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Abstract

The recent developments in image and video denoising have brought a new gen-
eration of filtering algorithms achieving unprecedented restoration quality. This
quality mainly follows from exploiting various features of natural images. The non-
local self-similarity and sparsity of representations are key elements of the novel
filtering algorithms, with the best performance achieved by adaptively aggregat-
ing multiple redundant and sparse estimates. In a very broad sense, the filters are
now able, given a perturbed image, to identify its plausible representative in the
space or manifold of possible solutions. Thus, they are powerful tools not only
for noise removal, but also for providing accurate adaptive regularization to many
ill-conditioned inverse imaging problems.
In this thesis we show how the image modeling of the well known Block-

matching 3-D transform domain (BM3D) filter can be exploited for designing
effi cient algorithms for image reconstruction.
First, we formalize the BM3D-modeling in terms of the overcomplete sparse

frame representation. We construct analysis and synthesis BM3D-frames and
study their properties, making BM3D-modeling available for use in variational
formulations of image reconstruction problems.
Second, we demonstrate that standard variational formulations based on single

objective optimization, such as Basis Pursuit Denoising and its various extensions,
cannot be used with the imaging models generating non-tight frames, such as
BM3D. We propose an alternative sparsity promoting problem formulation based
on the generalized Nash equilibrium (GNE).
Finally, using BM3D-frames we develop practical algorithms for image deblur-

ring and super-resolution problems. To the best of our knowledge, these algorithms
provide results which are the state of the art in the field.
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Introduction to the thesis

Outline of the thesis

Chapter 1 contains an overview of the sparsity based models and methods used
in image reconstruction problems. We present the ideas behind the sparsity based
models, review the methods for solving inverse problems under sparsity constraints
and discuss construction of effective dictionaries rendering sparse image models.
We shortly present the concepts of the Block-matching 3-D transform domain
(BM3D) image modeling and its interpretation as a non-tight frame [DKE12].

The goal of Chapter 2 is to demonstrate the main ideas laying behind the
image reconstruction algorithms we propose in the next chapters. First, on the
example of Basis Pursuit denoising problem, we show that for non-tight frames
sparsity promoting models based on a single objective minimization lead to the
reconstructions were the strength of the regularization varies for different spatial
positions. Then, we propose an alternative sparsity promoting model based on
generalized Nash equilibrium (GNE), develop the algorithm for solving it, and
show its effectiveness in the simulated experiments.

In Chapter 3 we review the image deblurring algorithms proposed in our papers
[DKE12] and [DFKE11], where the problem is formulated as a search for the
generalized Nash equilibrium, which would balance the fit to the observation model
and complexity of the estimate in the BM3D-frame domain. This approach has
been found extremely successful, leading, to the best of our knowledge, to the
state-of-the-art results in the field.

In Chapter 4 we discuss the role of BM3D-modeling in super-resolution. We
show that 3-D transform domain modeling can be treated not only as a regulariza-
tion tool, but also as a robust data fusion approach. This important observation
will help us to explain the effi cacy of the SR algorithm based on iterative BM3D
filtering [DFKE08c] and also to suggest more effi cient ways of implementing it.
Finally, we develop a new SR algorithm based on the BM3D-modeling, deriving
it as a solution of a GNE problem. Its key difference from [DFKE08c] is the way
how the different 3-D spectral component are treated. Further, in contrast to
[DFKE08c], the new algorithm is directly designed to handle noisy data.

Conclusive remarks are given at the end of the thesis.

ix



x Introduction to the thesis

Link to publications

The five publications included in this thesis represent two series of works, devoted
to the development of reconstruction algorithms for different inverse imaging prob-
lems. These two series were originally developed independently, but as we show
in Chapter 4, there are deep connections between them.
First series starts with publication [DFKE08d], which considers image upsam-

pling problem (Chapter 4, p. 55) and proposes reconstruction algorithm based on
iterative BM3D filtering. This algorithm has been extended in [DFKE08c] to deal
with more general video super-resolution problem (Chapter 4, p. 55). The book
chapter [DFKE10] summarizes the results of the previous two publications and
the results of [EFK07] on compressive sensing reconstruction, presenting a unified
view on the methods for solving these problems (author of the current thesis is
not among the authors of [EFK07]).
Second series is devoted to the image deblurring problem. In [DKE12] and

[DFKE11] we develop methods for deblurring images corrupted respectively with
Gaussian (Chapter 3, p. 35) and Poisson noise (Chapter 3, p. 36). The re-
construction technique developed in [DKE12] is general and applicable to a wide
class of linear inverse imaging problems. Particularly, we use it do develop a new
super-resolution algorithm (Chapter 4, p. 58).

List of publications and author’s contribution

The main contribution of this compound thesis is contained in the publications
listed below. However material in Chapters 2 and 4 is novel and has not been
published before.

• [DKE12]: A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames
and variational image deblurring,”IEEE Transactions on Image Processing,
vol. 21, no. 4, pp. 1715 —1728, April 2012.

• [DFKE11]: A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Deblur-
ring of Poissonian images using BM3D frames,”Proc. Wavelets and Sparsity
XIV, SPIE, vol. 8138, San Diego, September 2011.

• [DFKE10]: A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Spa-
tially adaptive filtering as regularization in inverse imaging: compressive
sensing, super-resolution, and upsampling,” Super-Resolution Imaging, P.
Milanfar, Ed., pp. 123—153. CRC Press, 2010.

• [DFKE08c]: A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
and video super-resolution via spatially adaptive block-matching filtering,”
Proc. International Workshop on Local and Non-Local Approximations in
Image Processing, LNLA 2009, Lausanne, Switzerland, August 2008, pp.
53—60.

• [DFKE08d]: A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
upsampling via spatially adaptive block-matching filtering,”Proc. European
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Signal Processing Conference, EUSIPCO2 008, Lausanne, Switzerland, Au-
gust 2008.

The author of the thesis is the main contributor of the work presented in [DKE12]-
[DFKE08d]. The contribution of all coauthors is nevertheless essential and without
it, none of these publications would have been possible.
All co-authors have confirmed their agreement on the above statement.



xii Introduction to the thesis

Notation and conventions

The symbols R, Z, and N indicate, respectively, the real numbers, the integer
numbers, and the natural numbers.
We use lowercase boldface letters for denoting vectors, e.g. x ∈RN , and upper-

case bold letters for matrices corresponding to linear operators, e.g., A : RN →
RM . Components of the vector are referred using regular letters and subscripts,
e.g., vi indicates the i-th component of v. If notation already has a subscript, e.g.,
vkt we put the component index outside the brackets

(
vkt
)
i
.

Matrices representing images are denoted by normal lowercase letters y : RN ×
RN → R. Vectorized matrix is a column vector constructed from a matrix by
stacking its columns. The conjugate transpose of a matrix or vector is denoted by
the superscript T .
The central dot · stands for a “mute variable”or “mute argument”.

We use notation ‖·‖p , p > 0, for functionals ‖x‖p =
(∑N

i |x
p
i |
)1/p

,x ∈RN .
Additionally, we use ‖·‖0 to denote the functional which gives the number of non-
zero elements of its argument. For p ≥ 1, ‖·‖p are the well known lp-norms of
RN . For p < 1, functionals ‖·‖p do not define norms, since they do not fulfill
the triangle inequality condition. However, in the text we sometimes abuse the
terminology and refer to ‖·‖p as lp-norms also when p < 1.
The inner-product of a vector space is denoted by 〈·, ·〉. The Fourier transform

is denoted by F .
The bar decoration is used to denote true values, while the hat ̂ denotes

estimated values (e.g., “ŷ is the estimate of ȳ”).
N
(
µ, σ2

)
and P (λ) respectively denote the normal (i.e., Gaussian) distribu-

tion with mean µ and variance σ2 and the Poisson distribution with mean (and
variance) λ. The notation z ∼ P (λ) means that the random variable z is dis-
tributed according to a P (λ) distribution, which implies that the probability of z
being equal to k is P (z = k) = e−λ λ

k

k! , k ∈ N. Similarly, if z ∼ N
(
µ, σ2

)
, we have

that the probability density of z is p (z) = 1
σ
√
2π
e−

(z−µ)2

2σ2 , z ∈ R.
For the images, unless differently noted, we assume that the data-range is

[0, 255], where 0 and 255 correspond, respectively, to black and white.
We use the following standard criteria functions to assess the objective quality

of an estimate ŷ of ȳ : RN × RN → R:

(signal-to-noise ratio) SNR = 20 log10

(
‖ȳ‖2
‖ȳ − ŷ‖2

)
,

(improvement in SNR) ISNR = 20 log10

(
‖ȳ − z‖2
‖ȳ − ŷ‖2

)
,

(peak SNR) PSNR = 20 log10

(
255 ·N2

‖ȳ − ŷ‖2

)
,

(mean squared error) MSE =
‖ȳ − ŷ‖22
N2

.

(mean absolute error) MAE =
‖ȳ − ŷ‖1
N2

.
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Additionally, to measure the noisiness of a blurred image, we use the blurred SNR
(BSNR), defined as

(blurred SNR) BSNR = 20 log10

(
‖ȳblur − mean(ȳblur)‖2

‖ȳblur − z‖2

)
,

where ȳblur is the noise-free blurred image and z is the noisy blurred image.
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1-D, 2-D, 3-D One-, Two-, Three-Dimensional
AC Alternating Current (non-constant components)
AWGN Additive White Gaussian Noise
BSNR Blurred Signal-to-Noise Ratio
B-DCT Block Discrete Cosine Transform (e.g., 8×8 2-D DCT)
BM3D Block-Matching 3-D transform domain modeling or filter
CCD Charge-Coupled Device
CDF Cumulative Distribution Function
dB decibel
DC Direct Current (constant component)
DCT Discrete Cosine Transform
DST Discrete Sine Transform
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
GNE Generalized Nash equilibrium
ICI Intersection of Confidence Intervals
i.i.d. independent and identically distributed
ISNR Improvement in Signal-to-Noise Ratio
LPA Local Polynomial Approximation
LS Least Squares
ML Maximum Likelihood
MSE Mean Squared Error
NLM Non-local Means
PCA Principal Component Analysis
PDF Probability Density Function
PSF Point-Spread Function
PSNR Peak Signal-to-Noise Ratio
RI Regularized Inverse
RWI Regularized Wiener Inverse
SNR Signal-to-Noise Ratio
SR Super-resolution
std standard deviation
TV Total Variation
var variance



Chapter 1

Sparsity-based image
reconstruction

Many imaging problems belong to the class of inverse problems, where one aims to
reconstruct the image from its indirect measurements. To recover the image, the
inverse of the measurement operator should be applied to the measured data. The
main diffi culty of the inverse problems is that typically the measurement operator
has no exact inverse, and hence the problem has no unique solution. Unfortunately
not any solution can be considered as a reasonable estimate of the true image. But,
the fact that we can differentiate whether solution is reasonable or not indicates
that we have an a-priori knowledge of how the reasonable estimate should look like.
This knowledge formalized in the form of mathematical model can be utilized as a
constraint, to sieve the solution with desired properties from the set of all possible
solutions. In fact, the problem of devising an effi cient mathematical image model
is the one of the main problems in image processing. While the general criteria
for assessing image quality are well known (e.g. sharp edges, absence of artefacts,
preservation of textures), their translation into mathematical language is not a
trivial task. More, it is not enough to give the mathematical formulation of the
criteria, the resulting mathematical problems should be tractable both in theory
and in practice.

In this chapter we give an overview of the sparsity based methods used in image
reconstruction problems. We present the ideas behind the sparsity based models,
review the methods for solving inverse problems under sparsity constraints and
discuss construction of effective dictionaries rendering sparse image models.

1.1 Sparsity-based models in inverse problems

One of the reasons which motivated use of the sparsity priors in imaging was the
observation, that certain transforms (such as DFT, DCT and various types of
wavelets) have energy compaction property for natural images. This means that

1



2 1. Sparsity-based image reconstruction

images can be reasonably well approximated1 using only relatively small part of
the basis elements. In other words, natural images can be sparsely approximated
in these bases. On the other hand, unstructured signals, such as noise, cannot be
sparsely approximated. For example, the energy of the AWGN is spread uniformly
over all basis elements of any orthonormal transform. Hence, sparsity can be
used as a criterion to differentiate the natural images from unstructured noise-like
images.

1.1.1 Observation model

We consider a general linear inverse problem, where we try to estimate the original
vector, from the set of its linear measurements corrupted by noise. Assuming noise
to be additive white Gaussian (AWGN), we write the observation model as

z = Aȳ + η (1.1)

where z ∈RN is the vector of measurements, ȳ ∈RN is the unknown true vec-
tor, η ∼N (0N , σIN×N ) is the noise and A is the N ×N matrix representing the
known linear measurement (or degradation) operator. Additionally, we consider
an overcomplete dictionary

{
φi ∈ RN

}M
i=1

,M ≥ N which we assume to provide
sparse approximation of the vector ȳ. The analysis and synthesis operators (ma-
trices) corresponding to the dictionary {φi}

M
i=1 we denote respectively by Φ and

Ψ. Unless different is stated, we assume the synthesis operator to be defined as
the pseudoinverse of the analysis operator Ψ =

(
ΦTΦ

)−1
ΦT .

The sparsity prior can be incorporated in the formulation of the reconstruction
problem in a number of different ways. Below we describe several such possi-
bilities, starting from the two most basic ones: the analysis- and synthesis-based
formulations.

1.1.2 Analysis-based formulation

The analysis based formulation states, that among all candidate solutions explain-
ing the observation z with high enough probability, we should take one having
sparsest representation in the dictionary {φi}

M
i=1.

Applied to the problem (1.1), the analysis formulation takes the form:

ŷ = arg min
y
‖Φy‖0 subject to ‖z−Ay‖22 ≤ ε, (1.2)

where the constraint follows from the condition that the likelihood of observing z
in the model (1.1) for the particular y should be higher than a certain value δ

p (z|y) =
1

(2π)
N/2

σN
exp

(
− 1

2σ2
‖z−Ay‖22

)
> δ. (1.3)

1We are going to differentiate terms "approximation" and "representation". We use approxi-
mation, for approximation with nonzero error. To indicate exact approximation, without error,
we use term representation.
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Often, it is more convenient to consider a similar formulation, which instead
involves unconstrained optimization

ŷ = arg min
y

1

2σ2
‖z−Ay‖22 + τ ‖Φy‖0 . (1.4)

Strictly speaking (1.4) and (1.2) are not equivalent since l0-norm is not a convex
functional. Nevertheless, both formulations provide qualitatively similar results
promoting sparse solutions.
Problem (1.4) can be interpreted as finding Maximum-A-posteori-Probability

(MAP) estimate
ŷ = arg max

y
p (y|z) .

Starting from the improper prior

p (y) = exp (−τ ‖Φy‖0) , τ > 0,

and taking into account formula (1.3), which gives the conditional distribution
p (z|y), we define the posterior probability of y as

p (y|z) =
p (z|y) p (y)

p (z)
.

Ignoring p (z), which is independent of y, and taking negative of the logarithm of
p (z|y) p (y) we obtain

ŷ= arg max
y

p (z|y) p (y)

p (z)
= arg min

y
{− log (p (z|y) p (y))}

= arg min
y

1

2σ2
‖z−Ay‖22 + τ ‖Φy‖0 ,

which is exactly our problem (1.4).

1.1.3 Synthesis-based formulation

Let ω ∈ RM be a vector of coeffi cients generating a signal Ψω ∈ RN . The
synthesis based formulation states, that we should search for the sparsest ω, among
those whose generated signals Ψω have suffi ciently high probability to explain the
observation z:

ŷ = Ψ arg min
ω
‖ω‖0 subject to ‖z−AΨω‖22 ≤ ε. (1.5)

Similar to the analysis case, there is an unconstrained optimization formulation

ŷ = Ψ arg min
ω

{
1

2σ2
‖z−AΨω‖22 + τ ‖ω‖0

}
. (1.6)

From the first glance the analysis- and synthesis-based formulations may look
identical, but in fact, this is true only in the case when M = N and {φi}

M
i=1 is

an orthonormal basis. In the general case, the difference is easy to spot, since in
the analysis-based formulation optimization is performed over the N -dimensional
space, while in the synthesis formulation the search space is M -dimensional. A
detailed discussion of the nontrivial connections between these two formulations
can be found in [EMR07].
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1.1.4 Relaxed analysis formulation

Portilla [Por09] suggested an extension of the analysis based model (1.4), motivated
by the observation that wavelet representations of the most of the natural images
produce compressible rather than sparse coeffi cient vectors. The vector is called
compressible if it can be represented as a sum of a sparse vector plus a non-sparse
residual which has small energy. Following the compressibility assumption, y is
represented as

Φy = ω + r,

where ω ∈ RM is the sparse component and r ∈ RM is the non-sparse residual. In
general, ω and r are not independent, but in order to simplify the modeling they
are assumed to be such. Moreover, it is assumed that r is distributed as zero mean
white Gaussian noise with variance σr. While these assumptions are arguable, they
make the resulting reconstruction problem easier to solve, yet benefiting from the
extra flexibility of the model compared to (1.4). Thus, we are given the following
prior distributions:

p (z|y) ∝ exp

(
− 1

2σ2
‖z−Ay‖22

)
,

p (y|ω) ∝ exp

(
− 1

2σ2r
‖ω −Φy‖22

)
,

p (ω) ∝ exp (−τ ‖ω‖0) .

Here formula for p (y|ω) follows from gaussianity of r, while p (ω) reflects the
assumption of ω being sparse. Noting that p (z|y,ω) = p (z|y) and defining
p (y,ω) = p (y|ω) p (ω) we obtain the expression for the joint PDF

p (y,ω, z) = p (z|y,ω) p (y,ω)

= p (z|y) p (y,ω) = p (z|y) p (y|ω) p (ω) .

The reconstruction is formulated as a problem to find a pair of vectors (ŷ, ω̂) which
will maximize the joint probability p(y,ω, z).

(ŷ, ω̂) = arg max
y,ω

p(y,ω, z) = arg min
y,ω

τ ‖ω‖0 +
1

2σ2r
‖Φy − ω‖22 +

1

2σ2
‖z−Ay‖22 .

