
Katariina Mahkonen
Efficient and Robust Methods for Audio and Video Signal Analysis

Julkaisu 1588 • Publication 1588

Tampere 2018

Tampereen teknillinen yliopisto. Julkaisu 1588
Tampere University of Technology. Publication 1588

Katariina Mahkonen

Efficient and Robust Methods for Audio and Video
Signal Analysis

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 24th of October 2018, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2018

Doctoral candidate: Katariina Mahkonen

Laboratory of Signal Processing
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Supervisor: Tuomas Virtanen, professor
Laboratory of Signal Processing
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Instructor: Joni Kämäräinen, professor
Laboratory of Signal Processing
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Pre-examiners: Jorma Laaksonen, PhD
Department of Computer Science
Aalto University
Finland

Ville Hautamäki, PhD
Department of Computing Sciences
University of Eastern Finland
Finland

Opponents: Vesa Välimäki, PhD
Department of Signal Processing and acoustics
Aalto University
Finland

Jorma Laaksonen, PhD
Department of Computer Science
Aalto University
Finland

ISBN 978-952-15-4229-9 (printed)
ISBN 978-952-15-4234-3 (PDF)
ISSN 1459-2045

Abstract

This thesis presents my research concerning audio and video signal processing and
machine learning. Specifically, the topics of my research include computationally efficient
classifier compounds, automatic speech recognition (ASR), music dereverberation, video
cut point detection and video classification.

Computational efficacy of information retrieval based on multiple measurement modal-
ities has been considered in this thesis. Specifically, a cascade processing framework,
including a training algorithm to set its parameters has been developed for combining
multiple detectors or binary classifiers in computationally efficient way. The developed
cascade processing framework has been applied on video information retrieval tasks
of video cut point detection and video classification. The results in video classification,
compared to others found in the literature, indicate that the developed framework is
capable of both accurate and computationally efficient classification. The idea of cascade
processing has been additionally adapted for the ASR task. A procedure for combin-
ing multiple speech state likelihood estimation methods within an ASR framework in
cascaded manner has been developed. The results obtained clearly show that without
impairing the transcription accuracy the computational load of ASR can be reduced
using the cascaded speech state likelihood estimation process.

Additionally, this thesis presents my work on noise robustness of ASR using a non-
negative matrix factorization (NMF) -based approach. Specifically, methods for trans-
formation of sparse NMF-features into speech state likelihoods has been explored. The
results reveal that learned transformations from NMF activations to speech state likeli-
hoods provide better ASR transcription accuracy than dictionary label -based transfor-
mations. The results, compared to others in a noisy speech recognition -challenge show
that NMF-based processing is an efficient strategy for noise robustness in ASR.

The thesis also presents my work on audio signal enhancement, specifically, on removing
the detrimental effect of reverberation from music audio. In the work, a linear prediction
-based dereverberation algorithm, which has originally been developed for speech signal
enhancement, was applied for music. The results obtained show that the algorithm
performs well in conjunction with music signals and indicate that dynamic compression
of music does not impair the dereverberation performance.

iii

Preface

This Thesis is a summary of the collection of my research papers based on the research
that I have been involved in within the Audio Research Group and the Vision Research
Group at the department of Signal Processing of Tampere University of Technology (TUT)
during my doctoral studies. The research presented in this Thesis deals with analyzing
sound and images automatically with computer algorithms.

I started the doctoral studies following my interest to understand the concepts of au-
tomatic signal manipulation and interpretation. I wanted to learn things as broadly as
possible. I also wanted to understand each concept and algorithm as deeply as possible.
These are the reasons why I have been willing to contribute in these different problems
of signal processing, and also to teach at various courses during my years at TUT.

My work has been mostly supervised by professor Tuomas Virtanen, to whom I want
to express my greatest gratitude. His thorough and clear scientific grasp to research
problems will stay in my mind as a way to follow. He has been supportive and encour-
aging all the way through my moments of despair and disbelief, and he has also listened
carefully, when I have expressed dissentive points of view.

Next I owe my gratitude to professor Joni Kämäräinen, who has been my superior for
many years and who has also been significantly involved in supervising my work. He
was an infinite source of new research ideas for me to try out and he had close to infinite
belief in my skills. This lead to many unsuccessful research trials and rejected paper
submissions during the years. However, with his relentless friendliness and faith in
future success he kept me working on. Thanks to Joni, I also had a chance to have
fruitful discussions and supervision from professor Jiři Matas, who has well earned my
thankfulness.

I want to thank all my colleagues within the Audio Research Group and the Vision
Research Group of TUT for providing me with an encouraging and pleasant environment
for the work. My last, but the most important thanks belong to my dear husband, Marko
Mahkonen, who has stayed beside me through all the good and the hard times working
for the best of the family.

Katariina Mahkonen, Akaa, 31.1.2018

v

Contents

Abstract iii

Preface v

Acronyms ix

List of Publications xi
Author’s contributions to the publications . xii

1 Introduction 1

2 Audio and video signals 5
2.1 Sound scape – audio signal . 5
2.2 Moving picture – video signal . 5
2.3 Audio signal representations . 7
2.4 Computational image analysis . 10
2.5 Features from learned linear transformations 13
2.6 Features using neural networks . 15

3 Dereverberation 17
3.1 About reverberation . 17
3.2 Evaluation metrics for audio dereverberation 19
3.3 Dereverberation methods within literature 20
3.4 Results in blind dereverberation of music 25

4 Classifying independent samples 29
4.1 Classification result evaluation . 29
4.2 Classification functions . 32
4.3 Utilizing multiple classifiers or detectors . 37
4.4 Boolean OR of ANDs detector combination 39

5 Sequential classification 43
5.1 Experiments on Boolean combinations for sequential decision making . . 44
5.2 Decision cascades for classification . 45
5.3 BOA as a cascade of Boolean combinations 47
5.4 Laughter detection with a BOA cascade . 49

6 Automatic Speech Recognition 51
6.1 The traditional ASR framework . 52
6.2 Methods for state likelihood estimation for ASR 53

vii

viii Contents

6.3 A cascaded state classifier for ASR . 58
6.4 Experimental results in small vocabulary ASR 60

7 Conclusions and discussion 65

Bibliography 67

Publications 77

Acronyms

A/D analog to digital
AI artificial intelligence
AIR acoustic impulse response
ANN artificial neural network
ASR automatic speech recognition
BOA Boolean OR of ANDs
BoW bag of words
BSI blind system identification
CD contrastive divergence
CNN convolutive neural network
DBN deep belief network
DCT discrete cosine transform
DFT discrete Fourier transform
DNF disjunctive normal form
DNN deep neural network
DOA direction of arrival
DoG difference of Gaussian
DRC dynamic range compression
DRR direct-to-reverberant ratio
DTFT discrete time Fourier transform
EDT early decay time
EM expectation maximization
ERR early-to-reverberant ratio
FFPD facial feature point detection
fps frames per second
GMM Gaussian mixture model
GSC generalized sidelobe canceler
HOG histogram of oriented gradients
HMM hidden Markov model
ICA independent component analysis
IFFT inverse fast Fourier transform

ix

x Acronyms

ITU International Telecommunication Union
ITU-T ITU telecommunication standardization sector
ITU-R ITU radiocommunications sector
k-NN K nearest neighbors
LBP local binary pattern
LDA linear discriminant analysis
LLR log-likelihood ratio
LoG Laplacian of Gaussian
LP linear prediction
LSTM long short-term memory
LVCSR large vocabulary continuous speech recognition
LVSR large vocabulary speech recognition
MCLP multi-channel linear prediction
MFCC Mel-frequency cepstral coefficient
MINT multiple input output theorem
MMI maximal mutual information
MOS mean opinion score
MPEG moving pictures experts group
MUSHRA multiple stimuli, hidden reference and anchor
MVDR minimum variance distortionless response
NMD non-negative matrix deconvolution
NMF non-negative matrix factorization
NN neural network
OLS ordinary least-squares
PCA principal component analysis
PDF probability distribution function
PEAQ perceptual evaluation of audio quality
PESQ perceptual evaluation of speech quality
PLS partial least-squares, projection to latent structures
PSD power spectral density
RBF radial basis function
RBM restricted Bolzmann machine
RGB red-green-blue color representation
RIR room impulse response
RMS root mean square
RNN recurrent neural network
ROC receiver operating characteristics
RT reverberation time
SIFT scale invariant feature transform
SDR signal-to-distortion ratio
SNR signal-to-noise ratio
SPL sound pressure level
STFT short time Fourier transform
SVD singular value decomposition
SVM support vector machine
TVG time varying Gaussian
VAD voice activity detection

List of Publications

I Hurmalainen A., Mahkonen K., Gemmeke J.F. and Virtanen T.,"Exemplar-based
recognition of speech in highly variable noise", In Proceedings of Computational
Hearing in Multisource Environments (CHiME) Workshop, 2011.

II Mahkonen K., Hurmalainen A., Virtanen T. and Gemmeke J.F., "Mapping Sparse
Representation to State Likelihoods in Noise-Robust Automatic Speech Recogni-
tion", In Proceedings of the 12th Annual Conference of International Speech Communica-
tion Association (INTERSPEECH), 2011.

III Mahkonen K., Eronen A., Virtanen T., Helander E., Popa V., Leppänen J. and Curcio
I.D.D., "Music dereverberation by spectral linear prediction in live recordings," In
Proceedings of the 16th International Digital Audio Effects Conference (DAFx), 2013.

IV Mahkonen K., Kämäräinen J-K and Virtanen T., "Lifelog Scene Change Detection
Using Cascades of Audio and Video Detectors," In Proceedings of the 12th Asian
Conference on Computer Vision (ACCV), 2014.

V Mahkonen K., Virtanen T. and Kämäräinen J-K , "Cascade processing for speeding
up sliding window sparse classification," In Proceedings of the 24th European Signal
Processing Conference (EUSIPCO), 2016.

VI Mahkonen K., Virtanen T. and Kämäräinen J-K , "Cascade of Boolean detector
combinations," EURASIP Journal on Image and Video Processing, 2018(1), 61.

xi

xii List of Publications

Author’s contributions to the publications

The Publications II, III, IV, V and VI are completely written by the author, with the help
of coauthors, except the part of Publication III which concerns musical beat tracking.
That part is written by Antti Eronen, however, the topic is not included in this thesis. The
publication I is written by Antti Hurmalainen. Tuomas Virtanen has been the supervisor
for works of Publications I, II, III and V. The works for Publications IV and VI have been
supervised by Tuomas Virtanen and Joni Kämäräinen together.

In the work concerning Publication II, the author was responsible for training the trans-
formation functions from sparse features to speech state likelihoods, as well as evaluating
the system performance with them. The idea of trying out the transformations came
from Tuomas Virtanen. The NMF-based ASR framework into which the transformation
functions were integrated was built by Antti Hurmalainen.

The best results in Publication I were achieved using the functions obtained by the author
for a transformation from sparse features to speech state likelihoods, while the rest of the
work for the paper was done by Antti Hurmalainen.

The work for the Publication III was a combined effort of all the authors of the paper.
The fundamental idea came from Tuomas Virtanen. Elina Helander implemented the
framework. The responsibility of the author was the parameter testing and evaluation.
Antti Eronen ran the tests concerning musical beat tracking.

The work concerning publications IV and VI were based on Joni Kämäräinen’s idea of
utilizing Boolean combinations for computational efficiency. A C-language implementa-
tion by Jukka Lankinen was used for SIFT BoW feature extraction and RGB histogram
extraction. The face point extractor used in Publication VI is from Zhu and Ramanan
(2012).

The baseline NMF-based ASR framework utilized in Publication V was made by Antti
Hurmalainen. The author is responsible for the idea, implementation and testing the
cascaded version of state likelihood extraction.

All the simulations not mentioned above have been written and run by the author using
computation tools of Matlab software.

1 Introduction

In this thesis I present my research in the field of signal processing. My contributions
concerning audio and video signals are on different problems of the field and in the
work I have used a wide range of computational methods. In this text I cover the parts
of signal processing where my contributions are distributed within. Each problem and
method that I have used or developed in my work is mentioned at the related part of the
text, and the reference to the corresponding publication is given.

The scope of this thesis within the field of signal processing

Signal processing is a broad field of engineering falling between mathematics, physics
and computer science. The most fundamental signal processing tools, many different
transformations, are deeply rooted in mathematics. The physical world is the source
of the signals to be processed, and the laws of physics are often part of intelligent
signal processing systems to model the phenomena of the task at hand. Although signal
processing existed, e.g. in the form of filtering, before the digital era, the digitalisation of
signals has opened new possibilities in abundance for processing signals by means of
computational technology.

The work leading to the collection of publications in this thesis belong to signal processing
sub-fields of signal enhancement and signal information retrieval. The task of signal
enhancement aims at improving the captured signal in some way, possibly reducing
noise and/or accentuating some qualities of the signal, for example improving speech
intelligibility of audio signal or brightening colors and sharpening edges in images.
Among signal enhancement tasks, signal restoration particularly aims at restoring a
deteriorated or noisy signal as close as possible to its genuine form. In this thesis, I
present my work of Publication III on the signal restoration task of dereverberation, i.e.
removing the detrimental effect of excess reverberation from an audio signal. Audio
dereverberation is mathematically well defined, but very challenging in practice and
there is a multitude of different approaches proposed in the literature. However, most
of them assume and are examined with a speech signal. Algorithms for music signal
dereverberation are rare and thus in the Publication III, dereverberation task for music
signals is addressed.

Signal information retrieval is a vast field of research, where the core of many algorithms
deal with classification problems. In a classification task the goal is to give one of prede-
fined labels to the signal at hand, that is, to find out into which ’class’ the phenomenon
that the signal represents belongs to. Problem of classification in its most basic form
is binary classification, which may be also seen as detection where the two predefined
labels are ’the sample represents the quested phenomenon’ and ’the sample represents something
else’. Due to binary classification being a fundamental task within many frameworks
of more complex signal information retrieval systems, it is crucial to be able to perform

1

2 Chapter 1. Introduction

this task accurately, yet with small computational load. In my research of Publications
IV and VI I have focused on developing a binary classification framework with these
capabilities by combining multiple different binary classifiers in computationally effi-
cient way. The framework has been evaluated with video cut point detection and video
classification tasks. These tasks allow examination and combination of classifiers based
on multiple signal modalities, namely audio and visual modalities, of videos, which is
highly important if all the aspects of signal are to be utilized.

Automatic speech recognition task, considered in Publications II, I and V is a highly com-
plex task of signal information retrieval, providing high level information from the signal.
For a long time, the poor robustness of ASR -algorithms against non-stationary noise
within the signal has been a severe issue degrading the performance of algorithms dras-
tically. Only lately, thanks to neural networks (NN), particularly deep neural networks
(DNN), the noise robustness of ASR has reached a level adequate for most applications.
In the Publications I and II an NMF-based approach has been examined for providing
noise robustness for an ASR framework.

The requirement of accurate and computationally efficient processing naturally applies
also the ASR task. Due to NMF-processing being accurate, but computationally heavy
method for ASR, in Publication V I have addressed the computational efficiency of
the approach. Within most ASR frameworks, also the NMF-based framework used
in Publications I and II, phoneme-class probabilities are estimated as an intermediate
signal representation. This processing step within ASR frameworks is very close to
classification. Thus, within the Publication V I have implemented a framework for
estimating the phoneme-class probabilities by combining the NMF-approach with other
approaches in computationally efficient way.

Research questions

As already revealed, several distinct research questions concerning signal processing
algorithms on audio and video signals have been examined within this thesis.

In Publication III, concerning audio dereverberation task, an algorithm proposed in
Furuya and Kataoka (2007) for speech signal dereverberation was evaluated with music
signals. An additional question posed was, whether dynamic compression of audio
would deteriorate the dereverberation performance.

In Publication IV, concerning the task of video cut point detection, Boolean functions for
combining multiple video cut detectors were evaluated. The motive behind selecting
Boolean functions was that Boolean functions naturally lend themselves for sequential
deduction. That is, the idea was to find out, whether Boolean functions can success-
fully be used as a combination function and whether evaluating the Boolean functions
sequentially would bring computational savings.

In Publication VI a framework for combining multiple classifiers in a computationally
efficient way has been developed. The framework has been evaluated with video cut
detection and video classification tasks. The system has been evaluated in terms of
the classification accuracy and the computational load of classification. Additionally, a
training algorithm proposed for the framework has been evaluated in respect to other
suitable algorithms.

In Publication I, a NMF-based framework has been evaluated for noisy ASR task. The
framework was evaluated in respect to other methodologies in the The PASCAL CHiME
Speech Separation and Recognition Challenge (Barker et al. (2013)).

3

In Publication II, applying the NMF-based framework for noisy speech recognition task,
different transform functions for converting the NMF-based sparse feature vectors into
hidden Markov model (HMM) state likelihoods has been examined. Specifically, data
induced ordinary least squares regression (OLS) and partial least squares regression (PLS)
based transforms have been evaluated in respect to a dictionary label based transform.

In Publication V, cascade processing principle has been implemented for the noisy ASR
task. It has been evaluated, whether the computationally heavy NMF framework can
be utilized in a time sparse way to reduce its computational load, such that the ASR
transcription does not deteriorate. Moreover, it has been evaluated whether a simple
neural network would provide additional information for increasing the transcription
accuracy, and would its use reduce the computational load further.

Outline of the thesis

In Chapter 1 of this thesis I introduce the field of signal processing and clarify the position
of the research problems of my publications within this field. In Chapter 2 I discuss
the essence of the audio and video signal. I explain the computational methods of
measurement analysis, which are broadly utilized within frameworks of automatic audio
and video signal processing. Methods of analysis specifically used in my publications are
highlighted. Then, topics of my publications, namely dereverberation, computationally
efficient binary classification and automatic speech recognition, are discussed in Chapters
3, 4, 5 and 6 in the order based on the hierarchical level of the information they deal with.

In Chapter 3 I discuss audio dereverberation. Signal enhancement, where the task of
audio dereverberation belongs to, deals with signal level information about the processed
audio, and is often used for front-end processing of signal before information retrieval
tasks. In this chapter I explain the concepts related to reverberation and give an overview
of the signal processing methods generally utilized for the dereverberation task. Then I
explicate the experimental arrangement and the results obtained in Publication III.

Signal information retrieval is an area of signal processing which seeks for human
cognition defined information about signal contents. The task of computationally efficient
classification investigated in Publications IV and VI, and the task of automatic speech
recognition examined in Publications I, II and V are this kind of tasks.

In Chapters 4 and 5 I talk about classification, which is one of the most important tasks
of machine learning. In Chapter 4 I present the main processing steps and mathematical
models generally used for classifying signal samples into different human defined
categories. I also address methods for incorporating multiple models or classification
functions within a single framework for increased classification accuracy. Finally I
present the detector compound framework proposed in Publication IV and show the
results obtained in video cut point detection.

In Chapter 5 I address the aspect of computational efficiency by using a sequential
classification strategy. Specifically, I highlight how a cascade processing principle as a
sequential evaluation principle is utilized in the literature and in the work of Publication
VI. I present an algorithm, proposed in Publication VI, which has been developed for
learning a cascade of Boolean combinations and present the results obtained in the task
of video classification.

In Chapter 6 I address automatic speech recognition, which is the most complex signal
information retrieval task studied within my work. I explain the processing steps
traditionally utilized within the computational methods for the task, and I discuss about

4 Chapter 1. Introduction

different approaches of acoustic modeling often used within the frameworks. I explain
the sequential decision making strategy applied to acoustic modeling for ASR, used in
Publication V. Then I report the work and results of Publications II, I and V.

Finally, in Chapter 7 I discuss shortly about the findings of each Publication, conclude
the lessons learned and outline the possible future directions.

2 Audio and video signals

In this chapter I introduce characteristics of digital audio and video signals, as well as
some low level signal analysis methods, which are broadly utilized for audio and image
analysis.

2.1 Sound scape – audio signal

In physical terms, the sound scape consists of air pressure waves, which have been
initiated by different sound sources (Rossing (1990)). Generally there are multiple sound
sources present at the same time in a sound scape of any natural environment. E.g. in
an urban environment there might be people speaking and playing music, noisy traffic,
clatter noise of construction work etc. . To hear a sound from a single sound source
without distractions of other sounds or echos is possible only in an acoustically isolated
anechoic room.

By a term audio signal, I mean a captured sound wave. To capture the sound waves
in the air, one or multiple microphones are used. A microphone converts the sound
pressure waves into electric voltage changes (Rossing (1990)). To save this analog signal
in a digital format, an A/D conversion is done (Proakis and Manolakis (1996)). The
voltage level from the microphone is measured at regular interval ∆τ and the acquired
samples are saved. The higher the sampling frequency fS = 1/∆τ , the more details of the
original waveform are captured. The audio signal, consisting of the stream of samples,
may be either processed on-line in real time, or saved into a file for later usage. For
research purposes, mostly lossless audio file types, instead of lossy audio file types, are
used to avoid compression artifacts.

2.2 Moving picture – video signal

Video is a media that combines a sequence of images to form a moving picture. Usually
a video recording additionally contains an audio stream with one (mono) or two (stereo)
channels corresponding to the sequence of images. Video is thus a form of multimedia.

In digital videos, the images are represented as rectangular matrices of pixels, points of
distinct color. The number of pixels in the matrix defines the amount of details the picture
can represent - the more pixels the more details may be expressed. Ultra high definition
8K videos contain pixels in the order of 8000 horizontally and 4000 vertically, while the
contemporary standard television screen resolution is 1920 x 1080 pixels. Videos of 160 x
120 pixels are among the lowest resolution videos shoot nowadays.

The color value for each pixel of a color image is typically represented as a vector of
three numbers (Gonzalez and Woods (2008)). For RGB-images they represent intensities

5

6 Chapter 2. Audio and video signals

of red (R), green (G) and blue (B) color. For YCbCr-images they represent a magnitude
for brightness, that is luminance (Y), and two values for color chrominance (Cb and
Cr), which combine information of color hue and saturation. The chrominance values
represent the color in axes from yellow to blue (Cb) and from green to red (Cr). Human
eye is more sensitive to luminance than chrominance, and thus YCbCr representation
enables higher quality images for the same bit rate.

In addition to the number and representation of pixels in each video frame the time lag
used between displaying consecutive video frames, called a frame rate, has an effect on
the visual appearance of the video. Consecutive images shown slower than 10 images
per second, are perceived as individual images by most people according to Read and
Meyer (2000). To achieve smooth appearance for object movement in video, Thomas
Edison recommended a frame rate of 46 frames per second (Brownlow (1980)). However,
the standard frame rates considered adequate in TV and cinema business are 24, 25 and
30 fps. Video games are sometimes designed for showing images 60 fps rather than using
the cinema standard.

With respect to video signal, the storage capacity becomes an issue very quickly, if
high resolution is needed or long video sequences are to be filed. The International
Telecommunications Union (ITU) Telecommunications Standardization Sector (ITU-T)
Moving Picture Experts Group (MPEG) has defined a widely used video compression, i.e.
coding, standard H.264 (ITU-T Recommendation H.264 (2017)), which is also known as
MPEG-4 part 10. Other contemporary video coding specifications are e.g. HEVC (ITU-T
Recommendation H.265 (2018)), Theora (Foundation (2017)), VP9 (Grange et al. (2016))
and AV1 (de Rivaz and Haughton (2018)). Video coding is a multistage process where
many different aspects of the image sequence are utilized to avoid saving redundant
bits (Ghanbari (2003)). It is usually done in blocks, that is, a video frame is sliced
both vertically and horizontally into equal sized blocks, and each partition forms an
entity for coding. However, similarities between adjacent blocks of the frame as well
as blocks in previous frames of the video are utilized to avoid redundancy in bits to be
stored. Different strategies, e.g. color or texture similarity, may be used for estimating
the contents of one block based on near by blocks for intra frame estimation. Motion
estimation in terms of motion vectors is used to estimate the position of a moving object
within the next frame for inter frame estimation. The difference between the actual
contents of the block and the estimate obtained based on the intra and inter frame
correlation estimation is computed. The remaining residual signal is further decorrelated
and finally encoded into numbers to be quantized and stored as bits. When reconstructing
the image from the encoded format, in addition to the decoding process consisting of
inverse operations of the encoding process, deblocking filtering is performed to lessen
the compression artifacts on block boundaries.

To store a video, not only the compressed image frames need to be saved, but the
video file has to contain also the accompanying audio signal and the synchronization
information for the two. The video file types are called video containers or wrappers
(Beach (2010)). The container defines the file header and side information structures,
and allows the actual data of compressed video frames and audio stream to be included
in certain partitions of the file. The container may restrict the set of possible encoding
formats for the image frames and audio stream. The variety of existing container formats,
i.e. video file types, (and their file extensions) include at least ASF (.asf .wma .wmv), AVI
(.avi), MOV (.mov), MPEG-4 part 14 (.mp4), FLV (.flv), RealMedia (.rm), and Matroska
(.mkv .mk3d .mka .mks).

2.3. Audio signal representations 7

2.3 Audio signal representations

As already discussed, audio signal consists of samples of measured instantaneous sound
pressure values. This stream of samples is the digital time-domain representation of the
captured sound. When dealing with sampled sound waves rather than a continuous
signal the details of the sound pressure wave falling between consecutive samples are
lost. According to Nyquist-Shannon sampling theorem, the idea of which was initiated in
Nyquist (1928), the frequency content of audio signal, which is above half the sampling
frequency fS may not be distinguished from the frequency components 0...fS/2. That
is, the contents of sound frequencies above fS/2 will be aliased over the contents at
frequencies 0...fS/2. Fortunately, the real life sounds tend to have their main frequency
content at low frequencies, and the power of sound wave components usually suppress
significantly towards high frequencies. Also the microphones have a finite frequency
response, naturally muting the high frequencies.

The above mentioned fact that sound pressure waves are initiated by vibrating sound
sources leads to that sound is well represented also in frequency-domain, which will be
introduced below. Another fact mentioned above, that different sounds are invariably
mixed together in real life recordings, is the major problem in tasks of audio information
retrieval. Thus the mathematical basics of how sounds intertwine together within a
recorded signal are also considered below. Finally, the characteristics of human hearing
and respective audio signal analysis methods, which are popularly utilized for audio
signal analysis are considered. The presented methods have been found highly successful
in many audio information retrieval tasks, and they have been utilized also in my
publications.

Time-Frequency representation of audio signal

Since a sound wave is a consequence of vibrations of sound sources, it is reasonable to
represent the audio signal in terms of the wave frequencies that it contains. However,
the frequency content of the sound usually changes all the time, thus a time-frequency
domain representation of the audio signal is widely used in audio signal processing. It
is implemented in most audio signal processing frameworks by cutting the signal into
clips, i.e. frames, of equal length and estimating the frequency contents of each frame
xn using the Discrete Fourier transform (DFT) (Oppenheim et al. (1999)), which in this
setting may be called also as short-time Fourier transform (STFT). The DFT coefficients
X(k) for frequency bins k=0...b(Tw−1)/2c, Tw being the number of samples within the
audio frame, are given by

X(k) =
Tw−1∑
t=0

x(t) e−i2πkt/Tw . (2.1)

The complex valued DFT coefficient X(k) indicates the magnitude and the phase of the
sound wave at frequency kFS/Tw.

For smoother time-frequency domain representation, the consecutive signal frames are
usually taken with overlap, and the frequency analysis is focused into the middle part
of the frame using a window function. A popularly utilized window function in audio
signal processing is e.g. the Hann window (Harris (1978)) which weighs the samples of
the frame as

w(t) = 0.5
(

1− cos
(

2πt
Tw − 1

))
, t = 0...Tw − 1. (2.2)

8 Chapter 2. Audio and video signals

Figure 2.1: Audio signal (below), with a spoken sentence: “Would you like some chocolate?”, and
(above) a spectrogram representation of it as frame-wise STFT magnitudes.

Suitable length of the audio frame and the time shift between consecutive overlapping
frames depends on application. They are set considering the requirements of time
resolution, frequency resolution and the latency limits of an application. For automatic
speech recognition, a coarse frequency information has been shown to give enough
information, while the time accuracy has to be good as the pronunciation of the shortest
phonemes last for only few milliseconds, and an average syllabic rate of speech is 4 Hz
(Arnfield et al. (1995)). Thus, for ASR, the frame length 10-30 ms and frame shift 5-10 ms
are generally used. In the ASR framework of publications II, I an V a frame length 25
ms and shift of 5 ms are used. In music, the important aspects are the rhythm, melody
and harmonic progression, where shortest harmonic unities last about 100 ms. Thus for
detailed frequency content analysis of music, longer frames up to even 200 ms may be
used. In audio dereverberation task of Publication III we found out, that using the frame
length 50 ms and shift of 25 ms gave the best results.

The time-frequency representation of audio signal, also called a spectrogram and illus-
trated in Figure 2.1, results in a trade-off between the time and frequency resolution of
the representation. The longer signal frame, the more frequencies for the representation
may be estimated, but since the values are averages over the frame, the resolution in
time dimension becomes smoothed. On the other hand, the shorter the time frame,
the resolution in time dimension is well preserved, but approximation of frequency
parameter values becomes coarser.

Characteristics of combination sound from multiple sources

The air pressure waves of sounds from multiple sources, which build up the recorded
sound wave, intertwine together as a sum of the individual waves. The recorded audio
signal is thus

x(t) = s1(t) + s2(t) + s3(t) + ..., (2.3)

where si is the wave component from one sound source. In terms of the frequency
representation of the sound combination and the individual sources

X(k) = S1(k) + S2(k) + S3(k) + ..., (2.4)

the complex valued sound components Si(k) from different sources may either reinforce
or suppress each other at a certain frequency bin k of the combination. This depends on

2.3. Audio signal representations 9

the phases of the individual components Si(k) at this frequency.

From audio application point of view, this enables sound canceling by generating audio
wave in opposite phase as the original sound. On the other hand, the audio signal
processing task of sound source separation can be seen to be very challenging.

Human hearing based audio analysis

Characteristics of human hearing are often incorporated into audio signal analysis. It
has been shown to be advantageous for many signal processing tasks on audio signal,
the most prominent examples being audio coding and automatic speech recognition. For
efficient audio coding all the details of the sound wave that are not perceived by human,
may be discarded without causing any noticeable degradation on the sound. For audio
interpretation tasks, including automatic speech recognition, taking into account the non-
even sensitivity of human ear to different frequencies (Zwicker (1961)) has been found out
to be crucial for the algorithms O’Shaughnessy (2000). The cochlea of human ear reacts
to sound in terms of the frequency components that the sound contains. The normal
frequency range of hearing for human is 20 Hz - 20 kHz, and the sensitivity of ear to
distinguish different frequencies within this range is not even. The frequency resolution
capability of ear has been found out to be more specific for low audio frequencies than
for high audio frequencies. That is, human ear tends to integrate sound frequencies
very close to each other. This phenomenon is called frequency masking. Concerning the
low frequency sounds, the frequency masking causes the frequencies only very close to
each other to be integrated. Regarding the high frequency components, the frequency
masking phenomenon integrates the perception over broad frequency range. Human ear
performs also time-domain masking, and masking effect is different depending on the
overall sound contents (Zwicker and Fastl (1999)), but those aspects are generally not
considered for audio information retrieval tasks.

Reflecting the nonlinear frequency resolution of human hearing, a Mel-frequency scale

MEL = 2595 log10

(
1 + f

700

)
(2.5)

has been introduced in Stevens et al. (1937). For audio signal analysis to approximate
the frequency masking of ear, a fixed set of band pass filters based on the Mel frequency
scale are generally utilized. Traditionally the Mel-filter bank analysis is implemented on
the signal discrete time Fourier transform (DTFT) magnitude spectrum using triangular
basis functions, i.e. filters, which perform the spectral integration according to Mel scale.
The spectral energy E(b) of frequency band b is obtained using a triangular band-filter fb
as

E(b) =
K−1∑
k=0
|X(k)| · fb(k), (2.6)

where X(k) is the DTFT coefficient by (2.1). This kind of DTFT-based Mel scale magni-
tude spectrograms have been used as audio features for automatic speech recognition
task in Publications II,I, III, and V.

For audio information retrieval tasks, immensely utilized Mel-filter bank energy based
features are the Mel-frequency Cepstral Coefficients (MFCC), which have been found
out to be highly useful already in Davis and Mermelstein (1980). To compute the MFCC
features, the above presented Mel-scale energy spectrum E(b), b= 1, 2, ..., B is further
transformed using the discrete cosine transform (DCT). The DCT transform provides

10 Chapter 2. Audio and video signals

decorrelation of features, uncorrelatedness being a desirable property of a feature for
many algorithms. Often, to incorporate information about the context of an audio frame,
the amount of change in each MFCC coefficient among a few consecutive audio frames
are considered as additional features called ∆MFCC (deltaMFCC). I have used MFCC
and ∆MFCC features for the experiments in Publications IV, V, and VI.

2.4 Computational image analysis

Variability of presentation within an image or a video frame is huge. That is, multiple
objects may be located anywhere in the image, in any size and with any pose or ori-
entation. Objects are often partially occluded by other objects. Depending on lighting
conditions, the color hues captured by the camera vary tremendously. Human brain is
capable of dealing with the complexity of this visual information without a problem, but
for a computer, image analysis is a highly demanding task. In the following I explain
some computational procedures for automatically analyzing the contents of a digital
image.

2.4.1 Filters for recognizing simple shapes

For automatic image analysis, the standard approach is to first search for, i.e. detect,
simple details and patterns from an image, e.g. lines, edges, corners, blobs etc. . Each sub-
image at every possible position, size and orientation from the whole image is evaluated
separately for the quested shapes. Simple basis functions, i.e. filters, are designed based
on the visual appearance of the quested shapes. They are specifically suited for the
preliminary edge detection, corner detection, blob detection, etc. from image patches.
They are in the core of nearly every higher level feature extraction scheme for computer
vision. A linear filter response within image I at pixel position (h, v) is computed as

x(h, v) =
Nh∑
i=1

Nv∑
j=1

I (h− Nh+1
2 + i, v − Nv+1

2 + j) · F(i, j), (2.7)

where F denotes the 2-dimensional shape detection filter of size Nh × Nv. The filter
dimensions Nh and Nv are assumed to be odd, e.g. 3x3, 5x5 etc. .

For detecting edges from an image, simple linear filters approximating the image deriva-
tive are Prewitt, Sobel, and Roberts filters. However, these filters are usually not enough
for reliable interest point detection and some post processing is necessary for noise
robustness of detection. For example, an old, nevertheless the state-of-the-art Canny
edge detector by Canny (1986) is a dominant approach. It uses first two linear filters
to extract the horizontal and a vertical components of gradient at each position of the
image. These gradient images are combined to provide a likelihood of an edge existing
at each pixel position as well the direction of the potential edge. The edge likelihood
values are post processed first by non maximum suppression, which damps majority of
them to be zeros. Then thresholding with hysteresis is used to provide crisp edges form
the remaining line likelihood values.

For blob detection, a linear Laplacian of Gaussian (LoG) filter is a standard choice. The
difference of Gaussians (DoG), computed as a difference between responses to Gaussian
filters with different scales, is also used as an approximation of LoG. To detect the blobs,
maxima and minima of scale normalized LoG or DoG responses are searched.

2.4. Computational image analysis 11

Haar-like filters developed by Viola and Jones (2001a) are very popular due to their
computationally efficient applicability and versatility to detect different patterns. The
filters consist only values -1 and 1, which are arranged as rectangular areas. An efficient
implementation of Haar-like feature computation by Viola and Jones (2001b) utilizes a
sum-up table called integral image.

An example of a non-linear simple pattern detecting filter is a local binary pattern (LBP)
filter proposed by Ojala et al. (2002). When computing an LBP response for a pixel,
values of pixels within the neighbourhood of the central pixel are compared to each
other to obtain directional information about local intensity differences. The pixel value
differences are converted to binary values based on the sign of the difference – thus the
name binary pattern – giving one pattern for each pixel which is used as a neighbourhood
centrum.

2.4.2 Using histograms to compact information

When analyzing the image with many different filters, the amount of numbers charac-
terizing the image becomes even bigger than the number of pixels. This data explosion
must obviously be suppressed and only relevant information should be retained. One
simple and popular solution for reducing the amount of data is to collect a histogram of
attributes to describe the whole image or some part of it. The idea is extensively utilized
also in text processing, and thus a name Bag-of-Words (BoW) (Harris (1954)) is also used.
A histogram or BoW is a collection of counts of selected attributes from an image. Each
number in the histogram refers to occurrences of a certain attribute within the image.
One attribute may account for e.g. strong enough responses from a certain type of filter,
where an occurrence is determined using a threshold value.

The simplest of the histogram-based image feature vectors, also used in Publications IV
and VI, is an RGB -color histogram. A color histogram feature (Novak and Shafer (1992))
is popular in analyzing video frames particularly because of its fractional computational
load. Histogram of oriented gradients (HOG) (McConnell (1986)) is another very popular
histogram based feature. To collect HOG, multiple linear filters which detect gradual
changes of luminance values in many scales and orientations within the image are used,
and notable responses of each filter type of gradient are accumulated into the HOG
vector. The LBP presentation (Ojala et al. (1994)) is eventually a histogram based feature.
After the initial nonlinear filtering stage, a histogram of binary pattern representations is
collected from an image patch to form an LBP feature vector.

In the work of Publications IV and VI on video analysis I have utilized histograms of scale
invarian feature transform (SIFT) (Lowe (2004)) features, which are explained in the next
section. A large set of SIFT feature vectors, i.e. SIFT descriptors, are first computed from
training material. Then the K-means algorithm is applied to this set of SIFT descriptors
and the K mean SIFT-descriptors are collected into the codebook. When analyzing a new
video, the SIFT descriptors are extracted from each video frame and they are compared
to those of the codebook. Counts of descriptors that match the codebook items closely
enough are returned as a SIFT BoW feature vector for each video frame.

2.4.3 Crafted features for image analysis

There are many hand-crafted image feature extraction algorithms, which are designed to
tackle some specific problems of computer vision. The scale-invariant feature transform
-descriptors, which are utilized in Publications IV and VI, are an example of a crafted

12 Chapter 2. Audio and video signals

analysis method which detects simple shapes and patterns invariantly to changes of scale,
orientation and illumination. Another example of a crafted image feature computation
scheme discussed here is facial point extraction. A facial point extraction algorithm by
Zhu and Ramanan (2012) is utilized in Publication VI.

The scale invariant feature transform is an image analysis scheme used successfully
ever since its invention by Lowe (2004). SIFT analysis gives localized information for
the image by returning feature vectors, called descriptors, for the image to be analyzed.
Each descriptor is associated with a specific location, a key point of interest, in the image.
Detection of key points within an image starts with computing different smoothed
versions of the image using Gaussian filters of different sizes, i.e. scales. Between each
pair of adjacent scales, a difference of these smoothed images are used to produce DoG
responses. Local minima and maxima of scale normalized DoG responses in the three
dimensions; width, height and scale, are detected to be potential key points. The final
set of key points is selected from those by excluding the poor ones in the areas of low
contrast and on edge lines. For each key point, a descriptor is constructed. It consists of
histograms of 8 orientations from 16 small image patches within the neighborhood of the
key point, making a descriptor length to be 128.

Facial feature point detection (FFPD) is an example of crafted very high level feature
extraction scheme. There are many different FFPD algorithms specifically designed
for tracking and analyzing faces in images. FFPD algorithm finds image coordinates
corresponding to a set of points of a human face in an image using some lower level
features, e.g. SIFT-descriptors. This kind of high level feature extraction schemes are
highly complex and utilize many filters, transforms, and heuristically derived selection
schemes to achieve their output. The face point detector of Zhu and Ramanan (2012),
which is used in Publication VI, utilizes HOG descriptors to find potential interest points
and models different facial poses with trees.

2.4.4 Feature selection

The huge pool of different low level analysis methods, i.e. features, available for image
analysis calls for methods to select the best features for an application at hand. Using
all the available features is not feasible due to the curse of dimensionality, discussed first
by Bellman (1957). The term is used to describe the difficulty of dealing with very
high dimensional data. Thus to select the best performing features or filters from the
huge pool of them available, feature selection must be performed. The feature selection
methods are generally divided into three categories of methods, namely, filter, wrapper
and embedded methods (Kumar and Minz (2014)).

The filter methods are the simplest feature selection methods, mainly used only as a
preprocessing step to exclude the distinctly useless features (Kumar and Minz (2014)).
The filter methods evaluate each feature individually, not taking correlations between
different features into account and thus failing in reducing redundancy in the remaining
feature set. The "filter" in this case is some particular way of computing a statistical score
for the usefulness of each potential feature to describe the data at hand. Examples are
Chi squared test, information gain and correlation coefficient score. The features with
highest scores are then selected for use.

The idea in wrapper type feature selection methods is to try out different feature sets by
training the system with each subset of features, and then selecting the best performing
set for use. The drawback of these methods is high computational cost. Often greedy

2.5. Features from learned linear transformations 13

solutions are proposed, as in total there are an unsustainable number 2N − 1 of possible
solutions for selecting a subset of features out of N available, N being a big number. The
greedy solutions include forward selection and backward elimination type algorithms.

Embedded feature selection methods are embedded into the analysis algorithm design,
such that all the features are given for the system training and the algorithm itself
makes decisions about using a feature or not. Regularization algorithms like LASSO
(Tibshirani (1996)) and Tikhonov regularization (Tikhonov et al. (1995)), which is often
called ridge regression, are considered as embedded feature selection methods. Decision
tree building algorithms are also sometimes considered embedded feature selection
methods, although the feature selection process within the tree construction resembles
the process of wrapper methods.

Many of the object detection cascades discussed in Section 5.2 utilize the AdaBoost
algorithm (Freund and Schapire (1997a)) for selecting the most suitable Haar-filters to be
used for features form the huge pool of Haar wavelets available. The process of some
object detection cascades may be considered as an embedded procedure to concurrently
select the features and build the detector with the AdaBoost algorithm. On the other
hand, some object detection cascades perform first greedy forward selection wrapper
type feature selection process with AdaBoost, and then fine tune the cascade classifier
function by some another method for training.

2.5 Features from learned linear transformations

In addition to the analysis methods specific to audio and image data, there are lots of
general purpose methods, which are commonly utilized for data of audio, image or any
other measurement modality. Among feature extraction methods, many different types
of linear transformations are extensively utilized for preliminary signal analysis. Linear
transformation of vector x, which is the raw signal or some other feature representation
of it, is performed as

xnew = Bx (2.8)

where B is the transformation matrix, and xnew is the new vector representation. In
addition to transformations like DFT and the many linear image analysis filters, where
the transformation matrix B is predetermined, the basis for the transformation may
be learned from training data. The transformation may be either underdetermined
or overdetermined to induce the new representation xnew to have either less or more
elements than the original representation x. An underdetermined basis, which have
fewer basis vectors than there are measurements in a set to be analyzed, are used to
detect the salient properties of data and reducing its dimensionality. On the other hand,
overdetermined basis which consist of a big pool linearly dependent basis vectors are
used for applications based on sparse coding.

For example the simple machine learning approach, K-means algorithm (Hartigan (1975)),
is often used for learning a basis B for a linear transform (2.8). This approach has
been used for learning the transformation matrix for the SIFT -histogram features in
Publication VI.

Algorithms like principal component analysis (PCA) and independent component analy-
sis (ICA) produce linear transformations for distinguishing the most salient components
of data. They find a basis B which better reveals the variability specific to the data at
hand. These methods are also often used for dimensionality reduction, for constructing an

14 Chapter 2. Audio and video signals

underdetermined transformation basis. Dimensionality reduction, similarly to feature
selection, is done for discarding redundancy and noise-like information of the data.
Dimensionality reduction is achieved such that the basis vectors in B are ordered in the
diminishing order of data variance. The basis vectors corresponding to directions of
smallest data variance are discarded to obtain Bcropped for the transformation (2.8). The
discrepancy of information in data x representation according to the corresponding new
feature vector xcropped is left as modeling error e as

x = B+
cropped · xnew,cropped + e, (2.9)

where B+
cropped is the Moore-Penrose inverse (Atkinson (1979)) of the reduced basis and

xnew,cropped is the correspondingly shorter feature vector. In Publication VI I have utilized
PCA for reducing the length of a face point feature vector.

When using linear transformations for sparse coding, the equation (2.8) is utilized the
other way round, as

x = Dxnew, (2.10)

where D is an overdetermined feature dictionary. The new feature vector xnew becomes
higher dimensional than the original data x, but the clue in the sparse coding approach
is that the feature vectors xnew are enforced sparse, i.e. to have many of its values zero.

One of the first algorithms for finding an overdetermined dictionary D which fits together
with the sparsity constraint on feature vectors xnew is singular value decomposition (SVD)
based K-SVD -algorithm (Aharon et al. (2006)). The K-SVD algorithm finds components,
i.e. atoms, into a dictionary via a process similar to the K-means algorithm. At each
iteration of the algorithm, the dictionary D and the new data representation xnew are
updated for smaller reconstruction error e = x−Dxnew using SVD such that maximally
K elements within each new data representation vector xnew are nonzero.

Sometimes, a non-negativity constraint is set for the dictionary D and the new feature
vectors xnew. This is a heuristic constraint, which is justified if the measurement data is
non-negative by nature. E.g. for audio spectral magnitudes this is the case, as the sound
may be quiet or loud, but the sound energy can not be negative. NMF-algorithms perform
decomposition X ≈ D Xnew of original data matrix X into two non-negative matrices
D and Xnew. There are many NMF -algorithms, setting the non-negativity constraint
on D, xnew or both of them. The non-negativity constraint may be set as well on the
reconstruction error E for the optimization of X = DXnew + E. The algorithms perform
in iterative way using different constraints and different measures on the reconstruction
error. A selection of different NMF-algorithms is presented in Lee and Seung (2001).

An NMF approach has been used in the studies of Publications II and I on automatic
speech recognition. However, in frameworks of Publications II, I and V, the non-negative
dictionaries have been obtained by sampling from training data rather than using an
optimization algorithm.

Algorithms to achieve sparse feature vectors xnew when having the fixed overdetermined
dictionary D aim minimizing a cost function

C =
∑
x∈X

||x−Dxnew||22 + λ1||xnew||1 + λ2||xnew||22, (2.11)

where X is the training dataset and ||v||p denotes the `p-norm of vector v. For the LASSO
algorithm (Tibshirani (1996)) λ2 = 0, for the Ridge regression algorithm (Tikhonov et al.

2.6. Features using neural networks 15

(1995)) λ1 = 0 while the elastic net regression (Zou and Hastie (2005)) utilizes both the
constraints with λ1 ≥ 0 and λ2 ≥ 0.

2.6 Features using neural networks

Recently the deep neural networks (LeCun et al. (2015)) have been used for nearly every
task of machine learning, the feature extraction making no exception. Once the problems
in learning DNN weights had been solved, the DNNs have turned out to be very efficient
non-linear feature extraction functions.

Deep belief net (DBN) is a type of DNN, used for learning feature extraction functions,
as proposed by Hinton and Salakhutdinov (2006). An efficient algorithm for training
DBN weights is presented by Hinton et al. (2006). DBM is built by stacking multiple one-
hidden-layer restricted Boltzmann machines (RBM) (Salakhutdinov et al. (2007)). Each
RBM-layer is trained generatively as a stochastic network, where an energy function
defined by network weights is associated with each training data vector. The RBM
weights are to be set such that in terms of the training data the energy function is
minimized and thus the likelihood of the data is maximized. An efficient learning
algorithm for obtaining RBM weights is the contrastive divergence (CD) -algorithm
developed by Hinton (2002). To train multiple RBMs for a DBM, the outputs of the
previous layer RBM, used in deterministic rather than stochastic way, are used as training
data for the next layer RBM. The trained DBM feature extractor is eventually utilized
deterministically as a feed-forward type neural net. It has been found out, that by adding
new layers to the DBN network, increasingly higher level features can be obtained
(Hinton (2014)).

Autoencoder is a special type of DNN used to obtain so called bottle-neck features
Goodfellow et al. (2016). Autoencoders are effectively feed-forward nets, which may be
trained with any back-propagation type algorithm. An autoencoder consists of multiple
feed-forward type layers of neurons, the middle layer being as small as the new feature
vector is desired to be. This small layer forms a bottle-neck for the information. For the
small bottle-neck layer, an autoencoder is thus enforced to learn a small dimensional
representation of the input, the short representation discarding as little as possible of
the information present in the original vector. The vectors obtained from the bottle-neck
layer of an autoencoder thus provide the new features.

Convolutive neural networks (CNN) are feed forward networks, which are trained
discriminatively for classification from the beginning, but the network structure is specif-
ically designed from the feature extraction point of view. Layers of a CNN are restricted
in comparison to general feed forward network structure such that not every input of
each layer is connected to every neuron of the layer. It is the matter of choice for the algo-
rithm developer to decide about which inputs are connected to which neurons. A CNN
consists of multiple pairs of layers providing higher and higher level representations of
the input in a position invariant way. The neurons of the first layer of each pair compose
the basis for the convolutive property of the net. Thus it is called a convolutive layer.
The convolutive layer contains plenty of similar neurons sharing the same connection
weights, but being connected to different sets of the layer inputs. The second layer of
each pair, called a pooling layer, has restricted connectivity as well. The neurons of this
layer are designed to provide the property of the position invariance for the net. Each
neuron is connected to those convolutive layer outputs which share the same weights,
i.e. implement a certain type of filter. Usually a max-pooling strategy is used such that

16 Chapter 2. Audio and video signals

the neuron outputs the largest value among its inputs. CNNs are utilized in computer
vision with huge popularity and success at least since the publication of Krizhevsky et al.
(2012). Lately they have been successfully tuned also for audio analysis e.g. by Zhang
et al. (2017).

3 Dereverberation

Dereverberation is one of the signal processing tasks dealing with audio signals. Specif-
ically, dereverberation is an audio signal enhancement task to reduce the detrimental
effect of reverberation within a sound. In the following, characteristics and measures of
reverberation are discussed in Section 3.1. The evaluation metrics used for dereverber-
ation tasks are presented in Section 3.2, and an overview of dereverberation methods
proposed in the literature is given in Section 3.3. My own work in blind dereverberation
of music is explained in Section 3.4.

3.1 About reverberation

The term reverberation is used to denote the sound energy caused by the sound waves of
the sound source, which are reflecting towards the listener from surrounding obstacles
and objects.

In many environments, reverberation is considered improving the sound quality. Specif-
ically concert halls are designed to produce optimally pleasant reverberation for the
performed music. Pleasant reverberation is described in Beranek (2012) with terms like
acoustical fullness, warmth, softness, definition/clarity, liveness, intimacy/presence,
spaciousness, timbre/tone color etc. . A space with no or very little reverberation is
appointed dry or dead, and people generally consider overly dry acoustics to be un-
pleasant. However, too much reverberation is considered to deteriorate the sound. With
excess reverberation, sounds smudge i.e. clarity of the sound degenerates. This causes
the speech intelligibility to reduce and music to become more like broadband noise.

