
��������	
�
��������������	
�

�������	
�����

��������	
���������������	��	������	�����������	��
�����
����
�	���

������������

Tampereen teknillinen yliopisto. Julkaisu 505
Tampere University of Technology. Publication 505

Tuomas Järvinen

Systematic Methods for Designing Stride Permutation
Interconnections

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB104, at Tampere
University of Technology, on the 19th of November 2004, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2004

ISBN 952-15-1263-6 (printed)
ISBN 952-15-1395-0 (PDF)
ISSN 1459-2045

ABSTRACT

This Thesis considers systematic methods for designing stride permutation inter-

connections, which are common in several digital signal processing algorithms. Ma-

naging such interconnections becomes important especially in parallel hardware im-

plementations, which is the principal design problem considered in this Thesis.

In the first proposed method, the stride permutations are represented with permuta-

tion matrices, which are decomposed into smaller, more efficiently implementable

matrices. The derived decompositions can be directly mapped onto networks consis-

ting of multiplexers, registers and interconnection wirings. In order to estimate the

complexity, the lower bound of the number of registers in stride permutations is deri-

ved, which is shown to be equal to the number of registers in the proposed networks.

In addition, the multiplexing complexity is shown to be reduced compared to other

existing approaches.

The second developed method is based on parallel memories which are in-place up-

dated for the minimization of memory usage. This, unfortunately, complicates the

control generation and interconnections. To overcome these drawbacks, two different

approaches are developed resulting in a simplified control generator and switching

network, respectively. Moreover, it is shown that resulting memory-based networks

can be easily modified for the run-time configuration of sequence sizes and strides.

The systematic methods for designing stride permutation interconnections presented

in this Thesis are shown to be competent compared to other existing approaches that

are often design specific. The proposed methods are applicable to various designs

since the sequence length, stride, and parallelism of computation are given as para-

meters having any power-of-two values. In addition, the methods are well suitable

for automatic design generation.

PREFACE

The work presented in this Thesis has been carried out in the Institute of Digital and

Computer Systems at Tampere University of Technology during the years 2000-2004.

I would like to thank my supervisor Prof. Jarmo Takala for guiding and encouraging

me towards doctoral degree. Grateful acknowledgements go also to Prof. Shuvra

Bhattacharyya and John Glossner, Ph.D., for reviewing and providing constructive

comments on the manuscript.

It has been my pleasure to work in the Institute of Digital and Computer Systems.

Many thanks to all my colleagues for the discussions and pleasant working atmo-

sphere. Especially Jari Nikara, Dr.Tech., Perttu Salmela, M.Sc., Vesa Lahtinen,

Dr.Tech., Tero Rissa, M.Sc., Konsta Punkka, M.Sc., Rami Rosendahl, M.Sc., and

Mr. Harri Sorokin deserve a big hand for helping me in several matters. In addi-

tion, I would like to thank all my co-authors: Prof. David Akopian, Jukka Saarinen,

Dr.Tech., Teemu Sipilä, M.Sc.

This Thesis was financially supported by Tampere Graduate School in Information

Science and Engineering (TISE), National Technology Agency (TEKES), HPY Rese-

arch Foundation, Nokia Foundation, Jenny and Antti Wihuri Foundation, Ulla Tuomi-

nen Foundation, The Finnish Society of Electronics Engineers, Emil Aaltonen Foun-

dation, and the Foundation of Advancement of Technology, which are all gratefully

acknowledged.

Finally, I would like to thank my parents, Mikko and Maija Järvinen, for their encou-

ragement in my studies. My warmest thanks go to my wife Anu and son Viljami for

their love, support, and understanding.

Tampere, October 2004

Tuomas Järvinen

iv Preface

TABLE OF CONTENTS

Abstract . i

Preface . iii

Table of Contents . v

List of Publications . ix

List of Figures . xi

List of Tables . xv

List of Abbreviations . xvii

List of Symbols . xxi

1. Introduction . 1

1.1 Objective and Scope of Research 5

1.2 Main Contributions . 6

1.2.1 Author’s Contribution . 7

1.3 Thesis Outline . 7

2. Permutations . 9

2.1 Definitions . 9

2.2 Bit-Permute/Complement Permutations 10

2.3 Stride Permutations . 13

2.4 Preliminaries for Matrix Representation of Stride Permutations . . . 14

vi Table of Contents

3. Previous Work . 17

3.1 Switching Networks . 18

3.2 Register-Based Networks . 21

3.2.1 One-Dimensional Networks 21

3.2.2 Two-Dimensional Networks 24

3.2.3 Application Specific Networks 26

3.3 Stride Permutations with Parallel Memories 31

3.3.1 Parallel Memory Systems 32

3.3.2 Access Scheme . 33

3.3.3 Stride Access . 36

3.3.4 Stride Permutation Access 38

3.3.5 Parallel Memories in FFT and Viterbi Processors 39

3.4 Summary . 44

4. Register-Based Stride Permutation Network 47

4.1 Decompositions of Permutation Matrices 48

4.1.1 Square Matrix Transpose Network 48

4.1.2 One-Dimensional Network 51

4.1.3 Two-Dimensional Network 52

4.2 Realization Structures . 65

4.2.1 Basic Switching Units . 65

4.2.2 Networks for Square Matrix Transpose 66

4.2.3 Networks for Power-of-Two Strides 67

4.3 Complexity Analysis . 70

4.3.1 Lower Bound of Register Complexity 70

4.3.2 Register and Multiplexer Complexities of Proposed Networks 74

Table of Contents vii

4.4 Comparison . 76

4.5 Summary . 77

5. Memory-Based Stride Permutation Networks 79

5.1 Low Control Complexity Scheme 80

5.1.1 Access Scheme . 81

5.1.2 Row Address Generation 85

5.2 Low Interconnection Complexity Scheme 87

5.2.1 Operation Scheduling . 89

5.2.2 Row Address Generation 93

5.2.3 Design Example . 94

5.2.4 Implementation Complexity 96

5.3 Comparison . 100

5.4 Summary . 103

6. Conclusions . 105

6.1 Main Results . 105

6.2 Future Development . 106

Bibliography . 107

LIST OF PUBLICATIONS

This Thesis is a monograph, which contains some unpublished material, but is mainly

based on the following publications. In the text, these publications are referred to as

[P1], [P2], . . ., [P8].

[P1] T. Järvinen, J. Takala, D. Akopian, and J. Saarinen, “Register-Based Multi-

Port Perfect Shuffle Networks,” in Proceedings of the IEEE International

Symposium on Circuits and Systems, vol. 4, Sydney, Australia, May 6–9

2001, pp. 306–309.

[P2] J. Takala, T. Järvinen, P. Salmela, and D. Akopian, “Multi-Port Interconnec-

tion Networks for Radix-R Algorithms,” in Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, vol. 2, Salt

Lake City, UT, U.S.A., May 7-11 2001, pp. 1177-1180.

[P3] J. Takala and T. Järvinen and J. Nikara, “Multi-Port Interconnection Net-

works for Matrix Transpose,” in Proceedings of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, vol. 4, Phoenix, AZ,

U.S.A., May 26-29 2002, pp. 874-877.

[P4] J. Takala and T. Järvinen, “Stride Permutation Access in Interleaved Memory

Systems,” in Domain-Specific Multiprocessors - Systems, Architectures, Mo-

deling, and Simulation, S. S. Bhattacharyya and E. F. Deprettere and J. Teich,

Eds., Marcel Dekker Inc., New York, NY, U.S.A., 2004, ch. 4, pp. 63-84.

[P5] T. Järvinen, P. Salmela, J. Takala, and T. Sipilä, “In-Place Storage of Path

Metrics in Viterbi Decoders,” in Proceedings of the IFIP WG 10.5 Interna-

tional Conference on Very Large Scale Integration of System-on-Chip, Darm-

stadt, Germany, Dec. 1–3 2003, pp. 295–300.

x List of Publications

[P6] T. Järvinen, J. Takala, “Register-Based Permutation Networks for Stride Per-

mutations,”in Computer Systems: Architectures, Modeling, and Simulation,

Lecture Notes in Computer Science, vol. 3133, A. D. Pimentel and S. Vassi-

liadis, Eds., Springer-Verlag, Heidelberg, Germany, 2004, pp. 108–117.

[P7] T. Järvinen, P. Salmela, H. Sorokin, and J. Takala, “Stride Permutation Net-

works for Array Processors,” in Proceedings of the IEEE 15th International

Conference on Application-Specific Systems, Architectures and Processors,

Galveston, TX, U.S.A., Sept. 27–29, 2004, pp. 376–386.

[P8] T. Järvinen, P. Salmela, T. Sipilä, and J. Takala “Systematic Approach for

Path Metric Access in Viterbi Decoders,” to appear in IEEE Transactions on

Communications.

LIST OF FIGURES

1 Signal flow graph of constant geometry FFT algorithm 2

2 Signal flow graph of radix-2 FFT algorithm 3

3 Block diagrams of partial-column structures for 16-point radix-2 al-

gorithm . 4

4 Examples of bit-permute/complement permutations 12

5 Block diagram of crossbar network 19

6 Block diagrams of 8-port shuffle/exchange networks 20

7 Block diagram of 8-port Benes network 20

8 Permutation examples with single-stage shuffle/exchange networks . 21

9 Block diagram of network supporting arbitrary permutations 22

10 Block diagrams of one-dimensional matrix transpose networks . . . 24

11 Block diagram of two-dimensional matrix transpose network 25

12 Principle of iterative method for square matrix transpose 27

13 Block diagram of two-dimensional matrix transpose network 28

14 Block diagram of commutator unit 28

15 Block diagram of cascaded FFT structure 28

16 Block diagram of double-buffered matrix transpose network 29

17 Network for bit-permute/complement permutations 30

18 Block diagram of FIFO-based approach to stride permutations . . . 30

19 Block diagrams of two principal parallel memory systems 32

xii List of Figures

20 Examples of common parallel memory access schemes 34

21 Convolutional encoders and corresponding trellis diagrams 38

22 Block diagram of radix-2k Viterbi decoder 41

23 Example of cluster structure in radix-8 Viterbi decoder 41

24 Block diagram of radix-2 FFT structure 42

25 Block diagram of radix-2 Viterbi decoder 42

26 Block diagram of radix-2k Viterbi decoder 43

27 Block diagram of radix-2 Viterbi decoder 43

28 Decomposition examples of 8×8 matrix transpose 50

29 Illustration of decomposition in Case 1 54

30 Illustration of decomposition in Case 1 55

31 Illustration of decomposition in Case 2 57

32 Illustration of decomposition in Case 2 58

33 Illustration of decomposition in Case 3 60

34 Illustration of decomposition in Case 3 61

35 Example of decomposition in Case 1 63

36 Example of decomposition in Case 2 64

37 Example of decomposition in Case 3 64

38 Permutation examples with DSD units 66

39 Permutation examples with SEUs 66

40 Block diagram of one-dimensional square matrix transpose network 67

41 Block diagram of matrix transpose network 67

42 Block diagram of two-dimensional square matrix transpose network 68

43 Block diagram of one-dimensional stride permutation network . . . 68

44 Block diagrams of two-dimensional stride permutation networks . . 69

List of Figures xiii

45 Examples of permutation networks with fixed parameters 71

46 Illustration of deriving the lower bound of register complexity for

one-dimensional and square matrix transpose networks 72

47 Illustration of deriving the lower bound of register complexity for

two-dimensional networks . 73

48 Block diagram of low control complexity scheme 81

49 Illustration of access scheme for 64-element array 82

50 Illustration of access scheme for 32-element array 84

51 Examples of module address transformation matrices 86

52 Block diagram of module address generation 88

53 Block diagram of rotation unit . 88

54 Block diagram of low interconnection complexity scheme 89

55 Example of operation rescheduling 90

56 Block diagram of radix-2 structure 95

57 Illustration of data evolution in four memory modules 96

58 Block diagram of row address generator 97

59 Configuration example of computation kernel 100

xiv List of Figures

LIST OF TABLES

1 Example of life time analysis of data elements 23

2 Complexities of square matrix transpose networks 76

3 Comparison of permutation networks for power-of-two strides . . . 77

4 Complexity figures of row address generator 98

5 Overview of memory-based scalable structures for radix-K algorithms 101

6 Comparison of interconnection complexities in radix-K structures . 102

xvi List of Tables

LIST OF ABBREVIATIONS

ACM Association for Computing Machinery

B Memory module

BPC Bit-Permute/Complement

CSSU Compare-Select-Store Unit

D Delay register

DAB Digital Audio Broadcasting

DCT Discrete Cosine Transform

DNA DeoxyriboNucleic Acid

DRAM Dynamic Random Access Memory

DSD Delay-Switch-Delay

DSP Digital Signal Processing

DVB Digital Video Broadcasting

DVD Digital Versatile Disc

FFT Fast Fourier Transform

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FSctrl Field Selection control

