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Abstract

In this work, we study the second-order nonlinear optical properties of regular ar-
rays of L-shaped gold nanoparticles supported by a substrate. The second-order re-
sponses of the samples are shown to depend sensitively on the detailed structure of
the samples, which gives rise to interesting and complicated effects in the nonlin-
ear responses, which have not been considered before. The nonlinear measurements
are complemented by polarization-dependent linear measurements. In particular, we
will show that the sensitivity of second-order processes to symmetry provides impor-
tant information about the role of structural defects in the nonlinear properties of the
structures.

Simple polarized spectral transmission studies in conjunction with second-harmonic
generation experiments indicate that the second-harmonic generation from the sam-
ples is enhanced by plasmon resonances of the metal particles. Furthermore, these
resonances, and thereby second-harmonic generation can be tuned with particle size,
shape, and their arrangement in the array. More detailed polarization studies re-
veal that the certain details of the responses are due to defects of the samples. These
defects may give rise to symmetry breaking and that way render ideally symmetric
structures chiral. To study the role of these defects in detail, a simple scattering-
matrix type formalism is developed to express the tensorial nature of the nonlinear
optical process. By relying on the transformation properties of the few lowest order
multipoles, their importance to the optical response can be quantified. A symmetry-
forbidden tensor component is found to dominate the magnitude of the response and
moreover, this component has a strong multipolar character. A simple model is built
to explain this behavior. The model assumes that the symmetry is broken by sur-
face defects on the nanoparticles. These defects give rise to the effective dipoles and
quadrupoles in the total second-harmonic signal from that particular nanoparticle.
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Author’s Contribution

The subject of the articles included in this thesis and their key results are listed below.

Paper 1

Paper 2

Paper 3

Paper 4

Paper 5

Paper 6

This paper presents results of linear and nonlinear measurements on an
array of low-symmetry, L-shaped gold nanoparticles. We show that the
optical responses are very sensitive to the polarization of the exciting
beam as a result of nonidealities in particle shape. Nonlinear experi-
ments reveal strong signals from disallowed polarization combinations.

In a collection of linear and nonlinear experiments, we find the respon-
ses of nanostructure arrays to be exceptionally sensitive to polarization.
This sensitivity is determined to arise from overall structural properties
of the particles. Nonlinear polarization measurements yield surprising
information concerning the symmetry of the nanoparticle arrays. The
results lead us to conclude that it is the smallest details of the arrays
that influence optical responses.

This paper discusses two possible mechanisms of breaking the symme-
try in metal nanostructures: structural features and small-scale defects.
For this purpose, nanostructures were prepared to exhibit broken sym-
metry on different levels. Linear optical measurements are somewhat
inconclusive on the effect of symmetry-breaking, whereas for second-
harmonic generation the effects are enormous. The responses of all
structures are very similar, which suggests that uncontrollable defects
have an important role in symmetry breaking.

We develop a scattering matrix like formalism called nonlinear respon-
se tensor (NRT) to describe second-order nonlinear optical responses of
our nanostructures. This formalism neglects the fine details about the
electromagnetic field distribution and material inhomogeneities in the
structures and the complicated interactions and interferences occurring
on the nanoscale and focuses on the measurable macroscopic input /
output polarization combinations.

In an application of the NRT formalism, we provide evidence of higher
multipoles in the second-harmonic radiation from arrays of metal nano-
particles. The analysis is based on the fundamental differences in the
radiative properties of different multipolar orders. We estimate that
higher multipoles contribute up to 20% of the total emitted SH field
amplitude for certain polarization configurations.

We present a multipolar tensor analysis of second-harmonic radiation
from arrays of gold nanoparticles. We find the nonlinear response to
be dominated by a tensor component, not resolved in Paper 5, which
is associated with chiral symmetry breaking and which also contains a
strong multipolar contribution. The results suggest that the multipo-
lar contribution exhibits a quadrupolar character arising from retarded
second-harmonic emission from asymmetrical defects on opposite sides
of the particles.
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1 Introduction

Metal nanostructures in various forms have drawn the interest of mankind for more
than a millennium. Already in the Ancient Roman times, colloidal metal was used to
produce very intense shades in glass-coloring. Colloidal gold consists of nanoscopic
gold particles, often in a liquid suspension, but the particles can also be embedded in
a solid matrix or on top of solid substrates. The color of such samples depends on the
size (distribution) and chemical composition of the nanoparticles in question”. In the
recent years, scientific interest in metal nanoparticles has given birth to the new re-
search field of nanoplasmonics, which is increasing very rapidly and is believed to lead

to new materials whose optical properties can be engineered for various applications.

1.1 Aim and Scope of This Work

This research began originally in the year 2001* with several ideas and many open
questions. The purpose of the work is to study the nonlinear optical properties of
metal nanoparticles, in order to gain understanding of the underlying physical pro-
cesses. Obtaining this understanding is crucial, as the most interesting — and chal-
lenging — fact related to nanostructures is that they fall somewhere in between the
quantum realm and the macroscopic domain. They are far too large to be explained
quantum-mechanically and small enough so that their material properties depend
not only on the material and optical frequency, but also on the size and shape of
these structures. It is, however, common to try to describe the material properties by
the bulk dielectric constant. Even then, the optical responses are found to depend
sensitively on the size and shape of the particles.

In this work, we will be particularly interested in the second-order nonlinear opti-
cal properties of regular arrays of metal nanoparticles supported by a substrate. The
second-order responses depend sensitively on the structural symmetry of the sam-
ples, which can give rise to interesting polarization dependences in the responses.
The nonlinear measurements are complemented by polarization-dependent linear
measurements. This limit in scope is, in fact, not as severe as one might casually
think and we will provide evidence of a rich variety of effects that have not been
previously observed. In particular, we will show that the sensitivity of second-order

*The author joined the research group in 2002



1 Introduction

processes to symmetry provides important information about the role of structural

defects in the nonlinear properties of the structures.

1.2 Structure of the Thesis

This Thesis is divided into a summary and overview of the research, which are fol-
lowed by six original publications. Chapter 2 describes the very basic notions of non-
linear optics, deriving the wave equation for nonlinear polarization from the Maxwell
equations and constitutive relations. We next introduce some of the nonlinear optical
phenomena and finally conclude with a discussion of the various symmetry argu-

ments related to second-order nonlinear responses.

In Chapter 3, we discuss the physical origins related to the optical responses of metal
nanostructures, the plasmons. After building the basic understanding of plasmonic
effects, we conclude the chapter with a review of related literature and recent work
done by other research groups.

The multipole expansion of the light-matter interaction is introduced in Chapter 4.
We begin by studying simple static electric and magnetic fields, and then generalize
the discussion to the multipole expansion of radiating sources. We next discuss the
implications of the multipole expansion in two applications: the scattering theory
of Mie and the microscopic light-matter interaction Hamiltonian. Finally we intro-
duce an experimental way of separating the first few multipolar orders in the second-
harmonic responses of our samples. We also develop a phenomenological model of
effective quadrupoles to interpret the origins of our findings.

The experimental procedures used to determine the optical properties of our samples
are depicted in Chapter 5. The results obtained from the experiments and published
in the original publications are summarized in Chapter 6. Final concluding remarks

are given in Chapter 7.



2 Fundamentals of Nonlinear Optics

“Physics would be dull and life most unfulfilling if all physical phenom-
ena around us were linear. Fortunately, we are living in a nonlinear world.
While linearization beautifies physics, nonlinearity provides excitement

in physics.”®

2.1 Maxwell Equations in Nonlinear Media

The physical laws governing all classical electromagnetism can be summarized into
the famous Maxwell equations, given in differential form and SI units as’

aj
ot’
V-B=0, and VXH:]—i_aET?'

V-D=p, VXE=—
(2.1)

where the electric quantities E and D are the electric field and the electric displace-
ment, respectively. The magnetic quantities B, H are the magnetic-flux density and
the magnetic field, respectively. The quantities related to the medium itself are the
free charge density p and the free current density J. Note that a material, e.g., a metal
can support free currents, even if it is electrically neutral, i.e., there is no excess free
charge.

These equations, coupled with the constitutive equations describing the medium,

1
D=¢E+P and H=—B—-M, (2.2)

Ho
give a complete description for classical light-matter interactions. The quantities P,
electric polarization, and M, magnetization, describe the material response to exter-

nal electro-magnetic perturbations.

Now, taking the curl of V x E and combining equations from Eq. (2.1) and (2.2) yields
in the plane-wave approximation where V- E = 0

1 P2E 0 2P



2 Fundamentals of Nonlinear Optics

which is an inhomogeneous wave equation with the electric polarization P, the mag-
netization M, and the current density | as its source terms. Unfortunately, there is
no generally valid expression between the fields and sources. However, the current
density | can be shown to act via conductivity as a source that gives rise to losses. In
addition, the various multipolar currents can therefore be absorbed in the other re-
spective sources. This leads to the expansion of the source in terms of its multipolar
orders!”

19°E ) 2

d
258 = VX g Mit g P+ V0| e

VZE -
where the new quantities M, P;, and Q are dipolar magnetization, dipolar electric
polarization, and electric quadrupolarization, respectively. This expansion is useful

to approximate the spatial variations of polarization and magnetization.

The multipole expansion will be discussed in more detail in Section 4.2, but for the
purposes of the current introductory discussion we retain only the electric polariza-
tion, P; obtaining finally ,
2

V?E - 37%7]25 = yoaaTPtd, (2.5)
which is a wave equation for E driven by the electric dipole source polarization,
which includes the contribution of dipolar currents also. Henceforth, unless other-
wise noted, we focus the discussion on the electric dipole polarization only and drop

the subscript 4 in Eq. (2.5).

We next consider the temporal behavior of the polarization. Since we are interested
in studying effects induced by light, we expand the time-dependence of the electric
dipole polarization P as power series of time-dependent excitation E; and then de-
compose the unknown time-dependence via Fourier expansion into a superposition
of time-harmonic oscillation at frequencies w;,. The Fourier components for both the
field and polarization are thus of the form

F(t) = F(w) e ! +F*(w) e, (2.6)

where the asterisk () refers to complex conjugation, and negative frequencies are
connected with the complex conjugate F*.

The linearity of Maxwell’s equations (and the resulting partial differential equations)



2.2 Nonlinear Optical Effects

allows each frequency component to be handled separately. Therefore we obtain

P(w) = eV (w) E(w) (2.7a)
+eox? (w = wy + wy) : E(w;)E(wy) (2.7b)
+eox® (w = w1 + wy + w3)  E(wq)E(ws)E(w;3) (2.7¢)

= PY(w)+ PP (w)+PO®(w)+---

where P(") is the nth-order electric-dipole polarization. Eq. (2.7) may be grouped into
two parts, one describing the linear response and the other describing the nonlinear
response, as follows:

P(w) = PY(w)+P""(w); 2.8)

PMw) = PD(w), 2.9)

PNw) = Y PM(w). (2.10)
n>1

Therefore, the wave equation (2.5) becomes

2 2
V2E(w) + wiiz(w)ls(w) - %PNL(w), 2.11)

where € = 1+ x(1) is the linear permittivity (dielectric constant) of the medium. This
equation thus describes the wave that will be generated from the nonlinear source

polarization.

2.2 Nonlinear Optical Effects

Let us consider Eq. (2.7) more closely. As an example, consider the term (2.7b). The
terms clearly represent an interaction which combines two electric fields, E(w;) and
E(wy), at potentially different frequencies. This interaction produces polarization in
the medium which oscillates at a third frequency. This polarization, coupled into
Eq. (2.11), acts as a source to oscillating electric field at this new frequency.

To illustrate the notion of frequency conversion, consider two waves at frequencies
w1 and wy. The second-order nonlinear interaction in Eq. (2.7b) combines these two
fields to produce a new field at a different frequency. As the Fourier-transform intro-
duced in Eq. (2.7) allows negative frequency arguments for the fields and susceptibil-
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ities, the interaction of the two fields produces three new frequencies:

P(w; +wp) = X : E(wy)E(wy) (212)
P(wy — wp) = x? : E(w1)E(—w) (2.13)
P(w; — wi) = x : E(—w1)E(wy) (2.14)

These effects are known as the sum- and difference-frequency generation. When the fre-
quencies wy and w; are the same, w, the effects become the second-harmonic generation
(SHG)nd optical rectification, respectively.

