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Abstract 

Atherosclerosis is a systemic disease, affecting individuals of all ages. It is characterized by the 

deposition of foreign elements in the arterial intima-media layer, leading to a gradual narrowing 

of the vascular lumen, impeding the blood flow. One of the possible consequences of atheroscle-

rosis is transient ischemia or infarction of internal organs, including heart and brain. 

In the clinical practice, the diagnosis and evaluation of the progression of carotid atherosclerosis 

are usually performed by ultrasound imaging or computed tomography angiography. In both tech-

niques, a large dependence on hand-operated assessment is present. To evaluate the stage of 

stenosis, a clinician has to take two measurements manually - the average lumen diameter, and 

the narrowest lumen diameter, i.e., where the plaque is located. The manual assessment of the 

carotid diameters does not guarantee reproducibility and repeatability of the results. It is also far 

from optimal due to the large chance of human error. An alternative approach is necessary. 

The thesis focuses on the development of a tool capable of reducing or even eliminating human 

dependency and possible errors that can occur during the manual assessment. A fully automatic 

tool - VASIM (Vascular Imaging) was developed. It uses reliable, fast, and simple methods, such 

as morphological operators both in 2D and in 3D, to segment the lumen volume and areas for 

stenosis calculation but also for the examination of vascular walls, plaque, and vessel-surround-

ing tissues. The section analyzed by VASIM encompasses the carotid arteries, one of the most 

common locations of atherosclerotic plaques in the arterial system. VASIM presents to the user 

not only the routinely used metrics but also new parameters. They are based on different tissues’ 

volumes, areas and progression throughout the arterial tree. Furthermore, VASIM creates 3D 

models, which could be used for surgery planning, plaque morphology and composition evalua-

tion, and 2D linearization of all the components of the plaque. 

To validate VASIM, a clinical material of fifty-nine individuals, both healthy and suffering from 

atherosclerosis of the carotid arteries, was tested and analyzed. For cases with stenosis over 

50%, VASIM had a clinical accuracy of 71%. The software prototype results suggest that this 

approach has potential in areas such as analysis of the atherosclerosis of carotid arteries and it 

could be applied in a clinical environment.  





 

 

II 

 

Preface 

This thesis is a result of a research project conducted at the Faculty of Biomedical Sciences and 

Engineering at the Tampere University of Technology.  

I wish to express my gratitude to my thesis supervisor Professor Hannu Eskola for the guidance 

and motivational support during the course of the study. My wishes extend to my instructors, 

Professor Juha-Pekka Salenius (Division of Vascular Surgery, Department of Surgery, Tampere 

University Hospital and Medical School, Finland) for all the clinical insight and support throughout 

the years. I also want to thank my instructor and friend Doctor Michelangelo Paci (BioMediTech 

Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, 

Finland), who was always guiding me through my doctoral process and presented me with new 

challenges and topics that allowed me to develop. If there is someone patient, it is him. We both 

know how long it took me to improve my writing skills. 

I wish to thank Professor Vicente Grau (Institute of Biomedical Engineering, Department of Engi-

neering Science, University of Oxford, Oxford, United Kingdom) and Adjunct Professor Mika 

Kortesniemi (Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland) for their con-

structive criticism and advice as examiners of this thesis. Also, I am thankful to Assistant Profes-

sor Stefano Severi (Department of Electrical, Electronic, and Information Engineering "Guglielmo 

Marconi", University of Bologna, Bologna, Italy), member of my doctoral follow-up group, for his 

insights in the last stages of the dissertation. 

I would like to thank my co-authors Mitsugu Terada and Marcin Kolasa, with whom I had the 

pleasure of exchanging ideas and who have helped me with the articles presented in this thesis. 

A special thank you goes to Atte Joutsen, not only one of my co-authors but also the first person 

that I met after arriving in Finland, still during my internship. He helped me to integrate and start 

my journey here. This study could not have been possible without the help of Päivi Laarne. Thank 

you for all the help and guidance during data collection and all the imaging sessions. 

I am grateful for the financial support provided by the CIMO Foundation, the iBioMEP, and my 

supervisor Professor Hannu Eskola. I would also like to thank Professor Jari Hyttinen and Docent 

Soile Nymark for trusting me and allowing me to work in their groups while developing my skills. 



 

 

III 

 

I also wish to give a special thanks to my colleagues Tomas Cervinka, Antti Aula, Alper Cömert, 

Baran Aydogan, Markus Hannula, Nathaniel Narra, Jarno Taskanen, Emre Kapucu, Narayan 

Subramaniyam, Kerstin Lenk, Edite Figueiras, Jari Hyttinen, Soile Nymark, Teemu Ihalainen, 

Julia Johansson, Toni Montonen and to all the amazing people that I have met both in TUT, UTA, 

and BioMediTech. Thank you for all the good laughs, comments and support that you gave me. 

A special thanks for Soile Lönnqvist, someone that the department and the research group de-

fines as our mother, for being there for us, always willing to help, guide, and keep us in our toes 

for all the bureaucratic. It is impossible to forget the fantastic friends that I made during my time 

in Tampere. They have been my rock and some of the best advisers I ever got. A warm thank 

you for all the good times, help and experiences shared. 

Finally, I would like to thank my family. I owe them more than I can ever return. They have been 

my support throughout my life showing an unyielding interest and being always there for me. Last 

but not least, I would like to thank my partner for her love and support, enduring my rants and 

crazy ideas in these last months. You have made me evolve and grow so much, thank you for 

standing by my side now and in the years to come. 

 

Tampere 2018 

Florentino Santos



 

 

IV 

 

List of original publications 

This thesis is based on the following original publications, which are referred to in the text as I-IV. 

The publications are reproduced with kind permissions from the publishers. 

I. Santos, F., Joutsen, A., Terada, M., Salenius, J., Eskola, H., A Semi-Automatic Segmen-

tation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed 

Tomography Angiography, Journal of Atherosclerosis and Thrombosis, 2014, 21:930-940 

II. Santos, F., Joutsen, A., Salenius, J., Eskola, H., Fusion of Edge Enhancing Algorithms 

for Atherosclerotic Carotid Wall Contour Detection in Computed Tomography Angiography, 

Computing in Cardiology, 2014; 41: 925-928 

III. Santos, F., Joutsen, A., Paci, M., Salenius, J., Eskola, H., Automatic detection of carotid 

arteries in computed tomography angiography: a proof of concept protocol, International 

Journal of Cardiovascular Imaging, 2016, 32:1299-1310 

Unpublished manuscripts 

IV. Santos, F., Kolasa, M., Terada, M., Salenius, J., Eskola, H., Paci, M., VASIM: An Auto-

mated Tool for the Quantification of Carotid Atherosclerosis by Computed Tomography 

Angiography 

Author’s contributions 

I. The author was responsible for defining the study objectives and design, development of 

the image processing and segmentation algorithms, analysis of the data, and statistical 

analysis. Atte Joutsen was responsible for data collection. The author also wrote the man-

uscript and the co-authors reviewed, commented and improved the text. 

II. The author was responsible for defining the study objectives and design, development of 

the image processing and segmentation algorithms, analysis of the data, and statistical 



 

 

V 

 

analysis. Atte Joutsen was responsible for data collection. The author also wrote the man-

uscript and the co-authors reviewed, commented and improved the text. 

III. The author was responsible for defining the study objectives and design, development of 

the image processing and segmentation algorithms, analysis of the data, and statistical 

analysis. Atte Joutsen was responsible for data collection. The author also wrote the man-

uscript and the co-authors reviewed, commented and improved the text. 

IV. The author was responsible for defining the study objectives and design, data collection, 

development of the image processing and segmentation algorithms, analysis of the data, 

and statistical analysis. Marcin Kolasa was responsible for data collection from the patient 

files information. The author also wrote the manuscript and the co-authors reviewed, com-

mented and improved the text. 

 



 

 

VI 

 

Contents 

ABSTRACT ................................................................................................................... I 

PREFACE .................................................................................................................... II 

LIST OF ORIGINAL PUBLICATIONS .......................................................................... IV 

Unpublished manuscripts ........................................................................................ IV 

AUTHOR’S CONTRIBUTIONS .................................................................................... IV 

CONTENTS ................................................................................................................ VI 

LIST OF FIGURES ...................................................................................................... IX 

LIST OF SYMBOLS AND ABBREVIATIONS ................................................................ X 

 

1 INTRODUCTION ................................................................................................. 1 

2 LITERATURE REVIEW ...................................................................................... 3 

2.1 Carotid atherosclerosis ................................................................................ 3 

2.1.1 Carotid arteries ...................................................................................... 3 

2.1.2 Atherogenesis........................................................................................ 4 

2.2 Imaging and diagnostic of atherosclerosis in the carotid arteries ............ 5 

2.2.1 Ultrasound ............................................................................................. 6 

2.2.2 Computed Tomography ......................................................................... 6 

2.2.3 Magnetic Resonance Imaging ............................................................... 7 

2.2.4 Positron emission tomography ............................................................... 7 

2.2.5 Physiological tests ................................................................................. 7 



 

 

VII 

 

2.3 Segmentation techniques in atherosclerosis ............................................. 8 

2.3.1 Thresholding .......................................................................................... 8 

2.3.2 Pixel clustering ...................................................................................... 9 

2.3.3 Deformable models ............................................................................. 11 

2.3.4 Active shape models............................................................................ 12 

2.3.5 Synopsis of image processing bottlenecks in carotid segmentation ..... 12 

3 AIMS OF THE STUDY ...................................................................................... 13 

4 MATERIALS AND METHODS .......................................................................... 14 

4.1 Patient data ................................................................................................. 14 

4.2 Atherosclerotic carotid artery detection, segmentation, and evaluation 15 

4.2.1 Loading of the CTA data ...................................................................... 17 

4.2.2 Detection and segmentation of the carotid arteries [I, III, and IV] ......... 17 

4.2.3 Segmentation of the carotid wall [II] ..................................................... 19 

4.2.4 Detection and segmentation of the atherosclerotic plaque [IV] ............. 20 

4.2.5 User interface structure and operation [IV] ........................................... 21 

4.3 Statistical analysis ...................................................................................... 21 

5 RESULTS ......................................................................................................... 23 

5.1 Detection of the carotids [III]...................................................................... 23 

5.2 Segmentation of the arterial lumen [I and IV] ........................................... 24 

5.3 Arterial wall segmentation [II] .................................................................... 25 

5.4 Detection of atherosclerosis [IV] ............................................................... 26 



 

 

VIII 

 

5.5 VASIM interface [IV] .................................................................................... 26 

6 DISCUSSION .................................................................................................... 28 

6.1 Carotid detection and segmentation ......................................................... 29 

6.2 Segmentation of the carotid wall and atherosclerotic plaque ................. 31 

6.3 VASIM contribution to the clinical practice .............................................. 32 

6.3.1 3D models ........................................................................................... 33 

6.3.2 Area versus diameter ........................................................................... 33 

6.3.3 Carotid linearizations ........................................................................... 33 

6.4 Future work ................................................................................................. 34 

6.4.1 New metrics ......................................................................................... 34 

6.4.2 Blood flow modeling............................................................................. 34 

6.4.3 Machine learning ................................................................................. 35 

6.4.4 VASIM in other imaging modalities ...................................................... 35 

7 CONCLUSIONS ................................................................................................ 36 

REFERENCES ........................................................................................................... 37 

 





 

 

IX 

 

List of Figures 

Figure 1. Atherogenesis evolution, stages, and components (Adapted from (Naim et al. 2014)) 5 

Figure 2. The modules of VASIM software ............................................................................... 16 

Figure 3. Process diagram for detection of carotids .................................................................. 17 

Figure 4. Carotid wall segmentation diagram ............................................................................ 19 

Figure 5. Plaque detection and segmentation diagram ............................................................. 21 

Figure 6. The SeedsTool: interface for semi-automatic carotid detection and segmentation based 

on user input of seeds (Adapted from publication [III]) .............................................................. 24 

Figure 7. An example of vessel linearization (Adapted from publication [I]) .............................. 25 

Figure 8. An example of the segmentation of the outer vascular wall ....................................... 26 

Figure 9. VASIM before (a) and after (b) analysis of the patient’s data. Red boxes represent the 

different interface components. (Adapted from publication [IV]) ................................................ 27 

Figure 10. An example of Hessian-based Frangi vesselness filter applied to the three projections 

of the cylinder-cut VOI. ............................................................................................................. 31 

  



 

 

X 

 

List of Symbols and Abbreviations 

CT Computed tomography 

CTA Computed tomography angiography 

DECT Dual-energy CT 

HU Hounsfield units  

IMT Intima-media thickness  

LDL Low-density lipoprotein 

MRI Magnetic resonance imaging 

NASCET North American Symptomatic Carotid Endarterectomy Trial 

NCD Noncommunicable disease 

PET Positron emission tomography 

US Ultrasound 

VASIM Vascular Imaging 

VOI Volume of interest 

 



 

 

1 

 

Cardiovascular diseases are the most common non-communicable diseases (NCDs), and they 

are the leading cause of mortality in this group globally (37% of all NCDs related deaths) (World 

Health Organization 2010; Kim & Johnston 2013). Annually this corresponds to 17.5 million 

deaths, of which 7.4 million due to myocardial infarction, and 6.7 million due to ischemic stroke 

(Beevers 2005; Strong et al. 2007). 

Stroke is a medical condition that can be divided into ischemic stroke and hemorrhagic stroke. 

Ischemic stroke is a result of decreased blood supplies to the brain, leading to necrosis of nervous 

tissue (Virmani et al. 2005; Seevinck et al. 2010; Shuaib et al. 2011; Gupta et al. 2013; Winship 

et al. 2014; Price et al. 2018). This thesis focuses on atherosclerosis of the carotid arteries, which 

is the main cause of ischemic stroke. The blockage of the cerebral arterial vessel is caused by 

clots, that most often follow the rupture of the atherosclerotic plaque. The plaques are products 

of the inflammatory processes, initiated by the accumulation of low-density lipoproteins (LDL) in 

the inner layer of the arterial walls (Chambless et al. 1997; Achenbach 2002). The atheromatous 

plaque can be divided roughly into three components: lipid material, fibrotic tissue, and calcified 

tissue, in the order demonstrating the plaque structural evolution throughout time (Langer & 

Gawaz 2006; Weert et al. 2008). While calcified tissue provides stability, fibrotic tissue and lipids 

are critical factors of the plaque instability and susceptibility to becoming an embolic material 

(Shaalan et al. 2004; Nandalur et al. 2007; Medbury et al. 2013; Diab et al. 2017). 

The standard imaging methods for assessing the stage of atherosclerosis are ultrasound (US) 

and computed tomography (CT) angiography (CTA). CTA is an imaging technique that enhances 
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the contrast of the carotid lumen against the surrounding tissues (Naim et al. 2014; Huibers et al. 

2015). Using CTA, the radiologist can measure and calculate the degree of stenosis of a vessel 

(Feinstein 2006; Weert et al. 2008; Saba et al. 2012; Carnicelli et al. 2013; Akkus et al. 2015). 

The manual measurement is far from optimal as it is clinician-dependent, characterized by low 

reliability and repeatability, and is highly time-consuming (Silvennoinen et al. 2007; Marquering 

et al. 2012; Vukadinovic et al. 2012; Meiburger et al. 2016; Smits et al. 2016). There remains a 

need for an efficient automatic method that can segment, analyze and evaluate the degree of 

stenosis and stability of the plaque.   



 

 

3 

 

2.1 Carotid atherosclerosis 

2.1.1 Carotid arteries 

The common carotid arteries, located bilaterally along the neck, are the primary supplier of blood 

to the cranial, facial and cervical regions.  

They bifurcate into the internal and external carotid arteries, supplying the brain, and the neck 

and face, respectively (Dungan & Heiserman 1996; Schulz & Rothwell 2001; Phan et al. 2012; 

Prasad et al. 2015; Michalinos et al. 2016). The structure of the arterial wall is composed of three 

different layers: tunica intima, tunica media, and tunica adventitia. While tunica intima is com-

posed of endothelial cells, the tunica media is a smooth muscle structure, responsible for adapting 

the vessel to the blood pressure. The tunica adventitia is a rigid external layer composed of col-

lagen and fibroblasts (Feeley et al. 1991; Hayashi 2007; Tamakawa et al. 2007; Groen et al. 2010; 

Santos, F. et al. 2011). 

The measurement of the two innermost tunicae, which is called intima-media thickness (IMT), is 

considered one of the most critical metrics in the evaluation of atherosclerosis (Simons et al. 1999; 

Zureik et al. 2000; Lorenz et al. 2007; Mathiesen et al. 2011). The accumulation of debris in the 

arterial wall (explained in more detail in the section “Atherogenesis”) increases the IMT and de-

creases the caliber of the arterial lumen (Lusis 2000; Rohani et al. 2005; Virmani et al. 2005; 

Weert et al. 2008). An increase in this indicator is reflected in the limited blood supply of the 

2 Literature review
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supracervical regions (Enterline & Kapoor 2006; Han et al. 2007). Moreover, the gradual accu-

mulation of debris, increase of the IMT and continual degeneration of the intima layer might lead 

to rupture of the arterial wall, the release of thrombi into the bloodstream, and finally transient 

ischemic attack or ischemic stroke (Arbustini et al. 1999; Hashimoto et al. 1999; Fisher et al. 2005; 

van der Hagen, P B et al. 2006; De Vasconcellos et al. 2009). 

2.1.2 Atherogenesis 

Atherogenesis is a process of thickening and loss of elasticity of the arterial wall with formation of 

atherosclerotic plaque, evolving gradually (Ross & Agius 1992; Brown et al. 2016). The most 

common location of the atherosclerotic lesions are arterial bifurcations and branching points, 

characterized by high wall-shear stress. In the system of carotid arteries, atheromatous plaques 

are usually found in the carotid bifurcation (Zarins et al. 1983; Augst & Ariff 2007; Giannoglou et 

al. 2010; Cantón et al. 2012). The constant strain of the blood flow in this location causes micro-

ruptures of the intima layer, enabling the infiltration of LDLs to endothelium. The LDLs are con-

sidered to be the precursor of the atherosclerotic lesion (Chambless et al. 1997; Mora et al. 2007; 

Ridker et al. 2009; Mitra et al. 2011; Patel et al. 2015). Products synthesized during their oxidation 

stimulate cell-mediated immunity, i.e., the migration of macrophages to the region to engulf and 

digest LDLs. Unless they succeed, they start apoptosis, forming foam cells, the precursors of the 

lipidic core of the atherosclerotic plaque. The frail plaque, which is highly susceptible to become 

an embolic material, triggers the proliferation and migration of the adjacent smooth muscle cells 

to stabilize the core, forming the fibrous plaque. Subsequently, the fibrous cap of the plaque be-

comes calcified, due to continuous high wall shear stress. In mechanical terms, a calcified cap 

surrounding a lipidic/fibrotic core is more stable and less prone to rupture and consequently cause 

thrombosis, transient ischemic attacks, and strokes (Virmani et al. 2005; Nandalur et al. 2007; 

Saba et al. 2012; Trelles et al. 2013). With the development of the atherosclerotic plaque (lipid, 

fibrotic, and calcified) the IMT index increases and the arterial lumen is reduced (Stary et al. 1994; 

Lusis 2000; Groen et al. 2010). A summary of the atherogenesis is presented in Figure 1 (adapted 

from (Naim et al. 2014)). 
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Figure 1. Atherogenesis evolution, stages, and components (Adapted from (Naim et al. 2014)) 

2.2 Imaging and diagnostic of atherosclerosis in the carotid arteries 

Currently, the clinical evaluation of the atherosclerotic burden is based on two criteria: (i) degree 

of maximal luminal stenosis and (ii) atherosclerotic plaque composition (Carrascosa et al. 2006; 

Rozie et al. 2009; Cantón et al. 2012; Gils et al. 2012). The extent of carotid artery stenosis is the 

only widely accepted indicator describing and categorizing the urgency for pharmacological or 

surgical treatment, such as endarterectomy or stenting (Wiesmann et al. 2008; Liapis et al. 2009; 

Meier et al. 2010). The evaluation of the degree of stenosis is based on the North American 

Symptomatic Carotid Endarterectomy Trial criterion (NASCET). The stenosis percentage is com-

puted by Formula 1: 

 𝑆𝑡𝑒𝑛𝑜𝑠𝑖𝑠(%) =  ൬1 −  
𝑁

𝐷
൰  𝑥 100 (1) 

, where N represents the narrowest observable diameter in the residual lumen and D the diameter 

of the adjacent non-occluded lumen (Fox 1993; Ferguson et al. 1999; Santos, Florentino Luciano 

Caetano et al. 2016). Both diameters are currently manually measured (Silvennoinen et al. 2007; 
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Cheng, D. et al. 2011; Zhu et al. 2013). Furthermore, the analysis of the atherosclerotic plaque 

composition is also conducted with a manual, clinician-dependent segmentation of the tissues 

(Liu et al. 2006; Vukadinovic et al. 2012; Smits et al. 2016). 

