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Abstract

Digital image acquisition is an intricate process, which is subject to various errors.
Some of these errors are signal-dependent, whereas others are signal-independent.
In particular, photon emission and sensing are inherently random physical pro-
cesses, which in turn substantially contribute to the randomness in the output
of the imaging sensor. This signal-dependent noise can be approximated through
a Poisson distribution. On the other hand, there are various signal-independent
noise sources involved in the image capturing chain, arising from the physical prop-
erties and imperfections of the imaging hardware. The noise attributed to these
sources is typically modelled collectively as additive white Gaussian noise. Hence,
we have three common ways of modelling the noise present in a digital image:
Gaussian, Poisson, or Poisson-Gaussian.

Image denoising aims at removing or attenuating this noise from the captured
image, in order to provide an estimate of the underlying ideal noise-free image.
For simplicity, denoising algorithms often assume the noise to be Gaussian, and
ignore the signal-dependency. However, in an image corrupted by signal-dependent
noise, the noise variance is typically not constant and varies with the expectation
of the pixel value. Thus, for the removal of signal-dependent noise, we can either
design an algorithm specifically for the particular noise model, or use an indirect
three-step variance-stabilization approach. In the indirect approach, the noisy
image is first processed with a variance-stabilizing transformation (VST), which
renders the noise approximately Gaussian with a known constant variance. Then
the transformed image is denoised with a Gaussian denoising algorithm, and finally
an inverse VST is applied to the denoised data, providing us with the final estimate
of the noise-free image.

For the Poisson and Poisson-Gaussian cases, the most well-known VSTs are
the Anscombe transformation and the generalized Anscombe transformation, re-
spectively. The former of these was introduced in the late 1940s, and has been in
wide use ever since in all areas of applied statistics where the Poisson distribution
is relevant.

In addition to a suitable VST, the above indirect denoising process requires
a properly designed inverse VST. Unfortunately, the importance of the inverse
VST is often neglected. The simple inverse VST obtained by taking the direct
algebraic inverse of the VST generally leads to a biased estimate. Usually the
issue of bias is addressed by using an asymptotically unbiased inverse, but also
this inverse remains highly inadequate, especially for low-intensity data (e.g., for
an image captured in a dark environment or with a very short exposure time).
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ii Abstract

In this thesis, we address this inadequacy by first proposing an exact unbi-
ased inverse of the Anscombe transformation for the Poisson noise model, and
then generalizing it into an exact unbiased inverse of the generalized Anscombe
transformation for the Poisson-Gaussian noise model. We show that its role in the
denoising process is significant, and that by replacing a traditional inverse with
an exact unbiased inverse, we obtain substantial gains in the denoising results,
especially for low-intensity data. Moreover, in combination with a state-of-the-
art Gaussian denoising algorithm, the proposed method is competitive with the
best Poisson and Poisson-Gaussian denoising algorithms. We provide extensive
experimental results, and supplement them with rigorous mathematical consider-
ations about the optimality and accuracy of the proposed inverses. In addition, we
construct a closed-form approximation for both of these exact unbiased inverses.

In practical applications involving noise removal, identifying a suitable noise
model does not guarantee accurate denoising results per se, but for the best results
we must also be able to produce reasonable estimates of the noise model param-
eters. Hence, we conclude the thesis by investigating the effect of inaccurate
parameter estimation on variance stabilization; based on the theoretical results,
we also devise a novel way of estimating Poisson-Gaussian noise parameters from
a single image using an iterative variance-stabilization scheme.



Foreword

This thesis is based on research performed by the author at the Department of
Signal Processing, Tampere University of Technology, Finland, between January
2009 and February 2013.

The research has been carried out under the supervision of Dr. Alessandro Foi,
whom I wish to thank for all of his efforts. He has not only supervised and guided
me throughout this entire period, but also co-authored all of my publications.
Without his ideas and insights, this work would not have been possible in the first
place.

I am also grateful to the Tampere Doctoral Programme in Information Science
and Engineering (TISE) for providing me with financial support from May 2010
until the present.

Finally, and most importantly, I wish to thank my family for their continuous
and unconditional support and interest towards my research and studies.

Tampere, February 2013 Markku Mäkitalo

iii



iv Foreword



Contents

Abstract i

Foreword iii

Contents v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and scope of the thesis . . . . . . . . . . . . . . . . . . 3
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Publications and author’s contributions . . . . . . . . . . . 4
1.4 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Noise sources in digital imaging . . . . . . . . . . . . . . . . . . . . 7
2.2 Noise models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Additive white Gaussian noise . . . . . . . . . . . . . . . . 9
2.2.2 Poisson noise . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Poisson-Gaussian noise . . . . . . . . . . . . . . . . . . . . . 10

2.3 Variance stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Background and motivation . . . . . . . . . . . . . . . . . . 11
2.3.2 History and development of variance stabilization . . . . . . 12
2.3.3 Stabilizing Poisson noise . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Stabilizing Poisson-Gaussian noise . . . . . . . . . . . . . . 17
2.3.5 Inverse variance-stabilizing transformations . . . . . . . . . 17

2.4 A short overview of image denoising algorithms . . . . . . . . . . . 18
2.4.1 AWGN denoising algorithms . . . . . . . . . . . . . . . . . 18
2.4.2 Poisson denoising algorithms . . . . . . . . . . . . . . . . . 23
2.4.3 Poisson-Gaussian denoising algorithms . . . . . . . . . . . . 25

3 Optimal inversion of the Anscombe transformation for Poisson
noise 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Optimal inverse transformations . . . . . . . . . . . . . . . . . . . 28

3.2.1 Exact unbiased inverse . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Closed-form approximation of the exact unbiased inverse . . 30

v



vi Contents

3.2.3 ML inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 MMSE inverse . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Exact unbiased inverse . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 MMSE inverse . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Computational complexity . . . . . . . . . . . . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Optimal inversion of the generalized Anscombe transformation
for Poisson-Gaussian noise 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Parameter reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Exact unbiased inverse transformation . . . . . . . . . . . . . . . . 56

4.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . 57
4.3.4 Global accuracy . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.5 Practical implementation . . . . . . . . . . . . . . . . . . . 64
4.3.6 Closed-form approximation . . . . . . . . . . . . . . . . . . 65

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Denoising with known parameter values α and σ . . . . . . 66
4.4.2 Denoising with estimated parameter values αest and σ̀est . . 68
4.4.3 Varying the ratio between the Poisson and Gaussian noise

components . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Estimation of the Poisson-Gaussian noise model parameters 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Standard deviation contours . . . . . . . . . . . . . . . . . . . . . . 86
5.3 The iterative parameter estimation algorithm . . . . . . . . . . . . 89

5.3.1 Initialization of the estimates . . . . . . . . . . . . . . . . . 92
5.3.2 Stabilizing the variance of a random block . . . . . . . . . . 93
5.3.3 Estimating the standard deviation . . . . . . . . . . . . . . 93
5.3.4 Iterative updating of the estimates . . . . . . . . . . . . . . 93
5.3.5 Computing the dampened estimates . . . . . . . . . . . . . 94
5.3.6 Obtaining the final estimates . . . . . . . . . . . . . . . . . 95

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusions to the thesis 109

Bibliography 113



Chapter 1

Introduction

1.1 Motivation

The first digital still camera was developed by an Eastman Kodak engineer Steven
Sasson in 1975 [121]. Nowadays digital images are a part of our everyday life, and
they are being produced by a variety of devices ranging from digital cameras and
mobile phones to medical and astronomical image acquisition devices. In the heart
of a typical digital imaging device is an image sensor; an array of light-sensitive
photodiodes, gathering the incoming photons focused onto the sensor by a lens
or a system of lenses. The most common sensor technologies are charge-coupled
device [17] (CCD) and complementary metal-oxide-semiconductor [117, 139, 23]
(CMOS), both dating back to the late 1960s. While the grayscale CCD sensor in
Sasson’s camera consisted of an array of merely 100×100 photodiodes (in essence,
pixels), modern sensors contain millions or even tens of millions of pixels.

The process of capturing a digital image using a CCD or CMOS sensor is
subject to various errors, some of which are signal-dependent and some of which
are signal-independent. In particular, photon emission and sensing are inherently
random physical processes, which in turn substantially contribute to the random-
ness in the sensor output; this is also known as shot noise. More specifically, the
number of photons in a light beam inevitably fluctuates over time, even if the light
source has a constant intensity [88]. As first shown by L. Mandel in 1959 [105],
this fluctuation can be considered to follow the well-known Poisson distribution.
Thus, a standard way of modelling the noise present in digital images is to assume
that the image has been corrupted by Poisson distributed noise (and to implicitly
assume that this noise dominates over all the other noise sources).

A more elaborate approach is to also take the signal-independent noise sources
into account, modelling the noise with a Poisson-Gaussian distribution. In other
words, this noise model employs a Poisson component in order to account for the
signal-dependent uncertainty due to random photon emission and sensing, and
complementarily, the additive Gaussian component accounts for the other signal-
independent noise sources involved in the capturing chain. This modelling has
been successfully used in several practical applications, e.g., in noise fitting and
denoising of clipped and non-clipped raw CCD data [64, 67], in the denoising of
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2 1. Introduction

fluorescence microscopy images [145, 98], in fluorescent-spot detection [145], and
in astronomy [126].

Image denoising aims at removing or attenuating this noise from the captured
image, in order to provide an estimate of the underlying ideal noise-free image.
The strategies for accomplishing this task vary greatly, not only depending on the
chosen statistical image model, but also within a particular a priori model.

From the point of view of this thesis, there are two main options for approach-
ing the problem of denoising images corrupted by signal-dependent noise. One
option is to directly consider the statistics of the particular noise model, and take
advantage of these properties and observations in designing an effective denois-
ing algorithm. Our focus is on the alternative approach, where the problem is
tackled in a modular fashion through variance stabilization. This general denois-
ing process involves three steps. First, the noisy data is modified by applying a
nonlinear variance-stabilizing transformation (VST) specifically designed for the
chosen noise model. Note that in an image corrupted by signal-dependent noise,
the noise variance is typically not constant and varies with the expectation of the
pixel value. For instance, the variance of a Poisson variable equals its mean. Thus,
the rationale of applying a VST is to remove this signal-dependency by rendering
the noise variance constant throughout the image. In particular, the transformed
data can be assumed to have an approximately Gaussian noise distribution with
a known constant (e.g., unitary) variance. Hence, the second step is to treat the
noisy data with any algorithm designed for the removal of Gaussian noise. Finally,
the desired estimate of the unknown noise-free image is obtained by applying an
inverse VST to the denoised data (i.e., by returning the denoised data to the orig-
inal range). This modular approach has several practical advantages: Not only is
the problem of Gaussian noise removal a well studied and widely covered topic,
with a plethora of denoising algorithms to choose from, but it also allows the prac-
tical implementation of the denoising framework to be divided into self-contained
modules, which may be designed and optimized independent of each other.

Considering the three-step denoising procedure laid out above, it is obvious
that a properly designed VST is required in order to achieve good variance sta-
bilization. Unfortunately, the importance of the inverse VST is often neglected,
even though its role is certainly not insignificant, in particular when denoising
low-intensity data. Typical cases where the data is of low intensity are images
captured with a regular digital camera in a dark environment or with a very short
exposure time. On the other hand, low intensities can be unavoidable in some
special applications. For example in fluorescence microscopy, the organism under
inspection may exhibit permanent loss of fluorescence after being exposed to a
sufficient amount of light; this phenomenon is also known as photobleaching [136].
Perhaps the first intuition is to simply define the inverse VST as the algebraic
inverse of the forward VST. However, applying this inverse to the denoised data
generally introduces bias to the final estimate, because the forward VST is non-
linear. In general terms, transforming a variable nonlinearly, then computing its
expected value (ideal result of denoising), and then applying the algebraic inverse
transformation, does not produce the expected value of the original variable. A
more technical introduction to the issue of bias and various inverses is presented
in Section 2.3.5.
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The traditional way of mitigating the issue of bias is to design an inverse VST
that is asymptotically unbiased for large expected values. For the denoising of
low-intensity data, this kind of an inverse is still highly inadequate. The core
contribution of this thesis is to address this inadequacy by constructing a family
of exact unbiased inverses, within the scope defined in the next section.

1.2 Objectives and scope of the thesis

The main objective of this thesis is to introduce the exact unbiased inverses for
the Anscombe variance-stabilizing transformation and its generalization, aimed
at Poisson noise and Poisson-Gaussian noise, respectively. Since the concept of
exact unbiased inversion applies similarly to other distributions, this thesis also
invokes the following question: Is it advantageous to go through the effort of
designing separate denoising algorithms for each specific noise distribution, when
comparable gains can be attained by perfecting the Gaussian denoising algorithms
and addressing various noise distributions through variance stabilization together
with a suitable inverse?

In this thesis, we consider the Anscombe transformation and its Poisson-
Gaussian generalization, but it is fair to point out that there exist a variety of other
variance-stabilizing transformations for Poisson noise, such as the Freeman-Tukey
transformation [69], or the optimized ones discussed in [66] and [65]. However,
within the scope of this thesis, we investigate the improvement gained through ap-
plying a suitable inverse, rather than the improvement gained through optimized
variance stabilization. We chose to use the Anscombe transformation because
it is in wide use, and because the discussion can then be naturally extended to
the generalized Anscombe transformation for the Poisson-Gaussian case. Nev-
ertheless, the proposed concepts could equally well be applied to an alternative
transformation.

Even though this thesis is written from the viewpoint of digital imaging, the
concepts and procedures presented here can be applied to data of any dimension,
including 1-D signals and volumetric data. Moreover, we focus solely on grayscale
images, but the use of the proposed inverses can be easily extended to colour image
denoising.

1.3 Outline of the thesis

Chapter 2 introduces the different noise models considered in the thesis, provides
both theoretical background and practical information regarding variance stabi-
lization, and discusses a relevant selection of image denoising algorithms. Chap-
ters 3–5 constitute the core of the thesis. Specifically, Chapter 3 discusses the
optimal inversion of the Anscombe transformation for pure Poisson noise, presents
the exact unbiased inverse and its closed-form approximation, and also considers
a more elaborate minimum mean square inverse. Moreover, it provides thorough
experimental results verifying the importance of proper inversion. Chapter 4 pro-
ceeds to the more general case of Poisson-Gaussian noise, constructing the exact
unbiased inverse of the generalized Anscombe transformation, supporting it with
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rigorous theoretical considerations, and again complementing these by performing
extensive experiments. Chapter 5 contemplates the practical problem of esti-
mating the parameters of the Poisson-Gaussian noise model, proposing a novel
iterative parameter estimation algorithm based on variance stabilization. Finally,
Chapter 6 contains the concluding remarks of the thesis.

1.3.1 Publications and author’s contributions
The core contributions of Chapter 3 were first published in our papers [108], [110]
and [112]. Similarly, Chapter 4 presents the results first published in our pa-
pers [113] and [114]. The author of the thesis is also the first author of all of
these publications, responsible for the writing, practical implementations and the
experiments. Alessandro Foi is to be thanked for the original concept of exact
unbiased inversion, accurate computation of the E {f(z) | y} values, the empirical
SURE estimate in Section 3.3.2, and the core of the mathematical treatments in
Section 4.3.3 and Section 5.2.

1.4 Notation and conventions
Various abbreviations are used throughout the thesis for convenience. These ab-
breviations and their respective meanings are collected into Table 1.1.

Further, the mathematical notation in the thesis adheres to the conventions
outlined in Table 1.2.
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1-D, 2-D, 3-D One-Dimensional, Two-Dimensional, Three-Dimensional
AWGN Additive White Gaussian Noise
BLS-GSM Bayesian Least Square - Gaussian Scale Mixture

(denoising algorithm [120])
BM3D Block Matching and 3-D Filtering (denoising algorithm [35])
CCD Charge-Coupled Device
CMOS Complementary Metal-Oxide-Semiconductor
dB Decibel
DCT Discrete Cosine Transform
GAT Generalized Anscombe Transformation
MAD Mean Absolute Deviation
MC Monte-Carlo
ML Maximum Likelihood
MMSE Minimum Mean Squared Error
MS-VST Multiscale Variance-Stabilizing Transformation

(denoising algorithm [146])
MSE Mean Squared Error
NMISE Normalized Mean Integrated Squared Error
PH-HMT Poisson-Haar Hidden Markov Tree (denoising algorithm [94])
PSNR Peak Signal-to-Noise Ratio (equation (3.20))
PURE-LET Poisson(-Gaussian) Unbiased Risk Estimate -

Linear Expansion of Thresholds (denoising algorithms [98, 99])
SAFIR Structure Adaptive Filtering (denoising algorithm [15])
SSIM Structural Similarity Index Map [137]
SURE Stein’s Unbiased Risk Estimate [128]
VST Variance-Stabilizing Transformation

Table 1.1: A list of abbreviations frequently used in the thesis.
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y Noise-free data (the ideal unknown image)
z Data y corrupted by noise (the observed data)
yi, zi Noise-free pixel and noisy pixel, respectively
E {z} Expected value of z
E {z | y} Conditional expected value of z, conditioned by y
std {z} Standard deviation of z
var {z} Variance of z
µ Mean value of a Gaussian distribution
σ Standard deviation of a Gaussian distribution
N (µ, σ2) Gaussian distribution with mean µ and standard deviation σ
ni ∼ N (µ, σ2) Random Gaussian variable ni is distributed according to N (µ, σ2)
α Positive scaling factor for a Poisson distribution; gain
P(yi) Poisson distribution with mean (and variance) yi
pi Random Poisson variable
p(z) Probability distribution of z
f Forward variance-stabilizing transformation
D Denoised data before applying an inverse transformation;

an approximation of E {f(z) | y}
I0 Exact unbiased inverse of the Anscombe transformation
Iσ Exact unbiased inverse of the generalized

Anscombe transformation, for parameter σ
Ĩ Closed-form approximation of an inverse transformation I
Iasy Asymptotically unbiased inverse transformation of f
Ialg Algebraic inverse transformation of f ; f−1

IML Maximum likelihood inverse transformation
IMMSE Minimum mean squared error inverse transformation
σest Estimated value of parameter σ

Table 1.2: A list of mathematical notation frequently used in the thesis.



Chapter 2

Background

2.1 Noise sources in digital imaging

CCD and CMOS sensors function very similarly when it comes to capturing the
incoming light. In both cases, as photons hit the photosensitive silicon layer of a
diode, a proportional amount of electrons are released from the silicon (assuming
the frequency, and thus energy, of the incoming photons exceed the threshold
required for the photoelectric effect [75, 54] to take place). The released electrons
are then trapped by a potential well and thus accumulated into electrical charge in
a capacitor. On the other hand, there is a major difference in how these competing
technologies further convert this charge into voltage. In CCD, the charges are read
out line by line. Specifically, the contents of each capacitor is transferred to its
neighbour, until it reaches the end of the line, where an amplifier converts the
charge into voltage. In contrast, in a CMOS sensor each pixel is read out using
an amplifier dedicated to that particular pixel (which is why it is also called an
active pixel sensor). In any case, the analogue voltages are then discretized into a
2-D array of numbers representing the intensity of light at each pixel location.

This capturing process is subject to various errors. We can divide the noise
sources into two main categories: those causing signal-dependent noise, and those
causing signal-independent noise. In particular, the most significant source of
signal-dependent noise is the uncertainty of random photon emission and sensing.
As mentioned in Section 1.1, even with a light source of constant intensity, there is
fluctuation in the number of photons hitting the imaging sensor during a constant
time interval (exposure time). For instance, even if we capture ten images in rapid
succession under constant illumination, each time using the same exposure time,
the number of photons hitting the same location (pixel) in the sensor will vary.
This random variation can be modelled by a Poisson distribution [105].

In addition to the randomness of photon emission, the sensor is unable to con-
vert all arriving photons to electrons. The ratio between the number of photons
successfully converted to electrical charge, and the total number of photons reach-
ing the sensor, is called the quantum efficiency of the sensor. This percentage
depends on the wavelength of the incident light, due to wavelength-dependent ab-
sorption characteristics of the silicon-based substances. As a result of this and

7



8 2. Background

various other physical and chemical contributing factors, the quantum efficiency
of a standard CCD typically peaks at around 50 % for the red wavelengths, and
gradually reduces as the wavelength increases or decreases. For a more thorough
discussion about the topic, see, e.g., [125].

Besides the noise directly related to the randomness of the photon behaviour,
there are various other noise sources involved in the image capturing chain, arising
from the physical properties and imperfections of the imaging hardware. These
degradations include thermal noise, dark current shot noise, flicker (1/f) noise,
readout noise, and several types of fixed-pattern noise.

Thermal noise, also known as Johnson-Nyquist noise, is the statistical fluctu-
ation of electric charge created by thermal agitation [79, 118]. It is unavoidably
present in all conductive material (except theoretically at absolute zero temper-
ature, when there is no motion of electrons). When sufficient heat causes these
thermal electrons to be freed from the valence band of the conductor, they can
be captured by the potential well of a pixel [76]. Thus, the capacitors of the pix-
els accumulate some charge even when no light enters the sensor (i.e., when the
shutter is closed). This level of charge is also called dark current, and the statis-
tical fluctuations within it are known as dark current shot noise (or dark signal
non-uniformity, DSNU).

Since dark current depends on the ambient temperature, it can be reduced
significantly by cooling down the sensor. This approach is used for example in
X-ray imaging [144], neutron radiography [89] and astronomical imaging [76]. A
CCD can be cooled even down to -60. . .-100 ◦C (e.g., with liquid nitrogen), causing
the number of thermal electrons per pixel per second to drop from about 25000 (in
room temperature) to 0.04–2 [76]. However, even such low amounts of electrons
per second are not completely insignificant, because imaging distant astronomical
targets usually requires very long exposure times.

Flicker noise (1/f noise, or pink noise) is electronic noise with a pink power
spectral density, i.e., the power is inversely proportional to the frequency f of the
signal. Hence, flicker noise is most prevalent in the low frequency portion of the
signal, but it can be reduced by, e.g., autozeroing and correlated double sampling
methods [56]. Its general properties are not perfectly understood, but it typically
manifests itself as fluctuation of current (or equivalently, as fluctuation of voltage
or resistance). The detailed mechanisms of flicker noise are discussed extensively
in [140].

Readout noise is statistical variation in the final readout and discretized in-
tensity values, caused by imperfect electronics of the amplifiers and the analogue-
to-digital converter. Fortunately, the effect of this noise is very modest in current
CCDs, at most 10 electrons per pixel per read [76]. Since the amplification (gain)
throughout the sensor is not exactly constant, this phenomenon is also called photo
response non-uniformity (PRNU). It is a type of fixed-pattern noise, meaning it is
temporally independent. Other fixed-pattern defects include hot and cold pixels
(defective pixels that produce respectively a higher or lower response than ex-
pected), the extreme cases of which are stuck pixels being permanently “on” and
dead pixels being permanently “off”.

Fixed-pattern noise can be compensated via flat-field correction, where the
pixel gains and the level of dark current are determined, and then used for cor-
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recting the captured image. In particular, a dark frame is produced by captur-
ing an image without actually exposing the shutter to any light. Then the dark
frame, which in practise contains noise caused by the dark current and other non-
uniformities, can be subtracted from the captured image.

Finally, it is worth mentioning that the captured and discretized raw data
often goes through some kind of a post-processing chain inside the imaging device.
This chain typically involves demosaicking, denoising, white balancing, gamma
correction and JPEG compression, some of which may introduce further artifacts
to the final post-processed image.

2.2 Noise models

2.2.1 Additive white Gaussian noise
As discussed in Section 2.1, there are a multitude of noise sources degrading the
quality of a captured digital image, most of which are already compensated to
some extent by a careful design of the imaging device and the processing within.
Taking each noise source separately into account is usually not feasible in the
design of denoising algorithms, so let us recall an important result of probability
theory. The Central Limit Theorem (CLT) was defined generally by A. Lyapunov
in 1901, but both de Moivre and Laplace have already known it in some form in
the previous century [132].

CLT, in Lyapunov’s form, goes as follows. Let X1, . . . , Xk be k independent
random variables with respective mean values µi and variances σ2

i . The Lyapunov
condition is defined as

lim
k→∞

1

s2+δ
k

k∑
i=1

E
{
|Xi − µi|2+δ

}
= 0, (2.1)

where s2
k =

∑k
i=1 σ

2
i . If (2.1) holds for some δ > 0, the normalized sum of the

random variables converges in distribution to the standard normal distribution as
k →∞. In other words,

1

sk

k∑
i=1

(Xi − µi)→ N (0, 1), (2.2)

when k →∞. This fundamental property suggests that we may try to approximate
the combined effect of the various noise sources by a Gaussian distribution.

In image processing, a common stronger assumption is that the noise is not only
Gaussian, but additive white Gaussian noise (AWGN); it is signal-independent,
normally distributed, independent and identically distributed (the latter implying
that σi is constant over the image), and has a flat power spectrum. In the notation
used throughout this thesis, the AWGN model is expressed simply as

z = y + n, (2.3)

where z is the observed noisy image, y is the underlying (unknown) noise-free
image, and the additive term n is the corrupting AWGN noise. In the real-world
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digital imaging devices, this is often not a particularly accurate representation of
the truth, as it completely ignores the signal-dependent shot noise, which typi-
cally contributes to the noise significantly. However, most denoising algorithms
traditionally make this simplifying assumption in order to make the design and
implementation of the algorithm more accessible and straightforward. On the
other hand, there are cases when the assumption of Gaussianity is more justified.
For instance, in low-dose computed tomography (CT), the data can be considered
Gaussian, although with signal-dependent variance [95].

2.2.2 Poisson noise
Instead of assuming the noise to be AWGN, another common approach is to only
consider the signal-dependent noise, and thus implicitly assume that the degrading
effects of all signal-independent sources are insignificant in comparison. We start
off with this assumption in Chapter 3, and then extend the developed inversion
method to the more general case of Poisson-Gaussian noise in Chapter 4.

Thus, let us properly define what we mean by Poisson noise. Let zi, i =
1, . . . , N , be the observed pixel values obtained through an image acquisition de-
vice. We consider each zi to be an independent random Poisson variable whose
mean yi ≥ 0 is the underlying intensity value to be estimated. Explicitly, the
discrete Poisson probability of each zi is

P (zi | yi) =
yzii e

−yi

zi!
. (2.4)

In addition to being the mean of the Poisson variable zi, the parameter yi is also
its variance:

E{zi | yi} = yi = var{zi | yi}. (2.5)

Now, Poisson noise can be formally defined as

ηi = zi − E{zi | yi}, (2.6)

and thus, we trivially have E{ηi | yi} = 0 and var{ηi | yi} = var{zi | yi} = yi.
Since the noise variance depends on the true intensity value, Poisson noise is signal
dependent. More specifically, the standard deviation of the noise ηi equals

√
yi.

Due to this, the effect of Poisson noise increases (i.e., the signal-to-noise ratio
decreases) as the intensity value decreases.

2.2.3 Poisson-Gaussian noise
As a natural extension of the previous two models, we consider the Poisson-
Gaussian noise model, which takes into account both signal-dependent and signal-
independent noise sources. In particular, the model contains a multiplicative scaled
Poisson term, and an additive Gaussian term.

