TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Harri P6l6nen

Quantification of Biomedical Data with Stochastic
Parametric Models and Numerical Optimization




Tampereen teknillinen yliopisto. Julkaisu 915
Tampere University of Technology. Publication 915

Harri Polonen

Quantification of Biomedical Data with Stochastic
Parametric Models and Numerical Optimization

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB219, at
Tampere University of Technology, on the 8th of October 2010, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2010



ISBN 978-952-15-2442-4 (printed)
ISBN 978-952-15-2504-9 (PDF)
ISSN 1459-2045



Abstract

Accurate and robust quantification of measurement data is a key factor
in biomedical research. However, the quantification is complicated by ran-
dom noise, limited resolution and indirect nature of measurements.

In this study we quantified biomedical data by modeling the target, the
acquisition process and the noise contamination. By combining these three
components we built the model for the acquired data. The indirect acquisi-
tion was modeled as a forward projection from the target to the data. The
random noise was handled by using stochastic model and treating the data
as a single realization from the model. The data model was determined
through adjustable parameters and the most likely parameters in terms of
the acquired noisy data were searched for.

The search for best parameters in our stochastic parametric models
led to mathematically inconvenient and challenging optimization problems.
The most common challenges in our applications were multiple local op-
tima, very large number of parameters, unknown gradient function and
lack of reliable initialization. In order to solve these issues, we developed
customized numerical optimization techniques by modifying standard al-
gorithms and combining different types of optimization. The optimization
techniques were implemented to distributed computing environment which
enabled us to solve problems with very large number of parameters and
amount of data.

By modeling static fluorescence microscopy images we achieved results
which we could not obtain with the conventional methods and which in
part helped to reveal significant differences between treatment groups. By
modeling dynamic fluorescence microscopy data we managed to compen-
sate cell movement and inhomogeneous fluorescence distribution well during
the quantification. The results with simulated data imply that our method
is very robust and accurate. With positron emission tomography (PET)
data we were able to solve the huge parameter optimization problem which
allowed us to quantify regional parameter heterogeneity with a novel ap-
proach. Overall, we believe that the stochastic parametric modeling is a
very accurate and robust method to quantify biomedical data.
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Chapter 1

Introduction

Scientific research in the field of biology and medicine strives constantly to
obtain detailed information from increasingly smaller targets and under-
standing of more complex behavior. Due to the chaotic and unpredictable
nature of biology and physical limitations of the measurement devices, ran-
dom noise is inevitable in the obtained measurements. In addition, the
analysis of the measurements is complicated by the indirect measurement
techniques, because complex issues, such as the functionality of human
brain, cannot be measured directly without damaging the target.

The first means to analyze biomedical data was manual inspection. The
manual analysis together with biomedical expertise has its place even in
modern days e.g. in region-of-interest segmentation [1]. However, it rarely
is suitable for quantitative data analysis. The main drawback is the vari-
ation between the conclusions of different experts as well as within the
conclusions of a single expert [2, 3]. In addition, the capacity to process
large amounts of data is very limited and many target properties, such as
dynamic processes, are practically impossible to quantify manually.

The conventional approach to biomedical data quantification is based
on data processing. The idea is to remove the noise from the data and to
reverse the indirect measurement process so that the target could then be
analyzed easily from the corrected data. However, the noise is irreversible,
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random and exists in part on the same frequency interval as the useful
signal. The quantification results are affected by the chosen (imperfect)
noise processing method. Often the indirect measurement technique creates
an ill-posed inversion problem which requires additional data regularization.
Generally neither noise removal nor measurement inversion can be done
without affecting the actual quantitative information from the target and
the quality of results is thus decreased.

Various approaches to analyze biomedical data with parametric mode-
ling have been presented [4, 5]. In parametric modeling, the prior knowledge
about the target and the acquisition system is used to construct a model
for the acquired data. The model is defined through parameters and the
best parameter in terms of the data are searched for. However, it has been
common to include simplifications to the models such as linear behavior
assumption or data regularization in order to make the resulting parameter
optimization faster and easier . We believe the data quantification should
not be done in terms of mathematical convenience but in the terms of best
quantification accuracy and robustness.

In this study we use stochastic parametric modeling together with nu-
merical optimization to quantify fluorescence microscopy [6] and positron
emission tomography (PET) data [7]. We perform the modeling without
any noise filtering, data regularization or model modification in order to
achieve optimal quantification accuracy. Our approach leads easily to chal-
lenging parameter optimization problems with multiple local optima and
very large number of parameters. To solve the optimization problems we
develop stochastic optimization algorithms and use a distributed comput-
ing environment. The stochastic algorithms provide the needed robustness
for the optimization while the distributed computing environment makes
it possible to solve the problem in a feasible time. We aim to achieve very
accurate quantification through detailed models and accurate numerical
optimization.



Chapter 2
Biomedical imaging

In this study a biomedical image denotes a measurement device output from
a biological target. We limit ourselves roughly to image data and leave e.g.
audio-based measurements out of the scope of this thesis. The term medical
in the topic refers that we study dynamic properties and functionality of
the biological targets rather than merely their anatomical structures.

2.1 Data distortion

A biomedical image can be seen as a projection from the target to the data,
because each data element (image pixel) represents a combination of signal
from several target locations. The nature of the measurement projection is
application specific and may be caused e.g. by the physical limitations of
the measurement device or indirect measurement technique. For example,
in a fluorescence microscope image the distortion is caused, among other
things, by the wave nature of the light and results as a blurred presentation
of the target [8]. Thus fluorescence point source in the target is projected
over to several pixels in the image. In PET the distortion is caused by the
indirect measurement process and is much stronger to a human eye because
the data does not look like the target at all [9]. See Fig.2.1 for simulated
examples of data formation.
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Figure 2.1: Simulated examples of data formation through projection and noise
contamination. In fluorescence microscopy the projection is caused by light diffrac-
tion and results as image blurring. The noise is mostly due to uncertainties in
signal detection. In PET the projection is caused by the tomography measurement
technique and the noise by the stochastic nature of radioactive tracer.
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The projections in the previous applications are different also by the sig-
nal processing or modeling point of view; in microscope image the smooth-
ing is modeled through convolution [10] and in PET image through ma-
trix multiplication [11]. Of course, these are merely models and in real-
ity the data has been formed through stochastic physical phenomena like
light diffraction in microscope lenses instead mathematical operations. We
present the data formation in this study on a quite general level and in
reality there are several additional application-specific details that affect
the data and should be included in the model.

The fundamental question in terms of data quantification is whether
the projection is uniquely and stably invertible. In many biomedical ap-
plications the inverse problems are ill-posed and thus a small change in
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the data, such as noise contamination, may cause large and unpredictable
changes in the quantification results if performed through inverse projec-
tion [12]. Inversion problems constitute a field of research in its own and
they are not discussed in detail in this study. The bottom line is that we
believe that the methods based on inverse projection are not the optimal
way to analyze the data.

Let us present an example of an ill-posed inverse problem with a positive
5 x 5 matrix S defined as

54 56 46 61 31
48 50 55 58 27
S=1 20 40 45 34 33
43 21 41 11 O
8§ 17 10 45 11

By introducing a very small additive noise from uniform distribution U (0, 0.5)
we get a noisy matrix S,, which in this case is defined as

54.30 56.00 46.11 61.08 31.24
48.08 50.25 55.05 58.32 27.35
Sp~ | 20.17 40.03 45.27 34.38 33.16
43.27 21.05 41.18 11.27 0.10
8.03 17.46 10.26 45.28 11.07

Inverse matrices S~ and S, ! exist and can easily be calculated, but
they are totally different as can be seen in Fig.2.2. The numerical values
of S~1 are on interval [—6290.76 5130.39] while the values of S, ! are on
interval [—258039.56 1.11]. Although the added noise was very small in
comparison to the matrix values, it had drastic quantitative effects on the
matrix inverse. The inversion problem with matrix S,, was ill-posed, which
can be seen from the relatively low determinant value det(S,) ~ 0.127.

2.2 Noise contamination

The measurement devices are not perfect in a sense that the exact amount
of approaching signal cannot be detected flawlessly. Instead, due to device
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Figure 2.2: On the left: matriz S without noise and with very small additive noise
(Sn). On the right: Inversions of matrices S and Sy,. The addition of a small error
in Sy, results as large differences in the inverted matrices. The problem is therefore
ill-posed.

imperfectness the measurement is in part stochastic by nature and gener-
ally two slightly different outputs would be obtained even from two equal
targets. In addition to device imperfection, the detected signal itself can be
stochastic by nature due to the variability in the used radioactive tracer,
fluorescent label or the target itself [13]. All this stochastic undesired varia-
tion in the data is here defined as noise. For example, the exact wavelength
emitted by a fluorescent label is not fixed but varies randomly around the
theoretical wavelength. In the microscope signals of different wavelengths
are detected differently and may even be blocked by the excitation filter.
Because the noise is stochastic by nature, it is impossible to know how
much noise has been realized in a single pixel of the obtained data. There-
fore the noise cannot be removed completely from the data e.g. by filtering
as conventionally has been done. Inevitably any noise removal operation
modifies the useful information in the data and thereby the quantification
cannot be performed with optimal accuracy. Because the actual amount of
noise in a single data element is not known, the quantitative effects of the
noise removal are difficult to determine. However, statistically the noise re-
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alizations in the data, or in a region of interest, obey typically some known
probability distribution.
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Chapter 3

Parametric modeling

3.1 Definition and motivation

In this study the quantification of biomedical data is performed by repli-
cating the data formation. The data model is constructed from separate
models for the target, the projection and the noise. These models are
defined through parameters so that the data model is determined by the
parameter values. The idea is to compress the essential information of the
target into a finite, and preferably small, number of parameters which have
a biophysically feasible meaning. The noise is always random in each data
element and cannot be modeled as such, but we use stochastic noise model
to take care of the statistical noise. Note that here we aim to model the
data completely and thus we do not need to perform any pre-processing to
the data. The overview of our approach can be seen in Fig.3.1.