2.2.1 Ultrasound 

Ultrasound (US) is a non-invasive diagnostic method, which enables the evaluation of the degree 

of stenosis, plaque formation, and evolution in the artery by assessing the IMT (Zureik et al. 2000; 

Molinari et al. 2012; Vaishali Naik et al. 2013). Moreover, it is optimal to evaluate the degree of 

stability of the plaque (Zureik et al. 2000; Carrascosa et al. 2006; Feinstein 2006; Akkus et al. 

2015). Its additional, invasive expansion, called the intravascular US, is used to assess both the 

volume and component properties of the plaque (de Groot et al. 2004; Augst & Ariff 2007; Tera-

moto et al. 2014). 

2.2.2 Computed Tomography 

Computed tomography (CT) is one of the most common imaging techniques used to measure 

and analyze stenosis of the arteries directly. It usually employs a multidetector row CT, providing 

a reliable and fast examination (approximately 30 s for the cervical region), characterized by a 

spatial resolution superior to other imaging methods (Ergün et al. 2011; Vukadinovic 2012; Hem-

mati et al. 2015). The contrast between the arterial wall and surrounding tissues is enhanced by 

the technique called computed tomography angiography (CTA), due to the intravascular admin-

istration of contrast agents (Ergün et al. 2011; Trelles et al. 2013; Eller et al. 2014). Additionally, 

CTA allows differentiating the different components of the atherosclerotic plaque such as lipidic, 

fibrotic and calcified (Groen et al. 2010; Vukadinovic 2012; Engelen et al. 2014; Diab et al. 2017). 

As the contrast agent does not perfuse calcified tissues, they are characterized by a high attenu-

ation, measured in Hounsfield units (HU) (Enterline & Kapoor 2006; Rozie et al. 2009; Teramoto 

et al. 2014). 

Dual-energy CT (DECT), a variation of CT, applies two energy signatures to provide better con-

trast between tissues of higher and lower attenuation. DECT can also be enhanced by contrast 

agents, allowing to lower patient radiation dose (Coursey et al. 2010). Several studies confirmed 

that DECT has a high success in plaque composition analysis (Biermann et al. 2012; Shinohara 

et al. 2015), it facilitates plaque removal from the image (Thomas et al. 2010; Mannelli et al. 2015), 
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and has a high sensitivity for detection of relevant stenosis (Thomas et al. 2010; Shinohara et al. 

2015). 

2.2.3 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is still an uncommon technique to diagnose atherosclerosis 

(Corti & Fuster 2011; van Hoof et al. 2017). Notwithstanding, it is one of the most promising ones 

as it excellently captures the contrast between soft tissues, enabling precise assessment of the 

plaque morphology and monitoring the evolution of the disease over time. Moreover, MRI does 

not expose the patient to radiation (Cai et al. 2005; Yuan et al. 2008). Its expansion - magnetic 

resonance angiography (MRA), allows to evaluate the intra-plaque hemorrhage and to assess 

the time of its onset (Yuan et al. 2008; Kwee et al. 2009; Teramoto et al. 2014). A relatively high 

imaging time remains a major limitation of this diagnostic technique (Thoeny et al. 2012). 

2.2.4 Positron emission tomography 

Positron emission tomography (PET) is one of the most promising upcoming imaging modalities 

applied in carotid atherosclerosis. Several studies confirmed that a relation exists between 18F-

FDG (fluorodeoxyglucose) uptake and the inflammatory status of an atherosclerotic lesion. These 

findings were subsequently validated by histopathology studies (Græbe et al 2010; Johnsrud et 

al. 2017). 

Several specific variants of PET for the analysis of atherosclerosis or cardiovascular assessment 

exist. These include two hybrid imaging modalities - PET-CT and PET-MRI. While PET-CT im-

proves the contrast between soft tissue intake of the fluorophore (PET) and the hard attenuation 

tissues (CT) (Kwee et al. 2009; Huibers et al. 2015), PET-MRI improves the soft tissues contrast 

only. By the increased soft tissues contrast, PET-MRI is capable of detecting and analyzing early 

stages of atherogenesis and intraplaque hemorrhage (Kwee et al. 2009; Rajiah et al. 2016). 

2.2.5 Physiological tests 

Physiological tests of the carotid arteries include flow-mediated vasodilation (Kobayashi et al. 

2004; Bartoli et al. 2007; Irace et al. 2013) or bruit auscultation, i.e., listening to the sound pro-

duced by the blood passing through a sudden narrowing of the artery (Teramoto et al. 2014). 
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2.3 Segmentation techniques in atherosclerosis 

2.3.1 Thresholding 

Thresholding is the oldest and simplest of the segmentation methods (Arifin & Asano 2006). Usu-

ally, the result of thresholding is a binarization of the image into subparts. Sezgin et al. (Sezgin & 

Sankur 2004) divide the thresholding techniques into six categories: (i) histogram shape-based 

methods, e.g., (Arifin & Asano 2006; Bali & Singh 2015); (ii) clustering-based methods, e.g., 

(Wang, Z. & Yang 2010; Ma et al. 2010); (iii) entropy-based methods, e.g., (Li et al. 1995; Zimmer 

et al. 1996; Horng 2010); (iv) object similarity attribute-based methods, e.g., (Ling & Hurlbert 2004; 

Uijlings et al. 2013); (v) spatial methods, e.g., (Wong & Sahoo 1989; Hoover et al. 2000); and (vi) 

local methods, e.g., (Leedham et al. 2003; Burghardt et al. 2007). 

They can be further divided into global and adaptive methods. The former one is used for seg-

menting the image or volume with the same threshold, and the latter one for adjusting the thresh-

old to the processed sub-region of the image (Zimmer et al. 1996; Van Aarle et al. 2011; Hafiane 

et al. 2015; Wang, J. et al. 2015). The adaptive methods are frequently applied to 3D volumes, 

as tissue characteristics tend to change gradually regarding location: e.g., in the proximal cervical 

region there are large volumes of pulmonary air and muscle tissue, while in the distal part of this 

region there is more ambient air and the muscular tissue is more lean and compact. 

Focusing on the segmentation of arteries, which are linear and tubular structures, the threshold 

methods present several assets. They are very fast, easy to implement, and computationally light. 

The limitations of these methods include the requirement of parametrization, histogram overlap 

for different objects, too harsh segmentation results (e.g., in partial-volume-effect pixels or whole 

regions might be misclassified because of the blurred edges), and the incorrect identification of 

segments in complex multi-tissue images (Pal & Pal 1993; Cheng, H. D. et al. 2001; Ma et al. 

2010; Bali & Singh 2015). 

Several thresholding methods have been applied to CTA images (Manniesing & Niessen 2005; 

Vukadinovic et al. 2012; Markiewicz et al. 2014). An example of automation of the threshold-

based segmentation of the carotid arteries was proposed by Sanderse et al. (Sanderse et al. 

2005). In this method, the Hough transform was applied after the detection of the shoulder blades 
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to detect circular objects in the proximal cervical region and expand thence distantly, with a de-

tection rate of 88%. Cheng et al. have used the detection and segmentation of the carotid lumen 

and their external boundaries to images obtained using MRI (Cheng, D. et al. 2011). The study 

was divided into two stages. The first discriminated the actual arteries based on intensity thresh-

old and area of the objects. The second was the segmentation of the outer vascular wall, which 

used the higher soft-tissue contrast provided by MRI. The developed protocol, using directional 

pixel gradients, circular Hough transform, and circle model guided dynamic programming, 

achieved an increase in segmentation accuracy of 2.56% compared with manual contour deline-

ation. 

2.3.2 Pixel clustering 

Clustering methods define clusters and segments based on the assumption that similar pixels are 

part of the same structure or tissue, forming regions of interest, both locally or in different regions 

of the image (Pal & Pal 1993; Abrantes & Marques 1996; Cheng, H. D. et al. 2001; Yogaman-

galam & Karthikeyan 2013). The similarity indexes are based on lighting, color, and texture. Sub-

sequent classification of such clusters into bigger ones is based on the characteristics of the 

tissues of interest, defined a priori (Pal & Pal 1993; Hafiane et al. 2008; Al-Kofahi et al. 2010; Naz 

et al. 2010; Hassan et al. 2014). These clustering methods require previous training to segment 

and classify tissues as part of the same cluster (Sanderse et al. 2005). After such training, a 

prototype of a segmentation mask starts to emerge. This procedure is connected with the deform-

able models, explained in detail in the next section. Clustering methods can be unsupervised, i.e., 

unprovided with a priori knowledge of the model of segmentation. However, over- or under-seg-

mentation of the image may occur in such unsupervised clusters. Increasing the size of the da-

taset is one of the ways to cope with this problem, as it is normalizing the discrepancies and 

variability of the scans. On the other hand, due to detecting patterns and tissues unrecognizable 

for the human-trained mask, unsupervised clustering can provide unbiased analysis of the images 

(Duncan, J.S. James S. J.S. & Ayache 2000; Pham et al. 2000; Gamarra et al. 2017). 

The implementation of the clustering methods in the medical field is increasing (Sanderse et al. 

2005; Withey et al. 2009; Naz et al. 2010; Ma et al. 2010; Ghose et al. 2013; Hassan et al. 2014). 

As all medical images can be considered as a recurrent pattern between patients (Cruz-Roa et 

al. 2011), new techniques based on pattern or texture recognition tend to emerge. The main focus 
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is on machine learning methods, where a classifier is trained, tested and validated in classifying 

textures and segmenting images to specific predetermined (supervised) or not (unsupervised) 

classes of pixels and regions (Duncan, J.S. James S. J.S. & Ayache 2000; Pham et al. 2000; 

Comin et al. 2014). An example of a classifier is neural networks. They are classification tech-

niques based on the biological functioning of neurons, with several inputs, passed to a decision 

matrix, classifying the signal as “go”/ “no-go”. A “go” signal is transmitted to the following neurons 

in the layer (Duncan, J.S. James S. J.S. & Ayache 2000; Wang, S. & Summers 2012; Sonka et 

al. 2015). The process is comprised of multiple decision layers. Each of the layers is composed 

of several neurons working in parallel. The final result of this process is a classification or seg-

mentation of the original texture into one of the classes. This region and pixel classification pro-

cess is used to segment images into its various components. Neural networks require training to 

integrate transformation matrixes and neuron path and to optimize the decision success rate and 

accuracy (Menchón-Lara & Sancho-Gómez 2015; Wang, Y. et al. 2017). 

Most studies dealing with clustering-based segmentation and classification of carotid arteries, 

were based on neural networks (Hassan et al. 2014; Loizou 2014; Menchón-Lara & Sancho-

Gómez 2015), fuzzy clustering (Adame et al. 2004; Hassan et al. 2014), Bayes clustering (Liu et 

al. 2006; Vukadinovic et al. 2010; Guan et al. 2012), and support vector machines (Guan et al. 

2012). Menchón-Lara et al. used neural networks to classify intravascular US images for detection 

of the carotid wall by IMT (Menchón-Lara & Sancho-Gómez 2015). Their methodology employed 

region-of-interest detection and image cropping, followed by intensity patterns extraction, feature 

mapping, and classification. Hassan et al. expanded this approach by focusing on plaque detec-

tion and segmentation using neural networks and fuzzy clustering (Hassan et al. 2014). 

Recently, deep-learning methodologies have been employed in the analysis and segmentation of 

medical images. To the knowledge of the author, no deep-learning methodology has ever been 

developed to assess, classify or segment CTA images of carotid arteries and possible athero-

sclerotic lesion. The most comparable approach is the methodology developed by Menchón-Lara 

et al., which applied extreme learning machine, based on single-layer feed-forward networks, to 

detect and segment the atherosclerotic lesion in carotid arteries. The developed method was 

applied in US images of early-stage lesions (Menchón-Lara et al. 2016). Another work done with 

US is by Lekadir et al., adopting convolutional neural networks for the automatic characterization 

of plaque composition (Lekadir et al. 2017). The research conducted by Avendi et al. focused in 
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the automatic segmentation of the left (Avendi, M. R. et al. 2016) and right (Avendi, Michael R. et 

al. 2017) ventricle in cardiac MRI. In both, the group used a three-step approach: (i) the ventricle 

is detected by a pre-trained convolutional network, (ii) the ventricle shape is inferred using stacked 

autoencoders, and (iii) the ventricle shape is used for initializing a deformable model for segmen-

tation. Other examples of deep-learning approaches in medical image segmentation include se-

mantic image segmentation based on deep convolutional nets (Badrinarayanan et al. 2017; 

Liang-Chieh Chen et al. 2018), U-net (Ronneberger et al. 2015), very deep residual networks 

(Simonyan & Zisserman 2015; Yu et al. 2017), or dropout convolutional neural networks (Jiang 

et al. 2017). 

2.3.3 Deformable models 

Deformable models are a growing field of research in the medical image and volume segmenta-

tion, as they present a higher degree of flexibility compared to the previous methods and they can 

process more complex datasets (Duncan, J.S. James S. J.S. & Ayache 2000; Pham et al. 2000). 

Their principle is the expansion and compression of a general model that changes its confor-

mation and size to fit the desired 2D/3D shape. These transforms are based on minimization of 

entropy, i.e., the minimization of the internal and external energy. Internal energy correlates with 

the elasticity and rigidity of the shape and the external energy with the image/ volume character-

istics (Sotiras et al. 2013; Nejati et al. 2016). Examples of deformable models applied to medical 

image segmentation are active contours (Hafiane et al. 2008; Stoitsis et al. 2008; Wang, X. & 

Zhang 2012; Cheng, Y. et al. 2015; Bonanno et al. 2017) and level-sets (Sethian 2006; Saba et 

al. 2012; Santos, André Miguel F. et al. 2013; Tang, Hui et al. 2013; Woźniak et al. 2017). One of 

the main disadvantages of deformable models is their inability of adapting to several regions sim-

ultaneously (Abrantes & Marques 1996). The usage of adaptive level-sets allows coping with this 

limitation by splitting and merging neighboring regions with similar properties during model evo-

lution (Cebral et al. 2018; Xian Fan et al. Jun 2008; Erdt et al. Nov 2010). 

Wang et al. applied deformable models for the segmentation of the carotid tree in the 3D US 

(Wang, X. & Zhang 2012). The preprocessing was done using a double threshold followed by a 

region growing algorithm (part of the thresholding methods). The final models were obtained by 

marching cubes followed by deformable models. 
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In 2010, Vukadinovic et al. proposed a methodology to segment semi-automatically the outer 

carotid wall from CTA images (Vukadinovic et al. 2010). The first step in the proposed methodol-

ogy was a semi-automated level-set segmentation, followed by GentleBoost classification for the 

automatic detection of the calcium regions of the plaque. In the next step, the GentleBoost was 

used again, to classify the tissues inside the wall and plaque. Finally, the fitting of a 2D ellipse-

shaped deformable model into the segmented wall and plaque area was performed.  

2.3.4 Active shape models 

Active shape models are similar to deformable models, sharing some operations also with clus-

tering methods. As deformable models, they require a pre-defined prototype of segmentation 

mask, which is expanded adapting to the image to be segmented (Cootes et al. 2001). The equi-

librium of the expanding and contracting forces of the mask is achieved by locating pre-deter-

mined landmarks in the image and correlating them to the correspondent feature in the mask 

(Cootes et al. 2001; Heimann & Meinzer 2009; Cerrolaza et al. 2015). An example of this method 

was presented by Stoitsis et al., who used Hough transform to initialize the active shape model 

for the segmentation of the carotid wall in B-mode US (Stoitsis et al. 2008). Additionally, active 

shape models have been used to segment the carotid arteries and their components in MRI (Tang, 

H. & Walsum 2012; Fasquel et al. 2015; van Engelen et al. 2015). 

2.3.5 Synopsis of image processing bottlenecks in carotid segmentation 

There are many bottlenecks in the methodology currently used to study carotid atherosclerosis. 

The crucial gap is clinician dependency for initial masks, points (referred in this thesis as seeds), 

and parameters. The next major problem is the need of datasets for training and testing of ma-

chine learning-based approaches. Finally, the overall time required to implement and run such 

methods in a clinical setting remains a significant limitation. 
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The final goal of this thesis was to develop automatic, clinician- and parameter-independent 

image processing and segmentation algorithms for the assessment of the burden of ather-

osclerosis of the carotid arteries. Also, these developed tools are integrated into a single 

software system, VASIM, possible to deploy in a clinical or research environment in the 

future. The following aims were given for the study to reach these goals: 

1) the development and implementation of an automatic detection system for carotid 

arteries in CTA; 

2) the development of an automatic segmentation protocol for carotid artery lumen; 

3) the development of automatic segmentation algorithms for the carotid artery outer 

wall; 

4) the integration of the developed methods into a software system suitable for clinical 

applications. 

3 Aims of the study
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The development of VASIM and the research completed within the scope of this thesis can 

be divided into four essential cornerstones required for a correct segmentation of the ca-

rotid tree and evaluation of the atherosclerosis burden. The cornerstones are: 

1. Detection of the carotid arteries in CTA stack [III]; 

2. 3D segmentation of the carotid tree and lumen [I]; 

3. 3D segmentation of the carotid wall and plaques [II]; 

4. Calculation and presentation of quantitative and qualitative results of the analysis 

of atherosclerosis (IV and (Santos, F. et al. 2011)) 

An updated and improved version of the algorithms developed in the previous studies was 

presented in publication [IV]. The approach shown in this publication was more complex 

and time-consuming but provided better results and a better correlation between manual 

and automatic assessment of stenosis. 

4.1 Patient data 

The research was based on CTA exams taken at the Tampere University Hospital (Tam-

pere, Finland). For all of the studies, the following inclusion criterion was defined a priori: 

the presence of the neck-and-head CTA in the hospital database. Both non-atherosclerotic 

4 Materials and Methods 
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related exams, and pre- and post-endarterectomy examinations were included in the stud-

ies’ datasets. 

All of the patients were examined using one of the two different helical, 64-slice, multide-

tector CT scanners either Philips® Brilliance CT (slice thickness 1 mm; increment 0.5 mm; 

pixel size 0.42–0.49 mm; 120 kVp; 178–243 mAs) or General Electric® LightSpeed (slice 

thickness 1.25 mm; increment 0.5–0.7 mm; pixel size 0.6–0.7 mm; 120 kVp; 130–327 mAs). 

One of the following contrast media was administered intravascularly: either Iomeron 

(350mg/ml), General Electric Omnipaque® (350 mg/ml), or Guerbet Xenetix® (350 mg/ml), 

according to the manufacturers' recommendations. The average imaging time was 30 sec-

onds. Each CTA slice was exported as a 512x512 matrix. 

In Studies [I] and [III], fourteen patients’ image sets were analyzed. In the publication [II], 

four image sets were used. Finally, in the publication [IV] image sets of fifty-nine individuals 

were included (thirty-eight diagnosed with atherosclerosis and twenty-one healthy). Their 

mean age was 64 years (range 37-83). More detailed data on the analyzed population were 

given in publication [IV]. 

