TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY
Julkaisu 481 « Publication 481

Jari Nikara

Application-Specific Parallel Structures for Discrete
Cosine Transform and Variable Length Decoding

Tampere 2004

Tampereen teknillinen yliopisto. Julkaisu 481
Tampere University of Technology. Publication 481

Jari Nikara

Application-Specific Parallel Structures for Discrete
Cosine Transform and Variable Length Decoding

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB104, at Tampere
University of Technology, on the 18th of June 2004, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2004

ISBN 952-15-1196-6 (printed)
ISBN 952-15-1405-1 (PDF)
ISSN 1459-2045

ABSTRACT

This Thesis considers the design of application-specific parallel structuresfor digital
signal processing. Due to wideness of the subject, the discussion has been restricted
to the studies of the discrete cosine transform and variable length decoding.

New area-efficient parallel structures, which process datain a sequential form at data
rate, are developed for the discrete cosine transform. The development of the struc-
tures begins with the derivation of novel regular fast agorithms. The agorithmslend
themselves for vertical mapping resulting in modular cascaded structures that can
be freely pipelined due to the loop-free structure. In order to prove the feasibility
and estimate the performance, the unified transform kernel for discrete cosine trans-
form and itsinverse isimplemented on a standard cell CMOS technology with a data
path synthesis. Finally, the comparison to a state-of-the-art design reveals up to 15%
smaller estimated area than in the reference design.

For the variable length decoding, a novel multiple-symbol decoding scheme is pro-
posed. The critical path of the resulting decoder is minimized by introducing a new
multiplexed add unit. In order to prove the feasibility and determine the limiting
factors of the scheme, the decoder has been implemented on an FPGA technology.
When applied to MPEG-2 standard benchmark scenes, on average 4.8 codewords are
decoded per cycle resulting in the throughput of 106 million symbols per second.
Although, a straightforward and fair comparison of variable length decoders is ex-
tremely difficult due to different implementation approaches, the performance of the
decoder can be considered promising with 16-100 % better throughput at 2—3.6 times
lower frequencies than the reference designs on the same FPGA technol ogy.

In both the case studies, the discrete cosine transform and variable length decoding,
the modularity and achievable high speed operation provide flexibility for the design
re-use in the current and future applications.

PREFACE

This research work has been carried out during the years 2000 — 2004 at the Institute
of Digital and Computer Systems, former Digital and Computer Systems L aboratory,
of Tampere University of Technology, Tampere, Finland as a part of the wider related
research projects of which one included a one-year visit to Computer Engineering
Laboratory, Delft University of Technology, Delft, The Netherlands.

| am grateful to my supervisors, Prof. Jarmo Takala and Prof. Stamatis Vassiliadis,
for guiding and encouraging me to study and work towards doctoral degree. Further-
more, my sincere thanks to my Thesis reviewers, Prof. Olli Silven and Prof. Jorma
Skyttd, for their constructive comments on the manuscript. Special thanks to Tuomas
Jarvinen, M.Sc., Perttu Salmela, M.Sc., Mr. Harri Sorokin, Vesa Lahtinen, M.Sc.,
Georgi Kuzmanov, M.Sc., for sharing ideas, knowledge, and opinions about those
various different topics related, more or lessif at all, to this Thesis.

| would like to thank all the co-authors. Prof. David Akopian, Mihai Sima, M.Sc.,
Petri Liuha, M.Sc., Prof. Jaakko Astola, Jukka Saarinen, Dr. Tech., Konsta Punkka,
M.Sc.. In addition, Rami Rosendahl, M.Sc., deserves specia thanksfor co-operation.
My warmest thanks to personnel in Tampere and Delft for nice working atmosphere.

This Thesis was financially supported by the Graduate School in Electronics, Tele-
communications, and Automation (GETA), Academy of Finland, National Techno-
logy Agency (TEKES), Nokia Foundation, Jenny and Antti Wihuri Foundation, Ulla
Tuominen Foundation, and the Foundation of Advancement of Technology, which
are gratefully acknowledged.

Finally, | would liketo express my gratitude to my parents Erkki and Marjatta Nikara,
sisters Virpi and Kirsi, and my wife Anu for their support and love during these years.

Tampere, May 2004

Jari Nikara

Preface

TABLE OF CONTENTS

Abstract [
Preface i
Tableof Contents e Y
Listof Publications IX
Listof Figures Xi
Listof Tables XV
Listof Abbreviations. XVii
Listof Symbols XXI
1. Introduction 1
1.1 Objectiveand Scopeof Research 3

1.2 ManContributions 4
1.2.1 Author'sContribution 5

13 ThesisOutline. 6

2. DiscreteCosineTransform 7
2.1 Dé¢finitionsand Properties. 8
2.2 One-Dimensional Fast Algorithms 9
2.2.1 Wel-Known Pioneer Algorithms. 10

222 Regular Algorithms. 12

2.3 Two-Dimensiona Algorithms 16

2.4 Hardware Structures 18

Vi Table of Contents
241 OneDimensional Structures 19
2.4.2 Two-Dimensional Structureswith Matrix Transpose 21
2.4.3 Direct Two-Dimensional Structures 25
25 Summary ... 27
3. Perfect Shuffle Topology DCT Algorithms 29
31 Preiminaries 29
3.2 OneDimensional Transform 35
321 ProcessingColumns 37
3.2.2 Interconnection Permutations 38
323 Find Algorithm. 41
3.3 Two-Dimensiona Transform 43
3.3.1 Row-ColumnDecomposition 43
3.32 DirectComputation. 45
34 SUMMary e 48
4. Pipeline Structures for Perfect Shuffle Topology DCT 49
41 BasicProcessingUnits 49
4.2 Basic PermutationUnits, 52
43 Fna Structures 54
44 Case Study: Unified DCTand IDCT 57
441 Algorithmsand Structures 57
4.4.2 Implementation of Direct 8x 8 DCT/IDCT 61
45 SUMMAY o e e 64
5. VariableLengthCoding 67
5.1 Definitionsand Properties., 67

Table of Contents vii

521 SeridDecoders. 71
522 PadlelDecoders. 73
523 Multiple-Symbol Decoders. 78

53 Summary e e 82
Variable Length Decoding Scheme 85
6.1 Algorithm 85
6.1.1 DecodingExample 88

6.2 General Structure 89
6.21 Decoderexample 92

6.3 CriticalPath 93
6.4 SUMMAY e 94
. MPEG-2 Variable Length Decoding 95
7.1 OveviewtoMPEG-2Standard 95
7.2 Decoder Specification. o 96
7.3 HardwareModd 97
731 CodewordDetector 98
7.3.2 Chrominance Format Counter 98

7.3.3 MultiplexedAdd 99
7.34 Memory AddressGenerator 99
735 SymbolFetch. 101
736 EntireDecoder 101

74 Experimental Results 103
7.5 Discussionand Comparison 106
751 ReferenceDecoders 107
752 ComparisonResults 109

7.6 SUMMAYY o e e e e e 111

viii

Table of Contents

8. Conclusions

Bibliography

LIST OF PUBLICATIONS

This Thesis is a monograph which contains some unpublished material. However,
the thesis is based on the work already published during the research studies in the
following international publications. In the text, these publications are referred to as
[P1], [P2], ..., [PT7].

[P1]

[P2]

[P3]

[P4]

[P3]

[P6]

J. Nikara, J. Takala, D. Akopian, J. Astola, and J. Saarinen, “ Sequential archi-
tecture for discrete cosine transform,” in Proceedings of the 18th NORCHIP
Conference, Turku, Finland, Nov. 67 2000, pp. 53-58.

J. Nikara, J. Takala, D. Akopian, and J. Saarinen, “Pipeline architecture for
DCT/IDCT,” in Proceedings of the IEEE International Symposium on Cir-
cuits and Systems, vol. 4, Sydney, Australia, May 6-9 2001, pp. 902-905.

J. Nikaraand J. Takala, “Unified pipeline architecture for in-order 8x8 DCT
and IDCT,” in Proceedings of the 5th World Multiconference in Systemics,
Cybernetics, and Informatics, vol. 4, Orlando, FL, U.S.A., July 22-25 2001,
pp. 30-35.

J. Takala, J. Nikara, and K. Punkka, “Pipeline architecture for two-dimen-
sional discrete cosine transform and its inverse,” in Proceedings of the 9th
IEEE International Conference on Electronics, Circuits and Systems, vol. 3,
Dubrovnik, Croatia, Sept. 15-18 2002, pp. 947 — 950.

J. Nikara, S. Vassiliadis, J. Takala, M. Sima, and P. Liuha, “Parallel multiple-
symbol variable-length decoding,” in Proceedings of the IEEE International
Conference on Computer Design, Freiburg, Germany, Sept. 16-18 2002, pp.
126-131.

J. Nikara, S. Vassliadis, J. Takala, and P. Liuha, “FPGA-based variable
length decoders,” in Proceedings of the IFIP WG 10.5 International Con-

X List of Publications

ference on Very Large Scale Integration of System-on-Chip, Darmstadt, Ger-
many, Dec. 1-3 2003, pp. 437 — 441.

[P7] J. Nikara, S. Vassiliadis, J. Takala, and P. Liuha, “Multiple-symbol parallel
decoding for variable length codes,” to appear in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 12, no. 7, July 2004.

© 0 N oo g b~ O w N P

=
o

11
12
13
14
15
16
17
18
19
20

LIST OF FIGURES

Signal flow graph to compute the DCT viareal parts of the DFT

Signal flow graph of the DCT based on the sparse matrix factorization

Signal flow graph of the DCT based on therotations.
Signal flow graph of the in-place DCT with separated irregularities .
Signal flow graph of the in-place DCT with distributed irregularities

Signal flow graph of the constant geometry DCT algorithm

Signal flow graph of the direct 8 x 8 DCT by utilizing an 8-point DCT

Block diagram of the pipeline structure with double buffering
Block diagram of the fully sequential DCT pipeline
Register-based matrix transpose network by using double buffering .
Block diagrams of the basic switching units
Example of theiterative 8 x 8 matrix transpose
Block diagram of the column parallel 8 x 8 matrix transpose
Block and timing diagrams of the sequential matrix transpose
Block diagram of the 8 x 8 DCT/IDCT with matrix transpose
Block diagram of the fully sequential 8 x 8 direct DCT
Simplification of the interconnection permutation
Signal flow graph of the regular perfect shuffle topology DCT
Signal flow graph of the regular perfect shuffle topology 8 x 8 DCT

Block diagrams of the basic dataprocessingunits

10
11

Xii

List of Figures

21

22

23

24

25

26

27

28

29

30

31

32

33

35
36
37
38
39
40
41
42

43

45

Unified butterfly unit 51
Direct two-dimensional butterflyunit. 52
Block diagrams of the basic data permutation units 53
Sequential matrix transpose network for 2¢ x 2¢ k < 3, matrix ... 54
Pipeline structures for regular perfect shuffletopology DCT 56
Signal flow graphs of the 8-point DCT and IDCT 58
Block diagrams of the 8-point DCT kernels 59
Unified input/output permutation network 60
Block diagrams of the unified two-dimensional DCT/IDCT 61
Block diagram of the verification environment of the DCT/IDCT . . 63
Example of the Huffmancoding 69
Block diagram of the generalized variable length decoding. 71
Variable length decoding as afinite-state machine 72

Direct mapping of the VLD onto demultiplexers and storage locations 73

Block diagram of the parallel constant output rate decoder 74
Block diagram of the loop-free parallel decoder 75
Block diagram of the parallel group-based decoder 77
Block diagram of the variable 1/0 rate multiple-symbol decoder . . 79
Block diagram of the group-based multiple-symbol decoder 80
Block diagram of the 2-symbol decoder with an additional shifter. . 80

Block diagram of the 2-symbol decoder with parallel symbol look-ups 81

Block diagram of the 2-symbol decoder with length prediction . . . 82
Principle of the proposed variable length decoding scheme 90
Block diagram of the generalized codeword detection 90

Block diagram of the 8-to-1 multiplexedaddunit 91

List of Figures Xiii

Principal structure of entire variable length decoder. 92
Block diagram of the MPEG-2 modified codeword detector 98
Block diagrams of the MPEG-2 specificunits 99
Block diagram of the MPEG-2 variable length decoder 102
Throughput of the proposed approach 104

Distribution of symbols over the decoder outputs 105

Xiv List of Figures

N

o 01 b~ W

10

11

LIST OF TABLES

Characteristics of the 8 x 8 DCT/IDCT pipeline implementation . .
Comparison of the8 x 8 DCT/IDCT structures
Gate count estimates for thebasicunits
Comparison of the fully sequential unified DCT/IDCT pipelines . .
Summary of the Huffman codingexample
Variable length decodingexample
Properties of the MPEG-2 benchmark scenes
Memory address generation in the demonstration implementation . .
Experimental results of the MPEG-2 variable length decoder
Characteristics of the MPEG-2 variable length decoder

Comparison of the FPGA-based variable length decoders

XVi List of Tables

ACM

AO

ASIC

ASIP

BU

CCITT

CD

CFC

CLA

CLB

CMOS

cw

DCT

DFT

DHT

DIF

LIST OF ABBREVIATIONS

Association for Computing Machinery
And-Or

Application-Specific Integrated Circuit
Application-Specific Instruction-set Processor
Butterfly Unit

the International Telegraph and Telephone Consultative Commit-
tee

Codeword Detector

Chrominance Format Counter

Carry Look-Ahead

Configurable Logic Block

Complementary Metal Oxide Semiconductor
Codeword

Delay register

Discrete Cosine Transform

Discrete Fourier Transform

Discrete Hartley Transform

Decimation-In-Frequency

XVili List of Abbreviations

DIT Decimation-In-Time

DHT Discrete Hartley Transform

DRU Data Reordering Unit

DSD Delay-Switch-Delay unit

DSP Digital Signal Processor

DWHT Discrete Walsh-Hadamard Transform

EOB End-Of-Block

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

FSM Finite-State Machine

IDCT Inverse Discrete Cosine Transform

IDRU Inverse Data Reordering Unit

IEC International Electrotechnical Commission

|EE the Institution of Electrical Engineers

|EEE the Institute of Electrical and Electronics Engineers

|EICE the Institute of Electronics, Information and Communication En-
gineers

/O [nput/Output

IRE Institute of Radio Engineers

SO International Organization for Standardization

ITU International Telecommunication Union

ITU-T the ITU Telecommunication Standardization Sector

JPEG Joint Photographic Experts Group

XiX

LEU

LIFO

LSB

LSU

LUT

MA

MAG

MPEG

MSB

MT

MVM

PLA

PP

PU

PS

ROM

SEU

Sk

SoC

uBU

L ocal Exchange Unit

L ast-In-First-Out

Least Significant Bit

Local Subtraction Unit
Look-Up Table
Multiplexer

Multiplexed Add

Memory Address Generator
Moving Picture Experts Group
Most Significant Bit

Matrix Transpose
Matrix-Vector Multiplier
Programmable Logic Array
Post-Processor
Post-processing Unit
Perfect Shuffle

Random Access Memory
Read Only Memory

Switch

Shift-Exchange Unit
Symbol Fetch

System on Chip

Unified Butterfly Unit

XX

List of Abbreviations

VHDL

VHSIC

VLC

VLD

VLS

WSES

VHSIC Hardware Description Language
Very High Speed Integrated Circuit
Variable Length Coding

Variable Length Decoding

Very Large Scale Integration

World Scientific and Engineering Academy and Society

LIST OF SYMBOLS

Discrete Cosine Transform

discrete cosine transform matrix of typei of order N
input sequence size

DCT scaling factor of mth output

identity matrix of order N

anti-diagonal identity matrix of order N
permutation matrix of order N

stride-by-R permutation matrix of order N

sample vector

ith sample value

Hadamard permutation matrix of order N
Hadamard permutation function for N-point vector
J permutation matrix of order N

radix-2 butterfly matrix of order N

DCT scaling matrix of order N

DCT coefficient function of order N

Hadamard ordered DCT matrix

local subtraction matrix of order N of sth processing column

XXIi List of Symbols
D DCT coefficient matrix of order N of sth processing column
ALY sth processing column matrix of order N
U output permutation matrix of order N of the sth processing column
V,fls) input permutation matrix of order N of the sth processing column
Un () binary-valued parametrization function to unify representation of
the processing columns
H,Ef) local exchange matrix of order N of the sth processing column
Ti() binary-valued parametrization function to unify representation of
the DCT coefficient matrices
CnxN two-dimensional DCT transform matrix of order N2
P9 output permutation matrix of order N
Kn DCT kernel matrix of order N
P Input permutation matrix of order N
Al sth processing column matrix of order N2
D,(\IS)XN DCT coefficient matrix of order N2 of the sth processing column
PN input permutation matrix of order N?
PS.n output permutation matrix of order N2
Variable L ength Decoding
Sk kth symbol
Pk probability of the symbol s
S set of symbols
H entropy
Ck codeword for the symbol sy

XXiii

Li

Ji

length of the codeword ci

average codeword length

ith code symbol of the codeword cy

set of codeword lengths

minimum codeword length

maximum codeword length

maximum number of codewords with equal length
input data stream

ith input data stream element

sliding window over input data stream

ith data element in the sliding window

index to the first undecoded bit in the input data stream
length of the sliding window

maximum number of the codewords in the sliding window
ith codeword in the sliding window

length of the ith codeword in the sliding window

index to starting location of the ith codeword in the sliding win-
dow

set of possible starting points for the ith codeword in the dliding
window

set of possible starting points for the codewords in the dliding
window

codeword length at position i in the sliding window

index to symbol table for ith codeword in the sliding window

XXIV List of Symbols
T delay of 3-4 AND-OR

tm delay of the multiplexer

tva delay of the multiplexed add

T codeword table parameter

1. INTRODUCTION

In general, advances in technologies alow the implementation of more complex sys-
tems. On the other hand, they also encourage engineers to design complex systems
requiring advanced solutions and technologies. Likewise, the development creates
new markets for several novel systems. Asaresult, the amount of all kind of inform-
ation processing is increasing around us al the time. Consequently, more computa-
tional power—more speed is required in future [24]. However, the cost of design is
the greatest threat to continuation of the semiconductor roadmap [46]. Therefore, the
main issue is to support real-time applications with making, however, the comprom-
Ise between performance and cost.

History has proven the cyclic behaviour between hardware and software implement-
ations of signal processing applications [85]. While an application is implemented
initially on software, itsfirst real-time implementation requires typically application-
specific hardware. Later, the advances in technology make the software implement-
ation again possible. At that time, however, newer and more aggressive algorithms
have been studied, causing the cycle to repeat itself.

The main advantage of software implementations is flexibility; modifications on the
functionality can be realized by re-programming without physical changes on hard-
ware. Therefore, the software implementations are often preferred. On software,
however, there is always some overhead due to instruction fetch, instruction decode,
and perhaps inappropriate instruction set. In addition, different data and processing
rates require buffering of data. All these facts imply either reduced speed, increased
area, or power consumption. Altogether, the software implementation is always a
trade-off between flexibility, speed, area, and power consumption. Despite of the
rapid advances in processor architectures and integrated circuit technologies, there
are always applications requiring higher performance than provided by a state-of-
the-art programmabl e processor at reasonable cost.

2 1. Introduction

In general, higher performance can be achieved by exploiting paralelism. The res-
ulting increased costs are kept reasonable by adding just some application-specific
features, i.e., special instructions or even customized functional units on hardware,
asdonein digital signal processors (DSP). Another approach is application-specific
Instruction-set processors (ASIP), where the instruction-set and hardware are tailored
according to the requirements of the given application. Customization level in ASIPs
varies on three architectural levels depending on the approach: instruction extension,
inclusion or exclusion of predefined blocks, and parametrization of cache sizes, num-
ber of registers, etc. [32]. One actively studied solution nowadays is reconfigurable
computing, which achieves potentially higher performance than software but adopts
a higher level of flexibility than hard-wired hardware. The reconfigurable systems
contain usually a general-purpose processor managing data-dependent control and
possible memory accesses, while the computational tasks are mapped onto the re-
configurable hardware [18]. The extreme level of customization is represented by
application-specific integrated circuits (ASIC) based on standard cell or full custom
design, which are designed to perform only specified computation with very limited
control.

All the previously discussed approaches offer distinct advantages and drawbacks in
applications. Therefore, there is no single ultimate solution suitable for all possible
design cases but they are exploited as combinations. Furthermore, when considering
the hardware design its abstraction level has changed from logic design via standard
cell design to block based design and there seemsto be no sign to end of thistrend—
systems keep on becoming more and more complex. The number of processing units
will increase while the overall gate count for custom logic is decreasing [32]. This
arises a demand for packing know-how into intellectual property (1P) blocks which
may be re-used. This ongoing change introduces two major problems: where to get
the components from, and how to verify that they work together as desired [71].

Although the systems have become more complex, the life cycles of applications
have shortened due to rapid advances in technologies and various applications. This
implieslesstimefor the design and test and thus, emphasizesflexibility for the design
re-use. The flexibility enables covering a wide range of applications. E.g., the struc-
ture with achievable high-speed operation covers high data rate applications but it
can be also exploited as a shared resource in low data rate applications. Simple inter-
faces and control make the structure easy to integrate into larger systems, e.g., asan

1.1. Objective and Scope of Research 3

accelerator in parallel with the DSP, building block of the ASIP, or configurable unit
in a reconfigurable system. In any case, due to the cyclic behaviour between hard-
ware and software implementations, acceleration with application-specific hardware,
and changes in abstraction level and complexity of the design, there is continuous
need for the studies of design and implementation of signal processing functions on
hardware.

The studies in this Thesis consider the development of application-specific paral-
lel structures for the discrete cosine transform (DCT) and variable length decoding
(VLD). The attractiveness of the DCT is based on its predominant use in transform
coding [86]. It has been applied actively to data compression applications, e.g., in
speech, image, and video coding. It can be exploited in filtering and subsequently,
in transmultiplexer systems based on filter banks asin [116]. Other applications that
involve the DCT are, e.g., data analysis, classification, and pattern recognition [86].
Variable length coding (VLC) and subsequently the VLD have been utilized either
alone for data compression or as a part of compression application, e.g., for text,
speech, image and video compression. Since both the DCT and VLD have an essen-
tial role in image and video coding [31, 74, 94] they have been adopted as a part of
various current standards, e.g., JPEG [42, 44], MPEG-1 [41], and MPEG-2 [43,45].
Although the real-time applications based on the previous standards can nowadays
be implemented on software, the performance is a serious bottleneck in some applic-
ations, e.g., in multichannel coding, transcoders, video servers, and related profes-
sional applications processing multiple video streams.

1.1 Objective and Scope of Research

The general objective of this Thesis is to develop area-efficient realizations of di-
gital signal processing functions. Software implementations introduce overhead and
typically instruction level parallelism is limited implying lower utilization of arith-
metic resources. Furthermore, data memory bandwidth is often a serious bottleneck
in high datarate applications. Therefore, inthis Thesis, only application-specific par-
ale structures are considered. The structures are developed in such a way that the
throughput can be tailored according to the input data rate of an application. Further-
more, the aim isto create general methodology to construct modular structures from
the given algorithms. In general, modularity is considered to describe the granularity
of the algorithm or structure.

4 1. Introduction

In this Thesis, two types of systems are considered: constant and variable output rate
systems. Constant output rate systems are illustrated with the computation of the
discrete cosine transform. In general, the DCT algorithms possess irregul arity, which
restricts the area-efficient exploitation of inherent parallelism. Regularity defines
the similarities in nodes and interconnections. Therefore, the objective is to derive
the regular fast algorithm for the DCT. Regularity allows the utilization of linear
mapping methods [84] for reducing the dimensionality of the problem and mapping
the agorithm onto a parallel structure. Furthermore, since the data is often in a
sequential form, another objective is to develop a single rate system, i.e., data rate
eguals to clock rate.

In this Thesis, the variable output rate systems are exemplified with variable length
decoding. The major design problem is to break the recursive data dependencies
in input data, which complicate substantially the design of parallel variable length
decoder. Therefore, the objective is to develop a multiple-symbol VLD scheme and
parallel structure that will at least partially break the recursive dependency related to
the VLD.

1.2 Main Contributions

In this Thesis, the high-performance computational platforms are developed by mak-
ing use of inherent parallelism of the given applications. In the first application,
discrete cosine transform, the temporal paralelism is utilized while in the second
application, variable length decoding, spatial parallelism is exploited. The resulting
hardware structures are modular lending themselves to very large scale integration
(VLSI) implementations. To summarize, the main contributions are the following:

e Up-to-date survey of related work in respect of the pipeline computation of the
discrete cosine transform and multiple-symbol variable length decoding, which
provides motivation and bases for the work presented in this Thesis.

e Novel regular fast algorithms for the one- and two-dimensional discrete cosine
transforms, which do not reach the lower bound on arithmetic complexity but
the regularity alows efficient utilization of temporal parallelism.

e New modular pipeline structures for computing the discrete cosine transform,
which can be extended to support larger transform sizes by replicating the basic
processing units.

1.2. Main Contributions 5

So far the most area-efficient unified pipeline structure supporting both the
8 x 8 discrete cosine transform and itsinverse.

e Demonstration implementation of the unified structure supporting both the
8 x 8 discrete cosine transform and its inverse, which is synthesized onto a
standard cell CMOS technol ogy.

e Novel variable length decoding scheme for decoding multiple symbolsin par-
allel.

e New multiplexed add unit solution, which reduces the number of logic levels
in the critical path of the codeword detection in variable length decoder.

e Demonstration implementation of MPEG-2 variable length decoder, which is
synthesized onto an FPGA technol ogy.

1.2.1 Author’s Contribution

Let usfirst consider the studies of DCT. The derivation of the fast DCT algorithmsis
continuation for the algorithm development reported earlier, e.g., in [2,5, 104, 105].
Author rescheduled the constant geometry algorithm and found possibilitiesto optim-
ize interconnections for minimizing the area of permutations in pipeline structures.
The author had an essential rolein deriving and formalizing the regular perfect shuffle
topology algorithms. The development of computational structuresfor the derived al-
gorithms was done by the author. In addition, the author has supervised the analysis
of word length requirements, modeling, and synthesis of the structure.

The author was responsible for the deriving and verifying the multiple-symbol vari-
able length decoding scheme. The author was also responsible for developing the
structure, aswell as applying the scheme for MPEG-2 variable length decoding. Fur-
thermore, the author analyzed the pre-processed MPEG-2 data streams and analyzed
the performance of the proposed decoder with different design parameters.

The work reported in this Thesis has been reported earlier in seven publications [P1-
P7] and in six of them, the author has been the main author. Consequently, some
chapters contain verbatim extracts from the publications. With respect to the extracts,
copyrights are retained by the respective copyright holders.

6 1. Introduction

The co-authors of the publications [P1-P7] have seen this clarification and agree with
the author. In addition, none of the publications have been used in another person’'s
academic thesis or dissertation.

1.3 ThesisOutline

The first three chapters cover the studies on discrete cosine transform. In Chapter 2,
an introduction to the DCT and the related work is given in order to provide back-
ground and motivation for work reported ensuing two chapters. Starting with the
definitions and properties of the DCT the discussion continues with a glance at some
popular algorithms and implementations close to pipeline structures. The chapter
Is concluded with a short summary. Subsequently, the derivation of the novel reg-
ular fast algorithms for the one- and two-dimensional DCT is studied in Chapter 3.
After providing the preliminariesfor the derivation, the formulation of the algorithms,
which are exploited and partially reported earlier in [P1 — P4], is described in details.
Chapter 4 coversthe derivation of the new pipeline structuresfor the DCT, IDCT, and
both the transforms, which are published earlier in [P1 — P4]. First, the operational
columns in the algorithms are mapped vertically onto basic units which are then cas-
caded to construct the pipelines. The chapter is concluded with a case study on the
unified 8 x 8 DCT/IDCT implementation and comparative discussion.

Then, the topic of the discussion is changed to variable length decoding on hardware
in Chapter 5. Before going into the details of decoding, the variable length coding
is studied briefly. Subsequently, the related work of the decodersis outlined in order
to have basis for the further research of the VLD. Next, in Chapter 6, anovel VLD
scheme is described, which has been proposed for the first time in [P5] and studied
more carefully in [P7]. Furthermore, the structure of the decoder is presented before
discussion on the performance in general. In Chapter 7, the presented VLD scheme
and structure are applied to MPEG-2 video coding standard, which has been repor-
ted earlier in [P7]. First, the standard is outlined briefly in order to understand the
fundamentals that affect to decoder design. Before modeling the structure, the spe-
cifications are determined according to the statistics of the benchmark scenes. Then,
the performance of the resulting decoder is analyzed with different design paramet-
ers. The chapter is concluded with the comparison and the discussion on related
problems reported in [P6]. Finally, Chapter 8 concludes Thesis.

2. DISCRETE COSINE TRANSFORM

By applying appropriate transforms, the complexity of a mathematical problem may
be reduced, e.g., differential and integral equations may be replaced with the easier
algebraic ones [86]. Representing a waveform having relatively complex variations
in asignal amplitude with a sum of the oscillatory cosine function is called a cosine
transform. When the waveform and cosine functions are sasmpled at certain intervals,
the transform becomes a discrete cosine transform [74]. The DCT has been con-
sidered one of the best tools in digital signal processing and therefore, it has many
applications, e.g., in the area of multimedia and telecommunications. Especialy, in
Image and video coding it has been employed as the main tool for data compression.

Traditionally the objective in the development of fast algorithmsin thefield of digital
signal processing has been the minimization of arithmetic complexity, i.e., the num-
ber of arithmetic operations and especially the number of multiplications. However,
in hardware realizations, the number of arithmetic units depends on mapping meth-
ods, thus there are aso other properties in the algorithms reflecting on the cost of a
specific implementation. Especially, when targeting at structures consisting of cas-
caded processing units, there are specific properties, which make certain algorithms
efficient for implementations.