GF Galois Field

xviii List of Abbreviations

HW Hard-Wired

I Input

ILP Integer Linear Programming

IEEE the Institute of Electrical and Electronics Engineers

LSB Least Significant Bit

M Multiplexer

MSB Most Significant Bit

MTN Matrix Transpose Network

NoC Network-on-Chip

O Output

OFDM Orthogonal Frequency Division Multiplexing

PE Processing Element

PN Permutation Network

PS Permutation Section

RA Row Address

Rctrl Rotation control

S Switch

SE Shuffle-Exchange

SEU Switch-Exchange Unit

SIMD Single Instruction stream, Multiple Data stream

SN Switching Network

SoC System-on-Chip

SPN Sequential Permutation Network

xix

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XOR eXclusive-OR

LIST OF SYMBOLS

a initial address

A(t,i, j) row address for module i at access j and stage t

b target address

c complement vector

C(t, j) base address at access j and stage t

CP number of connection patterns

dt
i ith data element at stage t

D number of registers

D(t,i) correction coefficient for module i at stage t

E(t,i) correction coefficient for module i at stage t

f (i) index function

f ′(i) modified index function f (i)

fN,S(i) index function for stride-by-S permutation of order N

F input data order

Fk k-point FFT

g(i) index function

g′(i) modified index function g(i)

G output data order

xxii List of Symbols

gcd(·, ·) greatest common denominator

H data storage order

h(i) index function

IK identity matrix of order K

JK J permutation matrix of order K

k log2 K

K radix

L latency

l(i) life time of data element

M number of multiplexers

ma module address

min(·, ·) minimum function

mod modulo operator

n log2 N

N size of data sequence

PN permutation matrix of order N

P−1 inverse of permutation matrix P

PT transpose of permutation matrix P

PN,S stride-by-S permutation of order N

P(i)
S2 ith step in decomposition of permutation PS2

PN,S(Q) decomposition of stride-by-S permutation matrix of order N for

Q-port network

q log2 Q

xxiii

Q number of ports in permutation network

r log2 R

R modified stride

ra row address

rem remainder after division

roti(a) i-bit left rotation of bit vector a

s log2 S

S stride

t time instant

tdi f f tout put − tinput

tinput input clock cycle of data element

tout put output clock cycle of data element

T module transformation matrix

TH leftmost q× (n−q) part in T

TL rightmost q×q part in T

TN,Q module transformation matrix for Q-module system

V row transformation matrix

π(i) bit index function

⊗ Kronecker product, i.e, tensor product

�·� floor function

< · >X modulo X

�·� ceiling function

σ relatively prime to two

xxiv List of Symbols

⊕ exclusive-or

∧ and

∨ or

1. INTRODUCTION

Digital signal processing (DSP) has become an important tool in consumer, commu-

nications, medical, and industrial products. A wide variety of approaches is used to

implement DSP algorithms, ranging from the use of off-the-shelf microprocessors

to field-programmable gate arrays (FPGA) to custom integrated circuits (IC) [37].

While programmable approaches continue to progress in performance, historical di-

gital signal processors were unable to execute applications like rake receiver, eva-

luation of image sequences or radar signals [85, 106]. As programmable approa-

ches progress, higher bit rate applications continue to gain momentum still favoring

application-specific hardware. In addition, power consumption is of major concern

in the design of portable devices, which favors application-specific hardware where

large parallelism and low clock rate can be utilized.

Unfortunately, the design of application-specific hardware is considered to be costly.

This together with the ever-increasing design complexity and higher integration level

have been the key drivers for system-on-chip (SoC) designs. Lower design costs

require greater reuse of intellectual property, silicon implementation regularity, or

other novel circuit and system architecture paradigms [57]. In order to improve the

design productivity, increased reuse, freedom of choice, and pervasive automation

should be utilized [33].

Parallelism of computation is often employed in application-specific hardware struc-

tures for DSP algorithms. One extreme is a fully parallel implementation where the

operations in a signal flow graph are mapped directly onto functional units, which is

referred to as a direct-mapped implementation. This way the maximum parallelism

can be obtained allowing the minimum clock rate to be used, resulting in reduced

energy per operation [17, 30]. Power efficiencies of direct-mapped hardware are up

to four orders of magnitude greater than for general-purpose microprocessors, and

this gap is increasing [57].

2 1. Introduction

x0

x1

x2

x3

x4

x5

x6

x7

X0

X1

X2

X3

X4

X5

X6

X7

x8

x9

x10

x11

x12

x13

x14

x15

X8

X9

X10

X11

X12

X13

X14

X15

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2
PE

interconnection interconnection interconnection

8

10

12

0

2

4

6
14

13

9

11

1

3

5

7
15

M

M

M

M

M

M

M

M

PE

PE

PE

PE

M

M

M

M

M

M

M

M

PE

PE

PE

PE

b)a)

interconnection

Fig. 1. 16-point radix-2 constant geometry FFT algorithm: a) signal flow graph, b) corre-

sponding column structure. F2: 2-point FFT. PE: processing element. M: multiplexer.

Direct-mapped implementations may result, however, in excessive throughput and

area implying that mapping onto reduced computational resources could be econo-

mically useful. For such a design problem, linear mapping methods have been propo-

sed [60, 85]. Most digital signal processing algorithms can be formulated as regular

and iterative algorithms, which in turn are especially suitable for linear mapping to

array processor structures [85]. These array processors consist of parallel proces-

sing elements computing the node functions of the signal flow graph, and an inter-

connection network which provides communication means between the processing

elements.

In the linear mapping methods, the dimensionality of signal flow graphs is reduced

by using horizontal, vertical, or both projections, as described, e.g., in [85]. These

mapping methods can be illustrated with fast Fourier transform (FFT) as an exam-

ple. Basically, the parallel structures of FFTs can be divided into three categories:

direct-mapped (fully parallel), column, and cascaded (pipeline) structures [42]. As

an example, the signal flow graph of a radix-2 constant geometry FFT is depicted in

Fig. 1(a) where the constant geometry refers to the constant interconnection topology

between the processing columns. By applying the horizontal projection to the given

signal flow graph, a column structure is obtained, as depicted in Fig. 1(b). In this

structure, the computation is performed for a single column at a time and the data

elements are reordered with hardwired interconnections.

3

x0

x1

x2

x3

x4

x5

x6

x7

X0

X1

X2

X3

X4

X5

X6

X7

x8

x9

x10

x11

x12

x13

x14

x15

X8

X9

X10

X11

X12

X13

X14

X15

a)
F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

PE PE PE PE

b)

PE

interconnection 0 interconnection 1 interconnection 2

IN0 IN1 IN2810 12 02 461413 911 13 5715

Fig. 2. 16-point radix-2 FFT algorithm: a) signal flow graph, b) corresponding cascade

structure. PE: processing element. IN: interconnection network.

Cascaded structures are obtained by applying vertical projection to the signal flow

graph. Consider the signal flow graph of a radix-2 FFT in Fig. 2(a), which is verti-

cally projected resulting in a cascade structure illustrated in Fig. 2(b). In this struc-

ture, the computation is performed simultaneously on four processing columns. Such

an approach implies that the interconnections require a temporal reordering of inter-

mediate data elements, which is realized with an interconnection network having a

storage capability. This is in contrast to the column structure where the interconnec-

tions are spatial and can be hardwired. Temporal interconnections are resulted also if

both the horizontal and vertical projections are applied to a signal flow graph. Such

a mapping produces a partial-column structure where the computation is performed

for a part of the column at a time. Examples of the partial-column structures for a

16-point radix-2 constant geometry FFT are shown in Fig. 3.

In all the previous parallel structures, managing the interconnections becomes crucial,

which is the principal problem considered in this Thesis. The mapping onto reduced

number of processing elements is made according to horizontal and vertical projec-

tions, which complicates the interconnections. Chronologically correct processing is

maintained by delaying certain operands with registers or memory modules. Thus

the interconnections cannot be hardwired, in general. Exceptions are direct-mapped

and full column structures, where hardwired interconnections can be employed.

4 1. Introduction

M

M

M

M

M

M

M

M

M

M

M

M

M

M

13

89 10

12

11
1 023

45 67
1415

13 89 10 1211
1 023 45 67

1415

13

89

10

12

11

1 0

23

45

67
1415

PE

PE

PE

PE

PE

PE

PE

IN

IN

IN

Fig. 3. Partial-column structures of 16-point radix-2 algorithm. PE: processing element. IN:

interconnection network. M: multiplexer.

The interconnections considered in this Thesis are called stride permutations and they

will be discussed in detail in the next chapter. These type of permutations have se-

veral practical applications. For example, consider a matrix transpose, which is a

special case of stride permutations. Similarly, the common perfect shuffle permuta-

tion [105] is a stride permutation. The perfect shuffle has a close relation to several

practical algorithms; e.g., Cooley-Tukey radix-2 FFT [24] algorithm can be sche-

duled into a form where the interconnections between the processing columns are

perfect shuffles. In the same way, FFTs with other radices can be given in a form

where interconnections are stride permutations. In this Thesis, hardware realizations

of these stride permutations are referred to as stride permutation networks.

Stride permutations can also be found in trellis coding and especially in Viterbi al-

gorithm used for decoding convolutional codes. Convolutional encoders are often

described with the aid of a shift register model [65]. Decoding of convolutional co-

des is represented with the aid of a trellis diagram [41], which is a state diagram of

the convolutional encoder expressed in time. Trellis diagrams can be given in a form

where operand accesses are made in stride permutation order, just like in FFTs. In

addition, the processing nodes have similarities; in both algorithms, FFT and Viterbi,

the number of input and output operands is K. Therefore, these types of algorithms

are referred to as radix-K algorithms and their realizations as radix-K structures in

the following. Typically, K is a power-of-two.

1.1. Objective and Scope of Research 5

Although the examples given in this Thesis consider FFT and Viterbi algorithms,

other algorithms with the corresponding stride permutation topology exist, e.g., dis-

crete sine, cosine, and Hartley transforms [4,108]. Currently, FFT is perhaps the most

ubiquitous algorithm used to analyze and manipulate digital or discrete data [91]. It

is used, e.g., in electroacoustic music and audio signal processing, medical imaging,

image processing, pattern recognition, computational chemistry, error-correcting co-

des, spectral methods for partial differential equations, and mathematics [91]. Any

time the analyzed or manipulated data set is very large and accuracy is essential, very

large FFTs are required [26]. Example applications employing large FFTs are found

in radio astronomy where FFTs of tens of gigapoints are used [26].