(1.7)
The last problem can be interpreted from slightly different view, better illus-

trating its relation to the analysis formulation (1.4). We start from (1.4) per-
forming variable splitting, i.e., substituting ω , Φy and considering ω to be an
independent variable. Then the constrained minimization with respect to the vari-
ables y and ω

(ŷ, ω̂) = arg min
y,ω

τ ‖ω‖0 +
1

2σ2
‖z−Ay‖22 , subject to ω= Φy, (1.8)

is an equivalent form of the problem (1.4).
The (1.7) then can be viewed as an analysis formulation (1.8) where the equality

constraint is relaxed being replaced by the inequality constraint

(ŷ, ω̂) = arg min
y,ω

τ ‖ω‖0 +
1

2σ2
‖z−Ay‖22 , subject to ‖ω −Φy‖22 ≤ δ.
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In the similar manner one can construct also a relaxed synthesis model

(ŷ, ω̂) = arg min
y,ω

τ ‖ω‖0 +
1

2σ2
‖z−Ay‖22 , subject to ‖Ψω − y‖22 ≤ δ.

1.2 Methods for solving sparse inverse problems

How to solve problems formulated above? Presence of the l0-norm, which is non-
differentiable and non-convex function, restricts direct application of most of the
standard optimization techniques. The naive approach, using combinatorial search
is computationally too complex, which limits its use only to the cases when the
dictionary size is relatively small M < 102. At the same time, the typical dimen-
sionality of the dictionaries in the imaging are M ∼ 104-107. Solving problems
of such size poses also technical problems: on most of the current computers
directly storing dictionary matrices in the computer memory is practically impos-
sible. Considered problems stimulated development of new specialized methods
for large scale problem solving. These methods can be roughly divided in three
classes: greedy search algorithms, algorithms based on convex relaxation of the
problems and algorithms based on iterative shrinkage.
Greedy algorithms were the first ones proposed to find sparse solutions in

different optimization problems. The Matching Pursuit (MP) [MZ93] and its ex-
tensions, Orthogonal Matching Pursuit (OMP) [PRRK93] and Stagewise OMP
[DTDS12], are the key algorithms of this class.
The greedy algorithm performs iteratively. It starts from the null vector as

the initial approximation. At each iteration the support of the approximation
vector is extended with those dictionary elements showing highest correlation with
the approximation error of the previous iteration. The process stops when the
approximation error drops below a certain level or complexity of the approximation
reaches the maximum allowed limit.
The main drawback of the greedy algorithms is that being suboptimal they

may stack at the local minima. This is particularly an issue when the complexity
of the solution increases. Another weak point of the greedy algorithms is their
slow convergence speed.
Convex relaxation. Convex relaxation for sparse vector approximation prob-

lems was introduced independently in signal processing [CDS01] as Basis Pursuit
Denoising (BPD) problem and in the statistical estimation theory [Tib96] as Least
Absolute Shrinkage and Selection Operator (LASSO). The idea of this approach is
to replace the non-convex l0-norm with l1-norm, which is the closest to l0 convex
lp-norm that promotes sparsity. The resulting l1-l2 problems:

arg min
y

1

2σ2
‖z− y‖22 + τ ‖Φy‖1 (1.9)

and

arg min
ω

1

2σ2
‖z−Ψω‖22 + τ ‖ω‖1 (1.10)

corresponding respectively to the analysis- and synthesis-based formulations (1.4)
and (1.6), can be solved with the standard convex optimization tools, such as
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steepest descent, conjugate gradient or interior-point methods. Convexity of the
criterion function ensures that the optimum of the problem is unique and global.
Relaxed problems in the general case are not equivalent to their counterparts

based on l0-norm. Equivalence holds under certain conditions (see e.g. [Tro06]),
which, however, are quite restrictive.
Iterative-shrinkage algorithms. The methods based on iterative shrink-

age (IS) constitute a broad class of algorithms (e.g., [FN03], [DDDM04], [FN05],
[CW05], [FBDN07] and many others) which are known for their remarkable con-
vergence speed for large scale lp-l2 (p ≤ 1) problems. While being derived from
different considerations all IS algorithms share two common operations: shrinkage
(thresholding) and projection on the subspace defined by the range of the analysis
operator associated with the dictionary.
The classical example of the IS type method, is the Iterative Soft Thresholding

(IST) algorithm for solving (1.10) [DDDM04], [FN05]. It is given by the recursive
formula

ωt+1 = Thsoftσ2τ/c

(
1

c
Φ
(
z−ΦTωt

)
+ ωt

)
, (1.11)

where c is the step size and Th is the shrinkage operator. Shrinkage operator is
the solution of the sparse approximation problem

Thτ (x) = arg min
ω
τ ‖ω‖p +

1

2
‖ω − x‖22 , (1.12)

where x ∈ RM is the vector being approximated. In two particular cases: p = 0
and p = 1, problem (1.12) has close form solutions, given respectively by the hard
and soft thresholding formulas

Thhardτ (x) =

{
xi, |xi| >

√
2τ

0, |xi| ≤
√

2τ
, i = 1, . . . ,M, (1.13)

Thsoftτ (x) =

{
sign (xi) (|xi| − τ) , |xi| > τ

0, |xi| ≤ τ
, i = 1, . . . ,M. (1.14)

Hence, at each iteration (1.11) the prediction error z−ΦTωt is projected to the
range of analysis operator Φ, scaled by the step size parameter and added to the
previous estimate ωt. The sum is then thresholded to obtain sparser estimate.
For p = 1, the IST algorithm is proven to converge to the global minimum of
the problem (1.10). Convergence properties for p = 0 are studied in [BD08] and
[BD09].

1.3 Dictionaries for sparse image approximations

So far we concentrated on the formulations for sparse recovery problems and meth-
ods to solve them, circumventing the main question: how to construct a dictionary
that will render the sparse approximations?
Earlier we mentioned that some of the well known bases have energy compacta-

tion property. Despite this fact, representations of many natural images with these
bases are not sparse. In general, the number of elements in the basis is too lim-
ited to generate sparse representations for wide classes of images, particularly for
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natural images. One needs to consider redundant dictionaries with a number of
elements essentially larger than the dimensionality of the approximated images.
The dictionaries used image processing can be roughly divided into three groups

according to their construction methods:

• non-adaptive or fixed,

• learned dictionaries,

• adaptive dictionaries which are based on fixed transforms.

1.3.1 Non-adaptive dictionaries

The non-adaptive (fixed) transforms are typically designed to posses particular
mathematical properties and are targeted to model certain types of structures
in signals. E.g., Haar wavelets are good for representing sharp discontinuities,
contourlets effectively represent smooth curves, Block DCT transform is known
to well represent textures, etc. Such a targeted design limits the ability of fixed
transforms to sparsify signals, restricting it to the target class only. Since in general
natural images contain structures of different types, edges, textures, smooth areas,
use of fixed transforms can be considered as a suboptimal choice.
Nevertheless, despite apparent drawbacks, fixed redundant transforms such as

undecimated Haar wavelets, Dual Tree Complex Wavelets, Curvelets, Contourlets
and others find extensive use in publications, where authors concentrate on recon-
struction algorithms rather than effective sparse representations (e.g., [PSWS03],
[ABDF10]). Known mathematical properties and availability of effi cient imple-
mentations make them convenient tools for testing various algorithms.
To mitigate the limitations of individual fixed dictionaries, it has been proposed

to use dictionaries made by merging several fixed dictionaries having complimen-
tary features. Such, Portilla demonstrated [Por09] that for images with a moderate
amount of texture, using combination of Dual Tree Complex Wavelets (DTCW)
[Kin01] and Translation Invariant Haar Pyramid (DTCW) [GCMP08] can sig-
nificantly improve reconstruction quality compared to the cases when DTCW or
TIHT are used alone.

1.3.2 Learned dictionaries

The fail of attempts to construct a universal "all purpose" dictionary synthetically,
from mathematical models, stimulated the research in the direction of constructing
dictionaries analytically, by learning them from natural images. Given the training
set of sample images, the goal of the learning process is to construct a dictionary
which will sparsely approximate images from the training set. The dictionary
learning can be posed as an optimization problem:

min
Ψ,{ωk}Kk=1

∑
k

‖ωk‖0 , subject to ‖yk −Ψωk‖22 ≤ ε, k = 1, . . . ,K, (1.15)

where {yk ∈ Rn}Kk=1 is the training set ofK image patches of size
√
n×
√
n, and we

are looking for anM � K element dictionaryΨ that will minimize the complexity
of the approximation coeffi cients {ωk}Kk=1.
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There are number of heuristic algorithms proposed to solve (1.15). Here we
briefly mention the two main ones. First algorithm, named Method of Optimal
Directions (MOD) [EAH00] solves (1.15), by performing alternating optimization
with respect to the dictionary Ψ and approximation vectors {ωk}Kk=1. The dictio-
nary update step is a simple quadratic optimization problem:

Ψ(t+1) = arg min
Ψ

∑∥∥∥yk−Ψω
(t)
k

∥∥∥2
2

= arg min
Ψ

∑∥∥Y −ΨΩ(t)

∥∥2
F

= YΩT
(t)

(
Ω(t)Ω

T
(t)

)−1
,

where Y and Ω(t) are matrices made respectively of column vectors yk and ω
(t)
k ,

and ‖·‖F is the Frobenius norm. The minimizations with respect to the individual
approximation vectors ωk are sparse synthesis problems

ω
(t+1)
k = arg min

ωk
‖ωk‖0 , subject to

∥∥yk −Ψ(t)ωk
∥∥2
2
≤ ε, 1 ≤ k ≤ K

which are solved with pursuit algorithms.
The more advanced learning technique K-SVD [AEB06], also relies on alter-

nating optimization, but unlike MOD at the dictionary update step the atoms are
updated sequentially. The update of each atom is done by removing the atom
from the dictionary, forming a matrix of approximation errors vectors and then
applying SVD to find the new atom which will minimize the error while keeping
representation vectors sparse.
Using MOD and K-SVD, dictionaries can be trained both from uncorrupted

set of images, as well from distorted, for example, noisy images [AEB06].
The learned dictionaries have also some drawbacks:

• Unlike most of the fixed dictionaries (such as FFT, DCT, x-lets), the learned
dictionaries are unstructured. As a result, there are no fast implementations
for performing analysis/synthesis with learned dictionaries, the dictionaries
are stored and operated explicitly as big matrices.

• Dictionary training is a computationally intensive task. It is tractable only
for relatively small image patches

√
n ≤ 30. The resulting dictionaries cannot

be applied to the whole image. Nevertheless, this limitation does not seem
to be critical for image restoration, since we can always consider image as a
linear combination of patches.

1.3.3 Adaptive dictionaries based on fixed transforms

These dictionaries can be considered as an intermediate step between fixed and
learned dictionaries. The typical adaptive dictionary emerges from smaller size
fixed subdictionaries combined in a data adaptive manner. The adaptation typ-
ically follows either low level signal features, such as direction, scale and shape
(e.g. Shape-Adaptive DCT [FKE07], Local Polynomial Approximations with In-
tersection of Confidence Intervals (LPA-ICI) [Foi05], kernel regression [TFM07]),
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or higher level features, such as self-similarity (Non-local Means [BCM05], Block-
Matching and 3-D filtering [DFKE07], [DKE12])2 .
Applying fixed subdictionaries adaptively allows to obtain sparser signal rep-

resentation compared to one obtained with fixed dictionaries. At the same time,
unlike learned dictionaries, adaptive dictionaries do not need to be stored and
manipulated as huge matrices. The analysis and synthesis operations with adap-
tive dictionaries are performed by applying small size subdictionaries in the order
defined by the data adaptation rule. Additionally, the speed of analysis/synthesis
operations can essentially benefit from existence of fast computation schemes for
the subdictionaries.
It has been demonstrated [KFEA10] that the best adaptive dictionaries, such

as one in Block-Matching and 3-D filtering can provide restoration quality very
close to those provided by learned dictionaries.

1.4 Block-matching based 3-D transform domain
image modeling

In this thesis we are going to consider methods for sparse image reconstruction with
the particular type of adaptive dictionaries, which emerges from the image mod-
eling known as Block-Matching based 3-D transform domain modeling (BM3D)
[DFKE07]. BM3D is a nonlocal image modelling technique based on adaptive high-
order groupwise models. This technique is well known for its ability to provide
highly sparse, redundant image/video representations. The detailed discussion of
the BM3D modelling can be found in [DFKE07], [KFEA10] or [Dab10]. Here we
briefly recall its main concepts.

Figure 1.1: Illustration of grouping in an artificial image.

The modeling is split in two steps: analysis and synthesis.
Analysis. Similar image blocks found in the image are collected in groups.

Blocks in each group are stacked together to form 3-D data arrays (see Fig. 1.1),
which are decorrelated using an invertible 3D transform.

2The Local Polynomial Approximations, Kernel Regression and Non-local Means image mod-
ellings do not assume in any form that the images can be sparsely approximated with the corre-
sponding dictonaries. Those dictionaries are mentioned in the text solely as important examples
of data-adaptive, redundant dictionaries.
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The blocking imposes a localization of the image on small pieces where simpler
models may fit the observations. It has been demonstrated that a higher sparsity of
the signal representation and a lower complexity of the model can be achieved using
joint groupwise 3D transforms instead of conventional blockwise 2D transforms
[Dab10].
In what follows, we refer to the union of all group spectra elements as the

groupwise spectrum. Since blocks overlap, the number of elements in the groupwise
spectrum is much larger than the image size. Thus, BM3D analysis provides an
overcomplete data representation.
Synthesis. The inverse transform is applied to each group spectrum, providing

estimates for each block in the group. These blockwise estimates are returned
to their original positions, and the final image reconstruction is calculated as a
weighted average of all of the obtained estimates, a procedure known as aggrega-
tion.

1.4.1 BM3D-frames

Let Y be a
√
N ×

√
N array representing the image and y be the corresponding

RN -vector built from the columns of Y. To each
√
Nbl×

√
Nbl square image block

we assign a unique index equal to the index of its upper-left corner element (pixel)
in y. We denote a vector of elements of j-th block Yj by yj and define Pj as an
Nbl×N matrix of indicators [0, 1] showing which elements of y belong to the j-th
block, so that yj = Pjy. For the sake of a notational simplicity, we assume that
the number of blocks in each group is fixed and equal toK. Let Jr = {jr,1, ..., jr,K}
be the set of indices of the blocks in the r-th group, then grouping is completely
defined by the set J = {Jr : r = 1, ..., R}, where R is a total number of the groups.
It is assumed that for each pixel there is at least one block which enters in a group
and contains the pixel. The final image estimate is defined as the weighted mean
of the groupwise estimates using weights gr > 0.

It has been shown [DKE12], that for a fixed grouping the BM3D analysis/synthesis
operations can be given in the matrix form linking the image y and its groupwise
spectrum vector ω ∈ RM by the forward and backward transforms

ω = Φy, y = Ψω.

Here Φ and Ψ represent respectively the analysis and synthesis operators.

Proposition 1 [DKE12]. The following equations hold for the matrices Φ and
Ψ:

ΦTΦ =
∑
r

∑
j∈Ir

PT
j Pj > 0, (1.16)

ΨΨT =
∑
r

g2r
∑
j∈Ir

PT
j PjW

−2 > 0, (1.17)

ΨΦ = IN×N , (1.18)

where W =
∑
r gr

∑
j∈Jr PT

j Pj .
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As it follows from Proposition 1, the rows of Φ constitute a frame {φn} in RN .
Indeed, let us verify the frame inequality. Using the analysis formula ω = Φy and
(1.16) we obtain∑

n

|〈φn,y〉|
2

= ωTω = yTΦTΦy = yT
∑
r

∑
j∈Ir

PT
j Pjy.

If a and b are respectively minimum and maximum values of the diagonal matrix∑
r

∑
j∈Ir PT

j Pj , then for any y ∈ RN holds the frame inequality

a ‖y‖2 ≤
∑
n

|〈φn,y〉|
2 ≤ b ‖y‖2 . (1.19)

The frame {φn} is not tight because, in general, a 6= b. This follows from the fact
that the (j, j) element on the diagonal of the matrix

∑
r

∑
j∈Ir PT

j Pj is equal to
the number of grouped blocks containing the j-th pixel. For different pixels this
numbers are different, since pixels from the blocks possessing higher similarity to
other blocks participate in a larger number of groups.
Similarly, using (1.17) we can show that columns of Ψ constitute a non-tight

frame {ψn}. It follows from equation (1.18) that {φn} is dual to {ψn}. In general,
Ψ 6= (Φ

T
Φ)
−1

ΦT and {ψk} is an alternative dual frame due to the presence of the
group weights. The equality Ψ = (ΦTΦ)

−1
ΦT takes place only when all weights

gr are equal. {ψk} then becomes the canonical dual frame3 .
We would like to emphasize that since groups and weights are selected data

adaptively, the constructed frames are also data adaptive.

3 In this thesis, dealing with frames, we follow the terminology used in the book by Christensen
[Chr03].
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Chapter 2

Denoising with non-tight
frames: from Basis Pursuit
Denoising to generalized
Nash equilibrium

The goal of this chapter is to demonstrate the motivation and main ideas laying
behind the image reconstruction algorithms we propose in the next chapters.
First, on the example of BP denoising problem, we show that, for non-tight

frames sparsity promoting models based on a single objective minimization lead
to the reconstructions were the strength of the regularization varies for different
spatial positions. Then, we propose an alternative sparsity promoting model based
on generalized Nash equilibrium (GNE), develop the algorithm for solving it, and
show its effectiveness in the simulated experiments.

2.1 Basis Pursuit denoising with non-tight frames

2.1.1 Problem formulation

Let {
φm : φm ∈ RN

}M
m=1

,M > N (2.1)

be a non-tight frame in RN , Φ : RN → RM and Ψ : RM → RN are, respectively,
the analysis and synthesis operators associated with the frame. We assume that
the frame is such that ΦTΦ is a diagonal matrix1 . Notice, that since the frame
is assumed to be non-tight, at least one diagonal element should differ from the
others: @α s.t. ΦTΦ =αIN×N . Unless otherwise stated, we assume, that Ψ cor-
responds to the canonical dual frame of {φm}

M
m=1 and hence it is defined as the

pseudoinverse of Φ, i.e.
Ψ =

(
ΦTΦ

)−1
ΦT .

1Particularly this always holds for BM3D-frames see (1.16) in Proposition 1.

13



14 2. Denoising with non-tight frames

We consider the analysis based formulation of the Basis Pursuit (BP) denoising
problem (1.9)

ŷ = arg min
y

1

2
‖z− y‖22 + τ ‖Φy‖1 , (2.2)

where z ∈ RN is the noisy observation, ŷ ∈ RN is the solution, and τ ∈ R+ is
a regularization parameter. In this chapter we limit ourself, considering only the
analysis based formulation, nevertheless the qualitative results we are going to
obtain stay valid also for the synthesis based formulation.