For the third-order nonlinear interaction, Eq. (2.7c), the multitude of phenomena is
even more complicated. For example, these processes include third-harmonic gen-
eration (THG) The third-order effects also include effects where the frequencies of
the field do not change and thus can also influence the interacting fields themselves
through the nonlinear polarization. As an example, in cross-phase modulation the elec-
tric field E(w;) changes the refractive index experienced by the field E(w;). The
change in the refractive index depends on the amplitude of E(w; ). In self-phase mod-
ulation and self-focusing processes the E(w1 ) changes its own refractive index through
the third-order polarization!!. The third-order effects can be especially important in
fiber-optical applications where the interaction lenghts are long and the amplitude of

the field(s) can be high due to strong confinement of light within the fiber core!2.

2.3 The Effect of Symmetry in Nonlinear Optics

The effects described in the previous section are the result of tensorial interaction of
multiple electric fields. The tensorial interaction dictates that the vectorial nature of
the fields may not be neglected. Moreover, the symmetry properties of the y(") tensor
are of great importance. For simplicity, we will henceforth concentrate on second-
order effects only, but similar arguments can be applied to higher-order effects as
well.

Permutation symmetries

Intrinsic permutation symmetry arises from the arbitrariness of the order of the fields in
(2)

oL owe
ijk
may interchange the last two indices, provided we interchange the last two frequency

performing the contraction in Eq. (2.7b). It tells us that in the expression for x

arguments at the same time:

)cffk) (Wn + Wy Wy, W) = )cf,f]-) (Wn + Wi Wi, wn)- (2.15)



2.3 The Effect of Symmetry in Nonlinear Optics

Two more symmetries apply when the material is lossless. First, components of x(?

are real:

1) (con + i n, o) = X2 (@n + @i n, o). (2.16)

Second, the full permutation symmetry applies for a medium without losses. It means

that all frequency components in )(Ejzk)

vided that the indices 7, j, and k are permuted at the same time. Also, it must be

(we = wp + wy,) may be permuted freely, pro-

remembered that first frequency argument is always the sum of the latter two:

() (2)

ik (Wo = Wn + Wi; Wiy wm) = X5 (Wi Wo = Wn + Wi, —W). (2.17)

Now suppose that the frequency dispersion of x(?) is negligible. This is the case if
all the frequencies involved are much less than the lowest resonance frequency of the
medium. The medium is then also necessarily lossless, since the applied frequencies
are far from resonance. As a consequence of full permutation symmetry, we may

again permute the indices as long as we permute the frequencies as well, but the lack

(2)
ijk
vant. Thus, we conclude that we may permute the spatial indices without permuting

of dispersion implies that the ordering of frequencies in X’ (we; Wy, Wy,) is irrele-

frequency arguments:

2 2 2 2
Xl(]k) - Xl(k]) - X](lk) Xl(ql) = X]((]l) = X]('ki)’ (2.18)

This is the Kleinman symmetry. Unfortunately it has only limited validity in practical

nonlinear optical applications 3.

Structural symmetry

When the original coordinates describing the nonlinear material, (x,y,z), are trans-

formed into (x',y/,z’), the third-rank tensor x( k) transforms as follows '4:
ox! 0X; 9x|
ox; ] k. (2) 21
Xl]k Z axm axn axUX no- ( . 9)

mno

If the coordinate transformation is also a symmetry operation of the material, both

(2) )

the transformed y; ik and the original Xiik must be equal.

Arguments based on spatial symmetry of the material are particularly important as
they can be used to significantly reduce the number of independent nonvanishing
tensor components. On the other hand, the structure of an experimentally deter-
mined tensor provides important information on the structural symmetry of the sam-

ple investigated 1°.



2 Fundamentals of Nonlinear Optics

Detailed measurements of the tensorial nonlinear response are an essential part of
this thesis. However, as explained in Section 4.5, we use a slightly modified for-
malism from the above to discuss the symmetry issues, which is better adapted to
describe the nonlinear properties of nanostructures.

The nonlinear optical response of a material system may include contributions be-
yond the electric-dipole interaction, for example magnetic-dipole or electric-quadru-
pole interactions. Traditionally these processes are described in the framework of
susceptibility tensor formalism by defining additional susceptibility tensors that re-
late the interactions through multipoles at the fundamental wavelength or by suscepti-
bility tensors which give rise to higher multipole sources, such as magnetization or
quadrupolarization, see Eq. (2.11) and, e.g., Refs. [16,17]. These interactions will be
discussed in the context of the multipole expansion in Section 4.3.

Usually, any symmetry arguments are based on the structural properties of the sus-
ceptibility tensors. In this work, an important additional benefit is achieved by using
an experimental geometry where the sample and tensors arising from the formalism
in Paper 4 are described in the same coordinate system. The relative importance of
the various symmetry elements in any given signal can then be determined using
only electric-dipole-type selection rules even though higher multipole interactions

may play an important role in the nonlinear response.



3 Metal Nanostructures

In this chapter, we introduce the basic principles behind the optical response of metal
nanostructures. We begin by describing a simple phenomenological model for the
dielectric function of free-electron gas. This simple model predicts the wavelength-
dispersion of the dielectric function surprisingly well — provided that we stay at
longer wavelengths than the interband transitions of the metal. We continue with
a discussion of plasmonic excitations in metals and conclude with a review into cur-
rent nanoparticle research.

3.1 Drude Model for Permittivity of Free-electron Gas

The optical properties of metals can be explained over a wide frequency range by a
plasma model, where the conduction electrons move almost freely within the volume
of the metal against a background of the positive ion cores. The band structure and
the electron-electron interactions are not taken into account in the model. Some of the

aspects of the band-structure are lumped into the mass of electrons, which is adjusted

into the so-called optical mass 8.

Taking the equation of motion for free electrons driven by the electric field as the

starting point, we arrive to the dielectric function € as'®

2
____r
w? +iyw
2
w
=1-—Fr (3.1)
w(w +1i7y)

w

where 7 is the characteristic collision frequency of the free electron gas, m is the op-
tical mass of the electron and w), = ne? /eqm is the plasma frequency of the free elec-
tron gas, which depends on the density n of electrons in the metal. Typical plasma
frequencies of noble metals occur in the range of ultraviolet to visible parts of the

electromagnetic spectrum.

The form of the dielectric function has some interesting consequences. For very
low frequencies, the dielectric function becomes essentially imaginary, which cor-

responds to the high conductivity of metals at low frequencies. Although the losses
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Figure 3.1 Schematic illustration of the three main types of plasmonic excitations that can occur
in metals

are high, almost no radiation can penetrate the metal and therefore the reflectivity is
high. For very high frequencies, on the other hand, the function approaches unity,
which implies high transparency, e.g., in the X-ray regime !°.

Near infrared and optical frequencies are usually lower than the plasma frequency.
Assuming that the relaxation rate v is relatively small, the dielectric function is essen-
tially real but negative. This property is most important and gives rise to the plasmon
resonances that dominate the optical response of metal nanostructures.

3.2 Plasmons

In metal structures, the macroscopic optical properties are mainly determined by the
response of the conduction electrons of the metal. The electromagnetic excitation
causes these electrons to oscillate collectively as plasmons within the confining space
of the structure, forming an oscillator system. Depending on the applicable bound-
ary conditions, the plasma oscillations can be categorized into three different modes:
volume plasmons, surface plasmons, and localized surface plasmons, schematically
illustrated in Fig. 3.1.

Bulk plasmons are collective oscillations of the electron gas in the bulk of the metal,
and the energy of their quanta is typically on the order of 10 eV (corresponding to a
vacuum wavelength of ~ 120 nm) in noble metals. Bulk plasmons cannot be directly
excited with electromagnetic radiation, because of their longitudinal nature. The bulk
plasmons are usually studied experimentally using electron loss spectroscopy 1820

Surface plasmons occur at metal-dielectric interfaces, where the longitudinal charge
density oscillations propagate along the interface as “polarization waves”. When
we consider waves that propagate along the surface in the x-direction (cf. Fig. 3.1),
we find that the wave equation [Eq. (2.11)] yields two possible modes of propagating
waves. These modes are the transverse magnetic (TM) and the transverse electric (TE)

10



3.2 Plasmons

modes. The boundary conditions between the two media dictate that only TM modes
may excite surface plasmons, and moreover, only such TM modes can propagate that

fulfill the dispersion relation

w €1€2
ky=—/——, 3.2
* c\e+e (32)

where ky is the component of the wavevector along the propagation direction of the
plasmon wave, and €1 and €; are the dielectric constants of the metal and the sur-
rounding dielectric, respectively. A direct consequence of the dispersion relation is
that the real part of € needs to be negative, which is satisfied with noble metals in
the visible to near infrared spectral regions for instance. Therefore the electric fields
outside the metal become

Ex = iE kyelkexo—ksz (3.3)
WepEL
k 4
Ez = —EO (4]6;(52 kzelkxxe_kzz. (34)

Equations (3.3) and (3.4) correspond to waves which decay exponentially perpendic-
ular to the surface. The dispersion relation [Eq. (3.2)] implies that surface plasmons
have a longer wave vector than photons at the same energy, kx > w/c = ko. There-
fore, surface plasmons cannot be excited with light propagating in free space. There
are a few methods to account for the wave vector mismatch. One such method is
grating coupling?’, where the surface is modified with a periodic lattice. This modi-
fication provides for the missing wavevector.

When the plasma oscillations are confined in all three spatial dimensions, as is the
case in, e.g., metal nanostructures, the oscillation mode is called localized surface
plasmon (see, e.g., Refs. [18,21]). In this mode, the conduction electrons oscillate
within the particle and form an oscillator system with resonance behaviour. Particle

plasmons can be excited by light propagating in free space.

Localized surface plasmons turn the electromagnetic problem into a scattering prob-
lem. Analytical solutions to the problem are unfortunately limited to spheres, ellip-
soids and spheroids”'82?2. An approximate optical response can be obtained in the
quasi-static regime where the particle size is small compared to wavelength. Within
the quasi-static regime the retardation effects of the exciting electric field across the
particle are neglected and the field distribution is obtained using electrostatic ar-

guments 722,

To go beyond the electrostatic approximation, a more rigorous elec-
trodynamic discussion is required. Gustav Mie was the first to explain the optical
responses of nanoscopic spherical particles with his theory?® in 1908. His theory

solves the Maxwell equations exactly while the fundamental light-matter interaction

11



3 Metal Nanostructures

is embedded in an experimentally obtained or phenomenologically derived dielectric
function, such as the Drude function. The Mie theory will be discussed in more detail

in terms of multipoles in Section 4.3.

Local-field Enhancement

As we saw already in equations (3.3) and (3.4), the exponential decay in the z-direc-
tion (surface normal), implies that there is a strong concentration of electromagnetic
energy within the 1/|k,;| distance from the surface. Moreover, this localization is

directly dependent on the dielectric constants €1 and €, as?

1 1 /Reei+ e
== 3.5
|k2/2 ko E% ( )

Similar arguments apply to localized surface plamons, or particle plasmons for short.

Moreover, to satisfy the momentum conservation, the tangential component of elec-
tric (and magnetic) field is continuous across the interface between the surrounding
medium?*, which means that the electric field attempts to remain perpendicular to
the surface®. If the material has areas where the local radii of curvature of the ma-
terial are small (sharp tips etc.), this kind of behaviour results in the concentration
of the electromagnetic field (and thereby energy) in these pointed areas. This effect
is known as the lightning rod effect. The lightning rod effect is one of the dominat-
ing effects in producing the local-field enhancements in metal nanostructures?. The
local-field often localizes strongly into so called “hot spots”, where the field strength
can be orders of magnitude larger than the applied external field ?°.

3.3 Review into Nanoparticle Research

The scientific interest in the optical properties of nanoscopic particles has been steadi-
ly increasing. What makes them particularly interesting is that they fall in somewhere
between the quantum realm and bulk matter domain. As the particles sizes approach
the skin-depth of the metals (~ 20 — 30 nm), simple arguments of down-scaling bulk
material properties fail to provide adequate description of the optical properties?’.
Moreover, diffraction imposes difficulties in confining light into small space. These
difficulties are particularly challenging in, e.g., antenna applications where the at-
tempt is to couple optical radiation into small, sub-micron volumes. In the following,
we present a non-exhaustive overview of recent related work in the field of optics of

*This is strictly true only when the metal is in the near-perfect conductor regime

12



3.3 Review into Nanoparticle Research

nanoparticles and -structures.