Viterbi algorithm was initially proposed for decoding of convolutional codes in [117].

Later on, it has been used as maximum-likelihood sequence estimator for detecting

data signals in digital transmission [87, 99]. As a result, Viterbi algorithm has been

adopted in consumer products like magnetic storage devices [86], modems [35, 53,

54], DVB [36], DAB [34], DVD players [47], and mobile phones [111]. It has also

been used in other areas such as character recognition, voice recognition, and DNA

analysis, to name few examples. The algorithm is so fundamental that one would

expect ever-widening application [48].

1.1 Objective and Scope of Research

The objective of this Thesis is to develop systematic design methods for stride permu-

tation interconnections. Such design methods alleviate substantially automatic design

generation. Therefore, the structures realizing the stride permutation interconnecti-

ons are described with the aid of design parameters such as the size of permutation,

stride, and the number of input/output ports. All the parameters are assumed to be

powers-of-two.

As the first objective, a systematic design method for stride permutation networks

consisting of delay registers and multiplexers is to be developed. These networks

are referred to as register-based stride permutation networks in the following. The

problem to be solved is to derive the networks with the aid of decompositions of stride

permutation matrices. The networks should have minimum register and multiplexer

complexities.

6 1. Introduction

The second objective is to develop a systematic design method for stride permutation

networks based on a parallel memory system. Such networks are called memory-

based stride permutation networks in the following. The problem in this approach

is to find an access scheme that supports all power-of-two stride permutations. The

amount of memory and the complexities of control and interconnections should be

kept in minimum.

1.2 Main Contributions

In this Thesis, systematic design methods for stride permutations are developed. To

summarize, the main contributions are the following:

• Survey of previous work in hardware realizations of stride permutations.

• Systematic method for deriving hardware structures based on decompositions

of stride permutation matrices.

– Decompositions of stride permutation matrices, which can be mapped

directly onto hardware.

– Register-based stride permutation networks, which have the lowest regis-

ter and multiplexer complexities presented so far.

• Two systematic methods for designing memory-based stride permutation net-

works: low control complexity scheme and low interconnection complexity

scheme.

– Low control complexity scheme, which supports stride and bit reversal

permutations, uses minimum amount of memory, and results in simple

row address generation.

– Low interconnection complexity scheme, which uses minimum amount

of memory and results in reduced interconnection complexity by resche-

duling the operations.

• Derivation of lower bound for register complexity in stride permutations.

1.3. Thesis Outline 7

1.2.1 Author’s Contribution

The author derived the decompositions of stride permutation matrices and developed

and analyzed the register-based stride permutation networks. In addition, derivation

of the lower bound for register complexity as well as the comparison against other

reported structures were carried out by the author. The studies on register-based stride

permutation networks have been reported earlier in [109], [P1, P2, P3]. In general,

these earlier networks do not result in the minimum register complexity thus the work

has been continued in [P6] and [P7] where the design method resulting in minimum

register complexity is introduced for the first time.

The author was responsible for verifying the low control complexity scheme, which

has been initially published in [P4]. In addition, the low interconnection complexity

scheme, which has been published in [P5] and [P8], was developed and verified by the

author. The author conducted the comparison against the earlier published schemes.

The work reported in this Thesis has been published earlier in eight publications [P1-

P8]. Therefore, some chapters contain verbatim extracts from the publications. These

extracts are under copyright of respective copyright holders. None of the publications

has been used in another person’s academic thesis.

1.3 Thesis Outline

To start with, permutations and their presentations are reviewed in Chapter 2. A class

of permutations called bit-permute/complement permutations as well as its subclass,

stride permutations, are defined. In Chapter 3, a review of previous work on the

realizations of stride permutations is made. The review is divided into three parts:

switching, register-, and memory-based networks. Some traditional interconnection

means are reviewed followed by more application-specific structures. In the context

of memory-based networks, parallel memory systems are defined, some principal

access schemes are reviewed, and a stride permutation access scheme is defined. In

addition, some parallel memory structures used in FFT and Viterbi computations are

reviewed. Chapter 3 contains some material already published in [P4, P8].

In Chapter 4, a new systematic design method for register-based stride permutation

networks is proposed. First, stride permutation matrices are decomposed into smaller

8 1. Introduction

block-diagonal matrices starting from a square matrix transpose. The square matrix

transpose is the basis for other stride permutations, which are decomposed subse-

quently. Some examples of decompositions are provided with fixed design parame-

ters. Then, the mapping of the decompositions onto hardware structures is discus-

sed. A lower bound of register complexity is derived and register and multiplexer

complexities of the proposed networks are given. The chapter is concluded with a

comparison against the other reported register-based networks. Some parts of this

Chapter have been published earlier in [P1–P3, P6, P7].

Memory-based stride permutation networks for stride permutations are developed in

Chapter 5. First, a low control complexity scheme is defined by specifying the row

and module addresses and control generation. Then, a low interconnection comple-

xity scheme is developed where the rescheduling of operations is suggested followed

by the definition of a row address generator. An example design is provided with fi-

xed design parameters and complexity figures are given. At the end, an overview and

comparison of different parallel memory structures for FFT and Viterbi algorithms

are given. Some material in Chapter 5 has been reported in [P4, P5, P8]. Chapter 6

concludes the Thesis.

2. PERMUTATIONS

In this chapter a class of permutations referred to as stride permutations is reviewed.

The stride permutations are a subclass of bit-permute/complement (BPC) permuta-

tions, which are named after the index mapping method, i.e., the permuted data se-

quence is obtained by permuting and complementing the index bits of the initial data

sequence. In such a way, a rich number of permutations can be defined including,

e.g., matrix transpose, bit reversal, vector reversal, shuffle permutations [25, 75].

The chapter is organized as follows. First, different representations of permutations

are reviewed. Then, BPC permutations are defined according to [25] followed by the

definition of a subclass of BPC permutations. This subclass considers stride permu-

tations, which are discussed throughout the thesis. At the end of this chapter, some

preliminaries for mathematical representation of stride permutations are given.

2.1 Definitions

A permutation, in general, is defined as follows [72]:

Definition 1 (Permutation): 1. The arrangement of any determinate number of

things, as units, objects, letters, etc., in all possible orders, one after the other; called

also alternation. 2. Any one of such possible arrangements. [72]

Permutations can be represented in several different ways. One often used method is

based on permutation matrices.

Definition 2 (Permutation Matrix): A permutation matrix PN is an N ×N matrix

with all elements either 0 or 1, with exactly one 1 at each row and column. [74]

10 2. Permutations

As an example, a matrix P,

P =

⎛⎜⎝ 0 1 0
0 0 1
1 0 0

⎞⎟⎠ ,

is a permutation matrix. Let A be a matrix

A =

⎛⎜⎝ 1 2 3
4 5 6
7 8 9

⎞⎟⎠ .

Then PA is a row-permuted version of A, and AP is a column-permuted version of A:

PA =

⎛⎜⎝ 4 5 6
7 8 9
1 2 3

⎞⎟⎠ ; AP =

⎛⎜⎝ 3 1 2
6 4 5
9 7 8

⎞⎟⎠ .

Permutation matrices are orthogonal: if P is a permutation matrix, then P−1=PT . The

product of permutation matrices is another permutation matrix. [74]

The second method for the representation of permutations is to use an index function

f (i). With such an index function, the data sequence X , X = (x0,x1, . . . ,xN−1), is

reordered as Y , Y = (y0,y1, . . . ,yN−1) where yi is given as

yi = x f (i), or (1)

y f−1(i) = xi. (2)

In this thesis, the index functions will be used as given in (1), where the data sequence

X is reordered as Y , Y = (x f (0),x f (1), . . . ,x f (N−1)). Third method of using the index

functions is based on their definition of bit positions of the index in binary form, as

done in bit-permute/complement permutations.

2.2 Bit-Permute/Complement Permutations

Initially, the BPC permutations were defined by Nassimi and Sahni in [75] where

they suggested an algorithm to route data in a mesh-connected parallel computer.

The suggested algorithm supports any permutation, which can be represented as per-

muting and complementing of the bits of a processor address. The bit permutation

2.2. Bit-Permute/Complement Permutations 11

is made according to bit index function, π(i), which is fixed, i.e., it is the same for

each address. The bit permutation may also be accompanied by complementing the

fixed set of address bits. Thus the name bit-permute/complement permutation. Since

the processor address is obtained by permuting the address bits, it is required that the

number of processors is a power-of-two [92].

Consider that permutation of elements is a one-to-one mapping of input addres-

ses from the set {0,1, . . . ,N − 1} onto itself, i.e., the source address of element

a = (an−1, an−2, . . . , a0) is mapped onto target address b = (bn−1,bn−2, . . . ,b0), where

n = log2 N. The leftmost bit represents the most significant bit. In BPC permutati-

ons, the target address b is formed from its source address a by applying a fixed bit

permutation π(i) to the address bits and then complementing a fixed subset of bits

of the result. The complementing is equivalent to exclusive-oring (XOR) by an n-bit

complement vector c, c = (cn−1,cn−2, . . . ,c0). A source address a maps to a target

address b by the equation

b j = aπ(j)⊕ c j, j = 0,1, . . . ,n−1, (3)

where ⊕ represents a bitwise XOR operation.

Besides [75], BPC permutations have been discussed, e.g., in [25, 32, 77, 92]. Accor-

ding to [25, 75], many familiar permutations fall into a class of BPC permutations.

For example, a perfect shuffle permutation [105] is a BPC permutation defined as{
π(j) = j +1 mod n
c j = 0

, j = 0,1, . . . ,n−1, (4)

where mod represents a modulo operation. An example of perfect shuffle permu-

tation applied to a 16-element data sequence is shown in Fig. 4(a).

Another example is a bit shuffle permutation where the number of bits n is even. The

bit shuffle permutation is expressed as{
π(j) = 2 j mod n
c j = 0

, j = 0,1, . . . ,n−1. (5)

A bit shuffle permutation is illustrated with a 16-element data sequence in Fig. 4(b).

Similarly, a bit reversal permutation belongs to BPC permutations. In the bit reversal

permutation, the bits of the source address of each element (an−1,an−2,. . . ,a0) are

12 2. Permutations

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

8

1

9

2

10

3

11

4

12

5

13

6

14

7

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

a) b) c) d)0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

e)

Fig. 4. BPC permutations on 16-element data arrays: a) perfect shuffle, b) bit shuffle, c) bit

reversal, d) vector reversal, and e) 4×4 matrix transpose.

reversed to form the element’s target address (a0, . . . ,an−2,an−1), which is expressed

as {
π(j) = n−1− j
c j = 0

, j = 0,1, . . . ,n−1. (6)

An example of bit reversal permutation is given in Fig. 4(c).

Furthermore, vector reversal permutations are BPC permutations. In vector rever-

sal permutations, the source address i is mapped to the target address (N − 1)− i,

i = 0,1, . . . ,N − 1, which is performed by complementing all the bits of the source

address, i.e., {
π(j) = j
c j = 1

, j = 0,1, . . . ,n−1. (7)

An example of the vector reversal permutation is shown in Fig. 4(d).

A matrix transpose can also be thought as a BPC permutation. Consider a transpose

of an S×V matrix. The operation can be described with an SV -element vector as

follows; first the elements of the matrix are read into a vector in column-wise. Then,

the elements are reordered according to a permutation{
π(j) = j + v mod s+ v
c j = 0

, j = 0,1, . . . ,s+ v−1. (8)

2.3. Stride Permutations 13

where s = log2 S, v = log2V . After the permutation, the elements are written back

into a S×V matrix in column-wise. In Fig. 4(e), a 4×4 matrix transpose is depicted.

