‖Πn‖ < ∞. Define Π ∈ L(W,Z) and Γ ∈ L(W,C)

as the unique continuous extensions of the operators Π0 and Γ0 above. Then Π and Γ solve the

regulator equations (3.10).

Proof. It is clear that for every w ∈ ∪n∈NWn ⊂ D(S) we have

ΠSw = ΠSkw = ΠkSkw = AΠkw +BΓkw + Pw = AΠw +BΓw + Pw (8.29)

Qw = CΠkw +DΓkw = CΠw +DΓw (8.30)
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for some k ∈ N. Then for every t ≥ 0 and every w ∈ ∪n∈NWn ⊂ D(S) we also have that

ΠTS(t)w − TA(t)Πw =

∣∣∣∣
t

τ=0

TA(t− τ)ΠTS(τ)wdτ (8.31)

=

∫ t

0

d

dτ
TA(t− τ)ΠTS(τ)wdτ (8.32)

=

∫ t

0

TA(t− τ)[ΠS −AΠ]TS(τ)wdτ (8.33)

=

∫ t

0

TA(t− τ)(BΓ + P )TS(τ)wdτ (8.34)

because TS(τ)w ∈ D(S) and ΠTS(τ)w ∈ D(A) for every τ ≥ 0. Since ∪n∈NWn is dense in W , we

have by the proof of Lemma 3.5 that

ΠTS(t)w = TA(t)Πw +

∫ t

0

TA(t− τ)(BΓ + P )TS(τ)wdτ ∀w ∈W ∀t ≥ 0 (8.35)

We next show that Π(D(S)) ⊂ D(A). Let w ∈ D(S). Then for h > 0

TA(h)Πw − Πw

h
=
TA(h)Πw − ΠTS(h)w

h
+

ΠTS(h)w − Πw

h
(8.36)

= −
∫ h

0
TA(h− τ)(BΓ + P )TS(τ)wdτ

h
+

ΠTS(h)w − Πw

h
(8.37)

which by the boundedness of Π shows that Πw ∈ D(A); also observe that the function t →

(BΓ + P )TS(t)w is continuously differentiable (because w ∈ D(S)) so that the convolution in

(8.37) is differentiable (cf. Proposition 1.3.6 in [2]). Taking the limit h → 0+, we see that

AΠw = −(BΓ + P )w + ΠSw for each w ∈ D(S).

By continuity and density, also the equation (8.30) must hold in W . Consequently Π and Γ

solve the regulator equations (3.10).

Remark 8.8. Theorem 8.7 immediately also gives the operator L = Γ − KΠ (as a continuous

extension of the operators Ln) which is important in the solution of the FRP (see Chapter 3) and

the EFRP (see Chapter 4).

At this stage the reader may wonder when (if ever) and how the continuous extension required

in Theorem 8.7 can actually be done. Therefore, it is worthwhile to conclude this section with a

discussion on this topic. There are three issues which should be pointed out in this context:

1. If HK(iω) 6= 0 for all ω ∈ R, then the assumptions supn∈N‖Γn‖ < ∞ and supn∈N‖Πn‖ < ∞

of Theorem 8.7 are also necessary for the solvability of the regulator equations (3.10). In
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fact, if Π ∈ L(W,Z) and Γ ∈ L(W,C) solve the equations (3.10), then for all n ∈ N

ΠSn = (A+BK)Π +BL+ P in Wn (8.38a)

Q = (C +DK)Π +DL in Wn (8.38b)

for L = Γ −KΠ ∈ L(W,C). But the equations (8.38) have a unique solution by the above.

Indeed, we have L|Wn
= Ln and Π|Wn

= Πn as in (8.17) and (8.18). Since Π and L are

bounded on W , we must have supn∈N‖Γn‖ <∞ and supn∈N‖Πn‖ <∞.

2. If it is sufficient to consider approximations of the reference/disturbance signals in the sense

that we can take W = Wn for some n ∈ N, then no continuous extension has to be done at

all. In practice one always has to accept compromises in terms of output regulation accuracy,

and therefore an approximation of the exogenous signals is usually viable. A sensible and

useful way to approximate general bounded uniformly continuous functions is provided by

Lemma A.8 and Proposition A.9 — the idea is to utilize convolutions with suitable Fejér

kernels if W ↪→ BUC(R,C). This approximation procedure allows us to explicitly construct

the function spaces Wn. Moreover, according to Proposition 8.5 and Lemma 8.4 in this

case it is sufficient for the solvability of the regulator equations (3.10) that HK(iω) 6= 0 for

ω ∈ [−n, n]. In many cases this condition can be verified using knowledge of the original

plant data only; see Corollary 8.6.

3. If A+BK generates an exponentially stable C0−semigroup, if we take W = H = H(fn, ωn)

for some sequence (fn)n∈I , if Q = δ0 ∈ L(H,C) and if HK(iωn) 6= 0 for all n ∈ I, then it is

easy to see that the methods of Section 3.5 apply directly. Indeed, if we denote φn(x) = eiωnx

for all n ∈ I and x ∈ R and if we set Hd(n) = (C + DK)R(iωn, A + BK)Pφn, then the

operator Ln of (8.17) is given by

Lnw = Ln

∑

k∈In

〈w, φk〉L2φk =
∑

k∈In

HK(iωk)−1[1 −Hd(k)]〈w, φk〉L2 (8.39)

for all w ∈ Wn = span{ eiωk· | k ∈ In } (the index set In is finite). This precisely what

we obtained in Section 3.5; in particular, the condition (3.55) for the sequence (fn)n∈I and

the signals guarantees the uniform boundedness of ‖Ln‖. Exponential stability of TA+BK(t)

subsequently guarantees the existence of a bounded Π, as in Theorem 3.35. In conclusion,

verifiable sufficient conditions exist for ‖Πn‖ and ‖Γn‖ to be uniformly bounded in certain

interesting applications.
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In contrast to Section 3.5, in Theorem 8.7 there are no restrictions on σ(S). However, if σ(S) is

discrete or if W is some generalized Sobolev space HAP (H, fn, ωn) of functions, then, as we shall

see in Section 8.2 below, the above uniform boundedness requirement for ‖Πn‖ and ‖Γn‖ reduces

to the strong convergence of certain series of operators. It is remarkable that in this case we can

dispense with the assumption H = C, which was also posed in Section 3.5 for the sake of simplicity.

