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ABSTRACT

Polarization, which is a fundamental property of light, describes the direction of
oscillation of the electric component of the optical field. It is often assumed to be
transverse to the direction of propagation of the optical wave. This is, for instance,
the case for paraxial, i.e., collimated or weakly focused, laser beams. For non-
paraxial, i.e., tightly focused, laser beams, however, the polarization of such beams
shows a three-dimensional behavior as manifested by the generation of non-vanishing
fields directed along the longitudinal direction, within the focal volume. These lon-
gitudinal fields have tremendous effects in the context of optical microscopy, and
especially nonlinear microscopy because of the tensorial and symmetry dependence
of the nonlinear response. So far, techniques able to precisely tailor the longitu-
dinal field components at focus have relied on cumbersome setups and have seen
their capabilities hindered by the lack of appropriate probes that can be used to

unambiguously and directly detect such longitudinal fields.

This Thesis aims to meet this challenge and to provide new ways to control and probe
longitudinal electric fields at the focus of a high numerical aperture objective. Rely-
ing on state-of-the-art spatial phase-shaping techniques of an incident optical field,
we manage to control various parameters of the longitudinal electric field within
the focal volume, including its transverse spatial distribution and depth of field,
demonstrated by collection of second-harmonic generation from vertically aligned
GaAs nanowires. The results presented in this Thesis suggest that the strength
and spatial distribution of longitudinal fields can be generally controlled but also
probed using our techniques. This work also opens up new opportunities for better
understanding optical responses at the nanoscale and is expected to provide alterna-
tive imaging techniques for different types of nanostructures and possibly later for
biological samples. Finally, our phase-shaping techniques provide alternative tools

towards more advanced control of polarization in three-dimensions at focus.
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1. INTRODUCTION

Among all the fundamental properties of light, polarization has often appeared as
the ugly duckling, neglected in front of other parameters like intensity and wave-
length. A majority of the existing light sources indeed emit unpolarized light, that is
to say, the direction of oscillation of the electric field is random in time. In addition,
this direction does not affect the total intensity perceived by conventional detectors
or the human eye. However, whenever light is reflected or transmitted through a
material, it may acquire a certain degree of polarization. Some materials can even
absorb, reflect, or discriminate specific states of polarization (SOPs). Many innova-
tions have emerged using polarization-sensitive materials: television, computer and
smart-phone displays, polarized sunglasses, camera filters, or even three-dimensional
(3D) cinema technology, all exploit the polarizing properties of various materials for
the control of light intensity. Polarization is also a rich source of information itself.
Optical microscopy has, for instance, greatly benefited from the study and control
of polarized light sources and subsequent polarization analysis of the collected sig-
nals. In fact, polarized white-light microscopy has been commonly used in geology,
materials science, biology and forensics to identify anisotropic regions of microscopic

specimen structures [1.

The introduction of laser as excitation source has had a tremendous impact on light
microscopy, especially through the study of novel linear and nonlinear optical phe-
nomena. The high density of photons at the focus of a laser beam has enabled,
for instance, various nonlinear effects to be the main source of contrast for label-
free imaging and characterization of biological specimens and non-biological, i.e.,
artificial and subwavelength-sized, nano-objects |2H6]. Due to the tensorial charac-
ter of nonlinear effects 7], responses from materials can be strongly influenced by
the material crystal structure, composition and geometry of the material, and the

polarization structure of the impinging light.
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The propagation of light is often described by solving the scalar Helmholtz wave
equation that can be used to describe the propagation of a linearly polarized (LP)
input field or one component of an arbitrary vector field. However, when polarization
is of major concern, one needs to find the solutions of the vector Helmholtz equation
to describe the propagation of optical field where the whole transverse electric field
is considered [§]. Such optical fields, solutions of the vector Helmholtz equation and
possessing a spatially more complicated polarization, are called vector beams. This
description is important especially in microscopy where vector beams plays a major
role when focused by a high numerical aperture (NA) objective. Indeed, under
strong focusing, and depending on the polarization of the input beam and focusing
conditions, a significant part of the electric field might be directed along axes which
are orthogonal to the polarization of the input beam, called longitudinal direction
[9-13]. Therefore, the polarization of a strongly focused beam shows a 3D behavior,

with spatial distributions and strengths dependent on the input polarization.

Common SOPs like linear or circular polarizations have been used in nonlinear
microscopy to obtain new information about various objects or biological entities
[14-22|. However, such SOPs have quickly found their limitations in terms of imaging
capabilities, considering that linearly and circularly polarized light have only limited
uses for sample architectures with increasing complexity. This explains the recent
interest given to the generation of laser beams possessing more exotic SOPs, and
that have already enabled further breakthroughs in linear |23-26] and nonlinear
microscopy [27H31]. Due to the spatially varying SOP across the beam section,
vector beams allow for more sensitive characterization of nano-objects |30} 32, 33].
Then, due to possible strong focusing conditions, some nano-structures and even
biological entities can be really sensitive to strong longitudinal fields and therefore

the contrast in nonlinear microscopy can be further enhanced [34-36].

It appears now obvious that controlling and verifying polarization at focus, and
especially longitudinal electric fields, is important especially in the context of non-
linear microscopy. The polarization at focus being closely linked to the amplitude,
phase, and polarization of the input beam, research has been aiming towards better
and more local control of such parameters to obtain designed 3D focal fields [37142).
Such techniques have, however, seen their capabilities hindered by the complexity
and often indirect methods available for characterizing transverse and longitudinal

electric field components at focus |23, [43-47].
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As of today, better control of 3D polarization at focus and methods to independently
and directly probe focal electric field components seems crucial to foster further
advances in this field. This Thesis is in line with these aspects and aims to bring
alternative techniques for the control but also verification of longitudinal electric

fields at focus.

1.1 Aims and scope of this work

This Thesis aims to provide ways to tailor the spatial distribution and strength of
longitudinal electric fields at the focus of a microscope objective and to verify their
properties using SHG microscopy from single nano-objects. Using state-of-the-art
beam shaping devices, we tailor the excitation beam and image nano-objects that

are mainly sensitive to longitudinal fields in the focal volume.

SHG is a process extremely sensitive to the symmetry properties of the material or
the geometry of the nano-object imaged, but also highly dependent on the polar-
ization of the excitation beam at focus. Colleagues at the Laboratory of Photonics
started first investigating the SHG properties of vertically aligned GaAs nanowires
using common vector beams. They noticed that the distribution of SHG from these
nanowires was highly dependent on the input beam polarization. By comparing
SHG using beams showing weak or strong longitudinal electric field components at
focus, they noticed the strong preference of such nanowires for longitudinal field

excitation.

From these experiments originated the goal to develop techniques suitable for con-
trolling the polarization at focus, especially its longitudinal component at focus.
The 3D polarization at focus being dependent on the input beam amplitude, phase,
and polarization, we investigated ways to control parameters, that is to say, the
strength and spatial distribution in 3D, of longitudinal electric fields through con-
trol of the input beam. With a view to develop techniques capable of providing
a high degree of precision and programmablility, our interest was drawn to spatial
phase shaping of common vector beams using, for instance, spatial light modulators
(SLMs). We would then directly probe the longitudinal electric field in 3D using

SHG from vertically aligned GaAs nanowires.

The first idea was to apply an additional phase from 0 to 27 on one lobe of an HG1

mode to control the distribution of the longitudinal field at focus in the transverse
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plane. The second idea involved a similar scheme but using 7 phase delay over
only part of one lobe of the HG1g mode. In order to extend our work to 3D,
we investigated the properties of vector Bessel beams to tune the extent of the

longitudinal electric field along the overall direction of propagation of the beam.

1.2 Structure of the Thesis

This Thesis is composed of 8 chapters. An introduction and three chapters of theo-
retical background give a general overview of the topic, required to understand the
work. The methods used in this work are presented in Chapter 5| and the results
are separated into Chapters [6] and [7] Conclusions are presented in Chapter [§

In Chapter [2, an introduction to polarization and vector beams is given. In partic-
ular, the state-of-the-art techniques for generating and manipulating vector beams
are provided, especially focusing on the ones used in this Thesis. The most common
applications of such vector beams are also described. We then introduce in Chapter
the tools used to describe the tight focusing of vector beams. In this context,
the existing techniques used to control and probe focal electric-field components are
presented. An overview of SHG and the importance of vector beams for nonlinear

microscopy is highlighted in Chapter [4

Chapter || describes the phase-shaping techniques used to control but also to verify
the spatial distribution of longitudinal electric fields at the focus of a microscope
objective. After introducing the general experimental setup, we detail the phase-
shaping techniques used for the control of longitudinal electric fields. The verification

using SHG signals from vertically aligned GaAs nanowires is then presented.

Chapter [0] presents the results obtained by spatially phase-shaping a LP HG1y mode
using a SLM. After confirming the distribution of longitudinal electric fields of well-
known vector beams, we present the results obtained by gradually tuning the phase
of one lobe of an HG19 mode or by applying sections of 7 additional phase over
the same lobe. The results are then discussed. Chapter [7]is then dedicated to the
investigation of the longitudinal electric fields of vector Bessel beams in order to
gain control over the depth of field of longitudinal electric fields. We first report on
the extended longitudinal electric fields observed using a LPBG. We then generate

an optical needle using an RPBG beam. The results are then discussed.

Chapter |8 provides a general summary and outlook of the work.



2. POLARIZATION AND VECTOR BEAMS

Manipulation of longitudinal fields at the focus of a microscope objective requires
the introduction of essential background information. In this Chapter, the concept
of polarization and the equations ruling the propagation of light are first presented.

They form the basis for introducing vector beams and their known applications.

2.1 Wave equation

The propagation of light, as an electromagnetic wave, can be described using a set
of equations, known as Maxwell’s equations. First presented by James Clerk
Maxwell [48] in 1865, they were formulated in a more condensed form by Oliver
Heaviside starting in 1884 [49]. These equations take the following form in SI units
using the notation of Boyd’s book [7]:

V-D=j) 2.1
V-B=0 (2.2)
- OB
E=-"—" 2.
V x i (2.3)
~ oD ~
H="" 2.4
V x 5 +J (2.4)

where E and H represent respectively the electric and magnetic field of light, D and
B, respectively, stand for the electric displacement field and magnetic-flux density.
The other quantities, p and J , respectively, stand for the free charge and the free
current density and are therefore related to the medium in which light propagates.
In this Thesis, the symbol ~ represents a quantity varying rapidly in time. Two con-

stitutive relations are useful to link the electric and magnetic quantities mentioned
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above:

D=¢E+P (2.5)
B = yo(H + M) (2.6)

where €y and pg, respectively, represent the scalar permittivity and permeability of
vacuum and P and M , respectively, represent the induced polarization and magne-
tization. In the context of our work, we are first interested in the description of light
beams propagating in free space. Their interaction with a nonlinear medium will
be described later. Therefore, we can consider that neither free charges nor current

densities are involved:

p=0 2.7)
J=0 (2.8)
We can also neglect induced polarization or magnetization in free space:
P=0 (2.9)
M =0 (2.10)

From this point, we can modify Maxwell’s equations to retrieve the equation gov-
erning the propagation of light in free space. First, we take the curl of Eq.(2.3). By

interchanging the order of space and time derivatives, we can then plug the right

side of Eq.(| 2.4)) into Eq.(| 2.3) to obtain:

_ 10°E
VX(VxE)+C—28t2 =0 (2.11)

1
V€010
mulation of the electromagnetic wave equation in free space. Now, we can use the

identity V x (V x E) = V(V - E) — V2E. The first term on the right side cancels

using Egs[ 2.1] [2.5] [ 2.7 and [2.9] Therefore, Eq.( 2.11)) can be expressed in a
simplified form:

where ¢ =

is the speed of light in vacuum. This equation is a general for-

=0 (2.12)

Common solutions of this equation are transverse plane waves and can be formulated

as follows:

E(r,t) = Eo(r)eFr=t) (2.13)
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with w being the frequency of the optical wave and k being the wave vector and r

the position vector. In addition to this, |k| = k = £ = 2T represents the magnitude
of wave vector for plane waves in free space and is the scalar wave number. In

Cartesian coordinates, for a plane wave propagating in the positive z direction, Eq.(]
2.13) takes the following form:

E(z,t) = Eo(z)e!k= (2.14)

The electric field Ey is defined by its amplitude distribution but also by its oscillation

direction, which is represented by polarization.

2.2 States of polarization

2.2.1 Fundamentals of polarization

The direction of oscillation of the electric field of light is called polarization. If this
direction of oscillation fluctuates randomly in time, light is said to be unpolarized.
This is the case for sunlight or light coming from a basic incandescent light bulb. In
this Thesis, we use lasers that often have polarized beams as their outputs. Using the
fact that the electric field is oscillating in the plane transverse (xy) to the direction
of propagation (z) and the mathematical description of a plane wave in Eq.,

we can decompose the electric field vector into its z and y components:

Ea: (Z, t) Eomei(szwt+az) onei(az)
E(z,t) = E,(z,t) | = | Eoyet=tto) | = | By eil) | eithzmeh (2.15)
0 0 0

with a, and «y, respectively, representing the phase of the z and y components of

the electric field. This set of equations represents the basis of the Jones formalism,
Epeiee)

with EO (o) being known as the Jones vector. Besides being a powerful tool
Oyez Qy

for treating fully polarized light, this representation helps to show the important

parameters at stake when dealing with polarized optical beams. We can see that

the amplitude, the phase and the polarization of light are intertwined parameters

which define the vectorial nature of light. This means that modifying the amplitude

and /or phase of one of the transverse components will change the resulting vector
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direction and magnitude of the total electric field, that is to say, the polarization.
Based on this, it seems that spatially phase shaping an optical beam can constitute
an appropriate way to control polarization, and further to control longitudinal fields
at the focus of a microscope objective, as will be shown later. We can also mention
that another formalism exists to represent the polarization of light, called Stokes
parameters [50]. Compared to the Jones formalism, the Stokes parameters are a set
of intensity values determined experimentally that extend to partially coherent and
partially polarized light. In the first part of this Thesis, we deal with collimated
and fully polarized beams propagating in free space. The Jones formalism is then
interesting for describing the polarization of our laser beam, as it describes directly
the parameters that we are going to manipulate later and already mentioned before:

the Cartesian electric field components and their respective amplitude and phase.

Depending on the ratio R = %ng and the relative phase o = a, — a, between the
transverse components of the electric field, a plane wave can possess three differ-
ent types of polarization: elliptical, linear, or circular. It is important to note
that linearly and circularly polarized light are special cases of the general case of

elliptically polarized light. Let us summarize the three cases :

e If « = 0, then light is linearly polarized (LP). The ratio R determines then the
direction of oscillation. For instance, if R = 1, that is to say Ey, = E,, light
is LP at 45° with respect to = axis. If R = —1, that is to say Fy, = —Fj,,
light is LP at 135° with respect to x axis.

o If a =0dm/2+2nm, (0 ==+1 and n € Z) and R = 1, that is to say Ey, = Ey,,
then light is circularly polarized. Here, the sign of ¢ determines the handed-
ness of polarization, which tells whether the electric field rotates clockwise or
counter-clockwise over propagation due to the vector summation of Fy, and
Fy, to form E. If the the electric field rotates clockwise, the polarization
is right-hand circular and if the electric field rotates counter-clockwise, the

polarization is left-hand circular.

e In the most general case, if @ and R are constant values over time but do not
fall within the two previous cases, light is elliptically polarized. Here again,
depending on the phase difference «, light can be right-hand or left-hand
elliptically polarized.

Such SOPs are represented in Fig] 2.T]and can be manipulated using specific optical
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components. Most of them use birefringent crystals where transverse components
of the electric field experience different indices of refraction. Linear polarizers can
be used to convert unpolarized light into LP light. They can also be used to control
the power of a LP laser beam according to Malus’ law. Wave plates, like half-wave
plates or quarter-wave plates, use birefringence to rotate the polarization of LP light

or to transform LP light into circularly or elliptically polarized light.