Surface-enhanced Raman Scattering

Raman scattering is an inelastic scattering process, where the wavelength of the scat-
tered light changes. During the scattering process, some of the incident photon en-
ergy is absorbed into the molecule and therefore the scattered photon has lower en-
ergy. The energy absorbed by the molecule may appear as vibrational, rotational, or
electronic energy of the molecule. The incident photon may also scatter from a vi-
brationally excited molecule, de-exciting the molecule and thus gaining energy in the
process. This is called the anti-Stokes radiation, in contrast to Stokes radiation, where

some of the incident photon energy is lost?5.

Absorption and re-emission of the incident photons depend on the local field at the
Raman-active molecule. Strong local fields enhance the Raman process by increas-
ing the effective Raman cross section. This enhancement is mainly due to electric and
chemical (resonant charge transfer) mechanisms. The presence of metal nanoparticles
on a surface loaded with Raman-active molecules provides conveniently the strong
local fields due to field localization at the metal particles. This surface geometry is
traditionally called surface-enhanced Raman Scattering (SERS). SERS was observed
for the first time in 1974 on roughened silver surfaces?’. During the following years,
the presence of noble metals on surfaces was reported to enhance the Raman scatter-
ing and fluorescence efficiency by many orders of magnitude (see e.g., Refs. [30-32]
and references therein).

As the frequency shifts related to Raman scattering are small, the effective Raman
cross sections for both absorption and emission can be enhanced at the same site,
which may lead to very large enhancement factors, up to 13 orders of magnitude .
The large enhancement factors are very beneficial for sensitive measurements and in
fact, SERS has also been successfully used for single-molecule detection3!-323435,
Usually, the metal structures which are used to enhance SERS are essentially random
structures, like roughened surfaces 36-38 However, the arrangement of nanoparticles
used to localize fields has drawn attention, and attempts to optimize the resonance
conditions leading to local field enhancements and thereby enhancement of SERS
have been made. For example, the enhancement of SERS has been studied on tunable
nanogaps39, nanoshells#, pits in regular arrays‘“, microstructured optical fibers*2,
and self-similar chains of nanoparticles*3.

13



3 Metal Nanostructures

Nanoantennas

In the past few years, the interest in the optical analogue of radio and microwave
antennas has gained much momentum. The research on these “nanoantennas” or
“optical antennas” is still in its infancy, though. Nanoantennas are devices designed
to provide efficient coupling between near and far fields. As a concrete example,
nanoantennas are used as a gateway for coupling electromagnetic energy between
macroscopic fields and nanoscale devices, which mainly operate in the near field
regime. In this function, they can be also viewed as a kind of nanolens for focusing
electromagnetic energy beyond the diffraction limit.

A key concept behind the nanoantennas is the local-field enhancement. Having
nanoparticles in close proximity to each other may result in the coupling of their re-
spective plasma oscillations and thereby changing the resonance conditions. This
change can also be viewed as plasmon hybridization, that is, the merging of the
individual particle plasmons into bonding and antibonding linear combinations of
the original plasmons**. This model has been used to analyze plasmon hybridiza-

45 in systems with nanoparticles near metallic surfaces* and in

tion in nanodimers
nanoshells#®. This concept is important, as a direct consequence of it is that this
change in plasmon resonances can be effectively used to map local fields in surfaces

and in nanostructures.

Various designs of nanoantennas have been proposed. For example bow-tie antennas
can focus light beyond the diffraction limit*”#® and optical resonance antennas can
give rise to such high local fields in the feed gap that supercontinuum is generated *°.
In addition, self-similar chains have been predicted theoretically to be a viable design

5051 as also recently shown experimentally#3. Nanoshells can also

for nanofocusing
be used as optical antennas. They have well-distinguished multipolar radiation pat-
terns, which can be selected with the wavelength of the excitation®2. However, the
surface roughness can affect the emission patterns®. Down-scaled traditional an-
tennas have also been successfully constructed > and tuning of gap antennas loaded
with plasmonic materials have been proposed®. Even specialized antenna designs

like the Yagi-Uda antenna geometry have been proposed >’

There is a wealth of technical expertise dedicated to antenna construction in the ra-
dio and microwave domains. To take advantage of this know-how, there is an in-
creasing interest for developing optical equivalents to lumped elements (resistances,
inductances, etc.) from the circuit theory . One of the major difficulties in merging
these two domains is that the materials exhibit a very different behavior in the opti-
cal regime, compared to their behavior at lower frequencies. Specifically, as the skin
depth of the metals approaches the feature sizes of the metal structures, the simple
rule-of-thumb arguments from antenna theories cease to apply as such?’.
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3.3 Review into Nanoparticle Research

Metamaterials

In a broad sense, metamaterials can be described as artificial materials composed
of designer nanostructures that possess properties not usually found in nature. All
nanoparticle structures fit within this scope. A stricter classification of metamaterials
is that they are engineered materials for which the real parts of either the permit-
tivity € or permeability u (or both) are negative and usually their optical properties
can be described using the effective medium theory. The effective medium theory
assumes that the structures comprising the particular metamaterial are small com-
pared to wavelength, so using € and y is valid. In the visible part of the electromag-
netic spectrum, this assumption is extremely demanding even for the contemporary
nanofabrication technologies and care must be taken when applying it.

One of the characteristic features related to metamaterials is the negative refractive
index. As we saw earlier, a necessary prerequisite for plasmons is that the real part
of € is negative. Most metals meet this condition over fairly large a frequency range.
A sufficient condition for rendering the real part of refractive index negative, is that

real parts of both € and y are negative, although other strategies are also available>.

Having Rep < 0 implies the presence of a magnetic resonance. These resonances
do not occur naturally in the optical regime, but with clever design, they can be
brought there®-62, These resonances can also influence SHG efficiency. For example,
split-ring resonator structures have been observed to enhance SHG when a magnetic

resonance 63,64

was excited. The possibility of having u # 1 in optical frequencies,
or optical magnetism, has been dismissed as being nonphysical even by famous text-
books®. However, mixed electric and magnetic responses in the optical domain have
been successfully utilized to explain optical activity®® and magnetization leading to

nonlinear optical effects®’.

Various other designs for metamaterials have been proposed as well. Wire pairs have
been demonstrated to produce negative index of refraction at around 15 GHz% and
negative index fishnet structures operating at 2 um®. Multilayered structures have
been proposed and predicted to operate at a range of 550-665 nm”°.

Metamaterials are expected to open up new possibilities in optical engineering, in-

cluding cloaking devices to render objects invisible”!”2

and superlenses that can im-
age objects beyond the traditional diffraction limit”3. Metamaterials composed of
chiral nanostructures are also expected to open pathways into studying and possibly
even modifying their chiral properties”+7>.

Up to date, most demonstrations of optical and infrared metamaterials have been

based on essentially planar structures, although truly three-dimensional structures
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are beginning to emerge”*78,

Nonlinear Optics

SHG is electric-dipole forbidden in structures with a centrosymmetric configuration.
Metals with simple cubic lattice structures, such as gold (face-centered cubic ), have
a center of inversion, and therefore SHG is forbidden in the bulk of these metals. It is
important to note, however, that most techniques, in particular the lithographic ones,
used to produce metal nanoparticles do not even result in single crystals. Random
distribution of the nanocrystals is likely to increase the symmetry even more. The
centrosymmetry is nevertheless broken at the interface of two media with different

optical functions, however, rendering SHG again dipole-allowed?.

Local field enhancement is a very interesting and important concept for nonlinear op-
tics. As the nonlinear processes depend on a high power of the field intensity>%80-83,
the concentration of electromagnetic energy into small volumes can enhance these
processes by many orders of magnitude. For example, SHG yield from metal particles
can be on the order of 10° times greater than that from a planar metal surface?>8284,

The local-field is also enhanced via the lightning-rod effect when the local radii of
curvature of the particles are small, which can also influence SHG yield. SHG from
such sharp metal tips have been investigated %8¢, It has been found that the near-
field interaction between the tip and the vicinity of a surface directly modifies the
SH signature®. It has also been shown that this interaction can be used directly for

mapping the local field distribution at the surface®.

Rough metal surfaces have also been used to enhance second-harmonic generation

2536 in a fashion similar to SERS. These studies have been

87-89

from different molecules
complemented with near-field studies of SHG from such surfaces themselves.
These studies demonstrated the localized nature of enhancements due to localized
surface plamon resonances and particle morphology. Moreover, a strong polarization

dependence was found®’.

Modern fabrication methods have enabled almost arbitrary tailoring of shape, size
and mutual ordering of the nanoparticles. For second-order nonlinear optical effects,
a necessary prerequisite is the lack of centrosymmetry — both on the level of individ-
ual particles and on the level of their arrangement. For simplicity, it is beneficial to
work with simple planar structures. The simplest two-dimensional noncentrosym-
metric structure is the L-shape, which is the particle shape studied in this thesis. The
second-order nonlinear properties of L-shaped structures have been investigated also

elsewhere. For instance, experiments on the decay time of plasma oscillations in sil-
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3.3 Review into Nanoparticle Research

ver nanoparticles have been conducted. It has been found that the decay times are
much larger than expected based on the bulk metal dielectric function®.

Another noncentrosymmetric shape is the T-shape. T-shaped nanodimers have been
studied in an attempt to link the peculiarities observed in SHG characteristics to the
corresponding fundamental frequency local-field distributions 1?2, It was found that
for enhanced SHG, high field concentration alone may not be sufficient. Rather, the
symmetry of the field distribution in the nanodimers needs also to be low enough to
fully support SHG®!.

Self-similar chains, or chains of spheres whose radii and separations decrease with a
constant factor, have been proposed as an efficient way to localize light in an efficient
and controlled manner®. They have also been predicted to yield strong enhance-
ment of SHG. The applicability of self-similar chains in field enhancement has been
recently demonstrated experimentally for SERS#3, but experimental realizations em-
ploying self-similar chains to enhance SHG are yet to be published.

The role of unintentional defects in SHG response of metal nanoparticles is one of the
key themes in this work. They are found to greatly influence the details of SHG pro-
cess (to be discussed in detail in Chapter 6). The effect of “nanoroughness” has been
analyzed on the basis of Green’s function theory with the result that the resulting
local SH fields are localized into “hot spots” and strongly incoherent®?. Near-field
mappings®® demonstrate that the local SHG indeed follows this kind of behavior.

Defects can also act as symmetry-breaking agents, which is also a key topic in this
thesis. Symmetry-forbidden SHG signals have been observed from individual nan-
odots of high symmetry“, from which also THG was observed. Furthermore, THG
was detected for symmetry-forbidden polarization combinations. The details of both
SHG and THG were found to vary from particle to particle, which implies that the
defects are distributed inhomogeneously among the particles and they dominate the

nonlinear responses.

Also other nonlinear processes can benefit from field enhancements in metal struc-
tures. For instance, third-harmonic generation has been observed ®+3% from metal
structures and gratings. THG has been found to be enhanced by many orders of mag-
nitude when a surface plasmon resonance is excited. The nature of this resonance
may depend on the exact configuration and morphology of the system. Four-wave
mixing has also been investigated from coupled nanoparticles®®. As the interparticle
separation approached contact point, the mixing process grew in intensity by four
orders of magnitude, only to change abruptly at contact, when a dimer was formed.
Four-wave mixing has also been employed to excite nonlinear surface plasmons®” in

a gold film. It was found that the excitation of the surface plasmons via four-wave
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mixing was dominated by the third-order surface susceptibility, rather than bulk sus-
ceptibility.

Nanoapertures

Due to the lossy nature of metals, one could expect that a metal film perforated with
sub-wavelength holes should transmit very little light. However, this is not the case.
In fact, much more light can be transmitted through such “nanohole arrays” than
could be expected on the basis of the open area of the nanoholes”®. This extraor-
dinary transmission is attributed to plasmonic interactions in the walls of the holes.
These plasmons are seen to exhibit a hybrid character, combining localized plasma
oscillations and long-range propagating plasmons®.

Nanoapertures can also enhance second-harmonic generation through plasmonic in-
teractions. A bull’s-eye pattern of concentric grooves centered around a nanohole has
been studied '™’ and it has been found to enhance SHG efficiency by a factor of 120.
As SHG is a very symmetry-sensitive process, breaking the array symmetry by ar-
ranging the nanoholes in a random fashion has been found to favor SHG, compared
to a regular array 1. Locally less-symmetric double-hole arrays have also been ob-
served to enhance SHG, when the separation of the double holes is such that sharp
tips are formed in the nanohole 1°2.