All of the supra-aortic CTA slices were analyzed. Percentage of stenosis was calculated 

based on the NASCET criterion. Stenosis over 70% was considered clinically relevant. Pa-

tients with stenosis below 50% were classified as healthy. The research was approved by 

the Ethical Committee of the Pirkanmaa Hospital District (decision number R07210). 

4.2 Atherosclerotic carotid artery detection, segmentation, and 

evaluation 

As mentioned before, the algorithm applied by VASIM is divided into four steps: detection 

of the carotid artery, lumen segmentation, wall segmentation, and calculation of metrics 

and presentation of results. Figure 2 presents the overall VASIM process (explained further 

in the next subchapters). 
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Figure 2. The modules of VASIM software 
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VASIM was developed and tested using Matlab® (version R2017a, Image Processing 

Toolbox version 10.0, Signal Processing Toolbox version 7.4, and Statistical Analysis and 

Machine Learning Toolbox version 11.1). The processing was executed with a Lenovo 

W541, Windows 7 Enterprise, 64-bits, Intel® Core i7 2.80 GHz, and 32.0 GB RAM with an 

NVIDIA Quadro K2100M graphics card. 

4.2.1  Loading of the CTA data 

Loading of the patient DICOM files into a single stack is the first stage in the analysis exe-

cuted by VASIM. Different CTA machines use different rescale functions. VASIM divides 

the patient model into two datasets: one for the air volume (<-500 HU) and one for the 

tissues (>0 HU). Dividing the model allows to standardize the dataset and decrease the 

memory consumption of the analysis. 

4.2.2 Detection and segmentation of the carotid arteries [I, III, and IV] 

The method presented in this thesis allows locating the carotid arteries automatically. The 

diagram of this process is presented in Figure 3. 

 

Figure 3. Process diagram for detection of carotids 

Air model 

Based on the patient stack, two different models are created. The first one represents tis-

sues. The second one describes the total air volume inside and outside of the patient. The 

latter model is created by thresholding the volume below -500 HU. This low value restricts 
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the representation of tissues characterized by low attenuation values (e.g., lipid tissues) in 

the volume. 

Airway segmentation 

The upper airways play a crucial role in VASIM. They provide a 3D anatomical landmark 

that is easy to identify and segment in all patients. Airways are represented as a vertical 

hollow tube in the CTA scans, even in case of intubated patients. As the attenuation of the 

airways is lower than the attenuation of the adjacent tissues, they cannot be connected 

with the surrounding air. However, it is true only when the analysis of the scan is restrained 

to the slice most proximal to the nasal cavity. The final result of the modeling is a 3D object 

representing the patient’ airway. It is usually located in the center of the volume. The coor-

dinates of the center (for each slice) are stored for the next steps of the analysis. 

Segmentation of carotid arteries 

Publications [I] and [III] used a seed identification system that searched scans slice-by-slice 

for circular/ellipsoidal shapes, similarly to the Hough transform. However, the detection was 

relatively sensitive to noise and artifacts. Moreover, the speed and performance of the anal-

ysis were unsatisfying. For publication [III] a manual seeding tool (SeedsTool) was created, 

facilitating independent seeding of the initial and final points in several patients. These 

seeds were compared to the automatically determined seeds. 

In publication [IV] the methodology of identification of carotid arteries was updated. It both 

identifies the carotid arteries and segments them. All tubular structures are determined 

based on the airway center points. In the beginning, a cylindrical VOI within the radius of 5 

cm from the airways is created. It eliminates several structures and part of the vertebral 

column. Subsequently, using the Matlab® function isovalue, an automatic threshold is ap-

plied to segment the tissues based on their attenuation. The models of two carotid arteries 

are created in this process. In case of occlusion, VASIM checks for the possible distant 

objects that would fit better into a linear pathway upward of the vessel. 
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Afterward, all objects crossing the sagittal plane between carotid arteries are detected. The 

detection process is based on the airway centers again. Most common artifacts found dur-

ing this process are the mandible, and the hyoid bone, characterized by lower density and 

attenuation than other bones. Five steps comprise the process of cleaning these foreign 

objects: (i) skeletonization of the model(s), (ii) cleaning of skeleton nodes, (iii) calculation 

of vertical degree of each sub-model, (iv) deletion of non-vertical objects, and (v) recon-

struction of the arterial tree based on the original model and the previously extracted nodes. 

The vertical orientation of each object is defined as the ratio between the axes of the bound-

ing box containing the object. In VASIM, the acceptance threshold for the vertical degree 

is 1.5. After the cleaning process, the model is readjusted to the original one. The area of 

the lumen is analyzed perpendicularly to the arterial pathway. The final model presents two 

carotid arteries, independently from region growing and initialization parameters.  

Additionally, the presented method can cope with loops and twists in the arteries. The sep-

aration of the common, internal, and external carotid arteries and the carotid bifurcation is 

executed side-wisely. It is based on locating the slice where the number of the objects 

increases from one to two, and the distance between centroids is <1 cm. 

4.2.3 Segmentation of the carotid wall [II] 

 

Figure 4. Carotid wall segmentation diagram 



 

 

20 

 

In the course of atherosclerosis progression, the IMT increases due to the accumulation of 

lipid, fibrotic, and calcified compounds in the vascular wall. The analysis of the morphology 

and distribution of the plaque components allows determining the stability of the athero-

sclerotic plaque (Nandalur et al. 2007). VASIM enables the segmentation of the vascular 

wall from the lumen and adjacent tissues, using the method (Figure 4) presented in detail 

in publication [II]. The algorithm is based on detection of the edge. It is capable of perform-

ing slice-wise segmentation in less than 0.05 seconds. The protocol has five steps: (i) hard 

thresholding of the intensities over 500 HU (all pixels over this value are assigned to 20 HU 

to prevent deletion of atherosclerotic calcified tissues), (ii) binarization of the image, (iii) 

enhancement of the carotid edge, based on five edge detectors (Sobel, Prewitt, Roberts, 

Laplacian of Gaussian, and Canny), and five filters/mapping functions (Laplacian filter, gra-

dient map, Otsu threshold, local range map, and standard deviation map), (iv) filtering of 

objects, and (v) identification of the object closest to the luminal center in the final outer-

inner wall map. The enhancement of the carotid edge was developed in publication [II]. 

Several edge detectors and filters/mapping functions were tested for the correlation with 

manually segmented outer vascular wall masks both individually and as ensembles. The 

highest achieving ensemble was used for outer carotid edge detection. The inner wall con-

tours are based on the luminal outline obtained from the previous slice masks. 

4.2.4 Detection and segmentation of the atherosclerotic plaque [IV] 

Identification and segmentation of the healthy and the atherosclerotic vascular walls are 

the next step of the analysis (Figure 5). They can be conducted using calcified tissues as 

a marker. Attenuation of such tissues is higher than the attenuation of the non-calcified part 

of the plaque and vascular wall components. They are easy to segment with an automatic 

threshold (Otsu in VASIM) calculated in the three projections after a 3D maximum intensity 

projection in the sagittal, coronal and transverse plane. Unless a plaque is present, the 

histogram of the whole volume does not present a higher peak in its last bin (representing 

the >500 HU tissues), and the volume is not thresholded. In case of plaques, these 

thresholded projections are reassembled to three dimensions and create a 3D model of the 

plaque. 
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Figure 5. Plaque detection and segmentation diagram 

4.2.5 User interface structure and operation [IV] 

VASIM is a tool created for analysis of atherosclerosis and follow-up of its course in re-

search and clinical practice. Hence, it requires an easy to use and intuitive interface. For 

purposes of research, using the source code is feasible. However, for clinical practice, the 

system should be packaged in a self-contained bundle. The analysis should be straightfor-

ward, and results should be obtained without proficiency in programming or parameteriza-

tion. In publication [IV], a user-friendly interface was presented. After loading the patient 

data, one click is enough to start the analysis. 

4.3 Statistical analysis 

While the NASCET criterion for the evaluation of stenosis relies on the manual measure-

ment of the lumen diameters, VASIM enables assessment of the degree of stenosis based 

on areas. For that reason, in publication [IV], diameters were additionally calculated to com-

pare automatic and manual methods.  

After analysis with VASIM, a clinician obtains several metrics based on the area or total 

volume. This is true for both lumens, carotid wall, and atherosclerotic plaque. Currently, no 

tool segmenting the carotid tree or extracting such metrics is available. The obtained met-

rics can correlate, e.g., the volume of the lumen and wall, or the percentage of the wall 
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occupied by atherosclerosis. The limits of the degree of clinically-relevant stenosis can be 

set for the clinical practice. Additionally, quantitative analysis is useful in follow-up, i.e., 

monitoring of the evolution of atherosclerosis. 

Analysis of the components/tissues distribution is possible based on the segmentation of 

the plaque as a single element (i.e., separation from the vascular wall). The distribution of 

these components determines the stability of the plaque (as mentioned in the Introduction). 

If it is possible to distinguish its calcified cap, the plaque is classified as stable, and urgent 

endarterectomy is not required.  
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5.1 Detection of the carotids [III] 

The carotid detection method, which we presented in publication [III], had a detection rate 

of 75% and 71% for the assessment of morphological 2D features, and automatic lower 

and upper seed positioning, respectively. The mean coefficient of variation between the 

four sets of seeds manually determined by the user and the automatic method was 2% 

(0%-5% range). 

Additionally, for publication [III], SeedsTool was developed (Figure 6). It is an interface that 

allows the user to load an image and hand-seed the proximal and distant carotid slice. It 

was used to pinpoint the aforementioned manual seeds. 

5 Results
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Figure 6. The SeedsTool: interface for semi-automatic carotid detection and segmentation 

based on user input of seeds (Adapted from publication [III]) 

5.2 Segmentation of the arterial lumen [I and IV] 

A preliminary solution to the segmentation of the lumen was presented in publication [I], 

where manual and automatic segmentation of the lumen were compared in the population 

of eight patients. The difference between the manual and automatic measurement of the 

luminal cross-section area was 6% (P = 0.31). Additionally, following the segmentation of 

the arteries (both healthy and atherosclerotic), the linearization of the vessels and the ad-

jacent tissues was performed (Figure 7). The segmentation of the lumen has been im-

proved in publication [IV]. 
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Figure 7. An example of vessel linearization (Adapted from publication [I]) 

5.3 Arterial wall segmentation [II] 

In publication [II], the algorithm for segmentation of the outer vascular wall (example in 

Figure 8) was presented. The highest correlation between manual and automatic segmen-

tation of the outline was achieved by using a set of edge-enhancing and mapping methods: 

local range maps, gradient mapping, and standard deviation mapping followed by edge 

enhancement and threshold. The correlation between the automatic and manual method 

was 58%. 
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Figure 8. An example of the segmentation of the outer vascular wall  

(Adapted from publication [II]) 

5.4 Detection of atherosclerosis [IV] 

Image sets of 59 individuals were analyzed for the burden of atherosclerosis by VASIM, in 

publication [IV]. The carotid artery was correctly detected and segmented in 83% of the 

patients. For the stenosis higher than 50%, the specificity and the sensitivity of the detecting 

and classifying algorithm were 25% and 83%, respectively. The overall accuracy of the 

algorithm was 71%. The average absolute difference between the automatic and manual 

method was 33% (95% confidence interval 29% - 46%). The average time of the analysis 

of the data with VASIM software was 23 minutes per patient (1.62 seconds per slice). 

5.5 VASIM interface [IV] 

VASIM interface is comprised of a message board and six blocks (Figure 9). The message 

board shows information on what stage of the analysis VASIM is. Block A enables loading 

and modeling of the patient’s dataset. The modeling function presents a 3D rendering of 

the current patient's dataset, thresholded by the user-determined level and window. In 

Block B personal data of the patient (name and social security number) and the character-

istics of the imaging session (scanner, imaging and image parameters) are presented. 

Block C specifies the level of stenosis of the detected arteries. Block D arranges all the 

image results and their 2D representations (patient dataset and carotid linearizations). After 
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the analysis, the 2D patient slices and linearizations can be overlapped with the compo-

nents’ (lumen, wall, and plaque) masks. Additionally, the linearization sub-windows show 

the location of the maximum stenosis and carotid bifurcation as horizontal lines (purple and 

blue, respectively). The 3D renderings can be rotated to inspect specific locations in more 

detail. Block E gives the user control of the window and level of the 2D slices for the 

histogram and quantification. Block F allows for the selection of masks to overlap the 2D 

slices, both in the patient dataset, linearizations, and in the 3D renderings. Moreover, it 

contains the selection of the color map. 

 

Figure 9. VASIM before (a) and after (b) analysis of the patient’s data. Red boxes represent 
the different interface components. (Adapted from publication [IV]) 
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The outcome of this study - VASIM, provides a number of image processing and analysis 

tools for the evaluation of the presence and burden of carotid atherosclerosis, based on 

CTA images. The aim of this research was to develop a tool based on a simple and reliable 

set of algorithms, that can detect, segment, and analyze the carotid arteries, regarding both 

lumen, vascular wall, and possible atherosclerotic plaque.  

In general, because of the limited CTA image quality and resolution, the analysis of the 

substructures of carotid arteries, such as lumen and plaque remains a challenging task 

(see Fig. 10A). Nevertheless, VASIM tool success rate of detection and segmentation of 

carotid arteries was 83%. The overall accuracy of the tool was 71% when compared to the 

manual analysis. The main strength of VASIM is its ability to segment and separate the 

different compartments of the carotid vessel. Although the average processing time was 23 

minutes per patient, VASIM could be used as an automatic tool in everyday radiological 

practice. As usually the radiological analysis of images is not performed in real-time, VASIM 

can be run in advance.  

The major weakness of the method was its low specificity - 25%. This represents a four-

fold increase of false positives in the detection of stenosis levels over 50%. The usability of 

VASIM in a clinical setup is still limited, and the detection and segmentation methods need 

to be improved. Nonetheless, in a clinical setup, it is more advantageous to have a higher 

6 Discussion 
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level of false positives than false negatives. VASIM is not intended to replace expert eval-

uation but to provide a preliminary patient analysis. A clinician will always make the final 

decision on patient care. 

The aforementioned results are encouraging and provide the framework for future studies 

on automatic detection and analysis of carotid arteries. 

The methods presented in the introduction and in this thesis adopt several different imaging 

modalities (e.g., MRI and US), datasets (e.g., coronary, aorta, cerebral), and present the 

results with different metrics (e.g., Dice similarity, p-values, mean absolute surface distance, 

mask overlap percentage, performance). Therefore, it was not feasible to compare the re-

sults and metrics obtained by VASIM with the existing literature and methodologies pub-

lished previously. 

VASIM consists of algorithms for image enhancement, morphological operators, and seg-

mentation in 3D volume image processing. Their application is a serial process, consisting 

of detection and segmentation of a plaque and carotid wall and lumen. Finally, the quanti-

tative and qualitative results are output. 

6.1 Carotid detection and segmentation 

The first step of detection of carotid arteries by VASIM is creating a 3D landmark. The 

structure we have chosen is the upper respiratory tract, as relatively few anatomical vari-

ants are observed in its construction. In case of assisted breathing patients, even though 

the intubation tube changed the shape of the cylinder, the algorithm worked properly. A 

potential source of errors in this method may be the algorithm reading the air surrounding 

the patient as a further part of its airway, i.e., spreading detection of volume to the nasal 

cavity, and spilling through the nostrils. Limiting the airway volume detection to the ceiling 

of the mouth is a way of prevention of these errors. 

Detection of carotid arteries by VASIM is dependent on a previous overall segmentation. 

Using the airway as an anatomical landmark gives the general direction for the cropping 

cylinder. It excludes most of the surrounding tissues and limits the VOI attenuation values 

to more constrained and vessel-representative scale. Even though a partial exclusion of 
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carotid tree branches or loops falling outside of the cylinder borders is a potential source of 

error, we did not observe it in our dataset. Such error would critically bias the vessel seg-

mentation. Therefore, a segmentation independent from the directionality of the vessel, like 

the one implemented in VASIM, is crucial.  

VASIM bilaterally checks for interconnectivity after thresholding. The first step of this pro-

cess is to determine whether the carotid arteries are connected to other single objects like 

the hyoid bone or the mandibular artery. This step is crucial, as in the process of carotid 

artery detection many structures must be analyzed by VASIM. For example, if either of the 

carotid arteries is fully occluded, two candidate structures will appear on the respective side 

- a proximal and distant section of the common carotid artery, and internal carotid artery. 

Other examples are a fully occluded artery without the distant part and an excised artery. 

In case of a fully occluded carotid artery, VASIM creates an assumption of the vascular 

pathway, based on the linear approximations, connecting the proximal and distant section 

of the vessel. A possible source of error is connecting the common carotid artery to the 

external carotid artery, in case of insufficient or poor thresholding of the tissues. Finally, 

VASIM can also analyze healthy arteries. 

One of the methods studied for the automatic detection and segmentation of the carotid 

tree is the vesselness, developed by Frangi et al. (Frangi et al. 1998). It is based on all 

eigenvalues of the image’s Hessian. The method was discarded during the development 

of VASIM since it is highly sensitive to tissues characterized by high attenuation (Figure 

10). 
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Figure 10. An example of Hessian-based Frangi vesselness filter applied to the three projec-

tions of the cylinder-cut VOI.1 

6.2 Segmentation of the carotid wall and atherosclerotic plaque 

In 2012, Saba et al. presented a method of semi-automatic segmentation of the carotid wall 

and atherosclerotic plaque (Saba et al. 2012). The method is comprised of two stages. The 

first step is manual inner and outer boundary delimitation. It is followed by an automatic 

tracking of these structures using level-sets. According to the authors, the correlation be-

tween manual and semi-automatic method was high (0.84). The manual initialization and 

duration of the shaping with the level-sets remain significant limitations of the method. 

                                                

1 Original implementation parameters: range: [1, 10], Scale ratio: 2, beta one: 0.5, beta two: 15. 
A-D Transverse MIP, B-E Sagittal MIP, C-F Coronal MIP. The spine and overall bone-
based tissues lower contrast and detection of the carotid tree (with calcified plaque in-
cluded). 
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In our Studies [I] and [III], we applied an adaptive region-growing algorithm, to segment and 

evolve the carotid tree after seeding. The method was quite sensitive to spillage of the tree 

(branching to neighboring structures). 

Several studies, using both semi-automatic and automatic protocols, applied the same re-

gion growing methodology (e.g., (Yi & Ra 2003; Weert et al. 2008; Bozkurt et al. 2018)). It 

is frequently used in MRI, where arteries present a homogenous contrast. Such homoge-

nous vessels are easier to segment. In the future, when MRI will be used in the evaluation 

of atherosclerosis more often, and CT technology will evolve in a contrast-free pathway, 

we might see a breakthrough in the examination of the carotid tree. 

6.3 VASIM contribution to the clinical practice 

The goal of the study was the development of VASIM - a tool for clinical usage and research, 

automatically evaluating carotid atherosclerosis. 

Currently, few commercial software tools, approaching the aims of VASIM, are available 

on the market. An example is Autobone and VesselIQ Xpress (GE Healthcare®). It is a tool 

used for CTA analysis regarding vascular anatomy and pathology, specifically for coronary 

arteries. It provides a visualization and analysis tool, providing tissue distinction, vessel 

tortuosity, quantification of abnormal anatomical structures, and automatic segmentation of 

bones (Autobone and VesselIQ Xpress). The other solutions used for heart image analysis 

are suiteHeart® (suiteHEART), 3mensioWorkstation™ (3mensio Workstation), and Medis 

Suite CT (Medis Suite CT). For imaging of abdominal and thoracic vessels Vessel (Vessel) 

and 3mensio Vascular™ (3mensio Workstation) are used. All of the software mentioned 

above relies on manual operations and/or parameterization. Their common advantage is 

the visualization and optimization methodology that is somehow superior to VASIM. How-

ever, these features were not the primary aims of VASIM. 

Both VASIM and the other tools (apart from the Autobone and VesselIQ Xpress), require 

installing additional third parties software. In the case of VASIM, it is necessary to install 

the Matlab® Compiler Runtime (MCR). Informatics safety, certification, and requirement of 

expert installer remain limitations of this approach. 
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VASIM can contribute to three specific subjects: 3D models, shift from diameter measure-

ments to area-based, and vessel linearizations. It also provides a framework for the pre-

surgical planning and future treatment. 