In this chapter, an introduction to the DCT and the related work is given in order to
provide background and motivation for our work. Rao and Yip’'s book [86] gives a
good baseline for the discussion but thereafter several algorithms and structures have
been reported. However, without taking restricted publication-specific comparisons
into account extensive up-to-date surveys are missing. In addition, our objective is
to develop a cascaded structure, which, in genera, is referred to as a pipeline. The
principal ideaisto reducethe dimensionality of the signal flow graph of the algorithm
by applying vertical mapping, i.e., the two-dimensional signal flow graph is collapsed
or folded into a one-dimensional data path. Consequently, each processing columnis

8 2. Discrete Cosine Transform

to be mapped onto a single processing unit. Therefore, in the following survey, some
popular fast algorithms are introduced and their suitability for pipeline computations
are discussed. Similarly, some DCT implementations close to pipeline structures are
briefly outlined.

2.1 Definitions and Properties

The orthogonal DCT isclassified into four different types. DCT of typel, I, I11, and
IV of which transform matrices are defined as [118]

27 mnT

Clisa] . = N—pmmﬂms(—ﬁ—)],nLn::Q1P.WN 1)
[m(n+ 3

cl] = %-mmw<—L%£E mn=01..N-1 (2
: 1 "

Ch' T = % an05<(+N2> :] mn=01...N-1 (3

" 2 [(m+H(n+Hn
CN]m = /7y |08 N , mn=0,1,....N-1 (4

where by, isascaling factor defined as

V2 . (5)

o L ifm=0orm=N
"1 1 ,ifm#£0andm=#N

The DCT of type | (DCT-I) was introduced by Wang and Hunt in [120]. The first
definitions of the DCT and itsinverse, which according to previous classification are
known as the DCT of type Il (DCT-II) and DCT of type Il1l (DCT-111), respectively,
were given by Ahmed et al. in[1]. The DCT of type IV (DCT-1V) wasintroduced by
Jainin [47].

Let us next summarize the main properties of the DCT matrices given in (1)—4).
Since the DCT matrices are orthogonal the inverse transform matrices are obtained
with amatrix transpose. In addition, the DCT-I and DCT-1V matrices are symmetric
which means that the inverse transform is the transform itself. On the contrary, the
DCT-Il and DCT-II1 are transposes for each others. These relations can be formulated

2.2. One-Dimensional Fast Algorithms 9

[Cll\l+l} o - [Cl|\|+1}T = C,'\|+1, [CII\H - = [Cll\HT = Cll\}la
el =[N =cll, cV] = eV =cl. (6)

From the multidimensional point of view, an essential property is separability which
allows the decomposition of the multidimensional transform into successive one-
dimensional transforms. [86]

In image and video processing, especialy the two-dimensional DCT-1I and its in-
verse, i.e.,, DCT-II1, have gained popularity due to good energy compaction proper-
ties. The computation of the DCT-Il asamatrix product iscomputationally expensive
thus several fast algorithms for the DCT-I1 have been suggested over the years. Be-
fore taking an overview into the fast DCT-II algorithms and their properties, let us
note that in this Thesis, we concentrate only on the DCT-11 and DCT-III. Therefore,
from now on, the DCT and itsinverse refer to DCT-Il and DCT-I11, respectively.

2.2 One-Dimensional Fast Algorithms

The DCT can be computed via other discrete trigonometric transforms, e.g., dis-
crete Fourier transform (DFT), discrete Walsh-Hadamard transform (DWHT) and
discrete Hartley transforms (DHT) [70, 113, 115]. However, such approaches result
in additional computational complexity. The fast agorithms with lower arithmetic
complexity can be obtained by considering the direct factorization of the DCT mat-
rix. When the factorization results in sparse component factors, the decomposition
represents a direct fast algorithm for the DCT. Since the matrix factorization is not
unique, the different types of the fast algorithms can be derived. Some of the pro-
posed fast algorithms derived with the matrix factorization can be categorized into
decimation-in-time or decimation-in-frequency algorithmsasin [126, 127].

In the following, some fast algorithms are described. First, well-known pioneer al-
gorithms are introduced, which have advantages in some realizations but introduce
critical drawbacks when targeting at the area-efficient pipeline computation at data
rate. In such cases, regularity in particular is a beneficial property. Therefore, a
viewpoint is focused on regular algorithms, which represents novelty in the survey.

10 2. Discrete Cosine Transform

0,=0.707106718 0,=0.541169100 05,=0.707106718
014=1.306562963 05=0.382683432

Fig. 1. Signal flow graph to compute the DCT via real parts of the DFT [3].

2.2.1 Well-Known Pioneer Algorithms

The natural basis for developing the fast algorithms for the DCT is its relation to
a discrete Fourier transform (DFT). In addition to introducing the discrete cosine
transform, Ahmed et al. in [1] suggested the computation of the DCT by using one
doublelength fast Fourier transform (FFT). In[28], Haralick accel erated computation
by taking two N-point FFTsinstead one double length FFT. Tseng and Miller in[111]
proved, however, that the DCT can be computed more efficiently with the aid of
one double length modified FFT and especially exploiting only its real parts. As an
example, asignal flow graph to compute the scaled DCT viareal parts of the 16-point
DFT as proposed by Arai et al. in[3] isillustrated in Fig. 1. In any case, the relation
between the FFT and DCT can be utilized in various different ways as described, e.g.,
in[69,79,115].

The first fast DCT agorithm based on the sparse matrix factorization of the DCT
matrix has been reported by Chen et al. in[11] and Wang in [117]. Since the presen-
ted factorization of the algorithm consists of a matrix which cannot be recursively
factorized, the factorization is only partially recursive. However, the non-recursive
matrix possesses some regularity; it can be decomposed into the product of sparse
matrices, which are of five distinct types, all having at most two non-zero elements
in each row [86]. The resulting signal flow graph of the 8-point DCT algorithm is
illustrated in Fig. 2.

2.2. One-Dimensional Fast Algorithms 11

A -
RS
\\V//nv& -

N2]
. PR

) o B
. II\M“X .
[%o/

=

N

>
w

N

S7/16

X7 >+ d + @ — X3
Ci=cosizn Si=snir

Fig. 2. Signal flow graph of the DCT based on the sparse matrix factorization [11].

Loeffler et al. in[67] presented aclass of the 8-point DCT algorithms based on planar
rotations. The algorithms require only 11 multiplications, which is shown to be the
theoretical minimum number of the multiplications for the 8-point transform [22].
The number of the multiplications is decreased from the traditional approaches by
Interpreting the multiplications as rotations, which can be performed with three mul-
tiplications and three additions by introducing two new coefficients instead of four
multiplications and two additions. For example, consider the following formula-
tion [67]

Yo= a-Xo+b-xgy = (b—a)-xg+a-(Xo+X1)
yi= —b-xo+a-x3y = —(a+b)-xo+a-(Xo+x1). (7)

An example of Loeffler's 8-point DCT algorithm is depicted in Fig. 3. The 8-point
algorithm can be extended in arecursive way to support larger transform sizes but the
resulting algorithms do not reach anymore the theoretical lower bound on the number
of the multiplications.

12 2. Discrete Cosine Transform

Xo= ke[Yo=Xgk COS("TU/2N)+x k- SIn(7/2N)
X171 > Y1 =-Xgk-sin(NT/2N)+x 4 -k-cos(NT/2N)

Fig. 3. Signal flow graph of the DCT based on the rotations [67].

2.2.2 Regular Algorithms

In general, the fast algorithms for the DCT do not possess the regularity found, e.g.,
in Cooley-Tukey FFT algorithms. For example, the previously discussed fast DCT
algorithms, Chen’s sparse matrix factorization and L oeffler’s algorithm reaching the
theoretical lower bound on the number of multiplications with planar rotations, do
not result in area-efficient pipeline structures due to their high control complexity. In
addition, the algorithms consist of the variable number of operations at operational
columns implying that the resulting pipeline structure would be a multirate system,
I.e., the pipeline would require a higher clock rate than a sample rate. Nevertheless,
some regular fast algorithmsfor the computation of the DCT have been reported over
the years.

In-Place Algorithms

One category of the regular fast DCT algorithms is well-known in-place algorithms
where the computations can be performed in-place, i.e., the results of intermediate
computations can be stored into the same locations as the operands. Consequently,
the in-place algorithms lend themselves especially to software implementations due
to efficient memory utilization. However, these algorithms have also good properties
for vertical mapping due to simple and regular processing columns.

2.2. One-Dimensional Fast Algorithms 13

OO L S <O L
AN a0 N Vb
/o DG i P

Ci =1/ (2cos i)

Fig. 4. Signal flow graph of the in-place DCT with separated irregularities [34].

The basis for the derivation of the first reported in-place algorithms is the reorder-
ing of the input sequence into even and odd indices as proposed earlier in [79]. In
addition, Lee in [56] reordered both halves in bit-reversed order when considering
the matrix factorization of the IDCT matrix. With the aid of this rearrangement, the
N-point IDCT has been decomposed into a sum of two N /2-point IDCTs. The trans-
form size can be further reduced by repeating the decomposition. The procedure
results in a simple structure with recursive modularity improving the regularity but
the drawback is the secant coefficients introducing round off errors with finite word
length.

In [19], Cvetkovi€ and Popovic derived an in-place DCT agorithm which does not
require the additional bit-reversed permutation of the input halves. Instead, the out-
put of the algorithmillustrated in Fig. 4 isin bit-reversed order. The same algorithm
and the matrix decomposition of the algorithm with the output in natural order have
been reported by Hsiao et al. in[34]. In order to avoid round off problems with the
coefficients of secants, Hou in [33] proposed an in-place algorithm with pure sine or
cosine coefficients. However, the approach results in additional multiplications by
two. By using the different derivation technique, Lee and Huang in [57] entered cor-
responding in-place algorithm with a perfect shuffle output permutation [102] which
will be defined in Section 3.1.

In al the in-place algorithms discussed so far, the computations are performed with
a kernel of real-valued radix-2 butterfly operations and a separate post-processing
stage, or alternatively a pre-processing stage, containing all the DCT-related irregular

14 2. Discrete Cosine Transform

AN
6 ANV
M‘ w

d,=/0.5 d2I J0. 5(1+d) dsi,1=70.5(1-d;)
Fig. 5. Signal flow graph of the in-place DCT with distributed irregularities [119].

additions and permutations. Instead, the separate pre- or post-processing is avoided
in a regular in-place algorithm proposed by Wang in [119] where irregularities are
distributed between the butterfly columns asillustrated in Fig. 5. The matrix factoriz-
ation is based on the successive order reduction of the Hadamard ordered DCT mat-
rix. The algorithm can be characterized as simple as the previous in-place algorithms
and its coefficients are pure cosines, which can be generated with the recursive equa-
tions depicted below the signal flow graph in Fig. 5. Theinput sequence is Hadamard
ordered, which will be defined in Section 3.1, and the output is obtained in natural
order.

Constant Geometry Algorithms

Another category of the regular fast DCT algorithmsis constant geometry algorithms
where the interconnection topology and geometry between the computation columns
arethe same, i.e., constant. The constant geometry algorithms have been used in soft-
ware implementations where sequential data access and storage are required. In ad-
dition, the constant geometry algorithms lend themselves to VLS| implementations.
Full-column and partial-column structures are typically based on such algorithms. In
these structures, the computations are performed iteratively one column of the signal
flow graph or part of the column at atime.

A constant geometry algorithm based on Wang's in-place algorithm with the distrib-
uted irregularities has been presented by Takala et al. in [5,105]. The derivation

2.2. One-Dimensional Fast Algorithms 15

d,=/05 dy=J/05(1+dy) A= /O.5(1-0)

Fig. 6. Signal flow graph of the constant geometry DCT algorithm [105].

Is based on a method to localize irregularities into block matrices of order four as
proposed in [5]. Therefore, the achieved constant geometry algorithm illustrated in
Fig. 6 can be interpreted to be a rescheduled version of the in-place algorithm in
Fig. 5. The corresponding derivative constant geometry algorithm of Hou's in-place
algorithm in [33] has been presented by Kwak and You in [55]. In this algorithm,
a computational kernel is performed with consecutive stages of the radix-2 butter-
fly operations and all the irregularities have been separated into a post-processing
column containing only additions.

In general, the post-processing is adisadvantage in unified pipelinerealizations, when
both forward and inverse transforms need to be supported. The post-processing in
the forward transform maps as a pre-processing in the inverse transform, thus in the
unified approach both pre- and post-processing need to be realized implying addi-
tional hardware cost. In Wang's in-place algorithm in [119], the irregular additions
are local, thus they map in similar fashion in forward and inverse transforms. On
the other hand, the representation of the algorithm contains anti-diagonal matrices,
which imply complex data permutations requiring large data storage in VLS| im-
plementations. Such problems are avoided in Takala's constant geometry algorithm
in [105]. The drawback isthat the interconnections between the operation columnsin
an N-point algorithm are N-point permutations implying higher area cost in pipeline
structure.

16 2. Discrete Cosine Transform

2.3 Two-Dimensional Algorithms

The previous discussion on the categorization and features of the one-dimensional
DCT algorithms applies also to two-dimensional DCT algorithms, which can be de-
rived by using either a row-column decomposition or a direct computation. The row-
column decomposition exploits the separability property of the DCT, i.e, the two-
dimensional transform is computed by performing the one-dimensional DCT first
over the rows and then over the columns or vice versa. On the contrary, the direct
computation produces the result of the two-dimensional transform at once, i.e., the
algorithms operates directly over the two-dimensional data set. In other words, the
dimensions are not separated and, therefore, the computation of the one-dimensional
transforms over the rows and columns cannot be identified from the direct two-
dimensiona transform. Let us remark, that the direct two-dimensional algorithm
can be, however, derived with the aid of the one-dimensional transform as will be
done later in this Thesis.

The direct two-dimensional algorithms are based on the same derivation approaches
as the one-dimensional algorithms. Without going into details but outlining the de-
velopment of the algorithms, the relation between the DFT and DCT has been ex-
ploited, e.g., by Makhoul in [69] and Vetterli in [114]. From the authors mentioned
previously when considering the one-dimensional DCT algorithms, Lee and Huang
in[57], Kwak and You in[55], and Hsiao et al. in [35] have extended their approaches
to support also the direct two-dimensional computation. Kamangar and Rao in [51]
presented non-recursive aswell asrecursive algorithmsfor the two-dimensional DCT,
which have been derived with an approach very similar to Chen’s approach to derive
the one-dimensional DCT in [11]. In[27], Hague presented the two-dimensional ex-
tension of Lee's algorithm in [56]. Correspondingly, Hou's one-dimensional DCT
algorithm in [33] has been extended to two-dimensional DCT by Chan and Ho in [7]
and Wu and Paoloni in [124].

In [13-15], Cho et al. presented an approach to compute the two-dimensional DCT
algorithm by exploiting the one-dimensiona algorithm but, however, operating dir-
ectly over the two-dimensional dataset . In addition to any available one-dimensional
algorithm only permutations, pre-, and post-additions are required as illustrated in
Fig. 7. The presented approach introduces systematic expressions for the algorithms
and in that sense, it can be considered to possess some regularity. Furthermore, the

2.3. Two-Dimensional Algorithms

) 2 5 B
I ® o o
& poin | 2 o
A e - Yo
\\\\\\ / / / / /fr; j; Ye0
M I S Y10
X b v
PRI 2 o ST
NN 8-point W/ \g el Y74
N Wy o "
! /g \’Q mm Y14
M \’;f \.51/2 Y24
\g @ /_':;jjz Y36
SRR s 0
= RN sk
RN p T
© /f’; \('D%VSZ
: 5 /,\?1/2 Y22
% N
&.pcit il ks Bl ey
o /I o oy
i i % &2y,
/i ?’tﬂj J\‘; /J Yoe
/ _\g _J% /\'.‘@1/2 Y16
. b~
s /ﬁ ﬁ \.‘Gﬂz Y77
8-point ® ® @2 yer
N [/ o2
DCT 0 727 /=T
/i; f; {‘\,;1/2 Y37
/’; Q\]ﬁ /: vz Yo7
»« il W VA <7
AN o M \J IE 2.y
e LIS 8-point Sl X e\ TR
lllA\\‘o DCT é s // / O *1/2 Y51
w . oy
b, - T
)) : o e
8-point % & *;jz Va3
ber ol % 0%y
e 5 VAT oo
L) . Yo
/’\J 4\,@ *1/2 Y75
o) / // \\ {\4\ D2 Ye1
" O — v
N/ T/ vz, e
Yo 4| % 12,y
:Z [?’S Yos

Fig. 7. Signal flow graph of the direct 8 x 8 DCT by utilizing an 8-point DCT [13].

18 2. Discrete Cosine Transform

approach results in the optimal two-dimensional algorithm from the multiplicative
complexity theory point of view when Loeffler’'s DCT algorithm in [67] is used to
compute the 8-point DCT [123]. Nevertheless, the resulting algorithm do not possess
regularity that would be advantageous when mapping onto hardware. The represent-
ation of the post-additionsin the algorithm contains anti-diagonal matrices requiring
the complex data permutations and large data storage.

In general, the direct computation is considered to produce algorithms with a lower
arithmetic complexity and especially with the lower number of multiplications than
the row-column decomposition. Typically the control complexity of algorithms de-
rived with the row-column decomposition is lower implying regularity and modu-
larity. Since these properties are preferred especialy in VLS| implementations, the
row-column decomposition has gained popularity in hardware realizations. It isalso
possible to obtain regular and modular algorithms with the direct computation but at
the expense of arithmetic complexity. However, modularity and regularity may be
the key properties to efficient implementations.

2.4 Hardware Structures

The main objectives in realizing the algorithms is to achieve required system per-
formance with minimum cost. In general, the direct implementation or so called
one-to-one mapping of the algorithm leads to an expensive redlization. Therefore,
the mapping methods described, e.g., in [84,87,92] can be utilized for reducing the
dimensionality of asignal flow graph in different directions; horizontal, vertical, or
in both directions. In principle, the exploitation of spatial paralelism, i.e., horizontal
mapping, resultsin a column structure where the computations are performed recurs-
ively on parallel data, i.e., nodes at a single processing stage are computed at atime.
In such astructure, the throughput islimited by the delay of the basic arithmetic units
used to realize the nodes. The exploitation of temporal parallelism with the aid of
vertical mapping, inturn, resultsin sequential structures, where the computations are
performed over datain sequential form and the overall structure can be considered as
apipeline. In such astructure, the throughput can be tailored with additional pipeline
registers if the data dependencies, i.e., the feedback loops in the structure, can be
avoided. In addition, datais often in sequential form, thus structures operating over
sequential data are advantageous. In the following, computational structuresfor such
adataformat are described.

2.4. Hardware Structures 19

Lo
B

A
A
— 77
I W

LN N

O|0|0[0|0|0[0|T

O|0|0[|0|0|0[0|T
| I

T T

O |0|0(0|0|0[g|T
O|0|0(0|0|0(g|T
O|0|0(0|0|0[g|T
O|0|0(0|0|0(0|C
O|0|0[0|0|0[0|T
O|0|0(0|0|0(0|C

o

Fig. 8. Block diagram of the pipeline structure with double buffering [54]. D: Delay register.
Control logic is omitted for clarity.

O[0|0|0|0|0(g|0|T
O[0|0|0|0|0[0|0|T
O[0|0|0|0|0(g|0|T
O[0|0|0|0|0[g|0|T

K

24.1 One-Dimensional Structures

In [54], Kovat and Ranganathan presented a six-stage pipeline structure based on
the modified Arai’s DCT algorithm in Fig. 1. With the aid of the modifications the
number of subtractions has been decreased but they do not affect the structure, i.e.,
Arai’s original algorithm could be mapped onto the same structure. In any case, the
resulting pipeline structureisillustrated in Fig. 8. Each operational column in the al-
gorithm has been mapped onto a corresponding stagein the pipeline. The operational
stages are separated with register-based doubl e buffering stages. 1n other words, aleft
column of the registersisfirst filled and then copied onto aright column for compu-
tation. During the computation over the values in the right register column the left
column isrefilled. Altogether, the structure requires high number of register and in-
troduces complicated control. Let us remark that the control and selection resources
are not included into the figure.

The irregularities in the DCT algorithms restrict the exploitation of the linear map-
ping methods. Hence the structures based on Chen's fast DCT agorithm [11, 117]
have been fully parallel and consequently expensive. The reduction in the amount of
hardware has been achieved by using advanced circuit techniques and optimizations
that are very close to technology and, in general, time demanding. E.g., in [112],
Uramoto et al. have exploited multiplier accumulators based on distributed arith-
metic in order to have critical path of adders instead of multipliers. For minimizing
the routing area and its parasitics, a column-interleaved memory structure has been
employed. In addition, the number of memory cells has been halved with the aid
of dual-plane feature and dual-port configuration. Correspondingly, Matsui et al.
in [72] achieved improvements in chip area and speed by introducing and applying

20 2. Discrete Cosine Transform

a sense-amplifying pipeline flip-flop circuit technique. Instead of the conventional
synchronous design style, an asynchronous DCT processor has been presented by
Johnson et al. in [50].

The linear mapping methods can be efficiently applied to the regular fast DCT al-
gorithms although the irregularities may limit the exploitation of the paralelism or
decrease the utilization rate of resources. In principle, applying the vertical mapping
to thein-place algorithms correspondsto serializing the computation. Thelevel of the
mapping can be varied to have different level of paralelism. E.g., Chengetal. in[12]
have mapped the in-place algorithm with regular butterfly kernel and post-processing
stage managing the irregularities only half. Instead in [110], Tan et al. have applied
vertical mapping to Hou's algorithm [33] in order to have fully sequentia structure
for sequentially represented data. The relation between the DCT and DFT can also be
utilized in the structural derivation. E.g., in [108], Takalaet al. have mapped Wang's
in-place DCT agorithm with the distributed irregularities [119] onto a pipeline struc-
ture by using an efficient mapping technique, which has been proposed earlier by
Groginsky and Worksin [26].

In[34], Hsiao et al. mapped their DCT a gorithm efficiently onto a pipeline structure
depicted in Fig. 9. The structure has single input and output interface and each com-
putational stage has been mapped vertically onto a corresponding unit, i.e., butterfly
stages onto processing elements BU,4, BU,, and BU; with single arithmetic unit, mul-
tiplications onto multipliers and post-processing stages onto post-processors PP; and
PP,. With such an arrangement, the amount of hardware is minimized. In addition,
the required throughput rate can be achieved with the aid of additional pipelining,
since the structure does not consist of feedback paths. Furthermore, due to regularity
the structure is comparable easy to extend to support larger transform sizes.

The vertical mapping can also be applied to the constant geometry algorithmsin [55,
105] in order to select an optimal level of parallelism with respect to performance
requirements and resources. On the other hand, the constant interconnections may
increase the hardware cost in pipeline structures when the constant interconnection
network is repeated between every stage. Instead, the constant interconnections are,
In principle, advantageous for horizontal mapping. However, the pure column struc-
tures for computing the DCT are rare due to irregularities in the fast agorithms but
the principal concept can befound, e.g., in[48,105]. Likewise, the applying mapping
in both directions, i.e., multiprojection, has not been reported when considered only
the DCT structures.

2.4. Hardware Structures 21

Fig. 9. Block diagram of the fully sequential DCT pipeline [34]: (a) radix-2 butterfly unit
having operands K samples apart (BUk), (b) post-processor 1 (PP1), and (c) post-
processor 2 (PP2), and (d) entire pipeline structure. KD: Shift register of size K.
Clock and control signals are omitted for clarity.

2.4.2 Two-Dimensional Structures with Matrix Transpose

In the two-dimensional transforms based on the row-column decomposition, large
silicon area may be consumed into the realization of the matrix transpose. The most
straightforward realization of the matrix transpose is to exploit double buffering ac-
cording to the direct interpretation of the transpose, i.e., rows in, columns out. The
implementation can be memory-based as in [50, 112] or register-based as in [54].
The realization based on the double buffering is, however, expensive; 2N?2 storage
locations are needed for an N x N matrix transpose as illustrated with the aid of a
register-based transpose network in Fig. 10. Furthermore, latency is increased since
al the samples must be stored before reading. If the N x N transpose is to be per-
formed with N2 memory locations like in [68], either dual-port memory or higher
write/read-rate is needed since the datais in sequential form, i.e., when anew sample
Is written in, a transposed sample need to be read out. This implies higher cost for
memory-based transpose units.

In the advanced register-based transpose networks, two principal switching units, i.e.,
a 2-port delay-switch-delay unit (DSD) and 1-port shift-exchange unit (SEU) intro-
duced in [98], are exploited to perform the reordering of the data elements. In prin-
ciple, the delay-switch-delay unit of size K (DSD) depicted in Fig. 11(a) exchanges
the first K data elements entering to the lower port with the K elements entering to
the upper port. Correspondingly, the shift-exchange unit of size K (SEU) illustrated
inFig. 11(b) is capable of exchanging elementsin aserial sequence K elements apart.
The latencies of these units depend on the size of the shift registers; the latency of
DSDk or SEUk isK cycles.

22 2. Discrete Cosine Transform

D DO D D D D D D
Bl DR "Dl MDDl POl Dl Dk
0 O D DO D b b D)
BBl DR~ DR Dl Dk PBh-—Dk
0 D D D D b b D)
Bl DR "Dl POl "Dl POl Dl Dk
0 D D D D Db D D)
“{Dh {D 1B POk D Dk Dl 10k
0 O D DO D b b D)
DR~ POl POl DR DDl Dl Pk
o o B b B D D D)
Bl DR "Dl MDDl MDDl Dk
0 D D D D b b D)
[DR-PDL-Dl- "D DR DH-Dl- D
L)/ Ry R

Fig. 10. Register-based matrix transpose network by using double buffering [54].

In [98], Shung et al. proposed a sequential permutation network which can be used
to perform any arbitrary permutation over sequentially represented data. In general,
the arbitrary permutations of an N-point sequence, N = 2, can be realized as the
sequential permutation network of the cascaded SEUs arranged in increasing and
decreasing order: SEUx, SEUo1, ..., SEUx 1, ..., SEUx, SEU. Such arealization
requires |less registers than the conventional double buffering approach but still more
than the original data.

In [6], Carlach et al. proposed an iterative method for an 8 x 8 matrix transpose,
which has been generalized for an N x N,N = 2%, matrix by Takala et al. in [109].
In principle, the entire N x N matrix is divided into (N /2)? submatrices of order

K del

ays

Ty
Helks
2R /

; '_\

Fig. 11. Block diagrams of the basic switching units: (a) delay-switch-delay unit of size K
(DSDk) and (b) shift-exchange unit of size K (SEUk). S: Switch. c¢: Control signal.
Clk: Clock signal.

2.4. Hardware Structures 23

01,2 3,4 5,6 7 0
1

S
5 B
N B
S
B BB K
03

@ 8

&
=
&
&
9
8 & R

)
q]
a1
&
)
o

b) L

41 49 57

N O o~ W N PO

IR AENS

B RS

8 B8 B

8 9

5 & R &

g g &

B 2883

&
N
0
8
5
&
3

C) d) L J

Fig. 12. Example of the iterative 8 x 8 matrix transpose: (a) the first iteration, (b) the second
iteration, (c) the third iteration, and (d) the transposed matrix.

two and each submatrix is transposed. The resulting N x N matrix is then divided
into submatrices of order four which are transposed as 2-by-2 matrices of 2-by-2
blocks. This operation is iterated until the entire N x N matrix is divided into four
N /2 x N /2 submatrices and the resulting 2-by-2 block matrix is transposed in order
to have finally the transposed matrix. The described method isillustrated with the aid
of an 8 x 8 matrix in Fig. 12, and the resulting column parallel 8 x 8 matrix transpose
unit proposed by Carlach et al. in[6] isdepicted in Fig. 13.

In general, the previously described iterative method for the matrix transpose of an
N x N,N = 2%, matrix requires k steps. At each step, the transpose is performed
within 2-by-2 blocks. Thisimpliesthat the distance of data elementsto be exchanged
at asingle step is constant. Therefore, the corresponding structure can be construc-
ted by cascading the SEUs in increasing order of size: SEUy_1, SEUyn_y), -,
SEU (n/2)(n—1) @s reported by Takala et al. in [108,109]. The latency of the result-
ing generalized sequential matrix transpose network is $¥°3(2')(N — 1) = (N — 1)?

24 2. Discrete Cosine Transform

»_|

»_|

»_|

n_|

Lo llwonllon |Lon]

Lo llonllon |Lon |

cERCENCERCE

Fig. 13. Block diagram of the column parallel matrix transpose [6].

cycles, which equals to the maximum distance of single data element to be moved
inthe N x N matrix transpose in a vector form. The sequential 8 x 8 matrix trans-
pose network isillustrated in Fig. 14. Let us remark that the diagram in the figure
illustrates only the functionality, not the timing.

Although any one-dimensional structure can be exploited for the two-dimensional
structure based on the row-column decomposition, et one two-dimensional structure,
which has been proposed by Madisetti and Willson in [68], be introduced in more
details. The basis for the structural derivation is the DCT algorithm presented by
Chen et al. in [11]. When the transform matrix is decomposed into even and odd
rows, the DCT as well as its inverse requires the computation of two 4 x 4 by 4 x
1 matrix-vector products. Such operations can be performed in parallel with two
matrix-vector multipliers. The matrix-vector multiplier performing the product of
the odd rows MV M, requires four multipliers in addition to four accumulators as
illustrated in Fig. 15(a). Instead, the product of the even rows can be computed with
three multipliers and four accumulators.

In addition to the matrix-vector products, the DCT requires several additions and sub-
tractions before the matrix-vector product whereas the IDCT requires the grouping
of even and odd samples. These operations can be performed in a data reordering
unit DRU depicted in Fig. 15(b). Correspondingly, the DCT requires the regrouping
of even and odd coefficients after the matrix-vector product while the IDCT requires
some additions and subtractions, which are performed in an inverse reordering unit
IDRU. The objective has been to minimize the core area and keep input and out-
put requirements simple with the single-pixel interfaces. The resulting structure is
illustrated in Fig. 15(c).