Holes can also be formed in the shape of split-ring resonators (SRR). The discussion
on metamaterials consisting of SRRs is complemented by second-harmonic exper-
iments on a SRR-perforated metal film 103 The differences between Refs. [63,103]
were discussed in terms of the Babinet’s principle and it was found that for the com-
plementary structures, the roles of the magnetic and electric interactions must be
interchanged.

Multipole Effects

The role of multipole effects in SHG response of metal nanoparticles turned out to
be one of the main results of this Thesis. It is important to note that one should
distinguish between two different types of multipoles when discussing the optical
responses of nanostructured materials. The first type arises from the light-matter
interaction Hamiltonian and corresponds to microscopic multipole moments on the
atomic or molecular level. Such multipoles can enable second-order nonlinear effects

104

from centrosymmetric materials ™%, which are forbidden within the electric-dipole

approximation of the light-matter interaction.
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The second type of multipoles arises from Mie scattering theory?*. The standard
Mie theory is based on a dipolar microscopic interaction, and effective multipoles
arise from size and retardation effects. Usually, the optical responses of particles that
are small compared to the wavelength can be described in terms of electric dipoles
only?2. However, when the particle size approaches the wavelength, the dipolar pic-
ture may no longer provide a complete description, and higher multipoles should
also be considered. Both microscopic and effective multipoles, however, lead to sim-
ilar radiation patterns in the far field. We will mainly be concerned with the second
type of multipoles, although both types are considered in Chapter 4.

Nanoparticles that are a lot smaller than the wavelength, support only dipolar plasma
oscillation modes®>!%. As the particle size increases, new higher-order plasma os-
cillation modes such as quadrupole modes start to emerge. These modes create new
bands in the extinction spectrum of nanoparticles'?®. Usually these higher-order os-
cillation modes are resonant at a higher energy (shorter wavelengths), but the fine
details depend sensitively on the geometry of the particular particle. With careful
engineering, the extinction peaks corresponding to different modes can be separated
by tens or even hundreds of nanometers>%105106,

It is important to note that the size- and shape-dependence of the extinction bands
do not necessarily mean that these modes represent different multipolar modes. For
example, in the extinction spectrum of a rectangle-shaped nanostructure, there will
be at least two dipolar extinction resonances, corresponding to the two orthogonal
polarizations of the excitation. These peaks are not necessarily multipolar in charac-
ter.

The contribution of multipoles to the linear optical responses of metal nanoparticles
has been discussed in the literature2!52105107-114 " For example, metallic nanoshells
can be driven selectively into dipolar and quadrupolar oscillation patterns®. Size-
dependence of multipolar plasmon resonances from elongated silver nanoparticles

d105

has also been studied ", and predictions of the multipolar character of charge den-

sity distributions in triangular nanoprisms have been published !'°. Multipolar plas-
mon resonances have been observed with scanning near-field microscope 15116,
Multipole effects can also play a role in the nonlinear responses of metal nanoparti-
cles, including SERS'Y, hyper-Rayleigh scattering''8-121 and SHG 1227126, Of partic-
ular interest is hyper-Rayleigh scattering, which corresponds to incoherent scattering
of SHG radiation. Such scattering can arise even from centrosymmetric particles due
to retardation effects. On the other hand, dipolar radiation patterns can provide direct
evidence of symmetry breaking of individual particles even though the macroscopic
sample is centrosymmetric.
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4 Theoretical Background

In this chapter we introduce the theoretical framework on which this Thesis is based.
We begin by briefly discussing the multipole expansion and some implications of it.
The Mie scattering theory is introduced and its relation to multipole expansion is dis-
cussed. After that we move on to discuss the multipoles arising from the microscopic
light-matter interaction and how they affect the second-harmonic generation process.
Finally, we introduce and discuss a simple phenomenological model of multipolar re-
sponses arising from surface defects and show how these defects can be used to to
account for symmetry-forbidden SHG.

4.1 Potentials as Solution to Maxwell Equations

Although in Section 2 we solved the electrodynamic problem by formulating the
wave equation directly for the electric field E, it is often easier to obtain solutions
to the Maxwell equations,

V-D=p, VxE:—a—B,

ataD @.1)
V-B=0, and VXH:]-F?,

indirectly by expressing them as potentials. The potentials transform the coupled
first-order partial differential equations into a smaller number of second-order partial
differential equations. Since V-B = 0, the magnetic induction can be defined in
terms of the vector potential A

B =V x A. (4.1)

Therefore, the electric field can expressed as the gradient of a scalar potential ® and

the time derivative of A: 3A
E=-Vo-— S5 (4.2)



4  Theoretical Background
Gauge Transformations

The potential functions A and & are not unique descriptions of the fields B and E.
The fields remain unchanged if we perform simultaneously the transformations

A—-A =A+VA and
IA (43)

P =P 22
- ot

From these coupled transformations follows the Lorenz condition? for the set of po-

tentials (A, )
109

A4S — = 4.4
V-A+ 25 0, (4.4)
which is satisfied with the relation
1 92A
2
A— ——— = 4.
v 2z = (4.5)

provided that potentials (A, ®) in Eq. (4.3) satisfy the Lorenz condition (4.4) initially.
This restricted set of potentials belong to the Lorenz gauge. It is commonly used, as
it will lead to uncoupled wave equations for both scalar and vector potentials and it
is independent of the chosen coordinate system, allowing thus the inclusion of the
finite speed of light into the potentials, i.e., the delayed potentials®.

4.2 Multipole Expansion

Multipole expansion is a series expansion where a function is expanded in terms of
an expansion parameter which becomes small as the “distance” from a source region
becomes larger, therefore allowing us to retain, in most cases, only the first leading
term (‘multipole’) of the series. As an example in electrostatics, physically these mul-
tipoles correspond to systems of one, two, four etc. charges.

Static fields

We go through the multipole expansion for the scalar and vector potentials in an
introduction-like manner. For simplicity, we start with the non-radiating case, so as
to demonstrate the links between the multipoles and physical objects.
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4.2 Multipole Expansion

Figure 4.1 Geometry in which the multipole expansion is performed. Primed coordinates refer
to points in the source volume and unprimed to those of the observation point. Volume R is
chosen to contain the source volume so that the charge and current density J(#') vanish on its
surface dR.

Electric Fields

Consider a charge distribution (Fig. 4.1), described by the charge density p(#'). Then
construct a volume R which confines the charge distribution so that it vanishes at the
boundary oR of this volume. The role of R is to divide space into two zones, one

containing the charges and the other one being charge-free.

As this problem is time-independent, Eq. (4.2) allows us to express the electric field

in terms of the scalar potential ® only. The scalar potential at r outside R due to the

charge distribution is given by 1%’

p(r') (4.6)

471’60 R |r— r’|

where primed and unprimed coordinates refer to the charge distribution and obser-

vation point, respectively.

Using Taylor expansion on 1/|r — #'| with respect to #’ around the origin ¥ = 0 and
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4  Theoretical Background

substituting back into in Eq. (4.6) yields

-I-/ ( r—r’|> ' p(r")dv’

+/2 (r—rl) :0~r’p(r/)dV/+~-- , 4.7)

where the operator H’ is a dyadic second-order partial derivatives operator®. Keep-

ing with this notation, the differentiation operations may be evaluated to obtain ex-
pressions containing the few lowest order multipole moments

r / / /
o) = — /L“)de/i’f’g’)de
4meg |[JR 7 R 7

1347 — /21
Riiﬂl r5|r| o(¥)dv’.r + }

1 T . 17-0O-
q_ pr rQr+m]

+r

T nelr TR T2

(4.8)

where g is the total charge within R, and p and Q are, respectively, dipole and
quadrupole moments of the charge distribution. The dipole, quadrupole, etc. mo-
ments are related to the charge density through its first, second, etc. moments, which
are explicitly expressed as

/R ¥ o(r)dV’ (4.9)

_ /R (3r'r — r21)p(r)dV". (4.10)

In Eq. (4.8) and (4.10) the notation #'#’ stands for dyadic multiplication, and thus
yields a tensor out of its constituent vectors. In the case of quadrupole moment ten-
sor, this product is a symmetric, traceless second-rank tensor, where the symmetry
follows directly from the commutation property of scalar multiplications in dyad '+’
and the tracelessness follows from the subtraction of term 7/21. This is the irreducible
representation of the quadrupole moment tensor */14.

In the time-independent case, the electric field is directly attainable from the scalar
potential ® by using Eq. (4.2). For electric dipoles the electric field is in the dyadic
form:

E, = —VOo,

3rr — 12
= 5 p (4.11)

*More commonly this operator is known as the Hessian matrix.
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4.2 Multipole Expansion
Magnetic Fields

The multipole expansion of the scalar potential ® was found to yield the electric
quantitities like electric dipoles and electric quadrupoles and so on. To discuss their
magnetic counterparts, we first note that the magnetic quantities arise from the cur-
rent density J rather than charge distribution p. These two quantities are linked
through the charge continuity equation

V.J= @ 4.12)

which can be interpreted as an implication of charge conservation. Therefore we turn
the discussion to localized, yet still time-independent current density distribution J.
In this case a convenient choice of the potential function will be the vector potential
A, given by’

Am:@/Imdw 4.13)

4 JR |r— 7|

from which we can derive the magnetic field using the relation of Eq. (4.1).

Expanding the 1/#'-dependence of Eq. (4.13) in a fashion similar to Eq. (4.8) and
keeping only first two terms, we obtain the approximation

Ho / / / !
A(r - "\dv yav'.r 4.14
=1 ¥ + (@14
The first — monopole — term in square brackets vanishes if we first integrate it by
parts’ and then use the divergence theorem to transform the resulting volume in-
tegral into a surface integral, which vanishes due to localization of J inside R. The
remaining part vanishes because current density is necessarily divergenceless in the

static case. This result can be also seen as the nonexistence of magnetic monopoles.

Writing the tensor J#' in the second integral in Eq. (4.14) as a sum of symmetric and

antisymmetric portions'* we obtain
A(r) = Mo 1 / v+ ]+ [ =] dV -r
43 2
= 1—70”% E/R[]r’—r’I]dV’-r
_ %% /R %rf x JdV' x r (4.15)

where we have again made use of integration by partst and the divergence theorem.

The current continuity relation [Eq. (4.12)] reduces in the static case to divergenceless
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4  Theoretical Background

of current density.

Moreover, we used the vector triple productS to simplify the antisymmetric part,
alongside with the dot product representation of tensor contraction!. Defining mag-

netic dipole moment m as the integrand of Eq. (4.15),
1
m= f/ v x Jdv/, (4.16)
2Jr

the vector potential reduces to the form

__ HomXr
4 18

Ar) (4.17)

To conclude this section, we saw that when we have static charges and currents con-
fined within volume R, we may expand the appropriate potential functions in terms
of the electric and magnetic multipole moments. These moments correspond to the
first, second, etc. moments of the charge and current distributions. Physically the
different moments are related to electrically neutral ensembles of charges and cur-
rent loops.

Radiating Systems

Now that we have built the basic understanding of the multipole expansion, we move
from static systems to time-dependent fields and radiation from localized oscillating
sources. We again decompose the arbitrary time-dependence of the oscillation via
Fourier expansion into a superposition of time-harmonic oscillation. The linearity
of Maxwell’s equations (and the resulting partial differential equations) allows each
frequency component to be handled separately. Therefore we consider a system of
charges and currents as follows:

p(r,t) = p()e ™ and (4.18)
J(t) = J)e (4.19)
The current continuity equation Eq. (4.12) yields in the case of time-harmonic oscilla-

tion
V. J =iwp. (4.20)

Using the Maxwell’s equations for the curl of magnetic field B and electric field E
and the definition of magnetic field though vector potential A [Eq. (4.1)] allows us to

Saxb)xc=—(b-c)a+ (a-c)b
TA.(BC)= (A -B)C
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4.2 Multipole Expansion

neglect the scalar potential & and focus only on A. In the Lorenz gauge, the vector

potential is obtained with the help of retarded Green’s functions as’
Alr,t) = PO giwt / Ty 4.21)
" Am R |r—7 ’ '

where k = w/c is the wave number. Since the magnetic and electric fields are related
to vector potential A through the curl operator it is immediately seen that current
density [ oscillating at frequency w leads to oscillating magnetic and electric fields at

frequency w.