8.2 A general method for exosystems with additional struc-

ture

In this section we shall present two results showing how the regulator equations (3.10) can be

solved if the exosystem (2.2) has some additional structure, but the plant (1.1) is not necessarily a

SISO system. Our method generalizes that in Section 3.5 while employing ideas from Section 8.1.

Recall that according to the standing Assumption 8.1 of this chapter the imaginary spectrum of

A can be removed by the state feedback operator K ∈ L(Z,H).

Theorem 8.9. Assume that σ(S) = { iωn | n ∈ I }, I ⊂ Z, is a discrete set and that HK(iωn) =

(C + DK)R(iω,A + BK)B + D is a boundedly invertible operator H → H for all n ∈ I. Let

Pn denote the spectral projection corresponding to iωn ∈ σ(S) for every n ∈ I. If the sequences

(LN )N≥1 ⊂ L(W,H) and (ΠN )N≥1 ⊂ L(W,Z) of operators defined by

LNw =
∑

|n|≤N

HK(iωn)−1
[
Q− (C +DK)R(iωn, A+BK)P

]
Pnw, ∀w ∈W,∀N ∈ N (8.40)

ΠNw =
∑

|n|≤N

R(iωn, A+BK)(BLN + P )Pnw, ∀w ∈W,∀N ∈ N (8.41)

are uniformly bounded in N , then the operators Π = limN→∞ ΠN and Γ = limN→∞[KΠN + LN ]

(limits in the strong operator topology) exist in L(W,Z) and L(W,H) repectively, and they solve

the regulator equations (3.10).

Proof. Since σ(S) is discrete, by Gelfand’s Theorem (Corollary 4.4.8 in [2]) for every n ∈ I we have

that PnS = iωnPn = SPn. Moreover, since for every n ∈ N the interval [−in, in] ⊂ iR is compact

and since σ(S) is discrete, the maximal spectral subspace (cf. Lemma A.8) Wn = M([−in, in]) =

span{ ranPk | k ∈ In } for some finite set In of indices. Additionally, w =
∑

k∈In
Pkw for each

w ∈Wn (see Theorem 9.1 in [86]). Then it is not difficult to see that for each n ∈ N there exists a



CHAPTER 8. SOLVING THE REGULATOR EQUATIONS 207

(smallest) N0 ∈ N such that for every N ≥ N0 we have that

ΠNSw = ΠNS
∑

k∈In

Pkw =
∑

k∈In

iωkR(iωk, A+BK)(BLN + P )Pkw (8.42)

=
∑

k∈In

[
I + (A+BK)R(iωk, A+BK)

]
(BLN + P )Pkw (8.43)

= (BLN + P )
∑

k∈In

Pkw + (A+BK)
∑

k∈In

R(iωk, A+BK)(BLN + P )Pkw (8.44)

= (BLN + P )w + (A+BK)ΠNw, ∀w ∈Wn (8.45)

and that

(C +DK)ΠNw +DLNw = (C +DK)ΠN

∑

k∈In

Pkw +DLN

∑

k∈In

Pkw (8.46)

=
∑

k∈In

[
(C +DK)R(iωk, A+BK)B +D

]
LNPkw (8.47)

+
∑

k∈In

(C +DK)R(iωk, A+BK)PPkw (8.48)

= Q
∑

k∈In

Pkw −
∑

k∈In

(C +DK)R(iωk, A+BK)PPkw (8.49)

+
∑

k∈In

(C +DK)R(iωk, A+BK)PPkw (8.50)

= Qw, ∀w ∈Wn (8.51)

This shows that ΠN and ΓN = LN + KΠN solve the regulator equations (3.10) in Wn. We can

now define a linear operator Π0 : ∪k∈NWk → Z by Π0w = ΠN0
w for w ∈Wn and a linear operator

L0 : ∪k∈NWk → H by L0w = LN0
w for w ∈ Wn. By our assumptions and Lemma A.8 the

operators Π0 and L0 have unique continuous extensions Π ∈ L(W,Z) and L ∈ L(W,H). Clearly

this means that Π = limN→∞ ΠN and Γ = limN→∞[KΠN + LN ] in the strong operator topology.

That Π and Γ = L+KΠ ∈ L(W,H) solve the regulator equations (3.10) now follows precisely as

in the proof of Theorem 8.7.

Remark 8.10. Section 3.5 illustrates the use of Theorem 8.9 for SISO systems. In Section 3.5

the convergence of LN as N → ∞ is guaranteed by condition (3.55), i.e. by a suitable state space

topology for W , while the exponential stability of TA+BK(t) guarantees the convergence of ΠN as

N → ∞.
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In a completely analogous manner we can prove the following result in which σ(S) need not be

a discrete set, but, on the other hand, some additional structure is required of the elements of W .