Properties of reverberation in a space are determined by the acoustical characteristics
of materials of all the barriers and objects in the space (Kuttruff (2016)). A hard surface
reflects most of the sound energy hitting it. On the contrary, a material with porous
surface and non-rigid structure absorbs a good amount of sound energy which encoun-
ters it. Some materials, which are fluffy enough, are acoustically transparent and have
no effect in sound propagation. In addition to overall reflective / absorbing capability,
every material treats different wave frequencies differently. Most materials attenuate
high frequency waves more than low frequency waves.

All the above mentioned aspects suggest that the behavior of sound waves in a bounded
space is very complex. The sound scape also depends much on positions of the sound
sources. Within the sound scape, the perceived sound depends on position of the listener.
For a specified positions of a sound source and a listener, an acoustic impulse response
(AIR), called also as room impulse response (RIR), hSL can be measured (Kuttruff (2016)).
AIR captures acoustical properties of the sound path from the sound source to the
position of the listener in the space. The sound wave induced by a sound source is heard

17

18 Chapter 3. Dereverberation

Figure 3.1: Acoustic impulse response of a lecture room from Aachen Impulse Response Database
(Jeub et al. (2009)). AIR may be divided into parts of the direct sound, early reflections up to
following 50-80 ms and late reverberation after that.

by the listener as a reverberant sound, which builds up as a convolution of the original
sound and AIR as

x(t) = [s ~ hSL] (t) =
∞∑

t=0
s(t− t)hSL(t), (3.1)

where s denotes the sound source, ~ is the mathematical convolution operator and
x(t) denotes the heard reverberant sound. The Figure 3.1 shows an example of a room
impulse response. The first peak of AIR corresponds to the direct sound path from the
source to the listener. The following distinguishable peaks up to 50-80 ms correspond
to early reflections, i.e. the sound paths with just a few reflections on the way from
the source to the listener. The rest of the AIR corresponds to late reverberation, which
usually forms a diffuse sound field, where the direction of sound is indistinguishable.

Since exact AIR is dependent in the position of sound source as well as position of the
listener, some more general measures of reverberation are often used. Gross measures of
reverberation are e.g. reverberation time (RT) and early decay time (EDT). Both of them
are defined based on instantaneous sound pressure level SPL= 20 log10(PRMS/20µPa) dB
with PRMS being the root mean square (RMS) sound pressure. Instantaneous SPL levels
for RT and EDT may be defined via AIR, or by measuring the space response to abruptly
ending sound source. The reverberation time is denoted as RT60 or RT30 depending on
the manner of defining the time needed for SPL to decay 60 dB. These SPL decay times
may be defined for a broad band signal as well as separately for different frequency
bands. EDT is defined as six times the time needed for SPL to quiet down 10 dB.

The highly important property of sound respected by a listener, which is heavily affected
by reverberation, is the clarity of the sound. Clarity of sound field is often measured
as early-to-reverberant ratio (ERR), i.e. a ratio between the direct and early reflections
part of the sound and the late reverberation part of the sound. The definition of clarity
as ERR corresponds to the definition of the signal-to-noise ratio (SNR) considering the
direct sound and early reflections before the mixing time, Tearly = 50...80 ms, as the good
quality signal and the late reverberation after Tearly as noise. Sound clarity as ERR is
given by

ERRτ = 10 log
(
E0...Tearly

ETearly...∞

)
dB with Ea...b =

b∑
t=a

h2
SL(t) (3.2)

where E0...Tearly is the energy of the direct sound and the early reflections up to time
Tearly in AIR, and ETearly...∞ is the energy of the late reverberation after that. Clarity is
a commonly used measure of reverberation conditions and an estimated ERR is used
within some dereverberation algorithms. For speech, the clarity C50 with Tearly = 50 ms
is used as a standard measure. For music, C80 with Tearly = 80 ms is commonly used.

3.2. Evaluation metrics for audio dereverberation 19

3.2 Evaluation metrics for audio dereverberation

The goal in the dereverberation task varies depending whether the reverberation should
be removed altogether, i.e. to perform perfect deconvolution of the sound to the source
signal and the room impulse response, or the goal is only to remove excess reverbera-
tion to make the sound more pleasant and clear. Sometimes audio enhancement and
dereverberation are done as a preprocessing step in frameworks for automatic signal
interpretation. In that case the signal enhancement should be optimized for maximizing
the interpretability of the signal for classification algorithms. Thus it is not obvious how
to obtain a score for the success in the dereverberation task.

The existing evaluation methods differ in many aspects. A distinguishing property being
whether a methods expects a clean source signal to be available for comparison, or the
method is to be used for signals from the wild where the clean source signal is out of
reach. Some of the audio quality metrics are subjective, i.e. they rely on human opinion
about the dereverberated audio quality, while other metrics are objective, providing
a numeric rating for the dereverbarated audio by computational means. Generally,
subjective assessment should be preferred over objective metrics as none of the known
metrics captures all the aspects of sound that human does.

The International Telecommunications Union (ITU) Telecommunications Standardization
Sector (ITU-T) and Radiocommunications sector (ITU-R) both have given guidelines for
audio quality assessment. They define different subjective evaluation setups depending
on which aspect of the signal is to be evaluated, as well as scales for scoring to be used.
A popularly utilized evaluation scale is for example the mean opinion score (MOS) with
scoring: 1-bad 2-poor 3-fair 4-good 5-excellent. In the REVERB challenge (Kinoshita
et al. (2016)), a contest for dereverberation algorithms arranged in 2014, a subjective
MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) test, described in
ITU-R Recommendation BS.1534-1 (2003), was used. In a MUSHRA test, an assessor is
commissioned to set multiple audio samples in an order of increasing quality and also to
give a numerical quality score for each sample. The test includes a reference signal as
a benchmark for the best possible quality, and an anchor signal as a benchmark for the
worst possible quality to enhance the comparability of numerical scores.

Computational methods for audio enhancement assessment are very popular due to
their effortless applicability. A widely used audio quality evaluation measure by ITU-T
is PESQ (perceptual evaluation of speech quality) introduced in Rix et al. (2001). In PESQ
computation, many properties of human hearing are taken into account by utilizing Bark
frequency scale, intensity conversion to loudness as Sones, discarding small differences
where auditory masking in frequency and time take place, and emphasizing sparsity of
disturbances both in frequency and time. PESQ score intends to mimic the mean opinion
score of subjective evaluation. Similar, although less popular, evaluation metric which
also takes into account many aspects of human hearing, is a Perceptual Evaluation of
Audio Quality (PEAQ) measure defined in ITU-R Recommendation BS.1387-1 (2001).

A simple computational audio quality measure that we have used in our work on music
dereverberation in Publication III is signal-to-distortion ratio (SDR). It is adapted from
audio source separation field, where it is popularly used (Vincent et al. (2006)). SDR is
given by

SDR = 10 log10

(
||sclean||22
||ŝ− sclean||22

)
dB (3.3)

20 Chapter 3. Dereverberation

where sclean and ŝ are the time aligned clean reference and the dereverberated signal
vectors, respectively.

Other simple computational measures for dereverberation assessment proposed in the
literature are e.g, the cepstral coefficient based Cepstrum distance (Kubichek (1993)), the
linear prediction coefficient based log-likelihood ratio (LLR) (Quackenbush et al. (1988))
and DFT spectral magnitude based frequency-weighted segmental signal-to-noise ratio
(FWsegSNR) (ITU-T Recommendation P.262 (2005)). All these methods utilize a reference
signal for the comparison. Computational dereverberation assessment methods, which
do not require a reference signal are e.g. speech to reverberation modulation energy
ratio (SRMR) (Falk et al. (2010)) and direct-to-reverberant ratio (DRR) (Naylor and
Gaubitch (2010)), normalized signal-to-reverberation ratio (NSRR) (Naylor et al. (2010))
and reverberation decay tail (RDT) (Wen et al. (2006)).

3.3 Dereverberation methods within literature

The research on algorithms for removing reverberation from audio signal concentrates
mostly on speech audio (Naylor and Gaubitch (2010)), on improving its intelligibility.
This is well justifiable, as the most essential applications facilitate communication via
mobile devices and serve the hearing impaired for improved quality of life. However,
there exists also research on focusing music dereverberation where aesthetical viewpoint
is more important. Dereverberation is also often considered as pre-processing step for
audio content analysis algorithms (Watanabe et al. (2018)).

There are a variety of different methods available for dereverberation, depending on what
is assumed to be known about recording conditions, e.g. number of microphones, room
impulse responses, reverberation time, noise statistics etc. . The most efficient methods
utilize multiple microphones, but there exists also many single channel dereverberation
algorithms. Majority of methods operate in time-frequency domain, as time-frequency
domain processing provides efficient means for robustness against changes in acoustic
channel.

In the following, some popular processing principles utilized for audio dereverbera-
tion are presented. The methods are dealt within six topics. First it is discussed how
human vocalization model is utilized for dereverberation. Then the variety of ways
the linear predictive (LP) analysis is utilized within dereverberation algorithms is ex-
plained. The third topic concerns the methodology used for rigorous reverberation
cancellation via AIR estimation end deconvolution filtering. The fourth topic discusses
multi-microphone spatial filtering approaches to dereverberation. Then, the introduction
turns to statistically inspired dereverberation methods, which use weight based sup-
pression of DTFT magnitudes. Finally, the dereverberation implementations by neural
networks are addressed.

In the discussion below, the reverberant signal x(t) is represented in terms of parts s(t),
the clean source signal, r(t) the reverberation and n(t) additional noise as

x(t) = s(t) + r(t) + n(t). (3.4)

In case of STFT-domain processing, the frame spectra X(n, f), S(n, f), R(n, f) and
N(n, f) are assumed to sum up similarly as

X(n, f) = S(n, f) +R(n, f) +N(n, f). (3.5)

3.3. Dereverberation methods within literature 21

Speech dereverberation utilizing source-filter vocal-tract model

The first implementations of speech dereverberation in 1970’s (Allen (1974)) were based
on the source-filter model of speech production. The speech signal s(t) was estimated di-
rectly without modeling r(t) and n(t) at all. The source-filter model of speech, presented
e.g. in Stevens (1998), contains an all-pole filter, which represents the vocal track and
gives the characteristics of each phone and human voice in general. The source signal of
the model represents the glottal sound, which is assumed to be a time series of pulses in
case of voiced sounds, or white noise in case of fricative phones.

Dereverberation of reverberant speech based on the source-filter model is performed
leaning on an observation that the all-pole vocal tract filter coefficients are not much
affected by reverberation, but most disturbance resides in the estimated glottal source
signal (Gaubitch et al. (2006)). The vocal tract filter coefficients g(t) are thus estimated
from the reverberant signal using e.g. LP-estimation on the reverberant signal x(t) as

x(t) =
T∑

t=1
g(t)x(t− t) + e(t), (3.6)

where T is the prediction filter length and error e(t) is to be minimized. The prediction
error e(t) is then taken as the noisy glottal signal. To obtain dereverberation, it is cleaned
up of noise. This approach, often called LP-residual processing, has been used e.g. by
Gaubitch et al. (2003).

Characteristics of voiced vowels, particularly the harmonic structure of them, following
the fundamental frequency f0 of the glottal pulse signal, is utilized in the HERB (Har-
monicity based dEReverBeration) approach by Nakatani et al. (2007). The source-filter
model of human speech production is utilized in conjunction with other processing
principles presented below for speech dereverberation e.g. by Yoshioka et al. (2007) and
Kinoshita et al. (2009).

3.3.1 Linear predictive analysis for reverberation estimation

Auto-regressive signal model is extensively utilized for estimating the reverberation part
of the recorded signal (Naylor and Gaubitch (2010) Chapter 4). The prediction error is
then considered as the clean source audio, which is not possible to be predicted based on
previous observations. The signal model, in absence of noise, is thus in time domain or
in STFT-domain respectively as

x(t) = s(t) + r(t) = s(t) +
T∑

t=d
g(t)x(t− t) and (3.7)

X(n, f) = S(n, f) +R(n, f) = S(n, f) +
L∑

n=D
G(n, f)∗X(n− n, f) (3.8)

where ∗ denotes complex conjugate, t and n are time indices, T and L denote the
length of prediction filter, d and D denote prediction delay and g and G denote the
linear prediction coefficients for x(t − t) and X(n − n, f) in time and DTFT-domains
respectively. Dereverberation then actualizes as

ŝ(t) = x(t)− r̂(t) or Ŝ(n, f) = X(n, f)− R̂(n, f). (3.9)

22 Chapter 3. Dereverberation

The parameters g or G of (3.7) are solved minimizing the power of the estimation error
e(t) = x(t)− r̂(t) or E(n, f) = X(n, f)− R̂(n, f), e.g. using LP-analysis (Jackson (1989)).
The time-domain model is highly sensitive to changes in AIR, but the DTFT-domain
model has shown to perform nicely already in case of single channel signal, both in case
of both speech (Padaki et al. (2013)) and music signals (the Publication III).

In case of multi-channel recording, reverberation r1 (R1) in the first channel signal x1
(X1) is estimated using all the M channel signals xm(t) (Xm(n, f)) for , m=1...M as

r̂1(t) =
M∑
m=2

T∑
t=d

gm(t)xm(t−t) or R̂1(n, f) =
M∑
m=2

L∑
n=D

Gm(n, f)Xm(n−n, f), (3.10)

where xm or Xm denote the signal on the m:th channel of the recording and gm or
Gm denote the corresponding regression coefficients. The parameters gm(t), t = d...T
or Gm(n, f), n =D...L for m= 1...M are similarly to above solved by minimizing the
estimation error e(t) = x1(t) − r̂1(t) or E(n, f) = X1(n, f) − R̂1(n, f). A solution
minimizing the squared error e2 (E2) is obtained using multi-channel linear prediction
(MCLP) (Naylor and Gaubitch (2010) Chapter 5). The problem with the generally used
least squares minimization of linear prediction analysis is that the error signal becomes
white Gaussian. This assumption does not hold for most real life audio source signals.
To fix this, e.g. prewhitening of signals in Triki and Slock (2005), or increasing prediction
delay in Kinoshita et al. (2009) have been proposed. The time-domain implementation of
the MCLP-method is also known as linear-predictive multi-input equalization (LIME),
and the STFT-domain MCLP has been also referred to as weighted prediction error
method (WPE). MCLP is extensively utilized in STFT-domain due to its robustness to
changes in AIR.

In addition to the better robustness, STFT domain processing allows statistical models to
be utilized for the signal, giving rise to a technique called variance-normalized delayed
MCLP (NDLP) proposed in Nakatani et al. (2010). For NDLP, the complex-valued
STFT coefficients S(n, f) of the source signal are modeled using a time-varying Gaussian
(TVG) model. The TVG setup usually chosen, defines the complex Gaussian distributions
of S(n, f) to be zero mean, each with its own variance. Then the regressors Gm(n, f)
of the MCLP and the variances σ2

n,f of the TVG-model are optimized in a maximum-
likelihood (ML) sense, with expectation-maximization (EM) type alternating optimization
algorithm. Due to combining the statistical TVG model to MCLP, NDLP is also referred
to as Bayesian blind deconvolution.

3.3.2 Blind system identification and deconvolution methods

Dereverberation algorithms called reverberation cancellation (Naylor and Gaubitch (2010))
methods utilize the audio channel characteristics, that is AIR (or RIR), for the derever-
beration solution. Usually AIR h is unknown and it must be estimated using some blind
system identification (BSI) approach. Then the estimated AIR ĥ is utilized for estimating
inverse (i.e. equalization, deconvolution) parameters g to cancel the effect of AIR from
the signal as

ŝ(t) =
T−1∑
t=0

g(t)x(t− t). (3.11)

These time-domain methods are mathematically and physically faithful to true sound
propagation laws encoded in (3.1) and thus they have high potential for very high

3.3. Dereverberation methods within literature 23

fidelity dereverberation. Unfortunately rigorous modeling is often accompanied with
poor robustness against channel estimation errors and small changes in AIR, which are
serious issues when working with real life signals.

For AIR estimation, multi-channel recording is necessary. AIRs may be estimated based
on differences and similarities between signals from different microphones. There are
two mainstream BSI methods available for AIR-estimation One is based on minimizing
averaged cross-relation error over all pairs of M microphone signals xm,m = 1...M .
The cross-relation error between microphone signals xi and xj is defined as eij =
s~hi~hj − s~hj ~hi = xi~hj −xj ~hi, where hm denotes AIR between the source
and microphone m. All the M AIRs are then approximated minimizing the combined
error of

(
M
2
)

cross-relation error equations of ei,j i= 1...M−1, j= i+1...M . The other
mainstream time-domain BSI-approach finds AIRs from the null space {v | R v = 0 } of
multi-channel data correlation matrix R of size (MT)× (MT), which consists of M ×M
blocks of cross-correlation matrices ρij between channel signals xi and xj , ρij being of
size T × T .

To estimate the equalization parameters in gm based on ĥm, more sophisticated methods
than direct inversion are necessary. This is due to that the noise level in estimated AIR-
parameters ĥm is generally high and AIRs hm are generally non-minimum phase (Habets
and Naylor (2018)). For robust estimation of gm, many solutions utilize an equalized
impulse response

EIR(t) =
M∑
m=1

T−1∑
t=0

hm(t− t)gm(t), (3.12)

which ideally produces an impulse function EIR(t), possibly with a delay. A Multiple
input/output theorem (MINT) in Miyoshi and Kaneda (1988) provides a least squares
solution for EIR(t) to become an impulse function. This solution only solves the problem
of AIR being non minimum phase, but is not robust against AIR estimation errors.
Solutions for greater robustness against errors in ĥ implement different ways of relaxation
from targeting the perfect impulse EIR(t). The different relaxation approaches include
e.g. channel shortening in Zhang et al. (2010) and Lim et al. (2014), partial equalization
in Kodrasi and Doclo (2012) and sparse optimization in Mertins et al. (2010).

3.3.3 Clean signal estimation using spatial filtering

Spatial filtering, i.e. beamforming, is dedicated for extracting a high quality signal from
a certain geometrical direction by suppressing sounds and echoes coming from other
directions. The necessity for spatial filtering is a microphone array, whose geometry
is known. Also the direction of arrival (DOA) of the source signal must be known or
estimated for the spatial filter optimization. A minimum variance distortionless response
(MVDR) design Capon (1969) provides a beamforming filter to steer the focus to certain
direction while minimizing the sound energy from other directions. An MVDR-filter
gMVDR (or GMVDR) may be used for dereverberation as

ŝ(t) =
M∑
m=1

T−1∑
t=0

gMVDR(m, t)xm(t−t) or Ŝ(n, f) =
M∑
m=1

L−1∑
n=0

GMVDR(m, n, f)Xm(n−n, f)

(3.13)
for time-domain or STFT-domain processing, respectively. These equations perform
very similar operation as MCLP presented above, as discussed in Dietzen et al. (2016),

24 Chapter 3. Dereverberation

although the MVDR filter design process is based on an estimated DOA and signal
statistics rather than linear prediction analysis Haykin (2008). In the dereverberation
overview of Habets and Naylor (2018) MVDR-filtering is grouped as a signal independent
spatial filtering method although its beamforming optimality is based on statistics of
the data. This is likely said to contrast MVDR-filtering to beamformers, where the
coefficients of an MVDR beamformer are further tuned in terms of Wiener filtering
for instantaneous signal contents. The methods implementing this kind of enhanced
beamformer optimization on are called signal dependent beamforming methods in Habets
and Naylor (2018).

An alternative structure, which implements a beamformer similar to MVDR, but provides
insight as well as simplifies the beamformer implementation, is the generalized side-lobe
canceler (GSC) structure. The idea of GSC is to use a fixed beamformer for steering
the attention at the desired direction, and another filter for minimizing the noise and
reverberation power. The fixed beamformer is entirely independent of data as well
as its statistics and provides the main lobe directivity similarly to a MVDR filter. The
noise reducing filter on the other hand is optimized to minimize the noise power in
the particular signal, the function which in MVDR is integrated within the steering
beamformer coefficients. The GSC structure provides an opportunity to set larger variety
of constraints and design parameters on the noise reduction filter, than what is possible
to obtain with MVDR -filter design methodology. For example AIR characteristics are
incorporated in the generalized side lobe canceler design procedure in Gannot et al.
(2001).

3.3.4 Spectral enhancement and time varying Gaussian signal model

The dereverberation algorithms called spectral enhancement, spectral subtraction or reverber-
ation suppression methods operate in time-spectral STFT-domain. These methods assume
that the reverberant signal X(n, f) = S(n, f) + R(n, f) + N(n, f) and all of its parts
S(n, f), R(n, f) and N(n, f) are coming from complex zero-mean time varying Gaussian
distributions NC{0, σ2

t }. Dereverberation with these methods is done by a multiplicative
operation, instead of subtraction, on power spectral densities in each signal frame as

|Ŝ(n, f)|2 = max
(
λ, W (n, f) · |X(n, f)|2

)
, (3.14)

where a spectral floor λ is set to diminish a musical noise problem often encountered
with STFT-processing, and W (n, f) is the gain, or suppression coefficient, for the time-
spectral bin. Often, the signal parts S, R and N are assumed to be uncorrelated, and thus
maximum likelihood gains W (n, f) for single-channel dereverberation are given by

W (n, f) = σ2
S(n, f)

σ2
X(n, f) = σ2

X(n, f)− σ2
R(n, f)− σ2

N (n, f)
σ2
X(n, f) , (3.15)

where σ2
X , σ2

S , σ2
R and σ2

N denote the power spectral densities (PSD), of the recorded
signal and the source, reverberation and noise signal parts, respectively. An estimate of
the recorded signal PSD is obtained as σ̂2

X(n, f) = |X(n, f)|2. In most of the algorithms,
the noise PSD σ2

N is assumed known, which means in practice that it is estimated from
frames X(n) of silence within the recording. For detecting the frames of silence, any
voice activity detection (VAD) technique may be utilized. The reverberation PSD σ2

R of
the reverberation part may be estimated based on the recording PSD for example as

σ2
R(n, f) = e−υ |X(n−D, f)|2, (3.16)

3.4. Results in blind dereverberation of music 25

whereD is set to correspond to late reverberation start time and the decay rate υ depends
on reverberation time T60 among other system parameters. A frequency dependent decay
rate υ(f) has been utilized in Habets (2004). Alternatively, delayed auto-regressive model
(3.7) is also widely utilized for reverberation PSD estimation as σ̂2

R(n, f) = R̂2(n, f). This
LP-based approach has been utilized in Publication III, where we found that utilizing
only one predictive term, i.e. L = D, was the most effective setup, which relates the
approach to that of Habets (2004). When multiple channels are available, reverberation
PSD σ2

R may be estimated using a residual R1(n, f) = X1(n, f)− Ŝ1(n, f) based on the
multi-channel estimate Ŝ1(n, f), or alternatively using non-coherence among the time
aligned microphone signals.

In case of a multi-channel signal, spectral enhancement is often utilized after beam-
forming, on the obtained single-channel signal ŝ (or Ŝ). The spectral subtraction type
post-filtering after beamforming is then done for improved dereverberation and noise
reduction.

3.3.5 Dereverberation using neural networks

Neural networks have been used for dereverberation task, e.g. by Xiao et al. (2014),
as well as for so many other signal processing tasks also. To train a neural network to
output an estimate of clean audio, the NN must be trained using target audio material
with the clean audio available. The training material should naturally represent the
scenario of the anticipated NN usage as closely as possible, thus making this approach
dependent on relevant training material. In case AIRs of the space, the dereverberation
is to be used within, is possible to be measured, simulation is an efficient means for
generating parallel training data for derevereration NN training. Simulation is done by
convolving clean source material with measured or approximated AIRs according to
(3.1) and adding different kinds of noise signals on the reverberant sound.

Audio signal is a form of time series, rather than consisting of independent samples. In
order a neural network to estimate the reverberation and noise free sample value or STFT
frame, the context of each input sample or STFT frame should be encoded in the NN
input. In Han et al. (2015), a feed forward DNN for estimating log spectral magnitudes
log(|S(n, f)|) of clean speech has been tried out. Five log spectral magnitude frames
log(|X(n+ n)|), n=−5...+ 5 anterior and posterior to frame n are utilized as an input to
the DNN to encode the context around S(n). In Weninger et al. (2014) a recurrent neural
network (RNN), specifically a long short-term memory network (LSTM) (Hochreiter and
Schmidhuber (1997)), has been utilized for reverberant feature enhancement for ASR.
A recurrent type neural network implicitly holds information of the past samples, thus
single frame features are used for the LSTM input. However, it is not obvious how the
dereverberated audio would be extracted based on the enhanced Mel-spectral features.

3.4 Results in blind dereverberation of music

The work of the Publication III pursues enhancing music recordings subject to rever-
beration and dynamic range compression (DRC). We produced clean music from MIDI-
representations and then applied reverberation and dynamic range compression to the
signal to synthesize the needed data. For reverberation suppression, we use no external
knowledge about the acoustic conditions of the recording environment. Thus the solution
of choice is a blind dereverberation method, namely a method proposed in Furuya and

26 Chapter 3. Dereverberation

Kataoka (2007) for speech dereverberation, which is applied to music signals in our work.
The aim was to test whether this method performs well with music material distorted by
DRC-processing.

We estimate the reverberation within the STFT signal representation using LP-analysis
with signal model

|X(n, f)| = |S(n, f)|+ |R(n, f)| ≈ |S(n, f)|+
L∑

n=1
af (n) · |X(n− n, f)|, (3.17)

where |X(n, f)|, |S(n, f)| and |R(t, f)| denote respectively spectral magnitudes of the
reverberant signal, the clean signal and the reverberation in frequency band f in signal
frame n, and L is the length of the LP-filter with frequency band specific coefficients
af (n), n = d...L. The frequency band specific model parameters af = [af (1), af (2), ...
..., af (L)]′ were estimated based on all the magnitude spectra |X(n)| of the recording at
hand. The standard least squares solution

af = (Vf ′ Vf)−1 Vf
′ vf (L+1) where (3.18)

Vf = [vf (L), vf (L−1), ..., vf (1)] and
vf (n) = [|X(n, f)|, |X(n+1, f)|, ..., |X(n+N−L−1, f)|] ′,

where N is the number of audio frames in the recording was used. The dereverberated
STFT magnitude spectrum was then obtained as

|Ŝ(n, f)| = |X(n, f)| − βf ·
L∑

t=1
af (t) · |X(n− n, f)|, (3.19)

where frequency dependent weights βf are used to limit the amount of dereverberation.
The dereverberated time domain signal was obtained by utilizing the phase of X(n, f)
as Ŝ(n, f) = |Ŝ(n, f)| ·X(n, f)/|X(n, f)|, and performing inverse fast Fourier transform
(IFFT) for all Ŝ(n), n = 1...N and combining consecutive audio frames by windowed
overlap add processing.

The numerical values of used audio frame length for the frame spectral representations
X(n), LP-model length L and the weighting function βf were set using validation data.
Utilizing audio frame lengths from 20 ms to 160 ms with different linear prediction
lengths L were tested. According to improvements in signal-to-distortion ratio within
validation data, the longer the audio frame, the better the dereverberation quality ap-
peared. In all cases, LP-model length larger than L = 3 did not give improvements.
Often, model length L = 1 gave the best results. This is reasonable, if we compare the
used signal model to the reverberation estimation according to (3.16). The model (3.16)
assumes that all the information of the reverberation is present in the frame located
around 50 ms – the limiting time between early reflections and late reverberation – after
the frame under consideration. Thus for audio frame lengths longer than 50 ms, an
LP-model length L = 1 should be enough. Our experiments confirmed that this is true.

Our tests with different weighting functions revealed that weights βf for low frequency
bins dominate the performance. Thus we finally resorted to using constant weighting
βf = β. The value of β that gave best results on average was between 0.2-0.3 depending
on whether the distortion by dynamic range compression was present or not. Slightly
larger value of β seemed to be the best for dynamically compressed signals. Using the

3.4. Results in blind dereverberation of music 27

best performing system parameters, the signal to distortion ratio of the reverberant
signals was improved from 6.1 dB to 6.4 dB, and the SDR of signals suffering also DRC
distortion improved from 5.2 dB to 5.6 dB.

Thus in Publication III we showed that this dereverberation framework performs well
with music signals. Another finding was that the dynamic range compression of audio
does not deteriorate the dereverberation performance. In contrast, dereverberation
performance with dynamic range compressed audio appeared even better than with the
non-compressed audio.

4 Classifying independent samples

In artificial intelligence (AI), computational methods are used to identify different phe-
nomena from signal, e.g. image or a sound clip. After preliminary analysis of the signal,
described in Section 2, an AI-system makes decisions according to internal models and
action rules, which are utilized for providing the solution. The basic building blocks
of an AI-system, which are responsible for interpreting the signal, are called classifiers.
They provide phenomenon level information for making the decisions of action. Thus
classification, or categorization, is in the core of almost every intelligent application.

To make the problem of automatic categorization, i.e. classification, of a signal tractable,
usually a small set of possible categories, called classes, is predefined, instead of eval-
uating among all the feasible taxonomies. The signal is analyzed to solve whether it
represents one of the pre-defined categories of phenomena. In the most fundamental
form of classification, binary classification, the sample is assigned to one of only two
categories. Binary classification may also be considered as detection, where the categories
are simply the ’target’ class, which represents the inquired phenomenon, and the ’non-
target’ class, which is associated with everything else. Via utilization of multiple binary
classifiers or detectors, these methods may be also utilized to produce classification
decisions among more than only two categories. In that case multiple binary classifiers or
detectors, at least one for spotting each class, are utilized, and their outputs are combined
to perform the final classification.

In this chapter I first discuss how performance of a classification framework is evaluated
in Section 4.1. Then, in Section 4.2 I discuss about different methodology for compu-
tational classification, and in Section 4.3 I present different ways to combine different
methodologies into single classification framework. In Section 4.4 I present a binary
classifier combination function named BOA, which is proposed in Publication IV and
elaborated in Publication VI.

4.1 Classification result evaluation

To evaluate the classification result of a computational framework, the true categorical
class memberships of the signal samples must be known. The success is evaluated against
the knowledge about this true class membership. The class label given by a classifier
can only be correct or wrong. To get statistical information about the performance of a
classifier, a bunch of signal samples must be classified with the framework, and statistics
about correct and incorrect classifications must be collected. The fundamental statistics,
which are also used to define other evaluation metrics for binary classification are the
counts of

true positives (tp), i.e. test samples correctly classified as ’target’

29

30 Chapter 4. Classifying independent samples

true negatives (tn), i.e. test samples correctly classified as ’non-target’

false positives (fp), i.e. test samples incorrectly classified as ’target’

false negatives (fn), i.e. test samples incorrectly classified as ’non-target’

In case of multi-category classification, the counts of true positives (tpc), false positives
(fpc) and false negatives (fnc) are separately computed for each ’target’ class c, consid-
ering all the other classes as ’non-target’. Statistics about decisions and errors between
different classes in terms of tpc and fpc for each class are often presented in the form of a
confusion matrix shown in Figure 4.1.

The simplest statistic often reported as the value for general success of a classification
framework is accuracy

ACC = tp + tn
N

= 1
N

∑
c

tpc (4.1)

where N is the total number of classified samples. Closely related to accuracy, an often
reported statistics for evaluating binary classification, are true positive rate (tpr) and true
negative rate (tnr)

tpr = tp
tp + fn

tnr = tn
tn + fp

. (4.2)

The terms sensitivity and specificity are also used alternatively for the tpr and tnr, respec-
tively. In multi-category classification frameworks the tprc may be computed separately
for each class c. In binary classification tpr is also called recall. RecallR is usually reported
in conjunction with precision P

P = tp
tp + fp

. (4.3)

Precision is about how precisely the framework is able to distinguish the class in question
from the other class or classes.

A measure combining the information from precision P and recall R is Fβ-score

Fβ = (1 + β2)PR
β2P +R

= (1 + β2) tp
(1 + β2) tp + β2 fn + fp

. (4.4)

Fβ may be adjusted with β2 to take into account the true class distribution and the cost
of incorrect classification. Using value β2 > 1 penalizes more for not detecting samples
of the ’target’ class. Thus big β2 is justifiable if the cost of false negative is high or the
’target’ class forms a minority of test samples. Again, β2 < 1 is a rational choice if the
’target’ class is prevalent, or if the cost of false positive is high. For even class distribution
or equal error cost F1 = 2PR/(P +R) = 2 tp/(2 tp + fn + fp) is used. In addition to F1,
which is the harmonic mean of P and R, the geometric mean G =

√
PR of P and R is

sometimes used as an evaluation metric called G-score.

Often a classification framework is parametrized such that the predisposition of the
system to assign a certain label can be tuned. In binary classification such a parametriza-
tion accounts for changing the prior probability of the framework to assign another
label against the other one. In this kind of situation equal error rate (EER) is commonly
reported as a measure of overall performance of a system. Using the false positive rate
and false negative rate

fpr = fp
fp + tn

fnr = fn
fn + tp

, (4.5)

4.1. Classification result evaluation 31

Figure 4.1: Confusion matrix of classification result of data from 5 classes. The number of samples
from classes 1, 2, 3, 4 and 5 are 100, 50, 80, 30 and 60, respectively. The tp -counts of correctly
classified samples can be seen in bold in the diagonal bins of the matrix. The bold numbers in
the off-diagonal bins denote fn -counts of incorrect classifications. Percentages of the respective
tp and fp -counts in respect to all the 320 samples are shown below each count. The true positive
rate (tpr) (or recall) and false negative rate (fnr) for each class are shown in the bottom bins as
percentages. The precision P and 1− P of the classification result in respect to each class are given
in the rightmost bins.

the system is tuned to function at an operating point where fpr = fnr, which then becomes
the value for EER.

With different parameter settings of a binary classification framework, curves of different
pairs of performance scores, which express different aspects of the performance, may
be outlined. Commonly used curves of classifier performance, depicted in Figure 4.2,
are the precision-recall (P-R) -curve and the receiver operating characteristics (ROC)
-curve. P-R -curve plots the scores of precision P versus the scores of recall R at each
possible operating point, that is, parametrization, of the system. ROC -curve plots the
true positive rate (tpr) against the false positive rate (fpr) at different operating points

Figure 4.2: Precision vs recall -curves (left) and ROC -curves (right) with classifier C, using data
XB which has even, 1:1, class distribution and data XU which has class distribution 1:5. It is to be
noted how the precision of classification seen in the P -R -curve is affected by the class distribution
due to increased count of false positives (fp) in respect to the count of true positives (tp).

32 Chapter 4. Classifying independent samples

of the framework. To evaluate a classification framework in terms of its whole space
of operating points, an are under curve (AUC) -measure is commonly used. It may be
defined in terms of the P-R or the ROC -curve respectively as

AUCP-R =
∫ 1

0
P dR, or AUCROC =

∫ 1

0
tpr d fpr (4.6)

4.2 Classification functions

The better the signal analysis and data modeling has been done, the easier is the job
of the classifier. At simplest, classifier is a comparison function, which assigns a class
label to an input sample by comparing two numbers against each other. In conjunction
with detection, this stands for comparing the likelihood value obtained for the target
category to a threshold value, which is set to decide about the detection. In conjunction
with classification, the decision is made to the class for which an obtained likelihood
value is the largest among classes. The likelihood values for classes are usually obtained
using a class model, which has been trained using examples from the categories involved
in the task. In Section 4.2.1 I present some of this kind of data models popularly used
in classification. In Section 4.2.2 I discuss the functions for class discrimination, when
class models are not utilized, but a classification function of data features provides the
classification.

4.2.1 Modeling phenomena

Numerical models of real world phenomena are in the core of machine learning. Features
are models of low level phenomena or general data appearance in specific measurement
modality. In this section I talk about models intended for modeling high level phenom-
ena, like face, human gait, car, airplane, musical genre, spoken language etc. . In the
literature data models are categorized as either generative or discriminative. A generative
model structure expresses the properties of the phenomenon as faithfully as possible
and it is useful for many machine intelligence tasks encompassing that particular phe-
nomenon. Each category specific model is learned separately from data representing
that phenomenon. A discriminative model on the other hand is specific to the task it
is intended for. The discriminative character of the model is trained and utilized for
segregating the phenomenon from the other phenomena present in the specific task.
Thus I associate discriminative models with classifies, which are discussed in the next
Section. Here I consider only generative models.

Probably the most widely used technique to acquire a static generative data model is
the Gaussian mixture model (GMM). GMM is a model for a probability distribution of
feature vectors of samples representing a certain phenomenon. The distribution function
is a sum of multiple (N) multivariate normal distributions N (x;µn,Σn) for n=1, ..., N .,
each with unique mean µn, covariance matrix Σn and a magnitude wn. The likelihood
of a sample x to represent the modeled class c is given by

l(x) =
N∑
n=1

wnN (x;µn,Σn) =
N∑
n=1

wn
1√

(2π)d|Σn|
e−

1
2 (x−µn)Σ−1

n (x−µn)′ , (4.7)

where d denotes the dimensionality of feature space x ∈ Rd. An example of GMM
probability distribution is illustrated in Figure 4.3. The model parameters N , wn, µn and

4.2. Classification functions 33

0

5

10

0

5

10

0

0.05

0.1

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Figure 4.3: Gaussian mixture model of three two-variate Gaussian distributions for modeling the
distribution of two element feature vectors that represent a certain phenomenon.

Σn for n=1...N are learned from representative training data. The model weights wn are
restricted to be positive and sum up to unity, that is wn ≥ 0, n=1...N and

∑N
n=1 wn = 1,

for the GMM to represent a probability distribution. Often the covariance matrices Σn

are approximated by only their diagonals, that is, using an assumption of independence
among feature vector elements. The algorithm suitable for GMM parameter estimation
is an EM-algorithm introduced by Dempster et al. (1977). GMMs have been heavily
utilized for automatic speech recognition task for modeling characteristics of different
phonemes in speech.

The statistical GMM models are often used for Bayesian decision making where the
category decision, i.e. classification, is made comparing the posterior probabilities

P (c |x) = P (x | c)P (c)
P (x) (4.8)

of the classes, where P (c) and P (x) are the prior probabilities of the category c and the
data vector x, respectively, and the GMM likelihood lc(x) (4.7) of a class c is used for
providing the conditional probability P (x | c).

More expressive models than the static models presented above are needed for modeling
events which happen in time with varying speed, e.g. speech, musical progression,
human gait and gestures, weather, etc. . That is, to model the feature vector progression
in time, dynamic models must be utilized.

A popular generative dynamic data model for modeling sequences of data samples is a
hidden Markov model (HMM) (Duda et al. (2012)). A hidden Markov model consists of
a number of hidden states si, i=1...S. Each data vector is assumed to represent one of
the states. The states are designed specifically for the application to be such that each of
them represents some phase of the episode to be modeled, e.g. phonemes in speech. The
number of states depends on the length and variability of the episode, e.g. in automatic
speech recognition the long and complex words are modeled with HMMs with more
states than the short and simple words. Within a traditional ASR framework, presented
in Section 6.1, a HMM state is modeled using a GMM model of MFCC features of audio
frames (Rabiner and Juang (1993)). To model the dependence of consecutive data vectors
of each other, a transition probability aij = P (sj |si) is assigned for each pair of states

34 Chapter 4. Classifying independent samples

si, sj within the HMM. In HMM, the probability of the system to be in a certain state
sj depends only on the system state at the previous step and the data feature vector fit
P (x | s) to the feature distributions of HMM states. Probability of HMM to transit from
state si to sj , given that the HMM emits x at state sj is

P (sj |si,x) = aijP (x|sj)∑N
k=1 aikP (x|sk)

. (4.9)

An example of HMM for speech recognition is depicted in Figure 4.4. An underlying
assumption within the HMM, called Markov property, is that the state progression
depends only on one step state transition probabilities. This is not always realistic.
However, due to the mathematical tractability, this model is extensively used within
many disciplines.

4.2.2 Classification functions beyond value comparison

Beyond the comparison of class probabilities according to data compatibility to above
discussed models, the simplest function for binary classification among classes c ∈
{−1, 1} is a linear function on the features x of the sample with thresholding with
signum function as

ĉ = sign(f(x)), where f(x) = w′x+ b. (4.10)

There are many algorithms for learning the feature mapping vector w and bias b Duda
et al. (2012).

Fisher’s discriminant and Linear discriminant analysis (LDA) find w and b via statis-
tics of data. That is, for c ∈ {0, 1}, they utilize the means µc and covariance matrices
Σc for the two classes. Fisher’s solution is w = (Σ0 + Σ1)−1(µ1 − µ0) (Bishop (2006)),
while LDA reaches the same solution via Bayesian optimization assuming the classes
to be homoscedastic, that is Σ = Σ0 = Σ1. The threshold parameter b is left to be
set in some other means. It may be set to the midpoint between the class centers as
b = 1/2 · (µ0 + µ1)′w.

Regression algorithms are used for solving w and b of (4.10) by setting the class labels
1 and −1 to be the regression model target values. The ordinary least squares (OLS)
regression Duda et al. (2012) finds the parameters w and b by minimizing the modeling

Figure 4.4: An illustration how a hidden Markov model is utilized for modeling sequences of
feature vectors in terms of their phoneme contents in the context of automatic speech recognition.
The HMM states are shown as circles, each with a bi-phoneme label enclosed, e.g. ’tr . The
arrows indicate possibilities of state progression, and each weight as1s2 indicates the probability of
transition from state s1 to state s2. The thin lines indicate how the feature vectors xt of the stream
of audio frames might be aligned with the HMM states.

4.2. Classification functions 35

error
∑N
n=1(f(xn)− cn)2 for N training examples (xn, cn) with the closed-form solution

[w, b] ′ = (X′X)−1X′c, (4.11)

where matrix X contains the vectors Xn = [xn′, 1] as its rows and c = [c1, c2, ..., cN] ′
contains the corresponding class labels 1 or −1 as its elements. A nonlinear decision
boundary may be produced with regression analysis, if the vectors Xn are built using
nonlinear functions of features in xn.

The partial least squares (PLS) regression, or as better called the projection to latent
structures, finds the parameters w and b via an iterative procedure. It picks projections
of the feature vectors, via which the regression target scores are pursued, one by one.
The procedure allows regularization on the number of projections used and avoids
computing the inverse of x′x, thus bypassing the possible problem of collinearity of
features. There are multiple algorithms to perform the computation for PLS parameters,
comparison of which is presented in Andersson (2009).

Logistic regression (Cox (1958)) utilizes the sigmoid function σ(y) = 1/(1 + e−y) on
the linear class estimator y = f(x) when looking for suitable parameters w and b for
linear classification with (4.10). The error of classification in logistic regression is given
by e−1(y) = σ(y) for the samples from class -1, and e+1(y) = 1 − σ(y) for samples of
class 1. Now the error is close to zero for every sample falling clearly on the side of its
own class on the regression line. This error function is naturally much more faithful
to the task of finding the regression model for binary classification than the squared
error used by OLS. The cost function to be minimized is formulated logarithmically as
C =

∑N
n=1 log(1/(1 − ecn(yn))) to make it differentiable. The parameters w and b are

then obtained using an iterative maximum likelihood estimation method, for example a
Newton-Raphson -algorithm (Atkinson (1979)).

Regularization – To obtain either sparse or smooth distribution of values in w of (4.10), a
technique called regularization may be used for regression analysis. For LP regularization
on w, the cost function to be minimized is

C = 1
N

N∑
n=1

e(xn, tn) + λ||w||PP , (4.12)

where e(xn, tn) is the error of the regression value f(xn) in respect to target value tn and
λ is a trade-off parameter between the regression error and regularization error. Similarly
to classification function training with the other regression techniques, the targets tn are
usually set to be tn ∈ {−1, 1} or tn ∈ {0, 1}. Regression using L1 regularization promotes
sparsity of w and it is called LASSO. Regression with L2-regularization alleviates possible
problems due to collinearity of data and promotes regression vector w to have small
Euclidean length. It is called Tikhonov regularization or more commonly as ridge
regression and has a closed form solution similar to OLS solution (4.11) as [w, b] ′ =
(x′x+ λΓ)−1x′c, where Γ is an identity matrix. So called elastic net regression combines
both the L1 and L2 regularizers into the cost function.

In the work of Publications II and I I have utilized OLS with Tikhonov regularization
as well as PLS regression for estimating speech state likelihoods within an automatic
speech recognition framework.

Support vector machine (SVM) is a successful and abundantly utilized method for bi-
nary classification (Steinwart and Christmann (2008)). Formulation of SVM may be used

36 Chapter 4. Classifying independent samples

to find parameters for the linear model (4.10) as well as more expressive models which
use so called kernel transformations for the distance between the decision boundary and
the data points (Bishop (2006)). SVM algorithm sets the decision boundary parameters
to maximize the margin between classes. That is, to find the best decision boundary
parameters, SVM considers specifically those samples that reside close to a potential
boundary. The samples that are classified correctly anyhow are regarded as redundant
and are left out of calculations. A versatile and often utilized kernel function for SVM
classifier, by which it is possible to produce highly complex partitions of the input space,
is the radial basis function (RBF). The SVM with RBF -kernel utilizes e.g. a Gaussian
distance function d(p,x) = exp(−||x− p||2/(2σ2)) to express the deviation of a point p
from a feature vector x. The parameter σ affects the smoothness of the resulting decision
boundary and must be set via cross validation. Some of the data vectors are selected as
support vectors vi, i=1...V and the class decision for a new data vector x is then given
by c(x) = sign

(∑V
i=1 ci d(x,vi)

)
where ci ∈ {−1, 1} depending on the class label of

each support vector.

Multifaceted, piece-wise linear decision boundaries for separating two or more cat-
egories, realize with K nearest neighbors (k-NN) -algorithm (Duda et al. (2012)) and
different decision tree algorithms. k-NN functions, similarly to SVM, provides the class
label via computing distances to known data samples. However, k-NN requires all the
training data to be saved and used for classification of a new sample, while SVM utilizes
only the samples selected to be support vectors. Although this is not efficient computa-
tionally nor from storage point of view, k-NN is fairly popular due to its simplicity.

Decision tree classifier is a flowchart-like structure which has a root node as a starting
point, multiple decision nodes, where intermediate decisions about which node to enter
next are made, and plenty of leaf nodes, which finally assign a class label for the input.
For most of the decision tree building algorithms, each decision node is designed to be
a function of only one variable. The univariate decision makers of a binary decision
tree are selected such that the training data would be divided according to the node
function into subsets as homogeneous as possible. The selection of an univariate decision
maker means selecting an input feature to be evaluated within the node. In case of
continuous valued features, also a threshold value for the feature must set to make a
binary decision. Hihgly popular Algorithms for decision tree learning are for example
ID3 (Quinlan (1986)), C4.5 (Quinlan (1993)) and CART (Breiman et al. (1984)). The ID3
and C4.5 algorithms utilize information gain based on data subset entropies for selecting
the node data partition functions. The ID3 -algorithm has been developed for nominal
data, where each input attribute may only have one of predefined labels. C4.5 is a
successor of ID3, which has a capability of utilizing continuous valued data. Also the
CART algorithm (Breiman et al. (1984)) has the capability of working with continuous
valued data. It utilizes Gini-impurity or Twoing -criterion to decide about the attributes
used in nodes of the tree.

Neural networks are the most versatile classifier functions. Multitude of non-linear
intermediate functions within an NN makes the mathematical analysis of the entire
NN-function intractable. Currently, research on DNNs pursue understanding the trans-
formations performed by a complex DNN. The research community is furiously, through
trial and error, trying to find out guidelines for determining effective DNN structures for
each problem, as well as creating new training algorithms for them.

A discriminatively trained DNN is effectively an integrated feature extractor and classifier.

4.3. Utilizing multiple classifiers or detectors 37

An input to a DNN may be the raw measured signal or a set of simple features, and each
layer of a DNN may be considered as a new feature transform leading to the output layer
of DNN, which provides the classification. Indeed, as mentioned in Section 2 it has been
perceived, that first DNN layers perform transformations similar to low level feature, and
the subsequent DNN layers tend to represent higher level structures specific to the data
at hand. The output layer might then be considered as the classifier function, which is
responsible for the class decision. However, if the DNN is trained in a supervised manner,
all the functions are oriented towards solving the particular classification problem at
hand. Thus the features obtained with such a DNN are discriminative and they might
not be suitable for other tasks as discussed in Yosinski et al. (2014).

In case a DNN is trained in unsupervised way for feature extraction as discussed in
Section 2.6, the acquired features way may be used for classification by another DNN
or any other classification function. In case of generatively trained DBN, the network is
usually trained further for the classification task (Hinton et al. (2006)). One layer of new
output nodes is added on top of a DBN for performing the classification function. Then,
another training passage is performed using a back-propagation type -algorithm for
gradient descent to minimize the error to the target class labels. In addition to learning
the parameters of the newly added output elements, also other weights are allowed to
change a bit – fine tuned – for better discriminative power.

I have used single layer feed forward neural networks in my Publications V and VI. For
the laughter detection task from videos in Publication VI I have trained two NNs for
laughter vs. speech/non-laughter discrimination. One of the NNs operates on audio
stream of the video, and the other one on video frames. MFCC features form an audio
frame are given as an input to the audio related NN, which provides a likelihood of
laughter ∈ [0, 1] within the input frame at its single output. The visual modality based
NN operates on face point features, explained in Section 5.4, from images of the video. A
single output provides a likelihood of laughter similarly to the other NN. For the ASR
task in Publication V I have used an NN which takes MFCC features from 3 consecutive
audio frames as an input, and provides likelihoods for the 250 speech states as an output.

4.3 Utilizing multiple classifiers or detectors

Using class likelihood information form multiple models of a phenomenon for classifi-
cation suggests better classification accuracy, as different models likely provide some
uncorrelated information. Similarly, combining decisions made by multiple classifiers
for the same task proposes better decisions. Here, methods for combining information
from several independent classifiers or detectors are discussed. First shared classification
decision making, when multiple different classifiers are available, is addressed. Then
decision trees as a form of classifier ensembles is discussed. Finally the attention is
focused to utilization of Boolean operators for combining multiple detectors.

Shared decision making

When having a class hypothesis from multiple classifiers, a simple way to combine them
is voting. In the next section I discuss about Boolean combination, which may be seen as
generalization of voting. In case of using the class probability values from the multiple
models, the most straightforward way to combine them is to compute their average.h In
case of having likelihood values rather than probabilities, the likelihood values must be
normalized to similar ranges before combining. Different combination methods: sum

38 Chapter 4. Classifying independent samples

rule, product rule, max rule, min rule, median rule and majority vote for class likelihood
values are compared by Kittler et al. (1998).

Bagging and boosting are principles to build multiple classifiers for a same task to
perform shared decision making. Boosting is rooted in the idea of building a strong
classifier from multiple weak classifiers. Each weak classifier may be only slightly better
than random guessing, while a combination of a multitude of them together should
be able to make arbitrarily accurate classification. The classifier function to be used
for each individual classifier within the boosting combination may be selected freely.
The multitude of different classifiers with the same training data is obtained by setting
different weights for data samples when training each of the classifiers. The most widely
known boosting algorithm is AdaBoost introduced in Freund and Schapire (1997b).
AdaBoost concurrently trains multiple classifiers and a weighted average function for
combining their decisions. When training each classifier for the combination, AdaBoost
algorithm weighs the training samples such that each new classifier emphasizes on
not-yet-so-well-classifying area of the input space.

