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Abstract

In this study, a simple method was developed for reducing noise during the
iterative reconstruction of emission tomography images.

The emission images express the spatial distribution of a chemical com-
pound, if possible in quantitative terms. The concentration of the tracer gives
information about the active metabolism of a living tissue. As a computa-
tional medical imaging method, the emission tomography involves a significant
amount of data processing. The algorithms that carry out the computation of
the estimate of the transaxial image from the measured data suffer from noise
due to the statistical nature of the acquisition.

The new method (MRP, median root prior) is novel and generally applicable
for emission reconstruction, independent of the organ or the tracer. The prin-
ciple of penalizing locally non-monotonic noise is suitable for both emission
and transmission image reconstruction. Instead of explicitly producing visually
pleasing images, the method is designed to compute locally accurate images
with no constraints on pixel value differences.

In practice, MRP is quantitatively accurate and simple in implementation.
The transmission reconstruction with this method allows for a short-time atten-
uation correction. As a result of this, the scanning time for the patient can be
reduced.
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Chapter 1

Introduction

1.1 Obijectives of emission tomography

Tomography (Greekomos= section, + -graphy) means a method of produc-
ing an image of the internal structures of a solid object by the observation and
recording of the differences in the effects on the passage of waves of energy
impinging on those structures [64]. The medical applications of tomography
utilize the non-invasive nature of the procedure, which makes it possible to ex-
amine living objectsn vivo. Different tomographic imaging modalities provide
different kind of information depending on the data recording means. The tradi-
tional X-ray based computerized tomography (CT) produces images of photon
attenuation in the tissue, and magnetic resonance imaging (MRI) describes the
proton or water density [45]. These images are generally anatomical because
they reveal the physical structure of the tissue, serving as an "electronic knife”.
Such properties as the density of the tissue, the water density, and the membrane
structure are examples of objects of interest in the anatomical imaging.
Emission tomography (ET) is intended to express functional properties of
the tissue. Emission refers to the fact that the energy source is not external but
it is brought into the tissue as a part of the body metabolism. This is done by
a tracer which is a chemical compound labeled with a radioactive isotope. The
spatial distribution of the radiating source is the object of interest as it tells the
concentration of the tracer in the tissue. As the labeled compound is chemically
identical to its non-labeled counterpart, an image of the spatial source distribu-
tion shows information about the metabolism relating to the compound during
the data acquisition period. Thus, functional ET images are generally different
from anatomical images. Primarily, ET images do not express what the tissue
looks like, but how it functions. Although functional and anatomical images of
the same organ have some similarities, such as boundaries between tissue types
(see Fig[L1.h), the essential information in an ET image is where it differs from

1



2 CHAPTER 1. INTRODUCTION

the corresponding anatomical image. An ET image can be used when studying
the normal behavior of the tissue, or when diagnosing abnormal cases in clini-
cal work. The main areas of medicine that utilize ET are neurology, cardiology,
and oncology.

(a) Photo (b) CT (c) MRI(T1)

(d) MRI(T2) (e) PET (f) SPECT

Figure 1.1: Examples of various imaging modalities. Images are not of the same
person. Sources: [12], [43], Turku PET Centre, and Kuopio University Hospital.

Tomographic images as slices are originally two-dimensional, but they can
be combined to a 3D image. What is more, a time sequence of ET images form
a dynamic 3D or 4D image. The dimension of time is medically important be-
cause the concentration of the tracer in the tissue changes in time. A parametric
image computed from a dynamic image sequence depicts values of a certain
metabolic rate as an imade [73].

There are two ET modalities that share some common properties. Positron
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emission tomography (PET) is capable to quantitative measurements of tracer
radioactivity concentration. Simpler and cheaper single photon emission com-
puted tomography (SPECT, a.k.a. SPET) has traditionally been used for relative
measurements.

1.2 Problems in the image reconstruction

The measured data in tomography are not an image of the object, but projections
of it, a sinogram. The unknown image has to be estimated from the available
data computationally. This task is called the image reconstruction from projec-
tions [37]. Its goal is a reasonably accurate image with a reasonably low noise
level. The ET data acquisition is subject to a substantial amount of statistical
noise, originating from the statistical nature of the decay of the label isotope.
Fig. shows a PET sinogram. The noise in the sinogram contributes to
reconstruction artifacts visible in the reconstructed image of the gbject]1.2(b).

(a) Sinogram (b) Reconstructed object

Figure 1.2: A PET sinogram and the reconstructed image. Both are shown as
negative pictures.

The accuracy of the image reconstruction is the basis of ET studies. The re-
gion of interest (ROI) analysis is based on determining the activity in the tissue
averaged over selected set of image pixels. Noise and reconstruction artifacts
deteriorate the reliability of the ROI analysis in two ways. First, the ROI is diffi-
cult to draw on an image with reconstruction artifacts and noise. Secondly, they
may cause some local bias to the quantitative values of ROI pixels. Because the
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dose given to the patient should be fairly low and the acquisition time should
be relatively short, the noise level of the acquired data is unavoidably quite
high. Thus, there is a need for improvement of the quality of the reconstructed
images.

Image enhancement and filtering methods that are convenient in general
purpose image processing may not serve as reliable noise reduction means in
ET. Particularly the quantitative accuracy of PET sets special requirements to
image improvement operations. What is more, the image reconstruction process
itself should take advantage of the special nature of image formation process.
The system’s sensitivity in distinguishing between two different activity levels
should not be compromised by the noise reduction operation. Also, the reso-
lution of how well two neighboring areas of different activity can be separated
spatially should be maintained.

1.3 Structure of the work

The main result of this work is a practical way to remove a significant amount
of noise during the iterative reconstruction process without causing substantial
bias and without removing relevant information. The developed method is gen-
eral and simple, it applies to various iterative reconstruction algorithms, and it
can be used independently of the organ under the study. The main focus is in
PET.

Chaptel R addresses the data acquisition process. The principles of the emis-
sion detection are discussed. The basis of quantitative measurements, the at-
tenuation correction, is shortly described. The differences between PET and
SPECT and the noise contamination in the data are discussed, too.

Chaptef B discusses two main classes of image reconstruction methods, an-
alytical and statistical algorithms. Various approaches for noise reduction of
the iterative algorithms are reviewed.

Chaptet $4 presents the main goals of the work.

Chaptel’b describes the main contribution of the author, the MRP algorithm.
MRP is used in conjunction with an iterative algorithm as a regularizer or a
penalty.

Chaptei6 reports results and experiments of MRP reconstructions applied
both on simulated and on clinical data.

Chaptef ¥ draws conclusions about the relevance of MRP in the field ET
image reconstruction.



Chapter 2

Data Acquisition

2.1 PET emission

In PET, common labels aréC, 13N, 30, and'® F isotopes[[80]. They can be
attached to medically interesting molecules by radiopharmaceutical processes.
The tracer can be introduced into the patient by injection or by inhalation. The
nucleus of the label is unstable and it transforms into a stable isotope by emit-
ting a positron. The positron and the electron are anti-particles. Their masses
annihilate into two photons of 511 keV according to the equafioe= mc?

[7]. That energy is enough for escaping the body. Because the photons travel at
almost opposing directions, the data acquisition is accomplished by detecting
coincident events by a detector ring surrounding the patient [Eig. 2.1). Each
event is recorded related to a line of response (LOR), a line along which the
annihilation took place. The area overlapped and enclosed by the LORs is the
field of view (FOV). The angles and the positions of the LORs are saved as 2D
tables, sinograms. Each row of the sinogram corresponds to a projection profile
at certain angle, and the bins of the row correspond to the detector pairs on that
direction. A point source generates half of a sine wave into the sinogram, as
visible in Fig.[1.2 on pagkl 3. After the measurement interval, each sinogram
bin contains the number of detected events (counts) for its LOR.

The reconstructed image is a temporal average of the spatial tracer distri-
bution on the transaxial image plane over the data acquisition period. The
unit of quantitative images is commonly kBg/ml. Quantitative accuracy can
be achieved by elimination the effect of the body attenuation and scatter. Even
though transmittance properties are not the main interest in PET, the transmis-
sion measurements are carried out in order to get quantitative images.

5



6 CHAPTER 2. DATA ACQUISITION
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Figure 2.1: Photon acquisition in PET. The detectors work in pairs registering
coincidenty-photons. The sinogram contains the registered counts. The attenuation
effect is independent of the position of the annihilation.

2.2 PET transmission

The emitted photon may interact with the matter and scatter from its original
fly path. If that happens, no true coincident event occurs. Thus, not all an-
nihilations are detected as the body attenuates the photon flux. The photon
attenuation has to be taken into consideration in order to find out the spatial
emission source distribution quantitatively. Also, an image of the transmittance
properties of the tissue may be useful in some studies [11].

The probability that both of the emitted photons travel without scattering to
the detectors is [45]

P=PP=¢ Jorgw@de = [ip, w@)de _ = [o,m@de A& —aq , (2.1)

wherey is the 2D function of linear mass absorption coefficientsis the path
corresponding to LOR for detector paiy and L1, and L2, are the sub-paths
from the place of annihilation to detectois,(= L1,+ L2,4, Fig.[2Z.1). Because

of the coincidence detection, the attenuation effect/ @ independent of the
position of the annihilation along the LOR. This is why an external source can
be used when measuring the attenuation of the body.
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2.2.1 Attenuation correction
Measured attenuation correction

In order to determine the attenuation of the body, two additional measurements
are done: the blank scan and the transmission scan [41]. The blank scan is
recorded using an external source without the patient. This represents the unat-
tenuated case. For the transmission scan the patient and the bed are placed into
the scanner and the attenuated data are measured using the external source. The
external source can be ring-shaped on a fixed position, or a rotating line or point
source[11].

The attenuation correction factor (ACF) can be calculated as the ratio of the
measured counts without and with the attenuating object

Bd 60 a
ACF4 = By etd (2.2)
where B, is the measured activity of the external source. The ACFs form a
sinogram, whose elements express the amount of attenuation for the detector
paird. Figurd 2.2 shows the two scans and the resulting ACFs. Attenuation pre-
correction is carried out as the multiplication of the emission sinogram count
by the corresponding ACF. The ACF in Ef. (2.2) is intended to cancel out the

attenuation expressed by EQ. (2.1).
}

_———
e e
-—

— ——

(a) Blank (b) Transmission (c) ACF

Figure 2.2: The smoothed blank scan, the smoothed transmission scan, and the
attenuation correction factors according[to}(2.2) shown as negative pictures.

Short transmission scan times increase the noise level and worsen the qual-
ity of ACFs. Due to noise, the scan data are usually smoothed prior to the
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division. Otherwise the noise in the ACFs propagates to the corrected emission
sinogram. The drawback of smoothing is that the resulting blurring of ACFs
propagates to the emission sinogram as viell [19].

The measurement of the transmission data can be done before the emis-
sion acquisition, which increases the time spent in clinical routines. In order
to reduce the patient discomfort, the transmission acquisition can be done si-
multaneously to the emission scan by utilizing a dedicated hardware design.
Consequently, the cross contamination of the transmission data and the emis-
sion data must be taken carelof|[11].

Computational attenuation correction

If the transmission acquisition must be avoided, attenuation correction can be
performed by computational methods[41]. The attenuating matter is approxi-
mated by an area with a uniform value of linear mass absorption coefficient
The ACFs can be computed by projecting the graphically definedage and
taking the exponential

ACFy = elvat@ids (2.3)

The assumption that the-values are uniform and the manual work usually
required restrict the usage o6f (2.B) [41].

Hybrid attenuation correction

The hybrid methods for attenuation correction combine the transmission mea-
surements and the computational method [41]. First, thmage is recon-
structed from the natural logarithm of the ACIEs (2.2). Then this transmission
image is segmented to assumed tissue types. The pixel values in the segmented
areas are assigned with the known averagalues and the resulting image is
projected to ACF<[(2]3). The segmentation step reduces the noise in the trans-
mission from propagating to the emission scan when the emission sinogram are
multiplied with the ACFs. The assumptions that there is a known number of tis-
sue types and that they are uniform limit the applicability of the hybrid method
with organs with diverse set gfvalues, as lungs [77].