Elliptical Linear Circular
polarization polarization polarization

Figure 2.1 Schematic of E; and Ey forming elliptical, linear, or circular polarization.

2.2.2 Homogeneous states of polarization

In free space, the typical beams having spatially homogeneous, i.e., uniform, polar-

ization are obtained by solving the scalar Helmholtz equation:
(V2+EKHE =0 (2.16)

This equation is directly linked to the wave equation in free space (see E and
is derived by applying the technique of separation of variables over the electric field
expression. Here, it is considered that the state of polarization does not depend
on the observation point over the beam cross-section, hence the use of the term

spatially homogeneous polarization.

Assuming propagation along z direction and for a finite beam-like paraxial solution,

the general form of the electric field for homogeneous polarization in Cartesian
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coordinates takes the following form:

The goal is now to determine the form of FEy(x,y,z). A first family of modes

can be obtained by applying the slowly varying envelope approximation (8;520 <

k?E, and 8;50 < k%) and by separating the variables z and y. The solutions

obtained are the so-called Hermite-Gaussian H G,,,,, modes and take the following

mathematical form [51]:

Eo(x,y,2z) = AoHp, Ve—\ H, (v2-Z 0 —iemn (=) iz (2.18)
w(z) w(z) ) w(z)
with H,,(x) known as the Hermite polynomials that obey the following differential

equation:

d’H,, dH,,
—9 omH,, =0 2.19
dz? v dz +am ( )

In addition, Ay represents the amplitude of the electric field, w(z) the beam size, wy

the beam size at waist, q(z) = z — iz the complex beam parameter and ¢,,,(z) =
(m+n+1)arctan(z/z) the Gouy phase with zy = 7w? /A being the Rayleigh range.
When m = n = 0, we end up with the fundamental Gaussian beam H Gy which is
used to approximate the spatial intensity distribution of the fundamental mode of
a laser output:

2

0 _p—ie(®)gimts (2.20)

Eo(r,z) = Ag o2

and we have ¢(z) = arctan(z/zp) for the Gouy phase. Such modes will be used in

the two first publications included in this Thesis, that is to say, Paper I and Paper
IT.

In the cylindrical coordinate system, the electric field can be formulated by:
E(r, ¢, 2,t) = Eqo(r, ¢, z)e' k=1 (2.21)

and by solving the Helmholtz equation similarly as for HG modes, we obtain a new
family of solutions known as Laguerre-Gaussian LG, modes, which take the

following form:

l 2 ' '
Eo(r,¢,2) = Ay <\/§ ! ) L (2 r ) wo e*i“’Pl(Z)elﬁﬂem (2.22)

w(z) w(z)
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with ¢ (2) = (2p+1+ 1) arctan(z/z) the Gouy phase shift and L} (z) representing
the Laguerre polynomials which satisfy the following differential equation:

L dL} .

T

Here again, for [ = p = 0, we recover the well-known fundamental Gaussian beam.

A last family of rotationally symmetric modes that does not depend on the azimuthal
angle ¢ can be obtained by solving the scalar Helmholtz equation. They are known

as Bessel-Gaussian BG modes and are expressed as follows:

wO . . k2 Br _Bzz./(2k)
E — A w@elmm™ g, [ — 1¥iz/z 2.94
0(7’,2) O’LU(Z>€ € = 0 1"‘7:2/20 € 0 ( )
with Jy(z) the zeroth-order Bessel function of the first kind and § a constant scale
parameter. For [ = 0, the solution reduces to the expression of the fundamental
Gaussian beam. Such beam will be created and used in Paper III. Overall, several

of the mode families mentioned above will be used in this Thesis and a representation
of such beams can be found in Fig[ 2.2

Bessel-Gauss

Hermite-Gauss Laguerre-Gauss
n=0 n=1 1=0 =1

1 1 ! 1
I CRAR 1
0.0 0 0

Bo.n

1 1
m=1 .' n :: n
0 o]

Figure 2.2 Representations of HG, LG and BG modes of lower orders.

2.2.3 Inhomogeneous states of polarization

The previous section presented the different beam profiles emerging from solving the
scalar Helmholtz equation with no consideration for inhomogeneous polarization
across the beam section. When polarization is a crucial parameter, like in this

Thesis, it has to be taken into account in the electric field description and in the
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wave equation. Therefore, the full vector wave equation needs to be considered:
Vx(VxE)—KE=0 (2.25)

For simplicity and considering the type of beams to be manipulated in this Thesis,
we will focus on beams with circularly symmetric SOPs that are called cylindrical
vector beams. For instance, a beam with a polarization following the azimuthal

direction should take the form:
E(r,2) = Ey(r, 2)e'k:=De, (2.26)

where ey is the unit vector of the electric field, which here follows the azimuthal

direction about the beam center. By substituting Eq.( 2.26|) into Eq.( 2.25) and
by again applying the paraxial and slowly varying envelope approximation, an az-

imuthally polarized (AP) beam then takes the following form:

i822/(2k) .
B.2) = A (0 ) ¢ TR Gl e, (22

where HGq(r, z) represents the fundamental Gaussian beam, whose expression can
be found in Eq.(2.20)), and J;(x) is the first-order Bessel function of the first kind.
Similarly, a solution where the polarization follows the radial direction can be found
where the electric field E(r, z) oscillates in the radial direction, forming a radially

polarized (RP) beam:

1822 /(2k) ,
E(r,z) = Aoy <#2/z0) e~ izl HGoo(r, 2)e'ka+Ve, (2.28)

where e, represents the unit vector of the electric field in the radial direction.

It is worth noting here that such solutions correspond to vector BG beams, term
used for beams used in Paper IV. They are the closest approximations and physi-
cally achievable beam-like solutions of vector Bessel beams. Due to the restriction on
polarization (azimuthal or radial), Eq.(2.27) and Eq.(2.28) contain the first order
J1 Bessel function, whereas Eq. contains the zeroth-order Jy Bessel function.
This fact explains the bright spot on the optical axis for a BG beam and the dark
spot on the optical axis for an azimuthally polarized Bessel Gauss (APBG) and
RPBG beam. Another interesting point is the fact that when the parameter [ is

very small, for instance for beams with large cross sections, the AP and RP beams
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as we usually know them are approximated by a LGg; intensity distribution and
are often called AP and RP doughnut beam due to their doughnut-shaped intensity
distributions, as seen on Fig[ 2.3] It is also possible to show that AP and RP beams
can be expressed as a superposition of homogeneous SOPs using Eqs[ 2.18 and 2.22}

ET = HGwex + HGOley (229)
E¢ = HGOlex + HGloey (230)

where E, and E, represent, respectively, RP and AP electric fields and e, and
e, the unit transverse Cartesian vectors. This superposition appears in Fig@.
The above representation of AP and RP beams is interesting because it suggests
that collinearly interfering HG1o and HGy; modes can be used to generate RP or
AP beams . It also indicates that HGyy and HGy modes can be obtained
straightforwardly by putting a linear polarizer (analyzer) after an RP or AP beam.

HG, HG,, —

RS UES -J

Azimuthal

=1, wl=801
ELenl-01

Z X

Figure 2.3 Formation of RP and AP beams obtained by superposition of orthogonally
polarized HG modes. White arrows represent the instantaneous electric vector fields.

2.3 Generation and applications of vector beams

In this Section, we shall present the existing techniques used to generate vector
beams. We shall especially focus on the ones used in this Thesis that are cylindrical
vector beams and vector Bessel beams. However, it is important to mention that
several of the techniques mentioned below can achieve the generation of more exotic

vector beams or vector fields, the latter not being initially beam-like solutions of the
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vector Helmholtz equation. Many vector fields can, however, become vector beams

through spatial filtering or in propagation [53].

2.3.1 Common vector beams

There are nowadays various ways to generate cylindrical vector beams. They can be
categorized into two groups: active and passive methods. Active methods consist of
generating vector beams already in the laser cavity, and are therefore called intra-
cavity techniques [51, 54-59]. Due to the fact that additional optical components
need to be placed within the laser cavity, active methods cannot be easily imple-
mented and are therefore not commonly used for vector beam generation. Passive
techniques have been more often used as they allow for the conversion of the common
Gaussian output beam of a laser to a more exotic form of vector beam. Once again,
passive methods are nowadays various, but only a few are regularly implemented in

optical setups [60-64].

Among the techniques available for generating cylindrical vector beams, or more
exotic vector fields, one can also make the distinction between interferometric and
non-interferometric techniques. Interferometric techniques were developed first to
generate vector beams because they often rely on the interference of low-order modes
with homogeneous polarizations [52, |65H69]. Reliance on interference, however, is
a source of instabilities within an optical setup. Moreover, the versatility of such
techniques might be limited. However, such configurations remain low-cost and

efficient, and can possibly be combined with more advanced beam shaping devices.

Non-interferometric techniques are often favored over the interferometric ones, be-
cause of their stability and versatility, even if they usually require more expensive
devices. They also appear to be often more compact systems. The first method,
already commercially available and also used in this Thesis, consists of locally ro-
tating the state of polarization of a LP input beam using twisted nematic liquid
crystal (LC) molecules [60, [70]. The latter, enclosed between two linearly and cir-
cularly rubbed plates, will locally rotate the state of polarization of the input beam.
Because of the combination of linear and circular symmetry, the LC cell is called a
0 cell. The working principle of this device is based on the fact that in conventional
twisted LC devices with a twist angle o between entrance and exit alignment, the
input LP light, which is oriented parallel or perpendicular to the rubbing direction

of the first alignment plate, is rotated by the same twist angle a. Depending on
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whether this input beam is horizontally or vertically polarized, the output beam
will be azimuthally or radially polarized. Such device produces high quality output
vector beams, however, the latter are limited to the two SOPs mentioned above.
Another device can be built to produce higher order vector beams by changing the

rubbing direction of the two plates.

Another technique relies on the principle of optical spin-to-orbital angular momen-
tum conversion of a light beam [71|. Using specially patterned LC plates, called
g-plates, with birefringence retardation ¢ and topological charge ¢, one can mod-
ify the orbital angular momentum of an optical field [72]. The g-plate is said to be
tuned when 0 is set to w. This tuning is wavelength dependent but can be controlled
electrically or thermally |73, [74]. For instance, a tuned plated with a topological
charge of ¢ = 1/2 allows for the creation of AP and RP beams from a horizontally
and vertically LP beam input, respectively |64}, 75].

Another method relies on nanogratings generated by ultrashort pulses within a slab
of glass [63, |76], so-called s-waveplates. Due to the spatially varying birefrigence
of the optical element created, it allows for conversion of circularly polarized light
into cylindrical vector beams. The handedness of the input beam dictates whether
the output beam is RP or AP. It also shows a high damage threshold compared to
previously mentioned LC devices. However, each s-waveplate must be fabricated
for a specific wavelength, which limits its versatility. Such plates are now also

commercially available.

A more versatile method used to generate vector beams relies on SLMs. By combin-
ing two SLMs and a quarter-wave plate, one can in principle generate any arbitrary
vector beam [77-79]. The first SLM applies a desired phase pattern, while the
quarter-wave plate and second SLM act as a local polarization rotator. In principle,
the polarization orientation of an input beam can be controlled pixel-by-pixel. More
details about SLM technology will be discussed later. Other less common methods
have been suggested to generate cylindrical vector beams and are well-reviewed by
Zhan [12]. More recently, studies have suggested the use of designed metasurfaces
composed of individual subwavelength nanostructures for highly efficient and versa-

tile generation of vector beams [80].

Cylindrical vector beams have found applications in various fields of optics ranging
from optical manipulation [81} 82| to laser cutting |83|. Optical telecommunication

could also benefit from cylindrical and more complex vector beams to increase the
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possible bandwidth of data transmission [84]. However, linear [24-26] and nonlinear
imaging [31] have benefited the most from such vector beams due to their interesting

focusing properties that will be described later in this Thesis.

2.3.2 Vector Bessel beams

Bessel beams are diffraction-free solutions of the Helmholtz equation presented in
Eq.(2.24) with theoretical properties first described by Colin Sheppard [85] and later
by Jim Durnin [86]. In principle, such beams show an infinite depth of field, that is
to say, the energy is confined close to the optical axis over an infinite distance. They
also show what is called a self-healing property, which represents their capabilities to
regenerate after meeting an obstacle. However, due to optical sources having finite
energy and optical components having limited apertures, one can synthesize only
approximate Bessel beams in the laboratory, so-called quasi-Bessel beams or BG
beams, with formulation presented earlier in Eq.((2.24)). For the sake of simplicity,
the possible use of the term Bessel beam in experimental conditions will always
refer to a quasi-Bessel beam, or BG beam. Even though the generated beams are
approximations of the perfect cases, they already show the interesting properties
of Bessel beams. Such beams with homogeneous polarizations are usually created

using passive elements.

First, using a circular, also called annular, aperture in front of a Gaussian beam
and then focusing the ring formed allows for the generation a Bessel beam |85
87]. To create an ideal Bessel beam, this ring should in principle be infinitely thin
and contain an infinite amount of energy and therefore only approximations of such
beams are generated. The quality of the Bessel beam generated is also dependent on

the quality of the annular aperture used and such amplitude filtering is not efficient.

The most common method relies on axicons [88-90]. Due to their focusing geometry,
they allow for the conversion of a Gaussian beam into a Bessel beam. Even though
such method is efficient, axicons are expensive and imperfections in their fabrication

can quickly distort the quality of the Bessel beam [91].

Finally, SLMs offer more versatility for generating Bessel beams from a Gaussian
beam [92, 93| and has become a valuable alternative to other optical components.
The phase displayed is an axicon phase wrapped between 0 and 27. Even though

a SLM is more expensive, it offers the possibility to simulate axicons with various
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apex angles. SLMs are, however, less efficient. Generally speaking, it is important
to note that the parameters of the generated Bessel beam, especially the extent of
the depth of field, depends on the parameters of the optical component used [94,
95]. In Paper III, we used a SLM to generate a LPBG beam. This choice can
be justified for two main reasons: first, the LP of the beam made the use of the
SLM rather straightforward. Then, the software of the SLM (Holoeye) gave us the
possibility to quickly generate axicon phases with tunable parameters. We could
then easily tune, for instance, the size of the ring to be focused by the microscope

objective.

On the other hand, vector Bessel beams represent the non-diffractive solutions to
the full vectorial Helmholtz wave equation |96} 97]. They constitute the extension of
Bessel beams with homogeneous SOPs, obtained through the scalar wave equation,
to optical beams with inhomogeneous SOPs. In principle, vector Bessel beams,
similarly to Bessel beams, show an infinite depth of field and a self-healing property.
However, their best physical approximations are vector BG beams, with formulation
presented earlier in Eq.(2.27) and Eq.(2.28). Similarly, the use of the term vector
Bessel beams in experimental conditions will refer to vector BG beams. Several
methods exist to generate vector Bessel beams that involve the original techniques
used to create Bessel beams. These include using SLMs [98-100] and axicons |101}
102|. In Paper IV, we switched from using a SLM to using an axicon. This choice
can be explained by the limitation of the SLM to LP and by low conversion efficiency
we would have encountered by using both a radial converter and a SLM to generate
the APBG or RPBG beam. Combining such devices is, however, an option to create
an APBG or RPBG beam [100].

Bessel beams have found extensive uses in various fields like micromanipulation
[103], micromachining [104], and even telecommunications [105]. The characteristic
properties of Bessel beams have also been used in volumetric imaging of 3D samples
in the context of linear [106} 107 and nonlinear optics [108-110]. The extended
depth of field of such beams indeed allows for fast imaging of thick samples without

having to perform sequential axial scans using a beam with short depth of field.
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3. TIGHT FOCUSING OF VECTOR BEAMS

After having described and presented the different modes of optical beams and
their respective SOPs, it is now important to introduce the tools used for beam
propagation and tight focusing. From this description will arise the importance of
polarization before focusing and the origin of longitudinal electric fields at focus. In
this Section, we will mostly use the formalism introduced by Richards and Wolf [9]
and summarized by Novotny and Hecht [111].