Bagging, i.e. bootstrap aggregating, is a principle to pick different data samples for
training each of the models or classifiers. For training one classifier for an ensemble, a
subset of size N# ≤ N is picked randomly with replacement from the entire training
data set of N samples. Thus bagging is a special case of boosting, where the data weights
are integers, usually 0 or 1. For the final decision making, outputs of the multiple models
are averaged, or the multiple classifiers vote for the category. Theoretical analysis of the
effect of the sample size N# and the number of classifiers trained for the combination are
discussed by Fumera et al. (2008). A popular Random Forest (Breiman (2001)) classifier
uses bagging principle to pick randomly both the attributes and the samples to use for
training multiple decision trees. The final classification of a random forest is obtained by
voting.

Boolean combinations

Boolean operators are used for combining multiple detectors, each of which outputs
either true or false denoting whether the quested phenomenon is detected or not. A
Boolean combination of detectors may utilize the Boolean operators for intersection
(AND, ∧), union (OR, ∨) and negation (NOT , ¬) on detector outputs. Boolean
combinations have a close relationship to binary decision trees, as any Boolean function
may be expressed as a decision tree and vice versa.

At simplest, classification trees – deducible to Boolean functions – are constructed based
on nominal attributes, i.e. features x. In this case the detectors of the resulting Boolean
function are of the form

d(x) =
{

true if x equals the selected nominal value
false else.

(4.13)

However, continuous valued features may be used by the aid of a threshold θ, which is
used to binarize the feature. A continuous valued feature x results in multiple detectors
of the form

d(x; θ) =
{

true if x ≥ θ
false else.

(4.14)

This kind of binarization scheme proposed in Boros et al. (1997) was used for class
likelihood evaluation and Boolean function learning in Publications IV and VI.

4.4. Boolean OR of ANDs detector combination 39

Finding the best possible Boolean function for a space partition is an NP-complete
problem, thus iterative algorithms based on different heuristics are utilized. Related,
but slightly easier, is the problem of finding thresholds for continuous valued attributes,
when the form of the Boolean function is predefined. Even in this case, the search space is
unfeasibly large and gradient descent type algorithms likely fail due to the discontinuous
nature of the error surface of a non-differentiable Boolean function.

Among the classification tree learning algorithms, the ID3 -algorithm has been devel-
oped for utilizing nominal valued data, whereas the C4.5 and CART algorithms have
the capability of handling continuous valued attributes also. Algorithms finding an
input space partition which perfectly classifies the training data are e.g. Aq (Michalski
(1983)) and LAD (Hammer (1986)) -based algorithms and the OCAT-RA1 -algorithm
(Deshpande and Triantaphyllou (1998)). The Aq and LAD-based algorithms iteratively
find conjunctions of the form

∧
i di(xi) to be combined disjunctively, for building a

Boolean function in disjunctive normal form (DNF) B =
∨
j

∧
i dij(xij). The OCAT-RA1

algorithms iteratively finds disjunctions
∨
i di(xi) of a CNF (conjunctive normal form)

Boolean function B =
∧
j

∨
i dij(xij).

Algorithms specifically designed for combining threshold tunable detectors and utilized
as reference algorithms in Publication VI are the Boolean Algebra of ROC (receiver
operating characteristic) curves, proposed in Oxley et al. (2007), and iterative exhaustive
search algorithm, proposed in Tao and Veldhuis (2009). These algorithms aim at finding
thresholds for available tunable detectors di(xi; θi), i= 1...I when combined within a
predefined Boolean function, which in the original setting is either disjunctive BI =∨I
i=1 di(xi; θi) or conjunctive BI =

∧I
i=1 di(xi; θi). At each iteration i of the Boolean

algebra of ROC curves -algorithm, thresholds for the new combination Bi is selected
based on the true positive and false positive rates (tpr and fpr) of the ROC curves of Bi−1
and di. The method is computationally very efficient, but the drawback is its implicit
assumption that all the component detectors are conditionally independent of each
other. The iterative exhaustive search -algorithm similarly, using a predefined Boolean
operator, iteratively adds new component detectors into B. For combining di+1 into Bi
an exhaustive search over combinations of all the possible operating points on the ROC
curves of Bi and di+1 is performed.

In the Publication VI a BOATS algorithm has been proposed for finding thresholds for a
DNF Boolean function. The proposed algorithm also tunes the predefined form of the
function for best performance. The algorithm is shortly described in the next subsection.
For evaluation of the BOATS algorithm in Publication VI, the two above mentioned
algorithms are implemented for comparison such that they facilitate learning of a DNF
Boolean function.

4.4 Boolean OR of ANDs detector combination

In Publication VI I present a DNF Boolean OR of ANDs (BOA) detector combination and
the BOATS algorithm to set its parameters. The BOA is built of unrestricted number
of detectors on M different modeling functions fm(xm), m = 1...M for detecting a
target phenomenon. Each function utilizes its own input feature set xm and outputs a
target likelihood score lm, that is fm(xm) = lm, which represents target probability as
its monotone transformation. The target likelihood score lm is compared to a threshold

40 Chapter 4. Classifying independent samples

value θm, which defines a detector

dm(x; θm) =
{

true, if fm(x) ≥ θm
false, otherwise.

(4.15)

This detector is sensitivity tunable, that is, by changing the value of threshold θ, the
detector operates at different operation points. Since the BOA combination is a Boolean
function in disjunctive normal form, individual detectors are evaluated within conjunc-
tions of the BOA function, which are then joined together as a disjunction. That is, within
a BOA combination, multiple conjunctions of the form

∧
m∈z dm(x; θm), where some

detectors dm(x; θm), m ∈ z ⊆ {1, ...,M} are combined with AND operators, are primarily
utilized. The conjunctions are joined together disjunctively with OR operators to form
the BOA combination as

B(x;θ) =
Q∨
q=1

Nq∨
n=1

 Mq∧
i=1

dzq(i)

(
x; θq,nzq(i)

)  , (4.16)

where the detector function identifiers m of dm are given within lists zq, q = 1...Q of
Mq identifiers each, e.g. if z1 = (1), z2 = (1, 2) and z3 = (1, 3), M1 = 1,M2 = 2 and
M3 = 2. The number of conjunctions over the same list zq is denoted with Nq. Every
conjunction, enumerated by q=1...Q and n=1...Nq, operates with a distinct set of Mq

thresholds {θq,nm | i=1...Mq, m = zq(i)}. Thus the operating point θ of the BOA function
(4.16) stands for

∑Q
q=1 Nq ·Mq thresholds, one for each detector instance within the BOA.

Ideally, a – possible infinite – BOA combination has capability of producing any mono-
tonic decision boundary for the two classes, the target and the clutter class. The decision
boundary of a finite BOA combination is monotonic and piecewise linear in the space
(l1, l2, ..., lM) of target class likelihoods. An example of a BOA decision boundary is
shown in Figure 4.5.

The BOA combination is sensitivity tunable, as values of the thresholds θq,nm , q=1...Q, n=
1...Nq, m= zq(i), i=1...Mq in a set θ may be changed to vary the detection behaviour
of the BOA combination. Below, an algorithm is presented to find sets θα of thresh-
old values for a BOA combination to account for different sensitivity levels α. That
is, the training provides the user with one sensitivity parameter α such that the BOA
combination B(x;θα) may be denoted as B(x;α).

For the cascade interpretation of the BOA function, which will be explained in Section
5.3, the negation ¬B(x;θ) of the BOA function in disjunctive normal form is needed. The
¬B(x;θ) in the disjunctive normal form has K =

∏Q
q=1 M

Nq
q conjunctions, each of which

contains
∑Q
q=1 Nq detectors. That is, for each conjunction of ¬B(x;θ) in the disjunctive

normal form, one detector is picked from each conjunction (q, n) of the corresponding
BOA B(x;θ). Using a detector indexing function

I(k, q, n) =


⌊

k − 1∏Q
i=q+1 M

Ni
i

⌋
MNq−n
q

 mod Mq + 1, (4.17)

¬B(x;θ) in disjunctive normal form is given by

¬B(x;θ) =
K∨
k=1

 Q∧
q=1

Nq∧
n=1

¬dzq(I(k,q,n))

(
x; θq,nzq(I(k,q,n))

)  . (4.18)

4.4. Boolean OR of ANDs detector combination 41

Figure 4.5: Example of data partition with a BOA detector. Data is represented in terms
of two scores l1 and l2, which represent the likelihood of target class. Red crosses denote
data samples from the target class, and samples representing the non-target class are shown
with blue dots. The angular decision boundary of BOA combination B(x; θ) = d1(x1; θ1,1

1) ∨∨3
n=1

[
d1(x1; θ2,n

1) ∧ d2(x2; θ2,n
2)
]

is shown with the bold line. Each individual detector threshold
θq,n

m , m= 1, 2, q= 1, 2, n= 1, 2, 3 is illustrated with a thin line. The detector score space where
B(x; θ) = true is colored with red background, and the space where ¬B(x; θ)) = true is colored
with blue background. The pale red and pale blue backgrounds illustrate the subspaces, where the
decision is done based on l1, using the model function f 1 only.

Possibly more comprehensible notation for the ¬B(x;θ) in the disjunctive normal form
is given by using multiple OR-operators, each of them referring to one conjunction (q, n)
of B as

¬B(x;θ) =
M1∨

i1,1=1

M1∨
i1,2=1

M1∨
i1,3=1

· · ·
M1∨

i1,N1 =1︸ ︷︷ ︸
N1
∨

-operators , i.e. MN1
1 conjunctions

M2∨
i2,1=1

M2∨
i2,2=1

· · ·
M2∨

i2,N2 =1︸ ︷︷ ︸
N2
∨

-operators, i.e. MN2
2 conjunctions

· · ·

· · ·
MQ∨

iQ,1=1

MQ∨
iQ,2=1

· · ·
MQ∨

iQ,NQ
=1︸ ︷︷ ︸

NQ

∨
-operators, i.e. M

NQ
Q

conjunctions

 Q∧
q=1

Nq∧
n=1

¬dzq(iq,n)

(
x, θq,nzq(iq,n)

)  . (4.19)

Now the indices iq,n, which enumerate the disjunctions of ¬B(x;θ) directly give the
detector identifier index iq,n from a list zq .

An algorithm to train a BOA combination

In Publication VI I have presented an algorithm, which finds sets of thresholds to be
used within any Boolean combination of BOA form. The algorithm finds unique sets

42 Chapter 4. Classifying independent samples

θα = { θq,nm | q = 1...Q, n = 1...Nq, m = zq(i), i= 1...Mq} of thresholds for a set of
sensitivity values α ∈ [0...1] of BOA. The trained BOA combination may now be referred
to as B(x, α) ≡ B(x,θα). The details of the algorithm can be found in the Publication VI,
but here I give a brief description of it.

The algorithm starts by setting all the BOA thresholds in θ of (4.16) to infinity, to account
for the setting B(x, 0) where α = 0, and the BOA function does not accept any samples,
that is B(x, 0) = false ∀x. Then the thresholds are mitigated such that only one (if
possible) training sample which represents the target class will be accepted, and as few
false positives as possible will be accepted along. The newly obtained set of thresholds
θα is saved to account for α = t/T , where t, is the number of accepted samples out of
T training samples representing the target category. The algorithm continues dimin-
ishing the thresholds of the BOA step-wise, such that at every iteration exactly one, if
possible, new training sample from target category will be accepted by the BOA, until
the thresholds are at a level accepting all the target category samples of the training set.
At each iteration, the found set θα of BOA thresholds is saved to account for the BOA
operating point α = t/T , where t is the number of accepted training samples from the
target category at that operating point. The training algorithm thus produces parameters
for a BOA to form a continuum α ∈ [0, 1]0, 1 of operating points which account for true
positive rates from tpr = 0 to tpr = 1 on the training data.

5 Sequential classification

Sequential decision making means that the decision making process is step-wise. The
idea is that after each step of the process there are multiple possible ways to continue,
and the operation done at next processing step is defined by the result of an operation at
the current step. A sequential decision making process may be illustrated as a flowchart
similar to a decision tree. The blocks of the flowchart, corresponding the nodes of a
decision tree, consist of functions, which make the decision about the next step or provide
the output, i.e. final conclusion, which is denoted as a leaf in terms of a decision tree.
However, while the classification trees commonly use univariate functions at each node,
within the sequential decision making process any kind of decision making functions
may be used.

The computational advantage of sequential classification strategy over the arithmetic
classifier ensembles is, that all the features (attributes) might not always be needed for
the classification. That is, for many input samples the sequential classification process
may appear such that the classification is done by evaluating only few decision making
functions based on only few attributes. The evaluation of the rest of the decision making
functions in the system is thus avoided, and computation of some features (attributes)
may be omitted.

Boolean classifier combinations utilize the Boolean operators OR (∨), AND (∧), and
NOT (¬) for a combination function of multiple binary classifiers, i.e. detectors d(x).
Every Boolean function may be expressed as a binary decision tree, whose step-wise
evaluation possibly ends up with the classification before all the component detectors of
the Boolean function have been evaluated. For example, with a Boolean combination
B = d1(x) ∨ d2(x) of two binary classifiers d1(x) and d2(x), algorithmically the result
B = true will be released as soon as the detector d1(x) outputs true. Similarly, the Boolean
combination B = d1(x) ∧ d2(x) is definite without evaluating d2(x), if d1(x) = false.

In the following, the experiments and results of Publication IV on sequential classification
process using Boolean combinations are discussed in Section 5.1. Then, in Section 5.2,
the principle of a classification cascade as a sequential classification strategy is explained
and literature on detection cascades is addressed. The cascade classification process of a
BOA combination is explained in Section 5.3, and in Section 5.4, the experiments and
results of Publication VI using a BOA cascade on laughter vs speech classification task
are discussed.

43

44 Chapter 5. Sequential classification

5.1 Experiments on Boolean combinations for sequential decision
making

In the Publication IV I have demonstrated how a sequential classification process with
Boolean combinations reduce computational load of classification and improve the clas-
sification accuracy over the individual detectors. The sequential classification process is
experimented on lifelog video material of our CASA2 dataset for video context change
detection task. It contains over 7 hours of video data from 23 different types of environ-
ments. The videos have been shot with a small spy camera, and the stereo sound tracks
are recorded by a pair of in-ear microphones. Video context change detection is a well
studied problem having matured solutions. However, our experiments focused on exam-
ining the computational efficacy of sequential processing using two signal modalities
rather than improving the state-of-the art solutions for video context change detection.

In the work I have utilized three methods, fA, fV 1 and fV 2, to provide context change
likelihood information from videos. The context change likelihoods are thresholded to
obtain three sensitivity tunable detectors dA(x; θ),dV 1(x; θ) and dV 2(x; θ), as in (4.15).
One or multiple instances of the three sensitivity tunable detectors at different operating
points θ are combined as a BOA combination. It should be noted that evaluating multiple
detectors dm based on the same context change likelihood method fm(x) within a BOA
combination is virtually free. This is due to that the heavy part of a detector evaluation is
the computation of the likelihood fm(x) = lm, which is done when the first one of the
detectors dm is run, and may be then saved for late use.

One of the context change likelihood extraction methods operates on audio stream of the
video, and two others operate on the image frames of the video. The method fA based on
the audio stream of the video is the fastest of the three, and it provides a context change
likelihood fA(xA) = lA for all the moments of the video in 0.01 times real time on a
desktop pc. The second method fV 1, providing context change likelihood fV 1(xV) = lV 1
for each video frame, utilizes RGB histograms of video image frames. It takes 29 ms
to extract the RGB-histogram from one video frame, that is 0.43 times real time for the
videos with 15 frames per second, on the used desktop pc. The heaviest one of the used
methods fV 2, which is based on SIFT BoW features, provides a context change likelihood
fV 2(xV) = lV 2 for each video frame. It takes 12.3 s, that is 184 times real time, to compute
the SIFT BoW features for one video frame on the same desktop pc. Detailed descriptions
of the methods can be found in Publication IV. The operating points, defined by the
thresholds, of all the detectors within each of the tested Boolean combination are found
utilizing a preliminary version of the BOATS algorithm, which was introduced in Section
4.4.

The most important results of Publication IV for video context change detection are
presented in Table 5.1. The results are presented in terms of the F1 score and the
computation time in respect to real time, both averaged over the used videos. The
achieved best performance is reported with each of the three detectors individually, as
well as with some Boolean combinations of them.

Comparing results with Boolean OR (∨) and AND (∧) combinations, we see that con-
junctive combinations with ∧ are far more computationally efficient than disjunctive
combinations with ∨. With pairs (dA,dV 1) and (dA,dV 2) of detectors, the difference in
classification speed with disjunctive and conjunctive combination is 0.44/0.02 = 22 -fold
and 184/0.3 = 613 -fold, respectively. The difference in computational speed is due to
that the class distribution is heavily unbalanced, the ’no context change’ -class being

5.2. Decision cascades for classification 45

Table 5.1: The main results of Publication IV on efficacy of Boolean detector combinations in a
video context change detection task. Detection results are given with the three used sensitivity
tunable detectors alone and within different Boolean combinations. The results are expressed in
terms of the best F1 score and the computation time (CT) of detection in respect to real time of
videos. Note that the thresholds θn

m are different for each BOA combination.

the Boolean combination F1 CT s/s

B = dA(x; θA) .84 0.01
B = dV1(x; θV 1) .40 0.43
B = dV2(x; θV 2) .52 184.0
B = dA(x; θA) ∨ dV1(x; θV 1) .85 0.44
B = dA(x; θA) ∨ dV2(x; θV 2) .84 184.0
B = dA(x; θA) ∧ dV1(x; θV 1) .90 0.02
B = dA(x; θA) ∧ dV2(x; θV 2) .95 0.30
B = dV1(x; θA) ∧ dV2(x; θV 2) .68 1.30
B =

[
dA(x; θ 1

A) ∧ dV1(x; θV 1)
]
∨
[
dA(x; θ 2

A) ∧ dV2(x; θV 2)
]

.96 0.30

the prevalent one. The conjunctive combination with ∧ needs not evaluate the second
detector if the first one already outputs false, while in the same situation the disjunctive
combination with ∨must run both the detectors. The notably higher F1-scores with con-
junctive combinations than disjunctive combinations suggest that the audio and visual
modality provide complementary information especially about the ’no context change’
-class. The complementary information comes out of the detectors at operating points
with low specificity level, which is used for detectors within a conjunctive combination.
That is, within a conjunctive conjunction the detectors are tuned for higher sensitivity
and lower specificity than if used alone. The low specificity level of detectors within a
combination is compensated by the AND (∧) -operator, if the incorrect decisions of the
detectors to the ’context change’ -class do not correlate.

The best performance of F1 = 0.96 in our experiments was achieved with combination
(dA ∧ dV1) ∨ (dA ∧ dV2). Combining the terms dA ∧ dV1 and dA ∧ dV2 disjunctively allows
setting their operating points such that they are slightly more reluctant to output true
(for ’context change’ detected) than at the best operating point for each term individually.
That is, within the combination the two terms may operate with higher specificity than
alone. Combining their uncorrelated decisions disjunctively gives a chance to exploit
the diverse information given by lV1 and lV 2 about the ’context change’ -class and
compensate for the reduced sensitivity of the terms. The computational speed of the
Boolean detector combination (dA ∧ dV1) ∨ (dA ∧ dV2), when evaluated sequentially is
(184.0 + 0.43 + 0.01)/0.3 ≈ 615 times faster than by evaluating all the methods for every
moment of the video.

5.2 Decision cascades for classification

Decision cascade is a sequential decision process, which may be represented as a decision
tree consisting of a single branch with leaves. The difference between a cascade and
sequential decision making process in general is, that within a cascade the decision maker
functions responsible for the process are evaluated always in the same order, independent

46 Chapter 5. Sequential classification

false (𝑙1 ≥ θ1)

Acquire new measurements/
features and compute 𝑙2

Stage 1

false (𝑙2 ≥ θ2)

Stage 2

(𝑙𝑆 ≥ θ𝑆)

Stage S

true

…

Stage 1

Stage 2

(𝑙𝑆 ≥ θ𝑆)

Stage S

…

(𝑙1 ≥ θ1
𝐴) (𝑙1 < θ1

𝑅)

(𝑙2 ≥ θ2
𝐴) (𝑙2 < θ2

𝑅)

Ta
rg

et
 d

et
ec

te
d

N
o

 t
ar

ge
t

N
o

 t
ar

ge
t

true

true

true

true

true

falsefalse

Acquire new measurements/
features and compute 𝑙1

Acquire new measurements/
features and compute 𝑙2

Acquire new measurements/
features and compute 𝑙1

Acquire new measurements/
features and compute 𝑙𝑆

Acquire new measurements/
features and compute 𝑙𝑆

Figure 5.1: A one sided (left) and symmetrical (right) cascade structures for efficient subfigure
classification in computer vision applications.

of the input characteristics. A classification cascade thus consists of multiple processing
steps, i.e. stages, where at each entered stage a decision about releasing a classification or
entering the next stage is made.

Detection cascades have been investigated mostly in the field of machine vision starting
from the work of Feraund et al. (2001) and Viola and Jones (2001b). Here, a term detection
cascade is utilized in the place of a classification cascade to emphasize the task being
binary classification into a ’target’ class and a ’clutter’ class with highly imbalanced class
distribution. The primary goal in cascaded decision making for computer vision appli-
cations is in reducing computational load. The heavily imbalanced class distributions
in object detection from images, as most of the search windows of different sizes and
positions do not contain the target object, offers great possibilities to make decisions
with minor examination. The cascading schemes are designed such that gradually more
and more rigorous classifiers are imposed on each search window. The most popular
application areas of detection cascades have been face detection (e.g. Li et al. (2015)) and
pedestrian detection (e.g. Shen et al. (2013)).

To design an object detection cascade for computer vision applications there is close to
infinite pool of image features available, e.g. Haar, HOG, etc. to utilize. The dominant
approach is to utilize Haar features selected by the AdaBoost algorithm. Usually at
each stage s of the cascade a linear function over some selected features is utilized to
provide a class likelihood ls for the ’target’ class, and a threshold value is used to make
the decisions, e.g. as in Viola and Jones (2001a).

The first object detection cascades proposed were one-sided, as shown in Figure 5.1 (left).
At each stage they make the decision either to classify the figure patch as ’non-target’ if
(ls ≥ θs) = false, or else to enter the next stage. Thus early classification is possible for
the ’non-target’ class only,. Classification as ’target’ is possible to be made only at the last
cascade stage if (lS ≥ θS) = true.

A symmetrical object detection cascade, shown in Figure 5.1 (right), has an option to
make the classification to both the categories at every stage. This kind of decision cascade
was first introduced by Sochman and Matas (2005). Symmetrical cascade offers more
computational reduction than the one-sided cascade and it is suitable also for classifi-
cation problems with balanced class distributions. The computer vision applications

5.3. BOA as a cascade of Boolean combinations 47

presented in the literature utilize a single target likelihood value ls similarly to the one-
sided cascades. Decisions at each stage are made using two threshold values, one for
classification to the ’target’ class, i.e. for accepting, if (ls ≥ θAs) = true and another for
classification to the ’non-target’ class, i.e. rejecting, if (ls < θRs) = true. At the last cascade
stage, only one threshold θS is used to enforce classification.

For training an object detection cascade, approaches with concurrent design of the
cascade length S, selection of features xs and linear functions fs(x) = ls, s= 1...S on
them as well as the thresholds θRs and θAs are proposed by Dundar and Bi (2007) and
Saberian and Vasconcelos (2012).

5.3 BOA as a cascade of Boolean combinations

The BOA detector defined by Equations (4.16) and (4.18) may be formulated as a decision
cascade, which offers computational advantage. As already discussed in the beginning
of this chapter, a Boolean function of different detectors may be evaluated sequentially.
However, if a certain detector dm(x; θ), based on a certain target likelihood function
fm(x) = lm, is utilized in many of the BOA conjunctions, this principle is not enough
to evaluate the computational efficiency of a BOA. This is due to that within a detector
dm(x; θ) it is costly to compute the target class likelihood lm with a function fm(x) = lm,
but the cost of comparing this value to a threshold θ is marginal. The computational
efficiency of a BOA combination is thus affected by the fully dependent, concurrent
decisions of all the detectors dm(x; θ) with different values of θ. For a BOA evaluation, the
computationally heavy part is the target likelihood estimation via M utilized functions
f1, f2, ..., fM , while the computational load of a threshold comparisons within detectors
may be considered negligible. The interpretation of a BOA function as a cascade is thus
founded on step-wise target likelihood computation, and the number S of stages in
the BOA cascade equals the number of target likelihood extraction functions, that is
S = M . To simplify notation in the following, we enumerate the functions f1, f2, ..., fM
used within the BOA such that the function run at stage s is denoted as fs.

To formulate a BOA cascade mathematically, we utilize binary functions B1
s and B0

s

for stages s=1...S. The functions B1
s account for classification to the ’target’ class and

the functions B0
s are responsible of classification to ’non-target’ class at each stage of

the cascade. The functions B1
s , s= 1...S are partitions of the BOA function (4.16) such

that B = B1
1 ∨ B1

2 ∨ ... ∨ B1
S . Similarly the functions B0

s , s= 1...S are partitions of the
negation (4.18) of the BOA function such that ¬B = B0

1 ∨B0
2 ∨ ... ∨B0

S . Since the BOA
functions (4.16) and (4.18) give a non-overlapping partition of the target likelihood space
[l1, l2, ..., lS], at each stage s it is possible for only another one of the functions B1

s and B0
s

to output true. This means that the decision at stage s of a BOA cascade can be made as
if B1

s (x) = true, classify x as ’target’ and stop,
else if B0

s (x) = true, classify x as ’non-target’ and stop,
else enter stage s+ 1.

(5.1)

It also means that the BOA cascade classification is consistent. That is, if the classification
is made by B1

s or B0
s at a cascade stage s, the decision makers B1

r and B0
r of the other

stages r = 1...S, r 6= s would not make contradicting classifications.

The functions B1
s and B2

s at stage s of a BOA cascade utilize all the target likelihoods
l1, l2, ..., ls computed so far, thus the functions B1

s and B2
s being partitions of (4.16) and

48 Chapter 5. Sequential classification

(4.18), are defined by the target likelihood function identifier lists zq, q = 1...Q of the
BOA. The decision makers B1

s , s=1...S for the ’target’ class are partitions of (4.16) as

B1
s (x;α) =

∨
zq such that

∃j s.t. s = zq(j)
@j s.t. r = zq(j), r > s

Nq∨
n=1

Mq∧
i=1

dzq(i)

(
x; θq,nzq(i)

)
. (5.2)

That is, B1
s contains those conjunctions (q, n) of the BOA (4.16) which utilize the newly

computed likelihood score ls and possibly the likelihoods l1, ...ls−1 computed at earlier
stages, but none of the target likelihoods lr, r > s.

Similarly, the internal decision makers B0
s , s= 1...S of the BOA cascade for the ’non-

target’ class are partitioned from the disjunctive normal form (4.18) of the negated BOA.
That is, each B0

s contains the conjunctions k of the BOA (4.18) that utilize the newly
computed likelihood score ls and possibly those computed at earlier stages, but none of
the scores lm, m > s as

B0
s =

∨
k such that

k ∈ {1...K}
Is(k) = true

 Q∧
q=1

Nq∧
n=1
¬dzq(I(k,q,n))

(
x; θq,nzq(I(k,q,n))

)  , (5.3)

where the included conjunctions of (4.18) are given via a recursively defined Boolean
function Is(k)

I0(k) = false ∀ k=1...K

Is(k) =
s−1∧
r=0
¬Ir(k) ∧

Q∧
q=1

Nq∧
n=1

S∧
m=s+1

[zq(I(k, q, n)) 6= m] .
(5.4)

The first part of the equation for Is(k) makes sure that the conjunction k has not been used
for B0

r , r < s. The rest of the equation sets Is(k) = false if any of the target likelihoods
ls+1, ls+2, ..., lS , are utilized in the conjunction k of (4.18). Using the alternative notation
(4.19) of ¬B , the decision makers B0

s , s=1...S for the ’non-target’ class may be written
as

B0
s =

∨
i1,1=1...M1
z1(i1,1)≤s

∨
i1,2=1...M1
z1(i1,2)≤s

· · ·
∨

i1,N1 =1...M1
z1(i1,N1)≤s

∨
i2,1=1...M2
z2(i2,1)≤s

· · ·
∨

i2,N2 =1...M2
z2(i2,N2)≤s

· · ·

∨
iQ,1=1...MQ

zQ(iQ,1)≤s

· · ·
∨

iQ,NQ
=1...MQ

zQ(iQ,NQ
)≤s

 Q∧
q=1

Nq∧
n=1

¬dzq(iq,n)

(
x; θq,nzq(iq,n)

)  . (5.5)

This notation, while possibly being more comprehensible, includes all the decision
makers B0

r , r < s in B0
s , however this redundancy does not affect the functionality.

Examples of partitions of different BOA functions are given in the next section.

To achieve a specific type of cascade from a BOA combination, e.g. one-sided or symmet-
rical cascade, the target likelihood extraction method indices listed in zq, q=1...Q for the
BOA must be selected appropriately. In detection problems, it is often the case that the
class distribution is clearly unbalanced, the ’clutter’ class being the prevalent one and

5.4. Laughter detection with a BOA cascade 49

’target’ class samples being rare. In this case, for a decision cascade to be computationally
efficient, it should specifically be able to make early decisions to the prevalent ’clutter’
class. A one-sided BOA cascade, which is able to make early detections to the ’clutter’
class, actualizes by utilizing only single conjunction which combines functions on all the
target likelihoods according to conjunction list z1 = (1, 2, 3, ..., S). On the other hand, a
one-sided BOA cascade capable of making early detections to ’target’ class actualizes if
conjunction lists of every single target class model are included in the set of conjunction
lists of the BOA, i.e. {(1), (2), (3), ..., (S)} ⊆ { zq | q=1...Q}. Symmetrical BOA cascade
actualizes using Q = S conjunction lists z1 = (1), z2 = (1, 2), z3 = (1, 2, 3), ..., zQ =
(1, 2, 3, ..., S).

5.4 Laughter detection with a BOA cascade

In Publication VI I have utilized a BOA cascade framework for classifying video clips
of MAHNOB Laughter dataset Petridis et al. (2015) to those which contain laughter,
and to those that do not contain laughter. I have used two models – or detectors – of
laughter for the task. The detectors are built to mimic those used in Petridis et al. (2015)
for the same task as closely as possible. The first detector operates on audio stream of
the video and provides a laughter likelihood score l1 for the video clip. The detector
computes MFCC features from the audio stream of a video and evaluates a single-output
feed-forward NN. The second detector provides the laughter likelihood score l2 based
on the image stream of the video. It finds 20 face points with the algorithm of Zhu and
Ramanan (2012), reduces the feature dimensionality with PCA and provides a laughter
likelihood score l2 using a feed-forward NN. Details of the two detectors can be found in
Publication VI.

The class distribution in this task is nearly balanced, so any cascade type likely results
in reduction of computational load. Thus BOA combinations with all the possible
conjunction list configurations have been evaluated in the experiments for Publication
VI.

The best results were obtained with a BOA cascade

BC(x;α) = d1(x; θ1
1) ∨

N∨
n=1

[
d1(x; θ2,n

1) ∧ d2(x; θ2,n
2)

]
(5.6)

which is built with z1 = [1] and z2 = [1, 2] and N selected by the BOATS algorithm. The

50 Chapter 5. Sequential classification

Table 5.2: Results obtained with a BOA cascade BC of (5.6) in comparison to results found in the
literature in laughter vs speech classification on MAHNOB laughter data. The used measures of
classifier performance are the overall accuracy, F1 -scores for both speech (F sp

1) and laughter (F lg
1),

and percentage of computed visual features (v.f.). The BOA detectors are used at the operating
point α with the highest accuracy. ∗) The classifier of Petridis et al. (2015) has been trained with
another dataset. ∗∗) Results of Rao et al. (2015) are with 15 speakers while the other authors use 22
speakers in their tests.

acc. F
sp
1 F

lg
1 v.f. %

BOA cascade of BC, (5.6) N = 1 96.0 .966 .958 11%
BOA cascade of BC, (5.6) N by BOATS 96.9 .972 .955 33%
Rudovic et al. (2013) 92.7 .943 .905 100%
Petridis et al. (2015)∗ 91.7 .932 .893 100%
Rao et al. (2015)∗∗ 96.9 .973 .963 100%

decisions at the two stages of the resulting cascade are made according to

B
laughter
1 = d1(x; θ1

1)

B
speech
1 = ¬d1(x; θ1

1) ∧
N∧
n=1
¬d1(x; θ2,n

1) (5.7)

B
laughter
2 =

N∨
n=1

[
d1(x; θ2,n

1) ∧ d2(x; θ2,n
2)

]

B
speech
2 =

2N∨
k=2

[
¬d1(x; θ1

1) ∧
N∧
n=1
¬dz2(j)(x; θq,nz2(j))

]

=
2∨

i1=1

2∨
i2=1
· · ·

2∨
iN =1

[
¬d1(x; θ1

1) ∧ ¬dz2(i1)(x; θ2,1
z2(i1)) ∧ ¬d1(x; θ2,2

z2(i2)) · · ·

· · · ∧ ¬dz2(i3)(x; θ2,2
z2(i3)) ∧ · · · ∧ ¬dz2(iN)(x; θ2,N

z2(iN))
]

The classification performance of the BOA BC cascade was evaluated in terms of resulting
classification accuracy and computational load. The main results of Publication VI
are reproduced in Table 5.2. The results show that a BOA cascade BC, trained with
the developed BOATS algorithm, described in Section 4.4, outperforms the reference
classifiers of Rudovic et al. (2013) and Petridis et al. (2015), while utilizing far less
computational resources. The best classification accuracy was achieved with BC with N
selected by the BOATS algorithm.

6 Automatic Speech Recognition

Automatic speech recognition (ASR) has appeared to be extremely difficult task to
perform. This is shown by the long history of research on the problem. Only during
recent years, the capability of algorithms have reached the performance satisfactory
for general use. In case of low background noise, small vocabulary systems like digit
recognition frameworks, or user interfaces with few command words have performed
satisfactorily for a while. Also dictation software, which transcribes the spoken sentences
into text, have been successfully used in noiseless environments, e.g. medical doctor
appointment room. Automatic speech recognition performance reaching human level
has been recently reported by Xiong et al. (2017) using DNNs.

The difficulty of the ASR -task is due to large variability inherent in speech signal. There
are multiple sources of uncertainty for the ASR task of decoding the spoken words from
an acoustic signal. Different languages form totally different probability distributions of
phone sequences that the speech may be formed of. Every person has a unique voice
and there is great variation in the ways a certain sentence may be pronounced. The
acoustical characteristics of the speaking environment varies hugely and there is often
some background noise on top of the speech to be recognized.

In terms of Bayesian decision making, the estimated word sequence ŵ from among all
the possible word sequences W is given by a conditional probability

ŵ = arg max
w∈W

P (w|X) = arg max
w∈W

P (w)P (X|w) (6.1)

in respect to the speech signal X . The standard procedure is to represent the probability
P (w|X) in terms of two models representing the speech phenomenon, producing the
probability of the word sequence P (w) and the probability of the signal in respect to the
given sequence P (X|w). The success of an ASR framework thus depends on how well
the models manage in their function. However, since the probability distributions of
different word sequences are broad and overlapping, even the smallest possible Bayes
error is notable for ASR.

In the core of an ASR framework, there is a language model producing P (w). The language
model incorporates information about the vocabulary and grammar of the language that
the ASR framework is built for. It also includes knowledge about different possibilities
for pronunciation of words and phrases in the language. The language model, usually
an n-gram model, mostly an HMM, is trained using written texts and pronunciation
information in the language. Errors due to this model are of two kinds. First, it is very
unlikely to learn an n-gram model incorporating all the possible use cases of the language.
On the other hand, the more flexible the model is, the smaller discrimination capability
among different word sequences it has.

51

52 Chapter 6. Automatic Speech Recognition

The probability P (X|w) within an ASR framework is given by an acoustical model. It
informs the system about acoustic characteristics of each phone of speech. The acoustic
model should handle the variability of the signal due to different voices, speech emphasis
and acoustic conditions. The model is trained using recorded speech audio, and it has
been shown by Raj et al. (2012) that if the training audio matches the acoustic conditions of
the ASR-system use cases, the system performs notably better than if there is a mismatch
between the two.

ASR systems are usually evaluated in terms of the word error rate (WER)

WER = S +D + I

N
, (6.2)

where N is the number of uttered words within the audio material, S is the number of
misinterpreted words, D is the number of words unnoticed by the system, and I is the
number of extra words within the transcription. The recognition accuracy acc. = 1−WER
is also an often used performance indicator.

In case of some words being more important to recognize than others, weighted error
rates may be used. Binary weighting of words is used for reporting key word error rate or
accuracy. In the Publications II,I and V the performance of the proposed ASR frameworks
are reported in terms of the key word accuracy.

6.1 The traditional ASR framework

Compute
MFCC
features

GMMs
Gaussian Mixture
Models of MFCC
features, one for
each system state

Compute
likelihoods of
HMM states

HMM
Hidden Markov Model
of state progression
within the language
grammar

Transcribed
speech

Find the most
probable state
sequence using
Viterbi algorithm

State likelihood
buffering

Audio frame
cutting

Audio
signal

Figure 6.1: A general framework, which is the basis of traditional style implementations for
ASR. The framework operates on MFCC feature vectors from audio frames. It utilizes GMMs
to model the distributions of feature vectors representative to each HMM state. The vocabulary
and grammar are modeled with the transition probabilities between HMM states, and the best
hypothesis for the speech transcription is found using the Viterbi algorithm.

A traditional ASR system, which is based on MFCC features, Gaussian mixture models
of phonemes and hidden Markov n-gram models modeling the language structure, i.e.
capturing the vocabulary and grammar, is depicted in Figure 6.1.

The audio signal is processed in frames, as explained in Chapter 2. The length of a
smoothed frame is usually around 5-20 ms, the consecutive frames generally overlapping

6.2. Methods for state likelihood estimation for ASR 53

50 %. Traditional GMM-HMM ASR frameworks mostly operate on MFCC features of
audio frames. Usually only 13 low order MFCC coefficients are preserved to model the
gross shape of the frequency spectral envelope. The MFCC coefficients and the MFCC
delta and acceleration features are concatenated for the frame representation.

For ASR systems, speech is assumed to be based on phonemes. This means that auto-
matic speech recognition implicitly contains a task of classifying the audio frames into
phoneme based categories. Within ASR frameworks these categories are called states,
which serve the similar function as classes in classification frameworks. The traditional
ASR framework utilizes GMMs of MFCC feature distributions for this acoustic model-
ing, i.e. modeling each state. Combinations of 4-10 Gaussian probability distribution
functions (PDF) are used to model the MFCC-feature variation among audio frames
representing each phoneme based state. The GMM of each state is trained using training
data representing the respective phoneme. For every new input audio frame, the trained
GMMs are used to provide a state likelihood in respect of each phoneme based state of
the system. The system state likelihoods from all the audio frames of the recording, or
a batch of frames corresponding to a few seconds of the input signal, are buffered for
language analysis.

In a traditional ASR framework the vocabulary and grammar of the language are mod-
eled using HMMs. At the lowest level, phoneme, biphone (two consecutive phonemes)
or triphone (three consecutive phonemes) HMMs are defined and trained to capture the
probabilities of transitions between system states according to pronunciation of the used
language. At the next level, the phoneme level HMMs are concatenated to form word
level HMMs and the transition probabilities between phonemes within the word level
HMM models are learned from the ways of pronunciation within the training material.
Finally the word level HMMs are concatenated to form the language level HMM. The
transition probabilities between all the pairs of words and established expressions are
defined according to the language grammar, e.g. using representative text data of the
language. It is noteworthy that the language model plays crucial part in the recognition
capability of the ASR -framework.

To solve the utterance which the input signal most likely represents, the buffered state
likelihoods are analyzed in respect to the generated hidden Markov model of the lan-
guage. The most probable utterance is usually found using the Viterbi algorithm.

The performance of an ASR system is more or less equally defined by the success of
the language model and the acoustic models. The quality and appropriateness of the
language model builds a foundation for the recognition apparatus, and the fit and
robustness of the acoustic model enables then accurate recognition. In Publications I,
II and V the language model defined in The PASCAL ’CHiME’ Speech Separation and
Recognition Challenge Barker et al. (2013) baseline system is used unmodified, and
the research has concentrated on improving the acoustical modeling part of the ASR
framework. Thus in the following sections different methods for acoustic modeling of
ASR are discussed.

6.2 Methods for state likelihood estimation for ASR

Within the above explained traditional ASR system, the acoustic models utilize MFCC
features of the input audio. For each input feature vector, the system produces likelihoods
for all the states within the HMM -model. This likelihood for each HMM state is obtained
according to the expected feature distribution of the state, where the feature distribution

54 Chapter 6. Automatic Speech Recognition

DFT
spectral

magnitudes

Compute HMM
state likelihoods
corresponding to
the NMF
activations

HMM

Transcribed
speech

Viterbi
State likelihood
buffering and
averaging

Audio
signal

An overcomplete
dictionary D of
exemplar magnitude
spectrograms

NMF
non-negative
matrix
factorization

Functions for
transforming the NMF
activations to HMM
state likelihoods

Buffer T
frames

Audio frame
cutting

Figure 6.2: An ASR framework, which utilizes overdetermined dictionary based sparse feature
vectors for acoustic modeling. DFT spectral magnitudes are often used as features, and the
dictionary exemplars represent events in features spanning over T consecutive frames.

is expressed as a GMM -model. Despite the great expressive power and performance
of GMM-models in studio conditions, the relentless problem is their lack of robustness
against noise and mismatch in acoustic conditions of training data and the real use.
Lots of methods have been proposed for adapting GMM-models for different speakers,
different room acoustic conditions, different kind of background noises etc. . However,
the problem has prevailed over the 30 years of ASR research, and thus some alternatives
for MFCC and GMM based acoustic modeling have been tried out. It has not been easy
to come up with a new paradigm to the matured field of ASR, but at least couple of new
alternatives have broken their way through. The two alternative hybrid approaches that
I will discuss below are the non-negative matrix factorization based and deep neural
network based HMM state likelihood estimation.

6.2.1 Acoustic modeling based on non-negative matrix factorization

One alternative for GMM based HMM state likelihood estimation is NMF-based acoustic
modeling. This approach has been utilized in Publications II and I, and the general
framework structure is illustrated in Figure 6.2. The approach provides noise robustness
and it has been successfully utilized for limited vocabulary tasks in noisy conditions in
Publications II, I and V among many others. The idea in NMF processing is to represent
input signal features x in terms of exemplars within a dictionary D as

x ≈ Dw, (6.3)

where w is a vector of non-negative weights. As its columns, the dictionary D con-
tains exemplars, which express audio representative to different HMM states of the
system. Instead of operating with MFCC features, the exemplars usually contain spectral
magnitude features form a few consecutive audio frames.

The dictionary may also contain exemplars representative to different noise backgrounds,
which accounts for the noise robustness of the method. In case the dictionary consists of
sets of exemplars from different speakers S1,S2, ... and other sounds N1,N2, ... as D =
[S1,S2, ...,N1,N2, ...], NMF processing performs sound source separation via weight

6.2. Methods for state likelihood estimation for ASR 55

vector partition w =
[
wT
S1,wT

S2, ...,wT
N1,wT

N2, ...
]T with

x ≈ Dw = S1wS1 + S2wS2 ++ N1wN1 + N2wN2 + ... (6.4)

Due to this capability for source separation, NMF processing is also often utilized as
preprocessing step for other kinds of ASR frameworks (Geiger et al. (2014)).

Since the dictionary D is multiple times overdetermined, the weight vector w is not
unique and some optimization algorithm with additional constraints must be utilized to
solve it. Then, some means to obtain HMM state likelihoods based on the weight vector
w are needed. These aspects, in addition to dictionary training, are discussed in more
detail below.

Dictionary training

In some early implementations of NMF for ASR, dictionary training has been done using
algorithms, which factorize a matrix X of training data features into two non-negative
matrices D and W such that the reconstruction R = DW error of X ≈ R is minimized
in terms of Euclidean error or divergence

D(X,R) =
∑
f,n

(
X(f, n) log X(f, n)

R(f, n) −X(f, n) +R(f, n)
)

(6.5)

(Lee and Seung (2001)), where f and n denote indices of the elements within each
data matrix. In addition to minimizing the reconstruction error, sparsity of the weight
matrix W is characteristics, which is desired for sparse classification. An algorithm,
which promotes sparsity of the reconstruction matrix W while minimizing the Euclidean
reconstruction error is presented by Hoyer (2004).

In the above mentioned non-negative matrix factorization methods, the size of dictionary
atoms is the same as the input feature vector from one audio frame. To model the
continuity of audio signal it has been found out that instead of atom vectors for one audio
frame, using exemplars that represent multiple consecutive audio frames is beneficial. In
this case, the representation of Equation (6.3) accounts for a sequence (window) of input
frames and the above mentioned dictionary learning algorithms are not applicable. Thus
a popular approach of building a dictionary D for ASR has been to collect the exemplars
into it by sampling from training data (Raj et al. (2010), Schmidt and Olsson (2006)). The
sampling may be done randomly, or by selecting good representatives of all the acoustic
events that are desired to be explicitly modeled. In Publications II,I and V, an overly
large dictionary is first built by random sampling. It is then pruned to the desired size
such that the dictionary exemplars cover the different acoustic events more or less evenly.

Optimization for feature representation in terms of the dictionary

When the dictionary D for factorization of input vectors in X is given, the optimization of
weights W is done using constraints for non-negativity and sparsity. In audio processing,
when spectral magnitudes or power spectral densities are used as raw features in input
vectors x, the measure mostly used for the reconstruction error is the Kullback-Leibler
divergence

DKL(x,Dw) =
∑
f

x(f) log x(f)
Dw(f) . (6.6)

The standard algorithm for finding weights w which minimize DKL(x,Dw) is a gradient
descent type EM-algorithm presented in Lee and Seung (2001), which is used also in

56 Chapter 6. Automatic Speech Recognition

publications II, I and V. A fast active-set Newton algorithm (ASNA) algorithm for the task
has been proposed by Virtanen et al. (2013). An algorithm which, in addition to sparsity,
promotes also temporal continuity of weights in W while minimizing the divergence
DKL is presented by Virtanen (2007).

Non-negative matrix deconvolution (NMD) -algorithms , e.g. by Smaragdis (2004), have
been specifically developed for implementations, where the dictionary exemplars rep-
resent episodes of multiple input frames. In this kind of implementations, the above
discussed NMF algorithms have to be utilized for each input vector separately, since
the utilized vectors consist of concatenated features from multiple audio frames. The
NMD algorithms factorize the whole sequence of audio feature vectors at once. NMD
-algorithms optimize the usage of multi-frame dictionary exemplars in D for represen-
tation of the audio frame sequence X = [x1,x2, ...,xT] in such a way, that the audio
frame sequence will be represented by the combined effort of obtained weight vectors
wt, t ∈ {1...T}, which are optimized to be sparse also in respect to time dimension.

Transforming exemplar weights to ASR -system state likelihoods

It would be possible to utilize the sparse weights w as features for any type of ASR
-framework. For signal enhancement, a subset ws of weights in w corresponding to a
clean subset Ds of exemplars in D is used for clean speech feature reconstruction as
x̂s = Dsws. Within plain NMF -based ASR-frameworks of Publications II,I and V, the
weights are converted into speech state likelihoods lstate using a trained linear transform.

When the dictionary of multi-frame exemplars is sampled from training data, each
exemplar has associated with it a certain speech state sequence, which is obtained from
labels of the training data. The speech state likelihoods according to w are now obtained
as l = Lw, where L is a binary matrix of dictionary speech state labels and each column
of L corresponds to labels of one dictionary exemplar. This approach has been utilized
in my Publication V, and as a reference algorithm in Publications II and I.

Optionally, a transformation matrix may be trained for the conversion from w to l such
that l = Bw. This approach has been used in my Publications II and I, where different
transformation matrices B have been trained using OLS and PLS -algorithms.

6.2.2 Acoustic modeling using deep neural networks

The artificial neural networks (ANN), invented already in 1943 by Warren McCulloch
and Walter Pitts, have turned effective for ASR task only from the beginning of the
21st century. In 1990s, one layer neural networks were tried out for ASR task, but
the results of these early works showed that a shallow one-layer NN is too simple
structure to be able to charactrize the complexity inherent in large vocabulary speech
signal. Once many problems in learning parameters for a DNN had been solved and the
necessary computational power for DNN parameter learning had become available by
the beginning of the 21st century, DNNs became a new dominant methodology in many
fields if machine intelligence, including ASR.

For ASR, DNNs have been utilized mainly in two different ways, either for directly
providing state likelihoods lstate for HMM analysis, or for providing better features to
be utilized in place of MFCCs for a GMM-HMM based framework. The so called hybrid
ASR systems utilize DNN for providing state likelihoods lstate, which are interpreted as
conditional input probabilities of the HMM as

P (x | state) ∝ lstate/P (state), (6.7)

6.2. Methods for state likelihood estimation for ASR 57

where P (state) is the prior probability of a HMM state (Virtanen et al. (2018), page
399). The DNN is trained discriminatively with state labels of training data. A so called
tandem ASR framework utilizes these DNN based features in place or aside of MFCCs
within a GMM-HMM based framework. The DNN features by a deep autoencoder were
demonstrated to excel the MFCC features first time for ASR by Heck et al. (2000).

Many different input formats of audio frames for DNNs have been experimented with.
In general it has been found out, that DNNs are able to learn excellently performing
features, and thus hand-crafted feature extraction is unnecessary or even degenerative for
performance. The best results have been obtained using band-pass-filter output energies,
e.g. STFT-magnitudes or Mel frequency scale coefficients, and even raw time-domain
audio signal has been succesfully utilized as DNN input by Tüske et al. (2014).

DNNs pre-trained as a stack of RBMs

The renaissance of NNs in the form of DNNs truly appeared, when the research group
of Geoffrey Hinton (2007) published their inventions on generative training of RBMs,
specifically their discovery on how to stack multiple one-layer RBMs on top of each other.
They showed how arbitrarily many RBM layers may be trained by contrastive divergence
(CD) algorithm, one at a time, to maximize the probability of the input data, and stacked
as a generative DBN. This generative DBN is then turned into a discriminative DNN by
adding one more layer of neurons for producing the outputs, i.e. outputting likelihoods
of each speech state, and fine-tune-training the DNN with backpropagation algorithm.
The backpropagation training of a DBN based DNN is optimized in terms for maximal
mutual information (MMI) criterion among the true and estimated state sequences. This
kind of hybrid DBN-DNN has been shown to outperform a GMM-HMM framework in
multiple large vocabulary continuous speech recognition (LVCSR) tasks by Hinton et al.
(2012).