2.4. Hardware Structures 25

®

(S hAI ORI ITHEBAB DBAEU2IB LB ERATNEHF LB LT EBAF LI BBEA)EBAHII56)

SEU,g
(0862422 20)2825) 1) 7)25) 23 41))or 20812634 42) 058 310102743151 4 2202836t oy = 202 aycteay b 6 K4kt amyce (ot o) 7 XEsH aaf ek e

Fig. 14. Block and timing diagrams of the sequential matrix transpose.

Thefeature that makesthe structurein Fig. 15(c) different from the other row-column
structures is the exploitation of the parallelism and time multiplexed computation of
the DCT over dimensions. In other words, for four clock cycles, the matrix-vector
multipliers operate on a column at the input X and stores samples from Y into last-
in-first-out (LIFO) buffer. For the next four cycles, multipliers operate on arow Y
while samples from X are stored. Katayamaet al. in [52] presented a corresponding
structure but instead of the line parallel operation, the structure operates line-by-line.
With such a modification, the number of accumulatorsis reduced from eight to two.

2.4.3 Direct Two-Dimensional Structures

Instead of applying the row-column decomposition, Lee et al. in [59] proposed a
direct two-dimensional DCT structure. In order to reduce computational complex-
ity with the aid of rotation techniques, real input values are mapped into complex
numbersinthe N x N DCT agorithm presented by Duhamel and Guillemot in [21].
Furthermore, the algorithm is modified for increasing the regularity and applying the
vertical mapping. In any case, the resulting structure still possess high degree of par-
allelism; 16 values are processed in parallel, which reflect on the amount of hardware
resources. On the other hand, the parallel processing provides agood throughput rate.
Another highly parallel direct two-dimensional DCT structureis presented by Lim et
al. in[63]. The structure is based on the implementation of the matrix multiplication
as asystalic array. The interconnection complexity is minimized by using bit-serial
interfaces between processing elements. However, the amount of hardware is huge.

26 2. Discrete Cosine Transform

oM
1»<
1»~+M s
I |
lb——:M : :
—:< 3 >M|
M |
| T MPLIFO

x—] brU [M7 <]iDRU [>Z
,

Fig. 15. Block diagram of the 8 x 8 DCT/IDCT with matrix transpose: (@) matrix-vector
multiplier performing the product of the odd rows (MVMy), (b) data reordering unit
(DRU), and (c) entire structure [68]. M: Multiplexer. LIFO: Last-in-first-out buffer.
MVMe: matrix-vector multiplier for even rows. IDRU: Inverse data reordering unit.

Kwak and You in [55] proposed a VLS| implementation methodology for their con-
stant geometry algorithms. Due to the very regular structure the linear mapping
methods are applicable. Consequently, several structures with a flexible degree of
paralelism can be constructed from the algorithms. The good regularity yields to
high modularity, thus structures are made up of identical blocks. While the hardware
resources can be optimized with respect to application requirements, the throughput
rate can be adjusted to meet application requirements with the pipelining. In [35],
Hsiao et al. extended correspondingly their sequential one-dimensional DCT struc-
ture presented in [34] to support the direct two-dimensional DCT. The structure re-
sembles the one-dimensional structure depicted in Fig. 9 but each processing el ement
Is replicated having operands from N times more apart. Let us remark that the rep-
licating multiplications can be combined and mapped still onto the single multiplier.
Therefore, the number of multipliersin the two-dimensional transform is the same as
in the one-dimensional transform. The resulting pipelineisillustrated in Fig. 16.

In principle, aunified structure can be constructed by providing additional data paths
to reverse the data flow of the DCT pipeline for the IDCT computation as described,

2.5. Summary 27

p) PUK -

0 +| BU; H BUg }»®+| BU> HBUlGW BUg4 HBU32}»®+|PU32H PUg4 HPUleH PU> }»

Fig. 16. Block diagram of the fully sequential 8 x 8 direct DCT [35]: (a) radix-2 butterfly
unit, (b) post-processing unit having operands K samples apart (PUk), and (c) entire
pipeline.

e.g., in[12]. Such an approach will, however, introduce high routing cost and com-
plicated control. Therefore, it is desirable that both the modes share a common data
path wherever possible [68]. Consequently, the similarities in the computations of
the DCT and the IDCT are typically utilized to develop a common structure. Asdis-
cussed with the properties of the algorithms, the post-processing is a disadvantageous
in the unified VLSI realizations; the post-processing in the forward transform results
inapre-processing in the inverse transform, thusin the unified approach both the pre-
and post-processing need to be realized implying additional hardware cost as, e.g.,
in[34].

2.5 Summary

In this chapter, the DCT algorithms and structures have been surveyed for having
bases for upcoming work. The survey has been carried out with a new viewpoint;
the algorithms and structures are discussed with respect to their suitability for the
pipeline computation. In addition, the survey has been extended to cover also the
related work after the publication of the Rao and Yip’s book [86] which has been
exploited as a starting point. To conclude this chapter, let us summarize the features
and limiting factors arisen during the survey.

The DCT agorithms based on the computation of other discrete trigonometric trans-
formsintroduce additional computational complexity. In order to achieve lower arith-
metic complexity, the direct factorization of the DCT matrix has been considered. In
general, the resulting DCT algorithms do not possess the regularity found, e.g., in
Cooley-Tukey FFT algorithms. On the other hand, in the reported regular algorithms,
the secant coefficients introduce round off errors with finite word length, the factor-

28 2. Discrete Cosine Transform

ization contains anti-diagonal matrices or the irregularities related to the DCT are
separated into pre- or post-processing stages.

When aiming at pipeline structures, the irregular algorithms restrict the efficient util-
ization of the linear mapping methods. Consequently, structures introduce com-
plicated control or exploit application-specific solutions with high level of parallel-
ism and without modularity. Instead, when using the regular algorithms as a basis,
round off errors affect word length requirements and anti-diagonal matrices intro-
duce irregular permutations requiring extra storage resources. Furthermore, pre- or
post-processing stages introduce additional hardware when implementing the unified
pipeline structure for the forward and inverse DCT. Moreover, the constant intercon-
nection permutations in the constant geometry algorithms result in larger area than
the permutations in the in-place algorithms where the size of the permutationsis get-
ting either smaller or larger stage by stage.

3. PERFECT SHUFFLE TOPOLOGY DCT ALGORITHMS

Since we are targeting at pipeline computation at data rate, our intention isto derive
novel regular fast DCT agorithms which lend themselves for the vertical mapping.
According to the previous survey, we should achieve the algorithms with comparable
arithmetic complexity and reduced interconnection complexity. Therefore, our ob-
jectiveis not to minimize the arithmetic complexity but to derive algorithms possess-
ing regularity in operational columns implying reduced control complexity. In addi-
tion, the interconnection permutations should be minimized and large anti-diagonal
sparse matrices should be avoided in the algorithms for minimizing storage require-
ments. In order to avoid additional hardware in a unified pipeline structure, we avoid
algorithms with the pre- or post-processing operations. Instead the irregularities are
to be distributed over the operational columnsin the signal flow graph. Moreover, the
coefficients should be cosine coefficients for minimizing the round off errors.

In this chapter, the sparse matrix decomposition of the novel perfect shuffle topology
algorithms for the one- and two-dimensional DCT is described. Before going into
the details of the proposed fast algorithms, we provide the preliminaries needed dur-
ing the derivation. Subsequently, the derivation of the algorithms for the one- and
two-dimensional DCTs is described. The chapter is concluded by summarizing the
benefits of the derived algorithms.

3.1 Prdiminaries

The formulation used in this Thesis is based on tensor (or Kronecker) products de-
noted by ®. Operator ¢ is used to denote the matrix direct sum [122]:

n
@Ai :diag(A()vAlv"')An)' (8)
i=0

30 3. Perfect Shuffle Topology DCT Algorithms

For ordinary products, left evaluation isused, i.e.,

n
HAi:AO-Al-Az-...-An. 9)
i=0
The floor function and modulus operation are denoted by |- | and mod, respectively.
The identity matrix of order N is denoted by Iy and the anti-diagonal identity matrix
of order N by Iy, i.e.,

In { Lom=N-=-n=1 o _o01..N-1 (10)

[InJn = 0, otherwise

Permutation matrices are used in the formulation for reordering the dataarrays. Inthe
following, the permutation matrices are defined and three permutation types used in
this Thesis are described. In addition, some properties related to these permutations
are presented.

Definition 1. A permutation matrix Py isan N x N matrix with all elements either O
or 1, with exactly one 1 at each row and column [75].

The permutation matrices are orthogonal; if Py isapermutation, then Py 1— Py. The
product of the permutation matrices is another permutation matrix. [75]

Stride permutations can be described like matrix transposes over sequentially repres-
ented data [25]. In stride-by-R permutation of an N-element vector, an R x (N/R)
matrix is first constructed out of the vector in column wise and then returned back
to the vector form in row wise. The stride-by-R permutation matrix of order N is
denoted by Py r and defined as[107]

1, iffn=(mRmod N)+ mR/N|

P = . mn=0,1...,.N—-1 (11
[NR]mn { 0, otherwise s 1)+) ()

As an example, the stride-by-R permutation reorders the data elements of an array
X = (X0,X1,-..,Xn_1)" &S

.
PNRX = (X0, XRs X2R, - - s XN—R+1, X1, XR415 - - - s XN—1) " - (12)

A special case of the stride permutation is perfect shuffle, which interleaves the data
elementsin thefirst half of an array with the elementsin the second half, i.e., perfect

3.1. Preliminaries 31

shuffle performs the stride-by-N /2 permutation, Py /2, for an N-point array. Stride-
by-2 permutation is the inverse permutation of perfect shuffle, thusthe perfect shuffle
permutation matrix can also be denoted by P, 2

The Hadamard permutation matrix of order N denoted by Py is defined as

1, iff n=hy(m)
H o 9 N o B
[PN }mn - { 0, otherwise ,mn=01,..,N-1 (13)

where hy (i) isthe Hadamard permutation function defined recursively as[119]
h1(0> =0; hZN(Zi) = hN(I), h2|\|(2i + 1) =2N—-1-— hN(I), = 0, 1, .. .,N —1. (14)
Hadamard permutation reorders the elementsin a vector X as

PN X = (Xt (0) Xty (1) Xty (2): - - - Xnu(N—1)) " - (15)

The third permutation matrix to be exploited is defined as [106]

In = (l2®Py/2n/a) P 2. (16)

In this permutation, the odd elementsin the first half of a vector are exchanged with
the even elements of the last half of the vector.

In addition, let us define the following matrices:

1 1
F1=ly; F2<1 1): Fn=Ine2®R (17)
1000
0010
Qu=li; Q2=l20 Qa=Paz=1| - = o |3 W =Ina®Qs (18)
0001
1000
0100
Ri=l1; Ro=1ly; Ry=Q4P!' = 000 1| Rv=lu®Re (19)
0010
iy =diag(—-1"), i=0,1,...,N—1. (20)

In the following, some properties of tensor product and the previous permutations are
presented. The proofs for the following theorems can be found, e.g., from [20, 25].

32 3. Perfect Shuffle Topology DCT Algorithms

Theorem 1. Consider matrices A, B, C, and D. The following properties hold true
with the corresponding operations:

A®(B®C) = (A®B)®C (21)
(A®B)(C®D) = (AC®BD) (22)
(AeB)T = AT@BT (23)
Corollary 1.
An ®Bn = (AN ® In)(IN ®Bn) (24)

The proof for thisis evident by referring to (22).

Theorem 2. Factorizations of stride permutations
IDapbc = F)(';17b|:)a,c (25)

I:)abc,c = (Pac,c 029 |b) (la 029 I:)bc,c) (26)

Theorem 3. Commutativity property of tensor product. If A; and By, are matrices of
order a and b, respectively, then,

Aa & Bb = I:)ab7a (Bb X Aa) I:)ab7b (27)

Corollary 2. Relation of stride-by-2 permutations

Pn2(l2® Pg/z,z) =Py2®1IN/4 (28)

Proof. By noting that Py 2Py , = Ix and applying (26) to Py 2, we obtain Py 2(l2®
P /22) = (Pa2@Inya) (2@ P2 2) (@ Py 15,) = Pa2 @ Inya. n

Corollary 3. Factorization of stride-by-2 permutation

k—2
Py o = H (lii ®Pa2®@lyk-i2), k>1 (29)
i=0

3.1. Preliminaries 33

Proof. According to (26), the stride-by-2 permutation matrix of order N,N = 2¥, can
be decomposed as Py 2 = (P42 ® In/4) (12® Py 22). By applying the decomposition
totheterm Py /22, weobtain Py 2 = (Pa2® In/a) (I2@ Pa2®In/g) (14®Pyyjaz). This
recursion can be continued until the rightmost term is Iy 4 ® P42, i.€., the recursion
can be applied k — 1 times, u

Corollary 4. Factorization of perfect shuffle permutation

k—2
P2k72k71 = H (Ii2®@Pa2®15), k>1 (30)
i=0

The proof is straightforward from Corollary 3 by noting that Py > = Py 2

The proofs for the following theorems are shown in [5].

Theorem 4. Factorization of Hadamard permutation

k—2
P;! = H [(|2k727i & P2i+272) Rzk} , k>1 (31)
i=0

Definition 2. The matrix A of order N is cross-diagonal of type 1 if it can be presen-
ted as

A =Dy + Dol (32)

where D; and D, are diagonal matrices of order N.

Definition 3. The matrix A of order N is cross-diagonal of type 2 if it can be presen-
ted as
A=D1+DyP (33)

where P =0 Iy_1.

Theorem 5. Let Ay be a type 1 cross-diagonal matrix of order N = 2 k > 2. Then,
It can be represented as

Al 0
An = RnPy 2 ('\(')/2 A2) Pn,2RN (34)
N/2

where Aﬁ /2 and Aﬁ jp are cross-diagonal matrices of type 1.

34 3. Perfect Shuffle Topology DCT Algorithms

Theorem 6. Let Ay be a type 2 cross-diagonal matrix of order N = 2 k > 2. Then,

it can be represented as

A2 0
An =P, N2 Py .2
) 0 Ay,

(35)

where A,{l/z is a cross-diagonal matrix of type 1 and Aﬁ/z is a cross-diagonal matrix

of type 2.

The fast algorithms for DCT derived in this Thesis are based on the results presented

in [119] where the proofs for the following theorems can be found from.

Theorem 7. The DCT matrix of order N = 2, Cll, can be represented as
2 . (0
CN =/ NDNCI(\I Py

DK] = d(l) B In_1

where Dy, is a scaling matrix

and the matrix C,(qo) is a Hadamard ordered DCT matrix defined as

- c@ g
¢y’ =L\s, (2 i
0 CJ/Z

where Lgi) and B, are the following:

1
L0 _ l3/2-1 0
! B d(N/J+i)
\ —ly 2d(N/J+1i)ly/2-1
B, — b2 ly2 _
2 =l

The coefficients d(i) are all cosines defined as
d(i) = cos((hk (t) + 1/2)m/2K) K = 21°%0] t = j K.

or they can also be generated recursively as

d(1) = v0.5; d(2i) =+/05(1+d(i)); d(2i+1)=+/051—d(i)).

(36)

(37)

(38)

(39)

(40)

(41)

(42)

3.2. One-Dimensional Transform 35

Theorem 8. The Hadamard ordered DCT matrix Cé,?) can be computed as

0 0 2k—s—1_1 .
=11 & (L;'JHBZH) . 43)
s=k—1 j=0

3.2 One-Dimensional Transform

In order to derive an agorithm suitable for the vertical mapping, we exploit the de-
composition of the DCT matrix with Hadamard ordered input in Theorem 7. Let us
first consider the matrix Lgi) of order J, J = 2%, in (39) which is actually a cross-
diagonal matrix of type 2, thus Theorem 6 applies. Recursive application of the
theorem k — 3 times results in the following decomposition:

LY = G,E}"G] (44)

where G; isdefined as
k—3

G = lr% [(Izki @B Rok_ok-i) (lzi & Pérk_i’z)] (45)

and EJ’(” isthe following block diagonal matrix consisting of blocks of order 4

10 0 0
0 0O 1 0 0
71 0 0 d(N/I+i) 0
0 -1 0 2d(N/J+1)
1 0 0 0
0 1 0 0
b1 ® 0 1 2aNa4) 0 (46)
-1 0 0 2d(N/J+1)

The block diagonal matrix Ej(i) consists of a cross-diagona matrix of type 2 of order
4 in the top-left corner and a block diagonal of cross-diagonal matrices of type 1 of
order 4, thus Theorem 6 can still be applied for reducing the order of the blocks as

LY =Gy (la®Ry-a) (13/a @ P L)E}" (13/4® Pa2) (la ®Ry_4)G) 47)

36 3. Perfect Shuffle Topology DCT Algorithms

where EJ(i) is

e@—(% 0 oo * 0
J 0 d(N/J+i) VLS 1 2d(N/I+i)

i 1 0
=L <|J/21® (11))

10 10
1<0dmu+n>@owl®<ozuwun>>l (48)

By defining two matrices M} and D" as

IJ/21®< _11 2)] (49)

MS(I) —l,®

. 1 0 1 0
D//(l) _ |
2o dmai)T o 2ana) =0
we may rewrite Lgi) as
Lgi) = Gy(la®R3-4)Qy Mg(i) Dg(i)QJ (la®Ry-4)G] (51)

Next we consider the matrix B; in (40), which according to Theorem 3 can be rewrit-
ten as

By = (R2®1y/4) ® 12 =P (Lo F2® ly/4)P 2. (52)

The matrix (I, @F>®1;/4) isablock diagonal matrix with blocks of order J/2 where
each block consists of four diagonal matrices as

lyja lysa

I —I1
LoFR®l,=| ¢ g loja | (53)

lyja —ly/a
This matrix can be reordered with 1> & R; /> without any effect since the diagonal
elements to be exchanged are identical (either 1 or —1). Therefore, we may rewrite
B; as
By =PJ,(l12®Ry2) (l2@F®13/4) (132 Ry 2)Ps 2. (54)

Applying Theorem 3 to theterm (R, ® 1;/4) resultsin

By =P a(l1/2®Ry/2) (120 P 5 5) (la©F2® 13/8) (12® Py j2.2) (1328 Ry 2) Py 2. (55)

3.2. One-Dimensional Transform 37

The term (13,4 © R3j/4) can be again included since R4 matrices are exchanging
identical diagonal elements, thus

By =P5(l328Ry/2)(12® PJT/z,z)(|J/4 ©R3y/4)(l4a@F2®1y/8)
(1374 ®Ra3/a) (12 Py /22) (13 /2Ry /2)Py 2. (56)

The recursive application of this two phase addition of terms can be continued k — 3
times, which leads into form

By =Gj(l14®F2®12)Gj. (57)
In order to smplify the innermost term, Theorem 3 provides us the following form:

By =Gy(l32®P42) (2@ F2) (132 ®Pa2)G] = G;QiFQ;G]. (58)

Now the decompositionsof L; in (51) and B; in (58) can be replaced into (43), which
resultsin

e~ 11 (ueavg) =
s=k—1
where
ksl
Vi'= @ (Qz1Gp) (60)
2“5?—1
Uz(lf): P [Gxi1(Ia®Rysi1_4) Qusia] (61)
2KJ:?f1
Ay = @ [MEAD Qe (la @R g)QpiFpa) . (62)
i~0

3.2.1 Processing Columns

The block diagonal matrix Af\(ls) defines all the arithmetic operations performed at the
sth processing column. The representation of these columns can be unified by using
abinary-valued parametrization function defined as

. 0, imod2"=0
””('){ 1, imod2"#£0 ° (63)

38 3. Perfect Shuffle Topology DCT Algorithms

Hence, the processing column A,'\(,S) can be represented as

AL = MO DI H Ry (64)

where

211
(s) 1 0
Mz = D (—Hs(i) 1) e

i=0
211
(s) 1 _ 0
D2'< - IG—% (0 2Hs(l)d(2kfsfl_{_“/25J)) (66)
221 _
Hz(f) = P (QaRaQa) V. (67)
i=0

3.2.2 Interconnection Permutations

According to (59), C,&lo) can be factorized into the processing columns interconnected
with the permutations. The permutation between the processing columns A,(\,sfl) and
AY is defined as

2k s—1 -1 zkfs_l
= P (QxuGri) P [Gz (l4®R2-4) Q2]
i=0 i=0
2k s—1 -1 2k s—1 -1
= P [Qx+:1Ghi1(l2®GCx (la®Rxs_4) Q)] @ Ph.1. (68)
i=0

In order to simplify the representation, it is sufficient to consider only the matrix P{
of order N, N = 2%, which can be written as
PX = QNGY [12® (G2 (1a® Ry /2-4) Qnj2) |
= QNG (12®Gn/2) (I2® (4B Ry /2-4)) Qn- (69)
An example of such a 32-point interconnection permutation, PL,, is illustrated in

Fig. 17(a) where Qy is represented with the aid of relation Q4 = P42 = Pl 5.

Let us first consider the term G (I, ® Gn/2) in (69). According to the definition of
G in (45), this can represented as

k— 3
G-ll\—] (|2 % GN/Z) 2k i-3 & P2l+3 2) (|2i+3 S¥ R2k72i+3)}

(2 ® H Iok—i1 D Rok-1_pk-i1) (|2i @ PJ ki1 2)}) . (70)

3.2. One-Dimensional Transform 39

v 1,8G16 Gl y
XO % 0/ \ / \ 0 yO
2PV = PO I - - : B - P =L
Py R 82H H H H H H H P
. iZH P15l 1 116 HP16,2 P4,2
jp4.2|:| R lngzz' R ': E E E # R ':PSZ 4,2 :
= I O =
Pag ey 0 B AR H HR B, HPek
FLRE 2 TR, R Pl
16,21 , >
Pl RIH - HRHEH HRH "HRH, HPak
T 82 | 82
1Py, H R R . R R Pss
X31 : v Y31
a) 31 Ya
X0 N - N N N Yo N N N Yo
APkl e O H s fPe2f: H H 's fPe2ft:
- — 116 HP16.2}- - - : 1P 1625 = - Z
sz s szi E P825
“HR 1 HRH B 1 HdRrRH B
T i R 1 R H i u 1 R [i
PELH Pgolx s Pso |2
521 R, HRHA E i, HRH B
{RHRE "HRH, E HHRE.E
PI, Peo > a Pg2 [
“HR R R B g R By

-
[TTTTT

|11
0
> L
N
T
Py

|11
0
I~ —
N
[TT]
)

DDA
[T [T [T

|11
o
N
N
[T
|||

=

d) %31

Fig. 17. Simplification of the interconnection permutation: structure of 32-point interconnec-
tion permutation (a) in (69), (b) in (71), (c) after (73), (d) in (76), and (e) in (77).

40 3. Perfect Shuffle Topology DCT Algorithms

By taking two permutation matrices out of the products and applying Corollary 2, we
obtain

k=5
G |2 (%9 GN/Z H [(2k—i-3 &® P2i+372) (|2i+3 S5} Rzk_2i+3)} (lz & PN/Z,Z)

- (Inj2®Rny2) (Paz2®Insa) (12® (Inja©Ruya)) (|4® F’J/M)
k-4)
. (lz & g [(Izkil ©® Rzkfl,zkfifl) (|2i ® P2k—i—1,2)]) . (71)

The resulting permutation in the 32-point example is depicted in Fig. 17(b).

Since (I2® (In/a®Rn/4)) is actually a block-diagonal matrix with four blocks of
order N/4 and (P472® IN /4) performs exchange of middle blocks of order N/4 in a
block diagona matrix, the following isvalid

(Pa2®1nsa) (12© (Inja®Rnya)) = (INj2®Ruy2) (Paz®Inya)- (72)

When using this in (71), the terms (IN /2Ry /2) cancel each other. Furthermore,
(I4 ® PJ/4.2) is also ablock diagonal matrix with identical blocks of order N /4 thus
it commutes with (Ps2® Iy 2), i€,

(Pa2®Ins2) (|4®PN/4 2) (|4®PN/4 2) (Pa2®Inj2), (73)

resulting the permutation shown in Fig. 17(c). When the commutativity in (73) is
used in (71), we have aterm (I, @ Py /22) (I4 ® P§/4 2), which according to Corol-
lary 2is (I2® P42 ® Iy g) and, therefore,

G (l2®Gn)2) H [(ok—i-3 @ P2i+3’2> (loisa ® R2k72i+3)}

(120P22®In/8) (Paz2®Inya)
: <|2 ® H [(Izkil DRyk-1_pk-i1) (|2i QP ki1 2)}) . (74)
i=2
By recursively applying the previous procedure, we obtain

G-ll\—l(|2®GN/2) = (In/s®Pg2) (IsBRn_8) (In/16 ®P42® l4)
(IN2®@Pa2®1g) ... (l2®Ps2® Insg) (Pa2®Inja) . (75)

3.2. One-Dimensional Transform 41

By replacing this term into (69), we end up a permutation illustrated in Fig. 17(d)
with the following generalized representation:

PN = (In/a®Pa2) (In/s©Ps2) (I8 ©R-8) (In/16 @ Pa2 @ la)
(IN/22®@Pa2®1g) ... (2@ P42 In/g) (Pa2® Ina)
(12 (165 Ry24)) (a0 PE). (76

According to Corollary 4, the permutation terms (ly /16 ® P42 @ 14) (I /32 ® Pa2 ® Ig)
. (P472 ® Iy /4) perform the perfect shuffle permutation of blocks of order four over
N /4 blocks and, therefore, the term (12® (12 &Ry/2_4)) @t the end of (76) can be
moved next to the third term (Is © Ry_g) in (76), ssimply by permuting the blocks of
order four. Such a permutation resultsin term (Is ® Ry_g), thus the terms containing
R matrices cancel each other and disappear. In similar fashion, we may move the
term (IN/4 ® Plz) at the end of (76) next to the term (ly s ® Pg2), which resuitsin
term (In /s ® P42 ® I2) according to Corollary 2. After this we may rewrite P{ with
the aid of Corollary 4 as

P = (In/a®Pa2) (INg®Pa2®@12) (Inj16 @ Paz®1a) ...
: (|2® P4,2® IN/8) (P472® IN/4)

k—2
=[] (Ixi2®Pa2®15) =Pyns2 =Pl (77)

o

whichisillustrated in Fig. 17(e).

With the aid of Corollary 4, we have found that the permutation between the pro-
cessing columns is based on perfect shuffle permutation and, therefore, the permuta-
tion matrix between the processing columns Aé‘? and A(Zsk_l) in (68) can be defined

as
2k787171

vgul V= @ Pl (78)
i=0

3.2.3 Final Algorithm

Since V,\(,O) = Iy, the representation of the DCT matrix Cﬁ,o) in (59) can be reduced
with the aid of the simplified interconnection in (78) to

1
0 k-1 0
C;k) = Uz(k) Ikl . [Alz(ks) (Izksl & P;—s+172):| A/Z(k) (79)
s=k—

42 3. Perfect Shuffle Topology DCT Algorithms

(k=1)

where U

represents the output permutation defined as
1) Kk—2
| [(lzki & Ro_pi i) <|2i ® PZT“Z)] . (80)
i=0

The complete DCT in (36) contains adiagonal matrix Dy defined in (37), which has
only a single non-trivial element at the top-left corner. Let us remark that matrices
U,f,k_l) as apermutation matrix and M gﬁ_l) defined in (65) contain only single 1inthe
first row and in the first column, at the top-left corner and thus, Dy, commutes with
them. Thisimplies that D3, can be included into the diagonal matrix D’y defined
In (66) and we accomplish that with the aid of a binary-valued parametrization func-
tion 7j(s),

ms)—{ D (81)
and defining a diagonal matrix D’ based on (66) as
D(;():dlag(gk(l,S)), |:0,1,,2k—1 (82)
gk(i,S) — (ZUS(U/ZJ)d(Zk—S—l_i_ I.I/ZS—HLJ)) fi(i.s) (83)
fi(i,5) = (i mod 2) + (1 — to(i)) (1 — T_1(s)). (84)

Conseguently, a new matrix representation for the sth processing column, A,(\f), can

be defined as
AY = MIDIHRy. (85)

Finally, the entire DCT matrix can be formulated as

1
cl = \/guz(kk‘” 10 (A5 (1ss PR,) | ARPY. (86)
In order to emphasize the regularity of the proposed perfect shuffle topology al-
gorithm, the signa flow graph of the 16-point DCT is illustrated in Fig. 18 where
the normalization factors are not included. In general, the regular perfect shuffle
topology agorithm in (86) yields arithmetic complexity of Nlog(N)/2+ 1 multiplic-
ationsand 3N log(N)/2 — N + 1 additions for an N-point DCT, N = 2¥, including the
scaling factor by, but without the normalization factor \/2/N in (2).

3.3. Two-Dimensional Transform 43

X15—+20>® ‘c ® Xg
reof® -H X,
Xg ‘0 ® ‘9 ® %S E@.’\ D@D Xy,
X3 d10 > A0 b \ X2
-"i‘H O ° Qo
X4 X

‘M&ﬁ*ﬂ%‘. E

X «—>(¥) «—>(+) ‘ §10
88 88 ‘f:%% :
X

o e W‘“’@&‘M’O—J Z
: ‘4@@‘ o

XlO ‘9 X ‘0 X

Fig. 18. Signal flow graph of the regular perfect shuffle topology DCT in (86).

3.3 Two-Dimensional Transform

Asdiscussed in the previous chapter, there are two principa methodsfor deriving fast
algorithms for the two-dimensional DCT: a row-column decomposition and direct
computation. In the ensuing two sections, both the row-column decomposition and
direct computation are used to derive two-dimensional DCT agorithms based on the
proposed one-dimensional perfect shuffle topology algorithm.