2.3 SPECT

SPECT devices register only single photons usually without any coincidence
detection[[42]. This allows for detection of photons of various energy levels,
not only those produced by the positron annihilation. Commonly used labels
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are®"Tc and?°'TI. In the absence of the coincidence detection, a physical
collimation is required in order to restrict the possible ray path of photons en-
tering the detector. Usually the detector heads (one, two or three) can be rotated
mechanically around the patient. Each head contains a matrix of detectors such
that the head records an image at its rotational position. These images can be
used as planar images without the reconstruction. The counts along a transver-
sal line of the acquisition images form the sinogram, as shown il Fig. 2.3. The
reconstruction of the sinogram gives the image of the selected transaxial slice.

Figure 2.3: An emission SPECT study of a braieft: The acquisition image.
Right: The sinogram with full 369 rotation. The projections 18Capart can be
combined before the reconstruction.

Often there are no attenuation correction used in SPECT. Without the co-
incidence detection the attenuation depends on the depth of the source location
in the object. Each detector collects photons originating from various depths
and the total count cannot be compensated by a single factor, even if the oppos-
ing counts are combined [79]. The measured attenuation correction in SPECT
can be accomplished in a similar way than in PET, but the pre-corre€fidn (2.2)
is only approximate [41, 11]. For quantitative results, the sketched or recon-
structedu-image can be used for computing the attenuated projections inside
the emission reconstruction algorithm[11].

The lack of the attenuation correction makes SPECT studies commonly
non-quantitative, and the visual quality of the reconstructed image is more im-
portant. Sometimes pre-filtering is applied on the acquired data or post-filtering
on the reconstructed images.
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2.4 Noise and errors in data

The data acquisition process in ET measures the product of the radioactive de-
cay, which is a random process. The emission of a positron is a rare event,
but in a large population (high number of atoms) the number of such events is
distributed according to Poisson distribution|[70].

An underlying activity generates a random number of disintegrations per
a time interval. The realized number of events (counts)js drawn from
a Poisson distribution with the mean equal to the underlying activify6],
Poisson(\)

)\n

P{n=\}=¢ - (2.4)

Technically speaking, the main interest in ET is to estimate the unknown
mean activity\.

In addition to the statistical noise, the data acquisition system results in
some errors in the data because of the finite energy and time resolution of the
detectors. If the photon Bcatteredlit can still be accepted by a detector, which
results a LOR with no real annihilation. Also, almost simultaneous single pho-
tons can be accepted as a pair, which accounts facamdentalcoincident.

The detectors have individual gains, which mustnoemalized There is a
dead timeafter each event before the detector is able to record again. Photons
arriving during that time are lost. The positron travels a few millimeters in the
tissue loosing some energy before it can interact with an electron. The distance
between the place of the annihilation and the place of the decay po#igon

range which contributes to the point spread function (PSF) of the device. These
errors can be partly compensated by approximate statistical methods prior to or
during the reconstruction. However, the Poisson nature of the noise in the data
may be distorted by the operations applied on the raw data [72, 85].



Chapter 3

Image Reconstruction

The image reconstruction process computes a 2D slice of the object emitting
radiation, or in the transmission case, exposed to radiation. The measured ra-
diation profiles organized as a sinogram are the input to the reconstruction. As
an inverse problem the reconstruction is to some extent similar to the image
restoration, but the main difference is the transform from the projection space
into the image space.

The noise and the finite amount of measured data make the reconstructed
image only an approximation of the true object. The properties of the image
depend on the choice of the reconstruction method. The main differences be-
tween reconstruction methods come from how the data and the acquisition are
modeled.

3.1 Filtered back projection

3.1.1 The Radon transform and its inverse

The tomographic data acquisition is conventionally modeled by the Radon trans-
form (RT) [40]

m(t,0) = R{f} = / / f(z,y)0(xcosf +ysinh —t)dedy . (3.1)

The measured datau(t,0) are considered as a set of line integrals passing
through the unknown 2D objegtx, y) at angled (0 < 6 < =), see Fig[3.11.
Then the problem of reconstructing the imgffe;, y) from its projections is to
compute the inverse RT. This is based on the

11



12 CHAPTER 3. IMAGE RECONSTRUCTION

Fourier slice theoremt The 1D Fourier transform of a projection
taken at anglé equals the central radial slice at angteof the 2D
Fourier transform of the original objec{40,(45]

The Fourier slice theorem can be proved in a following way. A projection
profile is expressed using a rotated coordinate systesm

{t}_lcosé sin@]{x} lx]_[cos@ —sin@}{t}‘
s | | —sinf cos# y | |y | | sinf cosh s |7

(3.2)
and [3.1) can be written as

m(t,0) = / f(tcosf — ssinf, tsinf + scosf)ds . (3.3)

Using (3.3), the 1D Fourier transform (FT) of(¢, §) with respect ta is

Fi{m(t,0)} £ M(w,0) = /_OO m(t,0) e 7™ dt

[e.9]

o os
oxr Ox
ot Js

= / / f(tcos® — ssinf, tsinf + scos) e 7™ dt ds
dy Oy
———

00 00
_ —j27mw(x cos 04y sin O
= [ [ teer >
—o0 J —o0
cos? f+sin? 6=1

= F(wcosf,wsinb) , (3.4)

dx dy

where F'(u,v) = Fo{f(z,y)}, andw is the frequency variable of the 1D FT.
(B.4) gives the values of the 2D FT evaluated along the(line- wcos#,v =
wsin #) across théu, v) space.

The Fourier slice theorem states that if the 2D Fourier space could be filled,
the inverse 2D FT would give the original object. This is illustrated in Eig. 3.1.
Unfortunately, a discrete implementation [of {3.4) using fast Fourier transforms
(FFT) requires interpolations especially at the high frequencies, where the den-
sity of the resulting 2D Fourier space is low. This is why direct Fourier methods
are not popular as inverse Radon transform algorithms [37]. The most common
algorithm for the inverse RT is the filtered back projection (FBP) [45], which is
described next.
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y \

1D FT of
other projections

projection

Figure 3.1: The relation of the image space, the Radon space, and the Fourier space
according to the Fourier slice theorem.

The inverse 2D FT expressed using the polar coordinatasd f in the
frequency spacéu = wcosf,v = wsinf) is

flz,y) = FyHF(u,v)} = / / F(u,v) eI2m(@utyv) oy dy

2m 00 ou  Ov
= / / F(wcos B, wsin §) /2@ cosf+ysing) gw gw dw df
o Jo du v
26 00
_ / |:/ M(w,9)|w| 6j27rw(;rcos0+ysin9) dw:| A6
0 —00
= / m(zcosf +ysind,0)dd £ B{m(t,0)} , (3.5)
0

where the Fourier slice theore (B.4) and the definitidn, 6) = [*°_ M (w, 6)

|w| e/t dw were used. The multiplication by | serves as a filter applied to
each projection profile in the frequency space. The filtered préfiesummed
along the ray paths to the image space. The notd8i¢ru(t,6)} is the back
projection ofii over the image. Now (3.5) gives an algorithm to reconstruct the
imagef(x,y) from its projectionsn(t, 6):

Filtered back projection, FBP: Setf(z,y) = 0,Vx,y. For each
projection profile:
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Take FT

Apply the frequency domain filter

Take inverse FT

Back project over the image at the given angle

In the discrete implementation of FBP, the integrals are replaced by finite
summations and FFTs can be used. The filtering can be performed also as a
convolution in the spatial domain, giving the alternative algorithm called the
convolution — back projection [60]. The back projection step requires interpo-
lation, which is the most time consuming part of the algorithm. Otherwise, FBP
is fast and simple in implementation.

3.1.2 Applicability to PET

FBP is capable to compute accurately the inverse Radon transform. FBP works
well especially in the transmission tomography (CT), where the radiation source
and the detector are on the opposing sides of the object. In the emission tomog-
raphy the source is introduced into the object. The measured radiation profiles
are organized as a sinogram, and FBP can be used for the emission case, too.
Attenuation correction can be applied to the emission sinogram before the re-
construction. However, in ET the measured data are intrinsically noisy, and RT
is not an accurate model for the measurement process. This is why the inverse
RT image provided by FBP suffers from heavy noise. FBP is especially sensi-
tive to noise because the ramp filter in (3.5) amplifies high frequencies. This
effect can be weakened by applying a window function to the ramp filter (Fig.
B.2) [36].

A cutoff frequencyw, can also be used as a truncation threshold for elimi-
nating high frequencies. Including the winddi,_(w), FBP becomes

f(z,y) = / [/ M(w,0) |w| W, (w) ei2mw(w cosO+ysind) g, | g9 (3.6)
0 —00

Because the frequency bands of the true signal and noise overlap, a trade-off
between the resolution and noise rejection is unavoidable. This compromise is
tuned by the filter function and the cutoff. The reconstruction artifacts of ET
images reconstructed by FBP are most prominent in the background, where the
correct value should be zero. The radial streaks are due to the fact that filtered
noisy projection profiles do not cancel out each others in the back projection.
This results in both positive and negative background pixel values. What is
more, the back projection smears each profile over the entire image, and the
artifacts are not necessarily canceled out in any part of the image.
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Figure 3.2: Common filter functions for FBP.

The noise in the data originating from a local radioactive decay process
contributes over a large spatial area of the image reconstructed by the FBP
algorithm. This makes the bias of a ROI not independent of the rest of the
image. For instance, the noise and the quantitative value of a low-activity area
may depend on whether there is a high activity area present or not[_Fig. 3.3
shows typical FBP-artifacts. The quantitative value of a local activity may be
contaminated by high activity levels in the arm and in the heart through the
streak artifacts across a long spatial distance. Using the Hann window function
as noise reduction applies some global filtering and is obviously suboptimal.

. = T

Figure 3.3: Reconstruction artifacts of PET FBP imagdseft: Ramp. Right:
Hann. High activity (black pixels) in the vein of the arm contributes streak patterns
to the surroundings. Pixels with negative values are not shown.
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A transmission image can be reconstructed from the natural logarithm of
the ACFs[(2.R) using FBP. The image is usually noisy or blurred due to strong
filtering, but it can be used for a patient movement check [11].

3.2 On iterative reconstruction algorithms

In Chapterf 3.1, the reconstruction problem was solved using transforms and
continuous functions for describing the data acquisition and the object. The
analytical solution was implemented in a discrete way for the computer. Most
iterative algorithms discussed from now on use a statistical model for the ac-
quisition [76,/58]. The measured sinogram data as well as the image are de-
fined to be spatially discrete. The object of interest is the spatial distribution
of radioactivity concentrations, that is, the mean number of emissions for each
image pixel. Because each tomographic slice has a certain thickness, a pixel is
actually a volumetric box, a voxel.

3.2.1 Notations

The notations are listed in Talile B.1. Bold symbols refer to an image or a sino-
gram as a column vector. Symbols with subscripts are scalars. The measured
emission data are assumed to be corrected for attenuation and detector normal-
ization. For PET, a detector refers to a detector pair.

Table 3.1: Notations
A%) | image ofkth iteration

b | pixelindex,1 <b< B
d detector (LOR) index1l < d < D
pgp | projection weighting factor

xq | complete data, counts frobrdetected adl

Adb | Abpdp, Mean ofr g,

ng | measured counts at detectbr

A4 | mean counts at detectadr

Ay | mean counts at pixel
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3.2.2 General concept

The mean count of a pixé) \,, is the desired information because it is related to
the tracer concentration. For each pixel, the radioactive decay process generates
a random number of emissiomgsdrawn from the Poisson distribution with the
nonnegative meag, [58].