3.1 Angular spectrum representation

The angular spectrum representation (ASR) is a powerful tool for precisely
modeling the propagation and tight focusing of laser beams. The idea of this method
is to decompose a light beam into a series of plane waves and evanescent waves
propagating in different directions and with different amplitudes. Following this
and considering the electric field of light at a fixed plane orthogonal to the direction
z, we can express the two-dimensional Fourier transform of the electric field E in

this fixed plane as:

E(ky, ky; 2) / E(z,y, z)e k=sthat) qg gy (3.1)

with © being the symbol of the Fourier transform and E = (E,, E,, E,) and E =

(Ex, Ey, Ez) being vectors. For completeness, we can also define the inverse Fourier
transform of Eq.(| 3.1):

E(z,y,z / E(ky, ky; 2)e!Feathd) dedk, (3.2)
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Now, if we consider free-space propagation of a light beam, its electric field obeys
the vector Helmholtz equation presented before in this work in Eq.( 2.25). From
there, and by defining k, = \/ (k% — k2 — k2), we find that the Fourier spectrum

evolves in propagation as follows:

E(ky, ky; 2) = E(ky, ky; 0)etH= (3.3)

This equation means that the Fourier transform of the electric field at any given
plane z can be simply obtained by knowing the Fourier transform at the plane z = 0
and by multiplying the latter by the propagator e***:*. The electric field in the

image plane can then be obtained by taking the inverse Fourier transform of Eq.(]

53):

+0o0
E(z,y,2) = / / E(k,, ky; 0)e'kemthovEhes) qp g, (3.4)

This equation embodies the ASR. In many practical cases, light diverges only slowly
from the direction of propagation. This is typically the case for laser beam prop-
agation. On the basis of this, an assumption can be made that simplifies greatly
the analytical treatment of Eq. and is known as the paraxial approxima-
tion. It suggests that the contribution of transverse wavevectors (k, k, ) is negligible

compared to k, which allows for Taylor expansion of k, in the exponential :

(k2 + k)

k, = k\/l — (R4 R~ k=

(3.5)
This approximation can be used, for example, in the treatment of weakly focused
laser beams with homogeneous or inhomogeneous polarizations. However, this as-
sumption does not apply anymore in the case of tight focusing, where light rays
emerge or converge with large angles with respect to the overall direction of propa-
gation. In this Thesis, and depending on the input polarization, significant longitu-
dinal electric fields might arise by tightly focusing the laser beam through a high NA
microscope objective. Therefore, the full ASR shall be considered in the following

chapters of this work.

3.2 Tight focusing and longitudinal fields

ASR is an appropriate tool for showing that tight focusing of an optical beam

through a high NA microscope objective allows for the generation of strong longitu-
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dinal fields within the focal volume depending on the input polarization. For this,
we consider a far-field entering the microscope objective and want to know the full
electric field distribution within the focal volume. The far-field is evaluated at a
point situated at infinite distance from the object plane. In order to use the ASR
method, the far-field distribution of the optical field needs to be expressed in terms
of its Fourier spectrum. It can be shown that they are linked through the following

equation:

~ ire= kT

E(k,, k,;0) = 5k

which can be plugged back into Eq.( 3.4) of the ASR:

E (ks ky) (3.6)

Z',refzkr

. 1
E(r,y,2) = B (ki by ) =009 db dky - (3.7)

2m »
(k3+k5)<k?

The integration is limited to (k2 + k:;) < k? because exponentially decaying evanes-
cent fields do not contribute to the far-field. It is also interesting to see that if we
take k, ~ k, Eq.( 3.7) becomes a perfect Fourier transform which therefore shows

the limits of Fourier optics.

We can now describe the tight focusing of a paraxial optical field by an aplanatic lens
of focal length f, that is to say a lens free from spherical aberration and coma. The
following formalism was established by Richards and Wolf [9] and we will follow
the notation presented by Novotny and Hecht [111]. Fig[ 3.1] helps visualize the
optical system composed of an aplanatic lens, which models the high NA microscope
objective used in our experiments. In principle, a microscope objective is composed
of several optical elements. However, the theoretical derivation of focal fields and
the simulations of focal fields presented later are based on the focusing of the input
field by the aplanatic lens, which gives a good approximation of the focusing of
light by a more complex microscope objective. The dotted red line represents the
optical axis, that is to say, the line passing through the center of the microscope
objective and parallel to the main direction of propagation of the beam. We set that
(Z oo, Yoo, Z00) Tepresent the coordinates of a point on a reference sphere, centered on
the focal point of the aplanatic lens and of radius f, and (z,y, z) represents the
coordinates of a point near the focus. In the spherical coordinate system, they take
the form (f, 0, ¢) and (r, v, @), respectively. It is also relevant to introduce a series of
unit vectors to describe the refraction at the reference sphere: the couple (n,,ny)

represents the unit vectors of a cylindrical coordinate system whereas the couple
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(19, M) represents the unit vectors of a spherical coordinate system.

Einc
' B
i Il¢

Figure 3.1 Representation of a microscope objective modeled by an aplanatic lens system
and its coordinates for tight focusing.

(X, ¥.,2,)

An optical electric field Ej;,. incident on the aplanatic lens can then be described by
its (s) and (p) polarization, the components perpendicular and parallel to the plane
of incidence, respectively. Such components can be expressed as follows:

wmc

E?) = [Ein.-m,)n, (3.9)

wmc

Due to refraction, the unit vectors mentioned above experience geometrical transfor-
mations: the azimuthal unit vector ny4 remains the same but the radial component

n, is transformed into ng. The total refracted field E., can then be expressed by:

E = [t* [Eie - mig) 1y + 17 [Eie - 1) mg) ¢ /%(6039)1/2 (3.10)
2

with n; and ns being the refractive index of the medium before and after the apla-
natic lens respectively, and ¢(*P) representing the Fresnel transmission coefficients.

1/2 .
The term Z—;(cos 6)'/? appears as an energy conservation factor.

In order to later obtain the 3D components of the focal fields, it is important to

express the unit vectors previously mentioned in terms of Cartesian coordinates:

T, = COS PN, + sin pn,,
Ny = —sin ¢n, + cos pn, (3.11)

ny = cos 8 cos pn, + cos O sin gpn, — sintn,

Let us now insert these vectors into Eq.( 3.10) to get the Cartesian components of
the field E, just at the right of the aplanatic lens, but evaluated far away from the
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focus (z,y,2) = (0,0,0):

—sin ¢ —sing

E.(0,9) =t°(0) | Ein(0,0) - | coso cos¢ |4/ %(0030)1/2
0 0 ’
(3.12)
cos @ cos ¢ cos 6
+t7(0) | Einc(0,0) - | sing singcosf | 4/ %(0039)1/2
0 —sind ?

In order to use the ASR, we need to express E., in terms of its spatial frequencies

knowing that:

k. = ksinf cos ¢
k, = ksin@sin ¢ (3.13)
k, = kcos0

Due to the symmetry of the problem, it is more convenient to express the ASR in
terms of # and ¢. By using the relations and performing a change of variables
for a double integral, we get that:

1
dkodk, = ksin9dodo (3.14)

If we now consider the transformation of the Cartesian coordinates x = pcos ¢ and

y = psin @, the ASR of the focal field can be expressed as follows:

Omaz 2T

ko fe kS _—
E(p, 0, 2 7 fe / /E zkzcos@ezkpsmﬁcos (p—v) sin 6 do d(b (315>

The limits of the double integral come from the finite dimensions of the physical
system. We can link 6,,,, to the NA of the lens, or microscope objective, with
the relation NA = nsin6,,,,, with n = ny the refractive index after the lens. We
also decided to restrict our study to a field propagating in the forward direction,
therefore retaining only the + sign in Eq..

It is important to see that Eq.(| 3.15]) directly links the 3D spatial distribution of the
optical field at focus to its far-field spatial distribution right after the lens. Therefore,
we can now study the tight focusing of several laser modes mentioned in Section [2.2]

By doing so, we shall see that the distribution and strength of longitudinal fields at
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focus are highly dependent on the input state of polarization of E;,..

We will focus here on the tight focusing by a high NA microscope objective of LP
modes like HGyy, HG19, HG1p, and later emphasize their combinations to form RP
and AP beams. Let us start with an optical field polarized along the horizontal
direction:

E;,. = E;,m, (3.16)

For simplicity, we assume that the objective is highly transmissive at the wavelength
considered, hence t°(f) = t?(f) = 1. By plugging this back into Eq.( 3.12)), we get:

E(0,0) = Einc(0, ¢)[cos png — sin pn) \/E(6059>1/2

N2
(14 cosf) — (1 — cos @) cos2¢ (3.17)
E@'nc 07 .
= %@ —(1 — cos ) sin 2¢ %(0050)1/2
—2cos ¢sinf ?

It is now time to define the amplitude distribution of the input beam defined by
E;,.. For the first three lowest order HG modes, their amplitude profiles can be

expressed in Cartesian and spherical coordinates as:

Einc(HGOO) _ Aoef(:pgoergo)/w% _ A0€_f2 sin? e/wg (318)
2407 2A )
Wo Wo
2A0Yo0 2A .
Einc(HGp) = 220800 o~ (adotyde)/wf — of sin 0 sin e~/ 5 0/wd (3.20)
Wo Wo

with wy representing the waist of the mode before focusing. The apodization
_ 1 sinZ 0
function f,(f) = e 7 **%me gimilar to a pupil filter, shall be used in the next

wo
fsinOmax
the filling factor. The integration over ¢ can be performed analytically using the

steps, where 6,,,,, represents the maximum focusing angle, and fy = being

following relations:

27
/ cos nge < 0=9) dp = 27 (i").J, () cos ng (3.21)

0
2

/sin nee' =2 dp = 27 (i").J, (z) sin ng (3.22)
0
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with, as seen previously in Section , Jn(x) being the nth-order Bessel function.
For the sake of being concise, we also define the following integrals appearing along

the calculation:

67)’1/0/%
Iy = / fu(8)(cos 6)2 sin O(1 + cos 0).Jy(kpsin 0)e™r=<0 qg (3.23)

0

Omac
Iy = / fu(8)(cos )2 sin? .1, (kpsin §) e dp (3.24)

0

emaz
Ipe = / fu(8)(cos )2 sin B(1 — cos 0).J,(kpsin 8)e**<>? dg (3.25)

0

Omaz
T — / F(8) (cos 6)/2 sin® 6.7 (kpsin 6)¢i#=<05° dg (3.26)

0

emaz
I = / fu(0)(cos 0)/?sin (1 + 3 cos 0).Jy (kpsin §)e™**<? dg (3.27)

0

emaﬂ')
Iy = / fu(6)(cos 8)/2sin? 0(1 — cos 0) J; (kpsin 0)e™** <9 dp (3.28)

0

Hmax
I3 = / fu(0)(cos 6)2 sin® 0.1y (kpsin §)e* = dg (3.29)

0

emaz
Ly = / fu(8)(cos )2 sin? (1 — cos §)Js(kpsin §)e* =5 dg (3.30)

0

This set of abbreviations allows us to finally give a compact form of the focal electric

fields for each mode considered and for each of their Cartesian components (z,y, z):

HGO() .
[00 + 102 COS 2@

. |
E(p,¢,2) = % ™ pge Iyo sin 2 (3.31)
Up;
—2i1p cos
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HG10 :
. 1111 cos @ + ily4 cos 3¢
(p,p,2) 0€ 1115 sin g + 1174 sin 3 (3.32)
2'11}0 N9
—2119 + 2113 cos 2¢
HG01 .
o i(I11 + 2142) sin g + il14 8in 3
) n .
B(p,¢:2) = 5. ,/n—;Aoe"‘“f —il1s cos g — il 14 cos 3p (3.33)

2113 sin 2¢

It is interesting to note that the presence or absence of longitudinal electric field on
the optical axis can be quickly deducted from the form of the integrals defined in
Eqgs| 3.23|to[3.30] that contain Bessel functions of different orders. Only the zeroth-
order Bessel function has a non-zero value at its origin. Therefore, so far, only the
HG1y mode shows a longitudinal field (E,) component on the optical axis, whereas
the two others have off-axis F, fields. For instance, Fig[ 3.2 shows the calculated
spatial distribution of the electric focal fields for each Cartesian component of the

focused HGog and H(G1p modes, important in this Thesis.

Figure 3.2 Transverse spatial distribution of focal electric field components of tightly
focused x-polarized HGyy and HG1g modes.

We can now have a look at the 3D focal field components of RP and AP beams
and see the important implications that such inhomogeneous SOPs bring in terms
of longitudinal fields. As described in Eqs] 2.29 and 2.30, the RP and AP modes

can be generated by superposition of HG1g and HGy; modes. Their Cartesian focal

field components can then be expressed as follows:
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RP mode:
. 2 i([n —112) COs @
ikf* —ikf | . .
E(p7@7z> = 9 _A()e Z(IH — 112) sin @ (334)
Wo N9
—41
AP mode:
- i(I11 4 3112) sin
ik f n —ikf .
E(p.p,2) = — Age —i(I + 3112) cos ¢ (3.35)
2w0 N9

0

Due to the polarization distribution of an RP beam, its tight focusing generates a
strong on-axis longitudinal electric field. On the other hand, an AP beam does not
possess any longitudinal electric field at focus. However, the latter actually shows a
strong on-axis magnetic field, due to the orthogonal orientation of the electric field
in the far-field compared to a radial beam. Fig[ 3.3 shows the calculated norm of
the electric focal fields for each Cartesian component for RP and AP beams.

Radial

C
—
N
=
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<

Figure 3.3 Transverse spatial distribution of focal electric field components of tightly
focused RP and AP modes.

We did not provided representations of the norm of the total electric field at focus
because the form of the total electric field depends on the strength of each Cartesian
component of the electric field at focus, which depends on the focusing angle 10|
111].
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3.3 Tailoring and verification of electric field components at

focus

Due to the major implications of laser modes and polarization for various areas of
optics, progress has recently been made towards better spatial control of polarization
over the beam cross section. Such techniques are often based on the manipulation of
laser modes with inhomogeneous polarization to achieve polarization control at fo-
cus. We shall focus here on techniques which have for goal to tailor the polarization
landscape at focus or focal electric field components. Other techniques that do not
consider polarization will not be treated here. In order to experimentally demon-
strate such 3D polarization control capabilities, methods to probe the focal fields
components or polarization at focus have also been developed and will be discussed

in this Section.

3.3.1 Tailored polarization at focus using vector beams

Vector beams form the basis for the 3D control of polarization at focus. In order
to have control on the state of polarization at focus, one needs to tailor the input
light beam before focusing as the 3D components at focus are linked to the input
beam amplitude, phase, and polarization, as already shown in Section [3.2] Various
works have suggested methods for achieving full 3D control of polarization at focus

[38-40, 42, 112] or for creating complex polarization architecture [41].

The first method directly makes use of AP and RP beams [39]. By superimposing
these two beams and by controlling the apodization function at the back aper-
ture of a microscope objective, one can in principle produce arbitrary 3D polariza-
tion orientations. Several polarization orientation at focus were demonstrated using
polarization-sensitive melting of gold nanorods and their subsequent two-photon
fluorescence. This method, however, requires the generation of two separate vector

beams that have to be combined later.

A more versatile and programmable design relies on the use of SLMs [42, 113]. The
aim, similar to the previous method, is to control the orientation of the polarization
at focus at any transverse plane. In order to generate a focused beam with arbitrary
homogeneous polarization at focus, this technique provides the required amplitude

and polarization properties of the input field at the pupil plane of a high NA objective
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lens by solving an inverse problem with the set of equations described in Section [3.2]
A major drawback of this method is its rather low-efficiency due to the multiple use

of SLMs, but it is highly programmable and re-configurable.