Specifically, let zi, i = 1, . . . , N be again the observed pixel values obtained
through an image acquisition device. In the Poisson-Gaussian model, each zi is
a realization of an independent random Poisson variable pi with an underlying
mean value yi. This variable is then scaled by a positive gain value α > 0, and
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the scaled result is further corrupted by additive white Gaussian noise ni of mean
µ and standard deviation σ. In other words,

zi = αpi + ni, (2.7)

where pi ∼ P (yi) and ni ∼ N (µ, σ2). Thus, we can formally define Poisson-
Gaussian noise as

ηi = zi − αyi. (2.8)

The problem of denoising an image corrupted by Poisson-Gaussian noise is then
equivalent to estimating the underlying noise-free image y given the noisy obser-
vations z.

It is important to mention that this model can still be elaborated in order to
more accurately match the physical characteristics and limitations of the imaging
hardware. Notably, (2.7) does not take clipping (over- and underexposure) into
account. However, the dynamic range of an actual imaging sensor is limited,
because each pixel can accumulate only a certain amount of charge. Thus, over-
or underexposing an image causes additional nonlinear behaviour in the image
model. For simplicity, we will not consider the clipped case here, but we note that
a clipped Poisson-Gaussian model has been successfully used, e.g., in noise fitting
and denoising of clipped and non-clipped raw CCD data [64, 67].

2.3 Variance stabilization
This section explores the theoretical and practical results related to variance sta-
bilization, accompanied with a historical overview on the development of VSTs.
We discuss the stabilization of Poisson and Poisson-Gaussian noise in detail, and
elucidate the importance of a proper inverse VST.

As mentioned earlier, when it comes to denoising, our focus is in the indirect
approach that combines variance stabilization with an AWGN denoising algorithm.
A review of some of these denoising algorithms follows in Section 2.4.1, whereas
in Sections 2.4.2–2.4.3, we discuss a few effective denoising algorithms designed
specifically for signal-dependent noise.

2.3.1 Background and motivation
The rationale behind applying a variance-stabilizing transformation to random
data zi, i = 1, . . . , N is to remove the data-dependence of the noise variance, so
that it becomes constant throughout the whole data. The stabilizing transfor-
mation may also be normalizing (i.e., it results in a Gaussian noise distribution).
Generally, this enables an easier analysis and processing of the data, and it has
been a well-known tool in statistics for a long time, even though we are mainly in-
terested in it from the perspective of signal and image processing. From our point
of view, these properties of the VST allow us to estimate the intensity values yi
with a conventional denoising method designed for additive white Gaussian noise.

The history and development of various VSTs is discussed in Section 2.3.2,
but in order to properly review the history, we first derive a well-known heuris-
tic used in the traditional design of VSTs. Let us investigate the removal of the
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data-dependence for a general random variable z with mean E {z | y} = µ(y) and
standard deviation std {z | y} = σ(y). The ideal variance-stabilizing transforma-
tion f(z) ought to be such that std {f(z) | y} = c, where c > 0 is a constant (i.e.,
the standard deviation, and thus variance, of f(z) is independent of y).

By approximating f(z) with its first order Taylor polynomial centered at µ, we
get

f(z) ≈ f(µ) + (z − µ)
∂f

∂z
µ, (2.9)

and thus,

(f(z)− f(µ))
2 ≈ (z − µ)2

(
∂f

∂z
µ

)2

. (2.10)

If we now take the expected value of both sides of (2.10), we have

var {f(z) | y} = E
{

(f(z)− f(µ))
2
}
≈ E

{
(z − µ)2

(
∂f

∂z
µ

)2
}

= σ(y)2

(
∂f

∂z
µ

)2

.

(2.11)
In other words,

std {f(z) | y} = σ(y) · ∂f
∂z
µ. (2.12)

Let us now set a constraint std {f(z) | y} = c, where c > 0 is constant (typically
we set c = 1). Then, solving (2.12) for f(z) yields

f(z) =

∫
z

c

σ(y)
dµ(y). (2.13)

This is a traditional starting point for the design of practical variance-stabilizing
transformations for specific distributions. When the characteristics of the dis-
tribution (i.e., σ(y) and µ(y)) are known, f(z) is easily obtained by (2.13), as
demonstrated in Section 2.3.3. However, it is worth noting that the VST obtained
by this procedure is typically suboptimal, and in practise more refined transfor-
mations are used.

2.3.2 History and development of variance stabilization
The statistical term variance has been used at least since 1918, when R.A. Fisher
coined the term and defined it as the square of the standard deviation. He found
the concept useful in investigating how two independent causes of variability (with
standard deviations σ1 and σ2) act together in Mendelian inheritance; the resulting
distribution had a standard deviation equalling

√
σ2

1 + σ2
2 [60].

The idea of rendering the distribution of heteroskedastic data into another form
for easier processing or analysis (in other words, the idea of variance stabilization)
can be reliably traced back at least to 1930s, but it probably has been known
in some form even earlier. In particular, the heuristic rule (2.13) was used by
L.H.C. Tippett in 1934, when he applied binomial and Poisson distributions in
the statistical treatment of certain random occurrence data in textile industry
[134]. However, as the derivation of (2.13) is rather simple, it is not unlikely that
it has been independently discovered by a number of people. In the following
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years, the topic continued to gain interest, and various articles were published
throughout the late 1930s and 1940s (e.g., [9, 143, 13, 30, 27, 31, 11, 33, 3]).

In particular, M. S. Bartlett proposed the transformation f(z) = 2
√
z + 1/2

in 1936 for the stabilization of a Poisson variable, also using (2.13) for the deriva-

tion [9]. In 1948, this was improved by F. J. Anscombe to f(z) = 2
√
z + 3

8 [3],
providing optimal (as defined in Section 2.3.3) asymptotic stabilization; this is
the Anscombe transformation that plays a central role also in this thesis. Shortly
thereafter, M. Freeman and J. Tukey introduced an alternative transformation
f(z) =

√
z+
√
z + 1 [69], now known as the Freeman-Tukey transformation. Their

design principle differed from that of Anscombe, as they emphasized on keeping
the error small for low mean values, at the cost of slower asymptotic convergence.
The stabilization of Poisson noise is discussed in more detail in Section 2.3.3, where
the concepts of this paragraph are elaborated.

Concerning the variance stabilization of general distribution families, we should
mention the important and well-known results of J.H. Curtiss, B. Efron, and R.
Tibshirani. First, in 1943, Curtiss recognized the lack of general mathematical
results in the earlier publications. Thus, in [33], he fills this gap by proving
various asymptotic stabilization and normalization properties of general VSTs.
In addition, he explores the consequences of his theorems for Poisson and bino-
mial distributions, also confirming the viability of the square root transformation
2
√
z + constant for the Poisson case (and the viability of the inverse sine transfor-

mation for the binomial case). However, he could not determine an optimal value
for this constant, or determine the degree of convergence to normality of this type
of transformation; as mentioned, the optimal constant 3/8 was then proposed by
Anscombe in 1948.

The question of normalizing a general one-parameter family of distributions,
and in particular the degree of normalization, was then answered by Efron in 1981
[52]. He derives the conditions under which a family of distributions can be ex-
actly normalized by a transformation, and constructs a measure for the degree of
normalization. Moreover, he also provides a way to actually construct the stabi-
lizing and normalizing transformations in practise. Consequentially, these results
show that for the Poisson distribution (and for many other distribution families),
a perfect transformation (exactly stabilizing the variance or exactly normalizing
the distribution) does not exist. Therefore, in practise, approximate or asymptotic
results are employed. Curtiss also discusses the discrepancy between stabilizing
and normalizing transformations; in general, good stabilization and good normal-
ization are not always mutually compatible properties. For instance, he notes
that in the Poisson case, the Anscombe transformation f(z) = 2

√
z + 3

8 provides
good stabilization, but on the other hand it goes 37 % beyond the ideal normal-
izer f(z) = 2

√
z + 1

3 (in terms of his “strength of transformation” criterion). The
latter transformation, with better normalizing properties, was first suggested by
Anscombe in 1953 [4], based on the fact that it makes the skewness (i.e., third cen-
tered moment) of the resulting distribution nearly zero. Curtiss also argues that
both of these transformations stabilize the variance equally well, but despite this
observation, the better normalizing transformation has not gained widespread us-
age in applications, as opposed to the traditional Anscombe transformation. Based
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on the results of Curtiss, S.K. Bar-Lev and P. Enis have also proposed a method
of using a given normalizing transformation to construct a stabilizing transforma-
tion [7], and discussed stabilizing and normalizing transformations for a compound
Poisson process [8].

The contribution of Tibshirani is of a different kind, but before discussing
that, let us introduce two other methods. In 1964, G. E. P. Box and D.R. Cox
proposed a stabilizing power transformation family of the form zλ = (zλ − 1)/λ
(and another slightly more refined family), where the parameter λ defines a spe-
cific transformation [16]. They devised these transformations with a particular
interest in the linear regression of biological data. Then, in 1985, L. Breiman and
J.H. Friedman introduced the two-step iterative ACE (alternating conditional ex-
pectation algorithm) for constructing optimal transformations for regression and
correlation [18]. In particular, they consider two random variables z and w. Their
algorithm finds two transformations f(z) and s(w), where f serves as a VST,
and s represents a mean function with the goal of satisfying s(w) = E {f(z) | w}.
In practise, they alternate between computing s(w) = E {f(z) | w} and f(z) =

E {s(w) | z} · var {E {s(w) | z}}−1/2, where each conditional expectation is esti-
mated through realizations of the random variables. To put it differently, the goal
of ACE is to minimize E {f(z)− s(w)}2 and maximize corr {f(z), s(w)}, both sub-
ject to the condition var {f(z)} = 1. As a result, the obtained transformations
can be used to regress z on w, or vice versa.

Wishing to construct a powerful iterative algorithm like ACE, but specifi-
cally targeting regression like the parametric Box-Cox transformations, Tibshirani
proposed the nonparametric AVAS (additivity and variance stabilization) pro-
cedure in 1988 [131]. It also finds the two transformations f(z) and s(w) by
two alternating steps, again with the goal of satisfying s(w) = E {f(z) | w} and
var {f(z) | s(w)} = constant. This is accomplished by alternatively computing the
mean s(w) = E {f(z) | w}, and updating the VST f(z) by using the knowledge
that h(f(z)) should have a more constant variance than f(z), where h is another
VST obtained by the simple integral heuristic (2.13). Tibshirani demonstrates the
usage of AVAS in various regression scenarios, and discusses its convergence with
the help of Efron’s categorization of distribution families.

Let us mention some of the more recent advances, inspired not only by statis-
tical problems, but also by the growing field of signal and image processing. In
particular, a notable approach is to stabilize the wavelet coefficients of the noisy
data instead of the data itself. For instance, the Haar-Fisz transform [70] stabilizes
Poisson data by first computing the discrete Haar wavelet transform, producing
detail coefficients di and smooth coefficients si. Then, the stabilized coefficients are
obtained by di/

√
si, following the asymptotic normality observation by Fisz in [61].

The data-driven Haar-Fisz Transform (DDHFT) [71] is a multiscale generalization
of the Haar-Fisz transform, stabilizing the variance of sequences of non-negative
independent random variables, where the variance is an unknown non-decreasing
function of the expectation. As another example, the stabilization procedure of
the MS-VST [146] algorithm is based on combining the Anscombe transformation
with a filter bank of wavelets, ridgelets or curvelets (see Section 2.4.2 for a more
detailed description of MS-VST).

Finally, the optimization of variance-stabilizing transformations was recently
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formulated as an explicit optimization problem by A. Foi [65, 66]. The discrepancy
between the standard deviation of the stabilized variable and the target constant
value is measured by a nonlinear stabilization functional, which is then iteratively
minimized. The minimization can be done either by recursive stabilization (im-
proving on the method used in AVAS), or by direct search. The nonparametric
optimized transformations obtained with this procedure are shown to be state-of-
the-art [66]. Moreover, the method also allows to relax the typical assumption
of monotonicity of the VST f , as long as the mapping E {z | y} → E {f(z) | y}
remains invertible.

2.3.3 Stabilizing Poisson noise

For a Poisson distributed random variable z, we have E {z | y} = µ(y) = y and
std {z | y} = σ(y) =

√
y. Assuming we wish to obtain a VST that renders the

variance to unity (i.e., c = 1), (2.13) leads to the root transformation

f(z) =

∫
z

1
√
y
dy = 2

√
z, (2.14)

where the arbitrary constant of integration has been set to zero. As the stabiliza-
tion obtained through (2.14) is not particularly good especially for low values of y
(see Figure 2.1), improvements have been sought by investigating a transformation
of the form f(z) = 2

√
z + b, where b is a constant. Specifically, Bartlett proposed

the transformation f(z) = 2
√
z + 1/2 in 1936 [9], and Anscombe improved this to

f(z) = 2

√
z +

3

8
. (2.15)

in 1948. In fact, setting the constant to 3/8 in (2.15) provides optimal stabilization
for large values of y for this type of root transformation [3]. More explicitly, the
second order Taylor expansion for the stabilized variance equals

var {f(z) | y} = 1 +
3− 8b

8y
+

32b2 − 52b+ 17

32y2
. (2.16)

Hence, setting b = 3/8 yields

var {f(z) | y} = 1 +
1

16y2
. (2.17)

Anscombe credits this result to A.H.L. Johnson, but (2.15) is nevertheless known
as the Anscombe transformation. This is one of the most popular VSTs for
Poisson distributed data, although the Freeman-Tukey transformation f(z) =√
z +
√
z + 1 [69] provides comparable asymptotic stabilization. In particular,

both the Anscombe and Freeman-Tukey transformations yield an asymptotic sta-
bilized variance of the order 1 +O(y−2) for y →∞, in comparison to 1 +O(y−1)
for the simple transformation (2.14).

Applying any of the above variance-stabilizing transformations to Poisson dis-
tributed data gives a signal whose noise is approximately additive normal with
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Figure 2.1: Standard deviation of the stabilized Poisson variable f (z), for five dif-
ferent VSTs: the heuristic transformation f(z) = 2

√
z, the Bartlett transformation

f(z) = 2
√
z + 1/2, the Freeman-Tukey transformation f(z) =

√
z +

√
z + 1, the

Anscombe transformation f(z) = 2
√
z + 3

8
, and a state-of-the-art nonparametric op-

timized transformation [66] (nonmonotone, direct search).

unitary variance. However, as mentioned in Section 2.3.2, it is not possible to
achieve exact stabilization or exact normalization for Poisson distributed data.
Thus, all practical transformations are approximately or asymptotically stabi-
lizing and normalizing. The stabilized standard deviation is illustrated in Fig-
ure 2.1 for the heuristic transformation f(z) = 2

√
z, the Bartlett transformation

f(z) = 2
√
z + 1/2, the Freeman-Tukey transformation f(z) =

√
z +
√
z + 1, the

Anscombe transformation f(z) = 2
√
z + 3

8 , and a state-of-the-art nonparamet-
ric optimized transformation [66] (nonmonotone, direct search). This comparison
shows, for instance, that the Freeman-Tukey transformation stabilizes the vari-
ance slightly better for small values (y < 2.2) than the Anscombe transformation.
On the other hand, the Anscombe transformation provides slightly more accurate
stabilization around 2.2 < y < 4.8. Another noticeable difference in the stabilized
variances is that there is some overshoot for the Freeman-Tukey transformation
before it approaches the target variance 1 from above, whereas such oscillation does
not take place with the Anscombe transformation. In this thesis, our focus is on
the Anscombe transformation due to its widespread use in practical applications.
In addition, this choice allows us to generalize our results for the Poisson-Gaussian
noise, using the generalized Anscombe transformation introduced below; we are
not aware of a Poisson-Gaussian generalization for the Freeman-Tukey transfor-
mation, for instance.
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2.3.4 Stabilizing Poisson-Gaussian noise

As explained in Section 2.2.1, the various signal-independent noise sources of a
digital acquisition device are typically jointly approximated as Gaussian noise.
Combining this with the Poisson noise component produces the Poisson-Gaussian
model (2.7), for which the Anscombe transformation is no longer appropriate. In
order to address this deficiency, F. Murtagh et al. derived a generalization of the
Anscombe transformation, taking into account the three necessary parameters:
gain α, Gaussian mean µ, and Gaussian standard deviation σ [107, 126]. Much of
their derivation follows the structure used by Anscombe himself in the derivation
of (2.15).

In particular, assuming the noisy data z is distributed according to (2.7), [126]
defines the generalized Anscombe transformation (GAT) as

f(z) =

{
2
α

√
αz + 3

8α
2 + σ2 − αµ, z > − 3

8α−
σ2

α + µ

0, z ≤ − 3
8α−

σ2

α + µ.
(2.18)

Hence, applying (2.18) to z (approximately) stabilizes its variance to unity. More
precisely, var {f(z)|y, σ} = 1 + O(y−2) for y → ∞, since (2.18) is derived by
zeroing the first order term in the Taylor expansion of the stabilized variance [126,
p. 265]. This derivation is analogous to how the optimal constant b = 3/8 was
determined for the traditional Anscombe transformation (2.15). Note that for the
pure Poisson case (i.e., α = 1, σ = 0, and µ = 0), the GAT (2.18) coincides with
(2.15), as expected.

2.3.5 Inverse variance-stabilizing transformations

Especially in the practical context of denoising with the help of variance stabiliza-
tion, we need not only a properly constructed forward VST in order to achieve
good results, but also a suitable inverse transformation; this issue was first dis-
cussed in terms of exact unbiased inversion in [67]. Specifically, the denoising of
the variance-stabilized data f(z) produces a signal D that can be considered as
an estimate of E{f(z) | y}. Then, we need to apply an inverse transformation to
D in order to obtain the desired estimate of the underlying noise-free data y.

Let us consider the case of pure Poisson noise. The direct algebraic inverse of
the Anscombe transformation (2.15) is

Ialg(D) = f−1(D) =

(
D

2

)2

− 3

8
, (2.19)

but the resulting estimate of y is biased, because the nonlinearity of the transfor-
mation f means we generally have

E{f(z) | y} 6= f(E{z | y}), (2.20)

and, thus,
f−1(E{f(z) | y}) 6= E{z | y}. (2.21)
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Another possibility is to use the adjusted inverse [3]

Iasy(D) =

(
D

2

)2

− 1

8
, (2.22)

which provides asymptotic unbiasedness for large values of y. This is the inverse
typically used in applications, but as its name implies, it does not guarantee un-
biased results for low-intensity data (low values of y, corresponding to the case of
low signal-to-noise ratio). Thus, Chapter 3 of this thesis presents an exact unbi-
ased inverse Anscombe transformation that is equally applicable regardless of the
values of y.

Naturally, the same reasoning applies also for the case of Poisson-Gaussian
noise and the GAT. In Chapter 4, we generalize the proposed exact unbiased
inverse of the Anscombe transformation into the exact unbiased inverse of the
GAT. Moreover, the algebraic and asymptotically unbiased inverses of the GAT
are respectively obtained from (2.19) and (2.22) by simply adding the term −σ2.
Note that these two inverses are denoted by Ialg and Iasy in both the Poisson case
(Chapter 3) and the Poisson-Gaussian case (Chapter 4). However, in the latter
case, the corresponding equations of Ialg and Iasy are also given explicitly, so there
should be no risk of confusion.

2.4 A short overview of image denoising algorithms
Let us briefly review the image denoising algorithms used in the thesis, along with
a selection of other algorithms to provide more perspective to the topic. However,
as our main focus is on the variance stabilization aspect of image denoising, a
detailed survey of the various types of denoising algorithms is out of our scope.
For a more extensive summary and categorization of AWGN denoising algorithms,
we point the reader to [41, Chapter 3], [82] and the references therein.

Denoising algorithms can be categorized, for instance, by whether they operate
in spatial domain or transform domain, or by whether they operate locally or non-
locally, or by whether they estimate only one pixel or a larger patch at a time (see
[82, Table 1]). However, for our purposes, it is more natural to divide them primar-
ily according to the targeted noise model: AWGN, Poisson, and Poisson-Gaussian
denoising algorithms. Note that some of the AWGN categories are overlapping,
as there exist nonlocal transform domain algorithms, local transform domain al-
gorithms, and so forth. Thus, the rough subdivision in Section 2.4.1 should not
be taken strictly; in many cases, the introduced algorithms belong to more than
one of the categories.

2.4.1 AWGN denoising algorithms
Local polynomial approximation

Early efforts at estimating the expected value of noisy data were made in 1964
by È.A. Nadaraya [115] and G.S. Watson [138]. With the Nadaraya-Watson esti-
mator, each pixel is estimated by a locally weighted average of the neighbouring
pixels. In its simplest form, this kind of kernel regression assumes a uniform local
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neighbourhood (i.e., all the neighbouring pixels have the same intensity). A nat-
ural extension of this idea is to relax the uniformity assumption and model the
intensities in a local neighbourhood by a polynomial of a certain degree (see, e.g.,
[28, 29, 58, 81]). Hence, this method is often called local polynomial approximation
(LPA).

The LPA method can be further extended by considering an adaptive kernel,
in other words letting the weights vary based on the data present in the neigh-
bourhood. This can be accomplished, for instance, by varying the bandwidth
of the kernel; see, e.g., [124, 80, 57, 81]. Since images typically contain sharp
discontinuities (such as edges), [81] considers also combining several directional
LPA estimates in order to better adapt to the image structure; this is known as
anisotropic LPA-ICI, where the kernel bandwidth is selected by an intersection of
confidence intervals (ICI).

Transform-domain algorithms

In general terms, transform-domain denoising is a rather straightforward process:
First, the image is transformed into a chosen domain, where the signal can typi-
cally be represented more sparsely (i.e., with fewer significant coefficients). Then,
the transform domain coefficients are processed in order to attenuate the noise.
Finally, the denoised result is obtained by applying an inverse transform. Tradi-
tional transforms include the discrete fourier transform (DFT) and the discrete
cosine transform (DCT), both of which are decorrelating transforms. In other
words, the energy of many coefficients is compacted into fewer significant trans-
form domain coefficients. This enables us to threshold (or otherwise modify) the
coefficients, thus attenuating the noise without destroying the essential informa-
tion of the signal. In order to take full advantage of the local correlation between
the neighbouring pixels and achieve good energy compaction, all of this processing
is typically done separately for small (e.g., 8 × 8 or 16 × 16) image blocks. This
technique is also used in image compression, such as in the lossy JPEG standard.

Another perspective to denoising is offered by Bayesian statistics, where we
compute a conditional posterior probability with Bayes’ theorem, based on a pri-
ori assumptions about the probability densities of the image and noise. An esti-
mate of the noise-free image can then be obtained for example by computing the
conditional expectation of the posterior probability, or by finding the value that
maximizes the posterior probability. For an extensive and up to date introduction
on Bayesian statistics, we refer the reader to [93]. Even though the Bayesian the-
ory is well established, a proper selection of the prior assumptions still remains a
major practical challenge (see, e.g., [77]).

One of the denoising algorithms featured throughout this thesis is the BLS-
GSM (Bayesian Least Square - Gaussian Scale Mixture) algorithm, proposed by
J. Portilla et al. in 2003 [120]. As implied, BLS-GSM performs the denoising
in transform domain instead of the spatial domain. The algorithm constructs an
overcomplete multiscale oriented basis, and models the local neighbourhoods of
these multiscale transform domain coefficients with a Gaussian scale mixture model
[2]. In particular, the model states that a vector is a mixture of Gaussian vectors
(i.e. GSM), if and only if it is a product of a Gaussian vector and an independent
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random scalar multiplierM > 0. For the prior density of this multiplier, they have
various approaches: a logarithmic prior, a maximum likelihood estimate using the
neighbouring vectors, and a noninformative prior p(M) ∼ 1/M also known as
Jeffrey’s prior [59]. Based on its simplicity and the good associated denoising
results, they favour the noninformative prior in their experiments.

Multiscale transforms have gained much interest in the field of image pro-
cessing, with wavelets being a particularly popular subclass of these transforms.
In simple terms, wavelets are families of oscillating functions, where each fam-
ily is generated from one “mother wavelet” by dilations and translations. This
wavelet family, which typically forms an orthonormal basis dictionary or an over-
complete dictionary, can then be used to decompose the image into a multiscale
representation. As a mathematical construct, the rectangular Haar wavelet was
introduced already in 1910 [73], but wavelets began to emerge in the context of
image processing (along with the word “wavelet” itself) in the 1980s. The early
and important works of that era include those of I. Daubechies [45] and S. Mallat
[103, 104]. The wavelet mindset has also inspired many related transforms, which
attempt to adapt to specific geometrical image features, such as edges, straight
lines or smooth curves. These transforms include directional wavelets [5], complex
wavelets [86, 87], curvelets [22, 127], ridgelets [21, 127], wedgelets [50], shearlets
[92] and contourlets [48], among others.

Shape adaptivity has also been considered in the SA-DCT algorithm [62, 63],
where the support of the 2-D DCT transform is adapted according to the image
structure. Specifically, the neighbourhood of the pixel is divided radially into sec-
tors, and the radial length of each sector is determined with the anisotropic LPA-
ICI method. These variable length sectors form the neighbourhood, for which the
2-D DCT is applied. The transformed coefficients are then hard-thresholded, after
which the inverse 2-D DCT is applied. Note that since the neighbourhoods for
different pixels are typically overlapping, the denoised pixels form an overcom-
plete representation. Thus, the individual estimates are combined by computing
their weighted average, where the weights are inversely proportional to the mean
variance of the estimates.

Another recent adaptive transform-domain denoising algorithm is K-SVD [55],
which aims at representing image blocks as a sparse linear combination of atoms
(elements of an overcomplete dictionary). The algorithm works iteratively, al-
ternating between representing the image as a linear combination of the current
atoms, and updating the dictionary atoms. In particular, the former step utilizes
the K-means clustering algorithm, and the latter step utilizes the singular value
decompositon (SVD). The dictionary can be computed beforehand by using an
image database, or on the fly from the actual noisy image. The K-SVD algorithm
has also been extended to take advantage of a multiscale representation, in the
form of MS-K-SVD [102]. Specifically, they use a quadtree decomposition and
overlapping image patches for obtaining a multiscale representation.

Nonlocal algorithms

Nonlocal image denoising is based on the idea of exploiting the mutual similari-
ties between different parts of the image, instead of relying only on information
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available in a local neighbourhood. As natural images are typically highly redun-
dant (e.g., an image of the sky, a building, or a grassy field will all most likely
contain several highly self-similar small patches all around the image), a nonlocal
algorithm can utilize these similarities in estimating the expected value of such an
image patch. In theory, all pixels of the image can be taken into account in the
estimation process, although it is computationally demanding. Thus, filters of this
type are nonlocal.

The concept of nonlocality has been used for example in fractal compression
methods already in the 1990s [97], but its applicability in image restoration, es-
pecially in denoising, has recently become more apparent due to such methods
as nonlocal means [19], exemplar-based estimation [84], and collaborative filtering
[34, 35].

To the best of our knowledge, nonlocal means is the first nonlocal image de-
noising algorithm (although it is interesting to note that the idea of reducing noise
by leveraging signal redundancy was also briefly discussed by J.S. De Bonet in
1997 [46]). It was introduced in 2005 by A. Buades et al. [19], and they were in-
spired by the work of A. Efros and T. Leung [53], who took advantage of nonlocal
self-similarities in natural images in the context of texture synthesis. The general
concept of nonlocal means is to estimate each pixel of the image as a weighted
average of pixels whose neighbourhood is similar to the neighbourhood of the es-
timated pixel. The similarity of two patches is defined as a Gaussian weighted
Euclidean distance. Thus, large Euclidean distances will lead to small weights,
and vice versa.