The detected sinogram count is a sum of realized outcomes of independent
random variables along the ray path

Ng = Z«Tdb ~ bepdb . (3.7)
b b

Each pixel-detector pair has a weight that describes the contribution of
pixel b to detectord (Fig.[3.4). This may include physical aspects like attenua-
tion , photon range, and non-isotropic PSF, but it is often defined using simple
geometrical rules, such as an area of the intersection or a bilinear interpolation
according to the distances from the pixel to the LOR path [38].

xp ~ Poisson(Ap)

Figure 3.4: The discretization of the image and the acquisition procegss the
weighted sum of number of emissions in the pixels overlapping with the LOR of
detectord.

There are various approaches for solvinfrom n = Px, Eq. (3.T). The
D x B matrix P is sparse but large. Using direct matrix algebra an exact so-
lution does not usually exist with noigy and approximate?, and the linear
least-squares solution with pseudo inverses contains negative pixel values [68].
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There are iterative algorithms for solving EQ.(3.7), such as algebraic recon-
struction techniques (ART) and its variants, simultaneous iterative reconstruc-
tion technique (SIRT), and simultaneous algebraic reconstruction technique
(SART) |45]. The idea behind them is heuristically easy to understand. At
each iteration, the current guess of the image is checked against the data. The
criteria is how well the re-projection of the image matches with the measure-
ments. In its simplest form this is a subtraction. This error between the two is
projected back to the image space and added to the image, thus updating it. The
problem is that the image becomes very noisy as the iterations proceed. What is
more, the solution of (31 7);, actually tries to describe the number of occurred
counts, not the mean counts. The interest is not to find out how many annihi-
lations did happen during a particular acquisition period because they are just
outcomes of random variables and as such inherently noisy. The real interest
are the means of those random variables,

Similar to [3.T), the sum of the means of the random variables along the ray
path equals to the mean of the measured data

Ad = Z Adp = Z AbDdb - (3.8)
b b

Eq. (3.8) contains the desired quanthtyHowever, the meah, is not available.
With realistic acquisition times, noise contributes heavilyitothat is, \; #
ng, and Eq. [[318) can not be solved as EQ.](3.7). The solviny mfquires a
statistical link betwee\ andn.

3.3 Maximum likelihood

3.3.1 MLEM algorithm

The maximum likelihood (ML) estimation utilizes the classical estimation ap-
proach, where the quantity of interest is unknown but a deterministic constant
[61]. This constant is a parameter to a probability density function (PDF) re-
lated to the measured random data. Adapted to the reconstruction problem in
ET, the ML algorithm searches iteratively for such an estimate or a gue$s

the unknown image\ that it maximizes the conditional probability of the data,
given the image. As a function of the unknown image, it is called the likelihood
function:

IA) = f(n|A), (3.9)

where f() is the PDF of the data. As with ART, at each iteration the cur-
rent guess of the true image is checked against the data. Now the criteria is
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statistically more rigorous: the likelihood. Intuitively that is, if the image were
the true image, it should generate such simulated 'measured’ data that fit well
with the actual measured data. The fit is evaluated according to the likelihood
criteria, and the estimate is made iteratively better than previous guesses. The
reconstructed ML image is then the estimate

A = arg m}z\mx[l()\)] . (3.10)

The likelihood in [3.ID) can be replaced by the log-likelihodd(I(\)) =
L(A), in order to simplify expressions.

The unobserved complete datas exploited in the derivation of the max-
imum likelihood expectation maximization (MLEM) algorithin_[66,/58]. The
complete data are related to the observed dataough the many-to-one map-
ping (3.7). In order to illustrate the reason for introducinget us first build
the log-likelihood without using the complete data. Each measured sinogram
bin count,n,, is distributed according to the distributidPoisson(A,). Then
the objective function is

LA) = In(f(n|A)=In <H e M ()‘d)nd)

ng!
. d

= Z [=Ad + naIn (Ag) — In(ng!)]

d

=y [_ ; Ay Pab + ng1n (; b pdb>

d

+O,  (3.11)

whereC' contains terms independentxf. The function[(3.1]1) should be max-
imized with respect to\,, which is cumbersome due to the nested sums with
logarithms.

Equation [[(3.11) becomes easier to deal with when the completecdata
used. Eachy, is distributed according t@oisson(Ag). Thus, the complete
data log-likelihood is then

In(f(x|A) = In (H oA (/\db)T‘“’>

Tdp-
db db

= Z [_)\db + Tdb In \Qd/liz - hl(l‘db!)]

b,d
’ =X\oDdb

= D [N pa+zan ()] +C (3.12)

bd
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As x4 in Eq. (3.12) is unavailable[(3.112) is replaced by its conditional
expectation, given the dataand the current guesg®

QXA = E [In[f(z|A)] | n, AW] . (3.13)

A Poisson random variable: §,) conditioned on its sumn) is a multinomial
[25], whose expectation can be computed as

NG
E [xdb | ng, )\<k>} = NP = ng db & = &
>y )‘ilb2 > )‘l<;’ >pdb’

where the producV P is the mean of the multinomial_(3.114) is the expectation
(E) step of the MLEM algorithm. After replacing,, in (3.12) byz, from
(B:I3), the expectation of the complete data log-likelihdod (3.13) is maximized
with respect to)\,. This also maximizes the observed data likelihg@e|\)

[68]. The M step is then

7”Ld)\l<)]€> Pdb A T (314)

S{QAm)) %{Z[—Amﬁmln(ww}

b,d

= —Zpdb—i‘zfdb/)\b =0
d

d
S WD STLITY (3.15)
dedb

MLEM updates the imaga\‘*’ sequentially by usind (3.15) as the guess
for the pixelb in the next iteration[[76]. Combining (3.115) aid (3.14), MLEM
becomes as

AR 8

A+ )‘ék> Z nd pay
b dedb 2 Zb, )\é@pdb/ dedb

The MLEM algorithm[(3.16) computes a new pixel value iteratively by mul-
tiplying the current pixel by the likelihood coefficienfm. The term)_, pas
can include the attenuation of the body, scatter and detector inefficiency [58],
if the pre-correction (2]2) is not used. The normalization pre-correction effec-
tively assumes that all emitted photons are detected by some detector,
S pa» = 1 [76,[66].

MLEM is usually initialized by setting the first image to be a uniform disk,
such that it is enclosed by the FOV and the total sum of pixel values matches

(3.16)
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with the sum of the sinogram counis [62]. Because the update is multiplica-
tive, it is ensured that the background pixels remain zero and that all pixels
are nonnegative. Also, MLEM preserves the total count for all iterationis [76]:

SUAR =S g, VE

MLEM increases the likelihood(n|A) in a nondecreasing way towards the
fixed point, where the likelihood does not increase any more [66]. If MLEM
is allowed to converge, the resulting image provides a good global fit with the
measured data.

3.3.2 Noise and bias in iterations

Sometimes an image estimate with a good fit with the data may not be as good
as it intuitively might be [[711]. This is due to the fact that the reconstruction
problem in ET is often an ill-posed problem [68]. It means that a small change
in the measured data may cause a large change in the estimated image [14].
Moreover, as the data are noisy, a good fit makes the image noisy, too. This is
a result from the fact that when estimating the mean count of a Poisson distri-
bution, the best guess is indeed the number of realized counts in that pixel. In
a way, the converged MLEM solution falls into the same pitfall as ART, that is,
the pixel values attempt to describe the actual counts, not the mean counts.

A common problem with MLEM is that it generates noisy images when the
iterations proceed. This can be seen from Eig. 3.5, which shows images from
a sequence of MLEM iterations. In order to avoid this sort of over-fitting, the
iterations can be stopped before the convergence [82]. This approach suffers
from a noise / bias trade-off: if the convergence is reached, the image is too
noisy [78]. On the other hand, if only a small number of iterations are used, the
image is less noisy but the quantitative level of pixel values are biased towards
the initial starting image 162]. If the initial image is a uniform disk, the local
bias may be substantial![3]. If the initial image is a corresponding FBP im-
age, the FBP-based reconstruction artifacts may still remain in the prematurely
stopped MLEM image.

Even with the noise / bias trade-off, the MLEM image may still be better
than the corresponding FBP image, but the compromise is unavoidable. Thus,
most reconstructions called "MLEM images” should be called "aborted MLEM
images” in order to emphasize the fact that some of the theoretical attractiveness
of the MLEM algorithm may have lost due to the early stoppage.
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Figure 3.5: Intermediate MLEM reconstructionslop row: iterations 5, 10, 20,
and 30.Bottom row: iterations 40, 50, 60, and 100.

3.4 Bayes priors and penalties

The concept of making an ill-posed reconstruction problem to a well-posed one
is based on introducing extra control on which solutions are more favorable than
others. This means that the reconstructed image is required not to fit with the
data as well as possible, but also be consistent with additional criteria. Those
criteria are set independently of the data. Depending on the point of view,
these restrictions can be considered as Tikhonov regularization [14], penalty
functions [32], or as Bayesian priots [51]. They all are designed to push the
solution towards a predefined assumption about the nature of the true image.
In terms of Bayesian estimation, the desiPe not an unknown determin-
istic constant, but a random variable [51]. Taeriori PDF f,(A) gives extra
information about the image, independently of the measuredrdatEhe ob-
jective function to be maximized is not the likelihood (3.9), butahmosteriori
PDF

f(n|A) f,(A)
f(n)
Becausef(n) is independent of the image, it can be left out from the objective

function. f(n|A) is the likelihood function[(319). The reconstructed image is
then the estimate

f(AIn) = o f(n|A) fo(A) - (3.17)

A~

A = argmax [f(n|A) f,(N)] = argmax [N /,(N)] . (3.18)

This estimator is called maximumposteriori MAP. The difference between
(B10) and[(3.18) is the introduction of the prif(A). Taking the logarithm,
(3.18) separates into a sum
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~

A =arg max [In(l (A)fp(N)) ] = arg max [L(A) + P(X\)] . (3.19)

Now there are two conditions to be met. The fifst), is the likelihood, which
requires that the imaga has to be to some extent consistent with the data.
The second term il (3.197(), sets a penalty if the image violates the prior
assumptions on what kind of an image is favored. The MAP estimate searches
for a balance between the two terms. A noisy image is penalized by the second
term, even if it fits well with the data according to the first term.

Depending on the algorithm, the terh) in Eq. (3.19) can express some
other data fitting criteria than likelihood, such as least squares error or cross-
entropy [48/ 18]. Then the estimate is not MAP, but the general problem of
over-fitting can be regularized usiagl hocpenalty functions £().

The choice of the prior is crucial. The reconstructed MAP image reflects the
assumptions made when constructing the prior. The nature of the application of
ET is to reveal the unknown activity concentration, with potential unexpected
deviations from the normal uptake of the tracer. Too strict conditions may cause
loss of relevant information, especially in an unusual case. This is why the prior
should be as general as possible, as long as the ill-posedness can be dealt with
it. Ideally, the true image should pass the check against the prior unpenalized.

3.4.1 Gibbs priors

A common Bayesian prior is formulated according to the Gibbs distribution,
whose general form is [32]

fr(A) =C e PV = 0 e AL VD) (3.20)

where/ is the Bayes weight of the prior, arddis a normalizing constant. The
non-negative energy functidii(A) has its minimum and the prior has its max-
imum when the image meets the prior assumption&.(A, b) is the notation
for the value of the energy functidii() evaluated or\ at pixelb.

A common choice fot/() in (3.20) is an energy function computed using a
potential functiorv() of the differences between pixels in the neighborhdpd

BUND) =B ww v(h— N, (3.21)

1ENy,

wherewy; is the weight of pixeli in the neighborhood of pixél [56]. The
parameters expresses the confidence of the priorjslis close to 0, the prior
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f»(A) is close to its maximum over wide range A% and [3.2D) ranks im-
ages cautiously. With a largg the prior is more peaked and some images are
significantly more favorable than others.

As the neighborhoodV, at pixelb is spatially finite,U/() has a local support
and the Gibbs distribution defines a Markov random field (MRF) [32]. Con-
sidering the image as a MREF, its local characteristics are conveniently modeled
using the Gibbs priof (3.20).