2.3 Stride Permutations

The described matrix transpose is also known as a stride permutation; stride-by-S

permutation of an N-element vector can be performed by dividing the vector into S-

element subvectors, organizing them into S × (N/S) matrix form, transposing the

obtained matrix, and rearranging the result back to the vector presentation [44].

This interpretation implies that the stride S has to be a factor of vector length, i.e.,

N rem S = 0 where rem denotes remainder after division.

In the stride permutations, the address bits are shifted cyclically without complemen-

tation. Thus, they are also called shuffle permutations, as done in [29]. A stride-by-S

permutation of an N-element sequence can be represented as{
π(j) = j + s mod n
c j = 0

, j = 0,1, . . . ,n−1. (9)

Since the binary representation of permutations is used, only power-of-two strides

are possible. In the following, the discussion is limited to power-of-two stride per-

mutations.

Another representation for stride permutations is given with an index function as

follows;

Definition 3 (Stride Permutation): Let us assume a vector X = (x0, x1, . . . , xN−1).
Stride-by-S permutation reorders X as Y = (x fN,S(0), x fN,S(1), . . . , x fN,S(N−1))T where

the index function fN,S(i) is given as

fN,S(i) = (iS mod N)+ �iS/N� | N rem S = 0,

i = 0,1, . . . ,N −1 (10)

where �·� is the floor function.

For the matrix representation of stride permutations, the stride-by-S permutation ma-

14 2. Permutations

trix of order N is defined as

[PN,S]mn =

{
1, iff n = (mS mod N)+ �mS/N�
0, otherwise

,

m,n = 0,1, . . . ,N −1. (11)

For example, the permutation matrix P8,2 associated to stride-by-2 permutation of an

8-element vector is the following (blank entries represent zeros):

P8,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By multiplying the source vector with a permutation matrix, the stride permutation is

performed, i.e., Y = PN,SX where X and Y are the source and reordered vectors, re-

spectively, and PN,S is the stride-by-S permutation matrix of order N. As an example,

P8,2(0,1,2,3,4,5,6,7)T = (0,2,4,6,1,3,5,7)T (12)

where T represents a transpose.

In this Thesis, the discussion is limited to practical cases where the strides and array

lengths are powers-of-two, N = 2n,S = 2s. Some properties of stride permutations in

such cases are given in the following.

2.4 Preliminaries for Matrix Representation of Stride Permutations

For ordinary products of matrices, left evaluation is used, i.e.,

n

∏
i=0

Ai = (((A0 ·A1) ·A2) · . . . ·An). (13)

The formulation used here is based on tensor products: tensor product (or Kronecker

product) is denoted by ⊗.

The proofs for the following theorems can be found, e.g., in [29] and [44].

2.4. Preliminaries for Matrix Representation of Stride Permutations 15

Theorem 1 (Factorization of stride permutations):

Pa,bc = Pa,bPa,c (14)

Pabc,c = (Pac,c ⊗ Ib)(Ia ⊗Pbc,c) (15)

where IK denotes the identity matrix of order K.

Corollary 1 (Periodicity): Stride permutations are periodic with the following pro-

perties.

1) Period of P2n,2s is lcm(n,s)/s where lcm(a,b) denotes the least common multiple

of n and s. In other words,

I2n =
lcm(n,s)/s

∏
1

P2n,2s . (16)

2) Consecutive stride permutations always result in a stride permutation:

P2n,2aP2n,2b = P2n,2(a+b) mod n . (17)

Proof. Property 2) If a+b > n, the left side of (17) can be written as P2n,2kn+(a+b) mod n =
P2n,2knP2n,2(a+b) mod n where k > 1 is an integer. By substituting 2n for S in (10), we find

that P2n,2n = P2n,1 = I2n . Therefore, P2n,2kn = I2n and the result follows. Property 1)

Let us assume that period of P2n,2s is k, thus ks mod n = 0, i.e., ks is a multiple of n.

This implies that k is a multiple of n/s, i.e., k = mn/s. k has to be integer, thus s has

to be a factor of mn. The smallest number fulfilling the requirement is lcm(n,s) and,

therefore, k = lcm(n,s)/s.

Theorem 2 (Relationship between tensor product and stride permutation): If Aa

and Bb are matrices of order a and b, respectively, then,

Aa ⊗Bb = Pab,a (Bb ⊗Aa)Pab,b . (18)

Theorem 3. The transpose of a matrix product is the product of the transposes in

reverse order:

(ABC)T = CT BT AT . (19)

16 2. Permutations

Finally, a special permutation matrix JK of order K is defined as

JK =
(
I2 ⊗PK/2,K/4

)
PK,2 (20)

or alternatively as

JK = PK,K/2
(
I2 ⊗PK/2,2

)
. (21)

The permutation JK exchanges the odd elements in the first half of a vector with the

even elements of the last half of the vector. Based on the properties of tensor product

and stride permutations, the following property holds:

JN ⊗ IM =
(
IN/2 ⊗P2M,2

)
JNM

(
IN/2 ⊗P2M,M

)
, N = 2n > M = 2m. (22)

3. PREVIOUS WORK

Managing data permutations in the parallel hardware implementations of digital si-

gnal processing algorithms is crucial. Especially in partial column and cascaded

structures, the complexity of permutations is increased since data elements must be

delayed in order to meet chronologically correct processing. In this chapter, three

principal approaches for the hardware realization of stride permutations are reviewed:

switching, register-, and memory-based networks. The focus in the review is on the

scalability and stride permutation support of the networks. Similarly, the realization

complexity in terms of registers and multiplexers and memory usage is studied. In

addition, the complexity of design process is considered.

The first section begins with common switching networks, which have been rigo-

rously studied in supercomputing area. It is remarked that such networks cannot

be utilized for stride permutations performed over less number of ports than the se-

quence size due to the absence of storage registers. For managing the storage pro-

blem, the register-based networks are studied in the second section. Such networks

are divided into one- and two-dimensional networks and further into application spe-

cific networks. In order to reduce the complexity of such networks, a register mini-

mization methodology is reviewed.

The third section is limited to memory-based structures. At first, two principal ty-

pes of memory systems are reviewed: time-multiplexed (interleaved) and space-

multiplexed (parallel) memory systems. Then, some principle access schemes are

discussed including low order interleaving, row rotation, and linear transformation.

After that, a specific access pattern called stride access, which is one of the common

access patterns discussed in several research papers, is reviewed. From the stride

access, the discussion is continued with a stride permutation access, which is rarely

considered by the earlier research of parallel memory systems. Differences between

stride access and stride permutation access are emphasized. At the end of this chap-

18 3. Previous Work

ter, a review of parallel Viterbi and FFT structures with parallel memory systems is

made. The chapter is concluded with a brief summary.

3.1 Switching Networks

Over the years, a lot of research effort has been placed on interconnection networks

used in multiprocessor architectures for connecting processors and memories to-

gether. The problem of data interconnections is found also in other fields including

telecommunications where routers are used for switching data packets [22], and dri-

ven by the growing integration level in silicon, also in system-on-chip (SoC) designs

where networks-on-chip (NoC) are used for connecting components like processors,

controllers, and memory arrays [9]. In general, there is a wide variety of applications

where the realizations of data interconnections are needed.

Interconnection networks can be classified, e.g., based on timing philosophy, swit-

ching methodology, or control strategy [10]. On the other hand, network topologies

can be used in the classification; there are, e.g., single- and multistage networks which

refer to topologies where one or several stages of switching elements are used, respec-

tively. Furthermore, many permutations share commonalities thus the networks can

also be classified based on the class of permutations they support. As an example, a

class of networks for bit-permute/complement permutations is proposed in [2]. Be-

cause of such a wide variety, determining the best network for a certain application is

a difficult task and requires a careful selection of the metrics for the comparison [66].

The discussion in this Thesis is limited to networks which support stride permutati-

ons.

A network illustrated in Fig. 5 is called a crossbar network which is an example of

switching networks performing arbitrary permutations between the input and out-

puts. In the figure, Q processing elements communicate through Q memories and the

crossbar network provides conflict-free communication paths such that a processing

element can access any memory module if there is no other element reading or wri-

ting in the same module. The paths between the inputs and outputs in the network are

realized with Q2 crosspoint switches, which makes the network infeasible for large

systems [98].

3.1. Switching Networks 19

PE0

PE1

PEQ-1

B0 B1 BQ-1

crosspoint
switch

Fig. 5. Crossbar network connecting Q processing elements to Q memory modules [98]. PE:

processing element. B: memory module.

In general, the networks with the capability of passing all the N! permutations on N

elements in one pass through the network are known as rearrangeable networks [8].

These rearrangeable networks are also called as permutation networks [15].

Stone presented in [105] shuffle/exchange (SE) networks based on perfect shuffle per-

mutations. One stage in a Q-port SE network consists of a hardwired perfect shuffle

permutation of size Q followed by Q/2 switches of type 2×2. Examples of such net-

works are depicted in Fig. 6 where a single-stage SE network and a log2 Q -stage SE

network called Omega network [63] are shown. The capability of performing arbi-

trary permutations, i.e., rearrangeability, with the SE networks has been studied, e.g.,

in [67, 116]. In such papers, one of the main problems to be solved considers finding

the minimum number of stages needed for performing arbitrary permutations. In case

of a single-stage SE network, the minimum number of passes is studied. Although

a theoretical lower bound of 2 log2 Q− 1 stages of 2× 2 switches is known [118],

the sufficiency of such bound for SE networks has neither been proved or dispro-

ved [116].

A well-known rearrangeable network is the Benes network [8], which is built in

a recursive manner by using 2× 2 switches. A Q-port Benes network consists of

2 log2 Q−1 stages of Q/2 switches in parallel. An example of 8-port Benes network

built up from 4-port Benes networks is shown in Fig. 7. For the Benes networks,

studies have been conducted for developing schemes for setting the switches con-

currently with data propagation, e.g., in [76, 90].

20 3. Previous Work

a) b)

0

1

c)
S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Fig. 6. 8-port shuffle/exchange networks: a) single-stage SE network, b) Omega network,

and c) connection patterns. S: switch.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Fig. 7. 8-port Benes network where 4-port Benes network is shown with dashed lines. S:

switch.

The drawback of switching networks, of which the preceding networks are examp-

les, is that they cannot be used for stride permutations performed in parts with less

number of ports than the size of the permutation. As an example, consider the perfect

shuffle permutation of 8 data elements. With a single-stage SE network such permu-

tation can be performed with straight connected switches, as depicted in Fig. 8(a).

On the other hand, consider the same permutation divided into four parts such that

two data elements enter the network at a time, as shown in Fig. 8(b). The network

in this case is a 2-port SE network, which actually reduces to a 2-port switch. In

such a case, the elements 0 and 4 should be the first two data elements at the output.

However, the elements 0 and 1 enter the network at a time, thus the element 0 should

be delayed two cycles until the element 4 is available at the input. With the switching

networks, such an arrangement is not possible. Therefore, the networks where re-

gisters are used for delaying the data elements are discussed in the following. Such

networks are referred to as register-based networks.

3.2. Register-Based Networks 21

0

1

2

3

4

5

6

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

t=0t=1t=2t=3

0

4

1

5

2

6

3

7

a) b)
0

4

1

5

2

6

3

7

Fig. 8. Perfect shuffle permutation with: a) 8-port single-stage SE network, b) 2-port SE

network resulting in conflicts. t: time instant.