The exemplar-based estimation is an elaborate variant of the nonlocal means.
Specifically, instead of fixed size nonlocal estimation neighbourhoods, it defines
adaptive-sized neighbourhoods by using pairwise hypothesis testing. This esti-
mation procedure is implemented by the structure adaptive filtering (SAFIR) al-
gorithm [84, 15]. SAFIR is one of the algorithms used in our comparisons in
Chapter 3.

BM3D

Introduced by the authors of SA-DCT, BM3D [34, 35] belongs to the group of
nonlocal algorithms. However, due to its important role in this thesis, we devote
a separate section to introducing it. Let us first describe the basic concept behind
the algorithm superficially, and then elaborate the process in more detail.

In short, BM3D operates by grouping similar 2-D patches of the image into
3-D arrays, which we refer to as groups. Each group is processed by applying a 3-D
transform to obtain a sparse representation of the signal, shrinking the transform
spectrum and finally applying the corresponding inverse 3-D transform. In other
words, 2-D patches are filtered collaboratively, producing a 3-D estimate of the
group. This has proven to be an effective way of detecting the details shared by
the 2-D patches without losing the distinct features of each patch.

In more detail, the algorithm will complete two rounds of processing. In the
first round, the 2-D image blocks are grouped into a 3-D array by first choosing
a reference block, and then finding other similar blocks via block matching (BM).
The pairwise similarity between the reference and candidate blocks is defined by
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using the Euclidean distance between prefiltered blocks. In particular, the blocks
are prefiltered (hard-thresholded) in order to diminish the effect of noise to the
obtained metric. The distance between the reference block ZR and the candidate
block Z is thus defined as

d(ZR, Z) =
‖Γ (τ2D(ZR))− Γ (τ2D(Z)) ‖22

N2
, (2.23)

where Γ is a hard-thresholding operator, τ2D is an orthonormal 2-D linear trans-
form, and N2 is the number of pixels in the image block. The 3-D array is then
constructed by grouping ZR with all the candidate blocks Z, for which d(ZR, Z)
is smaller than a predefined threshold.

The next step is to apply a 3-D transform to the obtained group. In practise,
we take advantage of linear separability, and compute the 3-D transform domain
coefficients by first applying a 2-D transform (e.g., 2-D DCT or a biorthogonal
wavelet transform), followed by a 1-D transform (e.g., Haar transform) along the
stacking dimension. In fact, the choice of these transforms has only a minor effect
to the denoising result, as shown in the comparison [35, Table II].

After this, the noise is attenuated by hard-thresholding the obtained sparse 3-D
representation of the signal, and finally the corresponding inverse transforms are
applied in order to return to spatial domain. The denoised image blocks are then
returned to their original places. However, since overlapping blocks are used, and
one block may belong to several groups, we have an overcomplete representation of
the denoised image. Thus, as in the SA-DCT algorithm, the individual denoised
blocks will need to be aggregated in order to produce the final estimate of the
block. This is done by weighted averaging of the individual results, where each
weight is inversely proportional to the variance of the denoised block.

Now the algorithm has finished the first round, and we have obtained a basic
estimate of the true image. The second round proceeds with the same general
steps as the first round, but with a few crucial differences. First, groups are
formed both on the basic estimate and on the original noisy image. However, the
actual grouping is exclusively determined from the basic estimate, and the same
grouping is then applied on the original noisy image. Consequently, the distance
metric (2.23) can also be simplified by removing the thresholding operator Γ. In
other words, we use the simple Euclidean distance between two blocks of the basic
estimate. As a result of the grouping stage, we will have groups Ŷb of the basic
estimate, and groups Z of the noisy image (but the location of the blocks in Z is
determined from the basic estimate).

After the grouping, the 3-D transform is computed for both groups Ŷb and Z;
the 2-D and 1-D transforms need not necessarily be the ones that were used in the
first round. Then, instead of hard-thresholding, the noise is attenuated by Wiener
filtering. In particular, the empirical Wiener shrinkage coefficients W of a group
are defined via the energy of the transformed group Ŷb:

W =
|τ3D(Ŷb)|2

|τ3D(Ŷb)|2 + σ2
,

where τ3D is the 3-D transform, and σ2 is the variance of the noisy image. Wiener
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filtering and inverse 3-D transform are then applied on the noisy group Z:

Ŷ = τ−1
3D (Wτ3D(Z)) ,

where Ŷ is the final estimate of the particular block. Finally, as in the first round,
these individual block estimates are aggregated by weighted averaging, ultimately
producing the final denoised image. For more thorough implementation details,
we refer the reader to [35].

Various modifications to BM3D have been proposed in the recent years. For
instance, it has been extended for the cross-colour denoising of raw CFA data
[42], for the denoising of RGB colour images [36], for video denoising [37], and
most recently for the denoising, deblocking and enhancement of volumetric data
by using a 4-D transform [100, 101].

In addition, joint sharpening and BM3D denoising was proposed in [38], where
the sharpening was achieved via alpha-rooting [1]. In other words, the differences
both within and between the grouped image blocks are amplified by taking the
α-root of the magnitude of the 3-D transform domain coefficients, for some α > 1.
This approach has also been adapted to use a varying sharpening strength α based
on the edge and texture information of the image [111]; the edge and texture
strengths are estimated as in [135].

Moreover, the shape adaptivity of SA-DCT has been combined with BM3D,
in the form of SA-BM3D [39]. This has been further extended to BM3D-SAPCA
[40], which employs principal component analysis (PCA) in the transform domain.
Specifically, the final 3-D transform is a combination of the PCA applied on each
image patch in the group, and the 1-D transform along the stacking dimension.

BM3D, BM3D-SAPCA, MS-K-SVD, K-SVD, SA-DCT and SAFIR are cur-
rently among the state-of-the-art algorithms in AWGN image denoising [25, 82].
Other recent efficient algorithms include the clustering-based K-LLD [24] that also
uses locally learned dictionaries, the patch-based redundant Wiener filter PLOW
[26] by the authors of K-LLD, and locally adaptive regression kernel (LARK) [130]
that uses gradients in adapting a canonical kernel to the local image structure. For
a deeper insight into some of the fundamental connections between various denois-
ing algorithms, we refer the reader to [106].

Due to its state-of-the-art performance and fast execution speed, BM3D func-
tions as our primary choice of a Gaussian denoising algorithm in all the experiments
throughout this thesis. The excellent performance of the BM3D family can also be
explained by considering it as an overcomplete sparse frame representation within
a variational framework [44]. However, regardless of the algorithm, there is still a
gap between the real life denoising performance and the theoretical lower bound
for the mean squared error [25], leaving room for future improvements.

2.4.2 Poisson denoising algorithms
In the case of Poisson noise, the noise variance equals the expected value of the
underlying true signal. This signal-dependency makes the premise for Poisson de-
noising very different from the case of AWGN denoising, where the variance is
assumed to be constant. Hence, it is not surprising that the number of denoising
algorithms specifically targeted at Poisson noise is relatively small in comparison
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with the AWGN algorithms. Nevertheless, we review some of the best perform-
ing Poisson denoising algorithms (MS-VST [146], PH-HMT [94], and PURE-LET
[98]), which are also used in our comparisons in Chapter 3.

As far as other Poisson denoising algorithms are concerned, both MS-VST and
PURE-LET have been shown [146, 98] to outperform the Haar-Fisz algorithm [70]
and platelets [141, 142]. Other algorithms are presented, e.g., in [133, 90, 91, 96],
and most recently, [123] presented a nonlocal PCA-based algorithm addressing also
extremely low-intensity cases. Classical and Bayesian wavelet shrinkage estimators
are reviewed in [12].

MS-VST

MS-VST, proposed by B. Zhang et al. in [146], is a denoising algorithm that
extends the Anscombe transformation for the stabilization of a filtered discrete
Poisson process. The obtained VST is then combined with a filter bank of wavelets,
ridgelets or curvelets, yielding a multiscale VST. The stabilized coefficients are
denoised using hypothesis testing, and the final denoised image is reconstructed
via an iterative sparsifying scheme.

Let us review the variance stabilization step in more detail. The filtered Poisson
process is defined as Zi =

∑
i h(i)zj−i, where h is a non-negative discrete filter,

and each zj ∼ P(yj) is an independent Poisson variable. Their reasoning for this
prefiltering is that it increases the SNR for the low-intensity cases, which they
back up by an asymptotic analysis. In addition, they assume local homogeneity:
all intensity values yj are assumed to be equal within the support of the filter
h. By denoting τk =

∑
k h(i)k, the Anscombe transformation extended to this

filtered case is then defined as

f(z) = b
√
Z + c, (2.24)

where

b = 2

√
τ1
τ2

and c =
7τ2
8τ1
− τ3

2τ2
.

If no filtering is applied (i.e., h is a Dirac), (2.24) coincides with the standard
Anscombe transformation. In practise, (2.24) is combined with a wavelet filter
bank in such a way that the smooth wavelet coefficients are stabilized with (2.24),
and the detail coefficients are then computed from these stabilized smooth coef-
ficients. Next, the obtained wavelet coefficients are deemed either significant or
insignificant by using hypothesis testing [6]. Finally, the inverse MS-VST needs
to be applied on the denoised coefficients. The authors also recognize that due to
the nonlinearity of the MS-VST, direct inversion is unsuitable. Instead, they for-
mulate the inversion as a convex sparsity-driven minimization problem, solved by
iterative steepest descent. This iterative procedure is described more thoroughly
in [146, Section III.E].

PH-HMT

Another approach to Poisson denoising is presented by S. Lefkimmiatis et al. in
[94], where the PH-HMT algorithm is introduced. Beginning with the idea of
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quadtree multiscale decomposition, they devise a multiscale Poisson-Haar decom-
position by adding a new intermediate scale between two regular quadtree scales.
This way, they are able to model not only the horizontal and vertical features of
the image, but also the the diagonal edges.

The transformed image can now be represented as a vector ye of rescaled 2-D
Haar wavelet detail coefficients. In particular, these coefficients are treated as
random variables following a beta distribution (conjugate of the binomial distri-
bution). Since the variables are typically not independent, their interscale depen-
dencies are modelled with a hidden Markov tree (HMT) [32].

The Bayesian posterior means of these random transform domain variables are
then estimated by an expectation-maximization (EM) algorithm. The final esti-
mate of the actual image y can then be recursively recovered from these posterior
mean values; the transformation from y to ye is known, and the desired intensities
are found at the finest scale of the decomposition.

PURE-LET

The third Poisson denoising algorithm featured in our comparisons is PURE-LET,
proposed by F. Luisier et al. in [98]. Its concept is built on the idea of estimating
the “risk” (MSE) between the noise-free and the denoised images. For a Gaus-
sian distribution, this MSE can be estimated with Stein’s unbiased risk estimate
(SURE) [128]. However, in order to consider the Poisson case, the authors derive
an interscale Poisson unbiased risk estimate (PURE), which minimizes the MSE
in the Haar wavelet domain.

Then, as in their similar SURE-LET approach for Gaussian denoising [14], they
minimize the estimated MSE over several denoising processes, in order to find the
one providing the best SNR. In particular, these denoising processes are wavelet
estimators expressed as a linear expansion of thresholds (LET); thresholds in this
context mean arbitrary elementary estimators with unknown weights. Thus, the
PURE estimate can be minimized by solving a low-dimensional system of linear
equations (see [98, Section 3.2]).

2.4.3 Poisson-Gaussian denoising algorithms
The problem of directly denoising Poisson-Gaussian corrupted images is even less
explored than that of Poisson corrupted images; often, the VST-based approaches
are used instead. For instance, the SAFIR algorithm mentioned in Section 2.4.1
was used in combination with the generalized Anscombe transformation (2.18)
in [15], for denoising Poisson-Gaussian corrupted fluorescence video-microscopy
sequences. However, they presumably use either the algebraic or asymptotically
unbiased inverse of the GAT, as they do not elaborate on the inversion details.

Another VST-based approach worth mentioning is the denoising of clipped
Poisson-Gaussian corrupted images considered in [67], where the optimized non-
parametric VSTs [65, 66] are combined with BM3D and other Gaussian denoising
algorithms, providing high quality results.

Alternatively, the Poisson-Gaussian noise model is addressed directly in [99],
where the authors of PURE-LET extend their Poisson denoising method to en-
compass the Poisson-Gaussian case. As described in Section 2.4.2, it operates
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by constructing the unbiased PURE estimate (now: Poisson-Gaussian Unbiased
Risk Estimate), and minimize this estimate using a linear expansion of thresholds
(LET). Specifically, they generalize their method from the Haar wavelet domain
to a general redundant transform domain, and update the PURE estimate to take
into account both the Poisson and Gaussian noise components. Finally, they show
that PURE allows for the global optimization of a LET spanning several differ-
ent transform domains, such as undecimated wavelet transform (UWT) and block
DCT. This UWT/BDCT PURE-LET algorithm is used in the comparisons in
Chapter 4.



Chapter 3

Optimal inversion of the
Anscombe transformation for
Poisson noise

3.1 Introduction

The viability of variance stabilization for Poisson noise removal has often been
questioned in the recent years. This issue has arised because of the poor numeri-
cal results achieved with it at the low-count regime, i.e., for low-intensity signals.
In this chapter, we show that this disappointing performance, reported in many
earlier works (e.g., [146], [94], [98]), is not caused simply by inaccurate stabiliza-
tion, but rather by using an unsuitable inverse transformation. We show that
the inversion plays a major role in ensuring the success of the whole denoising
procedure. Specifically, the choice of the proper inverse transformation is cru-
cial in order to minimize the bias error which arises when the nonlinear forward
transformation is applied. We observe that both the algebraic inverse (2.19) and
the asymptotically unbiased inverse (2.22) of the Anscombe transformation (2.15)
lead to a significant bias at low counts. In particular, the latter inverse provides
unbiasedness only asymptotically for large counts, while at low counts it actually
leads to a larger bias than the former one.

This chapter presents our research results first published in [108], [110] and
[112], organized as follows. In Section 3.2, we first propose the exact unbiased
inverse of the Anscombe transformation, and derive a closed-form approximation
for it. Then we show that the exact unbiased inverse can be interpreted as a
maximum likelihood (ML) inverse, and finally we consider a more sophisticated
minimum mean square error (MMSE) inverse. Section 3.3 provides an exten-
sive experimental analysis using a few state-of-the-art denoising algorithms and
shows that the results can be consistently improved by applying the exact unbi-
ased inverse. In particular, the combination of BM3D [35] and the exact unbiased
inverse outperforms some of the best existing algorithms specifically targeted at
Poisson noise removal, while maintaining low computational complexity. Finally,

27
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Section 3.4 presents the concluding remarks of this chapter.

3.2 Optimal inverse transformations

While the asymptotically unbiased inverse (2.22) provides good results for high-
count data, applying it to low-count data leads to a biased estimate, as can be
seen, e.g., in [146]. Here we consider three types of optimal inverses.

3.2.1 Exact unbiased inverse

Provided a successful denoising, i.e. D is treated as E{f(z) | y}, the exact unbiased
inverse of the Anscombe transformation f is an inverse transformation I0 that
maps the values E{f(z) | y} to the desired values E{z | y}:

I0 : E{f(z) | y} 7−→ E{z | y}. (3.1)

Since E{z | y} = y for any given y, the problem of finding the inverse I0 reduces
to computing the values E{f(z) | y}, which is done by numerical evaluation of the
integral corresponding to the expectation operator E:

E{f(z) | y} =

∫ +∞

−∞
f(z)p(z | y) dz, (3.2)

where p(z | y) is the generalized probability density function of z conditioned on
y. In our case we have discrete Poisson probabilities P (z | y), so we can replace
the integral by summation:

E{f(z) | y} =

+∞∑
z=0

f(z)P (z | y). (3.3)

Further, since here f(z) is the forward Anscombe transformation (2.15), we can
write (3.3) as

E{f(z) | y} = 2

+∞∑
z=0

(√
z +

3

8
· y

ze−y

z!

)
. (3.4)

The practical implementation of I0 is discussed in more detail in Section 3.3.
Figure 3.1 shows the plots of the inverse transformations Ialg, Iasy and I0.

Since I0 is unbiased, we see that at low counts the asymptotically unbiased inverse
actually leads to a larger bias than the algebraic inverse. This observation is further
illustrated in Figure 3.2, where the absolute value of the bias is plotted for the
three inverse transformations.

Let us remark that if the exact unbiased inverse (3.1) is applied to the denoised
data D with some errors (in the sense that D 6= E{f(z)|y}), then the estimation
error in ŷ = I0 (D) can include variance as well as bias components. In general,
the unbiasedness of I0 holds only provided that D = E{f(z)|y} exactly, as it is
assumed when defining (3.1).
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Figure 3.1: Inverse Anscombe transformations Ialg (algebraic), Iasy (asymptotically
unbiased) and I0 (exact unbiased). The exact unbiased inverse is designed assuming
D = E{f(z) | y} and setting ŷ = y. Since I0 maps E{f(z) | y} to y, it introduces no
bias.

Figure 3.2: Absolute value of the bias of the inverse Anscombe transformations Ialg
(algebraic), Iasy (asymptotically unbiased) and I0 (exact unbiased). Since I0 maps
E{f(z) | y} to y, it introduces no bias.
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3.2.2 Closed-form approximation of the exact unbiased in-
verse

In order to facilitate the use of the exact unbiased inverse I0 in applications, let
us also construct a closed-form approximation Ĩ0 for it.

The construction is done by first considering the asymptotically unbiased in-
verse Iasy, and then subtracting a non-constant correction term from it. Note
that

I0

(
2
√

3/8
)

= Ialg
(

2
√

3/8
)

= Iasy
(

2
√

3/8
)
− 1

4
= 0,

and that I0(D) − Iasy(D) → 0, as D → ∞. Thus, our correction term should

equal 1
4 at 2

√
3
8 , and approach zero as D increases. It is easy to verify that the

inverse proposed below satisfies these conditions:

ĨC(D) =

(
D

2

)2

− 1

8
− 1

4

α(D√2

3

)−1

+ (3.5)

β

(
D

√
2

3

)−2

+ (1− α− β)

(
D

√
2

3

)−3
 ,

where D ≥ 2
√

3
8 and α, β ∈ R. As with I0, for D < 2

√
3
8 we set also Ĩ0(D) = 0.

We choose the values of α and β by minimizing the integral criterion

Φ =

∫ +∞

0

(
Ĩ0 (E {f(z) | y})− y

)2

y2
dy, (3.6)

which can be interpreted as a normalized quadratic fit between I0 and Ĩ0. The
minimization yields α ≈ −1.0008 and β ≈ 3.6634, with the corresponding value of
Φ ≈ 7.4368 ·10−5. As small variations in the coefficient values do not greatly affect
the fit, it seems reasonable to choose α = −1 and β = 11

3 (Φ ≈ 7.4658 · 10−5), and
thus simplify (3.5) into the final closed-form approximation

Ĩ0(D) =
1

4
D2 +

1

4

√
3

2
D−1 − 11

8
D−2 +

5

8

√
3

2
D−3 − 1

8
. (3.7)

3.2.3 ML inverse

In Section 3.2.1 we assumed that the denoising is successful (i.e. we can treat
the denoised signal D as E{f(z) | y}), which then lead us to the concept of
the exact unbiased inverse. Now we consider a more general scenario, where this
assumption does not necessarily hold: instead of the strict equality, we assume
that the pointwise mean square error of D as an estimate of E{f(z) | y} is

ε2 = E
{

(D − E{f(z) | y})2
}
. (3.8)
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In practise the distribution of D is unknown. For simplicity, we assume that D is
normally distributed around E{f(z) | y} with variance ε2:

D ∼ N
(
E{f(z) | y}, ε2

)
. (3.9)

While formally (3.9) implies that D is an unbiased estimate of E{f(z) | y}, in
fact also unknown estimation-bias errors can be considered as contributors of ε2,
with the symmetry of the distribution about E{f(z) | y} reflecting our uncertainty
about the sign of the bias.

By treating D as the data, the maximum likelihood (ML) inverse is defined as

IML(D) = arg max
y

p(D | y), (3.10)

where, according to (3.9),

p(D | y) =
1√

2πε2
e−

1
2ε2

(D−E{f(z)|y})2 . (3.11)

Under the above assumptions, this equals to

IML(D) =

{
I0(D), if D ≥ 2

√
3/8

0, if D < 2
√

3/8.
(3.12)

To prove (3.12), let us consider two cases. First, if D ≥ 2
√

3/8, (3.10) can
be maximized by choosing y in such a way that the maximum of the probability
density function (PDF) of D given y (3.11) coincides with D, i.e. E{f(z) | y} = D.
Thus, from (3.1) we obtain the first half of (3.12). Second, if D < 2

√
3/8, it

is not possible for the maximum of the PDF (3.11) to coincide with D, since
y ≥ 0; however, because this PDF is monotonically increasing between −∞ and
E{f(z) | y}, and because variations of y correspond to translations of the PDF,
arg max

y
p(D | y) is achieved with the smallest possible y, i.e. y = 0. Thus, the

exact unbiased inverse coincides with this form of ML inverse.
Note that this proof relies only on the fact that the distribution of D is uni-

modal with mode at E{f(z) | y}. Note also that IML(D) is independent of ε.
The obtained result (3.12) holds for any unimodal distribution whose mode is
E{f(z) | y}.

3.2.4 MMSE inverse
Under the same hypotheses of Section 3.2.3, we define the minimum mean square
error (MMSE) inverse, which is parametrized by ε, as

IMMSE(D, ε) = arg min
ŷ

E{(y − ŷ)2 | D}

= arg min
ŷ

∫ +∞

−∞
p(y | D) (y − ŷ)

2
dy. (3.13)

It is worth reminding that we assume D to be normally distributed according to
(3.9); if this assumption does not hold, the obtained inverse is not necessarily the
true minimum MSE inverse.
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Now, let us derive an explicit formula for computing the MMSE inverse (3.13).
According to Bayes’ theorem,

p(y | D) =
p(D | y)p(y)

p(D)
, (3.14)

where p (D | y) is given by (3.11). Thus, (3.13) is equivalent to

IMMSE(D, ε) = arg min
ŷ

∫ +∞

−∞

p(y)

p(D)
p(D | y)(y − ŷ)2 dy.

= arg min
ŷ

∫ +∞

−∞
p(y)p(D | y)(y − ŷ)2 dy. (3.15)

If we additionally assume that the true signal y has an improper uniform distri-
bution over R+ (noninformative prior), we can further write

IMMSE(D, ε) = arg min
ŷ

∫ +∞

0

p(D | y)(y − ŷ)2 dy. (3.16)

The ŷ minimizing the integral in (3.16) is found by differentiation, giving us

ŷ =

∫ +∞
0

p(D | y)y dy∫ +∞
0

p(D | y) dy
. (3.17)

In practise, the same result can be obtained by equivalently assuming y to be
uniformly distributed between 0 and M , where M > 0 is a constant much larger
than any of our observations zi, because∫ +∞

0

p(D | y)(y − ŷ)2 dy ≈
∫ M

0

p(D | y) (y − ŷ)
2
dy.

The difference between the two integrals is negligible due to our choice of M and
the exponential decay of p(D | y).

Note that the exact unbiased inverse can be considered a limit case of the
MMSE inverse, obtained when ε = 0, because p (D | y) becomes a Dirac impulse
centered at that particular value of y such that E{f(z) | y} = D. In other words,

IMMSE(D, 0) = I0(D) = IML(D). (3.18)

Figure 3.3 shows the MMSE inverse transformations for some values of ε, including
the case ε = 0.

3.3 Experiments
All of our experiments consist of the same three-step denoising procedure: First
we apply the forward Anscombe transformation (2.15) to a noisy image. Then we
denoise the transformed image (assuming additive white Gaussian noise of unit
variance) with either BM3D [35], SAFIR [15] or BLS-GSM [120], and finally we
apply an inverse transformation in order to get the final estimate.
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Figure 3.3: MMSE inverse transformations (3.13) for some values of ε. The case ε =
0 corresponds to the exact unbiased inverse transformation (3.1) and the ML inverse
transformation (3.12).

To implement the exact unbiased inverse I0 in practise, it is sufficient to com-
pute (3.4) for a limited set of values1 y. For arbitrary values of y we then use
linear interpolation based on these computed values of (3.4), and for large values2
of y we approximate I0 by Iasy. In similar fashion, the MMSE inverse can be
obtained based on numerical evaluation of the two integrals in (3.17).

Matlab functions implementing these two optimal inverse transformations are
available online at http://www.cs.tut.fi/~foi/invansc.

We evaluate the performance either by normalized mean integrated square error
(NMISE) or by peak signal-to-noise ratio (PSNR). The NMISE is calculated using
the formula

1

N̄

∑
i:yi>0

(
(ŷi − yi)2/yi

)
, (3.19)

where ŷi are the estimated intensities, yi the respective true values, and the sum is
computed over the N̄ pixels in the image for which yi > 0. The PSNR is calculated
using the formula

10 log10

 maxi(yi)
2(∑

i (ŷi − yi)2
/N
)
 , (3.20)

where N is the total number of pixels in the image.
1We compute (3.4) for 30000 values of y ∈ [0, 2500] with quadratic spacing, implying a

particularly high precision for small values of y.
2In our implementation, we consider y to be large if y > 2500.
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In Section 3.3.1 we consider the exact unbiased inverse, and Section 3.3.2 con-
sists of experiments with the MMSE inverse. Section 3.3.3 addresses the compu-
tational complexity of the inverse transformations and the denoising algorithms.

3.3.1 Exact unbiased inverse

We consider three sets of experiments in order to compare against the three recent
works [146], [94] and [98], each of which proposes an algorithm specifically designed
for Poisson noise removal (MS-VST, PH-HMT and Interscale PURE-LET, respec-
tively). To the best of our knowledge, these algorithms are currently achieving the
best results in denoising Poisson data.

NMISE comparison against MS-VST [146] and PH-HMT [94]

For the first set we proceed in the same way as in [146] in order to produce compa-
rable results: The above-mentioned three-step denoising procedure is performed
five times for each image, each time with a different realization of the random
noise. We evaluate the performance by using NMISE, and the obtained NMISE
values are finally averaged over these five replications. This metric was chosen
because of the available results for comparison in [146] and [94]. The authors of
[146] also kindly provided us with their set of test images (all of them 256×256 in
size), shown in Figure 3.4.

Spots (256×256) Galaxy (256×256) Ridges (256×256)

Barbara (256×256) Cells (256×256)

Figure 3.4: The five test images used in the experiments of Sections 3.3.1 and 3.3.2.
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The denoising is done with either BM3D, SAFIR or BLS-GSM, and for the
inversion of the denoised signal we use the exact unbiased inverse. The same
experiments are also done for the asymptotically unbiased inverse (2.22), whose
results serve as a point of comparison.

The numerical results of our experiments are presented in Table 3.1, where
we also compare them to the state-of-the-art results obtained with the PH-HMT
and MS-VST algorithms. In addition, we have included the results obtained in
[146] with the asymptotically unbiased inverse Anscombe transformation combined
with various undecimated wavelet transforms (here collectively denoted as WT).
Table 3.1 shows not only that the exact unbiased inverse produces significantly
better results at low counts than the asymptotically unbiased inverse, but also
that the method is competitive with both PH-HMT and MS-VST. In particular,
the combination of BM3D and the exact unbiased inverse outperforms both of
them in terms of NMISE.