3.31 Row-Column Decomposition

Due to the fact that the DCT transform matrix is separable, the DCT of an N x N
matrix x defined as
X =Cllxcll’ (87)

can be reduced into a one-dimensional transform by concatenating the columns of
the two-dimensional input data matrix x; i.e., x is represented as an array, resulting

44 3. Perfect Shuffle Topology DCT Algorithms

in an N2-point one-dimensional array X. Then the two-dimensional transform can be
computed as
X = (Cy ®C\) R =CnxnR (88)

where X is the transformed data matrix in the array format and Cy «n is the corres-
ponding two-dimensional transform matrix of order N2. By utilizing Corollary 1 and
the commutativity property of tensor product in Theorem 3, Cy N Can be written as

Chxn = (CH @IN) (IN®CYN) = Pyon (IN®CN) Pyen (IN®CN) . (89)

If afast algorithm exists for computing the one-dimensional DCT, the algorithm in
(89) is a fast agorithm for the two-dimensional DCT. According to the definition
of the stride permutation in [25], Py2 y performs the transpose of an N x N matrix
arranged in a vector form and, therefore, (89) describes the traditional row-column
decomposition of the two-dimensional DCT.

The fast algorithms for the one-dimensional DCT can often be represented as
Cn = PUKnPy (90)

where Ky represents a transform kernel matrix of order N containing all the arith-
metic operations and P); and PQ are input and output permutation matrices of or-
der N, respectively. This implies that in the two-dimensional transform in (89), the
permutation between the consecutive one-dimensional DCT kernels consists of the
output permutation, matrix transpose, and input permutation. Such a permutation in-
creases the complexity of hardware implementations considerably in the cases where
a programmable processor with efficient addressing modes could take care of data
permutations. However, when a one-dimensional algorithm having the form of (90)
is used in the two-dimensional transform, the transform matrix Cyxn can be formu-
lated as

Crnxn = (PR @PF) (Kny @ Ky) (P ®Py)
= (P ®PY) Pyzn (IN®@Kn) Pyzn (IN@Kn) (PN @PY) - (91)

This implies that in the two-dimensional transform, the input permutation from the
consecutive one-dimensional transforms can be combined as a single permutation
matrix P}y of order N2, Similarly the output permutations and additional matrix
transpose can aso be combined as a matrix PJ, \ of order N2. Therefore, the entire

3.3. Two-Dimensional Transform 45

two-dimensional DCT can be interpreted to consist of the matrix transpose between
two consecutive transform kernels and the input and output permutations as

Cixn =PRun (In @ Kn) Pz (IN@ Kn) (Pl) - (92)

Such an arrangement provides efficiency in hardware accelerator type of implement-
ations where the permutation can be performed with a programmable processor and
only the transform kernels and matrix transpose need to be realized in hardware.

When the one-dimensional DCT agorithm in (86) is used as a basis for the row-
column approach, the two-dimensional DCT realization yields arithmetic complexity
of N(Nlog(N)-+2) multiplicationsand N (3N log(N) — 2N +2) additionsfor anN x N
DCT, N = 2¢ including the DC factor by, but without the normalization factor 1/2/N
in(2).

3.3.2 Direct Computation

The one-dimensional DCT algorithm in (86) can be used as a basis to derive a reg-
ular algorithm for the direct computation of the two-dimensional DCT. The two-
dimensional transform matrix Cy N can be derived by substituting the fast algorithm
in (86) for CY in (88). Thisresultsin

1
Czkxzk :Zl_k [Uzk H (Q(Zi) (|2k—s—1 X P;—erl’Z)) Q(ze) P;]

s=k—1

®
s=k—1

1
Up TT (QF (ta2®Ps,)) QF PZHk] , (93)
which by applying Theorem 1 can be formulated as

Cll_, =2 (U2(|I<(_1) ®U2(L(_l)>

. f[[(A(Zi) & A(Zi)) (|2ks1 X P;s+172 ® lpcs-1® PZTS+1,2>]

0 0
(AR @AY (P @ PY). (94)
The matrix representation of the processing column in the two-dimensional DCT can
be formulated with the aid of Corollary 1 as

ALy <A &AL = (M9 M) (HE @ HE) (08 0) (Ru o)

:(Ml(\IS) ® |N) (lN ® Ml(\IS)) (Hﬁf) ® IN) (lN ® HISIS)) Dr(\ls)xN (Av®In) Fyz (95)

46 3. Perfect Shuffle Topology DCT Algorithms

where D), can be defined with the aid of the coefficients g (i) in (84) as
0, ~0f o0
— diag (gk(i mod 2¢,5) gk(Li/Z"J,s)> i=01,....2%_1 (9

With the same analogy, the permutation between the processing columnss ands — 1
can be written as

|2kfs—l (059 P;Hl?z &® Izkfs—l & P2T5+172 - (Izksl & P2T5+1’2 X Izk) (IszSl & P;—s+172) . (97)

Similarly, the input and output permutation matrices of order N2 denoted by P},
and P, \, respectively, are formulated as

Pocca = (Pot @ 1) (I © P3) (98)
PO = (uzﬁk‘” ® |2k) (lzk ®U2('k‘_l)) . (99)

Finally, with the aid of (95)—(99), we can formulate the matrix representation of the
fast algorithm for the two-dimensional DCT as

1
C|2Ik><2k :21—kP20kX2k H |:A(2i)><2k (lzksl ® P;—S"'l,Z ® Izk) <|22k51 ® P;+172)]

s=k—

A xPha (100)
As an example, the signal flow graph of the resulting regular perfect shuffle topology
algorithm for the 8 x 8 DCT without the normalization factor is depicted in Fig. 19.
This example illustrates that the structure of the two-dimensional signal flow graph
followsthe structure of the previously proposed one-dimensional algorithm but all the
processing and permutation columns are followed by another similar in-place column
where the operation is over distributed data. The only exception is the columns with
multiplications. In this sense, the algorithm is a hybrid; interconnection topology is
perfect shuffle but the processing columns are in in-place configuration.

The two-dimensional DCT algorithm defined in (100) yields arithmetic complexity
of N(5Nlog(N)/4+ 1) — 1 multiplications and N (3N log(N) — 2N + 2) additions for
an N x N DCT, N = 2%, including the scaling factor by, but without the normaliz-
ation factor 21X, It should be noted that the non-trivial coefficients are localized
into log(N) diagonal matrices of order N2, which implies that the signal flow graph

3.3. Two-Dimensional Transform 47
X0 @ () Y @ @ Xo
e - G T P a0 P e Y2
T T . —
P S0 11 4 S— % .
S <0111 9 G <6 < <@/ = T :
55— AIND it 2. W g
Yea— 2w Lk 6 "‘Mo i IR S X36
O G 4111y > G o
- IS S0 50 N— 2N G~ o

NS S i ©
e NS SR/ I — o N
A S/ S0 ORI S /30 T— ol g™ %
e i e e (bewiin S — S/) —
e Soaa WS S {5 LR
. . MR) i 40 Y

21— @ ® il ~<e : e 56 Xes
D SN O 1 S
Y1 \'lg,- o,o,o I o X
NS <G\ ’ ; 'I,,'I,,'I e - % Xy
Xo5 @ \\‘vllio 7 """, o) X17
X30 ‘o“}’é@;’{oe £ N\ 2 Wis & \’é} X3
b I*:.W:Oi =g o
22— 6 | |) e B e
X390 —21® ’)‘%‘%?A‘o ® = “" A‘l’%gzgzgzgﬁ‘o D0 é X52
e i Y il S
-/ —— =2 i G A
- RS\ "“"‘\’ o .
SRS/) G- ¢ //‘\o'o‘o/"’ G e
R S 6 I Y //\o‘o'o‘o’opz&"-" A
H o O Ll o SO
o od e & AR R
g S o S “\\‘/ e > 2 - o
XlZig O > O ‘ ‘\\.‘:’:‘ / i o é—@ \-’@ X14
B SGB\ 1) G I S\ 1/ ”a:.‘o:‘/ e
X10 . ® . + + ”’..:““:‘ * + i X11
*13 ° vv#‘%@#’! x" v%’v‘%@# R ...":.‘ :" v%’v‘%’#‘#’! Zd(i) 1 \-@ X3
ne o il g oo ¢ | el o -~ o
X55 'o“‘wﬁ,‘o ke “o‘”#‘%w“o g “Mw*o G D— X60
o e SO T o I S -
e RTINS G A a—— Fglm‘, £ 0] I A
oINS SO/ E— | (/0 ‘g
S /36 IO | | DGRy S\ e
e % 06| be-bia Sy —v | oo] 5
X53 ‘o‘o ® .:::::::::::.o o oa ® \s‘s:‘\"‘o‘-o'm:m' Pb-o X61
%16 ® ® ~® ~® ® O-& i 24
SRl g | Bl pe e n R
X19 ® @ ® C ® ® i 26
X7 S C Al Xo5
X2 : ® : ; ":.\\‘XWI: ® I’"e‘e'%'%“‘ G a1
-l o e
o it : %@% am g W
oo il 7o Liilo &2 \q: —aiiis E‘”
P S0 0 =41 <0 N < D <401 9)
e I N e S V19 2
N SO0 G < /% /S 1 I N
G/ S) G-/ Y o e, S
O S0 <G LU 200 30 5™ 5 Vol o™ e 5 xe

Fig. 19. Signal flow graph of the regular perfect shuffle topology 8 x 8 DCT in (100).

48 3. Perfect Shuffle Topology DCT Algorithms

contains log(N) columns of multiplications, i.e., a many as in the previous one-
dimensional transform, whilein the row-column approach there are 21og(N) columns
of multiplications. This provides advantage in pipeline architectures, as described in
the next chapter of this Thesis.

3.4 Summary

In the derived regular perfect shuffle topology algorithms, a straightforward design
strategy has been to exploit the advantages and get rid of or minimize the effects of
the drawbacks arisen in the survey of the related work. The algorithms possess reg-
ularity in the operational columns implying reduced control complexity. Although
the irregularities related to the DCT are distributed between the butterfly columns
they are localized into rather small node functions. Simultaneously, the pre- and
post-processing stages as well as the large anti-diagonal sparse matrices are avoided.
The regular interconnections with smaller and smaller permutations from column to
column reduces the complexity of data permutation. All the previousfeatures minim-
ize the need for storage and provide area-€efficiency when targeting at the single-rate
pipeline structures.

On the other hand, the algorithms can be interpreted to combine the regular in-place
and constant geometry algorithms. The interconnection topology is perfect shuffle as
in the constant geometry algorithms but the size of the permutation is smaller from
column to column as in the in-place algorithms. The relation to the in-place and
constant geometry algorithmsis emphasized especialy in the direct two-dimensional
DCT agorithms in which interconnection topology is perfect shuffle but the pro-
cessing columns are in in-place configuration. In this sense, the algorithms are hy-
brids.

4. PIPELINE STRUCTURESFOR PERFECT
SHUFFLE TOPOLOGY DCT

Theregularity in al the novel perfect shuffle topology DCT algorithms derived in the
previous chapter alows efficient utilization of tempora parallelism. Therefore, in
the following, our purpose isto reduce the dimensionality of the signal flow graph by
applying vertical mapping, i.e., the two-dimensional signal flow graph is collapsed
or folded into a one-dimensional data path. In other words, each node found in the
matrix factorizations in (86) and (100) is mapped onto a corresponding sequential
unit with appropriate control signals resulting in new cascaded or pipeline structures.

The proposed DCT algorithms consist of the input permutation, processing columns
interconnected with the perfect shuffle permutations, and output permutation. In this
chapter, these processing and permutation columns are first mapped onto basic pro-
cessing and permutation units. Then, the resulting processing and permutation units
are cascaded for constructing the new pipeline structures. In order to prove the poten-
tiality and feasibility of the structures, the unified 8 x 8 DCT/IDCT pipeline structure
Is compared to other reported structures and its demonstration implementation is de-
scribed. Finally, the benefits of the developed structures are summarized.

4.1 Basic Processing Units

Basic processing units for the pipeline computation of an algorithm are obtained by
defining the minimum set of data-dependent arithmetic operationsin each operational
column. The processing columns A,(\,S) in the proposed algorithm contain operational
columns of butterflies Ry, multiplications D,(\',S), and local subtractions M,(\f).

In the operational column Fy, the principal operation is areal-valued radix-2 butter-
fly computation which can be realized with a single adder/subtracter as depicted in
Fig. 20(a) [34]. Thisrequires that input operands xp and x; are stored into registers

50 4. Pipeline Structures for Perfect Shuffle Topology DCT

X1 —2 Y1 X ——Y1 X1 Y1
,,,,,,,, 101 oo
X1Xo~ Y1¥o dll% : 1 J Yo
| X1Xo YiYo *1XoTt @Jf =~
a) B LRI BU b) o LSU-

Fig. 20. Block diagrams of the basic data processing units: (a) butterfly unit (BU), (b) multi-
plier, and (c) local subtraction unit (LSU).

for computing both a sum and difference at consecutive clock cycles. When xg is
read from the first delay register, x; is entering the unit and, therefore, the addition
Yo = Xo + X1 can be performed and the result is directed to the output. In the next
clock cycle, xo proceeds to the second delay register and x; is read from the first one
thus the subtraction y; = Xg — X1 can be performed. The adder/subtracter in this struc-
ture isfully utilized at the expense of additional delay registers. Due to the operand
storage the latency of the butterfly unit (BU) is one.

The basic operation in the column DY is multiplication and especially, if the trivial
multiplication with oneisincluded, each operand can beinterpreted to be multiplied.
Therefore, theimplementation isasingle multiplier asillustrated in Fig. 20(b). Since
al theintermediate values are fed through amultiplier, the signal levels can be scaled
arbitrary allowing the efficient utilization of numeric range without additional hard-
ware cost.

The column M,(f) is parametrized and contains irregular subtractions performed over
the neighboring data samples in a sequence as depicted in Fig. 20(c). These opera-
tions can be realized with alocal subtraction unit (L SU). The operands, which do not
need any operation, are directed to the output through a multiplexer. When the sub-
traction is needed, the first operand xg is forwarded to output without computation,
I.e., Yo = Xo and, at the sametime, stored into aregister. Inthe next clock cycle, when
X1 is entering the unit, the operands xg and x; can be subtracted and the difference
y1 = X1 — Xp is directed to the output. Since both the operands are available for the
subtraction when the result is needed, the L SU does not introduce additional |atency.

L et usremark that the local subtraction in Fig. 20(c) can beinterpreted as ahalf of the
butterfly operation. Therefore, the local subtraction can be realized with the previous

4.1. Basic Processing Units 51

N igligigiginiginininh
¢ c1 IN DO 23 A BT
S o T e Y e B e M
X1 X0 :.: >Y1Y
s E@.ﬂ) 170 SN I N e e e B
e UBU' e
2) OUT O CD2Ea B Es 676

cki LI L L L L] O O A A
IN[XOXL1X2X3X4X5X6X7) IN[XOXIX2X3X4X5X6X7X)

Co Co I S R N B O N S
c1 c| LI LI LT LI L
) I S C2

c) OUT (0 X1-0X 2 X3-2X 4 X5-4X 6 X 7) d) ouT

Fig. 21. Unified butterfly unit: (a) block diagram and timing diagrams when performing (b)
butterfly, (c) local subtraction, and (d) flipped butterfly.

butterfly unit but an additional multiplexer is needed to bypass the arithmetic opera-
tion. Theresulting multifunction arithmetic unit realizing the butterfly operations and
local subtractionsis referred to as a unified butterfly unit (UBU), which isillustrated
with the aid of timing diagrams in Fig. 21. Note, that a flipped butterfly operation
illustrated in Fig. 21(d) isexploited intheinverse DCT, and it will beintroduced later
in this chapter.

Processing units for computing the two-dimensional DCT can be constructed in a
similar fashion from the two-dimensional DCT algorithm in (100). The only differ-
enceisthat inthe N x N DCT, the operational columns have aform (Xy ® In)(In ®
Xn), i.e., each column of the arithmetic operations is followed by another column
with operands N times more apart. Consequently, such two-dimensional columns
can be mapped onto cascade of two basic units where the shift registers in the | atter
unit are replaced with N times longer shift registers. As an example, a direct 8-point
two-dimensional butterfly operation corresponding (F, ® Ig)(ls ®) isillustrated in
Fig. 22(a). The first part of the direct two-dimensional unified butterfly unit oper-
ates exactly as the unit in Fig. 21(a) while the second part computes same butterfly
operation but over operands eight elements apart. The block diagram of the direct
two-dimensional unified butterfly unit UBU? is depicted in Fig. 22(b).

52 4. Pipeline Structures for Perfect Shuffle Topology DCT

Fig. 22. Direct two-dimensional butterfly unit: (a) signal flow graph and (b) block diagram.

4.2 Basic Permutation Units

Similarly to the columns of the arithmetic operations, data permutations in the al-
gorithms need to be mapped onto sequentia units, i.e., sequential permutation net-
works. The processing columns A,(j) contain local permutation columns H,SS). In addi-
tion, the processing columns are interconnected with the perfect shuffle permutations
P,I - Furthermore, if input and output data sequences are required in natural orde,
the input and output permutations need to be realized. All the permutation networks
are based on the shift-exchange units shown in Fig. 11(b) [98].

The basic permutation in the column H,SS) isalocal 4-point permutation illustrated in

Fig. 23(a). Let usremark that, in the proposed algorithms, thislocal permutation H,Sf)

4.2. Basic Permutation Units 53

1000
X X S
1 3 ! :
%, >< %, X3X2X1 X0~ +01.[BD)] B> X1 XaX3Xg
X X o :
a) 3 1 b) LEU
Co Ck-3 Ck-2

]]]

X2k_1X1XO e 0 B 0 B X2k_lX2k-l+1X1X2k-1XO
o i I. 1 >{D[D 1 (D]

Fig. 23. Block diagrams of the basic data permutation units: (a) signal flow graph of local
exchange operation, (b) local exchange unit (LEU), and (c) sequential 2¢-point per-
fect shuffle permutation network.

in (67) always exchanges the elements two elements apart regardless of the transform
size. Such an exchange can be performed effectively with a local exchange unit
(LEU), which is a single SEU, as shown in Fig. 23(b). The exchange operation is
performed when an appropriate control signal is provided. Consequently, the LEU
has the latency of two cycles.

The perfect shuffle permutations P, 2 between the processing columns can also be
realized with the aid of the SEUs. The 4-element perfect shuffle Pl » exchanges con-
secutive elements, thus asingle SEU1 can be used for this permutation. Respectively,
the 8-element perfect shuffle can be performed with the cascade of SEU, and SEU;.
In general, the sequential perfect shuffle permutation of a 2¢-element sequence can
be performed with a structure where k — 1 SEUs are cascaded in decreasing order
of size: SEUx 2, SEUx 3, ..., SEUx [97]. The latency of the resulting network is
YK-2(21) = 21 _ 1. The generalized block diagram of the sequential perfect shuffle
permutation network isillustrated in Fig. 23(c).

In the literature, the input and output permutations are often omitted in structures,
especialy in sequential structures, and only the transform kernels are considered.
When the DCT is targeted at an embedded system containing a programmable pro-
cessor, the input and output permutations can be realized efficiently with the index
addressing modes of the processor. Therefore, for the hardware structure, it is suf-
ficient to consider only the kernel operation of the DCT. On the other hand, when
the structure is utilized without external data permutation capabilities, the additional
input and output permutations are also required. However, let us omit the input and

54 4. Pipeline Structures for Perfect Shuffle Topology DCT

> SEU,4 P SEU, > SEU; | SEUg | SEU, 1> SEU, P{SEU161> SEUg | SEU4

Fig. 24. Sequential matrix transpose network for 2 x 2 k < 3, matrix.

output permutationsin details by noting that in the cases where the in-order input and
output are required, additional sequential permutation networks can be constructed.
E.g., for the Hadamard input permutation, the factorization in Theorem 4 can be ap-
plied while arbitrary permutations can be performed with a cascaded SEUs arranged
in increasing and decreasing order [98].

In the two-dimensional DCT based on the row-column decomposition, the matrix
transpose Py2 \ can be performed with the sequential matrix transpose network illus-
trated in Fig. 14. In order to support aso smaller powers of two matrix transposes
with the same network, the factorization in (26) can be applied k times in order to
have a decomposition

k—1

PNZ,N — H (|2i ® P2k+172k ® |2k—i—1> . (101)
i=0

With such an arrangement, the matrix transpose is performed as k perfect shuffle per-
mutations of 2N-item vectors. The size of itemsis doubled at each cycle, i.e., during
thefirst perfect shuffle permutation single elements are reordered, while the next per-
fect shuffle permutation reorders the items of two elements and so on, until in the kth
perfect shuffle permutation, theitem sizeisN /2 elements. Since each perfect shuffle
permutation is realized with the aid of k cascaded SEUs, the decomposition in (101)
results in network of k? cascaded SEUs as illustrated with an 8 x 8 matrix transpose
network in Fig. 24. The proposed transpose network possesses the same latency as
the network in Fig. 14 but requires more multiplexers. Consequently, smaller matrix
transposes can be performed by bypassing extra SEUs with appropriate control.

4.3 Fina Structures

The pipeline structure for the one-dimensional DCT can be constructed by mapping
each operational column in (86) onto the corresponding sequential unit described
previously. According to (85) the first processing column in the 2¢-point DCT is

AY = DY Fy. (102)

4.3. Find Structures 55

Therefore, the corresponding realization would be a cascade of the butterfly unit
and multiplier. The first operation column is followed by 4-element perfect shuffles,
which map onto a 4-element perfect shuffle network consisting of SEU;. The second
processing column is

ALY =M DY Ry, (103)

which is realized as a cascade of the butterfly unit, multiplier, and local subtraction
unit. Thisisfollowed by the 8-element perfect shuffles mapped onto the 8-point per-
fect shuffle network. The remaining (k — 2) processing columnsin (86) are realized
with a cascade of the butterfly unit, local exchange unit, multiplier, and local sub-
traction unit. The interconnections between the processing columns are in increasing
order and the last permutation is the 2X-element perfect shuffle.

The resulting pipeline structure without the input and output permutations is illus-
trated in Fig. 25(a). The structure yields arithmetic complexity of log(N) multipliers,
log(N) adder/subtracters, and log(N) — 1 adders. The latency of the proposed kernel
structure due to the data permutationsisN + 2log(N) — 4 cyclesfor an N-point DCT.
It should be noted that the structure supports also all the smaller transform sizes of
powers of two. However, this requires bypassing of certain arithmetic units and thus
exploitation of unified butterfly units UBUs instead of BUs. Moreover, the structure
can be freely pipelined since all the arithmetic units are in feedforward paths. 1n any
case, additional pipelining increases latency although improves the throughput.

According to the matrix decomposition in (89), the structure for the two-dimensional
DCT can be constructed by cascading two one-dimensional DCT structures with an
intermediate matrix transpose network. When the two-dimensional DCT is targeted
at the embedded system containing a programmable processor, the input and output
permutations as well as the latter matrix transpose can be combined as in (92) into
one permutation, which can be realized efficiently with the index addressing modes
of the programmable processor. Such an arrangement saves additional permutations
between the one-dimensiona transforms and, therefore, it is sufficient to consider
only the kernel operation of the one-dimensional DCT, i.e., C{, and matrix transpose
Pnzn- Theresulting structure for the embedded system is depicted in Fig. 25(b).

When the structure is targeted at the system requiring the complete DCT, the in-
tegration of the input and output permutations of the one-dimensional transformsis
not reasonable. Let us assume an arbitrary permutation of an 8-element sequence of

56 4. Pipeline Structures for Perfect Shuffle Topology DCT

o lbape

0) 2 (k-1)
) Ak Ak Ak A

b)_) DCT pPMTpP>| DCT *C)-)I/O* DCT pl/OpPIMTP1/O» DCT pPI/OP(MT P>

—)BUZ-)(:)) PSi @ PSB @ YY) @ LSUZ_)

— — T =
d) A(ZCL) ® A(zok) A(zlk) ® A(zlk) N A(sz) A(:k' Ve AKY

o

2

Fig. 25. Pipeline structures for regular perfect shuffle topology DCT: (a) one-dimensional
DCT, (b) two-dimensional DCT kernel based on row-column decomposition, (c)
complete two-dimensional DCT based on row-column decomposition, and (d) dir-
ect two-dimensional DCT kernel.

which permutation matrix is denoted by Pg. In this case, the maximum distance that
asingle element isto be moved isless than eight. If two such permutations are com-
bined as in (92), the complexity of the permutation can be seen from the following:

(Ps@Pg) = (Pg®1g) (Is®Ps), (104)

I.e., the maximum distance a single data element to be moved in a two-dimensional
case with a64-element sequence will be eight times greater than in aone-dimensional
case with an 8-element sequence. Since the data in the target structure isin sequen-
tial form, changing locations of data elementsin the data stream requiresintermediate
storage. The minimum number of storage locations needed to perform the permuta-
tion depends on the maximum distance a single element needs to be moved. There-
fore, in order to minimize the number of the storage locationsin the input and output
permutation units, the input and output permutations are not combined. The structure
for the complete in-order DCT isillustrated in Fig. 25(c).

The development of the two-dimensional pipeline structure based on the direct two-
dimensional DCT agorithm follows the same principles as the development of the
one-dimensional structure. By comparing the matrix decompositions of the one-
dimensional algorithm in (86) to the two-dimensional algorithm in (100), it can be
obtained that the structures will resemble each others. |.e., the number of stages
is the same but each stage A,(\'f) in the one-dimensional DCT is now replaced with
(A,(\f‘ '® A(NS)) as stated in (95). The decomposition of these stages can be mapped ver-
tically onto cascaded sequential units similarly to the stages of the one-dimensional

4.4. Case Study: Unified DCT and IDCT 57

transform. Therefore, the final pipeline structure for the two-dimensional DCT kernel
in (100) can be constructed by cascading the basic modulesin correct order as shown
in Fig. 25(d) and providing appropriate control signals. Let us remark that in order
to support smaller powers of two transforms, the intermediate outputs are required
into shift registers. The structure yields arithmetic complexity of log(N) multipliers,
2log(N) adder/subtracters, and 2log(N) — 2 adders. The latency of the pipeline due
to data permutationsis (N +1)(N +2log(N) — 4) foran N x N DCT.

4.4 Case Study: Unified DCT and IDCT

In several applications, where transforms are utilized, also the inverse transforms
arerequired. Therefore, a unified structure supporting both the forward and inverse
transforms is preferable. Due to the popularity of the 8 x 8 DCT in the current mul-
timedia applications let us consider only the unified 8-point and 8 x 8 DCT and its
inverse. In the following, the structure based on row-column decomposition is intro-
duced briefly whereas the unified structure based on the direct computation is also
implemented and compared to other corresponding state-of-the-art solutions.

4.4.1 Algorithms and Structures

The unified pipeline structure supporting both the DCT and its inverse can be con-
structed by considering first the individual one-dimensional transforms. The basis
for the derivation is the DCT algorithm defined in (86) of which 8-point signal flow
graph isillustrated in Fig. 26(a). The corresponding inverse DCT algorithm is ob-
tained by reversing the signal flow graph of the forward algorithm. In addition, the
signal flow graph is flipped vertically in order to minimize the latency of the imple-
mentation, i.e., to have the operands in sequential form available when the result is
needed. Finally, the algorithm is rescheduled for achieving the interconnections in
increasing order. The resulting signal flow graph of the 8-point IDCT is depicted in
Fig. 26(b). The previously described procedure for deriving algorithm for the inverse
transform applies also to the direct 2-D DCT algorithm in (100).

The vertical mapping of the processing columnsin the signal flow graphs of the DCT
and IDCT algorithmsin Fig. 26 results in pipeline structuresillustrated in Fig. 27(a)

58 4. Pipeline Structures for Perfect Shuffle Topology DCT

- Fg -.:D(so); - Fg ::D(sl);-'Mgl'): - Fg - ng) DY) M§
X V! ' : v I ! : " n df(]\-):: .
B

Fig. 26. Signal flow graphs of the 8-point (a) DCT and (b) IDCT.

and (b), respectively. These separate structures imply that a unified structure sup-
porting both transforms could be constructed by providing additional data paths to
reverse the data flow of the DCT pipeline for the IDCT computation. Such an ap-
proach would, however, introduce high routing costs and complicated control. A
more efficient solution is obvious when comparing the structures in Fig. 27(a) and
(b); the DCT and IDCT pipelines can be mapped onto a unified processing pipeline.
Such astructure supporting both the 8-point DCT and IDCT isdepicted in Fig. 27(c).

The type of the transform can be easily selected by providing appropriate control
signals to the different units. According to the signal flow graph in Fig. 26(a), the
8-point DCT can be computed by using the first UBU for the butterfly operation,
bypassing thefirst SEU-, unit and the second butterfly unit. The 4-point perfect shuffle

4.4. Case Study: Unified DCT and IDCT 59

> UBU &) > PS, > UBUPX» UBU P PS, P UBU P LEU P&X» UBU P>
4 8

p) “1UBY >()> LEU > UBU > PS, > UBU &> UBU > PSq >X)> UBU P

> UBU P> LEU P UBU P> PS, P UBU P&X)» UBU > PS, P UBU P LEU PX» UBU P>
C) 4 fe]

Fig. 27. Block diagrams of the 8-point DCT kernels: (a) DCT, (b) IDCT, and (c) unified
DCT/IDCT.

Isrealized with asingle SEU1 denoted as PS,. The third and fifth UBUs are used for
the butterfly operations, while the fourth and sixth UBUs compute local subtractions.
The 8-point IDCT, in turn, can be computed by bypassing the last SEU, unit and the
second to last butterfly unit. The other UBUs are controlled according to the signal
flow graphin Fig. 26(b).