Deep Convolutive Neural Networks

Convolutive neural networks (CNN) have been utilized in image processing with great
success (LeCun and Bengio (1995)). For images, CNNs have very crucial functionality
to provide invariance in position, rotation and scale for feature computation. However,
it is not obvious how this capability would best leverage ASR. A spectrogram of STFT-
magnitudes of an audio sequence may be considered as an image, but for example similar
phenomema at low or high frequencies should likely have different interpretations, and
total position or scale invariance in frequency dimension is not what is desired for ASR.
On the other hand, it has been noticed, that the time varying nature of speech is better
modeled with HMM than with CNN. These concerns have been solved by Abdel-Hamid
et al. (2014) applying the convolutive operation only in frequency dimension. In addition,
limited weight sharing is utilized, such that only the units that are attached to the same
pooling unit share the same convolution weights. This restricted position invariance
compared to puristic CNN is shown to improve recognition of acoustic events.

Deng et al. (2013) demonstrate that using one or more convolutional layers before the
full connectivity layers within a DNN improves LVCSR performance. They show how
invariance to vocal tract differences between different speakers is obtained by using one
or more convolutional layers with weight-sharing across nearby frequencies and then
pooling the convolution filter responses to similar frequencies.

In Sainath et al. (2013) the authors show that CNN performs better as feature extractor
within a CNN-GMM-HMM system than as a state likelihood estimator within a hybrid
CNN-HMM speech recognizer. They train the feature extractor CNN as an autoencoder

58 Chapter 6. Automatic Speech Recognition

with a couple of convolutive layers first and a bottle-neck of 512 units to be turned into
the feature extractor output layer.

Deep Recurrent neural networks

Recurrent neural networks utilize feed-back loops, which enable them to model de-
pendencies among consecutive inputs (Haykin (1998)). Tandem systems combining
RNN outputs with GMM-HMM models have not been particularly successfull. This
is probably due to that the additional time-domain information given by deep RNN
outputs over feed forward DNN outputs causes confusion for learning the GMM models
and thus the combined RNN-GMM-HMM systems fails being efficient. Instead, RNN
architectures are at best when trained to directly output phoneme likelihoods against an
error function in respect to longer speech sequences than individual phonemes, where
the best frame-phoneme alignment of the sequence is left for the neural network to decide
about. When decoding a sequence of input frames based on RNN phoneme likelihood
outputs e.g. beam search is utilized to yield a list of best transcription candidates.

Again, one-layer RNNs have appeared to be too simple models to handle large vocabu-
lary speech recognition (LVSR) task, but once the problems in learning deep RNNs had
been solved, they have become the most successful of all DNNs for LVSR (Graves et al.
(2013)). Specifically, Long-Short-Term Memory RNNs (LSTM) networks (Hochreiter and
Schmidhuber (1997)) have shown to provide excellent recognition accuracy (Sak et al.
(2014)). Human level conversational speech recognition accuracy has been achieved
using deep LSTM networks by Xiong et al. (2017).

6.3 A cascaded state classifier for ASR

Within an automatic speech recognition task, system state likelihoods/probabilities are
used as an intermediate representation of the input data. This state likelihood estimation
task is similar to the assignment of multi-class classification problems, while the final
ASR transcription is made using the language model. In Publication V on ASR task I
have utilized cascade processing, which was discussed in Chapter 5, for efficient state
likelihood estimation. The idea in the cascade processing is that where the speech is clear
and easy to recognize, the state likelihood estimation is performed with a computationally

DFT

state likelihoods

HMM

Transcribed
speech

Viterbi

State likelihood
buffering and
averaging

Audio
signal

dictionary D

NMF

State label functions

Neural
Network

MFCC

Audio frame
cutting

Buffer T
frames

Reliability
evaluation

Figure 6.3: An ASR framework utilized in Publication V, which utilizes a neural network and NMF
based acoustic modeling for HMM state likelihood estimation. Efficient cascade processing for
state likelihood estimation is obtained with the state likelihood information reliability evaluation,
which guides the amount of NMF processing.

6.3. A cascaded state classifier for ASR 59

{LNMF1}

Stage1
NN

𝑅𝑠 ≥ 𝚯

{LNMF2} {LNMF5}l
1

Stage 4
TS-NMF

Stage 2
TS-NMF

Stage 3
TS-NMF

Stage 5
TS-NMF

Stage 6
TS-NMF

State likelihood buffering
and averaging

{LNMF3} {LNMF4}

(a) Flowchart of the cascade processing principle.

time

State likelihoods 𝒍1
for the whole
audio sequence

{LNMF1}
{LNMF2}

{LNMF3}
{LNMF4}

𝑅𝑠

𝚯

𝑅1 𝑅2
𝑅3 𝑅4𝑅5

(b) Cumulation of state likelihood certainty Rs.

Figure 6.4: Cascade processing principle utilized in ASR state likelihood estimation cascade of
Publication V. State likelihood information ls is cumulated stage by stage via computing new state
likelihood windows Ls

t (shown with shaded color) with NMF until the state likelihood reliability
Rs exceeds the threshold Θ.

fast neural network, and the more accurate, computationally heavy NMF-method is
utilized only for parts that need it and only as much as it is necessary. The overall ASR
framework utilizing cascade processing for speech state likelihood estimation is shown
in Figure 6.3, and the cascade processing principle is illustrated in Figure 6.4.

At the first stage of the state likelihood estimation cascade a simple feed forward NN
is used for fast state likelihood estimation from feature vectors. The system operates
on Mel-spectrogram magnitude feature vectors of audio input frames. There are 250
outputs in the NN, and the output values are converted to Bayesian probabilities for all
the system states c=1...250 to be used as class likelihoods lc1(t) for each audio frame. The
details of the NN and the value conversion can be found in Publication V.

At the subsequent stages s=2...5 of the ASR cascade, the computationally heavy NMF-
method is used to acquire state likelihoods lcs(t), c=1...250. The NMF method utilized
at these stages produces windows of state likelihood information in matrices Lt, each
referring to a sequence of 20 input frames with indexes t...t+ 19 and containing likeli-
hoods of all the states as its columns. The Figure 6.4 illustrates the process. The state
likelihood lcs(t) at stage s is then computed as a weighted average of the likelihood lc1(t)
from the first cascade stage and the c:th row of all state likelihood windows Lt acquired

60 Chapter 6. Automatic Speech Recognition

up to the stage s as

lcs(t) = (1− λ) lc1(t) + λ

[
T−1∑
τ=0
Lt−τ (c, τ + 1)

]
1

, (6.8)

where λ ∈ [0, 1] is a balancing factor for the weighted average and [◦]1 denotes vector
normalization to `1 norm 1.

To decide about whether the next cascade stage should be entered to acquire more state
likelihood information or not, we utilize a value of average state likelihood reliability as

Rs(t) = 1
2Tave

t+Tave−1∑
τ=t−Tave

max
(
l1s(τ), l2s(τ), ..., l250

s (τ)
)
, (6.9)

where Tave is the length of the averaging window. The reliability Rs(t) is compared to
a threshold value Θ and if Rs(t) ≥ Θ the state likelihood information for frame x is
considered reliable and the next cascade stage is not called for the frame xt. If Rs(t) < Θ,
new input windows covering the frame xt are factorized with the NMF method. Figure
6.4 illustrates the process.

Performance of the proposed ASR framework in terms of speech recognition accuracy
and the computational load is illustrated in Figure 6.5. The performance curve is obtained
by changing the operating point, that is, the threshold Θ for the state likelihood reliability
Rs, of the framework. The speech recognition accuracy of the reference NMF framework,
which has been utilized for NMF processing within the cascade and is depicted in Figure
6.2, is shown with the dashed red line. Using the proposed cascade processing for state
likelihood estimation, the speech recognition task is performed six times as fast as the
baseline NMF framework, the processing time reducing to only 16 % of the original,
without compromising the recognition accuracy. In Figure 6.5 this operating point is
denoted with a cross. To our surprise, the recognition accuracy improved 2 % using
the cascade framework. This is likely due to the additional information given by the
neural network. The maximum accuracy of 88.5 % at its most economical operating
point, obtained with Θ = 0.51, is denoted in Figure 6.5 with a circle.

6.4 Experimental results in small vocabulary ASR

The Publications II, I and V deal with a small vocabulary speech recognition task of
CHiME challenge 2011 (Barker et al. (2013)). The speech data of the task is based on
GRID corpus (Cooke et al. (2006)), which contains voices by 34 different speakers, 18
male and 16 female. The GRID corpus contains mono recordings of spoken command
sentences, e.g. "Set green with R2 now.", with a small vocabulary and strict grammar. The
defined sentence structure is described in Table 6.1. The language model of this dataset
consists of 250 states, 4-6 states per word. The audio material of the noisy background
recordings is taken from the CHiME corpus (Christensen et al. (2010)). The recordings
are done in a living room and a kitchen of a home of two adults and two children using a
head and torso simulator, which captures binaural stereo audio. For mixing, the anechoic
1-channel speech recordings of the GRID corpus have been adapted into the domestic
room acoustics of CHiME noise environments using binaural room impulse responses
provided by the CHiME corpus. Then the acquired 2-channel signals are mixed with
CHiME stereo backgrounds at 6 different signal to noise ratios (SNR = -6, -3, 0, 3, 6,

6.4. Experimental results in small vocabulary ASR 61

Figure 6.5: ASR results in terms of key word recognition accuracy and computational load with the
ASR framework proposed in Publication V using cascade processing for state likelihood estimation.
The threshold Θ accounts for required state likelihood reliability level within the framework. The
dashed line marks the key word recognition accuracy of the baseline NMF framework, which
requires 100% NMF computation.

9 dB to produce in total 3600 noisy speech audio files. The dataset has been used in
the PASCAL CHiME speech separation and recognition challenge (Barker et al. (2013))
held in 2011, and in the second CHiME speech separation and recognition challenge
(Vincent et al. (2013b,a)) in 2013. A set of 600 utterances from this dataset is used in the
experiments of Publications II, I and V.

The NMF based ASR framework experimented with in all these publications is illustrated
in Figure 6.2. The NMF based framework has been selected due to its noise robustness.

In the framework, a feature vector Xt used for NMF factorization contains 20 DFT
magnitude vectors xt,xt+1, ...,xt+19 corresponding to 20 contiguous audio frames. A
DFT magnitude vector xt from one audio frame is thus utilized within 20 consecutive
audio window feature vectors Xt−19, ...Xt. Different NMF window lengths were tested
in the Publications II and I, and the length 20 frames, representing an audio snippet
of ca. 0.2 s, was found to perform best on average. This setting was thus used also in
Publication V.

An overcomplete dictionary D of 5000 example spectrograms, i.e. exemplars is learned
from training data using regular sampling and post pruning for even distribution of
exemplars of audio window features. The exemplar spectrograms are vectorized similarly
to the input spectrograms to form columns of matrix D. Each exemplar is also associated

Table 6.1: Vocabulary and grammar of the GRID corpus Cooke et al. (2006).

command color preposition letter digit adverb

bin blue at A - Z zero, 1 - 9 again
lay green by excluding W now

place red in please
set white with soon

62 Chapter 6. Automatic Speech Recognition

Table 6.2: Key word recognition accuracies obtained using the NMF based ASR framework of
Publication II with noisy speech audio with different SNR levels. Three different methods, namely
dictionary labels, OLS and PLS regression, for converting sparse NMF activation vectors into state
likelihoods within the framework are compared. The best key word accuracy for each SNR level
is written in bold. The learned transformations can be seen to outperform the performance with
dictionary labels.

SNR (dB) 9 6 3 0 -3 -6

Speaker independent case
labels 77.3 72.8 68.2 62.7 51.1 44.0
OLS 85.2 80.5 78.7 71.1 60.2 51.5
PLS 82.9 78.8 74.8 70.1 59.5 50.6

Speaker dependent case
labels 91.6 89.2 87.6 84.2 74.7 68.0
OLS 91.1 90.0 88.5 85.2 77.6 69.2
PLS 91.9 89.3 88.2 85.0 78.6 69.6

with a sequence of 20 state labels given by training data phoneme alignment. The state
labels of the dictionary exemplars are encoded in binary label matrices Li, i=1...5000 of
size 250 x 20. Details of the dictionary building process can be found in Publication I.

For analysis, each input feature vector Xt is factorized as

Xt ≈ D ·wt, (6.10)

to weights, i.e. activations, wt based on the dictionary D. The factorization is done using
an NMF algorithm, which minimizes the Kullback-Leibler divergence between Xt and
Dwt and induces sparsity of wt. The weight vector wt, similarly to Xt, concerns the
window of 20 contiguous audio frames starting at the frame indexed by t.

To convert the sparse activation vector wt into a window Lt of state likelihoods, three
different methods are tried out in Publications II and I. The first method utilizes the
binary label matrices Li, i=1...5000 associated with the dictionary D. The state likelihood
window Lt is obtained from wt using the binary label matrices Li, as

Lt =
5000∑
i=1

wt(i) · Li. (6.11)

The two other methods utilize a transformation matrix B as

Lt = Bwt. (6.12)

The transformation B is trained either by OLS or by PLS -regression algorithm.

The Table 6.2 shows the main results of comparing the keyword recognition accuracies
obtained by using the three state likelihood conversion methods from Publication II.
The inferior results with other analysis window lengths than 20 can be found in the
publication. The Table 6.2 shows that utilizing the learned transformations B enables
clearly higher recognition accuracies than utilizing dictionary labels especially in the

6.4. Experimental results in small vocabulary ASR 63

speaker independent case. In the speaker independent case, the variability of input
spectrograms for which a certain dictionary exemplar is activated is high and thus
learning the feature to state likelihood transformation via machine learning defeats
manual labels of the dictionary. The equally good performance with dictionary labels in
speaker dependent case is likely due to that the speaker dependent dictionaries are highly
specific. Thus in this case the labels represent well the interpretation of the activations
from the NMF factorization.

In the Publication I, the framework of Figure 6.2 is used as the baseline, and a non-
negative matrix deconvolution, i.e. convolutive sparse coding, based system is exper-
imented. The NMD based framework is similar to that of Figure 6.2, except that the
magnitude spectra of the entire input audio is buffered, instead of buffering 20 frames,
for the non-negative factorization. Then, instead of NMF factorization algorithm, an
NMD algorithm is used. It produces sparse feature vectors wt for some Xt, such that
the entire input feature sequence x1,x2, ...,xsentenceLength is represented by the weighted
dictionary exemplars as precisely as possible. The reconstruction error is measured in
terms of Kullback-Leibler divergence of the magnitude spectra. The details of the process
can be found in Publication I.

With this publication we participated in the CHiME noisy speech recognition challenge
2011. To our surprise, the NMD framework did not yield superior performance to the
baseline NMF framework, and thus the submitted results were those highlighted in Table
6.2. The Figure 6.6 shows the performance of our NMF framework compared to other
participants of the CHiME challenge. The performance of our framework is denoted
with label "Hurmalainen et al.". The performance curve over varying noise conditions
show that our solution was close to the state of the art at the time of the publication.

The Publication V, the cascade operation of which was already discussed in Section 6.3,
presents an experiment on improving the computational efficiency of the NMF based
framework of Figure 6.2. The proposed framework, where the system state likelihoods are

Figure 6.6: The performance of frameworks submitted to CHiME challenge 2011. The results of
our framework are shown with label Hurmalainen et al. . The figure is reproduced from Barker
et al. (2013) with permission.

64 Chapter 6. Automatic Speech Recognition

computed using a cascade process is shown in Figure 6.3. Another change to the baseline
framework, in addition to cascade processing that was experimented in Publication V,
concerns the space of system states. The original set of 250 states encompassing the used
vocabulary contains multiple phonetically very similar states. Unions of some of these
states were formed for state likelihood sharing. The details of forming the state unions
can be found in the Publication V. The state union based likelihood sharing improved the
key word recognition accuracy of the baseline framework with 0.7 % units. The cascade
processing was capable of reducing the computational load remarkably, as demonstrated
in Section 6.3. At the same time the recognition accuracy improved by 2 % units due to
the additional information given by the neural network.

7 Conclusions and discussion

In the work leading to this thesis multiple tasks within the field of signal processing
has been examined. The collection of included publications concern musical audio dere-
verberation, video cut detection, video classification and automatic speech recognition.
Within these tasks, cascade processing principle has been examined for combining multi-
ple methodologies for a task in computationally efficient way. Following the order of
presentation used in this thesis, I discuss below the research questions and the starting
point of each publication and state the conclusions reached.

The work of the Publication III was an interesting mix of realism and laboratory condi-
tions. The inspiration of the work was a highly realistic scenario to decrease excessive
reverberation in ad hoc music recordings. Due to tight schedule and resources the algo-
rithm evaluation was to be done in terms of computational SNR-improvement, instead
of more reliable subjective evaluation. Thus, in the lack of reference signals for real
life recordings needed for SNR computation, for the experiments we utilized audio
material generated from MIDI representations and applied reverberation and dynamic
compression. The dereverberation achieved on the real life recordings was only briefly
evaluated by listening, and not reported in the publication. A linear prediction and
spectral subtraction based dereverberation method proposed by Furuya and Kataoka
(2007) for speech dereverberation was selected for use. The results showed that the
algorithm may successfully be utilized in conjunction with music signals. The results
also showed that dynamically compressed music can be dereverberated with the method
with no increased sound quality deterioration.

In Publications IV, V and VI cascade processing principle has been examined for tasks of
video cut detection, automatic speech recognition and video classification. The results of
these publications have shown that combining multiple algorithms in computationally
efficient way using cascade processing principle can be successfully implemented for
all these tasks. That is, the results of these publications show, that remarkable speed-up
can be obtained such that it does not compromise the detection, classification or ASR
transcription accuracy.

The Publication IV deals with the task of video cut detection, although many researchers
consider the task of video shot detection to be already solved. Furthermore, the shots and
scenes of the video data used for the tests are randomly generated, thus it is controversial
whether this research has potential to give any new information for the field. However,
combining multiple video cut detection functions, based on the audio and visual data
streams of the video, with Boolean AND and/or OR operators was tested in the work. All
the tested detector combinations were shown to improve the detection accuracy over
each individual detector. Then, an effect of sequential evaluation principle for solving
the Boolean function on the computational load of the combined detection system was

65

66 Chapter 7. Conclusions and discussion

evaluated. The results showed that some Boolean functions for combining multiple
detectors bring remarkable computational savings.

In the Publication VI, a framework for combining multiple sensitivity tunable classifiers
with Boolean AND and OR operators as a computationally efficient cascade structure has
been formulated. An algorithm for learning the operation points of the classifiers to be
used within the framework has been presented. The framework has been applied to
video classification task using classifiers based on audio and visual streams of videos.
The results showed that the developed cascade framework is capable of combining the
classifiers in computationally and classification accuracy-wise efficient way. Specifically,
the framework reached classification accuracy superior to others found in the literature
for the used dataset and the excellent classification accuracy was achieved with a fraction
of the computational load of the other classifiers in comparison.

The work of Publications II, I and V concern automatic speech recognition with noisy
background but small vocabulary. This is very realistic scenario for voice command
devices. To see the value of the developed algorithms for broader purpose ASR, the
experiments should be repeated with a large vocabulary data set. Within the Publications
II, I and V acoustic modeling with alternative methods to Gaussian Mixture Models of
MFCC-features have been examined for this scenario.

In Publications II and I acoustic modeling with a magnitude spectrogram based NMF
-approach was tried out. The Publication I, participating The PASCAL CHiME Speech
Separation and Recognition Challenge Barker et al. (2013) with results close to the
winning team, showed that the NMF approach was indeed an effective method in
comparison to other methods. The Publication II examined whether using a trained
conversion function from the sparse NMF activation vectors to HMM state likelihoods
provides better ASR transcription accuracy than utilization of dictionary labels for the
transform. The hypothesis showed out to be true.

In Publication V a combined approach for acoustic modeling using the NMF method
and a neural network as a computationally efficient cascade structure was examined.
The results of the publication showed that the computational load of the NMF-based
framework may be remarkably reduced with cascade processing, and that a simple
neural network can be successfully used as the fast first stage HMM state likelihood
estimation function. The results showed that the NN gives new information aside of
NMF and thus improves the ASR transcription accuracy.

Sequential processing, including cascade processing, is a universal principle, which
would likely benefit many computational frameworks. I see high potential in implement-
ing this processing principle for virtually any signal processing task. By incorporating
multiple information retrieval algorithms into one sophisticated system in computa-
tionally efficient way it would be possible to exploit the best features of each algorithm
without computational overload. This is especially important for mobile and autonomous
systems, which should not be too reliant on external computation capacity.

Bibliography

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., and Yu, D., “Convo-
lutional neural networks for speech recognition,” IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 22, no. 10, pp. 1533–1545, Oct. 2014.

Aharon, M., Elad, M., and Bruckstein, A., “K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation,” IEEE Transactions on Signal Processing,
no. 11, pp. 4311–4322, 2006.

Allen, J., “Synthesis of pure speech from a reverberant signal,” 1974, u.S. Patent No.
3786188.

Andersson, M., “A comparison of nine PLS1 algorithms,” Journal of Chemometrics, vol. 23,
no. 10, pp. 518–529, 2009.

Arnfield, S., Roach, P., Setter, J., Greasley, P., and Horton, D., “Emotional stress and
speech tempo variation,” in Proceedings of ESCA-NATO workshop on Speech under stress.
ISCA, 1995.

Atkinson, K. E., An Introduction to Numerical Analysis. John Wiley & Sons, USA, 1979.

Barker, J., Vincent, E., Ma, N., Christensen, H., and Green, P., “The PASCAL CHiME
speech separation and recognition challenge,” Computer Speech & Language, vol. 27,
no. 3, pp. 621 – 633, 2013.

Beach, A., Real world video compression. Pearson Education, 2010.

Bellman, R., Dynamic Programming (DP). Princeton University Press. Dover paperback
edition (2003), 1957.

Beranek, L., Concert halls and opera houses: music, acoustics, and architecture. Springer
Science & Business Media, 2012.

Bishop, C. M., Pattern recognition and machine learning. Springer Science + Business
Media, 2006.

Boros, E., Hammer, P. L., Ibaraki, T., and Kogan, A., “Logical analysis of numerical data,”
Mathematical Programming, vol. 79, no. 1, pp. 163–190, Oct 1997.

Breiman, L., Friedman, J., Olshen, R., and Stone, C., Classification and Regression Trees.
Chapman & Hall, New York, 1984.

Breiman, L., “Random forests,” Machine Learning, vol. 1, no. 45, pp. 5–32, 2001.

67

68 Bibliography

Brownlow, K., “Silent films: What was the right speed?” Sight & Sound, pp. 164–167,
1980.

Canny, J., “A computational approach to edge detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), no. 6, pp. 679–698, 1986.

Capon, J., “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of
the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

Christensen, H., Barker, J., Ma, N., and Green, P. D., “The CHiME corpus: a resource and
a challenge for computational hearing in multisource environments,” in Interspeech.
Citeseer, 2010, pp. 1918–1921.

Cooke, M., Barker, J., Cunningham, S., and Shao, X., “An audio-visual corpus for speech
perception and automatic speech recognition,” The Journal of the Acoustical Society of
America, vol. 120, no. 5, pp. 2421–2424, 2006.

Cox, D. R., “The regression analysis of binary sequences,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 20, no. 2, pp. 215–242, 1958.

Davis, S. and Mermelstein, P., “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, no. 4, pp. 357–366, 1980.

de Rivaz, P. and Haughton, J., “AV1 bitstream & decoding process specification,” The
Alliance for Open Media, Tech. Rep., Jun. 2018.

Dempster, A., Laird, N., and Rubin, D., “Maximum likelihood from incomplete data via
the em algorithm,” Journal of the Royal Statistical Society, vol. 1, no. 39, pp. 1–38, 1977.

Deng, L., Hinton, G., and Kingsbury, B., “New types of deep neural network learn-
ing for speech recognition and related applications: An overview,” in Proceedings of
International Conference on Acoustics, Speech and Signal Processing, 2013.

Deshpande, A. and Triantaphyllou, E., “A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some
extensions,” Mathematical and Computer Modelling, vol. 27, no. 1, pp. 75–99, Jan. 1998.

Dietzen, T., Spriet, A., Tirry, W., Doclo, S., Moonen, M., and van Waterschoot, T., “On the
relation between data-dependent beamforming and multichannel linear prediction for
dereverberation,” in Audio Engineering Society Conference: 60th International Conference:
DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech), Jan 2016.

Duda, R. O., Hart, P. E., and Stork, D. G., Pattern classification. John Wiley & Sons, 2012.

Dundar, M. and Bi, J., “Joint optimization of cascaded classifiers for computer aided
detection,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2007.

Falk, T. H., Zheng, C., and Chan, W.-Y., “A non-intrusive quality and intelligibility
measure of reverberant and dereverberated speech,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 7, pp. 1766–1774, 2010.

Feraund, R., Bernier, O. J., Viallet, J.-E., and Collobert, M., “A fast and accurate face
detector based on neural networks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 23, no. 1, pp. 42–53, 2001.

Bibliography 69

Foundation, X., “Theora specification,” Tech. Rep., Jun. 2017.

Freund, Y. and Schapire, R. E., “A decision-theoretic generalization of on-line learning
and an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1,
pp. 119–139, 1997.

——, “A decision-theoretic generalization of on-line learning and an application to
boosting,” Journal of Computer and System Sciences, pp. 119–139, 1997.

Fumera, G., Fabio, R., and Alessandra, S., “A theoretical analysis of bagging as a linear
combination of classifiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 30, no. 7, pp. 1293–1299, 2008.

Furuya, K. and Kataoka, A., “Robust speech dereverberation using multichannel blind
deconvolution with spectral subtraction,” IEEE Transactions on Audio, Speech, and
Language Processing (TASLP), vol. 15, no. 5, pp. 1579–1591, 2007.

Gannot, S., Burshtein, D., and Weinstein, E., “Signal enhancement using beamforming
and nonstationarity with applications to speech,” IEEE Transactions on Signal Processing,
vol. 49, no. 8, pp. 1614–1626, Aug 2001.

Gaubitch, N. D., Naylor, P. A., and Ward, D. B., “On the use of linear prediction for
dereverberation of speech,” in Proceedings of the IEEE International Workshop on Acoustic
Echo and Noise Control, 2003, pp. 99–102.

Gaubitch, N. D., Ward, D. B., and Naylor, P. A., “Statistical analysis of the autoregressive
modeling of reverberant speech,” The Journal of the Acoustical Society of America, vol. 6,
no. 120, pp. 4031–4039, 2006.

Geiger, J. T., Gemmeke, J. F., Schuller, B., and Rigoll, G., “Investigating nmf speech
enhancement for neural network based acoustic models,” in Interspeech, 2014.

Ghanbari, M., Standard codecs: Image compression to advanced video coding. Iet, 2003, no. 49.

Gonzalez, R. C. and Woods, R. E., Digital image processing, third edition ed. Pearson
Prentice Hall, 2008.

Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

Grange, A., de Rivaz, P., and Hunt, J., “VP9 bitstream & decoding process specification,”
Tech. Rep., Mar. 2016.

Graves, A., Mohamed, A., and Hinton, G. E., “Speech recognition with deep recurrent
neural networks,” Computing Research Repository (CoRR), vol. abs/1303.5778, 2013.

Habets, E. A. P., “Single-channel speech dereverberation based on spectral subtraction,”
in 15th Annual Workshop on Circuits, Systems and Signal Processing (ProRISC 2004), Nov
2004.

Habets, E. A. P. and Naylor, P. A., “Dereverberation,” in Computational Analysis of Sound
Scenes and Events, Virtanen, T., Plumbley, M. D., and Ellis, D., Eds. Springer, 2018,
ch. 15, pp. 331–359.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

70 Bibliography

Hammer, P. L., “Partially defined boolean functions and cause-effect relationships,”
Lecture in International Conference on Multi-attribute Decision Making Via OR-based Expert
Systems, April 1986.

Han, K., Wang, Y., Wang, D., Woods, W. S., Merks, I., and Zhang, T., “Learning spectral
mapping for speech dereverberation and denoising,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing (TASLP), vol. 6, no. 23, pp. 982–992, June 2015.

Harris, F. J., “On the use of windows for harmonic analysis with the discrete fourier
transform,” vol. 66, no. 1, pp. 51–83, 1978.

Harris, Z., “Distributional structure,” Word, vol. (2/3), no. 10, pp. 146–62, 1954.

Hartigan, J., Clustering algorithms. Wiley, New York, 1975.

Haykin, S., Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1998.

Haykin, S. S., Adaptive filter theory. Pearson Education India, 2008.

Heck, L. P., Konig, Y., Sönmezc, M. K., and Weintraub, M., “Robustness to telephone
handset distortion in speaker recognition by discriminative feature design,” Speech
Communication, vol. 2, no. 31, pp. 181 – 192, 2000.

Hinton, G. and Salakhutdinov, R., “Reducing the dimensionality of data with neural
networks,” Science, no. 5786, p. 504, 2006.

Hinton, G. E., “Training products of experts by minimizing contrastive divergence,”
Neural Computation, no. 14, pp. 1771–1800, aug. 2002.

Hinton, G., “Where do features come from?” Cognitive Science, vol. 38, no. 6, pp. 1078–
1101, 2014.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T., and Kingsbury, B., “Deep neural networks for acoustic
modeling in speech recognition,” Signal Processing Magazine, 2012.

Hinton, G. E., “Learning multiple layers of representation,” Trends in Cognitive Sciences,
vol. 11, pp. 428–434, 2007.

Hinton, G. E., Osindero, S., and Teh, Y.-W., “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

Hochreiter, S. and Schmidhuber, J., “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

Hoyer, P. O., “Non-negative matrix factorization with sparseness constraints,” Journal of
Machine Learning Research, no. 5, p. 1457–1469, 2004.

ITU-R Recommendation BS.1387-1, “Method for objective measurements of perceived
audio quality,” International Telecommunication Union, Geneva, Switzerland, Tech.
Rep., Nov. 2001.

ITU-R Recommendation BS.1534-1, “Method for the subjective assessment of intermedi-
ate quality levels of coding systems,” International Telecommunication Union, Geneva,
Switzerland, Tech. Rep., Jan. 2003.

Bibliography 71

ITU-T Recommendation H.264, “Advanced video coding for generic audiovisual ser-
vices,” International Telecommunication Union, Geneva, Switzerland, Tech. Rep., Apr.
2017.

ITU-T Recommendation H.265, “High efficiency video coding,” International Telecom-
munication Union, Geneva, Switzerland, Tech. Rep., Feb. 2018.

ITU-T Recommendation P.262, “Application guide for objective quality measurement
based on recommendations s P.862, P.862.1 and P. 862,” International Telecommunica-
tion Union, Geneva, Switzerland, Tech. Rep., Mar. 2005.

Jackson, L. B., Digital Filters and Signal Processing, 2nd ed. Boston: Kluwer Academic
Publishers, 1989.

Jeub, M., Schäfer, M., , and Vary, P., “A binaural room impulse response database for
the evaluation of dereverberation algorithms,” in Proceedings of the 16th International
Conference on Digital Signal Processing (DSP), IEEE, IET, EURASIP. IEEE, 2009, pp. 1–5.

Kinoshita, K., M., D., T., N., and M., M., “Suppression of late reverberation effect on
speech signal using long-term multiple-step linear prediction,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 17, no. 4, pp. 534–545, May 2009.

Kinoshita, K., Delcroix, M., Gannot, S., Habets, E. A., Haeb-Umbach, R., Kellermann, W.,
Leutnant, V., Maas, R., Nakatani, T., Raj, B. et al., “A summary of the reverb challenge:
state-of-the-art and remaining challenges in reverberant speech processing research,”
EURASIP Journal on Advances in Signal Processing, vol. 2016, no. 1, pp. 1–19, 2016.

Kittler, J., Hatef, M., Duin, R. P., and Matas, J., “On combining classifiers,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226–239, 1998.

Kodrasi, I. and Doclo, S., “Robust partial multichannel equalization techniques for speech
dereverberation,” in 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), March 2012, pp. 537–540.

Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Systems
25, Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Eds. Curran
Associates, Inc., 2012, pp. 1097–1105.

Kubichek, R., “Mel-cepstral distance measure for objective speech quality assessment,”
in Communications, Computers and Signal Processing, 1993., IEEE Pacific Rim Conference
on, vol. 1. IEEE, 1993, pp. 125–128.

Kumar, V. and Minz, S., “Feature selection,” SmartCR, vol. 4, no. 3, pp. 211–229, 2014.

Kuttruff, H., Room acoustics. Crc Press, 2016.

LeCun, Y. and Bengio, Y., “Convolutional networks for images, speech, and time-series,”
1995.

LeCun, Y., Bengio, Y., and Hinton, G., “Deep learning,” nature, vol. 521, no. 7553, p. 436,
2015.

Lee, D. D. and Seung, H. S., “Algorithms for non-negative matrix factorization,” in
Advances in Neural Information Processing Systems (NIPS), Leen, T. K., Dietterich, T. G.,
and Tresp, V., Eds. MIT Press, 2001, pp. 556–562.

72 Bibliography

Li, H., Lin, Z., Shen, X., Brandt, J., and Hua, G., “A convolutional neural network cascade
for face detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 5325–5334.

Lim, F., Zhang, W., Habets, E. A. P., and Naylor, P. A., “Robust multichannel derever-
beration using relaxed multichannel least squares,” IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 22, no. 9, pp. 1379–1390, 2014.

Lowe, D. G., “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

McConnell, R., “Method of and apparatus for pattern recognition,” Jan. 28 1986, US
Patent 4,567,610.

Mertins, A., Mei, T., and Kallinger, M., “Room impulse response shortening/reshaping
with infinity- and p -norm optimization,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 18, no. 2, pp. 249–259, Feb 2010.

Michalski, R. S., A Theory and Methodology of Inductive Learning. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1983, pp. 83–134.

Miyoshi, M. and Kaneda, Y., “Inverse filtering of room acoustics,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 36, no. 2, pp. 145–152, Feb 1988.

Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., and Juang, B. H., “Speech derever-
beration based on variance-normalized delayed linear prediction,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 7, pp. 1717–1731, Sept 2010.

Nakatani, T., Kinoshita, K., and Miyoshi, M., “Harmonicity-based blind dereverberation
for single-channel speech signals,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, pp. 80–95, 2007.

Naylor, P. A. and Gaubitch, N. D., Speech Dereverberation, 1st ed. Springer Publishing
Company, Incorporated, 2010.

Naylor, P. A., Gaubitch, N. D., and Habets, E. A., “Signal-based performance evaluation
of dereverberation algorithms,” Journal of Electrical and Computer Engineering, vol. 2010,
p. 1, 2010.

Novak, C. and Shafer, S., “Anatomy of a color histogram,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), June 1992, pp. 599 – 605.

Nyquist, H., “Certain topics in telegraph transmission theory,” Transactions of American
Institute of Electrical Engineers (AIEE), pp. 617–644, 1928.

Ojala, T., Pietikäinen, M., and Harwood, D., “Performance evaluation of texture measures
with classification based on kullback discrimination of distributions,” in Proceedings of
the 12th IAPR International Conference on Pattern Recognition (ICPR), vol. 1, 1994, pp. 582
– 585.

Ojala, T., Pietikainen, M., and Mäenpää, T., “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 24, no. 7, pp. 971–987, 2002.

Oppenheim, A. V., Schafer, R. W., , and Buck, J. R., Discrete-time signal processing, 1999.

Bibliography 73

O’Shaughnessy, D., Speech communications: human and machine. Institute of Electrical
and Electronics Engineers, 2000.

Oxley, M. E., Thorsen, S. N., and Schubert, C. M., “A boolean algebra of receiver operating
characteristic curves,” in Proceedings of the 10th International Conference on Information
Fusion. IEEE, 2007, pp. 1–8.

Padaki, H., Nathwani, K., and Hegde, R. M., “Single channel speech dereverberation
using the LP residual cepstrum,” in National Conference on Communications (NCC), Feb
2013.

Petridis, S., Rajgarhia, V., and Pantic, M., “Comparison of single-model and multiple-
model prediction-based audiovisual fusion,” in Proceedings of the 1st Joint Conference
on Facial Analysis, Animation, and Auditory-Visual Speech Processing (FAAVSP). ISCA
Speech Organisation, 2015.

Proakis, J. G. and Manolakis, D. G., Digital signal processing, third edition ed. Prentice
Hall, 1996.

Quackenbush, S. R., Barnwell, T. P., and Clements, M. A., Objective measures of speech
quality. Prentice Hall, 1988.

Quinlan, J. R., “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106,
1986.

——, C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

Rabiner, L. R. and Juang, B.-H., Fundamentals of speech recognition. PTR Prentice Hall
Englewood Cliffs, 1993, vol. 14.

Raj, B., Virtanen, T., Chaudhuri, S., and Singh, R., “Non-negative matrix factorization
based compensation of music for automatic speech recognition,” in Proceedings of
Interspeech, 2010.

Raj, B., Virtanen, T., and Singh, R., “The problem of robustness in automatic speech
recognition,” in Techniques for noise robustness in automatic speech recognition, Virtanen,
T., Singh, R., and Raj, B., Eds. John Wiley & Sons, 2012, ch. 3, pp. 33–53.

Rao, H., Ye, Z., Li, Y., Clements, M. A., Rozga, A., and Rehg, J. M., “Combining acoustic
and visual features to detect laughter in adults’ speech,” in Joint Conference on Facial
Analysis, Animation and Audio-Visual Speech Processing (FAAVSP), 2015, pp. 153–156.

Read, P. and Meyer, M.-P., Restoration of motion picture film. Butterworth-Heinemann,
2000.

Rix, A. W., Beerends, J. G., Hollier, M. P., and Hekstra, A. P., “Perceptual evaluation
of speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 2, 2001, pp. 749–752.

Rossing, T. D., The science of sound, second edition ed. Addison-Wesley Publishing
Company, 1990.

Rudovic, O., Petridis, S., and Pantic, M., “Bimodal log-linear regression for fusion of
audio and visual features,” in Proceedings of the 21st ACM International Conference on
Multimedia. ACM, 2013, pp. 789–792.

74 Bibliography

Saberian, M. J. and Vasconcelos, N., “Learning optimal embedded cascades,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 2005–2018,
2012.

Sainath, T. N., Rahman Mohamed, A., Kingsbury, B., and Ramabhadran, B., “Deep
convolutional neural networks for LVCSR,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2013, pp. 8614–8618.

Sak, H., Senior, A. W., and Beaufays, F., “Long short-term memory based recurrent
neural network architectures for large vocabulary speech recognition,” CoRR, vol.
abs/1402.1128, 2014.

Salakhutdinov, R., Mnih, A., and Hinton, G., “Restricted boltzmann machines for collab-
orative filtering,” in Proceedings of the 24th International Conference on Machine Learning,
ser. ICML ’07. ACM, 2007, pp. 791–798.

Schmidt, M. N. and Olsson, R. K., “Single-channel speech separation using sparse non-
negative matrix factorization,” in Interspeech, September 2006.

Shen, C., Wang, P., Paisitkriangkrai, S., and van den Hengel, A., “Training effective node
classifiers for cascade classification,” International Journal of Computer Vision, vol. 103,
pp. 326–347, 2013.

Smaragdis, P., “Non-negative matrix factor deconvolution; extraction of multiple sound
sources from monophonic inputs,” in Proceedings of International Conference on Indepen-
dent Component Analysis and Blind Signal Separation (ICA). Springer, September 2004,
pp. 494–499.

Sochman, J. and Matas, J., “Waldboost - learning for time constrained sequential detec-
tion,” in proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2005.

Steinwart, I. and Christmann, A., Support Vector Machines. Springer-Verlag, New York,
2008.

Stevens, K., Acoustic phonetics, ser. Current studies in linguistics series. Cambridge,
1998.

Stevens, S. S., Volkmann, J., and Newman, E. B., “A scale for the measurement of the
psychological magnitude pitch,” The Journal of the Acoustical Society of America, vol. 8,
no. 3, pp. 185–190, 1937.

Tao, Q. and Veldhuis, R., “Threshold-optimized decision-level fusion and its application
to biometrics,” Pattern Recognition, vol. 42, no. 5, pp. 823–836, 2009.

Tibshirani, R., “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society, Series B (methodological), vol. 58, pp. 267–88, 1996.

Tikhonov, A., Goncharsky, A., Stepanov, V., and Yagola, A., Numerical Methods for the
Solution of Ill-Posed Problems. Kluwer Academic Publishers, 1995.

Triki, M. and Slock, D. T. M., “Blind dereverberation of quasi-periodic sources based on
multichannel linear prediction,” in International Workshop on Acoustic Echo and Noise
Control, (IWAENC), September 2005.

Bibliography 75

Tüske, Z., Golik, P., Schlüter, R., and Ney, H., “Acoustic modeling with deep neural
networks using raw time signal for LVCSR,” in Interspeech, 2014.

Vincent, E., Gribonval, R., and Févotte, C., “Performance measurement in blind audio
source separation,” IEEE Transactions on Audio, Speech, and Language Processing (TASLP),
vol. 14, no. 4, pp. 1462–1469, 2006.

Vincent, E., Barker, J., Watanabe, S., Le Roux, J., Nesta, F., and Matassoni, M., “The second
‘chime’speech separation and recognition challenge: An overview of challenge systems
and outcomes,” in IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), 2013, pp. 162–167.

Vincent, E., on Barker, Watanabe, S., Roux, J. L., Nesta, F., and Matassoni, M., “The second
‘CHiME’ speech separation and recognition challenge: Datasets, tasks and baselines,”
in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 126–130.

Viola, P. and Jones, M., “Robust real-time face detection,” International Journal of Computer
Vision, vol. 57, no. 2, 2001.

——, “Rapid object detection using a boosted cascade of simple features,” in Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 1. IEEE, 2001, pp. I–I.

Virtanen, T., “Monaural sound source separation by nonnegative matrix factorization
with temporal continuity and sparseness criteria,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 15, no. 3, pp. 1066–1074, March 2007.

Virtanen, T., Gemmeke, J. F., and Raj, B., “Active-set newton algorithm for overcom-
plete non-negative representations of audio,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 11, pp. 2277–2289, Nov 2013.

Virtanen, T., Plumbley, M. D., and Ellis, D., Eds., Computational Analysis of Sound Scenes
and Events. Springer, 2018.

Watanabe, S., Virtanen, T., and Kolossa, D., “Application of source separation to robust
speech analysis and recognition,” in Computational Analysis of Sound Scenes and Events,
Virtanen, T., Plumbley, M. D., and Ellis, D., Eds. Springer, 2018, ch. 17, pp. 393–428.

Wen, J. Y., Gaubitch, N. D., Habets, E. A., Myatt, T., and Naylor, P. A., “Evaluation of
speech dereverberation algorithms using the mardy database,” in in Proceedings of
International Workshop on Acoustic Echo and Noise Control (IWAENC). Citeseer, 2006.

Weninger, F., Geiger, J. T., Wöllmer, M., Schuller, B. W., and Rigoll, G., “Feature enhance-
ment by deep LSTM networks for ASR in reverberant multisource environments,”
Computer Speech & Language, vol. 28, pp. 888–902, 2014.

Xiao, X., Zhao, S., Nguyen, D. H. H., Zhong, X., Jones, D. L., Chng, E.-S., and Li, H.,
“The ntu-adsc systems for reverberation challenge 2014,” in Proc. REVERB challenge
workshop, 2014, p. o2.

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., and Zweig,
G., “Achieving human parity in conversational speech recognition,” Computation and
Language, 2017.

76 Bibliography

Yoshioka, T., Hikichi, T., and Miyoshi, M., “Dereverberation by using time-variant nature
of speech production system,” EURASIP Journal on Advances in Signal Processing, vol.
2007, p. 065698, Aug 2007.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H., “How transferable are features in deep
neural networks?” in Advances in Neural Information Processing Systems (NIPS), 2014,
pp. 3320–3328.

Zhang, W., Habets, E., and Naylor, P., “On the use of channel shortening in multichannel
acoustic system equalization,” in Proceedings of International Workshop on Acoustic Echo
and Noise Control (IWAENC), 2010, pp. 465–468.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C., Bengio, Y., and Courville, A. C.,
“Towards end-to-end speech recognition with deep convolutional neural networks,”
CoRR, vol. abs/1701.02720, 2017.

Zhu, X. and Ramanan, D., “Face detection, pose estimation, and landmark localization in
the wild,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2012, pp. 2879–2886.

Zou, H. and Hastie, T., “Regularization and variable selection via the elastic net,” Journal
of the Royal Statistical Society, Series B, p. 301–320, 2005.

Zwicker, E., “Subdivision of the audible frequency range into critical bands,” The Journal
of the Acoustical Society of America, pp. 248–248, 1961.

Zwicker, E. and Fastl, H., Psychoacoustics, ser. Springer Series in Information Sciences.
Springer-Verlag Berlin Heidelberg, 1999.

Publications

Publication I

Exemplar-based Recognition of Speech in Highly Variable Noise

Antti Hurmalainen1, Katariina Mahkonen1, Jort F. Gemmeke2, Tuomas Virtanen1

1Department of Signal Processing, Tampere University of Technology, Finland
2Department ESAT, Katholieke Universiteit Leuven, Belgium
antti.hurmalainen@tut.fi, katariina.mahkonen@tut.fi,

jgemmeke@amadana.nl, tuomas.virtanen@tut.fi

Abstract

Robustness against varying background noise is a crucial re-

quirement for the use of automatic speech recognition in ev-

eryday situations. In previous work, we proposed an exemplar-

based recognition system for tackling the issue at low SNRs.

In this work, we compare several exemplar-based factorisation

and decoding algorithms in pursuit of higher noise robustness.

The algorithms are evaluated using the PASCAL CHiME chal-

lenge corpus, which contains multiple speakers and authentic

living room noise at six SNRs ranging from 9 to -6 dB. The

results show that the proposed exemplar-based techniques of-

fer a substantial improvement in the noise robustness of speech

recognition.

Index Terms: automatic speech recognition, exemplar-based,

noise robustness, sparse representation

1. Introduction

While Automatic Speech Recognition (ASR) has been under

intensive research for decades, its widespread adoption is still

being delayed by practical issues. One of the primary problems

is varying background noise. Conventional ASR systems, based

on frame level Gaussian Mixture Models (GMMs), suffer sig-

nificant quality degradation when spectral features become cor-

rupted by noise. Joint modelling of the target speech and noise

in the recognizer, [1], feature compensation [2], and missing

data techniques [3] have been suggested to overcome this prob-

lem. Meanwhile, there are alternative routes, which no longer

employ GMMs to discover the underlying speech content.

In previous work [4, 5], we have described an exemplar-

based recognition framework, where noisy speech is repre-

sented as a combination of multi-frame speech and noise spec-

trogram segments, exemplars. The framework can be used for

signal or feature enhancement, but the best results have been

achieved by using exemplar labels, which directly reveal the

phonetic content of an utterance via their activation weights.

In this paper, we explore the effectiveness of the exemplar-

based framework on highly corrupted speech using the PAS-

CAL CHiME challenge data, in which the speech is not only

reverberated, but also contains phonetically close keywords and

highly variable background noise events.

Concerning our framework, the CHiME data provides a few

interesting options, which were not present in the previous ex-

periments carried out on the AURORA-2 database. First, the

data is stereophonic and high quality. Second, the utterances to

be recognised can be observed within their neighbouring noise

context. Finally, the identity of the speaker is known at the

moment of recognition, so speaker-dependent speech exemplars

can be reliably employed.

The rest of the paper is organised as follows. The general

concepts of our exemplar-based approach are described in Sec-

tion 2. The experimental setup, including the CHiME database,

feature extraction and parameter settings of the baseline sys-

tem are presented in Section 3. The baseline exemplar-based

recognition results are shown and discussed in Section 4. Ex-

periments with two variants; the use of matrix deconvolution

(NMD) and the use of regression to learn the mapping between

words and exemplars, are described in Sections 5 and 6, respec-

tively. The overall discussion of our findings is presented in

Section 7, and the summary and conclusions in Section 8.

2. Recognition with speech and noise
exemplars

Sparse representations have received increasing attention in sev-

eral applications, including image and audio signal processing.

The key concept is that many natural signals can be described

as a linear combination of only a few atoms. Enforcing sparsity

prevents overfitting with too many elements. By allowing only

a small number of activations, we can expect to find the few

dictionary atoms, which best explain the mixed signal.

In noise robust speech recognition, it has been proposed

that speech may be described as a sparse linear combination of

exemplars, and that noisy speech can likewise be described as

a combination of noise and speech exemplars [5, 6, 7]. When

a noisy utterance is represented using these components, the

activations of speech exemplars, together with knowledge of the

words they represent, can be used to recognise the underlying

utterance.

2.1. Sparse representation of noisy speech

The base element of our sparse representation is an exemplar, a

B×T spectrogram block ofB spectral magnitudes of speech or
noise in T consecutive frames, extracted from training data. The
exemplars are indexed by variable e. To simplify the notation,
the columns of each spectrogram matrix are stacked into vector

ae of length B · T . The E exemplars are gathered into the
columns of matrixA to form a basis or dictionary.
The utterance to be recognised is similarly converted to

spectral features. A length T observation window is concate-
nated into vector y. The observation window is represented as
a linear combination of exemplars,

y ≈
E

X

e=1

aexe, (1)

where xe is the weight or activation of each exemplar.

In the baseline exemplar-based recognition system we em-

ploy an algorithm referred as ‘NMF’ (Non-negative Matrix Fac-

torisation) to find the non-negative and sparse activations. The

vectorx of all activations xe in Equation 1 can be determined si-

multanously for multiple observation vectors stored in columns

of matrixY, each producing its own column to the total activa-
tion matrix X. The matrix equation to be solved thus becomes
Y ≈ AX.
We obtain the non-negative activation matrixX while min-

imising the Kullback-Leibler divergence and introducing an

sparsity-inducing L1 penalty for non-zero activations by using

the update rule

X← X⊗ AT(Y/(AX))

AT1+Λ
. (2)

Here ⊗ denotes elementwise multiplication. Matrix divisions
are also elementwise. 1 is an utterance-sized all-ones matrix. Λ
is the sparsity penalty matrix, defined for each activation entry.

For recognition of utterances of arbitrary length Tutt, we
process the utterance inW = Tutt − T + 1 overlapping feature
windows with a step of one frame between windows. Because

the middle frames are estimated several times in consecutive

windows, averaging is applied to the likelihoods of the next step

to compensate for this. For a thorough description of this fac-

torisation method, see [4]. An alternative method for handling

temporal continuity, referred as Non-negative Matrix Deconvo-

lution (NMD), is presented in Section 5.