There are two obvious advantages in the stochastic modeling approach.
First, the projection is performed in the same direction (forward) as in
the real acquisition and the inversion problem needs not to be solved. Sec-
ondly, the noise distribution can be taken into account and used in the data
quantification instead of trying to remove the noise from the data. Thus
optimal quantification accuracy can be achieved because the information
in the data is not lost due to pre-processing.

9
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QUANTITATIVE
RESULTS

Figure 3.1: A schematic overview of parametric modeling. The data model is
built from the target model and the acquisition device model. Noise is included as
a stochastic model with known probability distribution. The data model is defined
through parameter values. The objective function value between the data model
and the acquired data is mazimized with the optimization algorithm to get the best
parameter values. The optimal parameter values give the quantitative results.

3.2 Model design

General principles

The parametric model must be designed from the biophysical point of view
so that it corresponds to the reality as well as possible and the parameters
have a feasible biophysical meaning. Naturally, biophysical expertise is
required in the model design stage as well as prior knowledge about the
anatomy and behavior of the target. In our selected applications, both the
acquisition system[7, 8] and the target structure[14, 15] are known quite
in detail and therefore parametric modeling is a feasible approach. We
have worked in collaboration with biologists, medical doctors and physicists
(among others) to create realistic models.

There have been studies where the quantification is performed through
simplified parametric modeling. For example, in the analysis of fluorescence
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dynamics from microscopy images spatial average values have been used
[16]. However, it has been shown that ignoring the spatial variation causes
significant error [17]. Similarly in PET, there are methods that could be
used to quantify every data pixel, but they have been implemented to give
only regional values [18]. It is obvious that with spatial averaging some of
the information in the data is lost or modified. In some cases the model is
turned into a linear problem, but the nature rarely follows linear scheme
[19, 20]. The model simplifications are included probably due to difficulties
with the resulting parameter optimization problem. We believe that the
parameter optimization must serve the model design and the quantification
needs, not vice versa.

Level of detail

Too detailed models pose a theoretical problem, because the balance be-
tween the amount of data and the number of quantified parameters gets
worse. If there are less data points (containing unique information) than
there are parameters, the problem is mathematically underdetermined and
it may not be possible to define a unique solution for the problem.

The increase in the amount of detail does not always make the model
more useful. For example, free diffusion of fluorescence in a cell is essentially
based on the random motion of the individual fluorescent proteins [21, 22].
However, there is no sense in modeling every protein individually if the
microscope pixel size is hundred times larger than the protein. The resulting
optimization problem would have practically infinite number of different
solutions and the quantification would be impossible. On the other hand,
if too general model is used, the obtained parameters may not describe the
target behavior appropriately.

In real biomedical measurement the amount of information does not
necessarily increase by acquiring the data with higher (temporal or spa-
tial) resolution and using correspondingly higher resolution model. The
problem is that the total amount of detected signal is typically limited and
independent of the used resolution. Then the relative variation in pixel
values increases with the resolution due to Poisson distributed noise. This
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can be seen if we define signal-to-noise ratio (SNR) as a proportion between
the signal mean (x) and the noise deviation (). When the signal is Poisson
distributed with some Poisson parameter «, the signal-to-noise ratio is

w (Poiss(a)) «
SNR = o (Poiss(a))  va Ve (3:-1)
If we now increase the resolution and thus decrease the amount of signal
per pixel, the SNR decreases accordingly and the quantification results may
not be improved. This is the case with both fluorescence microscopy and
PET, where the increase in the (temporal or spatial) resolution may not
lead to significantly better results.

We choose the level of detail in the model with the following criteria.
First, the model must be realistic and sufficiently detailed in terms of biol-
ogy and physiology, so that the essential components in the data formation
are included. The parameters must have a biophysically feasible meaning
and so that the data could be quantified through parameter optimization.
On the other hand, the parameter optimization problem must theoretically
have a unique solution. Therefore, the model cannot have more parameters
than the information in the data allows.

Objective function

The data quantification with parametric modeling is performed by search-
ing the best parameters in terms of the data. The definition of the ”best
parameters” is dependent on the chosen measure of goodness referred i.e.
objective function. The parameters that are optimal in terms of one objec-
tive function are generally not optimal in terms of another.

Many simple and commonly used objective functions are based on the 2-
norm (or euclidean distance) between the data and the model (e.g. [23, 24]).
For example, the mean squared error (MSE) is defined self-evidently as

MSE (6| D) = m@inz (D; — M;(9))?, (3.2)

where D denotes the data, # the model parameters, M () the data model
(defined through parameters ) and subindex i refers to a specific pixel
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in the image. MSE is analogous to least squares fitting (LSQ), which has
been widely used in various applications such as regression analysis and
analysis of variance (ANOVA) techniques in fitting a known parametric
function or model to a group of observations [25]. It is rarely feasible to
try to completely minimize MSE distance between model and the data,
because the data consists not only of some useful information but of the
noise as well. Because the realized noise is always unknown it cannot be
modeled with a deterministic criterion. In [26, 27, 28] the MSE criterion
was compared to probabilistic approach and the accuracy of MSE was found
less accurate. Also we have noted in our applications that 2-norm based
objective functions are not optimal.

We measure the parameter goodness through probabilistic point of view.
Although the noise is always random and unknown in a single pixel, each
data pixel is a realization from some stochastic distribution. The noise dis-
tribution is obviously additional information and should be taken into use
instead of just omitting or trying to remove it. For example, in applications
based on radioactive decomposition the observed quantities are sums of in-
dividual independent instances, which is the very definition of the Poisson
distribution and can thus be modeled.

A likelihood value gives the answer to a question With what probabil-
ity the data is originated from the given stochastic model? Formally the
likelihood can be written as:

L(6) = ngan (Di|M;(9)) (3.3)

where p denotes the probability or likelihood function and other notations
are equal to those in Eq.3.2. Note that the probability distribution function
is actually defined by the parameters 6. The question can then be further
modified to Which parameter values have the best probability to produce the
data? The answer to this question is searched for in data quantification
with stochastic modeling.

Each data pixel is assigned a unique probability density/mass function
from which the realized pixel value is assumed to be originated. The density
function can be dependent on the model parameters, pixel location and the
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Figure 3.2: The model design is evaluated with biophysical expertise together with
prior knowledge of the target and the acquisition system. Simulated data is used to
evaluate the internal integrity of the model and the performance of the parameter
optimization algorithm.

model pixel value. Thereby, each image pixel may have a different density
function in comparison to other pixels, and their joint probability defines
the likelihood function value.

Because the variation in the biomedical data comes often from several
sources, it may be useful to construct a customized distribution into the
model. For example, normal distribution is useful in many applications
but negative values do not occur in many real acquisition devices. Thus
the full normal distribution may not be adequate. However, a likelihood
function can easily be modified to cover only the positive values and give
zero likelihood for negative values.

3.3 Model evaluation

We build the parametric models from separate components whose validity
has already been evaluated. For example, the PET model is based on widely
accepted kinetic model of the radioactive tracer behavior in the tissue [29].
Also the discrete radon transform is widely accepted as a PET scanning
model [11] and the free diffusion in a cell is modeled with the hundred
years old Brownian motion theory [22]. Thus the parametric modeling
approach does not necessarily require new theory to be derived but the
current knowledge can be used in a novel way.

The final model evaluation should be done with real acquired data from
a living target with known biophysical properties. However, the true prop-
erties of a living target are always unknown. In some cases it is possible to
construct artificial targets, such as a physical PET phantom having known
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Figure 3.3: Procedure to test the numerical parameter optimization with simu-
lated data. The simulated data is created according to the target model and acquisi-
tion model with pre-defined parameters "RVE - Noise is randomly drawn from the
noise model. The simulated data is quantified with maximum likelihood estimation
in order to obtain estimated OMV. The distance, such as 2-norm, between §TRVE
and MY tells how well the parameters can be estimated.

radioactivity concentration, but they lack the natural variation of living
targets. Comparing modeling results to a conventional method’s results
merely tells if there is a difference between them but not which results are
the correct ones.