3.4.2 One step late algorithm

In order to implement the prior, it is necessary to modify the MLEM algorithm
according to[(3.19). The complete data formulation and the E (3.14) are
same as before. The M step now maximizes the expectation of the log-posterior
probability

LA A9 = E [In[f(z|A)] | n, A%] +In(f,(A) = QA AH) — sUN)

(3.22)
with respect to\, (ignoring the constant terid). This is maximized by solving
0
il (k)y —
8)\pr()" AT =0. (3.23)
Using (3.15),
0

0 0
v Yy _— Y ON- I /
/\pr()\,)\ ) = )\bQ(A,)\ )— 0 " Eb, U(AD)

= = pat Y Ta/d— 5%(] (X,0) =0. (3.24)
d d

The one step late (OSL) algorithm uses the current ime§ewhen cal-
culating the value of the derivative of the energy functiéf) in (3.24) [34].
This decouples,, from the prior term and, using (3.114), the OSL update can be
solved as

A = A" =\ W (3.25)
Y abav+ B ai,\bU (A, 0) |acamw

c£<k> is computed using MLEML(3.16). The coefficient that updates the pixel
consists of two parts;“* as in [3.16), and”*). With the simplifying normal-
ization assumption} _, pa, = 1, the penalty coefficient
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P(k) 1
o R = : (3.26)
b 1+ 8 25U (A b) [xeam

is close to one if the current image meets the prior assumptiansTldten the
values ofa%bU (A, b) are small. Large values of the derivative imply that the

imageA¥) deviates from the prior assumption.

3.4.3 Mathematical priors
Priors based on pixel difference penalties

The potential function() in (3.21) defines the behavior of the prior. With the
quadratic choicey(r) = r?, the derivative in[(3.25) i&r, and the penalty term
in (3.28) is linear with respect to the pixel difference- A" — A"

)

PR 1
i)
14265y, oAy = A
1

= ® Y (3.27)
14206 <)‘b = 2ien, Woiki >

assuming scaling witfy ;. wy,; = 1. The penalty is set with respect to the

sumZiGNb wbiA§k>, against which the current pixé\ﬁk> is compared. In effect,
the penalty reference is the output of a linear finite impulse response (FIR)
filter with filter coefficientsw. With proposedo’s [56], the FIR is a low-pass
filter [69], and non-smooth and noisy images are penalized. Images that are
close to the result of the reference FIR filter are smooth and they are not much
penalized. This results in blurring of sharp edges between different activity
concentrations in the tissues. The prior accordindg_fo (3.27) can therefore be
called the smoothing prior.

The number of coefficients in the reference FIR is limited because the
neighborhood of the corresponding MRF can not be expanded spatially too
wide. The correlation between pixels in the ET image tends to drop quickly as

the spatial distance between them grows. Thus, a realistic prior has a narrow

range in the Markovian sense. A window size of a few pixels leaves little space
for a proper FIR design.

With (3.27), the MAP estimate is less noisy than the MLEM image. The
prior assumption is that the true image is smooth. But an ET image is known to
contain non-smooth areas, such as boundaries between different tissues.
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Hyperparameter tuning

In order to avoid blurring, the quadrati¢r) in (3.21) can be replaced by other
functions, whose derivative is less prominent in penalizing step edges. Some
of these potential functions and their derivatives are listed in Table 3.2. The
chosen potential function can be further tuned by an extra paraméters
v(r/T) [56]. The Huber prior use¥' a threshold in order to use the constant
penalty function instead of the linear one for large pixel differences [15]. The
additional parameters of the prior are called hyperparameters. The adjustment
of the Bayes weight and especially the hyperparametéis difficult in general

[48]. The main difficulty is that the paramet&r adjusts the penalty by the
height of the step [55,(8].

Table 3.2: Suggested Potential Functions

u(r) %v
r2 2r Quadratic,[[55]
In (cosh (7)) tanh(r) [34]
r2/(1+1r?) 2r /(1 +r?)? [56]
In(1 + 72) 2r /(1 +r?) [56]
[Ir[+ ()7 = 1) /2| [sign(r) — sign(r)/(1 + Ir))?] /2 [56]
r2 /2 ,r < T T ,rl < T =
{ Tlr| = T2/2 | |r|>T { Tsign(r) , |r|>T Huber, [13]

By convenient choice of parametetsT’, or v() itself, the derivative of the
potential function is tailored such that edges that are high enough are preserved.
Fig.[3.6 shows various proposed potential and penalty functions from[Table 3.2.
The functions in the lower plot (Fi§. 3.6(b)) should be designed in such a way
that the relevant pixel differences were not penalized too niuch |35, 55].

There are two possible pitfalls in this approach. First, the true edge height
is unknown, except for artificial phantoms, for which most priors work well.
Secondly, low edges are the most important ones to be detected because they
represent small quantitative differences between concentrations in adjacent tis-
sue areas. If the threshold is set properly, high edges are not blurred too
much and spatial changes of low amplitude are penalized. This may have po-
tential risks of loosing important information and degrading the sensitivity in
distinguishing between two different activity levels, because the power of ET
should be in detecting small and unexpected, often abnormal changes in tracer
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Figure 3.6: Potential and penalty functions as a function the pixel differen@e
arbitrary units). The solid line is the quadratic function, the others are in the order
of Table[3.2: dotted, dashed, dash dot, dash dot dot dot, long dashes. Parameter
T = 0.75 for Huber prior.

activity.

The choice of parametér has a trade-off in the amplitude domain, much in
a similar way than the cutoff parameter in FBP reconstruction. Also, the proper
choice of the derivative function (Fif. 3.6(b) on pagé 27) is similarly difficult
and arbitrary as the choice of the FBP filter function (Eigl 3.2 on page 15). The
interesting and harmful parts of the signal overlap, both in the frequency do-
main (cutoff) and in the amplitude domai’); Setting thresholds in order to
distinguish the two parts may lead to compromises in terms of resolution or sen-
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sitivity. However in the transmission image reconstruction, setting thresholds
is reported to be less critical [67].

The gamma prior is another suggestion for the prior PDEin [3[22) [57]. It
has two pixel-wise parameteks, and 3.

Fo(Xw) = T(aw) ™ (aw/ ) Ape e /P (3.28)

whereT'(«) is the gamma functiom(«) = [~ ¢* e 'dt [71]. The gamma
prior (3.28) is a Gibbs prior with a single-pixel neighborhood. The mean of the
PDF is(3, and the variance i§?/a;. The log-priorP() in (3.19) is

P(Ay) = (o — 1) In(Xe) — awAy/ By - (3.29)

The motivation for the gamma prior is that it is analytically convenient to deal
together with Poisson-based likelihoods. The Hessian matrix of the log-prior
(B.29) is diagonal with strictly negative diagonal entries, which keeps the objec-
tive function in [3.1B) concave [57]. Because the gamma prior is independent of
other pixels, the objective function can be solved without the OSL-technique.
Unfortunately, the parametetig and 3, are difficult to adjust [83].

In general, the fundamental problem with designing mathematical priors is
the difficulty to define analytically such a PDF or a energy function and its
hyperparameters, which would not penalize the unknown true image.

3.4.4 Anatomical priors

Anatomical images (MRI, CT) have been used as priors in order to improve the
edge sharpness in the emission images([20, 8, 17, 61]. The anatomical image
of the same subject brings information on the tissue borders into the emission
reconstruction. From this edge map data a line site process is iteratively updated
in parallel with the actual reconstruction algorithm. The line sites are set in
between pixels and they effectively guide the prior not to smooth out the edges,
given that the multimodal image registration can be accomplished|[9, 21].
Anatomical priors are justified by the fact that there is a strong correlation
between the anatomical image and the corresponding emission image (see Fig.
[1.1). For instance, an anatomical boundary between bone and gray matter in
the brain implies a probable boundary in the emission activity, too. The last
term in (3.19) can be tuned using the anatomical image, expressing the believed
similarity of the emission image and the anatomical edge map [8]. The penalty
is not set if there is a match between the emission activity and the anatomical
edge map. This allows for strong edges not to be penalized, but requires some
sort of knowledge of the tissue types. The resulting emission image has often
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sharp edges and the smoothing prior has removed most of the noise in the areas
surrounded by the anatomical borders.

The critical aspect with this complicated approach is that even though the
correlation between a MRI image and a PET image is high, the most important
information is the differences between them, as stated in Sectibn 1.1 on page
2. The penalty according to the differences between anatomical and emission
data nicely penalizes noise, and the resulting image look almost as good as the
anatomical image. The risk is that the reconstructed image is too general, kind
of an atlas picture, not a precise description of the status of the tissue of the
particular patient at the given time.

3.5 Implementational aspects

3.5.1 Acceleration techniques

The MLEM algorithm is slow in convergence [68]. During the first iterations
the likelihood increases rapidly but the rate slows down at later iterations. The
rate of the convergence depends by the design of the objective function [48,
18,(23,[28]. If the objective function is made more shallow near the global
maximum, the step size is increased [29]. The speed depends on the strategy
how the algorithm performs the optimization. Gradient based algorithms can
be accelerated by going further to the direction indicated by the update [74].
Space-alternating generalized EM (SAGE) updates a subset of pixels at a time
[81]. Coordinate ascent (or descent) algorithms update one pixel at & time [28,
1€].

One of the most popular ways to speed up the rate of convergence is the or-
dered subsets (OS) methad[39]. In OS, the projections are divided into smaller
subsets of projection angles (sinogram rows). EQ. {3.16) is applied after pro-
cessing one subset. The increase in speed comes from the fact that the image is
updated more frequently. If one subset contains every fourth projection angle,
the pixel values are assigned a new value four times during the processing of all
projections once. There are two drawbacks in the heuristic nature of OS. There
are no proofs of convergence and the usage of priors is ambiguous. The prior
can be applied in between the sub-iterations or after a complete iteration [52].
With high OS-factors, both of the strategies may be unsatisfactory. The effect of
one sub-iteration to the image is a streak-like pattern with visible gaps between
the projection angles. This may be penalized too much by the prior, changing
the net effect in an unexpected way. On the other hand, a complete cycle may
increase the amount of noise too much. Nevertheless, several algorithms have
been speeded up by applying the OS method[52, 46].
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Most of the iterative reconstruction algorithms can be and need to be reg-
ularized with a prior. The effect of the prior is that more iterations can be run
and the image will be more precise, given that the prior does not cause a bias of
its own.

3.5.2 Corrections

The background events (accidentals, scattered) in the measured data can be es-
timated and collected to a separate randoms sinogram in some devices [62].
Because the pre-correction destroys the Poisson nature, the data can be left un-
corrected and the randoms can be taken into account in the mean number of
detected countsd, = \; + r, [68]. Also, the statistical model can include
the effect of the pre-correction [85]. These choices may change the unregu-
larized algorithm, but the prior remains the same independent of whether the
randoms are pre-corrected or taken care of inside the algorithm. In this work,
the randoms pre-correction provided by the PET manufacturer was applied.
Similarly, the pre-correction of the emission sinogram for the body attenua-
tion has been de factomethod, especially in older ET devices. This is the way
how attenuation correction was accomplished for the data used in this work,
unless otherwise stated. The effect of the attenuation can be included in the
projection weighting factorg,,, as mentioned on pagell7. This is theoretically
more sound than the pre-correction and it is reported to improve the results of
an iterative algorithn [65]. However, the problem of the regularization and the
definition of penalties or priors still remains.

3.6 Performance measures of estimators

The reconstruction algorithm can be considered as an estimator of the unknown
guantity. There are several ways to compare the estimator performance [51].
Theunbiasednesss a desirable property

~

bias(\) = E(\) = A =0, (3.30)

where) is the estimate of the quantity

There is often a trade-off between the bias and the variance of the estimate.
The variance measures the variability of the calculated estimate. An estimator
with a small bias is correct on the average, but it may have a large variance,
which makes an individual estimate unreliable.