Interestingly, because closely related to the phase-shaping principles used in this
Thesis, spatial phase-shaping of various SOPs has been theoretically implemented
to tailor the transverse and longitudinal spatial distribution of focal field components
at focus, using designed binary phase elements before focusing or more complex SLM
phase masks [37, 114].

Among the techniques mentioned above, some have seen their capabilities hindered
by the difficulty to characterize the electric field components at focus. The most

relevant techniques are thus described in the next Section.

3.3.2 Measurements of optical field components at focus

A major part of controlling 3D polarization at focus involves capabilities to ver-
ify and experimentally probe such focal field components. These techniques allow
for more or less direct reconstruction of electric field components within the focal

volume.

A rather new reconstruction method is based on nanointerferometry [47]. The beam
whose focal fields are to be determined is focused onto a spherical gold nanoparti-
cles. The total transmitted scattered signal at the back focal plane of the collecting
objective is imaged by a pixelated camera, and this for each position of the particle
across the focused beam. By applying a specific reconstruction algorithm, one can
then retrieve the amplitude and the phase of each Cartesian component of the focal
fields. Several factors limit, however, the applicability of this technique. Among
these, the nanoparticle chosen needs to have appropriate dimensions that have to
be determined precisely beforehand, as such dimensions will be directly used in the

reconstruction algorithm.

Near-field methods can also be used to map focal fields. Near-field scanning optical
microscopy (NSOM) is, for instance, a method capable of characterizing focal fields
[44]. However, the collected signals from most probes often represents a mixture of
information from different field components, and the fields detected depend on the

material as well as geometry of the probe. Modified schemes of NSOM have, however,
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shown to be able to unambiguously map focal fields in 3D [44, [115]. Another near-
field method is based on the collection of scattered fields from a nano-tip that is
scanned across the focused beam [43|. It was shown to be a reliable technique to

unambiguously probe longitudinal electric fields.

Single molecules with fixed dipole orientation also allow for focal field mapping
[23]. By recording a raster scan image of the fluorescence rate from single molecules
with a determined orientation, one can determine the Cartesian components of the
electric field of a focused beam. For instance, molecules lying in the transverse plane
map the transverse electric field components at focus, whereas molecules oriented
orthogonal to the transverse plane map the longitudinal electric field components at
focus. On the other hand, if one knows the electric field distribution at focus, one

can determine the orientation of single molecules.

The work presented in this Thesis includes an alternative method, based on SHG
of vertically aligned GaAs nanowires, which offers a direct method for mapping
longitudinal electric fields within the focal volume. It is based on the preference
of such nanowires for longitudinal electric field in SHG. More details about the
technique appear in Section [5.3]
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4. ROLE OF LONGITUDINAL FIELDS IN
NONLINEAR OPTICAL MICROSCOPY

Tight focusing often occurs in optical microscopy due to the use of high NA ob-
jectives. It is then essential to consider the properties of optical fields within the
focal volume, especially in nonlinear microscopy due to the tensorial character of
the nonlinear response of materials. In this Chapter, we introduce the nonlinear
wave equation and focus on SHG. We also detail the impact of 3D focal fields in the
context of SHG microscopy and provide an overview for other nonlinear microscopy
techniques. It is important to note that the term microscopy might be strictly used
when it implies the formation of a magnified image of a microscopic sample. Here,
we will use the term microscopy in a broader sense, including the detection of signals
from nano-objects using light focused by a microscope objective. The image formed
by raster-scanning may then not be a magnified image of the nano-object itself, but

contains other useful information.

4.1 Nonlinear wave equation

We are now interested in the light-matter interaction between a focused laser beam
and a nonlinear material. Therefore, the free space wave equation described in Eq.(]
2.12) needs to be adjusted and more parameters need to be taken into account.
When the electric field is strong enough, the induced polarization does not depend
anymore linearly on the input electric field. The induced polarization is crucial in a
nonlinear material and therefore cannot be taken as zero to describe the propagation
of an optical wave. Therefore, we need to take into account that D = ¢,E + P with
P +# 0. According to the notation used in Boyd’s book [7], the wave equation

transforms then to: )= -
- 1 0°F 1 P
viE_ L 0 _ 0

c2 Ot? €oc? Ot?

(4.1)
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or, by using Eq.(| 2.5):
V’E - — =0 (4.2)

It is relevant to separate the linear and nonlinear contributions to the polarization

P and electric displacement field D using the following relations:

pP=pY L pNt (4.3)
D = DW 4 pNL (4.4)
DY = ¢ E + PWY (4.5)

where P® and DY represent the linear polarization and linear electric field dis-
placement, respectively, and PNL represents the nonlinear polarization. Using the
above mentioned relations, Eq.( 4.1)) becomes:

1 DM 1 PPPNE

V2E — = 4.6
6002 ot? 6002 ot? ( )

This equation forms a wave equation where the nonlinear response of the medium
acts as a source for the electric field generated. This equation can be used further

to describe specific nonlinear optical effects in various materials.

4.2 Second-harmonic generation

As mentioned before, when the strong electric field of an input beam interacts with
matter, the induced polarization does not respond linearly anymore with respect to
the input electric field. If this electric field is sufficiently strong, the polarization of

the medium can be described using a power series:

P(t) = eo[XVE(t) + xPE*(t) + xPE3(t) + ..] (4.7)
where y(® represents the ith-order susceptibility, characterizing the optical proper-
ties of a specific medium. Due to the form of the electric field and from [4.7] and |
[4.6] we see that such polarization response leads to the generation of electric fields
at new optical frequencies. In this Section, we shall focus on second-order nonlinear
effects, like SHG, most relevant considering the work in this Thesis. This process,
represented in Fig[ 4.1] is known to be parametric, that is to say, the energy is

conserved and therefore no energy from the input photons is deposited into the ma-
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terial. Hence, nondestructive and label-free imaging can be performed using SHG
14, [116].

20

Ground state

Figure 4.1 Photon diagram of SHG process. Two photons at frequency w are annihilated
and one photon at 2w s generated.

In the most general case, the amplitude of the second-order nonlinear polarization is

(2)

i]k(wn + wm; wnv wm)a

known as the second-order nonlinear optical susceptibility, as follows:

linked to the product of field amplitudes through the tensor y

Pi(‘fun + Wm) = € Z Z X@(?])g(wn + Wmy Wn, wm)EJ (wn)Ek<wm> (48)

jk (nm)

where ijk represent the Cartesian coordinates and the (nm) notation states that
the summation over n and m allows for w, and w,, to vary as long as w, + w,, is
held constant. It is therefore crucial to know the components of the tensor XEJQ.,)C(wn +
Winy Wy, Wi )

In principle, many values need to be determined. Luckily, several restrictions on the
second-order susceptibility allow us to reduce the amount of components required
to describe the nonlinear polarization. First, the reality of the fields implies that:

2 ) .
Xl('jl)c(—wn — W, —Wn, —Wn) = X@(jl)e(wn + Wiy Wiy W) (4.9)

Then, the intrinsic permutation symmetry, physically meaning that the order of the

product E;(wy)Ey(wy) does not affect the physical outcome of the process, allows
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us to write that:

xﬁf-,l(wn + Wiy Wny W) = XEZ% (Wn, + Wiy Wiy W) (4.10)

A new tensor containing the components of the second-order susceptibility is often

used. It is defined as follows:

I
diji = §x§ji (4.11)
and contains in principle 27 independent components according to the assumptions
detailed before. If we now consider the case of SHG, we see that w, = w,, = w,
which allows us to introduce new indices 4l in place of ijk with the following index

Correspondence:

ko 11 22 33 23,32 31,13 12,21

] 9 ) 7 (4' 12)
l: 1 2 3 4 5 6

We see that for SHG, the number of independent components to be determined is

further reduced to 18. All in all, and by using Eq.(| 4.8)), the Cartesian components

of the nonlinear polarization for SHG can be summarized as follows:

2
P, (2w) dy1 diza dig dia dis dig y
P, y(QW) =260 | day dap doz day dos dog ?
P.(2w) d31 dsp dsz d3s dss dss

(4.13)

So far, we have considered only physical properties of the SHG process itself to limit
the number of tensor components needed. However, symmetry properties of the
optical medium can reduce even further the number of independent susceptibility
components. This can be understood by the fact that some materials show after

spatial transformation similar properties before and after this transformation.

A particular type of symmetry reduces the number of materials eligible for second-
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order processes, hence SHG. It is known as inversion symmetry or centrosymmety. If
a material possesses an inversion center, the second-order susceptibility must vanish
identically. One can easily show this property for SHG if we assume an instantaneous

response of the nonlinear medium to the electric field:

P(t) = ey P E*(1) (4.14)

For a centrosymmetric material, a change in the sign of the electric field implies a

change in the sign of the induced polarization:

— P(t) = eoxP [~ EP(t) = eoxP E2(t) (4.15)
The latter equation is valid, only if:
P =0 (4.16)

This selectivity makes SHG a powerful nonlinear optical process. In addition, it is
important to note that whenever the centrosymmetry is broken, for instance at the

surface or interface, second-order effects are possible [117].

It is important also to note that other spatial symmetry properties of the material
considered can help to identify the allowed form of the susceptibility tensor. For
instance, let us consider the case of GaAs, important for the work in this Thesis. The
common lattice structure of GaAs is cubic. However, in its zinc-blende form, GaAs
belongs to the 43m crystal point group and therefore shows noncentrosymmetry
due to the relative position of the Ga and As atoms in the lattice. In the end, the
second-order susceptibility tensor of GaAs possesses only three components, which

happen to be equal: d3g = do5 = dy4. The zinc-blende structure and the second-order
nonlinear tensor of GaAs are described in Fig[ 4.2

It is important to note that GaAs can also grow in a hexagonal structure. This
form is known as wurzite and also shows a second-order nonlinear response 118,
119]. However, this crystal configuration belongs to the 6mm crystal point group
and therefore the components of the second-order nonlinear tensor are different

compared to the zinc-blende form |7] (p. 49).
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Figure 4.2 Crystal lattice of GaAs in its zinc-blende form and its associated second-order
nonlinear tensor.

4.3 Vector beams in nonlinear microscopy

In this Section, we justify the importance of developing methods to control the lon-
gitudinal field component at focus by presenting the benefits of such fields in the
context of SHG microscopy. We also provide a short overview of recent demonstra-
tions of the importance of 3D SOPs in the context of other nonlinear microscopy

techniques.

4.3.1 Longitudinal electric fields in SHG microscopy

The particular polarization properties of vector beams and the selection rules of
the SHG process makes the combination of the two a great tool for microscopy.
Above all, the 3D SOP of light at focus and especially the longitudinal fields have
tremendous effects on the SHG from nano-objects. The importance of longitudinal
electric fields at focus was already pointed out for SHG in bulk crystals even under
weak focusing using LP light |[120]. These results showed that the longitudinal
electric field component of the input field has consequences on the SHG response of
a nonlinear crystal, even when such fields are often neglected due to weak focusing
conditions. The longitudinal electric fields also play a rather important role in

SHG from thin films. Since the latter exhibit a strong out-of-plane SHG response,
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longitudinal electric field components are then highly desirable. An RP beam can be
used to induce a confined and strong longitudinal field component at focus to drive
SHG [121]. Finally, and more related to this Thesis, longitudinal electric fields have
shown to have significant consequences for SHG microscopy of single and tailored

nanostructures.

Coupling vector beams that provide such 3D SOPs at focus to the selectivity offered
by the second-order nonlinear tensor of materials is a formidable tool for imaging and
characterizing nano-objects. Depending on their shape, orientation, and symmetry;,
such nano-objects will respond differently to the 3D behavior of the electric field
within the focal volume, where both transverse and longitudinal field components
play a role. For instance, longitudinal fields are important for enhanced SHG from
metal nanocones supporting plasmonic oscillations along the cone axis [30, [32, 34].
The response is therefore highly dependent on the respective strength of transverse
and longitudinal fields at focus, and this in turn directly linked to the input state
of polarization [32, [33]. Biological imaging can also depend on 3D optical fields.
It was shown numerically and experimentally that the longitudinal field component
of an RP beam improves SHG signals from collagen fibers |27, 28 35| |122]. SHG
imaging using AP and RP beams also helps to determine molecular orientations
in such fibers [123|. It is important to note here that the improvement in SHG
signals observed using RP beam is highly dependent on the 3D fiber orientation.
Thus, fibers aligned along the longitudinal field created by the RP beam showed
higher SHG signals, but one would expect that fibers aligned perpendicular to the
longitudinal direction would be more sensitive to the transverse fields of an AP

beam.

Another very interesting aspect of the combination vector beams and SHG forms
the basic principle on which the work presented in Thesis relies. It has been pointed
out that studying SHG of designed nanostructures allows for the spatial mapping
of longitudinal electric fields 34} 36]. This feature highlights two important points:
first, it confirms the importance of longitudinal electric fields for exciting efficiently
certain types of nano-objects, and secondly, it provides a technique for direct imaging
of the spatial distribution of the longitudinal field component of an input beam at
focus. This last point is crucial considering that there are very few methods available

to determine the longitudinal field distribution at focus.
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4.3.2 Focused vector beams in other nonlinear microscopy

techniques

We detailed the influence and benefits of the 3D SOPs within the focal volume,
highlighting the importance of longitudinal electric fields, in the context of SHG
considering the work performed in this Thesis. However, other nonlinear microscopy
techniques can also benefit from vectorial fields at focus and should be mentioned
here. This overview provides insights on other nonlinear microscopy techniques but

is not exhaustive. Thorough and well-constructed reviews are found elsewhere [5]
31).

Third-harmonic generation (THG) microscopy uses THG as the main source of con-
trast, where three photons at frequency w generate a photon at frequency 3w. Such
process is really sensitive to material inhomogeneities. This technique has been used
for material characterization |2, 15 124} 125] but also for nanostructures [126]. Re-
garding the benefits of vectorial focal fields, they remain limited compared to SHG.
However, some works have suggested to use vector beams to increase the transverse
resolution of THG microscopy [127, [128] or to even use THG to characterize the
spatially varying polarization state distribution at focus [129]. Interestingly, simi-
larly to SHG microscopy, THG microscopy is sensitive to the 3D structure of the
sample imaged and controlling 3D focal fields could bring more opportunities in this
context [30, 130].

Coherent-Anti-Stokes Raman scattering (CARS) microscopy also benefits from 3D
focal fields. In CARS, a four-wave mixing process, two laser beams at frequency w;
and wy < wy interact in a medium. From this interaction, a new frequency at 2w; —ws
is generated. If the difference w; — ws corresponds to the vibrational frequency w,
of the material, the nonlinear response exhibits a resonance. Due to this, CARS
is often used for probing molecular structures |14} 131-133]. Even though CARS
microscopy is more challenging in its implementation than SHG or THG due to the
precise tuning of two input beams, the use of vector beams has been spreading quite
much in CARS microscopy. The main reason for this is that CARS microscopy
suffers from a nonresonant background signal that limits the contrast achievable. It
appears that engineering the 3D SOP at focus can improve this contrast [134-136].
This enhanced contrast is in most cases a direct consequence of the pronounced
longitudinal electric field at focus |29} 136].



4.3. Vector beams in nonlinear microscopy 39

Finally, two-photon excited fluorescence and luminescence (TPF, TPL) constitute
a non-negligible part of nonlinear optical microscopy. Contrast here is achieved
through the absorption of two photons by labels or dyes and their relaxation with
emission of a photon through fluorescence. TPF and TPL are, however, incoherent
processes. In this context, resolution has been increased by using vector beams
[137-139]. Similarly to SHG, TPF can be also used for orientation imaging |39, 140,
141].