In some applications, like for example antenna applications, the current density |
may be a known quantity and electromagnetic fields may be obtained directly from
the integration of Eq. (4.21). Especially in optics, however, this is not the case and we
must resort to approximations in order to solve the problem.

First, we note that we are interested in the far-field region, i.e., in the fields sufficiently
far from the sources. In this zone, the term 1/|r — #'| may be approximated by 1/.
However, in the exponential of Eq. (4.21) this approximation would be too crude.
Therefore, the argument of the exponential is approximated as |[r —#/| =~ r —#-7'.
Moreover if the source dimensions are small compared to wavelength, the exponen-

tial may be expanded in power series leading to

i(kr—wt

) (—ik)"
A(r,t):i%e - ;( ;’f) /R](r’)(f'-r’)”dV’. (4.22)

We next consider the first two terms of Eq. (4.22), rewriting the n = 1 term in dyadic

notation
—0: - VO‘M/ nNav’
n=0: Ap(r,t) = yP— . J(r)dv (4.23)
—1. _ o el / N1 3dV!
n=1:  Agu(rt)= y P R[](r )r']-#dV (4.24)

Eq. (4.23) can be cast into a more familiar form of charge distribution p using again
integration by parts and then using the divergence theorem with the choice of the
volume of integration R extending outside the current density distribution, so that the

current density J vanishes on surface dR. Finally employing the current continuity
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4  Theoretical Background

equation we have

. mei(kr—wt‘)
Ap(r,t) = W
1o eilkr—wt)

= —zwﬁfp, (4.25)

/ /dvl
J.7e)

where p is the electric dipole moment introduced in Eq. (4.9).

In Eq. (4.24) we split the integrand into two parts, one symmetric and the other an-
tisymmetric with respect to the exchange of J and #' and rewrite the antisymmetric
part using the vector triple product identity to obtain

B ‘uoei(krwt)/ ' aau
Agum(r,t) = i R]r rdV
B @ei(kr—wt) 1/ . S ) A ,
T a— 2.R[(]r +¢D] -2+ xJ] x#2dV
— Ag + Am, (4.26)

The antisymmetric part can be immediately identified as magnetic dipole moment,
cf. Eq. (4.16), giving
i(kr—wt)

. e N
Ay = zkg‘%fm X 7. (4.27)

Using the same procedure of integration by parts as when deriving the magnetic

dipole moment, we arrive to a more familiar form for the vector potential, namely
yockz ellkr—wt)

_ N AV —
Ag = e 7 /Rp(r)rrdV 7

B yockz ellkr—wt)

Q% (4.28)

where Q is the quadrupole moment from electrostatics [Eq. (4.10)].

Fields from Multipoles

Having now obtained the vector potentials corresponding to the different multipolar
orders, we can extract the respective electric fields from the vector potential through
repeated application of the curl operator:

.1
E:z@Vx(VXA),
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4.3 Multipole Expansion and Optics

For the electric dipole p, we obtain from Eq. (4.25) after some lengthy, but straight-
forward algebra

K2 eilkr—wt)
E, = Ines 1 [(# x p) x 7] (4.29a)
1 i(kr—wt) l _ ik YN T
+ dreq e 32 37 —1] - p (4.29b)

where only part (4.29a) contributes to radiation in the far field. It is immediately seen
that the electric field E, follows the part of the dipole p that is transverse with respect
to direction of propagation r.

For the magnetic dipole m and electric quadrupole Q, we obtain through similar
procedure the expressions in the far field

K2 eilkr—wt)

E, = Sren f(m X ) and (4.30)
k2 eilkr—wt)

Eq = Stee T [(Px(Q-?) x7, (4.31)

where in Eq. (4.31) there is also a tensor contraction involved. Note that this expres-
sion implies that the quantity Q -# can be interpreted as an effective dipole, which
depends on the direction of propagation.

4.3 Multipole Expansion and Optics

The multipole expansion has a broad spectrum of possible applications. When dis-
cussing multipoles in the context of nanoparticles, it must be noted that the multipo-
lar interaction can appear in two levels, one of which is the multipoles emerging from
the Mie scattering theory and the other one is the microscopic light-matter interaction
Hamiltonian.

Mie scattering theory is based on the multipole expansion of the electromagnetic
fields and expressing the extinction in terms of these multipolar orders. The mi-
croscopic interaction is based on phenomenological models describing the dielectric
function of the materials. For the Hamiltonian, the multipoles correspond to the mi-
croscopic multipole moments of the transitions between atomic or molecular energy
levels.

Here, we outline in more detail these relations between the multipole expansion and
the light-matter interaction. We begin with a brief discussion of the Mie scattering
and how different multipolar orders are related to it. After that we discuss the con-
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4  Theoretical Background

nection between nonlinear optics and the relation of differerent multipolar orders to

the nonlinear optical response.

Mie Theory of Scattering

In his much-cited paper from 190823, Gustav Mie formulated the theory of diffraction
of electromagnetic waves by a conducting sphere of homogeneous, but otherwise ar-
bitrary composition and diameter, embedded in a homogeneous medium. The Mie
theory is derived for a single sphere only, but can be generalized to account for a col-
lection of spheres — provided that the spheres are of the same size and composition.
The spheres must also be randomly distributed at distances which are long com-
pared to wavelength, so that their superposition is just the single sphere response
multiplied by their number 128,

The Mie theory is based on applying Maxwell’s equations with proper boundary
conditions in spherical coordinates. The multipole expansion is applied to the elec-
tric and magnetic fields separately, thus decomposing the incident field into a sum
of two kinds of ‘partial waves’. These partial waves are chosen such that for the first
kind the electric field is purely transverse with respect to the propagation direction.
For the second kind of partial waves the magnetic field is transverse. Armed with
this decomposition, the Maxwell’s equations separate into a set of ordinary differ-
ential equations in spherical coordinates. The derivation of the solutions have been
discussed extensively (see, e.g. Refs. [7,9,22,23,128]), and the details will not be re-
produced here.

Mie’s solution is to solve the Maxwell’s equations by dividing the problem into an
electromagnetic problem which is treated ab initio and a material problem which is
solved using a phenomenological dielectric function €(w, d). The particle radius d is
to emphasize that the dielectric function will exhibit dependence on the size of the
sphere. The wide applicability of the Mie theory is based on being able to absorb the
potentially intractable microscopic details into the dielectric function. The theory is
also criticized for this phenomenological character as it is said to give no physical
insight into the material properties??.

Kreibig et al. 100

in 1987 made the connection between the extinction spectrum pre-
dicted by Mie theory and plasmon oscillations of different multipolar orders. They
interpreted the extinction bands in the spectra of spherical nanoparticles in terms of
dipolar, quadrupolar etc. modes of the total Mie extinction. Each multipolar mode in
the Mie theory is contributed by electric and magnetic modes which are identified to
physically arise from surface plasmon polaritons and eddy currents, which in turn,

consist of absorption and scattering bands?%1%,
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4.3 Multipole Expansion and Optics

The key parameter in the Mie theory is the size parameter x = kd, where k = w/c
is the wavenumber. Multipoles can also be seen to arise from size and retardation
effects. Dadap et al. discussed theoretically this aspect in relation to second harmonic
Rayleigh scattering 12 and second harmonic generation ' from small centrosymmet-
ric spheres. There is also experimental evidence of multipolar interactions due to size
and retardation effects in the nonlinear optical responses of nanoparticles, see e.g.
Refs. [120,121,123,130].

Microscopic Hamiltonian

The microscopic interaction of the nonlinear material and the electric field can be de-
scribed in terms of the light-matter interaction Hamiltonian. To account for the mul-

tipolar orders, we expand the Hamiltonian in various multipolar orders to yield 1!

H=-p-E-m B—Q:VE+..., (4.32)

where p, m, Q are the electric dipole, magnetic dipole and electric quadrupole mo-
ments discussed in the previous section, but now interpreted as quantum-mechanical
operators. As we saw, the magnetic dipole and electric quadrupole moments are of
the same order in the multipole expansion. However, they are expected to be sig-
nificantly weaker compared to the electric-dipole moment. Symmetry reasons may,
however, cancel the electric-dipole contribution to the optical response. In this case,
the higher-order terms determine to nature of the optical response.

For the case of second-harmonic generation, the interaction Hamiltonian leads to

nonlinear polarization at the SH frequency as®/132

PR2w)= x*“Qw,w,w):E(w)E(w)
+ X" (2w, w,w) : E(w)B(w)
+ x°Q 2w, w,w)  E(w) VE(w), (4.33)
where superscripts e, m, and Q associate the nature of the interaction with electric

dipolar, magnetic dipolar and electric quadrupolar, respectively. To be explicit, the
component i of polarization P(2w) is

PZ(Z(/J) = Xfﬁf(Zw,w,w)E}(w}Ek(w)
A (200, 0,0 Ej(w) By ()

+ Xf]?g(zw, w,w)Ej(w)ViE(w). (4.34)
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(a) (b) (©)

Figure 4.2 Schematic illustration of the differences in radiative properties of electric dipole p,
magnetic dipole m and electric quadrupole Q.

Moreover, the SH response includes also a nonlinear magnetization

MQ2w,w,w) = x"* : E(w)E(w) (4.35)
and quadrupolarization

QQw,w,w) = x%¢ : E(w)E(w). (4.36)

These all can act as sources for SH radiation. In materials where the x** tensor van-
ishes due to centrosymmetry, the higher-order multipoles may permit SHG even in
the bulk of the material. The reasons for this are that the magnetic quantities are
axial, not polar, vectors, whose symmetry properties are therefore different from the
electric quantities, and that the quadrupolar interactions lead to tensors of rank four,

not three 14104133

4.4 Transformation properties of multipoles

Customarily, different multipolar orders of radiation can be identified by their dis-
tinctive radiation patterns in 3-dimensional space. However, in the present work we
are concerned with SHG, which is a coherent process and produces strongly direc-
tional, laser-like, emission. For the case of surface-like samples, strong emission is
obtained only in the transmitted and reflected directions. Therefore, to be able to
separate the multipolar orders, we need to understand how the different multipole

emissions transform when we reverse the propagation direction of emitted radiation.

Now let’s assume that we are observing the electric field at point r;, the transmitted
direction (cf. Fig. 4.2). Further, let’s assume that the direction of electric field in the
transmitted direction, in a given instant in time, is given with vector E for the electric
dipole p, magnetic dipole m and electric quadrupole Q. Then we detect the vectorial
amplitude of electric field vectors at point r, = —r;, called the reflection direction.
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4.5 Nonlinear Response Tensor

Perusing Eq. (4.29a), (4.30), and (4.31) we see that

E,(r;) = Ep(rt), (4.37a)
En(ry) = —Eun(r), and (4.37b)
Eg(rr) = —Eq(r). (4.37¢)

These differences in the radiative properties of the various multipoles in the trans-
mitted and reflected directions lead to opposite interference effects in the two direc-
tions, which provides a basis towards separating the electric dipoles from the mag-
netic dipoles and electric quadrupoles emitted by some object of study. The magnetic

dipoles and electric quadrupoles cannot be distinguished this way, though.

4.5 Nonlinear Response Tensor

In this section, we develop a scattering matrix-like formalism to describe the second-
order nonlinear optical responses of our samples Paper 4. First, we note that in nanos-
tructures, the electromagnetic fields, material properties and nonlinear sources can
vary over the scale of a wavelength or less8283. To obtain the macroscopic response,
the nonlinear responses must be integrated over the entire active structure. The tradi-
tional susceptibility formalism outlined in Chapter 2 on the other hand, describes the
connection between the driving fields and the nonlinear source polarization by as-
suming that the material is homogeneous on a scale larger than molecules (or atoms)
but smaller than wavelength and then averaging the molecular responses over such
scale. The nanoscopic local electric fields are then assumed to be directly proportional
to the macroscopic fields, differing only by a material-dependent local-field factor!!.
Moreover, in the standard susceptibility formalism, the different multipolar orders of
the light-matter interaction are described by different susceptibilities '°.

