
���������	
�������
���������	
�

�����������

����������	
�����
�����������������������
�����������
����	�����	�
�����	�������������	����������	�

��	
�����

�



 
 
Tampereen teknillinen yliopisto. Julkaisu 481 
Tampere University of Technology. Publication 481 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Jari Nikara 
 
Application-Specific Parallel Structures for Discrete 
Cosine Transform and Variable Length Decoding 
 
 
Thesis for the degree of Doctor of Technology to be presented with due permission for 
public examination and criticism in Tietotalo Building, Auditorium TB104, at Tampere 
University of Technology, on the 18th of June 2004, at 12 noon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tampereen teknillinen yliopisto - Tampere University of Technology 
Tampere 2004 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 952-15-1196-6 (printed) 
ISBN 952-15-1405-1 (PDF) 
ISSN 1459-2045 
 



ABSTRACT

This Thesis considers the design of application-specific parallel structures for digital

signal processing. Due to wideness of the subject, the discussion has been restricted

to the studies of the discrete cosine transform and variable length decoding.

New area-efficient parallel structures, which process data in a sequential form at data

rate, are developed for the discrete cosine transform. The development of the struc-

tures begins with the derivation of novel regular fast algorithms. The algorithms lend

themselves for vertical mapping resulting in modular cascaded structures that can

be freely pipelined due to the loop-free structure. In order to prove the feasibility

and estimate the performance, the unified transform kernel for discrete cosine trans-

form and its inverse is implemented on a standard cell CMOS technology with a data

path synthesis. Finally, the comparison to a state-of-the-art design reveals up to 15%

smaller estimated area than in the reference design.

For the variable length decoding, a novel multiple-symbol decoding scheme is pro-

posed. The critical path of the resulting decoder is minimized by introducing a new

multiplexed add unit. In order to prove the feasibility and determine the limiting

factors of the scheme, the decoder has been implemented on an FPGA technology.

When applied to MPEG-2 standard benchmark scenes, on average 4.8 codewords are

decoded per cycle resulting in the throughput of 106 million symbols per second.

Although, a straightforward and fair comparison of variable length decoders is ex-

tremely difficult due to different implementation approaches, the performance of the

decoder can be considered promising with 16–100 % better throughput at 2–3.6 times

lower frequencies than the reference designs on the same FPGA technology.

In both the case studies, the discrete cosine transform and variable length decoding,

the modularity and achievable high speed operation provide flexibility for the design

re-use in the current and future applications.
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1. INTRODUCTION

In general, advances in technologies allow the implementation of more complex sys-

tems. On the other hand, they also encourage engineers to design complex systems

requiring advanced solutions and technologies. Likewise, the development creates

new markets for several novel systems. As a result, the amount of all kind of inform-

ation processing is increasing around us all the time. Consequently, more computa-

tional power—more speed is required in future [24]. However, the cost of design is

the greatest threat to continuation of the semiconductor roadmap [46]. Therefore, the

main issue is to support real-time applications with making, however, the comprom-

ise between performance and cost.

History has proven the cyclic behaviour between hardware and software implement-

ations of signal processing applications [85]. While an application is implemented

initially on software, its first real-time implementation requires typically application-

specific hardware. Later, the advances in technology make the software implement-

ation again possible. At that time, however, newer and more aggressive algorithms

have been studied, causing the cycle to repeat itself.

The main advantage of software implementations is flexibility; modifications on the

functionality can be realized by re-programming without physical changes on hard-

ware. Therefore, the software implementations are often preferred. On software,

however, there is always some overhead due to instruction fetch, instruction decode,

and perhaps inappropriate instruction set. In addition, different data and processing

rates require buffering of data. All these facts imply either reduced speed, increased

area, or power consumption. Altogether, the software implementation is always a

trade-off between flexibility, speed, area, and power consumption. Despite of the

rapid advances in processor architectures and integrated circuit technologies, there

are always applications requiring higher performance than provided by a state-of-

the-art programmable processor at reasonable cost.



2 1. Introduction

In general, higher performance can be achieved by exploiting parallelism. The res-

ulting increased costs are kept reasonable by adding just some application-specific

features, i.e., special instructions or even customized functional units on hardware,

as done in digital signal processors (DSP). Another approach is application-specific

instruction-set processors (ASIP), where the instruction-set and hardware are tailored

according to the requirements of the given application. Customization level in ASIPs

varies on three architectural levels depending on the approach: instruction extension,

inclusion or exclusion of predefined blocks, and parametrization of cache sizes, num-

ber of registers, etc. [32]. One actively studied solution nowadays is reconfigurable

computing, which achieves potentially higher performance than software but adopts

a higher level of flexibility than hard-wired hardware. The reconfigurable systems

contain usually a general-purpose processor managing data-dependent control and

possible memory accesses, while the computational tasks are mapped onto the re-

configurable hardware [18]. The extreme level of customization is represented by

application-specific integrated circuits (ASIC) based on standard cell or full custom

design, which are designed to perform only specified computation with very limited

control.

All the previously discussed approaches offer distinct advantages and drawbacks in

applications. Therefore, there is no single ultimate solution suitable for all possible

design cases but they are exploited as combinations. Furthermore, when considering

the hardware design its abstraction level has changed from logic design via standard

cell design to block based design and there seems to be no sign to end of this trend—

systems keep on becoming more and more complex. The number of processing units

will increase while the overall gate count for custom logic is decreasing [32]. This

arises a demand for packing know-how into intellectual property (IP) blocks which

may be re-used. This ongoing change introduces two major problems: where to get

the components from, and how to verify that they work together as desired [71].

Although the systems have become more complex, the life cycles of applications

have shortened due to rapid advances in technologies and various applications. This

implies less time for the design and test and thus, emphasizes flexibility for the design

re-use. The flexibility enables covering a wide range of applications. E.g., the struc-

ture with achievable high-speed operation covers high data rate applications but it

can be also exploited as a shared resource in low data rate applications. Simple inter-

faces and control make the structure easy to integrate into larger systems, e.g., as an
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accelerator in parallel with the DSP, building block of the ASIP, or configurable unit

in a reconfigurable system. In any case, due to the cyclic behaviour between hard-

ware and software implementations, acceleration with application-specific hardware,

and changes in abstraction level and complexity of the design, there is continuous

need for the studies of design and implementation of signal processing functions on

hardware.

The studies in this Thesis consider the development of application-specific paral-

lel structures for the discrete cosine transform (DCT) and variable length decoding

(VLD). The attractiveness of the DCT is based on its predominant use in transform

coding [86]. It has been applied actively to data compression applications, e.g., in

speech, image, and video coding. It can be exploited in filtering and subsequently,

in transmultiplexer systems based on filter banks as in [116]. Other applications that

involve the DCT are, e.g., data analysis, classification, and pattern recognition [86].

Variable length coding (VLC) and subsequently the VLD have been utilized either

alone for data compression or as a part of compression application, e.g., for text,

speech, image and video compression. Since both the DCT and VLD have an essen-

tial role in image and video coding [31, 74, 94] they have been adopted as a part of

various current standards, e.g., JPEG [42, 44], MPEG-1 [41], and MPEG-2 [43, 45].

Although the real-time applications based on the previous standards can nowadays

be implemented on software, the performance is a serious bottleneck in some applic-

ations, e.g., in multichannel coding, transcoders, video servers, and related profes-

sional applications processing multiple video streams.

1.1 Objective and Scope of Research

The general objective of this Thesis is to develop area-efficient realizations of di-

gital signal processing functions. Software implementations introduce overhead and

typically instruction level parallelism is limited implying lower utilization of arith-

metic resources. Furthermore, data memory bandwidth is often a serious bottleneck

in high data rate applications. Therefore, in this Thesis, only application-specific par-

allel structures are considered. The structures are developed in such a way that the

throughput can be tailored according to the input data rate of an application. Further-

more, the aim is to create general methodology to construct modular structures from

the given algorithms. In general, modularity is considered to describe the granularity

of the algorithm or structure.
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In this Thesis, two types of systems are considered: constant and variable output rate

systems. Constant output rate systems are illustrated with the computation of the

discrete cosine transform. In general, the DCT algorithms possess irregularity, which

restricts the area-efficient exploitation of inherent parallelism. Regularity defines

the similarities in nodes and interconnections. Therefore, the objective is to derive

the regular fast algorithm for the DCT. Regularity allows the utilization of linear

mapping methods [84] for reducing the dimensionality of the problem and mapping

the algorithm onto a parallel structure. Furthermore, since the data is often in a

sequential form, another objective is to develop a single rate system, i.e., data rate

equals to clock rate.

In this Thesis, the variable output rate systems are exemplified with variable length

decoding. The major design problem is to break the recursive data dependencies

in input data, which complicate substantially the design of parallel variable length

decoder. Therefore, the objective is to develop a multiple-symbol VLD scheme and

parallel structure that will at least partially break the recursive dependency related to

the VLD.

1.2 Main Contributions

In this Thesis, the high-performance computational platforms are developed by mak-

ing use of inherent parallelism of the given applications. In the first application,

discrete cosine transform, the temporal parallelism is utilized while in the second

application, variable length decoding, spatial parallelism is exploited. The resulting

hardware structures are modular lending themselves to very large scale integration

(VLSI) implementations. To summarize, the main contributions are the following:

• Up-to-date survey of related work in respect of the pipeline computation of the

discrete cosine transform and multiple-symbol variable length decoding, which

provides motivation and bases for the work presented in this Thesis.

• Novel regular fast algorithms for the one- and two-dimensional discrete cosine

transforms, which do not reach the lower bound on arithmetic complexity but

the regularity allows efficient utilization of temporal parallelism.

• New modular pipeline structures for computing the discrete cosine transform,

which can be extended to support larger transform sizes by replicating the basic

processing units.
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• So far the most area-efficient unified pipeline structure supporting both the

8×8 discrete cosine transform and its inverse.

• Demonstration implementation of the unified structure supporting both the

8× 8 discrete cosine transform and its inverse, which is synthesized onto a

standard cell CMOS technology.

• Novel variable length decoding scheme for decoding multiple symbols in par-

allel.

• New multiplexed add unit solution, which reduces the number of logic levels

in the critical path of the codeword detection in variable length decoder.

• Demonstration implementation of MPEG-2 variable length decoder, which is

synthesized onto an FPGA technology.

1.2.1 Author’s Contribution

Let us first consider the studies of DCT. The derivation of the fast DCT algorithms is

continuation for the algorithm development reported earlier, e.g., in [2, 5, 104, 105].

Author rescheduled the constant geometry algorithm and found possibilities to optim-

ize interconnections for minimizing the area of permutations in pipeline structures.

The author had an essential role in deriving and formalizing the regular perfect shuffle

topology algorithms. The development of computational structures for the derived al-

gorithms was done by the author. In addition, the author has supervised the analysis

of word length requirements, modeling, and synthesis of the structure.

The author was responsible for the deriving and verifying the multiple-symbol vari-

able length decoding scheme. The author was also responsible for developing the

structure, as well as applying the scheme for MPEG-2 variable length decoding. Fur-

thermore, the author analyzed the pre-processed MPEG-2 data streams and analyzed

the performance of the proposed decoder with different design parameters.

The work reported in this Thesis has been reported earlier in seven publications [P1–

P7] and in six of them, the author has been the main author. Consequently, some

chapters contain verbatim extracts from the publications. With respect to the extracts,

copyrights are retained by the respective copyright holders.
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The co-authors of the publications [P1–P7] have seen this clarification and agree with

the author. In addition, none of the publications have been used in another person’s

academic thesis or dissertation.

1.3 Thesis Outline

The first three chapters cover the studies on discrete cosine transform. In Chapter 2,

an introduction to the DCT and the related work is given in order to provide back-

ground and motivation for work reported ensuing two chapters. Starting with the

definitions and properties of the DCT the discussion continues with a glance at some

popular algorithms and implementations close to pipeline structures. The chapter

is concluded with a short summary. Subsequently, the derivation of the novel reg-

ular fast algorithms for the one- and two-dimensional DCT is studied in Chapter 3.

After providing the preliminaries for the derivation, the formulation of the algorithms,

which are exploited and partially reported earlier in [P1 – P4], is described in details.

Chapter 4 covers the derivation of the new pipeline structures for the DCT, IDCT, and

both the transforms, which are published earlier in [P1 – P4]. First, the operational

columns in the algorithms are mapped vertically onto basic units which are then cas-

caded to construct the pipelines. The chapter is concluded with a case study on the

unified 8×8 DCT/IDCT implementation and comparative discussion.

Then, the topic of the discussion is changed to variable length decoding on hardware

in Chapter 5. Before going into the details of decoding, the variable length coding

is studied briefly. Subsequently, the related work of the decoders is outlined in order

to have basis for the further research of the VLD. Next, in Chapter 6, a novel VLD

scheme is described, which has been proposed for the first time in [P5] and studied

more carefully in [P7]. Furthermore, the structure of the decoder is presented before

discussion on the performance in general. In Chapter 7, the presented VLD scheme

and structure are applied to MPEG-2 video coding standard, which has been repor-

ted earlier in [P7]. First, the standard is outlined briefly in order to understand the

fundamentals that affect to decoder design. Before modeling the structure, the spe-

cifications are determined according to the statistics of the benchmark scenes. Then,

the performance of the resulting decoder is analyzed with different design paramet-

ers. The chapter is concluded with the comparison and the discussion on related

problems reported in [P6]. Finally, Chapter 8 concludes Thesis.



2. DISCRETE COSINE TRANSFORM

By applying appropriate transforms, the complexity of a mathematical problem may

be reduced, e.g., differential and integral equations may be replaced with the easier

algebraic ones [86]. Representing a waveform having relatively complex variations

in a signal amplitude with a sum of the oscillatory cosine function is called a cosine

transform. When the waveform and cosine functions are sampled at certain intervals,

the transform becomes a discrete cosine transform [74]. The DCT has been con-

sidered one of the best tools in digital signal processing and therefore, it has many

applications, e.g., in the area of multimedia and telecommunications. Especially, in

image and video coding it has been employed as the main tool for data compression.

Traditionally the objective in the development of fast algorithms in the field of digital

signal processing has been the minimization of arithmetic complexity, i.e., the num-

ber of arithmetic operations and especially the number of multiplications. However,

in hardware realizations, the number of arithmetic units depends on mapping meth-

ods, thus there are also other properties in the algorithms reflecting on the cost of a

specific implementation. Especially, when targeting at structures consisting of cas-

caded processing units, there are specific properties, which make certain algorithms

efficient for implementations.

In this chapter, an introduction to the DCT and the related work is given in order to

provide background and motivation for our work. Rao and Yip’s book [86] gives a

good baseline for the discussion but thereafter several algorithms and structures have

been reported. However, without taking restricted publication-specific comparisons

into account extensive up-to-date surveys are missing. In addition, our objective is

to develop a cascaded structure, which, in general, is referred to as a pipeline. The

principal idea is to reduce the dimensionality of the signal flow graph of the algorithm

by applying vertical mapping, i.e., the two-dimensional signal flow graph is collapsed

or folded into a one-dimensional data path. Consequently, each processing column is
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to be mapped onto a single processing unit. Therefore, in the following survey, some

popular fast algorithms are introduced and their suitability for pipeline computations

are discussed. Similarly, some DCT implementations close to pipeline structures are

briefly outlined.

2.1 Definitions and Properties

The orthogonal DCT is classified into four different types: DCT of type I, II, III, and

IV of which transform matrices are defined as [118]

[
CI

N+1

]
mn =

√
2
N

[
bmbn cos

(mnπ
N

)]
, m,n = 0,1, . . . ,N (1)

[
CII

N

]
mn =

√
2
N

[
bm cos

(
m(n+ 1

2)π
N

)]
, m,n = 0,1, . . . ,N −1 (2)

[
CIII

N

]
mn =

√
2
N

[
bn cos

(
(m+ 1

2)nπ
N

)]
, m,n = 0,1, . . . ,N −1 (3)

[
CIV

N

]
mn =

√
2
N

[
cos

(
(m+ 1

2)(n+ 1
2)π

N

)]
, m,n = 0,1, . . . ,N −1 (4)

where bm is a scaling factor defined as

bm =

{
1√
2

, if m = 0 or m = N

1 , if m �= 0 and m �= N
. (5)

The DCT of type I (DCT-I) was introduced by Wang and Hunt in [120]. The first

definitions of the DCT and its inverse, which according to previous classification are

known as the DCT of type II (DCT-II) and DCT of type III (DCT-III), respectively,

were given by Ahmed et al. in [1]. The DCT of type IV (DCT-IV) was introduced by

Jain in [47].

Let us next summarize the main properties of the DCT matrices given in (1)–(4).

Since the DCT matrices are orthogonal the inverse transform matrices are obtained

with a matrix transpose. In addition, the DCT-I and DCT-IV matrices are symmetric

which means that the inverse transform is the transform itself. On the contrary, the

DCT-II and DCT-III are transposes for each others. These relations can be formulated
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as

[
CI

N+1

]−1
=

[
CI

N+1

]T
= CI

N+1,
[
CII

N

]−1
=

[
CII

N

]T
= CIII

N ,[
CIII

N

]−1
=

[
CIII

N

]T
= CII

N ,
[
CIV

N

]−1
= [CIV

N
]T = CIV

N
. (6)

From the multidimensional point of view, an essential property is separability which

allows the decomposition of the multidimensional transform into successive one-

dimensional transforms. [86]

In image and video processing, especially the two-dimensional DCT-II and its in-

verse, i.e., DCT-III, have gained popularity due to good energy compaction proper-

ties. The computation of the DCT-II as a matrix product is computationally expensive

thus several fast algorithms for the DCT-II have been suggested over the years. Be-

fore taking an overview into the fast DCT-II algorithms and their properties, let us

note that in this Thesis, we concentrate only on the DCT-II and DCT-III. Therefore,

from now on, the DCT and its inverse refer to DCT-II and DCT-III, respectively.

2.2 One-Dimensional Fast Algorithms

The DCT can be computed via other discrete trigonometric transforms, e.g., dis-

crete Fourier transform (DFT), discrete Walsh-Hadamard transform (DWHT) and

discrete Hartley transforms (DHT) [70, 113, 115]. However, such approaches result

in additional computational complexity. The fast algorithms with lower arithmetic

complexity can be obtained by considering the direct factorization of the DCT mat-

rix. When the factorization results in sparse component factors, the decomposition

represents a direct fast algorithm for the DCT. Since the matrix factorization is not

unique, the different types of the fast algorithms can be derived. Some of the pro-

posed fast algorithms derived with the matrix factorization can be categorized into

decimation-in-time or decimation-in-frequency algorithms as in [126, 127].

In the following, some fast algorithms are described. First, well-known pioneer al-

gorithms are introduced, which have advantages in some realizations but introduce

critical drawbacks when targeting at the area-efficient pipeline computation at data

rate. In such cases, regularity in particular is a beneficial property. Therefore, a

viewpoint is focused on regular algorithms, which represents novelty in the survey.
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Fig. 1. Signal flow graph to compute the DCT via real parts of the DFT [3].

2.2.1 Well-Known Pioneer Algorithms

The natural basis for developing the fast algorithms for the DCT is its relation to

a discrete Fourier transform (DFT). In addition to introducing the discrete cosine

transform, Ahmed et al. in [1] suggested the computation of the DCT by using one

double length fast Fourier transform (FFT). In [28], Haralick accelerated computation

by taking two N-point FFTs instead one double length FFT. Tseng and Miller in [111]

proved, however, that the DCT can be computed more efficiently with the aid of

one double length modified FFT and especially exploiting only its real parts. As an

example, a signal flow graph to compute the scaled DCT via real parts of the 16-point

DFT as proposed by Arai et al. in [3] is illustrated in Fig. 1. In any case, the relation

between the FFT and DCT can be utilized in various different ways as described, e.g.,

in [69, 79, 115].

The first fast DCT algorithm based on the sparse matrix factorization of the DCT

matrix has been reported by Chen et al. in [11] and Wang in [117]. Since the presen-

ted factorization of the algorithm consists of a matrix which cannot be recursively

factorized, the factorization is only partially recursive. However, the non-recursive

matrix possesses some regularity; it can be decomposed into the product of sparse

matrices, which are of five distinct types, all having at most two non-zero elements

in each row [86]. The resulting signal flow graph of the 8-point DCT algorithm is

illustrated in Fig. 2.
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Fig. 2. Signal flow graph of the DCT based on the sparse matrix factorization [11].

Loeffler et al. in [67] presented a class of the 8-point DCT algorithms based on planar

rotations. The algorithms require only 11 multiplications, which is shown to be the

theoretical minimum number of the multiplications for the 8-point transform [22].

The number of the multiplications is decreased from the traditional approaches by

interpreting the multiplications as rotations, which can be performed with three mul-

tiplications and three additions by introducing two new coefficients instead of four

multiplications and two additions. For example, consider the following formula-

tion [67]

y0 = a · x0 +b · x1 = (b−a) · x1 +a · (x0 + x1)

y1 = −b · x0 +a · x1 = −(a+b) · x0 +a · (x0 + x1). (7)

An example of Loeffler’s 8-point DCT algorithm is depicted in Fig. 3. The 8-point

algorithm can be extended in a recursive way to support larger transform sizes but the

resulting algorithms do not reach anymore the theoretical lower bound on the number

of the multiplications.
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2.2.2 Regular Algorithms

In general, the fast algorithms for the DCT do not possess the regularity found, e.g.,

in Cooley-Tukey FFT algorithms. For example, the previously discussed fast DCT

algorithms, Chen’s sparse matrix factorization and Loeffler’s algorithm reaching the

theoretical lower bound on the number of multiplications with planar rotations, do

not result in area-efficient pipeline structures due to their high control complexity. In

addition, the algorithms consist of the variable number of operations at operational

columns implying that the resulting pipeline structure would be a multirate system,

i.e., the pipeline would require a higher clock rate than a sample rate. Nevertheless,

some regular fast algorithms for the computation of the DCT have been reported over

the years.

In-Place Algorithms

One category of the regular fast DCT algorithms is well-known in-place algorithms

where the computations can be performed in-place, i.e., the results of intermediate

computations can be stored into the same locations as the operands. Consequently,

the in-place algorithms lend themselves especially to software implementations due

to efficient memory utilization. However, these algorithms have also good properties

for vertical mapping due to simple and regular processing columns.
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The basis for the derivation of the first reported in-place algorithms is the reorder-

ing of the input sequence into even and odd indices as proposed earlier in [79]. In

addition, Lee in [56] reordered both halves in bit-reversed order when considering

the matrix factorization of the IDCT matrix. With the aid of this rearrangement, the

N-point IDCT has been decomposed into a sum of two N/2-point IDCTs. The trans-

form size can be further reduced by repeating the decomposition. The procedure

results in a simple structure with recursive modularity improving the regularity but

the drawback is the secant coefficients introducing round off errors with finite word

length.