In this Thesis, we aim to provide tools for further development of controllable lon-
gitudinal electric field components but also 3D SOPs within the focal volume in
general. A direct demonstration of such tailored focal fields is shown using SHG,
but previous paragraphs show that our technique can find further applications in

other nonlinear microscopy fields.
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5. MANIPULATION AND VERIFICATION OF
LONGITUDINAL ELECTRIC FIELDS

In the present and following chapters, we shall present the experimental details com-
posing the techniques used for controlling the 3D parameters of longitudinal electric
fields through phase-shaping and the method used for verifying such longitudinal
field at focus. The experimental details of the phase-shaping techniques will be pre-
sented in Section [5.2] Section [5.3] on the other hand, will provide details about the

sample used to probe and verify the longitudinal electric field component at focus.

5.1 General setup

In all the publications included in this Thesis, the same basic optical setup was
used and only a few components were different between experiments. This setup
is described in Fig] 5.0 and includes two main parts. The first part contains the
filtering and phase-shaping components used to control longitudinal electric fields.
The second part is about detecting such longitudinal electric fields. This part re-
mained unchanged, whereas the phase-shaping part, where the excitation beam was

prepared, was varied.

Part I Microscope Part 11
: Phase-shaping _-6bjective - Detection

Figure 5.1 General optical setup used in the experiments.

A mode-locked femtosecond laser at the wavelength of 1060 nm with a 140 fs pulse
length and a 80 MHz repetition rate was used as the excitation source. The laser
beam, after filtering and shaping described in Section 5.2}, was directed to an infinity-

corrected microscope objective with NA of 0.8. This objective was used to tightly
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focus the excitation beam in order to allow for the possible generation of significant
longitudinal electric field components, the latter highly dependent on the input beam
SOP. Such fields were probed in the detection part described in Section [5.3]

5.2 Phase-shaping techniques

This Section describes the various phase-shaping techniques used to achieve longitu-
dinal field control at focus. The first part is dedicated to the spatial phase-shaping
of an HG1y mode and the second part presents the methods used to generated vector

Bessel beams.

5.2.1 Phase-shaping using HG1¢ modes

As mentioned in previous chapters, an important parameter that affects the electric
field distribution at focus is the polarization distribution across the input beam
before focusing. The relationship between each local SOP across the beam can be
controlled by adding a spatially designed phase across part of the input beam. In
order to do this, we looked for the most versatile and programmable technique to

apply precise phase delays over a determined area of the input beam.

SLMs appeared to be the best option for us. They are nowadays widely used and
have become an essential component for optical manipulation [142-144], beam shap-
ing |77, 193, (113} |145} |146|, microfabrication [147-H149|, microscopy [150, [151], and
nonlinear optics [152, |153]. SLMs come in different types, but we shall focus on
the one used in our experiments. Phase-reflective SLMs are devices composed of
a liquid-crystal display (LCD), where each pixel can be controlled independently.
Due to the birefringence of LC and their arrangement, one can apply an additional
phase delay pixel-by-pixel to a horizontally polarized beam reflecting from the dis-
play. Usually, the SLM is used as a second display monitor plugged to a computer.
The phase control is achieved by displaying a gray level map with values between
0 and 255 on the computer screen. Those values are then converted into voltage
via a graphic card to tilt the LC composing the LCD. Depending on the voltage,
directly linked to the gray value of the pixel, one can apply delays from 0 to over
27 depending on the input wavelength. Even though SLMs offer flexibility in terms
of programmability, they might also show some disadvantages like low efficiency,

or nonlinearities of the phase response. Another undesirable feature comes from
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the space between the pixels, characteristic of a non-perfect fill factor, leading to
the generation of an undiffracted component. In Paper I and Paper II, an 8-bit
Hamamatsu SLM with a pixel resolution of 792 x 600 and a fill factor of 98% was

used, dramatically limiting the amount of undesirable undiffracted component.

Both our SLMs experienced a nonlinear phase response with respect to the gray lev-
els applied. Such artifact gave us the opportunity to design and develop a homemade
calibration technique. This technique is based on the study of focal field intensity
variations of a LP Gaussian beam observed when applying increasing phase delays
on one half of the SLM. By correlation of numerical and experimental data, we were
able to retrieve the nonlinear phase curve and apply a compensated gray level func-
tion on our SLM phase masks to linearize the phase variations for gray levels ranging
between 0 and 255. The result of our phase calibration method is summarized in
Fig[ 5.2 and compared with the traditional interferometric method used for SLM
phase calibration.
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Figure 5.2 Phase response curve of our Hamamatsu SLM a) before and b) after phase
linearization for two different input wavelengths using our own phase calibration method.

We chose to use an HGpp mode as an input beam for several reasons. First, it
shows a strong longitudinal field on axis at focus . Hence, signals from each
individual nanowire excited with the HG1y mode would then constitute a reference
before applying our phase-shaping scheme and help us locate each nanowire. Then,
remembering that the SLM accepts only horizontally polarized light as input, a
horizontally polarized HG1y mode was suitable for this configuration. Finally, its
two-lobe spatial distribution was interesting because the window of the SLM could

then be electronically separated into two sub-windows dedicated to each lobe, with



44 5. Manipulation and verification of longitudinal electric fields

the phase discontinuity situated between the two lobes of the mode. Then, two
different phase delays could be applied on each lobe of the HG19 mode. In Paper
I, the HG1p mode was generated by discriminating the horizontally polarized part
of an RP beam using a linear polarizer. The RP beam was generated using a radial
converter which transforms a LP input beam into an RP or AP beam, as described
in Section [2.3.1] In Paper II, the HG;y mode was generated using a m-phase plate,
fabricated by collaborators at TUT, converting a HGog into HG1g . It might be
relevant to note that the HG4o could have been generated using the SLM itself [67],
but the availability of the radial converter or m-phase plate made it straightforward

to generate the HG1y mode.

<€25%

TTT LI 0T

Figure 5.3 Schematic diagram of spatial phase-shaping of an HG19 mode with the SLM
using the two different techniques described in Paper I and Paper II. ¢ represents a
varying phase delay applied on the SLM. Figures adapted, with permission, from Paper I
and Paper II

Two phase-shaping designs were considered to control the longitudinal electric field
distribution at focus. In Paper I, we gradually applied phase delays from 0 to
27 on a full lobe of the HG1y mode and collected SHG from GaAs nanowires for
each phase value chosen. In this context, the electric field of each lobe of the HG1
mode would oscillate in opposite phase for no additional phase and in phase for m
additional phase delay applied on one of the lobe, and finally back to opposite phase
for 27r. This phase-shaping scheme is described in Fig[ 5.3] left side. In Paper II,
the principle is fundamentally different because we chose to apply only an additional

7 phase delay but this time over a varying area of one lobe of the HG19 mode. Only
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0 and 7 phases were involved and therefore such technique is often referred as binary
phase-shaping . In our experiment, m phase delays were applied over quarters
of this lobe (0%, 25%, 50%, 75%, 100%), as described on the right side of Fig] 5.3
whereas the other lobe remained unaltered. The cases where the coverage is 0% and

100% correspond to settings similar to the ones presented in Paper 1.

5.2.2 Bessel beam generation

To gain further control over the longitudinal extent of the longitudinal electric field
at focus, we focused our interest on Bessel beams. As a proof of principle, we decided
to generate first a LPBG beam. For this, we used a LP HGyy, beam as input on the
SLM. We displayed an axicon phase wrapped between 0 and 27 on the SLM and is
described in Fig[ 5.4 In this case, we used a SLM from Holoeye with high pixel
resolution but with a smaller fill factor (93%).

Axicon phase
A Tonthesim

Input x-polarized Output x-polarized
Gaussian beam Bessel beam

Figure 5.4 Ezrperimental input LP Gaussian beam and LPBG beam, captured with a beam
profiling camera, generated using an azxicon phase displayed on the SLM. Figure adapted,
with permission, from Paper III.
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The choice of the SLM for generating the LPBG beam was justified in Section [2.3.2]
among which polarization of the input beam and programmability of the SLM used
made us lean towards such arrangement. As mentioned before, a Bessel beam forms
a really thin ring at the focus of a lens which facilitated the filtering of the on-axis
undiffracted component due to the imperfect fill factor of the SLM using a physical
block at the focus. After collimation, we placed another lens before the microscope
objective in order to create a ring at the back focal plane of the microscope objective.

This led to the formation of a Bessel beam at focus.

For the generation of an RPBG or APBG beam, the optical setup was a bit modified,
due to fundamental limitations, and is described in Fig[ 5.5} To achieve pure phase-
shaping, the SLM indeed requires horizontally polarized light as input. Therefore,
using an RP beam as input on the SLM would have not led to an RPBG beam. We
had to switch method and opted for an axicon. We mentioned in Section [2.3.2] the
reasons for this choice, mostly related to efficiency and to the aim to attain. The
collimated RP beam entered the axicon to form an RPBG beam. Similarly to a
LPBG beam, a set of lenses was then used to create an RP ring at the back focal
plane of the microscope objective to recover the RPBG beam at focus. After the
axicon, or at the focal plane of the microscope objective, it is interesting to note
that the intensity distribution of an RPBG beam shows a doughnut shape with
many rings around it, whereas the recorded intensity distribution of a LPBG beam
shows a spot on-axis with many rings around it . This observation confirms
the mathematical description of BG and vector BG beams provided earlier in this
Thesis.

Input RP beam Output RP Bessel beam

Axicon

Figure 5.5 Experimental input RP beam and output RPBG beam, captured with a beam
profiling camera, generated using an axicon.
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5.3 Verification of longitudinal electric fields

In this Section, we describe the method used to probe the spatial distribution of
longitudinal electric fields at focus. It is based on SHG collected from vertically
aligned GaAs nanowires. Such nano-objects have been shown to be sensitive to only
longitudinal electric field excitation. We first present the sample and then described

the methods used to collect SHG signals and map the longitudinal electric fields.

5.3.1 GaAs nanowires

All the experiments performed in the laboratory and described in this Thesis are
based on SHG imaging of vertically standing semiconductor nanowires. They were
fabricated and characterized by collaborators at Aalto University. Such nanowires
are composed of a semiconductor material which here is GaAs. The nanowires were
grown on a GaAs substrate. In a nutshell, the fabrication consisted of forming a mask
with periodic holes through which GaAs could only grow vertically. Such a process is
known as selective-area metallo-organic vapour-phase epitaxy (SA-MOVPE). First,
a GaAs substrate of growth orientation [111]|B, according to Miller’s indices [155](p.
8), was covered by an amorphous silicon oxide layer of 40 nm thickness using plasma-
enhanced chemical vapour deposition. This layer was then patterned with holes in
a periodic triangular lattice. The pitch of the lattice used in our experiments is
between 2.4 and 2.5 um, but can be smaller if required. These holes were made
using electron-beam lithography and reactive ion etching, forming holes of about
55 nm diameter. From this point, the growth of the nanowires can start. Two
phases, the solid substrate and the vapor precursors carrying Ga and As atoms,
react together. The temperature, kept below the melting point of the substrate,
allows the gaseous precursors to attach to the substrate and therefore Ga and As
atoms will take their respective positions in the crystal lattice. This process is copied
to subsequent layers and epitaxial growth occurs. The nanowires formed have an
average length of 2 to 2.5 um and an average diameter of 55 nm. This diameter can
be slightly larger than the diameter of the holes due to possible, but limited, radial
growth.

After the nanowires were grown, their exact dimensions were determined using scan-
ning and transmission electron microscopy (SEM, TEM) and crystallinity using elec-

tron diffraction (ED). These experiments were performed also by collaborators at
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Aalto University. According to Fig[ 5.6 the nanowires show an exceptional struc-
tural quality. They are well separated and well standing on the substrate. Even
though the crystallinity is not perfect, showing several stacking faults, it shows a

predominant zinc-blende structure.

Figure 5.6 SEM (a,b), TEM (c,d), and ED (inset) images of the vertically aligned GaAs

nanowires used in our experiments. Figure adapted, with permission, from Paper I.

5.3.2 Detection of SHG signals

As discussed in Section GaAs possesses a second-order bulk response when
in its common zinc-blende form. For the nanowires grown along the [111] crystal
direction, the second-order susceptibility has only three equal non-vanishing tensor
components X(mzy)z, X:,(,%E)Z, and ng)y, with x, y, and z referring to the coordinate system
of the crystal. In this case, it has been shown that electric field components parallel
to the growth axis of the nanowires primarily drive SHG in GaAs nanowires [30],
which can also be monitored in 3D . Therefore, generating longitudinal electric
fields at focus is highly desirable for efficient SHG and enhanced contrast, but most
of all, such nano-objects allow us to probe the longitudinal electric field of a focused

beam at focus.

The sample containing the GaAs nanowires was placed on a three-axis piezo-scanning
stage, controlled via a computer. SHG signals from nanowires were collected in
epi-detection through the same microscope objective and measured using a photo-
multiplier tube sensitive to the SHG wavelength of 530 nm. The final SHG images
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were formed by raster scanning, i.e., by recording the total intensity pixel-by-pixel.
This technique therefore allows mapping of the longitudinal electric field at focus
considering that each single nanowire acts as a probe. The separation between fun-
damental and frequency doubled signals was performed using appropriate dichroic
and band pass filters. In all experiments, input power levels between 1 and 2 mW
were used, enough to get a high contrast in terms of signals from the nanowires, but

low enough to avoid destruction of the nanowires.
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6. TRANSVERSE DISTRIBUTION CONTROL
OF LONGITUDINAL ELECTRIC FIELDS

This Chapter presents and discusses the results obtained in Paper I and Paper
IT using the phase-shaping schemes mentioned above. Here, we shall have a look
at the SHG raster scan images collected for various input beam polarizations and

phase-shaping parameters.

6.1 Experimental results

First, and as presented in Paper I, we imaged the GaAs nanowires using reference
beams such as a horizontally polarized HGgy mode, an RP and AP beam, and a
HG1p mode without additional phase delay (unshaped beam). The results are in
Fig[ 6.1 As expected, SHG from GaAs nanowires is strong only when the input
polarization shows non-vanishing longitudinal electric field components at focus.
For instance, using an RP beam at the input gives rise to the strongest SHG signal,
and this due to the significant longitudinal electric field component at focus for this
beam. On the other hand, using an AP beam with the same input power does not
lead to SHG from these nanowires. The reason for this is that a tightly focused AP
does not generate longitudinal electric field components at focus and the local SOP
remains transverse even at focus. Then, using an HGy and HG1g mode as input, the
SHG image of a single nanowire, respectively, exhibits a two-lobed and three-lobed
intensity pattern, resembling the longitudinal field of the respective focal fields, as
seen in Fig] 3.2] The spot-like distribution of the longitudinal electric field of an
RP beam predicted in Fig| 3.3]is also confirmed here. The results obtained here for
using an HGqg, an AP, and an RP mode strengthen the data presented in Ref. |36]
and the data obtained using an HGy mode is reminiscent of the results presented
in Ref. [34]. This set of data confirms the role of GaAs nanowires for probing the
spatial distribution of longitudinal electric field at focus using point-scanning SHG

microscopy.
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Azimuthal

Figure 6.1 Transverse SHG intensity maps from GaAs nanowires using reference vector
beams. Figure adapted, with permission, from Paper I.