6.3.1 3D models 

The 3D models of the carotid tree created with VASIM, facilitate planning of the surgery, 

providing a clear and intuitive presentation of objects encountered during the procedure. 

Also, these models make a choice between removing the plaque or stenting easier. More-

over, the models of the structures such as carotid arteries and airways could be printed in 

3D in the future. A 3D-printed, palpable physical object would be an extremely useful tool 

for the clinicians. The 3D physical models can also be used for medical training, e.g., as 

phantoms, or blood flow and behavior models of different atherosclerotic stages. 

6.3.2 Area versus diameter 

VASIM provides not only the full-automation of the carotid arteries’ evaluation process but 

also measures areas (of lumen, wall, and plaque) instead of diameters. To the knowledge 

of the author, it is the first tool of its kind. Currently, the stenosis is evaluated manually 

based on diameters. As the hand segmentation of the arteries is highly time-consuming, 

measurements of areas are not conducted. VASIM overcomes this limitation by segmenting 

the total lumen area perpendicularly to the vascular pathway. By avoiding false sectioning 

of oval structures, it enables correct adaptability to the vessel, increasing the precision of 

the evaluation of the stage of atherosclerosis. 

6.3.3 Carotid linearizations 

VASIM presents linearizations of the carotid vessel (Erro! A origem da referência não foi 

encontrada.B). It linearizes (or flattens) the complete carotid tree into a single 2D image, 

based on the skeleton of the lumen path. This presentation helps to distinguish different 

structures, such as arterial lumen and wall, and structures of the plaque. 
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6.4 Future work 

To the knowledge of the author, VASIM is the first fully automated tool for detecting and 

evaluating carotid arteries. The methodology of VASIM is promising and should be 

improved in the future. The work should focus on improvements in the luminal and wall 

segmentation, and implementation of the 3D detection algorithms. These two approaches 

would lead to an increase of the sensitivity and relatively low specificity presented currently 

by VASIM. Additionally, the duration of the analysis should be reduced. This could be 

achieved either by implementing different methods and algorithms or by using more com-

putational power (e.g., parallelization or computer clusters). 

6.4.1 New metrics 

It is generally accepted that atherosclerotic plaque composition and component distribution 

depict the stage of the plaque and its stability (Nandalur et al. 2007). VASIM enables ex-

traction of healthy and atherosclerotic areas and volumes, both for the lumen and wall com-

ponents. Extracting areas from each slice perpendicularly to the vascular wall allows cre-

ating new metrics, e.g., the ratio between the lumen and vascular wall, and the ratios be-

tween wall and plaque. Future work should focus on the development of such metrics, that 

would be correlating with the vessel stenosis more accurately than the ones used nowa-

days. 

6.4.2 Blood flow modeling 

The blood flow in healthy and diseased patients can be modeled based on the carotid tree 

presented in 3D rendering. It shows the wall shear stress, stability of the plaque, and its 

risk of becoming an embolic material. Moreover, based on the modeling, the urgency for 

endarterectomy and evolution of the disease can be assessed. 

According to Cerbal et al. (Cebral, Yim, Löhner, Soto, & Choyke, 2002) evaluation of the 

blood flow patterns using MRI techniques can be conducted, after segmenting the carotid 

tree. It serves as a supplement to the imaging studies and predictor of the treatments' effi-

cacy. 
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6.4.3 Machine learning 

Much research in recent years has focused on the development of image processing tech-

niques. A multidisciplinary approach is crucial for algorithm development. The fusion of 

traditional image processing and advanced computer science is closer than ever before. 

Machine learning techniques have already been applied in the analysis of medical US im-

ages of carotid arteries (Santos, André Miguel F. et al. 2013; Menchón-Lara et al. 2014; 

Menchón-Lara & Sancho-Gómez 2015). Machine learning and deep learning methodolo-

gies could also be utilized in VASIM. It would increase VASIM's stability and adaptability. 

The program would learn from the images already analyzed. With the increase in the num-

ber of cases examined, it would improve the segmentation and detection of the carotid 

arteries.  

Machine learning could also be applied to integrate an adaptive segmentation of the vas-

cular wall and plaque, and to classify the structures/materials inside the wall. This would 

attenuate independent segmentation of the fibrotic, lipid, and calcified structures in CT-

based imaging, to study plaque stability and risk of its rupture. Finally, machine learning 

could be used in personalized medicine, crossing results obtained with VASIM with the 

patient's laboratory exams. It would provide a multidisciplinary and multivariable analysis 

of the stage of the disease and risk of its progression. Van Engelen et al. (Van Engelen et 

al., 2015) reported an average of the inter-center accuracy of 90% for MRI imaging analysis, 

using same-center training, voxel-wise tissue classification, a non-linear feature normaliza-

tion, and two transfer-learning algorithms. 

6.4.4 VASIM in other imaging modalities 

In principle, VASIM can be applied in the analysis of the carotid trees in both CTA, CT, and 

MRI. However, the methodology included in its algorithm requires a normalization between 

scanners by the rescaling factor. Standardization allows VASIM to adapt standard CTA 

attenuation range to the ones present in CT or MRI pixel range. 
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The outcomes for each goal can be expressed as follows: 

1) an automatic detection system for carotid arteries in CTA has been developed, 

2) an automatic segmentation protocol for carotid artery lumen was designed, resulting 

in a success rate of 83%, 

3) automatic segmentation algorithms were developed for the carotid artery outer wall, 

4) a software system was constructed with a clinical accuracy of 71%. 

The results presented in this manuscript are a compilation of the several years’ research 

on the development of image-processing tools for the analysis of carotid atherosclerosis. 

The qualitative and quantitative results of these studies corroborate the validity of VASIM 

as a potential tool for clinical use. It is capable of coping with various degrees of the disease, 

from non-occluded to fully occluded arteries, based on an ensemble of simple but fast im-

age-processing methods. The analysis is divided into lumen, vascular wall outer and vas-

cular wall segmentation, and presentation of both qualitative and quantitative results with 

an easy to use interface - VASIM. 

VASIM had an overall clinical accuracy of 71% in the detection, segmentation, and analysis 

in the population of patients with stenosis over 50%. Even if the specificity was low - 25%, 

the sensitivity was high - 83%, which is likely to result in overestimation of the urgency of 

the patient condition. The average time required to use this software was 1.6 seconds per 

slice and 23 minutes per patient. It can be shortened to suit the clinical practice better. 

7 Conclusions 
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Introduction

Atherosclerosis is the most common vascular dis-
order and constitutes the greatest risk of mortality and 
morbidity. In 2005, strokes were responsible for 35% 
of all deaths, and 30% were related to extracranial 
carotid atherosclerosis. The cost of stroke management 
reached 62.7 billion dollars in 2007 in the USA1-4). 
The first signs of atherosclerosis as a systemic disease 
appear early in life and develop over time5). The risk 
of stroke is evaluated by the degree of stenosis and 

plaque composition and the plaque morphology1, 6, 7). 
Surgical extraction of an atherosclerotic plaque (end-
arterectomy) dramatically decreases the risk of stroke 
or related death to ＜6% within the first 30 days after 
surgery8) and 10%-17% in the long-term2). Early 
symptom detection is essential to follow the evolution 
of atherosclerosis and initiate preemptive measures to 
prevent stroke onset2, 4).

The carotid artery atherosclerotic burden, steno-
sis and plaque components are analyzed by the manual 
segmentation of diagnostic images acquired by mag-
netic resonance imaging (MRI), ultrasound (US) or 
computed tomography angiography (CTA)9, 10). For 
this purpose, CTA is deemed superior to MRI and 
US, because the vascular components produce differ-
ent Hounsfield units (HU), making them easier to 
differentiate by CTA. Previous atherosclerosis imaging 
studies on symptomatic and asymptomatic atheroscle-
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atherosclerotic carotid arteries and considerably 
decreases the time required for patient evaluation.

Methods

Patients and Clinical Data
Eight elderly patients (mean age, 70 years; one 

woman and seven men) undergoing carotid artery 
endarterectomy were recruited at Tampere University 
Hospital (Tampere, Finland). Preoperative CTA exam-
inations were performed for the region between the 
aortic arch and the vertex of the skull. Endarterectomy 
of the internal carotid artery was performed for eight 
carotid arteries to extract plaque. More specific clinical 
data and the patient background are referred to in 
Table 1, with the time lapse between CTA and endar-
terectomy presented in days. This study was approved 
by the ethics committee of the Pirkanmaa hospital dis-
trict (decision number R07210).

Imaging Conditions
Because this study aimed to validate a new clini-

cal toolset that could completely analyze carotid ath-
erosclerotic plaques, we tested the applicability using 
two imaging systems from different manufacturers. 
The CTA examinations were conducted with two heli-
cal, 64-slice, multidetector computed tomography 
(MDCT) scanners: the General Electric (GE) Light-
Speed (slice thickness, 1.25 mm; increment, 0.5-0.7 
mm; pixel size, 0.6-0.7 mm; 120 kVp; 5-10 mAs) and 
the Philips Brilliance (slice thickness, 1 mm; incre-
ment, 0.5 mm; pixel size, 0.42-0.49 pixels; 120 kVp; 
193-287 mAs). The average scanning time was 40 s, 
and each image was generated as a 512×512 matrix.

The contrast media, Omnipaque® (350 mg/mL) 
and Xenetic® (350 mg/mL), were used to perform 
CTA examinations. The injection dose, speed and 

rotic patients primarily focused on the wall character-
istics (i.e., plaque stability), because this information 
is critical for the clinical diagnosis11). In 1998, Hei-
nonen et al. introduced a semi-automatic segmenta-
tion system named IARD (image enhancement, 
amplitude segmentation, region growing, and decision 
trees)12). This protocol showed promising results for 
the segmentation and classification of different tissues 
by MRI and CT13, 14). The de Weert group recently 
developed an ImageJ15) plugin that could semi-auto-
matically analyze atherosclerotic plaques16) on the 
basis of the definition of two regions of interest (ROI; 
the lumen and vessel outline) and the different HU 
components. However, manual segmentation is time-
consuming for the operator and is prone to human 
errors. Accordingly, the inter-operator and intra-oper-
ator coefficients of variation (COV) were 19% and 
58%, respectively16). On the other hand, automated 
measurements are objective, more reproducible and 
faster; however, they are very sensitive to noise.

Image segmentation techniques fall into three 
categories: thresholding, clustering and deformable 
models. The choice of an optimal method depends on 
the specific requirements of the application. The main 
challenge associated with the segmentation of CTA 
images of carotid plaques is the limited spatial resolu-
tion and the short processing time. Our preliminary 
studies support a correlation between CTA image seg-
mentation and histological data17). The goal of this 
study was to develop a semi-automatic toolset capable 
of segmenting the lumen and vessel wall in CTA 
images to characterize the morphology of atheroscle-
rotic carotid arteries. The results were compared with 
manual measurements of arterial stenosis obtained on 
the basis of the North American Symptomatic Carotid 
Endarterectomy Trial (NASCET) criteria18). This new 
clinical toolset provides an in-depth analysis of the 

Table 1. The clinical characteristics of the patients

Patient
no.

Time interval between
CTA and surgery (days)

Age Sex Medical history

1

2

3

4

5

6

7

8

23

14

17

10

7

31

16

7

56

84

75

70

54

72

79

72

M

M

M

M

M

F

M

M

No information available

Prostate Cancer, aphasia, atrial fibrillation

Hypertension

Hypertension, hypercholesterolemia, hypothyreosis, 
diabetes mellitus type Ⅱ, amaurosis fugax

Hypertension, hypercholesterolemia, cerebral infarction

Pulmonary embolism

Hypertension, glaucoma

Hypertension, hypothyreosis, prostate cancer
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3Semi-Automatic Carotid Plaque Analysis

Curve Fitting Toolset version 2.2 and Statistical Tool-
box version 7.3 software programs. Various stages of 
the sclerosis were chosen to test the efficiency of the 
segmentation algorithm in geometrically different 
cases. The algorithm comprised the five stages 
described below (Fig.1). Because the two MDCT 
scanners had different rescale intersects and represen-
tation intervals, the data were rescaled and shifted to 
comply with the standard scale19).

The Five-Step Process
The CTA images were analyzed to measure the 

maximum percent stenosis using a tailored five-step 
process involving an adaptive segmentation algorithm 
and region growing. First, the initial segmentation 
interval (first slice of the image stack) for the lumen 
was selected using the first three steps:

1) The slice interval is determined for the seg-
mentation and analysis process.

2) The initial seed point in the lumen is set man-
ually in the first slice to specify the artery side to be 
segmented and the exact position of the vessel.

3) A typical diameter of 6 mm is used to create a 
region of interest (ROI) around the lumen and to gen-
erate a histogram. Gaussian fitting is executed, and 
90% of the area under the curve is chosen as the ini-
tial blood attenuation HU interval (Fig.2A).

4) The next step is the segmentation of the 
lumen using the initial seed and the attenuation inter-
val, with a region-growing algorithm20). The use of an 
adaptive attenuation interval in each slice prevents the 

time were patient-dependent and were selected accord-
ing to the recommendations of the manufacturers of 
the contrast media. The contrast agent was injected 
into the antecubital fossa or in a vein of the hand if 
venous access could not be established.

Image Analysis
The IARD protocol12) was modified to optimize 

the image segmentation of the lumen, vessel wall and 
surrounding tissues. The clustering and deformable 
models were not used because they require reference 
images for their implementation. The clinical data 
were used to validate the algorithm under different 
conditions (scanner type, attenuation, morphology, 
atherosclerosis stage, component distribution and 
image quality). Because the human anatomy (i.e., ves-
sel position and path) varies among patients, it was 
not possible to develop a general reference image. In 
addition, the analysis was not conducted for the full 
length of the carotid arteries, but only from the aortic 
branch to the circle of Willis. Images were obtained in 
the plaque vicinity, with the slice interval defined by 
the operator. Therefore, the first slice did not corre-
spond to a common anatomical position. Therefore, 
we used a thresholding model.

The CTA images were analyzed with a personal 
computer (HP dv3560ep, Windows 7 Ultimate, 32 
bits, 2.40GHz, 4.0 GB RAM, with an NVIDIA 
GeForce 9300M GS graphics card) equipped with the 
Matlab version R2010a, Image Processing Toolbox 
version 7.0, Signal Processing Toolbox version 6.13, 

Fig.1. The segmentation protocol.
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algorithm and for tracking the vessel path.

Vessel Wall and Plaque Determination
The tissues around the lumen were classified as a 

single entity representing both the artery wall and the 
atherosclerotic plaque (lipidic, fibrotic and calcified 
tissue). Thereafter, two circular ROIs were automati-
cally created, one from the original CTA image using 
a radius of 20 pixels around the lumen, and the other 
from the results of the lumen segmentation. Using 
this radius, all the surrounding tissue and plaque com-

common problem of dilution during region growing. 
By fitting the attenuation value histogram onto a 
Gaussian curve, it is possible to decrease the influence 
of the less frequent attenuation values representing 
surrounding tissues.

5) After the initial slice is obtained, segmentation 
proceeds automatically along the vessel and through-
out the entire CT image stack. If the stenosis is so 
severe that no pixel identifies the lumen, the same ini-
tial seed position is used for the next slice. If success-
ful, the lumen area is used to calculate the diameter 
for ROI extraction in the following slice. If the algo-
rithm is not able to detect the lumen in an interval of 
fives slices, it stops the segmentation to calculate and 
present the final results.

Gaussian fitting is conducted to determine the 
luminal attenuation interval and to determine whether 
tissue is present in the normal lumen area. The pres-
ence of tissue surrounding the lumen affects the 
Gaussian fitting. For example, Fig.2A and 2B show 
HU histograms of the lumen, with less or more tissue 
adhering to the artery wall, respectively. The HU 
interval that corresponds to the lumen was found at 
the edges of the curve fitting 90% of the area 
(Fig.2A). In contrast, excess tissue generates two 
peaks in the histogram (Fig.2B), and the correct peak 
was identified by comparison with the histogram of 
the previous slice. The different layers of the artery 
wall were detected in both cases (intima, media, and 
adventitia). The HU scale was adapted to fit between 
the minimum and maximum nonzero values present 
in the image.

Identification of the Carotid Bifurcation
To evaluate the atherosclerotic plaque burden in 

the common carotid artery (CCA) and the internal 
carotid artery (ICA), it is necessary to identify the slice 
separating the ICA from the external carotid artery 
(ECA), which is the carotid bifurcation (CB). This is 
accomplished using a region property called eccentric-
ity, which corresponds to the ratio of the maximal to 
minimal artery wall diameter. If the image has an 
eccentricity higher than 0.85 (0 for a circular shape 
and 1 for a line segment), it is necessary to divide the 
image into the ICA and ECA. For this purpose, we 
used a watershed algorithm with 4-pixel neighbor-
hood connectivity. The criteria used to identify the 
ICA level was the position of the two structures 
obtained in the watershed: the lowest anatomical 
image and the one nearer to the trachea easily identi-
fied by the air attenuation. After correct lumen seg-
mentation, the center of the lumen was identified for 
use as the next slice seed point for the region growth 

Fig.2. Region of interest (ROI) histograms (60 bins) and seg-
mentation intervals for Patient 5.

A. The lack of tissue inside the carotid artery (Slice 1, radius: 10 
pixels)
B. The presence of tissue inside the carotid artery (atherosclerotic 
plaque; Slice 30, radius: 10 pixels)

A

B
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images show the profile of each component (lumen 
and wall/plaque) throughout the slices, and the vessel 
linearity (sagittal and coronal planes). This longitudi-
nal segmentation allows for a visual inspection of the 
lumen path, vessel wall, the presence of plaque and 
the plaque components (lipidic, fibrotic and calcified 
tissues). These images allow a visual analysis of the 
plaque status with regard to positive remodeling, ves-
sel occlusion and the recurrence of downstream plaque 
lesions.

Manual Segmentation and Evaluation
The manual segmentation was derived from the 

clinical data, manual measurement of the stenosis, 
plaque profile and the analysis found in the medical 
transcript made by the radiologist. The data consisted 
of manual measurements of the lumen diameter in 
two distinct locations: below the plaque (native lumen 
diameter) and in the maximum occlusion site (mini-
mum diameter). Both values were inserted in the 
NASCET stenosis calculation formula (Eq. 1) to 
obtain the final percent stenosis. If the maximum per-
cent stenosis was located on the ICA, instead of the 
CCA or CB, the native measurement was made in the 
ICA.

Statistical Analysis
The parameters derived from the manual and 

algorithm-based disease evaluations were compared 
using the two-sided Wilcoxon rank sum test. The 
p-values were calculated using the Matlab® Statistics 
Toolbox function “ranksum” (MathWorks, USA). 
Because the function needs two linear datasets, we 
transformed the manual and algorithm stenosis values 
into single row arrays, disregarding the carotid side 
and maintaining the side correspondence in the arrays. 
All p values ＜0.05 were considered to be statistically 
significant.

Results

The patients’ clinical data and medical back-
ground are presented in Table 1. Of the 16 carotid 
arteries examined, eight were atherosclerotic (＞70% 
stenosis), four had mild stenosis (＜70%) and four 
were open carotids.

ponents were included.
A Laplacian of the Gaussian filter (size: 5×5 pix-

els; standard deviation: 0.5) was used to enhance the 
contrast between the surrounding tissue and the outer 
and inner borders of the vessel wall. The minor struc-
tures (with areas smaller than twice the lumen area) in 
the artery wall vicinity were ignored. In the next step, 
the resulting image was merged with the lumen ROI 
to restore the lumen segmentation area. Finally, the 
area eccentricity was measured again. If the eccentric-
ity was ＞0.30, a watershed algorithm was applied 
using an 8-pixel neighborhood connectivity. A circular 
ROI was defined using the prewatershed ROI area to 
calculate the radius.