In some cases in-order data may be preferred, and therefore, the additional input
and output permutations are required. The permutation network should be capable
of performing required input and output permutations for both DCT and IDCT. By
comparing the input and output permutations of DCT and IDCT, it can be noticed that
an application-specific permutation network depicted in Fig. 28(a) can perform all
needed permutations. The only drawback of the unified network isincreased silicon
area, since each SEU can be bypassed with appropriate control without extra latency.
Therefore, the latency of the unified input and output permutation network varies
from four sample cycles to seven cycles depending on its function. The operation of
the unified input and output permutation network isillustrated with the aid of timing
diagramsin Fig. 28(b)—(e).

When the unified two-dimensional structure based on the row-column decomposition
Is targeted at the embedded system containing a programmable processor, it is con-
structed by cascading DCT/IDCT kernel in Fig. 27(c), the matrix transpose network
MT and DCT/IDCT kernel as illustrated in Fig. 29(a). The only difference to pure
two-dimensional DCT structure is the unified transform kernel. When the structure
Istargeted at system requiring the complete DCT or IDCT, the input and output per-
mutations of the one-dimensional transformsareincluded into pipeline structure asil-
lustrated in Fig. 29(b). Correspondingly, the structure utilizing the direct computation
of the two-dimensional transform resembles the unified one-dimensional DCT/IDCT
kernel structure in Fig. 27(c), i.e., each processing unit is only replaced with the

60 4. Pipeline Structures for Perfect Shuffle Topology DCT

INDOD23@EE670000000
sely OPRPEORY sl 0@2672ECO0CO00

C0—| [] [[Co M !

Jo HOSRSIB A 00@2D06@EE000000
se0g RIS S 00@DEeDEE000000

cofl T LITL___ T1L c1

T, DO0000EETDERE000 71 PO0@2D67a6000000
SEU; R SEUS[T AT &I

coll [M1 M1 ca| | M7 [

T, NOO00CC0DR@DERE0 T, NO000T2aR6ED0000
SEUS SEUS U

C3 03_| []

b) OUTDOOOCOCOTEEDE280 ¢ OuTHOOOO0MREEEED000
ck JUUUUUUUUUUUUULL ck JUUUUUUUUUUUUULL
INDOD23EEB870000000 INDBREDABT00000000

SEU,[U U U U SEU,[U U U U
colJ LI LT LI LI LT L col [LILIT LI LI Lf Ll
T, 00003 25876000000 T, 0026T63@00000000
SEUS[X SEUS[X
) o I I N Iy I 1|l [
T, DOO0OTBRT0BR6000 T, DO0002ET06@ED000
SEU; T A SEU; X
C2 LT LI coll [[
T, POO0COCORBIDTR60@0 T, POO0COOT0REE@ED0
SEU? VAVAVAY SEU? U
oze 5 I I I I I c3|l 1] 1
d) OuTPOOOOCOCERDIER@0 ¢ OUTPOOOCOCORDRRABED

Fig. 28. Unified input/output permutation network: (a) block diagram and timing diagrams
for (b) DCT input, (c) DCT output, (d) IDCT input, and (e) IDCT output permutation.

corresponding direct two-dimensional units as shown in Fig. 29(c). By providing ap-
propriate control sequences and coefficients, thefinal pipeline can be used to compute
either 8 x 8 DCT or IDCT aswell as the corresponding one-dimensional transforms.

The previously described approach can be used to design the unified pipeline struc-
tures for the larger transform sizes as well. However, the transforms larger than
16 points require more redundancy since interconnections of the forward and in-

4.4. Case Study: Unified DCT and IDCT 61

3 "> iocTipeTls{mMT{peTipeT R

b) "o {pctioct{ o[t |>{io >{pctincTl o Mt ST

0 >UBUZXP>|LEU?>UBUF>| PSZ UBUPX>UBUA PS3 P UBUA LEUZX)>UBUZ>

Fig. 29. Block diagrams of the unified two-dimensional DCT/IDCT: (a) kernel based on the
row-column decomposition, (b) complete transform based on the row-column de-
composition, and (c) kernel based on the direct computation.

verse transforms cannot be mapped onto a common interconnection topology. Let
us remark that the one-dimensional structures supporting N-point, N = 2¥, trans-
forms supports also smaller powers of two transform sizes. In the two-dimensional
structures exploiting the row-column decomposition, this requires that the matrix
transpose network based on the perfect shuffle decomposition in (101) is used for
transpose. Instead in the structures using the direct computation, the intermediate
outputs are required into the shift registers.

4.4.2 Implementation of Direct 8 x 8 DCT/IDCT

In order to determine an internal word length for the fixed-point implementation of
the two-dimensional pipeline structurein Fig. 29(c), the error behaviour of the struc-
tureis analyzed against an |EEE specification [40] with Matlab. The simulations are
performed with different word lengths and using rounding and truncation of two's
complement quantization methods. The coefficients d; are given as long as the in-
ternal word length but rounded down in magnitude. Briefly, the required word lengths
for the implementation are 19 and 23 bits for rounding and truncation of two’s com-
plement, respectively.

The pipeline structure based on the direct computation of the two-dimensional trans-
form in Fig. 29(c) has been described as a data path with Module Compiler Lan-
guage and synthesized with Synopsys Module Compiler onto a 0.11 um standard
cell CMOS technology. The adder/subtracters in the UBU have been implemented
as carry-look-ahead (CLA) adders, because the data width being 19 bits CLA type
of adders are the fastest and the area of CLA-adders is only dlightly larger than the
area of 19-hit ripple-carry adders. The multipliers have been implemented as non-

62 4. Pipeline Structures for Perfect Shuffle Topology DCT

Table 1. Characteristics of the 8 x 8 DCT/IDCT pipeline implementation.

Technology 0.11 um CMOS
Function 8x8DCT or IDCT
Internal word length 19 hits
Frequency 253 MHz
Latency 94 cycles
Gate count 39424

booth multipliers, which include one 2-to-1 multiplexer at the output. With the aid of
the multiplexer multiplier can be bypassed and thus, multiplication with one is also
possible with fractional numbers. The data permutations correspond exactly to the
presented block diagrams. The characteristics of the implementation are summarized
into Table 1 where the gate count is given as equivalent 2-input NAND gates.

The functionality of the data path has been verified at a register transfer level and
gate level with the aid of structure illustrated in Fig. 30. Since Module Compiler
enables optimization of high performance data path captured at the structural level of
abstraction but is not suitable for synthesizing general logic, e.g., random Boolean
logic or state machines, the control for the DCT/IDCT data path is described with
VHDL. The control isrealized trivially as a 64-state state machine, which generates
al the control signal and coefficients to the data path.

In order to compare the proposed pipeline structure to other previously proposed
structures, we have used the unified 8 x 8 DCT/IDCT asthe reference. The complex-
ity of the structures is estimated based on the number of arithmetic units, multiplex-
ers, and delay registers. Multiplexers are estimated as equivalent 2-to-1 multiplexers.
The comparison is summarized in Table 2. In general, the complexity of the data
permutations is reflected by the number of the multiplexers and registers. In this
sense, the proposed two-dimensional algorithm has lower overall permutation com-
plexity than the algorithms used in the other structures. The DCT agorithms used
in [36, 59] possess a regular kernel followed by post-processing columns, which in
Inverse transform are mapped onto pre-processing columns. This implies that addi-
tional adders are needed to support both the transforms. In the proposed algorithms,
theirregularitiesarelocalized into processing columns, thus the same arithmetic units
can be used to realize the irregularities in both the forward and inverse transforms.

4.4. Case Study: Unified DCT and IDCT 63

1---—> Clock
1 46 46
Clock —f —1 Clock Control &> ~~> Control
57 57
Resst — 2> Rest Coefficients >~ Coefficients
19 19
Enable —t>— Enable 2—> Rest SampleOut >~ SampleOut
Transform —------ — Transform 3-—-—>{ Enable
"1'=DCT, '0'=IDCT :
() Control Unit
19 19
Sampleln 7= —>| Sampleln
Data path

Fig. 30. Block diagram of the verification environment of the DCT/IDCT.

This is reflected by the number of adders or adder/subtracters. Finally, it should be
noted that the proposed pipeline includes also the scaling factors by, in (36), which
are often omitted as, e.qg., in [36].

In general, fully sequential, unified DCT/IDCT pipeline structures based on direct
computation over the two-dimensional data are really rarely reported. However,
based on the complexity estimates presented in Table 2, the sequential pipeline struc-
tures represent state-of-the-art from the hardware complexity point of view. There-
fore, the proposed pipeline implementation is compared more carefully only to the
most relevant reference design presented in [36]. In order to be fair in comparison,
al the multiplexers are estimated as equivalent 2-to-1 multiplexers and pipeline re-

Table 2. Comparison of the 8 x 8 DCT/IDCT structures.

Structure :

~Madisetti and Willson [68] © 7 : : ' recursive, R-C
Leeet al. [59], folded 28 134 256 . pipeline, D
Leeet al. [59] 24 53 128 . pipeline, R-C
Katayamaet al. [52] 7 5 >10 : recursive, R-C
Lim et al. [63] 64 64 492 0 0 systolic, R-C
Hsiao et al. [36] 4. 14 216 18 0 pipeline D
proposed 3 121 180 44 0 pipeline, D

...

x: Number of multipliers. 4+/—: Number of adder/subtracters R: Number of registers. M: Number of 2-to-1
multiplexers. mem: Number of memory words. D: Direct two-dimensional approach. R-C: Row-column
computation.

64 4. Pipeline Structures for Perfect Shuffle Topology DCT

Table 3. Gate count estimates for the basic units (area optimized / speed optimized).

W X +/— R M

19 | 2088/3288 | 290/ 1279 | 95/109 | 39/ 151
x: Multiplier. +/—: Adder/subtracter. R: Register. M: 2-to-1 multiplexer.

gisters are not included. The error behaviour of the reference structure is analyzed
with exactly similar procedure as the presented structure. In addition, all resources
required for implementation are assumed to be similar from the same standard cell
technology. The assumed gate counts of area and speed optimized resources with the
required word length are collected into Table 3. Altogether, the presented implement-
ation exhibits improvement in estimated gate count as summarized in Table 4. Let us
remark that both structures can be designed for the same throughput rates due to the
fact that arithmetic units are not located in feedback loops in either of the structures.

4.5 Summary

Since regularity of the perfect shuffle topology DCT agorithms allows efficient util-
ization of temporal parallelism, each operational column can be mapped onto a cor-
responding sequential unit. By cascading these basic modules in correct order and
providing appropriate control signals, the new modular single-rate pipeline struc-
tures can be constructed. Due to recursive description of the DCT algorithms and
correspondence between operational stages and basic modules, the structures can be
extended to support larger transforms.

The structures can be freely pipelined since all the arithmetic units are in feedfor-
ward paths. Furthermore, the one-dimensional structures support also all the smaller

Table 4. Comparison of the fully sequential unified DCT/IDCT pipelines.

Structure x| +/—] R|M|W/| GateCount

Hsiaoetal. [36] | 4 | 14 | 216 | 18 | 19 | 33634/57 320
proposed 3| 12 | 180 |44 | 19 | 28560/ 51 476

x: Number of multipliers. 4+/—: Number of adder/subtracters. R: Number of registers.
M: Number of 2-to-1 multiplexers. W: Required word length

4.5. Summary 65

transform sizes of powers of two with appropriate control when basic arithmetic units
with a bypass path are exploited for computation. In the two-dimensional structures
exploiting the row-column decomposition, this requires also that the matrix transpose
network based on the perfect shuffle decomposition is employed for transpose. The
two-dimensional structures exploiting the direct algorithm support one-dimensional
transform but in order to support smaller powers of two transforms, the intermediate
outputs are required into shift registers.

The regularity of the algorithm and the modularity of the structure have been ex-
ploited when mapping the 8 x 8 DCT and its inverse onto a common pipeline struc-
ture with minimal redundancy in the amount of hardware. Due to distribution of
the irregularities between butterfly columns, both the DCT and IDCT algorithms can
be mapped onto same resources. The resulting structure for the 8 x 8 DCT/IDCT
has been proven to be area-efficient compared to other reported solutions. In or-
der to prove the feasibility, the demonstration pipeline implementation of the 8 x 8
DCT/IDCT isbased on the data path model of the structure. When synthesized onto a
0.11 um standard cell CM OS technol ogy, the DCT kernel occupies 39 424 equivalent
2-input NAND gates achieving the operation frequency of 253 MHz.

66

4. Pipeline Structures for Perfect Shuffle Topology DCT

5. VARIABLE LENGTH CODING

In general, any data can be interpreted to consist of symbols, whatever they are. The
ultimate purpose of compression is to represent the set of symbols in source data
with minimum number of bits. Thisis achieved by representing frequently occurring
symbols with shorter codewords. Such a coding method resultsin variable codeword
lengths hence the name variable length coding (VLC). An example of such a coding
technigue is the well-known Huffman coding. The inverse procedure for VLC is
variable length decoding (VLD).

In this chapter, the variable length coding process and the properties of the variable
length codes are introduced briefly before going into the actual topic of the chapter,
I.e., the variable length decoding on hardware or in short, variable length decoders.
Our objectiveisto develop anovel scheme for decoding multiple symbolsin parallel.
Since only a few multiple-symbol decoders have been reported, surveys gathering
them up are missing. Therefore, in the following, some variable length decoders are
collected together and reviewed especially with respect to paralel multiple-symbol
decoding. The chapter is closed with a brief summary.

5.1 Définitions and Properties

L et us assume an information source that consists of symbols sx with probabilities py
inasetS={s1,...,Sn}. Thetheoretical lower bound on the average number of bits
required to represent a symbol in the given set is defined by entropy H [93]

H=—) pxlog, pk. (105)
S

In other words, entropy defines the average amount of information contained by a
symbol. In order to reach entropy, noninteger codeword lengths are needed. A vari-

68 5. Variable Length Coding

able length coding method approaching the lower bound with noninteger codeword
lengths is arithmetic coding [23, 88, 89], which is, however, omitted in this Thesis.

Instead, suboptimal compression can be obtained with integer codeword lengths and
a coding method providing the shortest integer length codewords is Huffman cod-
ing [39]. Huffman presented a method to construct a minimum-redundancy code,
I.e., the average number of coding digits per message is minimized. Huffman’s cod-
ing method is based on the following five theorems:

Theorem 9. Each codeword c is unique.

Theorem 10. Codewords are constructed in such a way that boundary information
Is not needed to specify the beginning or end of the codeword once the starting point
of the encoded data stream is known.

Theorem 11. The more probable symbol, the shorter codeword;
PL>pP2>...2pp1>pPn = L<h<. . <=l (106)

where Iy is used to denote the length of the codeword cy corresponding symbol sy.

Theorem 12. Two least probable symbols should have the same codeword with the
exception of the last bits.

Theorem 13. Each possible sequence of length |, — 1 bits must be used either as a
codeword or must have one of its prefixes used as a codeword.

The Huffman coding procedure, i.e., the creation of a Huffman tree isillustrated in
Fig. 31 where the notation for the symbolsissy(pk). First, all the source symbols A—
F on the left are ordered in decreasing order according to their probabilities given as
percentages in parentheses. Then, two least probable symbols E and F are connected
with edges 1 and 0O, respectively, to a new node of which probability is equal to the
sum of the probabilities of two least probable symbols, i.e., 10%. Subsequently, the
resulting node is interpreted as a new symbol. This procedure is repeated until the
root node with probability of 100% isformed. Finally, the codewords are obtained by

5.1. Dfinitions and Properties 69

A(40)
A(40)
B(25) 509
C(15) A(40)
D(10)

E®)
FOS)

Fig. 31. Example of the Huffman coding.

tracing the tree back to source symbol. Huffman coding results in a codeword table
in which average codeword length I, is

Iav = z pklk- (107)
S

The resulting codeword table and the related statistics for the encoding example in
Fig. 31 are summarized in Table 5.

To summarize the main features, the Huffman coding is a block-based coding method
meaning that each symbol has a fixed codeword. The resulting encoded data stream
consist of consecutive codewords without explicit boundary information. This intro-
duces a sequential dependency which complicates a decoding process. The Huffman
code is nonsingular and instantaneous, i.e., al the codewords are distinct and no
codeword is the prefix of some other codeword. It is a lossless coding technigue,
meaning that data can be fully reconstructed without any distortion or noise. On the
other hand, it is error sensitive in the sense that a possible bit error may propagate

Table 5. Summary of the Huffman coding example.

sk | Px | —pelogopk [o [k[pilk
A | 40 053 |0 1 0.40
B |25 0.50 | 10 2 0.50
C |15 0.41 | 110 3 0.45
D | 10 0.33 | 1111 4 0.40
E 5 0.22 | 11101 | 5 0.25
F| 5 022 | 11200 | 5 0.25
H =220 lay = 2.25

70 5. Variable Length Coding

far; decoding may be continued but nearly all symbols are incorrect until the last bit
of a decoded data sequence coincides with the last bit of the correct codeword in
sequence [73]. Loss in coding efficiency with respect to entropy is due to the fact
that the Huffman coding always encodes a source symbol with an integer number
of bits. However, the average codeword length approaches the entropy with infinite
block size. On the other hand, the complexity of the coding procedure will be out of
control.

In principle, the Huffman coding is adaptive coding, i.e., the codeword table is de-
pendent on source data and its statistics. However, by analyzing huge amount of
typical data, the achieved statistics can be exploited to approximate data of the same
type. Consequently, the fixed codeword table with reduced number of codewords
based on the Huffman procedure can be defined for coding and decoding. The pos-
sible symbols that do not have codeword are passed with the aid of an exceptional
fixed length code. As aresult, the compression efficiency is also sacrificed. In any
case, the corresponding approach have been utilized in several applications, e.g., in
MPEG-2 [45]. Also in this Thesis, the discussion is limited to the decoding of pre-
specified variable length codes.

5.2 Variable Length Decoders

In this Thesis, the objective is the decoding of variable length codes, i.e., the variable
length decoding on hardware. The principal block diagram of the VLD isillustrated
in Fig. 32. A codeword is detected from a block of the variable length coded input
stream and this codeword is used to determine the actual symbol with the aid of
predefined codeword values, i.e., a codeword table. The input stream is then aligned
according to codeword length for the next decoding iteration. In general, there is
no explicit boundary information for detecting the end or beginning of the codeword
in the encoded data stream. Therefore, the length of the current codeword should
be known before the next codeword can be decoded. This feature complicates the
decoder design substantially and limits the performance.

The decoding structures for variable length codes can be characterized according to
the parallelism of the data processing. The bit-serial processing refers to the sequen-
tial, bit-by-bit processing of the encoded bit stream at constant rate. Correspond-
ingly, the bit-parallel processing refers to the processing over severa bits at a time

5.2. Variable Length Decoders 71

Variable Length E:> E:>
Coded Data Codeword(s) Symbol(s)

Buffering
Codeword Symbol .
Input —> & > petection [7| Look-up || Buffering — Output

Alignment
T length

Fig. 32. Block diagram of the generalized variable length decoding.

in aparallel manner. Similar characteristics can be given according to the number of
codewords to be decoded or symbols obtained from the output. A traditional VLD
method is to decode one symbol at atime in a symbol-seria fashion. Instead, the
symbol-parallel or multiple-symbol decoding refers to decoding of several symbols
at atime. In the following, existing variable length decoders are overviewed accord-
ing to previous categorization.

5.2.1 Seria Decoders

Bit-serial decoders, also referred to as tree-based decoders [9], decode an input data
stream sequentially bit-by-bit. The encoded input stream is compared to abinary tree
starting at the root of the tree until the entire codeword is detected in the leaf node
corresponding the symbol. In [65, 66], Lin and Messerschmitt considered variable
length decoder as the implementation of a special finite-state machine (FSM) which
does not always return output. Such aFSM for the Huffman tree given in the example
inFig. 31isillustrated in Fig. 33(a). The sequential FSM can be realized with aread
only memory (ROM) as depicted in Fig. 33(b) where codeword table is assumed to
consist of 256 codewords for 8-bit symbols[10]. Briefly, each node is stored into the
ROM asthe states of the FSM. In addition, the ROM consists of status bitsindicating
whether the state corresponds to aterminal node in the Huffman tree, i.e., asymboal,
or isused asabasisto the next address. The same status bit isused to reset the address
register when the symbol is found. In other words, the read address is constructed
from the current state and the incoming bit.

Another way to realize the decoder as the inverse interpretation of the Huffman tree
Is to implement branches as demultiplexers and terminal nodes as storage locations
containing corresponding symbols. In [9], Chang and Messerschmitt presented the
structure illustrated in Fig. 34. A token, i.e., a pointer to the current stage, is for-

72 5. Variable Length Coding

1E

OF

date

address ROM | 1 | Output»%/mbd

clk —»|register r .| Buffer
t status
h
Variable Length
b) Coded Data

Fig. 33. Variable length decoding as a finite-state machine: (a) Huffman tree with its state
diagram and (b) block diagram of the FSM-based variable length decoder [10].

warded through the demultiplexers according to the encoded input stream. When the
token enters the storage location, the symbol is returned. The similar approach has
been used in the decoder proposed by Mukherjeeet al. in[77] whereindividual stor-
age location for the symbols have been replaced with a common ROM or a balanced
binary tree module returning the symbol. Drawback in these approaches is that they
are not programmable but the decoder needs to be redesigned for different codeword
table. Also the support for adaptive codes would require too much hardware [76].

Instead of the direct implementation of the Huffman tree, the variable length decod-
ing can be performed with a single processing unit consisting of control logic and a
arithmetic unit in addition to asymbol memory. In principle, the symbols are mapped
onto the memory according to a mapping scheme in such away that the address for
reading a symbol can be determined with the aid of basic arithmetic. E.g., the nodes
are numbered and symbol is found by tracing the tree back by accumulating the off-
sets given to edges [76, 78]. Since such mapping schemes can be applied to different
codeword tables and the contents of the memory can be changed, the memory-based
structures are considered to be programmable. In other words, the same hardware
can be used for any type of tree based codes. Consequently, the structure is aso
applicable for adaptive codes.

5.2. Variable Length Decoders 73

Variable Length Coded Data

Fig. 34. Direct mapping of the VLD onto demultiplexers and storage locations [9].

In [81], Park and Prasanna proposed a memory-efficient scheme for mapping the
Huffman tree onto a memory in which nodes are numbered starting from the root
and proceeding from left to right at the each level. The termina nodes, i.e., sym-
bols are mapped onto one memory in increasing order according to node numbers.
Furthermore, the numbers of the terminal nodes at each level are stored into another
memory. The read address during the decoding is determined according to the input,
current level, position of the node from the leftmost node at the current level, and the
accumulated number of the symbols at the previous levels.

In the bit-serial decoders discussed so far, the comparison is performed with a con-
stant input rate, one bit per cycle, until the entire codeword is detected in the corres-
ponding leaf node. Dueto the variable codeword lengths, the serial processing results
in avariable output rate. Short decoding timeis achieved only with short codewords.
However, under hard real-time constraints, the required output rate should be ful-
filled also with long codewords, thus the performance is defined by the latency of the
long codeword processing. Furthermore, the serial processing is not applicable for
multiple-symbol decoding with a single data stream due to the recursive dependen-
cies between the codewords.

5.2.2 Parallel Decoders

For improving the decoding performance, bit parallelism can be increased by compar-
ing simultaneously several bits of the incoming bit stream to the Huffman tree. Such
an approach with amemory-based codec structure has been introduced by Mukherjee
et al. in[76,78]. The approach requires some overhead in control logic compared
to the bit-serial approach but the average throughput is directly proportional to the
number of bitsto be processed at atime. In other words, the input rate is maintained

74 5. Variable Length Coding

% VarigbleLength
dignment information] 4 4 CodedDaa
Buffer
Accumulator v

/ Symbol
Look-up

lengthl_— T | symbol

Fig. 35. Block diagram of the parallel constant output rate decoder.

constant, several bits per cycle, but the output rate is still variable as in the bit-serial
approach. Therefore, the limitations of the bit-serial decoders apply also to this kind
of parallel variable output rate decoders.

In order to guarantee asymbol for each cycle, Lel and Sun in[62] presented aparallel
constant output rate decoder in which the number of bits buffered for the decoding at
atime is equal to the longest codeword length. The principal block diagram of the
decoder is depicted in Fig. 35. Briefly, ablock of the encoded bit stream is buffered
and matched with the stored prespecified codewords in a symbol look-up of which
look-up table (LUT) can be implemented with a ROM, programmable logic array
(PLA), or random access memory (RAM). Consequently, the corresponding symbol
Is returned and the codeword length is accumulated with the accumulator of which
value is used as a pointer to the correct location in the buffered bit stream. Further-
more, the accumulator triggers the reloading of the buffer with new data. 1n [103],
Sun improved the structure by removing the accumulator from the feedback |oop.

Both the variable and constant output rate decoders have been reported during the
years. Nevertheless, acommon feature in the parallel decoders has been that they use
shifter for aligning the input stream. Such an arrangement forms a feedback loop.
Instead in [90,91], Rudberg and Wanhammar replaced the shifter with a shift register
while otherwise the decoder resembles other paralel pipelined decoders. However,
the decoder, which isillustrated in Fig. 36, can be characterized as a hybrid between
the serial and parallel decoder, i.e, it is a paralel pipelined decoder with the be-
haviour of the serial decoder. In short, the shift register receives sequentially the
encoded data stream. A pipelined length decoder checks codeword lengths until the
matching length is found and returned. The feedback from the length decoder to
the shift register is not needed but it is replaced by a synchronous reset signal to a
counter. In principle, the maximum operation frequency is limited by the delay of a
single logic gate.

5.2. Variable Length Decoders 75

]
VaidbleLength 1 (o : B
Coded Dt —>Shift Register IE

Y
Pipelined L[Symbol | Symbol
Length Counter —{ Look-up
Decoder reset |start
Counter
reset

Fig. 36. Block diagram of the loop-free parallel decoder.

Despite of the output rate, variable or constant, the main contributions to devel opment
of the parallel variable length decoders are related to the partition of the codeword
table into groups and mapping them onto memory with the best possible memory
space utilization. In [76, 78], Mukherjee et al. proposed a memory mapping scheme
for the bit-parallel tree-based decoding in which a distinct memory location is de-
termined for each node in such away that each edge is considered as an offset to its
parent node. Consequently, the location of the symbol is determined by accumulating
the offsets. Leeet al. in [60] continued the memory mapping scheme devel opment
along the same direction with a 2-bit tree-based decoding. In this approach, the nodes
have been coded with 3-bit node codesto indicate the type of the node, i.e., if the node
has all child nodes |abeled with two bits, it has at least one child node labeled with a
single bit, or it isaterminal node. In addition, the nodes of the same parent node are
merged into a group. The node codes of the group and the symbols are stored into
own memories. The approach yields about 20% reduction in the total memory space
compared to Mukherjee's approach [61].

In [80], Ooi et al. presented a codeword table segmentation technique in which
couple of bits are traced at atime. A variable length decoding data table consists
of three separate data fields. 1) the next address for the node having children or a
symbol for the terminal node, 2) a shift quantity for the incoming bit stream, and
3) atermination status. Consequently, either the symbol or continuation to the next
segment can be concluded according to the traced bits. Correspondingly, Hashemian
in[29,30] presented atree-based decoder applying atechnique where variable length
codewords are ordered and grouped according to their lengths. Instead in [17], Choi

76 5. Variable Length Coding

and L ee presented an approach to partition codewords in a single-side growing tree
into two clusters: regular bit pattern like a prefix code and second cluster identifying
codeword. Similarly in [82], Park et al. exploited leading zeros for partition of the
codeword table.

While smaller memories through the efficient mapping schemes provide faster ac-
cesses to symbol memory, another key issue in the decoder design is the fastest pos-
sible search. Traditionally, codewords are detected with a pattern matching based on
logical functions as presented, e.g., by Lei and Sun in [62]. Choi and Leein [17]
achieved improvement with the clustering approach and performing the parallel pat-
tern matchings with smaller patterns. Correspondingly, Hsieh and Kim in [37] ac-
celerated pattern matching by presenting a technique to exploit maximum likely bit
patterns for grouping the codewords. By storing some additional data for the nodes,
Leeet al. in[61] introduced atechnique to perform codeword prediction. With such
an arrangement, the next node information can be accessed simultaneously with the
incoming bit stream. However, the approach will increase the hardware complexity
and therefore, it is more applicable in a processor-based platform reported by Shieh
etal. in[95].

In [100], Simaet al. presented a variable length decoding approach to improve the
performance of a general purpose processor by augmenting it with an FPGA-based
variable length decoder. The decoding has been implemented as parallel 1ook-ups
into codeword groups followed by the selection of the valid symbol. The resulting
variable length decoder is illustrated in Fig. 37. Briefly, a codeword table is parti-
tioned into groups according to characteristics of the design platform, i.e., the used
FPGA, and these groups are mapped onto LUTSs referred as group decoders. The
decoding is started by forwarding bit fields from a block of the encoded bit stream to
the parallel group decoders and performing parallel matching with codewords. Each
group decoder returns the symbol value as if the generated symbol was valid. The
selection of the proper symbol is done according to leading bits in a group detector
which determine the correct group.

In addition to utilization of leading characters, Wei and Meng in [121] exploited also
the numerical properties of the variable length coding tables specified in JPEG stand-
ard [44] and replaced the traditional pattern matching with arithmetic operations. The
approach is based on the property that codes of the same codeword length are numer-
ically sequential. Hence, the symbol can be returned with the aid of a minimum code

5.2. Variable Length Decoders 77

VawableLength N Group S~
Coded Data "| Decoder

Group
Decoder

.| Group
Decoder M uXx

Group 6:1
Decoder

Group
Decoder

.| Group N
Decoder /J{
Group Detector &

Length Estimator —> Length

A4

—> Symbol

A4

Y

Fig. 37. Block diagram of the parallel group-based decoder.

defining the length and an offset with respect to the minimum code. In [96], Shieh
et al. continued the development of the VLD based on the arithmetic operations by
introducing a pseudo constant length code and inter-group symbol memory mapping.
Briefly, the codeword lengths are equalized by adding zeros after the codeword. The
resulting pseudo constant length codewords can be identified unambiguously due to
Instantaneous nature of variable length codes. Consequently, the pseudo constant
length codewords having the same length as the longest variable length codeword
can be treated as individual binary numbers and ordered numerically in sequential
order.