We applied our phase-shaping scheme on the HG19 mode. As mentioned previously,
even though an RP beam gives rise to maximum longitudinal electric fields at focus
and therefore maximum SHG in our case, the polarization restriction of the SLM
directed our choice towards the H(G1y mode, which shows already a significant lon-
gitudinal electric field component at focus. In Paper I, we performed a set of SHG
scans for different additional phase delays applied on one lobe of the HG1y. By
doing this, the electric field of each lobe oscillates with a different relative phase
depending on the additional phase applied on the lobe. The results are summarized
in Fig][ 6.2 Without phase delay, the beam is unshaped and the SHG from a single
nanowire shows the three-lobed distribution observed already in Fig[ 6.1} For a 27
delay, we also recover the same SHG distribution and this is as expected considering
that the input beam shows two lobes oscillating in opposite phase, just like the un-
shaped HG1p mode. For delays increasing from 0 to 7, the three-lobed distribution
slowly switches to two off-axis lobes with lower intensities. This can be understood
due to the two lobes of the HG1y beam oscillating in phase before focusing for a
7 delay. For this setting, the phase shaped H(G1¢ mode now resembles a LP beam
[157, |158|, however retaining its two-lobed spatial distribution before focusing. For
this reason, a m phase shaped HG1y and a LP HG(y show similar longitudinal field
distributions at focus, confirmed by SHG signals but also simulations, available in
the supplementary material of Paper I. This observation is especially interesting
because it shows that one can modify the longitudinal electric field distribution at
focus by simple phase-shaping without switching the input beam mode using more
cumbersome methods. We then applied additional phase delays between 7 and 27w
and observed symmetric SHG variations compared to the 0 and 7 range. In addi-
tion to these experiments, we verified that applying the same phase delay on both
lobes preserved the three-lobed distribution of the SHG signal, thus the longitudinal
electric field distribution of the unshaped HG1 at focus. This is expected because
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the important parameter is the relative phase delay between the two lobes of the

input beam, and not the absolute phase.

phase delay =0 phase delay = /2 phase delay =« phase delay = 3n/2 phase delay = 21

Figure 6.2 Transverse SHG intensity maps from GaAs nanowires after applying addi-
tional phase delays on one lobe of the HG1o mode. Figure adapted, with permission, from
Paper L

In Paper 11, we performed similar experiments but this time by applying the phase-
shaping scheme described on the right side of Fig[ 5.3 We used only a 7 additional
phase delay on part of one lobe of the H(Gy mode and collected SHG for different
spatial coverages (0%, 25%, 50%, 75%, 100%) of the delay. The results are summa-
rized in Fig| 6.3 where a line cut across the SHG distribution of a single nanowire is
plotted for each coverage. As expected, 0% and 100% 7 phase-shaping in Paper I1
match similar settings and SHG results of Paper I for 0 and 7 phase delays. The
idea behind this binary phase-shaping, involving only a 7 addtional phase delay,
was to gradually increase the strength of the electric field of one lobe of the HGg
to oscillate in phase with the other lobe and approach the polarization distribution
of a LP HGyy mode, therefore switching from a three-lobed to a two-lobed longitu-
dinal field distribution at focus. To ensure that variations in SHG at focus emerged
from pure phase-shaping of the input beam, we applied a 27 delay for an arbitrary
coverage value, 50% in our case, on one lobe and observed no changes in the SHG
distribution from a single nanowire compared to SHG signals using an unshaped
HG1p. For intermediate coverages (25%, 50%, and 75%), we notice a gradual shift
of the center peak of the SHG distribution to the right to finally form the two-lobed
distribution characteristic to the longitudinal field distribution of a tightly focused
LP beam. Therefore, by increasing the amount of the lobe that is m phase delayed,
we switch from a strong to a really weak longitudinal field component on the optical

axis.
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Nanowire location

SHG intensity (a.u.)

Position (um)

Figure 6.3 Transverse SHG intensity map from a single GaAs nanowire by applying
additional ™ phase delays on one lobe of the HG1y mode with varying coverage. Figure
adapted, with permission, from Paper II.

6.2 Discussion

The two techniques presented above both show that one can achieve precise control
over the spatial distribution and strength of longitudinal electric fields at focus by
simply phase-shaping the input beam. This is interesting because the laser alignment
is in no way altered and no optical component is moved or added into the optical
setup in order to modify the longitudinal electric field distribution at focus. The only
parameter tuned is the phase map or level displayed on the SLM, which is done by
duplicating a gray level image from a computer screen onto the SLM display. These
experiments also directly demonstrate that SHG from a single and well-defined nano-
structure can be controlled at will. For instance, one can instantaneously switch from
strong to weak longitudinal electric field on the optical axis, therefore switching on
and off SHG at the location of the nanowire. The gradual spatial shifting of the SHG
main peak observed in Paper II might also be interesting for precise coupling of
light into nano-structures close to each other [159] without mechanical intervention

or sample displacement.
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As of now, it is hard to link these two techniques even though variations in SHG
distribution might show similarities for both phase-shaping schemes. It is indeed
not straightforward to associate a certain phase applied over a full lobe in Paper 1
to a certain 7 coverage ratio over a lobe in Paper II. It is also important to note
that the orientation of the GaAs nanowires allows us to probe only the longitudinal
electric field distribution at focus, whereas transverse components cannot be probed
in this configuration as demonstrated by the lack of SHG using an AP excitation
beam (see Fig[ 6.1). However, the local SOP within the focal volume has a 3D
behavior, and transverse electric field components are often still dominant over the
longitudinal one. Therefore, our technique allows for longitudinal field control but
also suggests that we can achieve further control over the polarization orientation
in 3D at focus [39, 42].
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7. CONTROL OF THE DEPTH OF FIELD OF
LONGITUDINAL ELECTRIC FIELDS

In the previous Chapter, we presented a simple phase-shaping scheme for controlling
the spatial distribution of longitudinal electric fields at a given transverse plane at
focus. In this Chapter, we discuss the results of Paper III and Paper IV that
address the question of the longitudinal extent of longitudinal electric fields. We are
interested in knowing if this extent could potentially be controlled. For this reason,
we decided to investigate the properties of the longitudinal electric field components
of Bessel beams, known to show extended depth of field. We first introduce the
notion of Bessel beams and their potential use in optics. We then present the
results obtained by exciting our GaAs nanowires with LP and RPBG beams and

discuss the possible opportunities offered by extended longitudinal electric fields.

7.1 Experimental results

In this section, we describe the results of Paper III and Paper IV. We first report
on the longitudinal electric field properties of a LPBG beam compared to a common
LP Gaussian beam (HGgg). We then generate an RPBG beam to create an optical
needle that is probed using SHG from GaAs nanowires. As mentioned before, the
detection part remains the same, only the method used to generate Bessel beams

with various polarizations changes.

7.1.1 Comparison of LP Gaussian and LPBG beams

We decided to first create a LPBG beam at the focus of our high NA microscope
objective and compare its longitudinal electric field distribution to that of a LP
Gaussian beam. The generation of the Bessel beam was described in Section [5.2.2]

To probe the longitudinal electric fields generated at focus, we performed similar



58 7. Control of the depth of field of longitudinal electric fields

SHG transverse scans as described previously for Paper I and Paper II. This
time, we collected SHG from single GaAs nanowires for different axial planes, that
is to say, for different positions of the sample along the longitudinal direction. The
first set of scans was recorded using a LP Gaussian beam and a second set using
a LPBG beam, this in order to compare their respective depths of field as well as
the transverse spatial distribution of their longitudinal field component. The main

results are presented in Fig[ 7.1]
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Figure 7.1 Transverse SHG intensity maps, for different planes, from GaAs comparing
the spatial distribution and depth of field of focused LP Gaussian and Bessel beams. Figure
adapted, with permission, from Paper III.

For each beam, we first acquired a SHG transverse scan for a plane where GaAs gave
maximum signal (zg). Using a LP Gaussian beam, we see that the two-lobed distri-
bution of the longitudinal electric field observed in Figs] 6.2] and is recovered in
the top row of Fig[ 7.1} Using a LPBG beam, the SHG intensity distribution from
a single GaAs suggests that such a beam possesses a longitudinal electric field com-
ponent at focus similar to a Gaussian beam with two off-axis lobes. Interestingly,
we can notice two dimmer extra features next to the two main lobes on the SHG
intensity maps using a Bessel beam, which can be explained by the high intensity
first ring of the Bessel beam intensity profile, seen in Fig[ 2.2] and confirmed by
simulations . From this position zy, we then performed, for both beams, a series
of transverse SHG scans for different axial planes before and after the position z.
From these, we can already see that if we move more than £1pum away from the
position 2y, the contrast and the homogeneity of the two-lobed SHG from a sin-
gle nanowires quickly deteriorates using a Gaussian beam. On the other hand, the

two-lobed distribution is preserved over the axial range studied when using a Bessel
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beam, suggesting the stability and extended depth of field of the longitudinal field
component. In Fig[ 7.2] we pushed the experiments further and tried to reach the
limits of contrast. For the specific Bessel beam used in our experiments, the SHG
signal distribution, directly linked to the longitudinal electric field distribution, is
maintained over a 15 um displacement, whereas the characteristic SHG signals from

single GaAs nanowires disappear after a 6-8 pm range using a Gaussian beam.
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Figure 7.2 Transverse SHG intensity maps from GaAs at the limit of contrast using
focused LP Gaussian and Bessel beams. Figure adapted, with permission, from Paper III.

7.1.2 Optical needle

After experimentally confirming the extended depth of the longitudinal electric field
of LPBG beams and noticing their similar transverse spatial distribution with Gaus-
sian beams with the same SOP, we decided to create RPBG beams to generate
a spot-like extended longitudinal electric field, defined as optical needle. Optical
needle is a term used to denote longitudinal electric fields, showing spot-like and
sub-wavelength transverse resolution, that can be maintained over a distance of sev-
eral \. It is important to note that the precise definition of an "optical needle" can,

however, have several meanings in the literature and can also be applied to extended
transversely polarized electric fields [161} 162].

Methods, based on RP beams, have theoretically predicted the generation of op-
tical needles using well-designed amplitude or phase belt-filters [163-167] to favor
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constructive and destructive interferences at focus. In our case, we were interested
in using RPBG beams to generate such optical needle, with techniques already de-
scribed in Section this in order to demonstrate the possibility to generate

strong longitudinal electric field on the optical axis with tunable extent.

Regarding the experimental process, we probed the longitudinal field component
using SHG from GaAs nanowires. We first imaged our GaAs nanowires using a
common RP doughnut beam [36, |168| to have a reference. We performed a transverse
xy raster scan and chose a set of three aligned nanowires to perform a longitudinal
scan in the plane containing these nanowires (zz plane) as seen in Fig. top row.
The spot-like transverse distribution of SHG for the longitudinal field distribution
of a tightly focused RP beam was recovered. The zz scan allowed us to probe the
extent of the longitudinal electric field for each beam considered. For an RP beam,

the full width at half maximum (FWHM) along the longitudinal axis is about 2um.

We then switched to an RPBG beam and completed the very same raster scans,
with results displayed in Fig[ 7.3] middle row. As expected, RP doughnut beam and
RPBG beam show the same spot-like distribution of longitudinal electric field at
focus. The characteristic first extra ring of an RPBG beam can be clearly seen in
the SHG intensity map [169]. On the other hand, the zz SHG scan reveals that the
longitudinal electric field distribution is perfectly maintained over the full 15 um

range with very good homogeneity without sacrificing the transverse resolution.

To further demonstrate that the optical needle generated by the RPBG beam was
formed by mostly longitudinal electric field components, we performed the same
SHG scans but this time using an APBG beam. To do so, we simply switched
from RP to AP beam before the axicon using the radial converter. The goal here
was to show, in analogy to Paper I and Paper II, that an APBG beam does not
show longitudinal electric field components at focus [170] and that the optical needle
generated using the RPBG beam was therefore purely longitudinally polarized on
the optical axis. The results of this set of experiments are shown in Fig[ 7.3] bottom
row. As expected, GaAs nanowires did not respond to such excitation beam that

shows only transverse field components at focus.

After successfully generating and probing such an extended longitudinal field, we
decided to perform a scan over a broader range to observe the full extent of the
longitudinal field created by our RPBG beam. In Fig[ 7.4] which we display rotated

by 90° to save space, we can see that the SHG response is rather constant over a
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Figure 7.3 SHG intensity maps of GaAs nanowires for xy and xz scans using RP doughnut
beam, RPBG beam, and APBG beam. Figures adapted, with permission, from Paper IV.

range of up to 50 pm, the maximum scan range available with our stage-scanner,
suggesting the existence of a very long and longitudinally polarized optical needle.
It is hard to evaluate the FWHM as some minor inhomogeneities can be observed

along the needle, but it is reasonable to say that it is approximately in the 30 um
range.
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Figure 7.4 Full range longitudinal SHG intensity maps of GaAs nanowires using an
RPBG beam. Figure adapted, with permission, from Paper IV.

7.2 Discussion

The results presented in Paper 111 and Paper IV extend the work of Paper I and
Paper 11 by showing that the longitudinal electric field component can be controlled
along the longitudinal direction itself by using special beams with different SOPs.
By tuning the parameters of the generated Bessel beam at focus, one can control
the extent of the longitudinal electric field at focus and even switch from weak on-
axis longitudinal field using a LPBG beam to a pure longitudinally polarized optical

needle on-axis using an RPBG beam.

It is important to note that the necessity to extend the depth of the longitudinal
electric field component obviously depends on the application and might not always
be beneficial. For instance in our experiments, we studied GaAs nanowires with an
approximate length of 2 um. First, this parameter determines the accuracy with
which the actual depth of field at focus can be probed. Then, whether a LP or
RPBG beam was used, SHG signals were always lower compared to their non-Bessel
counterparts (Gaussian and RP doughnut beams). This can be explained by the
depths of field of the non-Bessel beams to be almost ideal for the length of the GaAs
nanowires at stake, the energy of such beams being concentrated roughly over 2
pm. On the other hand, their Bessel counterparts showed dramatically extended
depths of field, the energy being therefore spread over a longer distance and thus
reducing the efficiency of SHG in our case. However, it seems that the proportion
of the longitudinal field components with respect to the transverse components is
higher for Bessel beams than for non-Bessel beams [171], which would make one lean
towards the use of a Bessel beam for exciting nano-objects sensitive to longitudinal
electric fields. It would be interesting to study the influence of using longer nanowires
on the SHG signal intensity and see if exciting these nanowires with an RPBG beam

would turn out to provide higher SHG conversion than its non-Bessel counterpart.
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Another interesting result comes from the full longitudinal scan of Fig] 7.4 We
see that even though the needle generated is long, it shows some inhomogeneities.
These variations have been modeled and explained in the literature by possible
roundness of the axicon tip [91, [172]. Moreover, the interaction between the optical
needle created and the GaAs nanowires might affect the homogenity of the optical
needle probed. It is also important to remember that we probed the longitudinal
electric field by the SHG response of GaAs. This means that the pixel-by-pixel
SHG intensity detected and the local electric field of the fundamental beam at focus
are linked by the relation I(2w) o< E(w)*. Thus, any small variation of F(w) leads
to noticeable variations in the SHG intensity. In our case, those variations, or
oscillations, are contained in the 20% range in terms of SHG intensity, which means
that the variations are contained in the 5% range in terms of electric field. This
result suggests that the longitudinally polarized optical needle generated using the

RPBG beam is of high quality and homogeneity.

It is important to remember that experimentally producing an infinitely long opti-
cal needle with sub-diffraction resolution is impossible due to physical limitations.
Therefore, real Bessel beams are always approximated with a Gaussian profile in
experiments, hence the name of BG or vector BG beams. In the end, the length of
the optical needle and its structure can be tailored or affected by several parameters
that can be tuned to achieve a specific goal. These include the NA of the microscope
objective used to form the RPBG beam at focus, the thickness of the ring generated
at the back focal plane, its size compared to the entrance pupil, and the precision
with which it is situated at the back focal plane of the microscope objective. the
influence of such parameters are well-described by Dehez [171]. These parameters
also need to be considered if the goal is to create an optical needle where most of
the total input electric field is converted into longitudinal field components at focus,
with very little energy left in the transverse components. In our case, the needle is
only formed by the longitudinal electric field on the optical axis, as transverse field
components form a doughnut around the optical axis at focus [173|. However, it is
hard to probe precisely the amount of remaining transverse field as our vertically

aligned GaAs nanowires are not sensitive to such components.

Generally speaking, the demonstration of longitudinally polarized optical needles is
interesting in the context of optical data storage where a long depth of field can
provide larger data density as well as better tolerance for beam focusing [174} |175|.