Modifications to the NASCET Criteria
The unmodified NASCET criteria are based on 

the diameter of the carotid artery, with and without 
the atherosclerotic plaque18). However, the use of an 
area generates more precise data than the use of a 
diameter21). Most importantly, an area is not sensitive 
to the positioning of the measuring vector, which is 
the diameter of the lumen defined by the user apply-
ing the NASCET criteria. Therefore, we developed a 
modified NASCET criterion to determine the maxi-
mum percent stenosis (S; Equation 1), where Amin is 
the minimum area occupied by the lumen and Aave is 
the average area occupied by the lumen (calculated at 
the CB site with maximum stenosis; pre-CB or post-
CB).

Because the area of the lumen decreases drasti-
cally in the ICA after the CB (natural narrowing of 
the vessel), it is necessary to divide the pre-plaque and 
post-plaque data and compare them to determine the 
maximum percent stenosis and the position in the ves-
sel. Another criterion used for the detection of the CB 
was the sudden shift in the center of the segmented 
lumen at the CB. The relative difference (D) between 
the evaluation by a physician (Ephys) and that by the 
algorithm (Ealg) was calculated as shown in Equation 
2.

Vessel Visualization
The outputs of the algorithm are not only pre-

sented in numerical form, but also in two- (2D) and 
three-dimensional (3D) image format. The outputted 

Equation 1. The modified NASCET criteria (area). Equation 2. The relative difference.

21279(1)260424



6 Santos et al.

nent (lumen and wall/plaque area). Also, a 3D image 
of the segmented vessel was generated. In five of the 
eight patients, the CCA and ICA were correctly seg-
mented with the selected slice interval. The average 

The carotid arteries were characterized in terms 
of the maximum percent stenosis and the location in 
the vessel, path of the vessel and linearity of the vessel 
with the area (mm2) occupied by each vessel compo-

Fig.3. An example of successful (Patient 5) and unsuccessful (Patient 2) 3D imaging results.

A and C: Vessel tissue, plaque components and lumen
B and D: Lumen
The position of the structures is indicated.
CB, carotid bifurcation; CCA, common carotid artery; ECA, external carotid artery; ICA, internal carotid artery

A B

C D
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stenosis that nearly occluded the lumen, causing the 
algorithm to lose the segmentation path (Fig.3C and 
D). When the algorithm cannot determine the maxi-
mum stenosis, it miscalculates the position of the 
bifurcation and stenosis.

The Percent Stenosis and Location
For Patient 5, the area of the maximum percent 

stenosis was located at slice 56 (Fig.4A), while the 
carotid bifurcation was located at slice 21 (Fig.4A). 
The maximum percent stenosis defined by our algo-
rithm (74%) was 18% lower than that defined by 
manual measurement (90%). The maximum percent 
stenosis values for all 16 carotids are presented in 
Table 2. In Patient 5, the lumen occupied a maximum 
of approximately 40% of the total segmented area 
(Fig.4A). For Patient 2, who had severe stenosis, the 
vessel tracking was lost, and the position of compo-
nents was not established because the analysis was not 
successful (Fig.4B). The average and median differ-
ences between the manual measurements and algorith-
mic data were only 6% (Wilcoxon rank sum test; 
p=0.31), suggesting that our new semi-automatic 
toolset is as reliable as the physicians’ manual measure-
ments.

number of segmented slices was 76, which corre-
sponded to a total length of 9.5 cm with the GE 
LightSpeed scan and 7.6 cm with the Philips CT scan.

Most patients exhibited positive remodeling of 
the vessel wall due to severe stenosis, detected by out-
ward bulging of the artery wall in the linearization of 
the vessels. Two patients exhibited severe unilateral 
stenosis in the CB. In those cases, the algorithm could 
not find the path of the ICA because of the lack of 
lumen pixels. The algorithm was programmed to stop 
if the lumen was not found after 20 slices. We have 
described the carotid analysis of these two patients in 
detail below to provide examples of favorable (Patient 
5) and challenging (Patient 2) cases.

Impact of the Severity of Stenosis on the Image 
Analysis

The two patients were first compared by examin-
ing the 3D images for the vessel shape, including the 
structures of the CCA, CB and ICA (Fig.3). For 
Patient 5, the point of maximum stenosis was not easy 
to detect by visual inspection. Fig.3A shows the 
lumen and vessel wall (fibrotic, lipidic, and calcified 
tissue), whereas Fig.3B shows only the lumen. In con-
trast, the carotid of Patient 2 exhibited highly calcified 

Fig.4. The carotid lumen area and vessel wall for Patient 5 (A) and Patient 2 
(B).

The sites of carotid bifurcation (thick line) and maximum stenosis (thin line) are 
indicated.

A

B
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was initially adopted as the gold standard because of 
its higher resolution and the availability of reference 
data, this imaging technique does not provide tissue 
attenuation data. Therefore, an MRI analysis requires 
models and training sets developed by the operator to 
classify the vascular tissue types7, 22, 16). Furthermore, 
CTA is currently available in most hospitals and con-
stitutes the main imaging diagnostic method after US. 
Therefore, it is understandable that CTA should be 
selected to build the next generation of image segmen-
tation toolsets for the characterization of the severity 
of atherosclerosis.

Our goal was to decrease the operator interven-
tion in the CTA image analysis to improve the data 
accuracy and accelerate patient evaluation. This semi-
automatic method is a considerable improvement over 
the current manual methods. Once the operator enters 
the initial seed into the algorithm, all other operations 
are automated. From a single seed in the initial slide, 
it can follow the vessel path, segment the lumen from 
the surrounding tissues and separate the outer vessel 
wall from the neighboring tissues. A segmentation 
protocol in which an operator does not manually pre-
define the areas containing the vessel for each image of 
the stack is considered automatic16, 21). Da-Chuan 
Cheng presented a fully automated process in which it 
was possible to segment the carotid arteries by MRI 
using image characteristics (intensity, area size and 
shape), and the data only differed from the manual 
measurement data by 2.6%22). However, MRI infor-
mation does not separate the lumen from the vessel 
wall because it does not provide tissue attenuation 
data. Therefore, a semi-automatic CTA-based system 
would be more reliable than an automated MRI-based 
system for differentiating the vascular structures sur-
rounding the plaque and for monitoring the patients.

The accurate measurement of the maximum per-
cent stenosis is critical for the adequate management 

Evaluation of the Atherosclerotic Burden by Vessel 
Linearization

To obtain a better understanding of the plaque 
burden, we linearized the segmented vessels. Fig.5 
shows where the CCA divides into the ICA and ECA, 
as well as the site of maximum stenosis for Patient 5 
with mild disease. In Fig.5A, the atherosclerotic bur-
den could not be estimated because of the smoothness 
of the carotid walls and the nonexistent narrowing of 
the lumen. Wall calcification was only detected in a 
small patch at the CB, which was evidence of the ini-
tial stage of the disease. In Fig.5B, calcifications are 
visible as white structures surrounding the lumen. 
Patient 2 had severe calcified stenosis that nearly 
occluded the lumen, which caused the algorithm to 
lose the segmentation path and miscalculate the posi-
tion of the CB, thus invalidating the stenosis calcula-
tion. When the algorithm cannot determine the path 
of the vessel, it cannot calculate the maximum percent 
stenosis and the location of the CB accurately, which 
are critical steps in the analysis.

The Shorter Analysis Time of the Semi-Automatic 
Process

We generated a dataset of 62 slices for Patient 5, 
with a total analysis time of 95 s. The average process-
ing speed was 1.2 s per slice, which was limited by the 
processing power of the personal computer. For the 16 
carotid arteries, the average total time for booting, 
acquiring, analyzing and displaying the data was 145 s.

Discussion

The recent development of CTA imaging was a 
major technical breakthrough for the analysis of 
carotid artery stenosis, because it provides tissue atten-
uation data that allows efficient classification of the 
vessel wall and plaque components9, 10). While MRI 

Table 2. The parameters of carotid stenosis for each patient

Patient
no.

Affected
artery

Manual evaluation Algorithm evaluation Relative difference (Eq. 2)

Left Right Left Right Left Right

1
2
3
4
5
6
7
8

ICA
ICA
ICA
ICA
ICA
ICA
ICA
CCA

95%
70%

70%
90%

85%

70%
75%
80%
60%
70%
73%
60%

73%
80%

96%
74%

89%

83%
90%
74%
63%
75%
79%
63%

−23%
14%

37%
−18%

5%

19%
20%
−8%

5%
7%
8%
5%
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carotid artery as conducted by a physician. For Patient 
5, the physician calculated a maximum percent steno-
sis of 90%, which was 18% higher than that deter-
mined by our algorithm. As de Weert reported an 
interoperator COV of 19%16), this discrepancy could 
be a reasonable value owing to the possible variability 
in manual measurements. This discrepancy may also 
be due to the fact that the physician measured the ves-
sel diameter according to the NASCET criteria18), 
which is less accurate than the area measurements21) 
obtained by using our algorithm. With area measure-
ment, the lumen analysis becomes independent of the 
measuring vectors required to calculate the percent 
stenosis from the vessel diameter. In addition, area 
measurements allow the operator to follow the evolu-
tion of the lumen throughout the plaque, a parameter 
called the surface roughness of the plaque21).

With regard to the statistical comparison between 
the manually and algorithm-derived stenosis values 

of patients with atherosclerosis. The NASCET criteria 
are based on the measurement of the vessel diame-
ter18), which is less accurate than area measurements21). 
Therefore, our algorithm was designed to use carotid 
artery area measurements. In addition, we measured 
the lumen eccentricity as an early marker of the mor-
phological changes caused by atherosclerosis. These 
modifications considerably improved the rendering of 
the blood vessels, wall and plaque, which is crucial to 
the correct positioning of the structures according to 
the anatomy of each patient.

The following considerations were essential to 
our modifications of the IARD semi-automatic seg-
mentation system protocol:12). First, native CTA 
images were used without any enhancement. Smooth-
ing diminishes the contrast between tissues, thereby 
interfering with the tissue classification and localiza-
tion. The main disadvantage is the higher noise level, 
which implies lower region growth and irregular struc-
ture outlines. Second, although amplitude segmenta-
tion and region growing can be applied manually, they 
could be automated using predefined values (HU 
interval, lumen segmentation center from the previous 
slice and surrounding tissue determination). Third, 
the segmentation interval used in the region growth 
was adapted along the vessel because of the bolus 
effect of the contrast agent. When we analyzed the 
contrast of the lumen, the HU value of the lumen 
increased to a maximum value and then decreased, 
following a bell- or wave-shaped function. One disad-
vantage of this approach is that when the stenosis is 
severe, lumen narrowing makes it impossible to repli-
cate and predict the necessary HU interval for lumen 
segmentation in this slice. Finally, the decision tree 
adaptive classifier specifies the classifier criteria (HU 
interval) not only for each slice, but also for each 
patient and CT device.

The length of the analysis was relatively long (1.2 
s per slice) because we used a personal computer 
instead of a medical workstation. In a full-slice analy-
sis (approximately 400 to 500 slices), the total time 
would be over 6 min under our conditions. When 
applied using a clinical workstation, this time would 
be drastically decreased. In addition, the virtual mem-
ory of the hardware limited the total number of slices 
to 96 (the maximum number per patient dataset that 
could be inputted). A workstation with sufficient 
memory would be able to analyze the entire vessel 
path, from the branching of the aortic arch to the cir-
cle of Willis.

The accuracy of our semi-automatic CTA-based 
segmentation system was tested against manual mea-
surements of the maximum percent stenosis of the 

Fig.5. The 2D linearization of the vessel.

Black line: carotid bifurcation
Gray line: site of maximum stenosis
White dots: lumen path

A

B
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Conclusions

This study demonstrated that a semi-automatic 
CTA-based image segmentation system can be used to 
identify, locate, characterize and measure atheroscle-
rotic lesions in the carotid artery.
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Abstract 

The aim of this study is to assess the feasibility and 
performances of the fusion of edge enhancers in in vivo 
computed tomography angiography (CTA) images for 
automatic segmentation of outer and inner vessel walls, 
in presence of atherosclerotic plaques. 

From 4 patients’ CTA exams (stenosis degrees 70% – 
95%) the slices representing plaques were extracted (223 
images) and hand segmented by a trained operator for 
the vessel walls. The analyzed slices depict the common 
and internal carotid arteries and the carotid bifurcation. 

The automatic protocol exploits two different 
categories of image edge enhancers: 5 edge detectors 
(Sobel, Prewitt, Roberts, laplacian of gaussian (LOG) 
and Canny) and 5 filters/mapping functions (laplacian 
filter, gradient map (GM), Otsu thresholding (OT), local 
range map (LRM) and standard deviation (STD) map). 

The mean correlation coefficient between the manual 
and the automatic masks is 48% [17%, 64%]. By 
selecting the GM, LRM and STD algorithms only, the 
mean performance is improved up to 58%. 

This methodology was proven to be comparable to the 
manual one. The correct selection of the edge enhancers 
is critical for the performance optimization: GM, LRM 
and STD showed to be the most suitable for our purpose. 

1. Introduction

Atherosclerosis is a systemic disease, defined by the 
American Heart Association as the accumulation of 
atherosclerotic plaque inside arteries. The atherosclerotic 
plaque develops with the buildup of cholesterol (low-
density lipoproteins - LDL - as a precursor to the disease), 
fatty substances, various metabolites from surrounding 
cells, calcified and fibrotic tissues [1–3]. Diagnostic and 

characterization of the disease in arteries, more 
specifically in the carotid arteries, may lead to the 
prevention of future strokes [4,5].  The atherosclerotic 
plaque is usually located in or around the carotid 
bifurcation since this location presents the highest 
variance of wall-shear stress and artery wall stiffness. The 
former is one of the precursors of the development of the 
disease [6], the latter is associated with plaque 
composition [7] and both linked with plaque stability. To 
be able to study the impact and presence of arterial 
stiffness there is the need to separate in the CTA image 
the outer vessel from the surrounding tissues and the 
inner border from the lumen.  

 There are algorithms that allow to segment the carotid 
artery wall but the need for human intervention prevails 
for the  initialization, parameterization or validation of 
results [8]. Manual segmentation is done by trained 
operators, by using two regions of interest (ROI) 
representing the carotid outer contour and the lumen 
contour, with the carotid wall defined as the difference 
between them. Moreover, the time factor has to be 
considered, since both state-of-the-art automatic 
procedures and the manual method are usually slow. A 
fully automated procedure will provide more consistent 
results and less prone to human errors. In [9] de Weert et 
al. showed that human (inter- and intra-operator) 
coefficients of variation are 19% and 58%, respectively. 
A disadvantage of automating such an analysis is that it 
becomes sensitive to image noise. In the classification of 
tissues in noisy images, humans are more proficient than 
machines.  

In this work we propose a novel software-based 
protocol for the automatic detection of the carotid artery 
wall contour, using edge enhancing algorithms with the 
final aim of overcome the weaknesses of manual 
inspection of CTA images. Our approach is operator 
independent, fast and repeatable. This work is part of the 
wider VASIM project carried on at Tampere University 
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of Technology, Tampere, Finland. 
 

2.  Methods 

2.1. Dataset and manual segmentation 

Four patients undergoing carotid artery endarterectomy 
were recruited at the Tampere University Hospital 
(Tampere, Finland). Preoperative CTA examination was 
performed between the aortic arch and the vertex of the 
skull. In this dataset the stenosis range was [70%, 95%]. 
A total of 223 images were acquired depicting the plaque 
region present in the common and internal carotid arteries 
and the carotid bifurcation. 

Each image meant for comparison with the automatic 
protocol was manually segmented by a trained operator 
for the outer vessel and lumen contours. 

All the methodology was developed using a Dell 
workstation (Dell OptiPlex 9020, Windows 7 Enterprise, 
64 bits, 3.10 GHz, 8.0 GB RAM) with Matlab® R2012b, 
Image Processing Toolbox 8.1, Signal Processing 
Toolbox 6.18, and Statistical Toolbox 8.1. 

 
2.2. Automatic edge detection 

Automatic segmentation was performed by processing 
each image using the edge enhancing protocol proposed 
in this article. Our approach can be summarized as 
follows:  
(i) tissues characterized by a higher attenuation than 

500 HU are assigned a new attenuation of 20 HU, 
intended to prevent the loss of the atherosclerotic 
calcified tissue. Subsequent thresholding of the 
image to the range [-100, 500] HU [8] allows 
cleaning artifacts and surrounding tissues (air, lipidic 
and calcified tissue);  

(ii) grayscale rescaling to [0, 1] interval;  
(iii) edge enhancing by the ensemble, explained in more 

detail below; 
(iv) separating nearby objects by connected components 

(4 neighborhood);  
(v) computing of the distance for each object to the 

center of the image by the pdist2 function; 
(vi) classifying the object with the smallest distance as 

the final outline. 
 

In detail, the edge enhancers used in this automatic 
approach belong to two different categories: 5 edge 
detectors (Sobel, Prewitt, Roberts, laplacian of gaussian 
(LOG) and Canny) and 5 filters/mapping functions 
(laplacian filter, gradient map (GM), Otsu thresholding 
(OT), local range map (LRM) and standard deviation 
(STD) map). 

 

 
 

Figure 1. Edge enhancers applied to a carotid artery. A. 
Initial image, B. Sobel, C. Prewitt, D. Roberts, E. LOG, 
F. Canny, G. Laplacian, H. Otsu, I. LRM, J. GM, K. STD, 
L. Final contour (intersection of the initial image with the 
mask, M. Contour mask without lumen. 
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Each one of these edge enhancers was tested using a 3-
pixel square window to produce an intermediate image 
INT_IM for each slice as follows: (i) the OT INT_IM was 
directly used; (ii) in LOG INT_IM a threshold of 0 was 
used for closed contours; (iii) LRM INT_IM was 
binarized using the inclusion range [0, 200]; and (iv) the 7 
remaining INT_IMs were thresholded using OT. A single 
binary image (FUSION) was produced by fusing the 10 
binary masks and thresholding using OT. An example of 
the application of these algorithms to a slice is 
represented in Fig. 1. 
 
2.3. Comparison between manual and 
automatic contours 

The comparison between manual and automatic 
segmentation of the carotid contours was done resorting 
to 2-dimensional correlation function corr2 (with the 
manual contour as the ground truth). Each edge enhancer 
was also correlated individually with the manual mask. 
The three highest performing edge enhancers (GM, LRM 
and STD) were used to create a new ensemble (3M). 
 
3.  Results and discussion 

The average time per image for FUSION was 0.034 s 
and for 3M 0.015 s. For manual segmentation the 
processing time for the outer contour and lumen was, in 
average, 5 s/slice.  

Fig. 2 illustrates the three stages of the carotid contour 
protocol: the initial image fed to the edge enhancer 
algorithm (Fig. 2.A), the binary mask obtained with 
FUSION (Fig. 2.B) and the final segmented carotid 
contour (Fig. 2.C) as a result of the algorithm. The slice 
in Fig. 2 represents a section above the carotid bifurcation 
where the vessel walls haven’t been separated enough to 
be segmented into three independent objects. 

 
 
 
 

 
 
Figure 2. Carotid artery contour enhancing protocol step 
images. (internal carotid, lower element; external carotid, 
higher element; branching from the external carotid, 
middle element). A. Initial image; B. Contour mask 
without lumen; C. Final contour (intersection of the initial 
image with the mask).  

Table 1. Performance (correlation) of the edge enhancers 
ensemble FUSION and 3M. 

Patient FUSION 3M Increase 
1  0.64 0.73 14% 
2 0.17 0.24 47% 
3 0.62 0.74 19% 
4 0.51 0.60 17% 
Mean 0.48 0.58 24% 

 
 
 

The final performances (correlation between automatic 
and manual segmentation mask) for the four patients, 
using FUSION and 3M, as well as the increase of 
performance with 3M, are represented in Table 1.  

 
The mean correlation coefficient between the manual 

and the automatic masks is 48% [17%, 64%]. By using 
the 3M algorithm, which presented the highest 
performances in the edge detection, the mean correlation 
is improved to 58%. This simpler (and faster) ensemble 
allowed obtaining a mean increase in correlation of 24%. 
This increase is dependent on the patient with a very wide 
interval ranging from 14% to 47%. This demonstrates that 
an approach effective for a specific patient can be non-
optimal for another one.  