Theorem 8.11. Let W = H = HAP (H, fn, ωn) for some sequences (fn)n∈I and (ωn)n∈I , where

I ⊂ Z (see Chapter 2). Assume that S = S|H generates the isometric left translation C0−group

TS(t)|H on H, and that HK(iωn) = (C + DK)R(iωn, A + BK)B + D : H → H is boundedly

invertible for all n ∈ I. For every n ∈ I define the bounded linear operator Pn : H → H by

Pnf = f̂(n)eiωn· for each f =
∑

n∈I f̂(n)eiωn· ∈ H. If the sequences (LN )N≥1 ⊂ L(H,H) and

(ΠN )N≥1 ⊂ L(H, Z) of operators defined by

LNf =
∑

{ iωn||n|≤N }
HK(iωn)−1

[
Q− (C +DK)R(iωn, A+BK)P

]
Pnf, ∀f ∈ H, N ∈ N (8.52)

ΠNf =
∑

{ iωn||n|≤N }
R(iωn, A+BK)(BLN + P )Pnf, ∀f ∈ H, N ∈ N (8.53)

are uniformly bounded in N , then the operators Π = limN→∞ ΠN and Γ = limN→∞[KΠN + LN ]

(limits in the strong operator topology) exist in L(H, Z) and L(H,H) repectively, and they solve

the regulator equations (3.10).

Proof. Observe first that by construction every f ∈ H is an almost periodic function, which is

uniquely determined by the series expansion
∑

n∈I f̂(n)eiωn·, because the sequence (‖f̂(n)‖)n∈I ∈

`1. Consequently, the operators Pn can be given in terms of the Fourier-Bohr transformation

[38, 63], i.e. (Pnf)(t) = eiωnt limT→∞ 1
2T

∫ T

−T
f(s)e−iωnsds. But according to [63] (p. 22) we have

that

f̂(n) = lim
T→∞

1

2T

∫ T+x

−T+x

f(t)e−iωntdt (8.54)

uniformly for x ∈ R. Hence

Pnf = lim
T→∞

1

2T

∫ T

−T

TS(s)|Hfe−iωnsds (8.55)

and consequently for every f ∈ D(S|H) we have

PnS|Hf = lim
T→∞

1

2T

∫ T

−T

TS(s)|HS|Hfe−iωnsds (8.56)

= lim
T→∞

1

2T

∫ T

−T

TS|H−iωnI(s)[S|H − iωnI]fds+ iωnPnf (8.57)

= iωnPnf (8.58)
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This shows that S|HPnf = iωnPnf = PnS|Hf for each f ∈ D(S|H). The rest of the proof parallels

that of Theorem 8.9. We can define, using Lemma A.8, WN = M({ iωn | |n| ≤ N }), so that

{ iωn | |n| ≤ N } ⊂ iR is a finite set for all N ∈ N, and ∪N≥1WN is dense in W = H.

Remark 8.12. In Theorem 8.9 and Theorem 8.11 it is not assumed that dim(H) <∞.

Remark 8.13. Theorem 8.9 and Theorem 8.11 immediately also give the operator L = Γ −KΠ

which is important in the solution of the FRP (see Chapter 3) and the EFRP (see Chapter 4).

Remark 8.14. The method we have used in this section has been shown to work for finite-

dimensional exogenous systems in [12, 80]. In addition to that, C. Byrnes, D. Gilliam, V. Shubov

and J. Hood have applied a similar eigenfunction decomposition method in the solution of the

regulator equations for a boundary controlled heat plant driven by a wave equation [10, 11]. They

obtained series expansions for the solution operators Π and Γ (similar to those in the above) for

this special case, and they presented criteria for the convergence of these series; we point out

that in [12, 80] no such convergence problems can arise because of the finite-dimensionality of the

exosystem.

Remark 8.15. If in Theorem 8.9 and Theorem 8.11 the operator A+BK generates an exponen-

tially stable C0−semigroup and if the family of operators LN is uniformly bounded (i.e. the limit

L ∈ L(W,H) exists), then also the family ΠN is uniformly bounded and Π =
∫ ∞
0
TA+BK(t)(BL+

P )TS(−t)dt (strong convergence) according to the results of Appendix A.2.

Remark 8.16. In the case that H = C a very useful method for establishing the uniform boun-

dedness of the operators LN in Theorem 8.11 is the following. Using the Schwartz inequality we

can deduce that

|LNg| ≤
∑

n∈IN

|HK(iωn)−1
[
Q− (C +DK)R(iωn, A+BK)P

]
Png| (8.59)

=
∑

n∈IN

|HK(iωn)−1
[
Q− (C +DK)R(iωn, A+BK)P

]
eiωn·||ĝ(n)| (8.60)

≤
√ ∑

n∈IN

|HK(iωn)−1
[
Q− (C +DK)R(iωn, A+BK)P

]
eiωn·|2f−2

n

√ ∑

n∈IN

|ĝ(n)|2f2
n

(8.61)

for all g ∈W = H = HAP (C, fn, ωn). Here IN = { iωn | |n| ≤ N }. Since, according to Proposition

2.16,
√∑

n∈IN
|ĝ(n)|2f2

n converges to ‖g‖H as N → ∞, the uniform boundedness of LN can be
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achieved by an appropriate choice of (fn)n∈I , i.e. by an appropriate choice of the reference signal

space topology. In particular, the sequence (fn)n∈I should be chosen such that

∑

n∈IN

|HK(iωn)−1
[
Q− (C +DK)R(iωn, A+BK)P

]
eiωn·|2f−2

n <∞ (8.62)

which is essentially the idea presented already in the condition (3.55) of Section 3.5: The signals

must be smooth enough with respect to the high-frequency damping rate of the plant.

Remark 8.17. If in Theorem 8.11 we have Q = δ0 and P = 0 but possibly H 6= C, then

LNg =
∑

{ iωn||n|≤N }
HK(iωn)−1ĝ(n), ∀g ∈ H, N ∈ N. (8.63)

In this case the argument of Remark 8.16 relying on the Schwartz inequality can again be utilized

to deduce the uniform boundedness of LN . We immediately see that whenever

(‖HK(iωn)−1‖f−1
n )n∈I ∈ `2 (8.64)

the family LN of operators is uniformly bounded on HAP (H, fn, ωn). Again, this just amounts

to an appropriate choice of topology for the signal space. Observe that the assumption Q = δ0 is

not very restrictive from the point of view of reference signals, and the assumption P = 0 is not

restrictive if the ultimate goal is to design a conditionally robust regulator; see e.g. the equations

(6.108).