So far, we have been discussing on high throughput variable length decoding without
paying any attention to power consumption. Let us next outline roughly the main
approaches used in alow-power design. For the data alignment, a low-power barrel
shifter has been proposed by Lin and Jen in [64]. Since LUTs consume considerable
amount of power in the VLD, the size of the LUTs can be decreased, e.g., with the
aid of prefix decoding in the codeword detection like Choi and Lee in [17] or par-
titioning of the symbol look-up as Rudberg and Wanhammar in [91]. By using the
property that the short codewords are more probable, the average power consumption
can be decreased by breaking long codewords into parts and consequently reducing
the size of the codeword detection as reported by Cho et al. in [16]. Furthermore,
the frequencies of the codewords and the energy consumption estimates for the LUT
partitions have been used as a basis for the partition of the codeword table into vari-

78 5. Variable Length Coding

able size LUTs. The approach can be further improved by taking the probabilities
of successive short codewords into account and employing additional small LUTs as
proposed by Lee and Park in [58].

The bit-parallel processing offers the improved throughput at the price of increased
hardware and control complexity while the data dependencies between codewords
still exist and limit the overall performance. In other words, in the bit-parallel decod-
ing, the encoded data stream needs to be buffered and shifting is always required after
the determination of the codeword boundaries. Moreover, according to the properties
of the variable length codes, the shorter codewords are more probabl e than the longer
ones. Hence, most probably ablock of bitsin theinput stream contains more than one
codeword. Therefore, decoding more codewords at a time and decreasing the need
for shifting may further improve the decoding performance. These facts encourage
studies towards multiple-symbol decoding to be discussed in the following.

5.2.3 Multiple-Symbol Decoders

In multiple-symbol or symbol-parallel decoding schemes, the major design issue is
to break the data dependencies between the codewords. Another issue isthe manage-
ment of the increasing hardware and control complexity, especially when large code-
word tables and long codewords are used. Let us remark that the memory mapping
and search techniques discussed with the parallel decoders in the previous section
are also applicable to the multiple-symbol decoding. Moreover, a paralel decoder,
which operates on a buffer whose size is equal to the longest codeword, is the natural
basis for the multiple-symbol decoder design since often a block of bitsin the input
stream contains more than one codeword.

Chang and Messerschmitt in [9] presented a multiple-symbol variable length decoder
for short codewords. The constant output rate variable length decoder presented
earlier by Lei and Sun in [62] has been extended to decode more than one codewords
per cycle when possible. In the resulting decoder illustrated in Fig. 38, the output
field of the PLA-based symbol look-up contains now several symbols and an addi-
tional field indicating the number of the symbolsthat are returned. Consequently, the
decoding performance of this variable input / variable output rate multiple-symbol
decoding scheme is constrained by the increased complexity and incurred delay pen-
aty of the PLA [10].

5.2. Variable Length Decoders 79

aignment Variable Length Coded Data

information f’\'
Buffer
Accumulator ¥

Symbol
L ook-up

Iength4‘ i l

Symbols Symbol count

Fig. 38. Block diagram of the variable 1/O rate multiple-symbol decoder.

In [37], Hsieh and Kim presented a multiple-symbol VLD agorithm in which object-
Ive is to speed up the decoding process by matching two or more shorter or, in other
words, more probable codewords in parallel. The principal structure of the resulting
decoder isillustrated in Fig. 39. Thefirst pattern matching unit includes all the code-
words, while the rest of the units consist of the shorter and more probable codewords.
Each pattern matching unit returns group and length information of the possible code-
word and therefore, combinatorial logics and barrel shifters are required to manage
the RAM-based symbol look-up and provide the alignment information for the next
decoding cycle. The method can be extended to decode also long codewords in par-
alel but it is often impractical due to too many possible combinations. In order to
find a compromised solution for the decoder in terms of system requirements like
decoding performance and cost, a systematic approach has been outlined by Hsieh
in[38].

In addition to decoding only short codewords in paralel, the increasing complexity
can be managed by restricting the number of the symbols per cycle. E.g., in the
illustration in Fig. 39, at most two symbols are returned at atime. If there are sev-
eral consecutive long codewords in the data stream, the decoding approach yields
the same throughput as the parallel decoding. However, the approach decodes short
codewords simultaneously, which will not result in the tremendously high cost of
hardware but will increase the average throughput.

The multiple-symbol decoders discussed so far have been based on the fact that often
ablock of bitsin the input stream contains more than one codeword. In general, this
kind of decoders have variable input and output rates. The increasing complexity
has been managed by restricting the buffer size, the number of symbols or decoding
only short codewords simultaneously. An alternative approach is to keep the output

80 5. Variable Length Coding

alignment information

l I
Varlablelbe;gthL Buffer Ny Mpgéﬁgg R .
Pattern 2 ol Symbol | |
Matching| | 5 @[| Look-up Symbol
| Pattern g oD
Matching| |8 o
& =| | Symbol |
. xé: g Look-up Symbol
: o)
Pattern | ©
Matching

Fig. 39. Block diagram of the group-based multiple-symbol decoder.

rate constant but to produce more than one symbol in every cycle. Such an approach
results in variable input / constant output rate multiple-symbol decoding. Let us
remark that in order to return symbols at constant rate, the number of bits to be
decoded at atime should be equal to the product of the longest codeword length and
number of the symbols at the output. Consequently, the whole input buffer is not
exploited when it consist of short codewords.

Instead of expanding the output field of the single symbol look-up, Park in [83] in-
creased parallelism with another barrel shifter and symbol look-up. With such an
approach, the operational delay in an accumulator can be reduced for achieving high
speed decoding. The resulting 2-symbol decoder is depicted in Fig. 40. In short, the
buffered encoded data stream in latches is fed to the barrel shifter which provides a
decoding window for the first PLA-based symbol look-up. The symbol look-up re-

. Variable Length Coded Data
alignment N
information !’ i v
Buffer SBha?reI
t
Accumulator i l 4
)] Symbol
L ook-up Symbol
T L ook-up
length \
length v
Symboal Symboal

Fig. 40. Block diagram of the 2-symbol decoder with an additional shifter.

5.2. Variable Length Decoders 81

Vaiable Length Coded Data
] iN
Buffer
| ! ! !
Symbol Symbol . Symbol Symbol
Look-up | | Look-up Look-up | | Look-up
&i | P b
» Selector
Sum of the length | [
codeword lengths
Symbol Symbol

Fig. 41. Block diagram of the 2-symbol decoder with parallel symbol look-ups.

turnsthe codeword length and symbol asin the conventional parallel decoder. Instead
of forwarding the codeword length only to the accumulator, the length is also fed to
the second barrel shifter having an input from the first barrel shifter. The second
barrel shifter in turn provides the decoding window for the second symbol look-up
independently of the accumulator. Consequently, two variable length codewords are
decoded without an operational delay in an accumulator for shifting the decoding
window of thefirst barrel shifter.

In [53], Kinouchi and Sawada proposed a constant output rate multiple-symbol de-
coder returning two symbols at a time. The principal structure of the decoder is
shown in Fig. 41. The encoded bit-stream is forwarded to parallel symbol look-ups.
Each symbol look-up performs matching with all codewords and returns a symbol as
if the symbol was valid. In addition, the first symbol look-up returns the length of
the codeword while the rest symbol |ook-ups return the sum of the codeword lengths.
The symbol from the first symbol look-up is returned and its length is fed to a se-
lector which selects the second codeword. The sum of the codewordsis forwarded as
alignment information to the buffer in which the leading bit position determined for
the next decoding cycle.

In[101], Simaet al. extended their decoding scheme proposed in [100] to support the
constant output rate multiple-symbol decoding on the FPGA-augmented processor.
The principal block diagram of the decoder returning two symbols per cycleisillus-
trated in Fig. 42. Using the terms previous, current, and next in chronological order,
the main ideaisto determine the symbol and the length for the current codeword, and

YYYYY

82 5. Variable Length Coding
Group

VaiableLength N | Group Mux .
Coded Data "| Decoders % Symbol_previous
Group Detector
Mux
Decoders % Symbol_current
Group Detector &
Length Estimator Length_current
Length IMux
Estimators | g Length_next

Controller

YYYYY

YY

YY

Y

Status bits

Fig. 42. Block diagram of the 2-symbol decoder with length prediction.

only the length for the next codeword during the same VLD call. Concurrently, the
symbol for the previous codewords are determined. In more details, each group de-
coder operates asin Fig. 37. Simultaneoudly, length estimators determine the length
of the current codeword and the length candidates for the next codeword. The valid
length is selected according to the current length. In other words, the generation
of the next symbol is postponed to the subsequent cycle and the series of decoding
cyclesresultsin symbol-parallel decoding.

To summarize the current multiple-symbol approaches, the performanceis partly lim-
ited dueto the fact that the arbitrary length input buffers are not exploited. According
to the previous discussion, current variable input / output rate decoders operate on
a buffer whose size is equal or very close to the longest codeword length. In other
words, the complexity has been managed by decoding only short codewords concur-
rently. Furthermore, the number of symbols may be limited, which is done especially
for achieving a constant output rate.

5.3 Summary

Based on the above updated survey, let us conclude the chapter with abrief summary.
In general, there is no explicit boundary information for detecting the end or begin-

5.3. Summary 83

ning of the codeword in the variable length coded data stream. Therefore, the length
of the current codeword should be known before the next codeword can be decoded.
Thisfeature complicates the decoder design substantially and limits the performance.
Consequently, atraditional VLD method is to decode one symbol at time in symbol-
serial fashion. Two principal approaches exist: the bit-serial tree-based processing
and the bit-parallel approach. In bit-serial decoders, the performance is defined by
the latency of the long codeword processing. Furthermore, the serial processing is not
applicable for multiple-symbol decoding with a single data stream. The bit-parallel
processing offers the improved throughput at the price of increased hardware and
control complexity. On the other hand, although a block of input datais buffered, the
datais not exploited when it consists of short codewords.

In multiple-symbol decoding or symbol-parallel schemes, the major design issue is
to break the data dependencies between codewords. Another issue is the manage-
ment of the increasing hardware and control complexity, especially when large code-
word tables and long codewords are used. However, the current multiple-symbol
approaches, the performance is partly limited due to the fact that the arbitrary length
input buffers are not exploited. In other words, the complexity has been managed by
decoding only short codewords concurrently or the number of symbolsis limited.

84

5. Variable Length Coding

6. VARIABLE LENGTH DECODING SCHEME

The main challenge in the multiple-symbol parallel VLD isto break the recursive de-
pendencies between the codewords or at least to minimizetheir effectsto the through-
put. Sincethe encoded data stream is buffered in any case in variable length decoders
decoding at least one codeword at atime and most probably, a block of bits contains
more than one codeword, our objective isto develop anovel scheme for decoding all
the codewordsin ablock of input data stream simultaneously. In order to have aflex-
Ible structure for design re-use, we are aiming at modular structure. The block size of
the input data stream and the number of symbols are not to be set up fixed. Instead,
they are to be parametrized for tailoring the structure according to application. E.g.,
for longer block of the input stream, more modules can be employed for decoding,
and thus decode more symbols at atime.

In this chapter, a novel variable length decoding scheme isfirst introduced and illus-
trated with an example. Subsequently, a general hardware structure for the scheme
Is proposed with an illustration corresponding to the preceding example. Then, the
studies are continued with a discussion on the evaluation of the critical path and per-
formance of the resulting decoder. Finaly, a brief summary about the features of the
scheme concludes the chapter.

6.1 Algorithm

L et us assume K symbols and the corresponding binary codewords are collected into
acodeword table as

Ck = (C,....c{_1)[cf € {0,1},k=0,...,K—1. (108)

86 6. Variable Length Decoding Scheme

All the different codeword lengths in the codeword table can be combined into a set
L defined as

K-1
L= (W) (109)
k=0

Let the minimum and maximum codeword lengths be denoted by |, and Imax, re-
spectively. In addition, the maximum number of codewords with equal length is
denoted by dmax. We use a group-based approach for storing the symbols into a
symbol table; the symbols are grouped according to the length of the corresponding
codeword and each group is stored into one page in the table. The size of the page is
defined by dmax. In such an arrangement, the page where the symbol si is stored is
determined by the length of its codeword, Ix. The symbolswithin a page are arranged
in such away that the offset within the page is determined by the least significant bits
(LSB) of the codeword, (ck).

|k—|092dmax’ :

The input data stream for the decoding process is an encoded binary vector X, i.e.,
X = (X0,X1,X2,-..), Xi € {0,1}. (110)
An N-bit sliding window B is used to extract bits from the input stream as
B = (bo,b1,...,bn_1), bi = Xigxsi, i=0,...,N—1 (111)

where idx isthe index to thefirst undecoded bit in theinput stream X. Throughout the
discussion, the sliding window B is assumed to be greater than the longest codeword,
|e, N Z Imax.

We start the derivation of the algorithm by determining the maximum number of
variable length codewords, M, in an N-bit sliding window B as

M = [N/l . (112)

L et us denote the codewordsin the window by W; wherei=0,1,...,(M —1) and the
length of codeword W; by L;. Moreover, let anindex ji, 0 < jj < (N —1), define a
location where the codeword W; starts, i.e.,

W = (bjiv'--abjiJrLi*l)' (113)

Without losing generality, we may assume that the first codeword Wy is always loc-
ated at the beginning of the window, thus jo = 0. The second codeword W, is located

6.1. Algorithm 87

immediately after the first Lo-bit codeword and, therefore, Wy can be found starting
from the index j; = Lo. Thisimplies that the start index of the codeword W; in B is
the sum of the previous codeword lengths, i.e.,

i1
ji= > L (114)
k=0

However, the lengths of the codewords are not known in advance.

In order to avoid the recursive dependencies, aparallel search is needed to find code-
words from “arbitrary” positions in the window. In general, all the candidates for
indices j; for the codeword W; can be represented with the aid of set J; defined re-
cursively as

Jo=0; Ji={Jilli=q+1,vgedi_1,vl €L}, (115)

which implies that a codeword can lie in any location in the window defined by a set
J defined as

M-1
I=J % (116)
k=0

Since the maximum length of the codeword, Inax, IS known, we need to extract at
most Iyax-bit fields from the window B starting from all the locations defined by set
J. In each bit field, the possible codeword is searched after by matching the bit field
with all the possible codewords. When a match is found, the length of the codeword
at position i in the window B, m;, isreturned as

) NG if 3k (i b, b 1) = (c8,ck, e)

= 117
i {O,otherwise (117)

wherei € J,k=0,1,... K—1.

The start index, j;, of the each valid codeword W; in the window can be defined with
the aid of the lengths of the detected codewords. Correspondingly, the length of W; is
Li = mj;. The symbol look-up is performed from the symbol table according to index
A;, which is formed by concatenating the length of the codeword and its LSBs. By
returning the sum of al the valid codeword lengths, the input stream can be aligned
for the next decoding iteration by updating the sliding window index, idx’ = idX+ ju.
The described procedure isiterated until the entire input stream is decoded.

88 6. Variable Length Decoding Scheme

Before giving a decoding example, let us summarize the described variable length
decoding scheme. First, determine the parameters for decoding: the maximum num-
ber of codewords M that the N-bit window can hold and the set J, i.e., the locations
where a codeword may lie. The decoding iteration can be outlined briefly as follows.

Codeword Detection. Extract |J| bit fields of size at most Iyax from the locations
defined by set J. Detect a codeword from the beginning of each bit field and return
the length m;. Find the lengths of the valid codewords W; according to indices j;
obtained by computing the sum of the previous valid lengths, and return sum of the
valid codeword lengths L.

Symbol Look-Up. Form theindex A; and fetch the symbols from the symbol table.

Data Alignment. Align the input stream for the next decoding iteration.

6.1.1 Decoding Example

Let us assume that a codeword table depicted in Table 6(a) is used, thus the set of
codeword lengths is defined as L = {2,3,4,5,6, 7,8} and the maximum number of
codewordsin a16-bit window B isM = 8. In principle, the proposed approach would
result in a 5-bit index to symbol table. However, the size of the symbol table can be
easily decreased by noting that four LSBs are sufficient for each individual index.
The resulting symbol table consisting of seven pages of two symbols is illustrated
in Table 6(b). In the example case, a codeword can lie in 14 bit fields starting at
locationsJ ={0,2,3,4,...,14} asillustrated with the aid of boxes below the window
in Fig. 43. Thefields at the end of the window are shorter than the others since the
number of available bitsin the window isless than I,a = 8.

All thefields are matched with al the codewords and the length and L SB of each de-
tected codeword are returned. The detected codeword in the bit field is shown inside
the corresponding box in Fig. 43. In the example case, the lengths of the codewords
at the positions seven and eight in the window B are zero, which implies that the
codewords were not detected. Thefields containing avalid codeword are determined
recursively using start indices j; defined in (114). The first valid codeword Wy is
found from the first bit field at the beginning of the window, i.e., the first start index
IS jo = 0. The second codeword W7 can be found in one of the seven fields starting at
locations J1 = {2,3,4,5,6,7,8}. Since the length of Wy is Lo = 5, the start index of
Wy is j1 = 5. In Fig. 43, the detected valid codewords are marked with grey colour.

6.2. General Structure 89

Table 6. VLD decoding example: a) Codeword table and b) resulting symbol table.

a) b)

Sk Ck Ik A: Page & Offset | s

A |10 2 0000

B |11 2 0001 K

C | 011 3 0100 A

D | 0100 4 0101 B

E | 0101 4 0110

F | 00101 5 0111 C

G | 00110 5 1000 D

H | 000110 6 1001 E

| | 000111 6 1010 G

J | 0000110 | 7 1011 F

K | 00100101 | 8 1100 H
1101 I
1110 J
1111

Index A; for the symbol look-up is formed by concatenating the length and the LSB
of the valid codeword. E.g., the length of Wy isL; = 4 and the LSB of the W; is O
and, therefore, index A; is 1000 and D isfetched from the symbol table.

6.2 Genera Structure

The design of the variable length decoder is started by considering the codeword
detection of the valid codewords in a block of the input stream. The previously
discussed sliding window B isrealized as a N-bit codeword buffer and the codeword
detection is performed by |J| parallel codeword detector (CD) units. The input for
each CD isabit field of at most Iax bits, which is obtained from the codeword buffer
locations in the set J defined in (116). All the CDs detect codewords simultaneously
and return the length of the detected codeword. With this arrangement, the leftmost
CDs up to location N — Ihax Search after al the codewords in the codeword table
while, for the remaining CDs, it is sufficient to detect only shorter codewords.

90 6. Variable Length Decoding Scheme

B:[o[o]1]0]1]o]1]0]0[0]0]0]0]1[1]0

|
00101 Po=5 |
| 10 | p,=2 |
| 0101 | p3=4 |
|10 | py=2
| 0100 | ps=4 |
10 | Pg=12
- ‘ | Py=0 .
777777777777777 . Pg=
| 0000110 Pg=7
| 000110 Pio=
00110 P, =5
011 Pp=
11 P13=
10 p14 =

Fig. 43. Principle of the proposed variable length decoding scheme.

In order to select the valid codeword lengths, i.e., L;j, from the lengths of all the
detected codewords, a cascade of multiplexers is employed as depicted in Fig. 44.
Each multiplexer should have inputs, i.e., codeword lengths from all the CDs in the
locations specified by J; defined in (115). Thefirst codeword length Lo obtained from
the leftmost CD starting at bit location jo = 0 controls the first multiplexer selecting
the second valid codeword length L;. Moreover, the output of the leftmost CD can
be used to provide the decoding status, i.e., if the codeword length is zero, either
the decoding is completed or an error has encountered. The other multiplexers are
controlled by the sum of the previous codeword lengths according to (114). Hence,
the computation of the sum of the valid codeword lengths creates the critical path as
shownin Fig. 44.

Bm——

E | | |

co| [cp| [ep|] - [cD

: | | |

: Critical .

?...l.j.a.lzl:]....Lt‘j

E'"f:' sL

Lo Ly L, Lm-1)

Fig. 44. Block diagram of the generalized codeword detection.

6.2. General Structure 91

2D, aiby ?Obolol PoP1 PoPs PyPs PsP7

Fig. 45. Block diagram of the 8-to-1 multiplexed add unit: (a) structure and (b) correspond-
ing symbol.

Thecritical pathis shortened with anew multiplexed add (MA) unit shownin Fig. 45.
In principle, the MA computes the sum of two input operands, A and B, and the
resulting sum, S, is used to control a multiplexer which selects one of alternative
inputs, P;, to output O. In order to illustrate the operation of the MA, let us assume
two 3-bit numbers A = (ap,a1,a9) and B = (bz,by,bg). The sum denoted by S =
(s2,51,S0) controls the selection of the output O from inputs Py — P7. Consequently,
the output O can be expressed with the aid of sum of products as

O =Pos28150 -+ P15281S0 -+ P2528150 + P3s28150
+- P43828180 +- P5825180 + PeS25180 + P782510
= (PoS1S0 + P1S150 + P251S0 + P3S1S0) S2
+ (P4S1S0 + P5S1S0 + PeS1S0 + P7S150) 52
=[(PoSo + P1S0) S1 + (P2So + P3So) S1] S2
+ [(P4So + PsSo) 51+ (PsSo + P7S0) S1] S2- (118)

Closer examination of this decomposition reveals that each sum of products can be
performed with the aid of 2-to-1 multiplexers. When MA is applied to the proposed
VLD approach, the accumulated sum of the valid codeword lengths, i.e., the start
index j;, can be computed concurrently with the selection of current codeword length,
L.

When the codeword length is known the symbol 1ook-up is performed, i.e., a symbol
corresponding to the valid codeword is fetched from the symbol table. The sym-
bol table is mapped into a symbol memory. Consequently, the symbol look-up can
be decomposed into two phases. address generation and symbol fetch as shown in
Fig. 46. Briefly, the address generation is used to form an address to symbol table,

92 6. Variable Length Decoding Scheme

B Yor Yo B30 Ju Y5 e Y4 Y815 Y95 ols Mis Y215 Ji31s Yials
!CD\ !CD\ ICD| [CDJ |CD| !CD\ ICD| |CD| |CD| [CD] !CD\ [CD| [CDJ [CD|
e -2 GO O OO N O I O O O N

0

| | |
Symboal Generalon I — — — | Ty | —/——
Look-up Symbo A4 Ajzl A;L Aj4 d(“ A514 A614 A7£

Fetch SYMBOL MEMORY
s Is; ds, dsy; ds, dsg dsg s,
0 JF{45,6789 01121314 JF{89,1011 121314 {2134
72345678 IF{67891011121314 JE{1011,12,13,14 1714

Fig. 46. Principal structure of entire variable length decoder.

A, corresponding codeword W;. The address A; consists of the page and offset where
page forms most significant part of A;. The page is the length of W;, L;, obtained
from MA units as seen in Fig. 46. The offset consists of the LSBs of the codeword,
which can be determined according to start index of the next valid codeword ;. 1. If
complex codeword tables are used, additional logic may be needed to form the page
and offset. Finally, the symbol fetch is a trivial read memory operation. In order
to support parallel symbol fetches, the symbol memory consists of separate parallel
memory blocks, one for each decoder output, S;.

6.2.1 Decoder example

The principa structure of the entire variable length decoder corresponding to the
VLD exampleillustrated in Table 6 and Fig. 43 isdepicted in Fig. 46. In the codeword
detection, all the codewords in the 16-bit codeword buffer B are detected with 14
parallel CDs in defined locations. Each CD returns only the length of the detected
codeword. The lengths of the valid codewords are selected with a 7-to-1 multiplexer
and six cascaded 5-bit MAs. Each unit selecting L; has lengths from the locations

6.3. Critical Path 93

defined by set J;. These locations are depicted on the left side of the input bus of
the corresponding unit in Fig. 46. It should be noted that if no codeword matches
the obtained bit field the MA returns zero, which is not, however, included into the
number of alternatives denoted in the symbol of the MA. In the symbol look-up, the
length of the valid codeword, L; is used as apage. Since, the LSB of the codeword is
enough to identify the codeword in Fig. 43(a), the LSB is extracted from the location
Ji+1 — 1 and used as an offset. Note that the extraction of the offsets resembles the
selection of valid codewords: multiplexing controlled by accumulated length. Due
to this similarity, the MA can be used not only to compute the final sum but to select
the offset corresponding to the last codeword Wy 1. Finaly, the symbol S; can be
fetched from the memory according to address A;.

6.3 Critical Path

According to Fig. 32, the length of the detected codewords is used to align the data
in the codeword buffer. This feedback path forms the critical path since the align-
ment and codeword detection should be performed in a single cycle. Therefore, the
critical path of the decoder in Fig. 46 consists of a CD unit, |J;|-to-1 multiplexer,
and a cascade of MA units. In order to approximate the critical path independent of
technology, we use the interpretation from [8] where the delay is estimated with the
aid of logical stages. A logical stage is assumed to be equivalent to 3-4 AND-OR
(AO) and its delay is denoted by .

The number of AO stagesin the CD unit is defined by the codeword table, which is
application-specific. However, it is independent of N. Therefore, the delay of CD
unit, tp, is constant. The |J;|-to-1 multiplexer contains [log,(|J1|)] AO stages, thus
the corresponding delay can be estimated as

tm = [logy(|J2]) 1T < [logy(N +1)]7. (119)

The codeword buffer may contain at most M codewords, thus the complete decoder
contains (M — 1) cascaded MA units. Thecritical path through MA asseenin Fig. 45
consists of [log,(N + 1)] full adders and a 2-to-1 multiplexer, thus the delay of MA
istua = ([10g,(N +1)] + 1)t. Therefore, the delay of the critical path of the decoder,

94 6. Variable Length Decoding Scheme

t~tp+[[10go(N + 1)1 + (M — 1)([logo(N + 1)1 + 1)] 7
~tp+ [M([log,(N+1)] +1)] 7. (120)

Although the variable M according to the definition in (112) is dependent on N, we
may interpret that M defines the number of outputs of the decoder, i.e., the maximum
number of codewords, which can be detected from the codeword buffer. Therefore,
by decreasing M we may reduce the delay of the decoder. Thisimpliesthat sometimes
the codeword buffer may contain more codewords than we can decode, thus reducing
the decoding rate. However, the loss of performance may be negligible since the
probability that the codeword buffer contains the maximum number of codewords
Islow. The number of decoder outputs can be optimized for the given application,
if the statistics of encoded data is available. This approach is used in our MPEG-2
demonstration discussed in the following chapter. Furthermore, if M is decreased and
fixed, we find that the delay of the critical path is constant when 21 < N < 2" where
n isan integer. Thisimplies that the length of the codeword buffer should be chosen
suchthat N = 2" — 1. In this case, MA units are equipped with n full adders.

6.4 Summary

In this chapter, a novel multiple-symbol variable length decoding scheme has been
proposed with the following properties, the schemeisparallel, decodes multiple sym-
bols at atime, and exploits arbitrary codelength buffers and variable output rate. The
proposed VLD scheme has been mapped onto a modular structure of which critical
path has been optimized by reducing the number of logic levelswith the aid of anew
specific hardware mechanism called multiplexed add unit. Due to high modularity,
the structure can be easily tailored according to the requirements of the application.

7. MPEG-2VARIABLE LENGTH DECODING

In order to prove feasibility and estimate the performance and limiting factors of the
proposed variable length decoding scheme, it has been applied to MPEG-2 video
coding standard [45]. The previously proposed decoding scheme resultsin avariable
input / variable output rate decoder and, therefore, the buffering resources are needed
in the input as well as in the output. Our demonstration is targeted at an embed-
ded system assuming external buffering and alignment resources. Therefore, only
the kernel decoder design consisting of codeword detection and symbol look-up is
considered.

In this chapter, the MPEG-2 demonstration implementation on an FPGA is described.
First, the standard is outlined briefly in order to understand the fundamentals that af-
fect to decoder design. Before modeling the structure, the specifications are determ-
ined according to the statistics of the benchmark scenes. Then, the performance of
the resulting decoder is analyzed with different design parameters. The demonstra-
tion is concluded with the comparison to other FPGA-based variable length decoders
and the discussion on related problems. Finally, the chapter is closed with a brief
summation of the demonstration.

7.1 Overview to MPEG-2 Standard

L et us next outline briefly MPEG-2 standard from the variable length decoding point
of view. According to the standard a video stream is constructed out of a sequence of
pictures and each picture is processed in 8 x 8 blocks of pixels. Color isexpressedin
terms of luminance and chrominance components. There are three different chromin-
ance formats: 4:2:0, 4:2:2, and 4:4:4 where four luminance blocks are followed by
two, four, or eight chrominance blocks, respectively. These luminance and chromin-
ance blocks construct a macrobl ock.

96 7. MPEG-2 Variable Length Decoding

Compression in video is achieved by coding the pictures using information either
from the same picture only or from neighboring pictures. These alternative compres-
sion techniques are referred to asintraand non-intra coding, respectively. Each block
Is transformed with the DCT resulting in ablock of DCT coefficients. Thefirst coef-
ficient in a block is referred to as DC coefficient. The other coefficients are called
AC coefficients. After the DCT, the blocks are quantized for reducing the number
of bits required to represent the pixel values in frequency domain. The quantized
values are then serialized and reordered into an one-dimensional array form with the
aid of zig-zag scanning in order to construct longer sequences of zeros. The resulting
sequence is coded with run-level symbols: the number of zero coefficients run pre-
ceding a non-zero coefficient level. In addition, a special symbol end-of-block (EOB)
Is used to denote the end of the one-dimensional array. Finally, the resulting stream
of the symbolsisready for the VLC.