3.2 Register-Based Networks

Because the switching networks cannot be used for stride permutations performed

over less number of ports than the sequence size, register-based networks are re-

viewed in this section. The variation among register-based networks is considerable

thus the review is limited to networks which support stride permutations. The dis-

cussion is divided into one- and two-dimensional networks based on the network

topologies; the one-dimensional networks operate over sequential data streams while

the two-dimensional networks are applied to parallel data streams. In the initial con-

text, some of the reviewed networks are referred to as data format converters. For

simplicity, they are called as permutation networks in this Thesis.

3.2.1 One-Dimensional Networks

In [96], Shung et al. proposed a one-dimensional permutation network based on shift

exchange units (SEU), which supports arbitrary data permutations over sequential

data streams. The structure of a SEU of size D, SEUD, is depicted in Fig. 9(a). It

consists of a delay line of D registers and two multiplexers, which either inputs the

data element into the delay line or bypasses it. The bypass results in the exchange

of data elements which are D elements apart in the data stream. A one-dimensional

permutation network consisting of log2 N −1 cascaded SEUs is shown in Fig. 9(b).

One method of reducing the network complexity is proposed by Parhi in [79, 82].

This systematic methodology minimizes the number of registers based on the life

time analysis of data elements. In general, the data elements have different life times

22 3. Previous Work

SEU1

c1

a)

SEU2 SEU4 SEUN/2 SEU1SEU2SEU4

c3 c5 c2(log N)-1 c6 c4 c22

M D D
M

D delays

ci

b)

SEUD

Fig. 9. One-dimensional permutation network [96]: a) shift exchange unit (SEU), b) permu-

tation network of log2 N −1 stages of SEUs. N: number of data elements. D: number

of delay registers. c: control signal. M: 2-to-1 multiplexer. D: delay register.

making the reuse of registers possible. In such a case, a new data element can be

assigned to a register if the former data element is read out. Although the method was

initially proposed for one-dimensional networks, it can be applied to two-dimensional

networks as well.

In Table 1, an example case of the life time analysis of a 4× 4 matrix transpose is

shown. The network operates in sequential manner, and the clock cycles for the data

element input and output are denoted as tinput and tout put , respectively. The difference

between the output and input cycles is denoted as tdi f f , i.e., tdi f f = tout put − tinput . The

absolute value of the most negative tdi f f determines the minimum number of regis-

ters, and it is added to each tdi f f for obtaining the life time l(i) of a data element i.

The life period denotes the cycles when the data element must be stored in the net-

work. In case of the 4×4 matrix transpose over sequential data stream, overall nine

registers are required.

Based on the life time analysis, Parhi proposed several types of register-based permu-

tation networks in [80]. The networks are divided into various classes according to

the number and the size of the input and output words. However, the operation of all

the networks is sequential although they may have multiple input and output ports.

A forward-circulate register allocation scheme begins with first calculating the mini-

mum number of registers and connecting them into a chain. The data elements are

read in one at a time and forwarded to the next register if the register is available.

Otherwise, the data element is circulated, i.e., read again by its current register. In

3.2. Register-Based Networks 23

Table 1. Life time analysis of data elements for one-dimensional 4×4 matrix transpose net-

work [82]. tinput : clock cycle of data element input. tout put : clock cycle of data

element output. tdi f f =tout put − tinput . l(i): life time of data element.

data element tinput tout put tdi f f l(i) life period

0 0 0 0 9 0 → 9
1 1 4 3 12 1 → 13
2 2 8 6 15 2 → 17
3 3 12 9 18 3 → 21
4 4 1 -3 6 4 → 10
5 5 5 0 9 5 → 14
6 6 9 3 12 6 → 18
7 7 13 6 15 7 → 22
8 8 2 -6 3 8 → 11
9 9 6 -3 6 9 → 15
10 10 10 0 9 10 → 19
11 11 14 3 12 11 → 23
12 12 3 -9 0 12 → 12
13 13 7 -6 3 13 → 16
14 14 11 -3 6 14 → 20
15 15 15 0 9 15 → 24

certain cases, the forward-circulate scheme results in deadlocks, which implies that

the data element cannot be forwarded or circulated [80].

Compared to the previous scheme, a forward-backward allocation scheme results in

a register chain with simpler control. The most important advantage, however, is that

the forward-backward scheme never results in deadlocks. Thus, the scheme can be

used for arbitrary permutations. In the scheme, all the data elements with life times

less or equal to the number of registers are allocated in a forward manner until they

are read out or they reach the last register. Data elements that cannot be forwarded are

backward allocated to some available registers so that required feedback connections

are minimized.

A 4× 4 matrix transpose network based on the forward-circulate register allocation

scheme is shown in Fig. 10(a). In such a case, each register has a feedback connec-

tion from its output and a multiplexer in its input for circulating the data elements.

In Fig. 10(b), a 4× 4 matrix transpose network based on the forward-backward al-

location scheme is illustrated. It contains less multiplexers and the same amount of

registers as the network based on the forward-circulate scheme. Later on in [81],

24 3. Previous Work

D0 D1 D2 D3 D4 D5 D6 D7 D8M M

M

M

D0M D1M D2M D3M D4M D5M D6M D7M D8M

M

a)

b)

Fig. 10. 4×4 matrix transpose networks based on a) forward-circulate, b) forward-backward

register allocations [80]. D: register. M: multiplexer.

Parhi applied the forward-backward register allocation scheme to data permutations

in video applications.

Applying one-dimensional networks to permutations in parallel data streams requires

that either the frequency of the network is increased or that multiple one-dimensional

networks are used in parallel. In the latter case, additional interconnection lines bet-

ween the networks may be required, which increases the network complexity. For

managing the interconnection, register, and multiplexer complexities, the networks,

which are initially designed to operate over parallel data streams, are proposed. Such

networks are called two-dimensional networks based on their topology, and they are

discussed in the following.

3.2.2 Two-Dimensional Networks

The general approach in two-dimensional permutation networks is that the data ele-

ments are reordered with switching elements on parallel delay lines. In these net-

works, an exchange of data elements between the delay lines is often needed, which

in turn results in additional multiplexers and connection wirings. Although the mini-

mization of register complexity is still one of the design objectives, there are several

schemes where also the reduction of multiplexer and interconnection complexities

and power consumption are devoted to. Next, the discussion is continued with two-

dimensional permutation networks supporting arbitrary permutations.

3.2. Register-Based Networks 25

11

Input

time t=1 t=2

3210 7654

t=3

111098 15141312

t=4

0 4 8 12

t=5

1 5 9 13

t=6

2 6 10 14

t=7

1173 15

D11D10D9D8

D7D6D5D4

D3D2D1D0 3210

3210

3210

7654 1098

7654

765

2 11

151413

109

1

3

2 11106

15143 7

153 7 11

Output

a)

b)

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

M

M

M M

M

M

M M M

Fig. 11. Two-dimensional 4×4 matrix transpose network [6]: a) register allocation table, b)

resulting network. M: multiplexer. D: register.

Bae and Prasanna presented in [6, 7] a design methodology for two-dimensional per-

mutation networks resulting in the minimum number of registers. In Fig. 11, the

methodology is illustrated with a 4× 4 matrix transpose where four data elements

are read in and written out in parallel. First, the minimum number of registers is

determined. Then, the data is allocated to the registers such that at each clock cy-

cle the parallel shifting is carried out. When all the data elements are available for

the output, they are written out immediately. A backward allocation of the data ele-

ments is illustrated with the arrows in the register allocation table in Fig. 11(a). Such

allocation is needed when the parallel shifting moves the data elements forward in

the delay lines and there is not enough registers before the output. Moving the data

elements inside the network and passing the data elements to output imply a need

for multiplexers. The circles in Fig. 11(a) denote that the data element is passed to

output. The resulting structure of 4× 4 transposer is illustrated in Fig. 11(b). It is

worth noting that the methodology has limitations among the stride permutations: it

does not support cases where the number of ports is less than the stride.

26 3. Previous Work

In a low-power register allocation scheme suggested by Srivatsan et al. in [103,104],

the main objective is the reduction of power consumption, not the minimization of

area although the minimum number of registers is obtained. In addition, the proposed

scheme supports arbitrary permutations. Compared to the previous schemes, the data

elements stay in a single register as long as possible instead of moving forward at

each cycle. The resulting networks have gated clocks, more multiplexers, and larger

area compared to the Parhi’s one-dimensional networks [104]. As an example, due

to the reduced data element transitions, the power consumption of a one-dimensional

4×4 matrix transposer is shown to be 42% lower and area two times larger compared

to Parhi’s network in Fig. 10(b) [104].

Majumdar and Parhi proposed a register allocation scheme for arbitrary permutations

in [71]. The resulting network has a two-dimensional structure where an attempt

is placed on the minimization of interconnection wirings. The proposed approach

begins with the life time analysis for determining the minimum number of registers.

Thereafter, the network is constructed where the number of parallel delay lines is

equal to the number of input ports. Available interconnection wirings are reused, if

possible, and clock gating is exploited for power savings.

In general, the described design methodologies for two-dimensional networks in-

volve heuristics, which makes an automated design generation difficult [6]. Such

design methodology can be given as an integer linear programming (ILP) model,

which is resolved with an ILP solver in order to determine the network structure, i.e.,

the register allocation, interconnections, and the placement of multiplexers, as done

in [103, 104]. This is computationally a very intensive task especially when large

number of registers is used. It may take considerable amount of time to find a solu-

tion which obviously is a drawback on the automated design generation. In addition,

control generation may be complex because of the arbitrary structure of the networks.

3.2.3 Application Specific Networks

The previous networks support arbitrary permutations thus they are not designed for a

particular application. Instead, the aim in designing of such networks has been to sup-

port as many permutations as possible. In the following, the discussion is continued

with register-based networks, which are designed for stride permutations. Often, such

networks can be found, e.g., in FFT, DCT, or Viterbi algorithm implementations.

3.2. Register-Based Networks 27

0

7

5

4

3

6

1

2

9 17

15

14

13

16

10

12

8

11

23

22

21

18

20

19

24

31

29

28

27

30

25

26

33 41

39

38

37

40

34

36

32

35

47

46

45

42

44

43

49 57

55

54

53

56

50

52

48

51

63

62

61

58

60

59

0

7

5

4

3

6

1

2

9 17

15

14

13

16

10

128

11 23

22

21

18

20

19

24

31

29

28

27

30

25

26

33 41

39

38

37

40

34

3632

35 47

46

45

42

44

43

49 57

55

54

53

56

50

5248

51 63

62

61

58

60

59

0

75

4

3

6

1

2

9

17

15

14

13

16

10 128

11

23

22

21

18 20

19

24

3129

28

27

30

25

26

33 41 39

38

37

40 34 3632

35 47

46

45

42 44

43

49 57 55

54

53

56 50 5248

51 63

62

61

58 60

59

0 7543 61 2

9

17

151413

16

10 128 11

23222118 2019

24 31292827 3025 26

33

41

393837

40

34 3632 35

47464542 4443

49

57

555453

56

50 5248 51

63626158 6059

Fig. 12. Example of iterative method for 8×8 matrix transpose according to [16].

In [16], Carlach et al. proposed an iterative method for the transpose of X ×X square

matrices, X = 2x. The method can be described with successive submatrix transposes

as depicted in Fig. 12. In the first step, the matrix is divided into 2×2 submatrices and

each submatrix is transposed. In the second step, the resulting matrix is divided into

4×4 submatrices and each submatrix is interpreted to consist of four 2×2 blocks and

such a matrix is transposed in blockwise. By continuing such steps x times the entire

matrix is transposed. The realization of the described method is shown in Fig. 13(a)

consisting of delay-switch-delay (DSD) units depicted in Fig. 13(b). The DSDD unit

has two data paths both of them having D registers for delaying the data elements

and a 2 × 2 switch for swapping the elements between the paths. The described

network has the minimum number of registers and it can be applied for square matrix

transposes performed over X parallel data streams where X is a power-of-two.