Predicting the nonlinear responses via direct integration of the local nonlinear sources
can be done phenomenologically for structures of high symmetry, but for structures
of more realistic geometries, it is currently exceptionally difficult. Moreover, due
to nanoscale gradients, higher multipoles may also contribute to the macroscopic
second-order response. To avoid the presently intractable task of integrating at the
nanoscale, we have introduced a macroscopic nonlinear response tensor (NRT) for-
malism, which operates on the level of input and output fields Paper 4. For SHG, the
NRT tensor links together a specific polarization component of the SH field to com-
ponents of the fundamental field in a manner not unlike the SH source polarization
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in the susceptibility formalism !:

jk

However, important conceptual differences are that the measurable signal field, not
the nonlinear source, appears on the left-hand side of Eq. (4.38), and as the NRT for-
malism describes the relation of vector amplitudes in a given experimental geometry,
it implicitly includes the contributions of all nonlinear sources. The NRT is therefore
a convenient way to describe the measurable optical responses without worrying
about the complicated nanoscale effects. Although the NRT is specific to a given ex-
perimental geometry rather than the sample itself, NRTs determined under different
experimental conditions can be compared to obtain valuable understanding of the
underlying physical processes Paper 5.

4.6 Phenomenological Model of Effective Quadrupoles

In the following, we present a simple phenomenological model that shows how spa-
tially separated elementary dipole sources can give rise to both dipolar and effective
quadrupolar sources of radiation. To illustrate the basic idea of the model, we first
consider a system of two dipoles with their dipole moments pointing in opposite di-
rections along the y-axis, i.e., p; = —p and p, = p, where p = py. In addition, we
assume that that the dipoles are separated by a small vector a = a,x + a,y + a,z, and
consider emission in the direction k = kz parallel to the z-axis (cf. Fig. 4.3). Such a
system cannot give rise to dipolar emission to the far field. Instead, the system acts as
an effective quadrupole source, which can be expressed a symmetric sum of a dyad

formed from the dipole moment p and the separation vector a.

Q x ap + pa. (4.39)
To demonstrate the origin of this result, consider a system of four charges g1 = —g,
g2 = 4,93 = —q, and g4 = gq. These charges are located at ri/z = [~ay/2,—ay/2 £

b/2,—a;/2] and 73,4 = [ax/2,ay/2+b/2,a,/2], see Fig. 4.3.

Taking Eq. (4.10) as our starting point and transforming the integral into sum over
charges to produce the quadrupole moment tensor corresponding to the present ge-
ometry yields

Q=) q(r)rir. (4.40)
k

Note, however, that for simplicity is quadrupole moment tensor is not in its irre-
ducible state.
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4.6 Phenomenological Model of Effective Quadrupoles

q3./-44

y

Figure 4.3 Geometry of quadrupole formed from four charges.

The quadrupole moment tensor can be presented as a 3 x 3 matrix as

0 axbg 0
Q= | axbqg 2a,bq abq |. (4.41)
0 azbg 0

where the term bq can be seen as the magnitude of dipole moments formed by the
pairs g1 + g2 and g3 4 g4, or p. Therefore, the quadrupole moment tensor Q is equiv-
alent to the dyadic product in Eq. (4.39).

The polarization of the electric field emitted by this system is given through Eq. (4.31).
Considering the state of polarization in the transmitted direction, given by vector
k = kz, yields y-polarized emission proportional to

Epg xiQy:ky = ia;pky. (4.42)

This result is seen to depend on the retardation of the two dipolar sources along the
direction of emission, i.e., on a,. Note that the directions of emission k = kz have op-
posite signs for emission in the forward and backward directions. As a consequence,
the emitted wavelets will have opposite phases in the two directions.

Quadrupoles Arising from Defects

We now consider a situation relevant to this work, where the laterally opposite sides
of the L-shaped structure have non-equivalent defects as illustrated in Fig. 4.4. These
defects are assumed to act as localized dipolar sources of SH radiation. Because the
defects are non-equivalent, their dipole moments p; and p, can be unequal. In addi-
tion, the sources can be localized at different positions on the particles. To be specific,
we take the sources to be localized at the surface of the structure otherwise arbitrar-
ily, but at z = 4a,/2. The total far field emitted in the z-direction by such dipolar
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Figure 4.4 Visualization of L-shaped particle where laterally opposite sides have non-
equivalent defects.

sources is then proportional to
E = p,exp(—ika,/2) + p, exp(ika,/2), (4.43)

which fully accounts for the phases of the wavelets emitted by both defects. In the
spirit of the multipole approach, we expand the exponential to lowest order with
respect to the small separation to obtain

E=p,+p,+(p—py)ikaz/2, (4.44)

whose second term clearly behaves as emission from an effective quadrupole where
the two dipoles are mutually retarded, along the lines of Eq. (4.42).

The spatial directions of the dipole sources arising from the surface defects are not
limited in any way in this model and they may depend on many different factors, like
for example, the excitation, the detailed surface structure and many others. Therefore
the actual polarization of the emission from this effective quadrupole source may
vary which can be used to our advantage in order to distinguish the contributions of
the various types of sources.
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5 Experimental Details

Some tools are used
because it’s a company policy,
some

because they are useful.

The samples studied in this Work are two-dimensional L-shaped metal nanoparticles,
arranged in regular arrays. The metal we chose to use is gold because it is exception-
ally well-suited for the excitation of particle plasmons. Another advantage is that
gold is chemically stable as it does not, e.g., oxidize when subject to normal labora-

tory environment.

The shape “L” was chosen because it is the simplest two-dimensional noncentrosym-
metric structure, when the two arms of the L are made equal in length. This lack
of symmetry is a necessary precondition for the second-order nonlinear optical pro-
cesses to occur, at least in the electric-dipole approximation'! and at normal inci-
dence.

5.1 Sample Fabrication

These samples were fabricated at the University of Joensuu by our collaborators. The
preparation method was electron-beam lithography (EBL) followed with a standard
lift-off process 134, The process is outlined schematically in Fig. 5.1.

EBL is a versatile fabrication method. Its primary advantage is that it allows pattern-
ing of structures beyond the diffraction limit of the feature size imposed by the con-
ventional optical lithography tools employed by the electronics industry. The feature
sizes available with current EBL technology are on the order of tens of nanometers,
whereas with the equipment available to us for the present work, the feature sizes
were on the order of a hundred nanometers.

A key limitation to electron beam lithography is its slow throughput as it can take
several hours just to expose a single 1 x 1 mm sample area. Moreover, the equip-
ment can be particularly sensitive to precise calibration, which is harmful for the

repeatibility of the samples.
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Figure 5.1 Schematic illustration of the process steps in the sample fabrication process.

In the process, a submicron layer of poly(methyl methacrylate) (PMMA) resist was
spin-coated on a fused silica substrate. After spin-coating, a 20 nm copper layer was
evaporated on top of the PMMA to prevent the sample from becoming electrically
charged during the electron-beam exposure.

Nanoparticles were written in the resist by exposing the spin-coated substrate with a
controlled electron beam. The copper layer was removed after the exposure, and the
resist was developed, removing the exposed regions. The substrate was then covered
with a thin layer of chromium followed by a 20 nm layer of gold. The role of the
chromium layer between the substrate and the gold was to improve the adhesion of
the gold to the substrate. Next, the remaining resist was lifted off, leaving only pat-
terned gold structures. Finally, the sample was covered with a 20 nm protective layer
of fused silica. Several sample areas were prepared on the same substrate to allow
simultaneous and identical processing and a meaningful comparison between the
samples. This is important as the fabrication parameters exhibit variation between
different sample batches.

The variations in the fabrication process parameters resulted in a richness of artifacts
in the structures. Some of these artifacts are demonstrated in Fig. 5.2, which shows
a scanning electron micrograph of one of our samples. The designed sharp corners
came out rounded and there are fluctuations in the height profile of the particles.
Moreover, the slight astigmatism of the writing electron beam results in structures
which have lateral asymmetry. Nevertheless, the structures were still fairly close to
their original design. We note however, that some of the samples have significantly
better quality than the ones shown in Fig. 5.2.

5.2 Sample Parameters

To gain understanding on the physical origin and nature of the linear and nonlinear

responses of the structures, we varied many different parameters of the structures.
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EHT = 5.00 kV Signal A=InLens  Date :8 Apr 2005

3
Mag = 150.00 K X |—| WD= 5mm Photo No.=5236  Time :10:37

Figure 5.2 Scanning electron micrograph of our samples. The image is presented to show
the rich variations in the detailed structure of the nanoparticles. Image taken by Konstantins
Jefimovs.
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Figure 5.3 Different sample geometries and the associated coordinate system of the samples
studied in this work.

The variations in the sample parameters are illustrated in Fig. 5.3.

First, we studied the effect of the particle size by varying the arm length L of the
nanoparticles. After that we investigated the possibility of inter-particle effects by
changing the period d of the array. The effect of structural symmetry was studied
by rotating the particles in their respective unit cells, first by 45° which results in a
symmetric structure and does not change its symmetry group. Then a sample was
fabricated so that the particles were rotated 27° in their unit cells, which breaks the
symmetry of the structure while the particles themselves remain symmetric. Last,
the symmetry was broken by designing a structure where the particles are placed in
a symmetric array, but particles themselves were asymmetric because they had no
longer symmetric arms; L' > L.
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Coordinate System

The symmetry of the ideal L-shape defines the set of in-plane coordinate axes, where
the x-axis bisects the arms of the L (c.f. Fig. 5.3). Ideally the structures would belong
to symmetry group Cyj, in which the only allowed symmetry operation is a reflection
through the symmetry axis — the xz-plane.

5.3 Linear Experiments

Our host of experiments to characterize the samples was begun by a simple but im-
portant set of experiments; the characterization of samples’ linear optical properties.
These properties are important as the nonlinear properties are directly influenced by

the linear properties.

Although the linear optical properties are important, they are somewhat insensitive
to the finest details of the structures, as we shall show in Chapter 6.

Extinction

We measured the optical density of the samples with a tungsten halogen light source
covering the spectral range from 350 nm to 1650 nm and two portable spectrometers,
one of which covers the visible spectrum from 350 nm to 1100 nm and the other one
that covers the near-infrared region from 900 nm to 1650 nm. Both devices are fiber-
coupled for convenient alignment and powerful light collection. The overlap of the
spectral ranges provides a nice way to calibrate their responses to produce spectral
data for the whole combined spectral range of 350 nm to 1650 nm.

The experimental setup (Fig. 5.4) for the spectral measurements consists of an out-
put fiber for the light source, followed by a collimating lens and a focusing lens. A
polarizer is mounted in a rotation stage so that we can freely choose the azimuthal
direction of the linear polarization. The polarized light is then focused through a pin-
hole on the sample. The transmitted light is collected with a pickup fiber, connected

to the spectrometer and analyzed with a computer.

For the extinction measurements, we first obtain a reference spectrum by determining
the spectrum of the light through the substrate on a spot with no nanoparticles. Hav-
ing obtained the reference spectrum we measure the spectrum transmitted through
the sample. To determine the extinction spectrum from the measurements, we ex-
press the extinction spectrum as the ratio of the transmitted and reference spectra.
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Figure 5.4 Experimental setup for determining the dichroic extinction spectrum.
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Figure 5.5 Experimental setup for polarization azimuth rotation. The azimuth direction of the
incident linear polarization is selected using the combination of half-wave plate and calcite
polarizer. The analyzer is used to determine the change in the direction of the polarization.

This unitless quantity is known as the transmissivity (T) and defined by

_ sample(A)
T = reference(A)’ (5-1)

Polarization Azimuth Rotation (PAR)

During our first experiments, we found that our samples change the state of polar-
ization of light transmitted through the sample as described in Papers 1, 2 and Ref.
[135]. These experiments were carried out using fixed wavelengths, for which we
have a laser light source. We used an experimental setup (Fig. 5.5) where the az-
imuth direction of linear polarization was chosen with a combination of a half-wave
plate and a high-quality calcite polarizer. The purpose of the polarizer was to make
sure that the polarization incident on the sample is truly as linear as possible. The
state of polarization for the transmitted light was determined with an analyzer and a

photodiode.
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5.4 Nonlinear Experiments

To characterize the second-order nonlinear optical responses of our samples, we per-
formed different variations of frequency-doubling experiments. In all experiments,
the excitation source was a femtosecond laser (Time-Bandwidth Products GLX-200;
200 fs pulse duration, 1060 nm wavelength; 350 mW average power; and 82 MHz
pulse repetition rate). The output beam from the laser is linearly polarized with an
extinction ratio of roughly 1:200, which allows us to realize power control of the laser
beam power by a combination of a half-wave plate followed by a calcite polarizer.
The half-wave plate rotates the polarization of the laser beam and the polarizer per-
mits only that fraction of light to pass, which is polarized along the polarizer’s pass
direction. This arrangement allows us to both a) vary the power of the beam in a

continuous manner; and b) make sure that the beam downstream is well-polarized.