2.2. Recognition

To decode the signal, we create a Q× Tutt likelihood matrix L,
where each entry Lqτ denotes the probability of speech state q
(1 . . . Q) in frame τ (1 . . . Tutt). This is generated using conver-
sion matrices Bt (Q × E), which describe the linear mapping
of exemplars to states for each frame t of the exemplars. In
our baseline system, we use binary labelling of dictionary ex-

emplars for the conversion. In each exemplar frame only one

state is labelled to be active. The matrices need not to be bi-

nary, though. in Section 6 we will experiment with a technique

to learn the conversion matrices in order to take into account

dependencies between exemplar activations.

After generating the whole matrix L as described in [4],
each of its columns (representing state likelihoods in one frame)

is normalised to unitary sum. The matrix is then decoded using

a Viterbi algorithm and trained transition parameters.

3. Experimental setup

3.1. The CHiME database

The PASCAL ‘CHiME’ Speech Separation and Recognition

Challenge [8] is designed to address some of the problems oc-

curring in real world noisy speech recognition. The challenge

data is based on the GRID corpus [9], where 34 speakers read

simple command sentences. These sentences are of form verb-

colour-preposition-letter-digit-adverb. There are 25 different

‘letter’ class words and 10 different digits. Other classes have

four word options each. In the CHiME recognition task, the fi-

nal score is the percentage of correctly recognised ‘letter’ and

‘digit’ keywords.

CHiME utterances simulate a scenario, where sentences are

spoken in a noisy living room. The original, clean speech utter-

ances are reverberated according to the actual room response,

and then mixed to selected noise sections, which produce the

desired SNR mixture level for each noisy set. The noisy sets

have target SNR levels of 9, 6, 3, 0, -3 and -6 dB.

For modelling/training, there are 500 reverberated utter-

ances per speaker (no noise), and six hours of background noise

data. The development and test sets consist of 600 mixed-

speaker utterances at each SNR level, Additionally, noiseless

(only reverberated) development utterances are available. De-

velopment and test utterances are both given in a strictly end-

pointed format, but also as embedded signals within their noise

context. All data is stereophonic and has a sampling rate of 16

kHz.

3.2. Feature extraction

For the features of our framework, we used spectral magnitudes

of Mel bands. These were calculated from partially overlap-

ping 25 ms frames with a shift of 10 ms between frames. 26

bands were used for the 16 kHz signal (Nyquist frequency 8

kHz), which matches the number of bands used for the default

CHiME MFCC models. Features were extracted separately for

both stereo channels and concatenated, thus effectively dou-

bling the number of feature bands.

3.3. Speech exemplars

We used 5000 speech and 5000 noise exemplars for each win-

dow length T , adding up to E = 10000 total entries. We
created two different types of speech dictionaries: a speaker-

dependent and a speaker-independent one. First, an initial

speech dictionary was created for each speaker, based on a 60%

subset of the noiseless speech training utterances, by extract-

ing exemplars with a random frame shift of 4 to 8 frames. This

produced approximately 10000–17000 partially overlapping ex-

emplars per speaker and window length. For the speaker-

dependent dictionaries, each initial dictionary was reduced to

a fixed size of 5000 exemplars by selecting exemplars such that

there is a maximally flat coverage between words. (In the origi-

nal dictionaries, words from classes with fewer options are over-

represented due to more frequent appearance in the training set.)

A speaker-independent dictionary was created for each win-

dow length, this time by selecting 147–148 (5000/34) exemplars

from each full speaker-dependent dictionary with similar word

probability flattening. These were then combined to a single

5000 exemplar dictionary per window length.

In addition to storing the spectral feature data, state labels

were assigned to the speech exemplars by using transcriptions

acquired by forced alignment. Alternatively, the state informa-

tion was learnt by factorising the remaining 40% of training files

and finding the mapping as described in Section 6.

3.4. Noise exemplars

The selection of noise exemplars has a central role in the sepa-

ration quality of factorisation algorithms. If no matching noise

is found, separation results become unpredictable. Initially, we

created two different types of noise dictionaries. In the first,

5000 noise exemplars were randomly extracted from the pro-
vided background noise data. In the second, 5000 noise exem-
plars were selected by sampling the neighbourhood of embed-

ded utterances to both directions with a shift of 4 to 7 frames,

excluding locations where other test utterances were embedded.

Experiments using the development set (not shown) indi-

cated that using the adaptive noise dictionary yields a 1–4% im-

provement in recognition accuracy compared to the fixed noise

dictionary. In this paper, we will only report results obtained

using adaptive noise.

Table 1: Results of the baseline exemplar-based recogniser on the test set. The rows refer to different exemplar sizes. CHiME GMM

baseline results are also shown. The best result at each SNR level is highlighted.

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.1 70.8 61.3 52.0 39.8 34.7

T = 10 69.9 66.0 58.7 52.4 42.9 37.8

T = 20 77.3 72.8 68.2 62.7 51.1 44.0

T = 30 76.0 73.5 68.2 61.8 52.7 44.7

(a) Speaker-independent results

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10 91.3 88.3 85.8 80.8 71.4 62.3

T = 20 91.6 89.2 87.6 84.2 74.7 68.0

T = 30 88.8 88.1 86.3 82.9 75.1 68.3

(b) Speaker-dependent results

3.5. Processing test utterances

For factorisation, each utterance was read from the endpointed

(‘isolated’) file, and converted into Mel features. After choos-

ing the appropriate speech and noise basis for the utterance,

they were reweighted together to equal Euclidean norm over

Mel bands and exemplars. Band weights from the combined

dictionary were then applied to the utterance features.

The NMF penalty matrix Λ used in finding a sparse repre-
sentation can be set for each activation entry separately. We

used two different values, one for speech exemplars and an-

other for noise. The values were tuned by factorising a sub-

set of development utterances with partially adaptive, speaker-

dependent bases and exemplar size T = 20. The penalty values
were set as 2.0 and 1.7 for speech and noise exemplars, respec-

tively. Generally speaking, higher values of Λ produce better
recognition rates at high SNRs, while lower ones lead to better

performance at low SNRs. We selected values, which give a

slight emphasis to the noisy end. The same sparsity values were

used throughout all experiments.

For state representation, we used the same model as in the

CHiME baseline recogniser. Each word is modelled with 4–10

successive states, and the whole system uses in total 250 states.

The activations were mapped to state likelihoods as explained in

section 2.2. Utterances were decoded using the HVite binary of

the HTK toolkit, modified to pick its state likelihoods directly

from the generated matrix L instead of evaluating state GMMs.

4. Baseline system results

The results of the baseline exemplar-based recogniser are pre-

sented in Table 1. Three different window lengths, T = 10, 20
and 30 are shown, as well as results for both speaker-dependent

and speaker-independent systems. The GMM-based CHiME

baseline recognition results are also shown. When comparing

the results, note that the baseline system uses mono features

without noise compensation other than cepstral mean normali-

sation.

In general, it is clear that the exemplar-based recognition

system outperforms the baseline GMM system in almost all

conditions, especially when using speaker-dependent speech

dictionaries. The lower performance of speaker-independent

dictionaries ensues because a mixed speech dictionary only has

a very limited number of exemplars to match a certain speaker,

while at the same time it has a larger chance of matching to

speech features in the background noise, produced by people

in the living room or by various entertainment appliances. In-

terestingly, the speaker-independent GMM-based system was

more noise robust at low SNRs, possibly because the trained

Gaussians have a larger variance and thus match corrupted

speech features better.

Like in experiments on AURORA-2 [4, 5], using an exem-

plar size of T = 10 was found suboptimal at low SNRs, be-
cause not enough time context can be exploited. T = 20 gen-
erally turned out equal or superior to T = 10. Exemplar size
T = 30 is the most robust against noise, but performs worse
at high SNRs. As the exemplar size increases, the dimension-

ality of feature vectors grows, and it becomes more difficult to

find a matching linear combination of speech exemplars. Using

a higher number of exemplars may alleviate this effect, at the

cost of increased computational complexity.

5. Non-negative matrix deconvolution

As a first variant of the baseline exemplar-based recognition

system, we use Non-negative Matrix Deconvolution (NMD)

rather than NMF to obtain sparse representations of noisy

speech. NMD is a name given to an alternative method to han-

dle temporal continuity between frames. The algorithm has also

been called convolutive sparse coding [10].

While not a deconvolution algorithm in the traditional

sense, the name reflects the principle that a reconstructed ut-

terance is represented as a convolution between activations and

exemplars. This means that all the activations jointly form the

estimated utterance matrix. A few activations at specific tem-

poral locations are typically enough to represent the utterance

features. There are no independent estimates or averaging like

in the sliding window NMF. For the convolutive update algo-

rithm and comparison of behaviour, see [11].

The results for NMF and NMD algorithms are shown in

Table 2. Both methods employ adaptive noise dictionaries,

speaker-dependent speech dictionaries and 300 iterative up-

dates. In NMF, the speech exemplar activations were nor-

malised to unitary sum in each window. In NMD, no normali-

sation was performed. These choices have been found recom-

mendable in earlier work [4, 11].

In these results, NMF produces slightly yet significantly

better recognition rates in all conditions. This is surprising, be-

cause on AURORA-2 we observed the opposite: NMD outper-

formed NMF. Especially the degradation of NMD at T = 30 is
unexpected, because on AURORA-2 it was the best performing

exemplar size [11].

One possible reason is that factorisation parameters were

optimised using NMF. Because the full optimisation process is

computationally heavy, the same parameters were applied di-

rectly to NMD. Therefore the results may favour NMF. We can

also speculate, that the closely related keywords in CHiME are

prone to occasional misclassifications in sparse activations. As

there is more averaging over independent estimates in NMF, the

chance of errors in the final estimate is smaller than in NMD.

Because a 1–2% drop was already present in the cleanest end

of both keyword classes, we can suspect a problem with word

recognition itself, not the noise robustness of NMD.

Table 2: Comparison of NMF and NMD factorisation algorithms in speaker-dependent recognition. The rows refer to different exemplar

sizes. The best result at each SNR level is highlighted.

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10 91.3 88.3 85.8 80.8 71.4 62.3

T = 20 91.6 89.2 87.6 84.2 74.7 68.0

T = 30 88.8 88.1 86.3 82.9 75.1 68.3

(a) NMF

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10 88.3 85.9 83.3 78.8 69.1 59.8

T = 20 90.5 88.6 87.0 81.3 72.1 65.9

T = 30 87.2 86.1 84.0 79.9 70.6 63.3

(b) NMD

6. Mapping from activations to likelihoods

In our baseline system, the mapping from activations to word

state likelihoods is based on labels of dictionary items, which

have been obtained by forced alignment. However, in label-

based mapping of word models there is the inherent problem

that phonetically similar features may appear in different con-

texts. A factorisation algorithm (NMF or NMD) selects the

exemplars with best fitting spectral features, while their labels

may occasionally suggest a misleading word identity. Such an

error will easily result in a misclassification.

We tested an alternative approach, where the mapping was

not assigned according to dictionary labels, but learnt using

regression algorithms on factorised training data labelled by

forced alignment. Labels were assigned to a 40% subset of the

training set for this purpose. Then a regression algorithm was

used to discover optimal mapping matrices between activation

vectors and target states.

We used two different regression algorithms, Ordinary

Least Squares (OLS) and Partial Least Squares (PLS) to learn

the mapping from activations to likelihoods. OLS is straight-

forward minimisation of the L2 error term in mapping. PLS

(also known as Projection to Latent Structures) uses an internal,

usually lower dimensioned space. The original coordinates are

rotated in input and output to the internal space, where the true

mapping is optimised. PLS can tolerate a collinearity of input

data, contrary to OLS. For details, see [12].

The outcome of the recognition with different likelihood

generation methods is shown in Table 3. Results are listed for

recognition with binary labels, and OLS/PLS-trained mapping.

Speaker-independent results are included, because they provide

interesting insight to scenarios where flaws of the original sys-

tem can be countered with learning.

In speaker-independent recognition, uniform improvements

of 4.3–14.1% (absolute) can be seen over the use of binary la-

bels. In these dictionaries, very few instances of each word are

present for a specific speaker. This seems to result in numerous

misclassifications due to exemplars from other words being ac-

tivated instead. When the conversion matrices are learnt — in

this case from a large amount of training material — the actual

correspondence of each exemplar can be discovered with con-

vincing results. Possibly for the abundance of training material

coming from all speakers, OLS is mostly superior to PLS.

The speaker-dependent results are more mixed. Here the

dictionaries only cover one speaker at a time, and thus can in-

clude a broad representation of all words and states. In fact, the

reduction algorithm did not remove any of the letter and digit

exemplars gathered from the training material, because they all

fit in the 5000 exemplar dictionaries. It is also worth noting,

that in this scenario the regression matrices were only trained

from the speaker’s own training subset (200 utterances), which

is quite limited regarding keyword appearance. Under this lim-

ited training data, the performance of all methods was mostly

similar, unlike in the speaker-independent case.

7. Discussion

The CHiME challenge database provided some new insight to

the applicability of our exemplar-based methods. Overall, the

results appear very plausible. Using properly selected algo-

rithms and parameters, our framework reduced the recognition

error rates to less than half of the CHiME baseline system at

all SNRs, in many cases even by significantly larger a margin.

We also achieved improvements in noise robustness over our

previous work on AURORA-2. These gains can be partially at-

tributed to the characteristics of CHiME, which allow construc-

tion of accurate dictionaries for both speech and noise.

When the speaker identity is known and thus matching

speech exemplars can be selected, correct phonetic features can

be picked out reliably even in the presence of other voices.

Our speaker-dependent results were significantly better than the

speaker-independent ones. Using GMMs the difference was not

so clear. Regarding noise dictionaries, we found out that adap-

tive noise exemplar selection can yield high separation quality

under varying noise conditions. Previously there were some

concerns over the feasibility of generating a generic noise dic-

tionary using a practically manageable number of exemplars.

Our CHiME experiments confirm, that adaptive selection can

be used instead of a fixed dictionary. Its implementation should

be feasible in practical applications as well.

One surprising and slightly disappointing aspect was the

subpar performance of NMD in comparison to sliding window

based NMF. It is not certain yet, whether this is a real algorith-

mic difference or merely a result of insufficient parameter train-

ing in NMD. Further experiments and optimisations should be

carried out to find out the true capabilities of each factorisation

algorithm.

More favourable results were achieved in learnt likelihood

mapping. The gains over explicitly assigned labels are positive

by themselves. However, in a larger context this means that well

performing likelihood mappings can be learnt even for features,

which are not directly derived from any specific speech sections.

In other words, we can experiment with any kind of dictionary

generation methods and then find out the phonetic labels even

if none were originally present.

While the separation and likelihood generation algorithms

of our framework have already been improved, more attention

should be paid to optimising the features and state models for

maximal linguistic accuracy. The CHiME data illustrates, how

some closely related words can be difficult to tell apart even un-

der favourable conditions. Although noise robustness is a cru-

cial aspect in practical ASR systems and our framework has

Table 3: Comparison of the recognition with three different likelihood generation methods on the test set. In addition to binary labels,

OLS and PLS regression are evaluated. The best result at each SNR level and for each exemplar size is highlighted.

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.1 70.8 61.3 52.0 39.8 34.7

T = 10
labels 69.9 66.0 58.7 52.4 42.9 37.8

OLS 84.3 77.8 71.4 65.3 56.4 48.6

PLS 82.1 77.1 71.0 64.0 57.0 49.3

T = 20
labels 77.3 72.8 68.2 62.7 51.1 44.0

OLS 85.2 80.5 78.7 71.1 60.2 51.5

PLS 82.9 78.8 74.8 70.1 59.5 50.6

T = 30
labels 76.0 73.5 68.2 61.8 52.7 44.7

OLS 82.8 80.5 76.3 70.7 62.1 54.4

PLS 81.1 77.8 74.3 68.8 61.1 52.4

(a) Speaker-independent recognition

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T = 10
labels 91.3 88.3 85.8 80.8 71.4 62.3

OLS 89.8 86.8 85.0 79.7 70.1 62.7

PLS 90.5 87.8 84.5 80.2 71.3 63.7

T = 20
labels 91.6 89.2 87.6 84.2 74.7 68.0

OLS 91.1 90.0 88.5 85.2 77.6 69.2

PLS 91.9 89.3 88.2 85.0 78.6 69.6

T = 30
labels 88.8 88.1 86.3 82.9 75.1 68.3

OLS 88.8 86.0 86.4 83.3 76.1 69.2

PLS 89.1 85.7 84.8 82.4 77.2 68.8

(b) Speaker-dependent recognition

shown significant advances in achieving it, the ultimate goal of

maximally accurate recognition of speech itself should not be

forgotten or compromised. Proper phonetic state models should

be introduced instead of the current word models to avoid mul-

tiple meanings between similar features, and to make large vo-

cabulary recognition feasible.

8. Conclusions

Exemplar-based methods were presented for recognition of

speech in highly variable real world noise. The main frame-

work and its variants were evaluated using the CHiME chal-

lenge database, which covers actual living room noise at mul-

tiple SNRs. We achieved recognition rates of over 91% at 9

dB, and close to 70% at -6 dB. Long temporal context with 200

ms exemplars, speaker-dependent speech dictionaries and adap-

tive noise dictionary gathering were found the best options for

recognition of noisy speech.

Two separation algorithms, non-negative matrix factorisa-

tion and -deconvolution were used for determining the exem-

plar activations from Mel-scale spectral magnitude features. In

these experiments, factorisation of overlapping windows inde-

pendently from each other performed better than deconvolutive

separation of whole utterances at once.

Learning the mappings from exemplar activations to state

likelihoods using OLS and PLS regression was proposed. These

algorithms were compared to strict binary labels acquired

from forced alignment. Highest gains were seen in speaker-

independent recognition. The original binary labels produced

unreliable results, while mappings learnt from large training

data improved the recognition rates by 4–14% (absolute). In

speaker-dependent recognition the differences were small.

The results surpassed significantly both the CHiME base-

line results and our previous AURORA-2 recognition rates.

While the noise robustness of our system is already relatively

high, parameter optimisation and better speech models would

help in improving the overall recognition quality even further.

9. Acknowledgements

Antti Hurmalainen has been funded by the Academy of Fin-

land. The research of Jort F. Gemmeke was funded by IWT-

SBO project ALADIN contract 100049.

10. References

[1] S. J. Rennie, J. R. Hershey, and P. A. Olsen, “Single-channel
multitalker speech recognition: Graphical modeling approaches,”
IEEE Signal Processing Magazine, vol. 27, no. 6.

[2] P. J. Moreno, B. Raj, and R. M. Stern, “A vector taylor series
approach for environment-independent speech recognition,” in
Proceedings of IEEE International Conference on Audio, Speech

and Signal Processing, Atlanta, USA, 1996.

[3] B. Raj and R. M. Stern, “Missing-feature approaches in speech
recognition,” IEEE Signal Processing Magazine, vol. 22, no. 5,
pp. 101–116, September 2005.

[4] J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-
based sparse representations for noise robust automatic speech
recognition,” Accepted for publication in IEEE Transactions on
Audio, Speech, and Language Processing, 2011.

[5] T. Virtanen, J. F. Gemmeke, and A. Hurmalainen, “State-based
labelling for a sparse representation of speech and its application
to robust speech recognition,” in Proceedings of INTERSPEECH,
Makuhari, Japan, 2010.

[6] G. S. V. S. Sivaram, S. K. Nemala, M. Elhilali, T. D. Tran, and
H. Hermansky, “Sparse coding for speech recognition,” in Pro-
ceedings of IEEE International Conference on Audio, Speech and

Signal Processing, Dallas, USA, 2010.

[7] B. Schuller, F. Weninger, M. Wöllmer, Y. Sun, and G. Rigoll,
“Non-negative matrix factorization as noise-robust feature extrac-
tor for speech recognition,” in Proceedings of IEEE Interna-
tional Conference on Audio, Speech and Signal Processing, Dal-
las, USA, 2010.

[8] H. Christensen, J. Barker, N. Ma, and P. Green, “The CHiME
corpus: a resource and a challenge for computational hearing in
multisource environments,” in Proceedings of INTERSPEECH,
Makuhari, Japan, 2010.

[9] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-
visual corpus for speech perception and automatic speech recog-
nition,” Journal of the Acoustical Society of America, vol. 120(5),
2006.

[10] T. Virtanen, “Separation of sound sources by convolutive sparse
coding,” in Proceedings of ISCA Tutorial and Research Work-
shop on Statistical and Perceptual Audio Processing, München,
Germany, 2004.

[11] A. Hurmalainen, J. F. Gemmeke, and T. Virtanen, “Non-negative
matrix deconvolution in noise robust speech recognition,” in Pro-
ceedings of IEEE International Conference on Audio, Speech and

Signal Processing, Prague, Czech Republic, 2011.

[12] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a
tutorial,” Analytica Chimica Acta, vol. 185, no. 1, 1986.

Publication II

Mapping Sparse Representation to State Likelihoods in Noise-Robust
Automatic Speech Recognition

Katariina Mahkonen.1, Antti Hurmalainen.1, Tuomas Virtanen.1, Jort Gemmeke.2

1Department of Signal Processing, Tampere University of Technology, Finland
2Centre for Language and Speech Technology, Radboud University Nijmegen, The Netherlands

katariina.mahkonen@tut.fi, antti.hurmalainen@tut.fi,

tuomas.virtanen@tut.fi, jgemmeke@amadana.nl

Abstract
This paper proposes learning-based methods for mapping a
sparse representation of noisy speech to state likelihoods in an
automatic speech recognition system. We represent speech as a
sparse linear combination of exemplars extracted from training
data. The weights of exemplars are mapped to speech state like-
lihoods using Ordinary Least Squares (OLS) and Partial Least
Squares (PLS) regression. Recognition experiments are con-
ducted using the CHiME noisy speech database. According to
the results, both algorithms can be successfully used for train-
ing the mapping. We achieve improvements over the previous
binary labeling system, and recognition scores close to 70% at
-6 dB SNR.
Index Terms: automatic speech recognition, sparse representa-
tions, exemplar-based, regression

1. Introduction
There is a general agreement in the speech community about
the need for novel approaches for improving Automatic Speech
Recognition (ASR) in adverse conditions [1]. Recently, there
has been a renewed interest in non-parametric ASR methods
as an alternative for Gaussian Mixture Models (GMMs) [2, 3,
4]. In particular, methods that rely on representing speech as
a linear combination of a small set of dictionary atoms have
been shown to offer higher classification accuracy [2] and better
noise robustness [3].

These methods work by first finding the sparsest possible
linear combination of predefined atoms that describe the ob-
served speech spectra. With each atom associated with a speech
class [2, 4] or Hidden Markov Model (HMM) states [3], decod-
ing is done by using the weights of atoms directly as evidence
of the observed speech likelihoods. In Sivaram et al. [4], the
phone classification was done by training a neural network to
map the weights of atoms directly to phoneme classes.

In this paper, we employ the exemplar-based speech repre-
sentation described in [3], where the dictionary atoms are spec-
trograms extracted from training data. The method has the ad-
vantage that noisy speech can be represented as a linear combi-
nation of speech and noise exemplars, allowing the method to
obtain accurate sparse representations of the speech atoms even
in the presence of corrupting background noise.

The recognition in [3] was done using state labels associ-
ated to the exemplars. This canonical transcription of the ex-
emplars was obtained through forced alignment with a conven-
tional GMM-based recognizer. A downside of using the canon-
ical state association is that the sparse representation is formed
of exemplars that represent the underlying speech states of the

observed speech, i.e. the method is restricted to using exem-
plars that are realizations of speech. Furthermore, the use of
canonical state association of the exemplars is not optimal for
the recognition purpose. It may also require cumbersome han-
dling of silence states, because those are not well represented as
a linear combination of exemplars [3].

To circumvent these issues, we propose in this paper to
learn the mapping between exemplar activations and state
likelihoods using regression methods. Using Ordinary Least
Squares (OLS) and Partial Least Squares (PLS) regression mod-
els, we show that learning the mapping between exemplar acti-
vations and likelihoods can handle phonetic ambiguity and la-
beling errors of dictionary exemplars, especially when enough
training material is available.

The rest of the paper is organized as follows. In Section 2
we introduce our noisy speech representation model, describe
how we retrieve the linear combination of exemplars used to
represent speech and explain how the exemplar activations are
used for speech recognition. In Section 3 we describe the
two regression models used for mapping exemplar activations
to speech state likelihoods. The experimental setup using the
CHiME database is presented in Section 4. Results and discus-
sion follow in Section 5, and conclusions in Section 6.

2. Exemplar-based representation of speech
The framework we use for robust speech recognition is shown
in Figure 1. There are three steps to be done offline, namely
dictionary building, training of conversion matrices and HMM
training. Other phases of recognition are to be done with fixed
system parameters.

We represent noisy speech using magnitudes within Mel-
frequency bands. Magnitudes from T consecutive frames are
concatenated to form a feature vector y. This feature vector is
then modeled as a sparse linear combination of weighted exem-
plar vectors am, m = 1...M from a dictionary matrix A. As
an equation this is:

y ≈
M∑

m=1

amxm = Ax , (1)

where xm is a non-negative weight or activation of them:th ex-
emplar, and x is a vector containing all the activations. A holds
in totalM exemplars from both speech and noise, which allows
representing noisy speech. The details of the representation are
described in [3].

Activation values are obtained with a Non-negative Matrix
Factorization (NMF) algorithm as in [3]. The algorithm min-

Regression matrices B

utterance

Conversion
from x to :s

= B xτlτ

lτ:sMagnitudes

frequency
26 Mel−

state likelihoods
for the whole signal

Factorization
Matrix

y = Ax

Non−negative

Dictionary A

speech exemplars noise exemplars τ

speech

#states

Averaging

Σ

n
o

is
e

s
p
e

e
c
h

x
x

A
c
ti
v
a
ti
o
n
 v

e
c
to

rx

stereo speech signal

HMM training

Decoding

Viterbi

Preprocessing

τ
l

A
n
a
ly

s
is

 s
e
g
m

e
n
ty

Training of

conversion matrices Bτ

Dictionary Training

(2*26*T) x #exemplars(M)

#states x #exemplars(M)

#
 e

x
e
m

p
la

rs
 (

M
)

time frames in the whole signal
size: #states x

le
n
g
th

:
2
*2

6
*T

Figure 1: Speech recognition framework.

imizes the Kullback-Leibler divergence between the observa-
tions and the model plus L1 norm sparsity promoting penalty
using multiplicative update rules. The system processes long
utterances by applying the sparse representation in overlapping,
fixed-length segments, whose length is T frames. Shift of one
frame is used between overlapping segments.

Our system does speech recognition by using a set of states,
which are conceptually similar to the states in conventional
HMM-based recognizers. However, in our system the likeli-
hoods of the states are obtained differently. In the baseline sys-
tem [3], the activations in x are converted to word state like-
lihoods by using labeled state lists of dictionary speech exem-
plars, which are obtained by forced alignment. Element xm
from an activation vector x is copied as a likelihood value to
state likelihood vectors lτ , τ = 1...T , which account to T
frames inside the analysis segment. xm is copied into lτ for
the state that is found as the τ :th element of am:s state list.

In the end, the overlapping state likelihood vectors for each
signal frame from consecutive analysis segments are averaged
and combined to make up a state likelihood matrix L for the
whole utterance. From L, the most probable state sequence is
tracked with a Viterbi decoder.

3. Proposed mapping from activations to
state likelihoods

The goal of the proposed method is to find a mapping from
exemplar activation vector x to state likelihood vector lτ in each
frame τ = 1...T of a speech segment. For simplicity, we restrict
ourselves to linear mappings. The mapping is given as

lτ = Bτx , (2)

where Bτ is the mapping matrix for likelihoods in frame τ .
The mapping is found by using training data consisting of acti-
vations and corresponding target state likelihood vectors, which
are described in more detail in Section 3.1.

In our case the input space is very high dimensional, which
makes the use of conventional methods, such as linear discrim-
inant analysis, problematic. There are methods such as regular-
ized discriminant analysis and shrinkage discriminant analysis
that can be used with high-dimensional inputs. In this study,
however, we explored two regression algorithms for the map-
ping, namely Ordinary Least Squares (OLS) and Partial Least
Squares (PLS) [6]. PLS was chosen since it is known to produce
good results in cases where the input data has a large number of
dimensions that are highly collinear.

3.1. Training the regression matrices

In our case, the input space of regression matrices is of size
5000. It consists of truncated training data activation vectors
xS , which only have the activations that correspond to speech
exemplars of the dictionary A. The target space consists of
250 states. Each training data segment has a labeled length
T sequence of forced alignment target states obtained from its
canonical transcription. Target vectors lτ , τ = 1...T for the
training are binary, having value 1 for the state that is labeled
for the τ :th frame in the said training segment and value zero
for all the other states. All the truncated training data activa-
tion vectors are collected into columns of matrix X, and all the
training data target vectors are gathered into columns of ma-
trices Lτ , τ = 1...T . The regression matrix training with the
above explained input and output data is then performed with
OLS and PLS algorithms.

3.2. Ordinary Least Squares

The Ordinary Least Squares (OLS) method finds a linear model
for mapping the input space to the output space so that mini-
mizes the total L2 error of the model and target values. The
solution of OLS regression with our variables becomes:

Bτ = LτX
T (XXT)−1 . (3)

The problem with the OLS formula above is that the inverse
of a matrix XXT must be calculated, which may be singular or
nearly singular and thus infeasible. To avoid such a situation,
Tikhonov regularization with Γ = αI will be used to stabilize
the inverse matrix, changing the formula to

Bτ = LτX
T (XXT + αI)−1 . (4)

3.3. Partial Least Squares

The Partial Least Squares (PLS) method [6], also called Pro-
jection to Latent Structures, is a regression method designed
for input data with high number of dimensions and with high
collinearity. PLS does not use the input vectors as such, but
constructs another set of basis vectors to do the linear regres-
sion in a new space. PLS represents the input and output data
as matrix decompositions: X = VXSX and Lτ = VLτSLτ .
VX and VLτ hold the new spanning vectors for input and tar-
get data, respectively. SX and SLτ give the coordinate values,
often called scores, of the input and target data with respect to
their new coordinate axes. The number of spanning vectors used

to construct a new space is a dimensionality parameter for PLS,
and it determines the rank of the model.

After iteratively rotating the spanning vectors of the new
bases, VX and VLτ , PLS finds such directions, that the score
matrices SX and SLτ are as identical as possible. Then the
conversion D from SX to SLτ ,and from that, the conversion
matrix Bτ for the original space can be obtained by

Dτ = SLτS
T
X(SXSTX)−1 and

Bτ = VLτDVT
X(VXVT

X)−1 .

In this work, PLS has been implemented with Statistically In-
spired Modification of PLS, namely the SIMPLS-algorithm [7].

4. Experiments
4.1. Experimental setup

To compare the recognition quality of our previous state label
based mapping and the mapping with learned regression ma-
trices, we used the CHiME challenge database [8]. CHiME
is based on the GRID corpus, where 34 speakers read aloud
simple command sentences, consisting of linear grammar and
a vocabulary of 51 words [9]. The GRID sentence structure is
verb-color-preposition-letter-digit-adverb. There are 25 differ-
ent letters and 10 digits. Other classes have four word options
each. In CHiME database, the utterances are reverberated with
a room response, and then mixed into stereo background noise
sampled from a real living room. The task is to recognize words
from ’letter’ and ’digit’ classes in 600 test utterances at six SNR
levels: +9, +6, +3, 0, -3 and -6 dB. Test score is the number of
correctly recognized keywords in the 1200 word instances at
each SNR.

Training set of 300 sentences was used to create a dictio-
nary, and another set of 200 sentences was used for training
regression matrices.

In our test setup, we used features consisting of 26 Mel-
scale spectral magnitudes for each stereo channel, sampled at 16
kHz. Frame length was 25 ms and frame shift 10 ms. Segment
lengths of T = 10, 20 and 30 consecutive frames were used,
thus the total length of a concatenated segment vector was 2 ∗
26 ∗ T (520–1560).

4.2. Dictionaries and factorization

Two different speech dictionary types were generated. For
speaker-dependent dictionaries, noiseless training set of each
speaker was converted into partially overlapping exemplar-
segments by going through the set with a random shift of 4–
8 frames. The full dictionaries of approximately 10000-17000
exemplars were reduced to 5000 exemplars for each speaker /
segment length combination, while maximising the flatness of
included word distribution. In addition, a speaker-independent
speech dictionary of 5000 exemplars was generated similarly
for each segment length by combining 147–148 exemplars from
each speaker, again with an attempt for maximally flat coverage
of words and speakers. The remaining 40% of training utter-
ances were used for learning the regression matrices. Speaker-
dependent dictionaries were trained with utterances of the same
speaker. Independent training used the combined utterances of
all speakers.

In the factorization phase, we extracted a noise dictionary
of 5000 exemplars for each utterance by picking partially over-
lapping pure noise segments from the immediate neighborhood

of the utterance to be recognized. Speech and noise dictionar-
ies were combined, and then re-weighted together to equal Eu-
clidean norms over Mel bands and exemplars. The same band
weights were applied to the utterance features. Factorization
was performed with 300 NMF iterations, either in double pre-
cision CPU or single precision GPU computing. The difference
between these was found negligible.

4.3. Decoding

The activations were converted into state likelihoods by using
the label- and regression-based methods explained in sections
3.2 and 3.3. For the Tichonov regularization in OLS we used
values 10−2, 10−7 and 10−12. PLS-regression was tested with
dimensionalities 500, 650 and 800.

Finally, the likelihood matrices were decoded using a mod-
ified HVite binary from the HTK toolkit. Apart from the exter-
nally calculated state likelihoods, the original CHiME models
were used ’as is’ in decoding. Scoring of letter and digit key-
words was performed with the standard CHiME scripts.

5. Results and discussion
The results of our recognition experiments are summarized in
Table 1. Pane (a) shows the results for speaker-independent
recognition, and pane (b) for speaker-dependent dictionaries.
For each segment length T we show recognition rates for the
previous binary label system, OLS regression and PLS regres-
sion. In addition, the baseline rates from CHiME documenta-
tion are shown on the topmost row [8]. The baseline system
is standard HMM-based recognition using speaker-dependent
GMMs. Similar speaker-independent baseline results were not
available. For regression results, OLS with regularization pa-
rameter 10−2 and PLS with 800 dimensions were selected. In
OLS, the differences between parameters were minimal. With
PLS, using more dimensions improve the results slightly, but
the computation burden becomes very heavy.

In speaker-independent recognition, we notice that regres-
sion provides improvements of 4.3–14.1% (absolute) in results
over binary label. In general, a relative reduction of approx-
imately 20% is present in the error rates. The likely reasons
for this are twofold. First, the speaker-independent dictionaries
are fairly small for this task. 5000 exemplars could suffice for
covering the phonetic variation within the set. However, in the
word-based labelling system, some speaker-state combinations
may be underrepresented, thus similar phonetic features with
different word labels may get activated. Trained regression ma-
trices manage to overcome this problem by activating several
potential states at once. The second reason for the success of re-
gression in this case is that the matrices have been trained from
combined utterances of all speakers. In other words, there is
34 times more training data than in the speaker-dependent case.
Possibly due to this abundance of training data, OLS yields the
highest recognition rate of the tested methods.

Overall, speaker-independent recognition does not seem to
perform very well. It should be noted, though, that the baseline
scores were obtained using speaker-dependent acoustic models.
In CHiME data, a lot of the background noise consists of people
speaking in the living room, or speech coming from television.
Therefore a speaker-independent model will easily pick up in-
accurate speech segments from these external sources.

The overall results of speaker-dependent recognition are
substantially better. In high SNRs, approximately 90% of all
keywords are recognised correctly. This is impressive, because

Table 1: CHiME test results using exemplar-based factorization and three likelihood generation methods. For each SNR and segment
length T , keyword recognition percentages are shown using binary labels, OLS (10−2 regularization) and PLS (800 dimensions). The
baseline system is CHiME reference decoder, which uses mono MFCC features and speaker-dependent GMMs.

(a) Speaker-independent results

SNR (dB) 9 6 3 0 -3 -6
CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T=10
labels 69.9 66.0 58.7 52.4 42.9 37.8
OLS 84.3 77.8 71.4 65.3 56.4 48.6
PLS 82.1 77.1 71.0 64.0 57.0 49.3

T=20
labels 77.3 72.8 68.2 62.7 51.1 44.0
OLS 85.2 80.5 78.7 71.1 60.2 51.5
PLS 82.9 78.8 74.8 70.1 59.5 50.6

T=30
labels 76.0 73.5 68.2 61.8 52.7 44.7
OLS 82.8 80.5 76.3 70.7 62.1 54.4
PLS 81.1 77.8 74.3 68.8 61.1 52.4

(b) Speaker-dependent results

SNR (dB) 9 6 3 0 -3 -6
CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T=10
labels 91.3 88.3 85.8 80.8 71.4 62.3
OLS 89.8 86.8 85.0 79.7 70.1 62.7
PLS 90.5 87.8 84.5 80.2 71.3 63.7

T=20
labels 91.6 89.2 87.6 84.2 74.7 68.0
OLS 91.1 90.0 88.5 85.2 77.6 69.2
PLS 91.9 89.3 88.2 85.0 78.6 69.6

T=30
labels 88.8 88.1 86.3 82.9 75.1 68.3
OLS 88.8 86.0 86.4 83.3 76.1 69.2
PLS 89.1 85.7 84.8 82.4 77.2 68.8

especially the letters are easily confused even by human listen-
ers [9]. Noisy results are also convincing, with an increase of
≈ 30–40% (absolute) over the baseline at lower SNRs. Segment
length 20 appears optimal in its combination of initial recogni-
tion rate and noise robustness.

In this scenario, the results of regression-based likelihood
conversion are mixed. For this test set size, the differences be-
tween binary labels, OLS and PLS cannot be considered signif-
icant with sufficient confidence. The original labeling system
performs well, because the speech dictionary only covers one
speaker at a time and thus can contain a close approximation of
almost every speech pattern of the current speaker. After suffi-
ciently many NMF iterations, a reliable estimate of the under-
lying word is usually discovered, regardless of partial phonetic
ambiguity. As the conversion errors are few to begin with, there
is little to gain with regression. Still, we notice that both algo-
rithms appear to produce slight improvements in the noisy end.
The performance of OLS and PLS is mostly similar. It should
be noted that OLS results were generally identical for all pa-
rameter sizes, while PLS performance depended on the dimen-
sion parameter. More careful tuning of it for different segment
lengths would probably make it superior to OLS.

The training data set available for regression matrix learn-
ing was notably small in speaker-dependent recognition. After
dictionary generation, only 200 training utterances were avail-
able per speaker. Therefore especially letter likelihoods had to
be learned from only a few word instances. Comparing the re-
sults to the speaker-independent case, we can theorize that the
advantages of PLS are higher, when training data is scarce. If
this is not the case, OLS may be a better choice due to its lower
computational cost for similar or higher quality.

6. Conclusions
A new, learning-based method was proposed for mapping
speech exemplar activations into state likelihoods in automatic
speech recognition. By training the conversion matrices with re-
gression algorithms, it is possible to automatically handle pho-
netic ambiguity and resulting labeling problems of dictionary
exemplars. Furthermore, the algorithms allow use of learned
or synthetic exemplars without previous knowledge of their lin-
guistic content.

The methods were tested using noisy speech utterances
from the CHiME challenge corpus. In speaker-independent
recognition, where the original state labeling was unreliable

while regression training data was plentiful, all results improved
by 4.3–14.1% in comparison to the previous labeling system.
In speaker-dependent recognition, no significant increase or de-
crease was present. We conclude that automatically learned
mapping can match or surpass the recognition quality of explic-
itly assigned state labels. Ordinary Least Squares regression
was found straightforward and reliable for the purpose. Partial
Least Squares requires careful parameter selection, but it may
yield higher results especially for limited training data.

7. References
[1] L. Deng and H. Strik, “Structure-based and template-based au-

tomatic speech recognition - comparing parametric and non-
parametric approaches,” in Proc. INTERSPEECH, 2007.

[2] T. N. Sainath, A. Carmi, D. Kanevsky and B. Ramabhadran,
“Bayesian Compressive Sensing for Phonetic Classification,” in
Proc. of IEEE International Conference on Acoustics, Speech and
Signal Processing, Dallas, U.S.A., 2010.

[3] J. F. Gemmeke, T. Virtanen and A. Hurmalainen, “Exemplar-
based sparse representations for noise robust automatic speech
recognition,” accepted for publication in IEEE Transactions on
Audio, Speech and Language processing, 2011.

[4] G. S. V. S. Sivaram, S. K. Nemala, M. Elhilali, T. D. Tran and H.
Hermansky, “Sparse Coding for Speech Recognition,” in Proc. of
IEEE International Conference on Acoustics, Speech and Signal
Processing, Dallas, U.S.A., 2010.

[5] J. F. Gemmeke, T. Virtanen and A. Hurmalainen, “An exemplar-
based framework for noise-robust automatic speech recognition,”
in Proc. INTERSPEECH 2010, Makuhari, Japan, 2010.

[6] P. Geladi and B. R. Kowalski, “Partial Least-Squares Regression:
a Tutorial,” in Analytica Chimica Acta, vol. 185, no. 1, 1986.

[7] S. de Jong, “SIMPLS: An alternative approach to partial least
squares regression,” in Chemometrics and Intelligent Laboratory
Systems, vol. 18, issue 3, Mar. 1993.

[8] H. Christensen, J. Barker, N. Ma and P. Green, “The CHiME
corpus: a resource and a challenge for Computational Hearing
in Multisource Environments,” in Proc. INTERSPEECH 2010,
Makuhari, Japan, 2010.

[9] M. Cooke, J. Barker, S. Cunningham and X. Shao, “An audio-
visual corpus for speech perception and automatic speech recog-
nition,” in Journal of the Acoustical Society of America, 120(5),
2006.

Publication III

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-1

MUSIC DEREVERBERATION BY SPECTRAL LINEAR PREDICTION
IN LIVE RECORDINGS

Katariina Mahkonen
1
, Antti Eronen

2
, Tuomas Virtanen

1
,

Elina Helander
1
, Victor Popa

1
, Jussi Leppänen

2
, Igor D.D. Curcio

2

TEMPLATES FOR DAFX-08, FINLAND, FRANCE

 1
Department of Signal Processing Tampere

University of Technology,

2
Nokia Research Center

Tampere, Finland Tampere, Finland
firstname.lastname@tut.fi firstname.lastname@nokia.com

ABSTRACT

In this paper, we present our evaluations in using blind single
channel dereverberation on music signals. The target material is
heavily reverberated and dynamic range compressed polyphonic
music from several genres. The applied dereverberation method
is based on spectral subtraction regulated by a time-frequency
domain linear predictive model. We present our results on en-
hancing music signal quality and automatic beat tracking accura-
cy with the proposed dereverberation method. Signal quality en-
hancement, measured by improvement in signal to distortion ra-
tio, is achieved for both reverberant and dynamic range com-
pressed signals. Moreover, the algorithm shows potential as a
preprocessing method for music beat tracking.

1. INTRODUCTION

Reverberation is a phenomenon of sound energy persisting with-

in a space due to a multitude of echoes from surrounding surfac-

es. Reverberation impacts the coloring of sounds. Usually the

early reflections of the sound due to walls and other reflectors

around are considered comfortable for human perception. There-

fore, concert halls are designed to have some amount of rever-

beration and artificial reverberation is used as an artistic effect in

music production. However, under heavy reverberation, the intel-

ligibility of speech [1] and pleasantness of music decreases. Fur-

thermore, the accuracy of automatic audio analysis algorithms

decreases [2, 3].
 The process of suppressing reverberation within audio sig-
nals is called dereverberation or acoustic channel equalization.
When there is no information about the acoustic impulse re-
sponse (AIR), dereverberartion is named blind. There are both
time-domain [4,5] and frequency-domain [4,6,7,8,9] techniques
for this task available. Time-domain techniques aim at estimating

an AIR, and suppressing the echoes using signal deconvolution.
There are however several problems in this approach although it
is theoretically appealing. Estimating the AIR and its frequency
domain representation, the acoustic transfer function (ATF), is
fairly difficult as ATF is generally not minimum phase. Also it is
very sensitive to even small deviations to recording geometry,
thus in all practical cases it must be considered time-varying, and
ideally infinite AIR must be estimated as a finite sequence. How-
ever, many techniques, for example [11], use this approach to
remove few early reflections and use a spectral technique for
suppressing late reverberation part. The methods operating pure-
ly in frequency domain have adopted the idea of spectral subtrac-

tion and attenuate amplitudes within spectral bands according to
some criterion.
 Most of the dereverberation studies conducted so far have
considered speech signals, aiming at increasing both the intelligi-
bility of speech for humans and automatic speech recognition
(ASR) performance [4]. Some studies have included music sig-
nals in evaluations of applied dereverberation algorithms [5, 6],
and few experiments have focused primarily on music signals [7,
8]. Wilmering & al. have explored using dereverberation as a
preprocessing step for music onset detection and musical instru-
ment recognition [8]. For evaluation they used single-instrument
recordings generated from MIDI. In [7], Yasuraoka & al. have
performed music dereverberation on monophonic musical re-
cordings and evaluated the results with the log spectral distance
improvement (LSDI). However, such a measure, which uses only
the spectral magnitude does not take into account the phase dis-
turbances, which are a very common source of artifacts in frame-
wise audio processing.

 Our goal in this work is to discover whether the chosen dere-

verberation method is effective in processing polyphonic musical

signals which are deteriorated by dereverberation and subjected

to dynamic range compression (DRC). Many dereverberation

algorithms, including the proposed one, are based on linear pre-

diction (LP), which assumes that reverberation is a linear pro-

cess. However, DRC is often applied to audio recordings, and as

it is a nonlinear operation, it potentially disturbs LP-based dere-

verberation algorithms.

 We analyze how well the applied dereverberation method can

suppress the reverberation in terms of improvement in the signal

to distortion ratio (SDR) [10]. We compare the achieved SDR

improvement (SDRI) for the signals initially deteriorated by re-

verberation and the same signals after subjecting them to DRC to

see how the DRC affects the dereverberation performance. We

also test how the dereverberation affects the accuracy of automat-

ic beat tracking when used as a preprocessing step.
 This paper is organized as follows. In Section 2 the used
dereverberation method is explained. Section 3 describes the per-
formed evaluations, whereas the results are presented in Section
4. Discussion and conclusions complete the paper in Section 5.

2. METHOD

In this section, the proposed dereverberation method, which is
adopted mainly from [11], is introduced. The mathematical mod-
el for the reverberation, model parameter estimation and the
methods used for dereverberating the observed signal are de-

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-2

scribed. This is followed by a brief description of the beat track-
ing method used.

2.1. Spectral Subtraction via Linear-predictive model

The music signal is processed in successive frames which are
partially overlapping and smoothed with a Hanning window. The
spectrum of each frame is computed with the discrete Fourier
transform (DFT). The model we use to describe the spectral

magnitude | ()| of the reverberant signal in each frame n and
each frequency f is formulated as

| ()| | ()| | ()|.

| ()| and | ()| are respectively the spectral magnitudes

of the clean source signal and the reverberation noise part in the

observed signal in the same time-frequency-bin. The reverbera-

tion part of the signal within each frequency f is modeled by a

linear predictive system

| ̂()| ∑ () | ()| , (1)

where P defines a set of frame indices anterior to index n, which

are considered to be involved with the late reverberation within

frame n. Generally P = {1...pmax} if the LP-model order is pmax.

However, some frames can be omitted from the full set P =

{1...pmax} to prevent subtraction of early reflections or to prevent

the LP-solution from being affected by the regular beat of music.

As an alternative to frequencies f given by DFT for the model,

we may prefer to model the average of the spectral magnitude

within some frequency bands, such as frequency bands with cen-

ter frequencies spaced evenly on the perceptually motivated mel-

scale. In this case we replace | ()| in (1) with a mean

spectral magnitude within a frequency band k for f = { fmin
k …

fmax
k }. Then the magnitude of the reverberation noise | ̂()| is

considered equal for all the frequencies f within the frequency

band k.

 The parameters af = [af (1), af (2), … , af (pmax)]
T of the rever-

beration model are estimated separately for each recording and

frequency f or band k. We determined the weight vectors af by

the standard Least Squares solution

 (
)

 ()

where [() () ()]
 and

 () is defined as () [| ()| | ()|
| ()|]T. N is the number of frames in one

recording. Additionally, we calculated vectors af with an algo-

rithm from [15] forcing all the values to be non-negative,

i.e. af (p) ≥ 0 for all p. This constraint was chosen heuristically,

as a physical nature of sound energy is to decay in time through-

out the spectrum almost invariably in natural environments.

 In order to prevent undesirable processing effects, a frequen-

cy dependent parameter β(f) is used in the dereverberation stage

to limit the amount of dereverberation as follows

| ̂ ()| | ()| ()| ̂()|.

The complex spectrum of the dereverberated signal is generated

from the dereverberated magnitude spectrum | ̂ ()| using the

phase information from the originally observed signal spectrum

as

 ̂() | ̂()| () .

Each dereverberated signal frame is produced via the inverse dis-

crete Fourier transform (IDFT) and the frames n ={1 … N } are

combined after IDFT by summing their contributions together

with the overlap-add method.

2.2. Beat tracking

The proposed dereverberation method is also evaluated as a pre-

processing method for a music beat tracker. The beat tracker

combines the elements from the methods presented in [12] and

[13] and is only briefly described here, highlighting the essential

novel parts. Beat tracking starts by obtaining an estimate of the

average tempo of the signal with the tempo estimation method of

[12]. The method computes a pitch-chroma based accent signal

to measure the degree of spectral change and music accentuation

over time. The accent signal is processed by a generalized auto-

correlation function to compute periodicity vectors, and then k–

nearest neighbor regression is applied on the periodicity vectors

to obtain an estimate of the signal tempo. The beat tracking step

takes the tempo as an input and estimates the most likely se-

quence of beat times from the signal, using the effective dynamic

programming routine described in [13]. Compared to the beat

tracking system described in [13], this beat tracker provides su-

perior accuracy which is attributed to the inclusion of the robust

k-nearest-neighbor based tempo estimation step described in de-

tail in [12].

 An obvious way to implement the dereverberation as a pre-

processing for beat tracking is to input the dereverberated signal

to the beat tracker. However, this was not found to give any im-

provement in beat tracking accuracy on the used dataset. On the

contrary, often a decrease in the accuracy was observed. Instead,

it was found better to input the dereverberated signal to the tem-

po estimation step, and to perform the beat tracking step on an

accent signal calculated from the original, non-dereverberated

signal. That is, we perform the accent signal analysis described in

[12] on both the original signal and the dereverberated signal.

The accent signal computed from the dereverberated signal is

used in tempo estimation. Then, the tempo estimate and the ac-

cent signal computed from the original signal are input to the

beat tracking step.

 The accent signal measures the change in the spectrum of the

signal and exhibits peaks at onset locations. The goal of the beat

tracking step is to find the most likely sequence of beat times,

given the tempo estimate and the accent signal. Beat tracking is

performed with the method described in [13]. The dynamic pro-

gramming step takes as inputs the accent signal and the beat pe-

riod, performs smoothing of the accent signal with a Gaussian

window, and then finds the optimal sequence of beat times

through the smoothed accent signal.