We suggest that the evaluation of the model should be done in two
separate phases: the proof-of-concept and the biophysical authenticity (see
Fig.3.2). The latter is omitted here as it should be done by biophysical ex-
perts based on the current biological knowledge of the target and physical
knowledge of the acquisition system. In the proof-of-concept it needs to be
shown that the model itself is robust, unambiguous and overall usable in
every aspect. This can be tested by setting some predefined values for the
model parameters, creating simulated data with the model and quantifying
the data (see Fig. 3.3). It is not at all self-evident that the parameters
can be determined correctly from the simulated data, even though the sim-
ulated data was created through the very same model as the parameters
are estimated. The reason for this is the included random noise, which
inevitably destroys a portion of the information in the data. With simula-
tions it can be shown that the noisy data can be handled robustly and it
can be estimated how reliable results can be obtained with a certain noise
level. Another issue which can be tested with simulations is the parameter
optimization. For example, the robustness of the optimization algorithm
can be tested by selecting multiple different algorithm initializations for a



16 CHAPTER 3. PARAMETRIC MODELING

single simulated data set and monitoring whether the same likelihood value
can be achieved from all initializations.

For extensive simulations it is necessary to have sufficient calculation
power. Fortunately distributed calculation environments suit well to sim-
ulations because each simulation can be run separately on a computer of
its own. Thereby as many simulations can be performed simultaneously as
there are computers in the grid. The distributed calculation environments
are described more in Section 4.2.



Chapter 4

Numerical Parameter
Estimation

The parameter optimization phase must not be overlooked in the quantifica-
tion because the quality of the results is crucially dependent on the success
of the parameter optimization. The purpose of this section is to present
typical issues that we have experienced with the parameter estimation of
stochastic models. We also show the approaches that we have developed
to solve the problems. Overall, we want to point out that the nature of
the problem has to be analyzed properly and optimization method chosen
accordingly.

4.1 Parameter space

Structure

The parameter space denotes the allowed parameter values that is searched
for the likelihood function maximum. The structure of the parameter space
is dependent on the model design and may vary largely between different
models and applications. For example, if there are discrete parameters, such
as the number of target components, the parameter space is not continuous

17
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or differentiable in that dimension. This would set additional requirements
for the optimization algorithm. On the other hand, in some cases the
objective function is known to be convex which helps the optimization
greatly. For a convex function, a local optimum has to be actually the
global optimum.

The parameter space in stochastic models may be constrained based on
the physiologically realistic range of values, but generally we aim to build
unconstrained optimization problems. The motivation for this is, that we
want to allow also unexpected results which in many cases may be the
most valuable. However, in order to keep the model unambiguous we some
times have to limit the possible range of parameter values. For example,
in publications P3 and P2 we had to limit the intensity of spots to positive
values in order to avoid unfeasible target objects with negative number of
proteins and emitting “negative light”. These objects would have made
the model unambiguous. On the other hand, in publication P4 it was
crucial to let the parameters obtain also negative and physically absurd
values in order to obtain the pure theoretical maximum likelihood estimate
distribution.

Due to the nonlinear nature of physical phenomena and the correspond-
ing model equations, the stochastic parametric models create typically non-
linear optimization problems. For example, the behavior of kinetic parame-
ters in publication P4 are determined through differential equations [29] and
in publication P1 the solution to diffusion equation (heat kernel) contains
an exponential term [21, 22]. This is unfortunate, because linear problems
are well-studied and the tools to solve such optimization problems would
be readily provided [30]. However, the requirement that the data should
be a linear combination of the target or its properties is unrealistic due to
typically nonlinear distortion and inter-dependencies between model com-
ponents. There are attempts to convert the parameter estimation problem
into a linear problem such as graphical analysis of PET data [31, 32]. In-
evitably something is lost in the translation, although data processing may
be sped up drastically.

For the maximum likelihood estimation to be feasible, the global max-
imum for the likelihood should be finite and unambiguous. The validity
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of the requirements has to be checked in the model evaluation phase. In
practice, the unambiguity requirement fails most easily with parametric
models if the model is not designed carefully. If the model is unambiguous,
the solution may look good but the quantification may not correspond to
the reality at all. The finiteness requirement may fail e.g. if the number
of target objects is estimated as an parameter. Then the likelihood may
get better with every added object, because they may adapt to the realized
errors in the pixels. Then the likelihood optimum is approached slowly by
adding more target objects but may not be (theoretically) achieved with
finite number of target objects.

Gradient

The gradient or derivative is a valuable aid in optimization. It tells the
direction where the change in the likelihood function is locally largest. Un-
fortunately, the gradient does not point to the direction of global optimum
but it can surely be used to speed up the optimization. Because the gradient
tells a good direction to proceed in terms of all the estimated parameters
and improvement in all the parameter values may be achieved with a single
step. The drawback is that because the gradient always shows the local
descent direction, it easily leads the optimization to a local optimum. An-
other problem is the choice of good step length to the direction of (negative)
gradient, which is discussed later on in Section 4.3.

Often the gradient is not known e.g. due to complicated form of the like-
lihood function. Even if the analytic expression for the gradient could not
be solved in practice, it does not mean that the likelihood function would
not be theoretically differentiable. The gradient can be estimated numeri-
cally through finite differences approximation [33], but unfortunately this is
slow to compute with large number of parameters. It takes twice as many
function evaluations as there are parameters in each central (two-sided) fi-
nite difference estimation. Additionally, Hessian matrix can be utilized but
the size of the full Hessian matrix is often huge and the optimization very
slow. There are some modified algorithms, such as quasi-Newton meth-
ods [33], to estimate the finite difference and Hessian in order to make it
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faster and less memory consuming. However, in practice we have noted
that gradient-based optimization methods are useful only if the analytic
form for the gradient is available. Especially with large-scale problems it
is faster to use some non-gradient method than spend time in numerical
gradient approximation which, after all, gives only a local descent direction.

Without analytic or estimated gradient the likelihood value, i.e. the
joint probability of pixels in all time points, is the only information of the
goodness of the specific parameters and the optimization problem must be
solved with that information. The optimization problems can be solved
without the gradient or its estimate, although the optimization problem is
then a bit more challenging.

Scale

Capacity of measurement devices increases constantly and there are finer
and finer structures that can be quantified with the most advanced devices
[34]. Similarly grown biomedical knowledge allows, and requires, more de-
tailed models and therefore more parameters to estimate. The problem
from the optimization point of view is not the actual number of parameters,
but the number of possible combinations between them. If we limit our-
selves into thinking that there are two possible search directions (increase
or decrease) for a single parameter, there are 2" possible different search
directions in a n-dimensional parameter space. Thereby if the number of pa-
rameters increases linearly, the number of possible search direction and the
complexity of the optimization problem increases exponentially. Because
the parameters usually have continuous values, in practice the amount of
possible search directions is endless.

In theory, if the region of feasible parameter values is closed, the global
optimum can be achieved by performing a local optimization from a suffi-
cient number of initializations. However, even a relatively small number of
parameters can lead to huge number of initializations. In the application
of publication P3 we could typically have e.g. 16 parameters to estimate
and if we take only 10 different initial values for each parameter, we end up
with total number of 10' different initializations for parameters. There-
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fore we have aimed to optimization methods that are able to find the global
optimum from all feasible initializations.

According to popular, although not scientifically justifiable or precisely
accurate, Moore’s law, the computation power approximately doubles every
two years [35], i.e. is proportional to V2! , where y denotes the number of
years passed. For comparison, the number of search directions was previ-
ously noted to grow exponentially with a larger base number. This approx-
imation is merely heuristic, but it suggests that the optimization problems
with huge amount of parameters will not be solved simply by relying on
the development of computers and increased computational power. The
temporal and spatial resolution limits of the acquisition devices has hardly
been reached yet, so it can be expected that there will be problems with
the storage space and computation power in the future.

4.2 Distributed computing environment

Distributed computing environment, or a grid of computers, is a group of
connected computing devices that can be used to perform a large computa-
tional task [36]. The reason why distributed environments are considered in
this thesis is that they are more affordable than a super computer but pro-
vide massive amount of computation power. The grid may be constructed
without extra infrastructure based on the idle processor time of desktop
computers, such as classroom computers, and there are free of charge grid
management systems available. Thus they are a realistic choice in univer-
sities and research centers.

The significant difference in comparison to a super computer is that the
computers in a grid cannot run the same core processes or use the same data
simultaneously due to slow communication between the computers. For
example, if we have a strictly deterministic iterative optimization algorithm,
which in each step needs the results from the previous step, it gets no instant
advantage of the grid. Often in stochastic modeling neither the likelihood
function nor the data is directly separable so that they could be quantified
simultaneously in separate parts. Thus it is not so straightforward to solve
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our parameter optimization problems in a computer grid. Therefore, we
have modified and combined standard optimization algorithms in order to
take advantage of the massive computational capacity of the distributed
environment.