2.1.2 ADMM algorithm for BP denoising problem

While we could solve problem (2.2) with one of the standard algorithms men-
tioned in the previous chapter, we prefer to derive the algorithm based on variable
splitting and Augmented Lagrangian techniques. The resulting algorithm will be
an instance of the so-called alternating direction method of multipliers (ADMM)
[EB92]. We prefer the ADMM-type algorithm, since its structure makes easier
understanding the problems arising due to the use of non-tight frames in recon-
struction.
Our derivation will repeat the derivation of the SALSA algorithm [ABDF10].

Instead of solving (2.2) directly, we transform it into constrained optimization
problem of two variables. We introduce new auxiliary variable ω ∈ RM , and
reformulate (2.2) as

ŷ = arg min
y,ω

1

2
‖z− y‖22 + τ ‖ω‖1 subject to ω = Φy. (2.3)

The idea behind this approach, known as variable splitting, is that minimization
of the split problem can be done by alternatingly minimizing (2.3) with respect to
the one of the variables.
The standard constrained optimization techniques, such as Quadratic Penalty

or Augmented Lagrangian(AL) can be applied [NW06] to solve (2.3). We confine
ourselves to the AL technique, which is nowadays widely used for minimization of
convex functionals under linear-equality constraints ([ABDF10], [ABDF11]).
The AL criterion for (2.3) takes the form:

La (y,ω,λ) =
1

2
‖z− y‖22 + τ · ‖ω‖1 +

γ

2
‖ω −Φy‖22 + γ 〈ω −Φy,λ〉 , (2.4)

where λ ∈RM is a vector of the Lagrange multipliers, γ > 0 is a parameter and the
subscript ’a’of La indicates the analysis formulation. The saddle-point problem(

ŷ, ω̂, λ̂
)

= arg min
y,ω

max
λ

La (y,ω,λ) , (2.5)

associated with the Lagrangian La , provides the solution of the constrained opti-
mization problem (2.3) [NW06].
Finding the saddle point requires joint minimization of La with respect to

the variables y,ω and maximization with respect to λ. The idea behind the
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ADMM method is that this joint optimization can be replaced by the alternating
optimization with respect to the variables y,ω and λ. Applied to (2.5), it results
in the following iterative scheme:
Repeat for t = 1, 2, ...

yt = arg min
y
La (y,ωt−1,λt−1) , (2.6)

ωt = arg min
ω
La (yt,ω,λt−1) , (2.7)

λt = λt−1 + (ωt −Φyt) , (2.8)

until convergence.
Here maximization with respect to λ is produced as a step (2.8) in the direction
of the gradient ∇λLa .
Solutions of (2.6) and (2.7) can be easily obtained. Indeed, since La is quadratic

with respect to y, the solution of (2.6) is given by the formula

yt =
(
I+γΦTΦ

)−1 (
z + γΦT (ωt−1 + λt−1)

)
. (2.9)

To solve (2.7),we first regroup terms in La

La (yt,ω,λt−1) =
1

2
‖z− yt‖22 + τ ‖ω‖1 +

γ

2
‖ω − (Φyt − λt−1)‖

2
2 −

γ

2
‖λt−1‖22 .

Since the first and the last terms do not depend on ω, problem (2.6) reduces to
the optimization

ωt = arg min
ω
τ ‖ω‖1 +

γ

2
‖ω − (Φyt−λt−1)‖

2
2 , (2.10)

which has well known analytical solution given by the soft thresholding operator
(1.14):

ωt = Thsoftτ/γ (Φyt − λt−1) .

Following (2.6)-(2.8) and using (2.9) and (2.10) we define the Algorithm 1 for
solving BP denoising problem. In each iteration it first updates the image estimate
using the linear filtering (2.9). Then, the difference between the spectrum Φyt and
λt−1 is thresholded. Finally, the Lagrange multipliers are updated in the direction
of the gradient ωt −Φyt. Process is iterated until some convergence criterion is
satisfied.

2.1.3 Convergence

The main motivation of the AL technique is to replace a constrained optimization
with a simpler saddle-point problem. The equivalence of these two problems is
not a given fact. The classical results stating equivalence are formulated for the
convex and differentiable functions [Ber96]. Since lp-norms with p ≤ 1 are non-
differentiable these results are inapplicable. Nevertheless, for the l1-norm the
equivalence can be shown, provided that the constraints in the problem are linear.
In the recent paper [TW09] the equivalence statement has been proven for the total
variation penalty. This proof remains valid for any convex and non-differentiable
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Algorithm 1 ADMM-type algorithm for analysis-based BP denosing.

1: input: z, σ, τ , γ
2: construct Φ using z or any initial estimate yinit
3: initialization:
4: set: t = 0,y0 = z,ω0 = Φz,λ0 = 0
5: repeat
6: t = t+ 1
7: yt=

(
I + γΦTΦ

)−1 (
z + γΦT (ωt−1 + λt−1)

)
8: ωt = Thsoftτ/γ (Φyt − λt−1)
9: λt = λt−1 + (ωt −Φyt)
10: until convergence
11: output: ŷ = yt (or equivalently ŷ =

(
ΦTΦ

)−1
ΦTωt)

penalties, in particularly, for the l1-norm based penalties. For the considered
analysis-based problem, the equivalence is stated in the following form:

(ŷ, ω̂) is a solution of the analysis problem (2.3), if and only if, there exists a

saddle point
(
ŷ, ω̂, λ̂

)
(2.5) of the AL (2.4).

Practically it means that the saddle-point of the AL optimization can be used in
order to obtain the solutions of the considered constrained optimization problems.
The convergence properties of the Algorithm 1 are formulated in the following

proposition, which is the particular case of the Proposition 2 [DKE12].

Proposition 2
If the saddle point (ŷ, ω̂, λ̂) of La (y,ω,λ) (2.5) exist, then yt→ ŷ,ωt→ ω̂,λt→ λ̂.

On the other hand, if no such a saddle point exists, then at least one of the se-
quences {yt} or {λt} must be unbounded.

Proof. See the proof of Proposition 2 in [DKE12].

2.1.4 Discussion

An example of image denoising with a BM3D-frame using Algorithm 1 is presented
in Figure 2.1(c). In this example noise variance is equal to 50, block size of the
BM3D-frame is 8, group size is 16 and the step size between the reference blocks
is set to 1. Block matching is performed on the estimate obtained from the hard
thresholding step of the BM3D filter [DFKE07] and parameters τ and γ were
selected such to ensure best quality of the reconstructed image in terms of PSNR.
We can see that though in most parts of the image noise is fairly suppressed,

there are number of areas where residual noise is clearly noticeable. This observa-
tion can be explained if we look closer at the formula (2.9). Multiplying its right
side by

(
ΦTΦ

)−1 (
ΦTΦ

)
and taking into account that ΦTΦ is a diagonal matrix,

after simplifications we obtain:

yt =
(
ΦTΦ

)−1 (
ΦTΦ

) (
I+γΦTΦ

)−1 (
z + γΦT (ωt−1 + λt−1)

)
=

((
ΦTΦ

)−1
+γI

)−1 ((
ΦTΦ

)−1
z + γ

(
ΦTΦ

)−1
ΦT (ωt−1 + λt−1)

)
,
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Figure 2.1: Example of denoising with Algorithm 1. (a) True image, (b) noisy image
σ = 50, (c) denoised image, (d) visualization of the diagonal elements of matrix ΦTΦ
(edges of the original image are superimposed for the convenience of comparison), (e)
histogram of the diagonal elements of matrix ΦTΦ.
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or substituting
(
ΦTΦ

)−1
ΦT = Ψ :

yt =
((

ΦTΦ
)−1

+γI
)−1 ((

ΦTΦ
)−1

z + γΨ (ωt−1 + λt−1)
)
. (2.11)

Formula (2.11) states, that each pixel of the image estimate yt is obtained as a
weighted average of the corresponding pixels of the observation z and the estimate
obtained from the spectrum Ψ (ωt−1 + λt−1). For i-th pixel the weight given to
the observation component is the reciprocal of the i-th diagonal element of matrix
ΦTΦ, while weight of the spectral estimate is γ. Since we assume the frame to be
non-tight ΦTΦ 6= aI and hence the averaging proportion (and hence regularization
level), varies from pixel to pixel. Pixels reconstructed with a weaker regularization
demonstrate higher variance, while pixels with a stronger regularization demon-
strate higher bias. This relation becomes apparent if we visualize the diagonal of
ΦTΦ as an image (Fig. 2.1(d)), where intensity of each pixel is corresponding to
the value of the respective diagonal element of ΦTΦ. Comparing images (c) and
(d) in Fig. 2.1 we can see that areas with high residual noise correspond to the
areas where elements of ΦTΦ have small values.
The difference in the regularization level can be ignored if it is small. Unfortu-

nately, for BM3D-frames this is not the typical case. As it was mentioned in the
previous chapter, the matrix ΦTΦ is entirely defined by the block-matching; its
i-th diagonal element shows total number of times i-th pixel appears in different
groups. Experiments demonstrate that variation of this parameter can be very
large, up to several thousand times. Figure 2.1(e) shows the histogram calculated
from the diagonal of matrix ΦTΦ used to obtain reconstruction in Fig. 2.1(c).
The ratio between the maximum and the minimum diagonal elements, for this
particular case, is of the order of 105.
It is worth mentioning that variation level of the elements in matrix ΦTΦ

relatively weakly depends on the quality of the image on which block matching
is performed. This is illustrated in Fig.2.2, where we show histograms calculated
from the diagonal elements of the matrix ΦTΦ corresponding to the two cases,
when block matching is done on the noisy and true images. We can see that even
in the case when matching is done on the ground truth image the variation is still
significant.
Uneven regularization creates a problem for selecting optimal values for pa-

rameters γ and τ . To avoid appearence of the residual noise in the regions with
weak regularization, one needs to select much higher values of the parameters than
otherwise would be optimal for the regions with strong regularization. This results
in oversmoothing in the areas with strong regularization.

2.1.5 Criticism

We would like to mention that the problem of uneven regularization exhibits only
when the frame is not tight. Indeed, for the tight frame bounds a and b in (1.19)
are equal, and hence ΦTΦ =aI. Substituting this equality in (2.11), we obtain

yt = (I+γa)
−1

(z + γaΨ (ωt−1 + λt−1)) ,

which means that the proportion in which the observation and the current esti-
mate are averaged is the same for all pixels. Based on this observation, one may
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Figure 2.2: Influence of the quality of the image used for block matching on the variation
of the diagonal elements of matrix ΦTΦ.
Left column corresponds to the matching on the noisy image z, right column - to the
matching on the ground truth y. From top to bottom: denoised image, visualization of
the diagonal elements of matrix ΦTΦ and the histogram of the diagonal elements.
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naively suggest using the tight analog of the frame (obtained by normalization)
to overcome the problem of uneven regularization. Below we demonstrate, that
unfortunately, normalization results in catastrophic degradation of sparsification
properties of the frame.

Proposition 3 Given an arbitrary frame {φm}
M
m=1, its tight analog

{
φ̃m

}M
m=1

can be obtained as

φ̃m =
(
ΦTΦ

)− 1
2 φm (2.12)

with the corresponding analysis

Φ̃ = Φ
(
ΦTΦ

)− 1
2 ,

and synthesis

Ψ̃ =
(
ΦTΦ

)− 1
2 ΦT

operators. The bounds of the frame
{
φ̃m

}M
m=1

are equal to 1.

Proof. If ΦTΦ is a diagonal matrix we have∥∥∥Φ̃y
∥∥∥2
2

=
〈
Φ̃y, Φ̃y

〉
= yT Φ̃T Φ̃y =

= yT
((

ΦTΦ
)− 1

2

)T
ΦTΦ

(
ΦTΦ

)− 1
2 y = yT Iy = ‖y‖22 .

The proof for the general case when ΦTΦ is not a diagonal matrix, can be found
in [Chr03] (see Theorem 5.3.4).

To compare sparsifying properties of the original non-tight frame and its nor-
malized tight counterpart obtained from (2.12), we perform an experiment where
noise-free images are reconstructed from K most significant coeffi cients of their

representations in frames {φm}
M
m=1 and

{
φ̃m

}M
m=1

. In Figure 2.3 the RMSE

of the reconstructed images are presented for different values of K. We can see
that compared to the original frame its normalized tight counterpart demonstrates
much worse signal sparsification properties, requiring about 100−1000 times more
coeffi cients in order to reconstruct the images with the same RMSE. The explana-
tion of such a behavior can be found if we look at the reconstruction of Cameraman
image presented in Figure 2.3. While image obtained using the non-tight frame
can be considered as a reasonable estimate of the original image, the reconstruc-
tion obtained with the tight frame suffers from strong artefacts. Particularly, the
smooth area of the sky is corrupted by oscillating patterns. This allows us to
conclude, that at least at the spatial locations corresponding to the sky, the tight
frame lacks elements suitable for accurately representing constant signal. At the
same time, such elements (corresponding to the DC element of the transform) are
present in the original non-tight frame. Thus, the normalization process changes
frame elements making them unsuitable for representing natural images.
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Figure 2.3: Top row: RMSE of the images reconstructed from the K largest coeffi cients
using original non-tight and normalized tight frames. Left Cameraman (256×256), right
Barbara (512 × 512). Redundancy factor ∼ 1024. Bottom row: Cameraman image
reconstructed from 106 largest coeffi cients using original non-tight (left) and normalized
tight (right) frames. PNSR values are 30.57dB and 13.49dB respectively.

Signal norms in the image and spectrum domains are linked through the matrix
ΦTΦ. Its negative impact on the reconstruction is inevitable2 as long as variational
criterion combines norms both for the image and its spectrum. Hence, uneven
regularization roots in the very formulation of the BP denoising problem. We
conclude, that for the non-tight frames originating from patch based image models
(such as BM3D), formulating denoising in the BP form (2.2) is ineffi cient. We

2We could use more standard solution algorithms to demonstrate the problem of uneven
regularization. For example, consider the Iterative Soft Thresholding algorithm (1.11). Applying
identity ΦT =

(
ΦTΦ

) (
ΦTΦ

)−1
ΦT =

(
ΦTΦ

)
ΨT to the IST recursion formula

ωt = Thsoft
τ/c

(
1

c
Φ
(
z−ΦTωt−1

)
+ ωt−1

)
we obtain

ωt = Thsoft
τ/c

(
1

c
Φ
(
z−
(
ΦTΦ

)
ΨTωt−1

)
+ ωt−1

)
.

We can immediately notice the uneven treatment of the different pixels in the calculation of the
difference z−

(
ΦTΦ

)
ΨTωt−1.
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should seek an alternative sparsity promoting variational formulations. This will
be the topic of the next section.

2.2 Denoising as a Generalized Nash equilibrium
problem

2.2.1 Problem formulation

Let us formulate the denoising problem as the following constrained optimization: y∗ = arg min
y

1
2 ‖z− y‖22 subject to ‖y −Ψω∗‖22 ≤ ε1,

ω∗ = arg min
ω
‖ω‖1 subject to ‖ω −Φy∗‖22 ≤ ε2,

(2.13)

where ε1, ε2 > 0. Compared to the split formulation (2.3) of the BP denoising,
here the strict analysis/synthesis constraints y = Ψω and ω = Φy are relaxed,
and weaker (inequality) constraints are imposed.
Problem (2.13) can be replaced by the equivalent unconstrained one:{

y∗ = arg min
y
L1 (y,ω∗)

ω∗ = arg min
ω
L2 (y∗,ω) ,

(2.14)

where

L1(y,ω) =
1

2
‖z− y‖22 +

γ

2
‖y −Ψω‖22 , (2.15)

L2(y,ω) = τ ‖ω‖1 +
1

2
‖ω −Φy‖22 , (2.16)

and γ, τ are constants selected accordingly to the values of ε1, ε2.
In terms of the game theory, the problem (2.14) can be interpreted as a game

of two players identified, respectively, with two variables y and ω [LBS08], [FK10].
The interaction between the players is noncooperative, because minimization of
L1(y,ω) with respect to y typically results in increase of L2(y,ω) and minimiza-
tion of L2(y,ω) with respect to ω increases L1(y,ω). The equilibrium of this
game, called Generalized Nash equilibrium (GNE), defines the fixed point (y∗,ω∗)
of the optimization.
The objective functions L1 and L2 allow the following interpretation. In L1

the fidelity term
1

2
‖z− y‖22 evaluates the deviation between the observation z and

its estimate y. This fidelity is penalized by the norm ‖y −Ψω‖22 , which controls
the divergence between the y and its sparse approximation Ψω. The L2, in its
turn, represents a trade-off between the error of ω with respect to Φy and the
complexity of ω measured by the l1-norm. Hence the GNE provides a balance
between the fit of the reconstruction y to the observation z and the complexity
of the model ‖ω‖1. This can be contrasted with the analysis- and synthesis-based
problem formulations where the balance is provided within a single criterion.
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2.2.2 Algorithm for solving GNE problem

To solve (2.14) we consider the following iterative procedure:{
yt = arg min

y
L1(y,ωt−1)

ωt = arg min
ω
L2 (yt,ω)

, t = 1, ... . (2.17)

This procedure models the selfish behavior, where each variable minimizes only
its own objective function. As it is shown in [DKE12], these iterations converge
to the fixed point (y∗,ω∗) of (2.14).
Solutions of the minimization subproblems in (2.17) are easy to obtain. Mini-

mization of the quadratic functional L1 with respect to y is given by the equation

yt= (I + γI)
−1

(z + γΨωt−1) , (2.18)

which is a simple weighted average between the observation z and the estimate
Ψωt−1.

Minimization of L2 with respect to ω is obtained by thresholding with the
threshold parameter τ :

ωt = Thsoftτ (Φyt) . (2.19)

Summarizing these two steps we obtain Algorithm 2 that solves the problem (2.14).

Algorithm 2 Denoising algorithm based on GNE formulation

1: input: z, τ , γ
2: construct Φ and Ψ using z or any initial estimate yinit
3: initialization:
4: set: t = 0,y0 = z,ω0 = Φz
5: repeat
6: t = t+ 1
7: yt= (I + γI)

−1
(z + γΨωt−1)

8: ωt = Thsoftτ (Φyt)
9: until convergence
10: output: ŷ = Ψωt

2.2.3 Convergence

The following proposition describes the convergence properties of the algorithm.

Proposition 4 For any set of parameters τ , γ the sequence (yt,ωt) generated by
Algorithm 2, converges to a fixed point (y∗,ω∗) defined by the equations (2.14), if
a fixed point exists.