3. EVALUATION AND RESULTS OF SIGNAL QUALITY

ENHANCEMENT

Both artificially reverberated and real-world reverberant signals

were used in testing the algorithm. For objective signal quality

evaluation purposes, two sets of non-echoic polyphonic musical

signals were generated from tracks stored in MIDI format using

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-3

the Timidity synthesis software. The tracks used were from clas-

sical, pop and jazz genres. The evaluation set consists of 13

sound segments of length from 7s to 29s, and these sounds were

used for system parameter estimation. The test set consists of 31

segments of 20s to 9min in duration to be used for evaluation of

the dereverberation performance. To resemble a reasonable real-

life concert situation, a room impulse response (RIR) from the

AIR database [14] with a reverberation time T60 ≈ 3s was used

for reverberating the dry music signals. To evaluate the effect of

dynamic range compression, DRC with a compression ratio 3:1

above the threshold -20dB was applied. The timespans for root

mean square (RMS) signal power level estimation for increasing

and decreasing the DRC-gain were τattack= 5ms and τrelease=

200ms respectively.

 As an evaluation metric for these artificially distorted signals

we used the signal to distortion ratio (SDR) [10]. SDR is more

suitable for evaluation of dereverberation performance than the

measures operating purely in the frequency domain, such as the

log spectral distance improvement used in [7]. This is due to the

fact that the SDR-calculation segregates the source+early reflec-

tions part sclean from the evaluated signal s in the time domain by

considering s’s projections to the known clean source signal sdry

and its slightly delayed versions. Then SDR in dB is calculated

as the logarithmic energy ratio of sclean and the remaining noise

part as

|| ||

|| ||
 ,

where s is either the distorted or the dereverberated signal. The

amount of signal quality enhancement was calculated as the

SDR-improvement (SDRI) as

 .

 The optimal values for most of the system parameters were
selected according to SDRIs given by the evaluation sound set
and kept unchanged for producing the results with the test sound
set. According to the SDRIs on the evaluation sound set, forcing
all the linear prediction weights a to be non-negative was found
beneficial. The set P={1,2,3} for the LP-model was selected as
sufficient. Only with very short processing frames, say 20ms,
increasing pmax was found beneficial. Reducing the full set from
P = {1…pmax} was found to decrease the performance. Empha
sizing dereverberation on certain spectral area with frequency

dependent () was tested with ascending, descending and

smooth window-function –like ():s. None of these was found
out to have strong positive effect on dereverberation result, the
weight for the lowest frequencies dominated the result in every

case, thus constant –value was used in the test phase.

 The results with the test set, introduced in Figure 1, show that
dereverberation can be done successfully with this method.
Comparisons of SDRIs when the processing frame length and the

amount of dereverberation are varied are shown in Figure 1 (a)
and (b) respectively. Nonlinear DRC was found not to deteriorate
the dereverberation performance. The average SDR-values prior
to dereverberating are 6.1 for only reverberated and 5.2 for the
reverberated and DRC-processed signals. Thus the achieved
higher SDRIs for DRC-modified signals do not imply higher fi-
nal SDR.

Figure 1: Improvement in signal to distortion ratio due to

dereverberating the signal, when (a) the amount of dere-

verberation, i.e. value of β or (b) the length of a pro-

cessing frame are varied, and the rest of the system pa-

rameters are kept constant. The crosses correspond to

results with signals suffering only from reverberation.

The circles correspond to results with signals subjected

also to DRC.

4. EVALUATION AND RESULTS IN MUSIC BEAT

TRACKING

The dataset for testing the effectiveness of the method as a pre-

processing step for beat tracking comprises 113 musical excerpts

captured with mobile devices in live situations. The music mate-

rial is mainly from mainstream pop, rock, and dance genres, with

a few salsa and progressive tracks. The amount of reverberation

in the recordings varies from highly reverberant to not reverber-

ant and also the amount of DRC varies. It is desired that the

method should not decrease the beat tracking accuracy even if

reverberation is not present, and therefore also non-reverberant

examples are included. Some of the signals contain distortion and

noises from the audience, presenting a very challenging scenario

for beat tracking.

 The ground truth beat annotations were input by human ex-

perts by tapping along to the pieces. The beat tracking accuracy

is measured with the performance criteria described in more de-

tail in [15]. "Correct" denotes the percentage of pulse estimates

where both the period and phase are correct within a 17.5 % tol-

erance. "Accept d/h" allows consistent tempo halving and dou-

bling whereas "Period correct" ignores the phase and considers

only the period, i.e., the tempo.

 The results for beat tracking are depicted in Table 1. The

baseline denotes the results of the beat tracking method when no

dereverberation is applied, and the results in the row "Derever-

berated" denote the results when the tempo estimation is per-

formed on the dereverberated signal. The results are shown for

the best parameter combination, where the length of the pro-

cessing frame was 120ms, P = 1, the number of mel-frequency

(a)

(b)

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-4

bands K used for estimating the reverberation |R(n,k)| for k=1...K

is 128, and β = 0.2. This parameter combination was obtained by

varying the dereverberation method parameters and running the

system on the complete dataset, using the beat tracking accuracy

as the parameter selection criterion. From the results, a small im-

provement is observed, indicating potential of the method as a

preprocessing stage for tempo estimation and beat tracking in

reverberant conditions.

Table 1: Results of beat tracking.

 Correct Accept
d/h

Period
correct

Baseline 58% 65% 81%

Dereverberated 60% 67% 84%

5. CONCLUSIONS

The goal of this paper was to verify whether the proposed dere-

verberation method, which is based on spectral subtraction regu-

lated by a linear predictive model, is effective in enhancing re-

verberant polyphonic music signals. The performance of the

method was evaluated using a signal to distortion ratio improve-

ment measure. Using SDRI, we also investigated the effect of

dynamic range compression on dereverberation performance.

The performance of the method on automatic beat tracking, when

the dereverberation was done in a preprocessing step, was meas-

ured too.

 The results show that music dereverberation can be achieved

by this method and the presence of dynamic range compression

does not deteriorate the performance. Even better, the signal to

distortion ratio improvement turned out to be higher when the

music had been subjected to DRC. Generally the quiet signal

parts are relatively harder to dereverberate than the loud signal

parts. Thus the more even dynamics of DRC-processed music is

beneficial for dereverberation. Also, as the louder signal parts

dominate the value given by SDR-measure, the more stationary

and even dynamics of DRC-processed signals may be an asset.

Anyhow, the absolute SDR-values both before and after derever-

beration were lower for the signals distorted by DRC than for the

signals containing only reverberation. Altogether, this is very

interesting result and it gives us verification that this kind of non-

linearity is not a problem for the linear dereverberation method

used.

 The method shows promise for improving beat tracking accu-

racy in highly reverberant conditions but the improvement is too

small for strong conclusions to be made. Somewhat unexpected-

ly, no improvement in beat tracking accuracy was observed when

beat tracking was performed on the dereverberated signal, alt-

hough one could have anticipated such behavior based on the

reported increase in sound onset detection accuracy in [8]. A

small increase in overall beat tracking accuracy was observed

only when tempo estimation was performed on the dereverberat-

ed signal while performing the beat tracking on the original sig-

nal. A possible explanation for this behavior is that the derever-

beration is successful in enhancing the pulse sensation in music.

Indeed, informal listening experiments indicate that the beat

pulse is slightly better audible in the highly reverberant signals

after dereverberation, which may explain why it helps the tempo

estimation. However, since the beat tracking accuracy is not im-

proved if performed on the dereverberated signal, the dereverber-

ation may be causing too much artifacts on the temporal accent

signal shape for the beat positioning accuracy to improve.

6. REFERENCES

[1] M. Klatte, T. Lachman and M. Meis, “Effects of noise and
reverberation on speech perception and listening compre-

hension of children and adults in a classroom-like setting”,
in Noise and Health, Vol. 12, Issue 49, 2010, pp. 270-282.

[2] T. Wilmering, G. Fazekas and M. B. Sandler, “The effects
of Reverberation on Onset Detection Tasks”, Audio Engi-

neering Society Convention 128, London, UK, May 2010.
[3] T. Virtanen, R. Singh and B, Raj, Techniques for Noise Ro-

bustness in Automatic Speech Recognition, pp. 42-43,
Wiley, 2012

[4] P.A. Naylor, N.D. Gaupitch, “Speech Dereverberation”,
Signals and Communication Technology, Springer, London

2010.
[5] T. Okamoto, Y. Iwaya and Y. Suzuki, “Wide-band derever-

beration method based on multichannel linear prediction us-
ing prewhitening filter”, in Applied Acoustics, Vol.73, Nr. 1,

2012, pp. 50-55.
[6] A. Tsilfidis and J. Mourjopoulos, “Blind single-channel

suppression of late reverberation based on perceptual rever-

beration modelling”, Journal of the Acoustical Society of
America, Vol. 129, Issue 3, March 2011.

[7] N. Yasuraoka, T, Yoshioka, T. Nakatani, A. Nakamura, H.
G. Okuno, ”Music dereverberation using harmonic structure

source model and Wiener filter”, IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2010,

pp. 53-56.
[8] T. Wilmering, M. Barthet and M. B. Sandler, “Dereverbera-

tion of Musical Instrument Recordings for Improved Note
Onset Detection and Instrument Recognition”, Audio Engi-

neering Convention 131, New York USA, October 2011.
[9] K. Lebart, J.M.Boucher, P.N.Denbigh, “A new nethod

Based on Spectral Subtraction for speech Dereverberation”,
Acta Acustica, Vol 87, 2001, pp. 359-366.

[10] E. Vincent, R. Gribonval and C. Févotte, “Performance
measurement in Blind Audio Source Separation”, IEEE

Transactions on Audio, Speech and Language, Vol. 14, Nr.
4, 2006.

[11] K. Furuya and A.Kataoka, “Robust speech dereverberation
using multichannel blind deconvolution with spectral sub-

traction”, IEEE Transactions on Audio, Speech and Lan-

guage Processing, Vol.15, No. 5, July 2007.
[12] A. Eronen, A. Klapuri,“Music tempo estimation with k-NN

regression” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, Vol. 18, Nr. 1, 2010, pp. 50-57.

[13] D.P.W. Ellis, ”Beat tracking by dynamic programming” in
Journal of New Music Research, Vol. 36, Nr. 1, 2007, pp.

51-60.
[14] M. Jeub, M. Schäfer and P.Vary, “A binaural room impulse

response database for the evaluation of dereverberation al-
gorithms” in proceedings of the 16th international confer-

ence on Digital Signal Processing, DSP’09, Greece, 2009,
pp. 550-554.

[15] A. Eronen, A. Klapuri, J. Astola,” Analysis of the meter of
acoustic musical signals”, IEEE Transactions on Audio,

Speech, and Language Processing, Vol. 14, Nr. 1, 2006, pp.
342-355.

[16] C.L. Lawson and R.J. Hanson, Solving Least Squares Prob-
lems, Prentice Hall, 1974, Chapter 23, p.161.

Publication IV

Lifelog Scene Change Detection Using Cascades
of Audio and Video Detectors

Katariina Mahkonen, Joni-Kristian Kämäräinen, Tuomas Virtanen

Department of Signal Processing
Tampere University of Technology

Finland

Abstract. The advent of affordable wearable devices with a video cam-
era has established the new form of social data, lifelogs, where lives of
people are captured to video. Enormous amount of lifelog data and need
for on-site processing demand new fast video processing methods. In this
work, we experimentally investigate seven hours of lifelogs and point out
novel findings: 1) audio cues are exceptionally strong for lifelog process-
ing; 2) cascades of audio and video detectors improve accuracy and en-
able fast (super frame rate) processing speed. We first construct strong
detectors using state-of-the-art audio and visual features: Mel-frequency
cepstral coefficients (MFCC), colour (RGB) histograms, and local patch
descriptors (SIFT). In the second stage, we construct a cascade of the
trained detectors and optimise cascade parameters. Separating the de-
tector and cascade optimisation stages simplify training and results to a
fast and accurate processing pipeline.

1 Introduction

Wearable devices with a video camera, such as Google Glasses, are becoming
commodity hardware and it seems that consumers are willing to push personal
blogs even further: video and audio logging of their lives from the first-person
view (Figure 1), lifelogs. The lifelog applications have recently become under
active investigation, but it is still unclear how to adopt and adapt the existing
video processing techniques. In addition, a huge number of video streams and
on-device processing require computationally economic but fast methods.

One important application for lifeloggers is to automatically annotate im-
portant moments which can be quickly stored, indexed and shared. This can
be achieved by condensing important moments into a short “skim” and thus
research on video skimming (summarisation/abstraction) has recently gained
momentum [1, 2]. The best skimming methods are too heavy for on-device pro-
cessing, but their core components, such as scene detection which produces the
smallest data pieces for skimming, scenes, may be doable. On-device scene change
detection can help fast (on-line) generation of summaries. State-of-the-art scene
detection methods rely on visual information, but another important cue, audio,
provides an alternative modality with orders of magnitude faster processing. Vi-
sual and audio cues are often complementary and therefore many hybrids have

2 K. Mahkonen, J.-K. Kämäräinen et al.

Fig. 1. Video frames from our CASA2 lifelog dataset.

been proposed [3, 4]. However, these works mainly concentrate on maximising
accuracy and omit potential for faster computation.

What is the best approach to combine detectors using features of varying
importance and even from different modalities? In machine learning literature,
a particularly suitable technique for cost (computation time) sensitive learning
are detector cascades introduced by Viola and Jones [5]. State-of-the-art cascade
construction methods do not operate on stages [5], but simultaneously optimise
the whole cascade and its parameters using all training data at once [6–8]. That
sets restrictions on used detectors while in our case they can be very different and
therefore joint optimisation of the methods, cascade structure and its parameters
is too complicated and slow, even impossible. In this work, we take a novel
approach: we adopt the cascade structure but cast the problem as a classifier
combination [9]: the detectors are trained separately as “strong detectors”, then
cascaded based on their complexity (audio detectors first) and finally the cascade
parameters are optimised similar to expert weights in [9]. Our relaxed design
results to simpler cascade construction and training, allows using pre-trained
detectors by others, and still our “soft cascades” achieve fast (super frame rate)
processing and superior accuracy.

2 Related Work

Detector Cascades - Viola and Jones [5] is the seminal work introducing cas-
cades as a machine learning approach to tackle the real-time requirement in face
detection. Their method operated on stages each aiming at high recall and false
positives passed to the next more complicated classification stage. The approach
is effective but sub-optimal and recent holistic approaches optimising detectors,
cascade structure and cascade parameters simultaneously with all training data
can provide better cascades [6–8]. That, however, sets requirements for the de-
tectors which we wish to avoid in our work to be able to to exploit the best
available detectors. We use all training data to train a set of binary detectors,
we combine them using a free-form logical rule (a fixed cascade structure) and
then optimise cascade parameters by exhaustive or beam search. In that sense
our model is close to combining classifiers theory [9] adapted to cascades.

Lifelog Video Analysis Using Cascades of Audio and Video Detectors 3

Combining Audio and Video Cues - Many novel video applications based
on visual features have been proposed [10, 11], but combinations of audio and
visual features seem always superior [3, 4, 12]. In contrast to the previous works,
we do not explicitly engineer a combined audio-video-detector, but take a set
of detectors, train them separately for the specific task, and then construct
and optimise a cascade structure. That is also justified by the fact that lifelog
data is different from the previously used full length movies [13], TV news [14],
filmstrips [3] or the mixture TrecVid data [15]. The lifelog data is raw, abruptly
moving, unedited, first-person-shot video.
Contributions – Our contributions in this work are two-fold: 1) we investigate
how existing visual and audio processing methods work on lifelog data and 2)
introduce “soft cascades” of strong detectors for efficient scene change detection
in super frame rate. We have collected seven hours of real lifelog data and in
our cascades we utilise the best performing cues from various studies: colour
(RGB) histograms [16], local image patch descriptor (SIFT) based visual bag-
of-words [17] and Mel-frequency cepstral coefficients (MFCCs) [18]. Our focus is
on the essential low-level task in video summarising and indexing: scene detec-
tion [19]. We also report interesting results for shot detection [20]. We point out
the following interesting findings:
– In lifelog analysis, audio cues seem to be much more important than in

the previous works on movie or broadcast videos (e.g., the TRECVid cam-
paign [20]) or camcorder recorded home videos. In our experiments, visual
cues often fail in scene detection.

– Video cues, however, provide partially complementary information to audio,
and that can be used to boost the detection accuracy without too much
computational increase using the soft decision cascade paradigm proposed
in this work.

– The cascades can be constructed easily by separating the detector parameter
and cascade parameter optimisation into two separate stages.

3 Decision Cascades

The general goal of constructing cascades is to find a set of detectors (nodes) that
minimise a target function consisting of penalties for accuracy loss, (computa-
tional) cost of evaluating nodes, and a regularisation term to avoid overfitting [6].
Optimisation of such target function requires inter-operability of the detectors,
for example, access to the internal decision tree nodes in [6], i.e. cascade meth-
ods operate on “weak classifiers”. In our case, we may have N very different
type of detectors pre-trained for the same task and we wish to explicitly cascade
them into the computationally fastest order. A same detector may appear mul-
tiple times but its execution is needed only once. In that sense, our approach is
not consistent with the assumptions with the cascading works [6–8], but more
resembles the combining classifiers ideology [9] where “strong classifiers” are
trained and their combination weights optimised. Our combination, however, is
a cascade structure and weights are detection thresholds.

4 K. Mahkonen, J.-K. Kämäräinen et al.

A strong detector cascade is constructed by combining N detectors Di, i =
1, . . . , N that map an input feature space X to a decision t ∈ T in the decision
space T . For simplicity, we may assume that t is binary, i.e. D : X → {0, 1}.
Our scene change detection is also a binary task. A cascade can be represented
as a logical function, such as

D = (D1 ∩D2 ∩ . . .) (1)

or D = (D1 ∪D2 ∪ . . .) (2)

or any disjunction of conjunctions. It is clear, that significant computational
improvement can be achieved if the detector Di returns 0 in (1) or 1 in (2), since
then execution of Dj for j > i is then unnecessary. In particular, if the detectors
are indexed such that the computational complexities increase, Ω(Di)� Ω(Dj)
for i < j, then the cascade can provide remarkable computational speedup.

The problem is that there are a large number of ways to combine outputs
of the detectors, especially when the number of detectors increase, and only a
few are optimal for a certain task. Moreover, the optimal configuration does
not only mean an optimal form of the logical function D, but also optimal
values for each detector’s internal parameters Θi and cascade parameters Φ
(detection thresholds). The only approach guaranteeing the global optimum is
the exhaustive search which easily becomes unfeasible. We propose a doable but
still effective optimisation procedure by the following assumptions:
– The cascade structure is built such that the complexity of detectors increase

gradually: the computationally lightest detector first and heaviest last.
– The detectors are pre-trained: the parameters Θi are optimised indepen-

dently for the given task.
– The task is to optimise the cascade parameters Φ for the fixed structure and

pre-trained detectors.
The first assumption is justified by the fact that it can provide the lowest compu-
tational complexity for similar performance. If the detectors mutually correctly
detect (in case of D as in Eq.(2)) and leave undetected (in case of D as in
Eq.(1)) the same part of the input space, the detection performance can be even
improved in addition to saving in the computational load. The second and third
assumptions are justified by the fact that since the exhaustive search is not fea-
sible, a separate optimisation of each detector still provides the best average
performance and their mutual relationship is compensated on the cascade level
parameter optimisation. A greedy algorithm for the optimisation is given in Al-
gorithm 1. The algorithm is in the sense greedy that it moves thresholds one by
one always selecting the threshold that provides the smallest amount of negative
examples while including one more positive example. This iteration is repeated
until all positive examples are covered.

4 Audio and Visual Cues

For our cascade construction in Section 3 we only need that a selected classifier
outputs classification scores for tested example (yin). For scene detection we

Lifelog Video Analysis Using Cascades of Audio and Video Detectors 5

Data: Target class classification scores yin, for i = 1 . . .M data points and N
classifiers; logical cascade expression in the disjunctive normal form;

Result: Precision(P) – recall(R) curve and cascade parameters Θ for every
point on it.

Init: Θ = [θ1, θ2, . . . , θN] = [∞,∞, . . . ,∞]; // P=R=0

while R < 1 do
for each conjunctive (∧) part of the cascade do

Find the new thresholds θ̂j for participating sub-classifiers Dj that
select one new positive example and count the number of negative
examples introduced.

end

Set θj ← θ̂j based on the component providing the smallest amount of
negative examples;
Store Θ;
Compute and store P and R ;

end

selected the audio and visual cues most successful in earlier works. These cues
are shortly reviewed next.

4.1 MFCC Detector

As audio features we use Mel-frequency cepstral coefficients (MFCC) [18] which
have proved to be useful in many audio information retrieval tasks like speech
recognition [21], audio event detection [22, 23] and music information retrieval [24].

The audio track is analysed in successive, non-overlapping frames (not to be
conflicted with video frames). From an audio frame at time t, one MFCC-vector
x(t) of length Dx is extracted. The context change with MFCC cut detector is
measured according to changes in distributions of vectors x. A mean µd(t) and
variance σd(t) of each MFCC, indexed by d, is calculated within a sliding audio
frame sequence of length Ts preceding time t. A distance between consecutive
audio frames, LMFCC(t), for scene and shot change detection at time t is then
given by

LMFCC(t) =

Dx∑

d=1

∣∣∣∣
µd(t)− µd(t+ Ts)

σd(t) + σd(t+ Ts)

∣∣∣∣
2

(3)

that is slightly different to Fisher’s linear discriminant, but found better in our
experiments.

4.2 Colour (RGB) Detector

Despite of its simplicity, variants of colour (RGB) histogram distance have been
used in the most state-of-the-art shot detection methods [20] and since it is also
one of the computationally cheapest visual features it was selected for our exper-
iments. An RGB histogram is computed from each video frame. The histogram

6 K. Mahkonen, J.-K. Kämäräinen et al.

vector h(t) of the frame t is of length 192, containing the incidence frequencies
of pixel values 1-64 on red, green and blue channel.

A distance LRGB(t) of two consecutive RGB frames is calculated as

LRGB(t) =
∣∣∣∆h(t)−∆h(t− 1)

∣∣∣

+
∣∣∣∆h(t)−∆h(t+ Th)

∣∣∣ .
(4)

The idea is, that gradual change is a natural way of RGB histogram evolving.
Thus we compare the L1 change ∆h(t) = ‖h(t) − h(t − 1)‖1 between RGB-
histograms of consecutive frames to running average change ∆h(t− 1) over Th
preceding frames to see whether the view has changed entirely instead of natural
evolution. The second term in (4) accounts for comparing the current change to
the forthcoming video frames respectively (not available for on-line processing).

4.3 SIFT Bag-of-Words Detector

This approach is computationally much slower than MFCC and RGB based
detectors, but it has been the mainstream approach in detection of visual object
classes [25, 26]. At the core of this method are histograms of codes of local patch
descriptors (SIFT) extracted from each video frame. For patch encoding, a visual
codebook must be constructed from extracted descriptors. It has been reported
that specific codebooks constructed from the input video perform much better
than general codebooks and therefore this approach was adopted by us. The
codebook is constructed from k-means clustering with a fixed k (codebook size).
For each video frame, SIFT descriptors are extracted on a dense grid, assigned
to the best matching codes, and the histogram of codes computed and used
as a feature. To compute a shot or scene change score at time t from SIFT-
histograms b, a plain L1-distance LBOW(t) = ‖b(t)−b(t−1)‖1 is used. Overall,
the L1 distance instead of the Euclidean distance for evaluating the difference
between consecutive histograms, both RGB and BoW detectors, worked clearly
best. The settings were selected based on the best found in unsupervised image
classification using SIFT bag-of-features [27].

5 Experiments

Data, experiments, performance measures, and results for the selflog video scene
detection are reported in this section. Since the same method also applies for
shot detection (camera switched) we also report our shot detection results.

5.1 Captured selflog data set

We have collected over 7 hours of video data for our evaluations (Fig. 1). The
videos were shot with a small spy camera with the frame rate 15 frames/second
and frame size of 176x144 pixels. The frames are YUV420p encoded with h263

Lifelog Video Analysis Using Cascades of Audio and Video Detectors 7

compression and stored in an mp4 container. The stereo sound tracks are recorded
by a pair of in-ear microphones with 44.1kHz sampling rate and stored without
compression.

The database contains video from 23 different types of environments (scenes),
6 - 16 shootings from each: amusement park, basketball game, beach, bus, cafe-
teria, inside car, family yard, football game, hallway, home, inside train, nature,
office, outdoor festival, outdoor market, party, pub/club, railway station, restau-
rant, shop, sports event, at street and track’n’field.

The video was annotated for shot and scene detection. Shot detection cor-
responds to the situation that the scene remains the same, but the camera was
turned off and turned back on in a different location in the same scene. The scene
change corresponds to the situation that the user moves to another environment.

In our evaluation, the automatically found change points were compared
to the known true scene and shot change times (groundtruth). If the found
change point was within 0.25 seconds from a true change point, the detection
was assigned correct.

5.2 Performance Measures

To compare the performances of the used shot and scene detection methods,
we use precision, P = tp/(tp + fp), recall R = tp/N where tp stands for the
number of correct shot or scene changes depending on the task, fp stands for
the number of incorrectly identified change points and N is the total number
of true change points in the video. A combination of R and P , an F-measure
F = 2 ·R · P/(R+ P), is also used as it simplifies comparison by describing the
detection performance with a single value. We are also taking the computation
time needed by different systems into account. The computation time CT is
given as a number relative to the length of a video, i.e. for CT = 1 the system
works tightly in real time.

5.3 Detector parameters

To avoid overfitting to our test data, we trained the detector parameters with
separate material of home videos collected before the selflog data. The data is
similar to lifelog data, but does not contain the same scenes and was recorded
with a standard-quality hand-held camcorder.

In the colour histogram based RGB detector the only method parameter is
the length of the time interval to calculate the average change of consecutive
RGB-histograms TRGB. The value TRGB = 10 video frames was found best.

In the BoW detector the main method parameter is the SIFT codebook size.
We also experimented different detectors and descriptors, but the dense SIFT
in the VLFeat toolbox (http://vlfeat.org) was found the best. The codebook is
computed from the input data and the optimal codebook size was DSIFT = 100.

Based on experiments with the homevideo data, the following MFCC param-
eters were selected:

8 K. Mahkonen, J.-K. Kämäräinen et al.

– audio window length = 80 ms
– number of Mel-frequency bands = 80
– number of MFCCs, Dx = 20
– audio frame sequence length, Ts = 10 s

The number of Mel-frequency bands and the number of used MFCCs did not
make a big difference in performance. The audio frame length and the sequence
length for distribution estimation were more sensitive. Another finding was that
the longer the audio window and the longer the sequence length, the better is the
performance. However, to be able to detect also short scenes, these parameters
were restricted.

5.4 Results

Fig. 2. Precision-recall curves for the single MFCC, RGB and SIFT detectors in scene
detection (left) and shot detection (right).

Single detectors - The results of the single detectors in scene and shot detec-
tion are shown in Figure 2. It is noteworthy that all detectors have very different
behaviour with respect to precision and recall. The striking result, however, is
that for selflog data the audio cue outperforms the both visual cues with clear
margins and being more prominent in scene detection where it is almost twice
better. The result is quite opposite to state-of-the-art results with pre-edited
material such as movies and TV programs [13, 14, 3, 15].

Detector Cascades - The results for various cascades are shown in Table 1
including the single detectors. The single audio MFCC detector performs sur-
prisingly well (F-score: 0.84), but as indicated by the different behaviour of the
single precision-recall curves in Figure 2 the other detectors also provide strong
complementary information about scene changes. This is evident as the optimal
relationship is AND (∩) and for the two cascades MFCC and RGB and MFCC
and SIFT the results are 0.90 and 0.95: when two detectors make a wrong de-
cision the third corrects it. Note that for the both cases the computation time

Lifelog Video Analysis Using Cascades of Audio and Video Detectors 9

Table 1. Selflog scene and shot detection cascade performances. Performances are re-
ported as the best F -scores in the precision-recall curve with the corresponding cascade
computing time (CT) (processing time in seconds per second of video).

Cascade Scene detection Shot detection

F-score CT (s/s) F-score CT (s/s)

MFCC only 0.84 0.01 0.46 0.01
RGB only 0.40 0.43 0.31 0.43
SIFT only 0.52 184.00 0.37 184.00
MFCC ∪ RGB 0.85 0.44 0.46 0.44
MFCC ∩ RGB 0.90 0.02 0.49 0.03
MFCC ∪ SIFT 0.84 184.00 0.45 184.00
MFCC ∩ SIFT 0.95 0.30 0.51 0.81
RGB ∩ SIFT 0.68 1.30 0.42 1.30
MFCC ∩ RGB ∩ SIFT 0.91 0.30 0.48 0.38
(MFCC∩RGB) ∪ (MFCC∩SIFT) 0.96 0.30 0.52 0.31
(MFCC∩RGB) ∪ (MFCC∩SIFT) ∪ (RGB∩SIFT) 0.96 0.30 0.53 0.32

is 2× faster than real-time (super frame rate). The best scene detection accu-
racy is F-score 0.96 which is achieved with classifiers trained with completely
separate data and only optimising the cascade parameters. The resulting clas-
sifier is a disjunction of the two available strong conjunctions and achieves the
performance with computation time 0.30 seconds needed to process 1.0 seconds
of video input (> 3× frame rate). It is noteworthy that the SIFT detector is
essential for the performance while it is active only in very few cases as apparent
by comparing its single detector and cascade detector computing times.

The same findings hold also for shot detection (best single 0.46, best cascade
0.53) which is much more difficult task in the case of lifelog data.

It should be noted that the selection of cascade parameters is not critical for
good performance, since they mutually compensate each other providing smooth
and intuitive performance change.

6 Conclusions

The ultimate goal of our work is fast streaming, storing, indexing, retrieval and
sharing of selflog video produced by millions of users using their wearable video
capturing devices. Past research on video analysis has provided effective but of-
ten too slow methods for the above tasks. In this work, we sought to improve the
existing techniques with the help of two hypotheses: multiple video modalities
provide complementary information and cascade type processing improves effi-
ciency. The both assumptions were found valid in our experiments where scene
and shot detection from real lifelog recordings of more than seven hours were in-
vestigated. The strikingly important role of audio, complementary of audio and
video, and finally the optimised cascade structure provided us superior detection

10 K. Mahkonen, J.-K. Kämäräinen et al.

accuracy in super frame rate. These results indicate that cascades are the tools
of future, fusing even more modalities (GPS, accelerometer, gyroscope, compass,
barometer, proximity etc.) can be beneficial, and computationally light methods
can be constructed from the existing methods. In our future work, we will follow
these findings and investigate a light-weight cascade for on-line video skimming
and scene indexing.

References

1. Gygli, M., Grabner, H., Riemenschneider, H., Gool, L.V.: Creating summaries
from user videos. (2014)

2. Zhao, B., Xing, E.: Quasi real-time summarization for consumer videos. In: Proc.
of the CVPR. (2014)

3. Kyperountas, M., Kotropoulos, C., Pitas, I.: Enhanced eigen-audioframes for au-
diovisual scene change detection. 9 (2007)

4. Song, Y., Zhao, M., Yagnik, J., Wu, X.: Taxonomic classification for web-based
videos. In: Proc. of the CVPR. (2010)

5. Viola, P., Jones, M.: Robust real-time face detection. Int J Comput Vis 57 (2001)
6. Chen, M., Xu, Z., Weinberger, K., Chapelle, O., Kedem, D.: Classifier cascade for

minimizing feature evaluation cost. In: AISTATS. (2012)
7. Wu, T., Zhu, S.C.: Learning near-optimal cost-sensitive decision policy for object

detection. In: ICCV. (2013)
8. Shen, C., Wang, P., Paisitkriangkrai, S., van den Hengel, A.: Training effective

node classifiers for cascade classification. Int J Comput Vis 103 (2013) 326–347
9. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classfiers. IEEE

PAMI 20 (1998)
10. Wang, M.: Movie2comics: Towards a lively video content presentation. IEEE

Transactions on Multimedia 14 (2012) 858–870
11. Yip, S.: The automatic video editor. In: ACM Multimedia. (2003) 596–597
12. Chen, S.C., Shyu, M.L., Liao, W., Zhang, C.: Scene change detection by audio and

video clues. In: ICME (2). (2002) 365–368
13. Pfeiffer, S., Lienhart, R., Effelsberg, W.: Scene determination based on video and

audio features. In: Multimedia Tools and Applications. (1999) 685–690
14. Jiang, H., Lin, T., Zhang, H.: Video segmentation with the assistance of audio

content analysis. In: IEEE International Conference on Multimedia and Expo
(III). (2000) 1507–1510

15. Smeaton, A.F., Over, P., Kraaij, W.: Trecvid: Evaluating the effectiveness of in-
formation retrieval tasks on digital video. In: Proceedings of ACM Multimedia,
New York, USA (2004)

16. Gargi, U., Kasturi, R., Strayer, S.H.: Performance characterization of video-shot-
change detection methods. 10 (2000)

17. Lowe, D.G.: Distinctive features from scale-invariant keypoints. Int J Comp Vis
60 (2004) 91–110

18. Steven B. Davis, P.M.: Comparison of parametric representations for monosyl-
labic word recognition in continuously spoken sentences. IEEE Transactions on
Acoustics, Speech, and Signal Processing ASSP-28 (1980) 357–366

19. Fabro, M., Boszormenyi, L.: State-of-the-art and future challenges in video scene
detection: a survey. Multimedia Systems 19 (2013) 427–454

Lifelog Video Analysis Using Cascades of Audio and Video Detectors 11

20. Smeaton, A., Over, P., Doherty, A.: Video shot boundary detection: Seven years
of TRECVid activity. Computer Vision and Image Understanding 114 (2010)
411–418

21. L. R. Rabiner, B.J.H.: Fundamentals of Speech Recognition. Prentice Hall (1993)
22. Heittola, T., Measaros, A., Virtanen, T., Eronen, A.: Sound event detection in mul-

tisource environments using source separation. In: Workshop on Machine Listening
in Multisource Environments, Florence, Italy (2011) 36–40

23. J.-J. Aucouturier, B. Defreville, F.P.: The bag-of-frames approach to audio pattern
recognition: A sufficient model for urban soundscape but not for polyphonic music.
Journal of Acoustical Society of America 122 (2007) 881–891

24. Downie, J.: Music information retrieval. Annual Review of Information Science
and Technology 37 (2003) 295–340

25. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: Proc. of the ICCV. (2003)

26. Csurka, G., Dance, C., Willamowski, J., Fan, L., Bray, C.: Visual categorization
with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer
Vision. (2004)

27. Tuytelaars, T., Lampert, C., Blaschko, M., Buntine, W.: Unsupervised object
discovery: A comparison. Int J Comput Vis 88 (2010)

Publication V

CASCADE PROCESSING FOR SPEEDING UP SLIDING WINDOW SPARSE

CLASSIFICATION

Katariina Mahkonen, Antti Hurmalainen, Tuomas Virtanen, Joni-Kristian Kämäräinen

Department of Signal Processing, Tampere University of Technology, Finland

ABSTRACT

Sparse representations have been found to provide high

classification accuracy in many fields. Their drawback is the

high computational load. In this work, we propose a novel

cascaded classifier structure to speed up the decision process

while utilizing sparse signal representation. In particular,

we apply the cascaded decision process for noise robust

automatic speech recognition task. The cascaded decision

process is implemented using a feedforward neural network

(NN) and time sparse versions of a non-negative matrix

factorization (NMF) based sparse classification method of

[1]. The recognition accuracy of our cascade is among the

three best in the recent CHiME2013 benchmark and obtains

six times faster the accuracy of NMF alone as in [1].

Index Terms— Automatic speech recognition, non-

negative matrix factorization, cascade classification, cascade

processing

I. INTRODUCTION

Classification based on sparse representations (SR) [2],

originally invented for image processing [3], has raised to

be very popular and provides state-of-the-art results in many

disciplines. The model is specifically suitable for modeling

data that consists of multiple sources. Recent application

fields are for example classification of handwritten characters

[4], [5], tracking and classification of vehicles in videos

[6], MRI image analysis [7] and EEG signal analysis [8].

Some works [2], [9] no less optimize the sparse object

representation specifically for classification.

In the field of audio processing SR have been also

widely used, for example in audio classification [10], source

separation [11] and content analysis [12]. Also, in the

recent CHiME 2013 evaluation [13] the best noise-robust

automatic speech recognition (ASR) results [1], [14], [15],

[16] were achieved using the sparse non-negative matrix

factorization (NMF) method of [1] in combination with two

other methods. However, the drawback of SR acquired by it-

erative non-negative matrix factorization (NMF) algorithms,

despite the work on faster algorithms [5], [17], is their high

computational demand.

On the other hand, in the field of computer vision, for

example, in face recognition [18] and in object detection

[19], cascade processing has been succesfully used to boost

Fig. 1. Block diagram of the proposed ASR cascade.

the decision process. Whenever the difficulty of the classifi-

cation task of the input is not known beforehand, the amount

of processing can be regulated with a cascade. The simple

decisions can be made with less computing while the most

sophisticated methods are used at ambiguous cases.

In this work, our aim is to bring spectrogram factorization

based noise robust automatic speech recognition closer to

real time, while not sacrificing accuracy. Our strategy to

reduce computational load is to build a cascade of classifiers

(Figure 1), where the amount of computation is determined

according to the interpretability of the input. The decision

about instantaneous speech content can be made with simple

classifiers if the certainty of the estimate is high enough.

Estimation certainty assessment in automatic speech recog-

nition has been studied e.g. in [20] and [21], but we propose

a simple probability score (section III-C). For our cascade,

we develop a time sparse version (TS-NMF) of the NMF

method of [1]. We present also an evenly time sparse NMF

(ETS-NMF) as a comparison to the cascade structure.

II. DECISION CASCADE

A decision cascade (DC) for a classification task con-

stitutes of multiple stages where on each the confidence

on the input class is evaluated and the decision about

completion of the recognition process can be made. This

stage-wise processing accounts for the high computational

savings that are possible with a DC. A DC is able to preserve

the recognition accuracy while at the same time evading

redundant computation via early decisions. The effectivity

of a DC results from the fact that the easily distinguishable

inputs can be recognized with less processing, i.e. with fast

classifiers, while heavier and the most accurate methods

need to be executed only for the most ambiguous inputs.

The general cascade decision process for classification is

presented in Algorithm 1.

There are two functions of special importance within the

algorithm, namely f READY
s (I) ∈ {false, true} and f CLASS

s (I) ∈
C (class labels). f READY

s is used to decide whether the

decision is ready at stage s, and f CLASS
s gives the class

prediction at the stage s.

Algorithm 1: Decision cascade of N stages.

Input: an item x to be classified

Output: class decision C

1 Set READY = false

2 Set S = 0
3 while READY 6= true ∧ S ≤ N do

4 S = S + 1
5 C = f CLASS

S (x)
6 READY = f READY

S (x)

7 return C

III. PROPOSED SPEECH RECOGNITION

CASCADE

In ASR a speech signal is converted to sequence of words.

Each word is modeled as sequence of states, and likelihoods

Lt of states are estimated in short frames, indexed by t.
Due to continuous nature of audio signal, the final class

decisions are made following a hidden Markov model of the

grammar by the Viterbi algorithm, in contrast to independent

classification in Algorithm 1 used in [18] and [19].

The stages of the proposed cascade are used to provide

increasingly accurate state likelihood estimates, which are

accumulated into a state likelihood matrix Ls. Thus the line

5 of Algorithm 1 is replaced with Ls
t = fL

s (xt), where

Ls
t ∈ RNc×1 and Nc is the number of states in the grammar.

The proposed ASR cascade aims at speeding up a com-

putationally intensive, but well performing method based on

SR and NMF. The cascade works maximally at 6 stages

as shown in Figure 1. The first stage uses a NN and

subsequent stages use TS-NMF method up to five times to

make f READY
s = true if possible. The order of methods within

the cascade is defined by the computation time they need to

extract the state likelihood information.

Both methods in our cascade extract spectral features of

the audio in a 25 ms frame after every 10 ms.

III-A. Neural Network classifier

The NN classifier at the first stage of the cascade has

a topology of two hidden layers, 200 neurons each, and

the output layer with Nc neurons. All the neurons use the

sigmoid function. The input to the NN is formed of 40 Mel

cepstrum coefficients (MFCCs) and delta MFCCs, together

80 features.

Interpretation of NN-output values as probabilities has

been investigated in several works, e.g. [22], [23], [24], but

we convert NN outputs yt to Bayesian posterior probabilities

of states as

LNN
t (c) = P

(
yt(c) | c

)
P (c)

/
P
(
yt(c)

)
, (1)

with equal priors P (c). For each class c ∈ C, a his-

togram based probability density functions (PDF) P (y(c))
and P (y(c)|c) are collected from the training data.

III-B. Time Sparse NMF classifier

The later stages of our decision cascade adapt a time

sparse versions (TS-NMF) of the original NMF classifier [1].

The NMF classifier processes the input signal in windows

of T = 20 frames. Spectral magnitudes from B = 40 Mel

bands from the T frames of a window make an input vector

xt of length BT for NMF classifier.

A dictionary D ∈ R(BT)×Nd

+ of Nd = 10000 such

example vectors from training material is used for modeling

the input as x̂t = Dwt, where wt holds non-negative scores

of dictionary elements. The scores wt are solved iteratively

minimizing Kullback-Leibler divergence between x̂t and xt,

which is computationally the heaviest part of the method.

Half of the example spectrograms in the dictionary are taken

from speech content and the other half from the noise part

of training data, notated as D =
[
Dspeech,Dnoise

]
.

State likelihood estimation from scores wt is done accord-

ing to equation (2). Each example vector in Dspeech entails

state labels for T consecutive frames. The labels are encoded

as binary matrices Ld ∈ {0, 1}Nc×T to allow mapping the

scores wt to state likelihoods. An NMF state likelihood

window LNMF
t spans over time points t . . . t + T − 1 and

is given by

LNMF
t =

Nd/2∑

d=1

Ld ·wt(d). (2)

In this work we are targeting to reduce computational

load, while not giving up the accuracy achievable with a

computationally heavy method. The NMF in [1] performs

the classification with overlapping windows where an NMF

window is factorized for each frame t = 1, 2, 3, For
evenly time sparse NMF (ETS-NMF) a new NMF window

is factorized at uniformly spaced frame indices, while in TS-

NMF the NMF windows to be factorized can be selected

freely. When evaluating ETS-NMF, we found out that with

sparsity p = 3, i.e. factorizing NMF windows for every third

t, ETS-NMF produces enough state likelihood information

to achieve the accuracy of [1]. Thus in our ASR-cascade,

the NMF factorization is allowed only for every third t.

Fig. 2. Schema of constructing state likelihoods by NN - TS-NMF cascade processing. The state likelihood matrix LNN

(white background) is computed at the first stage. The colored curves represent values of Cs after each stage s. The threshold
θ is shown with the straight line. Where Cs does not exceed θ, NMF windows (shaded rectangles) are taken into use by

stage s+ 1. Red bars show the value of nt at each t.

III-C. Cascade decisions

To decide whether the stage s + 1 should be used to

improve state likelihood estimations, the function

f READY(Ls, t, θ) =

{
true if Cs

t ≥ θ

false else
, (3)

is used. f READY makes its decisions based on state likelihood

matrix Ls and threshold θ. In (3), Cs
t represents the certainty

of the information in Ls at time point t as

Cs
t =

1

2l

t+l−1∑

τ=t−l

maxLs
τ

The state likelihoods Ls
t are calculated as a weighted sum

of likelihood information acquired from LNN given by the

NN stage and sets
{
LNMFi

}
for TS-NMF stages i = 2 . . . s

as

Ls
t = (1− nt

m
) · LNN

t +
nt

m
·
[

s∑

i=2

T∑

τ=1

LNMF(i−1)
t−τ+1 (τ)

]

1

,

where [·]1 denotes normalization to the ℓ1 length 1. nt

is determined by the number of overlapping NMF state

likelihood windows at t and m = 12 is used, as it gave

the best results. The procedure is elucidated in Figure 2.

The selection of points τ for NMF windows LNMF(s−1)
τ

at each TS-NMF stage s is done as follows. First, each

interval of t where f READY(Ls, t, θ) = false is enlarged

back- and forward by T/2 frames to yield target domain

intervals for the new NMF windows. For each interval

τα . . . τω , J = ⌈(τω − τα + 1)/T ⌉ new NMF window

slots τj , j = 1 . . . J , from U unused slots are selected

if possible. The K = U − J slots are left unused as

evenly distributed as possible. Finally a new set of NMF

factorizations is computed to produce the set of state like-

lihood windows
{
LNMF(s−1)
τj for j = 1 . . . J

}
. New NMF

state likelihood windows are generated at subsequent stages

until f READY(Ls, t, θ) = true ∀ t or the end of the cascade

is encountered. In Figure 2 the set
{
LNMF1
τj for j = 1 . . . 6

}

produced at the second stage of the cascade is illustrated as

the uppermost row of shaded NMF windows.

III-D. Utilizing state unions

In the state space of the used grammar there are many

states representing the same phone in different words. For the

cascade, it is more advantageous to report the likelihood of

a phone instead of a designated state among the phonetically

similar states. Thus, considering correlations of the NN out-

put on training data and the states’ power in discriminating

words, we selected 11 groups to be used as unions. States

of the grammar, marked as ‘word‘state, within unions are

U1 = {‘b‘2, ‘v‘2}, U2 = {‘b‘3, ‘v‘3, ‘p‘3, ‘g‘3, ‘d‘3}, U3 =
{‘c‘3, ‘t‘3}, U4 = {‘b‘4, ‘v‘4, ‘p‘4, ‘g‘4, ‘d‘4, ‘e‘4, ‘c‘4, ‘t‘4},
U5 = {‘a‘4, ‘j‘4, ‘k‘4}, U6 = {‘i‘4, ‘z‘2}, U7 = {‘m‘1, ‘n‘1},
U8 = {‘m‘4, ‘n‘4}, U9 = {‘f ‘1, ‘s‘1}, U10 = {‘g‘1, ‘j‘1} and

U11 = {‘q‘4, ‘u‘4}.
In Ls

t the likelihoods of the states within an union are

substituded with the highest of them as

Ls
t (c ∈ Ui) = max {Ls

t (c ∈ Ui)}
for i = 1 . . . 11. The keyword accuracies of both the NMF-

and NN-recognizers outside the cascade when using state

unions are reported in the experiments (Table I).

IV. EVALUATION

The evaluation is done using CHiME2013 automatic noisy

speech recognition challenge track 1 data [13], which con-

sists of utterances from 34 speakers in highly non-stationary

background of domestic noise. Average SNR varies from

−6 dB to 9 dB. The spoken sentences have strict grammar

with 51 words. The state space used to represent the words

is defined by the CHiME2013 challenge baseline system

and has 4-10 states per word, Nc = 250 states in total.

The speciality of this data set is the task of recognizing

’coordinates’ composed of a letter and a number, e.g. ’D7’.

There are 500 and 600 sentences per each SNR level in the

training and evaluation set, respectively. The training data is

used for training the NN and picking the example vectors for

dictionary D of NMF. The presented recognition accuracies

are achieved with the evaluation data set.

0 5 10 15 20 25 30 35

74

78

82

86

90

94

Amount of required NMF computation (%)

K
e

y
 w

o
rd

 r
e

c
o

g
.

a
c
c
.

(%
)

0 5 10 15 20 25 30 35

74

78

82

86

90

94

Amount of required NMF computation (%)

K
e

y
 w

o
rd

 r
e

c
o

g
.

a
c
c
.

(%
)

The proposed cascade

Time sparse NMF + SU

Time sparse NMF
clean

SNR=9dB

6dB

3dB

0dB

−3dB

−6dB

0.57

0.31

0.51

0.50

0.58

0.56

0.50

θ = 0.24

0.24

0.24

0.24

0.24

0.24

0.24

0.24

θ = 0.51

Fig. 3. The keyword recognition accuracies of the proposed cascade versus its computational load. The curves build up by

changing the threshold θ of fREADY in eq. (3). The axes on the left show the different SNR levels separately and the average

performance is shown on the right. Triangles show average accuracies of ETS-NMFp with sparsities p = 3, 4, 5, 7, 10, 20.

IV-A. Performance with ETS-NMF, NN and state unions

The keyword recognition accuracies on evaluation data

with ETS-NMF and the used NN classifier outside the cas-

cade are shown in Table I. The ETS-NMF classifier with time

sparsity p = 3 utilizing state unions (SU) ’ETS-NMF3+SU’

reaches recognition accuracy 87.3 % on average over all the

noise conditions. Without SU post processing, ’ETS-NMF3’

can be seen to reach the level of the reference ’NMF[1]’.

These average accuracies of ETS-NMF3 are shown also as

the rightmost triangles in Figure 3. The positive effect of

utilizing state unions on ETS-NMF is 0.8 % on average.

The NN classifier of the first stage of the cascade,

’NN+B+SU’ in the Table I, reaches accuracy 72.6 % on

average. The positive effects of Bayesian post processing

(B) of NN outputs and utilizing state unions (SU) are about

1.5 % and 0.9 % respectively.

SNR mean -6dB -3dB 0dB 3dB 6dB 9dB

ETS-NMF3+SU 87.3 75.4 82.4 87.8 91.3 93.0 93.5

ETS-NMF3 86.6 75.1 82.0 87.4 89.9 92.3 92.8

NMF [1] 86.5 75.6 81.4 87.5 89.9 92.4 92.3

NN+B+SU 72.6 56.4 58.3 66.5 74.8 79.3 82.1

NN+B 71.7 55.0 57.5 65.9 73.8 78.6 81.1

NN 70.2 54.5 54.8 63.7 71.2 77.8 79.8

Table I. Keyword recognition accuracies with ETS-NMF3

and NN classifiers with and without using state unions (SU)

and Bayesian post processing (B).

IV-B. Accuracy and computational load of the cascade

The operating point of the proposed cascade is defined

by the threshold θ of f READY in (3), which rules the usage

of stages of the cascade. The threshold θ is set to achieve

a desired accuracy with as small computational load as

possible, or to reach as good accuracy as possible with the

available computation power. Curves of keyword recognition

accuracy, resulting from giving different values for θ, versus
the amount of needed NMF computation as percentage of

the computational load of [1] are shown in Figure 3. On

these curves we pay attention specifically to two operating

points. The first one, shown with a cross on each curve, is

the operating point with θ = 0.24. It is where the average

accuracy reaches 86.5 %, the accuracy of the original NMF

framework [1] requiring only 16.0 % of its computation.

The second crucial operating point of the cascade, which

is shown as a circle on each curve, is where the maximal

keyword recognition accuracy is reached with smallest com-

putation load. On average over all noise levels, this operating

point occurs with θ = 0.51 reaching accuracy 88.5 % and

requiring the computation of 31 % of NMF frames.