Figures 3.5–3.6 illustrate the improvement that is achieved (especially at low
counts) by applying the exact unbiased inverse instead of the asymptotically unbi-
ased inverse, while Figure 3.7 compares the different algorithms for the denoising
of the Cells image (the exact unbiased inverse combined with BM3D, SAFIR and
BLS-GSM, and the best MS-VST result from [146]). In addition, we present a
chosen cross-section (i.e. one row) of some of the test images in Figure 3.8. These
plots also clearly demonstrate that at low counts the exact unbiased inverse pro-
vides a significant improvement over the asymptotically unbiased inverse, whereas
at high counts the difference is expectedly negligible.

We also evaluate the performance of the closed-form approximation Ĩ0 (3.7)
of the exact unbiased inverse I0. This evaluation is done with the test cases of
Table 3.1, by comparing the performance associated with Iasy, I0 and Ĩ0, each
combined with BM3D. The results are presented in Table 3.2. We observe that
in all cases, the denoising results obtained with I0 and Ĩ0 are within 0.5 % of
each other in terms of NMISE. In other words, we can consider the exact unbiased
inverse and its closed-form approximation to be equivalent for practical purposes.
Moreover, these results also emphasize the inferior performance of the asymp-
totically unbiased inverse Iasy in the low-intensity cases. In summary, also the
analytical expression (3.7) can be successfully used as a direct replacement of the
traditional inverses Ialg and Iasy in all cases, with a notably better performance
in low-count Poisson denoising.

PSNR comparison against PH-HMT [94]

In the second part of the experiments we use the test images shown in Figure
3.9 and evaluate the performance in terms of PSNR, thus enabling us to compare
against the PH-HMT results in [94]. This time we scale each image to seven
different peak intensity levels (1, 2, 3, 4, 5, 10 and 20), and for each of them we
perform the denoising procedure ten times, with ten different realizations of the
random noise.

As above, we use either BM3D, SAFIR or BLS-GSM for the denoising, and
the inversion is done with either the exact unbiased inverse or the asymptotically
unbiased inverse.
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(a) (b) (c)

(d) (e)

Figure 3.5: (a) Original Spots image (intensity range [0.03, 5.02]), (b) Poisson-count
image, (c) image denoised with BM3D and the asymptotically unbiased inverse (average
NMISE = 1.7395), (d) image denoised with BM3D and the exact unbiased inverse (av-
erage NMISE = 0.0365), (e) image denoised with SAFIR and the exact unbiased inverse
(average NMISE = 0.0384). The images shown here are gamma-corrected (γ = 0.6) for
improved visibility of the darker areas. A cross-section of images (a), (c) and (d) is shown
in Figure 7(a).
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(a) (b) (c)

(d) (e)

Figure 3.6: (a) Original Galaxy image (intensity range [0, 5]), (b) Poisson-count im-
age, (c) image denoised with BM3D and the asymptotically unbiased inverse (average
NMISE = 0.1025), (d) image denoised with BM3D and the exact unbiased inverse (av-
erage NMISE = 0.0299), (e) image denoised with SAFIR and the exact unbiased inverse
(average NMISE = 0.0301). The images shown here are gamma-corrected (γ = 0.6) for
improved visibility of the darker areas. A cross-section of images (a), (c) and (d) is shown
in Figure 7(b).
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(a) (b) (c)

(d) (e)

Figure 3.7: (a) Noisy Cells image, denoised with (b) BM3D and the exact unbiased
inverse (average NMISE = 0.0649), (c) SAFIR and the exact unbiased inverse (average
NMISE = 0.0671), (d) BLS-GSM and the exact unbiased inverse (average NMISE =
0.0707), (e) MS-VST + curvelets (average NMISE = 0.078) [146]. The original image is
shown in Figure 3.4.
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(a) Spots (row 247) (b) Galaxy (row 130)

(c) Ridges (row 40) (d) Cells (row 145)

Figure 3.8: Cross-sections of some of the images denoised with BM3D. For Cells the
intensities are large enough for the two inverses to practically coincide.
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The results, which are averages of ten PSNR values, are reported in Table 3.3.
We see again that at low peak intensities we get a substantial improvement by ap-
plying the exact unbiased inverse instead of the asymptotically unbiased inverse,
regardless of the used denoising algorithm. Indeed, the best results of the table
mainly correspond to algorithms combined with the exact unbiased inverse. In par-
ticular, the best overall performance is obtained with BM3D, although both SAFIR
and PH-HMT provide competitive results especially at the lowest peak intensities.
The different performance at low counts is possibly explained by SAFIR exploiting
adaptive window sizes, as opposed to BM3D, which uses fixed-size blocks.

Note that the average PSNR values of the noisy images in Table 3.3 have minor
differences to those reported in [94] due to different realizations of the random
noise.

Cameraman (256×256) Lena (512×512) Boat (512×512)

Barbara (512×512) Fingerprint (512×512)

Figure 3.9: The five test images used in the experiments of Section 3.3.1.

PSNR comparison against PURE-LET [98]

The third part of our experiments is very similar to the second one, with the
following differences: Now we use the four test images shown in Figure 3.10 and
compare our results against the best results obtained with the Interscale PURE-
LET (with two cyclic shifts) [98]. Each image is scaled to the peak intensity levels
1, 5, 10, 20, 30, 60 and 120, so we do not focus at low counts as much as earlier.

As in [98], the denoising performance is evaluated in terms of PSNR. Table 3.4
presents the obtained results (averages of ten values), which are consistent with
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Peppers (256×256) Cameraman (256×256)

MIT (256×256) Moon (512×512)

Figure 3.10: The four test images used in the experiments of Section 3.3.1.

the results in Table 3.3: the overall performance of BM3D is strong, but it is often
outperformed by SAFIR at the lower peak intensity levels. It is interesting to note
that for an image like Moon, which presents a large black background area that is
completely flat, the performance gap between multiscale (BLS-GSM and PURE-
LET) and patch-based (BM3D and SAFIR) methods is reduced, in as much as
in a few cases the former methods are producing slightly better numerical results
than the latter ones.

Summary

All three sets of experiments produce consistent results, showing that at low inten-
sities we obtain significantly better results by applying the exact unbiased inverse
instead of the asymptotically unbiased inverse, whereas at high intensities there is
expectedly no significant improvement.

The results also show that combined with a state-of-the-art Gaussian denois-
ing algorithm, the exact unbiased inverse is competitive with some of the best
algorithms targeted at Poisson noise removal.

3.3.2 MMSE inverse

Assuming that (3.9) is valid, the use of the MMSE inverse IMMSE (3.13) requires
knowledge of the pointwise mean square error (3.8) for the estimate D produced by
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the denoising algorithm. In other words, for each pixel, a pair (D, ε) is used as an
argument for IMMSE. First, in order to illustrate the full potential of this inverse,
we show results obtained by employing an oracle estimate of the MSE computed by
Monte-Carlo simulations. Second, as an example of the actual performance that
can be achieved in practise, we compute an estimate of the MSE using Stein’s
unbiased risk estimate (SURE) [128].

For both cases, we present the results corresponding to Table 3.1 produced
using the BM3D algorithm.

Oracle Monte-Carlo MSE

Here we compute the mean square error (3.8) from 50 independent replications of
the denoising experiment. This estimate, denoted as ε2

MC, is an oracle estimate
which cannot obviously be produced if y is unknown. Note that very fine structures
of the image are visible in εMC, as shown in the leftmost images in Figures 3.11–
3.12. The corresponding MMSE estimate of y is obtained as IMMSE (D, εMC).
The average NMISE and PSNR results over 5 independent replications of z are
reported in Table 3.5.

For some images, the improvement is dramatic (up to almost 2.7 dB PSNR
difference for Spots). However, for those images where already the exact unbiased
inverse did not provide substantial improvement over the asymptotically unbiased
inverse (see Table 3.1), the differences are much smaller. In the case of Barbara
the results are even slightly worse. This can be attributed to the failure of the
normal model (3.9) in describing the actual estimation errors for this particular
image dominated by repeated texture.

Empirical SURE estimate

Stein’s unbiased risk estimate (SURE) [128] can be used to provide a surrogate for
the mean square error (3.8) for an arbitrary denoising algorithm without needing y
to be known and without resorting to multiple realizations of the noise. Assuming
that the noise corrupting f (z) is zero-mean Gaussian with diagonal covariance
matrix σ21, the SURE for D is

SURE (Di) = (Di − f (zi))
2

+ σ2

(
2
∂Di

∂f (zi)
− 1

)
, (3.21)

where i = 1, . . . , N . The Anscombe variance-stabilizing transformation ensures
that these assumptions approximately hold with σ2 = var {f (z) |y} ' 1. We
compute the partial derivative ∂Di

∂f(zi)
in (3.21) as the finite difference

(
Dδ
i −Di

)
/δ,

where Dδ is the denoised output obtained after perturbing f (zi) with a finite
increment δ = 1.5 (this value is chosen so that the perturbation can compete with
the noise). Thus, calculating (3.21) requires N individual denoising procedures.
Although these can be first accelerated by processing only a neighborhood of the
perturbed sample and then parallelized, the computational cost of this SURE
approach remains obviously very high. Depending on the particular denoising
filter, more sophisticated approaches to empirically estimate (3.21) exist (see, e.g.,
[122]).
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Figure 3.11: Oracle Monte-Carlo estimate εMC for Spots (left) compared with the re-
spective SURE estimate εSURE (right).

This risk estimator is unbiased, but its variance can be high, so it is reasonable
to smooth SURE(D) in order to approximate its expectation, thus improving
the estimate. Also for this smoothing we use the BM3D filter. Further, since
var {f (z) |y} is constant only approximately, we replace the factor σ2 in (3.21) by
var {f (z) |I0 (D)} (this conditional variance of f (z) can be computed numerically
as it is done for its conditional expectation). We denote the obtained MSE estimate
as ε2

SURE. In Figures 3.11–3.12 we compare εSURE estimates with oracle Monte-
Carlo estimates εMC. The average results obtained from the MMSE estimate
IMMSE (D, εSURE) are given in Table 3.5. On a very simple image, such as Spots,
ε2
SURE can provide a reasonable approximation of the mean square error, and
thus a noticeable improvement in the PSNR. However, for all other images this
approximation is too coarse and the results do not differ on average from the results
of the exact unbiased inverse. Figures 3.13–3.14 compare the results of the three
inverses I0 (D) = IML (D), IMMSE (D, εMC) and IMMSE (D, εSURE) for Spots and
Barbara, respectively. While visually the three estimates of Barbara are virtually
indistinguishable, one can observe that for Spots the MMSE inverses, particularly
IMMSE (D, εMC), provide sharper details than the exact unbiased inverse.

3.3.3 Computational complexity

As our Matlab implementation of the exact unbiased inverse takes advantage of
precomputed values of E{f(z) | y} and E{z | y}, the inverse transformation can
be executed quickly. Thus, the computation time of the whole denoising procedure
mainly depends on the execution time of the chosen denoising algorithm. Table 3.6
shows average computation times of the denoising of Lena (512× 512, peak 10) and
Cameraman (256 × 256, peak 10) with the exact unbiased inverse, for two different
CPUs. It is worth noting that for SAFIR we do not use the default parameters,
but the ones that should give the best results (no subsampling, patch radius=3,
iterations=8, lambda=66, eta=3.7). This significantly increases the computation
time by a factor of about 580, but provides an improvement of about 0.6 dB (see
[85] for details about the complexity/performance scaling of the algorithm). Also
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Figure 3.12: Oracle Monte-Carlo estimate εMC for Barbara (left) compared with the
respective SURE estimate εSURE (right).

(a) (b) (c)

(d) (e)

Figure 3.13: (a) Original Spots image (intensity range [0.03, 5.02]), (b) Poisson-count
image, (c) image denoised with BM3D and the exact unbiased inverse (average NMISE
= 0.0365 and PSNR = 31.96 dB), (d) image denoised with BM3D and the MMSE inverse
with the oracle Monte-Carlo estimate εMC (average NMISE = 0.0324 and PSNR = 34.65
dB), (e) image denoised with BM3D and the MMSE inverse with the SURE estimate
εSURE (average NMISE = 0.0362 and PSNR = 32.81 dB). The images shown here are
gamma-corrected (γ = 0.6) for improved visibility of the darker areas.
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(a) (b) (c)

(d) (e)

Figure 3.14: (a) Original Barbara image (intensity range [0.93, 15.73]), (b) Poisson-count
image, (c) image denoised with BM3D and the exact unbiased inverse (average NMISE
= 0.0881 and PSNR = 25.92 dB), (d) image denoised with BM3D and the MMSE inverse
with the oracle Monte-Carlo estimate εMC (average NMISE = 0.0971 and PSNR = 25.80
dB), (e) image denoised with BM3D and the MMSE inverse with the SURE estimate
εSURE (average NMISE = 0.0911 and PSNR = 25.91 dB).
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for BLS-GSM we use its full steerable pyramid implementation.
Note that the faster execution times for the dual core T8300 are rather ex-

plained by the fact that the CPU is much newer than the Pentium 4, as at least
the Matlab implementation of BM3D does not take advantage of more than one
CPU core.

In comparison, the authors of [146] report that the MS-VST + curvelet de-
noising of Cells (see Figure 3.7(e)) required 1287 seconds on a 1.1 GHz PC. The
authors of [94] do not specify their hardware, but they report the PH-HMT de-
noising of Cameraman (peak 20) taking 92 seconds with unoptimized Matlab code.
Finally, the authors of [98] report the Interscale PURE-LET denoising of Camera-
man at 17.25 dB taking only 0.37 seconds with two cyclic shifts and 4.6 seconds
with 25 cyclic shifts (hardware not specified). Note that in Table 3.4 we compare
our results against the PURE-LET with two cyclic shifts, as similar results for 25
cyclic shifts are not presented in [98].

Regarding our MMSE inverse, even with exploiting some acceleration, the time
needed for computing the empirical MSE estimate ε2

SURE is hundreds of times
higher than that of a single denoising run. Therefore, based on the minor im-
provements over I0 = IML shown in Table 3.5, the practical use of the MMSE
inverse appears extremely limited.

3.4 Discussion
In this chapter we showed that the three-step procedure of first stabilizing the
noise variance by applying the Anscombe transformation, then denoising with an
algorithm designed for Gaussian noise, and finally applying an inverse transfor-
mation, can still be considered a viable approach for Poisson noise removal. In
particular, the poor performance of the asymptotically unbiased inverse at low
counts can be overcome by replacing it with the exact unbiased inverse. The ex-
cellent performance achieved through the exact unbiased inverse is justified by the
fact that this inverse can be interpreted as a maximum likelihood inverse under
rather generic hypotheses.

Further, when combined with a state-of-the-art Gaussian denoising algorithm,
this method is competitive with some of the best Poisson noise removal algorithms,
such as PH-HMT [94], MS-VST [146] and PURE-LET [98]. While most of the
improvement is due to the exact unbiased inverse, the choice of the denoising
algorithm does also matter, and of the methods considered here BM3D seems to
be the best choice due to its overall strong results combined with relatively low
complexity.

Moreover, we approximated the proposed exact unbiased inverse with a closed-
form expression, and showed that these two inverses can be used interchange-
ably, with practically equal denoising results. Thus, the traditional algebraic and
asymptotically unbiased inverses can easily be replaced by this convenient closed-
form expression in practical applications, providing the excellent performance of
the exact unbiased inverse.

We also proposed an MMSE inverse parametrized by the pointwise MSE of
the denoised stabilized data. While this inverse is not suitable for practical ap-
plications with generic filters, we argue that it can be relevant within specific
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implementations where more knowledge about the statistics of the estimates is
available.

In connection with our contributions, we would like to mention the work of
Neyman and Scott [116] on the unbiased inversion of transformed and stabilized
variables, and highlight the aspects that make their results different than ours.
First, in [116] it is assumed that the transformed variables are exactly stabilized
and normalized, which (as the authors also point out) is not possible for Pois-
son distributed variables stabilized by a root transformation. Instead, we always
provide a fully accurate statistical modelling of the distribution of the stabilized
Poisson variables f(z). Second, in the case when the estimation is inaccurate, even
though we and they both assume a normal distribution of the estimate D, the in-
verse sought by them is an unbiased one (minimum variance unbiased estimate)
whereas we address this case by the ML and MMSE inverses.
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Table 3.2: Average NMISE values for the asymptotically unbiased inverse (Iasy), exact
unbiased inverse (I0) and its proposed closed-form approximation (Ĩ0), each combined
with BM3D (see also Table 3.1). The intensity range of each image is indicated in
brackets.

Iasy I0 Ĩ0

Spots [0.03, 5.02] 1.7424 0.0365 0.0365
Galaxy [0, 5] 0.1026 0.0299 0.0299
Ridges [0.05, 0.85] 0.7025 0.0128 0.0129
Barbara [0.93, 15.73] 0.0881 0.0881 0.0884
Cells [0.53, 16.93] 0.0660 0.0649 0.0649
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Table 3.3: Average PSNR values (dB) for various peak intensities for the asymptotically
unbiased inverse and the exact unbiased inverse, and a comparison to the results obtained
in [94] with PH-HMT, an algorithm specifically designed for Poisson noise removal.

Asympt. unbiased inverse Exact unbiased inverse Other
Image Peak Noisy BM3D SAFIR BLS- BM3D SAFIR BLS- PH-HMT

GSM GSM
1 3.27 14.90 14.97 14.37 19.89 20.37 18.44 20.03
2 6.26 20.49 20.21 18.94 22.10 21.88 20.11 21.41
3 8.05 22.30 22.12 20.69 23.07 22.87 21.22 22.31

Camera- 4 9.28 23.40 23.25 21.67 23.86 23.71 21.98 22.90
man 5 10.27 24.12 24.01 22.36 24.42 24.31 22.57 23.37

10 13.26 26.03 25.83 24.52 26.08 25.89 24.57 24.97
20 16.29 27.65 27.31 26.49 27.65 27.31 26.49 26.61
1 2.96 16.13 16.26 15.79 22.22 23.41 21.52 22.66
2 5.99 22.88 23.00 21.98 24.07 24.77 23.42 23.91
3 7.75 24.91 25.28 24.24 25.23 25.74 24.67 24.69

Lena 4 9.00 25.96 26.32 25.43 26.06 26.45 25.59 25.29
5 9.96 26.53 26.88 26.15 26.56 26.91 26.21 25.78
10 12.97 28.31 28.51 28.03 28.31 28.51 28.03 27.21
20 15.98 29.99 30.03 29.60 29.99 30.03 29.59 28.66
1 2.93 15.88 15.87 15.56 20.97 21.41 20.49 21.76
2 5.95 21.80 21.57 20.90 22.74 22.76 21.98 22.77
3 7.71 23.36 23.28 22.69 23.67 23.62 23.04 23.45

Boat 4 8.96 24.15 24.07 23.63 24.28 24.20 23.79 23.90
5 9.92 24.71 24.63 24.33 24.77 24.70 24.42 24.31
10 12.94 26.27 26.06 25.93 26.28 26.07 25.94 25.57
20 15.94 27.83 27.44 27.41 27.83 27.44 27.41 26.96
1 3.20 15.28 15.33 14.95 20.43 20.78 19.64 20.48
2 6.23 20.88 20.50 19.87 21.91 21.67 20.93 21.27
3 7.99 22.74 21.88 21.31 23.07 22.18 21.62 21.72

Barbara 4 9.24 23.71 22.38 21.90 23.84 22.48 22.01 22.07
5 10.21 24.42 22.68 22.57 24.48 22.72 22.62 22.33
10 13.21 26.35 24.22 24.67 26.35 24.22 24.67 23.45
20 16.22 28.18 26.91 26.50 28.18 26.91 26.50 24.92
1 2.55 14.61 14.28 13.89 17.12 16.61 15.98 17.39
2 5.57 19.55 19.23 18.87 19.86 19.59 19.36 18.55
3 7.34 20.93 20.80 20.52 20.98 20.85 20.64 19.36

Finger- 4 8.58 21.68 21.54 21.34 21.69 21.54 21.39 19.94
print 5 9.54 22.22 22.03 21.89 22.22 22.03 21.91 20.42

10 12.56 23.80 23.35 23.38 23.80 23.35 23.38 21.91
20 15.57 25.37 24.62 24.94 25.37 24.62 24.94 23.46



3.4. Discussion 51

Table 3.4: Average PSNR values (dB) for various peak intensities for the asymptotically
unbiased inverse and the exact unbiased inverse, and a comparison to the best results
obtained in [98] with the Interscale PURE-LET, an algorithm specifically designed for
Poisson noise removal.

Asympt. unbiased inverse Exact unbiased inverse Other
Image Peak Noisy BM3D SAFIR BLS- BM3D SAFIR BLS- PURE-

GSM GSM LET
1 3.16 15.20 15.30 14.67 19.98 20.34 18.44 19.33
5 10.13 24.59 24.89 23.47 24.70 25.03 23.57 22.52
10 13.15 26.41 26.49 25.39 26.43 26.51 25.41 24.29

Peppers 20 16.15 28.05 28.02 27.00 28.05 28.03 27.00 26.18
30 17.92 29.05 28.93 27.97 29.05 28.93 27.97 27.27
60 20.92 30.75 30.48 29.62 30.75 30.48 29.62 29.07
120 23.94 32.47 32.10 31.36 32.47 32.10 31.36 30.79
1 3.27 14.90 14.97 14.37 19.89 20.37 18.44 19.67
5 10.26 24.07 23.99 22.39 24.36 24.28 22.59 22.76
10 13.26 26.05 25.87 24.52 26.11 25.93 24.57 24.32

Camera- 20 16.26 27.65 27.30 26.49 27.65 27.30 26.49 25.89
man 30 18.06 28.56 28.14 27.51 28.56 28.14 27.50 26.87

60 21.05 30.04 29.41 29.10 30.04 29.41 29.10 28.56
120 24.07 31.66 30.76 30.78 31.66 30.76 30.78 30.36
1 5.00 13.41 13.14 12.28 19.17 17.90 15.67 17.82
5 11.97 23.81 24.19 21.19 24.43 24.88 21.52 21.63
10 14.98 25.99 26.20 23.32 26.16 26.37 23.41 23.49

MIT 20 18.01 27.88 27.76 25.62 27.93 27.80 25.64 25.34
30 19.78 28.96 28.64 26.84 28.98 28.65 26.84 26.55
60 22.78 30.81 30.18 28.80 30.81 30.18 28.80 28.41
120 25.77 32.63 31.89 30.71 32.63 31.89 30.71 30.47
1 5.46 13.96 14.03 13.98 22.64 23.34 23.08 23.19
5 12.46 23.66 23.45 23.17 24.33 24.11 23.79 24.28
10 15.48 24.85 24.58 24.21 25.05 24.76 24.38 24.99

Moon 20 18.47 25.86 25.56 25.50 25.92 25.62 25.56 25.97
30 20.24 26.50 26.18 26.35 26.53 26.21 26.38 26.70
60 23.25 27.80 27.36 28.00 27.81 27.37 28.01 28.09
120 26.25 29.45 28.82 29.80 29.45 28.83 29.80 29.77

Table 3.5: Average NMISE and PSNR (dB) values for the exact unbiased inverse, MMSE
inverse with the oracle Monte-Carlo estimate εMC, and MMSE inverse with the SURE
estimate εSURE. The intensity range of each image is indicated in brackets.

NMISE PSNR (dB)
Exact MMSE MMSE Exact MMSE MMSE

unbiased εMC εSURE unbiased εMC εSURE

Spots [0.03, 5.02] 0.0365 0.0324 0.0362 31.96 34.65 32.81
Galaxy [0, 5] 0.0299 0.0241 0.0308 28.05 30.06 28.16
Ridges [0.05, 0.85] 0.0128 0.0129 0.0129 25.89 25.98 25.94
Barbara [0.93, 15.73] 0.0881 0.0971 0.0911 25.92 25.80 25.91
Cells [0.53, 16.93] 0.0649 0.0686 0.0668 30.19 30.23 30.18
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Table 3.6: Average computation times of the denoising procedures and transformations
for the Lena (512 × 512) and Cameraman (256 × 256) images, for two different CPUs.
For SAFIR we use the parameters giving the best denoising results, which significantly
increases the computation time, and for BLS-GSM we use its full steerable pyramid
implementation.

CPU Image BM3D SAFIR BLS-GSM
Intel Pentium 4 HT 560 Lena 6.3 s 60 min 68 s
(single core) @ 3.6 GHz Cameraman 1.6 s 14 min 17 s
Intel Mobile Core 2 Duo Lena 4.1 s 43 min -

T8300 @ 2.4 GHz Cameraman 1.0 s 9.5 min -

Forward Anscombe Exact unbiased inverse
CPU Image (transformation only) (transformation only)

Intel Pentium 4 HT 560 Lena 0.07 s 0.22 s
(single core) @ 3.6 GHz Cameraman 0.014 s 0.063 s
Intel Mobile Core 2 Duo Lena 0.025 s 0.15 s

T8300 @ 2.4 GHz Cameraman 0.006 s 0.044 s



Chapter 4

Optimal inversion of the
generalized Anscombe
transformation for
Poisson-Gaussian noise

4.1 Introduction
In the case of Poisson-Gaussian noise, the generalized Anscombe transformation
(2.18) is commonly used for stabilizing the noise variance. Even though the GAT
is a well-known transformation, its corresponding exact unbiased inverse transfor-
mation has been neglected in the past. In the previous chapter we proposed the
exact unbiased inverse of the Anscombe transformation for pure Poisson noise.
This chapter generalizes those results into the exact unbiased inverse of the GAT,
and shows that it plays an integral part in ensuring accurate denoising results,
similarly to the Poisson case.

To the best of our knowledge, this is the first rigorous study of the exact unbi-
ased inverse of the GAT for Poisson-Gaussian noise. Importantly, our results are
exact and successfully applicable also for finite parameter values, while previous
works [126] have considered only the large-parameter asymptotic case. Moreover,
our experimental results demonstrate that our approach leads to state-of-the-art
denoising results, when the exact unbiased inverse is combined with a state-of-the-
art Gaussian denoising algorithm. We also show that this inverse is optimal in the
sense that it can be interpreted as a maximum likelihood inverse under certain
reasonable assumptions. Further, we provide a thorough analysis of the behaviour
of the proposed inverse. In particular, we show that the exact unbiased inverse of
the GAT can be approximated with great accuracy by adding a simple correction
term to the exact unbiased inverse of the Anscombe transformation. This also
enables us to derive a closed-form approximation for it, by adding the same cor-
rection term to the closed-form approximation (3.7) of the exact unbiased inverse
of the Anscombe transformation. Finally, we provide asymptotic, as well as global

53
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integral and global supremum error bounds for both of these approximations.
This chapter presents our research results first published in [114] and [113]. It

is also worth noting that the exact unbiased inverse of the GAT is conceptually
similar to the exact unbiased inverse of the Anscombe transformation. Thus, em-
ploying the exact unbiased inverse remains computationally very inexpensive also
in this generalization. In other words, the proposed approach does not introduce
any notable computational overhead; the choice of the Gaussian denoising algo-
rithm completely dominates the execution time. These observations are consistent
with the discussion on computational complexity in Section 3.3.3.