Remark 8.18. Theorem 8.2 can be readily utilized to transform the above square summability

criteria to verifiable conditions for the original plant data.

8.3 Discussion

The results of the previous two sections on the solution of the regulator equations (3.10) are by

no means exhaustive: Although they are suitable for rather general problems, often in practice

there are shortcuts which can be taken if additional assumptions are posed. A particularly useful

shortcut is at our disposal if the feedthrough operator D of the plant is a design parameter, as has

been pointed to the author by Prof. Ruth Curtain (personal communication). The purpose of this

section is to illustrate the use of this shortcut using her arguments. The key idea is that wheneverD

is boundedly invertible on H, the regulator equations (3.10) reduce to the unconstrained Sylvester
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operator equation

ΠS = (A−BD−1C)Π +BD−1Q+ P in D(S) (8.65)

which can be readily solved using e.g. the well-known results of Appendix A.2 provided that

A−BD−1C has certain desirable properties. These properties are described below.

If A−BD−1C generates an exponentially stable C0−semigroup, then the unconstrained equa-

tion (8.65) has a unique solution regardless of P ∈ L(W,Z) and Q ∈ L(W,H). This is the case, in

particular, if one of the following two conditions holds:

• A generates an exponentially stable C0−semigroup such that ‖TA(t)‖ ≤ Me−ωt for some

M ≥ 1 and ω > 0 such that ‖BD−1C‖ < ω
M . This condition can always be met if D can be

chosen freely (take e.g. D = cI for a sufficiently large c > 0).

• The pair (A,B) is exponentially stabilizable, the pair (A,C) is exponentially detectable

and H(s)−1 ∈ H∞. Here, of course, H(s) = CR(s,A)B + D for s ∈ ρ(A) and H∞ is

the standard Hardy space of bounded holomorphic functions [17]. Note that H(s)−1 =

D−1[D − CR(s,A−BD−1C)B]D−1. It should be pointed out that in this case D need not

even be a design parameter; we only need its bounded invertibility.

If A−BD−1C generates a strongly stable C0−semigroup, then the operator equation (8.65) does

not necessarily always have a solution. However, if S ∈ L(W ), if σ(A) ∩ σ(S) = ∅, and if H(iω) =

CR(iω,A)B+D is boundedly invertible for all iω ∈ σ(S), then σ(A−BD−1C)∩σ(S) = ∅ and thus

the Sylvester equation (8.65) has a unique solution for all P ∈ L(W,Z) and all Q ∈ L(W,H). We

point out that if D is a design parameter and if B = C∗ — which represents the case of collocated

actuators and sensors for a Hilbert state space Z — then we can take D = I and use e.g. the

results of [5, 18] to verify that A−BD−1C generates a strongly stable C0−semigroup on Z.

If A− BD−1C generates an analytic semigroup4, then results similar to the ones given above

hold even if no stability properties for the semigroup generated by A − BD−1C were known.

Moreover, in this case S need not be bounded: If σ(A)∩σ(S) = ∅, and if H(iω) = CR(iω,A)B+D

is boundedly invertible for all iω ∈ σ(S), then σ(A− BD−1C) ∩ σ(S) = ∅ and thus the Sylvester

equation (8.65) has a unique solution for all P ∈ L(W,Z) and all Q ∈ L(W,H).

4This is always the case whenever A generates an analytic semigroup, according to a well-known bounded

perturbation result (cf. Proposition III.1.12 of [28]).
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A nice additional feature in some of the above results is that a stabilizing state feedback

operator K = −D−1C, which is often also needed in the controller design process, is readily

found. Moreover, by Theorem 3.6, a control law solving the FRP is then given by u(t) = Kz(t) +

(Γ − KΠ)w(t) = −D−1Cz(t) + [D−1(Q − CΠ) + D−1CΠ]w(t) = −D−1Cz(t) + D−1Qw(t) =

−D−1[y(t)−yref (t)] = −D−1e(t). Therefore, neither direct state feedback nor the solution operator

Π of (8.65) need be explicitly found in the controller design process. We only need the existence

of Π solving (8.65), and it is quite tempting to conjecture that even this requirement may be

superficial in applications.

Unfortunately, in many problems of practical interest the operator D is fixed and noninvertible.

For example, in many partial differential equations there is no feedthrough at all, i.e. D = 0. In

such cases we can still often utilize the methods of Section 3.5, Section 8.1 and Section 8.2 in the

solution of the regulator equations (3.10). Nonetheless, any shortcut should be utilized whenever

such is available. We conclude this section by pointing out that in certain special cases the regulator

equations (3.10) can be solved as a coupled system of two point boundary value problems subject

to additional constraints, provided that D = 0 (see [12] for more details).



Chapter 9

Conclusions

In the previous chapters we have developed a robust state space output regulation theory for

linear infinite-dimensional systems and bounded uniformly continuous exogenous signals. Here we

conclude the discussion with a summary of the main contributions of the present thesis, and we

describe some open problems as well as new research directions.

9.1 Summary of the main contributions of the thesis

The simplest exosystem generating a given class of signals

We have constructed the simplest possible exosystems capable of generating signals (functions) in

certain Banach subspaces of bounded uniformly continuous functions. These exosystems always

utilize the generator of an isometric C0−group, plus one bounded observation operator for the

reference signals and one for the disturbance signals. A distinguishing feature in our approach is

the following: While in most of the related earlier work the exogenous signals are assumed to be

generated by some arbitrary finite-dimensional exosystem, here we have assumed a given class of

exogenous signals for which we have constructed (i.e. realized) an exosystem capable of generating

them. In our work the exosystem can also be — and usually is — infinite-dimensional.
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Complete solution of three output regulation problems

We have generalized the finite-dimensional geometric output regulation theory for infinite-dimensional

linear systems and bounded uniformly continuous exogenous signals.