MPEG-2 defines two codeword tables B.12 and B.13 for coding the intra DC coef-
ficients in the luminance and chrominance blocks, respectively. The codeword itself
is a variable length code dct_dc_size and it is followed by a code of dct_dc_size bits
indicating dct_dc_differential value which is returned from the decoder. All the other
DCT coefficients are coded with the codeword table B.14 or B.15. Let us remark
that the level is coded as a unsigned value and the sign is given as the LSB of the
codeword. The correct codeword table is specified to the decoder with parameters
intra_vlc_format and macroblock_intra. The run and level combinations without pre-
specified variable length code are coded with the aid of a 24-bit escape codeword
ESC which isidentified from a 6-bit prefix. The prefix is followed by a 6-bit fixed
length code giving run and a 12-hit fixed length code providing the signed level.

7.2 Decoder Specification

Continuous preprocessed MPEG-2 data strings, which consist only of the variable
length code of the DCT coefficients, have been chosen as the input for our imple-
mentation. Several encoded MPEG-2 data streams were analyzed and the obtained
statistics are summarized in Table 7. This information has been used to derive the
requirements for the demonstration decoder.

The minimum size for the codeword buffer is the length of the longest codeword,
I.e., 24 bits in MPEG-2, which implies that the MA units must be equipped with at

7.3. Hardware Model 97

Table 7. Properties of the MPEG-2 benchmark scenes.

Benchmark | Block type | b | W | B | bW]|W3lb
bat_327_334 | (B.15) 905 241 172 745 23298 | 5.2 5.9
NI 1506 680 266 485 38940 | 5.7 55
popplen | (B.15) | 242795| 47003 | 4572 52 | 60
NI 153 265 28 069 4139 | 55 5.7
sarnoff I (B.14) | 429065| 80563 | 8418 | 53 | 58
NI 169 567 36 408 8447 | 4.7 6.7
tennis | (B.14) 57 741 12 345 2718 | 4.7 6.6
| (B.15) 613 066 120 754 9504 | 5.1 6.1
NI 989 235 137 756 25524 | 7.2 4.3
t1lcheer | (B.15) 415 873 80 818 8244 | 5.1 6.0
NI 255 433 51 680 9432 | 49 6.3
Total 5737961 | 1034626 | 143236 | 5.5 5.6

b: bits. W: codewords. B: block. b/W: bits per codeword. W/31b: codewordsin 31 bits.

least five full adders, i.e,, n = 5. In the demonstration, we have used this minimum
requirement. Therefore, the optimum size for the codeword buffer from the critical
path point of view is N = 31. The 31-bit codeword buffer may contain at most 15
codewords but according to statistics in Table 7, 31-bit buffer can contain 5.6 code-
words on average and, therefore, the number of decoder outputs, M, can be decreased
for shortening the critical path. In our case, the average is rounded upwards and the
number of outputsisM = 6.

7.3 Hardware Model

Thevariablelength decoder supporting MPEG-2 has been described with behavioural -
VHDL. Although we target at an FPGA technology, the VHDL description has been
kept as technology independent as possible. The structure of demonstration imple-

mentation follows the general organization, i.e., the codeword detection and symbol

look-up have been realized asillustrated in Fig. 46 but some M PEG-2-specific modi-

fications were included. These modifications are described in the following.

98 7. MPEG-2 Variable Length Decoding

vicf |format BitField
ile

vicf-2»| CD
{e{6{s6
dcl dcc ac

Fig. 47. Block diagram of the MPEG-2 modified codeword detector.

7.3.1 Codeword Detector

A codeword detector (CD) unit has at most a 12-bit input which is sufficient to detect
al the MPEG-2 codewords from the minimum length of two bits to 24 bits. The CD
returns three 6-bit values of a 5-bit codeword length and a 1-bit EOB status. two
values for the DC coefficient and one value for the AC coefficient. The MPEG-2
standard defines four codeword tables, B.12 - B.15, and the selection of codeword
table is controlled by a 2-bit VLC control signal vicf which is the concatenation of
the parameters intra_vic_format and macroblock_intra defined in [45]. The symbol
for the modified CD is depicted in Fig. 47.

The input BitField is checked for a possible codeword. If detected codeword repres-
ents EOB, the EOB status is set “true”’. In the intra decoding, two DC values, dcl
for luminance and dcc for chrominance are returned according to codeword tables
B.12 and B.13, respectively. In the non-intra decoding, dcc represents the value of
the DC coefficient. If a codeword is not detected from the bit field, zero-lengths are
returned and EOB status is maintained as follows. The codeword represents a DC
coefficient only if the previous codeword is EOB, thus EOB statusisforced to “true”.
Correspondingly, the codeword is an AC coefficient only if the previous codeword is
not EOB and, therefore, EOB statusis forced to “false”.

7.3.2 Chrominance Format Counter

A chrominance format counter (CFC) is used to select the correct group of the DC
candidates out of two possible groups, i.e., chrominance candidates chrc and lumin-
ance candidates lumc. The redlization is trivial; a counter returns a chrominance
control signal chr_ctrl for the next block according to a current block number bnr
in a macroblock as specified in [45]. The maximum block number is controlled by
a parameter chrominance format chrf. The block number is upgraded when EOB is

7.3. Hardware Model 99

chrf [format lumc chrc

2 CFC

nxt_bnr

251

DCcs b) nxt_EOB. L

Fig. 48. Block diagrams of the MPEG-2 specific units: (a) selection of DC coefficient and (b)
modified MA.

detected. In order to prevent the increase in the block number when EOB status is
maintained, two previous EOB statuses given with prEOBs are checked. The schem-
atic of the CFC isshown in Fig. 48(a) where DCcs denotes the correct DC candidates.

7.3.3 Multiplexed Add

The multiplexed add unit is modified to select also between the AC candidates ACcs
and DC candidates DCcs. The candidates consist of the values from all the CDs
defined by set Ji. The 2-to-1 multiplexing between AC and DC candidates is con-
trolled by the previous EOB status EOB and it can be performed in parallel with the
full adder computing the sum of the LSBs of the input operands. The symbol of the
modified MA isillustrated in Fig. 48(b). Otherwise, the operation of the MA issim-
ilar to the principal operation, i.e., output nxt_ EOB_L is selected according to the sum
nxt_S of the previous sum S and the previous length L.

7.3.4 Memory Address Generator

A memory address generator (MAG) unit returns an 11-bit MAG_code, which may
contain memory address or bits that are required for returning the symbol, for each
codeword. In order to decode DC coefficient in intra decoding, 11 bits are extracted
from the codeword buffer. The bitsto be extracted are located according to interme-
diate sums.

The extracted bits are processed depending on the length and the interpretation of the
codeword. If the codeword represents DC coefficient in intra decoding, it specifies
the number of bitsto be selected according to table B.12 or B.13in [45]. The selected
bits are extended to 11-bit MAG _code as atwo’s complement number. Otherwise, the

100 7. MPEG-2 Variable Length Decoding

Table 8. Memory address generation in the demonstration implementation.

Length | Page | Offset
2,3 000 01001
4 | ool 1100 & EB(7)
5 | 010 01& T & EB(8:9)
6 | 010 | 0& T & EB(6) & EB(8:9)
7 | oo1 01& T & EB(8:9)
8 | 010 T & EB(6:9)
9 | ooL T & EB(6:9)
10 000 01& EB(8:9)& 0
11 | 000 0& T & EB(7:9)
13 | 000 1& EB(6:9)
14 | o11 0& EB(6:9)
15 | o1l 1& EB(6:9)
16 100 0 & EB(6:9)
17 | 100 1& EB(6:9)

extracted bits contain a complete or partial codeword, which is used to generate the
address to the symbol memory.

In order to describe the memory mapping and address generation method used in
the demonstration, let the extracted bits be enumerated from the left to the right and
denoted as EB(0:10). Both the tables, B.14 and B.15, include at most 16 different
codewords of a specific length and consequently, the identification of the codeword
requires four bits. However, when combining the codeword tables and mapping them
into unified memory, the chosen bits may identify two different codewords depending
on the table. In order to distinguish the codewords in different tables, atable bit T

defined as
1 ,ifB.15
T = ' 121
{ 0 , otherwise (121)

IS used to specify the table. Altogether, a 3-bit page as well as the 5-bit offset are
generated according to length as shown in Table 8. Although the sign bit is not
needed to point the magnitude of the symbol stored into the memory, it should be
propagated further for determining the correct level. Therefore, the memory address
and sign are embedded into MAG_code.

Since only one codeword per cycle can represent symbol ESC in a 31-bit codeword
buffer, ashared unit is utilized for extracting ESC and forwarding the 18-bit ESC_Sym

7.3. Hardware Model 101

consisting of possible symbol whose value is not predefined. Similarly, the EOB
statuses are propagated further.

7.3.5 Symbol Fetch

A symbol fetch (SF) consist of three paralel dual-port memory banks and the re-
sources to return the correct symbol. The symbols in the tables B.14 and B.15 ex-
cluding EOB and ESC are mapped into each memory bank. MAG_codes are read
in rising clock edge. If the EOB status is true, it is returned and run and level are
forced to zero. If the length of the codeword is equal to 24 implying ESC, a 6-bit
run followed by a 12-bit signed level in ESC_Sym are returned. For the DC coeffi-
cient in the intra decoding mode, run isforced to zero and MAG _code isreturned as a
level. Otherwise, the symbol isread from the memory location defined by the address
which is embedded into MAG_code. The predefined symbols stored in the memory
can be represented with 11 bits, i.e., 5-bit run and the 6-bit unsigned value of level.
Therefore, the run is extended to six bits and level is converted to 12-bit signed value
before returning the actual 18-bit symbol.

7.3.6 Entire Decoder

The block diagram of the entire MPEG-2 decoder isillustrated in Fig. 49. The code-
word detection consists of 29 CD units, which have inputs from buffer locations
shown above the CDs. The seven leftmost CDs can detect all the possible code-
words, next three CDs detect up to 21-bit codewords, and the remaining CDs detect
only shorter codewords until the last or the rightmost CD detects only 2-bit code-
words.

The first valid EOB and length, EOB& Ly, is obtained from the leftmost CD but se-
lection between the two DC candidates is needed introducing a 2-to-1 multiplexer
controlled by chrominance control pre_chr_ctrl from the previous cycle. Similarly, a
2-to-1 multiplexer controlled by the EOB status pre_EOB from the previus cycle is
employed to select between AC and DC candidates. The other EOB&L; values are
selected from CDsin buffer locations J;. The correct DC candidates out of luminance
and chrominance candidates are selected according the control provided by the cor-
responding CFC. A 2-to-1 multiplexer and one 21-to-1 multiplexer select EOB&L;

102 7. MPEG-2 Variable Length Decoding

B 0 2)3)4)5)6)7)8 Jo |m Ju e B’j%’jﬁ 16’ji7”jis‘ R RER R ERERERERERERE:
vic CD||CD
NHIN NHIN UTU T NHIN

§ [NRAIVEN NN §

I I
NELNAIV VIV VATV ALV C

a
L——

NNV EVAIVEY S
ot e — — — e L— -
pre s CFC ;jCFC CFC IL:‘%HﬁJ CFC "jCFC e
e 2¢1 2:1 N 251/ 251 21/| p 251 e et
= / 21/ 21 L7 L] \ \ L]
P 2651 2451 251 20°1 20T o0
o MA ‘ MA ‘ MA ‘ MA MAZ_'
[[[l [l
EOB&L, EOB&L, EOB&L, EOB&L, EOBEL, EOBE&L
| MAG |
11 11 11 11 11 11 18 6
I MAG_code, 1 MAG _code, I MAG _code, I MAG_code, I MAG _code, 1 MAG_code; 1 ESC_Sym I EOBs
SF |
N T I R O R £
Eo So E, Sy E, S, E; Ss Es S4 Es Sg
30 3:7{6,7,8,9,10,11,12,13,14,15, 16, 17,18, 19, 20, 21, 22, 23, 24,25, 26, 27,28, 2}
3={2,34,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19, 20,21, 24} 3,718,9,10,11,12 13,14, 15,16,17,18,19,20, 21, 22, 23,24, 25,26, 27, 28, 29}
37{45,67,891011,12 13141516, 17,18 19 0,2, 2,324, 5,6,2,2829 J,={10,11,12,13, 14, 15,16,17, 18,19, 20,21, 22, 23, 24,25, 2, 27, 28, 29}

Fig. 49. Block diagram of the MPEG-2 variable length decoder.

from AC and DC candidates. For the outputs EOB& L,—EOB&Ls, the modified MAs
are used to select valid values. The MA for the third output EOB&L> is the most
complex having candidates from 26 CDs. Let us remark that the rightmost MA is
used to provide the extracted bits for the last codeword W5 and to compute the final
sum of the detected codeword lengths.

For the symbol look-up, the variable length coding format vicf, chrominance controls,
the EOB statuses, and lengths of the codewords are forwarded to the MAG with the
intermediate sums in order to generate the MAG_codes for each codeword. Apart
from MAG_codes, the MAG returns possible escape value ESC_Sym and the EOB
statuses EOBs. During the symbol fetch, the EOB isinterpreted according to the EOB
status, which is also returned. The codeword representing the intra DC coefficient
Is determined from the most significant bit (MSB) of vicf and the EOB status of
the preceding codeword. The ESC can be identified from the MSBs of the length.
Otherwise, the actual symbol is fetched from the symbol memory.

In general, the MPEG-2-specific modifications are not in the critical path, thus the
discussion on decoder delay in the previous section applies to the demonstration.
The generation of MAG _codes, except the last one, can be performed in parallel with
the MAs and, therefore, the MAG is not a separate pipeline stage. However, the
symbol fetch is pipelined since synchronous memories have been used.

7.4. Experimental Results 103

7.4 Experimental Results

The proposed VLD scheme has been experimented with a parametrizable smula-
tion model in Matlab and with an FPGA implementation. The simulation model is
exploited to analyze the dependencies and behaviour of the scheme. The results are
given in cycle domain meaning that information on timing or required resourcesis not
considered. The FPGA implementation is used to prove the feasibility of the scheme
and estimate the hardware complexity. The results are obtained by using Modelsim
HDL simulator and Exemplar LeonardoSpectrum. The performance figures of the
demonstration implementation are estimated in time domain.

The highest input rate is obtained when the codeword buffer can be completely up-
dated at each cycle, i.e., if the accumulated length of the complete codewords in the
buffer is equal to the buffer size. Assuming such an ideal data stream, the theoret-
ical upper bound for the throughput is equal to buffer size divided by the average
codeword length given in column "W/31b” in Table 7. In practice, however, the buf-
fer may contain a partial codeword, which cannot be detected at the current cycle.
Therefore, it should be kept in the buffer and processed at the next cycle when the
remaining bits are fetched into the buffer. When applying the proposed scheme to
our benchmarksin Table 7, the effect of the buffer size to the throughput isillustrated
in Fig. 50.

The number of outputs has been decreased in the demonstration implementation
based on statistics and by recognizing the fact that the shorter codewords may not be
decoded athough they may exist in the buffer. The distribution of the codewords over
decoder outputs, i.e., the proportion of cycles returning certain number of symbols,
with different decoder configurationsisillustrated in Fig. 51. The leftmost group “15
outputs’ represents the theoretical approach, i.e., the scheme with a 31-bit codeword
buffer and 15 decoder outputs. When experimented with the benchmark data, the
proportion of cycles returning more than nine symbols is negligible. Therefore, the
experimental results support the statistical conclusion to decrease the number of the
decoder outputs.

In Fig. 51, the remarkable drop in proportion can be obtained after seven outputs. The
resulting distribution over outputs 7 outputs’ is balanced to return from 4 to 7 sym-
bols but, on the other hand, the cycles with the largest proportion are returning five
symbols, although with small difference. The balanced proportion between cyclesis

104 7. MPEG-2 Variable Length Decoding

[ERN
N

[EE
[N

© 5

Codewords/ Cycle
oo

24 28 32 36 40 44 43 52 56 60 64
Buffer size

3 I I I

Fig. 50. Throughput of the proposed approach.

advantageous if the cycle time is predefined and seven codewords can be detected in
the given cycle time. However, the detection of the seventh codeword may increase
the critical path and the given cycle time is exceeded.

The distribution with six outputs, noted as “6 outputs’, represents our demonstration.
The cycles with largest proportion are returning the maximum number of symbols,
I.e., SIX symbols and the difference to the second largest proportion is already re-
markable. Furthermore, the most of the cycles are decoding five or six codewords. In
order to decode maximum number of codewords during the most of the cycles, the
number of outputs should be restricted to five as shown with the group “5 outputs’
in Fig. 51. When the number of outputs is decreased further, it is obvious that the
largest proportion isincreasing until symbol-serial decoders are returning one symbol
per cycle with proportion of one. However, it should be noted that also the number of
cycles required to complete decoding is increased and utilization of codeword buffer
Is decreased. Altogether, these effects are against our original objective.

The experimenta results with scheme and demonstration implementation in cycle
domain are summarized into Table 9. Column “Scheme” contains the practical upper
bounds for the performance of the scheme with a 31-bit buffer and 15 outputs. The
required cycles and achieved throughput for the implementation with a 31-bit buffer
and 6 outputs are depicted in column “FPGA”. On average, 4.8 codewords per cycle

7.4. Experimental Results 105

©
\'

Fraction of required cycles
© o o o o9
N w N)] (0]

o
[EEN

i M oA i

15 outputs 7 outputs 6 outputs 5 outputs

Fig. 51. Distribution of symbols over the decoder outputs.

are detected and decoded while the theoretical and practical throughputs in cycle
domain are 5.6 and 5.0 codewords per cycle, respectively.

The previous discussion is based on behavioural models and the timing accuracy
on unit cycles. However, the critical path defining the cycle time is an important
measure for determining the absolute throughput, i.e., the amount of data processed
in atime unit. In order to estimate the maximum clock frequency, the VHDL model
of the demonstration implementation with the 31-bit buffer and 6 outputs has been
synthesized on Xilinx Virtex-11 FPGA (device 2V4000bf957) [125]. The CD units
turn out to be application-specific pattern recognizers based on LUTs. The CFC is
also based on LUTs while each MA is synthesized onto a 5-hit ripple carry adder
parallel with a multiplexer tree. Consequently, the delay of each MA is about the
same, i.e., the delays of five full adders and one 2-to-1 multiplexer, although the size
of the multiplexer tree varies depending the number of candidates. When the entire
design has been synthesized, 2 940 configurable logic blocks (CLB) out of 23 040
were allocated.

Three dual-port Block SelectRAM memories with 160 rows of 11 bits are generated
using Xilinx CORE Generator for symbol memories. In an ideal memory mapping,
each symbol has location of its own and the number of non-used locations and rep-
licated symbols are zero. In such an case, a 7-bit address space is enough for 111

106 7. MPEG-2 Variable Length Decoding

Table 9. Experimental results of the MPEG-2 variable length decoder.

Scheme FPGA

Benchmark | Block type C W/C C wW/C
bat_327_334 | (B.15) 32104 54| 33526 52
NI 54843 49| 56780 4.7

popplen | (B.15) 8686 54 9182 51
NI 5 555 51 5746 49

sarnoff | (B.14) 15 296 53| 16198 5.0
NI 6 052 6.0 6 823 5.3

tennis | (B.14) 2039 6.1 2339 5.3
| (B.15) 21721 56 | 22897 5.3

NI 38 238 3.6 | 38682 3.6

tlcheer | (B.15) 14 730 55| 15500 5.2
NI 9113 5.7 9824 53

Total 208 377 50| 217497 48

C: cycles. W/C: codewords per cycle.

different predefined symbols. In practice, however, many mapping functions results
in non-used locations and some symbols are located in two different locations due
to two different codewords representing same symbol. In order to ease the design
work, the 8-bit address space has been used in the demonstration implementation.
The synthesized design resulted in a critical path of 45.11 ns. The characteristics of
the implementation are summarized in Table 10.

7.5 Discussion and Comparison

We would like to note that straightforward and fair comparison with other reported
decoders is extremely difficult due to different implementation approaches. Stand-
ards, like JPEG [44] or MPEG-2 [45] with different codeword tables, set their own
requirements for the decoder and, therefore, distinguish decoders from each other.
Furthermore, input data with different compression ratios affect decoders with vari-
able output rate; the less compression, the longer codewords resulting in decreased
throughput. One main issue in comparing performance of different decoder imple-
mentations is how to equalize the effects of the different ASIC technologies or how
to make different FPGAs and their specific features equivalent to each other or even
to ASICs. However, the characteristic figures about the performance of the decoder

7.5. Discussion and Comparison 107

Table 10. Characteristics of the MPEG-2 variable length decoder.

Design platform Xilinx Virtex-11 FPGA

Application MPEG-2
CLB count 4940/23040
Memory 3 dual-port memories with

160 rows of 11 bits
Virtex-11 specifics || Block SelectRAM Memory

Frequency 22 MHz
Throughput Variable 1-6 SIC
Average 4.8 SIC
105 MS/s
585 Mbits/s

S/C: Symbols per cycle. MS/s. Million symbols per second.

are mostly given only for the chosen technology and without detailed variables. In
other words, the results are technology dependent and consequently the performance
of the chosen decoding technique is hidden behind technology. Altogether the de-
coding performance of the used technique is not directly comparable athough all the
previous aspects can be considered as critical design issues as well.

On the other hand, reconfigurable platforms provide fast design iteration times to
change the design variables. Therefore, the variable input / output rate multiple-
symbol decoder on the FPGA has been compared to other FPGA-based decoders
presented in literature by using uniform implementation approaches. In other words,
short design iteration times on FPGA allow the configuration of the proposed decoder
to match the reference decoders or to provide at least the same features with the
reference decoders. The behavioural non-optimized VHDL model of the decoder
has been mapped onto the FPGASs used in the references in order to guarantee same
technological features. The uniformity is guaranteed with same codeword tables,
compression ratios, implementation platform, and synchronous design style.

7.5.1 Reference Decoders

Before moving on to discussion on the results of the comparison, let us briefly sum-
marize the reference FPGA-based variable length decoders. All the decoders process
datain a bit-paralel manner but from the symbol parallelism point of view they are

108 7. MPEG-2 Variable Length Decoding

different. In order to emphasize the difficulties in comparison with different tech-
nologies, let us remark the huge variation in the descriptive figures of the following
decoders.

Aspar et al. in [4] reported a symbol-serial variable length decoder implemented
on Altera’s Flex 10K20RC240-4 and Flex 10K20RC240-3 FPGAs. The decoder is
based on the decoder structure presented earlier by Lel and Sun in [62], which is
illustrated in Fig. 35. The decoder has been designed to support up to 16-bit code-
words according to JPEG standard [44]. The achieved operation frequencies are 9.91
MHz for 10K20RC240-4 and 11.54 MHz for 10K20RC240-3. In both platforms, the
utilization of logic cellsis 1145 out of 1152 logic cells.

Another FPGA-based symbol-serial decoder based on Lel and Sun’s work is pro-
posed by Jeon et al. in [49]. In order to reduce the processing time in the crit-
ical path, the decoder exploits a plane separation technique where input plane and
OR plane performing the data buffering operate in parallel. The consecutive PLA-
based matching process uses exactly the same method as previous decoder, i.e., the
block of encoded bit stream is matched with all possible codewords stored into LUT.
The decoder using the plane separation technique has been realized on Altera's Flex
8000 FPGA. When applying the presented technique to MPEG-2 intra-frame decod-
ing [45], the throughput of 15 million symbols per second has been achieved. From
logical resources point of view, about 30 % performance improvement from Lel and
Sun’s approach doubles the required resources [49].

Simaet al. in [101] considered an FPGA-augmented TriMedia processor running at
200 MHz [99]. When their approach presented in [100, 101] has been mapped onto
Alteras ACEX EP1K 100 FPGA, the decoder returning one symbol in Fig. 37 exhibits
seven TriMedia cycles while two symbols can be returned in eight TriMedia cycles
with the decoder in Fig. 42. Hence, the MPEG-2 compliant two-symbol decoder
with the constant output rate yields the throughput of about 50 Msymbols/s or 275
Mbits/s assuming the data summarized in Table 7. The implementation requires all
12 Embedded Array Blocks, i.e., RAM blocks, and 51 % of the logic cells supporting
either codeword table B.14 or B.15 in MPEG-2 standard.

In order to compare the proposed variable output rate multiple-symbol decoding tech-
nique, the non-optimized model of the decoder in [P7], where the specific features of
Implementation platform are not exploited, is mapped onto the same FPGA techno-

7.5. Discussion and Comparison 109

logies as the references but without parallel symbol memories. The characteristics of
the variable length decoders presented by Aspar et al. in [4], Jeon et al. in [49], and
Simaet al. in [101] and the achieved results of the decoder [P7], which are obtained
by using Exemplar LeonardoSpectrum, are summarized into three columns labeled
asAlteraFlex10K, AlteraFlex8K, and Altera ACEX 1K 100 according to used FPGA
in Table 11.

7.5.2 Comparison Results

Although our original objective has been to uniform the FPGA -based decoders based
on different decoding approaches, clear differences and restrictions still exist. Both
the multiple-symbol decoders, decoder presented by Sima et al. in [101] and the
proposed decoder in [P7], require clearly more hardware resources than the symbol -
serial decodersreported by Aspar et al. in[4] and Jeonet al. in[49]. Furthermore, the
decoders in [4, 49] are independent whereas both the multiple-symbol decoders are
clearly targeted at embedded system providing external resources for data buffering
and alignment. The proposed decoder does not compete in hardware resources with
other decoders due to the high degree of parallelism and it does not fit into all FPGAs
that are used in the references. On the other hand, there are already enough resources
available in the state of the art FPGAs and the integration density isincreasing.

In the multiple-symbol decoding approaches used in the decodersin [101] and [P7],
the critical path can be adjusted with requirements of the application by processing
more data in a cycle; more time, more symbols per cycle. Therefore, they are ad-
vantageous when cycle time is specified according to environment. The critical path
in the proposed decoder is dominated by the recursive selection of proper codewords
and therefore, codeword properties reflecting to codeword detection delay have minor
effect in total cycle time. In other words, the increase in the delay of the codeword
detection has relatively small part in total cycle time.

The decodersin [4, 49, 101] have constant output rate resulting in constant through-
put in terms of symbols whereas source data statistics reflect to throughput in the
decoder [P7]. The decoder is sensitive to the compression ratio due to variable pro-
cessing rate, i.e., the worse compression ratio implies longer codewords and there-
fore, less codewords in the buffer returning less symbols per cycle. The throughput
valuesin Table 11 are estimated by assuming the average codeword length of 5.5 bits.

110 7. MPEG-2 Variable Length Decoding
Table 11. Comparison of the FPGA-based variable length decoders.
AlteraFlex10K Altera Flex8K Altera ACEX1K 100
Asparetal.[4]] M[P7] |Jeonetal.[49]| [P7] |Simaetal [101]] [P7]
Standard JPEG JPEG MPEG-2 Intra| MPEG-2 MPEG-2 MPEG-2
CwWT K.5 K.3-K.6 Not known |B.12-B.15*| B.14orB.15 |B.14o0rB.15
Logic cells 1145 5833 Not known 6 397 51 % 35%
Fregquency 11.54 MHz 4.8 MHz 15 MHz 4.2 MHz 25 MHz 12.1 MHz
Throughput|| Constant 1-6 S/IC Constant 1-6 SIC Constant 1-6 SIC
1S/C avg. 48S/C 1S/C avg. 4.8 S/C 2S/C avg. 4.8 S/C
11.54 MS/s |23.04 MS/s 15MS/s 20 MS/s 50 MS/s 58 MS/s
63 Mbits/s | 127 Mbits/s| 82 Mbits/s [111 Mbits/s| 275 Mbits/s | 319 Mbits/s

CWT: Codeword tables. S/C: Symbols per cycle. MS/s. Million symbols per second. * Support for 4:2:0, 4:2:2,
and 4:4:4 chrominance formats.

The properties of the decoders on Altera Flex10K supporting JPEG standard are col-
lected into column labeled as Altera Flex10K in Table 11. The decoder in [P7] is
configured to support JPEG standard and isreferred just as M[P7] in the column. The
structure of the decoder follows the structure of the MPEG-2 decoder in Fig. 49, only
codeword tables are assumed to be typical Huffman tables from the standard [44].
The decoder requires about five times more hardware without symbol memories
providing double throughput in time domain. In addition, the decoder supports four
codeword tables.

The characteristics of the MPEG-2 decoders on Altera’s Flex8K are summarized into
the column Altera’s Flex8K in Table 11. The MPEG-2 compliant multiple-symbol
decoder illustrated in Fig. 49 is used in comparison although decoder in [49] supports
only intra-frame decoding. This difference reflects to the critical path due to the
different complexities of the codeword tablesin LUT and CDsand larger multiplexers
and MA units. However, the symbol-parallel decoder resultsin better throughput than
symbol-serial decoder assuming 5.5-bit codewords on average, i.e., compression ratio
of about 30%.

When comparing symbol-parallel decoders on ACEX EP1K100 FPGAS supporting
codeword table B.14 or B.15 in MPEG-2, we assume again the compression ratio of
30%. Thedecoder in [P7] issimplified to support only asingle codeword table, which
Is reflected in the required resources. The achieved results are given in the column
ACEX EP1K100 FPGAs in Table 11. The throughput of the decoder in [101] is
constant, two symbols per cycle. Instead, the decoder in [P7] is capable of returning
up to six symbols per cycle although less symbols would imply shorter cycle time.

7.6. Summary 111

7.6 Summary

In this chapter, the proposed new VLD scheme and structure have been applied to
MPEG-2 benchmark scenes for experimenting and estimating the behaviour and per-
formance. The MPEG-2 variable length decoder demonstration has been described
in VHDL and mapped onto Xilinx Virtex-1l FPGA. The evaluated results indicate
that 4.8 symbols out of the 5.6 average symbols present in the 31-bit buffer can be
detected per cycle. The critical path of 45 ns proves the feasibility and potential of
the approach. In order to illustrate the behaviour of the proposed decoder, its per-
formance is analyzed with different design parameters.