In [19], Cvetković and Popović derived an in-place DCT algorithm which does not

require the additional bit-reversed permutation of the input halves. Instead, the out-

put of the algorithm illustrated in Fig. 4 is in bit-reversed order. The same algorithm

and the matrix decomposition of the algorithm with the output in natural order have

been reported by Hsiao et al. in [34]. In order to avoid round off problems with the

coefficients of secants, Hou in [33] proposed an in-place algorithm with pure sine or

cosine coefficients. However, the approach results in additional multiplications by

two. By using the different derivation technique, Lee and Huang in [57] entered cor-

responding in-place algorithm with a perfect shuffle output permutation [102] which

will be defined in Section 3.1.

In all the in-place algorithms discussed so far, the computations are performed with

a kernel of real-valued radix-2 butterfly operations and a separate post-processing

stage, or alternatively a pre-processing stage, containing all the DCT-related irregular



14 2. Discrete Cosine Transform

2d1

d1

2d1

2d1

2d2

d2

2d3

d3

X0

X1

X2

X3

X4

X5

X6

X7

x0

x7

x3

x4

x1

x6

x2

x5

d5

d4

d7

d6

d1

d1=  0.5 d2i=  0.5(1+di) d2i+1=  0.5(1-di)

Fig. 5. Signal flow graph of the in-place DCT with distributed irregularities [119].

additions and permutations. Instead, the separate pre- or post-processing is avoided

in a regular in-place algorithm proposed by Wang in [119] where irregularities are

distributed between the butterfly columns as illustrated in Fig. 5. The matrix factoriz-

ation is based on the successive order reduction of the Hadamard ordered DCT mat-

rix. The algorithm can be characterized as simple as the previous in-place algorithms

and its coefficients are pure cosines, which can be generated with the recursive equa-

tions depicted below the signal flow graph in Fig. 5. The input sequence is Hadamard

ordered, which will be defined in Section 3.1, and the output is obtained in natural

order.

Constant Geometry Algorithms

Another category of the regular fast DCT algorithms is constant geometry algorithms

where the interconnection topology and geometry between the computation columns

are the same, i.e., constant. The constant geometry algorithms have been used in soft-

ware implementations where sequential data access and storage are required. In ad-

dition, the constant geometry algorithms lend themselves to VLSI implementations.

Full-column and partial-column structures are typically based on such algorithms. In

these structures, the computations are performed iteratively one column of the signal

flow graph or part of the column at a time.

A constant geometry algorithm based on Wang’s in-place algorithm with the distrib-

uted irregularities has been presented by Takala et al. in [5, 105]. The derivation
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Fig. 6. Signal flow graph of the constant geometry DCT algorithm [105].

is based on a method to localize irregularities into block matrices of order four as

proposed in [5]. Therefore, the achieved constant geometry algorithm illustrated in

Fig. 6 can be interpreted to be a rescheduled version of the in-place algorithm in

Fig. 5. The corresponding derivative constant geometry algorithm of Hou’s in-place

algorithm in [33] has been presented by Kwak and You in [55]. In this algorithm,

a computational kernel is performed with consecutive stages of the radix-2 butter-

fly operations and all the irregularities have been separated into a post-processing

column containing only additions.

In general, the post-processing is a disadvantage in unified pipeline realizations, when

both forward and inverse transforms need to be supported. The post-processing in

the forward transform maps as a pre-processing in the inverse transform, thus in the

unified approach both pre- and post-processing need to be realized implying addi-

tional hardware cost. In Wang’s in-place algorithm in [119], the irregular additions

are local, thus they map in similar fashion in forward and inverse transforms. On

the other hand, the representation of the algorithm contains anti-diagonal matrices,

which imply complex data permutations requiring large data storage in VLSI im-

plementations. Such problems are avoided in Takala’s constant geometry algorithm

in [105]. The drawback is that the interconnections between the operation columns in

an N-point algorithm are N-point permutations implying higher area cost in pipeline

structure.
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2.3 Two-Dimensional Algorithms

The previous discussion on the categorization and features of the one-dimensional

DCT algorithms applies also to two-dimensional DCT algorithms, which can be de-

rived by using either a row-column decomposition or a direct computation. The row-

column decomposition exploits the separability property of the DCT, i.e., the two-

dimensional transform is computed by performing the one-dimensional DCT first

over the rows and then over the columns or vice versa. On the contrary, the direct

computation produces the result of the two-dimensional transform at once, i.e., the

algorithms operates directly over the two-dimensional data set. In other words, the

dimensions are not separated and, therefore, the computation of the one-dimensional

transforms over the rows and columns cannot be identified from the direct two-

dimensional transform. Let us remark, that the direct two-dimensional algorithm

can be, however, derived with the aid of the one-dimensional transform as will be

done later in this Thesis.

The direct two-dimensional algorithms are based on the same derivation approaches

as the one-dimensional algorithms. Without going into details but outlining the de-

velopment of the algorithms, the relation between the DFT and DCT has been ex-

ploited, e.g., by Makhoul in [69] and Vetterli in [114]. From the authors mentioned

previously when considering the one-dimensional DCT algorithms, Lee and Huang

in [57], Kwak and You in [55], and Hsiao et al. in [35] have extended their approaches

to support also the direct two-dimensional computation. Kamangar and Rao in [51]

presented non-recursive as well as recursive algorithms for the two-dimensional DCT,

which have been derived with an approach very similar to Chen’s approach to derive

the one-dimensional DCT in [11]. In [27], Haque presented the two-dimensional ex-

tension of Lee’s algorithm in [56]. Correspondingly, Hou’s one-dimensional DCT

algorithm in [33] has been extended to two-dimensional DCT by Chan and Ho in [7]

and Wu and Paoloni in [124].

In [13–15], Cho et al. presented an approach to compute the two-dimensional DCT

algorithm by exploiting the one-dimensional algorithm but, however, operating dir-

ectly over the two-dimensional data set . In addition to any available one-dimensional

algorithm only permutations, pre-, and post-additions are required as illustrated in

Fig. 7. The presented approach introduces systematic expressions for the algorithms

and in that sense, it can be considered to possess some regularity. Furthermore, the
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Fig. 7. Signal flow graph of the direct 8×8 DCT by utilizing an 8-point DCT [13].
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approach results in the optimal two-dimensional algorithm from the multiplicative

complexity theory point of view when Loeffler’s DCT algorithm in [67] is used to

compute the 8-point DCT [123]. Nevertheless, the resulting algorithm do not possess

regularity that would be advantageous when mapping onto hardware. The represent-

ation of the post-additions in the algorithm contains anti-diagonal matrices requiring

the complex data permutations and large data storage.

In general, the direct computation is considered to produce algorithms with a lower

arithmetic complexity and especially with the lower number of multiplications than

the row-column decomposition. Typically the control complexity of algorithms de-

rived with the row-column decomposition is lower implying regularity and modu-

larity. Since these properties are preferred especially in VLSI implementations, the

row-column decomposition has gained popularity in hardware realizations. It is also

possible to obtain regular and modular algorithms with the direct computation but at

the expense of arithmetic complexity. However, modularity and regularity may be

the key properties to efficient implementations.

2.4 Hardware Structures

The main objectives in realizing the algorithms is to achieve required system per-

formance with minimum cost. In general, the direct implementation or so called

one-to-one mapping of the algorithm leads to an expensive realization. Therefore,

the mapping methods described, e.g., in [84, 87, 92] can be utilized for reducing the

dimensionality of a signal flow graph in different directions; horizontal, vertical, or

in both directions. In principle, the exploitation of spatial parallelism, i.e., horizontal

mapping, results in a column structure where the computations are performed recurs-

ively on parallel data, i.e., nodes at a single processing stage are computed at a time.

In such a structure, the throughput is limited by the delay of the basic arithmetic units

used to realize the nodes. The exploitation of temporal parallelism with the aid of

vertical mapping, in turn, results in sequential structures, where the computations are

performed over data in sequential form and the overall structure can be considered as

a pipeline. In such a structure, the throughput can be tailored with additional pipeline

registers if the data dependencies, i.e., the feedback loops in the structure, can be

avoided. In addition, data is often in sequential form, thus structures operating over

sequential data are advantageous. In the following, computational structures for such

a data format are described.
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Fig. 8. Block diagram of the pipeline structure with double buffering [54]. D: Delay register.

Control logic is omitted for clarity.

2.4.1 One-Dimensional Structures

In [54], Kovać and Ranganathan presented a six-stage pipeline structure based on

the modified Arai’s DCT algorithm in Fig. 1. With the aid of the modifications the

number of subtractions has been decreased but they do not affect the structure, i.e.,

Arai’s original algorithm could be mapped onto the same structure. In any case, the

resulting pipeline structure is illustrated in Fig. 8. Each operational column in the al-

gorithm has been mapped onto a corresponding stage in the pipeline. The operational

stages are separated with register-based double buffering stages. In other words, a left

column of the registers is first filled and then copied onto a right column for compu-

tation. During the computation over the values in the right register column the left

column is refilled. Altogether, the structure requires high number of register and in-

troduces complicated control. Let us remark that the control and selection resources

are not included into the figure.

The irregularities in the DCT algorithms restrict the exploitation of the linear map-

ping methods. Hence the structures based on Chen’s fast DCT algorithm [11, 117]

have been fully parallel and consequently expensive. The reduction in the amount of

hardware has been achieved by using advanced circuit techniques and optimizations

that are very close to technology and, in general, time demanding. E.g., in [112],

Uramoto et al. have exploited multiplier accumulators based on distributed arith-

metic in order to have critical path of adders instead of multipliers. For minimizing

the routing area and its parasitics, a column-interleaved memory structure has been

employed. In addition, the number of memory cells has been halved with the aid

of dual-plane feature and dual-port configuration. Correspondingly, Matsui et al.

in [72] achieved improvements in chip area and speed by introducing and applying
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a sense-amplifying pipeline flip-flop circuit technique. Instead of the conventional

synchronous design style, an asynchronous DCT processor has been presented by

Johnson et al. in [50].

The linear mapping methods can be efficiently applied to the regular fast DCT al-

gorithms although the irregularities may limit the exploitation of the parallelism or

decrease the utilization rate of resources. In principle, applying the vertical mapping

to the in-place algorithms corresponds to serializing the computation. The level of the

mapping can be varied to have different level of parallelism. E.g., Cheng et al. in [12]

have mapped the in-place algorithm with regular butterfly kernel and post-processing

stage managing the irregularities only half. Instead in [110], Tan et al. have applied

vertical mapping to Hou’s algorithm [33] in order to have fully sequential structure

for sequentially represented data. The relation between the DCT and DFT can also be

utilized in the structural derivation. E.g., in [108], Takala et al. have mapped Wang’s

in-place DCT algorithm with the distributed irregularities [119] onto a pipeline struc-

ture by using an efficient mapping technique, which has been proposed earlier by

Groginsky and Works in [26].

In [34], Hsiao et al. mapped their DCT algorithm efficiently onto a pipeline structure

depicted in Fig. 9. The structure has single input and output interface and each com-

putational stage has been mapped vertically onto a corresponding unit, i.e., butterfly

stages onto processing elements BU4, BU2, and BU1 with single arithmetic unit, mul-

tiplications onto multipliers and post-processing stages onto post-processors PP1 and

PP2. With such an arrangement, the amount of hardware is minimized. In addition,

the required throughput rate can be achieved with the aid of additional pipelining,

since the structure does not consist of feedback paths. Furthermore, due to regularity

the structure is comparable easy to extend to support larger transform sizes.

The vertical mapping can also be applied to the constant geometry algorithms in [55,

105] in order to select an optimal level of parallelism with respect to performance

requirements and resources. On the other hand, the constant interconnections may

increase the hardware cost in pipeline structures when the constant interconnection

network is repeated between every stage. Instead, the constant interconnections are,

in principle, advantageous for horizontal mapping. However, the pure column struc-

tures for computing the DCT are rare due to irregularities in the fast algorithms but

the principal concept can be found, e.g., in [48,105]. Likewise, the applying mapping

in both directions, i.e., multiprojection, has not been reported when considered only

the DCT structures.
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Fig. 9. Block diagram of the fully sequential DCT pipeline [34]: (a) radix-2 butterfly unit

having operands K samples apart (BUK), (b) post-processor 1 (PP1), and (c) post-

processor 2 (PP2), and (d) entire pipeline structure. KD: Shift register of size K.

Clock and control signals are omitted for clarity.

2.4.2 Two-Dimensional Structures with Matrix Transpose

In the two-dimensional transforms based on the row-column decomposition, large

silicon area may be consumed into the realization of the matrix transpose. The most

straightforward realization of the matrix transpose is to exploit double buffering ac-

cording to the direct interpretation of the transpose, i.e., rows in, columns out. The

implementation can be memory-based as in [50, 112] or register-based as in [54].

The realization based on the double buffering is, however, expensive; 2N2 storage

locations are needed for an N ×N matrix transpose as illustrated with the aid of a

register-based transpose network in Fig. 10. Furthermore, latency is increased since

all the samples must be stored before reading. If the N ×N transpose is to be per-

formed with N2 memory locations like in [68], either dual-port memory or higher

write/read-rate is needed since the data is in sequential form, i.e., when a new sample

is written in, a transposed sample need to be read out. This implies higher cost for

memory-based transpose units.

In the advanced register-based transpose networks, two principal switching units, i.e.,

a 2-port delay-switch-delay unit (DSD) and 1-port shift-exchange unit (SEU) intro-

duced in [98], are exploited to perform the reordering of the data elements. In prin-

ciple, the delay-switch-delay unit of size K (DSDK) depicted in Fig. 11(a) exchanges

the first K data elements entering to the lower port with the K elements entering to

the upper port. Correspondingly, the shift-exchange unit of size K (SEUK) illustrated

in Fig. 11(b) is capable of exchanging elements in a serial sequence K elements apart.

The latencies of these units depend on the size of the shift registers; the latency of

DSDK or SEUK is K cycles.
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Fig. 10. Register-based matrix transpose network by using double buffering [54].

In [98], Shung et al. proposed a sequential permutation network which can be used

to perform any arbitrary permutation over sequentially represented data. In general,

the arbitrary permutations of an N-point sequence, N = 2k, can be realized as the

sequential permutation network of the cascaded SEUs arranged in increasing and

decreasing order: SEU20, SEU21, . . . , SEU2k−1 , . . . , SEU21, SEU20. Such a realization

requires less registers than the conventional double buffering approach but still more

than the original data.

In [6], Carlach et al. proposed an iterative method for an 8× 8 matrix transpose,

which has been generalized for an N ×N,N = 2k, matrix by Takala et al. in [109].

In principle, the entire N ×N matrix is divided into (N/2)2 submatrices of order

a)

SS

c
0 1

K delays

K delays

DSDK

S

Clk
DD

DD

b)

0
1

0
1

c

SEUK

K delays

Clk

DD

Fig. 11. Block diagrams of the basic switching units: (a) delay-switch-delay unit of size K

(DSDK) and (b) shift-exchange unit of size K (SEUK). S: Switch. c: Control signal.

Clk: Clock signal.
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Fig. 12. Example of the iterative 8×8 matrix transpose: (a) the first iteration, (b) the second

iteration, (c) the third iteration, and (d) the transposed matrix.

two and each submatrix is transposed. The resulting N ×N matrix is then divided

into submatrices of order four which are transposed as 2-by-2 matrices of 2-by-2

blocks. This operation is iterated until the entire N ×N matrix is divided into four

N/2×N/2 submatrices and the resulting 2-by-2 block matrix is transposed in order

to have finally the transposed matrix. The described method is illustrated with the aid

of an 8×8 matrix in Fig. 12, and the resulting column parallel 8×8 matrix transpose

unit proposed by Carlach et al. in [6] is depicted in Fig. 13.

In general, the previously described iterative method for the matrix transpose of an

N ×N,N = 2k, matrix requires k steps. At each step, the transpose is performed

within 2-by-2 blocks. This implies that the distance of data elements to be exchanged

at a single step is constant. Therefore, the corresponding structure can be construc-

ted by cascading the SEUs in increasing order of size: SEUN−1, SEU2(N−1), . . . ,

SEU(N/2)(N−1) as reported by Takala et al. in [108, 109]. The latency of the result-

ing generalized sequential matrix transpose network is ∑k−1
i=0 (2i)(N − 1) = (N − 1)2
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Fig. 13. Block diagram of the column parallel matrix transpose [6].

cycles, which equals to the maximum distance of single data element to be moved

in the N ×N matrix transpose in a vector form. The sequential 8× 8 matrix trans-

pose network is illustrated in Fig. 14. Let us remark that the diagram in the figure

illustrates only the functionality, not the timing.

Although any one-dimensional structure can be exploited for the two-dimensional

structure based on the row-column decomposition, let one two-dimensional structure,

which has been proposed by Madisetti and Willson in [68], be introduced in more

details. The basis for the structural derivation is the DCT algorithm presented by

Chen et al. in [11]. When the transform matrix is decomposed into even and odd

rows, the DCT as well as its inverse requires the computation of two 4× 4 by 4×
1 matrix-vector products. Such operations can be performed in parallel with two

matrix-vector multipliers. The matrix-vector multiplier performing the product of

the odd rows MVMo requires four multipliers in addition to four accumulators as

illustrated in Fig. 15(a). Instead, the product of the even rows can be computed with

three multipliers and four accumulators.

In addition to the matrix-vector products, the DCT requires several additions and sub-

tractions before the matrix-vector product whereas the IDCT requires the grouping

of even and odd samples. These operations can be performed in a data reordering

unit DRU depicted in Fig. 15(b). Correspondingly, the DCT requires the regrouping

of even and odd coefficients after the matrix-vector product while the IDCT requires

some additions and subtractions, which are performed in an inverse reordering unit

IDRU. The objective has been to minimize the core area and keep input and out-

put requirements simple with the single-pixel interfaces. The resulting structure is

illustrated in Fig. 15(c).
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Fig. 14. Block and timing diagrams of the sequential matrix transpose.

The feature that makes the structure in Fig. 15(c) different from the other row-column

structures is the exploitation of the parallelism and time multiplexed computation of

the DCT over dimensions. In other words, for four clock cycles, the matrix-vector

multipliers operate on a column at the input X and stores samples from Y into last-

in-first-out (LIFO) buffer. For the next four cycles, multipliers operate on a row Y

while samples from X are stored. Katayama et al. in [52] presented a corresponding

structure but instead of the line parallel operation, the structure operates line-by-line.

With such a modification, the number of accumulators is reduced from eight to two.

2.4.3 Direct Two-Dimensional Structures

Instead of applying the row-column decomposition, Lee et al. in [59] proposed a

direct two-dimensional DCT structure. In order to reduce computational complex-

ity with the aid of rotation techniques, real input values are mapped into complex

numbers in the N ×N DCT algorithm presented by Duhamel and Guillemot in [21].

Furthermore, the algorithm is modified for increasing the regularity and applying the

vertical mapping. In any case, the resulting structure still possess high degree of par-

allelism; 16 values are processed in parallel, which reflect on the amount of hardware

resources. On the other hand, the parallel processing provides a good throughput rate.

Another highly parallel direct two-dimensional DCT structure is presented by Lim et

al. in [63]. The structure is based on the implementation of the matrix multiplication

as a systolic array. The interconnection complexity is minimized by using bit-serial

interfaces between processing elements. However, the amount of hardware is huge.
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Fig. 15. Block diagram of the 8 × 8 DCT/IDCT with matrix transpose: (a) matrix-vector

multiplier performing the product of the odd rows (MVMo), (b) data reordering unit

(DRU), and (c) entire structure [68]. M: Multiplexer. LIFO: Last-in-first-out buffer.

MVMe: matrix-vector multiplier for even rows. IDRU: Inverse data reordering unit.

Kwak and You in [55] proposed a VLSI implementation methodology for their con-

stant geometry algorithms. Due to the very regular structure the linear mapping

methods are applicable. Consequently, several structures with a flexible degree of

parallelism can be constructed from the algorithms. The good regularity yields to

high modularity, thus structures are made up of identical blocks. While the hardware

resources can be optimized with respect to application requirements, the throughput

rate can be adjusted to meet application requirements with the pipelining. In [35],

Hsiao et al. extended correspondingly their sequential one-dimensional DCT struc-

ture presented in [34] to support the direct two-dimensional DCT. The structure re-

sembles the one-dimensional structure depicted in Fig. 9 but each processing element

is replicated having operands from N times more apart. Let us remark that the rep-

licating multiplications can be combined and mapped still onto the single multiplier.

Therefore, the number of multipliers in the two-dimensional transform is the same as

in the one-dimensional transform. The resulting pipeline is illustrated in Fig. 16.

In principle, a unified structure can be constructed by providing additional data paths

to reverse the data flow of the DCT pipeline for the IDCT computation as described,
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Fig. 16. Block diagram of the fully sequential 8× 8 direct DCT [35]: (a) radix-2 butterfly

unit, (b) post-processing unit having operands K samples apart (PUK), and (c) entire

pipeline.

e.g., in [12]. Such an approach will, however, introduce high routing cost and com-

plicated control. Therefore, it is desirable that both the modes share a common data

path wherever possible [68]. Consequently, the similarities in the computations of

the DCT and the IDCT are typically utilized to develop a common structure. As dis-

cussed with the properties of the algorithms, the post-processing is a disadvantageous

in the unified VLSI realizations; the post-processing in the forward transform results

in a pre-processing in the inverse transform, thus in the unified approach both the pre-

and post-processing need to be realized implying additional hardware cost as, e.g.,

in [34].

2.5 Summary

In this chapter, the DCT algorithms and structures have been surveyed for having

bases for upcoming work. The survey has been carried out with a new viewpoint;

the algorithms and structures are discussed with respect to their suitability for the

pipeline computation. In addition, the survey has been extended to cover also the

related work after the publication of the Rao and Yip’s book [86] which has been

exploited as a starting point. To conclude this chapter, let us summarize the features

and limiting factors arisen during the survey.

The DCT algorithms based on the computation of other discrete trigonometric trans-

forms introduce additional computational complexity. In order to achieve lower arith-

metic complexity, the direct factorization of the DCT matrix has been considered. In

general, the resulting DCT algorithms do not possess the regularity found, e.g., in

Cooley-Tukey FFT algorithms. On the other hand, in the reported regular algorithms,

the secant coefficients introduce round off errors with finite word length, the factor-
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ization contains anti-diagonal matrices or the irregularities related to the DCT are

separated into pre- or post-processing stages.