This chapter is organized as follows: Section 4.2 presents a method of reducing
the number of parameters in the Poisson-Gaussian model from three to one, aid-
ing in the practical construction of the exact unbiased inverse transformation. In
Section 4.3, which is the core of our contribution, we discuss how to construct an
exact unbiased inverse of the GAT, the optimality and asymptotic behaviour of
this inverse, and how to approximate it with a closed-form expression. Section 3.3
consists of various experiments. In particular, first we examine the case of denois-
ing with known noise parameters, after which we consider the case with unknown
parameter values. Then we inspect how the denoising performance changes, when
the ratio between the Poisson and Gaussian noise component changes. We con-
clude the section with a brief commentary on the computational complexity of the
proposed method. Finally, in Section 3.4, we discuss the obtained results.

4.2 Parameter reduction
As implied by (2.7), the Poisson-Gaussian model is parametrized by three vari-
ables: the positive scaling factor α of the Poisson component, the mean µ of the
Gaussian component, and the standard deviation σ of the Gaussian component.
However, for the construction of a family of exact unbiased inverses for the GAT,
dealing with three parameters is rather impractical. Thus, we devise a simple way
of modifying the data through linear transformations, allowing us to parametrize
the inverse only by σ.

For notational purposes, we employ temporary variables z̀i, σ̀ and ǹi to replace
the variables zi, σ and ni in (2.7). In other words, each pixel z̀i, i = 1, . . . , N is
modelled as a realization of an independent random Poisson variable pi with an
underlying mean value yi, scaled by α > 0 and corrupted by additive Gaussian
noise ǹi of mean µ and standard deviation σ̀. Hence, (2.7) equals

z̀i = αpi + ǹi, (4.1)

where pi ∼ P (yi) and ǹi ∼ N (µ, σ̀2). Thus, we can define Poisson-Gaussian noise
as

ηi = z̀i − αyi. (4.2)

The problem of denoising an image corrupted by Poisson-Gaussian noise is then
equivalent to estimating the underlying noise-free image y given the noisy obser-
vations z̀.

For clarity, we note that the use of the grave accent in z̀, σ̀ and ǹi is due
to the affine transformations (4.4), which reduce the number of parameters to be
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considered from three to one. Thus, the rest of the chapter will only deal with the
corresponding transformed variables z, σ and ni, and with y and pi, unless noted
otherwise.

Assuming z̀ is distributed according to (4.1), the GAT (2.18) can be written
as

f(z̀) =

{
2
α

√
αz̀ + 3

8α
2 + σ̀2 − αµ, z̀ > − 3

8α−
σ̀2

α + µ

0, z̀ ≤ − 3
8α−

σ̀2

α + µ
. (4.3)

Hence, applying (4.3) to z̀ (approximately) stabilizes its variance to unity. How-
ever, the number of parameters which define the transformation (4.3) can be re-
duced significantly by simple variable substitutions

z =
z̀ − µ
α

, σ =
σ̀

α
, (4.4)

which affinely map each pixel z̀i to zi, a random (non-scaled) Poisson variable pi
corrupted by additive Gaussian noise ni of mean 0 and standard deviation σ:

zi = pi + ni, (4.5)

where pi ∼ P (yi) and ni ∼ N (0, σ2). In particular, the probability distribution of
z is

p (z | y, σ) =

+∞∑
k=0

(
yke−y

k!
× 1√

2πσ2
e−

(z−k)2

2σ2

)
. (4.6)

Thus, according to (4.3), z can be stabilized with the transformation

fσ(z) =

{
2
√
z + 3

8 + σ2, z > − 3
8 − σ

2

0, z ≤ − 3
8 − σ

2
. (4.7)

In other words, for any of the parameters α and µ, we can stabilize the variance
of z̀ by means of variable substitutions (4.4), followed by the transformation (4.7).
Then, after applying an inverse transformation I of (4.7) to the denoised data
D, we simply return to the original range by inverting (4.4), i.e. setting the final
estimate of the expected value of z̀ to be αI (D) + µ. Note that since (4.4) and
its inverse are affine, they do not introduce any bias in the estimation. Thus,
in the rest of this chapter, we consider only the stabilization of z, which is the
observed data after the variable substitution (4.4), and by GAT we refer to the
corresponding transformation (4.7).

Figure 4.1(a) shows the forward transformation (4.7) for the parameter values
σ = 0.01, 1, 2, 3, and the corresponding standard deviations of the stabilized vari-
ables fσ (z) are shown in Figure 4.1(b). Note that there is a particular overshoot
in the standard deviation at around σ = 2 for low values of y, but it begins to
settle down towards the desired value 1 as σ increases. On the other hand, when σ
is very small (i.e., when the noise is practically pure Poisson), there is a significant
undershoot for low values of y, which is an inherent limitation of the generalized
Anscombe transformation. Regardless of which transformation is used, it is not
possible to stabilize the variance to unity for y = 0, σ = 0, since in this case z has
zero variance.
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4.3 Exact unbiased inverse transformation

4.3.1 Definition
Assuming the denoising of fσ(z) was successful, we may treat the denoised data
D as the expected value E {fσ (z) | y, σ}. However, just like in the Poisson case,
the nonlinearity of fσ means that we generally have

f−1
σ (E{fσ(z) | y}) 6= E{z | y}. (4.8)

In practise, this means that applying the algebraic inverse f−1
σ to the denoised

data will, in general, produce a biased estimate of y. Once again we see that
using an asymptotically unbiased inverse or the algebraic inverse is not sufficient
for guaranteeing accurate denoising results, in particular for low-intensity images.
Thus, we propose an exact unbiased inverse that can be used in all situations.

The exact unbiased inverse of the generalized Anscombe transformation (4.7)
is in fact a family of inverse transformations Iσ, parametrized by σ, that maps the
values E{fσ (z) | y, σ} to the desired values E{z | y, σ}:

Iσ : E {fσ (z) | y, σ} 7−→ E {z | y, σ} . (4.9)

Since we trivially know E {z | y, σ} = y for any given y, constructing the inverse
requires us to compute the values E {fσ (z) | y, σ}, analogously to how the exact
unbiased inverse of the Anscombe transformation was computed in Chapter 3. In
this more general case, it is computed as

E{fσ (z) | y, σ} =

∫ +∞

−∞
fσ (z) p (z | y, σ) dz (4.10)

=

∫ +∞

−∞
2

√
z +

3

8
+ σ2

+∞∑
k=0

(
yke−y

k!
√

2πσ2
e−

(z−k)2

2σ2

)
dz.

The exact unbiased inverse transformations Iσ for the parameter values σ =
0.01, 1, 2, 3 are shown in Figure 4.1(c), along with the corresponding algebraic
inverses of (4.7) for the comparison. Note that even though visually Iσ resembles
a clipped algebraic inverse to some extent, replacing the standard algebraic inverse
by its clipped counterpart does not provide any practical improvement.

4.3.2 Optimality
Under certain reasonable assumptions, we can show that the exact unbiased inverse
Iσ is optimal in the sense that it coincides with a maximum likelihood (ML)
inverse. In Section 3.2.3, we made a similar conclusion about the exact unbiased
Anscombe inverse for the pure Poisson case, and thus, the discussion below follows
naturally the same lines.

Let us assume that instead of obtaining a perfectly accurate denoising result
D = E {fσ (z) | y, σ} (which we assumed in the definition of Iσ in Section 4.3.1),
the pointwise mean squared error of our estimate D is

ε2 = E
{

(D − E{fσ (z) | y, σ})2
}
> 0. (4.11)
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In practise the probability density function p (D | y) of D is unknown, but for sim-
plicity we assume that it is symmetric and unimodal, with mode at E {fσ (z) | y, σ}
and variance ε2. Note that the actual value of ε2 has very little to do with the
variance of z or fσ (z), since the estimation accuracy of the denoising algorithm
depends mainly on the features of the signal (such as the complexity of details and
patterns); thus, it is sensible to treat ε2 as independent of both y and σ.

In other words, we assume

ξ = D − E {fσ(z)|y, σ} ∼ U0, (4.12)

where U0 is a unimodal distribution with mode at 0 with probability density
u0 (e.g., U0 could be the normal N (0, ε2)). This implies that u0

(
ξ̄
)
≤ u0

(
ξ̆
)
,

if either ξ̄ ≤ ξ̆ ≤ 0 or ξ̄ ≥ ξ̆ ≥ 0; in particular u0 (0) = maxξ (u0), and
u0 (D − E {fσ(z)|y, σ}) = p (D|y). Let us also remark that, for any σ ≥ 0,
E {fσ(z)|y, σ} is a continuous and monotonically increasing function of y.

While (4.12) formally implies that D is an unbiased estimate of E {fσ(z)|y, σ},
in fact also unknown estimation-bias errors can be considered as contributors of
ε2, with the symmetry of the distribution about E {fσ(z)|y, σ} reflecting our un-
certainty about the sign of the bias.

By treating D as the data, the ML estimate of y is defined as

IML(D) = arg max
y

p (D | y) . (4.13)

Under the above assumptions, this equals to

IML(D) =

{
Iσ(D), if D ≥ E{fσ (z) | 0, σ}
0, if D < E{fσ (z) | 0, σ} , (4.14)

with the proof being essentially identical to the proof of (3.12) presented in Sec-
tion 3.2.3 for the pure Poisson case. In other words, also the exact unbiased inverse
Iσ coincides with this form of ML inverse.

4.3.3 Asymptotic behaviour
As we explicitly construct the inverse mapping (4.9) only for a finite grid of val-
ues, it is also of interest to examine the asymptotic behaviour of Iσ. When the
standard deviation σ of the Gaussian noise component is large, we may formulate
the exact unbiased inverse Iσ in terms of the exact unbiased inverse Anscombe
transformation I0 as

Iσ ≈ I0 − σ2. (4.15)

Likewise, when σ is very small, we may do the same approximation. A rigorous
derivation of this approximation is provided below.

In particular, we analyze the asymptotic behaviour of the exact unbiased in-
verse Iσ of the generalized Anscombe transformation fσ (4.7) for large and small
values of σ, as well as for large values of its argument D. Further, as a result of
our analysis, we also obtain a closed-form approximation of Iσ, which can be used
for any value of D and σ.
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Expansion about the mean

Let

fσ(z) =

{
2
√
z + 3

8 + σ2, z > − 3
8 − σ

2

0, z ≤ − 3
8 − σ

2
. (4.16)

Following [3], we consider the Taylor expansion of fσ (z) about the mean y =
E {z} ≥ 0 of z. Defining t = z − y and y̆ = y + 3

8 + σ2, we have

fσ(z) =



2
√
y̆

(
1 + 1

2
t
y̆ −

1
8

(
t
y̆

)2

+

1
16

(
t
y̆

)3

− 5
128

(
t
y̆

)4

+ t > −y̆,

. . .+ (−1)
s
as−1

(
t
y̆

)s−1

+Rs

)
0 t ≤ −y̆,

(4.17)

where

as = (−1)
s+1 1 · (−1) · (−3) · . . . · (−2s+ 3)

2ss!
= −

s∏
j=1

1− 3

2j
= O

(
1

s3/2

)

and the series converges for |t| ≤ y̆, with the remainder term Rs being

Rs = O
((

t

y̆

)s)
for all t ∈ R. This expansion is illustrated in Figure 4.2.

Moments

Let µk be the k-th centered moment of z. In particular,

µ1 = 0, µ2 = y + σ2, µ3 = y, µ4 = y + 3
(
y + σ2

)2
.

More in general, µk can be expressed as a polynomial of order at most k
2 with

non-negative coefficients in the k − 1 cumulants {κj}kj=2 of z (see [83, Section
3.13, pp. 61–63]). In turn, each cumulant κj can expressed as the sum of the

j-th cumulants κP(y)
j and κ

N(0,σ2)
j of the Poisson P (y) and Gaussian distribution

N
(
0, σ2

)
, respectively. In particular, for the Poisson we have κP(y)

j = y ∀j, while

for the Gaussian κ
N(0,σ2)
2 = σ2 and κ

N(0,σ2)
j = 0 ∀j 6= 2 [83]. This means that

κ2 = y+σ2 and κj = y ∀j 6= 2, and hence that µk is a polynomial in y and y+σ2,
which we denote as

µk = Pk
(
y, y + σ2

)
. (4.18)

Let us consider now the order of the centered moments and absolute centered
moments. As observed in [3], the k-th absolute centered moment νP(m)

k of a
Poisson variable with mean m is of order O

(
m

1
2k
)

as m → +∞. The same
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order applies also to the centered moments µP(m)
k of the same Poisson variable.

Since κj ≤ y + σ2 < y + 3
8 + σ2 = y̆ and because moments are polynomials with

non-negative coefficients in the cumulants, we have that

µ
P(y)
k ≤ µk ≤ µ

P(y+σ2)
k ≤ µP(y̆)

k ,

whence we obtain that µk is of at most order O
(
y̆

1
2k
)

as y̆ → +∞. The same
asymptotic order extends to the absolute moments νk, because, for any odd k,
νk−1 = µk−1 and νk ≤ (µk+1)

k/(k+1) (see [83, Section 3.6, p. 56]).

Inverse mappings

Taking expectations on both sides of (4.17), we obtain

E{fσ(z) |y, σ} = 2
√
y̆

(
1− 1

8

µ2

y̆2
+

1

16

µ3

y̆3
− 5

128

µ4

y̆4
+ · · ·+ (−1)s as−1

µs−1

y̆s−1
+O

(
µs
y̆s

))
.

(4.19)
By its very definition, the exact unbiased inverse Iσ of the generalized Anscombe
transformation fσ (4.7) is the mapping

E{fσ(z) |y, σ} Iσ7−→ y,

i.e.,

2
√
y+ 3

8
+σ2

(
1− 1

8

y + σ2(
y+ 3

8
+σ2

)2 +
1

16

y(
y+ 3

8
+σ2

)3 − 5

128

y + 3
(
y + σ2

)2(
y+ 3

8
+σ2

)4 +

. . .+ (−1)s as−1

Ps−1

(
y, y + σ2

)(
y+ 3

8
+σ2

)s−1 +O

(
1(

y+ 3
8

+σ2
)s/2

))
Iσ7−→ y. (4.20)

For the particular case σ = 0, the above inverse reduces to the exact unbiased
inverse I0 of the Anscombe transformation f0, which is hence the mapping

2
√
y + 3

8

(
1− 1

8

y(
y + 3

8

)2 +
1

16

y(
y + 3

8

)3 − 5

128

y + 3y2(
y + 3

8

)4 +

. . .+ (−1)s as−1
Ps−1 (y, y)(
y + 3

8

)s−1 +O

(
1(

y + 3
8

)s/2
))

I07−→ y. (4.21)

If we substitute y with y + σ2 in (4.21), we obtain

2
√
y+ 3

8
+σ2

(
1− 1

8

y+σ2(
y+ 3

8
+σ2

)2 +
1

16

y+σ2(
y+ 3

8
+σ2

)3 − 5

128

y+σ2+ 3
(
y+σ2

)2(
y+ 3

8
+σ2

)4 +

. . .+ (−1)sas−1

Ps−1

(
y+σ2, y+σ2

)(
y+ 3

8
+σ2

)s−1 +O

(
1(

y+ 3
8

+σ2
)s/2

))
I07−→ y+σ2. (4.22)

Of course, (4.21) and (4.22) define the same inverse I0, but the similarities between
Iσ and I0 become more evident when comparing the mapping (4.20) with (4.22).
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Indeed, if we subtract σ2 from I0, we obtain a mapping which coincides with Iσ
except for some high-order terms in the argument of the mapping:

2
√
y + 3

8
+ σ2

(
1− 1

8

y+σ2(
y+ 3

8
+σ2

)2 +
1

16

y+σ2(
y+ 3

8
+σ2

)3 − 5

128

y+σ2+ 3
(
y+σ2

)2(
y+ 3

8
+σ2

)4 +

. . .+ (−1)sas−1

Ps−1

(
y+σ2, y+σ2

)(
y+ 3

8
+σ2

)s−1 +O

(
1(

y+ 3
8

+σ2
)s/2

))
I0−σ2

7−→ y. (4.23)

The mappings (4.20) and (4.23) can be written in more compact form as

Iσ (E {fσ (z) |y, σ}) = y, (4.24)

I0 (E {fσ (z) |y, σ}+ δ (y, σ))− σ2 = y, (4.25)

where δ (y, σ) is the difference between the left-hand sides of (4.23) and (4.20):

δ (y, σ) =
1

8

σ2(
y+ 3

8
+σ2

)5/2 − 5

64

σ2(
y+ 3

8
+σ2

)7/2 +

. . .+ (−1)sas−1 · 2 ·
Ps−1

(
y+σ2, y+σ2

)
− Ps−1

(
y, y+σ2

)(
y+ 3

8
+σ2

)s−3/2
+O

(
1(

y+ 3
8

+σ2
)(s−1)/2

)
.

(4.26)

From (4.26) we can immediately see that δ (y, σ) → 0 as y + 3
8 + σ2 → +∞. In

particular, δ (y, σ) = O
(
σ−3

)
as σ → +∞ and δ (y, σ) = O

(
y−5/2

)
as y → +∞ for

a fixed σ.
To consider the case of small σ, let us first show that we can factor out σ2

from the difference Pk
(
y + σ2, y + σ2

)
− Pk

(
y, y + σ2

)
. It suffices to examine the

differences di,j between the corresponding monomials of equal order,

di,j =
(
y + σ2

)i+j − yi (y + σ2
)j

i+ j ≤ k − 1

and observe that, upon expanding the powers, both the left term (minuend) and
the right term (subtrahend) yield only one monomial which does not have a factor
σ2, namely yi+j , and that this monomial vanishes in the subtraction. Thus,

Pk
(
y + σ2, y + σ2

)
− Pk

(
y, y + σ2

)
= σ2Qk

(
y, σ2

)
,

where Qk
(
y, σ2

)
is polynomial in y and σ2, again of the order O

((
y+ 3

8 +σ2
) 1

2k
)

as y + 3
8 + σ2 → +∞ and O(1) as σ → 0. Then, for small σ

δ(y, σ) = σ2

(
1

8

1(
y+ 3

8
+σ2

)5/2 − 5
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1(
y+ 3

8
+σ2

)7/2 +

. . .+ (−1)s as−1

2Qs−1

(
y, σ2

)(
y+ 3

8
+σ2

)s−3/2
+O(1)

)
, (4.27)

and therefore δ (y, σ) = O
(
σ2
)
as σ → 0.
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In conclusion, noting that I0 is a smooth function with derivative I ′0, (4.24)
and (4.25) yield

Iσ(E{fσ(z) |y, σ}) = I0(E{fσ(z) |y, σ})− σ2 +O(I ′0(E{fσ(z) |y, σ}))O(δ(y, σ)) ,

where the orders for δ (y, σ) found above apply.
Equation (4.20) shows also that E{fσ(z) |y, σ} is large only if y or σ are large,

i.e., E{fσ(z) |y, σ} → +∞ if and only if y̆ = y + 3
8 + σ2 → +∞. Therefore, the

above analysis implies that Iσ(D) approaches I0(D) − σ2 for large D as well as
for large or small σ. We make this statement more precise in the next section.

Direct asymptotics with respect to D and σ

Let D = E{fσ(z) |y, σ}. For large y̆, we see from (4.19) that y̆ ∼ D2. Hence,
(4.26) yields δ(y, σ) = O

(
σ2D−5

)
. Since the derivative I ′0(D) approaches D

2 for
large D, we then have

y = Iσ(D) = I0(D)− σ2 +O
(
σ2D−4

)
. (4.28)

For a given fixed σ (and thus considering large y), this becomes

y = Iσ(D) = I0(D)− σ2 +O
(
D−4

)
, (4.29)

whereas for a fixed y (and thus considering large σ), we have σ2 ∼ y̆ ∼ D2 and,
consequently,

y = Iσ(D) = I0(D)− σ2 +O
(
D−2

)
= I0(D)− σ2 +O

(
σ−2

)
. (4.30)

Finally, for fixed y and σ → 0, we have

y = Iσ(D) = I0(D)− σ2 +O
(
σ2
)
. (4.31)

Note that there is no analogous equation for the case σ 6= 0 and D approaching
E{fσ(z) |0, σ} (i.e., small y), as for this case Iσ(D) − I0(D) − σ2 converges to a
number that, although quite small (as shown by (4.40) in Section 4.3.6), is typically
non-zero. This notwithstanding, (4.30) and (4.31) are valid also for y = 0.
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(a) (b)

(c)

Figure 4.1: The generalized Anscombe transformation (4.7) for the parameter values
σ = 0.01, 1, 2, 3. (a) The forward transformations fσ (z), (b) The standard deviations
of the stabilized variables fσ (z), (c) The exact unbiased inverse transformations Iσ,
compared with the corresponding algebraic inverses of (4.7).
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Figure 4.2: Probability density function of z when y = 0.5 and σ = 0.3 (green area plot);
generalized Anscombe transformation fσ (blue solid line) and its Taylor expansion of
order 9 centered at y (red dashed line).
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Summary

Let us briefly summarize the main asymptotic results derived above. Considering
the direct asymptotics with respect to D = E{fσ(z) |y, σ} and σ, we showed that
for a given fixed σ (and thus considering large y),

y = Iσ(D) = I0(D)− σ2 +O
(
D−4

)
. (4.32)

For a fixed y (and thus considering large σ), we have σ2 ∼ D2 and, consequently,

y = Iσ(D) = I0(D)− σ2 +O
(
D−2

)
= I0(D)− σ2 +O

(
σ−2

)
. (4.33)

Finally, for fixed y and small σ, we have

y = Iσ(D) = I0(D)− σ2 +O
(
σ2
)
. (4.34)

The orders O
(
σ−2

)
and O

(
σ2
)
of the error terms in (4.33) and (4.34), for various

fixed values of y, are illustrated in Figure 4.3. Similarly, Figure 4.4 visualizes the
order O

(
D−4

)
of the error term in (4.32).

4.3.4 Global accuracy
Apart from the above asymptotic results, we studied the global accuracy of the ap-
proximation (4.15) in terms of the variance-normalized integral criterion (weighted
L2 squared), yielding∥∥∥∥I0(E{fσ (z) |y, σ})− σ2 − y

std {z|y, σ}

∥∥∥∥2

2

=

=

∫ +∞

0

∫ +∞

0

(
I0(E{fσ(z) |y, σ})−σ2−y

)2
y + σ2

dydσ = 0.0028 (4.35)

and in terms of the maximum absolute difference (L∞), yielding∥∥I0(E{fσ(z) |y, σ})− σ2 − y
∥∥
∞ =

= max
σ≥0,y≥0

|Iσ(E{fσ(z) |y, σ})− y| = 0.0470 (4.36)

with the maximum in (4.36) attained at σ = 0.4 and y = 0. In Figure 4.5, the blue
surface (below) shows the error |I0(E{fσ(z) |y, σ})−σ2−y| associated with (4.15),
thus visualizing the overall accuracy and the maximum error of the approximation.

4.3.5 Practical implementation
Due to the discussed asymptotic behaviour, and given that I0 is already available
(either in accurate numerical form or as closed-form analytical approximation), to
compute Iσ it is sufficient to tabulate E{fσ(z) |y, σ} (4.10) only for a finite grid of
values, and resort to interpolation (between the grid values) and to the asymptotic
form I0(D) − σ2 (outside of the grid). In particular, for our experiments, we
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Figure 4.3: The error Iσ(D)− I0(D) + σ2 = O
(
σ2
)
as a function of σ for various fixed

values of y, compared with σ−2 and σ2, confirming the asymptotics in (4.33) and (4.34).

considered 96 non-equispaced values σ ∈ {0.01, . . . , 50} and 1199 non-equispaced
values of y ∈ {0, . . . , 200} and calculated E{fσ(z) |y, σ} on such 96×1199 grid.
Our Matlab software implementing this inverse transformation is available online
at http://www.cs.tut.fi/~foi/invansc.

4.3.6 Closed-form approximation
A closed-form approximation of Iσ can be obtained from the closed-form approx-
imation Ĩ0 (3.7) of I0 as

Ĩσ(D) = Ĩ0(D)− σ2 = (4.37)

=
1

4
D2 +

1

4

√
3

2
D−1 − 11

8
D−2 +

5

8

√
3

2
D−3 − 1

8
− σ2.

Of course, the negative powers of D become irrelevant when D is large, i.e., when
σ or y are large, yielding the asymptotic inverse

Iasy (D) =
1

4
D2 − 1

8
− σ2. (4.38)

As in Section 4.3.4, we studied the accuracy of the approximation (4.37) in
terms of the variance-normalized integral criterion (weighted L2 squared) and the
maximum absolute difference L∞, with the corresponding results being∥∥∥∥∥ Ĩσ(E{fσ(z) |y, σ})− y

std {z|y, σ}

∥∥∥∥∥
2

2

= 0.0069, (4.39)
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Figure 4.4: The error Iσ(D)−I0(D)+σ2 = O
(
D−4

)
as a function of D (for fixed σ = 1),

compared with D−4, confirming the asymptotics in (4.32).

and ∥∥∥Ĩσ(E{fσ(z) |y, σ})− y
∥∥∥
∞

= 0.0468, (4.40)

where the maximum of (4.40) is again attained at σ = 0.4 and y = 0. The error
surface associated with this criterion is also illustrated in Figure 4.5 (purple surface
on top).

In terms of the impact on denoising quality, the discrepancies between Ĩσ
and Iσ are very small, as affirmed by (4.39) and (4.40), and by the experimental
results and observations in the next section. These results and considerations are
consistent with those presented in Section 3.3.1.

4.4 Experiments

4.4.1 Denoising with known parameter values α and σ

We evaluate the denoising performance associated with the proposed exact un-
biased inverse Iσ by considering the Cameraman (256×256), Fluorescent Cells
(512×512), and Lena (512×512) test images. For each image, we scale the original
image to eight different peak values (1, 2, 5, 10, 20, 30, 60, 120), and corrupt them
with Poisson-Gaussian noise (α = 1, σ = peak/10) according to (4.5), as was done
in [98]. Let us remark that since α = 1, we have also σ̀ = σ, as can be seen from
(4.4).
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Figure 4.5: The error surface |I0(E{fσ(z) |y, σ}) − σ2 − y| associated with (4.15) (blue
surface below), and the corresponding surface |Ĩσ(E{fσ(z) |y, σ}) − y| associated with
the closed-form approximation (4.37) (purple surface on top).

We denoise each image with the three-step variance stabilization approach ex-
plained in Section 4.1, using either BM3D or BLS-GSM as the Gaussian denoising
algorithm, and inverting the denoised data with each of the following transfor-
mations: the exact unbiased inverse Iσ, its closed-form approximation Ĩσ, the
asymptotically unbiased inverse Iasy (D) = 1

4D
2− 1

8 − σ
2, or the algebraic inverse

Ialg (D) = 1
4D

2 − 3
8 − σ

2. When denoising the stabilized data fσ (z), the algo-
rithms assume that std {fσ (z) | y, σ} is exactly 1. For comparison with the direct
approaches, we also denoise each image with the state-of-the-art UWT/BDCT
PURE-LET method proposed in [98]. The results are presented in Tables 4.1–
4.2, where each PSNR value (Table 4.1), and the respective SSIM [137] value
(Table 4.2), is an average of ten individual denoising results (performed on ten
random realizations of the Poisson-Gaussian noise).