In the context of micromanipulation, a possible extension to previous works could
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be to use a longitudinally polarized optical needle to trap several metallic particles
[81]. The longitudinally polarized needle constitutes a field that does not propagate
along the apparent main direction of propagation. It therefore does not contribute
to the energy flow and allows for a stable trap for metallic particles, now free from

scattering/absorption forces pushing them out of focus.
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8. CONCLUSIONS AND OUTLOOK

In this Thesis, we have demonstrated the tailoring of longitudinal electric fields at
the focus of a high NA microscope objective. We have demonstrated methods to
tune the parameters of an input beam before focusing using phase modulations of
different types. The experimental verification of the tailored fields was performed
by exploiting the SHG properties of vertically aligned GaAs nanowires and the
preference of this process for longitudinal electric fields. It allowed us to probe the

longitudinal electric field distribution of our tailored beams at focus.

Our results provide insights on various levels. First, it shows that the longitudinal
electric field at focus, and further polarization in 3D, can be controlled through
phase-shaping of the input beam. Secondly, it confirms that longitudinal electric
fields play a major role in nonlinear microscopy and that such nonlinear effects
can be controlled on-demand via beam shaping for various purposes. Finally, aside
from the possible challenges of fabricating high quality nanowires, SHG of vertically
standing GaAs nanowires seems to be a superior method to directly image the

distribution of longitudinal electric fields at focus.

In Paper I, we introduced a technique involving spatial phase-shaping of an HG1g
mode with a SLM. It was shown that we are able to vary the spatial distribution
of the longitudinal electric field at focus, switching from a three to two-lobed distri-
bution by adding phase modulation between 0 and 7, with symmetrical variations
observed with phase modulations between m and 27. The technique developed in
Paper II offered an alternative to the one introduced in Paper I, and was based
on binary phase-shaping of the same H(G1y mode with the m phase coverage of the
input beam being the key factor. Both techniques showed similar results in terms
of SHG intensity variations and therefore in terms of longitudinal field control, even
though these techniques are fundamentally different in their nature. In terms of
possible applications, one could use such a system to quickly switch from strong to

weak longitudinal electric field on the optical axis to control SHG form a single parti-
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cle without mechanical intervention. More interestingly, such phase-shaping scheme
could also be relevant to selectively excite and collect information from nano-objects.
This technique is also potentially able to perform all-optical 3D polarization control

at focus.

In Paper IIT and Paper IV, we investigated possible ways to tune the extent of
longitudinal electric fields along the optical axis. We started by using a LPBG beam,
and pushed the study to generate a longitudinally polarized optical needle using
an RPBG beam. Several methods have been suggested to generate such optical
needles, the ultimate goal being to convert most of the input transverse electric
field into longitudinal electric field at focus. Our work here can only claim to have
generated longitudinally polarized optical needle on the optical axis and cannot
give much information regarding the amount of transverse field off-axis. However,
compared to previous works that only suggested such optical needles theoretically,
our work provides reliable experimental demonstration of optical needles generated
by RPBG beams. Our results also show direct implications for enhancing SHG
of axially extended single particles or rapid volumetric imaging of thick samples
excited preferentially with longitudinal electric fields. Our work also puts vector
Bessel beams on a pedestal for further development in optical trapping and data

storage.

The work presented in this Thesis already provides a lot of potential for further
applications in various fields of optics, ranging from nonlinear optical microscopy to
optical trapping or data encryption. This work also leaves a lot of room for further
improvement and development. All the results reported in the publications that
are included in this Thesis are intrinsically linked together and constitute the core
for future techniques that combine all the aspects developed so far. Our interest in
the future will be focused on possible ways to generate foci with random locations,
polarization orientations, and tunable axial extents in 3D, which are based on our
all-optical phase-shaping setup. For instance, a possible improvement of our phase
shaping technique to achieve 3D polarization control at focus could come from im-
plementing spatial phase shaping, using one or two SLMs, of HG¢ and HGy; modes,
to be then combined and tightly focused. Another possibility could be to apply spa-
tial phase shaping with an SLM onto the LP beam before going through the radial
converter. These implementations would allow us to manipulate the longitudinal

electric field distribution and possibly the direction of polarization in 3D.
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Abstract The ability to control the optical field in the vicinity
of an individual nano-object is an obvious stepping-stone in the
tailoring of light-matter interactions at the nanoscale. Earlier re-
ports on tailoring light fields in the vicinity of a nano-object have
been restricted by their dependence on cumbersome optical or
fabrication techniques, have relied mostly on in-plane electric
field polarizations, and have been demonstrated only for bulk
materials and structures with strong in-plane anisotropies. In
addition, traditional methods for manipulating the longitudinal
electric fields are significantly hindered by the lack of appro-
priate probes that can be used to unambiguously measure or
calibrate the light coupling efficiency to nano-objects. Here, we
demonstrate such a possibility for the specific case of optical
second-harmonic generation (SHG). Our technique relies on
spatial phase-shaping of a high-order laser beam to tailor the
longitudinal fields at the beam focus and allows SHG from an
individual and well-defined vertically-aligned GaAs nanowire
to be manipulated on demand. Our technique is applicable to
tailoring the efficiency of nonlinear emission on the nanoscale
and to arbitrary polarization control at the beam focus in general.
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Tailorable second-harmonic generation from an individual
nanowire using spatially phase-shaped beams

Léo Turquet!, Joona-Pekko Kakko?, Xiaorun Zang?, Liisa Naskali!, Lasse Karvonen?,
Hua Jiang®, Teppo Huhtio?, Esko Kauppinen®, Harri Lipsanen?, Martti Kauranen?,

and Godofredo Bautistal*

1. Introduction

The control of optical excitationsis expected to revolution-
ize light-matter interactions on the nanoscale. With the use
of optical antennas|[1,2], light can now be confined to sub-
wavelength-sized regions [3], frequency converted [4, 5],
and even spatially redirected [6, 7]. An emerging way to
control optical excitations is based on engineering the in-
cident light field before it impinges on the nano-object.
Indeed, it has been reported that tailoring the properties
of optical fields [8-15], can be used to spatialy confine
light in the vicinity of nano-objects or enhance emission
from such structures. Beam shaping schemes for tuning
the linear and nonlinear optical effects in nano-objects are
becoming more common, as demonstrated for nonlinear
crystals [16-19], metasurfaces [20], nanoholes [21-24],
metamaterials [25, 26], metal tips [27], as well as coupled
[28,29], and single [30, 31] nano-objects with strong in-
plane anisotropies. However, tailoring the nonlinear emis-
sion from a single nano-object at the subwavelength scale
using simple all-optica methods and without the need of

modifying the physical properties of the sample remains a
big challenge.

For years, there has been a tremendous amount of fun-
damental and applied research on semiconductor nanowires
duetotheir intriguing properties[32,33]. Prior studieshave
shown that efficient coupling of light into a nanowire usu-
ally requires an electric field component along the long
axis of the wire [33-35]. Recently, we have shown that a
convenient way to excite and address individual vertically-
aligned nanowires, corresponding to their native growth
environment, is through the use of cylindrically symmetric
vector beams [36] such as radially polarized beams [37].
Tight focusing of radial polarization leads to a strong elec-
tric field component along the direction of beam propa-
gation, usually referred to as the longitudinal component
[38—42], which has been particularly favorable for sev-
eral linear and nonlinear imaging modalities that rely on
molecular orientation or symmetry as the source of con-
trast [43—49]. Beyond imaging applications, it isalso worth
noting that the longitudinal fields produced by focusing
radial polarization and other high-order beams, such as
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linearly polarized Hermite-Gaussian beams of order (1,0)
(HGyp), can be used to optically trap microparticles [50],
processsubwavel ength-sized featuresin metal s[51], induce
masstransport in solid films [52], accelerate particles along
the beam propagation axis [53], and influence nonlinear
phenomena [54-56].

It isevident that methods to manipulate the longitudinal
field at the beam focus are gaining increasing importance.
For example, by using another type of cylindricaly sym-
metric vector beam with azimuthal polarization, the lon-
gitudinal field can be fully suppressed [57]. Indeed, it has
been shown that symmetry-selective nonlinear optical pro-
cesses such as second-harmonic generation (SHG) from
a nano-object can be selectively turned “on” or “off” by
focusing radial or azimuthal polarizations [37,47]. More
recently, discrimination of certain multipole resonances in
dielectric nanoparticles have been made possible by asimi-
lar scheme[14]. Sofar, several approachesthat are based on
strong focusing [40, 58], annular illumination [39, 59, 60],
inverse Cherenkov effect [61], plasmonic lenses [62, 63],
and binary optics [64] have been devel oped to enhance the
longitudinal field or to promote its coupling to the nano-
object. Up to date, most of these techniques have been
cumbersome and their efficiency difficult to caibrate in
any meaningful way. Most importantly, the demonstrated
techniques do not support on-demand control of the desired
effect. Therefore, the ability to create and manipulate the
longitudinal field or in genera an arbitrary optical field at
the beam focus whenever necessary isan obvious stepping-
stone in the tailoring of light-matter interactions at the
nanoscale.

In this work, we demonstrate a technique for tailor-
ing SHG from an individual nano-object. We show that by
spatially phase-shaping a HG;o beam, we can selectively
control the efficiency of SHG from a vertically-oriented
gallium arsenide (GaAs) nanowire at the beam focus with
a50-fold contrast ratio. Our work provides direct evidence
that thelongitudinal fieldsat thefocal plane can be manipu-
lated by spatial phase modulation. The technique therefore
has broader implicationsfor more general situations, where
the coupling of light to nanoscal e objects needs to be pre-
cisely controlled. The present work relies on our earlier
demonstration that SHG from a vertically-oriented GaAs
nanowireisdriven primarily by thelongitudinal fieldsat the
beam focus[37]. We utilize this understanding of the origin
of the SHG response of nanowires to demonstrate for the
first time precise tailoring of SHG from a single nanowire
based on controlling the longitudinal fields produced by fo-
cusing spatially phase-shaped beams. Furthermore, in the
previous study, the SHG signals were not tailorable since
the longitudinal fields produced by focusing conventional
beam polarizationswere not precisely or easily controllable
and the nanowires exhibited significant variations[37]. The
present work therefore provides a significant advance both
in the technique and in the material system as it demon-
strates that the longitudinal field-driven SHG signals from
single and well-defined nanowires can be precisely con-
trolled through simple phase shaping of the incident beam.

2. Materials and methods

In order to demonstrate the manipulation of longitudinal
fields at the beam focus, this first demonstration was based
on semiconducting nanowires that protrude out of the sub-
strate. During their fabrication, such nanowires grow out
of the substrate, implying that the protruding orientation
provides their native environment. Such pristine nanowire
systems have been shown to be highly promising platforms
for energy management [65] and biological processes[66].

Our nanowire samples were grown with selective-area
metallo-organic vapour phase epitaxy (SA-MOVPE) on
GaAs (111)B substrates with a Thomas Swan system [67].
First, a 40 nm thick amorphous silicon oxide layer was
deposited on a cleaned substrate with plasma-enhanced
chemical vapour deposition (Oxford Systems Plasmalab
80Plus). The deposited layer acts as a growth mask. Sub-
sequently, the oxide was patterned with arrays of holes
in a triangular lattice with the pitch of 2.45 um and the
diameter of 55 nm. Electron beam lithography (EBL) (Vis-
tec EPBG500pES) and reactive ion etching (Oxford Sys-
tems Plasmalab 80Plus) were used to pattern the holes.
Prior to the nanowire growth, the sample was annealed at
the growth temperature for 5 min under tertiary-butyl ar-
sine (TBAS) flow. H, was used as the carrier gas and the
total flow rate was fixed to 5 sslm. The nanowire growth
was performed at 760 °C for 5 min, with trimethylgallium
(TMGa) and TBAsasthe precursorsfor Gaand As, respec-
tively. The TMGa and TBAs flows were fixed to 0.8 umol
min~* and 227.0 wmol min~?* during the nanowire growth,
respectively. Scanning electron microscopy (SEM), high
resolution (scanning) transmission electron microscopy
(TEM/STEM), and €electron diffraction (ED) were used to
determinethe dimensions and crystallinity of the fabricated
nanowires. TEM/STEM and ED experiments were carried
out with a double aberration-corrected JEOL-2200FS mi-
croscope (JEOL Ltd.) operated at 200 kV. The microscope
is equipped with a Gatan 4k x 4k UltraScan 4000 CCD
camera and a high-angle annular dark-field (HAADF) de-
tector. The SEM images of the nanowires used in the SHG
experiments are depicted in Figs. 1aand 1b. SEM showed
that the fabricated nanowires are well-separated and have a
diameter of 90 nm and length of 2.6 um. TEM/STEM and
ED revedled that the nanowires in the array are predom-
inantly zinc-blende with numerous twin defects (Figs. 1c
and 1d).

In order to evaluate the influence of tailored high-order
beams on the SHG response of individual nanowires, we
used a custom-built point-scanning epi-detection SHG mi-
croscope equipped with a mode-locked femtosecond laser
(wavelength of 1060 nm, pulse length of 140 fs, repetition
rate of 80 MHz) [37,47]. After beam collimation and ap-
propriate conditioning (see below), the beam was directed
to an infinity-corrected (numerical aperture of 0.8, 50x)
microscope objective. We overfilled the back-aperture of
the objective in order to maximize the desired polariza-
tion components at the beam focus [58]. The objective was
used to focus the beam onto the sample that was mounted

© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 (a,b) Tilted SEM images of the vertically-aligned GaAs nanowires which were used in the SHG experiments. The nanowires
have a typical diameter of 90 nm and a length of 2.6 um. The relative locations of the nanowires are color-marked for clarity.
Representative aberration-corrected high-resolution TEM (c) and STEM HAADF (d) images of a nanowire in the same array and its
indexed ED pattern (inset in d). The nanowire grows along the [111] direction with plenty of microtwinned structure on the (111) planes.

on a computer-controlled three-axis piezo-scanning stage.
All polarization components of the SHG signal were col-
lected by the same objective, discriminated by appropriate
dichroicfiltersfrom the fundamental excitation wavelength
and directed onto a cooled photomultiplier tube. In order
to acquire a point- or raster-scanned SHG image, the raw
SHG signal is collected pixel-by-pixel and plotted as a
function of spatial coordinates. Note that this scanning mi-
croscopy technique allows one to conveniently map the
light distribution at the focal plane using appropriate op-
tical probes [43]. In the present case, our nanowire probe
is sensitive to the longitudinal field component. Equiva-
lently, control of the longitudinal field allows the efficiency
of SHG from individual nanowires to be controlled. All

measurements were done at the average power level of 1
mW, a pixel dwell time of 50 ms, and room temperature.
Data acquisition and analysis were performed using Lab-
VIEW and MATLAB, accordingly. In our measurements,
we have carefully considered the focusing geometry where
the long axis of the nanowire is aligned in the direction
of the resulting longitudinal electric field [37]. Further-
more, this focusing geometry allows the creation and sub-
sequent mani pulation of appropriate longitudinal fiel dsthat
impinge on the nanowires. Prior to raster scan imaging, we
verified that the SHG signal from an individual vertical
GaAs nanowire exhibits the expected behavior in terms
of routine nonlinear measurements such as power depen-
dence, mode-lock dependence, spectral discrimination, and

www.lpr-journal.org
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Figure 2 Spatial phase-shaping scheme that is based on a pix-
elated SLM and performed right before the excitation beam en-
ters the microscope objective. Note that phase-only modulation
is achieved by aligning the polarization of the incident light (along
x or horizontal) with the orientation of the liquid crystal molecules
of the SLM.

Input beam

reproducibility (Figure S1). For reference and comparison,
we restricted the scanning to a fixed region in the sample
that contains a subset of nanowires (Fig. 1a).