When aiming at pipeline structures, the irregular algorithms restrict the efficient util-

ization of the linear mapping methods. Consequently, structures introduce com-

plicated control or exploit application-specific solutions with high level of parallel-

ism and without modularity. Instead, when using the regular algorithms as a basis,

round off errors affect word length requirements and anti-diagonal matrices intro-

duce irregular permutations requiring extra storage resources. Furthermore, pre- or

post-processing stages introduce additional hardware when implementing the unified

pipeline structure for the forward and inverse DCT. Moreover, the constant intercon-

nection permutations in the constant geometry algorithms result in larger area than

the permutations in the in-place algorithms where the size of the permutations is get-

ting either smaller or larger stage by stage.



3. PERFECT SHUFFLE TOPOLOGY DCT ALGORITHMS

Since we are targeting at pipeline computation at data rate, our intention is to derive

novel regular fast DCT algorithms which lend themselves for the vertical mapping.

According to the previous survey, we should achieve the algorithms with comparable

arithmetic complexity and reduced interconnection complexity. Therefore, our ob-

jective is not to minimize the arithmetic complexity but to derive algorithms possess-

ing regularity in operational columns implying reduced control complexity. In addi-

tion, the interconnection permutations should be minimized and large anti-diagonal

sparse matrices should be avoided in the algorithms for minimizing storage require-

ments. In order to avoid additional hardware in a unified pipeline structure, we avoid

algorithms with the pre- or post-processing operations. Instead the irregularities are

to be distributed over the operational columns in the signal flow graph. Moreover, the

coefficients should be cosine coefficients for minimizing the round off errors.

In this chapter, the sparse matrix decomposition of the novel perfect shuffle topology

algorithms for the one- and two-dimensional DCT is described. Before going into

the details of the proposed fast algorithms, we provide the preliminaries needed dur-

ing the derivation. Subsequently, the derivation of the algorithms for the one- and

two-dimensional DCTs is described. The chapter is concluded by summarizing the

benefits of the derived algorithms.

3.1 Preliminaries

The formulation used in this Thesis is based on tensor (or Kronecker) products de-

noted by ⊗. Operator ⊕ is used to denote the matrix direct sum [122]:

n⊕
i=0

Ai = diag(A0,A1, . . . ,An). (8)
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For ordinary products, left evaluation is used, i.e.,

n

∏
i=0

Ai = A0 ·A1 ·A2 · . . . ·An. (9)

The floor function and modulus operation are denoted by �·� and mod , respectively.

The identity matrix of order N is denoted by IN and the anti-diagonal identity matrix

of order N by ĪN , i.e.,

[ĪN ]mn =

{
1, m = N −n−1
0, otherwise

,n,m = 0,1, . . . ,N −1. (10)

Permutation matrices are used in the formulation for reordering the data arrays. In the

following, the permutation matrices are defined and three permutation types used in

this Thesis are described. In addition, some properties related to these permutations

are presented.

Definition 1. A permutation matrix PN is an N ×N matrix with all elements either 0

or 1, with exactly one 1 at each row and column [75].

The permutation matrices are orthogonal; if PN is a permutation, then P−1
N = PT

N . The

product of the permutation matrices is another permutation matrix. [75]

Stride permutations can be described like matrix transposes over sequentially repres-

ented data [25]. In stride-by-R permutation of an N-element vector, an R× (N/R)
matrix is first constructed out of the vector in column wise and then returned back

to the vector form in row wise. The stride-by-R permutation matrix of order N is

denoted by PN,R and defined as [107]

[PN,R]mn =

{
1, iff n = (mR mod N)+ �mR/N�
0, otherwise

,m,n = 0,1, . . . ,N −1. (11)

As an example, the stride-by-R permutation reorders the data elements of an array

X = (x0,x1, . . . ,xN−1)
T as

PN,RX = (x0,xR,x2R, . . . ,xN−R+1,x1,xR+1, . . . ,xN−1)T . (12)

A special case of the stride permutation is perfect shuffle, which interleaves the data

elements in the first half of an array with the elements in the second half, i.e., perfect
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shuffle performs the stride-by-N/2 permutation, PN,N/2, for an N-point array. Stride-

by-2 permutation is the inverse permutation of perfect shuffle, thus the perfect shuffle

permutation matrix can also be denoted by PT
N,2.

The Hadamard permutation matrix of order N denoted by PH
N is defined as

[
PH

N

]
mn =

{
1, iff n = hN(m)
0, otherwise

,m,n = 0,1, . . . ,N −1 (13)

where hN(i) is the Hadamard permutation function defined recursively as [119]

h1(0) = 0; h2N(2i) = hN(i); h2N(2i+1) = 2N −1−hN(i), i = 0,1, . . . ,N −1. (14)

Hadamard permutation reorders the elements in a vector X as

PH
N X = (xhN(0),xhN(1),xhN(2), . . . ,xhN(N−1))

T . (15)

The third permutation matrix to be exploited is defined as [106]

JN =
(
I2 ⊗PN/2,N/4

)
PN,2. (16)

In this permutation, the odd elements in the first half of a vector are exchanged with

the even elements of the last half of the vector.

In addition, let us define the following matrices:

F1 =I1; F2 =

(
1 1
1 −1

)
; FN = IN/2 ⊗F2 (17)

Q1 =I1; Q2 = I2; Q4 = P4,2 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ ; QN = IN/4 ⊗Q4 (18)

R1 =I1; R2 = I2; R4 = Q4PH
4 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ ; RN = IN/4 ⊗R4 (19)

ĨN =diag(−1i), i = 0,1, . . . ,N −1. (20)

In the following, some properties of tensor product and the previous permutations are

presented. The proofs for the following theorems can be found, e.g., from [20, 25].
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Theorem 1. Consider matrices A, B, C, and D. The following properties hold true

with the corresponding operations:

A⊗ (B⊗C) = (A⊗B)⊗C (21)

(A⊗B)(C⊗D) = (AC⊗BD) (22)

(A⊗B)T = AT ⊗BT (23)

Corollary 1.

AN ⊗BN = (AN ⊗ IN)(IN ⊗BN) (24)

The proof for this is evident by referring to (22).

Theorem 2. Factorizations of stride permutations

Pa,bc = Pa,bPa,c (25)

Pabc,c = (Pac,c ⊗ Ib)(Ia ⊗Pbc,c) (26)

Theorem 3. Commutativity property of tensor product. If Aa and Bb are matrices of

order a and b, respectively, then,

Aa ⊗Bb = Pab,a (Bb ⊗Aa)Pab,b (27)

Corollary 2. Relation of stride-by-2 permutations

PN,2(I2 ⊗PT
N/2,2) = P4,2 ⊗ IN/4 (28)

Proof. By noting that PN,2PT
N,2 = IN and applying (26) to PN,2, we obtain PN,2(I2 ⊗

PT
N/2,2) = (P4,2 ⊗ IN/4)(I2 ⊗PN/2,2)(I2 ⊗PT

N/2,2) = P4,2 ⊗ IN/4.

Corollary 3. Factorization of stride-by-2 permutation

P2k,2 =
k−2

∏
i=0

(I2i ⊗P4,2 ⊗ I2k−i−2) , k > 1 (29)
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Proof. According to (26), the stride-by-2 permutation matrix of order N,N = 2k, can

be decomposed as PN,2 =
(
P4,2 ⊗ IN/4

)(
I2 ⊗PN/2,2

)
. By applying the decomposition

to the term PN/2,2, we obtain PN,2 =
(
P4,2 ⊗ IN/4

)(
I2 ⊗P4,2 ⊗ IN/8

)(
I4 ⊗PN/4,2

)
. This

recursion can be continued until the rightmost term is IN/4 ⊗P4,2, i.e., the recursion

can be applied k−1 times.

Corollary 4. Factorization of perfect shuffle permutation

P2k,2k−1 =
k−2

∏
i=0

(I2k−i−2 ⊗P4,2 ⊗ I2i) , k > 1 (30)

The proof is straightforward from Corollary 3 by noting that PN,N/2 = PT
N,2.

The proofs for the following theorems are shown in [5].

Theorem 4. Factorization of Hadamard permutation

PH
2k =

k−2

∏
i=0

[(
I2k−2−i ⊗P2i+2,2

)
R2k

]
, k > 1 (31)

Definition 2. The matrix A of order N is cross-diagonal of type 1 if it can be presen-

ted as

A = D1 +D2Ī (32)

where D1 and D2 are diagonal matrices of order N.

Definition 3. The matrix A of order N is cross-diagonal of type 2 if it can be presen-

ted as

A = D1 +D2P̄ (33)

where P̄ = 0⊕ ĪN−1.

Theorem 5. Let AN be a type 1 cross-diagonal matrix of order N = 2k,k ≥ 2. Then,

it can be represented as

AN = RNPT
N,2

(
A1

N/2 0

0 A2
N/2

)
PN,2RN (34)

where A1
N/2 and A2

N/2 are cross-diagonal matrices of type 1.
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Theorem 6. Let AN be a type 2 cross-diagonal matrix of order N = 2k,k ≥ 2. Then,

it can be represented as

AN = PT
N,2

(
A2

N/2 0

0 A1
N/2

)
PN,2 (35)

where A1
N/2 is a cross-diagonal matrix of type 1 and A2

N/2 is a cross-diagonal matrix

of type 2.

The fast algorithms for DCT derived in this Thesis are based on the results presented

in [119] where the proofs for the following theorems can be found from.

Theorem 7. The DCT matrix of order N = 2k, CII
N, can be represented as

CII
N =

√
2
N

D∗
NC(0)

N PH
N (36)

where D∗
N is a scaling matrix

D∗
N = d(1)⊕ IN−1 (37)

and the matrix C(0)
N is a Hadamard ordered DCT matrix defined as

C(i)
J = L(i)

J BJ

(
C(2i)

J/2 0

0 C(2i+1)
J/2

)
(38)

where L(i)
J and BJ are the following:

L(i)
J =

⎛
⎜⎜⎜⎝

1
IJ/2−1 0

d(N/J + i)
−ĪJ/2−1 2d(N/J + i)IJ/2−1

⎞
⎟⎟⎟⎠ (39)

BJ =

(
IJ/2 IJ/2

IJ/2 −IJ/2

)
. (40)

The coefficients d(i) are all cosines defined as

d(i) = cos((hK(t)+1/2)π/2K) ,K = 2�log2(i)�, t = i−K. (41)

or they can also be generated recursively as

d(1) =
√

0.5; d(2i) =
√

0.5(1+d(i)); d(2i+1) =
√

0.5(1−d(i)). (42)
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Theorem 8. The Hadamard ordered DCT matrix C(0)
2k can be computed as

C(0)
2k =

0

∏
s=k−1

2k−s−1−1⊕
i=0

(
L(i)

2s+1B2s+1

)
. (43)

3.2 One-Dimensional Transform

In order to derive an algorithm suitable for the vertical mapping, we exploit the de-

composition of the DCT matrix with Hadamard ordered input in Theorem 7. Let us

first consider the matrix L(i)
J of order J, J = 2k, in (39) which is actually a cross-

diagonal matrix of type 2, thus Theorem 6 applies. Recursive application of the

theorem k−3 times results in the following decomposition:

L(i)
J = GJE ′(i)

J GT
J (44)

where GJ is defined as

G2k =
k−3

∏
i=0

[
(I2k−i ⊕R2k−2k−i)

(
I2i ⊗PT

2k−i,2

)]
(45)

and E ′(i)
J is the following block diagonal matrix consisting of blocks of order 4

E ′(i)
J =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 d(N/J + i) 0
0 −1 0 2d(N/J + i)

⎞
⎟⎟⎟⎠

⊕

⎡
⎢⎢⎢⎣IJ/4−1 ⊗

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 −1 2d(N/J + i) 0
−1 0 0 2d(N/J + i)

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ . (46)

The block diagonal matrix E ′(i)
J consists of a cross-diagonal matrix of type 2 of order

4 in the top-left corner and a block diagonal of cross-diagonal matrices of type 1 of

order 4, thus Theorem 6 can still be applied for reducing the order of the blocks as

L(i)
J =GJ(I4 ⊕RJ−4)(IJ/4 ⊗PT

4,2)E
(i)
J (IJ/4 ⊗P4,2)(I4 ⊕RJ−4)GT

J (47)
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where E(i)
J is

E(i)
J =

(
1 0
0 d(N/J + i)

)
⊕

[
IJ/2−1 ⊗

(
1 0
−1 2d(N/J + i)

)]

=

[
I2 ⊕

(
IJ/2−1 ⊗

(
1 0
−1 1

))]

·
[(

1 0
0 d(N/J + i)

)
⊕

(
IJ/2−1 ⊗

(
1 0
0 2d(N/J + i)

))]
. (48)

By defining two matrices M′(i)
J and D′′(i)

J as

M′(i)
J =I2 ⊕

[
IJ/2−1 ⊗

(
1 0
−1 1

)]
(49)

D′′(i)
J =

(
1 0
0 d(N/J + i)

)
⊕

[
IJ/2−1 ⊗

(
1 0
0 2d(N/J + i)

)]
(50)

we may rewrite L(i)
J as

L(i)
J = GJ(I4 ⊕RJ−4)QJM′(i)

J D′′(i)
J QJ(I4 ⊕RJ−4)GT

J . (51)

Next we consider the matrix BJ in (40), which according to Theorem 3 can be rewrit-

ten as

BJ = (F2 ⊗ IJ/4)⊗ I2 = PT
J,2(I2 ⊗F2 ⊗ IJ/4)PJ,2. (52)

The matrix (I2⊗F2⊗ IJ/4) is a block diagonal matrix with blocks of order J/2 where

each block consists of four diagonal matrices as

I2 ⊗F2 ⊗ IJ/4 =

⎛
⎜⎜⎜⎝

IJ/4 IJ/4

IJ/4 −IJ/4

IJ/4 IJ/4

IJ/4 −IJ/4

⎞
⎟⎟⎟⎠ . (53)

This matrix can be reordered with IJ/2 ⊕RJ/2 without any effect since the diagonal

elements to be exchanged are identical (either 1 or −1). Therefore, we may rewrite

BJ as

BJ = PT
J,2(IJ/2 ⊕RJ/2)(I2 ⊗F2 ⊗ IJ/4)(IJ/2 ⊕RJ/2)PJ,2. (54)

Applying Theorem 3 to the term (F2 ⊗ IJ/4) results in

BJ = PT
J,2(IJ/2 ⊕RJ/2)(I2 ⊗PT

J/2,2)(I4 ⊗F2 ⊗ IJ/8)(I2 ⊗PJ/2,2)(IJ/2 ⊕RJ/2)PJ,2. (55)
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The term (IJ/4 ⊕ R3J/4) can be again included since R4 matrices are exchanging

identical diagonal elements, thus

BJ =PT
J,2(IJ/2 ⊕RJ/2)(I2 ⊗PT

J/2,2)(IJ/4 ⊕R3J/4)(I4 ⊗F2 ⊗ IJ/8)

· (IJ/4 ⊕R3J/4)(I2 ⊗PJ/2,2)(IJ/2 ⊕RJ/2)PJ,2. (56)

The recursive application of this two phase addition of terms can be continued k−3

times, which leads into form

BJ = GJ(IJ/4 ⊗F2 ⊗ I2)GT
J . (57)

In order to simplify the innermost term, Theorem 3 provides us the following form:

BJ = GJ(IJ/2 ⊗PT
4,2)(IJ/2 ⊗F2)(IJ/2 ⊗P4,2)GT

J = GJQJFJQJGT
J . (58)

Now the decompositions of LJ in (51) and BJ in (58) can be replaced into (43), which

results in

C(0)
2k =

0

∏
s=k−1

(
U (s)

2k A′(s)
2k V (s)

2k

)
(59)

where

V (s)
2k =

2k−s−1−1⊕
i=0

(
Q2s+1GT

2s+1

)
(60)

U (s)
2k =

2k−s−1−1⊕
i=0

[G2s+1 (I4 ⊕R2s+1−4)Q2s+1 ] (61)

A′(s)
2k =

2k−s−1−1⊕
i=0

[
M′(i)

2s+1D′′(i)
2s+1Q2s+1(I4 ⊕R2s+1−4)Q2s+1F2s+1

]
. (62)

3.2.1 Processing Columns

The block diagonal matrix A′(s)
N defines all the arithmetic operations performed at the

sth processing column. The representation of these columns can be unified by using

a binary-valued parametrization function defined as

µn(i) =

{
0, i mod 2n = 0
1, i mod 2n �= 0

. (63)
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Hence, the processing column A′(s)
N can be represented as

A′(s)
N = M(s)

N D′(s)
N H(s)

N FN (64)

where

M(s)
2k =

2k−1−1⊕
i=0

(
1 0

−µs(i) 1

)
(65)

D′(s)
2k =

2k−1−1⊕
i=0

(
1 0
0 2µs(i)d(2k−s−1 + �i/2s�)

)
(66)

H(s)
2k =

2k−2−1⊕
i=0

(Q4R4Q4)
µs−1(i) . (67)

3.2.2 Interconnection Permutations

According to (59), C(0)
N can be factorized into the processing columns interconnected

with the permutations. The permutation between the processing columns A(s−1)
N and

A(s)
N is defined as

V (s)
2k U (s−1)

2k =
2k−s−1−1⊕

i=0

(
Q2s+1GT

2s+1

) 2k−s−1⊕
i=0

[G2s (I4 ⊕R2s−4)Q2s ]

=
2k−s−1−1⊕

i=0

[
Q2s+1GT

2s+1 (I2 ⊗G2s (I4 ⊕R2s−4)Q2s)
]
=

2k−s−1−1⊕
i=0

PP
2s+1 . (68)

In order to simplify the representation, it is sufficient to consider only the matrix PP
N

of order N, N = 2k, which can be written as

PP
N = QNGT

N

[
I2 ⊗

(
GN/2

(
I4 ⊕RN/2−4

)
QN/2

)]
= QNGT

N

(
I2 ⊗GN/2

)(
I2 ⊗

(
I4 ⊕RN/2−4

))
QN . (69)

An example of such a 32-point interconnection permutation, PP
32, is illustrated in

Fig. 17(a) where QN is represented with the aid of relation Q4 = P4,2 = PT
4,2.

Let us first consider the term GT
N(I2 ⊗GN/2) in (69). According to the definition of

GN in (45), this can represented as

GT
N(I2 ⊗GN/2) =

k−3

∏
i=0

[(
I2k−i−3 ⊗P2i+3,2

)
(I2i+3 ⊕R2k−2i+3)

]

·
(

I2 ⊗
k−4

∏
i=0

[
(I2k−i−1 ⊕R2k−1−2k−i−1)

(
I2i ⊗PT

2k−i−1,2

)])
. (70)
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Fig. 17. Simplification of the interconnection permutation: structure of 32-point interconnec-

tion permutation (a) in (69), (b) in (71), (c) after (73), (d) in (76), and (e) in (77).
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By taking two permutation matrices out of the products and applying Corollary 2, we

obtain

GT
N(I2 ⊗GN/2) =

k−5

∏
i=0

[(
I2k−i−3 ⊗P2i+3,2

)
(I2i+3 ⊕R2k−2i+3)

](
I2 ⊗PN/2,2

)
· (IN/2 ⊕RN/2

)(
P4,2 ⊗ IN/4

)(
I2 ⊗ (IN/4 ⊕RN/4)

)(
I4 ⊗PT

N/4,2

)

·
(

I2 ⊗
k−4

∏
i=2

[
(I2k−i−1 ⊕R2k−1−2k−i−1)

(
I2i ⊗PT

2k−i−1,2

)])
. (71)

The resulting permutation in the 32-point example is depicted in Fig. 17(b).

Since
(
I2 ⊗ (IN/4 ⊕RN/4)

)
is actually a block-diagonal matrix with four blocks of

order N/4 and
(
P4,2 ⊗ IN/4

)
performs exchange of middle blocks of order N/4 in a

block diagonal matrix, the following is valid

(
P4,2 ⊗ IN/4

)(
I2 ⊗ (IN/4 ⊕RN/4)

)
=

(
IN/2 ⊕RN/2

)(
P4,2 ⊗ IN/4

)
. (72)

When using this in (71), the terms
(
IN/2 ⊕RN/2

)
cancel each other. Furthermore,(

I4 ⊗PT
N/4,2

)
is also a block diagonal matrix with identical blocks of order N/4 thus

it commutes with
(
P4,2 ⊗ IN/2

)
, i.e.,

(
P4,2 ⊗ IN/2

)(
I4 ⊗PT

N/4,2

)
=

(
I4 ⊗PT

N/4,2

)(
P4,2 ⊗ IN/2

)
, (73)

resulting the permutation shown in Fig. 17(c). When the commutativity in (73) is

used in (71), we have a term
(
I2 ⊗PN/2,2

)(
I4 ⊗PT

N/4,2

)
, which according to Corol-

lary 2 is (I2 ⊗P4,2 ⊗ IN/8) and, therefore,

GT
N(I2 ⊗GN/2) =

k−5

∏
i=0

[(
I2k−i−3 ⊗P2i+3,2

)
(I2i+3 ⊕R2k−2i+3)

]
· (I2 ⊗P4,2 ⊗ IN/8

)(
P4,2 ⊗ IN/4

)
·
(

I2 ⊗
k−4

∏
i=2

[
(I2k−i−1 ⊕R2k−1−2k−i−1)

(
I2i ⊗PT

2k−i−1,2

)])
. (74)

By recursively applying the previous procedure, we obtain

GT
N(I2 ⊗GN/2) =

(
IN/8 ⊗P8,2

)
(I8 ⊕RN−8)

(
IN/16 ⊗P4,2 ⊗ I4

)
· (IN/32 ⊗P4,2 ⊗ I8

)
. . .

(
I2 ⊗P4,2 ⊗ IN/8

)(
P4,2 ⊗ IN/4

)
. (75)
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By replacing this term into (69), we end up a permutation illustrated in Fig. 17(d)

with the following generalized representation:

PP
N =

(
IN/4 ⊗P4,2

)(
IN/8 ⊗P8,2

)
(I8 ⊕RN−8)

(
IN/16 ⊗P4,2 ⊗ I4

)
· (IN/32 ⊗P4,2 ⊗ I8

)
. . .

(
I2 ⊗P4,2 ⊗ IN/8

)(
P4,2 ⊗ IN/4

)
· (I2 ⊗

(
I4 ⊕RN/2−4

))(
IN/4 ⊗PT

4,2

)
. (76)

According to Corollary 4, the permutation terms
(
IN/16 ⊗P4,2 ⊗ I4

)(
IN/32 ⊗P4,2 ⊗ I8

)
. . .