For feedforward (state feedback) controllers the geometric output regulation theory gives rise to

the regulator equations (3.10). We have shown how these regulator equations completely describe

the steady state behaviour of an appropriately stabilized plant, subject to a feedforward control

and bounded uniformly continuous exogenous reference/disturbance inputs. In particular, the

solvability of the regulator equations has been shown in this thesis to completely characterize the

solvability of the simple feedforward output regulation problem, under certain assumptions.

Generalizing a well-known finite-dimensional argument, we have shown how an error feedback

output regulation problem can be formulated — and solved — as a feedforward output regulation

problem for an extended system. This approach gives rise to the extended regulator equations

(4.3). We have shown that under certain assumptions the solvability of the extended regulator

equations completely characterizes the solvability of the error feedback output regulation problem.

Various explicit choices for the controllers’ parameters have been given, such that the extended

regulator equations have a solution provided that the regulator equations have a solution.

The above generalization of a finite-dimensional argument has also been shown in this thesis

to yield a complete characterization of the solvability of a hybrid feedforward-feedback output

regulation problem, in terms of the solvability of the regulator equations.

Strong stabilization of the exosystem and the closed loop system

We have shown that under certain assumptions the exosystem’s system operator S must (in a sense)

be embedded in the controller’s system operator F in order that error feedback output regulation is

possible. However, this necessary embedding of S in F is a cause of severe stabilizability problems

for the closed loop system, if the exosystem is infinite-dimensional. We have provided new proofs

for certain well-known negative results about the lack of exponential stabilizability of the exosystem

operator S, and we have proved some new positive results about the strong stabilizability of this

operator. Taking into account this lack of exponential closed loop stabilizability, we have provided

sufficient conditions for the strong stabilizability of the closed loop system for two particular error

feedback controllers generalizing certain finite-dimensional ones due to Francis [29] and Davison
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[24].

Robustness, conditional robustness and the Internal Model Principle

We have studied robustness and conditional robustness (i.e. robustness on condition that the

closed loop stability is also robust) in error feedback output regulation. Our results show that the

unique solvability of the extended regulator equations with respect to certain parameters implies a

degree of conditional robustness in output regulation. We have generalized the celebrated Internal

Model Principle for infinite-dimensional systems and possibly infinite-dimensional exosystems using

state space techniques, but without relying on any purely finite-dimensional concepts. This result

describes the necessary and sufficient structure of such exponentially stabilizing error feedback

controllers which also achieve robust output regulation. We have also shown how two common error

feedback controllers achieve (conditionally) robust output regulation, by utilizing this structure,

even in infinite dimensions.

Practical output regulation

We have developed the mathematical foundations of practical output regulation, i.e. approximate

asymptotic tracking/rejection of exosystem-generated signals, for linear infinite-dimensional sys-

tems. By a direct perturbation analysis, we have obtained general upper bounds for the norms of

additive, bounded, linear perturbations to the the parameters of the plant, the exosystem and the

(hypothetical) controller, which solves the corresponding exact output regulation problem, such

that practical output regulation with a given accuracy occurs. Our approach covers in a unified

way practical state space output regulation for the three exactly regulating controllers studied

elsewhere in this thesis.

Solution of the regulator equations

We have solved the regulator equations in the following two separate cases: That of a SISO plant

and that in which the spectrum of the exosystem’s generator is a discrete set (this occurs e.g. in

all repetitive control problems). The approach of the latter case has also been shown to extend

to another closely related separate case in which the spectrum of the exosystem generator is not

discrete but the signals are known to be in certain Banach spaces.
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Applications

In order to illustrate the developed output regulation theory, as applications we have presented

numerous case studies and examples throughout this thesis. These applications illustrate several

new phenomena which arise from the possible infinite-dimensionality of the exogenous system;

they are not present in the related earlier work. Such new phenomena include (i) the complex

relationship between the system zeros and the (non)existence of a regulating controller, (ii) the

necessary degree of smoothness of the exogenous signals for the existence of a regulating controller,

and (iii) the robustness-enhancing effect of additional smoothness of the exogenous signals related

to their internal model in a regulating error feedback controller.

9.2 Open problems and new research directions

In the author’s view the most severe limitation in the results of this thesis lies in the extensive use of

bounded control, observation and feedback operators in the plant, the controller and the exosystem.

Although bounded control and observation operators can often be used as good approximations of

the reality, it is well-known that many infinite-dimensional systems utilizing e.g. boundary control

and/or point observation can only be formulated as a plant (1.1) with unbounded operators B and

C. Therefore, a particularly important direction for future research is the generalization of the

output regulation theory developed in the present thesis for unbounded control and observation

operators in the plant. On the other hand, allowing for unbounded control and observation in

the error feedback controllers would probably facilitate exponential closed loop stabilization even

for infinite-dimensional exosystems. This would likely result in improved robustness properties in

output regulation, too.

Another direction for future research, which is closely related to the above, is to consider more

general exogenous signals than those which are bounded and uniformly continuous. It is evident

that an exogenous system utilizing the left translation operators and point evaluation at the origin

can be also used to generate signals which are not bounded and uniformly continuous; this method

of generating signals appears to be strikingly universal. However, the lack of strong continuity

of the left translation semigroup, as well as the possible unboundedness of the point evaluation

operators, can be mathematically very difficult to handle in this case.