A proportional measure of two estimators A and B isttlative efficiency
the relation of the two variances
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Var(\,)
Var(;\B) .
Themean square errofMSE) is a measure of both the bias and the variance

efficiency = (3.31)

MSE(\) = E [(X - )\)2] - [bzas(X)r + Var(}) . (3.32)

Themean absolute errofMAE) is another measure of the quantitative ac-
curacy and the variability of the estimate

MAE(\) = E [M - A@ . (3.33)

Because some of these measures need the knowledge of the true quantity,
they are most useful in simulations.

3.7 Summary

The standard image reconstruction algorithm in ET, FBP, has been the same as
the one that is successfully used in CT. The quality of such an ET image is
compromised by the fact that the data acquisition process is different in the two
cases. In ET, the measured data have a strong noise component due to the sta-
tistical nature of the decay of the radiating source. This is why the FBP images
are often contaminated by noise and reconstruction artifacts. In order to take
into account the acquisition process of ET, the iterative reconstruction methods
utilize a statistical model. The main problem with these iterative algorithms is
the increase of noise in the image when the number of iterations increases. This
is unfortunate because the quantitative accuracy requires a reliable evaluation
of the concentration value of a region of interest (ROI) of the image.

In Sectior 3.4, various approaches of including prior information were re-
viewed. Mathematically defined priors may serve as convenient regularizers if
their hyperparameters can be tuned properly. But rather than expressing the true
nature of the unknown image, they serve as possible techniques to penalize the
noise.

There are some figures of merit that a decent image reconstruction method
should comply with. A small bias, and at the same time a small variability
and insensitivity to noise are important in ET. The practical usability of the
algorithm depends more on the hardware. The visual quality is subjective and
it depends on human experiences and practices, which makes it a very complex
issue.

Regarding the various algorithms for implementing the chosen reconstruc-
tion method, the choices are many. In order to keep the solution practical, the
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method should not be too complex, yet general enough. This is the problem
with anatomical priors. Other modalities as well as many reconstruction pa-
rameters (Bayes weight, tuning parameters, number of iterations) would make
it difficult to set up a procedure, which is simple enough to be used in practice.
Alone the choice of the two parameters of FBP (window, cutoff) is more or less
based on subjective issues and carried out empirically [26].

The generality is important because with few assumptions and restrictions,
the solution does not contain built-in descriptions about the image properties.
The object is, after all, unknown.



Chapter 4

Aims of the work

The large variety of different reconstruction methods indicates that the image
reconstruction problem has been addressed using many different approaches.
None of them is the best one; each method expresses the assumptions and the
point of view of its own. When using FBP, the starting point is, or should be,
that the measured data is close to the Radon transform of the object. Applying
a smoothing prior with iterative algorithms means that the object is believed
to be smooth, parameter-tuned priors express some known specific properties
of the object, and so on. All these solutions have their justifications, and the
reconstructed image expresses the underlying assumptions.

Our aim was to develop an effective noise reduction method for statistical
ET reconstruction, without significantly compromising the quantitative accu-
racy. The noise reduction procedure should not cause significant bias to local
pixel values. In this sense the requirements are different from general image en-
hancement operatioris [40,10]. Especially in some PET studies, the quantitative
aspect is often more important than the visual appearance.

One of the main emphases with the design of the penalty or the prior was
on avoiding unnecessary complexity. This means both the practical operations
required in the clinical work and the technical usability of the algorithm. The
number of the parameters of an iterative algorithm should be few, if possible
just one. Also, the parameter should not be too sensitive to suboptimal choice
of values because it is difficult to assign the optimal value objectively.

The emission image is the main goal of the ET imaging. The transmission
measurements are important because they make quantitative images possible.
The transmission images themselves are quite rarely needed, but they can be
used in attenuation correction. The statistical transmission reconstruction al-
gorithms suffer from the ill-posedness just like the emission algorithms. Thus,
the general principle for reducing noise during the reconstruction of ET images
should apply for both emission and transmission.

33
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Given the simplicity of the developed method, it is sufficient to compare it
against the main standard algorithms, FBP and MLEM. A survey of the relative
performance of other more complex priors is beyond the scope of this work.



Chapter 5

Median Root Prior

5.1 General description

The new approach starts with the general description of the unknown emission
image: the desired image is assumed to be locally monotohiside a local
neighborhood, the changes of the pixel values are spatially non-decreasing or
non-increasing. Using that assumption as a penalty to MLEM, the median root
prior (MRP) algorithm was developed![1, 12,4, 3]. Images that are invariant
under median filtering are called as root images, and they are locally monotonic
[10]. By setting the penalty of a pixel against the local median, the penalty
is set only if inside a local neighborhood the image contains non-monotonic
structures. No other constraints are used. This constraint is plugged in the
term P() of Eq. (3.I9). The difference between adjacent pixel values is not
penalized in MRP, which makes it possible to avoid the tuning of the derivative
of the energy function, as discussed in Sedtion 8.4.3.

The Bayesian interpretation of the penalty is that MRP’s prior favors any
locally monotonic image. This is what the otherwise unknown discrete version
of the continuous true image is assumed to be. The density of the image grid
affects on how well the assumption can be justified. With too few pixels, the as-
sumption of local monotonicity may be not well met, but with reasonably small
pixels the assumption can be considered fairly valid. In the iterative reconstruc-
tion process the image is guided towards the root by MRP; the final image is
and needs not to be a root in general.
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5.2 MRP Algorithm

5.2.1 Emission OSL algorithm

Using the OSL-form[(3.2%. 3.26), the MRP algorithm was defined for emission
as [2]

Gy _ AgE (k) L(K) Pk

Ay = = Ny e e (5.1)
1+ 3 2y

whereM, = Med{A§k>|i € N,} (the median of pixels in the neighborhodd
centered at), andj is the weight of the prior. The positivity constraint for the
pixel is: 0 < g < 1. The penalty coefficien[tf:““> sets a penalty if the old pixel
value is not close to the local median. This encourages the solution towards
locally monotonic images.

The penalty of MRP is set according to how much the center pixel differs
from the local median. In contrast to priors of Tabl€l 3.2, individual pixel dif-
ferences are not penalized. Since the median follows an edge, a simple penalty
function can be used. The prior needs not be explicitly instructed to behave
differently in flat and edgy image areas based on information from other modal-
ities, nor do quantitative aspects such as the edge height or the noise amplitude
cause any parameter tuning. If the image is locally monotonic, no penalty is
applied. The restriction of local monotonicity is quite modest because it does
not assume anything about the appearance or the shape of the true object. Only
non-monotonic local changes of activity between pixels in the neighborhood
are penalized. Typically, noise is locally non-monotonic and the true signal is
locally monotonic in ET. This is quite different from the case of the conven-
tional smoothing prior, for which a uniform or a flat image passes the prior
without penalty.

5.2.2 Interpretations on the prior

Because of the median, an analytical analysis of the properties of MRP is not
straightforward. The following is not a rigorous derivation of MRP, but it is
simply intended to point out an interestinguitive connection between MRP
and Gaussian type of priors.

A general prior distribution in the form df (3.P0) for Gaussian PDF’s is

Fo(A) = C =3 Zp Qomma)?/my (5.2)

where the mean of the prior PDi,, is a hyperparameter. The log-prior or the
Gibbs energy function of(5.2) is of the simple quadratic form
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_ }: _ Z()\b—mb)2
- ﬁ - U(Avb) - 5 - me ) (53)
and the derivative term in (3.26) is
_ B —my)

By assigningl(5.3) into EqL_(3.22), the objective function or the log-posterior
function is

(k)Y _ (k) _ (k) (Ap —my)?
LA A®) = QAAY) = BUR) = QW) =3 ===
b

(5.5)
whereQ(X, ) is the expectation of the complete data likelihood function
B.13) used in[(3.15) when deriving the MLEM algorithm. In principle, the
likelihood can be replaced by another data fitting criteria, such as least squares
or entropy, as noted in Sectibn B.4.

An algorithm for this hypothetical prior can be derived by the maximization
of (5.8) with respect td,, using the OSL-technique that gives

0 Z Tay, BN — 1)
o *))) ¢ _
" (LA, A Zp + o~ 0 (5.6)
(k) LK)
= Al o N G . (5.7)

NOE
> aDay + 3

In order to have any practical value for (5.7), the values of the hyperparam-
etersm, must be set somehow, possibly depending on the im\agehich is
again depended on the measured data. Alsfs can be made spatially de-
pended on each others by, = g{/\§k>]i € N,}, where the functiory and the
neighborhoodV, link the meansn, together.

As discussed in Sectidn 3.2.2,’s are the means of the realized outcomes
xp, for each pixel. Then by defining a neighborhadg a MRF it set up, which
expresses a limited spatial dependency. The dependency is caused by com-
puting the hyperparameters values of overlapping neighborhoods. The random
variablesr, and )\, are themselves each pixel-wise independent.

By comparing [(5.11) and_(5.7), an intuitive connection between MRP and
the above Gaussian prior can be seen:= M, = Med{\*'|i € N,} (with
normalization)_, ps, = 1). So it looks like the location of the Gaussian prior is
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selected to be the median of the neighborhood. Unfortunately, if this definition
of m, is assigned intd (512), the analytical derivation becomes intractable. Due
to the median operation, the dependencéfpbn the image\¢* is non-linear.

The following heuristic simplification was used In [3]: the hyperparameter
M, was treated as an unknown constant, whose value was selected later using
the robust median operator. For some justification, [Fid. 5.1 illustrates the de-
pendence of\/, on A\,. When the value of\/, equals the center pixel value,
the penalty term vanishes and the prior is effectively not in use (sloped part of
the plot in Fig[5.). Otherwise}/, is selected to be one of the other pixels
{\i|t # b,i € N,} (constant part of the plot in Fig.5.1), and as such treated as
an independent variable when taking derivatives with respext to

M,

A

Ay > M,

s ot

Figure 5.1: The hyperparametél, as a function of\,. s = max{\;|\; < My, i €
Ny}, andt = min{\;|\; > M, i € Np}. The denominator in((5l1) is 1 when
S S )\b <t.

Thus, the dependence of, on )\, either disappears from the penalty term
of MRP (5.1), or, when\, # \,, M, is effectively a constant. However, as the
value of M, is not strictly independent of,, the connection to Gaussian priors
is up to intuitive interpretations.

5.3 Transmission algorithm

5.3.1 Motivation

Quantitative PET studies require the computation of attenuation correction fac-
tors (ACF) for compensating the body attenuation effect in the emission data,
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as mentioned in Sectign 2.2.1. When emission data are multiplied by the ACFs,
the noise or blurring caused by smoothing propagate from ACFs to the emission
data.

If the image of linear mass absorption coefficients available, the ACFs
can be generated by implementing the principle of Eql (2.3). From the recon-
structedu-image, the ACFs are computed as

ACF, = efila W) (5.8)

whereR(lg, p) £ Y, Lty iS the forward-projection of the imageto the LOR
d, andly, is the weight of the contribution of pixélto LOR d.

As mentioned in Sectidn 3.1.2, transmission image can be reconstructed us-
ing FBP from blank and transmission measurements. However, FBP images are
noisy and some bias may introduced in the transmission image [28]. Usually
the image is segmented befare (5.8) in order to reduce noise and artifacts. This
means that some assumptions need to be made about tissue types and their typ-
ical u-values|[63, 84]. The segmentation method is rather complex to apply for
a diverse set of attenuation values. In practice, some details may not properly
contribute to the ACFs [77]. Thus, high quality transmission images are desired
for accurate attenuation correction.