(
P4,2 ⊗ IN/4

)
perform the perfect shuffle permutation of blocks of order four over

N/4 blocks and, therefore, the term
(
I2 ⊗

(
I4 ⊕RN/2−4

))
at the end of (76) can be

moved next to the third term (I8 ⊕RN−8) in (76), simply by permuting the blocks of

order four. Such a permutation results in term (I8 ⊕RN−8), thus the terms containing

R matrices cancel each other and disappear. In similar fashion, we may move the

term
(

IN/4 ⊗PT
4,2

)
at the end of (76) next to the term

(
IN/8 ⊗P8,2

)
, which results in

term
(
IN/8 ⊗P4,2 ⊗ I2

)
according to Corollary 2. After this we may rewrite PP

N with

the aid of Corollary 4 as

PP
N =

(
IN/4 ⊗P4,2

)(
IN/8 ⊗P4,2 ⊗ I2

)(
IN/16 ⊗P4,2 ⊗ I4

)
. . .

· (I2 ⊗P4,2 ⊗ IN/8
)(

P4,2 ⊗ IN/4
)

=
k−2

∏
i=0

(I2k−i−2 ⊗P4,2 ⊗ I2i) = PN,N/2 = PT
N,2, (77)

which is illustrated in Fig. 17(e).

With the aid of Corollary 4, we have found that the permutation between the pro-

cessing columns is based on perfect shuffle permutation and, therefore, the permuta-

tion matrix between the processing columns A(s)
2k and A(s−1)

2k in (68) can be defined

as

V (s)
2k U (s−1)

2k =
2k−s−1−1⊕

i=0

PT
2s+1,2. (78)

3.2.3 Final Algorithm

Since V (0)
N = IN , the representation of the DCT matrix C(0)

N in (59) can be reduced

with the aid of the simplified interconnection in (78) to

C(0)
2k = U (k−1)

2k

1

∏
s=k−1

[
A′(s)

2k

(
I2k−s−1 ⊗PT

2s+1,2

)]
A′(0)

2k (79)
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where U (k−1)
2k represents the output permutation defined as

U (k−1)
2k =

k−2

∏
i=0

[
(I2k−i ⊕R2k−2k−i)

(
I2i ⊗PT

2k−i,2

)]
. (80)

The complete DCT in (36) contains a diagonal matrix D∗
N defined in (37), which has

only a single non-trivial element at the top-left corner. Let us remark that matrices

U (k−1)
N as a permutation matrix and M(k−1)

2k defined in (65) contain only single 1 in the

first row and in the first column, at the top-left corner and thus, D∗
N commutes with

them. This implies that D∗
2k can be included into the diagonal matrix D′(k−1)

2k defined

in (66) and we accomplish that with the aid of a binary-valued parametrization func-

tion τi(s),

τi(s) =

{
0, s = i
1, s �= i

, (81)

and defining a diagonal matrix D(s)
N based on (66) as

D(s)
2k = diag(gk(i,s)) , i = 0,1, . . . ,2k −1 (82)

gk(i,s) =
(

2µs(�i/2�)d(2k−s−1 + �i/2s+1�)
) fk(i,s)

(83)

fk(i,s) = (i mod 2)+(1− τ0(i))(1− τk−1(s)). (84)

Consequently, a new matrix representation for the sth processing column, A(s)
N , can

be defined as

A(s)
N = M(s)

N D(s)
N H(s)

N FN . (85)

Finally, the entire DCT matrix can be formulated as

CII
2k =

√
2
2k U (k−1)

2k

1

∏
s=k−1

[
A(s)

2k

(
I2k−s−1 ⊗PT

2s+1,2

)]
A(0)

2k PH
2k . (86)

In order to emphasize the regularity of the proposed perfect shuffle topology al-

gorithm, the signal flow graph of the 16-point DCT is illustrated in Fig. 18 where

the normalization factors are not included. In general, the regular perfect shuffle

topology algorithm in (86) yields arithmetic complexity of N log(N)/2+1 multiplic-

ations and 3N log(N)/2−N +1 additions for an N-point DCT, N = 2k, including the

scaling factor bm but without the normalization factor
√

2/N in (2).
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Fig. 18. Signal flow graph of the regular perfect shuffle topology DCT in (86).

3.3 Two-Dimensional Transform

As discussed in the previous chapter, there are two principal methods for deriving fast

algorithms for the two-dimensional DCT: a row-column decomposition and direct

computation. In the ensuing two sections, both the row-column decomposition and

direct computation are used to derive two-dimensional DCT algorithms based on the

proposed one-dimensional perfect shuffle topology algorithm.

3.3.1 Row-Column Decomposition

Due to the fact that the DCT transform matrix is separable, the DCT of an N ×N

matrix x defined as

X = CII
NxCII

N
T

(87)

can be reduced into a one-dimensional transform by concatenating the columns of

the two-dimensional input data matrix x; i.e., x is represented as an array, resulting
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in an N2-point one-dimensional array x̂. Then the two-dimensional transform can be

computed as

X̂ =
(
CII

N ⊗CII
N

)
x̂ = CN×Nx̂ (88)

where X̂ is the transformed data matrix in the array format and CN×N is the corres-

ponding two-dimensional transform matrix of order N2. By utilizing Corollary 1 and

the commutativity property of tensor product in Theorem 3, CN×N can be written as

CN×N =
(
CII

N ⊗ IN
)(

IN ⊗CII
N

)
= PN2,N

(
IN ⊗CII

N

)
PN2,N

(
IN ⊗CII

N

)
. (89)

If a fast algorithm exists for computing the one-dimensional DCT, the algorithm in

(89) is a fast algorithm for the two-dimensional DCT. According to the definition

of the stride permutation in [25], PN2,N performs the transpose of an N ×N matrix

arranged in a vector form and, therefore, (89) describes the traditional row-column

decomposition of the two-dimensional DCT.

The fast algorithms for the one-dimensional DCT can often be represented as

CII
N = PO

N KNPI
N (90)

where KN represents a transform kernel matrix of order N containing all the arith-

metic operations and PI
N and PO

N are input and output permutation matrices of or-

der N, respectively. This implies that in the two-dimensional transform in (89), the

permutation between the consecutive one-dimensional DCT kernels consists of the

output permutation, matrix transpose, and input permutation. Such a permutation in-

creases the complexity of hardware implementations considerably in the cases where

a programmable processor with efficient addressing modes could take care of data

permutations. However, when a one-dimensional algorithm having the form of (90)

is used in the two-dimensional transform, the transform matrix CN×N can be formu-

lated as

CN×N =
(
PO

N ⊗PO
N

)
(KN ⊗KN)

(
PI

N ⊗PI
N

)
=

(
PO

N ⊗PO
N

)
PN2,N (IN ⊗KN)PN2,N (IN ⊗KN)

(
PI

N ⊗PI
N

)
. (91)

This implies that in the two-dimensional transform, the input permutation from the

consecutive one-dimensional transforms can be combined as a single permutation

matrix PI
N×N of order N2. Similarly the output permutations and additional matrix

transpose can also be combined as a matrix PO
N×N of order N2. Therefore, the entire
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two-dimensional DCT can be interpreted to consist of the matrix transpose between

two consecutive transform kernels and the input and output permutations as

CN×N =PO
N×N (IN ⊗KN)PN2,N (IN ⊗KN)

(
PI

N×N

)
. (92)

Such an arrangement provides efficiency in hardware accelerator type of implement-

ations where the permutation can be performed with a programmable processor and

only the transform kernels and matrix transpose need to be realized in hardware.

When the one-dimensional DCT algorithm in (86) is used as a basis for the row-

column approach, the two-dimensional DCT realization yields arithmetic complexity

of N(N log(N)+2) multiplications and N(3N log(N)−2N+2) additions for an N×N

DCT, N = 2k including the DC factor bm but without the normalization factor
√

2/N

in (2).

3.3.2 Direct Computation

The one-dimensional DCT algorithm in (86) can be used as a basis to derive a reg-

ular algorithm for the direct computation of the two-dimensional DCT. The two-

dimensional transform matrix CN×N can be derived by substituting the fast algorithm

in (86) for CII
N in (88). This results in

C2k×2k =21−k

[
U2k

1

∏
s=k−1

(
Q(s)

2k

(
I2k−s−1 ⊗PT

2s+1,2

))
Q(0)

2k PH
2k

]

⊗
[

U2k

1

∏
s=k−1

(
Q(s)

2k

(
I2k−s−1 ⊗PT

2s+1,2

))
Q(0)

2k PH
2k

]
, (93)

which by applying Theorem 1 can be formulated as

CII
2k×2k =21−k

(
U (k−1)

2k ⊗U (k−1)
2k

)

·
1

∏
s=k−1

[(
A(s)

2k ⊗A(s)
2k

)(
I2k−s−1 ⊗PT

2s+1,2 ⊗ I2k−s−1 ⊗PT
2s+1,2

)]

·
(

A(0)
2k ⊗A(0)

2k

)(
PH

2k ⊗PH
2k

)
. (94)

The matrix representation of the processing column in the two-dimensional DCT can

be formulated with the aid of Corollary 1 as

A(s)
N×N =A(s)

N ⊗A(s)
N =

(
M(s)

N ⊗M(s)
N

)(
H(s)

N ⊗H(s)
N

)(
D(s)

N ⊗D(s)
N

)
(FN ⊗FN)

=
(

M(s)
N ⊗ IN

)(
IN ⊗M(s)

N

)(
H(s)

N ⊗ IN

)(
IN ⊗H(s)

N

)
D(s)

N×N (FN ⊗ IN)FN2 (95)
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where D(s)
N×N can be defined with the aid of the coefficients gk(i) in (84) as

D(s)
2k×2k = D(s)

2k ⊗D(s)
2k

= diag
(

gk(i mod 2k,s)gk(�i/2k�,s)
)

, i = 0,1, . . . ,22k −1. (96)

With the same analogy, the permutation between the processing columns s and s−1

can be written as

I2k−s−1 ⊗PT
2s+1,2 ⊗ I2k−s−1 ⊗PT

2s+1,2 =
(

I2k−s−1 ⊗PT
2s+1,2 ⊗ I2k

)(
I22k−s−1 ⊗PT

2s+1,2

)
. (97)

Similarly, the input and output permutation matrices of order N2 denoted by PI
N×N

and PO
N×N , respectively, are formulated as

PI
2k×2k =

(
PH

2k ⊗ I2k

)(
I2k ⊗PH

2k

)
(98)

PO
2k×2k =

(
U (k−1)

2k ⊗ I2k

)(
I2k ⊗U (k−1)

2k

)
. (99)

Finally, with the aid of (95)–(99), we can formulate the matrix representation of the

fast algorithm for the two-dimensional DCT as

CII
2k×2k =21−kPO

2k×2k

1

∏
s=k−1

[
A(s)

2k×2k

(
I2k−s−1 ⊗PT

2s+1,2 ⊗ I2k

)(
I22k−s−1 ⊗PT

2s+1,2

)]
·A(0)

2k×2k P
I
2k×2k . (100)

As an example, the signal flow graph of the resulting regular perfect shuffle topology

algorithm for the 8×8 DCT without the normalization factor is depicted in Fig. 19.

This example illustrates that the structure of the two-dimensional signal flow graph

follows the structure of the previously proposed one-dimensional algorithm but all the

processing and permutation columns are followed by another similar in-place column

where the operation is over distributed data. The only exception is the columns with

multiplications. In this sense, the algorithm is a hybrid; interconnection topology is

perfect shuffle but the processing columns are in in-place configuration.

The two-dimensional DCT algorithm defined in (100) yields arithmetic complexity

of N(5N log(N)/4+1)−1 multiplications and N(3N log(N)−2N +2) additions for

an N ×N DCT, N = 2k, including the scaling factor bm but without the normaliz-

ation factor 21−k. It should be noted that the non-trivial coefficients are localized

into log(N) diagonal matrices of order N2, which implies that the signal flow graph
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Fig. 19. Signal flow graph of the regular perfect shuffle topology 8×8 DCT in (100).
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contains log(N) columns of multiplications, i.e., as many as in the previous one-

dimensional transform, while in the row-column approach there are 2 log(N) columns

of multiplications. This provides advantage in pipeline architectures, as described in

the next chapter of this Thesis.

3.4 Summary

In the derived regular perfect shuffle topology algorithms, a straightforward design

strategy has been to exploit the advantages and get rid of or minimize the effects of

the drawbacks arisen in the survey of the related work. The algorithms possess reg-

ularity in the operational columns implying reduced control complexity. Although

the irregularities related to the DCT are distributed between the butterfly columns

they are localized into rather small node functions. Simultaneously, the pre- and

post-processing stages as well as the large anti-diagonal sparse matrices are avoided.

The regular interconnections with smaller and smaller permutations from column to

column reduces the complexity of data permutation. All the previous features minim-

ize the need for storage and provide area-efficiency when targeting at the single-rate

pipeline structures.

On the other hand, the algorithms can be interpreted to combine the regular in-place

and constant geometry algorithms. The interconnection topology is perfect shuffle as

in the constant geometry algorithms but the size of the permutation is smaller from

column to column as in the in-place algorithms. The relation to the in-place and

constant geometry algorithms is emphasized especially in the direct two-dimensional

DCT algorithms in which interconnection topology is perfect shuffle but the pro-

cessing columns are in in-place configuration. In this sense, the algorithms are hy-

brids.



4. PIPELINE STRUCTURES FOR PERFECT
SHUFFLE TOPOLOGY DCT

The regularity in all the novel perfect shuffle topology DCT algorithms derived in the

previous chapter allows efficient utilization of temporal parallelism. Therefore, in

the following, our purpose is to reduce the dimensionality of the signal flow graph by

applying vertical mapping, i.e., the two-dimensional signal flow graph is collapsed

or folded into a one-dimensional data path. In other words, each node found in the

matrix factorizations in (86) and (100) is mapped onto a corresponding sequential

unit with appropriate control signals resulting in new cascaded or pipeline structures.

The proposed DCT algorithms consist of the input permutation, processing columns

interconnected with the perfect shuffle permutations, and output permutation. In this

chapter, these processing and permutation columns are first mapped onto basic pro-

cessing and permutation units. Then, the resulting processing and permutation units

are cascaded for constructing the new pipeline structures. In order to prove the poten-

tiality and feasibility of the structures, the unified 8×8 DCT/IDCT pipeline structure

is compared to other reported structures and its demonstration implementation is de-

scribed. Finally, the benefits of the developed structures are summarized.

4.1 Basic Processing Units

Basic processing units for the pipeline computation of an algorithm are obtained by

defining the minimum set of data-dependent arithmetic operations in each operational

column. The processing columns A(s)
N in the proposed algorithm contain operational

columns of butterflies FN , multiplications D(s)
N , and local subtractions M(s)

N .

In the operational column FN , the principal operation is a real-valued radix-2 butter-

fly computation which can be realized with a single adder/subtracter as depicted in

Fig. 20(a) [34]. This requires that input operands x0 and x1 are stored into registers
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Fig. 20. Block diagrams of the basic data processing units: (a) butterfly unit (BU), (b) multi-

plier, and (c) local subtraction unit (LSU).

for computing both a sum and difference at consecutive clock cycles. When x0 is

read from the first delay register, x1 is entering the unit and, therefore, the addition

y0 = x0 + x1 can be performed and the result is directed to the output. In the next

clock cycle, x0 proceeds to the second delay register and x1 is read from the first one

thus the subtraction y1 = x0−x1 can be performed. The adder/subtracter in this struc-

ture is fully utilized at the expense of additional delay registers. Due to the operand

storage the latency of the butterfly unit (BU) is one.

The basic operation in the column D(s)
N is multiplication and especially, if the trivial

multiplication with one is included, each operand can be interpreted to be multiplied.

Therefore, the implementation is a single multiplier as illustrated in Fig. 20(b). Since

all the intermediate values are fed through a multiplier, the signal levels can be scaled

arbitrary allowing the efficient utilization of numeric range without additional hard-

ware cost.

The column M(s)
N is parametrized and contains irregular subtractions performed over

the neighboring data samples in a sequence as depicted in Fig. 20(c). These opera-

tions can be realized with a local subtraction unit (LSU). The operands, which do not

need any operation, are directed to the output through a multiplexer. When the sub-

traction is needed, the first operand x0 is forwarded to output without computation,

i.e., y0 = x0 and, at the same time, stored into a register. In the next clock cycle, when

x1 is entering the unit, the operands x0 and x1 can be subtracted and the difference

y1 = x1 − x0 is directed to the output. Since both the operands are available for the

subtraction when the result is needed, the LSU does not introduce additional latency.

Let us remark that the local subtraction in Fig. 20(c) can be interpreted as a half of the

butterfly operation. Therefore, the local subtraction can be realized with the previous
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Fig. 21. Unified butterfly unit: (a) block diagram and timing diagrams when performing (b)

butterfly, (c) local subtraction, and (d) flipped butterfly.

butterfly unit but an additional multiplexer is needed to bypass the arithmetic opera-

tion. The resulting multifunction arithmetic unit realizing the butterfly operations and

local subtractions is referred to as a unified butterfly unit (UBU), which is illustrated

with the aid of timing diagrams in Fig. 21. Note, that a flipped butterfly operation

illustrated in Fig. 21(d) is exploited in the inverse DCT, and it will be introduced later

in this chapter.

Processing units for computing the two-dimensional DCT can be constructed in a

similar fashion from the two-dimensional DCT algorithm in (100). The only differ-

ence is that in the N ×N DCT, the operational columns have a form (XN ⊗ IN)(IN ⊗
XN), i.e., each column of the arithmetic operations is followed by another column

with operands N times more apart. Consequently, such two-dimensional columns

can be mapped onto cascade of two basic units where the shift registers in the latter

unit are replaced with N times longer shift registers. As an example, a direct 8-point

two-dimensional butterfly operation corresponding (F2 ⊗ I8)(I8 ⊗F2) is illustrated in

Fig. 22(a). The first part of the direct two-dimensional unified butterfly unit oper-

ates exactly as the unit in Fig. 21(a) while the second part computes same butterfly

operation but over operands eight elements apart. The block diagram of the direct

two-dimensional unified butterfly unit UBU2 is depicted in Fig. 22(b).
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Fig. 22. Direct two-dimensional butterfly unit: (a) signal flow graph and (b) block diagram.

4.2 Basic Permutation Units

Similarly to the columns of the arithmetic operations, data permutations in the al-

gorithms need to be mapped onto sequential units, i.e., sequential permutation net-

works. The processing columns A(s)
N contain local permutation columns H(s)

N . In addi-

tion, the processing columns are interconnected with the perfect shuffle permutations

PT
N,2. Furthermore, if input and output data sequences are required in natural order,

the input and output permutations need to be realized. All the permutation networks

are based on the shift-exchange units shown in Fig. 11(b) [98].

The basic permutation in the column H(s)
N is a local 4-point permutation illustrated in

Fig. 23(a). Let us remark that, in the proposed algorithms, this local permutation H(s)
N
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Fig. 23. Block diagrams of the basic data permutation units: (a) signal flow graph of local

exchange operation, (b) local exchange unit (LEU), and (c) sequential 2k-point per-

fect shuffle permutation network.

in (67) always exchanges the elements two elements apart regardless of the transform

size. Such an exchange can be performed effectively with a local exchange unit

(LEU), which is a single SEU2 as shown in Fig. 23(b). The exchange operation is

performed when an appropriate control signal is provided. Consequently, the LEU

has the latency of two cycles.

The perfect shuffle permutations PT
N,2 between the processing columns can also be

realized with the aid of the SEUs. The 4-element perfect shuffle PT
4,2 exchanges con-

secutive elements, thus a single SEU1 can be used for this permutation. Respectively,

the 8-element perfect shuffle can be performed with the cascade of SEU2 and SEU1.

In general, the sequential perfect shuffle permutation of a 2k-element sequence can

be performed with a structure where k − 1 SEUs are cascaded in decreasing order

of size: SEU2k−2 , SEU2k−3 , . . . , SEU20 [97]. The latency of the resulting network is

∑k−2
i=0 (2i) = 2k−1−1. The generalized block diagram of the sequential perfect shuffle

permutation network is illustrated in Fig. 23(c).

In the literature, the input and output permutations are often omitted in structures,

especially in sequential structures, and only the transform kernels are considered.

When the DCT is targeted at an embedded system containing a programmable pro-

cessor, the input and output permutations can be realized efficiently with the index

addressing modes of the processor. Therefore, for the hardware structure, it is suf-

ficient to consider only the kernel operation of the DCT. On the other hand, when

the structure is utilized without external data permutation capabilities, the additional

input and output permutations are also required. However, let us omit the input and
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Fig. 24. Sequential matrix transpose network for 2k ×2k,k ≤ 3, matrix.

output permutations in details by noting that in the cases where the in-order input and

output are required, additional sequential permutation networks can be constructed.

E.g., for the Hadamard input permutation, the factorization in Theorem 4 can be ap-

plied while arbitrary permutations can be performed with a cascaded SEUs arranged

in increasing and decreasing order [98].

In the two-dimensional DCT based on the row-column decomposition, the matrix

transpose PN2,N can be performed with the sequential matrix transpose network illus-

trated in Fig. 14. In order to support also smaller powers of two matrix transposes

with the same network, the factorization in (26) can be applied k times in order to

have a decomposition

PN2,N =
k−1

∏
i=0

(
I2i ⊗P2k+1,2k ⊗ I2k−i−1

)
. (101)

With such an arrangement, the matrix transpose is performed as k perfect shuffle per-

mutations of 2N-item vectors. The size of items is doubled at each cycle, i.e., during

the first perfect shuffle permutation single elements are reordered, while the next per-

fect shuffle permutation reorders the items of two elements and so on, until in the kth

perfect shuffle permutation, the item size is N/2 elements. Since each perfect shuffle

permutation is realized with the aid of k cascaded SEUs, the decomposition in (101)

results in network of k2 cascaded SEUs as illustrated with an 8×8 matrix transpose

network in Fig. 24. The proposed transpose network possesses the same latency as

the network in Fig. 14 but requires more multiplexers. Consequently, smaller matrix

transposes can be performed by bypassing extra SEUs with appropriate control.

4.3 Final Structures

The pipeline structure for the one-dimensional DCT can be constructed by mapping

each operational column in (86) onto the corresponding sequential unit described

previously. According to (85) the first processing column in the 2k-point DCT is

A(0)
2k = D(0)

2k F2k . (102)
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Therefore, the corresponding realization would be a cascade of the butterfly unit

and multiplier. The first operation column is followed by 4-element perfect shuffles,

which map onto a 4-element perfect shuffle network consisting of SEU1. The second

processing column is

A(1)
2k = M(1)

2k D(1)
2k F2k , (103)

which is realized as a cascade of the butterfly unit, multiplier, and local subtraction

unit. This is followed by the 8-element perfect shuffles mapped onto the 8-point per-

fect shuffle network. The remaining (k−2) processing columns in (86) are realized

with a cascade of the butterfly unit, local exchange unit, multiplier, and local sub-

traction unit. The interconnections between the processing columns are in increasing

order and the last permutation is the 2k-element perfect shuffle.