Proof. See the proof of the more general Proposition 3 in [DKE12].
Note, that it is not required that the fixed point is unique. Depending on a

starting point (y0,ω0) the limit point of the algorithm can be different but should
satisfy the fixed-point equations.
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2.2.4 Discussion

Each solution of the GNE denoising problem (2.14) is a pair of vectors (y∗,ω∗).
Both y∗ and Ψω∗ can be considered as estimates of the true image ȳ, but unlike
BP denoising case, these two estimates are going to be different. Indeed, in the
GNE formulation we do not enforce equality Φy∗= ω∗, instead it is only required
that ‖y∗−Ψω∗‖22 ≤ ε1 and ‖ω∗ −Φy∗‖22 ≤ ε2, ε1, ε2 > 0. How close estimates
y∗ and Ψω∗ are going to be and which of them will be better, depends on the
choice of parameters τ and γ. Ψω∗ can be considered preferable to y∗, since
y∗ contains noisy component through its γ

1+γ z summand. Hence it is rational to
select parameters τ and γ such to maximize the quality of Ψω∗ while ignoring
y∗. In Fig. 2.4 (e) and (f) we show estimates Ψω∗ and y∗ resulting from the
same denoising experiment. The presence of noise is clearly visible on y∗. For the
comparison we show estimates ŷ and Ψω̂ (Fig. 2.4 (c) and (d)), corresponding to
denoising with Algorithm 1, which are practically identical.
In the Section 2.1.5 we criticized the BP denoising formulation for enforcing

uneven regularization in the case of the non-tight frames. The NE based formu-
lation (2.14) is free of this drawback. Indeed, unlike BP case, in the update step
(2.18) the weighted averaging between the observation z and Ψωt is performed
in the same proportion for all pixels. As a result, we are able to obtain better
reconstruction free of the areas with strong residual noise. This can be verified
from Fig. 2.4 (e) where we show the result of denoising Cameraman image with
Algorithm 2. For the reference we also show the result obtained with the BP
denoising Algorithm 1 (Fig. 2.4 (c)).
So far as a sparsity promoting penalty we have considered only l1 norm. We

can replace l1 with l0 (pseudo-) norm in the GNE problem (2.14) and formally
derive algorithm for it. This algorithm will repeat Algorithm 2 with the only
difference that the soft thresholding will be replaced by the hard thresholding
(1.13). Unfortunately, convergence analysis done for (2.14) cannot be extended
to the l0-norm case. Convergence proof of Algorithm 2 relies on non-expansivity
of the soft thresholding operator, while hard thresholding operator is not a non-
expansive operator. Nevertheless, in practice, the algorithm for l0 converges for
reasonably selected parameters τ and γ.

2.3 Experiments

We compare proposed Algorithm 2 against the standard BM3D algorithm [DFKE07].
Both the soft and hard thresholding versions of the Algorithm 2 are evaluated. Ad-
ditionally we consider the hard thresholding version of the algorithm with group
weights chosen adaptively. In Table 2.1 we present the PSNR values of the de-
noised images obtained with each of the method. To simplify comparison of these
data, in Figure 2.5 we plot the PSNR scores relative to the results of the BM3D
algorithm [DFKE07] which are selected as the baseline.
The presented data demonstrate that the hard thresholding version of the

iterative algorithm clearly outperforms the version which uses soft thresholding.
Overall, results of the hard thresholding version of Algorithm 2 are close to the
results of the BM3D algorithm, both according to the numerical criteria and visual
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(a) ȳ (b) z (PSNR 14.87)

(c) ŷ (PSNR 22.83) (d) Ψω̂ (PSNR 22.83)

(e) y∗ (PSNR 25.36) (f) Ψω∗ (PSNR 25.49)

Figure 2.4: Comparison of the reconstructions corresponding to the GNE and BPD
problem formulations. (a) true image, (b) noisy image σ = 50, (c)-(d) reconstructions
corresponding to the BPD formulation obtained with Algorithm 1, (e)-(f) reconstructions
corresponding to the GNE formulation obtained with Algorithm 2.
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inspection. BM3D slightly overperforms in the low noise cases while the proposed
algorithm performs slightly better in the high noise.
Judging solely from the PSNR values, one may argue the need of using adap-

tive group weights, since in many cases they are either not increasing or slightly
lowering the PSNR. However, adaptive weights help to improve the visual appear-
ance of the denoised images by suppressing (to some extent) the high frequency
artefacts around the edges of objects. This improvement comes at the cost of slight
oversmoothing the textured areas. While the oversmoothing decreases the PSNR,
visually it is practically unnoticeable. Hence, the benefits that adaptive weights
potentially bring pay off the risk of getting slightly oversmoothed images. This
observation is illustrated in Figure 2.8, where we show two pairs of images corre-
sponding to the extreme cases where adaptive group weights provide, respectively,
the highest improvement and the highest reduction of PSNR compared to the de-
noising with unit weights. Note significant suppression of the artefacts around the
face of cameraman in the first case and practically indistinguishable differences in
the texture on the trousers of Barbara in the second case.

2.4 Conclusions

The results of the last experiments may seem to be discouraging, since the pro-
posed iterative algorithm is unable to outperform the computationally less ex-
pensive (non-iterative) BM3D algorithm. But we should remember that BM3D
implements more complex modeling which exploits not only sparsity, but also
wiener filtering. In fact if we compare our results against the output of the hard-
thresholding step of BM3D, we see a clear advantage of the proposed algorithm.
Overall, we should admit that for the image denoising task, combined model uti-
lized by BM3D is more effi cient than the model generated by the GNE formulation
(2.14). Nevertheless, in the next chapter we demonstrate that in the case of more
diffi cult inverse problem - deblurring, situation changes to the opposite.
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Method \ noise std. (σ) 5 10 25 50 75 100
Cameraman (256×256)

BM3D (hard thresh. only) 38.20 33.94 29.14 25.55 23.45 21.91
BM3D (hard thresh. + wiener) 38.29 34.18 29.45 26.12 24.33 23.07
GNE (soft thresh., unit weights) 37.06 32.88 28.37 25.49 23.89 22.77
GNE (hard thresh., unit weights) 37.97 33.80 29.04 26.17 24.44 23.26
GNE (hard thresh., adaptive weights) 38.14 33.97 29.15 26.20 24.47 23.23

Lena (512×512)
BM3D (hard thresh. only) 38.63 35.65 31.37 27.92 25.85 24.30
BM3D (hard thresh. + wiener) 38.72 35.93 32.08 29.05 27.26 25.95
GNE (soft thresh., unit weights) 38.40 35.27 31.42 28.58 26.95 25.79
GNE (hard thresh., unit weights) 38.75 35.85 32.05 29.10 27.36 26.11
GNE (hard thresh., adaptive weights) 38.74 35.83 32.02 29.04 27.30 26.05

House (256×256)
BM3D (hard thresh. only) 39.58 36.35 32.27 28.42 25.83 23.97
BM3D (hard thresh. + wiener) 39.83 36.71 32.86 29.69 27.51 25.87
GNE (soft thresh, unit weights) 39.13 35.90 32.13 29.18 27.25 25.79
GNE (hard thresh, unit weights) 39.76 36.60 32.82 29.86 27.74 26.19
GNE (hard thresh, adaptive weights) 39.80 36.62 32.88 29.88 27.78 26.18

Barbara (512×512)
BM3D (hard thresh. only) 38.12 34.62 29.92 25.95 23.71 22.24
BM3D (hard thresh. + wiener) 38.31 34.98 30.72 27.23 25.12 23.62
GNE (soft thresh., unit weights) 37.74 34.01 29.47 26.09 24.16 22.87
GNE (hard thresh., unit weights) 38.38 34.87 30.55 27.01 24.90 23.35
GNE (hard thresh., adaptive weights) 38.40 34.88 30.51 26.91 24.81 23.26

Boats (512×512)
BM3D (hard thresh. only) 37.08 33.70 29.43 26.00 24.09 22.75
BM3D (hard thresh. + wiener) 37.28 33.92 29.91 26.78 25.12 23.97
GNE (soft thresh., unit weights) 36.84 33.25 29.20 26.41 24.85 23.77
GNE (hard thresh., unit weights) 37.33 33.86 29.82 26.86 25.19 24.04
GNE (hard thresh., adaptive weights) 37.32 33.82 29.78 26.80 25.16 23.97

Hill (512×512)
BM3D (hard thresh. only) 36.92 33.40 29.46 26.39 24.62 23.36
BM3D (hard thresh. + wiener) 37.13 33.62 29.85 27.19 25.68 24.58
GNE (soft thresh, unit weights) 36.65 33.13 29.46 26.99 25.53 24.49
GNE (hard thresh, unit weights) 37.10 33.55 29.78 27.25 25.74 24.62
GNE (hard thresh, adaptive weights) 37.08 33.49 29.74 27.20 25.70 24.57

Man (512×512)
BM3D (hard thresh. only) 37.64 33.70 29.20 26.13 24.37 23.10
BM3D (hard thresh.+ wiener) 37.82 33.98 29.62 26.81 25.32 24.22
GNE (soft thresh., unit weights) 36.94 33.10 29.04 26.49 25.08 24.09
GNE (hard thresh., unit weights) 37.67 33.84 29.51 26.81 25.33 24.27
GNE (hard thresh., adaptive weights) 37.70 33.83 29.46 26.77 25.31 24.25

Peppers (256×256)
BM3D (hard thresh. only) 38.09 34.52 29.68 25.90 23.67 21.97
BM3D (hard thresh. + wiener) 38.12 34.68 30.16 26.68 24.73 23.39
GNE (soft thresh., unit weights) 37.24 33.50 29.16 26.16 24.38 23.12
GNE (hard thresh., unit weights) 37.88 34.33 29.92 26.71 24.78 23.45
GNE (hard thresh., adaptive weights) 37.95 34.39 29.94 26.69 24.79 23.42

Table 2.1: PSNR performance of the considered denoising algorithms utilizing BM3D-
modeling.
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Figure 2.5: Relative PSNR performance of the considered denoising algorithms utilizing
BM3D-modeling. The results of the BM3D denosing [DFKE07] algorithm are considered
as the baselines.
BM3D HT is the BM3D denosing [DFKE07] algorithm including only hard threshold-
ing step, BM3D HT+WF is the standard two-step BM3D denosing [DFKE07] algorithm
including hard thresholding and wiener filtering steps. GNE ST -states for the Algo-
rithm 2 with soft thresholding, GNE HT - Algorithm 2 with hard thresholding and GNE
HT+AW states for the same algorithm with hard thresholding and group weights selected
adaptively.
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Figure 2.6: Zoomed fragments of the denosed images.
Left column (BM3D HT+WF): standard two-step BM3D denosing [DFKE07] algorithm
including hard thresholding and wiener filtering steps. Right column (GNE HT+AW):
Algorithm 2 with hard thresholding and group weights selected adaptively.
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Figure 2.7: Zoomed fragments of the denosed images (continued).
Left column (BM3D HT+WF): standard two-step BM3D denosing [DFKE07] algorithm
including hard thresholding and wiener filtering steps. Right column (GNE HT+AW):
Algorithm 2 with hard thresholding and group weights selected adaptively.
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Figure 2.8: The effect of using adaptive group weights. Top row shows the benefit -
significant suppression of the artefacts around the edges of objects. Bottom row shows
the hardly noticeable drawback - slight oversmoothnig of textures.
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Chapter 3

Deblurring

Blur is a general term used to denote deterministic linear degradations which
results in band-limiting the imaging process. The reasons causing blur can be
various: relative motion of the object and the imaging device (motion blur), im-
perfections of the optical system, wrong focussing (out-of-focus blur), atmospheric
turbulence, etc. Typically it is desirable to revert the action of blur. The process
aiming to reconstruct the original image from its blurred observation is called
deblurring.
The mathematical formulation of the deblurring problem is given differently

depending whether the model of the blur is known or not. In the more com-
plex case, the blurring model is unknown, and the problem is formulated as joint
estimation of the original image and the blur operator. This is so-called blind de-
blurring problem [CE07]. Nevertheless, in many practical cases the blur operator
is known or can be estimated from some other independent measurements. The
deblurring is then reduces to the standard linear inverse problem. In what follows,
we consider only problems where the blur operator is known. Additionally we will
assume that the measured data is corrupted by noise with known distribution.
The deblurring problems are typically ill-posed, since the inverse of the band-

limiting operation often does not exist. Even when the inverse exists it still may
be ill-conditioned: small perturbations introduced by the presence of noise can
be amplified by the inverse operator introducing significant distortions in the re-
stored image. To overcome the ill-posedness, the reconstruction problem needs to
be regularized. Historically, deblurring problems were treated using classical regu-
larization techniques, such as Tikhonov regularization [TA77] or empirical Wiener
filtering, [BB98]. Later, with advances in image modeling more sophisticated tech-
niques were proposed. The modern deblurring algorithms can be roughly divided
in two classes.
The algorithms from the first class are treating deblurring as a color noise

removal problem. The general scheme of this approach is simple. In the first
step Tikhonov regularized inverse is applied to obtain the initial estimate. The
strength of the regularization is selected such, to be barely enough to perform
the inverse. The resulting estimate contains significant amount of residual noise,
which is then removed by the denoising filter. The advantage of the described ap-
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proach compared to the standard Tikhonov regularization is that it allows to use
much less regularization, which otherwise would be needed to suppress the noise
using only Tikhonov regularization. Less regularization leads to more accurate
inversion of the blur operator and better preservation of image details. This ap-
proach is particularly effi cient in the case when only little regularization is needed
to invert the blur operator, since in that case problem essentially reduces to de-
noising. Arguably, the most known algorithm of this class is the Fourier-Wavelet
Regularized Deconvolution (ForWaRD) [NCB04]. It implements more advanced,
two-step deblurring procedure. The first step implements Tikhonov inverse fol-
lowed by shrinkage filtering in the discrete Fourier transform domain. The aim
of this step is suppressing the colored noise. The output of the first step is then
used as the pilot estimate in the second step, where deconvolution based on em-
pirical Wiener filtering is followed by shrinkage in the wavelet domain. The last
shrinkage is called to suppress the distortions (such as ringing) arising due to the
imperfectness of the blur inversion process. The two-step reconstruction scheme
implemented in ForWaRD was found to be quite effi cient and, at the same time,
very attracting by its simplicity, since any denoising filter which is adapted to work
with colored noise can be plugged into the scheme producing a new deblurring al-
gorithm. Several successful variations of the ForWaRD were proposed based on
different denoising filters, such as Anisotropic LPA-ICI [KEA05], Shape-Adaptive
DCT [FDKE06] and BM3D [DFKE08a].

The second class of deblurring algorithms is based on formulating deblurring as
a variational problem, where the functional to be optimized consist of two terms:
fidelity and penalty. The fidelity term reflects the likelihood that the considered
solution can indeed be the generator of the observed data. The penalty, in its turn,
expresses the probability that the considered solution is generated by the a-priori
image model assumed by the algorithm. The functional is formed as a sum of the
fidelity term plus penalty term multiplied by a scalar which is called regularization
parameter. The regularization parameter controls the balance between the fit
to the observed data and fit to the a-priori model. In Chapter 1 we already
discussed several variational formulations arising from sparsity priors. From the
vast number of other proposed priors it worth to mention the Total Variation
(TV) prior. It has been first introduced in [ROF92] and since then became one
of the most widely used priors. The TV prior limits the total variation of the
signal by penalizing the l1-norm of its gradient. The TV penalty tends to preserve
sharp discontinuities, such as edges, favouring piecewise constant signals. Overall
it provides a reasonable model for cartoon-like images, while pictures containing
regions with smooth transition and textures do not follow the minimum TV model.

In our paper [DKE12] we proposed a novel deblurring algorithm, where the
problem is formulated as a search for the generalized Nash equilibrium, which
would balance the fit to the observation model and complexity of the estimate
in the BM3D-frame domain. This approach has been found extremely successful,
leading, to the best of our knowledge, to the state-of-the-art results in the field.
Below we briefly review the proposed approach, algorithm and demonstrate exper-
imental results obtained with it. The extension to the Poisson noise case is also
presented.
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3.1 Proposed approach

Let z, ȳ ∈ RN be vectors representing, respectively, the observed and true images,
and A be an N × N matrix representing the blur operator. We assume that
the observation is noisy, i.e. z is a sample of the random vector Z with known
distribution, such that E {Z} = Aȳ.
Given an estimate y we evaluate its misfit of to the observation model with

the negative log-likelihood function Lz (y) = − log p (z|y). Using the notations
introduced in the previous chapters, we formulate deblurring as the GNE1 problem{

y∗ = arg min
y
L1 (y,ω∗)

ω∗ = arg min
ω
L2 (y∗,ω)

, (3.1)

where

L1(y,ω) = Lz (y) +
γ

2
‖y −Ψω‖22 , (3.2)

L2(y,ω) = τ ‖ω‖p +
1

2
‖ω −Φy‖22 , (3.3)

Φ and Ψ are respectively the analysis and synthesis BM3D-frames, and lp-norm
is either l1 or l0. The algorithm solving (3.1) can be obtained by implementing
alternating minimization procedure:{

yt = arg min
y
L1(y,ωt−1)

ωt = arg min
ω
L2 (yt,ω)

, t = 0, 1, ... . (3.4)

It can be shown (see proof of Proposition 3 in [DKE12]), that under certain con-
ditions, iterations in (3.4) converge to a fixed point (y∗,ω∗) of (3.1).

3.1.1 Gaussian data: IDD-BM3D algorithm

In the case when noise is additive zero-mean white Gaussian the observation model
is expressed as

z = Aȳ + ση, (3.5)

where η ∼N(0N×1, IN×N ) and σ is the standard deviation of the noise. The
negative log-likelihood function corresponding to the observation z is

Lz (y) =
1

2
‖z−Ay‖22

and therefore function L1(y,ω) in (3.2) is quadratic with respect to y and ω. As a
result, both minimization subproblems in (3.4) have close-form solutions. We omit
the derivations (they can be found in [DKE12]), and present the final Algorithm
3 called Iterative Decoupled Deblurring with BM3D-frames (IDD-BM3D)2 .