The well-polarized laser beam propagated through a beam chopper, chopping it at
approximately 1 kHz rate. The second-harmonic emission was detected with a sensi-
tive photo-multiplier tube and a lock-in amplifier referencing the chopper frequency.

The SH emission upstream from the sample was eliminated in the experimental setup
with a low-pass, or visible blocking filter to make sure that we only measure SH sig-
nals originating from the sample*. After the sample, the infra-red light was blocked
by a high-pass, or infrared-blocking filters. Finally, the last element before the de-
tector was a narrow-band interference filter to block any significant two-photon flu-
orescence from entering the detector. This setup provides the basis for the actual
experimental setups.

The experimental results presented in this work are always expressed in relative
units, normalized either to unity or with respect to another sample. The reason for
not going through the error-prone and cumbersome procedure of calibrating the re-
sponses to an absolute scale is that these are the first experiments on these particular
types of structures. The goal is to gain basic understanding of the physical phenom-
ena and for that purpose, the responses do not need absolute calibration at this stage.
However, the absolute calibration is an important procedure to perform — once we
have built the elementary understanding of what really happens in the nanoscale —
and must not be forgotten.

The SH signals are weak in magnitude and require sensitive detection apparatus. In
order to generate enough SH intensity so that the signal-to-noise ratio is at a comfort-
able level, the excitation power had to be kept at a fairly high level. With high laser
power and metal samples which absorb light, there is always the risk of damaging

*Most polarization optics are made of crystalline materials, usually quartz or calcite, properties of
which include excellent SHG yield, at least compared to our samples.
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Figure 5.6 Experimental setup for power-law experiments. The azimuth direction of the in-
cident linear polarization is selected using the combination of half-wave plate and calcite po-
larizer. IR-pass filter blocks the unwanted SH generated in elements upstream from source,
whereas the VIS-pass filter blocks the fundamental wavelength from reaching the detector.
Detector assembly contains a narrow-band interference filter to block any two-photon fluo-
rescense. The power reference assembly consists of a diffusor plate and a photodiode.

the samples. Therefore the laser power cannot be scaled up arbitrarily with the hope
of producing better SHG. That’s why a laser source with high peak power and low

energy content was needed. A femtosecond laser meets these requirements perfectly.

Power-law verification

Intensity of second-order nonlinear processes is expected to scale as the square of the
intensity of applied excitation. In order to verify that the detected SH signals exhibit
true square-dependence of the excitation, simple measurements of input power vs.
output power were performed. The results of these measurements were reported in
Papers 1 and 2.

The experimental setup consisted of the basic setup, plus a pair of a half-wave plate
and a cleanup polarizer, both mounted in rotation stage so that we may choose the
azimuth direction of the excitation. The setup is illustrated in Fig. 5.6.

As the purpose of these experiments was to determine the input/output power rela-
tion, we needed to measure the input power also. A suitable reference signal propor-
tional to the excitation or fundamental intensity was conveniently available from the
setup by slightly tilting one of the optical elements upstream from the sample and
detecting the weak reflection from this tilted element.
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Figure 5.7 Experimental setup for circular difference experiments. The state of polarization
of the fundamental beam is varied with the quarter-wave plate in a continuous manner. For
circular difference experiments at the fundamental wavelength, the VIS-pass filter is removed
and the photomultiplier detector is replaced with a photodiode.

Circular Difference

The second step after the simple power-law experiments was to study the depen-
dence of SHG on the polarization of the fundamental beam. For this purpose, a
quarter-wave plate was installed after the clean-up polarizer, so that the state of po-
larization could be changed in a continuous manner, thus probing the sample with
a large number of different elliptical polarization states. The experimental setup is
depicted in Fig. 5.7.

Most interesting data points were the ones which corresponded to the left- and right-
hand circular states of polarization as these are direct implications of chirality of the

samples. These measurements were reported in Paper 3.

Tensorial Dependence

The series of experiments was concluded by experiments designed to address the ten-
sorial nature of SHG. Papers 1, 5, and 6 discuss these experiments and their results.
The experiments were performed in two complementary ways. In the first method,
part of the second-harmonic response tensor was probed by a combination of linearly
polarized fundamental beam and detection of linearly polarized SHG. This method
permits only the determination of magnitudes but not phases of “direct” tensor com-
ponents, e.g. Ayyy OF Axyy but not a “mixed” component like Axxy.

This method was realized by using the setup from experiments of power-law exper-
iments (Fig. 5.6), with an analyzer added after the sample to pick the desired polar-
ization component of SH light. The second, more involved and detailed method was
to use the setup from circular difference experiments as the starting point, and then
add an analyzer for SH light after the sample (Fig 5.8). In order to relate both the
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5.4 Nonlinear Experiments

relative phases and magnitudes of x- and y-polarized SH sources (components A, jx
and A, ;), we need to detect mixed x- and y-polarized signals in addition to detecting
pure x- and y-polarized SH light so that components interfere with each other. The
laboriousness in this setup comes mostly from this need. In order to access the mul-
tipolar contributions in the obtained tensor components, the tensor-dependence data
must also be taken in the reflection geometry, as shown in Fig. 5.9.

The obtained data is then fitted to a model function (for details, see Paper 6), which
assembles the fundamental electric field components E; and E, (in the sample frame)
from the azimuthal angles of the waveplates by applying appropriate coordinate
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transformations to the Jones matrices *“° of the waveplates.

The resulting analytical expression is intimidating at first, but with a clever choice of
helper variables it simplifies to the form

Eout = — (“._ ) coslw) = (14 cos(p )> Ein, (52)
1 p)

where & = 20 — 6 — 7, B = v — § and i is the imaginary number, defined by i = \/—1.
Angles 4 and 0 are the azimuth angles of the fast axes of half and quarter-wave plates
in the setup, respectively and angle y represents orientation of the sample x-axis and
it also represents the detected polarization state of SHG. All angles are referenced to
the plane defined by the optical table in the laboratory frame.

The electric field components are combined in quadratic combinations, weighted
with 12 complex coefficients. These complex coefficients are identified as the tensor
components of that nonlinear response tensor which describes the experimental ge-
ometry [Paper 6]. They are determined by combining the x-, y-, and x + y-polarized
SH datasets from a given measurement and fitting them simultaneously to the model

Laser  Detector VIS-pass Analyzer

o VIS-pass

w filter

% Detector
w,2w [|2w:
‘} :
Quarter
wave plate Sample

Figure 5.8 Experimental setup for tensor-dependence experiments. The state of polarization
of the fundamental beam is varied with the quarter-wave plate in a continuous manner. The
second-harmonic light is first polarized with an s-directed analyzer and then detected with
photomultipliers. Sample is rotated about its normal to select the determined SH polarization.
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Figure 5.9 Experimental geometry for tensor-dependence experiments.

function. Simultaneous fitting is advantageous as it decreases both the dependence
of the fit result on initial values and the relative importance of any one individual
dataset '3
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6 Results and Discussion

In this chapter we briefly present and discuss our experimental results. The order
in which the experiments are presented is slightly different from the chronological
order in which they were published in the Papers.

6.1 Tuning Resonances

Before we discuss the more detailed aspects of the nonlinear responses of our parti-
cles, we describe the simpler linear experiments in which we found ways to tune the
responses of our samples.

Size

First, we studied the effect of the arm length L on the linear and nonlinear optical
properties of the nanoparticles (Fig. 6.1 and 6.2). It can be seen that the particle arrays
have very distinctive spectral properties, which directly influence the SH efficiency.

In the spectral range accessible with our instruments these nanostructures have typi-
cally three main resonances. The two long-wavelength resonances are strongly polar-
ization-dependent and they were found to red shift towards longer wavelengths with

x-polarized input y-polarized input
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Figure 6.1 Extinction plots for particles where the arm length is varied. Arm lengths: dark blue
curves — 170 nm, green curves — 220 nm, red curves — 260 nm, and light blue curves — 300 nm.
The two discontinuities in y-polarized input are due to slight discrepancies in transmission
calibration. Data partially from Paper 2. Symmetric sample with nanoparticles arranged in
normal orientation (cf. Fig 5.3a).
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Figure 6.2 SHG curves for particles where the arm length is varied. Arm lengths: dark blue —
170 nm, green — 220 nm, red — 260 nm, and light blue — 300 nm. Solid lines are quadratic fits to
SH data. Data published in Paper 2. Symmetric sample with nanoparticles arranged in normal
orientation (cf. Fig 5.3a).

increasing L. This was quite expected and typical for particle plasmon resonance be-
havior. The short-wavelength resonance in the vicinity of ~ 700 nm was found to
have only weak polarization dependence. We believe that this extinction resonance
is related to the lateral linewidth of the nanostructures, which is nominally kept at
constant 100 nm for all of the studied structures.

Fig. 6.2 shows the results of the corresponding SHG power-law measurements, which
directly demonstrate that the closer the extinction resonance is to the excitation wave-
length, 1060 nm, the better is SHG efficiency. Moreover, stronger resonance (higher
extinction) leads to greater efficiency. Therefore, we conclude that for these particular
structures, the optimal arm length to be used with our laser is about 200 nm, where

the y-polarization is resonant with our laser — for these structures.

Array

Having found the optimal arm length, we investigated the effect of inter-particle cou-
pling through the array structure. The particle size was kept constant, and structures
were fabricated so that the inter-particle distance was varied. Also the relative orien-
tation of the particles was varied (cf. Fig 5.3) from the standard orientation to such
that particles are rotated 45° (published in Paper 2) and 27° (published in Paper 3) in

their respective unit cells.

Overall, the linear and nonlinear responses drop with increasing grating period. This
is due to the rather trivial fact that there are fewer particles per unit area to inter-
act with the incident light. It is therefore more meaningful to compare results per
particle.

If the electromagnetic wavelets emitted by the particles do not couple together
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6.1 Tuning Resonances

through the grating structure, possibly modifying the field configuration, the results
should remain the same provided that we adjust them for the number of particles per
unit area, as the size of individual particles is kept constant. The relevant adjustment
for the linear responses is p, defined by

particles
unit area’

(6.1)

whereas for SH intensity, the adjustment factor is p?, as SHG is a coherent process
where the signal amplitude is the additive quantity.

In Paper 2 we found that the adjusted extinction responses exhibit changes on the
order of 30 nm with increasing particle separation. For particles in the 45° rotated
orientation, the shift in consistently towards longer wavelength, whereas for particles
in standard configuration, the shifts are more inconsistent, but still remain within
30 nm.

In Paper 3 we studied samples from a new batch. This batch included samples with
standard orientation and asymmetric samples in which the particles were rotated by
27°. Comparison of the extinction spectra revealed even more pronounced spectral
shifts, 50 nm or more. We wish to stress that due to minute changes in the parameters
of the fabrication process, a meaningful comparison between samples from different

batches is not possible.

Nevertheless, there is one very interesting difference between the very first samples
and the following ones. For the first few sets of samples, the polarization resonant
with our laser is y, with x-polarization being resonant at around 800 nm. For the
following samples, the extinction spectra of the samples was strongly red-shifted,
making the resonant polarization to be x, contrary to our expectations. This is quite
surprising as the design parameters of the samples were very similar. Possible rea-
sons for this shift are that the particles may have come out slightly thicker from the
fabrication process or that there are some changes in the surface morphology of the
particles, along the lines of Ref. [137].

The p2-corrected SH yield was found to follow the same trend with respect to extinc-
tion resonance as it does for the particle size: the closer the extinction resonance is to
the excitation wavelength, the better is SHG yield. However, this rule is not followed
quite strictly. It is therefore possible that the coupling of the fields to the periodic
grating slightly influences the nonlinear response.

The observations discussed in this section boil down to two conclusions: the extinc-
tion spectra can be fairly easily tuned to the desired wavelength in the visible-near IR

region by tweaking the structural parameters of the samples. Changing the particle
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size has a more pronounced effect on the extinction spectra than the particle separa-
tion and orientation. The SHG is enhanced when the excitation wavelength is close
to the excitation resonance.