A commutator is a generic permutation unit in structures where one processing ele-

ment is used, e.g., in [73], or in cascaded (pipelined) structures [20,56,107] where se-

veral processing elements operate in parallel and intermediate data permutations are

performed with aid of commutators, initially proposed by Rabiner and Gold in [88].

An example of 4-port commutator, which can be used for data permutations, e.g., in

28 3. Previous Work

D
S

. . .

c

. . .

0 1

D delays

D delays

D

DD

clk

DSDD

DSD1

DSD1

DSD1

DSD1

DSD2

DSD2

DSD2

DSD2

DSD4

DSD4

DSD4

DSD4

a) b)

Fig. 13. Permutation network for 8 × 8 matrix transpose: a) network structure, b) delay-

switch-delay (DSD) unit and switch connection patterns, S: switch. D: register. c:

control. clk: clock.

b)

D D

DDD

D
D D

DDD

DS

a)

Fig. 14. Commutator for radix-4 FFT: a) structure, b) connection patterns. D: register. S:

switch.

radix-4 FFTs, is shown in Fig. 14(a) and the corresponding connection patterns in

Fig. 14(b). An example of cascade structures employing such commutator is illustra-

ted in Fig. 15 with a 64-point radix-4 FFT structure proposed by Jung et. al in [56].

In [21], a comparison of different commutators for radix-4 FFTs is given. The draw-

back of the commutators is that the switch becomes a complex unit when the number

of ports is increased.

Kovac and Ranganathan suggested in [59] a matrix transpose network where the

transpose is carried out according to its direct interpretation, i.e., rows in and co-

lumns out. The data elements are read in and written out one element at a time. After

all the data elements are read in the network, they are copied in parallel to the cor-

PE
D-4

D-8

D-12

S
D-4

D-8

D-12
PE

PE

D-1

D-2

D-3

S

D-3

D-2

D-1
PE

PE

PE

Fig. 15. Cascaded 64-point FFT structure [56]. PE: processing element. D-X: chain of X

registers. S: switch.

3.2. Register-Based Networks 29

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

Input

Output

Fig. 16. One-dimensional network for 8×8 matrix transpose [59]. D: register.

responding adjacent registers, which are connected in column wise. A drawback of

such approach is that the latency is increased since all the data elements must be in

the network before the first column can be written out. Another drawback is that the

approach does not result in the minimum register complexity but requires 2N2 regis-

ters for an N ×N matrix transpose. In Fig. 16, such a network is illustrated for 8×8

matrix transposes.

In [2], Alnuweiri and Sait proposed two-dimensional networks for BPC permutati-

ons. In Fig. 17(a), the principal block diagram of such a network is depicted. The

network consists of five permutation stages; three of them are hardwired permutati-

ons and two consist of parallel N/Q×N/Q matrix transposes where N is the number

of data elements in the sequence and Q is the number of ports in the network. For the

matrix transposes, they applied a network which performs the transposes according

to its direct interpretation; a column is written in at a time, and after all the columns

are available, the rows are read out one at a time. An example of the matrix trans-

pose network is depicted in Fig. 17(b), which is capable of performing 4× 4 matrix

transposes. A drawback of these networks is that they do not result in the minimum

number of registers.

In [13], Bòo et al. proposed a structure for stride permutations based on parallel

tapped first-in, first-out (FIFO) buffers, as depicted in Fig. 18(a). The operation of

30 3. Previous Work

I0 N/Q x N/Q

IQ-1

O0

OQ-1

IN/Q-1 ON/Q-1

DM

a) b)

HW HW HW

matrix
transpose

N/Q x N/Q
matrix

transpose

N/Q x N/Q
matrix

transpose

N/Q x N/Q
matrix

transpose

N/Q x N/Q
matrix

transpose

N/Q x N/Q
matrix

transpose

Fig. 17. A two-dimensional network for BPC permutations proposed in [2]: a) principal

block diagram, b) 4× 4 matrix transpose network. M: multiplexer. D: register. N:

sequence size. Q: number of ports. HW: hardwired permutation.

such buffer is the following; first several data elements are written in consecutive

FIFO locations, then the shift of several elements is performed, and finally, the data

elements are read out from the tapped outputs. Such an approach requires complex

write, shift, and read schemes and the system is actually a multi-rate system requiring

FIFOs to operate at frequency higher than the sample clock. An example of a FIFO-

based two-dimensional network is depicted in Fig. 18(b). It consists of parallel FIFO-

buffers and an additional hardwired permutation stage.

D D D D
0 1 (N/Q)-1 2(N/Q)-1

D D D D

D D D D

FIFO

FIFO

a) b)

HW

FIFO

Fig. 18. FIFO-based approach to stride permutations according to [13]. a) FIFO buffer, b)

4-port permutation network. N: sequence size. Q: number of ports. D: register. HW:

hardwired permutation.

3.3. Stride Permutations with Parallel Memories 31

3.3 Stride Permutations with Parallel Memories

When permuted data sequences are long and considerable amount of storage is requi-

red, memory-based permutation networks are better alternatives than register-based

networks. In such an approach, parallel memories are employed for storing the data

and switching networks are used for providing required connection patterns between

processing elements and memory modules. The principal problems in parallel me-

mory approaches are to minimize the memory consumption and switching network

complexity while maximizing the data transfer rate between memories and proces-

sing elements.

Several techniques have been proposed to increase data transfer rates between me-

mory and computational resources in processor architectures. This memory bott-

leneck results from the unequal improvement rates of processors performance and

memory access time. According to [50], the performance of microprocessors has

been improving at a rate of 55 percent per year. At the same time, the access time of

DRAM memories has been improving at less than ten percent per year. Thus, there

exists a processor-memory performance gap, which increases roughly at the rate of

50 percent per year [50].

In digital signal processors, the computation of inherent parallel algorithms is made

only with limited degree of parallelism. For example, the computation of Viterbi

algorithm in Texas Instruments’ TMS320C54x digital signal processor is simplified

with a compare, select, and store unit (CSSU). With such an unit, two trellis states

can be computed in five clock cycles [49]. In Texas Instruments’ TMS320C6416

processor, on the other hand, the parallelism is increased to four cascaded radix-

2 processing elements by the augmented Viterbi coprocessor, which computes eight

states of the 256-state trellis in a cycle [52,110]. Suppose that the parallelism could be

varied according to design constraints. In such a case, the open question is that how to

access the data elements in order to maximize the overall computation performance.

One solution is to allow several simultaneous accesses to the memory, which implies

that the memory system should have several ports. Multiport memories can be used

but they are an expensive solution especially when the number of ports is large. The

more area-efficient method is to use several independent memory banks or modules,

which can be accessed in parallel. The principal problem in such memory systems

is to distribute data over multiple modules in such a way that the parallel access is

32 3. Previous Work

Interconnection Network

PE0 PEQ-1

...

...

BQ-1

PE1

B0 B1

Processor ... BQ-1B0 B1

a) b)

...

...

Fig. 19. Classification of memory systems: a) interleaved (time-multiplexed) memories and

b) parallel (space-multiplexed) memories [93, 101]. B: memory module. PE: pro-

cessing element.

possible. However, there is no general-purpose solution to the distribution problem

and several methods have been proposed, which assume that parallel accesses are

most likely to be made to subsections of data arrays.

3.3.1 Parallel Memory Systems

One method for increasing the data transfer rate between memory and processing

elements is memory interleaving where data is distributed over multiple independent

memory modules. Such memory systems can be divided into time and space mul-

tiplexed systems [93]. In time-multiplexed memory system according to [45], the

processor submits requests to the Q modules serially using the input bus. If space is

available in the buffer, the request is queued and the input bus is released to be used

for the next request. If no buffer space is available, the bus blocks until a buffer is

released. Results are placed in the output buffers and are sequenced onto the output

bus in the corresponding order. In the following, time-multiplexed memories are re-

ferred to as interleaved memories according to [101]. The principal block diagram of

an interleaved memory system can be seen in Fig. 19(a).

Space-multiplexed memories are used in single instruction/multiple data (SIMD) pro-

cessing, i.e., several access requests are sent to the memory system over multiple

buses, thus the memory latency is not hidden. The memory system requires an inter-

connection network for providing communication paths between processing elements

and memory modules. In the following, the space-multiplexed memories are called

parallel memories according to [101]. The principal block diagram of a parallel me-

mory system is illustrated in Fig. 19(b).

3.3. Stride Permutations with Parallel Memories 33

In both the previous systems, interleaved and parallel memory systems, the memory

bandwidth is increased by allowing several simultaneous memory accesses to diffe-

rent memory modules. If Q accesses can be distributed over Q modules such that all

the modules are referenced, Q-fold speedup can be achieved. Unfortunately, the ope-

rands to be accessed in parallel often lie in the same memory module thus the parallel

access cannot be performed resulting in performance degradation. Such a situation

is referred to as a conflict. The principal problem in the described memory systems

is to find a method to distribute data over the memory modules in such a way that

conflicts are avoided. For this research problem, a traditional assumption has been

that the parallel accesses are most likely to be made to the subsections of matrices,

e.g., rows, columns, or diagonals. In order to avoid the conflicts, it has been sugge-

sted that the number of memory modules should be larger than the parallel accessed

data elements, which is referred to as an unmatched memory system [114]. In the

following, only matched memory systems [114] are considered where the number of

memory modules is equal to the number of parallel accessed data elements.

3.3.2 Access Scheme

The method of distributing data over memory modules is referred to as an access

scheme, which is a function mapping addresses into storage locations. When an N-

element array is distributed over Q memory modules, the access scheme performs two

mappings; it maps a �log2 N�-bit address a = (an−1,an−2, . . . ,a0)T into a �log2 Q�-

bit module address, ma, where �·� is a ceiling function, and into a row address, ra,

defining the storage location in the selected memory module.

The most simple access scheme is to obtain row and module addresses by extracting

bit fields from the address a, i.e.,

ra = �a/Q�; (23)

ma = < a >Q (24)

where < · >x represents the modulo x. Such a scheme, low order interleaving, is

illustrated in Fig. 20(a). This scheme performs well in linear, i.e., stride-by-1 access

but the performance is degraded when other type of access patterns are used [46].

In order to support a larger set of access patterns, a row rotation, i.e., skewed scheme

was introduced by Budnik and Kuck in [14]. Formally the address mapping can be

34 3. Previous Work

ma 10 2 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

ma 10 2 3
0 1 2 3
7 4 5 6

10 11 8 9
13 14 15 12
16 17 18 19
23 20 21 22
26 27 24 25
29 30 31 28

+

a) b) ma 10 2 3
0 1 2 3
5 4 7 6
10 11 8 9
15 14 13 12
16 17 18 19
21 20 23 22
26 27 24 25
31 30 29 28

c) ma 10 2 3
0 3 2 1
5 6 7 4
10 9 8 11
15 12 13 14
17 18 19 16
20 23 22 21
27 24 25 26
30 29 28 31

d)

ma

ra

matrix
multiplicationT

a0a1a2a3a4

ra

a0a1a2a3a4

ra

a0a1a2a3a4

ma

ma

ra

a0a1a2a3a4

ma

Fig. 20. Examples of access schemes for 32-element vector on 4-module system: a) low order

interleaving, b) row rotation, and linear transformations according to method c)

in [46] and d) in [78].

described as follows

ra = �a/Q�; (25)

ma = < a+ �a/N� >Q . (26)

When Q = 2q, the module address is formed simply by extracting two log2 Q-bit

fields from the address a and adding the fields together as shown in Fig. 20(b).