4.3 Developed methods

Randomized line search

If the gradient of the likelihood function is known, it obviously should be
used to speed up the optimization. However, there still exists a question
of how long step should be taken to the direction of the negative gradient.
There are numerous theoretically good or even theoretically optimal ways
(under certain conditions) to determine the step size [33]. In publication P4
we used a dynamic step length given by the Barzilai-Borwein (BB) formula
[37, 38]. The optimization was quite slow due to large number of parameters
but we managed to decrease the time cost after various modifications and
program code tuning to a feasible level and could obtain the desired results.
However, for more extensive simulations and for larger image resolution we
had to develop a faster method and named it as randomized line search.
Let us assume that the step length given by the BB formula is not
(locally) optimal on the one-dimensional line along the gradient. If we then
make a small random mutation to the step length, there is theoretically
a 50% chance that the new step length provides a better likelihood value.
If we further make similar random mutations in n consecutive iterations
of the algorithm, there is a 0.5" probability that the step length has been
improved in every iteration. This probabilistic property is the basis of our
method. By using a grid of m computers, there is 1 — (1 — 0.5™)™ chance
that at least one of the computers has improved the step length in every
iteration. In practice we have noticed that the optimization can be sped up
drastically this way by using random mutations to the BB step length and a
“sufficient” number of computers. In exemplary Fig.4.1 there are 20 search
paths with randomly chosen step lengths toward the negative gradient at
each iteration. As can be seen, by good luck some of the search paths end
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Figure 4.1: Randomized line search on a two-dimensional surface. The red lines
denote 20 search paths from the same initial location marked by a blue circle. The
optimum is the dark spot in the middle of the image. Each search path used unique
randomly chosen step lengths in the direction of their local negative gradient. Due
to “good luck” in step length selection, some of the search paths arrive significantly
closer to the optimum than the others.

up to better locations than the others, which is the key idea of our method.

The above routine is further improved with re-initialization as follows.
Each computer in the grid starts from the same initialization and optimize
iteratively with unique random mutations to the BB step length. Some
of the computers proceed to a better likelihood value than others due to
"good luck” in step length choice (note that every computer has also its
own unique gradient values after the first step). However, over time the
luck settles and all the computers have had approximately equal number of
lucky and unlucky step length mutations. To avoid this, within every few
iterations we take the current best parameters among all the grid computers
and use it as a new initialization for all the other grid computers. This way
all the computers continue the optimization from the "most lucky” case.
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Note that the globally best search path is not necessarily found by
taking locally best step lengths. It is possible that a computer in a grid
that has chosen many locally “bad” step lengths finally ends up to the
best likelihood value after n iterations. This logic is implemented also in
BB method, which doesn’t aim to improve the likelihood value at every
iteration but tries to find a good search path instead.

When the stochastic model is not directly separable and the selected
parameter optimization method is strictly iterative, it is not straightforward
to get any advantage of the distributed computing environment. However,
this way we have used stochastic logic and a computer grid to improve
a deterministic optimization method. The randomized step size method
is compared to the unmodified BB method and to a method with locally
optimal steps in the Chapter 6. The method can obviously be implemented
with other step length selection methods than Barzilai-Borwein.

Iterative multiresolution

Another approach to speed up the optimization is to iteratively increase
the resolution of the model during the optimization. In the beginning of
the optimization we used a low resolution model with a small amount of
parameters, but increased the resolution and the number of parameters as
the optimization proceeded. The low resolution model obtained from the
first iterations served as an initialization to the consecutive iterations with
higher resolution. From the signal processing view, only the low frequency
information in the data was used in the beginning of the optimization and
the full information was taken into account at the end.

The pixels in lower resolution models are regional averages of the higher
resolution model pixels. Thus the method works best when there is only
small pixel-to-pixel variation in the data. Therefore the iterative multires-
olution optimization did not work well in our publication P4, because we
defined the virtual tissue to have significant heterogeneity i.e. spatial vari-
ation. The iterative multiresolution method has been used in some PET
data quantification approaches [39, 40, 41]. However, the iterative resolu-
tion approach could be used also in temporal space and this might be a
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more robust way because dynamic actions in the target appear more or
less similar in consecutive time frames. In addition, by using iterative time
resolution the spatial heterogeneity of the target can be preserved. Nat-
urally it depends on the application which kind of iterative method can
be used. The flexibility of the parametric models would allow to imple-
ment the iterative resolution logic in various ways of parameter estimation.
For example, we have tried an iterative system matrix in PET parameter
estimation so that at first only the largest system matrix elements are con-
sidered in the likelihood function and small values are set to zero. Our
tests so far imply that the iterative system matrix may slightly speed up
the optimization. We still need to test how useful this approach will be
with large-scale problems, though.

In dynamic fluorescence microscopy data quantification the iterative
multiresolution method has not been used in previous studies. We imple-
mented iterative multiresolution approach in publication P1 and it was a
key factor in achieving good accuracy. With our stochastic model the op-
timization was quite slow with full resolution, because the gradient was
unknown. This is a good example of a case where advanced optimization
methods allow more complex models and thus provide better quantification.

Evolutionary algorithms

Evolutionary optimization algorithms replicate natures way of improving
species (or an isolated population) through gene mixing [42, 43]. In the
evolutionary algorithms there is a population of parameter vectors and
new parameter vectors are created by mixing the population members with
each other. The objective function values of the parameter vectors are then
used to decide which parameter vectors (population members) are killed
and which survive. This cycle is repeated until the termination criterion is
satisfied, for example until the diversity in the population is lost.

The two evolutionary algorithms that we have found most useful are
genetic algorithm (GA) and differential evolution (DE). In GA the popu-
lation members are typically mixed pairwise with a crossover operator and
a whole generation of new parameter vectors is created at once [44]. This
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new generation then replaces the previous population and the generation
cycle is continued until termination criteria are met. Naturally, there are
various different genetic algorithms with unique rules for mixing process,
parameter mutation, generation survival and parent selection [45]. We used
GA in the estimation of caveolae intensity distributions in publication P5.
Our genetic algorithm was a modified version of the one presented in [46].
Another evolutionary algorithm that we have used is differential evolu-
tion [47, 48]. The fundamental difference in comparison to GA is that the
population members are replaced one by one instead of updating the whole
generation at once. Another difference is that in DE the new parameter
vectors (”population’s children”) are mixed up from three vectors as

0y =061 + k‘(92 — 03). (4.1)

where typically 0.5 < k < 1.0. Again, there are additional details, such as
different crossover operators, that can be implemented in DE algorithms in
several ways [49]. However, in practice we have based our algorithms on
the standard DE/rand/1/bin formula because we could not obtain signifi-
cant improvement in the optimization robustness or in the time cost with
modified DE structures. We have used the dithered DE, though, in which
the scale factor k in Eq. (4.1) is chosen randomly for every parameter
vector creation [48]. Due to various different modifications of GA and DE
algorithms, the separation between them can sometimes be a bit unclear.
Thereby we haven’t stuck to the formal definition of either algorithm but
have modified our algorithms based on the needs and performance in our
application. See Fig. 1 of Publication P3 for pseudo-code of our simplified
DE algorithm. In biomedical quantification DE has been used in neural
networks optimization but not widely in modeling approaches [50, 51].
We have noticed that evolutionary algorithms possess excellent capabil-
ity to solve problems with multiple local optima and they are very robust
with noisy data due to stochastic components such as crossover operator
and random parent selection. However, the convergence is often quite slow
and it cannot be guaranteed that the global optimum is reached in a sin-
gle run of the algorithm. To overcome these issues, we have developed



4.3. DEVELOPED METHODS 27

hybrid algorithms that include both deterministic and stochastic compo-
nents. The structure of the hybrid algorithm is described more in detail in
Publication P1. The combination of Nelder-Mead and DE algorithm can be
seen as a modification of memetic approach [52]. However, we have added
also a random search step which has proven to be surprisingly useful in
our simulations. We have compared the hybrid algorithm to several other
algorithms, including pure genetic algorithm and a line search with finite
difference gradient approximations, and found out that the hybrid worked
most robustly.

The choice of algorithm settings, such as population size or mutation
probability, is crucial in the performance of the optimization algorithm and
with incorrect settings the algorithm may not be robust or may be useless
due to slowness of the convergence. The most optimal algorithm settings
can also be dependent e.g. on the data noise level and thus vary from data to
another. We have developed a novel approach to determine good settings
for the optimization algorithm by using simulated data. We quantified
the simulated data with evolutionary algorithm having randomly chosen
settings. The quantification was repeated with several different algorithm
settings and the convergence monitored. The settings that produce the
desired results most robustly and rapidly were searched for. Thus, we used
a stochastic method to determine the settings of a stochastic algorithm,
which was then used to quantify the data.
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Chapter 5

Selected Applications

The scale of the selected applications is quite wide, ranging from cell imag-
ing to whole body scanning. However, there are several analogous issues
both in data formation and model building.

5.1 Fluorescence microscopy

Fluorescence microscope is used to study various properties of living tar-
gets such as drug response of a human cell. The imaging is based on the
phenomena of fluorescence. The target or its components are labeled with
a fluorescent protein (fluorophore) such as green fluorecence protein (GFP)
and exposed to a light of specific wavelength [53, 54]. The fluorescent label
gets excited due to the light energy and after a very small time interval
it emits the light back. Due to the electron relaxation from the excitation
state to the ground state, a portion of the vibration energy is lost and
the emitted light has a higher wavelength than the excitation light. The
phenomena is known as Stoke’s shift. These two light sources can then be
separated or blocked by their wavelength with a filter such as a stained glass
or a dichroic mirror. Various different fluorescence microscope techniques
have been developed to match specific imaging purposes [55]. In this study
we concentrate on live cell imaging, although fixed-cell imaging, such as

29
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Fluorescence In Situ Hybridization (FISH), is used widely..