1Strictly speaking 3.1 is not a GNE problem. The formulation of the GNE requires that each
variable should have its feasibile set which depends on the other variables. In 3.1 the constraints
defining feasible sets ‖y −Ψω‖ ≤ ε1 and ‖ω −Φy‖ ≤ ε2 are incorporated into the cost functions
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Algorithm 3 IDD-BM3D - Iterative Decoupled Deblurring with BM3D-frames

1: input: z,A, ŷinit , τ , γ
2: initialization:
3: using ŷinit construct operators Φ and Ψ
4: set: t = 0,y0 = ŷinit ,ω0 = Φŷinit
5: repeat
6: t = t+ 1
7: yt =

(
ATA + γI

)−1 (
AT z + γΨωt−1

)
8: ωt=Thτ (Φyt)
9: until convergence.
10: output: ŷ = Ψωt

3.1.2 Poissonian data: PIDD-BM3D algorithm

The Poisson noise is inherent to the imaging systems where measurements are
based on photon counting process such as CCD or CMOS camera sensors. The
Poisson noise model assumes that the measured values are the realizations of in-
dependent random variables distributed according to the Poisson law with expec-
tations equal to the value of the noise-free signal. Since the variance of Poissonian
random variable is equal to its expectation, the Poisson noise is signal dependent
and heteroscedastic. There are several approaches meant to deal with the data
corrupted with heteroscedastic noise.
The first and the simplest approach is to perform image segmentation, consid-

ering small image patches of an arbitrary shape where pixel intensities are close
to each other, such that the variance of the noise in the patch can be considered
practically constant. The noise removal is then performed patchwise using any
of the techniques designed for the homoscedastic noise. Applied to the deblur-
ring problem, the segmentation approach was adopted in [FAT+05] and [FATK06]
where it was used within the ForWaRD-type scheme.
Another popular approach, which was found to be particularly effi cient in the

context of sole denoising problem ([Foi09], [MF11]), consist in using a variance
stabilizing transform (VST). The VST is a nonlinear function that being ap-
plied elementwise to the heteroscedastic data transforms it into approximately
homoscedastic. The most known VST for Poisson noise is the Anscombe trans-
form [Ans48], which converts Poissonian data into asymptotically Gaussian with
unit variance. After applying Anscombe VST the resulting stabilized data can be
treated with the methods designed for Gaussian noise. To obtain the final solu-
tion, the estimate of the stabilized data needs to be remapped to the original range
through another transform known as unbiased inverse of the VST. The attempts

L1 and L2.

2We would like to mention that while the IDD-BM3D and L0-Abs [Por09] algorithms look
quite similar, they are derived from different variational formulations. For tight frames both
formulations lead to the same algorithm. However, if one would try to derive an algorithm for
non-tight frames using the variational formulation considered in [Por09], the resulting algorithm
will be different from the IDD-BM3D and will suffer from the same uneven regularization problem
which we discussed in Section 2.1.5.
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to use the Anscombe transform for solving image deblurring problems were made
in [CBFZ07] and [DFS09]. Unfortunately, none of these papers utilize the VST
technique correctly. We discuss this issue in the footnote3 where we also present
the correct derivation of the fidelity term based on the VST.
Finally, the reconstruction algorithm can be derived as a MAP solution from

the penalized likelihood function. The basic maximum likelihood solution for the
Poisson data can be computed using Richardson-Lucy iterative algorithm [MS06].
Its regularized versions using sparsity in wavelet domain and TV-penalty were pro-
posed respectively in [MS06] and [DBFZ+06]. For the general tight-frame sparsity
penalty, [FBD10] proposed an elegant approach based on variable splitting and
alternating optimization. Similar variable splitting approach can also be found
in two recent publications: [GRPMSM11] by group of Portilla, and in our pa-
per [DFKE11]. [GRPMSM11] presents further development of the L0-Abs [Por09]
algorithm and is designed for deblurring images corrupted by signal dependent
Gaussian noise, while in [DFKE11] we use the variable splitting to adopt the gen-
eral scheme (3.4) for solving Poisson deblurring problem. Below we present the
algorithm developed in [GRPMSM11].
Let z ∈NN0 (N0 = N ∪ {0}) represents the observed image. It is assumed that

z is a sample of the random vector Z with N independent Poissonian variables
with the joint probability distribution

P (Z = z|Aȳ) =

N∏
i=1

(Aȳ)
zi
i e
−(Aȳ)i

zi!
, (3.6)

where ȳ,Aȳ ∈ RN+ , (R+ = {x : x ∈ R, x > 0}) is the true image, A is the blur
operator and the subindex i denotes the i-th component of the vector. We again
would like to use GNE formulation (3.1) to define the deblurrig problem which we
are going to solve with the help of the iterative scheme (3.4). To do it we, first
of all, need to compute the negative log-likelihood function corresponding to the

3Let ȳ,v ∈RN+ and z ∈NN0 be respectively the true, blurred noise-free and noisy images, s.t.

v = Aȳ and zi ∼ P (vi) , i = 1, . . . , N.

Also let f, finv : R → R denote respectively the VST and its unbiased inverse. Note, that
finv 6= f−1, where f−1 is the inverse function of f.
We have that (see [Foi09])

finv (E {f (zi)}) = E {zi} .
Applying f−1inv to the both sides of the equality we obtain

E {f (zi)} = f−1inv (E {zi}) ,

and recalling that E {zi} = vi (since zi is a Poissonian r.v.) we get

E {f (zi)} = f−1inv (vi) .

Now, if f is such that approximately f (zi) = f−1inv (vi) + ηi, ηi ∼ N (0, 1) ,∀i (for example if f is
the Anscombe transform), the fidelity term for v can be derived as

Lz (v) =
1

2

N∑
i=1

(
f (zi)− f−1inv (vi)

)2
.

In [CBFZ07] and [DFS09] the fidelity terms are derived using vi and f (vi), respectively, instead
of f−1inv (vi), making the final solution to be biased.
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model (3.6) which is

Lz (y) =

N∑
i=1

[(Ay)i − zi log ((Ay)i) + log (zi!)] . (3.7)

Here we face the main problem, since unlike the Gaussian noise case Lz (y) is not
quadratic and the optimization problem

yt = arg min
y,y>0

Lz (y) +
γ

2

∥∥y −Ψωt−1
∥∥2
2

= arg min
y,y>0

N∑
i=1

[(Ay)i − zi log ((Ay)i)] +
γ

2

∥∥y −Ψωt−1
∥∥2
2
, (3.8)

has no closed-form solution. In the last functional we omitted the term
∑N
i=1 log (zi!)

since it is independent of y. One possible option to solve (3.8) is to apply a
Richardson-Lucy-type iterative algorithm. But instead, following [FBD10], we
perform variable splitting and try to solve it by an alternating optimization. We
introduce an auxiliary variable v = Ay, and incorporate the constraint v = Ay
as a penalty term in the criterion

L
′

1 (y,ωt,v) =

N∑
i=1

[vi − zi log (vi)] +
ξ

2
‖v −Ay‖22 +

γ

2

∥∥y −Ψωt−1
∥∥2
2
, (3.9)

where ξ > 0. The fixed-point problem (3.1) is then reformulated as:{
y∗ = arg min

y,v
L
′

1 (y,ω∗,v) , subject to yi ≥ 0, vi ≥ 0, i = 1 . . . N

ω∗ = arg min
ω
L2 (y∗,ω) ,

(3.10)

where L2 is given by (3.3).
Rigorous solution of (3.10), would require implementing minimization of (3.9)

in a nested loop. After each update of ωt, the new estimates for vt and yt need
to be found by alternating minimization vk = arg min

v
L
′

1 (yk−1,ωt−1,v)

yk = arg min
y
L
′

1 (y,ωt−1,vk) ,
, k = 0, 1, . . .

where the weight of the penalty term ξ is gradually increased to ensure the equality
vt = Ayt. In practice we do not need constraint v = Ay to hold strictly, it is
enough that vt and Ayt remain close through the reconstruction process. For this
reason we propose solving (3.10) with a simpler, one-loop alternating minimization
procedure: 

vt = arg min
v
L
′

1 (yt−1,ωt−1,v)

yt = arg min
y
L
′

1 (y,ωt−1,vt)

ωt = arg min
ω
L2 (yt,ω)

, t = 0, 1, . . . . (3.11)
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Minimization of L
′

1 is separable with respect to the components of v. For each
component (vt)i it takes form

(vt)i = arg min
vi,vi≥0

{
vi − zi log vi +

ξ

2

(
vi −

(
Ayt−1

)
i

)2}
,

for which the non-negative solution is given by the formula

(vt)i =
1

2

(Ayt−1
)
i
− 1

ξ
+

√((
Ayt−1

)
i
− 1

ξ

)2
+

4

ξ
zi

 .

Since L
′

1 is quadratic with respect to y, its minimization results in the linear
solution:

yt =

(
ATA +

γ

ξ
I

)−1(
ATvt +

γ

ξ
max {Ψωt−1, 0}

)
.

The elementwise maximum operation is applied to the Ψωt−1 to ensure the non-
negativity of the estimate yt.

The minimization of L2 with respect to ω is obtained by the soft or hard
thresholding of Φyt.
Summarizing all steps we arrive to the Algorithm 4 derived in [DFKE11]

and called Poissonian Iterative Decoupled Deblurring with BM3D-frames (PIDD-
BM3D).

Algorithm 4 PIDD-BM3D - Poissonian Iterative Decoupled Deblurring with
BM3D-frames
1: input: z,A, ŷinit , τ , γ, ξ
2: initialization:
3: using ŷinit construct operators Φ and Ψ
4: set: t = 0,y0 = ŷinit ,ω0 = Φŷinit
5: repeat
6: t = t+ 1

7: (vt)i = 1
2

((
Ayt−1

)
i
− 1

ξ +

√((
Ayt−1

)
i
− 1

ξ

)2
+ 4

ξ zi

)
8: yt =

(
ATA + γ

ξ I
)−1 (

ATvt + γ
ξ max {Ψωt−1, 0}

)
9: ωt = Thτ (Φyt)
10: until convergence.
11: output: ŷ = Ψωt

3.2 Implementation of IDD-BM3D and PIDD-BM3D
algorithms

Our first step towards obtaining an effi cient implementation of IDD-BM3D algo-
rithm will be decoupling the blur inversion and thresholding/filtering operations.
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Denoting ỹt = Ψωt, we rewrite steps 7 and 8 as

yt =
(
ATA + γI

)−1 (
AT z + γỹt−1

)
, (3.12)

ỹt = ΨThτ (Φyt) . (3.13)

If blur is spatially invariant, it can be represented as a convolution of the true
image against the blurring kernel4 , and formula (3.12) can be computed in the
Discrete Fourier Transform domain:

yt = F−1
(
F∗ (h) ◦ F (z) + γF (ỹt−1)

F∗ (h) ◦ F (h) + γ

)
.

Here yt, ỹt, z are
√
N ×

√
N size images corresponding to the vectors yt, ỹt, z,

h is the 2-D blurring kernel, and operators F and F−1 are respectively the di-
rect and inverse 2-D FFT. The product ’◦’and division operations are performed
elementwise.
Further, due to the particular structure of operators Φ andΨ, the thresholding

in BM3D-frame domain ΨThτ (Φyt) can be computed by processing yt group by
group, each time accessing only a small portion of the data corresponding to the
particular group. This allows to avoid explicit manipulation with big vectors and
matrices such as Ψ,Φ and ωt.
The various image reconstruction experiments performed with BM3D-frames,

including denoising experiments in Section 2.3 and deblurring experiments in Sec-
tion VII A [DKE12], suggest that the best reconstruction quality is achieved when
shrinkage is preformed by hard thresholding and the synthesis frame Ψ is con-
structed with the group weights selected adaptively. This settings we consider to
be the default for IDD-BM3D algorithm, and all experimental results which we
report later in this chapter refer to this default implementation.
The above comments regarding the implementation of IDD-BM3D also apply

to the Poissonian deblurring algorithm PIDD-BM3D.

3.3 Selection of regularization parameters

The problem of optimal selection of regularization parameters remains one of the
key problems in inverse imaging. Lacking practical automatic estimation proce-
dure, we suggest tuning the regularization parameters on a set of test images,
and using the found parameter values for reconstruction of other images, under
the same degradation conditions. Also, we wish to demonstrate that solutions
of our GNE problems indeed are good estimates. Hence our target is to identify
parameters which will result in stable convergence and, at the same time, provide
high reconstruction quality. To find such parameters we designed an automatic
procedure. We first fix the number of iterations taking it big enough to ensure
convergence (e.g., in our experiments we use 200 iterations, while in most cases
50-100 iterations are enough to reach the convergence state). Then, for a given

4This function is usually termed point spread function (PSF), reflecting the fact that the
blurring kernel coinsides with the image of a point source object.
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set of regularization parameters, e.g., (τ , γ) , we evaluate the reconstruction by
computing the criterion

Fȳ(τ , γ) = PSNRȳ (ŷtfin a l , ȳ)−
10 |PSNR (ŷtfin a l , ȳ)− PSNR (ŷ0,75tfin a l , ȳ)| , (3.14)

where ȳ is the ground truth image and ŷ0,75tfin a l , ŷtfin a l are the estimates after
performing respectively 75 and 100 percent of iterations. The criterion penalizes
the final PSNR score by its change in the last 25 percent. In other words, we wish
that PSNR do not change in the last 25 percent of iterations, indicating stable
convergence. The optimal parameters are considered those maximizing Fȳ(τ , γ).
We find them by computing

arg min
τ,γ
−Fȳ(τ , γ)

using Nelder-Mead simplex minimization algorithm (implemented in Matlab’s
fminsearch function). To avoid overfitting parameters to a single image, we sug-
gest minimizing the sum −

∑k
i=1 Fȳi(τ , γ) over a number of test images.

Note, that if we try to maximize PSNR without penalizing it, the found para-
meters, most probably, will correspond to the case when the reconstruction reaches
the highest PSNR after tfinal iterations, but then degrades rapidly if iterations con-
tinue. Which means that the algorithm did not reach the convergence state.

3.4 Experiments

We evaluate IDD-BM3D and PIDD-BM3D algorithms in simulated experiments,
and compare them against the other algorithms known to produce best results in
the field.

3.4.1 Gaussian data

We consider six deblurring scenarios used as the benchmarks in the number of
publications (e.g., [GCMP08] and [DFKE08a]). The blur point-spread functions
h (x1, x2) (blurring kernels) and the noise variances σ2 for each scenario are sum-
marized in Table 3.1. In our experiments we use eight images: Cameraman, Lena,
House, Barbara, Boats, Hill, Man and Peppers. The original, undistorted versions
of the first four of these images were used as "oracles" in order to identify the opti-
mal values for the parameters τ and γ of the IDD-BM3D algorithm. Optimization
was performed separately for each deblurring scenario, and the obtained optimal
values are used for all eight images.
For the comparison we also evaluate performance of four other algorithms.

The first algorithm is the L0-Abs [Por09]; we use it with the tight frame obtained
by concatenating the corresponding vectors of two individual Parseval frames:
Dual Tree Complex Wavelet [Kin01], and Translation Invariant Haar Pyramid
[GCMP08]. The next two algorithms: TVMM [OBDF09] and CGMK [CGMK10],
both rely on TV priors; TVMM is an effi cient solver for the classical, analysis-
based TV prior, while CGMK is utilizing a more advanced modeling based on a



42 3. Deblurring

mixture of spatially weighted TV priors. Finally, the last algorithm which we are
going to evaluate is BM3DDEB [DFKE08a], which is a ForWaRD-type, two-step
algorithm. It uses BM3D-domain hard-thresholding and wiener filtering as the
denoising for its first and second reconstruction steps, respectively.
To make our comparison fair, we used "oracle" images also to optimize regu-

larization parameters of the L0-AbS algorithm. The default regularization para-
meters of algorithm BM3DDEB were already optimized in a similar manner by
the authors of the algorithm. The remaining two algorithms, CGMK and TVMM,
do not take any external parameters, instead they estimate optimal regularization
parameters automatically.
The PSNR values of the reconstructed images are summarized in Table 3.2.

To make comparison easier we plotted the same data in Figure 3.1. As we may
see, in most cases the IDD-BM3D algorithm provides the best results. Exception
is the case where the blur is very small while the noise level is relatively high (as
in scenario 6). In this case, reconstruction is essentially reduces to the denoising
problem, where BM3DDEB has some advantage due to the accurate modelling of
the colored noise.
The visual quality of some of the restored images can be evaluated from Fig-

ures 3.2-3.4, where for the comparison we show results by the closest competitors
[CGMK10], [Por09] and [DFKE08a]. Analyzing Figure 3.2 we can see that the pro-
posed algorithm is able to suppress the ringing artefacts better than BM3DDEB
and provides sharper image edges. The latter effect is achieved in particular due
to the smaller block size used in IDD-BM3D compared to BM3DDEB. Figures
3.3 and 3.4 illustrate the advantage of the BM3D modeling, demonstrating that
the algorithms based on the BM3D reconstruct shape and texture better than the
algorithms based on the other types of modeling.

3.4.2 Poissonian data

We compare PIDD-BM3D with two Poissonian deblurring algorithms known to
produce the best results in the field: PIDAL [FBD10] and DFS [DFS09]5 . As
in the experiments with Gaussian data, we consider several degradation scenarios
which are described in Table 3.3.
Parameters of PIDD-BM3D algorithm are selected as follows. In all scenarios

ξ is fixed and equal to 0.001. The other two parameters, τ , γ, are different for each
scenario, but common for all test images. The optimal values for parameters τ
and γ were found using the procedure described in Section 3.3, where 100 × 100
pixel fragment of Cameraman image was used as the test image.
PIDD-BM3D requires an initial estimate on which it can apply block-matching

to construct groups, for that role we decided to test outputs of PIDAL and DFS
algorithms. Note, that initialization images are used only for block-matching, the
iterations are initialized with the observation z.