The resulting pipeline structure without the input and output permutations is illus-

trated in Fig. 25(a). The structure yields arithmetic complexity of log(N) multipliers,

log(N) adder/subtracters, and log(N)−1 adders. The latency of the proposed kernel

structure due to the data permutations is N +2log(N)−4 cycles for an N-point DCT.

It should be noted that the structure supports also all the smaller transform sizes of

powers of two. However, this requires bypassing of certain arithmetic units and thus

exploitation of unified butterfly units UBUs instead of BUs. Moreover, the structure

can be freely pipelined since all the arithmetic units are in feedforward paths. In any

case, additional pipelining increases latency although improves the throughput.

According to the matrix decomposition in (89), the structure for the two-dimensional

DCT can be constructed by cascading two one-dimensional DCT structures with an

intermediate matrix transpose network. When the two-dimensional DCT is targeted

at the embedded system containing a programmable processor, the input and output

permutations as well as the latter matrix transpose can be combined as in (92) into

one permutation, which can be realized efficiently with the index addressing modes

of the programmable processor. Such an arrangement saves additional permutations

between the one-dimensional transforms and, therefore, it is sufficient to consider

only the kernel operation of the one-dimensional DCT, i.e., CK
N , and matrix transpose

PN2,N . The resulting structure for the embedded system is depicted in Fig. 25(b).

When the structure is targeted at the system requiring the complete DCT, the in-

tegration of the input and output permutations of the one-dimensional transforms is

not reasonable. Let us assume an arbitrary permutation of an 8-element sequence of
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Fig. 25. Pipeline structures for regular perfect shuffle topology DCT: (a) one-dimensional

DCT, (b) two-dimensional DCT kernel based on row-column decomposition, (c)

complete two-dimensional DCT based on row-column decomposition, and (d) dir-

ect two-dimensional DCT kernel.

which permutation matrix is denoted by P8. In this case, the maximum distance that

a single element is to be moved is less than eight. If two such permutations are com-

bined as in (92), the complexity of the permutation can be seen from the following:

(P8 ⊗P8) = (P8 ⊗ I8)(I8 ⊗P8) , (104)

i.e., the maximum distance a single data element to be moved in a two-dimensional

case with a 64-element sequence will be eight times greater than in a one-dimensional

case with an 8-element sequence. Since the data in the target structure is in sequen-

tial form, changing locations of data elements in the data stream requires intermediate

storage. The minimum number of storage locations needed to perform the permuta-

tion depends on the maximum distance a single element needs to be moved. There-

fore, in order to minimize the number of the storage locations in the input and output

permutation units, the input and output permutations are not combined. The structure

for the complete in-order DCT is illustrated in Fig. 25(c).

The development of the two-dimensional pipeline structure based on the direct two-

dimensional DCT algorithm follows the same principles as the development of the

one-dimensional structure. By comparing the matrix decompositions of the one-

dimensional algorithm in (86) to the two-dimensional algorithm in (100), it can be

obtained that the structures will resemble each others. I.e., the number of stages

is the same but each stage A(s)
N in the one-dimensional DCT is now replaced with(

A(s)
N ⊗A(s)

N

)
as stated in (95). The decomposition of these stages can be mapped ver-

tically onto cascaded sequential units similarly to the stages of the one-dimensional
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transform. Therefore, the final pipeline structure for the two-dimensional DCT kernel

in (100) can be constructed by cascading the basic modules in correct order as shown

in Fig. 25(d) and providing appropriate control signals. Let us remark that in order

to support smaller powers of two transforms, the intermediate outputs are required

into shift registers. The structure yields arithmetic complexity of log(N) multipliers,

2 log(N) adder/subtracters, and 2log(N)−2 adders. The latency of the pipeline due

to data permutations is (N +1)(N +2log(N)−4) for an N ×N DCT.

4.4 Case Study: Unified DCT and IDCT

In several applications, where transforms are utilized, also the inverse transforms

are required. Therefore, a unified structure supporting both the forward and inverse

transforms is preferable. Due to the popularity of the 8×8 DCT in the current mul-

timedia applications let us consider only the unified 8-point and 8× 8 DCT and its

inverse. In the following, the structure based on row-column decomposition is intro-

duced briefly whereas the unified structure based on the direct computation is also

implemented and compared to other corresponding state-of-the-art solutions.

4.4.1 Algorithms and Structures

The unified pipeline structure supporting both the DCT and its inverse can be con-

structed by considering first the individual one-dimensional transforms. The basis

for the derivation is the DCT algorithm defined in (86) of which 8-point signal flow

graph is illustrated in Fig. 26(a). The corresponding inverse DCT algorithm is ob-

tained by reversing the signal flow graph of the forward algorithm. In addition, the

signal flow graph is flipped vertically in order to minimize the latency of the imple-

mentation, i.e., to have the operands in sequential form available when the result is

needed. Finally, the algorithm is rescheduled for achieving the interconnections in

increasing order. The resulting signal flow graph of the 8-point IDCT is depicted in

Fig. 26(b). The previously described procedure for deriving algorithm for the inverse

transform applies also to the direct 2-D DCT algorithm in (100).

The vertical mapping of the processing columns in the signal flow graphs of the DCT

and IDCT algorithms in Fig. 26 results in pipeline structures illustrated in Fig. 27(a)
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Fig. 26. Signal flow graphs of the 8-point (a) DCT and (b) IDCT.

and (b), respectively. These separate structures imply that a unified structure sup-

porting both transforms could be constructed by providing additional data paths to

reverse the data flow of the DCT pipeline for the IDCT computation. Such an ap-

proach would, however, introduce high routing costs and complicated control. A

more efficient solution is obvious when comparing the structures in Fig. 27(a) and

(b); the DCT and IDCT pipelines can be mapped onto a unified processing pipeline.

Such a structure supporting both the 8-point DCT and IDCT is depicted in Fig. 27(c).

The type of the transform can be easily selected by providing appropriate control

signals to the different units. According to the signal flow graph in Fig. 26(a), the

8-point DCT can be computed by using the first UBU for the butterfly operation,

bypassing the first SEU2 unit and the second butterfly unit. The 4-point perfect shuffle
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Fig. 27. Block diagrams of the 8-point DCT kernels: (a) DCT, (b) IDCT, and (c) unified

DCT/IDCT.

is realized with a single SEU1 denoted as PS4. The third and fifth UBUs are used for

the butterfly operations, while the fourth and sixth UBUs compute local subtractions.

The 8-point IDCT, in turn, can be computed by bypassing the last SEU2 unit and the

second to last butterfly unit. The other UBUs are controlled according to the signal

flow graph in Fig. 26(b).

In some cases in-order data may be preferred, and therefore, the additional input

and output permutations are required. The permutation network should be capable

of performing required input and output permutations for both DCT and IDCT. By

comparing the input and output permutations of DCT and IDCT, it can be noticed that

an application-specific permutation network depicted in Fig. 28(a) can perform all

needed permutations. The only drawback of the unified network is increased silicon

area, since each SEU can be bypassed with appropriate control without extra latency.

Therefore, the latency of the unified input and output permutation network varies

from four sample cycles to seven cycles depending on its function. The operation of

the unified input and output permutation network is illustrated with the aid of timing

diagrams in Fig. 28(b)–(e).

When the unified two-dimensional structure based on the row-column decomposition

is targeted at the embedded system containing a programmable processor, it is con-

structed by cascading DCT/IDCT kernel in Fig. 27(c), the matrix transpose network

MT and DCT/IDCT kernel as illustrated in Fig. 29(a). The only difference to pure

two-dimensional DCT structure is the unified transform kernel. When the structure

is targeted at system requiring the complete DCT or IDCT, the input and output per-

mutations of the one-dimensional transforms are included into pipeline structure as il-

lustrated in Fig. 29(b). Correspondingly, the structure utilizing the direct computation

of the two-dimensional transform resembles the unified one-dimensional DCT/IDCT

kernel structure in Fig. 27(c), i.e., each processing unit is only replaced with the
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Fig. 28. Unified input/output permutation network: (a) block diagram and timing diagrams

for (b) DCT input, (c) DCT output, (d) IDCT input, and (e) IDCT output permutation.

corresponding direct two-dimensional units as shown in Fig. 29(c). By providing ap-

propriate control sequences and coefficients, the final pipeline can be used to compute

either 8×8 DCT or IDCT as well as the corresponding one-dimensional transforms.

The previously described approach can be used to design the unified pipeline struc-

tures for the larger transform sizes as well. However, the transforms larger than

16 points require more redundancy since interconnections of the forward and in-
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Fig. 29. Block diagrams of the unified two-dimensional DCT/IDCT: (a) kernel based on the

row-column decomposition, (b) complete transform based on the row-column de-

composition, and (c) kernel based on the direct computation.

verse transforms cannot be mapped onto a common interconnection topology. Let

us remark that the one-dimensional structures supporting N-point, N = 2k, trans-

forms supports also smaller powers of two transform sizes. In the two-dimensional

structures exploiting the row-column decomposition, this requires that the matrix

transpose network based on the perfect shuffle decomposition in (101) is used for

transpose. Instead in the structures using the direct computation, the intermediate

outputs are required into the shift registers.

4.4.2 Implementation of Direct 8×8 DCT/IDCT

In order to determine an internal word length for the fixed-point implementation of

the two-dimensional pipeline structure in Fig. 29(c), the error behaviour of the struc-

ture is analyzed against an IEEE specification [40] with Matlab. The simulations are

performed with different word lengths and using rounding and truncation of two’s

complement quantization methods. The coefficients di are given as long as the in-

ternal word length but rounded down in magnitude. Briefly, the required word lengths

for the implementation are 19 and 23 bits for rounding and truncation of two’s com-

plement, respectively.

The pipeline structure based on the direct computation of the two-dimensional trans-

form in Fig. 29(c) has been described as a data path with Module Compiler Lan-

guage and synthesized with Synopsys Module Compiler onto a 0.11 µm standard

cell CMOS technology. The adder/subtracters in the UBU have been implemented

as carry-look-ahead (CLA) adders, because the data width being 19 bits CLA type

of adders are the fastest and the area of CLA-adders is only slightly larger than the

area of 19-bit ripple-carry adders. The multipliers have been implemented as non-
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Table 1. Characteristics of the 8×8 DCT/IDCT pipeline implementation.

Technology 0.11 µm CMOS
Function 8×8 DCT or IDCT

Internal word length 19 bits
Frequency 253 MHz
Latency 94 cycles

Gate count 39 424

booth multipliers, which include one 2-to-1 multiplexer at the output. With the aid of

the multiplexer multiplier can be bypassed and thus, multiplication with one is also

possible with fractional numbers. The data permutations correspond exactly to the

presented block diagrams. The characteristics of the implementation are summarized

into Table 1 where the gate count is given as equivalent 2-input NAND gates.

The functionality of the data path has been verified at a register transfer level and

gate level with the aid of structure illustrated in Fig. 30. Since Module Compiler

enables optimization of high performance data path captured at the structural level of

abstraction but is not suitable for synthesizing general logic, e.g., random Boolean

logic or state machines, the control for the DCT/IDCT data path is described with

VHDL. The control is realized trivially as a 64-state state machine, which generates

all the control signal and coefficients to the data path.

In order to compare the proposed pipeline structure to other previously proposed

structures, we have used the unified 8×8 DCT/IDCT as the reference. The complex-

ity of the structures is estimated based on the number of arithmetic units, multiplex-

ers, and delay registers. Multiplexers are estimated as equivalent 2-to-1 multiplexers.

The comparison is summarized in Table 2. In general, the complexity of the data

permutations is reflected by the number of the multiplexers and registers. In this

sense, the proposed two-dimensional algorithm has lower overall permutation com-

plexity than the algorithms used in the other structures. The DCT algorithms used

in [36, 59] possess a regular kernel followed by post-processing columns, which in

inverse transform are mapped onto pre-processing columns. This implies that addi-

tional adders are needed to support both the transforms. In the proposed algorithms,

the irregularities are localized into processing columns, thus the same arithmetic units

can be used to realize the irregularities in both the forward and inverse transforms.
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Fig. 30. Block diagram of the verification environment of the DCT/IDCT.

This is reflected by the number of adders or adder/subtracters. Finally, it should be

noted that the proposed pipeline includes also the scaling factors bm in (36), which

are often omitted as, e.g., in [36].

In general, fully sequential, unified DCT/IDCT pipeline structures based on direct

computation over the two-dimensional data are really rarely reported. However,

based on the complexity estimates presented in Table 2, the sequential pipeline struc-

tures represent state-of-the-art from the hardware complexity point of view. There-

fore, the proposed pipeline implementation is compared more carefully only to the

most relevant reference design presented in [36]. In order to be fair in comparison,

all the multiplexers are estimated as equivalent 2-to-1 multiplexers and pipeline re-

Table 2. Comparison of the 8×8 DCT/IDCT structures.

Structure × +/− R M mem principle

Madisetti and Willson [68] 7 12 24 38 64 recursive, R-C
Lee et al. [59], folded 28 134 256 0 128 pipeline, D
Lee et al. [59] 24 58 128 66 128 pipeline, R-C
Katayama et al. [52] 7 5 >10 >25 64 recursive, R-C
Lim et al. [63] 64 64 492 0 0 systolic, R-C
Hsiao et al. [36] 4 14 216 18 0 pipeline, D
proposed 3 12 180 44 0 pipeline, D
×: Number of multipliers. +/−: Number of adder/subtracters. R: Number of registers. M: Number of 2-to-1
multiplexers. mem: Number of memory words. D: Direct two-dimensional approach. R-C: Row-column
computation.
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Table 3. Gate count estimates for the basic units (area optimized / speed optimized).

W × +/− R M

19 2088 / 3288 290 / 1279 95 / 109 39 / 151
×: Multiplier. +/−: Adder/subtracter. R: Register. M: 2-to-1 multiplexer.

gisters are not included. The error behaviour of the reference structure is analyzed

with exactly similar procedure as the presented structure. In addition, all resources

required for implementation are assumed to be similar from the same standard cell

technology. The assumed gate counts of area and speed optimized resources with the

required word length are collected into Table 3. Altogether, the presented implement-

ation exhibits improvement in estimated gate count as summarized in Table 4. Let us

remark that both structures can be designed for the same throughput rates due to the

fact that arithmetic units are not located in feedback loops in either of the structures.

4.5 Summary

Since regularity of the perfect shuffle topology DCT algorithms allows efficient util-

ization of temporal parallelism, each operational column can be mapped onto a cor-

responding sequential unit. By cascading these basic modules in correct order and

providing appropriate control signals, the new modular single-rate pipeline struc-

tures can be constructed. Due to recursive description of the DCT algorithms and

correspondence between operational stages and basic modules, the structures can be

extended to support larger transforms.

The structures can be freely pipelined since all the arithmetic units are in feedfor-

ward paths. Furthermore, the one-dimensional structures support also all the smaller

Table 4. Comparison of the fully sequential unified DCT/IDCT pipelines.

Structure × +/− R M W Gate Count

Hsiao et al. [36] 4 14 216 18 19 33 634 / 57 320
proposed 3 12 180 44 19 28 560 / 51 476

×: Number of multipliers. +/−: Number of adder/subtracters. R: Number of registers.
M: Number of 2-to-1 multiplexers. W: Required word length
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transform sizes of powers of two with appropriate control when basic arithmetic units

with a bypass path are exploited for computation. In the two-dimensional structures

exploiting the row-column decomposition, this requires also that the matrix transpose

network based on the perfect shuffle decomposition is employed for transpose. The

two-dimensional structures exploiting the direct algorithm support one-dimensional

transform but in order to support smaller powers of two transforms, the intermediate

outputs are required into shift registers.

The regularity of the algorithm and the modularity of the structure have been ex-

ploited when mapping the 8×8 DCT and its inverse onto a common pipeline struc-

ture with minimal redundancy in the amount of hardware. Due to distribution of

the irregularities between butterfly columns, both the DCT and IDCT algorithms can

be mapped onto same resources. The resulting structure for the 8× 8 DCT/IDCT

has been proven to be area-efficient compared to other reported solutions. In or-

der to prove the feasibility, the demonstration pipeline implementation of the 8× 8

DCT/IDCT is based on the data path model of the structure. When synthesized onto a

0.11 µm standard cell CMOS technology, the DCT kernel occupies 39 424 equivalent

2-input NAND gates achieving the operation frequency of 253 MHz.
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5. VARIABLE LENGTH CODING

In general, any data can be interpreted to consist of symbols, whatever they are. The

ultimate purpose of compression is to represent the set of symbols in source data

with minimum number of bits. This is achieved by representing frequently occurring

symbols with shorter codewords. Such a coding method results in variable codeword

lengths hence the name variable length coding (VLC). An example of such a coding

technique is the well-known Huffman coding. The inverse procedure for VLC is

variable length decoding (VLD).

In this chapter, the variable length coding process and the properties of the variable

length codes are introduced briefly before going into the actual topic of the chapter,

i.e., the variable length decoding on hardware or in short, variable length decoders.

Our objective is to develop a novel scheme for decoding multiple symbols in parallel.

Since only a few multiple-symbol decoders have been reported, surveys gathering

them up are missing. Therefore, in the following, some variable length decoders are

collected together and reviewed especially with respect to parallel multiple-symbol

decoding. The chapter is closed with a brief summary.

5.1 Definitions and Properties

Let us assume an information source that consists of symbols sk with probabilities pk

in a set S = {s1, . . . ,sn}. The theoretical lower bound on the average number of bits

required to represent a symbol in the given set is defined by entropy H [93]

H = −∑
S

pk log2 pk. (105)

In other words, entropy defines the average amount of information contained by a

symbol. In order to reach entropy, noninteger codeword lengths are needed. A vari-
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able length coding method approaching the lower bound with noninteger codeword

lengths is arithmetic coding [23, 88, 89], which is, however, omitted in this Thesis.

Instead, suboptimal compression can be obtained with integer codeword lengths and

a coding method providing the shortest integer length codewords is Huffman cod-

ing [39]. Huffman presented a method to construct a minimum-redundancy code,

i.e., the average number of coding digits per message is minimized. Huffman’s cod-

ing method is based on the following five theorems:

Theorem 9. Each codeword ck is unique.

Theorem 10. Codewords are constructed in such a way that boundary information

is not needed to specify the beginning or end of the codeword once the starting point

of the encoded data stream is known.

Theorem 11. The more probable symbol, the shorter codeword;

p1 ≥ p2 ≥ . . . ≥ pn−1 ≥ pn ⇒ l1 ≤ l2 ≤ . . . ≤ ln−1 = ln (106)

where lk is used to denote the length of the codeword ck corresponding symbol sk.

Theorem 12. Two least probable symbols should have the same codeword with the

exception of the last bits.

Theorem 13. Each possible sequence of length ln − 1 bits must be used either as a

codeword or must have one of its prefixes used as a codeword.

The Huffman coding procedure, i.e., the creation of a Huffman tree is illustrated in

Fig. 31 where the notation for the symbols is sk(pk). First, all the source symbols A–

F on the left are ordered in decreasing order according to their probabilities given as

percentages in parentheses. Then, two least probable symbols E and F are connected

with edges 1 and 0, respectively, to a new node of which probability is equal to the

sum of the probabilities of two least probable symbols, i.e., 10%. Subsequently, the

resulting node is interpreted as a new symbol. This procedure is repeated until the

root node with probability of 100% is formed. Finally, the codewords are obtained by
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Fig. 31. Example of the Huffman coding.

tracing the tree back to source symbol. Huffman coding results in a codeword table

in which average codeword length lav is

lav = ∑
S

pklk. (107)

The resulting codeword table and the related statistics for the encoding example in

Fig. 31 are summarized in Table 5.

To summarize the main features, the Huffman coding is a block-based coding method

meaning that each symbol has a fixed codeword. The resulting encoded data stream

consist of consecutive codewords without explicit boundary information. This intro-

duces a sequential dependency which complicates a decoding process. The Huffman

code is nonsingular and instantaneous, i.e., all the codewords are distinct and no

codeword is the prefix of some other codeword. It is a lossless coding technique,

meaning that data can be fully reconstructed without any distortion or noise. On the

other hand, it is error sensitive in the sense that a possible bit error may propagate

Table 5. Summary of the Huffman coding example.

sk pk −pk log2 pk ck lk pklk

A 40 0.53 0 1 0.40
B 25 0.50 10 2 0.50
C 15 0.41 110 3 0.45
D 10 0.33 1111 4 0.40
E 5 0.22 11101 5 0.25
F 5 0.22 11100 5 0.25

H = 2.20 lav = 2.25
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far; decoding may be continued but nearly all symbols are incorrect until the last bit

of a decoded data sequence coincides with the last bit of the correct codeword in

sequence [73]. Loss in coding efficiency with respect to entropy is due to the fact

that the Huffman coding always encodes a source symbol with an integer number

of bits. However, the average codeword length approaches the entropy with infinite

block size. On the other hand, the complexity of the coding procedure will be out of

control.

In principle, the Huffman coding is adaptive coding, i.e., the codeword table is de-

pendent on source data and its statistics. However, by analyzing huge amount of

typical data, the achieved statistics can be exploited to approximate data of the same

type. Consequently, the fixed codeword table with reduced number of codewords

based on the Huffman procedure can be defined for coding and decoding. The pos-

sible symbols that do not have codeword are passed with the aid of an exceptional

fixed length code. As a result, the compression efficiency is also sacrificed. In any

case, the corresponding approach have been utilized in several applications, e.g., in

MPEG-2 [45]. Also in this Thesis, the discussion is limited to the decoding of pre-

specified variable length codes.

5.2 Variable Length Decoders

In this Thesis, the objective is the decoding of variable length codes, i.e., the variable

length decoding on hardware. The principal block diagram of the VLD is illustrated

in Fig. 32. A codeword is detected from a block of the variable length coded input

stream and this codeword is used to determine the actual symbol with the aid of

predefined codeword values, i.e., a codeword table. The input stream is then aligned

according to codeword length for the next decoding iteration. In general, there is

no explicit boundary information for detecting the end or beginning of the codeword

in the encoded data stream. Therefore, the length of the current codeword should

be known before the next codeword can be decoded. This feature complicates the

decoder design substantially and limits the performance.

The decoding structures for variable length codes can be characterized according to

the parallelism of the data processing. The bit-serial processing refers to the sequen-

tial, bit-by-bit processing of the encoded bit stream at constant rate. Correspond-

ingly, the bit-parallel processing refers to the processing over several bits at a time
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Fig. 32. Block diagram of the generalized variable length decoding.

in a parallel manner. Similar characteristics can be given according to the number of

codewords to be decoded or symbols obtained from the output. A traditional VLD

method is to decode one symbol at a time in a symbol-serial fashion. Instead, the

symbol-parallel or multiple-symbol decoding refers to decoding of several symbols

at a time. In the following, existing variable length decoders are overviewed accord-

ing to previous categorization.