5.3.2 Data fitting algorithm

The iterative methods do not usually reconstruct the logarithm of the ACFs
(2.2), but use a more precise statistical model for the scans [30]. The likelihood
for the measured transmission data is Poisson

(By e—Rad,u))Td

o , (5.9)

P = Tt
d
whereB is the blank sinogram, arnfl is the transmission sinogram, is the
probability of photon capture per unit length for pixelThe mean of the Pois-
son can include random eventssuch as accidentals or scatté; e~ 7(la:») +
rq, If available [28].
The objective function to be maximized is the log-likelihood

L(p) =Y [~Bye ™" — Ty R(lg,p)] + C . (5.10)
d
The MLEM algorithm for [5.ID) was developed in]58] using a complete data
formulation, but it is too slow in practicé [59]. The convex algorithm for trans-
mission by Lange et al._[59] is commonly used instead. It uses Newton’s itera-
tion and updates the pixel as
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(5.11)

If B andT have different acquisition time# is scaled accordinglyB and
T are both normalized for detector compensation. There are various ways to
include mathematical priors of the type of Tablel 3.2 into (5.1.1) [59]. Anatomi-
cal priors are not an option because a CT or MRI image could be used in place
of the ET transmission image. The OS acceleration method (Séctioh 3.5.1) can
be applied for the convex algorithm [46].

5.3.3 tMRP algorithm

The algorithm[(5.111) is ill-posed and some regularization is required. Because
the assumption of local monotonicity of the true image is equally valid for both
emission and transmission, MRP can be used as the penalty. The aim is to to
make high quality transmission images with as short transmission acquisition
times as possible. These images are used in computing low noise ACFs for
emission data.

MRP can be applied t¢ (5.11) analogously to the emission OSL algorithm
(B.1). The transmission image is computed by the tMRP (transmission MRP)
algorithm [6/ 5]

D 1 C(k+1) (5.12)

b o Mék> — M, 'ub ’

wherep® is the current transmission image, ahti = Med{;"'|i € N,}.
The role of the parametéris the same as for the emission OSL-algorithm.

(5.12) is simplest way to apply the penalty of MRP to any transmission
algorithm. The convex transmission algoritim (5.11) is relatively slow due to
the exponentiations. There are other transmission algorithms [28, 30], and their
speed depends on the update strategy of the algorithm, as discussed in Section
B.5.1.
With tMRP, the ACFs can be generated from count-limited data with poor
statistics without smoothing or segmentation, and no assumptions need to be
made about tissue types and typigalalues. tMRP can be applied to vari-
ous procedures carrying out the transmission scan, such as the simultaneous
transmission-emission scan mentioned in Se€tion]2.2.1. tMRP can also be used
for generation of the attenuation map for the cases where attenuation is included
in the projection weighting factors;, of the emission reconstruction algorithm.
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5.4 On convergence properties

As an OSL, MRP shares with the convergence properties of an OSL algorithm
[56]. The effect of the prior on the convergence of the updating algorithm can be
examined by the properties of the log-prior part of the objective function [57].
The fact that)/, is nonlinearly dependent o, makes it not easy to rigorously
derive the convergence properties of MRP. However, with the simplistic but
intuitive interpretation of the nature of the hyperparamétgre {\; | i # b}
(pagel38 and |3]), MRP enjoys same properties that motivated the usage of
the gamma prior (3.29, pa@el28) [57]. A rigorous derivation of convergence
properties of MRP is still a challenging problem.

In the absence of a proof of the convergence of MRP, the experience of using
MRP in practice has not brought up any problems of instability. This issue will
be addressed in Sectibn6.1.

5.5 Noise and bias

MRP operates solely on the current image estimate computed by the updating
algorithm (MLEM or any other one). As there are no quantitative assumptions
or thresholds in the design of the prior itself, MRP is supposed to have a very
small bias. The noise suppression is based on a general description of any
object, which leaves the updating algorithm the liberty to proceed with as many
iterations as is needed.

5.6 Implementation

5.6.1 Neighborhood size

The spatial size of the median mask defines the area, over which the criteria
of monotonicity is required, or in other words, the neighborhood system of
the corresponding MRF. This gives the possibility to pre-set the width of the
smallest detail to be preserved. The width of the smallest horizontal or vertical
detail that a root signal can contain is half of the mask size

dw — (mw +1) pw = (mw +1) fov ’ (5.13)

2 2 1w zoom

where mw is the median mask width [pixelshw is the pixel width [mm],
fov is the width of FOV [mm],:w is the image width [pixels], andoom =
fov/(iw pw). By setting the image dimension, the zoom factor, and the mask
size accordingly (so that small neighboring objects do not both fall inside the
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mask), MRP penalizes only details smaller than a known Eizel(5.13). This re-
guires that the number of pixels in the image is adjusted to be large enough, so
that the mask size in pixels is reasonablg 8or perhaps preferably:&b). The

size of those small neighboring objects is easier to set beforehand than quan-
titative thresholds. Thus, the mask size affects the granularity rather than the
resolution or the sensitivity. Unfortunately, the computation time of the data
fitting part of the algorithm increases heavily along with the image dimension.

5.6.2 Parameters

After choosing the neighborhood size, the weight of the prior must be cho-
sen. Neither of the MRP-algorithms, emission{5.1) and transmissionl (5.12),
have other user-set tuning parameters than the Bayes wegigHhthe robust-
ness of median makes the choice ®father uncritical (see Sectidn 6.1.4).
Experimentally [[2] 4] B, 52, 47]3 ~ 0.3 is a good choice for{ (5l1) when
mw = 3. If mw = 5, there are more pixels inside the mask ahdan be
smaller:3 = 0.3 x 32/5% ~ 0.11.

Greater values ofj shift the new pixel value closer td/, setting more
weight on the assumption that the image should be locally monotonic. The
closer the image is to its median-filtered image, the less the prior needs to
change the image. MRP does not use the median filter as a direct operation,
but rather as a way to compute a reference for the penalty. As pointed out on
page 2b, the smoothing prior uses a FIR filter for the penalty reference in a
similar way. On flat areas the difference between a low-pass FIR and the me-
dian is quite small, especially with a largex5-mask. The difference is that
the median brings the edge preservation capability into the algorithm without
tuned hyperparameters.

5.6.3 Iterations

The iterations of MRP start with a uniform disk as an initial image. The few
first iterations are plain MLEM iterations. The penalty is taken in use after 2
— 4 iterations. This is because during the early iterations MLEM does not yet
generate noise to the image, but forms a coarse approximation of the image.
Small details and high spatial frequencies are produced at later iterations, and
there is no need to control the monotonicity of the image right from the start.
Also, the approximations made with the OSL-algorithm (dade 24) are less sig-
nificant at later iterations, when the changes of the pixels between the iterations
are generally small. Fi¢. 5.2 shows images of a MRP sequence of iterations.
Compared with the MLEM sequence of FHig.13.5 on pade 22, later iterations do
not generate noise in the MRP images.
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Figure 5.2: Intermediate MRP reconstructionBop row: iterations 5, 10, 20, and
30. Bottom row: iterations 40, 50, 60, and 100.

A smoothed FBP image as the first image instead of the disk might save a
few iterations in the beginning. However, in order to get rid of FBP-artifacts and
develop sharp edges, the number of iterations needs to be quite high. Because
MRP can tolerate a high number of iterations, the initial image is not critical to
the result. Using a uniform disk as the first image is the simplest and the most
neutral choice.

Based on what was mentioned in Secfion 3.5.1, the OS acceleration method
can be used with MRP with moderate number of subsets. With OS factor no
more than 4, the MRP penalty can be applied after each sub-iteration. A possi-
ble way to use temporal averaging with higher OS factor is shown il Fig. 5.3.
The sinogram frame is split into few (3) frames of shorter acquisition times,
They are reconstructed separately with a larger OS factor (16 or 32). The sum
of the sub-images averages out some of the temporal fluctuations caused by
different noise realizations. The common part of the sub-images represent the
non-random signal, which is preserved in the summation. As the averaging is
carried out in the temporal dimension, there seems to be hardly any spatial blur-
ring. In contrast, FBP as a linear operation deals with the noise in the split and
in the total sinograms the same way. This simple experiment suggests, even
without considering the OS-factors, that spatial fluctuations due to noise and
the "true” image may be distinguished in the time dimension. Noise is dynamic
and the spatial activity distribution is nearly static.
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(a) MRP, 144 iterations, 3 sec frame.

(b) MRP, 9 iterations with OS=16, 144 total iterations, 1+1+1 sec frame.

Figure 5.3: MRP reconstructions of a 3 second frame and the sum of three 1 second
frames of the same acquisition period. The computation time is saved by the factor
of 16/3 ~ 5.
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Results and Images

6.1 Simulations

The effect of noise on the accuracy and the quality of the reconstructed im-
ages was examined using a simulated phantom. The phantom was based on
the Shepp-Logan phantorn [76]. Because a piecewise constant phantom is an
unnatural object and maybe too easy for the reconstruction task, a part of the
phantom image was made smooth by repetitive filtering usig, ¥x7, and

9x9 running averages. The phantom was not meant to be the most realistic
one for ET, but it serves as a basis for quantitative tests. Methodologically, the
reconstruction method should be able to generate any kind of an image.

The phantom was re-projected to a noiseless sinogram. Poisson noise was
added to it. Altogether 100 different noise realizations were generated by using
a different seed of the random number generator [71]. The deviation was in-
creased by the factor of 4, 6, 8, 10, and 12 at multiples of ten during the 50 first
realizations|[72]. For the last 50 realizations, the deviation was not changed,
just the seed. These sinograms were reconstructed using different algorithms
and parameters (see Tablel6.1). The aim is to compare MRP with the well
known de factostandards, FBP and MLEM. Because the various other priors
may require careful parameter optimization and more complex implementation
techniques, they were excluded from the comparison.

In order to examine the consequences of the selection of reconstruction
method and its parameters, the images were checked against the known true
phantom image and the statistical properties of the images were examined. Four
ROIs were used, see Tallel6.1.
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Table 6.1: Notations used in Sectidn 6.1.

Abbreviation Explanation

FBP FBP with Hann

FBPr FBP with ramp

ML16 MLEM with 16 iterations

ML48 MLEM with 48 iterations

ML MLEM with 144 iterations

MRP1 MRP with 3 = 0.1 and 144 iterations
MRP3 MRP with 3 = 0.3 and 144 iterations
MRP5 MRP with 3 = 0.5 and 144 iterations
MRP7 MRP with 3 = 0.7 and 144 iterations
MRP9 MRP with 3 = 0.9 and 144 iterations
ROI1 329 pixels of a uniform low value
ROI2 3259 pixels of a uniform medium value
ROI3 140 pixels of a uniform high value
ROI4 1960 pixels, the blurred part

6.1.1 Error histograms

Fig.[6.1 shows the histograms of the error images (the reconstructed image —
the true phantom) over all 100 images for two different ROIs. The histogram of
the error was calculated over the set

{A’f — " 100% | b € RO, vz} , 6.1)
Lror

whereb is the pixel index; is the noise realization (sinogram or image) index

(1 < ¢ < 1), ty is the true pixel value, antko; is the true ROl average. A
wide histogram means a large variability and weak reliability of the quantita-
tive result of an individual image. A shift of the position of the peak of the
histogram away from the vertical line of zero error in Hig.] 6.1 indicates a risk
of a systematic bias.

Fig.[6.1(a) shows how sensitive the local bias of MLEM is to the number of
iterations and to the initial value of the image. When the number of iterations
increase, the histogram shifts closer to the zero error position, but at the same
time it gets much wider. Interestingly, the fully converged MLEM gives a neg-
ative mode for ROI1 and its distribution is roughly as wide as FBP’s. MRP’s
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Figure 6.1: Histograms of the error of the modified Shepp-Logan phantom recon-
structions. The ROI pixels are marked black on the negative phantom images. Solid
line: MRP3. Dashed: FBP. Long dashes: FBP. Dotted: ML16. Dash-dotted:
ML48. Dash-dot-dot-dotted: ML. The histogram cell size is 3% for ROI1 and 1%
for ROI4. The y-axis shows the probability (%) of error falling in the cell.

error histogram is both narrow and at the right position.