Examining Table 3.4 which presents the numerical evaluation of the results,
we notice that in most cases PIDD-BM3D is able to obtain estimates which have

5 Images reconstructed with PIDAL-TV algorithm were kindly provided by Mario Figueiredo.
Results of the DFS algorithm were reproduced using the code available online at https://fadili.
users.greyc.fr/demos/WaveRestore/downloads/PoissonDeconv100.tar.gz.

https://fadili.users.greyc.fr/demos/WaveRestore/downloads/PoissonDeconv100.tar.gz
https://fadili.users.greyc.fr/demos/WaveRestore/downloads/PoissonDeconv100.tar.gz
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significantly better MAE and PSNR scores then the estimates used for initializa-
tion. Note also consistency of the PIDD-BM3D algorithm: better initial estimates
are translated in better reconstructed images.
In Figures 3.5-3.7 we show some of the reconstructed images. We can see that

images obtained with PIDD-BM3D are sharper and contain more details then ones
obtained with DFS and PIDAL-TV. For example, compare the reconstruction of
the leg of a mushroom-shaped spine in Figure 3.5.
From the drawbacks, we should mention artefacts which PIDD-BM3D tends

to create in the areas with uniform or slow varying intensity (e.g., see sky in
Cameraman image or body of the neuron in Neuron Phantom). This phenomenon
is known, it appears also in non-iterative denoising with BM3D algorithm and it
is generally considered to arise due to the erroneous block-matching.
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Scenario PSF σ2

1 1/
(
1 + x21 + x22

)
, x1, x2 = −7, . . . , 7 2

2 1/
(
1 + x21 + x22

)
, x1, x2 = −7, . . . , 7 8

3 9× 9 uniform ≈ 0.3

4 [1 4 6 4 1]T [1 4 6 4 1] /256 49

5 Gaussian with std = 1.6 4

6 Gaussian with std = 0.4 64

Table 3.1: Blur PSF h(x1, x2) and noise variance used in each Gaussian data deburring
scenario. All PSFs are normalized so that

∑
h = 1.

Method\Scenario 1 2 3 4 5 6
Cameraman (256×256)

BSNR 31.87 25.85 40.00 18.53 29.19 17.76
Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82
BM3DDEB [DFKE08a] 8.20 6.46 8.37 3.35 3.72 4.70
L0-AbS [Por09] 7.67 5.77 8.96 2.99 3.58 3.40
TVMM [OBDF09] 7.41 5.17 8.54 2.57 3.36 1.30
CGMK [CGMK10] 7.80 5.49 9.15 2.80 3.54 3.33
IDD-BM3D [DKE12] 8.89 7.16 10.48 4.00 4.34 4.89

Lena (512×512)
BSNR 29.89 23.87 40.00 16.47 27.18 15.52
Input PSNR 27.25 27.04 25.84 28.81 29.16 30.03
BM3DDEB [DFKE08a] 7.96 6.55 7.99 4.80 4.34 6.42
L0-AbS [Por09] 6.96 5.64 7.97 4.06 4.21 4.28
TVMM [OBDF09] 6.36 4.98 7.47 3.52 3.61 2.79
CGMK [CGMK10] 6.76 5.37 7.86 3.49 3.93 4.46
IDD-BM3D [DKE12] 7.97 6.61 8.92 4.97 4.85 6.34

House (256×256)
BSNR 29.16 23.14 40.00 15.99 26.61 15.15
Input PSNR 25.61 25.46 24.11 28.06 27.81 29.98
BM3DDEB [DFKE08a] 9.34 8.22 10.94 5.20 4.59 7.34
L0-AbS [Por09] 8.60 7.09 11.48 4.56 4.79 4.79
TVMM [OBDF09] 7.98 6.57 10.39 4.12 4.54 2.44
CGMK [CGMK10] 8.31 6.97 10.75 4.48 4.97 4.59
IDD-BM3D [DKE12] 9.95 8.55 12.89 5.79 5.74 7.13

Barbara (512×512)
BSNR 30.81 24.79 40.00 17.35 28.07 16.59
Input PSNR 23.34 23.25 22.49 24.22 23.77 29.78
BM3DDEB [DFKE08a] 7.88 4.13 5.91 2.05 1.29 5.85
L0-AbS [Por09] 3.23 1.68 3.81 0.78 0.83 2.55
TVMM [OBDF09] 3.10 1.33 3.49 0.41 0.75 0.59
CGMK [CGMK10] 2.45 1.34 3.55 0.44 0.81 0.38
IDD-BM3D [DKE12] 7.64 3.96 6.05 1.88 1.16 5.45

Table 3.2: Gaussian data deblurring. ISNR scores of the reconstructions obtained with
different methods. Rows labeled "Input PSNR”show PSNRs of the input blurry images.
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Method\Scenario 1 2 3 4 5 6
Boats (512×512 )

BSNR 29.37 23.35 40.00 16.06 26.70 15.26
Input PSNR 25.00 24.88 23.36 27.10 26.41 29.97
BM3DDEB [DFKE08a] 7.35 5.61 8.48 3.35 3.78 4.41
L0-AbS [Por09] 6.70 5.04 8.98 2.86 3.52 3.00
TVMM [OBDF09] 6.14 4.46 8.07 2.45 3.26 1.42
CGMK [CGMK10] 6.57 4.82 8.71 2.74 3.49 3.11
IDD-BM3D [DKE12] 7.69 5.96 9.77 3.60 4.10 4.46

Hill (512×512)
BSNR 30.19 24.17 40.00 16.68 27.41 15.74
Input PSNR 26.51 26.33 25.04 27.74 27.83 29.99
BM3DDEB [DFKE08a] 5.77 4.46 6.97 2.94 2.75 4.07
L0-AbS [Por09] 5.39 4.06 7.26 2.76 2.84 2.86
TVMM [OBDF09] 5.02 3.62 6.73 2.48 2.59 1.67
CGMK [CGMK10] 5.30 3.79 7.14 2.51 2.76 3.40
IDD-BM3D [DKE12] 6.03 4.69 7.78 3.29 3.31 4.13

Man (512×512)
BSNR 29.72 23.70 40.00 16.33 27.02 15.45
Input PSNR 25.95 25.80 24.51 27.65 27.41 29.99
BM3DDEB [DFKE08a] 6.38 4.82 6.92 3.09 3.22 4.45
L0-AbS [Por09] 5.90 4.42 7.30 2.69 3.04 3.05
TVMM [OBDF09] 5.74 4.17 7.01 2.52 3.03 1.78
CGMK [CGMK10] 5.85 4.34 7.37 2.65 3.24 3.62
IDD-BM3D [DKE12] 6.66 5.12 7.89 3.37 3.61 4.54

Peppers (256×256)
BSNR 29.99 23.97 40.00 17.01 27.57 16.36
Input PSNR 22.60 22.53 21.33 24.77 23.89 29.83
BM3DDEB [DFKE08a] 9.58 7.88 10.05 3.31 3.30 5.23
L0-AbS [Por09] 7.45 5.24 11.13 1.57 2.05 3.38
TVMM [OBDF09] 7.76 5.02 10.10 2.03 2.59 1.37
CGMK [CGMK10] 8.88 5.17 10.36 2.19 2.69 3.30
IDD-BM3D [DKE12] 10.48 8.68 12.07 4.45 4.53 5.49

Table 3.2: Gaussian data deblurring (continued). ISNR scores of the reconstructions
obtained with different methods. Rows labeled "Input PSNR”show PSNRs of the input
blurry images.
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Figure 3.1: Relative PSNR performance of the considered deblurring algorithms. The
results of the IDD-BM3D deblurring algorithm [DKE12] are considered as the baselines.
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Figure 3.2: Deblurring of the Cameraman image, scenario 3. From left to right and
from top to bottom are presented zoomed fragments of the following images: original,
blurred noisy, reconstructed by CGMK [CGMK10] (ISNR 9.15), L0-AbS [Por09] (ISNR
8.96), DEB-BM3D [DFKE08a] (ISNR 8.37) and by proposed IDD-BM3D method (ISNR
10.48).
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Figure 3.3: Deblurring of the Man image, scenario 2. From left to right and from top
to bottom are presented zoomed fragments of the following images: original, blurred
noisy, reconstructed by CGMK [CGMK10] (ISNR 4.34), L0-AbS [Por09] (ISNR 4.42),
DEB-BM3D [DFKE08a] (ISNR 4.82) and by proposed IDD-BM3D method (ISNR 5.12).
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Figure 3.4: Deblurring of the Barbara image, scenario 2. From left to right and from
top to bottom are presented zoomed fragments of the following images: original, blurred
noisy, reconstructed by CGMK [CGMK10] (ISNR 1.34), L0-AbS [Por09] (ISNR 1.68),
DEB-BM3D [DFKE08a] (ISNR 4.13) and by proposed IDD-BM3D method (ISNR 3.96).
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Scenario PSF Maximum intensity
1 7× 7 uniform 5

2 7× 7 uniform 30

3 7× 7 uniform 100

4 7× 7 uniform 255

Table 3.3: Blur PSF h(x1, x2) and maximum true image intensityM used in each Poisson
data deblurring scenario. All PSFs are normalized so that

∑
h = 1.

PSNR
Method \ Scenario 1 2 3 4

Neuron phantom (128×128)
DFS [DFS09] 20.90 24.40 24.40 26.46
PIDAL-TV [FBD10] 22.86 24.70 26.36 27.99
PIDD-BM3D (matching on DFS) 23.57 26.31 27.99 29.49
PIDD-BM3D (matching on PIDAL-TV) 24.46 26.65 28.19 29.71

Cameraman (256×256)
DFS [DFS09] 10.46 21.42 21.59 22.31
PIDAL-TV [FBD10] 20.74 21.95 22.03 23.07
PIDD-BM3D (matching on DFS) 20.08 22.16 23.32 24.25
PIDD-BM3D (matching on PIDAL-TV) 21.24 22.59 23.49 24.47

Cell (256×256)
DFS [DFS09] 22.15 27.60 27.71 24.39
PIDAL-TV [FBD10] 25.08 26.88 27.07 29.14
PIDD-BM3D (matching on DFS) 22.62 27.86 29.08 29.49
PIDD-BM3D (matching on PIDAL-TV) 24.97 27.81 29.16 30.55

MAE
Method \ Scenario 1 2 3 4

Neuron phantom (128×128)
DFS [DFS09] 0.2592 0.9184 3.4546 5.8221
PIDAL-TV [FBD10] 0.1834 0.7681 1.9737 3.9599
PIDD-BM3D (matching on DFS) 0.1611 0.6589 1.6904 3.6055
PIDD-BM3D (matching on PIDAL-TV) 0.1349 0.5883 1.6755 3.4645

Cameraman (256×256)
DFS [DFS09] 1.1041 1.4555 4.7494 10.4984
PIDAL-TV [FBD10] 0.2747 1.3044 4.0740 9.1937
PIDD-BM3D (matching on DFS) 0.2592 1.3021 3.7298 8.3042
PIDD-BM3D (matching on PIDAL-TV) 0.2361 1.2118 3.5940 7.9363

Cell (256×256)
DFS [DFS09] 0.1537 0.5810 1.7695 5.7309
PIDAL-TV [FBD10] 0.1223 0.5892 1.7860 3.9293
PIDD-BM3D (matching on DFS) 0.1328 0.4942 1.4593 3.7271
PIDD-BM3D (matching on PIDAL-TV) 0.1073 0.4961 1.4537 3.1991

Table 3.4: Poissonian data deblurring. PSNR and MAE scores of the reconstructions
obtained with different methods. For PIDD-BM3D algorithm in the parenthesis is men-
tioned the estimate used for constructing groups of BM3D-frames, i.e., the image on
which block-matching was performed. Scores are calculated over the central part of the
images, omitting 10-pixel wide borders.
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Figure 3.5: Deblurring of the Neuron phantom image, scenario 4. From left to right
and from top to bottom are presented the following images: original, blurred noisy,
reconstructed by DFS[DFS09] (PSNR 26.46, MAE 5.82), PIDAL-TV[FBD10] (PSNR
27.99, MAE 3.96), PIDD-BM3D with constructing frames using the result of DFS (PSNR
29.49, MAE 3.60), PIDD-BM3D with constructing frames using the result of PIDAL-TV
(PSNR 29.71, MAE 3.46).
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Figure 3.6: Deblurring of the Cameraman image, scenario 3. From left to right and from
top to bottom are presented the following images: original, blurred noisy, reconstructed
by DFS[DFS09] (PSNR 21.59, MAE 4.75), PIDAL-TV[FBD10] (PSNR 22.03, MAE 4.07),
PIDD-BM3D with constructing frames using the result of DFS (PSNR 23.32, MAE 3.73),
PIDD-BM3D with constructing frames using the result of PIDAL-TV (PSNR 23.49, MAE
3.59).
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Figure 3.7: Deblurring of the Cell image, scenario 4. From left to right and from top
to bottom are presented the following images: original, blurred noisy, reconstructed by
DFS[DFS09] (PSNR 24.39, MAE 5.73), PIDAL-TV[FBD10] (PSNR 29.14, MAE 3.93),
PIDD-BM3D with constructing frames using the result of DFS (PSNR 29.49, MAE 3.73),
PIDD-BM3D with constructing frames using the result of PIDAL-TV (PSNR 30.55, MAE
3.20).
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Chapter 4

Super-resolution

Image upsampling or zooming, can be defined as the process of resampling a single
low-resolution (LR) image on a high-resolution (HR) grid. Different resampling
methods [LOct], [NLD07], [LLP06], [DFKE08d] can be used to obtain zoomed im-
ages with specific desired properties, such as edge preservation, degree of smooth-
ness, etc. However, fine details missing or distorted in the low-resolution image
cannot be reconstructed in the upsampled one. Roughly speaking, there is no suf-
ficient information in the low-resolution image to do this. The situation changes
when a number of LR images portraying slightly different views of the same scene
are available. The reconstruction algorithm now can try to improve the spatial
resolution by incorporating into the final HR result the additional new details re-
vealed in each LR image. The process of combining a sequence of undersampled
and degraded low-resolution images in order to produce a single high-resolution
image is commonly referred to as super-resolution (SR) image reconstruction, or,
simply, image super-resolution.
The classical formulation of the image SR problem [TH84], [EHO01], [FREM04b]

assumes that the relation between the set of observed LR images and the unknown
HR image is given by the model

zi = D
(
A
(
F i (ȳ)

))
, i = 1, . . . , k, (4.1)

where zi are the
√
N ×

√
N size LR images, Fi, A, D are the linear operators

representing respectively warp, blur and decimation, and ȳ is a d
√
N × d

√
N size

HR image of the scene subject to reconstruction. The blur operator A models
the PSF of the imaging system, which is typically considered to be known. The
decimation factor d of the operator D is given by the ratio between the intended
size of the HR image and the actual size of LR images. Warp operators are always
considered being unknown.
Assuming that the warp operators F i can be estimated precisely, problem (4.1)

represents linear inverse problem with kN linear equation and d2N unknowns.
When the number of available LR images k is less then d2 it is obviously an
underdetermined, ill-posed problem. However, having k ≥ d2 LR images does
not guarantee well-posedness, since first, information in the LR images may be
redundant and second, the blur operator may not be invertible. Hence, in the

55
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general case we are dealing with an ill-posed inverse problem where additionally
we need to estimate the k warp operators.
The observation model (4.1) can be extended to the more general form

zi = D
(
A
(
ȳi
))
, i = 1, . . . , k, (4.2)

where the warp operators on a single HR image are replaced by a sequence of HR
images

{
ȳi
}k
i=1
. It is assumed that the sequence

{
ȳi
}n
i=1

depicts essentially the
same scene. Nevertheless, the scene itself may not be static. The deformation and
changes between the frames1 may be complex, caused, for example, by the relative
motion between different objects in the scene or by occlusions. The reconstruction
of the HR sequence

{
ȳi
}k
i=1

from the LR sequence
{
zi
}k
i=1

is termed video super-
resolution.
The classical SR approach is loosely based on the following three steps: 1)

registration of the LR images to a HR coordinate grid, 2) warping of the LR
images onto that grid by interpolation, and 3) fusion of the warped images into
the final HR image. An additional deblurring step is sometimes considered to
compensate the blur. A good review of the algorithms based on such classical
approach can be found, e.g., in [FREM04a].
In practice, estimation of the warp operators constitutes the main diffi culty of

the SR problem. For successful reconstruction it is crucial to perform registra-
tion between the features represented across different frames with sub-pixel (with
respect to the LR grid) accuracy. Note, that the LR images are aliased2 which
additionally hardens the registration task. Most of the classical SR methods rely
either on a parametric global motion estimation, or on a computationally intensive
optical flow calculation. However, an explicit registration of the LR frames is often
not feasible: on the one hand, if the registration map has few degrees of freedom,
it is too rigid to model the geometrical distortions caused by the lens system; on
the other hand, when many degrees of freedoms are available (e.g., a dense op-
tical flow), reliable estimates of the registration parameters cannot be obtained.
In either case, registration artefacts are likely to appear in the fusion, requiring
heavy regularization (smoothing) for their concealment [FREM04a]. The situa-
tion becomes even more diffi cult when non-global motion is present in images,
something that is typical of video SR. The modern SR algorithms [DFKE08c],
[EV08], [PETM09], overcome this problem by defining correspondence between
small blocks of different frames. The correspondence is determined based on the
similarities of the blocks. To make the estimation more robust, a given block may
be put in a correspondence to several blocks in another frame.
Although the mentioned algorithms share a similar registration approach, their

data-fusion strategies are very different. Algorithms [EV08], [PETM09] use Non-
local Means, [TMPE09] is based on the Kernel Regression technique, while our
algorithm from [DFKE08c], uses the BM3D modeling.

1We use the term "frame" referring both to individual images of a video sequence and to the
frame of a vector space. The actual meaning of the term should be clear from the context.

2The case when LR images are not aliased is not interesting from SR point of view. Being
not aliased means that images are sampled above the Nyquist rate and the decimation process
does not introduce loss of information. Hence, in the non-aliased case all LR images contain the
same information and the reconstruction of the HR image reduces to the deblurring of one of the
LR image followed by resampling with sinc kernel.
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Figure 4.1: The DC and AC planes of the 3-D transform of a group. The DC coeffi cients
are marked with red and the AC coeffi cients are blue.

In this chapter we discuss the role of BM3D-modeling in SR from a perspec-
tive which differs from the one of [DFKE08c] and [DFKE10]. We show that 3-D
transform domain modeling can be considered not only as a regularization tool,
but also as an effi cient data fusion approach. This important observation will help
us to explain the effi cacy of the SR algorithm based on iterative BM3D filtering
[DFKE08c] (later in the text we use abbreviation IFSR for referring to this al-
gorithm) and also to suggest more effi cient ways of implementing it. Finally, we
develop a new SR algorithm based on the BM3D-modeling, deriving it as a solu-
tion of a GNE problem. Its key difference from IFSR is the way how different 3-D
spectral component are treated. Further, in contrast to IFSR, the new algorithm
is directly designed to handle noisy data.