IV-C. Comparison to state-of-the-art

The recognition accuracy of the proposed cascade ranks

among the three best in CHiME 2013 challenge Track 1

results in [25]. However, an important aspect of required

computational resources was not considered in CHiME 2013

evaluation. Thus in Table II we compare the results with the

proposed cascade in comparison to the methods for which

we can estimate the computational load: the NMF method

of [1] and the winning method [26] of CHiME2013. The

computation time of the CHiME2013 winner is obviously

higher than NMFs as NMF [1] is one of the three methods

in the winning classifier combination.

accuracy computation time

CHiME2013 winner [26] 92.8 > 100 % ∗)
Proposed cascade at θ = 0.510 88.5 30.9 %

ETS-NMF3 87.3 33.6 %

Proposed cascade at θ = 0.237 86.5 16.0 %

NMF [1] 86.5 100 %

Table II. Keyword recognition accuracy of the proposed

cascade in comparison to the baseline NMF method and the

CHiME2013 challenge winning method (∗ utilizes the NMF

method as one of its three detectors).

V. CONCLUSIONS

As automatic noisy speech recognition has proved to be

hard problem to solve, the most accurate methods currently

are far from real time processing. With clean speech simpler

methods might do well, while with noisy environment the

more advanced processing is required. A decision cascade is

a way to combine these and it is a structure to consider when

one wants to meet both the requirements, word accuracy and

computational speed, in varying conditions. In this work we

have showed that a decision cascade can be successfully

applied in ASR task. Our experiments show that the accuracy

of well performing NMF method for noisy ASR can be

achieved with a fraction of its computation time with a

decision cascade utilizing faster classifiers. In CHiME2013

keyword recognition task with our cascade utilizing a neural

network and Time Sparse NMF classifiers we achieve the

meritorious accuracy of [1] with less than 17 % of its

computation time. The full accuracy of the cascade ranks

among the three best in CHiME 2013 Track 1 challenge

and it is three times faster than the winner.

VI. REFERENCES

[1] A. Hurmalainen, J. F. Gemmeke, and T. Virtanen,

“Modelling non-stationary noise with spectral factori-

sation in automatic speech recognition,” Computer

Speech & Language, vol. 27, no. 3, 2013.

[2] K. Huang and S. Aviyente, “Sparse representation for

signal classification,” in Adv Neural Inf Proc Syst, 2006.

[3] N. Costen, M. Brown, and S. Akamatsu, “Sparse

models for gender classification,” in IEEE Int. conf.

Automatic Face and Gesture Recognition, 2004.

[4] A. Makhzani and B. J. Frey, “Winner-take-all autoen-

coders,” in Adv Neural Inf Process Syst 28, 2015.

[5] J. H. Friedman, “Fast sparse regression and classifica-

tion,” Int J of Forecasting, vol. 28, no. 3, 2012.

[6] X. Mei and H. Ling, “Robust visual tracking and ve-

hicle classification via sparse representation,” TPAMI,

vol. 33, no. 11, 2011.

[7] M. Liu, D. Zhang, D. Shen, A. D. N. Initiative et al.,

“Ensemble sparse classification of alzheimer’s disease,”

NeuroImage, vol. 60, no. 2, 2012.

[8] S. B. Nagaraj, N. Stevenson, W. Marnane, G. Boylan,

and G. Lightbody, “A novel dictionary for neonatal eeg

seizure detection using atomic decomposition,” in Int

Conf on Eng in Medicine and Biology Soc, 2012.

[9] L. Trottier, B. Chaib-draa, and P. Giguère, “Incremen-

tally built dictionary learning for sparse representation,”

in Neural Information Processing. Springer, 2015.

[10] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-

invariance sparse coding for audio classification,” Cor-

tex, vol. 9, 2012.

[11] J. Le Roux, J. R. Hershey, and F. Weninger, “Deep

NMF for speech separation,” in In proc ICASSP, 2015.

[12] C.-T. Lee, yi-hsuan Yang, and H. Chen, “Multipitch

estimation of piano music by exemplar-based sparse

representation,” IEEE Trans Multimedia, no. 14, 2012.

[13] E. Vincent, J. Barker, S. Watanabe, J. Le Roux,

F. Nesta, and M. Matassoni, “The second CHiME

speech separation and recognition challenge: Datasets,

tasks and baselines,” in In proc ICASSP, 2013.

[14] J. Gemmeke, T. Virtanen, and A. Hurmalainen,

“Exemplar-based sparse representations for noise ro-

bust automatic speech recognition,” in IEEE TASLP,

vol. 19, 2011.

[15] E. Yılmaz, J. F. Gemmeke, and H. Van hamme, “Noise

Robust Exemplar Matching Using Sparse Representa-

tions of Speech,” IEEE/ACM TASLP, vol. 22, 2014.

[16] J. T. Geiger, F. Weninger, J. F. Gemmeke, M. Wöllmer,

B. Schuller, and G. Rigoll, “Memory-Enhanced Neural

Networks and NMF for Robust ASR,” IEEE/ACM

TASLP, vol. 22, no. 6, 2014.

[17] T. Virtanen, B. Raj, J. F. Gemmeke et al., “Active-

set newton algorithm for non-negative sparse coding

of audio,” in In proc.ICASSP, 2014.

[18] P. Viola and M. Jones, “Robust real-time face detec-

tion,” Int J Comput Vis, vol. 57, no. 2, 2001.

[19] T. Wu and S. Zhu, “Learning near-optimal cost-

sensitive decision policy for object detection,” in IEEE

Int Conf on Comput Vis, 2013.

[20] H. Jiang, “Confidence measures for speech recognition:

A survey,” Speech Communication, vol. 45, no. 4, 2005.

[21] H. Kallasjoki, J. Gemmeke, and K. Palomaki, “Esti-

mating uncertainty to improve exemplar-based feature

enhancement for noise robust speech recognition,” in

Audio, Speech, and Language Process, vol. 22, 2014.

[22] J. Bridle, “Probabilistic interpretation of feedforward

classification network outputs, with relationships to

statistical pattern recognition,” Neurocomputing NATO

ASI Series, vol. 68, 1990.

[23] M. Richard and R. Lippmann, “Neural network clas-

sifiers estimate Bayesian a posteriori probabilities,”

Neural Computation, vol. 3, no. 4, 1991.

[24] H. Ney, “On the probabilistic interpretation of neural

network classifiers and discriminative training criteria,”

in TPAMI, vol. 17, 1995.

[25] E. Vincent, J. Barker, S. Watanabe, J. Le Roux,

F. Nesta, and M. Matassoni, “The second chimespeech

separation and recognition challenge: An overview of

challenge systems and outcomes,” in IEEE workshop

on Automatic Speech Recog and Understanding, 2013.

[26] J. Geiger, F. Weniger, A. Hurmalainen, J. Gem-

meke, B. Schuller, G. Rigoll, and T. Virtanen, “The

TUM+TUT+KUL approach to the 2nd CHiME chal-

lenge: multi-stream ASR exploiting BLSTM networks

and sparse NMF,” in The 2nd CHiME workshop on

machine listening in multisource environments,, 2013.

Publication VI

EURASIP Journal on Image
and Video Processing

Mahkonen et al. EURASIP Journal on Image and Video
Processing (2018) 2018:61
https://doi.org/10.1186/s13640-018-0303-9

RESEARCH Open Access

Cascade of Boolean detector
combinations
Katariina Mahkonen* , Tuomas Virtanen and Joni Kämäräinen

Abstract

This paper considers a scenario when we have multiple pre-trained detectors for detecting an event and a small
dataset for training a combined detection system. We build the combined detector as a Boolean function of
thresholded detector scores and implement it as a binary classification cascade. The cascade structure is
computationally efficient by providing the possibility to early termination. For the proposed Boolean combination
function, the computational load of classification is reduced whenever the function becomes determinate before all
the component detectors have been utilized. We also propose an algorithm, which selects all the needed thresholds
for the component detectors within the proposed Boolean combination. We present results on two audio-visual
datasets, which prove the efficiency of the proposed combination framework. We achieve state-of-the-art accuracy
with substantially reduced computation time in laughter detection task, and our algorithm finds better thresholds for
the component detectors within the Boolean combination than the other algorithms found in the literature.

Keywords: Binary classification, Classification cascade, Boolean combination

1 Introduction
Detection and binary classification are fundamental tasks
in many intelligent computational systems. They may be
considered as the same problem, where an input sample
is to be determined into one of two groups, either one
of two predefined classes, or as having some property or
not. In the field of computer vision, face detection, pedes-
trian detection, and car detection are canonical examples
that have received a lot of attention [1, 2]. Event detec-
tion from audio signal is of wide interest [3]. Detection
tasks with multiple measurement modalities available are
present, e.g., in biometric identity verification [4] and for
medical decisions [5].
For detection of observation from a certain category, i.e.,

a class, many different types of detectors, trained with dif-
ferent data with different statistics—possibly even from
different measurement modalities—are often available.
Most of the detectors reported in the literature output a
score, which denotes the likelihood of the existence of the
quested target class, in the input data. A threshold value is
then used to provide the classification “target” or “no tar-
get” for the input. Thus, a threshold value may be used to

*Correspondence: katariina.mahkonen@tut.fi
Tampere University of Technology, Korkeakoulunkatu 1, 33720 Tampere,
Finland

control the false negative-false positive trade-off, i.e., an
operating point of the detector.
The different detectors may have very different per-

formance, and the scores given by them are not fully
correlated. Therefore, the combination of their outputs
provides an opportunity to obtain a combined detector
with performance superior to any of the components.
The cost of classification in terms of time and compu-

tational power, besides accuracy, is an important factor in
many detection problems. Some of the detectors are very
fast to execute while others are computationally heavy. An
effective way to reduce the cost of classification is to use
a sequential decision making process which asks for new
resources only if needed for required accuracy.
We propose a new method for combining multiple sen-

sitivity tunable detectors, i.e., detectors which output like-
lihood scores, to form a computationally efficient binary
classification cascade. The component detectors are not
restricted to be based on a single feature set, but may
even operate on different measurement modalities. They
have preferably been trained with different datasets to
introduce uncorrelatedness in their output scores. For

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 2 of 22

combining the available sensitivity tunable detectors, we
propose to utilize a monotone Boolean function built
using AND (∧) and OR (∨) operators in disjunctive nor-
mal form (DNF). A Boolean function (BF) is said to be
monotone, if changing the value of any of the input vari-
ables from 0 to 1 cannot decrease the value of the function
from 1 to 0. For continuous data binarization, we use sim-
ilar procedure as presented in [6]. Thus, a monotone BF
on this data performs a monotone partition of the space
of measurement values.
A BF lends itself naturally to sequential evaluation,

which is an integral property of a decision process of a
classification cascade. Also, by utilizing a BF of thresh-
olded detector scores, we avoid inferring class probabil-
ities from the scores, which would be error prone while
having only a small dataset for combined system train-
ing. In the proposed OR of ANDs function (BOA), each
detector score is compared to multiple threshold levels,
which allows formulating any monotonic decision bound-
ary while making the classification decision in a computa-
tionally efficient way. The BOA cascade detector itself is
trained to be sensitivity controllable as well.
The contributions of the paper are (1) a monotone

Boolean OR of ANDs (BOA) binary classification function
to build a cascaded combination of multiple sensitivity
tunable detectors, (2) an algorithm to train a BOA com-
bination, and (3) utilizing a cascaded decision making
process for audio-visual detection task.
For evaluating the proposed BOA detector cascade and

the training algorithm to set its parameters, we use two
audiovisual databases for two detection tasks, namely
MAHNOB laughter dataset [7] for laughter detection task
and CASA dataset [8] for video context change detec-
tion task. In the laughter detection task, we show that the
accuracy of detection with a BOA cascade is superior to
the other detection accuracies reported in the literature,
while the computation time of detection is remarkably
reduced compared to the other solutions.With three com-
ponent detectors for the video context change detection,
we show that the proposed BOA training algorithm out-
performs alternative Boolean combination training algo-
rithms found in the literature.
In the following section, we introduce the work related

to Boolean detector combinations and algorithms for
training Boolean combination parameters, as well as the
work on cascaded detectors presented in the literature.
The proposed Boolean OR of ANDs combination, and the
algorithm to set its parameters are presented in Section 3.
The experimental setup and the results obtained are pre-
sented in Section 4.

2 Related work
This paper proposes combining multiple tunable detec-
tors robustly utilizing a monotone DNF-BF, named BOA,

the evaluation of which is formulated as a computationally
efficient classification cascade. Thus, we first review the
literature on Boolean detector combinations and BFs in
general. Then, we review the algorithms suitable for train-
ing a Boolean combination. Finally, we discuss the litera-
ture on classification cascades.

2.1 Boolean detector combinations
Using a Boolean conjunction or a Boolean disjunction
for combining multiple detectors has been proposed in
several studies, for example in [9–11]. Sensitivity tunable
detector functions fm : x → R for m = 1 . . .M are uti-
lized within a combination. Each detector function fm(x)
produces a score lm, which denotes likelihood of the target
appearing in the sample x. The Boolean conjunction ofM
sensitivity tunable detectors is

B(x; θ) =
M∧

m=1

(
fm(x) ≥ θAND

m
)
, (1)

and the Boolean disjunction is

B(x; θ) =
M∨

m=1

(
fm(x) ≥ θOR

m
)
, (2)

where θ denotes all the thresholds θ ∗
m used within

the combination. All of the studies [9–11] report that
either a conjunctive or a disjunctive Boolean combi-
nation of detectors do improve the detection accuracy
over component detectors, provided that the thresholds
θ ∗
1 , θ ∗

2 , . . . , θ ∗
M are set appropriately.

Mixtures of AND and OR operators within a Boolean
combination have been investigated in [12]. Utilizing
notation, where the detector function fm(x) identifiers m
are listed in vectors zq, q = 1 . . .Q, each zq containing
Mq identifiers, this kind of Boolean OR of ANDs
combination is

B(x; θ) =
Q∨

q=1

⎡

⎣
Mq∧

i=1

(
fzq(i)(x) ≥ θzq(i)

)
⎤

⎦ . (3)

As a big limitation of (3) proposed in [12], compared to
the BOA combination that we suggest, is that only one
threshold θm for each target likelihood score fm(x) = lm is
allowed.
In addition to AND and OR operators, the Boolean

negation, (NOT), and as a consequence also the exlusive-
OR (XOR) are utilized in the detector combinations in
[13–15]. The 22M possible Boolean combinations that can
be formed by M fixed, i.e., non-tunable, detectors utiliz-
ing AND, OR, XOR, and NOT operators are studied in [13].

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 3 of 22

Boolean detector combinations where each of the avail-
able target likelihood scores fm(x) = lm, m = 1 . . .M
may be cast to Boolean values using multiple thresholds
θ1m, θ2m, . . . are first made use of in [14]. However, the
space of the Boolean combinations generated by their
algorithm is left unspecified.
A question of how to select the best performing Boolean

combination for a certain problem, while having M sen-
sitivity tunable detectors, has been posed in many of
the abovementioned works. To select between conjunc-
tive (1) and disjunctive (2) combinations, in [10, 16], it
is suggested to investigate the class-conditional cross-
correlations of detector scores and to consider whether
the specificity or the sensitivity is more important. The
conjunctive fusion rule (1), which emphasizes specificity,
should be used if there is negative correlation between
detector outputs for samples of the “non-target” class.
If on the other hand the correlation of detector output
scores for samples from the “target” class is weak, disjunc-
tive fusion rule (2) emphasizing sensitivity should be used.
All in all, a Boolean combination is able to exploit negative
or weak correlation of detector scores.
To select among the combinations of the form (3),

rules of thumb have been drawn in [12] according to
average cross-correlations between the scores from the
used detectors. It is shown for three detectors with
Gaussian score distributions and identical pairwise cross-
correlations that either a conjunctive combination (1), a
disjunctive combination (2), or a type (3) combination

B(x; θ) = [(f1(x) ≥ θvote1
) ∧ (f2(x) ≥ θvote2

)] ∨
[(
f1(x) ≥ θvote1

) ∧ (f3(x) ≥ θvote3
)] ∨

[(
f2(x) ≥ θvote2

) ∧ (f3(x) ≥ θvote3
)]

,

which stands for a majority vote rule, is the best and out-
performs the component detectors. The one of those to be
selected depends on class conditional cross-correlations
between detectors.
The Iterative Boolean Combination (IBC) method in

[14] is specifically designed to find the best possible
Boolean combination, not restricted to monotone func-
tions, for a certain sensitivity level of a combination. The
search space of BFs is nevertheless restricted to avoid an
unfeasibly large number of possibilities. The IBC method
results in variety of Boolean detector compounds, but the
study does not provide analysis of the form of the gen-
erated compounds nor characteristics of their resulting
decision boundaries.
Theory of constructing BFs of unrestricted form, specif-

ically in DNF as well as in CNF (conjunctive normal form),
has been studied in depth, e.g., in [17]. BFs for classifica-
tion have been studied vastly under terms logical analysis
and inductive inference. Logical Analysis of Data (LAD)

[18, 19] is a combinatorics- and optimization-based data
analysis method first introduced in [20]. LAD methodol-
ogy focuses on finding DNF-BF-type representations for
classes.
The term inductive inference is used in many early

texts concerning topics of machine learning, many of
those discussing Boolean decision-making, e.g., [21, 22].
Using data binarization, e.g., as proposed in [6], all these
results concerning BFsmay be utilized in conjunction with
continuous valued data.
Any BF may be converted into a binary decision tree,

while the structure of the tree is generally not unique.
In case of the proposed BOA DNF-BF, the correspond-
ing deterministic read-once binary tree has depth ≥
�log2(Nθ + 1)�. In maximally deep node arrangement, the
tree becomes a single branch tree with depth equal to
the number Nθ of thresholds used in the BOA function.
However, this kind of binary tree representation does not
highlight the computational advantages of BOA cascade
that we are interested in.

2.2 Algorithms for training a Boolean combination
The parameter θ of a Boolean combination function
B(x; θ) denotes all the thresholds θnm ∈ θ for m= 1 . . .M,
n=1 . . .Nm used in the combination. For a Boolean com-
bination B(x; θ) to perform well, suitable values for the
set θ of thresholds must be found. Most of the studies
rely on training data-based exhaustive search for select-
ing the threshold values for θ , e.g., [10, 12, 13]. The
computational load of this approach is O

(
T |θ |), where

|θ | = ∑M
m=1Nm is the total number of thresholds in θ

and T is the number of threshold values tested for each
detector. The exhaustive search becomes computationally
prohibitive if there are more than a couple of threshold
values to find. Thus, more efficient algorithms are needed.
In addition to algorithms readily proposed for tunable
classification function training, we shortly review algo-
rithms which have been developed for BF training for
one operating point and their extensions to incremental
learning.
A fast method for finding sets θ of thresholds for differ-

ent sensitivity levels of a Boolean combination B(x; θ) is
presented in [10]. The method exploits the receiver oper-
ating characteristic (ROC) curve of each utilized detector
dm(x, θ) = (

fm(x) ≥ θ
)
. The ROC curve shows the true

positive rate (tpr) against the false positive rate (fpr) at
every operating point, defined by the threshold θ , of the
detector. When θ = −∞, the classification by d(x, θ)

results in tpr = 100% and fpr = 100%. On the other
hand, when θ = +∞, then tpr = fpr = 0. The
method selects the thresholds for the Boolean combina-
tion iteratively by fusing two BF components—individual
detectors or partial BFs—at a time according to their ROC
curves. Formulas for ROC curves of a conjunctive and

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 4 of 22

disjunctive combination of detectors dA and dB, dA �= dB,
are provided as

tpr∧
(
fpr∧

) = max
fprA·fprB=fpr∧

(
tprA(fprA) · tprB(fprB)

)
(4)

and

tpr∨
(
fpr∨

) =
max

fprA+fprB−fprA ·fprB=fpr∨

(
tprA(fprA) + tprB(fprB)−tprA(fprA) · tprB(fprB)

)
,

(5)

where tpr∗(fpr∗) denotes the true positive rate of a detec-
tor d∗(x; θ) at an operating point θ where its false positive
rate is fpr∗.
The efficiency of the method is based on an assump-

tion that the classifications made by different detectors
are independent. Unfortunately, this often does not hold
in practice. If the same measurement set or the same set
of features are used for multiple detectors, or if multiple
thresholds are to be found for a certain target likelihood
lm within a Boolean combination, dependencies between
classifications are very likely. We compare our algorithm
to this Boolean algebra of ROC curves in the Section 4
and use an implementation for BOA training shown in
Appendix 1.
Another algorithm that does not assume independence

of the used detectors was proposed in [11]. It suggests
training the combination iteratively by finding thresholds
for two detectors or partial combinations at a time, sim-
ilarly to the Boolean algebra of ROC curves presented
above. In this approach, the search of the best thresh-
olds for a Boolean combination is done via exhaustive
search over all the possible threshold settings for the two
systems to be merged. In the ROC space, with all the pos-
sible threshold settings, a Boolean combination produces
a constellation of performance points. The left top edge
of this constellation, consisting of the operating points of
superior performance, was introduced by [23] as the con-
vex hull of the ROC constellation. In the algorithm of [11],
before each new component fusion, the set of possible
threshold values for the newly built partial combination is
pruned to constitute of only the thresholds correspond-
ing the performance points at the convex hull of this
ROC constellation. The algorithm is originally designed
for pure conjunctive (1) or disjunctive (2) Boolean combi-
nations, but we have implemented it to deal with a BOA as
described in the Appendix 1, and we use it for comparison
to our algorithm.
In the literature concerning BFs, there are many algo-

rithms, which are designed to find a BF which perfectly
classifies the training data

{
X0,X1} in {0, 1}Nattr . Find-

ing the simplest possible BF to explain some data is an
NP complete optimization problem with 22Nattr possible
solutions. Some of the algorithms are designed assuming

monotonicity of data, the assumption which diminishes
the number of possible solutions remarkably [24]. The
number of possible BFs is further reduced in the case of
continuous data which is binarized as in [6]. In this case,
the data with M � Nattr continuous attributes actually
resides in theM-dimensional manifold of theNattr dimen-
sional space of binarized data. However, the number of
possible BFs is still exponential. A few of the approaches
target finding a BFn with imperfect classification perfor-
mance, which usually is the desirable learning result with
imperfect data.
Because of NP completeness of finding the best BF

to explain some data, most of the algorithms in the lit-
erature operate in iterative manner using some greedy
heuristics. An Aq algorithm [25] and LAD [20]-based
methods construct a DNF-BF via iteratively searching for
good conjunctions, each of which covers a part of pos-
itive training samples, to be combined disjunctively. On
the contrary, OCAT-RA1 -algorithm [26], based on idea
of one-clause-at-a-time (OCAT) [27], builds a CNF-BF via
iterative selection of disjunctions. In case of continuous
data binarized as in [6], algorithms developed for decision
tree learning, e.g., ID3 [28], C4.5 [29], CART [30] are also
suitable for DNF-BF building.
The Aq algorithm and LAD-based methods are to find

two DNF-BFs which provide perfect classification of the
training data. One function is to be used for detection
of the positive class, and the other one for detecting the
negative class. The covers, i.e., subspaces for which BF =
true, of these DNF-BFs are disjoint, leaving part of the
input space uncovered by either function. The algorithms
use different heuristic criteria when searching for suitable
conjunctions, i.e. complexes in terms of Aq.
For Aq algorithm the user may choose the criterion,

one possible choice beings the number of positive sam-
ples covered by the complex, that is, conjunction. For
LADmethodology, different criteria for optimality of con-
junctions, called patterns in LAD, are discussed in [31].
Selectivity criterion favors minterms based on data, and
evidential criterion favors patterns covering as many data
samples as possible. Algorithms for constructing pat-
terns according to these different criteria are given in
[18, 32, 33].
Algorithms for BF inference allowing imperfect classi-

fication, which is generally associated with better gen-
eralization of data with outliers, are for example AQ15
algorithm [34], which is based on Aq, and OCAT-RA1
algorithm proposed in [26]. A procedure for pruning an
overfit DNF-BF representation for better generalization is
provided within AQ15 algorithm. It is based on counts
of samples covered by each conjunction individually and
together with other conjuntions. The conjunctions which
are small in these numbers are the ones to be pruned.
OCAT-RA1 constructs each disjunction of a CNF-BF by

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 5 of 22

iteratively selecting attributes for it based on their rank of
Ntp(a)/Nfp(a), where Ntp(a) (Nfp(a)) is the number of
positive (negative) training samples, which have attribute
a = 1. New attributes are selected until all the positive
samples are covered by their disjunction.
The binary tree building algorithms, which iteratively

build the tree by starting from the root node and per-
forming a new split at every iteration, implicitly facilitate
different level generalizations of data and generate a deci-
sion function of DNF-BF form. The splitting criterion for
selecting attributes for new nodes in ID3, C4.5, and C5.0
is gain in information entropy. ID3 is applicable with bina-
rized data, while C4.5 and C5.0 can handle continuous
data by implicitly performing the binarization by usage of
thresholds. The CART algorithm uses either Gini impu-
rity or Twoing criterion to decide about the attributes
used in nodes of the tree.
Incremental learning algorithms enable updating a clas-

sification function when new data becomes available.
Some of the algorithms keep all the data available for
future updates, while some algorithms discard the orig-
inal data and perform the update based on new data
only. Incremental algorithms, which utilize all the original
training data aside of some new data, for updating a BF are
for example GEM [35] and IOCAT [36].
Both of the algorithms assume a DNF-BF, and their

update procedures consist of two phases. At the first
phase, if some of the new negative samples are misclas-
sified by the original DNF-BF, the faulty conjunctions
are located and specialized to not to cover those new
samples. Both of the algorithms perform this step by
replacing each faulty conjunction by new conjunctions
which are trained using data inside the cover of the orig-
inal conjunction. GEM utilizes Aq algorithm and IOCAT
utilizes OCAT-RA1 algorithm for this re-training. At
the second phase of BF update, the DNF-BF is updated
in terms of the uncovered new positive samples. GEM
generalizes the existing conjunctions to cover the new
positives using Aq.
In IOCAT, for each uncovered new positive sample, a

conjunction, i.e., clause in terms of IOCAT, to be gener-
alized is selected based on ratio Ntp(clause)/Nattr(clause)
of the number of positive samples covered by the clause
Ntp(clause) and the number of attributes in the clause
Nattr(clause). The selected conjunction is then retrained
with non-incremental OCAT-RA1 algorithm using all the
negative samples, the new positive sample and the pos-
itive samples within the space covered by the selected
conjunction.

2.3 Cascade processing for reduced computational load
of classification

The goal in cascaded processing for detection is in reduc-
ing the computational cost of classification. The idea is

to evaluate the input in stages, such that at each cas-
cade stage new information about the input is acquired
and then either the classification is released or the next
cascade stage is entered for new information. Decision
cascades have been investigated mostly in the field of
machine vision starting from [37, 38]. Face detection and
pedestrian detection are the most common application
areas where decision cascades have been used, e.g., in
[39–42]. Decision cascades have been utilized in other
fields, e.g., in [43] for cancer survival prediction and in
[44] for web search.
In the task of object detection from images, the

heavily imbalanced class distribution, as most of the
search windows of different sizes and positions do not
contain the target object, offers great possibilities to
make “non-target” classification with minor examina-
tion. Object detection cascades are designed such that
gradually more and more features are extracted for
increased classification certainty. A class estimate is
released as soon as the classification certainty is high
enough. If this is the case before all the obtainable features
or measurements have been extracted, computational
savings appear.
The first generation object detection cascades, used for

example in [38], are able to make early classification to
the “non-target” class only, as illustrated in Fig. 1 (left). To
classify the input into the “target” class, the input must
pass all tests

(
fs(x) ≥ θs

)
of the cascade stages s= 1 . . . S.

This kind of one-sided cascade performs a conjunctive
Boolean combination function

B(x; θ) =
S∧

s=1

(
fs (x) ≥ θs

)
.

The solution B(x; θ) = true denotes classification to the
“target” class, and B(x; θ) = false denotes classification to
the “non-target” class.
The second generation object detection cascades intro-

duced in [45] and used also in [46] are able to make
the early classification to both the classes, as illustrated
in Fig. 1 (right). They utilize two thresholds on the tar-
get likelihood score fs(x) = ls at each cascade stage
s = 1 . . . S − 1. One threshold, θ

reject
s , is used for early

rejection, i.e., early classification to “non-target” class,
if
(
fs(x) < θ

reject
s

)
= true. Another threshold, θ

accept
s ,

is used for early detection if
(
fs(x) ≥ θ

accept
s

)
= true.

This means that at each stage, either the classification is
released, or the next stage is entered in case that θ

reject
s ≤

ls < θ
accept
s . At the last cascade stage, the classifica-

tion is enforced by θS = θ
reject
S = θ

accept
S . This kind of

symmetrical cascade corresponds to a BF

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 6 of 22

Fig. 1 Two types of binary classification cascades. Typical object detection cascades utilized in computer vision. Left: an asymmetrical type cascade
for classifying efficiently the “non-target” windows. Right: a symmetrical detection cascade which is capable of early classification to both classes

B(x; θ) =
S∨

s=1

s−1∧

m=1

(
fm(x) ≥ θ

reject
m

)
∧
(
fs(x) ≥ θ

accept
s

)
,

(6)

whose output B(x; θ) = true denotes the classification to
the “target” class and B(x; θ) = false denotes classification
to the “non-target” class.
A cascade may be seen as a one branch decision tree, if

the notion of tree is broadened from the traditional def-
inition that a node makes a decision based on only one
input attribute. In a “cascade-tree,” a node function may
utilize multiple input attributes, and the function may
partition the corresponding input space freely to assign
inputs to any of the leaves, i.e., classes, or down the
branch to the next level node (stage of the cascade). In a
cascade, the order of attribute acquisition is fixed in con-
trast to input-dependent order of attribute usage with a
traditional decision tree.
For training, a detection cascade for computer vision

applications, where the detectors to be utilized are
designed having close to infinite pool of image features,
e.g., Haar, HoG, an efficient cascade structure is guaran-
teed by concurrent design of detector functions fs, s =
1 . . . S, their thresholds θ ∗

s and the cascade length S as
proposed in [40, 47]. For a cascade with fixed length S,
a method for concurrent learning of object detectors and
their operating points is proposed in [39]. The methods
proposed in the literature for finding operating points for
pre-trained detectors within a detection cascade mostly
assume strong correlation among detector scores. This
is the case in [48], where an object detection cascade
is designed using cumulative classifier scores, as well as
in [45, 46], where the proposed algorithms are based on
the assumption that the detector scores are highly pos-
itively correlated. If the detector scores are negatively

or not correlated, those cascade training strategies turn
unsuitable.

3 Methods
For combining multiple detector functions fm(x) = lm,
m = 1 . . .M, which output likelihood scores l1, l2, . . . , lM
for the same target class, we propose to use a a BF. The
proposed combination function utilizes Boolean AND (∧)
and OR (∨) operators and it is defined in disjunctive nor-
mal form. The proposed Boolean OR of ANDs function
(BOA) B yields a Boolean output B : x → {false, true}. The
BOA output B(x) = true denotes input x classification to
the “target” class and the BOA output B(x) = false, i.e.,
¬B(x) = true, denotes classification to the “non-target”
class.
Generally, a BF—possibly infinite—over a combina-

tion of thresholded detector scores is capable of pro-
ducing any binary partition of the input space x or
the space of target likelihood scores (l1, l2, . . . , lM).
Due to exclusion of the Boolean NOT rule, a BOA
combination restricts the space of different partitions
such that the spaces

{
(l1, l2, . . . , lM) | B(x)= false

}
and

{ (l1, l2, . . . , lM) | B(x) = true } are simply connected and
the decision boundary is monotonic. This is illustrated in
the example of Fig. 2, where the data points indicate laugh-
ter likelihoods from videos of MAHNOB laughter dataset
[7], which is used in our evaluations.
We build a BOA combination of detector functions

fm(x) = lm, m = 1 . . .M using Boolean OR (∨) and AND
(∧) operators as

B(x; θ) =
Q∨

q=1

Nq∨

n=1

⎡

⎣
Mq∧

i=1

(
fzq(i)(x) ≥ θ

q,n
zq(i)

)
⎤

⎦ , (7)

where in each vector zq ∈ {1 . . .M}Mq there areMq detec-
tor identifiers m ∈ {1 . . .M} for BOA construction. Each

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 7 of 22

Fig. 2 Example of BOA decision boundary. Illustration of classification of MAHNOB Laughter dataset videos with BOA. Data x ∈ X = {X0, X1} from
two classes, “laughter” and “speech,” is represented in terms of two target likelihood scores l1 and l2. The data samples from the “laughter” class X1

are shown with red crosses and the data samples of the “speech” class X0 are shown with blue dots. The resulting decision boundary by the BOA
combination (10) is shown with the bold angular line. Each threshold θ

q,n
m , m=1, 2, q=1, 2, n=1, 2, 3 is illustrated with a thin line. The space of

target likelihood scores where B(x; θ) = true is colored with pink background, and the space where ¬B(x; θ) = true is colored with blue
background. The palest background colors illustrate the subspaces, where the decision is done using the score l1 only

term
[∧Mq

i=1

(
lzq(i) ≥ θ

q,n
zq(i)

)]
in (7) is a conjunction over

the Boolean threshold comparisons of the target likeli-
hood scores {lm | ∃i m = zq(i)}. The multiplicity of a
conjunction type zq is denoted by Nq.
Every conjunction, enumerated by (q, n), operates with

a distinct set of thresholds θ
q,n
zq(i), i=1 . . .Mq.

The negation of the BOA function (7) is used for the
cascade implementation of its evaluation. In the BOA cas-
cade, the classification to the “non-target” class is formu-
lated via the negation of the BOA function—whenever the
negated BOA function equals true. The Boolean negation
of B(x; θ) in (7), in disjunctive normal form, is

¬B(x; θ) =
K∨

k=1

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(I(k,q,n))(x) < θ

q,n
zq(I(k,q,n))

)
⎤

⎦

=
M1∨

i1,1=1

M1∨

i1,2=1

M1∨

i1,3=1
· · ·

M1∨

i1,N1=1
︸ ︷︷ ︸

N1
∨

-operators , i.e.,MN1
1 conjunctions

M2∨

i2,1=1

M2∨

i2,2=1
· · ·

M2∨

i2,N2=1
︸ ︷︷ ︸

N2
∨

-operators, i.e.,MN2
2 conjunctions

· · ·

· · ·
MQ∨

iQ,1=1

MQ∨

iQ,2=1
· · ·

MQ∨

iQ,NQ=1
︸ ︷︷ ︸

NQ
∨

-operators, i.e.,M
NQ
Q conjunctions

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(iq,n)(x) < θ

q,n
zq(iq,n)

)
⎤

⎦ .

(8)

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 8 of 22

where the number of conjunctions is given by K =
∏Q

q=1M
Nq
q , and the index I(k, q, n) of the detector func-

tion identifier m within vector zq of the first representa-
tion is given by

I(k, q, n) =

⎢⎢⎢⎢⎢⎢⎣

⎢⎢⎢⎣ k − 1
∏Q

i=q+1M
Ni
i

⎥⎥⎥⎦

MNq−n
q

⎥⎥⎥⎥⎥⎥⎦modMq + 1, (9)

Figure 2 illustrates the decision boundary using a BOA
combination with z1 = [1] , z2 = [1, 2], and N1 =1, N2 =3,
which is

B(x; θ)=
(
l1 ≥ θ

1,1
1

)
∨

3∨

n=1

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

(10)

and its negation is

¬B(x; θ)=
8∨

k=1

⎡

⎣
2∧

q=1

Nq∧

n=1

(
fzq(I(k,q,n))(x) < θ

q,n
zq(I(k,q,n))

)
⎤

⎦

=
2∨

i1=1

2∨

i2=1

2∨

i3=1

⎡

⎣
(
f1(x)<θ

1,1
1

)
∧

Nq∧

n=1

(
fzq(in)(x)<θ

q,n
zq(in)

)
⎤

⎦

=
[(
l1 < θ

1,1
1

)
∧
(
l1 < θ

2,1
1

)
∧
(
l1 < θ

2,2
1

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l1< θ

2,1
1

)
∧
(
l1< θ

2,2
1

)
∧
(
l2< θ

2,3
2

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l1< θ

2,1
1

)
∧
(
l2< θ

2,2
2

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l1< θ

2,1
1

)
∧
(
l2< θ

2,2
2

)
∧
(
l2< θ

2,3
2

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l1< θ

2,2
1

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l1< θ

2,2
1

)
∧
(
l2< θ

2,3
2

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l2< θ

2,2
2

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l2< θ

2,2
2

)
∧
(
l2< θ

2,3
2

)]
.

(11)

The corners of the resulting decision boundary are
formed by the conjunctions (q, n) = (1, 1), (2, 1), (2, 2),
and (2, 3) of (10), which are designated in Fig. 2 by the con-
junction indexes (q, n) next to each corresponding outer
corner of space { (l1, l2) | B(x; θ) = true }. The outer
corners of space { (l1, l2) | ¬B(x; θ) = true }, which
are generated by the conjunctions k = 1 . . . 8 of (11), are
similarly designated in Fig. 2.
There may be redundancy in the BOA equation

or its negation, depending on values of the thresh-
olds selected for θ . A conjunction within a BOA
is redundant, if the BOA decision boundary does

not change by removing that conjunction from the
BOA equation.
Considering a BOA with conjunction lists z1, z2, . . . , zQ

and conjunction multiplicities N1,N2, . . . ,NQ, to find
out whether a conjunction (q, nq) is redundant or not,
its thresholds

{
θ
q,nq
zq(i) | i=1 . . .Mq

}
must be examined.

Each threshold θ
q,nq
zq(i) must be compared to thresholds

θ
p,np
zp(j), zq(i) = zp(j) = m, on the same target likelihood
score lm, which are used within other conjunctions(
p, np

)
of the BOA. The conjunctions

(
p, np

)
to be

considered are those with zp containing m = zq(i)
and possibly other identifiers from zq. The list zp
may not contain identifiers not listed in zq. Formally,{
zp| p �= q and ∃i, j � m=zp(j)=zq(i) and ∀i ∈ {1 . . .Mp

}

∃j � zp(i)=zq(j)
}
. The range of np for (p, np) is naturally

np = 1 . . .Np. For a conjunction (q, nq) to be non-
redundant, one of its thresholds θ

q,nq
zq(i), i=1 . . .Mq must

be smaller than any threshold θ
p,np
zp(j), zq(i)=zp(j)=m, in its

corresponding conjunctions
(
p, np

)
. That is, in conjunc-

tion (q, nq) there must exist at least one threshold θ
q,nq
m for

which θ
q,nq
m < θ

p,np
m of all the corresponding conjunctions(

p, np
)
.

3.1 BOA as a binary classification cascade
Algorithmically, a BF is evaluated in steps, i.e., sequen-
tially. If any of the conjunctions of BOA function (7) or its
negation (8) resolves as true, the entire functions (7) and
(8) become determinate. In other words, as soon as any
of the conjunctions (q, n), q = 1 . . .Q, n = 1 . . .Nq of a
BOA B(x; θ) outputs true, i.e.,

[∧Mq
i=1

(
lzq(i) ≥ θ

q,n
zq(i)

)]
=

true, it means that B(x; θ) = true. Without evaluating
the rest of the BOA conjunctions the detection result
“target event detected” may then be announced. Sim-
ilarly, if any of the conjunctions k = 1 . . .K of the
negation of the BOA ¬B(x; θ) outputs “true,” that is, if[∧Q

q=1
∧Nq

n=1

(
lzq(I(k,n,q)) < θ

q,n
zq(I(k,n,q))

)]
= true, it means

that ¬B(x; θ) = true. The evaluation can then be stopped
and the classification result “non-target” can be released.
Computationally, the heaviest part of BOA evaluation is

the acquisition of target likelihood scores lm for an input
sample x by computing the functions fm(x) = lm, m =
1 . . .M. The cost of threshold comparisons within BOA
may be considered negligible. From computational aspect
of evaluating a BOA, once the likelihood score lm is
acquired, all the Boolean comparisons (lm ≥ θ ∗

m) and
(lm < θ ∗

m), which are based on the score lm, become
immediately available. In case the BOA function (7) or its
negation (8) becomes determinate with the Boolean com-
parisons of already computed subset of scores lm, m =
1 . . .M , the classification may be released without run-
ning the rest of the detector functions at all.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 9 of 22

We have implemented the BOA as a binary classifica-
tion cascade, where a cascade stage s ∈ {1 . . . S} calculates
a score fm(x) = lm = ls using a predefined detector
function fm and offers a possibility for releasing the clas-
sification result, as shown in Fig. 3. Internal decisions at
each stage s = 1, 2, . . . , S of the BOA cascade, whether to
release a class estimate or to enter the next cascade stage,
are made with BFs Bclass

s ((l1, l2, . . . , ls)), s = 1 . . . S, i.e.
B1
1(l1), B

0
1(l1), B

1
2(l1, l2), B

0
2(l1, l2),. . . , B

1
S(l1, l2, . . . , lS) and

B1
S(l1, l2, . . . , lS) . That is, the functions B

1
s and B0

s of cas-
cade stage s utilize the target likelihood scores l1, l2, . . . , ls.
All these functions are partitions of the BOA function
B(x; θ) of (7) and its negation ¬B(x; θ) of (8) such that

B(x; θ) = B1
1 ∨ B1

2 ∨ . . . ∨ B1
S (12)

and

¬B(x; θ) = B0
1 ∨ B0

2 ∨ . . . ∨ B0
S. (13)

Formal expressions for the partition of the BOA function
(7) into functions B1

1,B1
2,,B1

S and the BOA negation (8)
into functions B0

1,B0
2,,B0

S are derived in Appendix 2.
As an example, operation process of BOA cascade

B(x; θ) =
(
l1 ≥ θ

1,1
1

)
∨∨3

n=1

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

for MAHNOB laughter data classification is illustrated
in the Fig. 2 with the background color of the l1-
vs. l2-axis and is as follows. The classification takes
place at the first cascade stage for all the samples x
for whom B1

1(x) =
(
l1 ≥ θ

1,1
1

)
= true or B0

1(x) =
(
l1 < min

(
θ
2,1
1 , θ

2,2
1 , θ

2,3
1

))
=
(
l1 < θ

2,3
1

)
= true. In

the first case, the classification is “Laughter detected,” and
in the second case “No Laughter.” These subspaces of
(l1, l2) on the left and right outskirts of Fig. 2 are indicated
with a pale background color. In the second stage of the
cascade processing, the likelihood f2(x) = l2 is computed
only for the samples with θ

2,3
1 ≤ l1 < θ

1,1
1 , although l2 is

shown for all the samples in the Fig. 2. With the dataset
in the Fig. 2, it means that classification of approximately
65% of the samples are made using the detector function
f1 only.
The computational efficiency of the cascade naturally

depends on the order of detector methods to be utilized
at cascade stages. Generally, the faster methods should be
evaluated first, and the slower ones later. If the methods
fm, m = 1 . . .M have very different computational loads
Lm, m = 1 . . .M, it is very likely that a cascade ordered
such that Ls � Ls+1, s = 1 . . . S − 1 is the most efficient
one. Precisely, the most computationally efficient cascade
structuremay be defined via local inequalities among each
two consecutive stages s and s+ 1 as follows. If we denote
the probability of a sample arriving stage s to be classified
at stage s after computing ls = fs(x) with P1, and the prob-
ability of a sample arriving stage s to be classified at stage s
if the detectormethod fs+1 would be utilized instead of the
method fs with P2, it must hold that P1 ≥ (Ls/Ls+1)P2.
In our work, the computational loads of the detec-

tor methods are very different from each other, i.e.
Ls/Ls+1 � 1. Thus within the BOA cascade the detec-
tor methods fm m=1 . . .M are ordered according to their
computational loads. For notational simplicity we assume
that the detector methods fm used in a BOA cascade are
enumerated such that for their computational loads Lm
it holds that Lm � Lm+1, and now in a BOA cascade
fs = fm. The Table 3 demonstrates the computational
efficiency achieved in our experiments.
For a sample in a dataset X, the computational load of

classification with a BOA cascade is on average

S∑

m=1

⎛

⎝1 −
∣∣∣
{
x ∈ X,

∨m−1
s=1 B1

s (x) ∨ B0
s (x) = true

}∣∣∣
|X|

⎞

⎠·Lm.

Fig. 3 BOA cascade. Classification process with BOA classification cascade. At each stage s of the cascade new target likelihood score fs(x) = ls is
computed and either classification is made, or next stage is entered. The internal Boolean decision makers B11, B

1
2, . . . , B

1
S are partitions of BOA

function (7), and B01, B
0
2, . . . , B

0
S are partitions of (8)

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 10 of 22

To design a specific type of BOA cascade, e.g., one-
sided or symmetrical, the lists zq, q = 1 . . .Q, which
determine the detector functions to be utilized within
the conjunctions of the BOA, must be selected appropri-
ately. For data with clearly unbalanced class distribution,
one-sided cascade is computationally efficient if the early
classification option is available for the prevalent class.
This is the case if the decision-makers Bprevalent

s , s =
q . . . S for the prevalent class are functioning while the
decision-makers Brare

s , s = 1 . . . S − 1 for the rare class
are null/nonexistent as Brare

s (x) = false ∀ x. Thus, for
the usual case, where the “target” class is rare and the
“non-target” class is the prevalent one, to ensure a compu-
tationally efficient one-sided BOA cascade, the BOAmust
be conjunctive, designed with only one conjunction list
z1 = [1, 2, . . . , S]. In case the target likelihood scores are
negated, i.e., −f1(x),−f2(x), . . . ,−fS(x) are used, conjunc-
tion list of every subvector of [1, 2, . . . , S], should be used
to build a one-sided cascade capable of early classification
to “non-target” class. For example in case S = 3, the con-
junction lists would thus be z1 = [1], z2 = [2], z3 = [3],
z4 = [1, 2], z5 = [1, 3], z6 = [2, 3] and z7 = [1, 2, 3].

A symmetrical cascade, which enables early classifica-
tion to both the classes at all the cascade stages, is suitable
for classification tasks with both even and unbalanced
class distributions. The time to decision efficiency of the
cascade depends on capability of all the internal deci-
sion makers B1

s and B0
s for s = 1 . . . S of the cascade to

make early classifications. Functioning decision makers
for all the stages and both the classes to build a sym-
metrical BOA cascade are ensured by constructing the
BOA from cumulative conjunction lists z1 = [1], z2 =
[1, 2] , . . . , zS = [1, 2, . . . , S], that is zs = [1, 2, . . . , s].

3.2 BOA tunability property
Classification performance of the BOA depends on all the
values of thresholds θ

q,n
m , m = 1 . . .M, q = 1 . . .Q, n =

1 . . .Nq in θ . Classifying data X = {
X0,X1} from two

classes with a BOA B(x; θ) results in certain true positive
rate tprθ and false positive rate fprθ , which produces one
point into a space of precision (P) vs. recall (R). Classifying
the data X with the BOA B(x; θ) with all the possible sets
of different threshold values in θ results in a constellation
of performance points in (P,R) space. Best performing
threshold values for the BOA are those corresponding to
the classification performance on the upper frontier of this
(P,R) constellation.
We want to make the BOA sensitivity tunable with a

single parameter in similar way to individual detectors.
For that, we introduce a parameter α ∈ [0 . . . 1], which
denotes the sensitivity setting of a BOA. A value of the
parameter α corresponds to a fixed set θα of the BOA
threshold values such that B(x;α) = B(x; θα). In the

next section, we introduce an algorithm to select thresh-
old values for θα for a range of values of the sensitivity
parameter α. These operating points result in the BOA
performance to be close to the upper frontier of the (P,R)

constellation of BOA performance with all the possible
settings of θ .
The user may then select for a BOA B(x;α) the oper-

ating point α with the most desirable behavior with the
factual costs of a false positive Cfp and a false negative
Cfn of the problem. The operating point α∗ of minimal
expected misclassification cost can be found at

α∗ = min
α

(
P
(
x ∈ X1) · (1 − tprα

) · Cfn + P
(
x ∈ X0) · fprα · Cfp

)
.

where P
(
x∈X1) and P

(
x∈X0) are the prior probabilities

of the classes.

3.3 The proposed algorithm to set parameters of a BOA
We train the BOA B(x;α) by finding suitable values for
thresholds θα for a range of values of α ∈ [0 . . . 1] in terms
of training data X. The possible threshold values ϑm con-
sidered for a target likelihood score lm are given by the
scores of target class samples x ∈ X1 as ϑm = fm(x) = lm.
The proposed algorithm, BOATHRESHOLDSEARCH, for

training a BOA is presented in Algorithm 1. As input, the
algorithm needs training data X = {X0,X1} from two
classes, the conjunction lists z1, z2, . . . , zQ, maximal con-
junction set multiplicities N1,N2, . . .NQ of the BOA and
the maximal number Nmax

S of candidates for θα saved by
the algorithm for each α. The algorithm produces sets
θαt of fixed threshold values for BOA operating points
αt = t

T , t= 0 . . .T , where T equals the number of sam-
ples x ∈ X1. These operating points correspond to true
positive rates 0, 1

T ,
2
T , . . . ,

T−1
T , 1 on training data X. The

algorithm searches for suitable threshold values step by
step starting by selecting values for θ0 for α0 = 0 and
terminating after selecting values for θ1 for αT = 1. The
method is greedy in a sense that when searching for values
for αt at iteration t, the search starts from a potential set of
threshold values for αt−1 provided by iteration t − 1, and
the threshold values are allowed to change only gradually
for minimizing the number of false positives locally.
The algorithm starts by fixing the BOA thresholds for

sensitivity level α0 = 0 to be θα0 = {∞}. The BOA with
parameter setting α0 = 0 does not accept any sample to
the “target” class, i.e., B(x;α0) = false ∀ x ∈ X. Thus,
the algorithm starts with tprα0 = fprα0 = 0. The threshold
setting θα0 and the corresponding number 0 of false posi-
tives are placed into a set S0 as an entry (θ ={∞} , fp=0)

for the next step to start with.
At each step t = 1 . . .T , every threshold setting θ ,

given by entries (θ , fp) in St−1, provided by the step
t − 1, is adjusted. One adjusted set θnew is obtained by
mitigating one or multiple thresholds θ

q,n
m ∈ θ of one

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 11 of 22

Algorithm 1 An algorithm to find thresholds for a BOA
combination
1: procedure BOATHRESHOLDSEARCH
2: input: Z , N,F ,X,Nmax

S
#Z contains the Q conjunction lists z1, . . . , zQ.
N contains the maximal conjunction multiplicities N1, . . . ,NQ .
F contains the detector functions fm , 1=1 . . .M.
X = X0 ∪ X1 is the training data from two classes.
Nmax

S is the maximal size of set St used within the algorithm.

3: form= 1. . .M do
4: Set ϑm = {fm(x) | x ∈ X1}

5: end for
6: Set α0 = 0, θ0 = {∞}, tp0 = 0, fp0 = 0
7: Set S0 = {(θ = {∞}, fp = 0)

}
.