The non-uniform ROI4 in Fig. 6.I(p) demonstrates that also a smooth part of
the MRP3 image is quantitatively accurate. This is because the requirement of
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local monotonicity includes smoothness. ML16 produces an asymmetric error
histogram.

For larger ROIs all methods perform quite well, but the width of the error
histogram of ML16 and MRP3 are the two narrowest ones. With more itera-
tions, MLEM is close to FBP or FBPr.

The error histograms for MRP are compact and centered around zero for all
ROIs. Different values off are not shown for MRP because they had only a
small effect on the histograms, with= 0.9 slightly the most compact. On the
other hand, the number of iterations used for MLEM has a strong effect both on
the shape and on the location of the error histogram, similar to the difference
between FBP and FBPr.

6.1.2 Reliability of ROl estimation

A desirable property of a ET reconstruction method is to produce images from
which ROI estimates can be reliably analyzed. It is important to notice that the
common ROI average calculation is yet another estimation task after the recon-
struction task itself. A sample mean of the ROI pixels as an estimate of the true
ROI value is more reliable if the values of the sample pixels form a symmetric
distribution. Even if the ROI average is expected to be unbiased, heavy tails
of an asymmetric sample distribution increase the possibility of outliers. The
outliers affect on the sample mean of an individual realization causing potential
bias, especially for a small ROI.

One of the simplest measures of the symmetry of the distribution is the
skewness| [71]. Fid. 612 shows the average skewness values of ROI2 for each
reconstruction method. The average skewness was calculated as

1
1
skew ({Mi|b € ROI, Vi}) = 7 Z

i(A“ ) ] , (6.2)

where)\; is the ROI mean of théth image, ands; is the standard deviation

of the ROI of theith image. The closer the skewness is to zero, the more
symmetrical the sample distribution is. If the skewness is not close to zero,
there is a risk that the ROI average of an individual image is a biased estimator
for the desired quantity. ML tends to produce tails to the positive direction. In
terms of skewness, MRP performs well. FBP is very good, but FBP may have
some local bias (Fig. 6.4(a)).



6.1. SIMULATIONS 49

0.54
0.38
014 011 010 0.10 0.10
0.01 -0.00 -0.23 | | | |
FBP  FBPr ML48 ML MRP1 MRP3 MRP5 MRP7 MRP9

ML16

Figure 6.2: The skewness values of a ROI2 averaged over all noise realizations.
Skewness values close to zero indicate symmetric distributions and reliable sam-
ple means. The approximate limit for significant value of the skewness [71] is
3\/15/B=0.2.

6.1.3 Noise sensitivity

The estimators may behave in a different way when operating on noisy data.
Fig.[6.3 shows MAE for each noise realization. MAE is calculated for each
image as

Ay —
MAE(i) = Locror [N — 100% , (6.3)
Bror tror

wherei: is the noise realization index, argko; is the number of pixels in the
ROI.

In Fig.[6.3 the five different noise deviations used when generating the input
data can be seen as an increase of MAE of MLEM at multiples ofiten30).
MRP3 is less sensitive to the amount of noise in the sinogram. On the other
hand, what it comes to MAE, ML serves as a noise amplifier. There are no
other MRP reconstructions with differefitvalues plotted in Fid. 613 because
they are almost indistinguishable from each others. Because the positive and
negative errors do not cancel out in MAE, a small MAE value indicates that
also the smooth part of the phantom is accurately reconstructed by MRP.

6.1.4 Parameter sensitivity

Fig.[6.4 shows the robustness of the behavior of the reconstruction method. The
figures of merit are calculated for each method as

ZbeRoz (Xb - tb)

i 100% | 6.4
Bror tror ! (6-4)

bias =

2
efficiency = UFEP , (6.5)
o
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Figure 6.3: The average (%) of MAE of ROI4 for each noise realization. Solid

lines: MRP3. Dashed: FBP. Dotted: ML16. Dash-dotted: ML48. Dash-dot-dot-

dotted: ML.

and

MSE = bias® + o, (6.6)
Xy —t
MAE = Zeror o~ bl 100% |, (6.7)
Bror tror

where), = (3, \wi)/I is the sample mean of reconstructed pixelsiatthe set

of I images, and? = Var(\y) is the variance of B reconstructed pixels.

In Fig.[6.4(d), the bias is the smallest for MRP, and differénalues of
MRP make a very small difference. The amount of bias introduced by using a

limited number of iterations for MLEM depended on the chosen ROI.

is the bias.

Fig. depicts the variability of the estimate in terms of the relative
efficiency [6.5) compared to FBP. The relative efficiency should be more than
1 in order to perform better than FBP in noise reduction. Only ML16 and MRP
with G > 0.1 achieve this. The price paid for the excellent efficiency of ML16

In Fig. MSE is shown. MSE takes both the bias and the variance
into account, but the bias is so small that the variance is the dominating part.
ML16 performs well, but with full number of iterations ML has almost as large

MSE as FBPr. Again, MRP performs equally well independently; of~BP
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Figure 6.4: Bias, MSE, the relative efficiency, and MAE of each reconstruction
method calculated for a ROI. MRP is robust with respegt.to

performs remarkably well. The change of ROI4 to ROI3 in Fig. 6]4(d) worsens
FBP and ML16. Thus, the optimal number of iterations for MLEM depends on
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the chosen ROL.

Fig.[6.4(€) shows how MAE ranks the methods. Although 6.4(e) and b.4(c)
are computed for the same ROI, the choice of the figure of merit (MSE or MAE)
gives different results regarding the optimal number of iterations for MLEM.
MRP is more consistent in this sense.

6.1.5 Images

Fig.[6.5 shows images of the phantom study. The first and the second row show
the reconstructed images, with a small and a large amount of noise, respectively.
ML48 is close to FBP, and ML is close to FBPr. This suggest that the number
of iterations as a global regularization method suffers from the same kind of
trade-off as FBP’s filter functions.

Figure 6.5: Phantom images. From left to right: FBP, FBPr, ML16, ML48, ML,
and MRP3. 1st row: reconstructed images with the smallest amount of noise in
the sinogram.2nd row: reconstructed images with the largest amount of noise in
the sinogram3rd row: average bias images. Pixels with an error larger (smaller)
than 10% of the low activity of ROI1 are marked white (black)h row: average
pixel-wise standard deviation. Images on each row are scaled for display using the
same factor.

On the third row there are the average bias images computed for each pixel
with respect to all 100 reconstructions of the noise realizations
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bias(b) = M : (6.8)

Bias values greater than 10% of the activity of ROI1 are marked with white pix-
els, and negative bias values of the same amount are marked black. Thus, large
white or black areas (ML16) are undesirable because they suggest that the pixel
values of an individual image may be systematically biased. On the other hand,
areas with mixed white and black pixels (ML, FBPr) may be quantitatively ac-
curate on the average across different noise realizations, but the ROI value of
an individual image may be sensitive to noise.

The fourth row of Fig[ 6.5 shows the pixel-wise standard deviation images
computed with respect to the noise realizatiogisar(\,). ML seems to have
a strong data-dependent variance, which makes areas with a high activity quite
noisy. MRP3 expresses some edge jitter [10].

The MRP3 images on the rightmost column show some desirable proper-
ties. There are no large areas with a systematic bias, and the variability of the
estimate is small in general. The MRP images itself may look unconventional,
especially if the sinogram is very noisy. But the quantitative properties should
overweight the pleasing of the human eye.

6.2 Clinical data

Clinical PET data acquired using ECAT931/08-12 (CTI/Siemens, Knoxuville,
USA) were reconstructed using MRP_(5.1). More clinical images are shown in
the publication& 1l £1V.

6.2.1 Emission studies

Fig.[6.6 shows reconstructions of the same study a$ Fig. 3.3 ori_ plage 15. Com-
pared to FBP, the iterative methods do not spread out strong artifacts due to the
high activity in the vein. OS factor 4 was used for both MLEM and MRP. The
difference between the images in Hig.16.6 is that the early stoppage of MLEM
has performed some global noise reduction, whereas MRP does it locally.

By increasing the dimensions of both the median mask and the image, the
spatial size of the mask can be kept the same. Then there are more pixels in the
set from which the local median is selected and the appearance of the image is
less blocky. Figl_617 shows an MRP image with the mask size increased from
3x3 to 5x5 mask and image dimension from 128128 x 5/3 ~ 212. The
computation time increases along with the size of the image.

The general form of MRP allows its usage for any organ and for any tracer
uptake. In order to illustrate that, Fidgs.16.8 6.9 show images of legs and
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T Y /

Figure 6.6: PET FDG images. Image dimension = 12&ft: MLEM, 5 iterations

with OS=4, 20 total iteration®Right: MRP with 5 = 0.3, 3x3 mask, 36 iterations

with OS = 4, 144 total iterations. High activity in the vein does not contribute to
other parts of the image. The early stoppage of MLEM may have caused some
noise / bias trade-off.

Figure 6.7: MRP with 6 = 0.11, mask size %5 and image dimension 212, 36
iterations with OS = 4, 144 total iterations. The mask size is spatially the same (1.4
cm) as for the MRP image in Fig. 6.6.

the brain, respectively. The difference imagés- B in Fig.[6.8 show excess
in A as white pixels and excess i as black pixels. The difference images
show how noise artifacts in the FBP image are removed from the MRP image.
MLEM with only a few iterations is not yet very noisy, but the quantitative level
in the bone is too high [3].

One of the simplest edge detection operations, Sobel [40], was used in Fig.
6.9 for emphasizing that MRP effectively removes noise without blurring the
image. FBP and aborted MLEM do not produce sharp edges where there should



6.2. CLINICAL DATA 55

Figure 6.8: PET FDG thigh imagedLeft: Difference image FBP (Hann) — MRP.
Middle: Difference image MLEM (5 iterations with OS=4, 20 total iterations) —
MRP. Right: MRP with 5 = 0.3, 3x3 mask, 36 iterations with OS = 4, 144 total
iterations. Image dimension = 128.

AN

IR
o {

\¢ 5
il

Figure 6.9: Sobel edges of PET FDG brain images. Image dimension = 128. From
left to right: FBP; MLEM, 5 iterations with OS=4, 20 total iterations; MLEM, 36
iterations with OS = 4, 144 total iterations; and MRP with3mask, 36 iterations
with OS = 4.

be. Converged MLEM is notoriously noisy, whereas MRP is sharp and ex-

presses a low amount of noise. The good separability of tissue borders facili-
tates the drawing of ROIs. However, it is noteworthy that there are also low and
smooth transitions between different concentration levels. The MRP image as
such seems to be suitable for various post-reconstruction operations.

6.2.2 Transmission

The motivation for using tMRH(5.12) for transmission image reconstruction is
to avoid the count-limited noise from occuring in the image and, consequently,
in the ACFs. Figl.6.1I0 shows ACFs computed by the conventional method with
along scan time and by using tMRP with the short time. In spite of the increased
count-limited noise in the latter, the ACFs are as good as, if not better than in the
conventional case. This was accomplished without any object dependent post-
reconstruction operations such as the segmentation of the transmission image
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and the tissue type classification [63] [13,[77, 84].

N

/})y /
Figure 6.10: PET ACFs. Left: conventional, 20 min scan timeRight: ACFs

computed using tMRP witl¥ = 0.5, 5x5 mask, 100 iterations, 2 min scan time.
The contour lines are drawn at ACF values of 2, 4, 8, and 16.

More results and tMRP transmission images are presented in publication IV

[5].

6.2.3 Whole body studies

A single set of acquired sinogram planes covers only 10 — 15 cm in the axial di-
rection. Whole body studies are commonly done without attenuation correction
because multiple transmission scans at different axial positions take too much
time using the conventional method. The possibility to use short transmission
acquisition times and the absence of post-reconstruction operations make tMRP
suitable for computing the transmission images and the ACFs for a whole body
study. Fig[6.1ll shows coronal transmission images and attenuation corrected
emission images. The transmission scan time for each axial position was 2
min. Although the computation time is significantly longer than using the con-
ventional method, it is more easily expandable than the scanner time for the
patient.
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(a) Transmission (b) Emission

Figure 6.11: Coronal whole body PET images of a clinical study. The images
are made by stacking transaxial images. The emission images were corrected for
attenuation.