The raw pixel size of a fluorescent microscope image is at best around
100nm which way more than e.g. size of a single protein or many other
structures of interest. In addition, both the noise and the distortion effects
exist and complicate the quantification. The acquired image is therefore
not a direct one-to-one presentation of the target. The noise in the im-
age is actually from several sources including illumination noise, shot noise
and stray light. It is commonly assumed that the shot noise, originated
from the uncertainty in the signal detectors, is dominant in the image. The
shot noise is assumed to follow Poisson distribution due to unreliability of
independent detections. Thereby the intensity values in the image can be
assumed to be theoretically from Poisson distribution with the noiseless in-
tensity as the Poisson parameter. Due to imperfect detection of the signal,
the distribution in pixels is not exactly Poisson but a scaled (or shifted)
Poisson distribution with unequal mean and variance. In fluorescence mi-
croscope images non-stochastic noise may also occur, such as fixed-pattern
noise due to non-uniformity of the detectors [56]. However, this type of
noise can be estimated from a separate measurement quite easily and thus
we concentrate on the stochastic noise in this study.

The distortion in the microscope image is caused by the wave nature
of the light and diffraction in the microscope lenses and other components,
which results as a smoothed image. The function that models the smooth-
ing, called point spread function (PSF), may be sometimes difficult to de-
termine experimentally but theoretical formulas have been developed for it
[57, 58]. For example, the lateral PSF in an ideal case where the resolution
is limited by the lens diffraction, is

PSF(r) = <2J1 <27TAAT>>2 %2 (5.1)

where 7 is the (euclidean) distance from the center, A is the numerical aper-
ture of the lens, J; is the Bessel function of first kind and A is the wavelength
of the used fluorescence. The PSF gives the proportional amount of signal
that statistically diffracts to a distance r from the image centroid » = 0 of
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a point source. Although the PSF is fixed with each distance r, in practice
the diffraction occurs randomly.

The sharpness of the image is defined by the shape of the point spread
function and from the signal processing point of view the image is formed
through convolution between the (unknown) true target and the PSF. From
the above formula (5.1) it can be seen that the shape of the PSF is depen-
dent both on the lens and the fluorescence wavelength. Unfortunately these
two issues cannot be improved much. Imaging with a shorter wavelength
would give less smoothing, but UV light kills living targets or at least
disturbs their behavior. Living cells need also a specific composition of
immersion fluid. Thereby the image smoothing cannot be avoided just by
improving the experiment settings because the amount of smoothing, i.e.
the shape of PSF, is limited by the laws of physics.

The term “resolution” is used in several contexts with microscope im-
ages. Optical resolution is used to denote the lowest distance of two point
sources at which they still can be detected individually (resolved) from the
image. This limit is defined by the Rayleigh criterion. However, this limi-
tation does not concern modeling approach because the point sources and
their properties can be estimated quite accurately although they cannot be
detected individually from the image. In this study, the resolution or image
resolution denotes always the amount of pixels in the image.

5.1.1 Caveolin-1 protein distribution

Caveolae are invaginations on plasma membrane and they are assumed to
play an important role in e.g. endocytosis and cell lipid transport [59,
60, 61]. This in turn may be an important factor e.g. in cardio-vascular
diseases [62]. Caveolae consist of varying amount of caveolin-1 protein.
The differences in the proteins amounts between caveolae structures was
our point of interest.

The caveolin-1 protein can be labeled with green fluorescent protein
(GFP) and then observed with a fluorescence microscope (see Fig. 5.1).
The quantification is not trivial because the proteins are just few nanome-
ters in size and thus beyond the microscope resolution to be detected in-
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Figure 5.1: A fluorescence microscope image of GFP stained caveolae. The bright
spots present caveolae structures on a cell membrane. The noise in the image is
clearly visible and makes the quantification more difficult.

dividually. The diameter of the caveolae, however, is approximately 50-
100nm and they can be seen as spots in the microscope image [63]. The
spots’ brightness is approximately, though not exactly, linearly related to
the amount of fluorescent proteins in the caveolae. Thereby the amount of
proteins can be quantified by the intensity of the corresponding spot in the
image.

The conventional approach to microscopy data quantification is based
on data processing and image restoration [64]. In the conventional approach
the noise in the image is decreased e.g. by low-pass filtering but more com-
plex methods have been proposed [65, 66]. However, the noise reduction
cannot be perfect in practice with any method, because the noise in the im-
age is random. The filtering performs inevitably some additional smoothing
and destroys a portion of the useful information in the image. Especially
the quantitative effects of noise reduction are a problem, although the visual
quality of the image may be improved.

The projection, i.e. the smoothing according to the PSF, have been
attempted to invert through deconvolution. The discrete two-dimensional
deconvolution is an ill-posed problem[67] and typically cannot be solved
exactly (except in some special cases[68]). Generally the original target
cannot be reconstructed from noiseless data perfectly. The strong noise
contamination makes the problem even more challenging. The processed
image is then conventionally quantified by fitting a two-dimensional Gaus-
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sian distribution to each spot, or using more heuristic methods [69, 63].

Our approach to this problem is to model the target and the acquisition
parametrically and search for the best model parameters in terms of the
data. The model image was built by first adding a constant value to the
whole image representing both background and environmental signal as well
as cell autofluorescence. In this case it was not of interest to know where
this constant background signal was originated from. We investigated only
small regions of the cell at once and allowed a different constant background
value for each region and therefore the constant background assumption was
realistic. We modeled the fluorescence images from plasma membrane with
caveolae in two different ways.

In publication P3 the caveolae were modeled as two-dimensional Gaus-
sian intensity distributions and the aim was to evaluate the quantitative
errors caused by image filtering and local optimization algorithms. We used
mean squared objective function which is analogous to maximum likelihood
estimation with statistically independent image pixels. Although the pixel
values are not statistically independent in fluorescence microscopy images
due to the convolution with PSF, the results were sufficiently good. The
function to be minimized was

n m

1118) = = SN (1w, y) - Cla, ylo) - B2, (5.2)

where 6 are the parameters to be estimated, I is the observed image with
resolution n x m, C is the image model and 3 is the background level. The
details of the model can be seen in P3.

In P2 we further developed the method by replacing Gaussian compo-
nent with theoretical point spread function. In the PSF-based model we
assumed Poisson-type noise and used maximum likelihood estimation. We
assumed that a pixel (x,y) of the noisy image N is distributed as

N(z,y) ~ Poiss (p/Cla.y)) = VO@.y) (= VCly)) . (53)

where p controls the noise variance. The objective function was then defined
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as the joint probability function of pixel-wise Poisson probabilities

(z,y10) c—A(z,y10)

F(119) = HH Aa ) T (5.4)

where

Az,yl0) = pvC(z,yl0) (5.5)
Q,yl0) = I(z,y)+ v C(2,yl0)(p — VC(z,90)). (5.6)

The motivation behind the above definition is that theoretically the
noise in the microscope image is assumed to follow Poisson distribution
with variance equal to the square root of the signal, i.e. noiseless pixel
value [8]. However, perfect signal detection cannot be achieved and in
practice the noise variance is not exactly equal to the signal square root. In
our model, the variance of N(z,y) in Eq. (5.3) is equal to p/C(x,y) and
thus the noise variance can be controlled with the estimated parameter p.
The expectation of N(z,y) is

p\/C(z,y) — p/C(z,y) + C(z,y) = C(a,y)

and it is thus not affected by the noise variance parameter.

5.1.2 Fluorescence recovery after photobleaching

In fluorescence recovery after photobleaching (FRAP) experiment the flu-
orescent molecules are exposed to a high power laser in a (small) region
of the cell. The process is called bleaching and it causes the fluorescent
proteins lose their ability to fluoresce due to chemical damage. However,
the total fluorescence in the bleach area recovers as the unbleached fluores-
cent proteins from the surrounding regions move to the bleached region and
simultaneously the bleached proteins move out of the region. The recovery
is monitored and the shape of the recovery curve imply e.g. the nature of
protein movement (e.g. active transport or Brownian motion). The FRAP
experiment can be used to study various cell structure or behavior issues
such as bacterial cytoskeleton and protein binding [70, 71].



5.1. FLUORESCENCE MICROSCOPY 35

The first methods for FRAP quantification were presented in separate
studies by Edidin et al and by Axelrod et al both in 1976 [72, 73]. They
derived closed-form solutions for the intensity recovery in the bleached re-
gion over time for several experimental cases. The solutions are formally
dependent on the half-time of the recovery which is the time point when 50
percent of the full intensity in the region has recovered. The diffusion rate
can then be determined by calculating the average intensity of the bleached
region from each image and by fitting them to the formal solution. The
general outline of conventional FRAP quantification can be seen in Fig. 5.2.
The analytical solutions contain additional parameters, such as bleach pro-
file, which need to be pre-defined correctly in order to obtain a correct value
for diffusion coefficient. Various other equations for FRAP quantification
have been proposed for specific cases along increased biological knowledge
of cell dynamics [74, 75, 76]. There is no doubt about the mathematical
or physical correctness of these equations, but robustness with true noisy
data is questionable. All these methods share the common problem of fit-
ting noisy observations to a fixed one-dimensional theoretical parametric
curve. Additional factors, such as heterogeneous fluorescence distribution
and sample movement are conventionally treated separately through image
processing which in turn affects the curve fitting results.