Often a prime number of memory modules has been used since it typically results

in a larger set of conflict-free access patterns. The inflexibility of the traditional row

rotation schemes is illustrated by the following theorem [43].

Theorem 4. An N ×N matrix, N = 2n, cannot be stored into N memory modules

by any row rotation scheme such that all the rows, columns, and diagonals can be

accessed conflict-free.

The prime number of modules implies that the address computation needs a modulo

operation of the number, which is not a power-of-two. Such an operation requires

large circuitry. Furthermore, the prime number of memory modules often results in

low memory utilization, i.e., not all the memory locations are allocated [64].

In [119], Wijshoff and Leeuven generalized a row rotation scheme as a periodic sto-

rage scheme, which supports irregular and overlapped access patterns. A row rotation

3.3. Stride Permutations with Parallel Memories 35

scheme supporting power-of-two number of memory modules was proposed by Deb

in [31], where the principal idea was to partition the scheme into several subschemes,

i.e., a different subscheme is applied to each part of the entire data vector. This results

in need to support several schemes instead of a single scheme.

In [40], Frailong et al. introduced a scheme where the address mapping is a linear

transformation based on modulo-2 arithmetic. This implies that the arithmetic is rea-

lized with bit-wise XOR operations, thus modulo operations are not needed and the

carry delays of adders used in row rotation schemes are avoided. Linear transfor-

mation schemes are often called as XOR schemes. The address mappings in linear

transformation can be expressed with binary transformation matrices V and T as

ra = Va; (27)

ma = Ta. (28)

It should be noted that in this representation the least significant bit of a is in the

bottom of the vector. Matrices V and T are row and module transformation matrices,

respectively.

Often V consists of ones in the main diagonal thus the row address ra is obtained

simply by extracting the (n−q) most significant bits of the address a, i.e.,

ra = (an−1,an−2, . . . ,aq)T . (29)

The module transformation matrix T is often expressed in the following form

ma = Ta = (TH |TL)a (30)

where TL is the rightmost q×q square matrix in T and TH is the remaining q×(n−q)
matrix in T . An example of linear transformation is depicted in Fig. 20(c) and the

corresponding matrix T is

T =

(
0 1 0 1 0
0 0 1 0 1

)
. (31)

Harper observed in [46] that, in general, linear transformations have two advantages

over row rotation schemes: the computation of module addresses is independent on

the number of memory modules and the scheme has flexibility in performing address

mappings. These linear transformation schemes have been analyzed in several papers

and the basic requirement for the data distribution has been derived by Sohi in [101]

as follows.

36 3. Previous Work

Theorem 5. An interleaved memory system has a unique storage location for each

addressed element iff the matrix TL has full rank.

The matrix has a full rank when all the rows (and columns) are linearly independent.

In [45], Harper suggested that T should have full rank and, in particular, the main

diagonal of T should consists of 1’s. Missing 1’s in the main diagonal may result

in poor performance for linear access. In addition, off-diagonal 1’s complicate the

construction of address generators.

3.3.3 Stride Access

One specific, often used access pattern is a stride access where the indices in consecu-

tive accesses differ by a constant S resulting in a sequence of addresses (i, i+S, i+2S,

i+3S, . . ., i+(S−1)S) for some starting address i. When such an access is performed

in parallel, every Sth element of an array is accessed concurrently. Stride accesses

occur often in application programs, especially in matrix computations, e.g., when

accessing the rows and columns of a matrix. It is also often used in image processing

where image data is accessed in forms of rectangles, grids, or chessboards. When

a vector x = (x0,x1, . . .)T is accessed with stride S in a system containing Q memo-

ries, a single parallel access is referencing to elements (xi,xi+S,xi+2S, . . . ,xi+(Q−1)S)T .

In [50, 100], it has been suggested that by including the stride access in current mi-

croprocessors, the execution of SIMD multimedia instructions could be improved.

In [78], Norton and Melton proposed a linear transformation for matched systems,

which supports several power-of-two strides. The proposed module transformation

matrix forms a recursive pattern of repeating triangles. Such a matrix can be genera-

ted with a recursive rule: each element is XOR’ed with its neighbors to the right and

above. The following condition was given in [78,84] for the transformation matrix T :

Theorem 6. A conflict-free power-of-two stride access starting at address 0 in a 2q

module system requires that all q×q submatrices of matrix T are nonsingular.

As an example, when mapping a 32-element array over four memory modules, the

module transformation matrix T is the following

T =

(
1 1 1 1 1
1 0 1 0 1

)
. (32)

3.3. Stride Permutations with Parallel Memories 37

The contents of the memories in this case are illustrated in Fig. 20(d). Furthermore,

the realization of a module address generator in [78] is based on matrix multiplication

as seen in the Fig. 20(d). The implementation is complex, especially if several array

lengths need to be supported.

A linear transformation scheme supporting linear and single stride accesses is repor-

ted by Harper [45]. Conflict-free stride access can be performed for any array length

and any initial address. The implementation is extremely simple requiring only bit-

wise XOR operations and a shifter for address field extraction. In [46], Harper consi-

dered a support for several strides and proposed an access scheme for strides of type

σ2s where σ is relatively prime to 2. However, the number of memory modules needs

to be greater than the number of parallel accesses.

Valero et al. [113] considered power-of-two stride accesses based on linear trans-

formations for vector processor architectures. The principal idea in the scheme is

to support several conflict-free power-of-two stride accesses to data arrays with any

given initial address. The authors also showed that in such a case it is necessary to

use an unmatched memory system. In [114, 115], they continued with extending the

scheme to larger number of strides, both in matched and unmatched systems.

In [46], Harper investigated stride accesses with the aid of transformation periodicity

referring to the minimum period of the sequence of module numbers generated when

consecutive addresses are used as the input sequence. This results in the following

requirement.

Theorem 7. In matched memory system, S = 2s stride access over Q = 2q memories

is conflict-free iff the linear transformation matrix T is

a) periodic SQ and (33)

b) < (a+ iS)T >Q = < (a+ jS)T >Q iff < i >Q = < j >Q . (34)

The condition a) guarantees that the access is conflict-free regardless of the array

length and initial address of the array. The condition b) defines that each memory

module is referenced only once in Q parallel accesses. It can be shown that under the

previous constraints a conflict-free access scheme supporting several strides cannot

be designed [45].

38 3. Previous Work

3.3.4 Stride Permutation Access

The need for stride permutation access can be illustrated with an example of Viterbi

decoding in Fig. 21. It can be seen that the read operations are performed in different

order than the write operations; in Fig. 21(a), the operands are read in stride-by-8

order, P16,8, and the results are stored in stride-by-1, i.e., linear order, P16,1. In order to

minimize memory area, the results should be stored into the same memory locations

where the operands were obtained. However, after the first iteration the results will be

in stride-by-2 order PN,2, not in linear order, PN,1, as intended originally. According

to Corollary 1, the next read access should be in PN,N/4 order to compensate the

previous additional reordering. Respectively, the next read should be according to

PN,N/8. Eventually it is found that log2 N different strides are needed, i.e., all the

strides of power-of-two from 1 to N/2.

The lack of the stride access schemes for stride permutations is illustrated with the

example in Fig. 20 where 32-element array (0,1, . . . ,31) is distributed over four me-

xt

15
14
13

11
12

10
9
8

4
3
2
1
0

6
7

5

Xt-1

Xt

x0,t

15
14
13

11
12

10
9

15
14
13

11
12

10
9

8

4
3
2
1
0

6
7

5

8

4
3
2
1
0

6
7

5

Xt-1 Xt

x1,t

yt

Xt

D

h(xt, ..., xt-n) = g(Xt, Xt+1)

xt-1 xt-4xt-2 xt-3

a) b)

yth(xt, ..., xt-n) = g(Xt, Xt+1)

D D D

D D D D

P16,8 P16,4

PEPE

15
14
13

11
12

10
9
8

4
3
2
1
0

6
7

5

Xt

Fig. 21. Single shift register convolutional encoders and allowed state transitions: a) encoder

with 1-bit input and b) encoder with 2-bit input. xt : input at time instant t. Xt : state

at time instant t. yt : output at time instant t. D: bit register. PE: processing element.

3.3. Stride Permutations with Parallel Memories 39

mory modules. The possible stride permutation accesses in this case are P32,1, P32,2,

P32,4, P32,8, and P32,16. The low order interleaving in Fig. 20(a) allows only conflict-

free access for stride-by-1 access, P32,1, and all the others introduce conflicts. The

row rotation and linear transformation schemes in Fig. 20(b) and (c), respectively,

provide conflict-free access for P32,1, P32,2, and P32,4. By noting that the elements 0,

8, and 16 are stored into the same module, we find that accesses P32,8 and P32,16 in-

troduce conflicts. Especially the perfect shuffle access P32,16 is difficult: the accesses

should be performed in the following order: ([0,16,1,17], [2,18,3,19], [4,20,5,21],
[6,22,7,23], [8,24,9,25], [10,26,11,27], [12,28,13,29], [14,30,15,31]). The linear

transformation scheme in Fig. 20(d) has conflict only in this access pattern.

In the previous access schemes considered in this Thesis, the stride access has been

defined to access every Sth element while in the stride permutation access, the access

pattern wraps into the beginning of the array. Especially in the perfect shuffle access

PN,N/2, the elements apart from 1 and N/2 need to be accessed, which is not supported

by the stride access. This illustrates the main difference between the stride access and

stride permutation access.

3.3.5 Parallel Memories in FFT and Viterbi Processors

Next, a review is made of several parallel structures for FFT and Viterbi algorithms

where parallel memories are used for managing the stride permutations. Note that

cache-based structures [5] as well as cascaded (pipelined) structures [39, 68] are left

out. Instead, the discussion is limited to partial and full column structures where one

or several radix-2k processing elements are placed in parallel and where the stride

permutations are performed with memory modules and switching networks.

The simplest method to avoid conflicts in parallel data access is to use double size

memory where the other half acts as a write and the other as a read memory. The roles

are swapped at the next stage from which the name ”ping-pong” storage scheme is

given. In such a case, the size of the memory becomes significant if the number

of stored data elements is large. Therefore, in-place storage schemes where only

the minimum amount of memory is used, i.e., one memory location for each data

element, are attractive alternatives. However, as already mentioned in [89], there is

a price to be paid for this memory economy implying increased address generation

and interconnection complexities.

40 3. Previous Work

Starting from the structures with a single processing element, Pease proposed in [83]

that for radix-2 FFT computation the data elements can be distributed over two me-

mory modules based on their parity index. Based on this observation, Cohen de-

veloped in [23] an address generator for the radix-2 FFT computation. The address

generator was simplified by Ma in [70] at the expense of additional registers in the

data path in order to avoid conflicts. Chang et al. proposed in [18, 19] a radix-2

FFT structure where three dual-port memory modules of sizes N/2 are used. Thus

the scheme is not an in-place one. All the previous examples were proposed for the

radix-2 FFTs. In [55], Johnson gave a general solution for the data access in radix-2k

FFT computation but again it was assumed that a single butterfly is computed at a

time. This scheme was applied by Son et al. [102] to the FFT processor for OFDM

systems, which computes a single radix-4 butterfly at a time and uses four dual-port

memory modules for the data storage.

In the field of Viterbi decoders, similar issues have been considered as in the FFT

processors for memory access. In [11], Biver et al. proposed an in-place access

scheme for radix-2 Viterbi decoders with a single processing element. At the other

extreme, Fettweis and Meyr in [38] considered full column Viterbi decoders where

all the whole trellis stage is computed at a time. Such a decoder was employed by

Black and Meng in [12] for a 32-state trellis computed with eight radix-4 processing

elements in parallel. In this case, there is no need for the data storage since the

operands can be circulated via hardwired connections.