4.1 Fusion via collaborative filtering

Consider a 3-D decorrelating transform constructed as a separable combination of
a 2-D orthogonal transform applied to each block and a 1-D orthogonal transform
applied along the third dimension (across the corresponding coeffi cients of the
blocks’2-D spectra). Suppose that the 1-D transform has a DC element (constant
basis function), then the coeffi cients of the 3-D spectrum can be divided in two
parts according to their role: the DC plane coeffi cients, which represent the 2-D
spectrum of the average of the grouped blocks, and coeffi cients at the AC planes
representing the differences between the grouped blocks (see illustration in Figure
4.1). In what follows we will refer to the coeffi cients in these two groups simply as
the DC and AC coeffi cients omitting the word ‘plane’. Given a group of blocks, we
can perform inter-block smoothing (fusion) by computing 3-D transform, thresh-
olding the AC coeffi cients and then applying inverse transform. Smoothing level
can be controlled by changing the threshold value; higher threshold will result in
stronger smoothing. In the extreme case, if we zero-out all AC coeffi cients, after
inversion of the 3-D transform all block estimates will be equal to the pixelwise
average of the original blocks.
Fused data often requires additional spatial regularization. In the 3-D trans-

form domain spatial regularization can be implemented by thresholding DC coef-
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ficients. Thresholding produces sparser representation of the average block with
respect to the basis elements of the 2-D transform. Since DC coeffi cients constitute
the main component in the representation of each of the blocks, their thresholding
will affect all block estimates.
Smoothing via thresholding in transform domain is inherently resistant (to

some extent) against registrations errors. Indeed, if due to erroneous block-
matching an unsimilar block appears in the group, the magnitudes of the AC
coeffi cients coding the block’s differences from the other blocks will be high. As a
result, these coeffi cients will survive after thresholding, preventing unsimilar block
from being fused with the rest of data. Hence, 3-D transform domain collaborative
filtering can be used as a robust and flexible data fusion strategy.
In our earlier SR algorithm based on BM3D-modeling, IFSR [DFKE08c], all co-

effi cients were treated equally and the same threshold was applied to all of them.
Such approach can be considered suboptimal, since typically SR reconstruction
requires much stronger inter-block than intra-block smoothing, and the thresh-
olding levels for AC and DC coeffi cients should be adjusted accordingly. This
specific issue is addressed in the SR algorithm which we present below. We use
the framework of BM3D-frames to formulate SR as a GNE problem and derive
an algorithm for solving it. Obtained algorithm is similar to IFSR, but unlike the
later one, which was introduced as an empirical procedure, for the new algorithm
we can point out the corresponding optimization problem.

4.2 SR algorithm with BM3D-modeling

We consider a general form of the video super-resolution problem, where a low-
resolution image sequence

{
zi
}k
i=1

, zi ∈ RN , is obtained through observations
given by the model

zi = DAȳi + η, i = 1, . . . , k, (4.3){
ȳi
}k
i=1

, ȳi ∈ RNd2 , d ∈ N being the unknown high-resolution (HR) image se-
quence. The vectors zi and ȳi represent the pixel values of the corresponding im-
ages arranged columnwise. The linear operators (matrices) A and D are assumed
to be known, representing, respectively, blur and decimation with the factor d.
The additive noise η is assumed to be i.i.d. Gaussian with mean zero and known
standard deviation σ. The problem is to reconstruct the HR sequence

{
ȳi
}k
i=1

from the LR observations
{
zi
}k
i=1
.

For finding similar blocks in video sequences we use the same simple block-
matching procedure which we used for images with the only difference that now
similar blocks are searched not only in the current, but also in the adjacent frames
within a certain temporal window. Let y ∈ RkNd2 be a column vector representing
the image sequence

{
yi
}k
i=1

, such that

y =
((

y1
)T
,
(
y2
)T
, . . . ,

(
yk
)T)T

.

Analogously to the case of image BM3D modeling (Section 1.4.1), it is possible
to show that for a fixed grouping the video BM3D analysis/synthesis operations
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can be given in the matrix form linking the image sequence y and its groupwise
spectrum vector ω ∈ RM by the forward and backward transforms

ω = Φy, y = Ψω.

Statement of the Proposition 1 remains true also for the video BM3D-frames.
Without loss of generality, we can assume that components of ω are arranged

such that

ω =

(
ωdc

ωac

)
,

where ωdc and ωac are the column vectors of the DC and AC coeffi cients re-
spectively. We denote by Φdc and Φac the submatrices of the analysis matrix
Φ corresponding to calculation of the vectors ωdc and ωac . Also, we denote by
Ψi, i = 1, . . . , k, the Nd2 ×M submatrices of Ψ corresponding to the synthesis of
the individual frames, such that yi= Ψiω.
We assume that the block-matching has been performed and the frame oper-

ators Φ and Ψ are already constructed. We formulate SR reconstruction corre-
sponding to the observation model (4.3) as the GNE problem:{

y∗ = arg min
y
L1 (y,ω∗)

ω∗ = arg min
ω
L2 (y∗,ω)

, (4.4)

where

L1 (y,ω) =

k∑
i=1

(∥∥zi−DAyi
∥∥2
2

+
γ

2

∥∥yi−Ψiω
∥∥2
2

)
, (4.5)

L2 (y,ω) = τdc
∥∥ωdc∥∥

p
+

1

2

∥∥ωdc −Φdcy
∥∥2
2

+

τ ac ‖ωac‖p +
1

2
‖ωac −Φacy‖22 . (4.6)

To highlight the algebraic similarity of the functional L1 with its counterpart from
the gaussian deblurring problem we can rewrite (4.5) in the form

L1 (y,ω) =

∥∥∥∥∥∥z−diag
( k-times︷ ︸︸ ︷
DA, . . . ,DA

)
y

∥∥∥∥∥∥
2

2

+
γ

2
‖y −Ψω‖22 , (4.7)

where z =
((

z1
)T
,
(
z2
)T
, . . . ,

(
zk
)T)T

. The only difference is that unlike the de-

blurring problem, where all spectral coeffi cients were treated equally, we penalize
complexity of the AC and DC spectral coeffi cients at different levels, using sepa-
rate regularization parameters, which let us to control the intra- and inter-block
smoothening independently.
It can be shown, that the alternating minimization procedure (3.4) can still

be used to find a fix-point solution of the problem (4.4)-(4.6). The corresponding
proof, with marginal changes, repeats the proof of Proposition 3 from [DKE12].
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Derivation of the actual algorithm is based on the observation that minimiza-
tion of L1 is separable with respect to the variables yi, i = 1, . . . , k, and the
minimization of L2 is separable with respect to the vectors ωdc and ωac . Not to
repeat the same type of calculations as we did in the previous chapters, we skip
the step-by-step derivation and directly present the resulting Algorithm 5.

Algorithm 5 Solution of the problem (4.4)-(4.6)

1: input:
{
zi
}k
i=1

,A,D,Φ,Ψ,
{
yiinit

}k
i=1

, τdc , τ ac , γ
2: initialization:
3: set: t = 0,y0 = yinit ,ω0 = Φyinit
4: repeat
5: t = t+ 1
6: yit =

(
ATDTDA + γI

)−1 (
ATDT zi + γΨiωt−1

)
, i = 1, . . . , k

7: ωdct =Thτd c
(
Φdcyt

)
8: ωact =Thτ a c (Φacyt)

9: ωt=

(
ωdct
ωact

)
10: until convergence
11: output: ŷ = Ψωt

The above derived algorithm can achieve resolution enhancement only if the
provided block-matching information accurately captures motion in the frames.
To obtain such accuracy, block-matching needs to be applied to some good esti-
mates of the HR frames, which are obviously not available at the beginning of the
reconstruction. We solve this "chicken-egg" problem iteratively. We start with
an initial estimate of the HR sequence y0 (it can be obtained through bilinear or
bicubic interpolation or by calculating pseudoinverse) and do block-matching on
y0. Obtained registration, although not very accurate, can be used to improve es-
timates of the HR images. So we construct operators Φ and Ψ and run Algorithm
5. After the new estimates of the HR images are obtained, we repeat the block-
matching procedure applying it to the newly obtained estimates. The improved
block-matching information is then used to update the frame operators and for-
mulate new GNE problem, which is again solved with Algorithm 5. This process
can be repeated several (typically 3-10) times, until we reach steady-state when
neither HR estimates nor the block-matching can be further improved. Described
steps are summarized as Algorithm 6.

4.3 Implementation

4.3.1 Initialization

For its initialization, Algorithm 6 requires rough estimates of the high-resolution
(HR) images which are used for performing the first block-matching. In other
words, these rough image estimates are necessary to obtain the initial location es-
timates of the mutually similar blocks with respect to the HR coordinates. The SR
algorithm puts very mild requirements on the quality of the initialization images:
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Algorithm 6 The SR-BM3D algorithm

1: input:
{
zi
}k
i=1

,A,D, τdc , τ ac , γ
2: initialization:
3: set: m = 0
4: set: yi0 = Bicubic_interpolation(zi), i = 1, . . . , k
5: repeat
6: m = m+ 1
7: perform block-matching:

if m == 1
do it on a smoothed copy of y0,

otherwise
do it on the current estimate ym−1.

8: update operators Φ and Ψ
9: formulate new GNE problem corresponding to the updated frames and solve

it with Algorithm 5 using ym−1 as the initialization and τdc , τ ac , γ as regu-
larization parameters; assign the found solution to ym

10: until convergence
11: output: ŷ = ym

in practice, it suffi ces that the initialization images feature all coarsest structures
in the scene while being free of structured artefacts, such as aliasing, ringing, stair-
casing, or blockiness. Presence of structured artefacts affects the accuracy of the
block-matching, leading to the erroneous motion estimation and reproduction of
artefacts in the reconstructed images. Suitable images for initializing the SR algo-
rithm can be obtained, for example, by first upsampling the input low-resolution
(LR) images using bicubic interpolation and then blurring the upsampled images
with a low-pass Gaussian filter to suppress structured artefacts.

4.3.2 Computing the inverse

Implementation of Algorithm 5 possesses a technical problem, namely, in step 6
of the algorithm it is required to solve large system of linear equations:

yit =
(
ATDTDA + γI

)−1 (
ATDT zi + γΨiωt−1

)
. (4.8)

In the general case this system can be solved iteratively using one of the stan-
dard methods from numerical algebra, for example, the conjugate gradient (CG)
method. However, due to the high dimensionality of the problem, convergence of
the iterative process can be very slow, making implementation impractical.
It should be mentioned that problem of computing inverse or conjugate of

operator DA is common to all SR algorithms. There are two approaches, which
allow to obtain relatively fast implementations though producing approximate and
often suboptimal solutions.
The first approach is based on substituting the true degradation model with an

approximate one for which it is possible to find an effi cient algorithm for computing
(4.8) exploiting the particular structures of the matrices A and D. We mention
few such models:
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a) no blur (A = I);

b) blurring d× d size uniform PSF followed by decimation with factor d;

c) LR images coincide (up to the scaling factor) with the LL band of the wavelet
decomposition of the corresponding HR images; here the low-pass wavelet
filter plays the role of the blurring operator;

d) LR images are obtained by ideal low-pass filtering HR images with sinc
function, followed by decimation; in this case the DFT spectrum of the LR
image coincides, up to the scaling factor, with the low-frequency part of the
spectrum of the corresponding HR image.

More models together with detailed discussion of this approach can be found in
[DFKE08c] and [DFKE10]. In Figures 4.2-4.3 we show examples of HR sequences
reconstructed with Algorithm 5 from the data with unknown true PSF using degra-
dation models a) and b) respectively. We can see, that thanks to the robustness of
the algorithm, we are able to reveal new details in the reconstructed image, even
using imprecise and very approximate degradation model.
The second approach, is based on the idea of splitting SR in two problems:

estimation of the blurry HR image Aȳ and followed by deblurring in order to
obtain an estimate of ȳ. In other words, instead of inverting degradation operator
AD at once, we first invert D and then A. The split and joint (original) SR
problems generally are not equivalent. One particular example when such equiva-
lence exist is considered in [EHO01]. Nevertheless, many algorithms [FREM04b],
[PETM09], [TMPE09] ignore the equivalence issues and use the splitting to obtain
approximate solutions.

4.4 Discussion

4.4.1 Reconstruction from noise-free data

The SR algorithm for the noise-free data can be obtained by taking the regular-
ization parameter γ to 0, in which case formula (4.8) reduces to the projection on
the subspace defined by the observation zi:

yit = PO
(
Ψiωt−1

)
, O = {x ∈RNd

2

: DAx = zi}. (4.9)

Here P is the orthogonal projection operator. Since arbitrary element x from O
can be represented as the sum of its projection on the kernel of operator DA and
the vector

(
ATDTDA

)−1
(DA)

T
zi, we can write (4.9) as

yit =
(
ATDTDA

)−1
(DA)

T
zi + Pker(DA)

(
Ψiωt−1

)
,

ker (DA) =
{

x ∈RNd
2

: DAx = 0
}
.

Finally, using the identity Pker(DA) (x) = x −
(
ATDTDA

)−1
(DA)

T
DAx we

obtain the equivalent of formula (4.8) for noise-free data

yit = PO
(
Ψiωt−1

)
= Ψiωt−1+

(
ATDTDA

)−1
(DA)

T (
z−DAΨiωt−1

)
.
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Figure 4.2: SR reconstruction from low-resolution compressed video taken with webcam.
The sequence contains in total 53 frames from which number 10, 42 and 47 are shown.
From top to down: nearest-neighbour interpolation, bicubic interpolation, SR reconstruc-
tion with Algorithm 6. The images are 3 times larger the size of the LR images. The
true degradation model is unknown; the model assumed by the reconstruction algorithm
is decimation with factor 3, no blur (A = I).
Used low-resolution test sequence is a part of "MDSP Super-Resolution And Demosaicing
Dataset" which is publicly available at http://www.soe.ucsc.edu/milanfar/software/
sr-datasets.html

http://www.soe.ucsc.edu/milanfar/software/sr-datasets.html
http://www.soe.ucsc.edu/milanfar/software/sr-datasets.html
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Figure 4.3: SR reconstruction from low-resolution video taken with infrared camera. The
sequence contains in total 64 frames from which number 5, 30 and 60 are shown. From
top to down: nearest-neighbour interpolation, bicubic interpolation, SR reconstruction
with Algorithm 6. The images are 3 times larger the size of the LR images. The true
degradation model is unknown; the model assumed by the reconstruction algorithm is
3× 3 uniform blur followed by decimation with factor 3.
Used low-resolution test sequence is a part of "MDSP Super-Resolution And Demosaicing
Dataset" which is publicly available at http://www.soe.ucsc.edu/milanfar/software/
sr-datasets.html

http://www.soe.ucsc.edu/milanfar/software/sr-datasets.html
http://www.soe.ucsc.edu/milanfar/software/sr-datasets.html
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Note, that even in the absence of noise, the two other regularization parameters:
τdc and τ ac , need to be non-zero in order to enable fusion of the data.

4.4.2 Reconstruction from noisy data

The noisy data can be handled either directly, by adjusting the regularization
parameters in Algorithm 5, or by first prefiltering LR sequence with some denoising
algorithm and then applying Algorithm 5 to the noise-free data. Which of these
two approaches is more effi cient depends on the level of the noise. If noise is
very low (σ ≤ 3, assuming 0 . . . 255 image intensity range) the direct approach
typically demonstrates slightly better results than those obtained with prefiltering,
since prefiltering inevitably removes some of the high-frequency information which
otherwise is used in the direct approach. For higher noise levels situation changes,
results of the direct approach become inferior to the prefiltering approach. The
reason is that the noise component of the estimate yit is not AWGN, it is given by
the expression (

ATDTDA + γI
)−1

ATDTηi.

The linear transformation introduces strong spatial correlation and the noise be-
comes structured which hardens its separation from signal. Suppression of such
noise requires stronger regularization, which drops the effi cacy of the SR recon-
struction.
In Fig 4.4 we show comparison of the results obtained with both reconstruction

approaches for synthetic LR sequence corrupted by AWGN with σ = 5. The
prefiltering approach uses VBM3D for denoising LR sequence. We can see that
prefiltering approach demonstrates slightly better results both numerically and
visually.

4.4.3 Relation to the IFSR algorithm

Ignoring minor differences, the IFSR algorithm [DFKE08c] can be viewed as a
variation of Algorithm 6 for noise-free data, where regularization parameters τdc =
τ ac = τ (m) depend on m, so that τ (m) > τ (m+ 1) > 0. Such scheme with
gradually decreasing regularization renders coarse-to-fine reconstruction: coarse
scale image features are reconstructed first using strong regularization, and finer
features are reconstructed in the subsequent iterations using weaker regularization.
The necessity of lowering regularization parameter through iterations in IFSR

was never questioned. In fact, in the above experiments with Algorithm 6 we saw
that successful reconstruction can be obtained without changing regularization
parameters. However, taking into account our discussion in Section 4.1 about
the role of AC and DC coeffi cients in data fusion, we can now explain why it is
compulsory to reduce the regularization in IFSR.
Recall, that data fusion is performed by thresholding AC coeffi cients, while

thresholding DC coeffi cients serves only for suppression of possible fusion artefacts.
The thresholding level required to enable fusion is typically much higher then the
one needed for concealment of artefacts. For example in our experiments with
Algorithm 6, the threshold used for AC coeffi cients is 3-10 times higher than the
threshold for DC coeffi cients. As we already mentioned, IFSR do not differentiate
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between AC and DC coeffi cients; at the fusion step they all are thresholded using
the same threshold. To ensure fusion IFSR needs to start with high thresholding
level, but since the same strong thresholding is also applied to the DC coeffi cients
the resulting images are getting significantly smoothed. To recover the fine details,
in subsequent iterations the threshold needs to be gradually lowered to the level
at which it does not introduce unnecessary spatial smoothing.
Despite mentioned differences, our experiments show that both IFSR and Algo-

rithm 6 produce results of very similar quality and it is diffi cult to give preference
to one of them.
For practical applications, where complexity of the algorithm is critical, a hy-

brid approach should be considered where the AC and DC threshold parameters
are controlled independently and both are gradually reduced through iterations.
Such scheme allows to speed up the convergence (and hence reduce complexity of
the algorithm) by applying stronger regularization at early stages of the recon-
struction.
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Figure 4.4: Comparison of two reconstruction approaches: directly from noisy and from
prefiltered data. The synthetic LR sequence is obtained from the original HR sequence
Suzie by blurring frames with 3 × 3 uniform PSF, decimating with factor 3 and adding
AWGN with σ = 5. The test sequence contains 30 frames; frame number 21 is shown.
Top row: nearest-neighbour interpolation of noisy frame, nearest-neighbour interpolation
of prefiltered frame. Middle row: reconstruction with Algorithm 6 directly from noisy
data (γ = 0.3, τ dc = 91.1, τ ac = 1053, mean PSNR over 30 frames 32.4 dB), reconstruc-
tion with Algorithm 6 from prefiltered data (τ dc = 14.6, τ ac = 1053, mean PSNR over
30 frames 33.1 dB). Last row: differences between the reconstructed and ground truth
images.
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Conclusions to the thesis

C.1 Overview

The contribution of this thesis concerns three main aspects of image and video
reconstruction: image modeling, variational problem formulation, and algorithm
design.
First, we formalize the BM3D-modeling in terms of the overcomplete sparse

frame representation. We construct analysis and synthesis BM3D-frames and
study their properties, making BM3D-modeling available for use in variational
formulations of image reconstruction problems.
Second, we demonstrate that standard problem formulations based on single

objective optimization, such as Basis Pursuit Denoising and its various exten-
sions, cannot be used with the imaging models generating non-tight frames such
as BM3D. We propose an alternative sparsity promoting formulation based on
generalized Nash equilibrium (GNE).
Third, using BM3D-frames we develop practical algorithms for image deblur-

ring and super-resolution problems. To the best of our knowledge, these algorithms
provide results which are the state of the art in the field.