5.2.1 Serial Decoders

Bit-serial decoders, also referred to as tree-based decoders [9], decode an input data

stream sequentially bit-by-bit. The encoded input stream is compared to a binary tree

starting at the root of the tree until the entire codeword is detected in the leaf node

corresponding the symbol. In [65, 66], Lin and Messerschmitt considered variable

length decoder as the implementation of a special finite-state machine (FSM) which

does not always return output. Such a FSM for the Huffman tree given in the example

in Fig. 31 is illustrated in Fig. 33(a). The sequential FSM can be realized with a read

only memory (ROM) as depicted in Fig. 33(b) where codeword table is assumed to

consist of 256 codewords for 8-bit symbols [10]. Briefly, each node is stored into the

ROM as the states of the FSM. In addition, the ROM consists of status bits indicating

whether the state corresponds to a terminal node in the Huffman tree, i.e., a symbol,

or is used as a basis to the next address. The same status bit is used to reset the address

register when the symbol is found. In other words, the read address is constructed

from the current state and the incoming bit.

Another way to realize the decoder as the inverse interpretation of the Huffman tree

is to implement branches as demultiplexers and terminal nodes as storage locations

containing corresponding symbols. In [9], Chang and Messerschmitt presented the

structure illustrated in Fig. 34. A token, i.e., a pointer to the current stage, is for-
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Fig. 33. Variable length decoding as a finite-state machine: (a) Huffman tree with its state

diagram and (b) block diagram of the FSM-based variable length decoder [10].

warded through the demultiplexers according to the encoded input stream. When the

token enters the storage location, the symbol is returned. The similar approach has

been used in the decoder proposed by Mukherjee et al. in [77] where individual stor-

age location for the symbols have been replaced with a common ROM or a balanced

binary tree module returning the symbol. Drawback in these approaches is that they

are not programmable but the decoder needs to be redesigned for different codeword

table. Also the support for adaptive codes would require too much hardware [76].

Instead of the direct implementation of the Huffman tree, the variable length decod-

ing can be performed with a single processing unit consisting of control logic and a

arithmetic unit in addition to a symbol memory. In principle, the symbols are mapped

onto the memory according to a mapping scheme in such a way that the address for

reading a symbol can be determined with the aid of basic arithmetic. E.g., the nodes

are numbered and symbol is found by tracing the tree back by accumulating the off-

sets given to edges [76, 78]. Since such mapping schemes can be applied to different

codeword tables and the contents of the memory can be changed, the memory-based

structures are considered to be programmable. In other words, the same hardware

can be used for any type of tree based codes. Consequently, the structure is also

applicable for adaptive codes.
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In [81], Park and Prasanna proposed a memory-efficient scheme for mapping the

Huffman tree onto a memory in which nodes are numbered starting from the root

and proceeding from left to right at the each level. The terminal nodes, i.e., sym-

bols are mapped onto one memory in increasing order according to node numbers.

Furthermore, the numbers of the terminal nodes at each level are stored into another

memory. The read address during the decoding is determined according to the input,

current level, position of the node from the leftmost node at the current level, and the

accumulated number of the symbols at the previous levels.

In the bit-serial decoders discussed so far, the comparison is performed with a con-

stant input rate, one bit per cycle, until the entire codeword is detected in the corres-

ponding leaf node. Due to the variable codeword lengths, the serial processing results

in a variable output rate. Short decoding time is achieved only with short codewords.

However, under hard real-time constraints, the required output rate should be ful-

filled also with long codewords, thus the performance is defined by the latency of the

long codeword processing. Furthermore, the serial processing is not applicable for

multiple-symbol decoding with a single data stream due to the recursive dependen-

cies between the codewords.

5.2.2 Parallel Decoders

For improving the decoding performance, bit parallelism can be increased by compar-

ing simultaneously several bits of the incoming bit stream to the Huffman tree. Such

an approach with a memory-based codec structure has been introduced by Mukherjee

et al. in [76, 78]. The approach requires some overhead in control logic compared

to the bit-serial approach but the average throughput is directly proportional to the

number of bits to be processed at a time. In other words, the input rate is maintained
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constant, several bits per cycle, but the output rate is still variable as in the bit-serial

approach. Therefore, the limitations of the bit-serial decoders apply also to this kind

of parallel variable output rate decoders.

In order to guarantee a symbol for each cycle, Lei and Sun in [62] presented a parallel

constant output rate decoder in which the number of bits buffered for the decoding at

a time is equal to the longest codeword length. The principal block diagram of the

decoder is depicted in Fig. 35. Briefly, a block of the encoded bit stream is buffered

and matched with the stored prespecified codewords in a symbol look-up of which

look-up table (LUT) can be implemented with a ROM, programmable logic array

(PLA), or random access memory (RAM). Consequently, the corresponding symbol

is returned and the codeword length is accumulated with the accumulator of which

value is used as a pointer to the correct location in the buffered bit stream. Further-

more, the accumulator triggers the reloading of the buffer with new data. In [103],

Sun improved the structure by removing the accumulator from the feedback loop.

Both the variable and constant output rate decoders have been reported during the

years. Nevertheless, a common feature in the parallel decoders has been that they use

shifter for aligning the input stream. Such an arrangement forms a feedback loop.

Instead in [90,91], Rudberg and Wanhammar replaced the shifter with a shift register

while otherwise the decoder resembles other parallel pipelined decoders. However,

the decoder, which is illustrated in Fig. 36, can be characterized as a hybrid between

the serial and parallel decoder, i.e., it is a parallel pipelined decoder with the be-

haviour of the serial decoder. In short, the shift register receives sequentially the

encoded data stream. A pipelined length decoder checks codeword lengths until the

matching length is found and returned. The feedback from the length decoder to

the shift register is not needed but it is replaced by a synchronous reset signal to a

counter. In principle, the maximum operation frequency is limited by the delay of a

single logic gate.
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Despite of the output rate, variable or constant, the main contributions to development

of the parallel variable length decoders are related to the partition of the codeword

table into groups and mapping them onto memory with the best possible memory

space utilization. In [76, 78], Mukherjee et al. proposed a memory mapping scheme

for the bit-parallel tree-based decoding in which a distinct memory location is de-

termined for each node in such a way that each edge is considered as an offset to its

parent node. Consequently, the location of the symbol is determined by accumulating

the offsets. Lee et al. in [60] continued the memory mapping scheme development

along the same direction with a 2-bit tree-based decoding. In this approach, the nodes

have been coded with 3-bit node codes to indicate the type of the node, i.e., if the node

has all child nodes labeled with two bits, it has at least one child node labeled with a

single bit, or it is a terminal node. In addition, the nodes of the same parent node are

merged into a group. The node codes of the group and the symbols are stored into

own memories. The approach yields about 20% reduction in the total memory space

compared to Mukherjee’s approach [61].

In [80], Ooi et al. presented a codeword table segmentation technique in which

couple of bits are traced at a time. A variable length decoding data table consists

of three separate data fields: 1) the next address for the node having children or a

symbol for the terminal node, 2) a shift quantity for the incoming bit stream, and

3) a termination status. Consequently, either the symbol or continuation to the next

segment can be concluded according to the traced bits. Correspondingly, Hashemian

in [29,30] presented a tree-based decoder applying a technique where variable length

codewords are ordered and grouped according to their lengths. Instead in [17], Choi
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and Lee presented an approach to partition codewords in a single-side growing tree

into two clusters: regular bit pattern like a prefix code and second cluster identifying

codeword. Similarly in [82], Park et al. exploited leading zeros for partition of the

codeword table.

While smaller memories through the efficient mapping schemes provide faster ac-

cesses to symbol memory, another key issue in the decoder design is the fastest pos-

sible search. Traditionally, codewords are detected with a pattern matching based on

logical functions as presented, e.g., by Lei and Sun in [62]. Choi and Lee in [17]

achieved improvement with the clustering approach and performing the parallel pat-

tern matchings with smaller patterns. Correspondingly, Hsieh and Kim in [37] ac-

celerated pattern matching by presenting a technique to exploit maximum likely bit

patterns for grouping the codewords. By storing some additional data for the nodes,

Lee et al. in [61] introduced a technique to perform codeword prediction. With such

an arrangement, the next node information can be accessed simultaneously with the

incoming bit stream. However, the approach will increase the hardware complexity

and therefore, it is more applicable in a processor-based platform reported by Shieh

et al. in [95].

In [100], Sima et al. presented a variable length decoding approach to improve the

performance of a general purpose processor by augmenting it with an FPGA-based

variable length decoder. The decoding has been implemented as parallel look-ups

into codeword groups followed by the selection of the valid symbol. The resulting

variable length decoder is illustrated in Fig. 37. Briefly, a codeword table is parti-

tioned into groups according to characteristics of the design platform, i.e., the used

FPGA, and these groups are mapped onto LUTs referred as group decoders. The

decoding is started by forwarding bit fields from a block of the encoded bit stream to

the parallel group decoders and performing parallel matching with codewords. Each

group decoder returns the symbol value as if the generated symbol was valid. The

selection of the proper symbol is done according to leading bits in a group detector

which determine the correct group.

In addition to utilization of leading characters, Wei and Meng in [121] exploited also

the numerical properties of the variable length coding tables specified in JPEG stand-

ard [44] and replaced the traditional pattern matching with arithmetic operations. The

approach is based on the property that codes of the same codeword length are numer-

ically sequential. Hence, the symbol can be returned with the aid of a minimum code
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Fig. 37. Block diagram of the parallel group-based decoder.

defining the length and an offset with respect to the minimum code. In [96], Shieh

et al. continued the development of the VLD based on the arithmetic operations by

introducing a pseudo constant length code and inter-group symbol memory mapping.

Briefly, the codeword lengths are equalized by adding zeros after the codeword. The

resulting pseudo constant length codewords can be identified unambiguously due to

instantaneous nature of variable length codes. Consequently, the pseudo constant

length codewords having the same length as the longest variable length codeword

can be treated as individual binary numbers and ordered numerically in sequential

order.

So far, we have been discussing on high throughput variable length decoding without

paying any attention to power consumption. Let us next outline roughly the main

approaches used in a low-power design. For the data alignment, a low-power barrel

shifter has been proposed by Lin and Jen in [64]. Since LUTs consume considerable

amount of power in the VLD, the size of the LUTs can be decreased, e.g., with the

aid of prefix decoding in the codeword detection like Choi and Lee in [17] or par-

titioning of the symbol look-up as Rudberg and Wanhammar in [91]. By using the

property that the short codewords are more probable, the average power consumption

can be decreased by breaking long codewords into parts and consequently reducing

the size of the codeword detection as reported by Cho et al. in [16]. Furthermore,

the frequencies of the codewords and the energy consumption estimates for the LUT

partitions have been used as a basis for the partition of the codeword table into vari-
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able size LUTs. The approach can be further improved by taking the probabilities

of successive short codewords into account and employing additional small LUTs as

proposed by Lee and Park in [58].

The bit-parallel processing offers the improved throughput at the price of increased

hardware and control complexity while the data dependencies between codewords

still exist and limit the overall performance. In other words, in the bit-parallel decod-

ing, the encoded data stream needs to be buffered and shifting is always required after

the determination of the codeword boundaries. Moreover, according to the properties

of the variable length codes, the shorter codewords are more probable than the longer

ones. Hence, most probably a block of bits in the input stream contains more than one

codeword. Therefore, decoding more codewords at a time and decreasing the need

for shifting may further improve the decoding performance. These facts encourage

studies towards multiple-symbol decoding to be discussed in the following.

5.2.3 Multiple-Symbol Decoders

In multiple-symbol or symbol-parallel decoding schemes, the major design issue is

to break the data dependencies between the codewords. Another issue is the manage-

ment of the increasing hardware and control complexity, especially when large code-

word tables and long codewords are used. Let us remark that the memory mapping

and search techniques discussed with the parallel decoders in the previous section

are also applicable to the multiple-symbol decoding. Moreover, a parallel decoder,

which operates on a buffer whose size is equal to the longest codeword, is the natural

basis for the multiple-symbol decoder design since often a block of bits in the input

stream contains more than one codeword.

Chang and Messerschmitt in [9] presented a multiple-symbol variable length decoder

for short codewords. The constant output rate variable length decoder presented

earlier by Lei and Sun in [62] has been extended to decode more than one codewords

per cycle when possible. In the resulting decoder illustrated in Fig. 38, the output

field of the PLA-based symbol look-up contains now several symbols and an addi-

tional field indicating the number of the symbols that are returned. Consequently, the

decoding performance of this variable input / variable output rate multiple-symbol

decoding scheme is constrained by the increased complexity and incurred delay pen-

alty of the PLA [10].



5.2. Variable Length Decoders 79

Symbol count

Buffer
Accumulator

Variable Length Coded Data

Symbols
length

alignment
information N

Symbol
Look-up

Fig. 38. Block diagram of the variable I/O rate multiple-symbol decoder.

In [37], Hsieh and Kim presented a multiple-symbol VLD algorithm in which object-

ive is to speed up the decoding process by matching two or more shorter or, in other

words, more probable codewords in parallel. The principal structure of the resulting

decoder is illustrated in Fig. 39. The first pattern matching unit includes all the code-

words, while the rest of the units consist of the shorter and more probable codewords.

Each pattern matching unit returns group and length information of the possible code-

word and therefore, combinatorial logics and barrel shifters are required to manage

the RAM-based symbol look-up and provide the alignment information for the next

decoding cycle. The method can be extended to decode also long codewords in par-

allel but it is often impractical due to too many possible combinations. In order to

find a compromised solution for the decoder in terms of system requirements like

decoding performance and cost, a systematic approach has been outlined by Hsieh

in [38].

In addition to decoding only short codewords in parallel, the increasing complexity

can be managed by restricting the number of the symbols per cycle. E.g., in the

illustration in Fig. 39, at most two symbols are returned at a time. If there are sev-

eral consecutive long codewords in the data stream, the decoding approach yields

the same throughput as the parallel decoding. However, the approach decodes short

codewords simultaneously, which will not result in the tremendously high cost of

hardware but will increase the average throughput.

The multiple-symbol decoders discussed so far have been based on the fact that often

a block of bits in the input stream contains more than one codeword. In general, this

kind of decoders have variable input and output rates. The increasing complexity

has been managed by restricting the buffer size, the number of symbols or decoding

only short codewords simultaneously. An alternative approach is to keep the output
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Fig. 39. Block diagram of the group-based multiple-symbol decoder.

rate constant but to produce more than one symbol in every cycle. Such an approach

results in variable input / constant output rate multiple-symbol decoding. Let us

remark that in order to return symbols at constant rate, the number of bits to be

decoded at a time should be equal to the product of the longest codeword length and

number of the symbols at the output. Consequently, the whole input buffer is not

exploited when it consist of short codewords.

Instead of expanding the output field of the single symbol look-up, Park in [83] in-

creased parallelism with another barrel shifter and symbol look-up. With such an

approach, the operational delay in an accumulator can be reduced for achieving high

speed decoding. The resulting 2-symbol decoder is depicted in Fig. 40. In short, the

buffered encoded data stream in latches is fed to the barrel shifter which provides a

decoding window for the first PLA-based symbol look-up. The symbol look-up re-
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Fig. 40. Block diagram of the 2-symbol decoder with an additional shifter.
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turns the codeword length and symbol as in the conventional parallel decoder. Instead

of forwarding the codeword length only to the accumulator, the length is also fed to

the second barrel shifter having an input from the first barrel shifter. The second

barrel shifter in turn provides the decoding window for the second symbol look-up

independently of the accumulator. Consequently, two variable length codewords are

decoded without an operational delay in an accumulator for shifting the decoding

window of the first barrel shifter.

In [53], Kinouchi and Sawada proposed a constant output rate multiple-symbol de-

coder returning two symbols at a time. The principal structure of the decoder is

shown in Fig. 41. The encoded bit-stream is forwarded to parallel symbol look-ups.

Each symbol look-up performs matching with all codewords and returns a symbol as

if the symbol was valid. In addition, the first symbol look-up returns the length of

the codeword while the rest symbol look-ups return the sum of the codeword lengths.

The symbol from the first symbol look-up is returned and its length is fed to a se-

lector which selects the second codeword. The sum of the codewords is forwarded as

alignment information to the buffer in which the leading bit position determined for

the next decoding cycle.

In [101], Sima et al. extended their decoding scheme proposed in [100] to support the

constant output rate multiple-symbol decoding on the FPGA-augmented processor.

The principal block diagram of the decoder returning two symbols per cycle is illus-

trated in Fig. 42. Using the terms previous, current, and next in chronological order,

the main idea is to determine the symbol and the length for the current codeword, and
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only the length for the next codeword during the same VLD call. Concurrently, the

symbol for the previous codewords are determined. In more details, each group de-

coder operates as in Fig. 37. Simultaneously, length estimators determine the length

of the current codeword and the length candidates for the next codeword. The valid

length is selected according to the current length. In other words, the generation

of the next symbol is postponed to the subsequent cycle and the series of decoding

cycles results in symbol-parallel decoding.

To summarize the current multiple-symbol approaches, the performance is partly lim-

ited due to the fact that the arbitrary length input buffers are not exploited. According

to the previous discussion, current variable input / output rate decoders operate on

a buffer whose size is equal or very close to the longest codeword length. In other

words, the complexity has been managed by decoding only short codewords concur-

rently. Furthermore, the number of symbols may be limited, which is done especially

for achieving a constant output rate.

5.3 Summary

Based on the above updated survey, let us conclude the chapter with a brief summary.

In general, there is no explicit boundary information for detecting the end or begin-
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ning of the codeword in the variable length coded data stream. Therefore, the length

of the current codeword should be known before the next codeword can be decoded.

This feature complicates the decoder design substantially and limits the performance.

Consequently, a traditional VLD method is to decode one symbol at time in symbol-

serial fashion. Two principal approaches exist: the bit-serial tree-based processing

and the bit-parallel approach. In bit-serial decoders, the performance is defined by

the latency of the long codeword processing. Furthermore, the serial processing is not

applicable for multiple-symbol decoding with a single data stream. The bit-parallel

processing offers the improved throughput at the price of increased hardware and

control complexity. On the other hand, although a block of input data is buffered, the

data is not exploited when it consists of short codewords.

In multiple-symbol decoding or symbol-parallel schemes, the major design issue is

to break the data dependencies between codewords. Another issue is the manage-

ment of the increasing hardware and control complexity, especially when large code-

word tables and long codewords are used. However, the current multiple-symbol

approaches, the performance is partly limited due to the fact that the arbitrary length

input buffers are not exploited. In other words, the complexity has been managed by

decoding only short codewords concurrently or the number of symbols is limited.
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6. VARIABLE LENGTH DECODING SCHEME

The main challenge in the multiple-symbol parallel VLD is to break the recursive de-

pendencies between the codewords or at least to minimize their effects to the through-

put. Since the encoded data stream is buffered in any case in variable length decoders

decoding at least one codeword at a time and most probably, a block of bits contains

more than one codeword, our objective is to develop a novel scheme for decoding all

the codewords in a block of input data stream simultaneously. In order to have a flex-

ible structure for design re-use, we are aiming at modular structure. The block size of

the input data stream and the number of symbols are not to be set up fixed. Instead,

they are to be parametrized for tailoring the structure according to application. E.g.,

for longer block of the input stream, more modules can be employed for decoding,

and thus decode more symbols at a time.

In this chapter, a novel variable length decoding scheme is first introduced and illus-

trated with an example. Subsequently, a general hardware structure for the scheme

is proposed with an illustration corresponding to the preceding example. Then, the

studies are continued with a discussion on the evaluation of the critical path and per-

formance of the resulting decoder. Finally, a brief summary about the features of the

scheme concludes the chapter.

6.1 Algorithm

Let us assume K symbols and the corresponding binary codewords are collected into

a codeword table as

ck = (ck
0, . . . ,c

k
lk−1)|ck

i ∈ {0,1},k = 0, . . . ,K −1. (108)
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All the different codeword lengths in the codeword table can be combined into a set

L defined as

L =
K−1⋃
k=0

{lk}. (109)

Let the minimum and maximum codeword lengths be denoted by lmin and lmax, re-

spectively. In addition, the maximum number of codewords with equal length is

denoted by dmax. We use a group-based approach for storing the symbols into a

symbol table; the symbols are grouped according to the length of the corresponding

codeword and each group is stored into one page in the table. The size of the page is

defined by dmax. In such an arrangement, the page where the symbol sk is stored is

determined by the length of its codeword, lk. The symbols within a page are arranged

in such a way that the offset within the page is determined by the least significant bits

(LSB) of the codeword, (ck
lk−log2dmax

, . . . ,ck
lk−1).

The input data stream for the decoding process is an encoded binary vector X , i.e.,

X = (x0,x1,x2, . . .), xi ∈ {0,1}. (110)

An N-bit sliding window B is used to extract bits from the input stream as

B = (b0,b1, . . . ,bN−1), bi = xidx+i, i = 0, . . . ,N −1 (111)

where idx is the index to the first undecoded bit in the input stream X . Throughout the

discussion, the sliding window B is assumed to be greater than the longest codeword,

i.e., N ≥ lmax.

We start the derivation of the algorithm by determining the maximum number of

variable length codewords, M, in an N-bit sliding window B as

M = �N/lmin�. (112)

Let us denote the codewords in the window by Wi where i = 0,1, . . . ,(M−1) and the

length of codeword Wi by Li. Moreover, let an index ji, 0 ≤ ji ≤ (N − 1), define a

location where the codeword Wi starts, i.e.,

Wi = (b ji , . . . ,b ji+Li−1). (113)

Without losing generality, we may assume that the first codeword W0 is always loc-

ated at the beginning of the window, thus j0 = 0. The second codeword W1 is located
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immediately after the first L0-bit codeword and, therefore, W1 can be found starting

from the index j1 = L0. This implies that the start index of the codeword Wi in B is

the sum of the previous codeword lengths, i.e.,

ji =
i−1

∑
k=0

Lk. (114)

However, the lengths of the codewords are not known in advance.

In order to avoid the recursive dependencies, a parallel search is needed to find code-

words from “arbitrary” positions in the window. In general, all the candidates for

indices ji for the codeword Wi can be represented with the aid of set Ji defined re-

cursively as

J0 = 0; Ji = { ji| ji = q+ l,∀q ∈ Ji−1,∀l ∈ L}, (115)

which implies that a codeword can lie in any location in the window defined by a set

J defined as

J =
M−1⋃
k=0

Jk (116)

Since the maximum length of the codeword, lmax, is known, we need to extract at

most lmax-bit fields from the window B starting from all the locations defined by set

J. In each bit field, the possible codeword is searched after by matching the bit field

with all the possible codewords. When a match is found, the length of the codeword

at position i in the window B, mi, is returned as

mi =

{
lk , if ∃ k : (bi,bi+1, . . . ,bi+lk−1) = (ck

0,c
k
1, . . . ,c

k
lk−1)

0 , otherwise
(117)

where i ∈ J,k = 0,1, . . . ,K −1.