In the author’s view one of the most interesting — and also fruitful — directions for future
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research is a more thorough study of robustness in error feedback output regulation under the

assumption of strong closed loop stability. In this thesis we have provided some sufficient conditions

for conditionally robust output regulation, but we have not properly addressed e.g. the issue of

persistence of strong closed loop stability under perturbations. We have referred to a result due to

Casarino and Piazzera [13] which can be used to guarantee the persistence of strong closed loop

stability under perturbations, but there are also at least two other ways to proceed here. The first

way is to attempt to use the recent theory of strongly stable systems due to Oostveen [70]. His

strongly stable systems utilize a strongly stable semigroup and suitably continuous input-output,

input-state and state-output mappings to achieve a degree of robustness in the strong stability of

the system. The second way is to attempt to apply the concept of polynomial stability, which is

currently under development (see the preprint [4] and the references therein), to achieve a degree of

robustness of closed loop stability with respect to certain perturbations. The concept of polynomial

stability of a C0−semigroup is intriguing because it allows for a uniform polynomial decay rate for

all sufficiently smooth initial conditions. In this respect it resembles exponential stability, which

is known to have nice robustness properties.

The last important direction for future research consists of the development of frequency domain

analogues of the state space results of this thesis. Especially for the repetitive control applications,

where frequency domain methods are prominent and also have proven to be quite effective, it

would be vital to establish results taking into account (i) the smoothness of the exogenous signals

to be regulated, and (ii) the lack of exponential closed loop stability. We have shown in this thesis

that in the state space domain it is crucial to take these issues into account, in order to achieve

tracking/rejection of periodic signals.
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A.1 A collection of results from spectral theory

In this section we shall provide an array of well-known facts from spectral theory and harmonic

analysis, for the reader’s convenience. As before, spC(·) denotes the Carleman spectrum.

Proposition A.1. Let X be a Banach space and let A generate a C0−semigroup on X. Let ρ∞(A)

denote the connected component of ρ(A) which is unbounded to the right. If X0 ⊂ X is a closed

subspace and if λ ∈ ρ∞(A) ∩ σ(A|X0
), then λ ∈ σ(A).

Proof. See Corollary IV.2.16 in [28].

Proposition A.2. Let X be a Banach space and let A generate a C0−semigroup on X. If

(λn)n∈N ⊂ ρ(A) is such that limn→∞ λn = λ, then λ ∈ σ(A) if and only if limn→∞‖R(λn, A)‖ = ∞.

Proof. See Proposition IV.1.3 (iii) in [28].

Proposition A.3. Let A generate a uniformly bounded C0−group TA(t) on a Banach space X.

If σ(A) ⊂ {0}, then TA(t) = I for all t ∈ R. Consequently, each isolated point of σ(A) is an

eigenvalue.

Proof. This is the well-known Gelfand Theorem, see Corollary 4.4.8 and Corollary 4.4.9 in [2].

Proposition A.4. Let X be a Banach space. A function f ∈ BUC(R,X) has empty Carleman

spectrum, i.e. spC(f) = ∅, only if f ≡ 0.

Proof. This is the well-known Wiener Tauberian Theorem, cf. [89] p. 38.
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Proposition A.5. Let X be a Banach space and let f, gn ∈ BUC(R,X), n ∈ N, such that

‖gn − f‖∞ → 0 as n→ ∞. Then

1. spC(f) is closed.

2. spC(f) = spC(f(· + h)) for each h ∈ R.

3. If spC(gn) ⊂ Λ for each n ∈ N, then spC(f) ⊂ Λ.

4. If Z is another Banach space and P ∈ L(X,Z), then spC(Pf(· + h)) ⊂ spC(f) for each

h ∈ R.

Proof. This result is essentially contained in Theorem 1.15 in [38].

Proposition A.6. Let A generate a uniformly bounded C0−group TA(t) on a Banach space X, let

y ∈ X and define the function f : R → X by f(t) = TA(t)y for every t ∈ R. Then ispC(f) ⊂ σ(A).

Proof. This is Remark 4.6.2 in [2].

Proposition A.7. Let A generate C0−semigroup TA(t) on a Banach space X. If for some x0 ∈ X

the function x : R → X such that x(0) = x0 satisfies x(t) = TA(t − s)x(s) for each t ≥ s and is

uniformly bounded, then ispC(x) ⊂ σA(A) ∩ iR.

Proof. See Proposition 3.7 in [89].

Lemma A.8. The generator S of an isometric C0−group TS(t) on a Banach space W is decom-

posable, i.e. for every compact ∆ ⊂ iR there exists a (maximal) spectral subspace M(∆) ⊂ W

which is closed and invariant for TS(t), the restriction S|M(∆) ∈ L(M(∆)), and σ(S|M(∆)) ⊂ ∆.

Moreover,
⋃

n∈N
M([−in, in]) is dense in W .

Proof. See pp. 399-400 of [90] or [66]. For a constructive argument we refer the reader to the proof

of Theorem IV.3.16 in [28].

In order to illustrate the fundamental result of Lemma A.8, we shall construct a decomposition

for the generator −S|H of the strongly continuous right translation group TS(−t)|H on some scalar

function space H ↪→ BUC(R,C). We shall rely on a functional calculus for TS(−t)|H on the

convolution algebra (L1(R), ∗), as constructed in Section IV.3.c in [28]. For each f ∈ L1(R) define



APPENDIX A. 220

the operator f̂(T ) =
∫ ∞
−∞ f(t)TS(−t)|Hydt for y ∈ H. Here the integral is understood in the sense

of Bochner. Next define

Hn = { y ∈ H | f̂(T )y = 0 for all f ∈ L1(R) satisfying f̂ ≡ 0 on [−n, n] } (A.1)

where f̂ denotes the Fourier transform of f ∈ L1(R). It has been shown in Section IV.3.c in [28] that

each Hn is TS(t)|H−invariant, S|Hn
is bounded (in fact σ(S|Hn

) ⊂ [−in, in]) and ∪∞
n=1Hn = H.

The following result demonstrates how the functions in H can be approximated by those in

Hn.

Proposition A.9. For each n ∈ N and t ∈ R let gn(t) = 1
2πn

(
sin( nt

2 )
t
2

)2

∈ L1(R) (the Fejér

kernel). Let y ∈ H and n ∈ N. Then yn = ĝn(T )y ∈ Hn and limn→∞‖yn − y‖H = 0.