More recently, spatial and stochastic estimation methods have been
introduced [77, 78]. In Tannert’s method, the fluorescence concentration
within each pixel in the image during the experiment is modeled by simu-
lating diffusion [79]. Then the diffusion coefficient which gives the closest
match to the acquired data in terms of 2-norm is searched for. The results
are reported to be improved in comparison to conventional methods. This
is expectable because the whole image data is used in such a spatial model.
In Jonasson’s study a likelihood objective function for diffusion analysis was
derived, which gives more correct and flexible handling of the image noise
[80]. Also the effect of point spread function was considered, although not
implemented. However, strong assumptions were made about the experi-
ment such as isotropic diffusion and strictly Gaussian bleach profile. Later,
the method has been updated to handle also general bleach profiles [81].
The likelihood function was optimized numerically with the help of partial
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Figure 5.2: Conventional FRAP quantification. The average intensity within
the bleach region in each image of the FRAP time series is computed. Theoretical
fluorescence recovery equation is fitted to the series of average intensities.

derivatives. A good initialization was reported to be needed in order to
achieve the maximum of the likelihood function due to several local optima
in the parameter space. In practice it may be difficult to find a sufficiently
good initialization and to evaluate the quality of an initialization.

In practice there are two severe issues that complicate the FRAP quan-
tification and that may be difficult to avoid: the heterogeneity of the fluores-
cence distribution and the sample movement. Conventionally the theoreti-
cal diffusion equations have assumed that the fluorescent molecules are uni-
formly distributed in the equilibrium state, which is rarely the case in real
cell. To tackle this problem, the data has been conventionally subtracted
or divided by the average of pre-bleach images in order to convert the data
into proportional fluorescence concentration form [82]. The approach is
basically valid, if the exact inhomogeneous fluorescence distribution could
be obtained from the pre-bleach images. However, noise will inevitably be
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present in the pre-bleach image and the inhomogeneity estimate becomes
erroneous.

The image movement can have several origins such as cell motility or
mechanical drift. The accuracy of a fluorescence microscope is nanome-
ters and it is difficult to achieve perfect stillness of a living target on that
scale. If the microscope is even slightly unbalanced or the temperature
changes on the other side of the sample, the target will move in the image.
In conventional methods this movement must be separately estimated and
pre-processed in order the theoretical diffusion solutions to be valid. This
introduces an additional pre-processing step, which together with other pos-
sible processing steps like noise removal and deconvolution, takes the data
even further from the original acquired images. The quantitative effects of
the pre-processing steps to the are quite hard to determine.

In our parametric model, the sample movement and inhomogeneous flu-
orescence distribution are estimated simultaneously with the main point of
interest i.e. the rate of fluorescence recovery. Overview of our FRAP model
is shown in Fig. 5.3. The image movement is modeled as a dynamic lin-
ear dislocation of the whole image, i.e. the whole cell or the whole visible
fraction of the cell. This kind of movement is mainly due to previously
mentioned instrument or environmental issues. Cell motility, however, may
be modeled more accurately with some non-linear or stochastic function.
The movement is parametrized with two quantities: the velocity and the
direction of movement. In two dimensions this can be defined with two
variables: angular direction and movement speed. The movement has ob-
viously quite a drastic effect on the match between the model output and
the acquired data, and therefore correct values for movement parameters
are often found easily right in the beginning of the optimization process.

Conventionally inhomogeneous distribution of fluorescent molecules in
equilibrium state is estimated from the pre-bleach images. We modeled the
inhomogeneity for each image pixel parametrically. We used the whole time
series to estimate the inhomogeneity in interaction with the other model
parameters. The inhomogeneity matrix defines the natural fluorescence
capacity of the pixels, i.e. the relative amount of fluorescence protein in
equilibrium state. It may not be necessary to model the heterogeneity of all
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Figure 5.3: The workflow of the developed FRAP quantification method. The
model for dynamic FRAP data is built by creating heterogeneous initial distri-
bution, applying bleach to the distribution, simulating fluorescence diffusion and
finally virtually moving the cell in the image. All the steps are defined through the
parameter values. The most likely parameters in terms of the acquired FRAP data
are searched for.
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the pixels individually, though, but a lower resolution model can be used
and interpolated to match the image resolution. Other components in the
model are immobile fraction, bleach laser profile and noise variance.

The pixel-wise likelihood function was formulated as

(p M(x’tw))N(z,t)+\/M(x,t|0)(p—\/M(a:,tlé))) e,(p M(x,t|a))

(N(x,t) + /M@, 10)(p — \/M(:c,t|0)))!

p(z,t]0) =

(5.7)
where x denotes the pixel, ¢t denotes time, M is the data model constructed
from parameters 6, N is the measured FRAP data and p controls the noise
variance. The data model M for the measured FRAP data was constructed
from several components as

M(9) = m(vB(H|a, B, E)+(1—7) (H+f(B(H|a, B, E)—H|D)) ‘7’, T1, T, p) ,

(5.8)
where m is the function for image motion, f is the function for diffusion,
B is the function for bleaching, H defines the cell inhomogeneity and 6 is
a vector consisting of all the estimated parameters.

To emphasize the fact that parametric models easily lead to quite com-
plicated optimization problems, we show here how the actual image model
M in the Eq. 5.8 is constructed. The outmost of the nested functions in
the likelihood function (5.7) controls the image movement and is defined as

i+0.5
m(X|r,r,ry) = {/ X(z) d"z ’ x € X} , (5.9)
7-0.5

where = (x1 +tr;cos T, x9 +tr;sin T, x3+1,). The movement is controlled
with the three estimable parameters 7, r; and r,. The bleach profile I' in
bleaching function B is defined as

I(z|a, 8,2) = 1 — min {B, Wexp (‘;(”C —w)'S (@ - u)) }
(5.10)
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where a, § and ¥ are estimable parameters and p is the (known) bleach
location. The bleaching is performed in practice as a multiplication with
the bleach profile matrix I and the fluorescence concentration matrix. This
model can be used to model both uniform or Gaussian bleach profile as well
as incomplete or complete bleaching. See Fig. 2.1 in P1 for examples of
bleaching profiles.

The actual point of interest, the diffusion, is modelled as a convolution

fx,t) = / &(x — 2|D,t)F(z,0) d"z, (5.11)
where ® is the discrete heat kernel defined as
|2
®(x|D,t) = 4Dt . (5.12)

(47 Dt)n/2 ¢

The heterogeneity or cell topology H is defined as a matrix with a fixed
resolution that is then upscaled to match to the microscope image resolu-
tion.

It can be easily seen from the above equation that the likelihood function
would have been very difficult to differentiate. Actually, we have not even
expressed the likelihood function (5.7) as a closed-form expression of the
parameters but only of its components. The full analytical expression for
the likelihood function probably would have been useless in practice. For
the numerical modeling and optimization it was sufficient and a lot easier to
build the components numerically and the combine them. For example, the
integral equation (5.11), which controls the sample movement, simplifies in
practice to a weighted sum of pixel values.

The FRAP application demonstrates the versatility of parametric mod-
els. The sample movement and inhomogeneity were implemented in the
model and therefore the data “corrections” could be done simultaneously
with the data quantification. In conventional approach the corrections are
made prior to quantification and the possible errors made in this step will
results in erroneous parameters of interest. Thus, in parametric modeling
there is constant interaction between the data “correction” and quantifica-
tion so that both of them can be performed with optimal accuracy.
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5.2 Positron Emission Tomography

Positron emission tomography (PET) is an imaging technique which can
be used to monitor functional processes in the body. In PET a radioactive
tracer is injected into the blood flow and its concentrations in the tissue are
monitored by the PET scanner. From the dynamic tissue concentrations,
the tissue behavior can be deducted based on theoretical models such as
kinetic model. The PET scanner does not produce a direct image of the
tracer concentrations, but a collection of scans called sinogram. Each sino-
gram bin value is a sum (a line integral) over the tracer concentrations
in the line between a scanner detector pair. In addition, the detected bin
values are noisy due to stochastic behavior of the radioactive tracer.

The scanning can be described in PET by the Radon transform, which
can be performed in practice through a matrix multiplication. The Radon
transform is in theoretic continuous case uniquely invertible (proved already
in 1917 by Johann Radon himself [83, 84]) but in true life the transform is
discrete and the inversion problem is ill-posed [85]. Quantification of kinetic
parameters, or even time-activities, from noisy PET sinogram data poses a
Poisson inverse problem [86] which is difficult to be solved robustly. There
have been studies where the kinetic parameters are computed directly from
sinograms with stochastic parametric modeling [87, 39, 88]. However, all
the previous methods have been applied with some kind of regularization
or likelihood penalization [89]. The motivation for the data regularization
or likelihood penalization is to avoid the maximum likelihood estimation
error. However, we needed to obtain the kinetic parameters with the full
estimation error in order to use the ML estimation theory.