The straightforward and fair comparison with other reported decoders is extremely
difficult since the variable length decoders and consequently the reported figures are
really application-specific. Besides, the multiple-symbol decoders are rarely repor-
ted. Nevertheless, we compared the demonstrated decoder to other FPGA-based de-
coders. With dight changes but without optimizing the decoder, the experimental
results indicate that the proposed approach provides 16-100% better throughput at
2-3.6 times lower frequencies than referenced decoders. The achieved results ex-
hibit also capability to cover a wide range of applications with this new decoding
approach.

For concluding the chapter, one quite obvious golden rule can be emphasized; when
presenting the method and estimating its performance with the aid of certain imple-
mentation, the performance of the method is extremely difficult to distinguish from
the technologica performance. Therefore, exact design variables or characteristics
that are independent from technology should be also provided. Without these inde-
pendent facts, the results can aways be speculated. However, according to experi-
mental results, the performance of the variable rate symbol-parallel approach can be
considered promising for future applications.

112 7. MPEG-2 Variable Length Decoding

8. CONCLUSIONS

Inthis Thesis, new application-specific parallel structuresfor the DCT and VLD have
been described. The studies have been opened with a case study on DCT where the
objectives have been to derive hardware oriented algorithm and map it onto an area-
efficient parallel structure processing datain asequential form at datarate. Therefore,
the related work has been surveyed with respect to the cascaded pipeline computation
of the DCT.

The guidelines to develop the algorithms have been outlined according to observa-
tions made in the survey. The derived novel regular perfect shuffle topology DCT al-
gorithmsfor N-point and N x N transforms, N = 2K do not reach the lower bound on
arithmetic complexity but the regularity introduces essential properties for the area-
efficient hardware implementation and flexible use. The regular interconnections
with smaller and smaller permutations from column to column reduces the complex-
ity of data permutation. The distributed irregularities provide area-efficiency when
unified pipelines are designed although, on the other hand, makes the node functions
less regular.

Dueto the regular topology, the agorithms lend themselves for vertical mapping res-
ulting in area-efficient sequential structures with high modularity. The structures can
be freely pipelined since all the arithmetic units are in feed forward paths. The addi-
tional pipelining allows the critical path to be shortened thus higher clock frequency
can be used implying higher throughput. Let us remark that a sequential pipeline
structure for an N-point transform supports also all the smaller transform sizes of
powers of two and the structure for two-dimensional transform can also be used to
compute corresponding one-dimensional transform.

The regularity of the algorithm and the modularity of the structure have been ex-
ploited when mapping the 8 x 8 DCT and its inverse onto a new common pipeline
structure. Theresulting structurefor the 8 x 8 DCT/IDCT has been proven to be area-

114 8. Conclusions

efficient compared to other reported solutions. The sequential demonstration imple-
mentation of the cascaded pipeline 8 x 8 DCT/IDCT is based on the data path model
of the structure. When synthesized onto a 0.11 um standard cell CMOS technology,
the DCT/IDCT kernel occupies 39 424 equivalent 2-input NAND gates achieving the
operation frequency of 253 MHz.

When considering the VLD, the objectives have been to break at least partially the
recursive dependency related to the VLD, decode multiple symbols parallel at atime
and exploit arbitrary code length buffers. Therefore, variable length decoders have
been surveyed from the objectives point of view. Based on the made observations,
the novel multiple-symbol VLD scheme has been derived. The scheme is capable of
decoding all the complete codewords in an arbitrary length block of input data. The
proposed VLD scheme has been mapped onto a general structure of which critical
path has been optimized by reducing the number of logic levels with the aid of the
new multiplexed add unit.

The proposed scheme is applied to MPEG-2 benchmark scenes for experimenting
and estimating its behaviour and performance. It has been shown that the throughput
rate of the scheme is proportional to the size of the codeword buffer. In order to prove
the feasibility, structure has been demonstrated with an MPEG-2 compliant variable
length decoder and its technology independent VHDL description is mapped onto
Xilinx Virtex-1I FPGA. The evaluated results indicate that 4.8 symbols out of the 5.6
average symbols present in the 31-bit buffer can be detected per cycle. The critical
path of 45 ns proves the potential of the approach.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

BIBLIOGRAPHY

N. Ahmed, T. Natargjan, and K. R. Rao, “Discrete cosine transform,” IEEE
Transactions on Computers, vol. 23, no. 1, pp. 90-93, Jan. 1974.

D. Akopian, “Systematic approach to parallel architectures for DSP al-
gorithms,” Dr.Tech. Thesis, Tampere University of Technology, Tampere, Fin-
land, Sept. 1997.

Y. Arai, T. Agui, and M. Nakgima, “A fast DCT-SQ scheme for images,”
Transactions of the IEICE, vol. E71, no. 11, pp. 1095-1097, Nov. 1988.

Z. Aspar, Z. M. Yusof, and |. Suleiman, “Parallel Huffman decoder with an
optimized look up table option on FPGA,” in Proc. TENCON 2000, voal. 1,
Kuala Lumpur, Maaysia, Sep. 24-27 2000, pp. 73—-76.

J. Astola and D. Akopian, “Architecture-oriented regular algorithms for dis-
crete sine and cosine transforms,” IEEE Transactions on Signal Processing,
vol. 47, no. 4, pp. 1109-1124, Apr. 1999.

J. C. Carlach, P. Penard, and J. L. Sicre, “TCAD: a 27 MHz 8x8 discrete
cosine transform chip,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, Glasgow, UK, May 23-26 1989,
pp. 2429-2432.

S. C. Chan and K. L. Ho, “A new two-dimensional fast cosine transform al-
gorithm,” IEEE Transactions on Signal Processing, vol. 39, no. 2, pp. 481—
485, Feb. 1991.

C.-J. Chang, S. Vassiliadis, and J. G. Delgado-Frias, “An investigation of bin-
ary CLA and ripple CMOS adder designs,” Microprocessing and Micropro-
gramming J., vol. 40, no. 1, pp. 1-21, Jan. 1994.

116

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S.-F. Chang and D. G. Messerschmitt, “VVLSI designs for high-speed Huffman
decoder,” in Proceedings of the IEEE International Conference on Computer
Design, Cambridge, MA, U.S.A., Oct. 14-16 1991, pp. 500-503.

——, “Designing high-throughput VLC decoder Part | - Concurrent VLSI ar-
chitectures,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 2, no. 2, pp. 187-196, June 1992.

W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algorithm
for the discrete cosine transform,” IEEE Transactions on Communications,
vol. 25, no. 9, pp. 1004-1009, Sept. 1977.

K.-H. Cheng, C.-S. Huang, and C.-P. Lin, “The design and implementation of
DCT/IDCT chip with novel architecture,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, Geneva, Switzerland, May 28-31
2000, pp. 741-744.

N. 1. Choand S. U. Lee, “Fast algorithm and implementation of 2-D discrete
cosine transform,” IEEE Transactions on Circuits and Systems, vol. 38, no. 3,
pp. 297-305, Mar. 1991.

——, “A fast 4 x 4 DCT agorithm for the recursive 2-D DCT,” IEEE Trans-
actions on Signal Processing, vol. 40, no. 9, pp. 2166-2173, Sept. 1992.

N.I. Cho, I. D. Yun, and S. U. Lee, “On the regular structure for the fast 2-D
DCT agorithm,” IEEE Transactions on Circuits and Systems—~Part 11: Analog
and Digital Signal Processing, vol. 40, no. 4, pp. 259-266, Apr. 1993.

S. H. Cho, T. Xanthopoulos, and A. P. Chandrakasan, “A low power vari-
able length decoder for MPEG-2 based on nonuniform fine-grain table parti-
tioning,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 7, no. 2, pp. 249-257, June 1999.

S. B. Choi and M. H. Lee, “High speed pattern matching for a fast Huffman
decoder,” IEEE Transactions on Consumer Electronics, vol. 41, no. 1, pp. 97—
103, Feb. 1995.

K. Compton and S. Hauck, “Reconfigurable computing: A survey of systems
and software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171-210, June
2002.

Bibliography 117

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Z. Cvetkovic and M. V. Popovic, “New fast recursive algorithms for the com-
putation of discrete cosine and sine transforms,” IEEE Transactions on Signal
Processing, vol. 40, no. 8, pp. 2083-2086, Aug. 1992.

M. Davio, “Kronecker products and shuffle algebra,” IEEE Transactions on
Computers, vol. 30, no. 2, pp. 116-125, Feb. 1981.

P. Duhamel and C. Guillemot, “Polynomial transform computation of the 2-
D DCT,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 3, Albuquerque, NM, U.SAA., Apr. 3-6
1990, pp. 1515-1518.

P. Duhamel and H. H'Mida, “New 2" DCT algorithms suitable for VLS| im-
plementation,” in Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 12, Dallas, TX, U.SA., Apr. 6-9
1987, pp. 1805-1808.

J. G. G. Langdon, “An introduction to arithmetic coding,” IBM Journal of
Research and Development, vol. 28, no. 2, pp. 135149, Mar. 1984.

L. Geppert, “Devices and circuits [Technology 2000 analysis and forecast],”
IEEE Spectrum, vol. 37, no. 1, pp. 63-69, Jan. 2000.

J. Granata, M. Conner, and R. Tolimieri, “Recursive fast algorithms and the
role of the tensor product,” IEEE Transactions on Signal Processing, vol. 40,
no. 12, pp. 2921-2930, Dec. 1992.

H. L. Groginsky and G. A. Works, “A pipeline fast Fourier transform,” IEEE
Transactions on Computers, vol. 19, no. 11, pp. 1015-1019, Nov. 1970.

M. A. Hague, “Two-dimensional fast cosinetransform,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 33, no. 6, pp. 1532—1539, Dec.
1985.

R. M. Haralick, “A storage efficient way to implement the discrete cosine
transform,” IEEE Transactions on Computers, vol. 25, no. 7, pp. 764—765,
July 1976.

118

Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

R. Hashemian, “High speed search and memory efficient Huffman coding,” in
Proceedings of the IEEE International Symposium on Circuits and Systems,
vol. 1, Chicago, IL, U.SA., May 3-6 1993, pp. 287—290.

——, “Design and hardware implementation of a memory efficient Huffman
decoding,” IEEE Transactions on Consumer Electronics, vol. 40, no. 3, pp.
345-352, Aug. 1994.

B. G. Haskell, A. Puri, and A. N. Netravali, Digital video: an introduction to
MPEG-2. Norwell, MA, U.SA.: Kluwer Academic Publishers, 1997.

J. Henkel, “Closing the SoC design gap,” IEEE Computer, vol. 36, no. 9, pp.
119-121, Sept. 2003.

H. S. Hou, “A fast recursive agorithm for computing the discrete cosine
transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 35, no. 10, pp. 14551461, Oct. 1987.

S.-F. Hsiao, W.-R. Shiue, and J.-M. Tseng, “A cost-efficient fully-pipelinable
architecture for DCT/IDCT,” IEEE Transactions on Consumer Electronics,
vol. 45, no. 3, pp. 515-525, Aug. 1999.

S.-F. Hsiao and J.-M. Tseng, “Parallel, pipelined and folded architectures for
computation of 1-D and 2-D DCT in image and video codec,” Journal of VLSI
Signal Processing, vol. 28, no. 3, pp. 205220, Jul. 2001.

——, “New matrix formulation for two-dimensional DCT/IDCT computation
and its distributed-memory VLS| implementation,” IEE Proceedings - Vision,
Image and Signal Processing, vol. 149, no. 2, pp. 97-107, Apr. 2002.

C.-T. Hsieh and S. P. Kim, “A concurrent memory-efficient VLC decoder for
MPEG applications,” IEEE Transactions on Consumer Electronics, vol. 42,
no. 3, pp. 439446, Aug. 1996.

C.-T. T. Hsieh, “The systematic approach for concurrent VL C decoder,” IEEE
Transactions on Consumer Electronics, vol. 43, no. 3, pp. 918-924, Aug.
1997.

D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, Sept. 1952.

Bibliography 119

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

|EEE Std 1180-1990, “|EEE standard specification for the implementations of
8x8 inverse discrete cosine transform,” Institute of Electrical and Electronics
Engineers, New York, USA, International Standard, Dec. 1990.

International Organization for Standardization, “Information technology —
Coding of moving pictures and associated audio for digital storage mediaat up
to about 1,5 Mbit/s — Part 2: Video , ISO/IEC International Standard 11172-
2:1993,” 1993.

——, “Information technology — Digital compression and coding of
continuous-tone still images. Requirements and guidelines, ISO/IEC Inter-
national Standard 10918-1:1994," 1994.

——, “Information technology — Generic coding of moving pictures and as-
sociated audio information: Video, ISO/IEC International Standard 13818-
2:2000,” 2000.

International Telecommunication Union, “Information technology — Digital
compression and coding of continuous-tone still images — requirements and
guidelines, CCITT Recommendation T.81,” Sept. 1992.

——, “Information technology — Generic coding of moving pictures and asso-
ciated audio information: Video, ITU-T Recommendation H.262,” Feb. 2000.

(2003) International Technology Roadmap for Semiconductors 2003 Edition.
[Onling]. Available: http://public.itrs.net

A. K. Jain, “A sinusoidal family of unitary transforms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 1, no. 4, pp. 356-365, Oct.
1979.

T. Jarvinen, J. Takala, and J. Saarinen, “Unified architecture for discrete four-
ier and cosinetransform,” in Advances in System Science: Measurements, Cir-
cuits and Control, N. E. Mastorakis and L. A. Pecorelli-Peres, Eds. New
York, NY, U.S.A.: WSES Press, 2001, pp. 301-306.

J. H. Jeon, Y. S. Park, and H. W. Park, “A fast variable-length decoder us-
ing plane separation,” IEEE Transactions on Circuits and Systems for Video
Technology, val. 10, no. 5, pp. 806812, Aug. 2000.

120

Bibliography

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Johnson, V. Akella, and B. Stott, “Micropipelined asynchronous discrete
cosine transform (DCT) processor,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 6, no. 4, pp. 731-740, Dec. 1998.

F. A. Kamangar and K. R. Rao, “Fast algorithms for the 2-D discrete cosine
transform,” IEEE Transactions on Computers, vol. 31, no. 9, pp. 899906,
Sept. 1982.

Y. Katayama, T. Kitsuki, and Y. Ooi, “A block processing unit in single-chip
MPEG-2 video encoder LSI,” Journal of VLSI Signal Processing, vol. 22,
no. 1, pp. 59-64, Aug. 1999.

S. Kinouchi and A. Sawada, “Huffman code decoding circuit,” U.S. Patent 5
617 089, Apr. 1 1997.

M. Kovac and N. Ranganathan, “JAGUAR: A fully pipelined VLSI architec-
ture for JPEG image compression standard,” Proceedings of the IEEE, val. 83,
no. 2, pp. 247-258, Feb. 1995.

J. Kwak and J. You, “One- and two-dimensional constant geometry fast cosine
transform algorithms and architectures,” IEEE Transactions on Signal Pro-
cessing, vol. 47, no. 7, pp. 2023-2034, July 1999.

B. G. Lee, “A new agorithm for the discrete cosine transform,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 32, no. 6, pp. 1243—
1245, Dec. 1984.

P-Z.Leeand F.-Y. Huang, “ Restructured recursive DCT and DST algorithms,”
IEEE Transactions on Signal Processing, vol. 42, no. 7, pp. 1600-1609, July
1994.

S.-W. Lee and |.-C. Park, “A low-power variable length decoder for MPEG-
2 based on successive decoding of short codewords,” IEEE Transactions on
Circuits and Systems—Part 11: Analog and Digital Signal Processing, vol. 50,
no. 2, pp. 73-82, Feb. 2003.

Y.-P. Lege, T.-H. Chen, L.-G. Chen, M.-J. Chen, and C.-W. Ku, “A cost-
effective architecture for 8 x 8 two-dimensional DCT/IDCT using direct
method,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 7, no. 3, pp. 459467, June 1997.

Bibliography 121

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Y.-S. Lee, J-J. Jong, T.-S. Perng, L.-C. Hsu, M.-Y. Jaw, and C.-Y. Li, “A
memory-based architecture for very-high-throughput variable length codec
design,” in Proceedings of the IEEE International Symposium on Circuits and
Systems, vol. 3, Hong Kong, June 9-12 1997, pp. 2096—2099.

Y.-S. Lee, B.-J. Shieh, and C.-Y. Lee, “A generalized prediction method for
modified memory-based high throughput VLC decoder design,” IEEE Trans-
actions on Circuits and Systems—Part IlI: Analog and Digital Signal Pro-
cessing, vol. 46, no. 6, pp. 742—754, June 1999.

S. M. Lel and M. T. Sun, “An entropy coding system for digital HDTV ap-
plications,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 1, no. 1, pp. 147-155, Mar. 1991.

H. Lim, V. Piuri, and E. E. Swartzlander, “A serial-parallel architecture for
two-dimensional discrete cosine and inverse discrete cosine transforms,” |IEEE
Transactions on Computers, vol. 49, no. 12, pp. 1297-1309, Dec. 2000.

C.-H. Linand C. W. Jen, “Low power parallel Huffman decoding,” Electronics
Letters, vol. 34, no. 3, pp. 240-241, Feb. 1998.

H.-D. Lin and D. G. Messerschmitt, “High throughput reconstruction of
Huffman-coded images,” in Proceedings of the IEEE International Conference
on Computer Design, Cambridge, MA, U.S.A., Oct. 24 1989, pp. 172-175.

——, “Designing a high-throughput VLC decoder Part |11 - Parallel decoding
methods,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 2, no. 2, pp. 197-206, June 1992.

C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT al-
gorithms with 11 multiplications,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 2, Glasgow,
UK, May 23-26 1989, pp. 988-991.

A. Madisetti and A. N. Wilson, “A 100 MHz 2-D 8x8 DCT/IDCT processor
for HDTV applications,” IEEE Transactions on Circuits and Systems for Video
Technology, val. 5, no. 2, pp. 158-165, Apr. 1995.

122

Bibliography

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

J. Makhoul, “A fast cosinetransform in one and two dimensions,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 28, no. 1, pp. 27-34,
Feb. 1980.

H. S. Malvar, “Fast computation of the discrete cosine transform through the
fast Hartley transform,” Electronics Letters, vol. 22, no. 7, pp. 352-353, Mar.
1986.

B. Martin, “Electronic design automation [1999 technology analysis and fore-
cast],” IEEE Spectrum, vol. 36, no. 1, pp. 57-61, Jan. 1999.

M. Matsui, H. Hara, Y. Uetani, L.-S. Kim, T. Nagamatsu, Y. Watanabe,
A. Chiba, K. Matsuda, and T. Sakurai, “A 200 MHz 13 mm? 2-D DCT macro-
cell using sense-amplifying pipeline flip-flop scheme,” IEEE Transactions on
Systems Science and Cybernetics, vol. 29, no. 12, pp. 1482-1490, Dec. 1994.

J. C. Maxted and J. P. Robinson, “Error recovery for variable length codes,”
IEEE Transactions on Information Theory, vol. 31, no. 6, pp. 794-801, Nov.
1985.

J. L. Mitchell, W. B. Pennebaker, C. H. Fogg, and D. J. LeGall, MPEG video
compression standard. Norwell, MA, U.S.A.: Kluwer Academic Publishers,
1996.

T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for
Signal Processing. Upper Saddle River, NJ, U.SA.. Prentice Hall, Inc.,
2000.

A. Mukherjee, H. Bheda, M. A. Bassiouni, and T. Acharya, “Multibit decod-
ing/encoding of binary codes using memory based architectures,” in Proceed-
ings of the IEEE Data Compression Conference, Snowbird, UT, U.S.A., Apr.
8-11 1991, pp. 352-361.

A. Mukherjee, N. Ranganathan, and M. Bassiouni, “Efficient VLSI designsfor
data transformation of tree-based codes,” IEEE Transactions on Circuits and
Systems, vol. 38, no. 2, pp. 306-314, Mar. 1991.

A. Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya, “MARVLE: A
VLSI chip for data compression using tree-based codes,” IEEE Transactions

Bibliography 123

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

on Very Large Scale Integration (VLSI) Systems, vol. 1, no. 2, pp. 203-214,
June 1993.

M. J. Narasimha and A. M. Peterson, “On the computation of the discrete
cosine transform,” IEEE Transactions on Communications, vol. 26, no. 6, pp.
934-936, June 1978.

Y. Ooi, A. Taniguchi, and S. Demura, “A 162Mbit/s variable length decod-
ing circuit using an adaptive tree search technique,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, San Diego, CA, U.SA., May
1-4 1994, pp. 107-110.

H. Park and V. K. Prasanna, “Area efficient VLSI architectures for Huffman
coding,” IEEE Transactions on Circuits and Systems—~Part Il: Analog and
Digital Signal Processing, vol. 40, no. 9, pp. 568-575, Sept. 1993.

H. Park, J.-C. Son, and S.-R. Cho, “Area efficient fast Huffman decoder for
multimedia applications,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, vol. 5, Detroit, MI, U.SAA.,
May 9-12 1995, pp. 3279-3281.

Y.-G. Park, “High speed variable length code decoding apparatus,” U.S. Patent
5561 690, Oct. 1 1996.

P. Pirsch, Architectures for Digital Signal Processing. Chichester, United
Kingdom: John Wiley & Sons, Ltd., 1998.

J. M. Rabaey, W. Gass, R. Brodersen, and T. Nishitani, “VLSI design and im-
plementation fuels the signal-processing revolution,” IEEE Signal Processing
Magazine, vol. 15, no. 1, pp. 22—-37, Jan. 1998.

K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages,
and Applications. San Diego, CA, U.S.A.: Academic Press, 1990.

S. K. Rao and T. Kailath, “Regular iterative algorithms and their implementa-
tion on processor arrays,” Proceedings of the IEEE, vol. 76, no. 3, pp. 259269,
Mar. 1988.

J. Rissanen and J. G. G. Langdon, “Arithmetic coding,” IBM Journal of Re-
search and Development, vol. 23, no. 2, pp. 149-162, Mar. 1979.

124

Bibliography

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” 1BM
Journal of Research and Development, vol. 20, no. 3, pp. 198-203, May 1976.

M. K. Rudberg and L. Wanhammar, “New approaches to high speed Huffman
decoding,” in Proceedings of the IEEE International Symposium on Circuits
and Systems, vol. 2, Atlanta, U.S.A., May 12-15 1996, pp. 149-152.

——, “High speed pipelined paralel Huffman decoding,” in Proceedings of
the IEEE International Symposium on Circuits and Systems, vol. 3, Hong
Kong, June 9-12 1997, pp. 2080-2083.

C. L. Seitz, “Concurrent VLSI systems,” IEEE Transactions on Computers,
vol. 33, no. 12, pp. 1247-1265, Dec. 1984.

C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical J., vol. 27, pp. 379423, 623-656, July, Oct. 1948.

Y. Q. Shi and H. Sun, Image and video compression for multimedia engin-
eering: fundamentals, algorithms, and standards. Boca Raton, FL, U.SA.:
CRC PressLLC, 1999.

B.-J. Shieh, Y.-S. Lee, and C.-Y. Lee, “A high-throughput memory-based VLC
decoder with codeword boundary prediction,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 10, no. 8, pp. 1514-1521, Dec. 2000.

——, “A new approach of group-based VL C codec system with full table pro-
grammability,” IEEE Transactions on Circuits and Systems for Video Techno-
logy, vol. 11, no. 2, pp. 210-221, Feb. 2001.

C. B. Shung, H.-D. Lin, R. Cybher, P. H. Siegel, and H. K. Thapar, “Area-
efficient architectures for Viterbi algorithm 11. Applications,” IEEE Transac-
tions on Communications, vol. 41, no. 5, pp. 802-807, May 1993.

C. B. Shung, H.-D. Lin, R. Cypher, P. H. Siegel, and H. K. Thapar, “Area-
efficient architectures for the Viterbi algorithm 1. Theory,” IEEE Transactions
on Communications, vol. 41, no. 4, pp. 636644, Apr. 1993.

M. Sima, personal correspondence, Apr. 2003.

Bibliography 125

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

M. Sima, S. Cotofana, S. Vassiliadis, J. T. J. van Eijndhoven, and K. Visser,
“MPEG macraoblock parsing and pel reconstruction on an FPGA -augmented
TriMedia processor,” in Proceedings of the IEEE International Conference on
Computer Design, Austin, Texas, U.S.A., Sep. 2426 2001, pp. 425-430.

—, “MPEG-compliant entropy decoding on FPGA-augmented TriMe-
diadlCPU6G4,” in Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa Valley, CA, U.S.A., Apr. 21-24 2002.

H. Stone, “Paralel processing with perfect shuffle” IEEE Transactions on
Computers, vol. 20, no. 2, pp. 153-161, Feb. 1971.

M.-T. Sun, “VLSI architecture and implementation of a high-speed entropy
decoder,” in Proceedings of the IEEE International Symposium on Circuits
and Systems, vol. 1, Singapore, June 11-14 1991, pp. 200-203.

J. Takala, “Real-time digital signal processing systems. parallel algorithms
and architectures,” Dr.Tech. Thesis, Tampere University of Technology,
Tampere, Finland, Aug. 1999.

J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Constant geometry a-
gorithm for discrete cosine transform,” IEEE Transactions on Signal Pro-
cessing, vol. 48, no. 6, pp. 18401843, June 2000.

——, “Scalable interconnection networks for partial column array processor
architectures,” in Proceedings of the IEEE International Symposium on Cir-
cuits and Systems, vol. 1V, Geneva, Switzerland, May 28-31 2000, pp. 513—
516.

J. Takala and T. Jarvinen, “Stride permutation access in interleaved memory
systems,” in Domain-Specific Multiprocessors - Systems, Architectures, Mod-
eling, and Simulation, S. S. Bhattacharyya, E. F. Deprettere, and J. Teich, Eds.
New York, NY, U.S.A.: Marcel Dekker, Inc., 2004, ch. 4, pp. 63-84.

J. Takala, J. Nikara, D. Akopian, J. Astola, and J. Saarinen, “Pipeline archi-
tecture for 8 x 8 discrete cosine transform,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, vol. 6,
| stanbul, Turkey, June 5-9 2000, pp. 3303—-3306.

126

Bibliography

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

J. H. Takala, T. S. Jarvinen, and J. A. Nikara, “ Register-based reordering net-
works for matrix transpose,” in Proceedings of the IEEE International Sym-
posium on Circuits and Systems, vol. 4, Phoenix, AZ, U.SA., May 26-29
2002, pp. 874-877.

T.C. Tan, G. Bi, Y. Zeng, and H. N. Tan, “DCT hardware structure for sequen-
tially presented data,” Signal Processing, vol. 81, no. 11, pp. 2333-2342, Nov.
2001.

B. D. Tseng and W. C. Miller, “On computing the discrete cosine transform,”
IEEE Transactions on Computers, vol. 27, no. 10, pp. 966-968, Oct. 1978.

S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Tamashita, H. Terane, and
M. Yoshimoto, “A 100-MHz 2-D discrete cosine transform core processor,”
IEEE Transactions on Systems Science and Cybernetics, vol. 27, no. 4, pp.
492499, Apr. 1992.

S. Venkataraman, V. R. Kanchan, K. R. Rao, and M. Mohanty, “ Discrete trans-
forms via the Walsh-Hadamard transform,” Signal Processing, vol. 14, no. 4,
pp. 371-382, June 1988.

M. Vetterli, “Fast 2-D discrete cosine transform,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 10, Tampa, FL, U.S.A., Mar. 26-29 1985, pp. 1538-1541.

M. Vetterli and H. Nussbaumer, “Simple FFT and DCT agorithms with re-
duced number of operations,” Signal Processing, vol. 6, no. 4, pp. 267-278,
Aug. 1984.

A. Viholainen, J. Alhava, and M. Renfors, “Implementation of parallel cosine
and sine modulated filter banks for equalized transmultiplexer systems,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, vaol. 6, Salt Lake City, UT, U.S.A., May 7-11 2001, pp.
3625-3628.

Z. Wang, “Reconsideration of afast computational algorithm for the discrete
cosine transform,” IEEE Transactions on Communications, vol. 31, no. 1, pp.
121-123, Jan. 1983.

Bibliography 127

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

——, “Fast adgorithms for the discrete W transform and for the discrete Four-
ier transform,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 32, no. 4, pp. 803-816, Aug. 1984.

——, “Pruning the fast discrete cosine transform,” IEEE Transactions on
Communications, vol. 39, no. 5, pp. 640-643, May 1991.

Z. Wang and B. Hunt, “The discrete cosine transform — a new version,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 8, Apr. 1983, pp. 1256-1259.

B. W. Y. Wal and T. H. Meng, “A parallel decoder of programmable Huff-
man codes,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 5, no. 2, pp. 175-178, Apr. 1995.

E. W. Weisstein. (2004) Matrix direct sum. From Math-
World - A Wolfran Web Resource. [Onling]l. Available:
http://mathworld.wolfram.com/MatrixDirectSum.html

H. R. Wu and Z. Man, “Comments on “Fast algorithms and implementation of
2-D discrete cosine transform”,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 8, no. 2, pp. 128-129, Apr. 1998.

H. R. Wu and F. J. Paoloni, “A two-dimensional fast cosine transform al-
gorithm based on Hou’'s approach,” IEEE Transactions on Signal Processing,
vol. 39, no. 2, pp. 544-546, Feb. 1991.

Xilinx, Inc., Virtex-1l Platform FPGA Handbook, UG002 (v1.0) Dec. 2000.

P. Yip and K. R. Rao, “Fast DIT agorithms for DST’'s and DCT’s,” Circuits,
Systems, and Signal Process, vol. 3, no. 4, pp. 387408, 1984.

——, “The decimation-in-frequency algorithms for a family of discrete sine
and cosine transforms,” Circuits, Systems, and Signal Process, vol. 7, no. 1,
pp. 3-19, 1988.