6.3 SPECT images

MRP has been applied for SPECT transmission and emission reconstruction
[49]. Fig.[6.12 shows heart emission images acquired using a SPECT device
with 64 projection angles / 36qSiemens Orbiter, Siemens Medical Systems,
Inc., Hoffman Estates, Il., USA). No attenuation correction was applied.

f g

(a) FBP. (b) MRP, 70 iterations5 = 0.2, 5x5
mask, image dimension 200.

Figure 6.12: SPECT images of a clinical heart study.

Siemens Multispect3 three-head gamma camera with fan-beam collimators
and 128 projection angles / 36Was used for quantitative studies with mea-
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sured attenuation correction. No attenuation pre-correction was applied on the
emission data. Fig. 6.13 compares aborted MLEM and MRP. As in PET, MRP
reduces noise without blurring details. MRP is especially suitable for the re-
construction of the attenuation map, Fig. 6.13(a).

(a) Transmission.Left: MLEM, 24 iterations. Right: MRP,
24 iterations3 = 0.3, 5x5 mask.

(b) Emission. Left: MLEM, 12 iterations. Right: MRP, 60
iterations,3 = 0.15, 5x5 mask.

Figure 6.13: SPECT images of a clinical brain study. The transmission images
were used as the attenuation maps in the emission reconstruction. Larkin's OSEM
packagel[39] version 5 was modified for MRP.

6.4 Summary of results and the publications

A large portion of the material of the enclosed publications is rewritten for this
manuscript for the sake of clarity. However, the detailed results are not repeated
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here.

Publicatiorl [1] documents the first appearance of MRP in a scientific fo-
rum. The results were tentative but consistent with later examinations. Publi-
cation[Il |2] included more quantitative tests of the new method presented to
a wider audience. A stabile behavior with respect to iterations were demon-
strated. Both a good resolution and a low noise level were possible to achieve
at the same time. PublicatidnlI(lI[3] further expands the theoretical inspection
of the prior. The interpretation for the Gaussian PDF of the prior was formu-
lated. Good convergence properties as well as a small noise / bias trade-off were
reported. As a possible step towards visual enhancement, a FIR-median-hybrid
filter was suggested to be used instead of the standard median, if more conve-
nient. Publication IV [[5] extends the application of MRP to the transmission
image reconstruction for attenuation correction. The good tolerance against the
count-limited noise made short time transmission scans possible.

The new tests in this section are to demonstrate the insensitivity of MRP
against different noise realizations, both in terms of bias and variability of the
estimate. As the simulations are free from attenuation, the effects of an impre-
cise statistical model due to pre-corrections do not contribute here.

The histograms of the pixel-by-pixel errors in Section 6.1.1 showed that
MRP produces errors of moderate magnitude. According to the skewness test
in Section 6. 1.2, the errors form symmetric distributions. This is important in
parametric images.

In [15], it is pointed out that a non-convex penalty function resulting from a
non-linearity (e.g. threshold) may cause a sudden change in the estimate if the
input data is slightly varied. The results in Section 8.1.3 anecdotally indicate
that the non-linear and strictly speaking non-convex penalty function of MRP
seem not to cause such sudden changes in the pixel values when the noise is
varied and increased in the sinogram.

Fig.[6.4 in Section 6.114 indicates that MRP is robust with respect to the se-
lected value of the paramet@r MRP performs well in terms of all four figures
of merit. Furthermore, the behavior of MRP does not significantly depend on
the chosen ROI, which reflects robustness with respect to the activity in other
parts of the image.

The different values of behave in a robust way for all the tests. A moderate
value (5 =~ 0.3) lets the image be not exactly locally monotonic, which helps in
depicting local extremes in the image.

MRP performs well in light of the variability. Concerning the complexity of
many other priors (parameter tuned, anatomical), the possible gain with respect
to MRP, if any, may be too small for the extra effort.

Visually MRP images may lack of conventionally common features, such
as blurred edges. For pure visual analysis, some post-reconstruction filters may
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be used, if more convenient. SPECT might be such a case.

As the results in this section indicate, the MRP images share some quanti-
tatively important features: the bias and the variability of the estimate are small
at the same time, and the ROI averages are insensitive both to the input noise
and to the neighboring image structure. The results denote that it is safe to use
MRP images as a basis of quantitative pixel-by-pixel or ROl analysis.
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Discussion

7.1 General principle

A priori is a term used to identify a type of knowledge which is obtained inde-
pendently of experience. In MRP, the prior assumption is that an ideal emis-
sion image is locally monotonic. Inside a neighborhood of a certain size, there
are only monotonic changes in activity between pixels. The monotonicity in-
cludes sharp step edges, shallow ramp edges, and arbitrarily smooth edges of
any height. This is also the structure of a root signal of the median filter. The
root signal is the penalty reference of MRP. Thus, MRP contains implicitly the
general description of the unknown tracer concentration. When the spatial size
of the neighborhood is reasonably selected and it contains a sufficient number
of pixels, the true image is left automatically almost completely unpenalized.
No special knowledge of the appearance of the true image is required. This uni-
versal nature of the prior makes the definition of the penalty of MRP virtually
independent of the organ or the tracer.

The Bayesian interpretation of the penalty of MRP is close to an indepen-
dent Gaussian prior PDF for the mean activity of the pixel. The location of the
heuristic PDF is the median of the neighborhood. Thus, the general description
of the true image is modeled using a Markov random field, where the spatial
dependence of the pixels is accomplished only by the median. This makes un-
known differences between the pixel values permitted in the prior model of
MRP.

The problem with mathematical priors is to describe the properties of the
true image as a function of the pixel differences in the neighborhood. The
guadratic energy function results in a penalty with respect to the difference be-
tween the center pixel and the weighted average. The operation is similar to a
lowpass filter. As the frequency contents of noise and the true image overlap,
a compromise between noise rejection and edge blurring must be done. The

61
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assumption that the unwanted roughness of the image can be expressed using a
linear function of adjacent pixel differences is a restriction rather than a gener-
alization.

Other choices for the energy function with tuning parameters are justified
in terms of the behavior of the penalty in the vicinity of an edge, but the cor-
responding Bayesian prior and the MRF are set up in quantitative terms: only
certain kind of pixel differences are allowed in the neighborhood. This results
in an almost certain penalty to the unknown true image. The resulting image
may be a good representative foramsembl®f images similar to the true im-
age. But in tomography the key question is "what is the unknown source that
gave rise to thgarticular set of measurements we have?”. An average of all
plausible images may not be an answer to that question.

Priors that apply penalties based on an anatomical image of the target (brain)
are more specific to the given task; they rely on the assumption that the true
emission imagesuallyresembles the given anatomical image in terms of local
homogeneity. This may require further assumptions about the tissue types and
their normal behavior. This, in effect, may result in another good answer to a
wrong question.

Multimodal images are important as they reveal relations between various
imaging modalities, but with MRP the regularization of the reconstruction pro-
cess itself can be left "clean” of external data. Then the combination of the two
modalities after reconstruction is most informative. From the Bayesian point of
view, calling anatomical images as priors is somewhat artificial. That is, there
are two sets of measured data, one type of anatomical (CT, or MRI with proton
density T1 or T2[[45]) and functional (PET). Using one as a constraint when re-
constructing the other might be effective technically in terms of noise reduction,
but a Bayes prior should express more fundamental nature of the properties of
the image.

The distribution for the mean tracer concentration in a pixel can be inter-
preted to resemble Gaussian for MRP. The Gaussian or normal distribution is
usually considered as the most cautious one when there is no other informa-
tion. What is more, the central limit theorem suggests that under the influence
of many small and unrelated random effects the overall distribution is Gaussian
[27,124 ] 33]. Despite the fact that the connection between MRP and a Gaussian
prior is more intuitive than strictly rigorous, it gives some insight into otherwise
analytically intractable MRP algorithm. Taking the location of the Gaussian as
the median of neighboring means brings the spatial dependency in a simple,
general and robust form into the algorithm.
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7.2 Applicability of MRP

MRP has been applied to many clinical studies [44, 81, 73, 49, 47, 58, 54, 50].
The applicability of MRP is good because the prior is very general and simple,
applying for both PET and SPECT. MRP is also used in|[52, 75].

In contrast to the non-Bayesian ways to control the noise, such as Hann
window in FBP or the stoppage of iterations in MLEM, a Bayes prior deals
more with specific local properties. The two other methods restrict the noise
more globally, which is suboptimal in local terms. A Bayes prior reflects the
spatially limited range of the underlying MRF. The reconstructed image is
subject to local ROI analysis, and it is important that local characteristics are
not affected by global noise reduction. MRP is especially independent of global
or external assumptions and parameters. The bias towards the initial image is
effectively avoided when MRP is used because the number of iterations can be
high enough. The results in Sectionl6.1 demonstrate that MRP is able to reduce
noise and maintain the quantitative accuracy at the same time.

Concerning the practical usability, it is important that the method is not too
sensitive to suboptimal choices of parameter values. The paramefdviRP
is the weight of the prior, which controls the strength of monotonicity. The
value of the parameter is rather uncritical, which makes MRP easy to use for
any study. MRP behaves consistently independently of the chosen ROI, the
tracer uptake, or the tissue type.

The quantitative sensitivity of MRP is not compromised by the applied noise
reduction because differences in activity with sufficient spatial size are pre-
served independently of the type of the spatial transition from one activity level
to other. This size is an object dependent factor, but it can be selected before
the reconstruction according to EQ. (5.13).

For the transmission, the aim was to compute the ACFs directly from the
count-limited transmission image reconstructed using tMRP, without any post-
reconstruction steps, such as tissue segmentation. The usage of tMRP is straight-
forward and simple. The principle of local monotonicity is especially suitable
for transmission images.

The parametric images are especially sensitive to pixel-by-pixel noise. MRP
can be used in reconstructing the whole sequence. Optionally, the parametric
mapping can be done before the reconstruction [73]. In that case, the statistical
model used in the objective function should be carefully chosen, but the gen-
eral principle of MRP serves for the regularization of the reconstruction of the
parametric sinogram as well.
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7.3 Conclusion

The main strength of MRP is its simplicity. A generally accepted principle in
science is the Occam’s razor (or Ockham), which states that entities must not
be multiplied beyond what is necessary, that is, the simplest model with fewest
number of assumptions is the one that should be selected [22]. In terms of
quality and usability, MRP is very competitive. As a comment_to [2], Ph.D.
I.G. Zubal writes[[86]:

| am convinced that as iterative (and Bayesian) reconstruction tech-
niques become more popular in nuclear medicine, we will need to
slowly adjust to a new "class” of images. The reconstruction here
shown ... [Fig. 5A in publication]ll], has a different quality than we
are used to seeing in filtered backprojection images. This image,
however, is probably a better representation of the true distribution
of radioactivity within the patient. We thank the speed of modern
day computers for making such improved images possible.

As pointed out by Dr. Zubal, the professionals working with ET images are
used to analyze mostly smooth or noisy images. While MRP images express
the absence of both noise and blur, they may be visually unlike what is con-
ventionally considered as pleasing to the human eye. The visual aspects can be
emphasized with MRP by choosing the image grid density and the mask width
carefully, or using a FIR median hybrid in place of the median [3]. However,
the modifications of the basic idea of MRP open up a large variety of median-
related operations [10], which might be unnecessary. Although the visual as-
pects are important, they may often reflect individual tastes, which makes it
difficult to define a visually good image in general. The quantitative merits of
MRP should not be sacrificed for the sake of subjective visual customs.

In spite of the convenient simplicity of MRP, more theoretical analysis of
the algorithm still remains an open and challenging problem.
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