We see that the proposed method is competitive with the UWT/BDCT PURE-
LET algorithm, outperforming it in many cases, in particular when variance sta-
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bilization is combined with the BM3D algorithm, which represents the state of
the art in additive white Gaussian noise removal. Moreover, there are no major
declines in performance for the low-intensity cases, which demonstrates the fact
that the poor performance shown in earlier works (e.g., [98]) is not simply due to
inadequate variance stabilization associated with the GAT, but mostly a conse-
quence of using an improper inverse transformation. In particular, we see that for
the low-intensity cases it is clearly not reasonable to use either the asymptotically
unbiased inverse or the algebraic inverse; instead, the proposed exact unbiased
inverse Iσ can be used everywhere. Further, its closed-form approximation Ĩσ
is practically on par with it, introducing minor discrepancies only at the lowest
intensities.

Figures 4.6–4.11 present visual comparisons for Fluorescent Cells (peak = 20,
σ = 2), Lena (peak = 100, σ = 2), and Cameraman (peak = 80, σ = 3), corroborat-
ing the observed good performance of the proposed denoising method. Figure 4.12
shows the denoising results for the low-intensity case of Cameraman with peak =
1 and σ = 0.1, including a comparison of the different inverses. In addition, Fig-
ure 4.13 presents a similar comparison for the Boat (512 × 512) test image with
peak = 1.5 and σ = 0.1. These two figures clearly visualize the previously noted
importance of applying a proper inverse transformation to the denoised data.

4.4.2 Denoising with estimated parameter values αest and
σ̀est

Here we examine the robustness and practical applicability of the proposed method
by repeating a subset of the experiments corresponding to Tables 4.1–4.2, but using
estimated parameter values αest and σ̀est instead of the true values α and σ̀. Note
that since we now generally have αest 6= 1, we also have σ̀est 6= σest. Thus, in this
part of the experiments, we are making a distinction between σ̀ and σ for clarity,
even though σ̀ = σ still holds, as in all the previous experiments. The parameters
αest and σ̀est are estimated from a single noisy image by fitting a global parametric
model into locally estimated expectation / standard deviation pairs, as proposed
in [64]. Then, the transformations (4.4) and the GAT (4.7) fσest are applied
with σest = σ̀est/αest, the stabilized data is denoised with BM3D, and the final
estimate is obtained by inverting the denoised data with either the exact unbiased
inverse Iσest , the asymptotically unbiased inverse Iasy (D) = 1

4D
2 − 1

8 − σ
2
est, or

the algebraic inverse Ialg (D) = 1
4D

2 − 3
8 − σ

2
est.

The results of these experiments are presented in Table 4.3, showing the ro-
bustness of the proposed denoising framework, as in the vast majority of the cases
the denoising results associated with Iσest are practically equal to the ones ob-
tained with the exact parameter values α and σ (Tables 4.1–4.2); the only notable
declines in performance are the approximately 0.3 dB drops for Fluorescent Cells
with peaks 1 and 2. However, these drops at low peaks are insignificant in compar-
ison with the major decline (several dBs) in performance caused by using either
the asymptotically unbiased inverse Iasy or the algebraic inverse Ialg instead of
Iσest .

We remark that each result in Table 4.3 is obtained by denoising a single image
instead of averaging ten results, since in Table 4.1 we observed that the variations
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between individual results are typically minor (in the order of ± 0.1 dB around
the average PSNR). Note that even though the true value of α equals 1 in all the
experiments, this information is not used in any way in computing the estimates
αest and σ̀est. Moreover, using only α = 1 is not a fundamental restriction, as the
more general case (2.7) can be addressed through simple scaling.

4.4.3 Varying the ratio between the Poisson and Gaussian
noise components

Finally we analyze how much the denoising performance changes, when the noise
distribution gradually changes from pure Poisson to AWGN. In practise, we denoise
Cameraman and Lena with either BM3D or BLS-GSM combined with the exact
unbiased inverse Iσ, and with UWT/BDCT PURE-LET, when the PSNR of the
noisy image is kept constant at either 15 dB, 10 dB or 5 dB (with negligible
variations depending on the specific realization, of the order ± 0.01 dB), but the
ratio σ/

√
peak is varied from 0 to 10. When this ratio is low, the Poisson noise

component is the dominant one, whereas a high ratio means the noise distribution
is nearly Gaussian. Specifically, the GAT corresponding to the case σ/

√
peak = 10

is practically affine over the interval [0, peak], and thus, this case is essentially
like denoising pure AWGN without any variance stabilization. Conversely, when
σ/
√
peak = 0, the Gaussian component is absent, and hence we reduce to the case

of denoising pure Poisson data.
Figures 4.14–4.16 show the results of these experiments. First, we see the

general trend that the denoising performance increases as the distribution becomes
less Gaussian. We explain this perhaps curious behaviour by the fact that a
Gaussian distribution can be considered the worst-case scenario, in the sense that
it leads to the largest Cramér-Rao lower bound under a rather general class of
distributions [129]. Second, it is apparent from Figure 4.15(b) that in the 10 dB
case, there is a minor drop in performance for BM3D at about σ/

√
peak = 0.5, but

it is not observed for UWT/BDCT PURE-LET. This deficiency could be caused
by inaccurate variance stabilization, since the corresponding drop becomes more
pronounced in the extreme 5 dB case (Figure 4.16). In particular, as σ/

√
peak

decreases, the stabilization changes from nearly perfect to a slight overshooting (up
to about 10 % extra in terms of the standard deviation), and finally undershooting
(see Figure 4.1(b)). For low input PSNR values, such as 5 dB or 10 dB, the
intensity range of the scaled image is typically concentrated in the region with
inaccurate stabilization. However, for higher PSNR values this concerns only the
darkest part of the image. This notion is supported by the comparisons in Figure
4.14, showing the corresponding results for the 15 dB case; there is no drop in
performance for BM3D due to variance stabilization.

Overall, BM3D and the exact unbiased inverse Iσ outperforms the state-of-
the-art UWT/BDCT PURE-LET in all the 10 dB and 15 dB cases, even when
inaccurate variance stabilization causes a minor drop in performance for low input
PSNR values around σ/

√
peak = 0.5. In the 5 dB cases, BM3D still outper-

forms the other algorithms for Cameraman (Figure 4.16(a)), but for Lena (Fig-
ure 4.16(a)), the more pronounced drop for BM3D around σ/

√
peak = 0.5 causes

UWT/BDCT PURE-LET to outperform it around that region. In addition, in
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the case of 5 dB Lena, BLS-GSM excels at higher ratios of σ/
√
peak, outper-

forming BM3D by about 0.5 dB and UWT/BDCT PURE-LET by close to 1 dB.
This anomaly at a very low input PSNR can be explained by the fact that unlike
BLS-GSM, BM3D relies on a number of fixed internal parameters, which are not
optimized for such extreme cases.

On the other hand, the performance of BLS-GSM is much degraded by the
mismatch between the actual standard deviation of the stabilized data and its as-
sumed value (which is always 1). This is not a peculiarity of the Poisson-Gaussian
case, as drops in performance comparable to those visible in Figures 4.15–4.16 can
be experienced with BLS-GSM also in the case of purely Gaussian noise when the
standard deviation of the noise is over- or underestimated.

4.5 Discussion
We have generalized the results of Chapter 3 in order to encompass the case of
Poisson-Gaussian noise. Specifically, we proposed an exact unbiased inverse of
the generalized Anscombe transformation for Poisson-Gaussian noise and supple-
mented it with rigorous mathematical considerations. We also proposed a closed-
form approximation of this inverse, based on our closed-form approximation (3.7)
of the exact unbiased inverse of the Anscombe transformation.

We showed that the denoising performance associated with the proposed exact
unbiased inverse, in conjunction with a state-of-the-art Gaussian noise removal
algorithm, is competitive with that of a state-of-the-art algorithm designed specif-
ically for the removal of Poisson-Gaussian noise. Further, we observed that for
low peak intensities, the performance gain obtained by using the exact unbiased
inverse instead of the algebraic or the asymptotically unbiased inverse is espe-
cially significant. In other words, we showed that the poor denoising performance
shown in earlier works is not simply due to the inability of the GAT to stabilize
the noise variance adequately, but mostly due to applying an unsuitable inverse
transformation.

We also wish to point out that the GAT is not the only possible choice for
stabilizing the noise variance. For instance, one may instead compute a family of
optimized transformations [66] (mitigating the undershoot and overshoot observed
in Figure 4.1(b)), to which our denoising framework can be accommodated by
recomputing the grid of corresponding expected values (4.10). However, this is
not within our scope, as we focus on the major significance of the exact unbiased
inverse transformation, not on optimized variance stabilization.
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Ĩ σ

I a
sy

I a
lg

I σ
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(a) (b)

(c) (d)

Figure 4.6: The denoising of Fluorescent Cells (512×512). (a) Original image, (b) Noisy
image (peak = 20, σ = 2, PSNR = 17.21 dB), (c) Denoised with BM3D and the exact
unbiased inverse Iσ (PSNR = 29.65 dB), (d) Denoised with UWT/BDCT PURE-LET
(PSNR = 29.47 dB).
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(a) (b)

(c) (d)

Figure 4.7: A 100×100 section of each of the images in Figure 4.6. (a) Original image,
(b) Noisy image (peak = 20, σ = 2), (c) Denoised with BM3D and the exact unbiased
inverse Iσ, (d) Denoised with UWT/BDCT PURE-LET.
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(a) (b)

(c) (d)

Figure 4.8: The denoising of Lena (512×512). (a) Original image, (b) Noisy image (peak
= 100, σ = 2, PSNR = 22.64 dB), (c) Denoised with BM3D and the exact unbiased
inverse Iσ (PSNR = 33.41 dB), (d) Denoised with UWT/BDCT PURE-LET (PSNR =
32.92 dB).
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(a) (b)

(c) (d)

Figure 4.9: A 100×100 section of each of the images in Figure 4.8. (a) Original image,
(b) Noisy image (peak = 100, σ = 2), (c) Denoised with BM3D and the exact unbiased
inverse Iσ, (d) Denoised with UWT/BDCT PURE-LET.
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(a) (b)

(c) (d)

Figure 4.10: The denoising of Cameraman (256×256). (a) Original image, (b) Noisy
image (peak = 80, σ = 3, PSNR = 21.38 dB), (c) Denoised with BM3D and the exact
unbiased inverse Iσ (PSNR = 30.15 dB), (d) Denoised with UWT/BDCT PURE-LET
(PSNR = 29.68 dB).
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(a) (b)

(c) (d)

Figure 4.11: A 100×100 section of each of the images in Figure 4.10. (a) Original image,
(b) Noisy image (peak = 80, σ = 3), (c) Denoised with BM3D and the exact unbiased
inverse Iσ, (d) Denoised with UWT/BDCT PURE-LET.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: The denoising of Cameraman (256×256). (a) Original image, (b) Noisy
image (peak = 1, σ = 0.1, PSNR = 3.20 dB), (c) Denoised with BM3D and the asymp-
totically unbiased inverse Iasy (PSNR = 15.55 dB), (d) Denoised with BM3D and the
algebraic inverse Ialg (PSNR = 15.72 dB), (e) Denoised with BM3D and the exact unbi-
ased inverse Iσ (PSNR = 20.23 dB), (f) Denoised with UWT/BDCT PURE-LET (PSNR
= 20.35 dB).
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: The denoising of Boat (512×512). (a) Original image, (b) Noisy image
(peak = 1.5, σ = 0.1, PSNR = 4.64 dB), (c) Denoised with BM3D and the asymptotic
inverse Iasy (PSNR = 20.18 dB), (d) Denoised with BM3D and the algebraic inverse Ialg
(PSNR = 17.34 dB), (e) Denoised with BM3D and the exact unbiased inverse Iσ (PSNR
= 22.30 dB), (f) Denoised with UWT/BDCT PURE-LET (PSNR = 22.31 dB).
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(a)

(b)

Figure 4.14: The results of denoising variance-stabilized data with either BM3D or BLS-
GSM combined with the exact unbiased inverse Iσ, and denoising with UWT/BDCT
PURE-LET, when the PSNR of the noisy image is kept constant at 15 dB, but the ratio
σ/
√
peak is varied from 0 (i.e., the Poisson noise component dominates) to 10 (i.e., the

Gaussian noise component dominates). Each PSNR value is an average over five random
noise realizations. (a) Cameraman (256×256); peak = 14.90 when σ = 0, (b) Lena
(512×512); peak = 15.95 when σ = 0.
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(a)

(b)

Figure 4.15: The results of denoising variance-stabilized data with either BM3D or BLS-
GSM combined with the exact unbiased inverse Iσ, and denoising with UWT/BDCT
PURE-LET, when the PSNR of the noisy image is kept constant at 10 dB, but the
ratio σ/

√
peak is varied from 0 (i.e., the Poisson noise component dominates) to 10 (i.e.,

the Gaussian noise component dominates). Each PSNR value is an average over five
random noise realizations. (a) Cameraman (256×256); peak = 4.71 when σ = 0, (b)
Lena (512×512); peak = 5.05 when σ = 0.
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(a)

(b)

Figure 4.16: The results of denoising variance-stabilized data with either BM3D or BLS-
GSM combined with the exact unbiased inverse Iσ, and denoising with UWT/BDCT
PURE-LET, when the PSNR of the noisy image is kept constant at 5 dB, but the ratio
σ/
√
peak is varied from 0 (i.e., the Poisson noise component dominates) to 10 (i.e.,

the Gaussian noise component dominates). Each PSNR value is an average over five
random noise realizations. (a) Cameraman (256×256); peak = 1.49 when σ = 0, (b)
Lena (512×512); peak = 1.60 when σ = 0.



Chapter 5

Estimation of the
Poisson-Gaussian noise model
parameters

5.1 Introduction

As we have noted in many occasions, the Poisson-Gaussian noise model (2.7) can
be characterized with three parameters: the scaling factor α of the Poisson com-
ponent, the mean value µ of the Gaussian component, and the standard deviation
σ of the Gaussian component.

In practical applications involving noise removal, identifying a suitable noise
model does not guarantee accurate denoising results per se, but for the best results
we must also be able to produce reasonable estimates of the noise model param-
eters. While the specifications of the imaging device may provide some global
noise parameters, they are usually not equally applicable to various individual
cases. Thus, in some cases, the only practical option may be to estimate the noise
parameters from the captured image itself.

Regardless of the particular noise model, the problem of estimating the pa-
rameter(s) associated with it can be approached either by taking advantage of
multiple images (see, e.g., [74]), or by considering only a single image. For prac-
tical purposes, the latter is often necessary, as multiple images of the target may
not be available. Thus, we will concentrate on parameter estimation from a sin-
gle image. A variety of techniques exist for estimating the standard deviation
of AWGN. For instance, this estimate can be obtained through mean or median
absolute deviation (MAD) of the high frequency spectral coefficients of the image,
where the coefficients can be, e.g., the high-detail 2-D wavelet coefficients [49], or
an adaptive-size portion of the 3-D transform (DCT or wavelet) coefficients [43].
Alternatively, we may consider an implicit functional relationship between the im-
age intensity and the noise variance [72]; this method is not restricted to AWGN,
but can also be applied to other noise distributions. For a more comprehensive
discussion on the various estimation methods, see e.g. the review in [20], or the

85
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review of more elementary and older methods in [119].
On the other hand, parameter estimation for the case of Poisson-Gaussian

noise is a much less studied problem. A notable approach is to segment the image
into approximately uniform regions, locally approximate the expected value and
standard deviation of each region, and finally obtain global estimates through
regression of these local estimates [47, 64]. The problem has also recently been
addressed through an expectation maximization algorithm [78]. While [47] and [78]
mainly target parameter estimation from multiple images, [64] is able to provide
very good results also for the single image case.

In this chapter, we first consider a general parametric noise model, and inves-
tigate the effect of inaccurate parameter estimation on variance stabilization. We
present general results concerning this mismatch, and as a proof of concept, we
construct a novel algorithm for estimating Poisson-Gaussian noise parameters from
a single image using an iterative variance-stabilization scheme. For simplicity, we
restrict ourselves to estimating the scaling factor α and the standard deviation σ
and assume the Gaussian component to have zero mean (i.e., µ = 0). Specifically,
each iteration begins with applying a VST to a random sub-block of the image,
rendering the noise within the block approximately Gaussian with (ideally) unitary
variance. Then we estimate the standard deviation of the stabilized AWGN block,
compare it to the assumed standard deviation, and adjust our parameter estimates
accordingly via gradient descent. At best, the results obtained with the proposed
algorithm are comparable to those obtained with [64]. On the other hand, in low-
intensity cases, the proposed algorithm in its current state is not always able to
provide as accurate estimates as the latter. However, the main purpose of our algo-
rithm is rather to expose the potential of the novel viewpoint in contrast with the
more traditional methods, and to confirm the practical usefulness of the presented
theoretical considerations.

This chapter is organized as follows: We begin by considering the mismatch
between the estimated and true parameter values for a general noise distribution
in Section 5.2. In particular, we show that under certain simplifying assumptions,
the unitary contours of a function estimating the standard deviation of stabilized
data are smooth in a neighbourhood of the true noise parameter values; we prove
this result explicitly for the Poisson-Gaussian noise model. In Section 5.3 we
introduce our Poisson-Gaussian parameter estimation algorithm and discuss its
implementation details. Section 5.4 consists of experimental results, including
comparisons to the regression-based parameter estimation algorithm [64]. Finally,
Section 5.5 concludes the chapter and considers the limitations of the proposed
algorithm.

5.2 Standard deviation contours
Let zθ be a noisy image, where the noise model is parametrized by the vector
θ = (θ1, . . . , θn), and y ≥ 0 is the expected value of zθ. Further, let θ̂ = (θ̂1, . . . , θ̂n)
be the estimated values for the noise parameters θ, and fθ̂ a VST constructed using
the estimated parameters. For instance, in the zero-mean Poisson-Gaussian case,
zα,σ is an image corrupted by (2.7), with µ = 0. Then, we can set fα̂,σ̂ to be, e.g.,
the GAT (2.18) with estimated parameters α̂ and σ̂.
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Proposition 1 Assume that

1. We can achieve exact stabilization with the correct noise parameters θ:

std {fθ (zθ) |y} = 1 ∀y ≥ 0. (5.1)

2. For any variance-stabilizing transformation fθ̂ and any choice of parameters
θ̂ and θ, the conventional approximation (which follows from a first order
Taylor expansion of fθ̂ (zθ))

std
{
fθ̂ (zθ) |y

}
≈ std {zθ|y} f ′θ̂ (E {zθ|y}) (5.2)

holds exactly (i.e., that the above symbol ≈ can be replaced by =).

3. The estimator EB of the standard deviation of AWGN noise successfully
returns the mean standard deviation of the stabilized image block B.

When these assumptions hold, the AWGN estimator EB can be written as

EB
{
fθ̂ (zθ)

}
=

∫
std {zθ|y}
std
{
zθ̂|y

}pB (y) dy =: F
(
θ̂
)
, (5.3)

where pB (y) is the probability density (i.e., the normalized histogram) of y over
block B.

Proof. Applying (5.2) to (5.1), we can write

std {fθ (zθ) |y} = std {zθ|y} f ′θ (y) = 1,

and hence
f ′θ (y) =

1

std {zθ|y}
. (5.4)

Thus, for the VST fθ̂ with the estimated parameters θ̂, combining (5.1) and (5.4)
leads to

std
{
fθ̂ (zθ) |y

}
= std {zθ|y} f ′θ̂ (y)

= std {zθ|y} f ′θ (y)
f ′
θ̂

(y)

f ′θ (y)

= std {fθ (zθ) |y}
f ′
θ̂

(y)

f ′θ (y)

=
f ′
θ̂

(y)

f ′θ (y)
=

std {zθ|y}
std {zθ|y}

. (5.5)

Let us now consider an image block B, with pB (y) being the probability density
of y over this block. It then follows from (5.5) and assumption 3 that

EB
{
fθ̂ (zθ)

}
=

∫
std
{
fθ̂ (zθ) |y

}
pB (y) dy

=

∫
std {zθ|y}
std
{
zθ̂|y

}pB (y) dy. (5.6)
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As an example, for Poisson-Gaussian noise, we can explicitly write std {zα̂,σ̂|y} =√
α̂y + σ̂2. Thus, we can express (5.3) as

EB {fα̂,σ̂ (zα,σ)} =

∫ √
αy + σ2

α̂y + σ̂2
pB (y) dy = F (α̂, σ̂) . (5.7)

In what follows, we study the behaviour of F (α̂, σ̂) in the Poisson-Gaussian
case. Our aim is to show that, given the assumptions in Proposition 1, a function
F (α̂, σ̂) estimating the standard deviation of a stabilized block (i.e., an AWGN
standard deviation estimator) has a well-behaving unitary contour near the true
parameter values α, σ. More precisely, we show that such a contour is locally a
simple smooth curve in a neighbourhood of (α, σ) in the (α̂, σ̂) plane.

Clearly, F (α, σ) = 1, when all of our assumptions hold. Let us consider the
implicit function theorem for F at (α, σ). In particular, the theorem leads us to
the following proposition:

Proposition 2 Let F be defined as in (5.7). According to the implicit func-
tion theorem, the solution of F (α̂, σ̂) = 1 is locally a simple smooth curve in
a neighbourhood of (α, σ) in the (α̂, σ̂) plane, provided that either ∂F

∂α̂ (α, σ) 6= 0 or
∂F
∂σ̂ (α, σ) 6= 0.

Proof. Let us show that either ∂F
∂α̂ (α, σ) < 0 or ∂F

∂σ̂ (α, σ) < 0 hold. With
straightforward calculations, we see that

∂F

∂α̂
=

∫
∂

∂α̂

√
αy + σ2

α̂y + σ̂2
pB (y) dy

= −
∫
y

2

√
(αy + σ2) (α̂y + σ̂2)

(α̂y + σ̂2)
2 pB (y) dy,

and similarly
∂F

∂σ̂
= −

∫
σ

√
(αy + σ2) (α̂y + σ̂2)

(α̂y + σ̂2)
2 pB (y) dy.

Thus,

∂F

∂α̂
(α, σ) = −

∫
y

2

1

αy + σ2
pB (y) dy, (5.8)

∂F

∂σ̂
(α, σ) = −σ

∫
1

αy + σ2
pB (y) dy. (5.9)

The partial derivative (5.9) equals 0 if and only if σ = 0. However, if σ = 0,
then ∂F

∂α̂ (α, σ) = − 1
2α < 0. Therefore we have that either ∂F

∂α̂ (α, σ) < 0 or
∂F
∂σ̂ (α, σ) < 0 hold, and hence F (α̂, σ̂) = 1 is locally a simple smooth curve in a
neighbourhood of (α, σ).

The implicit function theorem also states that the slope of the curve at (α, σ) is
given by the ratio of the above partial derivatives (5.8) and (5.9). This highlights
the fact that, for different blocks B, we have differently oriented (and thus stable
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and non-degenerate) curves intersecting each other, provided that the different
blocks have different enough normalized histograms pB (y). In order to illustrate
the above results, Figure 5.1(b) shows ten contours F (α̂, σ̂) = 1 computed from
ten randomly selected 32 × 32 blocks of the Piecewise test image (peak = 120)
shown in Figure 5.1(a). Figure 5.2 shows a similar visualization for a low-intensity
case (Lena, peak = 5); in this case it is clear that our initial assumptions do not
all hold, and the contours fail to intersect at a point.

Note that while we proved Proposition 2 only in the Poisson-Gaussian case, we
expect the proposition to hold also for other common distribution families, with
the proof proceeding analogously (showing that at least one partial derivative of
F (θ̂) does not vanish in a neighbourhood of θ).

5.3 The iterative parameter estimation algorithm

Inspired by the theoretical results presented in Section 5.2, we construct an al-
gorithm estimating the parameters α and σ of zero-mean Poisson-Gaussian noise
through variance stabilization of different sub-blocks of an image, iteratively up-
dating the respective estimates α̂ and σ̂.

In particular, the proposed algorithm considers a different random image block
in each successive step, stabilizes its variance, and adjusts the current estimates
α̂1 and σ̂1 according to a steepest descent criterion. Moreover, in order to regulate
the behaviour of the estimates, the adjustments also take into account a number
of previous estimates, with weights inversely proportional to their variances. In
what follows, we refer to the latter procedure as dampening, and the dampened
estimates are denoted by ᾱ1 and σ̄1.

Let us first present a general overview of the estimation process, after which we
look at each step in more detail. The main steps of the algorithm are as follows:

1. Iteration k = 1: Initialize the variables (the undampened estimates α̂1 and
σ̂1, the dampened estimates ᾱ1 and σ̄1, and their respective variance esti-
mates).

2. Iteration k > 1: Choose a random block B from the noisy image zα,σ
and apply a variance-stabilizing transformation fᾱk−1,σ̄k−1

(zα,σ) to it (for
instance, the generalized Anscombe transformation (2.18) with the parame-
ters ᾱk−1, σ̄k−1).

3. Compute an estimate F (ᾱk−1, σ̄k−1) = EB
{
fᾱk−1,σ̄k−1

(zα,σ)
}
for the stan-

dard deviation of the stabilized image block (using an AWGN standard de-
viation estimator E, such as the MAD estimator).

4. Move the estimates α̂, σ̂ towards the negative gradient:

α̂k = ᾱk−1 − γk
∂F

∂ᾱk−1
(ᾱk−1, σ̄k−1) ,

σ̂k = σ̄k−1 − γk
∂F

∂σ̄k−1
(ᾱk−1, σ̄k−1) ,
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(a)

(b)

Figure 5.1: (a) A piecewise smooth noisy 512× 512 test image (“Piecewise”), with peak
intensity value 120, and noise parameters α = 1, σ = 5, µ = 0. (b) Ten standard
deviation contours F (α̂, σ̂) = 1 computed from ten randomly selected 32× 32 blocks of
the test image (a).
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(a)

(b)

Figure 5.2: (a) Noisy Lena (512×512), with peak intensity value 5, and noise parameters
α = 1, σ = 0.5, µ = 0. (b) Ten standard deviation contours F (α̂, σ̂) = 1 computed from
ten randomly selected 32× 32 blocks of the test image (a).
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where γk is a step parameter (in particular, we use a step size defined by Eq.
(5.12)).

5. Use the undampened estimates σ̂n, . . . , σ̂k for updating the dampened esti-
mate σ̄k:

σ̄k =

k∑
i=n

µ
(σ)
i σ̂i,

where each weight µ(σ)
i is inversely proportional to the variance of the un-

dampened estimate σ̂i. Similarly, compute the dampened estimate

ᾱk =

k∑
i=n

µ
(α)
i α̂i.

6. Check if either the maximum number of iterations (e.g., k = 8000) is reached
or the relative difference satisfies the inequality

∆ =
|ᾱk − ᾱk−1|

ᾱk
+
|σ̄k − σ̄k−1|

σ̄k
< τ,

where the pre-defined tolerance is, e.g., τ = 10−7. If either of these conditions
are met, set the final values for the estimated parameters as α̂ = ᾱk and
σ̂ = σ̄k. Otherwise, move on to iteration k + 1 (return to step 2).

Now, let us examine each of the above steps and their implementation details
more carefully.

5.3.1 Initialization of the estimates

We initialize σ̂ by estimating the standard deviation of the non-stabilized whole
image zα,σ (e.g., with the MAD estimator):

σ̂1 = E {zα,σ} ≈ std {zα,σ|y} .