6.2 Chiral Symmetry Breaking

We found that our samples are extremely sensitive to the state of incident polarization
and that they also modify it during the interaction. Our observations indicate that
the small imperfections in the structures may break the assumed symmetry of the
structures. This symmetry-breaking may render the structures chiral, which may be

observed in both the linear and nonlinear responses.

Polarization Azimuth Rotation

In Paper 1 we hypothesized that the observed polarization azimuth rotation was a
consequence of strong dichroism in the transmission. This means that at a given
wavelength, one polarization is absorbed more strongly than the other. As the mag-
nitude of one polarization component is reduced more than the other, their resultant
appears rotated with respect to the original direction. This effect is called selective
transmission and it is depicted in Fig. 6.3. In the figure we take also into account
the possibility that the true principal axes of the system are rotated angle a with re-
spect to the assumed principal axes. The eigenpolarizations and principal axes are

still assumed linear and real, respectively.

Upon closer scrutiny, it was found that the assumed principal axes were not the true
in-plane principal axes, and that the difference between the observed axes and the
assumed principal axes exhibited a wavelength-dependence. Such dispersion of the
axes is known to be possible in structures of very low symmetry 28, suggesting that

our samples are also chiral.

For the purpose of analyzing the obtained PAR data, the previously-obtained dichroic
transmission data was fitted to a model which describes the selective transmission,
taking into account the possibility that the principal axes are rotated angle a with

respect to the assumed principal axes x and y:
T = Tpcos?(0 — a) + Tpsin?(0 — a), (6.2)

where T is the total transmittance, T4 and Tp are the transmittances along the new
principal axes A and B, which are rotated angle « from the assumed x and y axes,
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0<TyTg <1

Figure 6.3 Selective transmission model.

cf. Fig. 6.3. Angle 6 is the azimuth angle of the incident polarization, measured from
the assumed x axis. In Paper 1 we observed a 7.6° shift at 1060 nm and at 820 nm the
shift was already 11.5° [135], showing clear indication of dispersion.

Once the direction of the axes were established, we attempted to predict PAR data in

terms of selective transmission:

A = arctan [ Ts tan(6 — oc)] — (0 — ). (6.3)
\ Ta

However, selective transmission was not adequate to explain all results.

Optical Activity

Any deviations of the observed PAR data from model Eq. (6.3) is an implication of
effects beyond in-plane anisotropy of the structure, such as chirality. Integrating A
over all incident polarization directions removes the effect of anisotropy !, so that
when there is only dichroism, the net rotation should be zero.

Figure 6.4 presents experimentally determined dichroic transmission data and the
corresponding polarization azimuth rotation data. The transmitted data has been
fitted in terms of Eq. (6.2). The results of this fit have been used to predict the deter-
mined PAR. The results show that the cumulative azimuth rotation differs apprecia-
bly from zero, implying strongly that this particular sample is optically active, and
indeed, chiral.

However, this is not the case for all of the samples. In Paper 1, the selective transmis-
sion model was adequate to explain the observed PAR, when the excitation wave-
length was 1060 nm. The zero-crossings, or polarization directions with no detectable
PAR, were at locations predicted by Eq. 6.3. On the other hand, at 820 nm, the model
was unable to predict the experimental results and moreover, the separation of the
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Figure 6.4 An example of a structure for which the selective transmission models fails to pre-
dict the observed polarization rotation. Previously unpublished data from an achiral structure.
Left — Fit of Eq. (6.2) (solid line) to experimental data (circles). Right — prediction (solid line) of
expected PAR by Eq. (6.3) and experimental PAR data (circles).

zero-crossings was found to be 102°. This result and the nonnegligible net PAR sup-
port the conclusion of optical activity at 820 nm 13, attributed to broken structural

symmetry.

“Forbidden” SHG

The assumed symmetry of the L-structures allows us to derive a set of selection rules
for the allowed polarization combinations of SHG. For structures in Cy;, symmetry
group, x-polarized SHG should only occur when the fundamental beam is purely x-
or y-polarized. y-polarized SHG is possible only when then excitation has both x-

and y-polarizations present.

We found in Papers 1-3, that for some of our structures the magnitude of the re-
sponse is dominated by a symmetry-forbidden tensor component. For ideal L-shaped
structures, even the tensor components arising from high-order interactions such as
magnetic dipoles, electric quadrupoles etc. are symmetry-forbidden. Therefore, the
source of these forbidden signals was symmetry-breaking, which lead us to investi-

gate the chirality in our samples in more detail.

Circular-difference Response (CDR)

We continue the discussion of chirality in Paper 3, in which we designed structures to
exhibit chirality on two levels: particle- and array-level [Fig. 5.3(b-d)]. Particle-level
chirality was introduced by deliberately fabricating one arm of the L-structures 30%
longer than the other arm, whereas the array-level chirality was achieved by rotating

ideally symmetric structures 27° in their respective unit cells. For comparison, we
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Figure 6.5 Experimental data for fundamental (left) and second-harmonic (right) circular-
difference measurements. Data from Paper 3. This the data from the symmetric control sample.
The excitation is right- and left-hand circularly polarized at 45° and 135°, respectively.

also fabricated symmetric structures in a symmetric lattice.

As chirality is expected to lead to different responses for left- and right-hand circu-
larly polarized (LHC and RHC, respectively) light, a straightforward measure of the
strength of chirality is the CDR. The difference in the intensities of responses under
LHC and RHC excitation yields the expression for CDR 1713

CDR = p1tHC ~ Iruc. (6.4)
Iine + Iruc
which is valid for both fundamental and second-harmonic circular-difference respon-
ses. Experimental results for fundamental CDR show practically no difference in
the transmitted signal for LHC and RHC (CDR ~ 1 %, less than the experimental
error), but second-harmonic CDR on the other hand, yields extraordinary results with
responses on the order of ~ 200% — even for the control array which was designed to
be symmetric at both single particle and array levels.

This most remarkable result very strongly corroborates the interpretation that struc-
tural defects dominate the nonlinear responses, leaving the particle shape and mutual
ordering in the array as secondary factors for this particular set of samples.

6.3 Multipolar Tensor Analysis

After we obtained evidence of chirality, we studied the origins of chirality in a more
detailed level and how the chirality relates or leads to interactions beyond the electric-
dipole approximation. Building the framework which enables us to describe the ten-
sor aspect of second-harmonic generation without going into the (presently) as such
inaccessible microscopic level, is the topic of Paper 4. We then proceeded to apply
this formalism to our structures, discussed in detail in Papers 5 and 6.
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Figure 6.6 Example of measured lineshapes. Circles: transmission SH data; squares: reflection
SH data. Solid and dashed lines are fits to the model function in transmission and reflection
geometries, respectively. Data from Paper 6.

Multipoles

In Paper 5, we report direct evidence of the contribution of multipoles to the SH re-
sponse. There we estimated multipoles to contribute up to 20% of the response. This
exciting result inspired us to determine the full in-plane nonlinear response tensor,

including the corresponding multipolar contributions to the tensor components.

We extracted the NRT components from the experimental data by employing the pro-
cedure described in Section 5.4. Figure 6.6 shows an example of the experimental data
and the corresponding fit to the six in-plane NRT components. It can be immediately
seen that the experimental data contains differences between the transmission and re-
flection arms, which already provides qualitative evidence of multipole contributions

to the response.

To relate the NRT formalism to multipole effects, we again consider the transforma-
tion properties of different multipole sources as discussed in Section 4.4. The idea is
further illustrated in Fig. 4.2 where we compare the radiated far fields of an electric
dipole, a magnetic dipole, and an effective electric quadrupole. These differences in
the radiative properties allow us to separate the different multipolar contributions to

the response through comparison of the two signals.

To quantify the relative importance of different multipoles to the SH response, we
separate each NRT component into symmetric and antisymmetric parts with respect
to the choice of detection arm:

TR _
AR = Ay + A%, (6.5)

where superscripts “T” (4 sign) and “R” (— sign) refer to the transmitted and re-

“"_r
S

flected directions and superscripts and “as” refer to the symmetric and antisym-

metric parts of the NRT, respectively. The symmetric part originates from the electric
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dipole, whereas the antisymmetric part is attributed to magnetic-dipolar or electric-
quadrupolar origins. We define the multipolar contribution 7y of a given component
as the ratio of the magnitudes of its antisymmetric and symmetric parts:

Al

3
Aijk

Yijk = (6.6)

We have tabulated a summary of the results from fitting the nonlinear response tensor
to our experimental data in Table 6.1. A more comprehensive tabulation can be found
from Paper 6. The table shows that the largest component in magnitude, Ayxx, has
also the largest absolute multipolar contribution. Moreover, this component should
be zero by symmetry of an ideal L-shape. This suggests that the higher multipolar
contributions are closely associated with chiral symmetry breaking of the sample.

A possible source of such symmetry breaking are asymmetrically distributed struc-
tural defects that remove the reflection symmetry of the sample with respect to the
xz-plane. In Section 4.6 we proposed a phenomenological model in which the source
of forbidden dipolar and quadrupolar SH signals was attributed to unevenly dis-
tributed structural defects.

This model however, is not limited to forbidden signals. Depending on the exact con-
figuration of the SH sources, the defects may also give rise to other signals, possibly

producing symmetry-allowed dipolar and quadrupolar signals.

Table 6.1. Summary of numerical results of simultaneous fits to experimental data, presenting
the multipolar contributions of NRT components. Table summarizes those presented in Paper
6.

Allowed Transmission Reflection <y (%)

Axxx  YES 1.00 1.00 0
Axyy  YES 0.73 0.59 15
Axey  NO 0.23 0.18 20
Ayex  NO 1.43 0.83 28
Ayy  NO 0.13 0.20 21
Ayyy  YES 0.55 0.29 31
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To conclude, in this work we have studied linear and second-order nonlinear optical
properties of L-shaped gold nanoparticles arranged in a regular array. These studies
were begun with simple polarized spectral transmission studies in conjunction with
SHG experiments. From these experiments, we found that SHG is greatly enhanced
in the vicinity of plasmon resonances. Furthermore, we found that we can tune the
resonances and thereby SHG with particle size, shape, and particle arrangement in
the array. During the more detailed polarization studies on the linear and nonlinear
responses of these nanoparticles we found that the details of the responses are due
to defects of the samples. These defects may give rise to symmetry breaking and that
way render ideally symmetric structures chiral. To study the role of these defects
in even more detail, we developed a simple scattering-matrix type formalism with
which to express the tensorial nature of SHG, without going into the microscopic de-
tails of the response. Using this formalism and relying on the spatial transformation
properties of electric and magnetic dipoles and electric quadrupoles, we were able to
determine the full in-plane SHG tensor and quantify the importance of higher mul-
tipoles to each tensor component. We found that a symmetry-forbidden component
actually dominates the magnitude of the response and moreover, this component has
the highest multipole contribution. To explain this behavior, we built a simple model
where we assume that the symmetry is broken by surface defects on the nanopar-
ticles. These defects give rise to the effective dipoles and quadrupoles in the total
second-harmonic signal from that particular nanoparticle.

In the future, it would be exteremely interesting to address the role of multipoles in
the fundamental wavelength. To do this, some changes to the response tensor for-
malism need to be made. It should be possible to derive symmetry arguments based
on which the fundamental wavelength multipoles could be separated from SHG re-
sponse. Furthermore, assessing the role of the surface quality of the nanoparticles on,
first of all, SHG, and then on the details of SHG. This could be possibly achieved di-
rectly in the fabrication process by for instance annealing the nanoparticles. Also, the
importance of higher multipoles needs to be studied under off-resonant excitation
conditions.

On a more fundamental level, it will be important to address the microscopic origin
of the second-order nonlinearity of metal nanostructures. Both surface effects and

multipolar bulk effects can provide feasible mechanisms. The difficulty of separating
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such effects goes back to the early days of nonlinear optics. However, our research
group has developed techniques that allow certain parts of the surface and bulk ef-

fects to be separated.

In Chapter 1, we said that this project was begun with “several ideas and many open
questions”. Now, we have got some answers to our open questions, but during the
process, a lot more open questions have come up. Nevertheless, increased under-
standing of the nonlinear properties of metal nanostructures is expected to lead to

new materials with enhanced nonlinear responses.

Paljon on sarkaa vield niitettivind.
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