Before entering the microscope objective, the excita-
tion beam was manipulated in appropriate ways to create
a linearly polarized HGyo beam of high purity. We first
generated a radially-polarized doughnut beam using a po-
larization mode converter (Arcoptix, S.A.) and a spatial
Fourier-filter in tandem and then selected from it the x lin-
ear polarization with a calcite Glan polarizer. Any slight
deviation of the resulting HG;9 beam from the ideal is at-
tributed to impurities in the original doughnut mode. It is
a soimportant to notethat other techniquesexist to createan
HG,o beam, but the chosen technique was most convenient
to implement in our laboratory. The resulting HGyo beam
was directed to the aperture of areflective-type electrically-
addressed phase-only spatial light modulator (SLM, Hama-
matsu X 10468-07) with apixel resolution of 792 x 600, bit
depth of 8, pixel pitch of 20 wm and fill factor of 98%. We
opted for this approach because the SLM provides a high
degree of flexibility asit eliminatesthe need for avariety of
diffractive optical elements to achieve the desired shaping
effects.

In the subsequent experiments, the full aperture of
the SLM was artificially divided into two identical sub-
apertures. The lobes of the incident HG;o beam were as-
signed to impinge symmetrically on the two sub-apertures
(Fig. 2). After phase calibration at our fundamental wave-
length of 1060 nm and careful alignment, appropriate phase
delays ranging from 0 to 2 were applied between the two
parts of the HGy9 beam. For all of the phase levels used,
we observed no changes in the beam profiles in propaga
tion from the SLM to the back aperture of the microscope

objective. This is as expected because the Rayleigh range
of our beam is at least a factor of 100 longer than the
distance between the SLM and the objective, and shows
that we achieved pure phase modulation with the SLM.
Consequently, independent control of the additional phase
delays imparted on the two lobes of the incident HGyg
beam permits usto demonstrate tuning of the resulting lon-
gitudina field at the focus of the microscope objective.
Although SLM’s have been used to demonstrate phase and
polarization shaping in avariety of nano-objects[8,11-13,
18,19,21,22,24,31], the application of SLMsto create and
control the longitudinal field component at the beam focus
and its coupling to an individual nano-object has not been
demonstrated.

3. Results and discussion

It is well-known that the electric-dipole-allowed bulk re-
sponse dominates SHG from noncentrosymmetric cubic
media like GaAs [68]. The GaAs nanowire studied in
our present work exhibits a zinc-blende symmetry and a
growth axisalong the [111] direction (Fig. 1c). Inthiscase,
the second-order susceptibility has only three nonvanish-
ing tensor components: 2. x{2 and x{2,, wherex, y, and
z refer to the principal-axis system of the crystal ([100],
[010], [001]). By performing appropriate coordinate trans-
formations between the crystal and laboratory frames, we
have shown previoudly that the electric field components
parallel to the growth axis of the nanowire primarily drive
its SHG [37]. Thus, in order to get an appreciable SHG
signal from this nanowire configuration, nonvanishing lon-
gitudina field components that arise from tight focusing
geometry are needed. For reference, we first imaged the
vertically-aligned GaAs nanowires using different tightly
focused incident polarizations (Fig. 3). Here, the SLM was
turned off and simply acted as a mirror. We also verified
beforehand that this scheme reproduces the results obtained
by bypassing the SLM at the otherwise same experimental
settings.

As seen in Figs. 3ac, the SHG signals from the
nanowires are significantly higher than the background.
For example, the SHG signals that are acquired from the
GaAs substrate are ~2 orders of magnitude lower than the
SHG from the nanowires under radia polarization. These
data agree with the previous results that SHG from GaAs
nanowires is more efficient than from equivalent unstruc-
tured GaAs[37,69-72]. In addition, strong SHG signalsare
only detected when the focusing geometry givesriseto non-
vanishing longitudinal field components as expected from
linear (Fig. 3a) and radial (Fig. 3b) polarizations[37] aswell
asalinearly-polarized HG;o beam (Fig. 3c). These SHG in-
tensity maps were normalized according to the maximum
SHG intensity that was detected using excitation with ra-
dial polarization, which producesthe strongest | ongitudinal
fields at the beam focus. Under linear (radial) polarization,
the SHG image of the nanowire exhibits a two-lobed (spot-
like) intensity pattern, resembling the longitudina field
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Figure 3 Raster-scanned SHG images from vertically-aligned GaAs nanowires (diameter of 90 nm, length of 2.6 xm) using focused
(a) linear polarization along x, (b) radial polarization, (c) linearly-polarized HG;o beam with x polarization, and (d) azimuthal polarization
under the same experimental settings. The relative locations of the nanowires are color-marked for clarity (see Fig. 1a for reference).
The images are normalized to (b). The maximum SHG signal intensity is about 350,000 counts/50 ms under a 1 mW radially polarized

beam.

distribution of the respective focal fields [38—40] (Figure
S2). For further reference, we also acquired a SHG image
of the same region using focused azimuthal polarization
(Fig. 3d). The faintness of the signals here suggests that
the resulting transverse field components at the focus of
azimuthal polarization drive SHG from the nanowire only
very weakly (Fig. S2). Under a HG,o beam, the SHG im-
age of the nanowire resembles a three-lobed intensity pat-
tern consisting of a bright central lobe and two additional
lobes that are centered symmetrically with respect to the
nanowire. Thisimage qualitatively followsthe predictedin-
tensity distribution of the nonvanishing longitudinal fields
of a HG;9 beam along the beam axis as a consequence of
strong focusing [27] (Figure S2). It should aso be noted
that even thoughthefocused HG, o beam a so containstrans-
verse field components, they do not contribute significantly
to SHG from the present nanowires. The resulting SHG
intensity patternsin Fig. 3c are reminiscent of the observa-
tion of Bouhelier et al., who used SHG scattering from a
metal tip to probe the intensity distribution of the longitu-
dinal fields of atightly focused HG;p beam [73]. Clearly,
the highest signals from our data set are obtained using ra-
dia polarization sinceit providesthe strongest longitudinal
component at the beam focus.

Even though radial polarization provides the strongest
longitudinal fieldsfor coupling to our nanowires, we settled
onusing alinearly-polarized HG;o beam for thisfirst proof-
of-principle demonstration of phase shaping the incident
beam. This is because, for phase-only modulation by the
SLM, afixed polarization is required. More importantly, a
nonvanishing on-axis longitudinal field is always provided
by a focused HG;9 beam. We first examined the effects
of uniformly phase-shaped HG,, beams on SHG from the
same vertically-aligned nanowires. Upon reflection from
the operational SLM, uniform phase delays were applied
on the HG;9 beam throughout its beam cross-section, i.e.,
the electric field components of the two lobes of the beam
exhibit no relative phase delay. Shownin Fig. 4 arethe SHG
images for this series of experiments. For the additional
phase delays of 0, = or 2w across the whole beam, the
SHG image of anindividual nanowireexhibitsathree-lobed

phase delay = 0 phase delay = = phase delay = 2x

Figure 4 Raster-scanned SHG images of the same vertically-
aligned nanowires illuminated by a focused x-polarized HGp
beam with uniform phase delays of 0, = or 27 applied simul-
taneously on the two lobes. The maximum SHG signal intensity
is about 200,000 counts/50 ms under a 1 mW HG;, beam. The
relative locations of the nanowires are color-marked for clarity
(see Fig. 1la for reference).

intensity pattern[27,73], and remains unchanged compared
to Fig. 3c. Thisisas expected, since there are no significant
deviationsin the optical field distributions of the two lobes
of theincident HG,o beam. The longitudinal field produced
at the beam focusis thus always nonvanishing, optimal, and
remains the same for al additional phase delays.

Next, we illuminated the same nanowires using a spa-
tially phase-shaped HG1o beam. Upon reflection from the
SLM, only one lobe of the HG;¢ beam was imparted with
an additional phase delay. In consequence, the electric field
components of the two lobes oscillate at different phase
when they enter the objective. Shownin Fig. 5 arethe SHG
images of the nanowires for this series of experiments.
Again, when the additional phase delay between the two
lobes is 0 or 27, the SHG images resemble the results of
Fig. 4 with maximum SHG intensity of about ~200,000
counts per 50 ms. Interestingly, when the additional phase
delay between the two lobes is increased from 0 to 7, the
SHGimageof asingle nanowire changesfrom athree-lobed
intensity patternto atwo-lobed intensity pattern. Moreover,
unlike the uniformly phase-shaped beam cases (Fig. 4), the
SHG imagetaken with an additional = phase delay between
the two lobes now exhibits aminimum at the location of the
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phase delay = 0

phase delay = n/2

phase delay =

phase delay = 3n/2 phase delay = 2n

Figure 5 Raster-scanned SHG images of the same vertically-aligned nanowires for a focused x-polarized HG;o beam with varying
additional phase delays between the two lobes. The reference beam is the unshaped HG3, mode, i.e., without an additional phase
delay from the SLM. The relative locations of the nanowires are color-marked for clarity (see Fig. 1a for reference).

nanowire clearly indicating adrastic changein the coupling
efficiency. We associate this reversal in the image contrast
(~50-fold) to the suppressed longitudinal field at the ge-
ometrical focus of the tailored beam. At this beam setting
(with an additional = phase delay), the SHG signal at the
center of the nanowires is at about the same level as the
SHG signal from the substrate (~4,000 counts per 50 ms).

Another important issue is that the two-lobed SHG in-
tensity pattern achieved at an additional phase delay of =
between the two lobes resembles the SHG intensity dis-
tribution due to the longitudinal fields at the focus of lin-
ear polarization (Fig. 3a8). Note that under strong focusing
conditions, the longitudinal field of a linearly polarized
Gaussian beam is zero along the beam axis and is only
nonvanishing at off-axis positions creating the two lobes
at positions offset from the beam axis [58]. Actualy, the
application of an additional = phase delay between the two
lobes of the incident HGyg converts our high-order beam
back to alinearly-polarized beam, abeit with non-Gaussian
transverse structure. Hence, its focusing properties should
resemble those of an ordinary (HGy) linearly-polarized
Gaussian beam [74, 75]. Note, however, that switching be-
tween HGqy and HG;9 would be much more cumbersome
than controlling the relative phase of the lobes of a HGg
beam.

When the additional phase delay between the two lobes
is further increased to 2 the three-lobed SHG intensity
pattern with the maximum central lobe is recovered, sug-
gesting that the longitudinal fields are again nonvanishing
at the center and optimal (Fig. 5). Indeed, the behavior of
longitudinal fields of focused spatially-phase shaped HG
beams are reproduced well by numerical simulations based
on the Debye approximation (Figure S3) [58, 76]. In the ac-
tual experiments, we used 12 additional phase delays from
0 to 27 but only show the SHG images corresponding to
the intermediate phase delays of 7/2 and 37/2 in Fig. 5
for clarity. We attribute the different SHG levelsfor the /2
and 3rr/2 casesto local differencesin the phase curve of the
SLM which could have led to adlightly greater phase delay
in practice. The observation of imbalanced SHG imagesfor
other intermediate tail ored beams suggests that the strength
of thelongitudinal componentsand, moreimportantly, their
gpatia distribution at the focal plane can be manipulated
at will (Fig. 6). Altogether, these results justify well the

n
o
o

-
o
o

Location of nanowire

SHG (kcounts/50 ms)

(4]
o

0 22 - 372 2r
Added phase delay

Figure 6 Variation of the SHG signal from a single vertically-
aligned GaAs nanowire that is excited by a HG1p mode with dif-
ferent phase delays added to one of its lobes. The inset shows
a typical raster-scanned SHG image of a GaAs nanowire that is
excited by HG; (along x) and the locations where the SHG sig-
nals were acquired. When an additional -phase delay is added
to one of the lobes, the SHG signal at the location of the nanowire
is reduced as a direct consequence of the reduction of longitu-
dinal fields at this location (blue dot). It also worth mentioning
that the longitudinal fields for this beam setting (with an addi-
tional 7-phase delay) were spatially redistributed as shown by
the nonvanishing SHG signals at off-center locations (green and
red dots).

picture of SHG light control from three-dimensional nano-
objects due to variations in the distribution of the resulting
longitudinal electric fields at the focus.

It isalso worth noting that the observed SHG signalsin
all experiments are homogenous even though the nanowires
exhibit numerous stacking faults (Fig. 1d) that are known
toinfluencethe optoel ectronic performance of semiconduc-
tor nanowires. Thisimplies that the effective bulk second-
order nonlinearity of the nanowires that is probed by the
longitudinal fields at the focal volume remains unaltered
for all cases and does not affect the reliability of the ob-
served variations in the SHG coupling efficiency. As the
form of the second-order susceptibility tensor dictates the
polarization-dependent SHG response of the structure, we
also expect that the SHG from semiconductor nanowires of
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different symmetries, e.g., wurzite or itsmixtureswith zinc-
blende, and of different diameters could also be exploited
with vectorial fields to demonstrate additional tailoring ef-
fects [77—79]. Thus, both the effective nonlinearity within
the focal volume and the focal fields are important in the
optimization and subsequent tailoring of SHG from these
structures.

We al so note that the resolution of the SLM phaselevels
dictates the range of realizablefield tuning parameters. The
phase levels in this work were limited by the used SLM,
but we anticipate that the use of more advanced SLMs
will improve the tuning capability. We also emphasize that
our technique will be very difficult to replicate with tra-
ditional diffractive optical elements as each distinct phase
level would need a separately fabricated component, entails
cumbersome alignment and will be susceptible to measure-
ment discrepancies. In contrast, the present results show
that the longitudinal field that drives the nonlinear emis-
sion from avertically-aligned nanowire can be manipul ated
by simply imparting a spatial phase on a high-order input
beam, being thus unhampered by any other mechanical or
external complications.

4. Conclusion and outlook

We have demonstrated a technique for controlling SHG
from a single and well-defined nano-object, which in our
specific case was avertically-oriented GaAs hanowire with
zinc-blende structure. Thiswas achieved by phase-shaping
ahigh-order laser beam that drives the SHG process at the
focus of a microscope objective, resulting in high contrast
between the phase-dependent maxima and minima of the
SHG signal strengths. Our work provides direct evidence
that the longitudinal electric fields, which drive SHG from
a vertically-aligned nanowire, can be controlled by spatial
phase modulation. The technique is general and has direct
implicationstotailoring the efficiency of nanoscal e sources,
nonlinear imaging, nanospectroscopy, as well as arbitrary
optical field control at the nanoscale.

To the best of our knowledge, our work provides the
first demonstration of controlling the longitudinal field
strength at the focus of abeam using asimple phase-shaping
scheme. This will be crucial for future development of ef-
ficient all-optical platforms for selectively coupling light
into nano-objects or molecular structures. For example, the
tailored longitudinal field distributions in the focal region
could be used to precisely switch and control the light cou-
pling to two or more nearby nano-objects such as dual-type
semi conductor nanowires[67], plasmonic nanowire dimers
[80], coupled metal nanotubes [81] and three-dimensional
nanoantennas [82]. We envisage this technique and its fur-
ther developments to be useful for studying light-matter
interactions that are free from any unwanted coupling be-
tween the sample and substrate thereby increasing also
the sensitivity of traditional techniques such as optical en-
cryption [15], Raman [83], and light trapping [84]. This
technique could also have great potential in increasing

the contrast achieved in nonlinear imaging in general. Al-
though we have limited our study to SHG and semicon-
ductor nanowires, we believe that other optical processes,
both linear and nonlinear, in avariety of nanoscale systems
[1-5, 54, 85] can aso benefit from this technique. Using
relevant samples that can act as optical field probes, we
also expect that this technique opens an avenue towards the
guantification of arbitrary focal fields in three dimensions
with strong implications for studying scattering phenom-
ena on the nanoscal e. We also anticipate that our technique
can be used as a basis for manipulating other complemen-
tary focal field properties such asthelongitudinal magnetic
field which can now be conveniently accessed by tightly
focusing azimuthal polarization [86].
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