C.2 Future research

Through this thesis we were dealing only with the standard BM3D-modeling. Us-
ing more elaborated versions of the 3-D transform domain modeling, such as BM3D
with shape-adaptive supports [DFKE08b] and shape-adaptive BM3D with princi-
ple component analysis [DFKE09], could potentially improve the performance of
the developed reconstruction algorithms.
Speaking about possible directions to improve the 3-D transform modeling

itself, the most promising seems to be utilizing it in a multi-scale processing setup.
Advantages of such approach has been demonstrated in [BH11], where authors
developed mutli-scale meta-procedure, which applies existing denoising algorithms
across different scales and combines the resulting images into a single denoised
image. Operating at different scales allows to provide regularization not only to
fine image details, but also to large-scale features, addressing one of the weak
points of the current BM3D-modeling - poor performance at reconstructing low
frequency content is the image.
Our closest targets are the development of blind image deblurring algorithm

69
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based on the proposed non-blind deblurring method, and considering applications
of the developed techniques in the inverse problems arising in the field of digital
holography.
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Deblurring of Poissonian images using BM3D frames

Aram Danielyan,Vladimir Katkovnik and Karen Egiazarian

Department of Signal Processing, Tampere University of Technology, Tampere, Finland

ABSTRACT

We propose a novel deblurring algorithm for Poissonian images. The algorithm uses data adaptive BM3D-frames

for sparse image modeling. Reconstruction is formulated as a generalized Nash equilibrium problem, seeking a

balance between the data fit and the complexity of the solution. Simulated experiments demonstrate numerical

and visual superiority of the proposed algorithm over the current state-of-the-art methods.

Keywords: image reconstruction, sparsity, generalized Nash equilibrium, non-tight frames

1. INTRODUCTION

During the last years variational image restoration with sparsity promoting regularizers attracted much attention.

Various sparse image modelling techniques were proposed: from the Total Variation (TV) and wavelets to

the different overcomplete frames and learned dictionaries. In our recent paper1 we demonstrated that the

highly efficient sparse image modeling underling the BM3D denoising filter2 can be formalized in terms of

frames. This formalization allows to use the BM3D modeling within the variational reconstruction framework.

Nevertheless, there is a peculiarity in way how the regularization based on BM3D-frames should be implied.

Due to their structure the BM3D-frames are non-tight. As it was demonstrated,1 the classical formulation of

the reconstruction problem as an optimization of a single objective function with the complexity penalty may

lead to the degradation of the restoration quality due to the influence of the ill-conditioned matrices reflecting

the inner structure of the non-tight frame. To avoid such an influence, it has been suggested1 to formulate the

reconstruction problem as a generalized Nash equilibrium (GNE) problem. The equilibrium of the GNE problem

provides a balance between the data fit and the complexity of the solution.

The deblurring algorithm in1 was developed for the additive white Gaussian noise model. In this paper we

demonstrate how the technique from1 can be extended to the deblurring of Poissonian data.

There are two main approaches to deal with the Poisson noise. First one is the variance stabilization approach,

where observed data undergoes through a nonlinear transformation resulting in a homoscedastic data, which then

can be treated with restoration algorithms designed for the homoscedastic noise.3 The second approach is to take

into account the Poissonianity of the noise distribution directly in the reconstruction,4 ,5 .6 We follow the later

approach and formulate the reconstruction as a generalized Nash equilibrium problem, where fidelity criterion is

devised from the Poissonian likelihood function.

Simulated experiments demonstrate a numerical and visual superiority of the proposed algorithm over the

current state-of-the-art methods confirming the advantage of the BM3D-frames as an image modeling tool.

2. BM3D FRAMES

BM3D is a nonlocal image modelling technique based on adaptive high order groupwise models. This technique is

well known for its ability to provide highly sparse and redundant image representations. The detailed discussion

of the BM3D modelling can be found in.7 Here we briefly recall the concepts of the BM3D modeling. It involves

two steps: analysis and synthesis.

Analysis. Similar image blocks are collected in groups. Blocks in each group are stacked together to form

3-D data arrays, which are decorrelated using an invertible 3D transform.

The blocking imposes a localization of the image on small pieces where simpler models may fit the observations.

It has been demonstrated that a higher sparsity of the signal representation and a lower complexity of the
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model can be achieved using joint 3D groupwise instead of 2D blockwise transforms. This joint 3D transform

dramatically improves the sparsity and effectiveness of image spectrum approximation. The total number of

groupwise spectrum elements is much larger than the image size. Thus we arrive to an overcomplete or redundant

data representation.

Synthesis. The groupwise spectra are inverted, providing estimates for each block in the group. These

blockwise estimates are returned to their original positions, and the final image reconstruction is calculated as a

weighted average of all the obtained blockwise estimates.

Due to the overcompletness of the spectral representation, at the synthesis step for each pixel we typically

obtain multiple estimates. This redundancy is important for effectiveness of the BM3D modeling since it signif-

icantly improves the of the final estimate.

For a fixed grouping the BM3D analysis/synthesis operations can be given in the matrix form linking the

image y ∈ RN and its groupwise spectrum vector ω ∈ RM by the forward and backward transforms1

ω = Φ · y, y = Ψ · ω. (1)

The actual form of the analysis and synthesis matrices Φ and Ψ can found in.1 Here we present only their main

properties.

Proposition 1. The matrices ΦTΦ and ΨΨT are diagonal with positive items and ΨΦ = IN×N .

The last formula ensures perfect reconstruction of the image y from the groupwise spectrum ω. It follows
from the proposition that Φ and ΨT are full column rank (M ×N) matrices. Further, the rows of Φ constitute

a frame {φn} in RN , and the columns of Ψ constitute a dual frame {ψn}. These frames are not tight, i.e.
ΦT ·Φ 	= αIN×N and ΨT ·Ψ 	= αIN×N , ∀α > 0. In general, Ψ 	= (ΦTΦ)−1ΦT and {ψn} is an alternative dual
frame due to the presence of the group weights. The equality Ψ = (ΦTΦ)

−1
ΦT takes place only when all group

weights are equal to each other. {ψn} then becomes the canonical dual frame.
Since matrices Φ,ΦT ,Ψ and ΨT are based on groupwise separable 3-D transforms (possibly with some

averaging) the multiplications against these matrices can be implemented efficiently. The find the similar blocks

and build the groups the block matching (grouping) procedure from2 is used.

We want to emphasize that the BM3D-frames are data adaptive, which make them quite different from the

other popular frames used for image modeling.

3. PROBLEM STATEMENT

Let y, z ∈NN0 (N0 = N ∪ {0}) represent, respectively, the true and observed images arranged in the columnwise
order. It is assumed that z is a sample of a random vector Z = {Z1, Z2, . . . , ZN} of N independent Poissonian

variables with the joint probability distribution

P (Z = z|λ)=
N�
i=1

λzii e
−λi

zi!
, (2)

where A is an N ×N matrix representing blur operator and λ = Ay, λ ∈ RN+ , (R+ = {x : x ∈ R, x > 0}) is the
blurred true image. We use subindex i to denote the i− th component of the vector. The deblurring problem is

to reconstruct y from observations z.

The negative log-likelihood function corresponding to the model (2) takes the form

L (y) =
N�
i=1

[(Ay)i − zi log (Ay)i] , (3)

where the term log (zi!) independent of y is omitted.

The maximum likelihood solution ŷ =maxy L (y) of the Poisson deblurring problem can be obtained using the
recursive Richardson-Lucy (RL) algorithm.4 Nevertheless, since the problem is ill-conditioned the RL solution is

unacceptably noisy and a regularization is typically required. Below we develop an algorithm where regularization

is implied through penalizing the complexity of the solution in the BM3D-frame domain.
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4. THE ALGORITHM

We formulate the deblurring as a generalized Nash equilibrium problem:⎧⎨⎩ y∗ = argmin
y
L (y) , subject to �y −Ψω∗�22 ≤ ε1,yi ≥ 0, i = 1 . . . N

ω∗ = argmin
ω
�ω�p , subject to �ω −Φy∗�22 ≤ ε2,

(4)

where ε1, ε2 > 0 and �·�p is the standard notation of the lp-norm. We consider two cases p = 0 and p = 1.
In terms of the game theory (4) can be interpreted as a game of two players identified, respectively, with

two variables y and ω. Each player tries to minimize its own cost function. The interaction between players is
noncooperative; minimizing its own cost function player in general increases the cost function of the other player.

The equilibrium of this game called Nash equilibrium defines the fixed-point (y∗,ω∗) for (4).

Problem (4) can be replaced by the equivalent one:⎧⎨⎩ y∗ = argmin
y
L (y) + 1

2γ �y −Ψω�22 , subject to yi ≥ 0, i = 1 . . . N
ω∗ = argmin

ω
�ω�p + 1

2τ �ω −Φy�22 .
(5)

In order to simplify the optimization in the first subproblem in (5) we introduce an additional splitting

variable v and consider the criterion

L1 (y,ω,v) = L̃ (v) +
1

2ξ
�v −Ay�22 +

1

2γ
�y −Ψω∗�22 ,

where L̃ (v) =
�N

i=1 [vi − zi logvi] and vi ≥ 0. Denoting L2 (y,ω) = �ω�p + 1
2τ �ω −Φy�22 ,the fixed-point

problem is then reformulated as follows:�
y∗ = argmin

y,v
L1 (y,ω

∗,v) , subject to yi ≥ 0,vi ≥ 0, i = 1 . . . N
ω∗ = argmin

ω
L2 (y

∗,ω) .

To solve this reformulated problem we use the alternating minimization procedure:⎧⎪⎪⎨⎪⎪⎩
vt+1 = argmin

v
L1 (yt,ωt,v)

yt+1 = argmin
y
L1 (y,ωt,vt+1)

ωt+1 = argmin
ω
L2 (yt+1,ω)

, t = 0, 1, . . . . (6)

Minimization of L1 is separable with respect to the components of v. For each component it takes form

(vt+1)i = argminvi
{vi − zi logvi + (vi − (Ayt)i)} ,

and the non-negative solution is given by the formula

(vt+1)i=
1

2

�
(Ay)i − ξ +

�
((Ay)i − ξ)2 + 4ξzi

�
.

Since L1 is quadratic its minimization with respect to y results in a linear solution:

yt+1 =

�
ATA+

1

γ
I

�−1
×
�
ATvt+1 +

1

γ
max {Ψωt, 0}

�
.

The elementwise maximum operation is applied to the Ψωt to ensure the nonnegativity of the estimate of yt+1.
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The minimization of L2 with respect to ω is obtained by the soft or hard thresholding of Φyt, depending
whether l0 or l1 norm used as a penalty:

ωt+1 = Thτ
�
Φyt+1

�
=

	
sign

�
Φyt+1

� ◦max ���Φyt+1��− τ , 0� , p = 1,
Φyt+1 ◦ 1

���Φyt+1�� ≥ √2τ� , p = 0.
Here all vector operations are elementwise, ’◦’ stands for the elementwise product of two vectors and 1 (·) is the
indicator function.

Summarizing all steps we arrive to the algorithm presented below which we call Poissonian Iterative Decoupled

Deblurring BM3D (PIDD-BM3D).

Algorithm 1 PIDD-BM3D - Poissonian Iterative Decoupled Deblurring BM3D algorithm

1: input: z,A,yinit
2: initialization:

3: using yinit construct operators Φ and Ψ
4: set: y0,ω0 = Φy0
5: t = 0
6: repeat

7: (vt+1)i=
1
2

�
(Ay)i − ξ +

�
((Ay)i − ξ)2 + 4ξzi

�
8: yt+1 =

�
ATA+ 1

γ
I
�−1
×
�
ATvt+1 +

1
γ
max {Ψωt, 0}

�
9: ωt+1=Thτ (Φyt+1)
10: t = t+ 1
11: until convergence.

In each iteration the algorithm first updates the blurred image estimate vt+1, then applies the regularized
deblurring to obtain the estimate of the true image yt+1. Finally, this estimate is filtered by thresholding.

The algorithm is iterated until some convergence criteria is satisfied. Particularly, the iterations can be

stopped as soon as the difference between consecutive estimates becomes small enough.

5. IMPLEMENTATION

Grouping and frame operators. The initial image estimate yinit is obtained by the LPA-ICI deblurring algorithm.
5

The grouping and the adaptive group weights are calculated only once, using yinit and remain unchanged through
the subsequent iterations. To build the groups, we apply the block-matching procedure from2 to the initial image

estimate. In our implementations we use weights inversely proportional to the number of significant spectrum

coefficients of the groups. The significant coefficients are found by the hard thresholding the of the group spectra

of yinit using a small threshold.

The 3-D transform is performed by first applying the 2-D discrete sine transform (DST) to each block in the

group, followed by the 1-D Haar transform applied along the third dimension of the group. The image block size

is 4× 4, and the number of blocks in the group is 8.
Choice of the regularization parameters. The parameters τ , γ, ξ are roughly optimized using ground truth

image to provide best reconstruction quality. Optimization has been performed separately for each image and

each deblurring scenario.

Initialization. We experimentally confirmed the convergence to an asymptotic solution that is independent

of the initialization of y0 and ω0. Nevertheless, initialization with a better estimate results in a much faster
convergence.

Practical considerations. For a circular shift-invariant blur operator, the solution of the step 8 of the PIDD-

BM3D algorithm can be calculated in the Fourier domain using FFT. More, steps 8 and 9 can be merged into a
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Scenario PSF M
1 7× 7 uniform 5
2 7× 7 uniform 30
3 7× 7 uniform 100
4 7× 7 uniform 255
5 9× 9 uniform 17400

Table 1. Blur PSF and maximum true image intensity M used in each scenario.

single step

yt+1 = F−1

F∗ (h) ◦ F (vt+1) + 1

γ
F (max {ΨThτ (Φyt) , 0})

|F (h)|2 + 1
γ

�
,

where the analysis-thresholding-synthesis operation ΨThτ (Φyt) can be calculated groupwise without storing
the whole spectrum ωt in the memory. Here h denotes the vectorized blurring kernel corresponding to the
blur operator A, and ’◦’ stands for the elementwise product of two vectors. The operator F (·) reshapes the
input vector into a 2-D array, performs 2-D FFT and vectorizes the obtained result. F−1 (·) works analogously,
performing inverse FFT.

Complexity. Application of the frame operators is the most computationally expensive part of the proposed

algorithms. However, due to their specific structure, the complexity of the frame operators Φ and Ψ is growing

only linearly with respect to the number of the pixels in the image. To give an estimate of the complexity of

the PIDD-BM3D algorithm, we mention that, on a 256× 256 image, one iteration takes about 0.35 seconds, and
about 50 iterations are typically sufficient. This timing has been done on dual core 2.6 GHz processor for an

implementation where the computationally most intensive parts have been written in C++.

6. EXPERIMENTS

In this section we compare the PIDD-BM3D algorithm against the state-of-the-art Poissonian deblurring methods

and with the IDD-BM3D1 algorithm. The later algorithm is similar to PIDD-BM3D but designed for the Gaussian

data. We consider five standard scenarios used as a benchmarks in the recent publications6.3 The blur PSF

h (x1, x2) and maximal true image intensity M are summarized in Table 1. These PSFs are normalized such

that
�
h = 1. The hard thresholding has been used both in the PIDD-BM3D and IDD-BM3D algorithms.

Table 2 presents some of the obtained numerical results. The Mean Absolute Error (MAE) values for the

DFS3 and PIDAL-FA6 algorithms are taken from the Table II of.6 The results of the LPA-ICI,5 IDD-BM3D1 and

proposed PIDD-BM3D algorithms were obtained by simulations. For all methods the regularization parameters

have been roughly tuned using ground truth images to provide best results.

The data in the table demonstrates that in the most cases the proposed PIDD-BM3D algorithm enables

the best results with the significant advantage over competitors. Interesting results demonstrates IDD-BM3D.

Despite the fact that it is designed for the different noise model, results of the IDD-BM3D algorithm are close to

those by the best Poissonian deblurring methods for all noise levels. This fact speaks in the favour of the BM3D

modeling which allows the algorithm to obtain good results even with imprecise noise model.

The visual quality of some of the restored images can be evaluated in Figure 1. One can see that the

proposed algorithm is able to suppress the ringing artifacts better than LPA-ICI and provides images containing

less restoration artefacts.

7. CONCLUSION

We presented a novel deblurring algorithm for Poissonian images. The proposed algorithm is fast and demon-

strates state-of-the-art reconstruction quality.

Though we discussed only deblurring problem, the algorithm can be extended to the other inverse problems

as well. As a primary target for the future work we mark two problems: theoretically proving convergence of

the algorithm and finding a strategy for selection the optimal parameters for the algorithm.
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Figure 1. Deblurring of the Cameraman image, scenario 5. From left to right and from top to bottom are presented

zoomed fragments of the following images: original, blurred noisy, reconstructed by LPA-ICI5 (PSNR 27.2, MAE 432)

and by the proposed PIDD-BM3D method (PSNR 28.56, MAE 352).

Scenario 1 2 3 4 5

Image Cameraman (256x256)

LPA-ICI5 0.27 1.27 3.77 8.65 432

DFS3 0.35 1.47 4.31 10.26 -

PIDAL-FA6 0.26 1.22 3.63 8.45 415

IDD-BM3D1 0.26 1.19 3.48 7.91 361

PIDD-BM3D (proposed) 0.26 1.18 3.44 7.61 352
Table 2. Comparison of the several deblurring algorithms. Mean Absolute Errors of the outputs.
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