Proof. By the definition of Hn we must show that f̂(T )yn = 0 for all f ∈ L1(R) satisfying

f̂ ≡ 0 on [−n, n]. First of all, for every such f by Lemma C.12 in [28] we have f̂ ∗ gn = f̂ ĝn ≡ 0

(recall from [58] that supp(ĝn) ⊂ [−n, n]). According to a well-known inversion theorem this

implies f ∗ gn ≡ 0 almost everywhere. Then according to Lemma 3.17 in [28] we have f̂(T )yn =

f̂(T )ĝn(T )y = f̂ ∗ gn(T )y = 0 for all f ∈ L1(R) satisfying f̂ ≡ 0 on [−n, n]. Consequently yn ∈ Hn.

In order to establish limn→∞‖yn − y‖H = 0 we first observe that by construction H is a

translation-invariant space on which the translation group in strongly continuous. This implies

that H is a homogenous Banach space in the sense of Katznelson ([58] p. 127) such that for every

f ∈ H we have limt→0 supx∈R

∫ x+1

x
|f(s−t)−f(s)|ds ≤ k limt→0 supx∈R

∫ x+1

x
‖TS(−t)|Hf−f‖Hds =

k limt→0‖TS(−t)|Hf − f‖H = 0 (here k > 0 is obtained from the relation H ↪→ BUC(R,C)).

Excercise 14 on p. 130 of [58] shows that limn→∞‖gn ∗ y − y‖H = 0, because the Fejér kernel is a

summability kernel in L1(R). Now since TS(−t)y = y(· − t), it is clear that yn(x) = [ĝn(T )y](x) =
∫ ∞
−∞ gn(t)y(x− t)dt for every x ∈ R. In other words, yn = gn ∗ y. The proof is complete.

It is evident from the above proof that approximation of functions in H by those in Hn can be

performed by convolving the original function with a suitable Fejér kernel.
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A.2 A collection of results for the operator Sylvester equa-

tion

Throughout this section we assume that A and −B are the generators of C0−semigroups T (t) and

S(t) on Banach spaces E and F , respectively, and that C ∈ L(F,E). We next collect from [3, 88, 90]

some well-known results related to the solvability of the operator Sylvester equation AX−XB = C,

for the reader’s convenience. Recall from e.g. [90] that an operator X ∈ L(F,E) is a solution of

this operator equation if for each f ∈ D(B) we have Xf ∈ D(A) and AXf −XBf = Cf . For such

solution operators X the following assertions hold true.

• If one of the operators A,B is bounded (or, more generally, analytic) and if σ(A)∩σ(B) = ∅,

then the operator equation AX −XB = C has a unique solution [3, 90].

• If for every C ∈ L(F,E) the operator equation AX −XB = C has a unique solution, then

necessarily σ(A) ∩ σ(B) = ∅. The converse result does not hold in general, however [3, 90].

• If the (growth) types of the semigroups T (t) and S(t) are ωA and ωB , respectively, such

that ωA + ωB < 0 (this is the case in particular if T (t) is exponentially stable and if S(t) is

uniformly bounded), then the bounded linear operator X : F → E defined by

X = −
∫ ∞

0

T (t)CS(t)dt (strong convergence) (A.2)

is the unique solution of the operator equation AX −XB = C [88, 90].

• If T (t) and S(t) are uniformly bounded semigroups, then a necessary condition for the sol-

vability of the operator equation AX − XB = C for a given C ∈ L(F,E) is the uniform

boundedness of the family (Ty)y>0 of operators defined by

Ty = −
∫ ∞

0

e−ytT (t)CS(t)dt (strong convergence) (A.3)

For the case of reflexive E the uniform boundedness of the family (Ty)y>0 is also sufficient

for the solvability of the operator equation AX −XB = C [88].

A.3 A brief introduction to bi-continuous semigroups

Following [59], in this section we shall provide a brief introduction to bi-continuous semigroups.

Such semigroups constitute a generalization of C0−semigroups, and they are very important e.g.
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in the study of various operator algebras. An important subclass of bi-continuous semigroups is

that of implemented semigroups [1]; this particular class of bi-continuous semigroups is utilized in

the present thesis in the context of operator Sylvester equations.

Let us first fix some notation. For a linear space X, the value of a functional f : X → C at

x ∈ X is in this section denoted by 〈x, f〉. Recall that for linear spaces X, Y and Z such that

X ⊂ Y and a linear operator A : D(A) ⊂ Y → Z, the restriction (or part) A|X of A in X has

domain D(A|X) = {x ∈ D(A) ∩X | Ax ∈ X } and A|Xx = Ax for every x ∈ D(A|X).

In the context of bi-continuous semigroups it is customary to make the following standing

assumption.

Assumption A.10. Let (X, ‖·‖) be a Banach space with topological dual X ′ and let τ be a locally

convex topology on X induced by a family Pτ of seminorms, with the following properties:

1. The space (X, τ) is sequentially complete on ‖·‖−bounded sets, i.e. every ‖·‖−bounded

sequence, which is Cauchy in the τ−topology, converges in (X, τ).

2. The topology τ is coarser than the ‖·‖−topology; hence we may without loss of generality

assume that p(x) ≤ ‖x‖ for every x ∈ X and every p ∈ Pτ .

3. The space (X, τ)′ is norming for (X, ‖·‖), i.e.

‖x‖ = sup{ |〈x, φ〉| | φ ∈ (X, τ)′ and ‖φ‖(X,‖·‖)′ ≤ 1 } ∀x ∈ X (A.4)

Definition A.11. A linear operator A on a Banach space X is called a Hille-Yosida operator (of

type ω) if there exists ω ∈ R such that (ω,∞) ⊂ ρ(A) and

‖R(λ,A)k‖ ≤ M

(λ− ω)k
(A.5)

for all k ∈ N, λ > ω and some M ≥ 1.