We also set the initial dampened estimate to σ̄1 = σ̂1, since at this point there
are no previous estimates to be weighed in. The variance of σ̄1 = σ̂1 can be
approximated using Eq. (58) in [64], yielding

v̄
(σ)
1 = var {σ̂1} = σ̂2

1 ·
1.35

|zα,σ|+ 1.5
,

where |zα,σ| is the number of pixels in the whole image zα,σ.
For α̂, we fully rely on the iterative updating and dampening procedure to

steer the estimate towards the right direction, and simply initialize it to a value
close to zero (e.g., α̂1 = 10−4). This is done for the purpose of not making implicit
assumptions about the data (such as assuming α being close to unity). Due to
this initialization, we also set the estimated variance v̄(α)

1 to zero.
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5.3.2 Stabilizing the variance of a random block
As shown in Section 5.2, the unitary variance contours corresponding to different
stabilized image blocks are locally smooth in the (α̂, σ̂) plane. Moreover, they
are differently oriented and intersect each other, provided that the probability
densities of these image blocks are different enough. Thus, at each iteration k > 1
after the initialization step, we process only a random sub-block B of the image
zα,σ. In the most straightforward approach, a fixed block size (e.g., 32 × 32) is
used throughout the iterations, but adapting the size based on a suitable heuristic
may be considered in order to speed up the computations.

After extracting the random block, it is processed with a VST f in order to
stabilize its variance to (approximately) unity. Specifically, we use the general-
ized Anscombe transformation (2.18), with α and σ replaced by the dampened
parameter estimates ᾱk−1, σ̄k−1 from the previous iteration. Alternatives to the
generalized Anscombe transformation do exist, such as an optimized nonparamet-
ric transformation proposed in [66].

5.3.3 Estimating the standard deviation
After applying the VST on the random block B, the data can be treated as Gaus-
sian with unitary variance. Thus, we can compute the standard deviation estimate
F (ᾱk−1, σ̄k−1) for the stabilized image block fᾱk−1,σ̄k−1

(zα,σ) as

F (ᾱk−1, σ̄k−1) = EB
{
fᾱk−1,σ̄k−1

(zα,σ)
}
,

where E is any standard deviation estimator E designed for the additive white
Gaussian noise case. In particular, our estimate is obtained as the mean absolute
deviation (MAD) of the wavelet detail coefficients of the block; this is the same
MAD estimator that was used in computing the initial estimate σ̂1 in Section 5.3.1.

5.3.4 Iterative updating of the estimates
In order to regulate the behaviour of the estimates, the algorithm uses two sets
of estimates for σ: the undampened estimates σ̂, and the dampened estimates σ̄.
Analogously, two sets of estimates σ̂ and ᾱ are used for α. Thus, for simplicity, we
do not repeat the similar equations below for α, but consider only the case of σ.

The algorithm stores the undampened estimates σ̂1, . . . , σ̂k from each iteration,
from which the dampened estimate is computed as

σ̄k =

k∑
i=n

µ
(σ)
i σ̂i,

where each weight µ(σ)
i is inversely proportional to the variance of σ̂, and n is

a free tuning parameter that can be thought of as the “forgetting factor” of the
algorithm. The practical computations regarding the weighting are elaborated in
Section 5.3.5, but in order to proceed chronologically, let us now look at how we
update the undampened estimates σ̂ and α̂ with a steepest descent (i.e., gradient
descent) approach.
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Our goal here is to update the estimates σ̂ and α̂ in such a way that we
move in the direction of the negative gradient, ideally towards a target value
std {fᾱ,σ̄ (zα,σ) |y}. With exact stabilization, this target value would be a level set
std {fᾱ,σ̄ (zα,σ) |y} = 1 (assuming that the standard deviation function is a plane
with respect to α and σ). However, in the case of Poisson-Gaussian distributed
data, the stabilization is bound to be inexact (see [33] and [52]), in particular for
low values of y. Moreover, as in practise we don’t know the parameter values defin-
ing zα,σ, we replace it by zᾱ,σ̄ when estimating the standard deviation. Explicitly,
the gradient descent step is performed by setting

α̂k = ᾱk−1 − γk
∂F

∂ᾱ
(ᾱk−1, σ̄k−1) , (5.10)

σ̂k = σ̄k−1 − γk
∂F

∂σ̄
(ᾱk−1, σ̄k−1) , (5.11)

where the step parameter γk equals

γk =
F (ᾱk−1, σ̄k−1)− std

{
fᾱk−1,σ̄k−1

(zᾱ,σ̄) |y
}

∂F
∂ᾱk−1

(ᾱk−1, σ̄k−1)
2

+ ∂F
∂σ̄k−1

(ᾱk−1, σ̄k−1)
2 . (5.12)

This step parameter is constructed in such a way that (5.10) and (5.11) move the es-
timates ᾱk−1, σ̄k−1 directly to the closest intersection between the F (ᾱk−1, σ̄k−1)
plane and the std

{
fᾱk−1,σ̄k−1

(zᾱ,σ̄) |y
}
plane.

It is worth noting that the dampened estimates σ̄k−1, ᾱk−1 from the previous
iteration determine the new undampened estimates σ̂k, α̂k; these are then further
used in computing the dampened estimates for the k’th iteration. As a final
detail, in order to keep the estimates strictly positive, we set σ̂k = max (ε, σ̂k)
and α̂k = max (ε, α̂k), where, e.g., ε = 10−5. This prevents possible complications
in the generalized Anscombe transformation (2.18), where division by zero might
otherwise occur.

5.3.5 Computing the dampened estimates

Returning to the concept of dampening the estimates by using a linear combination
of the undampened estimates, we define the undampened variance v(σ)

k as

v
(σ)
k = var {σ̂n, σ̂n+1, . . . , σ̂k−1, σ̂k} , (5.13)

where 1 ≤ n ≤ k. In other words, the undampened variance v(σ)
k is computed over

the k − n + 1 newest undampened estimates of σ. We can choose the forgetting
factor n as we see best; for instance, we may use the 50 newest estimates, or we
may vary n as a function of k.

Before updating the dampened variance v̄(σ)
k = var {σ̄k}, let us define λ(σ)

k as

λ
(σ)
k =

1

v̄
(σ)
k−1 + ε(σ)v

(σ)
k

/

(
1

v̄
(σ)
k−1 + ε(σ)v

(σ)
k

+
1

v
(σ)
k

)
, (5.14)
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where the additional adaptive weight parameter is set to ε(σ) = max
(
10−6, 4/k

)
.

Now we can express the update of v̄(σ)
k as

v̄
(σ)
k = v̄

(σ)
k−1

(
λ

(σ)
k

)2

+ v
(σ)
k

(
1− λ(σ)

k

)2

. (5.15)

Finally, we obtain the updated dampened estimate σ̄k itself by

σ̄k = σ̄k−1λ
(σ)
k + σ̂k

(
1− λ(σ)

k

)
. (5.16)

As in the previous section, the case for α is completely analogous, so we omit the
explicit equations describing the updating of ᾱk.

5.3.6 Obtaining the final estimates
In the end of each iteration, we must decide whether our current estimates are good
and stable enough, or if further iterations are required. Specifically, we consider the
estimates to have reached adequate stability, if the relative difference ∆ satisfies
the inequality

∆ =
|ᾱk − ᾱk−1|

ᾱk
+
|σ̄k − σ̄k−1|

σ̄k
< τ, (5.17)

where the pre-defined tolerance is, e.g., τ = 10−7. In addition to this stopping
criterion, we also define an upper limit for the number of iterations (e.g., k = 8000)
to ensure the halting of the algorithm. If either of these conditions are met, we
consider the newest dampened estimates ᾱk, σ̄k to be our final estimates, and thus
set α̂ = ᾱk and σ̂ = σ̄k. Otherwise, we choose a new random image block and
move on to iteration k + 1.

5.4 Experiments
We investigate the accuracy and effectiveness of the proposed parameter estimation
algorithm with the Cameraman (256 × 256), Fluorescent Cells (512 × 512), Lena
(512×512), and Piecewise (512×512) test images shown in Figure 5.3, each scaled
to eight peak intensity values (1, 2, 5, 10, 20, 30, 60, 120) and corrupted by various
combinations of the Poisson-Gaussian noise parameters α and σ. As noted earlier,
we assume the Gaussian noise component to have zero mean (i.e., µ = 0).

The parameters α and σ are estimated from each noisy image with the proposed
algorithm, and with the algorithm presented in [64] for a comparison. For the for-
mer, we use a constant block size of 32×32 pixels, forgetting factor n = d3

√
ke+1

(where d·e is the ceiling function), and stopping criteria τ = 10−7, k = 8000. We
also compare the denoising performance associated with the obtained parameter
estimates by relaying them to BM3D, which is combined with variance stabiliza-
tion. More specifically, we use the familiar three-step denoising process: First, the
GAT is applied to the noisy image. Then, the stabilized image is denoised with
BM3D, using the estimated parameters as input. Finally, the denoised data is pro-
cessed with the exact unbiased inverse of the GAT, producing the final estimate of
the noise-free image. The denoising result is then evaluated by two performance
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(a) (b)

(c) (d)

Figure 5.3: The test images used in the experiments. (a) Cameraman (256 × 256), (b)
Fluorescent Cells (512× 512), (c) Lena (512× 512), (d) Piecewise (512× 512).

metrics: the peak signal-to-noise ratio (PSNR), and the structural similarity index
value (SSIM) [137].

Table 5.1 presents the parameter estimation and denoising results for the Cam-
eraman and Fluorescent Cells images, when α = 1 is kept constant. Corresponding
results for the Lena and Piecewise images are presented in Table 5.2. Further, Ta-
ble 5.3 consists of similar results for various other values of α. We observe that
unless the peak intensity is very low (peak ≤ 2), both estimation algorithms gen-
erally lead to comparable PSNR and SSIM results. Even though [64] is overall
slightly more accurate in estimating the parameters, it typically does not help
in producing notably better denoising results. On the other hand, the proposed
algorithm tends to struggle with low intensity data, often underestimating α in
particular. As Table 5.3 shows, this underestimation is especially notable for higher
values of α. This deficiency is likely caused by the inherent inability of the GAT
to perform accurate variance stabilization in regions with low mean intensity val-
ues, and could potentially be mitigated by leveraging an optimized nonparametric
variance-stabilizing transformation [66] instead of the GAT.

Figure 5.4 illustrates how the estimated parameter values (both undampened
and dampened estimates) typically evolve as the proposed algorithm performs the
iterative updating. In this particular example, the parameters are estimated from
the Cameraman image, with peak = 20, σ = 2, α = 1; the estimates converge to
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σ̄ = 1.978, ᾱ = 1.063 after 1878 iterations, which takes about 6 seconds with our
unoptimized Matlab implementation. Note that the execution time depends on
the chosen block size and especially on the convergence threshold τ . For instance,
if we choose a less stringent threshold τ = 10−6 instead of the default τ = 10−7,
the estimation takes only 1 second (352 iterations), still producing good estimates
σ̄ = 2.038, ᾱ = 1.034 and practically identical denoising results. Figure 5.4 also
shows the importance of the dampening procedure, as the undampened estimates
alone are not stable enough without some form of regularization.

Figure 5.5 shows a similar illustration for the low-intensity case of Fluorescent
Cells with peak = 1, σ = 0.1, α = 1. In this case, the convergence threshold
τ = 10−7 is not met within the pre-defined limit of k = 8000 iterations; the
relative difference (5.17) remains in the order of ∆ = 10−4, and the estimated
parameters are σ̄ = 0.172, ᾱ = 0.676. Despite the notable underestimation of
α, the denoising performance in this case remains comparable to that achieved
using the estimator [64], not only numerically (see Table 5.1). but also visually,
as shown in Figure 5.6. On the other hand, in those low-intensity cases where we
obtain numerically inferior results, the visual results tend to be inferior as well,
containing more artifacts than in the result associated with [64]. This is illustrated
in Figure 5.7 for the Piecewise image with peak = 1, σ = 0.1, α = 2.5.

Finally, Figures 5.8–5.10 provide another perspective for the obtained esti-
mation accuracy. In particular, they compare the estimated and true standard
deviation curves (std {zᾱ,σ̄|y} =

√
ᾱy + σ̄2 and std {zα,σ|y} =

√
αy + σ2, respec-

tively) for the three example cases discussed above. In addition, the histograms
of the corresponding noisy and noise-free images are overlaid to each comparison.
This aids in identifying the intensity ranges, where the accuracy or inaccuracy of
the estimates will have practical significance. For instance, Figure 5.9 (Fluorescent
Cells, peak = 1, σ = 0.1, α = 1) is in agreement with our observation that the un-
derestimation of α did not translate into a notably worse denoising result; in fact,
our estimates are reasonably accurate in the low-intensity range where most of the
noisy data is concentrated. Conversely, in the most problematic case of Piecewise
with peak = 1, σ = 0.1, α = 2.5 (Figure 5.10), our estimates are inaccurate also
in the low-intensity range, where the noisy histogram peaks.

5.5 Discussion
We investigated the effect of inaccurate parameter estimation on variance sta-
bilization for a general noise distribution. In particular, we showed that under
some simplifying assumptions, the unitary contours of a function estimating the
standard deviation of stabilized data are smooth in a neighbourhood of the true
parameter values. We derived a general expression for this function, proved the
smoothness explicitly for the Poisson-Gaussian noise model, and postulated the
result to hold also for other common distribution families.

Based on the results, we proposed a variance-stabilization based iterative al-
gorithm for estimating the parameters of Poisson-Gaussian noise, discussed its
implementation details, and compared its estimation performance against an al-
gorithm based on segmentation, local estimates and regression [64]. Further, we
compared the corresponding denoising results achieved with the estimated param-
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eters, where the denoising was performed via variance stabilization (GAT (2.18)),
a state-of-the art Gaussian denoising algorithm BM3D, and the exact unbiased
inverse Iσ of the GAT.

At best, the performance of the proposed algorithm is comparable to that
achieved with the estimator presented in [64]. In some low-intensity cases it pro-
duces inferior estimation results, but we have demonstrated our novel approach
to have definite potential. In particular, we presume these inferior results to be
a consequence of inaccurate variance stabilization in low-intensity regions. Thus,
it could be beneficial to construct an optimized variance-stabilizing transforma-
tion as presented in [66], in order to replace the more inaccurate GAT. On the
other hand, optimizing the various heuristics present in the algorithm is another
source for possible improvements in performance. For instance, the choice of the
aggregation and regularization parameters in the dampening stage ((5.13)–(5.16))
appears to play a significant role in the success of the algorithm.
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(a)

(b)

Figure 5.4: Evolution of the undampened and dampened parameter estimates for Cam-
eraman (256×256, peak = 20, σ = 2, α = 1). (a) Undampened estimate σ̂ and dampened
estimate σ̄, converging to σ̄ = 1.978. (b) Undampened estimate α̂ and dampened esti-
mate ᾱ, converging to ᾱ = 1.063.
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(a)

(b)

Figure 5.5: Evolution of the undampened and dampened parameter estimates for Fluo-
rescent Cells (512 × 512, peak = 1, σ = 0.1, α = 1). (a) Undampened estimate σ̂ and
dampened estimate σ̄, not converging within 8000 iterations, but producing σ̄ = 0.172.
(b) Undampened estimate α̂ and dampened estimate ᾱ, not converging within 8000 it-
erations, but producing ᾱ = 0.676.
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(a) (b) (c)

Figure 5.6: The denoising of Fluorescent Cells (512 × 512, peak = 1, σ = 0.1, α = 1).
(a) Noisy image (gamma-corrected with γ = 0.9 for improved visibility). (b) Denoised
image, obtained with the parameter estimates (σ̄ = 0.172, ᾱ = 0.676) produced by the
proposed method (PSNR = 24.04 dB, SSIM = 0.5751). (b) Denoised image, obtained
with the parameter estimates (σ̂ = 0.183, α̂ = 0.949) produced by [64] (PSNR = 24.19
dB, SSIM = 0.5655).

(a) (b) (c)

Figure 5.7: The denoising of Piecewise (512 × 512, peak = 1, σ = 0.1, α = 2.5). (a)
Noisy image (gamma-corrected with γ = 0.9 for improved visibility). (b) Denoised image,
obtained with the parameter estimates (σ̄ = 0.881, ᾱ = 1.025) produced by the proposed
method (PSNR = 19.74 dB, SSIM = 0.4649). (b) Denoised image, obtained with the
parameter estimates (σ̂ = 0.499, α̂ = 2.436) produced by [64] (PSNR = 25.03 dB, SSIM
= 0.8083).
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Figure 5.8: Estimated and true standard deviation curves for the Cameraman image
(256 × 256, peak = 20, σ = 2, α = 1), overlaid with the histograms of the noisy and
noise-free images. By “Intensity”, we denote z for the noisy image, y for the noise-free
image, and αy or ᾱy for the standard deviation curves.
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Figure 5.9: Estimated and true standard deviation curves for the Fluorescent Cells image
(512 × 512, peak = 1, σ = 0.1, α = 1), overlaid with the histograms of the noisy and
noise-free images. By “Intensity”, we denote z for the noisy image, y for the noise-free
image, and αy or ᾱy for the standard deviation curves.
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Figure 5.10: Estimated and true standard deviation curves for the Piecewise image (512×
512, peak = 1, σ = 0.1, α = 2.5), overlaid with the histograms of the noisy and noise-free
images. By “Intensity”, we denote z for the noisy image, y for the noise-free image, and
αy or ᾱy for the standard deviation curves.
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Chapter 6

Conclusions to the thesis

In this thesis, we contemplated Poisson and Poisson-Gaussian image denoising,
using the Anscombe variance-stabilizing transformation and its Poisson-Gaussian
generalization. In particular, we demonstrated the importance of a properly de-
signed inverse transformation, and constructed exact unbiased inverses for these
two VSTs.

First, we proposed an exact unbiased inverse for the Anscombe transformation
for Poisson noise in Chapter 3. We showed that the poor denoising performance
associated with the traditional algebraic and asymptotically unbiased inverses can
be overcome by using the proposed inverse instead. Specifically, it provides sig-
nificant improvements in the denoising of low-count data. We justified the good
performance of the exact unbiased inverse by showing that it coincides with a
maximum likelihood inverse under rather generic hypotheses.

For a convenient use of the exact unbiased inverse in practical applications,
we also provided a closed-form approximation for it, and showed that the de-
noising results obtained with these two inverses are practically equal. Thus, the
traditional algebraic and asymptotically unbiased inverses can easily be replaced
by this closed-form expression, providing the excellent performance of the exact
unbiased inverse.

By combining the proposed inverse with a state-of-the-art Gaussian denoising
algorithm, we achieve results that are competitive with state-of-the-art Poisson
noise removal algorithms. While proper inversion is more crucial than the choice
of the Gaussian denoising algorithm, the latter bears some significance as well.
Out of the algorithms considered here, BM3D seems to be the best choice due to
its overall strong results combined with relatively low complexity.

In order to generalize the above results to the case of Poisson-Gaussian noise, we
introduced the exact unbiased inverse of the generalized Anscombe transformation
in Chapter 4, and demonstrated the excellent denoising performance achieved by
combining it with a state-of-the-art Gaussian denoising algorithm. As in the Pois-
son case, we showed that the proposed inverse can be interpreted as a maximum
likelihood inverse. Moreover, we presented a thorough analysis of the asymptotic
properties and global accuracy of the inverse. In particular, we showed that it
can be approximated very accurately by adding a simple correction term −σ2 to
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the exact unbiased inverse of the Anscombe transformation. As a byproduct of
this analysis, we constructed a closed-form approximation for it by adding this
correction term to the closed-form approximation of the exact unbiased inverse of
the Anscombe transformation.

Finally, we investigated the effect of inaccurate parameter estimation on vari-
ance stabilization for a general noise distribution in Chapter 5. Based on the
theoretical results, we constructed a novel variance-stabilization based iterative
algorithm for estimating the scaling factor α and the Gaussian standard devi-
ation σ of the Poisson-Gaussian noise model. We compared its estimation and
denoising performance against that of an estimator based on segmentation, local
estimates and regression [64]. At best, our algorithm provided equally good results,
thus showing its underlying potential. However, its inferior performance in some
low-intensity cases may be caused by inadequate stabilization of the variance, so
employing an optimized VST instead of the GAT could be beneficial. Additional
improvements may be gained by a careful optimization of the heuristic parts of
the estimation algorithm.

In light of our contributions, it seems questionable whether it is advantageous
to go through the effort of designing separate denoising algorithms for each spe-
cific noise distribution, when comparable gains can be attained by perfecting the
denoising algorithms in the AWGN case and addressing various noise distributions
through variance stabilization together with a suitable inverse.

Note that even though we only considered the Anscombe transformation and its
Poisson-Gaussian generalization, there exist a variety of other variance-stabilizing
transformations. In particular, combining the optimized VSTs discussed in [66]
and [65] with the proposed framework of exact unbiased inversion would be a good
subject for future research. Moreover, even though the thesis deals exclusively
with 2-D data (digital images), the concepts and procedures presented here can
be applied to data of any dimension, including 1-D signals and volumetric data.

In addition, it is worth mentioning that even though we focused solely on
grayscale images, the use of the proposed inverses can be easily extended to colour
image denoising. In order to capture a colour image, the light typically passes
through a colour filter array (CFA), such as a Bayer filter [10], before reaching
the actual image sensor. The Bayer filter is an array composed of 2 × 2 blocks,
where each block contains two green, one red, and one blue filter. Thus, each
pixel in the raw sensor data actually represents the intensity of only red, blue
or green colour, and the final RGB colour image is obtained by interpolating
the missing samples with a demosaicking algorithm. The most simple option of
denoising colour images with the proposed framework is to process each colour
channel as a separate intensity image. In a more sophisticated manner, one can
also combine variance stabilization with, for instance, cross-colour BM3D filtering
[42] (for denoising raw CFA data) or C-BM3D [36] (for denoising RGB colour
images).

Another possible application of the proposed framework could be to take ad-
vantage of it in solving linear inverse problems of the form z ∼ P(Hy), where H
is, e.g., a blurring kernel or a projection operator; these inverse problems may be
approached through applying a Poisson denoising algorithm. However, adapting
the proposed framework to such a problem should be done with care, keeping in



111

mind that variance stabilization is a nonlinear process. Specifically, we cannot gen-
erally assume that after stabilizing z, the data can be treated as if it were linearly
degraded and corrupted by AWGN. Instead, the nonlinearity of the VST and its
inverse should be taken into account, as is done for instance in [51], where the au-
thors consider the Anscombe transformation and its algebraic and asymptotically
unbiased inverses.

It is also important to note that the concept of optimal inverse transforma-
tions is not restricted to the Poisson and Poisson-Gaussian distributions; the same
principles can be used for other distributions just as well. For instance, the stabi-
lization and the exact unbiased inverse transformation for the raw data from digital
imaging sensors is studied in [67]; these data are modelled by a doubly censored
heteroskedastic normal distribution. Another example is [109], where we denoise
single-look synthetic-aperture radar (SAR) images by applying the forward and
exact unbiased inverse transformations designed for Rayleigh noise. Finally, simi-
lar considerations for the denoising of magnetic resonance images are presented in
[68], where the noise distribution is assumed to be Rician.



112 6. Conclusions to the thesis



Bibliography

[1] Aghagolzadeh, S., and O.K. Ersoy, “Transform image enhancement”, Optical
Engineering, vol. 31, no. 3, pp. 614–626, March 1992.

[2] Andrews, D., and C. Mallows, “Scale mixtures of normal distributions”, Jour-
nal of the Royal Statistical Society, Series B, vol. 36, no. 1, pp. 99–102, 1974.

[3] Anscombe, F. J., “The transformation of Poisson, binomial and negative-
binomial data”, Biometrika, vol. 35, no. 3/4, pp. 246–254, Dec. 1948.
http://dx.doi.org/10.1093/biomet/35.3-4.246

[4] Anscombe, F. J., “Contribution to discussion on paper by H. Hotelling”, Jour-
nal of the Royal Statistical Society, Series B, vol. 15, pp. 229–230, 1953.

[5] Antoine, J. P., P. Vandergheynst, and R. Murenzi, “Two-dimensional direc-
tional wavelets in image processing”, International Journal of Imaging Sys-
tems and Technology, vol. 7, no. 3, pp. 152–165, 1996.

[6] Antoniadis, A., J. Bigot, and T. Sapatinas, “Wavelet estimators in nonpara-
metric regression: A comparative simulation study”, Journal of Statistical
Software, vol. 6, no. 6, pp. 1–83, 2001.

[7] Bar-Lev, S.K., and P. Enis, “On the classical choice of variance stabilizing
transformations and an application for a Poisson variate”, Biometrika, vol.
75, no. 4, pp. 803–804, 1988.

[8] Bar-Lev, S.K., and P. Enis, “Variance stabilizing and normalizing trans-
formations for the compound Poisson process”, Metrika, vol. 39, no. 1, pp.
165–175, 1992.

[9] Bartlett, M. S., “The Square Root Transformation in Analysis of Variance”,
Supplement to the Journal of the Royal Statistical Society, vol. 3, no. 1, pp.
68–78, 1936.

[10] Bayer, B. E., “Color imaging array”, United States Patent 3971065, July 1976.

[11] Beall, G., “The transformation of data from entomological field experiments
so that the analysis of variance becomes applicable”, Biometrika, vol. 32, pp.
243–262, 1942.

113



114 BIBLIOGRAPHY

[12] Besbeas, P., I. De Feis, and T. Sapatinas, “A Comparative Simulation Study
of Wavelet Shrinkage Estimators for Poisson Counts”, International Statis-
tical Review, vol. 72, no. 2, pp. 209–237, Aug. 2004.

[13] Bliss, C. I., “The transformation of percentages for use in the analysis of
variance”, Ohio Journal of Science, vol. 38, pp. 9–12, 1938.

[14] Blu, T., and F. Luisier, “The SURE-LET Approach to Image Denoising”,
IEEE Trans. Image Process., vol. 16, no. 11, pp. 2778–2786, Nov. 2007.

[15] Boulanger, J., J. B. Sibarita, C. Kervrann, and P. Bouthemy, “Non-
parametric regression for patch-based fluorescence microscopy image se-
quence denoising”, Proc. IEEE Int. Symp. on Biomedical Imaging (ISBI’08),
pp. 748–751, May 2008.

[16] Box, G.E. P., and D.R. Cox, “An Analysis of Transformations”, Journal of
the Royal Statistical Society, Series B, vol. 26, no. 2, pp. 211–252, 1964.

[17] Boyle, W. S., and G.E. Smith, “Charge coupled semiconductor devices”, Bell
Syst. Tech. J., vol. 49, no. 4, pp. 587–593, Apr. 1970.

[18] Breiman, L, and J.H. Friedman, “Estimating Optimal Transformations for
Multiple Regression and Correlation”, Journal of the American Statistical
Association, vol. 80, no. 391, pp. 580–598, 1985.

[19] Buades, A., B. Coll, and J.M. Morel, “A Review of Image Denoising Algo-
rithms, with a New One”, Multiscale Modeling and Simulation, vol. 4, no. 2,
pp. 490–530, July 2005.

[20] Buades, A., Y. Lou, J.M. Morel, and Z. Tang, “Multi image noise estimation
and denoising”, preprint, Aug. 2010.

[21] Candès, E. J., “Harmonic analysis of neural networks”, Applied and Compu-
tational Harmonic Analysis, vol. 6, no. 2, pp. 197–218, March 1999.

[22] Candès, E. J., and D. L. Donoho, “Curvelets: A Surprisingly Effective Non-
adaptive Representation for Objects with Edges”, Proc. 4th Int. Conf. on
Curves and Surfaces, vol. 2, pp. 105–120, Saint-Malo, France, July 1999.