The usage of OT for thresholding didn’t provide good 
results, since it tends to over-threshold the objects in the 
image; this is clear by comparing Fig. 2 and 3 (both 
thresholded for 0.21 in the [0, 1] interval). This can be by 
the fact that the slice in Fig. 3 depicts an initial (non-
homogenous) stage of atherosclerosis, as evident by the 
central and right bright spots (high attenuation) inside the 
carotid wall, that bias the optimal threshold calculation. 
This phenomenon didn’t occur in case of a homogeneous 
level of atherosclerosis, advanced stage of atherosclerosis 
or healthy arteries. 

 
 
 

 
 
Figure 3. Extreme thresholding of the contour outline 
using OT. A. Initial image; B. Contour outline by 
FUSION; C. Final contour mask thresholded with 0.21 in 
the [0, 1] interval. 
  

927



4.  Conclusion 
In this work we provide an efficient and fast method 

for the automatic detection of the contours of carotid 
arteries both in normal and atherosclerotic arteries. Our 
results are comparable with the manual segmented 
contour, as quantified by a correlation index of 58%. 

Further work has to be done to improve the 
performance in inhomogeneous atherosclerotic plaques, 
such as filtering to clean abrupt changes in tissues and to 
select the optimal edge enhancers. GM, LRM and STD 
showed to be the most suitable for our purpose. Future 
improvements will lead to the usage of this methodology 
in plaque component characterization in atherosclerotic 
arteries. 
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col was developed for the automatic detection of carotid  
arteries in CTA. The results are encouraging and provide 
the basis for the creation of automatic detection and analy-
sis tools for carotid arteries.

Keywords  Carotid angiography · Automatic image 
analysis · Atherosclerosis · Machine vision

Abbreviations
A	� Area
BDvar	� Border distance (variance)
CB	� Carotid bifurcation
CCA	� Common carotid artery
CTA	� Computed tomography angiography
CV	� Coefficient of variation
DCV	� Distance to center of volume
DT	� Distance to the center of the trachea
ECC	� Eccentricity
HU	� Hounsfield units
ICA	� Internal carotid artery
MRI	� Magnetic resonance imaging
Op	� Operator
ROI	� Region of interest
SF	� Shape factor
TP	� Trachea/pharynx volume
Var	� Variance
wp	� Weight of descriptor P
τP 	� Threshold of descriptor P

Introduction

Stroke is the second largest cause of mortality worldwide, 
representing 10.6 % of all deaths that occurred in 2011 [1]. 
Economically, the stroke related costs in the USA alone in 

Abstract  Atherosclerosis is one of the leading causes 
of mortality in the western world. Computed tomography 
angiography (CTA) is the conventional imaging method 
used for pre-surgery assessment of the blood flow within 
the carotid vessel. In this paper, we present a proof of con-
cept of a novel, fast and operator independent protocol for 
the automatic detection (seeding) of the carotid arteries in 
CTA in the thorax and upper neck region. The dataset is 
composed of 14 patients’ CTA images of the neck region. 
The performance of this method is compared with manual 
seeding by four trained operators. Inter-operator varia-
tion is also assessed based on the dataset. The minimum, 
average and maximum coefficient of variation among the 
operators was (0, 2, 5 %), respectively. The performance 
of our method is comparable with the state of the art 
alternative, presenting a detection rate of 75 and 71 % for 
the lowest and uppermost image levels, respectively. The 
mean processing time is 167  s per patient versus 386  s 
for manual seeding. There are no significant differences 
between the manual and automatic seed positions in the 
volumes (p = 0.29). A fast, operator independent proto-
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erable amount of time for training the classifier. As athero-
sclerosis is a multi-factorial and widely variable disease, it 
presents high diversity in morphology, shape, size and loca-
tion. Therefore, creating a solid and complete training set is 
not only very time-consuming but is also dependent on the 
size and representativeness of the training images.

In summary, the main weaknesses of the aforemen-
tioned state of the art methods are: (i) operator depen-
dency, both in the initial seed placement and parameters 
identification, (ii) long computational time and (iii) the 
need of specialized training datasets for machine learning 
approaches.

Our previous work focused in the semi-automatic seg-
mentation of the carotid vessel based on a manual seeding 
[6] (145 s/patient) and in a fully automatic segmentation of 
the carotid vessel wall [22] (0.015  s/slice). In the present 
paper we propose an operator independent software protocol 
to automatically detect the carotid arteries in CTA images in 
order to (i) efficiently overcome the fragilities of operator 
inspection, (ii) shorten the patient evaluation time, and (iii) 
allow the automatic segmentation of the carotid arteries.

Methods

Patient dataset

Fourteen patients (35–85 years old) undergoing general 
carotid artery, pre- and post-endarterectomy examination 
were recruited at the Tampere University Hospital (Tampere, 
Finland). CTA examinations were performed for the region 
between the aortic arch and the vertex of the skull. Of the 28 
carotid arteries examined, seven were atherosclerotic (≥70 % 
stenosis), seven had mild stenosis (50 % ≤ stenosis < 70 %), 
while fourteen were open carotids (<50 %) or no information 
was present in the patient data sheets (Table 1). The percent-
age of stenosis was computed by radiologists at the Tampere 
University Hospital, according to the NASCET criterion [23, 
24]. The percentage of stenosis was computed as

where N represents the narrowest diameter of the residual 
lumen and D the luminal diameter of the internal carotid 
after the occlusion. The images of patient 11 had particu-
lar influence of beam-hardening artifact. Patients 10 and 11 
had a reconstruction error which thresholded all pixels with 
attenuation over 1000 HU as the rescale intersect value. In 
spite of the reconstruction errors, Patients 10 and 11 were 
not removed from the dataset, in order not to bias the results 
and to stress our protocol also in the more demanding and 
non-optimal cases such as in the presence of noise and 

Stenosis
N

D
(%) ,= −






×1 100

2009 reached 38.6 billion dollars, with a death rate of 40.6 % 
[2]. Atherosclerosis, as a systemic disease, can be observed 
from childhood and is usually progressive. Therefore, the 
detection of premature symptoms is vital in initiating pre-
emptive measures to prevent strokes [3, 4].

The atherosclerotic plaque is commonly located in the 
carotid bifurcation (CB) as it presents the highest variation of 
wall-shear stress, one of the main precursors of the diseases’ 
development [5]. The risk of stroke is assessed via two main 
characteristics of the carotid artery: (i) degree of luminal 
stenosis and (ii) plaque composition and morphology [6–8]. 
Both parameters are analyzed by manual segmentation of 
diagnostic images obtained by imaging techniques, such as 
magnetic resonance imaging (MRI), ultrasound and com-
puted tomography angiography (CTA) [9, 10]. CTA is rou-
tinely used for pre-surgical assessment of endarterectomy.

Manual segmentation methods for the separation of the 
carotid artery lumen from the vessel wall and from the sur-
rounding tissue involves several drawbacks, such as long 
computational time and operator-dependent parameters [6]. 
Indeed, de Weert et al. reported inter-operator and intra-
operator coefficients of variation of 19 and 8 %, respectively 
for plaque area measurements [11]. Such operator depen-
dency also affects the correct seeding (i.e. the correct iden-
tification of carotid arteries in an image). Automatic tools 
should therefore lead to higher reproducibility and shorter 
processing time.

Based on the work by Atherton et al. [12] and Yuen et al. 
[13] Matlab® (MathWorks®, USA) already has a circle find-
ing function integrated in the Image Processing Toolbox. 
These approaches are based on a circular Hough transform, 
with a pre-specified radius range to decrease the number of 
false positives. Such false positive structures are typically 
bones and muscle as well as other blood vessels (e.g. the 
external carotid artery, jugular and subclavian arteries).

Further, Adame et al. used circle fitting in MRI images, 
although this approach requires the (manual) initial posi-
tioning of a circular mask over the carotid artery [14]. 
Bogunović et al. developed a completely automatic protocol 
in three-dimensional (3D) rotational angiography composed 
of three stages: (i) vessel centerline detection, (ii) vascu-
lar tree topology and bifurcations characterization, and (iii) 
internal carotid artery (ICA) identification by means of a 
support vector machine classifier [15]. Sanderse et al. [16] 
presented the AnitA method, consisting of two steps: (i) 
volume of interest estimation based on the shoulder plates 
as landmarks and (ii) axial detection of the carotid arteries 
by Hough transform and clustering [17]. The detection rate 
reported was 88 % for a dataset involving 31 patients.

Texture analysis and machine learning have also been 
suggested for the detection of the carotid artery in both 
ultrasound [18–20] and CTA [8, 21]. Although effective, 
these protocols require a reliable training set and a consid-
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The methodology applied is sketched in Fig. 1. The pur-
pose of the airway detection step (Fig. 1C, D) is to create a 
general landmark throughout the patient’s volume. For each 
slice, the coordinates of the airway are used as an initial 
approximation of the location of the carotids.

The CTA images were analyzed with a Dell workstation 
(Dell OptiPlex 9020, Windows 7 Enterprise, 64 bits, 3.10 GHz, 
8.0 GB RAM) equipped with Matlab version R2012b, Image 
Processing Toolbox version 8.1, Signal Processing Tool-
box version 6.18, and Statistical Toolbox version 8.1. All the 
patients’ data was exported from the hospital servers without 
any preprocessing or filtering.

Airway detection

During the detection of the carotid arteries in 2D images, 
multiple potential candidates occur. If circles are adopted as 
templates of the carotid arteries in each slice, other candi-
dates are also found such as jugulars or fusiform muscles. 
A 3D anatomical landmark allows a more efficient localiza-
tion of the vessels. The landmark chosen is the trachea/phar-
ynx (TP) (also referred to as the airway in this manuscript), 
which is quite easy to segment from the CTA since (i) it 
displays low attenuation due to the air content, (ii) it is sur-
rounded by much higher attenuations due to denser tissues 
and (iii) it cannot be mixed with the air around the patient. 
To guarantee this last point, the model is constrained to the 
uppermost slice where the nasal cavity is detected. The TP 
enables an adaptation to patient geometry, with variations 
in the neck thickness and airway volume. A summary of the 
substeps necessary for the airway detection is represented 
in Fig. 2. By using amplitude segmentation with the thresh-
old value −500 HU, a 3D air volume is obtained (Fig. 2A). 
This threshold was chosen as some tissues, e.g. lipids, have 
a negative HU and therefore a higher limit would include 
these tissues as air.

The next substep consists of removing the air structures 
that surround the patient’s CTA volume (Fig. 2A, B). Using 
a 6-faced cube edge connectivity as a discarding factor, the 
airway volume is attained and the holes filled.

After the suppression of the border connected com-
ponents, several possible TP objects are attained, such 
as the real airway, lungs, probes and feeding tubes. Per-
forming a slice-by-slice area-based filter with the area 
range of 150–600 mm2 allows for clearing these foreign 
and unwanted objects1 (Fig. 2B, C). The area ranges are 
adapted from Griscom and Wohl [25] and Hoffstein and 
Fredberg [26]: for the central airway ≈600 mm2, for the 
trachea ≈300 mm2, and for the glottis ≈150 mm2. A mar-
gin of ±10 % is adopted to keep the allowed area flex-
ible so as not to lose potential TP structures. The lower 

1  Matlab function: bwareaopen (image, minimum area value).

human errors during acquisition. No other image prepro-
cessing was conducted. This research was approved by the 
Ethics Committee of the Pirkanmaa Hospital District (deci-
sion number R07210).

Imaging

CTA examinations were conducted using two different heli-
cal, 64-slice, multidetector computed tomography scanners: 
General Electric LightSpeed (slice thickness 1.25  mm; 
increment 0.5–0.7  mm; pixel size 0.6–0.7  mm; 120 kVp; 
130–327 mAs) and Philips Brilliance (slice thickness 1 mm; 
increment 0.5  mm; pixel size 0.42–0.49  mm; 120  kVp; 
178–243  mAs). The average scanning time was 30  s for 
both scanners and each DICOM image was exported as a 
512 × 512 matrix [6].

For CTA contrasts, the General Electric Omnipaque® 
(350 mg/ml) and the Guerbet Xenetix® (350 mg/ml) were 
used. If possible, venous access for injection was estab-
lished in the antecubital fossa; otherwise, it was established 
in the hand. Dose, speed and injection time were all patient 
dependent and determined according to the recommenda-
tions of the manufacturer of the contrast media.

Image analysis

Due to the different image rescale intersects in the scanners, 
we performed normalization of the attenuations to the same 
scale, ranging from −1024 (air) to a variable upper attenu-
ation limit. No other preprocessing was carried out on the 
initial images.

Table 1  Patient dataset characteristics (empty fields are from non-
existent information)

Age Sex Stenosis (%)

Left Right

1 56 F 95
2 85 M 70 70
3 76 F 75
4 71 M 70 80
5 55 M 90 60
6 73 F 70
7 80 M 85 73
8 73 M 60
9 73 M 0 0
10 59 M <50
11 67 M 50 <50
12 35 M 100
13 49 M 0 0
14 57 M 0 0

1 3
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These processing steps produce a volume with only one 
or a few very specific structures (Fig. 2D). If there is more 
than one candidate for TP, the distances of each object cen-
troid from the center of the volume (DCV) will be com-
pared. The centrally located object is chosen to represent 
the real TP.

The floor of the nasal cavity is exploited to limit the 
carotid detection in the z-axis. The nasal cavity can be 

boundary allows for the clearing of small objects while 
the uppermost boundary allows for the clearing of objects 
such as lungs, nasal cavity, sinuses, bed-patient space, and 
other foreign objects. Since two patients presented with 
a collapsed trachea or were intubated, the values had to 
include the endotracheal tube in the final TP model. The 
criterion for this event was the detection of an abrupt area 
reduction.

A B

DC

A

B

D

C

Fig. 1  Two-step (airway detection and carotid identification) analysis scheme for carotid identification in CTA (example intermediate results A, 
B, C and D)
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3D rendering, and (iii) the uppermost slice for the carotid 
artery detection.

Carotid identification

The detection of the carotids requires morphological opera-
tors and a decision process to select the true positives among 
all the potential candidates. The substeps for carotid identi-
fication are presented in Fig. 3.

Due to the contrast concentration of 25–30 HU per mg/
mL and the voltage of 100 kV, the lumen has an attenuation 

identified in a specific slice through the presence of mul-
tiple objects whose areas differ more than 10 % from the 
TP identified object in the previous slice. Thus, the airway 
volume is restricted between the lowest slice and the slice 
where the floor of the nasal cavity appears. Depending on 
the patient’s positioning, this subset includes 60–75 % of the 
initial slices. After the TP detection, the coordinates of the 
trachea centroid are extracted from each slice to be applied 
in the carotid detection.

The final outputs of the airway detection are (i) the slice-
wise centroid coordinates of the TP, (ii) the TP volume for 

A B

DC

A

B

DC

Fig. 2  Airway (TP) detection 
scheme in CTA (DCV dis-
tance to the center of volume) 
(example intermediate results A, 
B, C and D)
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attenuation values. The attenuation of the lumen depends on 
various parameters (contrast agent concentration, acquisi-
tion machine, etc.), on patient features (size, weight, fat con-
tent), and on the vessel anatomy, complexity, and tortuosity. 
The object properties (descriptors) chosen for this evalua-
tion were based on the morphology of each object2 as well 
as the Euclidean distances3 (i) from each object to the center 
of the trachea and (ii) from each object’s border element to 
its center.

The object descriptors comprise: (i) border distance 
variance (BDvar), defined as BD Var dist P Pobject

var
oc ob= [ ( , )] , 

where Poc and Pob  are the object centroid and each border 
pixel coordinate, respectively; (ii) distance to trachea (DT ), 
defined as DT dist P Pobject oc traq= ( ), , both the centroid coor-
dinates for the object and for the trachea, respectively; (iii) 
shape factor [29] (SF ), calculated by.

2  Matlab function: regionprops (image, properties).
3  Matlab function: pdist2(X1, X2) (expressed as dist in this manu-
script).

SF
Area

Perimeter
object

object

object

=
× ×4

2

π
;

of 340 ± 74 HU [27]. Consequently, the attenuation values 
are constrained to the range 200–450 HU in order to exclude 
other tissues, noise and foreign objects (Figs. 1A, B, 3A). 
Moreover, this attenuation constraint allows for the saving 
of memory and clears the bolus and washing effect.

The TP center coordinates (as determined in the “Airway 
Detection” step) are used to create a circular region of inter-
est (ROI) in each slice with a radius of 1/5 (defined empiri-
cally) of the total image size. In our dataset, the mean radius 
is approximately 4 cm. All the objects potentially represent-
ing the carotid artery are assumed to be located inside this 
ROI (Fig. 3B).

The lumen area is defined by an object area filter with 
the diameter range 2–6 mm (mean: 4 mm and area 13 mm2) 
[28]. This represents an area of between 30 and 300 pixels. 
Such a hard attenuation threshold poses the risk of losing 
pixels inside the lumen. To reconstruct these pixels, the 3D 
model is rebuilt, converted to a binary matrix, and the holes 
filled. The union of this model with the original reconsti-
tutes the empty pixels and so assures a model without holes 
(Fig. 3C).

The process continues with the identification of the 
carotid arteries, which should not be primarily based on the 

A B

C

A

B

C

D

D

Fig. 3  Carotid identification scheme in CTA (example intermediate results A, B, C and D)
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the branching of the right carotid artery from the brachioce-
phalic artery) and their coordinates.

The same methodology is applied for the detection of the 
uppermost CTA slice representing the ICAs before the fusion 
with the circle of Willis. Using the areas and centers obtained 
during the detection of the airway, the analysis is restrained 
between the lowest slice and the topmost singular element in 
the TP model. To reduce the amount of data in the process, 
only pixels located closer than 7  cm from the trachea are 
accepted for finding the carotids in each slice. For the area-
based filtering, a diameter range of 1–4 mm [6] is applied. 
The lower range limits are for the low resolution of carot-
ids near the cranium entrance. The eccentricity (ECC) of the 
carotids is limited to 0.7. This analysis is performed from the 
top-down, slice-by-slice. For the identification of the ICAs 
in the uppermost CTA slices, four out of the five descriptors 
with distinct weights (Table 2) are applied: BDvar, DT, SF 
and Area. As the objects areas are small, the ECC is even fur-
ther more non-descriptive of the carotid arteries and there-
fore not used.

To compare the performance of the proposed protocol with 
that of the manual seed placement, four trained operators iden-
tified the location of both carotid arteries between the thorax 
area and the circle of Willis. The lowest slice is only consid-
ered after the branching of the right CCA from the brachioce-
phalic artery. These seeds were considered the true location of 
the carotid vessels. A special software program, “SeedsTool”, 
was created for this manual seeding task (Fig. 4).

Presentation of results

The numerical results of this analysis are obtained from the 
lowest and uppermost slices where both carotid arteries are 
identified. To evaluate the viability of the methodology, the 
centroids and slice numbers from the manual and automatic 
identification are compared using the two-sided Wilcoxon 
rank sum test. The p-values4 are calculated and all p-values 
of less than 0.05 are considered statistically significant.

4  Matlab function: ranksum.

(iv) area (A); and (v) eccentricity (ECC). ECC is defined as 
the ratio of the distance between the foci and the major axis 
of the ellipse fitted on each object. ECC ranges from 0 (for 
a circle) to 1 (for a segment). As this calculation is based on 
an elliptic fitting, it is prone to over- or under-estimate the 
true area and shape of the object.

The aforementioned descriptors are applied to assign a 
score ( )Scoreobject  to each carotid candidate in the interval 
[0, 1] (0 noise, 1 perfect candidate) according to

where P represents the pth descriptor, and wp the weight 
associated to the pth descriptor, while bp  is attributed 
according to

and τP  is the threshold for the pth descriptor’s inclusion in 
the final score.