8: for t = 1 . . . |X1| do
9: Set St = ∅

10: for each (θ , fp) ∈ St−1 do
11: for each (q, n) for q = 1 . . .Q, n = 1 . . .Nq

do
12: for each subvector ζ of zq do
13: Set θnew = θ

14: Within θnew, set θ
q,n
m = θ

q,n
m − δm,

for allm=ζ(i), i=1 . . .Mζ

using such δm that B(x; θnew)

accepts exactly one more
sample x ∈ X1 than B(x; θ), and

θ
q,n
m ∈ ϑm.

15: Count the number of false positives
fpnew with B(x; θnew).

16: Set θ
γ ,ν
all = ∞ for every conjunction

(γ , ν) of θnew which is redundant.
17: Set St = St ∪ (θnew, fpnew).
18: end for
19: end for
20: end for
21: Set αt = t

T , tpt = tpt−1 + 1, fpt =
min(θ ,fp)∈St fp

22: Set θ t = θ∗ such that (θ∗, fpt) ∈ St and within
θ∗ the number of

conjunctions (γ , ν) for which θ
γ ,ν
all < ∞ is

the smallest.
23: Prune St by keeping Nmax

S entries with the
smallest fp.

24: end for
25: return: αt , θ t , tpt , fpt ∀ t = 1 . . . | {p} |.
26: end procedure

conjunction (q, n) of the BOA. Within each BOA con-
junction (q, n), there are 2Mq − 1 subsets of thresholds{
θ
q,n
zq(i)| i ⊆ {1 . . .Mq}

}
to search for the best change from

θ to θnew. Thus in the complete BOA function there are

P = ∑Q
q=1Nq · (2Mq − 1

)
possible subsets of thresholds

to change, and thus one θ generates up to P changed
threshold settings θnew.
When mitigating the values of thresholds{
θ
q,n
zq(i) | i ⊆ {1 . . .Mq

} }
of a conjunction (q, n) from their

values in θ for θnew, the amount of changes are such
that B(x; θnew) accepts exactly one more sample x ∈ X1

than B(x; θ). That is, B(x; θ) = B(x; θnew) ∀ x ∈ X1\x∗,
B(x∗; θ) = false and B(x∗; θnew) = true. If redundancy of
BOA function appears with the new threshold set θnew,
all the thresholds θ

q,n
zq(i), i = 1 . . .Mq of the redundant

conjunctions (q, n) are reset to be θ
q,n
∗ = ∞. All the

acquired new settings θnew are saved with their resulting
false positive counts into a set St as entries {(θ , fp)new} to
be potential settings for αt .
After processing every entry (θ , fp) ∈ St−1 and saving all

the generated new entries into St , the best set θ∗ of BOA
thresholds among the entries of St is selected for θαt =
θ∗ to correspond to αt . The best set θ∗ is a selected to
be the one corresponding to the smallest number of false
positives among the entries in St and using as few BOA
conjunctions as possible with non-infinite thresholds. The
set St is then pruned to keep themaximal allowed number
Nmax

S of the best entries for the next step to start with. In
the experiments, we used Nmax

S = 10, as larger number
did not improve the recognition accuracy notably while
making the algorithm run remarkably slower.
Figure 4 illustrates the thresholds θα found by the algo-

rithm with Nmax
S = 1 for a BOA

B(x;α) = B(x; θα) = (l1 ≥ θ11
) ∨ [(l1 ≥ θ21

) ∧ (l2 ≥ θ22
)]

.
(14)

for α = 0, 1
T ,

2
T , . . . ,

T−1
T , 1.

The memory requirement of the algorithm, besides the
training data and the output variables, during the algo-
rithm run is the storage needed for the set St of the
potential operating points to be stored at each iteration.
As maximally Nmax

S operation points are passed from one
iteration to the next one, the number of operation points
to be held in memory during an iteration of the algorithm
run is maximally Nmax

S ×∑Q
q=1Nq

(
2Mq − 1

)
.

Computational complexity of the BOATS algorithm is
O
(

|X1| Nmax
S Nmax

conj 2M
)
. In practice, multiple positive

samples are often selected concurrently, diminishing the
multiplier |X1|. The limit Nmax

S is an input parameter
which allows the user to decide about the accuracy vs time
and memory complexity trade-off of the algorithm. Nmax

conj
is the maximum number of conjunctions in the DNF-BF
BOA-function, which takes place at the operating point of
recall= 1. At operating points with lower recall values, the
true value is generally lower, and using Nmax

conj sets upper

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 12 of 22

Fig. 4 BOA training. The sequence of thresholds θαt = [θ1A , θ2A , θ2V
]
t , t=0 . . . T found by the proposed BOATS algorithm for a BOA (14) with

Nmax
S = 1. Thresholds of the operating point αt with highest accuracy on train data is marked with asterisks

limit for the time complexity. The number 2M is upper
limit of options tested when processing each conjunction,
the true number for each conjunction (q, n) is 2Mq − 1.

4 Results and discussion
In this section, we report our experiments to evaluate the
performance of the proposed BOA cascade of multiple
sensitivity tunable detectors both in terms of detection
accuracy and computational load of classification.We also
analyze the proposed BOA training algorithm to show-
case how good operating points it can find for a BOA
combination. To substantiate the eligibility of our work,
we compare the acquired results with others found in the
literature.
We first introduce the datasets used for the two explored

tasks, namely laughter detection and context change
detection, and discuss the used performance measures.
Then, we contrast our results with the proposed BOA
classifier and a C5.0 -tree classifier in laughter detection
task to results by other solutions found in the literature.
We also compare the proposed BOA training algorithm
to other training algorithms adopted from literature and
explore the detection performance with different BOA
combinations.

4.1 Data and performance measures
4.1.1 MAHNOB Laughter dataset
For laughter detection, i.e., laughter vs speech classifica-
tion, we use data from the MAHNOB Laughter dataset of
[7]. The data consists of 1399 video clips of lengths from
0.15 s to 28 s of 22 different persons. 845 of the video clips
represent speech and 554 of them represent laughter. The
data is recorded in two modilities; frontal closeup video
with frame rate 25 fps, and audio from a lapel microphone
with sampling frequency 44.1 kHz.
A frame from one of the videos is shown in Fig. 5 to

demonstrate the data.
We run the tests using 22-fold cross-validation where

at each fold the videos of one person are left out for test-
ing, and all the rest of the videos are used for training.

We build the BOA combinations using similar classifiers
as are used for the baseline method in [7]. Those are
an audio stream based detector, which provides laugh-
ter likelihood fA(xaudio) = lA, and a video frame based
detector, which provides laughter likelihood fV (xvisual) =
lV for each video clip. The computational load of the
audio stream based detector is very small compared to the
computational load of the visual stream based detector.
The audio stream-based laughter detector utilizes the 6

first MFCC features from audio frames of length 20 ms. A
single output feedforward neural network (NN) is trained
to produce audio frame-wise target class likelihoods la
using mean squared error (MSE) error function. The NN
has one hidden layer with 20 neurons and all the neurons
of the network use tangential sigmoid transfer function.
The target class likelihood lA for a video clip is an average
over the frame-wise values as lA = 1

Na

∑Na
τ=1 la(τ), where

Na is the number of audio frames in the clip.
The video frame-based laughter detector starts with

extracting the 20 face points, shown in Fig. 6, from
each video frame using an algorithm from [49]. The uti-
lized face points correspond to points used in [7]. Then,
the dimensionality of each face point feature vector is

Fig. 5 A video frame from MAHNOB Laughter data set. A video frame
from MAHNOB Laughter data set. This frame is from a video which
contains laughter

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 13 of 22

Fig. 6 Face points. The 20 face points used as features for
laughter-speech classification of MAHNOB Laughter dataset videos

reduced from 40 to 20 by principal component analy-
sis (PCA). For frame-wise laughter likelihood estimates
lv an NN is trained. It is built of 1 hidden layer of 10
neurons. All the neurons use tangential sigmoid transfer
function, and mean squared error (MSE) loss function is
applied for training. Video clipwise laughter likelihood is
given as an average over the frame-wise values as lV =
1
NV

∑NV
τ=1 lv(τ), where NV is the number video frames in

the clip.

4.1.2 CASA dataset
For video context change detection problemwe use CASA
database1 from [8]. Over 7 h of lifelog video material is
filmed with a small pen camera, which operates at frame
rate 15 frames/second and frame size 176×144 pixels. The
stereo sound track is recorded by a pair of in-ear micro-
phones with 44.1 kHz sampling rate and stored without
compression. The database contains video material from
23 different types of environments.
For a context change detection task we created 30 video

files of length 5–20 min. Each file is concatenated on aver-
age of 105 clips of length 1–30 s from the video material
of CASA database. The context—one of the 23 different
environments included in the database—is kept the same
for 1–5 successive clips, otherwise each clip is taken from
a randomly selected video file. There are on average 42
context changes within each created video file. We run
our tests using 6-fold cross-validation, where at each fold
5 files are reserved for testing and the remaining 25 files
are used for system training.

We use three different detectors to spot context changes
in the created videos. Brief descriptions of the used detec-
tors are given here, while the details of them can be found
in [50]. The fastest one of the used detectors operates
on the audio stream of the video. The audio is analyzed
in frames of length 80 ms with 40 ms overlap of suc-
cessive frames. From each audio frame, MFCC features
are computed, and within a sliding window of 125 audio
frames, mean and variance of 20 MFCC coefficients are
computed. Transitions in these statistics are converted to
a context change likelihood l1 for each audio frame. The
computation time of scores l1 on a single CPU desktop
computer is 0.8 ms per audio frame, that is 10 ms per one
second of audio.
Two other utilized context change detectors operate on

the image modality of the video. The faster one of the
detectors on visual modality collects RGB histograms of
video frames and produces the context change likelihood
value l2 for each video frame according to the city block
distance between adjacent RGB histograms. The compu-
tation time of l2 is about 29 ms per video frame, that is
approximately 435 ms per one second of video.
The more accurate one of the used detectors on visual

modality, proposed in [51], counts incidences of SIFT
descriptor codebook elements within each video frame,
and collects a SIFT histogram, i.e., so-called bag-of-words
feature vector, for each video frame. The context change
likelihood value l3 for each video frame is computed as the
city block distance between SIFT-histograms of successive
video frames. The computation time of l3 is about 12.3 s
per video frame, that makes about 184 s per one second of
video.

4.1.3 Performancemeasures
In the literature the performance of detectors is often
presented by a receiver operation characteristic (ROC)
curve. However, in our evaluations, we prefer the curve of
precision vs recall (P-R curve) because in case of imbal-
anced class distributions P-R curve is more faithful to
the absolute number of erroneous classifications than the
ROC -curve of tpr in respect to fpr. To demonstrate the
performance of a certain operating point of a detector, we
use measures like accuracy, F1-score, and computational
load.
Average values of these performance numbers over

cross-validation folds are presented as results. With
MAHNOB laughter dataset, 22-fold cross-validation is
used. In each fold, video files of one speaker are used for
testing, and the rest of the files are used for training the
component detectors and the BOA -cascade. With CASA
dataset, 6-fold cross validation is used similarly. In each
fold, 25 video files are used for training the individual clas-
sifiers and the BOA -combination, and 5 files are used for
testing the system.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 14 of 22

4.2 Comparing BOA cascade to existing work in laughter
vs speech classification

We compare the performance of the proposed BOA cas-
cade to results we obtained with C5.0 -tree building algo-
rithm [52] as well as results obtained by other authors in
laughter vs speech classification, i.e., laughter detection,
with the MAHNOB laughter dataset. For the task, we use
a BOA detector

B(x; θ) = (lA ≥ θ1A
) ∨

N2∨

n=1

[(
lA ≥ θ

2,n
A

)
∧
(
lV ≥ θ

2,n
V

)]
,

(15)

whose threshold parameters θ1A, θ
2,1
A , θ

2,1
V , θ

2,2
A , θ

2,2
V ,

. . . ,θ2,NA , θ
2,N
V are learned by the proposed training algo-

rithm. The Fig. 7 illustrates the BOA cascade of (15).
The computational load of acquiring lA from audio
stream is only a fraction of the load of computing
lV from video frames. Thus, the ratio of samples that
need the computation of lV reflects well the average
computational load of classifying a sample with BOA
cascade of (15).
Table 1 presents results with C5.0 tree building algo-

rithm as well as those found in the literature in con-
trast to our solution. We report performance numbers
with a BOA cascade of (15) with N = 1 and also
with N selected adaptively by the proposed training algo-
rithm. The decision trees obtained with C5.0 algorithm
[52] are converted to DNF-BF -form (15) and evaluated
in cascaded manner similarly to BOA evaluation. The
number N in the DNF-BF (15) of a tree varies accord-
ing to the structure of the tree, which is given by the
algorithm. The minimal leaf size of a tree was defined

by 10-fold cross validation using the training data. The
boosted C5.0 forest contains 10 trees trained with differ-
ent weightings by the training algorithm on training sam-
ples. The classification of the forest is obtained via voting
by the trees.
The C5.0 forest outperforms all the other solutions in

terms of classification accuracy, whereas the performance
of single C5.0 tree is comparable to performance obtained
with BOA classifiers.When a C5.0 tree is evaluated in cas-
caded manner, very similar computational savings as with
a BOA cascade are obtained. Both the BOA detectors out-
perform the solutions of [53, 54], albeit the classifier in
[54] is trained with another database, which likely explains
its lower detection accuracy. The results obtained by [55]
reach similar accuracy and F1-scores than our BOA cas-
cades, but their result is not fully comparable as they use
only a subset of 15 speakers out of 22 used by all the other
authors. However, the computational load of our solution
is significantly lower, compared to all these other mul-
timodal solutions. With our BOA cascade of (15) with
N = 1, only 11% of samples needed the computation of lV ,
thus it is about nine times faster than the other solutions.
The BOA cascade of (15) withN selected by the proposed
training algorithm reaches slightly higher accuracy than
the reference solutions while being still three times faster
than them.

4.3 Comparing training algorithms for BOA combination
We use the CASA lifelog data and the context change
detection task for illustrating the capability of the pro-
posed training algorithm to find successful operating
points for a BOA combination. For context change detec-
tion we use BOA combinations built of three detectors,

Fig. 7 Symmetrical BOA cascade for laughter detection. Symmetrical BOA cascade, which is capable of making early classification to both classes,

realizing of BOA (15) for laughter detection. The conjunction set z2 = {lA , lV } and the threshold θmin
A is θmin

A = min
(
θ1A , θ

2,1
A , θ2,2A , . . . , θ2,NA

)
. B02

contains K = 2N conjunctions, where the first threshold comparison is always
(
lA ≥ θ1A

)
. The comparisons indexed by n=1 . . .N operate either on

lA or lV according to binary (M2-ary) N-digit representation of the conjunction index k=1 . . . K , bin(k). If the n:th digit of bin(k) is 0, lA is used, and lV
is used if the n:th digit of bin(k) is 1

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 15 of 22

Table 1 Results in laughter detection task

acc. Fsp1 Flg1 v.f. %

(lA ≥ θA) 95.1 .944 .927 0%

(lV ≥ θV) 84.4 .818 .795 100%

BOA cascade of (15), N = 1 96.0 .966 .958 11%

BOA cascade of (15), N by BOATS 96.9 .972 .955 33%

C5.0 tree 96.7 .965 .948 23%

Boosted C5.0 forest 97.3 .978 .958 ≈ 100%

[53] 92.7 .943 .905 100%

[54]a 91.7 .932 .893 100%

[55]b 96.9 .973 .963 100%

Comparison of laughter detectors on MAHNOB laughter data. The used measures of
performance are the overall accuracy, F1 -scores for both speech (Fsp1) and laughter

(Flg1), and percentage of video clips, the classification of which utilized also visual
features (v.f.). The BOA detectors are used at the operating point α of the highest
accuracy on training set
aComparison with [54] is not directly comparable, as the classifier in [54] is trained
with another dataset
bResults of [55] are with 15 speakers while the other authors use 22 speakers in their
tests

which are introduced in “Data and performance mea-
sures.” We train the thresholds of a BOA with the pro-
posed training algorithm (BOATS) and two reference
algorithms adapted form literature, and then compare
the resulting F1-scores of classification. The reference
algorithms that we use for this evaluation are iterative
exhaustive search (IES) based on work in [11] and Boolean
algebra of ROC curves (BAROC) introduced in [10].
The implementations of IES and BAROC, adapted for
BOA training, are presented in Algorithms 2, 3 and 4 in
Appendix 1. The iterative framework used of both the
algorithms is presented in Algorithm 2. The Algorithm 3
shows the core operations of IES, and the Algorithm 4
presents the operations for BAROC.
Figure 8 shows the F1-scores with operating points

obtained with three algorithms, BOATS, IES and BAROC,
for a BOA

BAND =
N∨

n=1

[(
l1 ≥ θn1

) ∧ (l2 ≥ θn2 ∧ (l3 ≥ θn3
)]

(16)

with different conjunction multiplicities N . The IES algo-
rithm can be seen to find the best operating point when
N = 1 with its exhaustive search. However, when N
is increased, IES is unable to improve the BOA perfor-
mance due to that the suboptimal operating points of each
individual conjunction, which nevertheless might pro-
duce better performance when used within a disjunctive
combination, are pruned by the algorithm.
The BAROC algorithm performs worse than the other

algorithms due to its assumption of detector indepen-
dence, which does not hold with the two visual stream
based detectors. Moreover, by the definition of the
Boolean algebra of ROC curves in (4) and (5), BAROC
is unable to find the opportunities provided by utilizing
multiple conjunctions over the same conjunction set.
The proposed BOATS algorithm finds suboptimal

operating points for the BOA, but is able to utilize the
opportunities offered by using multiple conjunctions
over the same conjunction set, and thus outperforms
the IES algorithm with N > 1. The performance ceases
to improve when the conjunction multiplicity grows
larger than 7. This is due to both the data characteris-
tics and algorithm behavior favoring small number of
conjunctions, i.e., small N .
In a Table 2, we show the best F1-scores of the oper-

ating points found by the three algorithms for BOA
combinations

BOR = (l1 ≥ θ1) ∨ (l2 ≥ θ2) ∨ (l3 ≥ θ3)

¬B¬OR= ¬
[
(−l1 ≥ θ1) ∨ (−l2 ≥ θ2) ∨ (−l3 ≥ θ3)

]

BAND =
N∨

n=1

[(
l1 ≥ θn1

) ∧ (l2 ≥ θn2
) ∧ (l3 ≥ θn3

)]

(17)

BP =
7∨

q=1

Nq∨

n=1

Mq∧

i=1

(
lzq(i) ≥ θ

q,n
zq(i)

)

¬B¬P = ¬
[7∨

q=1

Nq∨

n=1

Mq∧

i=1

(
−lzq(i) ≥ θ

q,n
zq(i)

)]
.

Fig. 8 Experiments 1. Comparing context change detection performance of BOA BAND (16) with different conjunction multiplicities N when the
thresholds are selected by different algorithms

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 16 of 22

Table 2 Comparison of algorithms for BOA training

BOA BOATS IES BAROC

BOR 68.3 68.6 68.2

BAND,N = 1 75.7 76.5 73.5

¬B¬OR 76.3 73.2 73.2

BAND,N = 6 81.1 77.3 73.3

¬B¬P ,Nq = 1 81.3 73.4 73.7

BP ,Nq = 1 80.0 81.8 80.5

BP ,Nq by BOATS 81.7

Average test F1-score over sixfold cross-validation sets in context change detection
task with BOA combinations (17) trained with different algorithms. The used
operating point of the BOA is the one with highest F1-score on train data separately
for each CV-fold

where the conjunction lists of BP and B¬P are
z1 = [1] , z2 = [2] , z3 = [3] , z4 = [1, 2] , z5 = [1, 3] , z6 =
[2, 3] , z7= [1, 2, 3].
For the disjunctive BOA BOR, the operating points

found by the three algorithms are very similar. The IES
algorithm finds the best operating point for this BOA
with its exhaustive search. The proposed BOATS algo-
rithm does not leave far behind, nor does the Boolean
algebra for ROC curves. The assumption of the BAROC
algorithm about the detector independence, which does
not hold with these detectors, does not impair its perfor-
mance in training the BOA BOR, where only disjunctive
OR -operator is used.
The conjunctive BOA BAND with N = 1 and the dis-

junctive ¬B¬OR have equally expressive decision bound-
aries. Ideally they would result in identical classifiers,
but due to characteristics of the training algorithms they
result in having different thresholds. Similarly the ideal
decision boundaries of BAND with N = 6 and ¬B¬P
coincide. Results with those pairs of BOAs trained with
the BOATS and BAROC algorithms are similar, which
was expected because of the similarity of decision bound-
aries. The iterative exhaustive search does not find as good
operating points for the BOA combinations when nega-
tive scores −lm are used. This is due to the selection of the
threshold values to test, which in this case of using neg-
ative detector scores is done based on “non-target” class
samples, as explained in Section 3.3.
For the BOA BP with Nq = 1, q = 1 . . .Q, the IES

algorithm is able to find the best performing operating
point. The iterative exhaustive search is thus effective
in finding good thresholds for BOAs with different con-
junctions. IES was not run with Nq > 1, because of its
extremely long computation time for such a long BOA.
BAROC algorithm finds a comparable operating point for
the BOA BP with Nq = 1, q = 1 . . .Q. This is proba-
bly due to the abundance of different conjunctions in the
BOA to be combined disjunctively, where the inaccurate
independence assumption of BAROC does not matter so

much. Also for the BAROC -algorithm, the result with the
BOA BP with Nq > 1 is not reported, because it is the
same as with Nq = 1 by definition. The proposed BOATS
algorithm leaves slightly behind IES and BAROC for the
BOA BP with Nq = 1 ∀q. However, when the conjunction
multiplicities Nq are unlimited, BOATS finds an operat-
ing point with similar performance with the best one with
Nq=1 ∀q by IES.

4.4 Computational efficiency of BOA
In this section, we report performance of different BOA
cascades in terms of both F1-score and the average com-
putational load of classification in respect to real time pro-
cessing. The BOA cascades are trained with the proposed
BOATS algorithm for the video context change detection
task which has highly unbalanced class distribution, the
“no change” class being the prevalent one.
The BOA cascades BAND,¬B¬OR, and¬B¬P of (17) cor-

respond to one-sided cascades with early classification
opportunity to the “no change” class. They are assumed to
be computationally efficient with this data, where samples
of “no change” form the large majority of data. The BOA
cascades of BOR and BP are one-sided, having the early
classification opportunity solely to the “target” class. They
are likely to be slow with this data.
For this comparison we use, in addition to the BOA

cascades of (17), symmetrical cascades realizing of

BC2 =
(
l1 ≥ θ11

)
∨

∨

n=1..N

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

BC3 =
(
l1 ≥ θ11

)
∨

∨

n=1..N2

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

∨
∨

n=1..N3

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)
∧
(
l3 ≥ θ

2,n
3

)]
.

(18)

The BOA cascade of BC2 is similar to the laughter detec-
tion cascade of Fig. 7 with lA = l1 and lV = l2. The
cascade of BC3 with N2 = N3 = 1 is illustrated in Fig. 9.
In Table 3, we show for the different BOA cascades their

best F1-scores as well as their computation times (CT) of
classification using a desktop PC in respect to real time
processing. The individual detectors dm = (lm ≥ θm),
m= 1, 2, 3 have very different computational loads. Com-
pared to real time processing, the detectors d1 and d2 are
very fast, d3 being extremely slow.
The BOA cascade of BC2 with N = 1 has a computa-

tional cost of only a fraction of real time, while achiev-
ing an outstanding improvement of classification perfor-
mance over individual detectors dm = (lm ≥ θm), m =
1, 2, 3. It requires a tiny fraction of the computational load
of d3 and less than 5% of the computational load of d2
while only doubling the time of the fastest detector d1.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 17 of 22

Fig. 9 BOA cascade example. The BOA cascade of BC3 with N1=N2=N3=1. Threshold θmin
m means θmin

m = min
(
θ2m , θ

3
m

)

At the same time it reaches F1 = .764, which is about
9 percent units higher than .674 of d1, 14 percent units
higher than .525 of d2 and 11 percent units higher than
.553 of d3. With N of BC2 not restricted, the F1-score fur-
ther improves to .778, but the computational benefit over
always computing both l1 and l2 is lost.
The BOA cascade of BC3 utilizes all the three avail-

able detectors. Thus, the F1-scores obtained with it are
all the more improved from those obtained with BC2.
Real time processing is compromised by incorporating
the extremely slow computation of l3. However, with the
cascade processing, the total computational load of BC3

Table 3 Performance comparison of different BOA cascades

BOA F1 CT

d1 = (l1 ≥ θ1) .674 0.01

d2 = (l2 ≥ θ2) .525 0.43

d3 = (l3 ≥ θ3) .553 184

BC2,Nq=1∀q .764 0.02

BC2,Nq by BOATS .778 0.44

BC3,Nq=1∀q .774 2.5

BC3,Nq by BOATS .813 6.9

¬B¬OR .763 4.1

¬B¬P ,Nq=1∀q .813 7.0

BAND,N by BOATS .814 8.5

BOR .683 182.0

BP ,Nq=1∀q .798 153.3

BP ,Nq by BOATS .817 124.3

Results in terms of F1-score and computation time (CT) in respect to video time in
scene detection task with detectors d1, d2, d3 and BOA combinations of (17) and (18).
The BOA thresholds are selected with the proposed BOATS algorithm. The results
are test averages over sixfold cross validation sets. The used operating point of each
BOA is the one with highest F1-score on train data separately for each CV-fold

with N2 = N3 = 1 is reduced to less than 2% of that of
always computing all the scores l1, l2, and l3. At the same
time the F1-score is improved to 0.774. With N2 and N3
unrestricted and selected by the proposed BOA training
algorithm, F1-score improves further to 0.813, the average
computation time being still less than 4% of the time of
always computing all the scores l1, l2 and l3.
When observing the computational loads of different

BOA cascades in Table 3, we may notice that remarkable
computational savings appear whenever the BOA utilizes
the computationally heaviest detector function f3(x) = l3
only by combining it conjunctively with the faster detec-
tor functions f1(x) = l1 and f2(x) = l2. This is the case
in BOA combinations BC2, BC3, BAND,¬B¬OR and ¬B¬P .
The BOA cascades of BOR and BP utilize a conjunction
list z3 = [3], which means using the threshold comparison(
l3 ≥ θ 3

3
)
as an individual conjunction within the BOA

function. Because of this these BOA cascades can not
avoid computing l3 unless the input is accepted to the rare
“context change detected” class by conjunctions using only
scores l1 and l2. The BOA cascade of BOR is computation-
ally the most inefficient, as it is able to avoid computing l3
only if the input is classified as “context change detected”
by threshold comparison (l1 ≥ θ1) or (l2 ≥ θ2). The
BOA cascade of BP is slightly more efficient due to its
conjunctions

∨Nq
n=1

(
l1 ≥ θ

q,n
1
)∧(l2 ≥ θ

q,n
2
)
, based on con-

junction list zq = [1, 2], capable of classifying the input as
“context change detected” with only l1 and l2.
The best F1-score, F1 = .814, among the BOA cascades

not utilizing a conjunction list zq = [3] is achieved with
BAND. Only slightly higher score, F1 = .817, was obtained
with BOA cascade BP , but the computational efficiency
obtainable with a cascade structure is obstructed by its
computationally inefficient BOA design.
Precision vs recall curves of the detectors d1 = (l1 ≥ θ),

d2 = (l2 ≥ θ), and d3 = (l3 ≥ θ), and some BOA

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 18 of 22

combinations of them trained with the BOATS algorithm
are shown in Fig. 10. We can see that all the BOA combi-
nations improve the precision-recall curve over the curves
of the individual detectors remarkably.

5 Conclusions
We proposed to use a monotone Boolean function for
combining multiple binary classifiers and showed how to
implement it as a computationally efficient binary clas-
sification cascade. The proposed Boolean OR of ANDs
(BOA) cascade is defined by a BF over multiple detector
scores, and it is implemented as a classification cascade
for computational efficiency. We also presented an algo-
rithm, BOA threshold search (BOATS), for learning the
thresholds of a BOA cascade.
We showed experimentally that the BOA cascade

achieves the state-of-the-art performance in laughter
detection task with MAHNOB laughter dataset while
requiring much less computational power than the
other solutions found in the literature. We also showed
that the proposed algorithm suits best for learning
thresholds of a BOA combination, compared to other
learning strategies for Boolean combinations found in
the literature. Finally, we explored the detection per-
formance of different BOA cascades in terms of their
F1-scores and computational loads of detection. We
showed that a BOA cascade improves the classifica-
tion accuracy remarkably over the individual detectors
while mostly requiring only a fraction of their combined
computation time.

Endnote
1Demonstration available at http://arg.cs.tut.fi/demo/

CASAbrowser/

Appendix 1
Reference algorithms for BOA training
The Algorithm 2 contains the functionality for training a
Boolean BOA combination iteratively, by fusing two ele-
ments at a time. The symbol� denotes a matrix of thresh-
olds. Each row of � contains one threshold setting for the

corresponding Boolean classifier. The boldface symbols tp
and fp are used to denote vectors of true positives and
false positives resulting with different threshold settings
in � of a corresponding Boolean classifier, respectively.
One conjunction (q, n) of a BOA is built on lines 8–22

within the loop starting from line 7. On lines 23–28, the
newly trained conjunction is combined with the conjunc-
tions trained already.
The algorithm returns thresholds for found operating

points α of the BOA in matrix �B. The corresponding
true positive rates and false positive rates on training data
are returned in vectors tpB fpB We use this framework
for training a BOA with either Boolean algebra of ROC
curves (BAROC) by [10] or iterative exhaustive search
(IES) by [11].
The training algorithm to be used is selected by a vari-

able ALG. If ALG = IES, the combining is performed with
Algorithm 3, and if ALG = BAROC, the combination of
two sets of thresholds is done by Algorithm 4.

Appendix 2
Boolean decision makers at BOA cascade stages
At each stage s = 1 . . . S of a BOA cascade, one target
likelihood score fm(x) = lm = ls,m ∈ {1 . . .M} is com-
puted. All the scores li, i = 1..s are thus available at
cascade stage s tomake the classification or the decision to
enter the next cascade stage. BFs B1

1(l1), B0
1(l1), B1

2(l1, l2),
B0
2(l1, l2),. . . , B

1
S(l1, l2, . . . , lS) and B1

S(l1, l2, . . . , lS) are set
to make these internal decisions of the cascade. As
illustrated in Fig. 3, at each stage s, after computing
the predefined target likelihood score ls, a classification
to the “target” class is made if B1

s (l1, l2, . . . , ls) = true
and a classification to the “non-target” class is made if
Bs(l1, l2, . . . , ls)0 = true. If both the functions, B0

s and B1
s ,

output false, the next cascade stage is entered. The func-
tions B0

S and B1
S at the last cascade stage S are negations of

each other ensuring the classification to be made.
The decision makers B1

s , s=1 . . . S are partitions of the
BOA function (7), and the functions B0

s , s = 1 . . . S are
partitions of the negation (8) of the BOA function. This
ensures that the decision makers B1

s ,B0
s , s = 1 . . . S are

Fig. 10 P-R curves of BOA cascades. Precision vs. recall curves of detectors d1, d2, and d3 and some BOA combinations of them

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 19 of 22

Algorithm 2 An algorithm to find thresholds for a BOA
combination with IES or BAROC procedure
1: procedure ITERATIVEBC
2: input: Z , N, ,F ,X, ALG

#Z contains z1, z2, . . . , zQ.
N contains N1,N1, . . . ,NQ.
F contains the detector functions fm, m=1 . . .M.
X = X0 ∪ X1 contains the training data.
ALG is either IES or BAROC

3: form = 1 . . .M do
4: Set ϑm = {fm(x) | x ∈ X1}

5: end for
6: Set B(x; θ) = false, �B = ∅, tpB = 0, fpB = 0
7: for q = 1 . . .Q and n = 1 . . .Nq do
8: Setm = zq(1)
9: Set Bconj(x; θ) = (fm(x) ≥ θ

)

10: Set �conj = ϑm
11: tpconj = ∣∣{ x | x ∈ X1, Bconj(x;�conj) =

true }∣∣
12: fpconj = ∣∣{ x | x ∈ X1, Bconj(x;�conj) =

false }∣∣
13: for i = 2, 3, . . . ,Mq do
14: Set n = zq(i)
15: Set �n = ϑn
16: if ALG=IES then
17: Set new�conj, tpconj, fpconj according to

ES2(Bconj, �conj,∧, (ln ≥ θ),�n,
DATA)

18: else if ALG = BAROC then
19: Set new�conj, tpconj, fpconj according to

BA2((|X1|tpconj, |X0|fpconj),�conj,
∧, (|X1|tpn, |X0|fpn

)
,�n)

20: end if
21: Update Bconj(x; θ) = Bconj(x; θ) ∧ (fn(x) ≥ θ)

22: end for
23: if ALG=IES then
24: Set new �B, tpB, fpB according to

ES2(B,�B,∨, Bconj,�conj, DATA)
25: else if ALG=BAROC then
26: Set new �B, tpB, fpB according to

BA2(
(|X1|tpB, |X0|fpB

)
,�B,∨,(

|X1|tpconj, |X0|fpconj
)
,�conj)

27: end if
28: Update B(x; θ) = B(x; θ) ∨ Bconj(x; θ)

29: end for

30: return: �B, tpB, fpB.
31: end procedure

Algorithm 3 Exhaustive search of ROCCH operating
points for a Boolean combination of two detectors
1: procedure ES2
2: input: B1, �1,
,B2,�2, DATA

 is the Boolean operator to be used, eitherAND (∧) orOR (∨)

3: for p = 1 . . . number of sets θ in �1 do
4: for q = 1 . . . number of sets θ in �2 do
5: Set tp(p, q) =∣∣∣
{
x | x∈X1

B1(x;�1(p))
 B2(x;�2(q))=true

} ∣∣∣
6: Set fp(p, q) =∣∣∣
{
x | x∈X0

B1(x;�1(p))
 B2(x;�2(q))=true

} ∣∣∣
7: end for
8: end for
9: for fp = 0 . . . |X0| do

10: Find (p∗, q∗) = argmaxfp(p,q)=fp tp(p, q)
11: Set fpROCCH(fp) = fp
12: Set tpROCCH(fp) = tp(p∗, q∗)
13: Set �ROCCH(fp) = [�1(p∗),�2(q∗)

]

14: end for

15: return: �ROCCH , tpROCCH, fpROCCH.
16: end procedure

consistent. This means that both B1
s and B0

s never output
true concurrently, i.e. if B1

s (x) = true then B0
s (x) = false

and similarly if B0
s (x) = true then B1

s (x) = false. It also
means that if classification is made by B1

s or B0
s at a cascade

stage s, the decision makers B1
r and B0

r of the other stages
r = 1 . . . S, r �= s would not make contradicting classifi-
cations. Formally, if ∃s Bc

s = true then B¬c
r = false ∀r ∈

1 . . . S.
The internal decision makers at BOA cascade stages

s = 1 . . . S for the “target” class are

B1
s (x;α) =

∨

zq
∣∣ ∃j s=zq(j),
�jm=zq(j),m>s

Nq∨

n=1

Mq∧

i=1

(
fzq(i)(x) ≥ θ

q,n
zq(i)

)
.

(19)

That is, B1
s contains the conjunctions (q, n) of the BOA

(7) that utilize the newly computed likelihood score ls and
possibly those computed at earlier stages, but naturally
none of the scores lm, m > s. Examples can be seen in
Figs. 7 and 9.
Similarly, the internal decision makers B0

s , s= 1 . . . S of
the BOA cascade for the “non-target” class are partitioned
from the negated BOA; B0

s contains the conjunctions k of
the BOA (8) that utilize the newly computed likelihood
score ls and possibly those computed at earlier stages,
but none of the scores lm, m > s. The partition of the

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 20 of 22

Algorithm 4 Combining ROC curves of two detectors using the Boolean algebra of ROC curves by [10]
1: procedure BA2
2: input: (tpr1, fpr1), �1,
, (tpr2, fpr2), �2

 is the Boolean operator to be used, eitherAND (∧) orOR (∨)

3: for fpr = 0 . . . 1 do
4: if
 = ∧ then
5: Find (p∗, q∗) = arg max

fpr1(p)·fpr2(q)=fpr
tpr1(p) · tpr2(q)

6: else if
 = ∨ then
7: Find (p∗, q∗) = arg max

fpr1(p)+fpr2(q)−fpr1(p)·fpr2(q)=fpr
tpr1(p) + tpr2(q) − tpr1(p)·tpr2(q)

8: end if
9: Set fpr12(fpr) = fpr

10: Set tpr12(fpr) = tpr1(p∗) · tpr2(q∗)
11: Set �12(fpr) = {�1(p∗),�2(q∗)

}

12: end for

13: return: �12, (tpr12, fpr12).
14: end procedure

K conjunctions of ¬B of (8) is given by a Boolean vari-
able cs(k), which denotes whether the k:th conjunction of
the negated BOA (8) is used for decision maker B0

s . It is
recursively defined as

c0(k) = false ∀ k=1 . . .K

cs(k) =
s−1∧

r=1
¬cr(k) ∧

Q∧

q=1

Nq∧

n=1

S∧

m=s+1
¬ [zq(I(k, q, n)) = m

]
,

(20)

where I(k, q, n) is given by (9). The first part of the Eq. (20)
makes sure that the conjunction k has not been used for
B0
r , r < s, while the rest of the equation checks whether

detector functions beyond fs, i.e., any of fs+1, fs+2, . . . , fS,
are used in the conjunction k of (8) and sets cs(k) = false
if so.
Now, the decision-makers B0

s for the “non-target” class
are

B0
s =

∨

k

∣∣∣∣∣∣

k ∈ {1 . . .K}
cs(k) = true

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(I(k,q,n))(x) < θ

q,n
zq(I(k,q,n))

)
⎤

⎦ ,

(21)

where the detector function indicator index I(k, q, n) is
given by (9), K = ∏Q

q=1M
Nq
q and BOA variables zq,Nq,

for q= 1 . . .Q are adopted from (8). Using the alternative
notation of the ¬B (8), the decision makers B0

s , s=1 . . . S
for the “non-target” class may be written as

B0s (x; θ) =
∨

i1,1=1...M1
z1(i1,1)≤s

∨

i1,2=1...M1
z1(i1,2)≤s

· · ·
∨

i1,N1=1...M1
z1(i1,N1)≤s

∨

i2,1=1...M2
z2(i2,1)≤s

· · ·
∨

i2,N2=1...M2
z2(i2,N2)≤s

∨

iQ,1=1...MQ
zQ(iQ,1)≤s

· · ·
∨

iQ,NQ=1...MQ
zQ(iQ,NQ)≤s

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(iq,n)(x)< θ

q,n
zq(iq,n)

)
⎤

⎦ .

(22)

This notation, while possibly being more comprehensible,
includes all the decision makers B0

r , r < s in B0
s , however

this redundancy does not affect the functionality.

Abbreviations
BAROC: Boolean algebra of ROC curves; BF: Boolean function; BOA: OR of ANDs
function; BOATS: An algorithm to search thresholds for a BOA detector; CNF:
Conjunctive normal form; CNF-BF: Boolean function in conjunctive normal
form; CPU: Central processing unit; DNF: Disjunctive normal form; DNF-BF:
Boolean function in disjunctive normal form; IBC: Iterative Boolean
combination; IES: Iterative exhaustive search; LAD: Logical analysis of data;
MFCC: Mel-frequency cepstral coefficient; OCAT: One clause at a time; RGB:
Red-green-blue color format; ROC: Receiver operating characteristic curve;
ROCCH: ROC convex hull; SIFT: Scale invariant feature transform

Acknowledgements
Discussions with Prof. Jiří Matas leveraged the research from implementing ad
hoc ideas to doing excogitated research. The authors would also like to thank
prof. Bhaskar Rao on useful discussions related to cascades and BFs.
Furthermore, the authors want to thank the anonymous reviewers for their
well-informed comments for improving the manuscript.

Funding
Funding for this research was provided by the Tampere University of
Technology.

Availability of data andmaterials
Mahnob Laughter dataset is located at https://mahnob-db.eu/laughter/.
CASA dataset is located at http://arg.cs.tut.fi/demo/CASAbrowser/.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 21 of 22

Authors’ contributions
KM has written the manuscript and implemented and executed the
experiments. TV has been involved in designing the experiments as a
supervisor and helped KM in writing the manuscript in a solid scientific way. JK
gave the initial idea of utilizing Boolean functions for combining classifiers. He
also provided his help in software related problems. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
People appearing in the videos of Mahnob Laughter dataset have given their
consent for data usage for research purposes.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 2 May 2017 Accepted: 6 July 2018

References
1. S Yang, P Luo, C-C Loy, X Tang, in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). Wider face: A face detection benchmark,
(2016)

2. S Zhang, R Benenson, M Omran, J Hosang, B Schiele, in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). How far are
we from solving pedestrian detection? (2016)

3. T Virtanen, A Mesaros, T Heittola, MD Plumbley, P Foster, E Benetos, M
Lagrange, Proceedings of the Detection and Classification of Acoustic Scenes
and Events 2016Workshop (DCASE2016). (Tampere University of
Technology. Department of Signal Processing, 2016). ISBN (Electronic):
978-952-15-3807-0

4. J Ashbourn, Biometrics: Advanced Identity Verification: the Complete Guide.
(Springer, 2014)

5. A Courbet, D Endy, E Renard, F Molina, J Bonnet, Detection of
pathological biomarkers in human clinical samples via amplifying genetic
switches and logic gates. Sci. Transl. Med. 7(289) (2015)

6. E Boros, PL Hammer, T Ibaraki, A Kogan, Logical analysis of numerical data.
Math. Program. 79(1), 163–190 (1997)

7. S Petridis, B Martinez, M Pantic, The MAHNOB laughter database. Image
Vis. Comput. 31(2), 186–202 (2013)

8. A Mesaros, T Heittola, A Eronen, T Virtanen, in Signal Processing
Conference, 2010 18th European. Acoustic event detection in real life
recordings (IEEE, 2010), pp. 1267–1271

9. J Daugman, Biometric Decision Landscapes, vol. 482. (University of
Cambridge, Computer Laboratory, 2000)

10. ME Oxley, SN Thorsen, CM Schubert, in Information Fusion, 2007 10th
International Conference On. A boolean algebra of receiver operating
characteristic curves (IEEE, 2007), pp. 1–8

11. Q Tao, R Veldhuis, Threshold-optimized decision-level fusion and its
application to biometrics. Pattern Recog. 42(5), 823–836 (2009)

12. K Venkataramani, BV Kumar, inMultimedia Content Representation,
Classification and Security. Role of statistical dependence between
classifier scores in determining the best decision fusion rule for improved
biometric verification (Springer, 2006), pp. 489–496

13. M Barreno, A Cardenas, JD Tygar, in Advances in Neural Information
Processing Systems 20. Optimal roc curve for a combination of classifiers,
(2008), pp. 57–64

14. W Khreich, E Granger, A Miri, R Sabourin, Iterative boolean combination of
classifiers in the roc space: an application to anomaly detection with
hmms. Pattern Recognit. 43(8), 2732–2752 (2010)

15. E Granger, W Khreich, R Sabourin, Fusion of biometric systems using
boolean combination: an application to iris-based authentication. Int. J.
Biometrics. 4(3), 291–315 (2012)

16. C Shen, On the principles of believe the positive and believe the negative
for diagnosis using two continuous tests. J. Data Sci. 6, 189–205 (2008)

17. Y Crama, PL Hammer, Boolean Functions: Theory, Algorithms, and
Applications. Encyclopedia of Mathematics and its Applications. (Cambridge
University Press, 2011)

18. G Alexe, S Alexe, TO Bonates, A Kogan, Logical analysis of data – the vision
of peter l. hammer. Ann. Math. Artif. Intell. 49(1), 265–312 (2007)

19. I Chikalov, V Lozin, I Lozina, M Moshkov, HS Nguyen, A Skowron,
B Zielosko, Logical Analysis of Data: Theory, Methodology and Applications.
(Springer, Berlin, 2013), pp. 147–192

20. PL Hammer, Partially defined boolean functions and cause-effect
relationships. Lecture in International Conference on Multi-attribute
Decision Making Via OR-based Expert Systems (1986)

21. RS Michalski. (RS Michalski, JG Carbonell, TM Mitchell, eds.) (Springer,
Berlin, Heidelberg, 1983), pp. 83–134

22. AP Kamath, NK Karmarkar, KG Ramakrishnan, MGC Resende, A continuous
approach to inductive inference. Math. Program. 57(1), 215–238 (1992)

23. T Fawcett, An introduction to roc analysis. Pattern Recogn. Lett. 27(8),
861–874 (2006)

24. P Hess, Dedekind’s problem: monotone boolean functions on the lattice
of divisors of an integer. Pacific J. Math. 81(2), 411–415 (1979)

25. RS Michalski, in V international Symposium on Information Processing (FCIP
69), Vol A3 (Switching Circuits). On the quasi-minimal solution of the
general covering problem, (1969)

26. AS Deshpande, E Triantaphyllou, A greedy randomized adaptive search
procedure (grasp) for inferring logical clauses from examples in
polynomial time and some extensions. Math. Comput. Model. 27(1),
75–99 (1998)

27. F Pawley, A Syder, The one-clause-at-a-time hypothesis. Perspect. Fluen,
163–199 (2000)

28. JR Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
29. JR Quinlan, C4.5: Programs for Machine Learning. (Morgan Kaufmann

Publishers Inc., San Francisco, 1993)
30. L Breiman, JH Friedman, RA Olshen, CJ Stone, Classification and Regression

Trees. (Chapman & Hall, New York, 1984)
31. PL Hammer, A Kogan, B Simeone, S Szedmák, Pareto-optimal patterns in

logical analysis of data. Discrete Appl. Math. 144(1-2), 79–102 (2004)
32. S Alexe, PL Hammer, Accelerated algorithm for pattern detection in

logical analysis of data. Discret. Appl. Math. 154(7), 1050–1063 (2006).
Discrete Mathematics and Data Mining II (DM and DM II)

33. TO Bonates, PL Hammer, A Kogan, Maximum patterns in datasets. Discret.
Appl. Math. 156(6), 846–861 (2008). Discrete Mathematics and Data
Mining II

34. RS Michalski, I Mozetic, J Hong, N Lavrac, in Proceedings of the Fifth AAAI
National Conference on Artificial Intelligence. AAAI’86. The multi-purpose
incremental learning system aq15 and its testing application to three
medical domains (AAAI Press, 1986), pp. 1041–1045

35. RE Reinke, inMachine Intelligence 11, ed. by JE Hayes, D Michie, and
J Richards. Incremental Learning of Concept. Descriptions: A Method and.
Experimental Results (Clarendon Press Oxford, 1988)

36. SN Sanchez, E Triantaphyllou, J Chen, TW Liao, An incremental learning
algorithm for constructing boolean functions from positive and negative
examples. Comput. Oper. Res. 29(12), 1677–1700 (2002)

37. R Feraund, OJ Bernier, J-E Viallet, M Collobert, A fast and accurate face
detector based on neural networks. IEEE Trans. Pattern Anal. Mach. Intell.
23(1), 42–53 (2001)

38. P Viola, MJ Jones, Robust real-time face detection. Int. J. Comput. Vis.
57(2) (2001)

39. L Lefakis, F Fleuret, in NIPS. Joint cascade optimization using a product of
boosted classifiers, (2010)

40. MJ Saberian, N Vasconcelos, Learning optimal embedded cascades. IEEE
Trans. Pattern Anal. Mach. Intell. 34(10), 2005–2018 (2012)

41. C Shen, P Wang, S Paisitkriangkrai, A van den Hengel, Training effective
node classifiers for cascade classification. Int. J. Comput. Vis. 103, 326–347
(2013)

42. H Li, Z Lin, X Shen, J Brandt, G Hua, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). A convolutional neural network
cascade for face detection, (2015), pp. 5325–5334

43. VC Raykar, B Krishnapuram, S Yu, in ACM SIGKDD Int. Conf. on Knowledge
Discovery and DataMining (KDD). Designing efficient cascaded classifiers:
tradeoff between accuracy and cost, (2010)

44. M Chen, Z Xu, KQ Weinberger, O Chapelle, D Kedem, in AISTATS. Classifier
cascade for minimizing feature evaluation cost, (2012)

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 22 of 22

45. J Sochman, J Matas, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Waldboost - learning for time constrained sequential
detection, (2005)

46. T Wu, S-C Zhu, in ICCV. Learning near-optimal cost-sensitive decision
policy for object detection, (2013)

47. MM Dundar, J Bi, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Joint optimization of cascaded classifiers for computer
aided detection, (2007)

48. C Zhang, P Viola, in NIPS. Multiple-instance pruning for learning efficient
cascade detectors, (2007)

49. X Zhu, D Ramanan, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Face detection, pose estimation, and landmark
localization in the wild, (2012), pp. 2879–2886

50. K Mahkonen, J-K Kämäräinen, T Virtanen, in Computer Vision-ACCV 2014
Workshops. Lifelog scene change detection using cascades of audio and
video detectors (Springer, 2014), pp. 434–444

51. J Lankinen, J-K Kämäräinen, in VISAPP (1). Video shot boundary detection
using visual bag-of-words, (2013), pp. 788–791

52. R Research, C5.0. http://rulequest.com/download.html. Accessed 2018
53. O Rudovic, S Petridis, M Pantic, in Proceedings of the 21st ACM International

Conference onMultimedia. Bimodal log-linear regression for fusion of
audio and visual features (ACM, 2013), pp. 789–792

54. S Petridis, V Rajgarhia, M Pantic, Comparison of Single-model and
Multiple-model Prediction-based Audiovisual Fusion, ISCA Speech
Organisation (2015)

55. H Rao, Z Ye, Y Li, MA Clements, A Rozga, JM Rehg, in Joint Conference on
Facial Analysis, Animation and Audio-Visual Speech Processing (FAAVSP).
Combining acoustic and visual features to detect laughter in adults’
speech, (2015), pp. 153–156

ISBN 978-952-15-4229-9

ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	Abstract
	Preface
	Acronyms
	List of Publications
	Author's contributions to the publications

	Introduction
	Audio and video signals
	Sound scape – audio signal
	Moving picture – video signal
	Audio signal representations
	Computational image analysis
	Features from learned linear transformations
	Features using neural networks

	Dereverberation
	About reverberation
	Evaluation metrics for audio dereverberation
	Dereverberation methods within literature
	Results in blind dereverberation of music

	Classifying independent samples
	Classification result evaluation
	Classification functions
	Utilizing multiple classifiers or detectors
	Boolean OR of ANDs detector combination

	Sequential classification
	Experiments on Boolean combinations for sequential decision making
	Decision cascades for classification
	BOA as a cascade of Boolean combinations
	Laughter detection with a BOA cascade

	Automatic Speech Recognition
	The traditional ASR framework
	Methods for state likelihood estimation for ASR
	A cascaded state classifier for ASR
	Experimental results in small vocabulary ASR

	Conclusions and discussion
	Bibliography
	Publications