[23] Chamberlain, S.G., “Photosensitivity and Scanning of Silicon Image Detec-
tor Arrays”, IEEE Journal of Solid-State Circuits, vol. 4, no. 6, pp. 333–342,
Dec. 1969.

[24] Chatterjee, P., and P. Milanfar, “Clustering-Based Denoising With Locally
Learned Dictionaries”, IEEE Trans. Image Process., vol. 18, no. 7, pp. 1438–
1451, July 2009.

[25] Chatterjee, P., and P. Milanfar, “Is Denoising Dead?”, IEEE Trans. Image
Process., vol. 19, no. 4, pp. 895–911, Apr. 2010.

[26] Chatterjee, P., and P. Milanfar, “Patch-Based Near-Optimal Image Denois-
ing”, IEEE Trans. Image Process., vol. 21, no. 4, pp. 1635–1649, Apr. 2012.



BIBLIOGRAPHY 115

[27] Clark, A., and W.H. Leonard, “The analysis of variance with special refer-
ence to data expressed as percentages”, Journal of the American Society of
Agronomy, vol. 31, pp. 55–56, 1939.

[28] Cleveland, W. S., “Robust Locally Weighted Regression and Smoothing Scat-
terplots”, Journal of the American Statistical Association, vol. 74, no. 368,
pp. 829–836, 1979.

[29] Cleveland, W. S., and S. J. Devlin, “Locally Weighted Regression: An Ap-
proach to Regression Analysis by Local Fitting”, Journal of the American
Statistical Association, vol. 83, no. 403, pp. 596–610, 1988.

[30] Cochran, W.G., “Some difficulties in the statistical analysis of replicated
experiments”, Empire Journal of Experimental Agriculture, vol. 6, pp. 157–
175, 1938.

[31] Cochran, W.G., “The analysis of variance when experimental errors follow
the Poisson or binomial laws”, The Annals of Mathematical Statistics, vol.
9, pp. 335–347, 1940.

[32] Crouse, M., R. Nowak, and G. Baraniuk, “Wavelet-based statistical signal
processing using hidden Markov models”, IEEE Trans. Signal Process., vol.
46, no. 4, pp. 886–902, Apr. 1998.

[33] Curtiss, J. H., “On transformations used in the analysis of variance”, The
Annals of Mathematical Statistics, vol. 14, no. 2, pp. 107–122, June 1943.

[34] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denois-
ing with Block-Matching and 3D Filtering”, Proc. SPIE Electronic Imag-
ing: Algorithms and Systems V, no. 6064A-30, San Jose, USA, Jan. 2006.
http://www.cs.tut.fi/~foi/3D-DFT

[35] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3D transform-domain collaborative filtering”, IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[36] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Color image denoising
via sparse 3D collaborative filtering with grouping constraint in luminance-
chrominance space”, Proc. IEEE Int. Conf. Image Process., San Antonio,
TX, USA, Sept. 2007.

[37] Dabov, K., A. Foi, and K. Egiazarian, “Video denoising by sparse 3D
transform-domain collaborative filtering”, Proc. 15th European Signal Pro-
cessing Conference, EUSIPCO 2007, Poznan, Poland, Sept. 2007.

[38] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Joint image sharpening
and denoising by 3D transform-domain collaborative filtering”, Proc. 2007
Int. TICSP Workshop Spectral Meth. Multirate Signal Process., SMMSP
2007, Moscow, Russia, Sept. 2007.



116 BIBLIOGRAPHY

[39] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “A nonlocal and shape-
adaptive transform domain collaborative filtering”, Proc. Int. Workshop on
Local and Non-Local Approx. in Image Process., LNLA 2008, Lausanne,
Switzerland, Aug. 2008.

[40] Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D Image De-
noising with Shape-Adaptive Principal Component Analysis”, Proc. Work-
shop on Signal Processing with Adaptive Sparse Structured Representations,
SPARS’09, Saint-Malo, France, Apr. 2009.

[41] Dabov, K., “Image and Video Restoration with Nonlocal Transform-Domain
Filtering”, Thesis for the degree of Doctor of Science in Technology, Tampere
University of Technology, Tampere, Finland, 2010.

[42] Danielyan, A., M. Vehviläinen, A. Foi, V. Katkovnik, and K. Egiazarian,
“Cross-color BM3D filtering of noisy raw data”, Proc. Int. Workshop on Local
and Non-Local Approx. in Image Process., LNLA 2009, Tuusula, Finland,
pp. 125–129, Aug. 2009.

[43] Danielyan, A., and A. Foi, “Noise variance estimation in nonlocal transform
domain”, Proc. Int. Workshop on Local and Non-Local Approx. in Image
Process., LNLA 2009, Tuusula, Finland, pp. 41–45, Aug. 2009.

[44] Danielyan, A., V. Katkovnik, and K. Egiazarian, “BM3D Frames and Vari-
ational Image Deblurring”, IEEE Trans. Image Process., vol. 21, no. 4, pp.
1715–1728, Apr. 2012.

[45] Daubechies, I., “Orthonormal bases of compactly supported wavelets”, Com-
munications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909–996,
Oct. 1988.

[46] De Bonet, J. S., “Noise Reduction Through Detection of Signal Redundancy”,
Rethinking Artificial Intelligence, MIT AI Lab, 1997.

[47] Delpretti, S., F. Luisier, S. Ramani, T. Blu, and M. Unser, “Multiframe
SURE-LET denoising of timelapse fluorescence microscopy images”, Proc.
IEEE Int. Symp. on Biomedical Imaging, ISBI 2008, Paris, France, pp. 149–
152, May 2008.

[48] Do, M.N., “The contourlet transform: an efficient directional multiresolution
image representation”, IEEE Trans. Image Process., vol. 14, no. 12, pp. 2091–
2106, Dec. 2005.

[49] Donoho, D. L., and J. Johnstone, “Ideal spatial adaptation via wavelet
shrinkage”, Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[50] Donoho, D. L., “Wedgelets: Nearly Minimax Estimation of Edges”, The An-
nals of Statistics, vol. 27, no. 3, pp. 859–897, June 1999.

[51] Dupé, F-X., J.M. Fadili, and J-L. Starck, “A Proximal Iteration for Decon-
volving Poisson Noisy Images Using Sparse Representations”, IEEE Trans.
Image Process., vol. 18, no. 2, pp. 310–321, Feb. 2009.



BIBLIOGRAPHY 117

[52] Efron, B., “Transformation theory: How normal is a family of distributions?”,
The Annals of Statistics, vol. 10, no. 2, pp. 323–339, 1982.

[53] Efros, A., and T. Leung, “Texture synthesis by non parametric sampling”,
Proc. IEEE International Conference on Computer Vision, vol. 2, Corfu,
Greece, pp. 1033–1038, 1999.

[54] Einstein, A., “Über einen die Erzeugung und Verwandlung des Lichtes betr-
effenden heuristischen Gesichtspunkt (On a Heuristic Viewpoint Concerning
the Production and Transformation of Light)”, Annalen der Physik, vol. 322,
no. 6, pp. 132–148, June 1905.

[55] Elad, M., and M. Aharon, “Image denoising via sparse and redundant rep-
resentations over learned dictionaries”, IEEE Trans. Image Process., vol. 15,
no. 12, pp. 3736–3745, Dec. 2006.

[56] Enz, C.C., and G.C. Temes, “Circuit Techniques for Reducing the Effects
of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and
Chopper Stabilization”, Proc. IEEE, vol. 84, no. 11, pp. 1584–1614, Nov.
1996.

[57] Fan, J., and I. Gijbels, “Data-Driven Bandwidth Selection in Local Polyno-
mial Fitting: Variable Bandwidth and Spatial Adaptation”, Journal of the
Royal Statistical Society, Series B, vol. 57, no. 2, pp. 371–394, 1995.

[58] Fan, J., and I. Gijbels, Local Polynomial Modelling and Its Applications:
Monographs on Statistics and Applied Probability 66, Chapman & Hall/CRC,
1996.

[59] Figueiredo, M.A.T., and R.D. Nowak, “Wavelet-Based Image Estimation:
An Empirical Bayes Approach Using Jeffrey’s Noninformative Prior”, IEEE
Trans. Image Process., vol. 10, no. 9, pp. 1322–1331, Sept. 2001.

[60] Fisher, R.A., “The Correlation between Relatives on the Supposition of
Mendelian Inheritance”, Transactions of the Royal Society of Edinburgh, vol.
52, pp. 399–433, 1918.

[61] Fisz, M., “The Limiting Distribution of a Function of Two Independent Ran-
dom Variables and its Statistical Application”, Colloquium Matmematicum,
vol. 3, pp. 138–146, 1955.

[62] Foi, A., K. Dabov, V. Katkovnik, and K. Egiazarian, “Shape-Adaptive DCT
for Denoising and Image Reconstruction”, Proc. SPIE Electronic Imaging:
Algorithms and Systems V, no. 6064A-18, San Jose, USA, Jan. 2006.

[63] Foi, A., V. Katkovnik, and K. Egiazarian, “Pointwise Shape-Adaptive DCT
for High-Quality Denoising and Deblocking of Grayscale and Color Images”,
IEEE Trans. Image Process., vol. 16, no. 5, pp. 1395–1411, May 2007.

[64] Foi, A., M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical
Poissonian-Gaussian noise modeling and fitting for single-image raw data”,
IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737–1754, Oct. 2008.
doi:10.1109/TIP.2008.2001399



118 BIBLIOGRAPHY

[65] Foi, A., “Direct optimization of nonparametric variance-stabilizing trans-
formations”, presented at 8èmes Rencontres de Statistiques Mathématiques,
CIRM, Luminy, Dec. 2008.

[66] Foi, A., “Optimization of variance-stabilizing transformations”, 2009,
preprint available at http://www.cs.tut.fi/~foi/.

[67] Foi, A., “Clipped noisy images: heteroskedastic modeling and practical
denoising”, Signal Processing, vol. 89, no. 12, pp. 2609–2629, Dec. 2009.
doi:10.1016/j.sigpro.2009.04.035

[68] Foi, A., “Noise Estimation and Removal in MR imaging: the Variance-
Stabilization Approach”, Proc. 2011 IEEE International Symposium on
Biomedical Imaging, ISBI 2011, pp. 1809–1814, Chicago, USA, Apr. 2011.

[69] Freeman, M., and J. Tukey, “Transformations related to the angular and
the square root”, The Annals of Mathematical Statistics, vol. 21, no. 4, pp.
607–611, 1950.

[70] Fryzlewicz, P., and G.P. Nason, “A Haar-Fisz Algorithm for Poisson Inten-
sity Estimation”, Journal of Computational and Graphical Statistics, vol. 13,
no. 3, pp. 621–638, 2004.

[71] Fryzlewicz, P., and V. Delouille, “A Data-Driven Haar-Fisz Transformfor
Multiscale Variance Stabilization”, IEEE/SP 13th Workshop on Statistical
Signal Processing, pp. 539–544, July 2005.

[72] Gravel, P., G. Beaudoin, and J.A. De Guise, “A Method for Modeling Noise
in Medical Images”, IEEE Trans. Medical Imaging, vol. 23, no. 10, pp. 1221–
1232, Oct. 2004.

[73] Haar, A., “Zur Theorie der orthogonalen Funktionensysteme, Erste Mit-
teilung”, Mathematische Annalen, vol. 69, no. 3, pp. 331–371, 1910.

[74] Healey, G.E., and R. Kondepudy, “Radiometric CCD Camera Calibration
and Noise Estimation”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 3, pp. 267–276, March 1994.

[75] Hertz, H., “Ueber einen Einfluss des ultravioletten Lichtes auf die electrische
Entladung”, Annalen der Physik, vol. 267, no. 8, pp. 983–1000, 1887.

[76] Howell, S. B., Handbook of CCD Astronomy, 2nd ed., Cambridge University
Press, Cambridge, 2006.

[77] Hyvärinen, A., J. Hurri, and P.O. Hoyer, Natural Image Statistics: A Prob-
abilistic Approach to Early Computational Vision, Springer-Verlag, London,
June 2009.

[78] Jezierska, A., C. Chaux, J-C. Pesquet, and H. Talbot, “An EM approach for
Poisson-Gaussian noise modeling”, 19th European Signal Processing Confer-
ence, EUSIPCO 2011, Barcelona, Spain, Sept. 2011.



BIBLIOGRAPHY 119

[79] Johnson, J. B., “Thermal Agitation of Electricity in Conductors”, Physical
Review, vol. 32, no. 1, pp. 97–109, July 1928.

[80] Jones, M.C., J. S. Marron, and S. J. Sheather, “Progress in data based band-
width selection for kernel density estimation”, Mimeo Series 2088, Depart-
ment of Statistics, University of North Carolina, Chapel Hill, 1992.

[81] Katkovnik, V., K. Egiazarian, and J. Astola, Local Approximation Tech-
niques in Signal Processing, SPIE Press, Washington, 2006.

[82] Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, “From local kernel to
nonlocal multiple-model image denoising”, Int. J. Computer Vision, vol. 86,
no. 1, pp. 1–32, Jan. 2010.

[83] Kendall, M., The advanced theory of statistics, Volume 1, 2nd ed., Charles
Griffin and co., 1945.

[84] Kervrann, C., and J. Boulanger, “Optimal Spatial Adaptation for Patch-
Based Image Denoising”, IEEE Trans. Image Process., vol. 15, no. 10, pp.
2866–2878, Oct. 2006.

[85] Kervrann, C., and J. Boulanger, “Local adaptivity to variable smoothness for
exemplar-based image denoising and representation”, International Journal
of Computer Vision, vol. 79, no. 1, pp. 45–69, Aug. 2008.

[86] Kingsbury, N., “Image processing with complex wavelets”, Philosophical
Transactions of the Royal Society, Series A, vol. 357, no. 1760, pp. 2543–
2560, Sept. 1999.

[87] Kingsbury, N., “Complex wavelets for shift invariant analysis and filtering of
signals”, Applied and Computational Harmonic Analysis, vol. 10, no. 3, pp.
234–253, May 2001.

[88] Koczyk, P., P. Wiewiór, and C. Radzewicz, “Photon counting statistics –
Undergraduate experiment”, American Journal of Physics, vol. 64, no. 3,
pp. 240–245, March 1996.

[89] Koerner, S., E. Lehmann, and P. Vontobel, “Design and optimization of a
CCD-neutron radiography detector”, Nuclear Instruments and Methods in
Physics Research, Section A, vol. 454, no. 1, pp. 158–164, Nov. 2000.

[90] Kolaczyk, E.D., “Bayesian multiscale models for Poisson processes”, Journal
of the American Statistical Association, vol. 94, no. 447, pp. 920–933, 1999.

[91] Kolaczyk, E.D., and D.D. Dixon, “Nonparametric estimation of intensity
maps using Haar wavelets and Poisson noise characteristics”, The Astro-
physical Journal, vol. 534, no. 1, pp. 490–505, 2000.

[92] Labate, D., W-Q. Lim, G. Kutyniok, and G. Weiss, “Sparse Multidimensional
Representation using Shearlets”, Proceedings of SPIE, Wavelets XI, vol. 5914,
pp. 254–262, 2005.



120 BIBLIOGRAPHY

[93] Lee, P.M., Bayesian Statistics: An Introduction, 4th edition, John Wiley &
Sons, 2012.

[94] Lefkimmiatis, S., P. Maragos, and G. Papandreou, “Bayesian inference on
multiscale models for Poisson intensity estimation: Applications to photon-
limited image denoising”, IEEE Trans. Image Process., vol. 18, no. 8, pp.
1724–1741, Aug. 2009.

[95] Lu, H., X. Li, I-T. Hsiao, and Z. Liang, “Analytical Noise Treatment for Low-
Dose CT Projection Data by Penalized Weighted Least-Square Smoothing in
the K-L Domain”, Proc. SPIE, Medical Imaging 2002, vol. 4682, pp. 146–152,
2002.

[96] Lu, H., Y. Kim, and J.M.M. Anderson, “Improved Poisson intensity es-
timation: Denoising application using Poisson data”, IEEE Trans. Image
Process., vol. 13, no. 8, pp. 1128–1135, Aug. 2004.

[97] Lu, N., Fractal Imaging, Academic Press, New York, 1997.

[98] Luisier, F., C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet de-
noising of Poisson-corrupted images”, Signal Processing, vol. 90, no. 2, pp.
415–427, Feb. 2010.

[99] Luisier, F., T. Blu, and M. Unser, “Image Denoising in Mixed Poisson-
Gaussian Noise”, IEEE Trans. Image Process., vol. 20, no. 3, pp. 696–708,
March 2011.

[100] Maggioni, M., G. Boracchi, A. Foi, and K. Egiazarian, “Video denoising using
separable 4D nonlocal spatiotemporal transforms”, Proc. SPIE Electronic
Imaging: Algorithms and Systems IX, no. 7870-2, San Francisco, USA, Jan.
2011.

[101] Maggioni, M., G. Boracchi, A. Foi, and K. Egiazarian, “Video Denoising, De-
blocking and Enhancement Through Separable 4-D Nonlocal Spatiotempo-
ral Transforms”, IEEE Trans. Image Process., vol. 21, no. 9, pp. 3952–3966,
Sept. 2012.

[102] Mairal, J., G. Sapiro, and M. Elad, “Learning multiscale sparse representa-
tions for image and video restoration”, Multiscale Modeling and Simulation,
vol. 7, no. 1, pp. 214–241, 2008.

[103] Mallat, S.G., “A theory for multiresolution signal decomposition: the
wavelet representation”, IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 11, no. 7, pp. 674–693, July 1989.

[104] Mallat, S.G., “Multiresolution approximations and wavelet orthonormal
bases of L2(R)”, Transactions of the American Mathematical Society, vol.
315, no. 1, pp. 69–87, Sept. 1989.

[105] Mandel, L., “Fluctuations of Photon Beams: The Distribution of the Photo-
Electrons ”, Proc. Phys. Soc., vol. 74, no. 3, pp. 233–243, 1959.



BIBLIOGRAPHY 121

[106] Milanfar, P., “A Tour of Modern Image Filtering: New Insights and Methods,
Both Practical and Theoretical”, IEEE Signal Processing Magazine, vol. 30,
no. 1, pp. 106–128, Jan. 2013.

[107] Murtagh, F., J-L. Starck, and A. Bijaoui, “Image restoration with noise sup-
pression using a multiresolution support”, Astronomy & Astrophysics Sup-
plement Series, vol. 112, pp. 179–189, July 1995.

[108] Mäkitalo, M., and A. Foi, “On the inversion of the Anscombe transformation
in low-count Poisson image denoising”, Proc. Int. Workshop on Local and
Non-Local Approx. in Image Process., LNLA 2009, Tuusula, Finland, pp.
26–32, Aug. 2009. http://dx.doi.org/10.1109/LNLA.2009.5278406

[109] Mäkitalo, M., A. Foi, D. Fevralev, and V. Lukin, “Denoising of single-look
SAR images based on variance stabilization and nonlocal filters”, Proc. Int.
Conf. Math. Meth. Electromagn. Th., MMET 2010, Kiev, Ukraine, Sept.
2010. http://dx.doi.org/10.1109/MMET.2010.5611418

[110] Mäkitalo, M., and A. Foi, “Optimal inversion of the Anscombe
transformation in low-count Poisson image denoising”, IEEE
Trans. Image Process., vol. 20, no. 1, pp. 99–109, Jan. 2011.
http://dx.doi.org/10.1109/TIP.2010.2056693

[111] Mäkitalo, M., and A. Foi, “Spatially adaptive alpha-rooting in BM3D sharp-
ening”, Proc. SPIE Electronic Imaging: Algorithms and Systems IX, no.
7870-39, San Francisco, USA, Jan. 2011.

[112] Mäkitalo, M., and A. Foi, “A closed-form approximation of the exact
unbiased inverse of the Anscombe variance-stabilizing transformation”,
IEEE Trans. Image Process., vol. 20, no. 9, pp. 2697–2698, Sept. 2011.
http://dx.doi.org/10.1109/TIP.2011.2121085

[113] Mäkitalo, M., and A. Foi, “Poisson-Gaussian denoising using the exact unbi-
ased inverse of the generalized Anscombe transformation”, Proc. 2012 IEEE
Int. Conf. Acoustics, Speech, Signal Process., ICASSP 2012, Kyoto, Japan,
pp. 1081–1084, March 2012.

[114] Mäkitalo, M., and A. Foi, “Optimal inversion of the general-
ized Anscombe transformation for Poisson-Gaussian noise”, IEEE
Trans. Image Process., vol. 22, no. 1, pp. 91–103, Jan. 2013.
http://dx.doi.org/10.1109/TIP.2012.2202675

[115] Nadaraya, È.A., “On estimating regression”, Theory of Probability & Its
Applications, vol. 9, no. 1, pp. 141–142, 1964.

[116] Neyman, J., and E. L. Scott, “Correction for Bias Introduced by a Transfor-
mation of Variables”, The Annals of Mathematical Statistics, vol. 31, no. 3,
pp. 643–655, 1960.

[117] Noble, P. J.W., “Self-Scanned Silicon Image Detector Arrays”, IEEE Trans.
Electron Devices, vol. 15, no. 4, pp. 202–209, Apr. 1968.



122 BIBLIOGRAPHY

[118] Nyquist, H., “Thermal Agitation of Electric Charge in Conductors”, Physical
Review, vol. 32, no. 1, pp. 110–113, July 1928.

[119] Olsen, S. I., “Noise Variance Estimation in Images”, 8th Scandinavian Con-
ference on Image Analysis, Tromsø, Norway, May 1993.

[120] Portilla, J., V. Strela, M. J. Wainwright, and E.P. Simoncelli, “Image denois-
ing using scale mixtures of Gaussians in the wavelet domain”, IEEE Trans.
Image Process., vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[121] Präkel, D., The Visual Dictionary of Photography, AVA Publishing SA, Lau-
sanne, 2010.

[122] Ramani, S., T. Blu, and M. Unser, “Monte-Carlo SURE: A Black-Box Op-
timization of Regularization Parameters for General Denoising Algorithms”,
IEEE Trans. Image Process., vol. 17, no. 9, pp. 1540–1554, Sept. 2008.

[123] Salmon, J., C-A. Deledalle, R. Willett, and Z. Harmany, “Poisson Noise
Reduction with Non-Local PCA”, Proc. 2012 IEEE Int. Conf. Acoustics,
Speech, Signal Process., ICASSP 2012, Kyoto, Japan, March 2012.

[124] Sheather, S. J., and M.C. Jones, “A Reliable Data-based Bandwidth Selec-
tion Method for Kernel Density Estimation”, Journal of the Royal Statistical
Society, Series B, vol. 53 no. 3, pp. 683–690, 1991.

[125] Spring, K.R., and M.W. Davidson, “Concepts in Digital Imag-
ing Technology: Quantum Efficiency”, available online at
http://learn.hamamatsu.com/articles/quantumefficiency.html. Retrieved:
18.9.2012

[126] Starck, J-L., F. Murtagh, and A. Bijaoui, Image Processing and Data Anal-
ysis, Cambridge University Press, Cambridge, 1998.

[127] Starck, J-L., E. J. Candès, and D. L. Donoho, “The Curvelet Transform for
Image Denoising”, IEEE Trans. Image Process., vol. 11, no. 6, pp. 670–684,
June 2002.

[128] Stein, C.M., “Estimation of the mean of a multivariate normal distribution”,
The Annals of Statistics, vol. 9, no. 6, pp. 1135–1151, Nov. 1981.

[129] Stoica, P., and P. Babu, “The Gaussian Data Assumption Leads to the
Largest Cramér-Rao Bound”, IEEE Signal Processing Magazine, vol. 28, no.
3, pp. 132–133, May 2011.

[130] Takeda, H., S. Farsiu, and P. Milanfar, “Kernel Regression for Image Pro-
cessing and Reconstruction”, IEEE Trans. Image Process., vol. 16, no. 2, pp.
349–366, Feb. 2007.

[131] Tibshirani, R., “Estimating Transformations for Regression Via Additivity
and Variance Stabilization”, Journal of the American Statistical Association,
vol. 83, no. 402, pp. 394–405, June 1988.



BIBLIOGRAPHY 123

[132] Tijms, H.C., Understanding Probability: Chance Rules in Everyday Life,
2nd ed, Cambridge University Press, Cambridge, July 2007.

[133] Timmerman, K., and R. Nowak, “Multiscale modeling and estimation of
Poisson processes with application to photon-limited imaging”, IEEE Trans.
Inf. Theory, vol. 45, no. 3, pp. 846–862, 1999.

[134] Tippett. L.H.C., “Statistical Methods in Textile Research, Part 2 — Uses
of the Binomial and Poisson Distributions in Analysis of Variance”, Journal
of the Textile Institute Transactions, vol. 26, no. 1, pp. T13–T50, 1935.

[135] Tong, H.H.Y., and A.N. Venetsanopoulos, “A perceptual model for JPEG
applications based on block classification, texture masking, and luminance
masking”, 1998 International Conference on Image Processing, ICIP’98, vol.
3, 1998.

[136] Vonesch, C., F. Aguet, J-L. Vonesch, and M. Unser, “The colored revolution
of bioimaging: An introduction to fluorescence microscopy”, IEEE Signal
Processing Magazine, vol. 23, no. 3, pp. 20–31, May 2006.

[137] Wang, Z., A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image Quality
Assessment: From Error Visibility to Structural Similarity”, IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[138] Watson, G. S., “Smooth regression analysis”, Sankhyā: The Indian Journal
of Statistics, Series A, vol. 26, no. 4, pp. 359–372, Dec. 1964.

[139] Weimer, P.K., W. S. Pike, G. Sadasiv, F.V. Shallcross, and L. Meray-
Horvath, “Multielement self-scanned mosaic sensors”, IEEE Spectrum, vol.
6, no. 3, pp. 52–65, March 1969.

[140] Weissman, M.B., “1/f noise and other slow, nonexponential kinetics in con-
densed matter”, Reviews of Modern Physics, vol. 60, no. 2, pp. 537–571,
1988.

[141] Willett, R.M., and R.D. Nowak, “Platelets: A Multiscale Approach for
Recovering Edges and Surfaces in Photon-Limited Medical Imaging”, IEEE
Trans. Med. Imag., vol. 22, no. 3, pp. 332–350, March 2003.

[142] Willett, R.M., “Multiscale Analysis of Photon-Limited Astronomical Im-
ages”, Statistical Challenges in Modern Astronomy (SCMA) IV, 2006.

[143] Williams, C.B., “The use of logarithms in the interpretation of certain enty-
mological problems”, Annals of Applied Biology, vol. 24, pp. 404–414, 1937.

[144] Zanella, G., and R. Zannoni, “Design of CCD-based X-ray area detectors
in terms of DQE”, Nuclear Instruments and Methods in Physics Research,
Section A, vol. 406, no. 1, pp. 93–102, March 1998.

[145] Zhang, B., J.M. Fadili, J-L. Starck, and J.C. Olivo-Marin, “Multiscale
variance-stabilizing transform for mixed-Poisson-Gaussian processes and its
applications in bioimaging”, Proc. IEEE Int. Conf. Image Process., ICIP
2007, pp. VI-234–VI-236, 2007.



124 BIBLIOGRAPHY

[146] Zhang B., J.M. Fadili, and J-L. Starck, “Wavelets, ridgelets, and curvelets
for Poisson noise removal”, IEEE Trans. Image Process., vol. 17, no. 7, pp.
1093–1108, July 2008.