We created in the publication P4 an unique method to determine the
regional distribution of kinetic parameters directly from PET sinograms
based on the maximum likelihood estimation. The determination of kinetic
parameters through large-scale non-penalized likelihood estimation with-
out any regularization was a new approach in itself, but we also used the
maximum likelihood theory to correct the error in the obtained estimate
histograms. Here we discuss mostly the resulting large-scale optimization
problem and omit the statistical error correction.
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The likelihood for kinetic parameter model was defined as

1

M) = STz e

exp ((M 5Ot (M — 5(9))) . (5.13)

where M is the data, ¥ is a diagonal matrix constructed from S and S(6)
is the model sinogram created from the parameters 6. The details of the
model structure can be found in the Publication P4.

Although we had an analytic formula for the gradient of the likelihood,
the optimization problem was still quite challenging due to its large scale
and time consuming calculations. With standard 128128 image resolution
we had about 15000 parameters to estimate without constraints. The pa-
rameters were allowed to obtain also negative values to get the statistical
information, although physiologically the negative values make no sense.
We needed to obtain the maximum likelihood estimates very accurately in
order to be able to apply the ML estimation theory. With the 128x128
image resolution, a single calculation of likelihood/gradient function value
took initially about 2.5 seconds on a standard desktop computer. There-
fore, we had to pay a lot of attention to the programming of the estimation
code and the selection of optimization method.



Chapter 6

Results

6.1 Caveolin-1 protein distribution

Our first approach to caveolin-1 quantification was simple and heuristic by
nature [90]. The method managed to outperform the compared another
heuristic method by Pelkmans mostly due to capability to quantify over-
lapping spots in the image. However, the method had severe weakness such
as strong dependence on the initialization of the algorithm. The data was
also pre-processed with deconvolution and filtering. Because we were not
satisfied with the quantification results of the method, we developed the
stochastic modeling approach.

The method based on mixtures of Gaussian distributions presented in
Publication P3 worked well, is quite robust and easily modifiable to tackle
a specific problem. In Publication P2 the method was further modified
by replacing the Gaussian mixture with a mixture of the theoretical point
spread functions. We compared these two methods with simulated data and
the latter gave better results when the simulated target consisted of point
sources. However, the PSF-based approach sets an additional requirement
for the experiment because the target objects (here caveolae) have to be
strictly smaller than the pixel size of the acquired image. If the objects are
larger than the pixel size, and essentially not point sources, the resulting

43



44 CHAPTER 6. RESULTS

spots in the image are not shaped as a PSF anymore.

In these methods the notable issue was that the numerical optimization
was not so simple as one might first think. In P3 we showed that the
chosen optimization algorithm affects to the quantification results especially
with noisy data and in the case of several overlapping spots. Because our
modeling approach always uses raw noisy data, the choice of optimization
method needed to be done carefully. In this case, the number of parameters
was actually pretty low (about 10-20 parameters). This implies that even
relatively simple stochastic parametric models together with noisy data
have a tendency to cause complicated optimization problems and therefore
require careful consideration.

The stochastic parametric modeling was used successfully in Publication
P5 to obtain biologically valuable results of caveolin-1 protein distributions
under varying environments. Previously we tried to analyze the same data
both with the Pelkmans method and with our heuristic method [63, 90].
However, there was too much variation in the results within the test cases
and it was not possible to detect significant differences between test groups.
In other words, the stochastic modeling approach was required to obtain
biologically significant quantitative results.

6.2 Fluorescence recovery after photobleaching

We created simulated FRAP data to analyze the optimization problem.
The parameter optimization problem in the FRAP model had multiple lo-
cal optima and due to various interdependent model components, it was
very difficult to find a good initialization. We tried some local optimization
algorithms, such as Nelder-Mead method [91], and they failed to achieve the
global optimum. To solve the problem, we developed a hybrid evolutionary
algorithm based on differential evolution, random search and simplex algo-
rithm. We chose to use a hybrid algorithm instead of a pure evolutionary
algorithm because we had noticed that the pure evolutionary algorithms
were too slow in this case. We chose DE/rand/1/bin variant of the dif-
ferential evolution because our previous tests had shown that it was faster
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Figure 6.1: Development of the negative log-likelihood value in parameter op-
timization with different algorithms and a simulated FRAP data. The constant
True parameters line denotes the likelihood of the defined parameter values of the
simulation, which is very close to the global likelihood maximum. The stochastic
algorithms (Hybrid and Differential Evolution) manage to get close to the global
optimum but Nelder-Mead converges to a local optima near the initialization. The
lines appear piecewise linear because the optimization algorithms saved intermedi-
ate results quite rarely (2-20 minutes interval).

that e.g. DE/rand/1/exp variant. The hybrid algorithm works basically
so that the deterministic part (simplex) converges rapidly towards a lo-
cal optimum, while the stochastic parts (random search, DE) help finding
the global optimum. A comparison of optimization results with different
algorithms can be seen in Fig. 6.1.

The resolution of the cell inhomogeneity model (matrix H in the likeli-
hood function 5.7) has to be fixed in order to use our model. The problem
is that if the resolution is too low, the inhomogeneity may not be modeled
well enough and the quantification results may therefore be erroneous. On
the other hand, if the resolution is high, there may be quite high number
of parameters to be estimated. In Fig. 6.2 can be seen the estimated inho-
mogeneities with different resolutions from a real FRAP data. It is obvious
that the inhomogeneity is significant in this data and the homogeneous, i.e.
1 x 1 resolution, is not enough to describe the target. In the highest resolu-
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Figure 6.2: The estimated inhomogeneous equilibrium state from a real FRAP
data with various model resolutions. The images are interpolated from low resolu-
tion model to match the actual data resolution. The (1 X 1) image corresponds to
a homogeneous model. There can be seen some undesired pizel-to-pizel variation
in the full resolution model (64 x 64).

tions there can be seen some pixel-to-pixel variation in the inhomogeneity
matrix which indicates over-fitting. Fortunately, the over-fitting with high
resolution inhomogeneity models does not seem to disturb the quantifica-
tion because the obtained likelihood values and the quantified parameters
are quite equal when using 8 x 8 or higher resolution. See Fig. 6.3 for
development of the likelihood function value in terms of the inhomogeneity
model resolution. The quantified parameter values are presented in Table
6.1 and it can be seen that there are no large changes in the parameter
values when the resolution increases higher than 8 x 8. Especially, the rate
of diffusion D is obtained equally well from 8 x 8 model and 64 x 64 model.
However, if the inhomogeneity is completely ignored and a homogeneous
fluorescence distribution assumed (1 x 1 model resolution) , the obtained
parameter D value is largely erroneous.
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Table 6.1: Quantified parameter values for a real FRAP experiment with various
inhomogeneity matriz resolutions.

Resolution D B8 p 7 T % o
1x1 3.16 | 0.92 | 25.72 | 0.94 | 5.80 | 0.51 | 486.11
2x2 1.48 | 0.85 | 10.62 | 0.22 | 6.19 | 0.22 | 652.43
4x4 1.65 | 0.90 | 6.80 | 0.23 | 6.30 | 0.34 | 525.12
8 x8 1.77 | 0.88 | 5.50 | 0.23 | 6.76 | 0.32 | 546.96

16 x 16 1.77 | 0.88 | 5.25 | 0.23 | 6.75 | 0.32 | 575.58
32 x 32 1.77 | 0.88 | 5.25 | 0.23 | 6.75 | 0.32 | 552.35
64 x 64 1.77 | 0.88 | 5.72 | 0.23 | 6.75 | 0.32 | 575.58
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Figure 6.3: The obtained mazximum likelihood value from a real FRAP data
with various model resolutions. The horizontal azxis denotes the square root of the
number of pizels in the FRAP model. The likelihood improves only slightly when
resolution increases higher than 8 X 8. The values correspond to the images in Fig.
6.2. The likelihood with homogeneous (1 x 1 resolution) model is remarkably worse
than with the heterogeneous models.
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Figure 6.4: Development of the negative log-likelihood in one iteration with 50
different step lengths from the same initialization to the direction of the negative
gradient in simulated PET data. Blue line corresponds to the standard Barzilai-
Borwein step length and the red lines corresponds to the randomized step lengths.
Approximately 50 percent of the randomized step lengths give better likelihood val-
ues than the standard BB step length.

6.3 Positron Emission Tomography

Publication P4 introduces an unique methodology to obtain the regional
kinetic parameter histograms and to correct the estimation error in them.
The kinetic parameters were estimated for each voxel, which resulted in a
large-scale optimization problem with typically tens of thousands of param-
eters. In order to utilize maximum likelihood theory in the error correction,
the parameters had to be estimated without any data regularization or like-
lihood function penalization. We managed to solve this huge optimization
problem and obtained results that we could not have been achieved with
any conventional method.
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Figure 6.5: Development of negative log-likelihood in 30 iterations and 50 dif-
ferent runs of randomized line search algorithm from the same initialization in
simulated PET data. Blue line denotes the standard Barzilai-Borwein method.
Green line denotes the steepest descent method, where locally optimal step length
is used. Due to good luck in step length selection, some of the algorithm runs
achieve remarkably better likelihood after 30 iterations than the unmodified BB
method or the steepest descent method.

Parameter optimization

Due to the large number of parameters and relatively slow calculation of
likelihood /gradient function, a novel approach was needed to take advan-
tage of the distributed calculation environment in the numerical parameter
optimization. Each kinetic parameter contributes to several sinogram ele-
ments through Radon transform. Reversibly, (almost) every sinogram ele-
ment is dependent from several kinetic parameters. Therefore the problem
is not directly separable into subprocesses that could be solved simultane-
ously so that the final result could be obtained by merging the subprocesses.