The start index, ji, of the each valid codeword Wi in the window can be defined with

the aid of the lengths of the detected codewords. Correspondingly, the length of Wi is

Li = m ji . The symbol look-up is performed from the symbol table according to index

Ai, which is formed by concatenating the length of the codeword and its LSBs. By

returning the sum of all the valid codeword lengths, the input stream can be aligned

for the next decoding iteration by updating the sliding window index, idx′ = idx+ jM.

The described procedure is iterated until the entire input stream is decoded.
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Before giving a decoding example, let us summarize the described variable length

decoding scheme. First, determine the parameters for decoding: the maximum num-

ber of codewords M that the N-bit window can hold and the set J, i.e., the locations

where a codeword may lie. The decoding iteration can be outlined briefly as follows.

Codeword Detection. Extract |J| bit fields of size at most lmax from the locations

defined by set J. Detect a codeword from the beginning of each bit field and return

the length mi. Find the lengths of the valid codewords Wi according to indices ji
obtained by computing the sum of the previous valid lengths, and return sum of the

valid codeword lengths Li.

Symbol Look-Up. Form the index Ai and fetch the symbols from the symbol table.

Data Alignment. Align the input stream for the next decoding iteration.

6.1.1 Decoding Example

Let us assume that a codeword table depicted in Table 6(a) is used, thus the set of

codeword lengths is defined as L = {2,3,4,5,6,7,8} and the maximum number of

codewords in a 16-bit window B is M = 8. In principle, the proposed approach would

result in a 5-bit index to symbol table. However, the size of the symbol table can be

easily decreased by noting that four LSBs are sufficient for each individual index.

The resulting symbol table consisting of seven pages of two symbols is illustrated

in Table 6(b). In the example case, a codeword can lie in 14 bit fields starting at

locations J = {0,2,3,4, . . . ,14} as illustrated with the aid of boxes below the window

in Fig. 43. The fields at the end of the window are shorter than the others since the

number of available bits in the window is less than lmax = 8.

All the fields are matched with all the codewords and the length and LSB of each de-

tected codeword are returned. The detected codeword in the bit field is shown inside

the corresponding box in Fig. 43. In the example case, the lengths of the codewords

at the positions seven and eight in the window B are zero, which implies that the

codewords were not detected. The fields containing a valid codeword are determined

recursively using start indices ji defined in (114). The first valid codeword W0 is

found from the first bit field at the beginning of the window, i.e., the first start index

is j0 = 0. The second codeword W1 can be found in one of the seven fields starting at

locations J1 = {2,3,4,5,6,7,8}. Since the length of W0 is L0 = 5, the start index of

W1 is j1 = 5. In Fig. 43, the detected valid codewords are marked with grey colour.
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Table 6. VLD decoding example: a) Codeword table and b) resulting symbol table.

a)
sk ck lk

A 10 2
B 11 2
C 011 3
D 0100 4
E 0101 4
F 00101 5
G 00110 5
H 000110 6
I 000111 6
J 0000110 7
K 00100101 8

b)
A: Page & Offset sk

000 0
000 1 K
010 0 A
010 1 B
011 0
011 1 C
100 0 D
100 1 E
101 0 G
101 1 F
110 0 H
110 1 I
111 0 J
111 1

Index Ai for the symbol look-up is formed by concatenating the length and the LSB

of the valid codeword. E.g., the length of W1 is L1 = 4 and the LSB of the W1 is 0

and, therefore, index A1 is 1000 and D is fetched from the symbol table.

6.2 General Structure

The design of the variable length decoder is started by considering the codeword

detection of the valid codewords in a block of the input stream. The previously

discussed sliding window B is realized as a N-bit codeword buffer and the codeword

detection is performed by |J| parallel codeword detector (CD) units. The input for

each CD is a bit field of at most lmax bits, which is obtained from the codeword buffer

locations in the set J defined in (116). All the CDs detect codewords simultaneously

and return the length of the detected codeword. With this arrangement, the leftmost

CDs up to location N − lmax search after all the codewords in the codeword table

while, for the remaining CDs, it is sufficient to detect only shorter codewords.
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Fig. 43. Principle of the proposed variable length decoding scheme.

In order to select the valid codeword lengths, i.e., Li, from the lengths of all the

detected codewords, a cascade of multiplexers is employed as depicted in Fig. 44.

Each multiplexer should have inputs, i.e., codeword lengths from all the CDs in the

locations specified by Ji defined in (115). The first codeword length L0 obtained from

the leftmost CD starting at bit location j0 = 0 controls the first multiplexer selecting

the second valid codeword length L1. Moreover, the output of the leftmost CD can

be used to provide the decoding status, i.e., if the codeword length is zero, either

the decoding is completed or an error has encountered. The other multiplexers are

controlled by the sum of the previous codeword lengths according to (114). Hence,

the computation of the sum of the valid codeword lengths creates the critical path as

shown in Fig. 44.

B

CD

L0 L1 L(M-1)

CD

Critical
Path

CD

L2

CD

Σ L
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Fig. 44. Block diagram of the generalized codeword detection.
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Fig. 45. Block diagram of the 8-to-1 multiplexed add unit: (a) structure and (b) correspond-

ing symbol.

The critical path is shortened with a new multiplexed add (MA) unit shown in Fig. 45.

In principle, the MA computes the sum of two input operands, A and B, and the

resulting sum, S, is used to control a multiplexer which selects one of alternative

inputs, Pi, to output O. In order to illustrate the operation of the MA, let us assume

two 3-bit numbers A = (a2,a1,a0) and B = (b2,b1,b0). The sum denoted by S =
(s2,s1,s0) controls the selection of the output O from inputs P0 −P7. Consequently,

the output O can be expressed with the aid of sum of products as

O =P0s̄2s̄1s̄0 +P1s̄2s̄1s0 +P2s̄2s1s̄0 +P3s̄2s1s0

+P4s2s̄1s̄0 +P5s2s̄1s0 +P6s2s1s̄0 +P7s2s1s0

=(P0s̄1s̄0 +P1s̄1s0 +P2s1s̄0 +P3s1s0) s̄2

+(P4s̄1s̄0 +P5s̄1s0 +P6s1s̄0 +P7s1s0)s2

=[(P0s̄0 +P1s0) s̄1 +(P2s̄0 +P3s0)s1] s̄2

+[(P4s̄0 +P5s0) s̄1 +(P6s̄0 +P7s0)s1]s2. (118)

Closer examination of this decomposition reveals that each sum of products can be

performed with the aid of 2-to-1 multiplexers. When MA is applied to the proposed

VLD approach, the accumulated sum of the valid codeword lengths, i.e., the start

index ji, can be computed concurrently with the selection of current codeword length,

Li.

When the codeword length is known the symbol look-up is performed, i.e., a symbol

corresponding to the valid codeword is fetched from the symbol table. The sym-

bol table is mapped into a symbol memory. Consequently, the symbol look-up can

be decomposed into two phases: address generation and symbol fetch as shown in

Fig. 46. Briefly, the address generation is used to form an address to symbol table,
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Fig. 46. Principal structure of entire variable length decoder.

Ai, corresponding codeword Wi. The address Ai consists of the page and offset where

page forms most significant part of Ai. The page is the length of Wi, Li, obtained

from MA units as seen in Fig. 46. The offset consists of the LSBs of the codeword,

which can be determined according to start index of the next valid codeword ji+1. If

complex codeword tables are used, additional logic may be needed to form the page

and offset. Finally, the symbol fetch is a trivial read memory operation. In order

to support parallel symbol fetches, the symbol memory consists of separate parallel

memory blocks, one for each decoder output, Si.

6.2.1 Decoder example

The principal structure of the entire variable length decoder corresponding to the

VLD example illustrated in Table 6 and Fig. 43 is depicted in Fig. 46. In the codeword

detection, all the codewords in the 16-bit codeword buffer B are detected with 14

parallel CDs in defined locations. Each CD returns only the length of the detected

codeword. The lengths of the valid codewords are selected with a 7-to-1 multiplexer

and six cascaded 5-bit MAs. Each unit selecting Li has lengths from the locations
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defined by set Ji. These locations are depicted on the left side of the input bus of

the corresponding unit in Fig. 46. It should be noted that if no codeword matches

the obtained bit field the MA returns zero, which is not, however, included into the

number of alternatives denoted in the symbol of the MA. In the symbol look-up, the

length of the valid codeword, Li is used as a page. Since, the LSB of the codeword is

enough to identify the codeword in Fig. 43(a), the LSB is extracted from the location

ji+1 − 1 and used as an offset. Note that the extraction of the offsets resembles the

selection of valid codewords: multiplexing controlled by accumulated length. Due

to this similarity, the MA can be used not only to compute the final sum but to select

the offset corresponding to the last codeword W(M−1). Finally, the symbol Si can be

fetched from the memory according to address Ai.

6.3 Critical Path

According to Fig. 32, the length of the detected codewords is used to align the data

in the codeword buffer. This feedback path forms the critical path since the align-

ment and codeword detection should be performed in a single cycle. Therefore, the

critical path of the decoder in Fig. 46 consists of a CD unit, |J1|-to-1 multiplexer,

and a cascade of MA units. In order to approximate the critical path independent of

technology, we use the interpretation from [8] where the delay is estimated with the

aid of logical stages. A logical stage is assumed to be equivalent to 3-4 AND-OR

(AO) and its delay is denoted by τ.

The number of AO stages in the CD unit is defined by the codeword table, which is

application-specific. However, it is independent of N. Therefore, the delay of CD

unit, tD, is constant. The |J1|-to-1 multiplexer contains �log2(|J1|)� AO stages, thus

the corresponding delay can be estimated as

tM = �log2(|J1|)�τ < �log2(N +1)�τ. (119)

The codeword buffer may contain at most M codewords, thus the complete decoder

contains (M−1) cascaded MA units. The critical path through MA as seen in Fig. 45

consists of �log2(N + 1)� full adders and a 2-to-1 multiplexer, thus the delay of MA

is tMA = (�log2(N +1)�+1)τ. Therefore, the delay of the critical path of the decoder,



94 6. Variable Length Decoding Scheme

t, is

t ≈ tD +[�log2(N +1)�+(M−1)(�log2(N +1)�+1)]τ

≈ tD +[M(�log2(N +1)�+1)]τ. (120)

Although the variable M according to the definition in (112) is dependent on N, we

may interpret that M defines the number of outputs of the decoder, i.e., the maximum

number of codewords, which can be detected from the codeword buffer. Therefore,

by decreasing M we may reduce the delay of the decoder. This implies that sometimes

the codeword buffer may contain more codewords than we can decode, thus reducing

the decoding rate. However, the loss of performance may be negligible since the

probability that the codeword buffer contains the maximum number of codewords

is low. The number of decoder outputs can be optimized for the given application,

if the statistics of encoded data is available. This approach is used in our MPEG-2

demonstration discussed in the following chapter. Furthermore, if M is decreased and

fixed, we find that the delay of the critical path is constant when 2n−1 ≤N < 2n where

n is an integer. This implies that the length of the codeword buffer should be chosen

such that N = 2n −1. In this case, MA units are equipped with n full adders.

6.4 Summary

In this chapter, a novel multiple-symbol variable length decoding scheme has been

proposed with the following properties; the scheme is parallel, decodes multiple sym-

bols at a time, and exploits arbitrary codelength buffers and variable output rate. The

proposed VLD scheme has been mapped onto a modular structure of which critical

path has been optimized by reducing the number of logic levels with the aid of a new

specific hardware mechanism called multiplexed add unit. Due to high modularity,

the structure can be easily tailored according to the requirements of the application.
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In order to prove feasibility and estimate the performance and limiting factors of the

proposed variable length decoding scheme, it has been applied to MPEG-2 video

coding standard [45]. The previously proposed decoding scheme results in a variable

input / variable output rate decoder and, therefore, the buffering resources are needed

in the input as well as in the output. Our demonstration is targeted at an embed-

ded system assuming external buffering and alignment resources. Therefore, only

the kernel decoder design consisting of codeword detection and symbol look-up is

considered.

In this chapter, the MPEG-2 demonstration implementation on an FPGA is described.

First, the standard is outlined briefly in order to understand the fundamentals that af-

fect to decoder design. Before modeling the structure, the specifications are determ-

ined according to the statistics of the benchmark scenes. Then, the performance of

the resulting decoder is analyzed with different design parameters. The demonstra-

tion is concluded with the comparison to other FPGA-based variable length decoders

and the discussion on related problems. Finally, the chapter is closed with a brief

summation of the demonstration.

7.1 Overview to MPEG-2 Standard

Let us next outline briefly MPEG-2 standard from the variable length decoding point

of view. According to the standard a video stream is constructed out of a sequence of

pictures and each picture is processed in 8×8 blocks of pixels. Color is expressed in

terms of luminance and chrominance components. There are three different chromin-

ance formats: 4:2:0, 4:2:2, and 4:4:4 where four luminance blocks are followed by

two, four, or eight chrominance blocks, respectively. These luminance and chromin-

ance blocks construct a macroblock.
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Compression in video is achieved by coding the pictures using information either

from the same picture only or from neighboring pictures. These alternative compres-

sion techniques are referred to as intra and non-intra coding, respectively. Each block

is transformed with the DCT resulting in a block of DCT coefficients. The first coef-

ficient in a block is referred to as DC coefficient. The other coefficients are called

AC coefficients. After the DCT, the blocks are quantized for reducing the number

of bits required to represent the pixel values in frequency domain. The quantized

values are then serialized and reordered into an one-dimensional array form with the

aid of zig-zag scanning in order to construct longer sequences of zeros. The resulting

sequence is coded with run-level symbols: the number of zero coefficients run pre-

ceding a non-zero coefficient level. In addition, a special symbol end-of-block (EOB)

is used to denote the end of the one-dimensional array. Finally, the resulting stream

of the symbols is ready for the VLC.

MPEG-2 defines two codeword tables B.12 and B.13 for coding the intra DC coef-

ficients in the luminance and chrominance blocks, respectively. The codeword itself

is a variable length code dct dc size and it is followed by a code of dct dc size bits

indicating dct dc differential value which is returned from the decoder. All the other

DCT coefficients are coded with the codeword table B.14 or B.15. Let us remark

that the level is coded as a unsigned value and the sign is given as the LSB of the

codeword. The correct codeword table is specified to the decoder with parameters

intra vlc format and macroblock intra. The run and level combinations without pre-

specified variable length code are coded with the aid of a 24-bit escape codeword

ESC which is identified from a 6-bit prefix. The prefix is followed by a 6-bit fixed

length code giving run and a 12-bit fixed length code providing the signed level.

7.2 Decoder Specification

Continuous preprocessed MPEG-2 data strings, which consist only of the variable

length code of the DCT coefficients, have been chosen as the input for our imple-

mentation. Several encoded MPEG-2 data streams were analyzed and the obtained

statistics are summarized in Table 7. This information has been used to derive the

requirements for the demonstration decoder.

The minimum size for the codeword buffer is the length of the longest codeword,

i.e., 24 bits in MPEG-2, which implies that the MA units must be equipped with at
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Table 7. Properties of the MPEG-2 benchmark scenes.

Benchmark Block type b W B b/W W/31b

bat 327 334 I (B.15) 905 241 172 745 23 298 5.2 5.9
NI 1 506 680 266 485 38 940 5.7 5.5

popplen I (B.15) 242 795 47 003 4 572 5.2 6.0
NI 153 265 28 069 4 139 5.5 5.7

sarnoff I (B.14) 429 065 80 563 8 418 5.3 5.8
NI 169 567 36 408 8 447 4.7 6.7

tennis I (B.14) 57 741 12 345 2 718 4.7 6.6
I (B.15) 613 066 120 754 9 504 5.1 6.1

NI 989 235 137 756 25 524 7.2 4.3
t1cheer I (B.15) 415 873 80 818 8 244 5.1 6.0

NI 255 433 51 680 9 432 4.9 6.3
Total 5 737 961 1 034 626 143 236 5.5 5.6

b: bits. W: codewords. B: block. b/W: bits per codeword. W/31b: codewords in 31 bits.

least five full adders, i.e., n = 5. In the demonstration, we have used this minimum

requirement. Therefore, the optimum size for the codeword buffer from the critical

path point of view is N = 31. The 31-bit codeword buffer may contain at most 15

codewords but according to statistics in Table 7, 31-bit buffer can contain 5.6 code-

words on average and, therefore, the number of decoder outputs, M, can be decreased

for shortening the critical path. In our case, the average is rounded upwards and the

number of outputs is M = 6.

7.3 Hardware Model

The variable length decoder supporting MPEG-2 has been described with behavioural-

VHDL. Although we target at an FPGA technology, the VHDL description has been

kept as technology independent as possible. The structure of demonstration imple-

mentation follows the general organization, i.e., the codeword detection and symbol

look-up have been realized as illustrated in Fig. 46 but some MPEG-2-specific modi-

fications were included. These modifications are described in the following.
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Fig. 47. Block diagram of the MPEG-2 modified codeword detector.

7.3.1 Codeword Detector

A codeword detector (CD) unit has at most a 12-bit input which is sufficient to detect

all the MPEG-2 codewords from the minimum length of two bits to 24 bits. The CD

returns three 6-bit values of a 5-bit codeword length and a 1-bit EOB status: two

values for the DC coefficient and one value for the AC coefficient. The MPEG-2

standard defines four codeword tables, B.12 - B.15, and the selection of codeword

table is controlled by a 2-bit VLC control signal vlcf which is the concatenation of

the parameters intra vlc format and macroblock intra defined in [45]. The symbol

for the modified CD is depicted in Fig. 47.

The input BitField is checked for a possible codeword. If detected codeword repres-

ents EOB, the EOB status is set “true”. In the intra decoding, two DC values, dcl

for luminance and dcc for chrominance are returned according to codeword tables

B.12 and B.13, respectively. In the non-intra decoding, dcc represents the value of

the DC coefficient. If a codeword is not detected from the bit field, zero-lengths are

returned and EOB status is maintained as follows. The codeword represents a DC

coefficient only if the previous codeword is EOB, thus EOB status is forced to “true”.

Correspondingly, the codeword is an AC coefficient only if the previous codeword is

not EOB and, therefore, EOB status is forced to “false”.

7.3.2 Chrominance Format Counter

A chrominance format counter (CFC) is used to select the correct group of the DC

candidates out of two possible groups, i.e., chrominance candidates chrc and lumin-

ance candidates lumc. The realization is trivial; a counter returns a chrominance

control signal chr ctrl for the next block according to a current block number bnr

in a macroblock as specified in [45]. The maximum block number is controlled by

a parameter chrominance format chrf. The block number is upgraded when EOB is



7.3. Hardware Model 99

a)

CFC
4

chrf

chrc

2  1

lumc

nxt_bnrbnr
2

pEOBs 2

DCcs

00
01
10
11

4:2:0
4:2:2
4:4:4

NI

chrf format

b)

DCcs

MA
X  1S

L nxt_S

ACcs

5

nxt_EOB_L
6

EOB
5 5

6X 6X

Fig. 48. Block diagrams of the MPEG-2 specific units: (a) selection of DC coefficient and (b)

modified MA.

detected. In order to prevent the increase in the block number when EOB status is

maintained, two previous EOB statuses given with prEOBs are checked. The schem-

atic of the CFC is shown in Fig. 48(a) where DCcs denotes the correct DC candidates.

7.3.3 Multiplexed Add

The multiplexed add unit is modified to select also between the AC candidates ACcs

and DC candidates DCcs. The candidates consist of the values from all the CDs

defined by set Ji. The 2-to-1 multiplexing between AC and DC candidates is con-

trolled by the previous EOB status EOB and it can be performed in parallel with the

full adder computing the sum of the LSBs of the input operands. The symbol of the

modified MA is illustrated in Fig. 48(b). Otherwise, the operation of the MA is sim-

ilar to the principal operation, i.e., output nxt EOB L is selected according to the sum

nxt S of the previous sum S and the previous length L.

7.3.4 Memory Address Generator

A memory address generator (MAG) unit returns an 11-bit MAG code, which may

contain memory address or bits that are required for returning the symbol, for each

codeword. In order to decode DC coefficient in intra decoding, 11 bits are extracted

from the codeword buffer. The bits to be extracted are located according to interme-

diate sums.

The extracted bits are processed depending on the length and the interpretation of the

codeword. If the codeword represents DC coefficient in intra decoding, it specifies

the number of bits to be selected according to table B.12 or B.13 in [45]. The selected

bits are extended to 11-bit MAG code as a two’s complement number. Otherwise, the
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Table 8. Memory address generation in the demonstration implementation.

Length Page Offset

2, 3 000 01001
4 001 1100 & EB(7)
5 010 01 & T & EB(8:9)
6 010 0 & T & EB(6) & EB(8:9)
7 001 01 & T & EB(8:9)
8 010 T & EB(6:9)
9 001 T & EB(6:9)

10 000 01 & EB(8:9) & 0
11 000 0 & T & EB(7:9)
13 000 1 & EB(6:9)
14 011 0 & EB(6:9)
15 011 1 & EB(6:9)
16 100 0 & EB(6:9)
17 100 1 & EB(6:9)

extracted bits contain a complete or partial codeword, which is used to generate the

address to the symbol memory.

In order to describe the memory mapping and address generation method used in

the demonstration, let the extracted bits be enumerated from the left to the right and

denoted as EB(0:10). Both the tables, B.14 and B.15, include at most 16 different

codewords of a specific length and consequently, the identification of the codeword

requires four bits. However, when combining the codeword tables and mapping them

into unified memory, the chosen bits may identify two different codewords depending

on the table. In order to distinguish the codewords in different tables, a table bit T

defined as

T =

{
1 , if B.15
0 , otherwise

(121)

is used to specify the table. Altogether, a 3-bit page as well as the 5-bit offset are

generated according to length as shown in Table 8. Although the sign bit is not

needed to point the magnitude of the symbol stored into the memory, it should be

propagated further for determining the correct level. Therefore, the memory address

and sign are embedded into MAG code.

Since only one codeword per cycle can represent symbol ESC in a 31-bit codeword

buffer, a shared unit is utilized for extracting ESC and forwarding the 18-bit ESC Sym
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consisting of possible symbol whose value is not predefined. Similarly, the EOB

statuses are propagated further.