The weights, wp, were hand-tuned based on the acknowl-
edgement that certain descriptors are more representative 
than others for a carotid artery. ECC has a weight of only 
0.06 since an elliptic shape is forced onto the subject, while 
BDvar has a weight of 0.25 considering that a circular carotid 
artery has a very homogeneous distance between the cen-
troid and all the edge pixels. The inclusion conditions τP  are 
represented as threshold or threshold ranges. Table 2 repre-
sents wp and τP .

The two objects with the highest scores are chosen as 
the carotid candidates (Fig. 3D). To finally confirm that 
they truly represent the carotid arteries, they are evalu-
ated and accepted if (i) the two objects are located on 
opposite sides with respect to the trachea (symmetry 
landmark), (ii) the coronal coordinates distance is less 
than 5 cm, and (iii) their attenuation values differ by less 
than 100 HU.

The final outputs of the carotid identification step are the 
lowest slice where the carotid arteries appear (usually above 

Score w bobject P
P

P= ×∑

b
if complies with

otherwisep
P=





1

0

,

,

τ

Table 2  Decision descriptor weights (wp) and thresholds (τP ) for the detection of the lowest and uppermost slice with carotid arteries

Lowest slice Uppermost slice

wp τP wp τP

BDvar 0.25 BDvar < 1 0.25 BDvar < 1
DT 0.19 2 cm ≤ DT < 5 cm 0.19 DT ≤ 7 cm
ECC 0.06 ECC < 0.6 Not used Not used
SF 0.40 SFobj ≥ mean (SFall obj) 0.46 SFobj ≥ mean (SFall obj)
A 0.10 A ≥ 13 mm2 0.10 A ≥ 3 mm2

BDvar border distance variance, DT distance to trachea, ECC eccentricity, SF shape factor, A area
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Table 4 reports the relative difference between the auto-
matic and manual seeding processes: (i) for the z-coordi-
nate +24 slices (overestimation of the lowest slice) and −70 
slices (underestimation of the uppermost slice); and (ii) for 

For each carotid location (lowest and uppermost), 
the carotid side seed point coordinates (x, y and z as 
slice) are averaged over all operators (Op) and the left 
and right values concatenated into a single column 
for the p-value calculation. These values are consid-
ered as the base value for the relative error calculation. 
The percentage coefficient of variation (CV ) is the met-
ric used for inter-operator variability and is defined as 
CV STD Op Mean Opalgorithm = × ( ) ( ) 100 1 2 3 4 1 2 3 4, , , , , ,/ .  The 
3D lumen renderings are constructed by applying region 
growing [30]. The maximum difference (threshold) used 
to prevent the leakage of the growing region is defined as 
three times the standard deviation of the attenuation values 
from the calculated carotid seeds and applied in the lumen 
volume. The regions are grown from both the lowest and 
uppermost seeds. This prevents a high stenotic plaque from 
stopping the development of the region.

Results

The proposed protocol was successful in detecting and seg-
menting the TP volume in all the patients. Specifically, the 
detection rate was 75 % for the lowest slices and 71 % for 
the uppermost slices. Table 3 presents the detection perfor-
mance for each patient.

Figure 5 shows the carotids and the airway centers as pin-
pointed in two illustrative patients.

Table 3  Performance matrix for the automatic detection of the carotid 
arteries

Patient Lowest slice Uppermost slice

Right Left Right Left

1 X
2 X
3 X X X X
4 X X X X
5 X X X X
6 X X
7 X X X
8 X X X X
9 X X X
10 X X X
11 X X X X
12 X
13 X X X X
14 X X X
Detection rate (%) 75 71

X carotid correctly detected

Fig. 4  SeedsTool interface for 
manual seed positioning
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leakage to the hyoid bone originated from the region grow-
ing process. The right carotid artery’s lowest seed slice 
was not identified. In this particular case, the initial seed 
was identified in a higher slice, thus also providing the 
necessary data for the reconstruction of the lowest artery 
volume.

The mean time necessary to process one patient is 167 s 
for the protocol and 386  s for the operators. Both values 
encompass (i) patient data loading, (ii) TP detection (only 
for the protocol), (iii) slice detection, (iv) seed positioning 
and (v) coordinates saving. The mean time needed by the 
protocol for the sole identification of the uppermost and 
lowest slices (and their coordinates) is 12 s (4 s for the low-
est and 8 s for the uppermost slice).

Discussion

While the previous work [6] focused in a semi-automatic 
(manual single seed point) segmentation of the carotid ves-
sels (lumen) and in an automatic segmentation of the carotid 

x- and y-coordinates +1 % (lowest seeds) and −1 % (upper-
most seeds).

The mean number of slices was 286 for our method, cor-
responding to 18 cm in the GE LightSpeed scan and 14 cm 
with the Philips CT scan. The manual identification pro-
duced a mean of 380 slices (23 and 20 cm respectively) cor-
responding to a +35 % difference.

The inter-operator variability expressed by the CV is 
(MINIMUM, AVERAGE, MAXIMUM): (0, 1, 3 %) for the 
lowest and (0, 2, 5 %) for the uppermost carotid seeds. The 
mean p-values for the protocol versus operator comparison 
on the seed coordinates are p = 0.25 for the lowest seeds and 
p = 0.33 for the uppermost seeds (Table 5). For the full anal-
ysis, it is p = 0.29.

Figure 6 depicts the carotids and airway 3D models 
constructed during the analysis. Patient 3, having a severe 
stenosis (75 % occlusion in the right carotid artery, no data 
available for the left stenosis), is illustrated in Fig. 6A with 
a clearly visible plaque on both sides (sparse points in 
space). Figure 6B renders patient 7 (85 and 73 % occlusion 
in the left and right carotid arteries, respectively) where a 

Fig. 5  Lowest and uppermost 
slice carotid locations (+, 
carotids; *, airway) detected by 
the protocol for patients 3 (A) 
and 7 (B)
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area in the detection of the carotid vessels. The comparison 
between AnitA and our protocol shows that ours obtains a 
lower performance (75 % vs. 88 %) in terms of the lowest 
carotid detection. This difference can be explained by mul-
tiple factors such as different patient images (quality, reso-
lution, artifacts, etc.) but also by the intrinsic characteristics 
of the two protocols. AnitA not only applies edge enhancing 
before the Hough transform to improve the image contrast 

vessel wall [22], the present work focuses on the automatic 
detection of the carotid vessel in CTA images.

Our goal is to apply this method in the anatomical assess-
ment of atherosclerotic lesions in clinic. CTA is mainly used 
for the functional (blood flow) assessment of atherosclero-
sis and it is one of the most common imaging modalities. 
Our protocol was developed using only clinical diagnostic 
images with their inherent hindering low resolution. The 
detection method here proposed is another step forward 
in achieving full automation of the atherosclerotic burden 
study. The detection pipeline presented here allows for the 
correct detection (compared with manual seeding) of 75 % 
of the CCA and 71 % of the ICA.

The method for the detection of the tubular structures is 
critical for the identification of carotid arteries. We did not 
follow the procedure suggested by Atherton et al. [12] (Mat-
lab® function imfindcircles) for two reasons. First, it does 
not allow the detection of circles smaller than 5 pixels radius 
(rmin ) and, second, its optimal radius range ( r rmax min< ×3 ) 
is too narrow for the identification of carotid arteries.

The AnitA method proposed by Sanderse et al. [16] 
exploits the shoulder plates as the landmark. We chose to 
use the TP as the landmark in our approach because this 
structure is present throughout the studied volume. This 
allowed the use of the TP volume as a guideline for the ROI 

Table 4  Relative difference between automatic and manual seeding 
for the lowest and uppermost

Patient Lowest Uppermost

Slice Coordinates (%) Slice Coordinates (%)

1 +8 +2 −35 −3
2 −12 +3 −167 +10
3 +39 +1 −47 −3
4 +36 −4 −115 −4
5 +1 0 −158 −4
6 +28 +2 −83 −6
7 +23 +2 −41 −2
8 +54 −3 −12 −1
9 −8 −1 −50 −2
10 +139 +6 −37 0
11 +60 −1 −55 −1
12 +19 −4 −69 +5
13 −45 +2 −86 +2
14 −12 +4 −32 0
Mean +24 +1 −70 −1

Table 5  p-values for the uppermost and lowest slice seeding

x y Slice (z) Mean

Lowest 0.47 0.21 0.07 0.25
Uppermost 0.89 0.10 0.00 0.33

Fig. 6  Carotid and airway renderings for patients 3 (A) and 7 (B). 
CCA common carotid artery, CB carotid bifurcation, ICA internal 
carotid artery). A Atherosclerotic plaque volume (marked by elliptical 
area) in the CB and initial ICA region. B A spillage of the ICA in the 
hyoid bone. The right lowest seed was not found and so the volume is 
determined based on the right uppermost ICA seed
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We believe that by applying the proposed automatic pro-
tocol, the detection, and assessment of atherosclerotic dis-
ease in the carotid arteries can be improved.

Conclusion

We have presented a novel, fully automatic, protocol for the 
detection of the carotid arteries in the thorax and neck area. 
The performances achieved are 75 and 71 % respectively, 
with a total processing time of 167 s per patient. Not all the 
carotid arteries were successfully detected, but compared to 
the manual method, the reported results are encouraging.
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Abstract
The diagnostic imaging techniques currently used to evaluate the arterial atherosclerosis hinge on the manual marking and 
calculation of the stenosis degree. However, the manual assessment is highly dependent on the operator and characterized by 
low replicability. The study aimed to develop a fully-automated tool for the segmentation and analysis of atherosclerosis in 
the extracranial carotid arteries. The dataset consisted of 59 randomly-chosen individuals who had undergone head-and-neck 
computed tomography angiography (CTA), at the Tampere University Hospital, Tampere, Finland. The analysis algorithm 
was mainly based on the detection of carotid arteries, delineation of the vascular wall, and extraction of the atherosclerotic 
plaque. To improve the vascular detection rate, the model-based and volume-wide analytical approaches were deployed. A 
new fully-automated vascular imaging (VASIM) software tool was developed. For stenosis over 50%, the success rate was 
83% for the detection and segmentation. Specificity and sensitivity of the algorithm were 25% and 83%, respectively. The 
overall accuracy was 71%. The VASIM tool is the first published approach for the fully-automated analysis of atherosclerosis 
in extracranial carotid arteries. The tool provides new outputs, which may help with the quantitative and qualitative, clinical 
evaluation of the atherosclerosis burden and evolution. The findings from this study provide a basis for the further develop-
ment of automated atherosclerosis diagnosis and plaque analysis with CTA.

Keywords  Carotid atherosclerosis · Angiography · Computer-assisted image analysis · Computer-assisted diagnosis

Abbreviations
CCA​	� Common carotid artery
CT	� Computed tomography
CTA​	� Computed tomography angiography
CVAs	� Cerebrovascular accidents
CVDs	� Cardiovascular diseases

ECA	� External carotid artery
HU	� Hounsfield unit
ICA	� Internal carotid artery
MRI	� Magnetic resonance imaging
NASCET	� North American Symptomatic Carotid Endar-

terectomy Trial
SD	� Standard deviation
TAYS	� Tampere University Hospital
VASIM	� Vascular imaging

Introduction

Cardiovascular diseases (CVDs) are the leading cause of 
death worldwide. According to the World Health Organi-
zation, in 2012, 37% of premature deaths were caused by 
CVDs. This translated to 17.5 million deaths, of which 
6.7 million were due to cerebrovascular accidents (CVAs) 
[1, 2]. Majority of CVAs are ischemic strokes, caused mainly 
by atherosclerosis.
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Existing research recognizes the critical role of early 
diagnosis and treatment of atherosclerosis in CVDs mor-
tality prevention [3]. A considerable amount of literature 
has been published on diagnostic accuracy that has been 
improved by new imaging techniques, image processing, and 
image analysis methods [4, 5].

Computed tomography angiography (CTA), is a common 
modality for imaging the carotid arteries. Currently, evaluat-
ing atherosclerotic lesions is based on the degree of maximal 
luminal stenosis, and the composition and morphology of 
the plaque [6–8]. However, assessment of these parameters 
is performed manually.

The manual assessment has several major limitations, 
including operator dependency, long analysis time, ques-
tionable analysis dependability and repeatability [9]. It has 
been reported that the inter- and intra-operator variability 
(coefficients of variation) for plaque area measurements 
were 19% and 8%, respectively [10]. Despite these major 
limitations, manual stenosis level measurement, e.g., using 
the North American Symptomatic Carotid Endarterectomy 
Trial (NASCET) [11] criterion, remains the main accepted 
metric for determining the urgency of prevention and treat-
ment. There remains a need for a fully-automated method of 
carotid artery analysis, providing both satisfactory running 
time and reliability.

The previous research by the authors has established: (i) 
the initial semi-automated segmentation of the carotid arter-
ies based on manual seeding [6], (ii) the fully automated 
detection of the carotid arteries allowing to avoid manual 
seeding [9], and (iii) the automated carotid walls contour 
segmentation [12].

The main aim of this study was to develop a fully-auto-
mated tool for atherosclerosis segmentation and analysis 
in the carotid arteries. This paper describes the design and 
implementation of a new vascular imaging (VASIM) soft-
ware tool, which is a fully-automated and structured integra-
tion of all methods previously established by the authors.

Materials and methods

Study population

The source population for this study were patients obtained 
from the Tampere University Hospital (TAYS), Tampere, 
Finland, between the January 1st, 2008 and December 
31st, 2015. The study population was recruited retrospec-
tively from the TAYS database. All patients were selected 
randomly.

Inclusion criteria were defined a priori as follows: a 
patient with at least one head-and-neck CTA scan (i.e., aorta 
arch to skull apex). The exclusion criteria were defined as: 
patients with CT scan only (without CTA); patients with 

incomplete medical records, i.e., without sufficient data on 
CTA technical information.

From the TAYS patient’s population, all were randomly 
selected and the final study population consisted of 59 
patients (N = 59): 34 men (58%) and 25 women (42%). The 
mean age was 64 years (standard deviation (SD) 14), ranging 
from 12 to 83 years.

Head-and-neck CTA scans of all 59 individuals were ret-
rospectively reassessed, and the stenosis levels were manu-
ally calculated according to the NASCET criteria. Subse-
quently, based on the level of stenosis, individuals were 
included in one of the two groups—cases or controls. Cases 
were defined as individual carotids with stenosis ≥ 50%. 
Controls were all individual carotids with stenosis < 50%.

The study was approved by the Ethical Committee of 
Pirkanmaa Hospital District, Tampere, Finland (decision 
number R07210).

Imaging

CTAs were performed using helical, 64-slice, multide-
tector CT scanners; either a General Electric LightSpeed 
(slice thickness 1.25 mm; increment 0.5–0.7 mm; pixel size 
0.6–0.7 mm; 120 kVp; 130–327 mAs) or a Philips Brilliance 
CT 64-slice (slice thickness 1 mm; increment 0.5 mm; pixel 
size 0.42–0.49 mm; 120 kVp; 178–243 mAs). All of the 
images were exported in DICOM® standard, as a 512 × 512 
matrix.

To improve carotid artery contrast, one of the follow-
ing CTA contrast media was used: Iomeron® 350 mg/ml, 
Omnipaque® (350 mg/ml; General Electric), and Xenetix® 
(350 mg/ml; Guerbet). They were administered intrave-
nously (ulnar or palmar vein), in accordance with the manu-
facturers’ instructions.

Image analysis

VASIM’s image analysis algorithm was divided into five 
consecutive stages: (i) loading of the patient’s stack; (ii) 
carotid arteries detection, subdivided into airways segmenta-
tion and carotid segmentation; (iii) vascular wall delineation; 
(iv) atherosclerotic plaque extraction; (v) metrics, 2D tissue 
masks, 3D model calculation, and rendering. Figure 1depicts 
the general analysis diagram followed by VASIM.

Automatic detection of carotid arteries

The detection methodology was explained on an example 
of the Patient 3 (75 years-old male). This patient had previ-
ously suffered a transient ischemic attack, and had arterial 
hypertension and hyperlipidemia history. Carotid arteries 
component evaluation detected a plaque of mixed nature 
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(fibrosis, lipid pool, and calcification) located in the right 
internal carotid artery (ICA), causing a 75% stenosis.

Airways segmentation  As in the previous study of the 
authors [9], the first step of the carotid arteries detection 
was creating an anatomical landmark, based on the upper 
respiratory tract (i.e., above the sternal angle) (Fig.  1a.1). 
The image analysis was restricted to the level of the auditory 
tube opening, which approximates the carotid canal level.

Airways provided the axis for a cylindrical volume-of-
interest. This enabled the detection of vascular trees rather 
than slice-wise circular structures. To create the airways 
models, a hard threshold of − 500 Hounsfield units was 
applied. To exclude the air surrounding a patient, objects 
connected to the volume borders were discarded. Figure 2 
shows an example of airways model for the Patient 3.

Additionally, the airways landmark enabled normalizing 
the dataset by the patient’s body size.

Automatic segmentation of  the  carotid vessel  During the 
automatic analysis of CTA neck cross-sections, several 
structures can be misclassified as the carotid arteries, e.g., 
feeding tubes, needles, and jugular veins.

In the previous study [9], the algorithm identified carotid 
arteries between two anatomical structures: brachiocephalic 
artery bifurcation and circle of Willis. However, that method 
was dependent on manual seeding and parameterization. 
Therefore, here, a new method based on a fully-automated 
volume-of-interest analysis is presented.

In the first stage, a tilted cylinder (radius of 5 cm) was 
created around the airways, on the section between the most 
proximal and distant CTA slices. Subsequently, the result-
ant model was cleaned from lower attenuation tissues (e.g., 
lipid pools), using MATLAB’s native isovalue function. The 
airways divided objects into the right and left side. The divi-
sion enabled estimation of their interconnectivity. Single, 
uncompromised arteries were accepted as the final model. 
In the case of completely occluded arteries, their continuity 
was assessed distantly to the occlusion (Fig. 1a.2).

Sporadically, after thresholding, the algorithm presented 
objects that crossed the sagittal plane of the airways. Exam-
ples of such objects were the mandible and hyoid bone. The 
contrast between arteries and objects mentioned above may 
be insufficient to distinguish these structures. Figure 3 pre-
sents an example of a horizontal object (thyroid cartilage) 
connecting both arterial trees into a single volume.

The separation of the carotids and other objects was 
divided into the following steps: (i) volume skeletonization 
[13], (ii) skeleton nodes (branching points) location and 
removal, (iii) vertical degree evaluation of each resultant 
object, (iv) non-vertical removal, and (v) reconstruction of 
arterial trees using the acquired volume skeleton and the 
original 3D model. The bounding box dimension of each 

object was used to determine the vertical degree. Every 
object with a z/x-axis or z/y-axis ratio < 1.5 was discarded 
from the volume.

Fig. 1   VASIM protocol diagram
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The current methodology and handling of possible hin-
drances resulted in two carotid models. Each artery skel-
eton was recalculated and used to define the carotid area 

perpendicularly to the vascular curvature. This prevented 
incorrect cross-sections, e.g., in horizontal branches of the 
ICA.

To ensure contradistinction between the common carotid 
artery (CCA), ICA, and external carotid artery (ECA), the 
algorithm initially detected the CCA bifurcation. The bifur-
cation location was defined as the most proximal cross-sec-
tion where the number of objects increased from one to two, 
and the distance between their centroids was smaller than 
< 1 cm. The latter rule prevented potential errors caused 
by loops in the distant segment of the artery. The separa-
tion between ECA and ICA was conducted using the verti-
cal degree threshold as previously used in the separation 
between arterial tree and surrounding objects.

Segmentation of the outer carotid wall

To calculate the vascular wall thickness the lumen and 
carotid wall boundaries were delimitated. A method based 
on morphological operators and edge enhancers/detectors 
was used (Fig. 1b) to define the boundary of the carotid wall. 
This method was described in detail in a previous study by 
the group [12].