Clearly Hille-Yosida operators are also closed operators [28].

Definition A.12. A set Y is bi-dense in X if for every x ∈ X there exists a ‖·‖−bounded sequence

(yn)n≥0 ⊂ Y which is τ−convergent to x.

We shall need the following equicontinuity concepts.

Definition A.13. Let (T (t))t≥0 ⊂ L(X). Then
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• T (t) is (globally) bi-equicontinuos if for every ‖·‖−bounded sequence (xn)n≥0 ⊂ X which is

τ -convergent to x ∈ X we have τ − limn→∞ T (t)(x− xn) = 0 uniformly for all t ≥ 0.

• T (t) is locally bi-equicontinuos if for every t0 ≥ 0 and every ‖·‖−bounded sequence (xn)n≥0 ⊂

X which is τ−convergent to x ∈ X we have τ − limn→∞ T (t)(x − xn) = 0 uniformly for all

t0 ≥ t ≥ 0.

We can now define bi-continuous semigroups.

Definition A.14. An operator family (T (t))t≥0 ⊂ L(X) (or shortly T (t)) is called a bi-continuous

semigroup (with respect to τ and of type ω) if

1. T (0) = I and T (s+ t) = T (s)T (t) for all s, t ≥ 0.

2. ‖T (t)‖ ≤Meωt for all t ≥ 0 and some constants M ≥ 1 and ω ∈ R.

3. T (t) is strongly continuous in (X, τ), i.e. the map R+ 3 t→ T (t)x ∈ X is τ−continuous for

each x ∈ X.

4. T (t) is locally bi-equicontinuous.

We call T (t) uniformly bounded if we can take ω = 0 in Definition A.14.

Definition A.15. The generator A : D(A) ⊂ X → X of a bi-continuous semigroup T (t) on X is

the unique operator on X such that its resolvent R(λ,A)x =
∫ ∞
0
e−λtT (t)xdt for all x ∈ X and

for all λ ∈ {µ ∈ C | <(µ) > ω } for some ω > 0. Here the Laplace integral is understood as the

norm limit (as a→ ∞) of a τ−Riemann integral over [0, a] (see [59] for details).

The subsequent results are just parts of Proposition 1.16, Theorem 1.17, Proposition 1.18 and

Theorem 1.28 of [59].

Theorem A.16. Let A generate the bi-continuous semigroup T (t) on X. Then

Ax = τ − lim
t↘0

T (t)x− x

t
, ∀x ∈ D(A) (A.6a)

D(A) =
{
x ∈ X

∣∣ τ − lim
t↘0

T (t)x− x

t
exists in X

}
(A.6b)

Theorem A.17. Let A generate the bi-continuous semigroup T (t) of type ω on X. Then the

following assertions hold true.
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1. If x ∈ D(A) then T (t)x ∈ D(A) for all t ≥ 0, T (t) is continuously differentiable in t with

respect to the topology τ , and d
dtT (t)x = AT (t)x = T (t)Ax for all t ≥ 0.

2. An element x ∈ X belongs to D(A) and Ax = y if and only if T (t)x− x =
∫ t

0
T (s)yds for all

t ≥ 0.

3. The operator A is bi-closed, i.e. for all sequences (xn)n∈N ⊂ D(A) with (xn)n∈N and

(Axn)n∈N norm-bounded, τ − limn→∞xn = x ∈ X and τ − limn→∞Axn = y ∈ X we

have x ∈ D(A) and Ax = y.

4. A is a bi-densely defined Hille-Yosida operator of type ω.

5. The subspace X0 = D(A)
‖·‖ ⊂ X is T (t)−invariant and the restrictions T (t)|X0

constitute a

C0−semigroup (generated by the part A|X0
of A).

As mentioned in the above, the so-called implemented semigroups constitute an important

subclass of bi-continuous semigroups.

Definition A.18. LetX and Y be Banach spaces and let A and B be generators of C0−semigroups

T (t) and S(t) on X and Y , respectively. On the Banach space L(Y,X) we define the semigroup

U(t) implemented by A and B according to the rule U(t)Z = T (t)ZS(t) for all Z ∈ L(Y,X) and

for all t ≥ 0.

The following result (cf. Proposition 3.16 of [59] and Remark 2.15 of [1]) is crucial in the output

regulation results of this thesis. It reveals a deep relation between operator Sylvester equations

and bi-continuous semigroups.

Theorem A.19. Let X and Y be Banach spaces and let A and B be generators of C0−semigroups

T (t) and S(t) on X and Y , respectively. Let U(t) be the semigroup on L(Y,X) implemented by

A and B. Then U(t) is a bi-continuous semigroup in the strong operator topology τ = τstop.

Moreover, the generator T of U(t) is the operator defined by

D(T ) = {Z ∈ L(Y,X) | Z(D(B)) ⊂ D(A),∃P ∈ L(Y,X) : Pu = AZu+ ZBu∀u ∈ D(B) }

(A.7a)

T Z = P (A.7b)

Remark A.20. The relation (A.7b) is just the operator Sylvester equation AZ + ZB = P .



Bibliography

[1] Jochen Alber. On implemented semigroups. Semigroup Forum, 63(3):371–386, 2001.

[2] Wolfgang Arendt, Charles J.K. Batty, Matthias Hieber, and Frank Neubrander. Vector-valued

Laplace transforms and Cauchy problems. Birkhäuser, 2001.

[3] Wolfgang Arendt, Frank Räbiger, and Ahmed Sourour. Spectral properties of the operator

equation AX +XB = Y . Q. J. Math., Oxf. II. Ser., 45(178):133–149, 1994.
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[34] Timo Hämäläinen and Seppo Pohjolainen. Robust control and tuning problem for distributed

parameter systems. Int. J. Robust Nonlinear Control, 6(5):479–500, 1996.



BIBLIOGRAPHY 228
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