7.3.5 Symbol Fetch

A symbol fetch (SF) consist of three parallel dual-port memory banks and the re-

sources to return the correct symbol. The symbols in the tables B.14 and B.15 ex-

cluding EOB and ESC are mapped into each memory bank. MAG codes are read

in rising clock edge. If the EOB status is true, it is returned and run and level are

forced to zero. If the length of the codeword is equal to 24 implying ESC, a 6-bit

run followed by a 12-bit signed level in ESC Sym are returned. For the DC coeffi-

cient in the intra decoding mode, run is forced to zero and MAG code is returned as a

level. Otherwise, the symbol is read from the memory location defined by the address

which is embedded into MAG code. The predefined symbols stored in the memory

can be represented with 11 bits, i.e., 5-bit run and the 6-bit unsigned value of level.

Therefore, the run is extended to six bits and level is converted to 12-bit signed value

before returning the actual 18-bit symbol.

7.3.6 Entire Decoder

The block diagram of the entire MPEG-2 decoder is illustrated in Fig. 49. The code-

word detection consists of 29 CD units, which have inputs from buffer locations

shown above the CDs. The seven leftmost CDs can detect all the possible code-

words, next three CDs detect up to 21-bit codewords, and the remaining CDs detect

only shorter codewords until the last or the rightmost CD detects only 2-bit code-

words.

The first valid EOB and length, EOB&L0, is obtained from the leftmost CD but se-

lection between the two DC candidates is needed introducing a 2-to-1 multiplexer

controlled by chrominance control pre chr ctrl from the previous cycle. Similarly, a

2-to-1 multiplexer controlled by the EOB status pre EOB from the previus cycle is

employed to select between AC and DC candidates. The other EOB&Li values are

selected from CDs in buffer locations Ji. The correct DC candidates out of luminance

and chrominance candidates are selected according the control provided by the cor-

responding CFC. A 2-to-1 multiplexer and one 21-to-1 multiplexer select EOB&L1
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Fig. 49. Block diagram of the MPEG-2 variable length decoder.

from AC and DC candidates. For the outputs EOB&L2–EOB&L5, the modified MAs

are used to select valid values. The MA for the third output EOB&L2 is the most

complex having candidates from 26 CDs. Let us remark that the rightmost MA is

used to provide the extracted bits for the last codeword W5 and to compute the final

sum of the detected codeword lengths.

For the symbol look-up, the variable length coding format vlcf, chrominance controls,

the EOB statuses, and lengths of the codewords are forwarded to the MAG with the

intermediate sums in order to generate the MAG codes for each codeword. Apart

from MAG codes, the MAG returns possible escape value ESC Sym and the EOB

statuses EOBs. During the symbol fetch, the EOB is interpreted according to the EOB

status, which is also returned. The codeword representing the intra DC coefficient

is determined from the most significant bit (MSB) of vlcf and the EOB status of

the preceding codeword. The ESC can be identified from the MSBs of the length.

Otherwise, the actual symbol is fetched from the symbol memory.

In general, the MPEG-2-specific modifications are not in the critical path, thus the

discussion on decoder delay in the previous section applies to the demonstration.

The generation of MAG codes, except the last one, can be performed in parallel with

the MAs and, therefore, the MAG is not a separate pipeline stage. However, the

symbol fetch is pipelined since synchronous memories have been used.
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7.4 Experimental Results

The proposed VLD scheme has been experimented with a parametrizable simula-

tion model in Matlab and with an FPGA implementation. The simulation model is

exploited to analyze the dependencies and behaviour of the scheme. The results are

given in cycle domain meaning that information on timing or required resources is not

considered. The FPGA implementation is used to prove the feasibility of the scheme

and estimate the hardware complexity. The results are obtained by using Modelsim

HDL simulator and Exemplar LeonardoSpectrum. The performance figures of the

demonstration implementation are estimated in time domain.

The highest input rate is obtained when the codeword buffer can be completely up-

dated at each cycle, i.e., if the accumulated length of the complete codewords in the

buffer is equal to the buffer size. Assuming such an ideal data stream, the theoret-

ical upper bound for the throughput is equal to buffer size divided by the average

codeword length given in column ”W/31b” in Table 7. In practice, however, the buf-

fer may contain a partial codeword, which cannot be detected at the current cycle.

Therefore, it should be kept in the buffer and processed at the next cycle when the

remaining bits are fetched into the buffer. When applying the proposed scheme to

our benchmarks in Table 7, the effect of the buffer size to the throughput is illustrated

in Fig. 50.

The number of outputs has been decreased in the demonstration implementation

based on statistics and by recognizing the fact that the shorter codewords may not be

decoded although they may exist in the buffer. The distribution of the codewords over

decoder outputs, i.e., the proportion of cycles returning certain number of symbols,

with different decoder configurations is illustrated in Fig. 51. The leftmost group “15

outputs” represents the theoretical approach, i.e., the scheme with a 31-bit codeword

buffer and 15 decoder outputs. When experimented with the benchmark data, the

proportion of cycles returning more than nine symbols is negligible. Therefore, the

experimental results support the statistical conclusion to decrease the number of the

decoder outputs.

In Fig. 51, the remarkable drop in proportion can be obtained after seven outputs. The

resulting distribution over outputs “7 outputs” is balanced to return from 4 to 7 sym-

bols but, on the other hand, the cycles with the largest proportion are returning five

symbols, although with small difference. The balanced proportion between cycles is
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Fig. 50. Throughput of the proposed approach.

advantageous if the cycle time is predefined and seven codewords can be detected in

the given cycle time. However, the detection of the seventh codeword may increase

the critical path and the given cycle time is exceeded.

The distribution with six outputs, noted as “6 outputs”, represents our demonstration.

The cycles with largest proportion are returning the maximum number of symbols,

i.e., six symbols and the difference to the second largest proportion is already re-

markable. Furthermore, the most of the cycles are decoding five or six codewords. In

order to decode maximum number of codewords during the most of the cycles, the

number of outputs should be restricted to five as shown with the group “5 outputs”

in Fig. 51. When the number of outputs is decreased further, it is obvious that the

largest proportion is increasing until symbol-serial decoders are returning one symbol

per cycle with proportion of one. However, it should be noted that also the number of

cycles required to complete decoding is increased and utilization of codeword buffer

is decreased. Altogether, these effects are against our original objective.

The experimental results with scheme and demonstration implementation in cycle

domain are summarized into Table 9. Column “Scheme” contains the practical upper

bounds for the performance of the scheme with a 31-bit buffer and 15 outputs. The

required cycles and achieved throughput for the implementation with a 31-bit buffer

and 6 outputs are depicted in column “FPGA”. On average, 4.8 codewords per cycle
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are detected and decoded while the theoretical and practical throughputs in cycle

domain are 5.6 and 5.0 codewords per cycle, respectively.

The previous discussion is based on behavioural models and the timing accuracy

on unit cycles. However, the critical path defining the cycle time is an important

measure for determining the absolute throughput, i.e., the amount of data processed

in a time unit. In order to estimate the maximum clock frequency, the VHDL model

of the demonstration implementation with the 31-bit buffer and 6 outputs has been

synthesized on Xilinx Virtex-II FPGA (device 2V4000bf957) [125]. The CD units

turn out to be application-specific pattern recognizers based on LUTs. The CFC is

also based on LUTs while each MA is synthesized onto a 5-bit ripple carry adder

parallel with a multiplexer tree. Consequently, the delay of each MA is about the

same, i.e., the delays of five full adders and one 2-to-1 multiplexer, although the size

of the multiplexer tree varies depending the number of candidates. When the entire

design has been synthesized, 2 940 configurable logic blocks (CLB) out of 23 040

were allocated.

Three dual-port Block SelectRAM memories with 160 rows of 11 bits are generated

using Xilinx CORE Generator for symbol memories. In an ideal memory mapping,

each symbol has location of its own and the number of non-used locations and rep-

licated symbols are zero. In such an case, a 7-bit address space is enough for 111



106 7. MPEG-2 Variable Length Decoding

Table 9. Experimental results of the MPEG-2 variable length decoder.

Scheme FPGA
Benchmark Block type C W/C C W/C

bat 327 334 I (B.15) 32 104 5.4 33 526 5.2
NI 54 843 4.9 56 780 4.7

popplen I (B.15) 8 686 5.4 9 182 5.1
NI 5 555 5.1 5 746 4.9

sarnoff I (B.14) 15 296 5.3 16 198 5.0
NI 6 052 6.0 6 823 5.3

tennis I (B.14) 2 039 6.1 2 339 5.3
I (B.15) 21 721 5.6 22 897 5.3

NI 38 238 3.6 38 682 3.6
t1cheer I (B.15) 14 730 5.5 15 500 5.2

NI 9 113 5.7 9 824 5.3
Total 208 377 5.0 217 497 4.8

C: cycles. W/C: codewords per cycle.

different predefined symbols. In practice, however, many mapping functions results

in non-used locations and some symbols are located in two different locations due

to two different codewords representing same symbol. In order to ease the design

work, the 8-bit address space has been used in the demonstration implementation.

The synthesized design resulted in a critical path of 45.11 ns. The characteristics of

the implementation are summarized in Table 10.

7.5 Discussion and Comparison

We would like to note that straightforward and fair comparison with other reported

decoders is extremely difficult due to different implementation approaches. Stand-

ards, like JPEG [44] or MPEG-2 [45] with different codeword tables, set their own

requirements for the decoder and, therefore, distinguish decoders from each other.

Furthermore, input data with different compression ratios affect decoders with vari-

able output rate; the less compression, the longer codewords resulting in decreased

throughput. One main issue in comparing performance of different decoder imple-

mentations is how to equalize the effects of the different ASIC technologies or how

to make different FPGAs and their specific features equivalent to each other or even

to ASICs. However, the characteristic figures about the performance of the decoder
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Table 10. Characteristics of the MPEG-2 variable length decoder.

Design platform Xilinx Virtex-II FPGA
Application MPEG-2
CLB count 4 940 / 23 040
Memory 3 dual-port memories with

160 rows of 11 bits
Virtex-II specifics Block SelectRAM Memory

Frequency 22 MHz
Throughput Variable 1-6 S/C

Average 4.8 S/C
105 MS/s

585 Mbits/s
S/C: Symbols per cycle. MS/s: Million symbols per second.

are mostly given only for the chosen technology and without detailed variables. In

other words, the results are technology dependent and consequently the performance

of the chosen decoding technique is hidden behind technology. Altogether the de-

coding performance of the used technique is not directly comparable although all the

previous aspects can be considered as critical design issues as well.

On the other hand, reconfigurable platforms provide fast design iteration times to

change the design variables. Therefore, the variable input / output rate multiple-

symbol decoder on the FPGA has been compared to other FPGA-based decoders

presented in literature by using uniform implementation approaches. In other words,

short design iteration times on FPGA allow the configuration of the proposed decoder

to match the reference decoders or to provide at least the same features with the

reference decoders. The behavioural non-optimized VHDL model of the decoder

has been mapped onto the FPGAs used in the references in order to guarantee same

technological features. The uniformity is guaranteed with same codeword tables,

compression ratios, implementation platform, and synchronous design style.

7.5.1 Reference Decoders

Before moving on to discussion on the results of the comparison, let us briefly sum-

marize the reference FPGA-based variable length decoders. All the decoders process

data in a bit-parallel manner but from the symbol parallelism point of view they are
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different. In order to emphasize the difficulties in comparison with different tech-

nologies, let us remark the huge variation in the descriptive figures of the following

decoders.

Aspar et al. in [4] reported a symbol-serial variable length decoder implemented

on Altera’s Flex 10K20RC240-4 and Flex 10K20RC240-3 FPGAs. The decoder is

based on the decoder structure presented earlier by Lei and Sun in [62], which is

illustrated in Fig. 35. The decoder has been designed to support up to 16-bit code-

words according to JPEG standard [44]. The achieved operation frequencies are 9.91

MHz for 10K20RC240-4 and 11.54 MHz for 10K20RC240-3. In both platforms, the

utilization of logic cells is 1145 out of 1152 logic cells.

Another FPGA-based symbol-serial decoder based on Lei and Sun’s work is pro-

posed by Jeon et al. in [49]. In order to reduce the processing time in the crit-

ical path, the decoder exploits a plane separation technique where input plane and

OR plane performing the data buffering operate in parallel. The consecutive PLA-

based matching process uses exactly the same method as previous decoder, i.e., the

block of encoded bit stream is matched with all possible codewords stored into LUT.

The decoder using the plane separation technique has been realized on Altera’s Flex

8000 FPGA. When applying the presented technique to MPEG-2 intra-frame decod-

ing [45], the throughput of 15 million symbols per second has been achieved. From

logical resources point of view, about 30 % performance improvement from Lei and

Sun’s approach doubles the required resources [49].

Sima et al. in [101] considered an FPGA-augmented TriMedia processor running at

200 MHz [99]. When their approach presented in [100, 101] has been mapped onto

Altera’s ACEX EP1K100 FPGA, the decoder returning one symbol in Fig. 37 exhibits

seven TriMedia cycles while two symbols can be returned in eight TriMedia cycles

with the decoder in Fig. 42. Hence, the MPEG-2 compliant two-symbol decoder

with the constant output rate yields the throughput of about 50 Msymbols/s or 275

Mbits/s assuming the data summarized in Table 7. The implementation requires all

12 Embedded Array Blocks, i.e., RAM blocks, and 51 % of the logic cells supporting

either codeword table B.14 or B.15 in MPEG-2 standard.

In order to compare the proposed variable output rate multiple-symbol decoding tech-

nique, the non-optimized model of the decoder in [P7], where the specific features of

implementation platform are not exploited, is mapped onto the same FPGA techno-
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logies as the references but without parallel symbol memories. The characteristics of

the variable length decoders presented by Aspar et al. in [4], Jeon et al. in [49], and

Sima et al. in [101] and the achieved results of the decoder [P7], which are obtained

by using Exemplar LeonardoSpectrum, are summarized into three columns labeled

as Altera Flex10K, Altera Flex8K, and Altera ACEX1K100 according to used FPGA

in Table 11.

7.5.2 Comparison Results

Although our original objective has been to uniform the FPGA-based decoders based

on different decoding approaches, clear differences and restrictions still exist. Both

the multiple-symbol decoders, decoder presented by Sima et al. in [101] and the

proposed decoder in [P7], require clearly more hardware resources than the symbol-

serial decoders reported by Aspar et al. in [4] and Jeon et al. in [49]. Furthermore, the

decoders in [4, 49] are independent whereas both the multiple-symbol decoders are

clearly targeted at embedded system providing external resources for data buffering

and alignment. The proposed decoder does not compete in hardware resources with

other decoders due to the high degree of parallelism and it does not fit into all FPGAs

that are used in the references. On the other hand, there are already enough resources

available in the state of the art FPGAs and the integration density is increasing.

In the multiple-symbol decoding approaches used in the decoders in [101] and [P7],

the critical path can be adjusted with requirements of the application by processing

more data in a cycle; more time, more symbols per cycle. Therefore, they are ad-

vantageous when cycle time is specified according to environment. The critical path

in the proposed decoder is dominated by the recursive selection of proper codewords

and therefore, codeword properties reflecting to codeword detection delay have minor

effect in total cycle time. In other words, the increase in the delay of the codeword

detection has relatively small part in total cycle time.

The decoders in [4, 49, 101] have constant output rate resulting in constant through-

put in terms of symbols whereas source data statistics reflect to throughput in the

decoder [P7]. The decoder is sensitive to the compression ratio due to variable pro-

cessing rate, i.e., the worse compression ratio implies longer codewords and there-

fore, less codewords in the buffer returning less symbols per cycle. The throughput

values in Table 11 are estimated by assuming the average codeword length of 5.5 bits.
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Table 11. Comparison of the FPGA-based variable length decoders.

Altera Flex10K Altera Flex8K Altera ACEX1K100
Aspar et al. [4] M[P7] Jeon et al. [49] [P7] Sima et al. [101] [P7]

Standard JPEG JPEG MPEG-2 Intra MPEG-2 MPEG-2 MPEG-2
CWT K.5 K.3-K.6 Not known B.12-B.15∗ B.14 or B.15 B.14 or B.15
Logic cells 1 145 5 833 Not known 6 397 51 % 35 %
Frequency 11.54 MHz 4.8 MHz 15 MHz 4.2 MHz 25 MHz 12.1 MHz
Throughput Constant 1-6 S/C Constant 1-6 S/C Constant 1-6 S/C

1 S/C avg. 4.8 S/C 1 S/C avg. 4.8 S/C 2 S/C avg. 4.8 S/C
11.54 MS/s 23.04 MS/s 15 MS/s 20 MS/s 50 MS/s 58 MS/s
63 Mbits/s 127 Mbits/s 82 Mbits/s 111 Mbits/s 275 Mbits/s 319 Mbits/s

CWT: Codeword tables. S/C: Symbols per cycle. MS/s: Million symbols per second. ∗ Support for 4:2:0, 4:2:2,
and 4:4:4 chrominance formats.

The properties of the decoders on Altera Flex10K supporting JPEG standard are col-

lected into column labeled as Altera Flex10K in Table 11. The decoder in [P7] is

configured to support JPEG standard and is referred just as M[P7] in the column. The

structure of the decoder follows the structure of the MPEG-2 decoder in Fig. 49, only

codeword tables are assumed to be typical Huffman tables from the standard [44].

The decoder requires about five times more hardware without symbol memories

providing double throughput in time domain. In addition, the decoder supports four

codeword tables.

The characteristics of the MPEG-2 decoders on Altera’s Flex8K are summarized into

the column Altera’s Flex8K in Table 11. The MPEG-2 compliant multiple-symbol

decoder illustrated in Fig. 49 is used in comparison although decoder in [49] supports

only intra-frame decoding. This difference reflects to the critical path due to the

different complexities of the codeword tables in LUT and CDs and larger multiplexers

and MA units. However, the symbol-parallel decoder results in better throughput than

symbol-serial decoder assuming 5.5-bit codewords on average, i.e., compression ratio

of about 30%.

When comparing symbol-parallel decoders on ACEX EP1K100 FPGAs supporting

codeword table B.14 or B.15 in MPEG-2, we assume again the compression ratio of

30%. The decoder in [P7] is simplified to support only a single codeword table, which

is reflected in the required resources. The achieved results are given in the column

ACEX EP1K100 FPGAs in Table 11. The throughput of the decoder in [101] is

constant, two symbols per cycle. Instead, the decoder in [P7] is capable of returning

up to six symbols per cycle although less symbols would imply shorter cycle time.
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7.6 Summary

In this chapter, the proposed new VLD scheme and structure have been applied to

MPEG-2 benchmark scenes for experimenting and estimating the behaviour and per-

formance. The MPEG-2 variable length decoder demonstration has been described

in VHDL and mapped onto Xilinx Virtex-II FPGA. The evaluated results indicate

that 4.8 symbols out of the 5.6 average symbols present in the 31-bit buffer can be

detected per cycle. The critical path of 45 ns proves the feasibility and potential of

the approach. In order to illustrate the behaviour of the proposed decoder, its per-

formance is analyzed with different design parameters.

The straightforward and fair comparison with other reported decoders is extremely

difficult since the variable length decoders and consequently the reported figures are

really application-specific. Besides, the multiple-symbol decoders are rarely repor-

ted. Nevertheless, we compared the demonstrated decoder to other FPGA-based de-

coders. With slight changes but without optimizing the decoder, the experimental

results indicate that the proposed approach provides 16–100% better throughput at

2–3.6 times lower frequencies than referenced decoders. The achieved results ex-

hibit also capability to cover a wide range of applications with this new decoding

approach.

For concluding the chapter, one quite obvious golden rule can be emphasized; when

presenting the method and estimating its performance with the aid of certain imple-

mentation, the performance of the method is extremely difficult to distinguish from

the technological performance. Therefore, exact design variables or characteristics

that are independent from technology should be also provided. Without these inde-

pendent facts, the results can always be speculated. However, according to experi-

mental results, the performance of the variable rate symbol-parallel approach can be

considered promising for future applications.
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8. CONCLUSIONS

In this Thesis, new application-specific parallel structures for the DCT and VLD have

been described. The studies have been opened with a case study on DCT where the

objectives have been to derive hardware oriented algorithm and map it onto an area-

efficient parallel structure processing data in a sequential form at data rate. Therefore,

the related work has been surveyed with respect to the cascaded pipeline computation

of the DCT.

The guidelines to develop the algorithms have been outlined according to observa-

tions made in the survey. The derived novel regular perfect shuffle topology DCT al-

gorithms for N-point and N×N transforms, N = 2k, do not reach the lower bound on

arithmetic complexity but the regularity introduces essential properties for the area-

efficient hardware implementation and flexible use. The regular interconnections

with smaller and smaller permutations from column to column reduces the complex-

ity of data permutation. The distributed irregularities provide area-efficiency when

unified pipelines are designed although, on the other hand, makes the node functions

less regular.

Due to the regular topology, the algorithms lend themselves for vertical mapping res-

ulting in area-efficient sequential structures with high modularity. The structures can

be freely pipelined since all the arithmetic units are in feed forward paths. The addi-

tional pipelining allows the critical path to be shortened thus higher clock frequency

can be used implying higher throughput. Let us remark that a sequential pipeline

structure for an N-point transform supports also all the smaller transform sizes of

powers of two and the structure for two-dimensional transform can also be used to

compute corresponding one-dimensional transform.

The regularity of the algorithm and the modularity of the structure have been ex-

ploited when mapping the 8× 8 DCT and its inverse onto a new common pipeline

structure. The resulting structure for the 8×8 DCT/IDCT has been proven to be area-
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efficient compared to other reported solutions. The sequential demonstration imple-

mentation of the cascaded pipeline 8×8 DCT/IDCT is based on the data path model

of the structure. When synthesized onto a 0.11 µm standard cell CMOS technology,

the DCT/IDCT kernel occupies 39 424 equivalent 2-input NAND gates achieving the

operation frequency of 253 MHz.

When considering the VLD, the objectives have been to break at least partially the

recursive dependency related to the VLD, decode multiple symbols parallel at a time

and exploit arbitrary code length buffers. Therefore, variable length decoders have

been surveyed from the objectives point of view. Based on the made observations,

the novel multiple-symbol VLD scheme has been derived. The scheme is capable of

decoding all the complete codewords in an arbitrary length block of input data. The

proposed VLD scheme has been mapped onto a general structure of which critical

path has been optimized by reducing the number of logic levels with the aid of the

new multiplexed add unit.

The proposed scheme is applied to MPEG-2 benchmark scenes for experimenting

and estimating its behaviour and performance. It has been shown that the throughput

rate of the scheme is proportional to the size of the codeword buffer. In order to prove

the feasibility, structure has been demonstrated with an MPEG-2 compliant variable

length decoder and its technology independent VHDL description is mapped onto

Xilinx Virtex-II FPGA. The evaluated results indicate that 4.8 symbols out of the 5.6

average symbols present in the 31-bit buffer can be detected per cycle. The critical

path of 45 ns proves the potential of the approach.
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