Fig. 2   Segmented airways for 
Patient 3 (seen from the anterior 
plane)

Fig. 3   Example of thyroid 
region spillage (Patient 3). a 
Two carotids visible with a 
horizontal structure joining both 
arteries into the same volume. 
b Model’s skeleton. c Verti-
cal elements of the skeleton. d 
Resulting model after connect-
ing vertical objects’ centroids in 
the original model
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Plaque volume extraction

For segmenting the carotid plaque and assessing its mor-
phology, a new method was developed. This was accom-
plished similarly to the airways segmentation. However, 
the threshold value was defined using the histogram of the 
maximum-intensity projections on the three axes. In each 
maximum-intensity projection, a threshold value based on 
the Otsu method [14] was calculated. Subsequently, the three 
values were averaged and applied to the 3D volume. The 
automatic threshold was deployed to address high variability 
in patient atherosclerosis level, which demanded a higher 
adaptability from the method. This considerably reduced the 
time required for plaque segmentation compared with the 
previously deployed algorithm [13] (Fig. 1c). Following this 
processing, a 3D rendering of the three major components of 
the carotid was produced. It presented lumen, the vascular 
wall, and any possible atherosclerotic plaque. Example of 
such a presentation is shown in Fig. 4. The plaques were 
poorly visualized as they are always located between the 
lumen and the outer vascular wall. Therefore, they were 
modeled in Fig. 4c with the open lumen path.

Metrics evaluated

The current protocol allows side-wise extraction of the fol-
lowing metrics: the minimum lumen area in the region of 
interest; the maximum area percentage occupied by the arte-
rial wall in a slice; the maximum area percentage occupied 
by the plaque; and the maximum stenosis of the carotid 
artery calculated by the algorithm (Fig. 1d). Moreover, loca-
tion-specific stenosis can be calculated for the CCA, ICA, 
and ECA. In our study, the region of interest was comprised 
of the CCA and ICA models, which were used for stenosis 
calculation. All of the stenosis values are calculated accord-
ing to the NASCET criteria, i.e., one minus the minimum 
lumen area in the region of interest divided by the assumed 
healthy lumen area in the region of interest. Prior to the 
NASCET stenosis calculation, the equivalent diameter of 
the perpendicular-corrected section of the vessel model was 
calculated.

Following the development of the automated stenosis 
assessment with the VASIM methodology, the data on man-
ually calculated stenosis values were obtained from medi-
cal records. The manual assessment was performed by an 
experienced radiologist beforehand, which ensured blinding 
to the VASIM results. Subsequently, the absolute difference 
between the manually and automatically calculated stenosis 
values was computed. Only arteries with both manually- and 
automatically-determined stenosis percentages were taken 
into consideration for the statistical calculations.

The classification as a case or control (binary classifi-
cation test) was based on the manually assessed level of 

stenosis. According to the NASCET, the demonstrated, 
conclusive benefit for carotid endarterectomy is observed 
in patients with symptomatic 70–99% ICA stenosis [11]. 
Notwithstanding, in this study, the cut-off point between 
cases and controls was stenosis of 50%. The justification for 
this cut-off point was the fact, that according to the European 

Fig. 4   Full rendering of the carotid structures (Patient 3). a Carotid 
walls (green). b Overlay of the semi-transparent lumen (red) and 
carotid open pathway (dotted blue line). c Carotid open lumen path-
way (dotted blue line) and calcified plaque elements (blue volumes)
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Association of Vascular Surgery endarterectomy is more 
appropriate for symptomatic 50–99% stenosis patients, and 
for asymptomatic 70–99% stenosis patients [15].

Furthermore, sensitivity, specificity, and accuracy of our 
method were assessed. The VASIM performance was evalu-
ated based on the tissue segmentation success rate, varia-
tion between manually and automatically calculated stenosis 
values, and the total analysis time. The Pearson’s coefficient 
was used for hypothesis test evaluation. The success of the 
segmentation was determined visually by the operator. The 
assessment was based on volume comparison and segmenta-
tion masks with the image stack for the verification of the 
correct tissue detection and segmentation (airway, lumen, 
wall, and plaque).

The atherosclerotic plaque accuracy evaluation based 
on the comparison with histopathology was not performed. 
It was previously demonstrated, that both endarterectomy 
procedure and pre-histopathological preparation affect the 
plaque’s morphology. Hence, the comparison between the 
in-vivo CTA plaque and the ex-vivo sample is impossible 
[16].

Finally, a user-friendly and intuitive graphical interface 
was developed.

VASIM and its underlying algorithms were developed 
and tested on a Lenovo workstation (Lenovo W541, Win-
dows 7 Enterprise, 64 bits, 4 2.80 GHz, 32.0 GB RAM) 
equipped with the MATLAB (version R2017a, Image Pro-
cessing Toolbox version 10.0, Signal Processing Toolbox 
version 7.4, and Statistical Analysis and Machine Learning 
Toolbox version 11.1).

Results

In this study, a new VASIM software tool was designed, 
developed, and used to assess atherosclerosis in the CCA 
and the cervical segment of the ICA.

The overall tissue segmentation (lumen, wall, and plaque) 
success rate was 83%, equivalent to 49 out of 59 correctly 
identified carotids. The average absolute difference between 
the manual and automated stenosis calculations was 37% 
(95% confidence interval 29–46%) (Tables 1, 2). The p-value 
for the automated and manual analysis was 0.2976.

Forty-two atherosclerotic plaques were identified in the 
study population (Table 1). Forty of them were located in 
the ICA, and two in the CCA. Based on the morphology, the 
plaques mentioned above can be classified into the following 
categories: 13 of mixed nature, 23 calcified, two ulcerated, 
two soft tissue, and two irregular.

VASIM’s overall accuracy was 71%. The average time for 
the whole procedure (loading of patient’s volume, airways 
segmentation, carotid detection and segmentation, vascu-
lar wall and plaque segmentation, quantitative results, 3D 

modeling, and saving of results) was 1381 s. The average 
analysis time was 1.62 s per slice. The number of slices 
was different for each patient. Table 2 presents the summary 
statistics for the stenosis metrics.

The detected carotid arteries were subsequently classified 
into two groups, i.e., stenosis < 50% and ≥ 50% (Table 3). 
The 32 manually-detected ≥ 50% stenoses were compared 
with the automated analysis performed with the VASIM.

In cases of stenosis ≥ 50%, the sensitivity and specificity 
were 83% and 25%, respectively. The confusion matrix used 
in the metrics calculation is presented in Table 4.

The VASIM interface provided three main functions 
(Fig. 5a): patient image stack loading, analyzing the data, 
and creating a 3D model. The facultative “Model” function 
allowed to obtain a 3D model, based on current window and 
level values. In Fig. 5a, the “Analyze” button is hidden as the 
analysis of the image was completed.

The user interface presented information on the patient 
and imaging parameters (Fig. 5b). Additionally, it showed 
values of the maximal stenosis for each carotid artery 
(Fig. 5c). Furthermore, the VASIM interface allowed the 
user to create an overlay of the segmented structures (wall 
and plaque) using both 2D and 3D lumen models (Fig. 5d).

The bottom panel of the VASIM interface provided a his-
togram, and image controls, which allowed to change the 
2D image stack visualization (Fig. 5e). The right side of 
the panel D presented a linearized arterial view (Fig. 5d). 
The panel F (Fig. 5f) provided multiple color maps options, 
which enabled tissue contrast regulation.

Discussion

This research aimed to develop a fully-automated tool for 
the segmentation and analysis of atherosclerosis in the CCA 
and ICA cervical segments. The main result of the study is a 
new VASIM software tool. To the authors’ knowledge, the 
VASIM is the first fully-automated, and user-independent 
tool for carotid arteries CTA images analysis.

In this study, the approaches previously presented by 
the authors in [6, 9, 12, 16] were revised, improved, and 
structured. The reliability of the methods mentioned above 
increased and the computational time for VASIM was 
reduced.

The new method presented in the study allows skipping 
the initial and final seed positioning. Unlike in our previ-
ous studies, finding two 3D objects in a given volume was 
unnecessary. This enabled the analysis of images of patients 
with complete occlusion. Also, the 3D object identification 
was improved by removing the need to find similar objects 
bilaterally to the central volume. Contrary to the previous 
methodology, it was possible to include arteries with loops.
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Table 1   Detailed information about age, sex of patients, localization and morphology of atherosclerotic plaque, and VASIM performance com-
pared with manual stenosis calculation

Patient Age Sex Location of the 
plaque

Composition of 
the plaque

Stenosis 
according to 
VASIM (%)

Stenosis 
according to 
the operator 
(%)

Absolute dif-
ference (%)

Plaque volume 
(mm3)

Time (s)

Left Right Left Right Left Right Left Right Left Right Left Right Total Per slice

1 – F 0 71 122 94 1211 2.3
2 83 M ICA ICA C, Irr C, Irr 83 81 79 76 4 5 2879 1229 2286 3.8
3 75 M ICA ICA C C 0 92 29 75 29 17 0 867 1.9
4 70 M ICA ICA C C 96 76 19 79 77 3 806 880 381 0.6
5 54 M ICA M 0 87 78 78 662 134 0.3
6 72 F ICA ICA S M 0 76 90 58 90 18 22 23 787 1.8
7 79 M ICA M 100 97 70 27 232 260 426 0.7
8 72 M ICA ICA C C 34 65 85 73 51 8 0 0 687 2.3
9 73 M
10 59 M 67 0 707 682 1744 1.8
11 67 F ICA ICA M C 47 97 69 74 22 23 680 762 2185 2.1
12 34 F 60 89 100 40 185 176 1956 1.7
13 49 F 1063 870
14 56 M 100 100 274 138 1403 1.5
15 59 F 91 80 11 1085 277 930 0.9
16 78 F 15
17 50 F 63 89 3926 4048 3133 3.9
18 81 F ICA M 71 100 53 72 18 28 272 630 471 0.5
19 78 F ICA ICA C M 2 36 2 36 261
20 56 M 0 61 553 651 1977 2.2
21 60 M 0 97 459 1381 588 0.5
22 83 M 8
23 71 F ICA ICA C C 99 100 72 74 27 26 2013 1508 948 0.9
24 75 M 65 45 2608 2.9
25 72 M ICA C 100 92 16 76 1007 863 785 0.8
26 62 M CCA​ ICA C C 96 95 13 82 822 1320 522 0.6
27 77 M ICA S 90 100 40 50 395 659 686 0.7
28 72 F 58 0 839 578 2004 2.2
29 12 F 0 0 222 0.5
30 66 F 64 0 1117 926 2126 1.9
31 72 M 52 94 3385 886 0.9
32 69 F CCA​ C 100 86 80 20 620 507 1442 2.9
33 56 M 75 100 44 78 391 0.6
34 69 F
35 43 F 96 1244 4266 4.6
36 70 F ICA ICA C C 80 100 80 100
37 55 M ICA ICA M 95 95 83 77 12 18 183 26 387 0.4
38 77 M 100 1234 1174 699 0.7
39 81 F 84 100 1306 0 305 0.3
40 45 M
41 66 M ICA M 100 100 80 20 604 0.6
42 77 M 87 885 0.8
43 58 F 70 73 245 186 392 0.7
44 37 M 1458 1471
45 71 M ICA M 88 90 80 8 91 93 4630 4.7
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The presented research adopted a more extensive study 
population (N = 59). The study population enclosed both 
healthy and diseased patients. The presence of healthy 

patients addresses the importance of early diagnosis as a 
preventive measure. Moreover, the control group enabled 
for the software adaptation to low stenosis values, allow-
ing analysis among patients with greater differentiation of 
atherosclerotic lesions. However, higher stenosis levels pre-
sented a higher divergence.

In our study, the carotid areas were measured as the per-
pendicular cross-sections of the lumen to the carotid vessel 
path. We believe that this gives a more specific indicator 
than the diameter measured on an individual slice, which is 
the clinical routine method in the manual analysis. However, 
this complicates the comparison of the methods, and can 
partially explain the difference, which is reported in this 
paper, for manually and automatically calculated stenosis. 
Other possible reasons are as follows: (i) different locations 
used for the minimum area and diameter measurements; (ii) 
the pre-processing of the data before the manual analysis 
[filtering by radiology workstations and manual improve-
ment performed by an operator (e.g., for partial-volume 
effect)]; (iii) different measuring vectors used for manual 
and automatic measurements of the artery diameter.

The algorithm presented in this manuscript is used to 
assess the severity of atherosclerosis in the CCA and ICA 
cervical segments, i.e., from the carotid bifurcation until 
the carotid canal. The anatomical relationship of the ICA 
to the lateral mass of the atlas (C-1) (the location where 
ICA is closest to bone tissue) was assessed by Hoh et al. 

Table 1   (continued)

Patient Age Sex Location of the 
plaque

Composition of 
the plaque

Stenosis 
according to 
VASIM (%)

Stenosis 
according to 
the operator 
(%)

Absolute dif-
ference (%)

Plaque volume 
(mm3)

Time (s)

Left Right Left Right Left Right Left Right Left Right Left Right Total Per slice

46 73 M ICA C 99 90 28 71 393 498 0.5
47 55 M ICA U 72 100 42 58 655 565 404 0.4
48 57 M ICA M 81 100 60 21 412 92 553 0.6
49 47 F 79 0 816 215 231 0.3
50 77 F 66 81 2088 343 3375 3.5
51 64 M ICA ICA U M 44 84 44 84 956
52 57 F ICA M 0 30 100 100 1206 1.3
53 73 M ICA 100 61 50 11 4288 543 3911 4.1
54 54 M 74 68 1072 906 3339 3.3
55 47 M ICA ICA C C 0 100 38 63 38 37 143 338 0.4
56 48 F 87 60 2237 2.6
57 76 M 0 63 269 835 1510 1.8
58 75 M ICA M 63 85 80 17 1953 2404 2314 2.3
59 80 F ICA ICA C C 100 100 72 73 28 27 3296 3917 1807 2.2

Sex: M male, F female
Location of the plaque: ICA internal carotid artery, ECA external carotid artery, CCA​ common carotid artery
Composition of the plaque: M mixed plaque, C calcified lesion, U ulcerated lesion, S soft lesion, Irr irregular plaques

Table 2   Summary statistics for the stenosis metrics

Mean SD 

St
en

os
is Manual 65% 22 % 

Automatic 74 % 33 % 
Absolute Difference 33% 29% 

Table 3   Data on the number 
of detected carotid arteries, 
classified by stenosis level

< 50%
stenosis

≥ 50%
stenosis

Manual 11 32
Automatic 19 75

Table 4   Confusion matrix for stenosis over 50%

Manual 
Positive Negative 

V
A

SI
M

 

Positive 25 6 

Negative 5 2 
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[17]. The group studied 100 head-and-neck CT scans. The 
shortest distance between the ICA and lateral mass of C-1 
was 3.5 mm (SD 1.5 mm) and 3.9 mm (SD 1.6 mm) for the 
left and the right ICA, respectively. The minimum size of a 
single pixel in CTA scans analyzed by VASIM ranged from 
0.4 to 0.7 mm, and maximum slice thickness ranged from 
1.0 to 1.25 mm. As the scans were analyzed on pixel-basis, 
no difficulties in distinguishing vertebrae or foreign objects 
from the calcified plaque were encountered.

The new metrics reflecting flow dynamics [18–20] and 
plaque stability may be material for both asymptomatic 
and symptomatic atherosclerosis patients. To date, all stud-
ies in carotid artery flow dynamics area have mainly been 
performed with magnetic resonance [20–24]. Although the 
presented study focuses only on CT techniques, the findings 
may well have a bearing on MRI modalities. In the future, 
the methods used for analysis of CT images with VASIM 
could be applied to MRI interpretation, subsequently to 
adapting the software for that modality. One final possible 
future application of VASIM is the ability to perform patient 
follow-up, both for disease progression and after-surgery 
assessment.

The presented methodology could be expanded to auto-
matically classify plaque composition using attenuation dis-
crimination or texture analysis. The composition is usually 

analyzed by evaluating the plaques’ components, such as 
the lipid pool or the calcified cap. Information on the mor-
phology of the plaque is a factor that modulates urgency for 
surgical treatment. As MRI techniques provide greater soft 
tissue contrast, adapting VASIM algorithm to this modality 
would produce better results in the analysis of the plaque 
composition. Furthermore, because of the more and more 
pervasive role of artificial intelligence in medicine, VASIM 
can have a more prominent role in the fusion of image pro-
cessing and machine learning in medical imaging report-
ing [25–29]. Such developments can lead not only to full 
automation of the analysis but also increasing the feasibility 
of applying such methods in low resource settings, where 
specialists are less frequent or even inexistent. The fusion of 
VASIM with artificial intelligence also has potential in the 
growing field of telemedicine, where it can be applied as a 
preliminary assessment before operator evaluation.

The presented study was characterized by the following 
limitations: dependence on the prior stage of the analysis; 
possible ICA misclassification in case of its total occlusion; 
manual assessment performed by only one operator; improv-
able analysis time; unsatisfactory algorithm specificity.

The main study limitation was dependence on the prior 
stage of the analysis, e.g., if the carotid model was not properly 
acquired, accurate vascular wall segmentation was impossible. 

Fig. 5   VASIM interface (example of Patient 3). a VASIM controls. b Patient’s information. c Stenosis level. d Patient stack, renderings, and lin-
earizations. e Histogram-based window and level controls. f Overlay masks’ control
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Moreover, in the case of total stenosis, the correct determina-
tion of the segment distant to the occlusion was challenging. 
It sometimes resulted in misclassification of the ECA’s distant 
section as the ICA.

Another study limitation was the fact, that the manual ste-
nosis degree evaluation was performed by only one trained 
radiologist, hindering any inter- and intra-operator variability 
assessment. In addition, we did not have an actual gold stand-
ard to check which measurement (manual vs. automatic) was 
the most accurate. Therefore, the only feasible comparison was 
between the manually and automatically measured degrees of 
stenosis.

The average analysis time of 1381 s per patient (1.62 s 
per slice) remains still long. The carotid path tracking was 
the most time-consuming step of the analysis. Moreover, the 
presented methodology involved saving intermediate results, 
which was critical to the time efficiency. Designing a more 
efficient algorithm architecture and coding it in a more efficient 
programming language is crucial. Nevertheless, usually, the 
radiological analysis of images is not performed in real-time, 
allowing the VASIM to be run beforehand.

The VASIM algorithm was somehow oversensitive. 
Although the algorithm sensitivity was 83%, its specificity was 
only 25%. A possible explanation of the oversensitivity could 
be the VASIM’s tendency to force the segmentation of full 
arteries. This might cause occluded arteries to be neglected, or 
misclassification of fibrosis-calcification plaque tissues as the 
lumen. Notwithstanding these limitations, the overall VASIM 
accuracy was 71%.

Despite its limitations, the study certainly adds to the rap-
idly expanding field of automatic CTA image analysis. The 
aim of the study, i.e., creating a software tool that could be 
used for carotid arteries automated analysis, with an emphasis 
on atherosclerosis, was mostly met.

The present research enhanced our previous efforts and 
produced higher success rates, both in carotid tree 3D volume 
detection and segmentation (73% vs. 83%) [9]. Besides, this 
updated version of VASIM was able to detect single carotid 
arteries, without the need to detect arteries bilaterally [9]. The 
software was tested in challenging datasets with different tis-
sues and anomalous structures (e.g., plaques, intima-media 
thickening, and lipid pools) produced by different CT equip-
ment and imaging parameters. Despite improving these areas, 
there is a need for further development to ensure robustness 
for use in patients with a wide range of artifacts, clinical and 
imaging setups, atherosclerotic burden, and anatomy.

Conclusions

The authors designed and presented the VASIM, a tool for 
detection, segmentation, and analysis of atherosclerosis in 
the CCA and the cervical segment of the ICA. The VASIM 

is the first comprehensive, fully-automated, and user-inde-
pendent tool for carotid arteries CTA images analysis.

The VASIM achieved a performance of 83%. The aver-
age processing time was 1381 s per patient. The accuracy, 
sensitivity, and specificity values were 71%, 83%, and 25%, 
respectively.

The findings from this study contribute in several ways 
to the field of methods for arterial assessment and provide a 
basis for the further development of automated atheroscle-
rosis diagnosis and plaque analysis with CTA.
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