We applied the randomized line search presented in Section 4.3. The
behavior of the likelihood function in one iteration with 50 randomly cho-
sen step lengths in the direction of negative gradient is shown in Fig.6.4.
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Figure 6.6: Development of negative log-likelihood in 50 different parallel runs
of randomized line search algorithm in simulated PET data. Blue line denotes the
standard Barzilai-Borwein method. Green line denotes.the steepest descent method,
where locally optimal step length is search along the gradient. The randomized line
search algorithm is here re-initialized twice, after 30 seconds and after 60 seconds.
The runs are re-initialized with the best parameter vector among all the runs and
thus continue from the same point. In the long run this method outperforms the
standard BB method remarkably.

The random step-lengths were small mutations to the step-length proposed
by the BB algorithm. Each optimization run was performed on a com-
puter of its own in a distributed computing environment. Thus, it took
approximately the same amount of time to calculate the 50 different runs
as single run. As can be seen, approximately half of the random step-lengths
produced a better likelihood than the unmodified BB method, which was
expected because the mutations were small enough.

The optimization was then continued on these 50 computers from the
unique parameter values they achieved in the first iteration of the algo-
rithm. Each computer had now its own gradient because the runs on dif-
ferent computers ended in different places in the parameters space in the
first iteration. Randomized steps were then taken in the direction of the
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local negative gradients. The evolution of the negative logarithms of the
likelihood values in the computers is presented in Fig.6.5. It can be seen
that there were some few computers that have had “lucky” step-length
guesses several times and had a substantially better likelihood than the
standard BB method. However, after 30 iterations the luck already started
to settle and there were only 12 computers that had better likelihood value
than the BB. Therefore, it was time to re-initialize the runs.

In Fig.6.6 is shown the effect of re-initialization. It can be seen that in
the long run this method gives significantly better results than the stan-
dard BB method. This way, we have used stochastic logic to improve a
deterministic and strictly iterative optimization method. Of course, it is
case dependent how often the re-initialization of the runs can be done and
how much the optimization can be sped up with this approach. There are
issues such as network delay and the number of grid computers that affect
the success of the randomized line search method. In this case we used
network file system which enabled fast communication between the grid
computers.

In linear programming, the optimal step size e.g. the step which max-
imized the likelihood along the local gradient line, is not theoretically the
best choice in the long run. We have noted this same behavior in our
nonlinear applications and it can be seen also in Fig. 6.5. The “locally
optimal” step size means here, that we used the step length that produces
the largest change in the likelihood function. In the first iteration the opti-
mal step size produces obviously the best result but after several iterations
the other methods have better development. In a closer inspection, we no-
ticed oscillatory behavior in the parameter values. In reality, the search
for the optimal step size for every iteration would take a lot of time and
the method would be quite useless. In the Fig.6.5 we compared only the
number of iterations, but the optimal line search method used actually 30
times more computation time.
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Chapter 7

Discussion

We have shown in this study that stochastic parametric modeling with
powerful numerical optimization is a very accurate and robust method to
quantify biomedical data. We also showed that the approach can be applied
to real research problems.

We were able to determine the intensity distributions of caveolae struc-
tures from the real fluorescence microscope images very accurately with
developed model. The developed method helped to achieve biologically
significant difference between treatment groups in Publication P5 and the
results have already received some interest [92, 93]. There are still some
issues that could be included in the acquisition model and might further
improve the quantification results. For example, we used quite a simplified
point spread function in our experiments. An experimentally determined
PSF could be used instead of a theoretical one which would allow e.g.
position-dependent distortion modeling. It also would be interesting to
correct the estimation error in the intensity histograms in a similar man-
ner as with PET data in Publication P4. The error-correction might give
more accurate estimates for absolute caveolin-1 protein concentrations in
the caveolae. The differences between the treatment groups in our Publica-
tion P5 would probably stay unchanged because the estimation error would
be quite invariant between the data sets. A more accurate caveolin-1 pro-
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tein quantification might be useful e.g. in cancer research [94, 95].

Results with our FRAP model showed that the modeling approach was
very accurate and could adapt well to the cell movement and heterogeneity.
The results showed that both the movement and non-homogeneous fluo-
rescence distribution affect the quantification results significantly and the
error increases if these issues are ignored. There has been interest to take
the inhomogeneity into account in FRAP quantification also in some other
studies [96, 97]. However, the previous modeling solutions contain model
simplification such as symmetric diffusion assumption or require separate
estimation of the heterogeneity [77, 79]. Our approach is the most versatile
so far because it requires no data pre-processing, estimates the hetero-
geneous fluorescence distribution automatically and compensates the cell
movement. We quantified real microscopy data from a non-living target
and the results imply that the method is able to handle real microscope
data. Because of the excellent performance of the model so far, we be-
lieve the method could reveal some new information of the cell dynamics
if applied to real experimental data. However, the model should still be
tested with living cells in order to estimate whether the target behavior is
modeled accurately enough. Also the three-dimensional nature of the true
measurement should be taken into account. The optimization problem in
FRAP model had many local optima and contained at worst thousands of
parameter. Our hybrid algorithm was able to solve it robustly, accurately
and with feasible time cost.

The idea of PET quantification with parametric modeling was presented
already in 1985 [98]. However, no method with implementation has been
published to estimate the kinetic parameters directly from the projections
for every voxel without any regularization. Neither the correction of sta-
tistical maximum likelihood estimation error has been presented in any
previous PET study. Thus we believe our PET data quantification method
is unique and that our method is currently the most accurate way to de-
termine the tissue heterogeneity from PET data. However, extensive com-
parative evaluation of our method and other possible methods should still
be performed. Our acquisition model needs still to be improved in order
to be used with real PET data. Fortunately many acquisition issues, such
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as attenuation and scatter correction, can be directly implemented into the
system matrix of the PET model [99, 100]. We were able to solve the huge
optimization problem with tens of thousands of parameters through the
Barzilai-Borwein gradient method. Our randomized line search method to-
gether with distributed computing environment speeds up the optimization
significantly and will help us to apply the model with higher resolution and
more complex models (three compartments with three or four kinetic pa-
rameters). The accurate solution of the large-scale optimization made it
possible to determine the pure voxel-wise kinetic parameters including the
ML estimation error. This was a crucial component in the success of our
method and the results could not have been obtained with approximate
optimization methods.

The optimization problems with stochastic models tend to be challeng-
ing because the model components take care of very different operations
such as movement correction or tracer kinetics modeling. Some of the
parameters affect the likelihood value through theoretical equations con-
taining e.g. exponential terms while other parameters can have a very
simple effect on the likelihood function. Thus the parameter space can
be discrete in one dimension, continuous in another and have very large
variation in the scale of the different dimensions. Therefore, the numerical
solution of the problem requires not only large computational power but
also suitable methods and proper analysis of the problem. Furthermore,
this relates to the No Free Lunch (NFL) Theorem [101]. The NFL states
that the average performance of any two optimization algorithms is equal
over all possible problems. Therefore, we have not suggested any specific
algorithm to be used in biomedical data quantification. Instead, we have
presented purpose-built algorithms for each presented application and em-
phasize that the algorithms are problem-specific. The performance of our
developed algorithms may not be the fastest over all possible methods but,
most importantly, they manage to give out the desired quantitative results
with a feasible time cost.

The nature of living biological targets limits the resolution and the qual-
ity of the data. For example, the fluorescence imaging causes photodamage
to cells and therefore the number of images cannot be increased infinitely
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without inflicting cell behavior [55]. Similarly, the quality of PET projec-
tions is dependent on the amount of injected radioactive tracer. Naturally,
the image quality cannot be preferred to safety of the patient [102, 103].
Therefore, both temporal and spatial sampling in measurements from living
targets is typically limited and the quality of the data may not be improved
infinitely merely through improvement in the acquisition devices.

In order to correctly design the model, prior knowledge about the target
and the acquisition system is required. If the model is too strictly defined
based on prior knowledge, anything that is not modeled cannot be found
from the target. This contradiction should be kept in mind when design-
ing the model and not to set too narrow limits for the allowed values of
parameters. The same contradiction has to be considered also with the
conventional methods, though.

Stochastic parametric models do not offer a fast and easy way to data
quantification because the better quantification accuracy comes with a
price. The approach contains several stages where expertise is needed,
such as target modeling, acquisition modeling, parameter optimization and
implementation of the whole model into a computer program. Therefore
scientific collaboration over several fields is required as well as sufficient
computational resources in order to take full advantage of the approach.
The optimization problems with our method are usually very time con-
suming and cannot be solved instantly by any algorithm. Thus stochastic
parametric modeling is currently more suitable to research purposes than
e.g. for clinical use. However, the stochastic modeling has got wider atten-
tion only quite recently and there is still much room for improvement in
the methods and their implementation.

In the stochastic parametric modeling approach the acquired data is
not modified by pre-processing and all the available information, such as
noise distribution, is used to determine the model parameters. Therefore we
believe this is the optimal way to quantify noisy biomedical measurements.
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