Shung et al. proposed in [96, 97] a radix-2k Viterbi decoder shown in Fig. 22. The

operation of the decoder can be described as follows. First, each processing element

reads K data elements from Q memory modules in parallel, K = 2k. The compu-

tation is made in K cycles and after each cycle, the results are stored into other Q

memory modules. Between these two memory arrays, the data is reordered with a

QK-port Benes network. In certain cases, the Benes network can be omitted since

the scheme results in hardwired connections, but in order to find such solutions, a

heuristic simulation is required, which is computationally an intensive task [96].

In [27, 28], Daneshagaran and Yao proposed a method for designing long constraint

length Viterbi decoders. This method can be applied to radix-2k decoders with va-

rious number of trellis states and parallel processing elements. The main idea is to

gather the operational nodes into clusters such that the data dependencies between

them are minimized. This way the connections between the clusters are minimized

3.3. Stride Permutations with Parallel Memories 41

PE0

PE1

PEQ-1

K 1

1

1

B

B

B

Benes
Network

K

K

K

K

K

K

K

K

B

B

B

K

K

K

Fig. 22. Radix-2k Viterbi decoder proposed in [96]. PE: processing element. B: memory

module. K = 2k.

and can be hardwired. Each cluster is realized with 2k radix-2k processing elements,

2k memory modules, and a k-stage shuffle-exchange network providing 2k different

permutations for the data passed to other clusters. As an example, consider 212-state

radix-8 Viterbi decoder, which computes 64 states in parallel. In such a case, there

are eight clusters each consisting of eight radix-8 processing elements, eight dual-port

memory modules and a three-stage shuffle-exchange network, as depicted in Fig. 23.

The proposed clustering is not a general solution and, therefore, linear or mesh arrays

must be used for emulating the connections when clustering cannot be applied [28].

Hidalgo et al. suggested in [51] a radix-2k FFT structure based on earlier published

design methodology for the parallel structures of discrete trigonometric transforms

proposed by Argüello et al. in [3]. The structure is scalable such that there can be

2k+i, i < n, processors in parallel, each with a processing and permutation section.

While the processing section computes the radix-2k butterflies, the permutation sec-

tion reorders the results before their storage into a dual-port memory. The structure

of the permutation section becomes more complex when the radix is increased. Ho-

wever, the memory remains as a single dual-port memory regardless of the design

PE

PE

PE

PE

PE

PE

PE

PE

8

8

8

8

8

8

8

8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

B

B

B

B

B

B

B

B

1

1

1

1

1

1

1

1

Shuffle/
Exchange
Network

1

1

1

1

1

1

1

1

Fig. 23. Cluster structure of 212-state radix-8 Viterbi decoder with 64 parallel PEs in [27,28].

PE: processing element. B: memory module.

42 3. Previous Work

PE
D

D D

PS

M
Dual-Port
Memory

2 2

Fig. 24. Radix-2 FFT processor structure in [51]. PE: processing element. D: delay register.

M: multiplexer. PS: permutation section.

parameters. An example of the radix-2 processor is depicted in Fig. 24. In order to

maintain the conflict-free data access, additional registers are needed in the permuta-

tion section.

Similar approach, i.e., a dual-port memory with additional registers in the data path

was proposed by Träber in [112] for the radix-2 Viterbi decoders. The number of

processing elements is parametrizable in powers of two and the resulting data is re-

ordered with a register-based permutation network before the storage into a single

dual-port memory. In Fig. 25, a general block diagram of the decoder is shown. The

scheme uses an in-place update method but requires additional registers for main-

taining the conflict-free data access. Also Kwak et al. suggested in [61] a radix-2

Viterbi decoder, where the number of processing elements is scalable in powers of

two. The data is stored into two dual-port memory modules, which are in-place up-

dated, and reordered both on read and write data paths with relatively complex swit-

ching networks. The proposed scheme incomplete since no row address generation

is specified.

Shieh et al. proposed in [94] a partial column Viterbi decoder with 2k processing

elements, k < n. The data is in-place updated in Q dual-port memories, Q = 2q, and

reordered with Q-to-1 multiplexers, which complicates the structure when parallelism

is increased. The given structure is illustrated in Fig. 26. Later on, the same authors

PE0

Register-
Based
Network

PEQ/2-1

Dual-Port
Memory

Fig. 25. Radix-2 Viterbi decoder proposed in [112]. Q = 2q. PE: processing element.

3.3. Stride Permutations with Parallel Memories 43

PE0PE0

PEQ/K-1

B0

BQ-1

M

M

M

M

M

M

Fig. 26. Radix-2k Viterbi decoder with Q dual-port memory modules according to [94]. PE:

radix-2k processing element of 2k input and output ports. M: multiplexer. B: dual-

port memory module.

suggested in [95] a DAB channel decoder based on the given structure. In addition,

Lo et al. presented in [69] an FFT processor based on the same scheme, where the

computation is performed with a single radix-2 processing element.

Because the design method in [94] resulted in complex interconnections, Wu et al.

continued in [120] by rescheduling the computations and obtained a structure with

simplified switching networks. The same authors continued their work in [121],

where they proposed a radix-2k decoder, which has a hardwired permutation network

between the processing elements and memory modules. However, the parallelism

has been limited to cases where n is a multiple of q. Also Kim et al. considered

in [58] the simplification of data permutations in radix-2 Viterbi decoders and pro-

posed a structure, which consists of Q/2 processing elements, Q/2 switches of type

2× 2, and Q memory modules, as depicted in Fig. 27. The given method was em-

ployed by Zhu and Benaissa in [122] to a radix-2 Viterbi decoder, which exploits

PE0

PEQ/2-1

S
B0

S

B1

BQ-2

BQ-1HW

Fig. 27. Radix-2 Viterbi decoder with Q dual-port memory modules proposed in [58]. PE:

radix-2 processing element. S: 2-to-2 switch. B: dual-port memory module. HW:

hardwired permutation. Q = 2q.

44 3. Previous Work

four parallel processing elements and eight dual-port memory modules. The decoder

has been implemented on an FPGA and is reconfigurable to support array sizes N,

N ∈ {64,128,256,512}.

3.4 Summary

Managing the stride permutations in partial-column and cascaded structures is essen-

tial due to the time dependencies of data elements. In this chapter, previous work

on the hardware realizations of stride permutations were reviewed. Three principal

approaches were covered: switching, register-, and memory-based networks.

In the first section, it was shown that the traditional switching networks are not ap-

plicable when the size of permutation is larger than the number of ports. For such

problems, register-based networks were covered in the second section where also the

minimization of the number of registers was reviewed. The discussed register-based

networks can be divided into two categories: networks supporting arbitrary permu-

tations and networks supporting stride permutations. Furthermore, they can also be

divided into one- and two-dimensional networks based on network topology. In the

one-dimensional networks, the operation is sequential although they may have se-

veral input and output ports. For parallel data streams, two-dimensional networks

have been proposed for reducing the multiplexer and interconnection complexities.

In FFT and Viterbi structures, register-based permutation networks are common, and

some examples of such structures were given.

The design process of several reviewed register-based networks exploited heuristic

methodology, which has drawbacks in the automated design generation. On the other

hand, the networks supporting stride permutations were often design specific, which

limits their extensive usage. In addition, the minimum number of registers was not

always obtained.

In the third section, some principal parallel memory access schemes from super-

computing area were reviewed. An introduction to stride access was given followed

by a definition of stride permutation access. The difference between these two ac-

cess schemes was remarked. Based on the given survey in supercomputing area, no

schemes were found which supported the stride permutation access. However, in

FFT and Viterbi implementations, some parallel memory structures for stride per-

3.4. Summary 45

mutations were exploited but many of them had substantial limitations on the design

parameters. It was remarked that the in-place update method saves memory with ad-

ditional complexity in address generation and interconnections. In some structures,

such complexity was reduced by assigning additional registers to data paths.

46 3. Previous Work

4. REGISTER-BASED STRIDE PERMUTATION NETWORK

Register-based networks are a competent solution for managing the stride permu-

tations in cascaded and partial column structures, especially when relatively small

amount of data needs to be stored in the permutation. Based on the review in previous

chapter, many reported approaches were design specific affecting that the resulting

networks cannot be used for all power-of-two strides or sequence sizes. In addition,

many structures were one-dimensional aimed at permutations over sequential data

streams. The two-dimensional structures employed often a heuristic design method,

which is relatively complex. Many reported approaches resulted also in the excessive

number of registers.

In this chapter, a systematic design methodology for register-based power-of-two

stride permutation networks is proposed. The networks are constructed based on

the decompositions of stride permutations into smaller, more easily implementable

permutations. Such decompositions can be obtained in many ways, although it makes

sense only if they lead to an efficient implementation. As design parameters, the

sequence size, number of input/output ports, and stride are used, which are denoted

by N, Q, and S, respectively. All the design parameters are powers-of-twos. The

permutations are represented with Boolean matrices and the approach is to obtain

sparse matrix decompositions where as many as possible of the resulting matrices

are block diagonal matrices of size smaller or equal to the number of ports in the

network.

The proposed design methodology can be applied to various stride permutation net-

works where Q data elements are read in and written out at a time from overall N

elements, Q = 2q, N = 2n, 0 ≤ q ≤ n−1. Thus Q input and output ports are needed

in the networks. In addition, the networks support power-of-two strides S, S = 2s,

0 ≤ s ≤ n− 1. They also reach the theoretical lower bound on register complexity.

Compared to the earlier designs, the networks result also in the less number of multi-

48 4. Register-Based Stride Permutation Network

plexers. The presented networks have regular topology and they are created without

heuristics, which make them attractive for automated design procedures. In such

cases, only one VHDL description of the networks is needed where the design para-

meters N, Q, and S are given as generics. This description can be synthesized to any

stride permutation network simply by fixing the given design parameters.

In the following, the decomposition of a square matrix transpose is derived first, since

it is the basis for other stride permutations, which are decomposed thereafter. After

deriving the decompositions, their realizations are discussed. The lower bound of

register complexity is derived, which is shown to be equal to the numbers of registers

in the proposed networks. At the end, a comparison against the earlier networks is

made. The chapter is closed with a summary.

4.1 Decompositions of Permutation Matrices

4.1.1 Square Matrix Transpose Network

The basis of the proposed approach to stride permutations is the transpose of a square

matrix: if an S× S matrix is represented in array form, i.e., the columns are con-

catenated, the matrix transpose corresponds to stride-by-S permutation of order S2,

PS2,S [44]. For this purpose, consider the iterative method for S×S matrix transpose,

S = 2s, proposed by Carlach et al. [16]. In the first step, the exchange of elements

with indices 2i + 1 + 2S j and 2i + S + 2S j is made, 0 ≤ i, j < S/2. All the other

elements remain intact. In general, this operation requires an exchange of the odd

elements of a column with the even elements of the next column, which is the ope-

ration performed by permutation J2S. Since the entire matrix contains S/2 column

pairs, the permutation matrix P(0)
S2 of order S2 realizing the first step is

P(0)
S2 = IS/2 ⊗ J2S . (35)

In the second step, two 2-by-2 blocks are exchanged, i.e., the elements with indices

4i+ l +2+4S j and 4i+ l +2S +4S j are exchanged, l = 0,1, 0 ≤ i < S/2, 0 ≤ j <

S/4. The permutation matrix P(1)
S2 corresponding to the second step is

P(1)
S2 = IS/4 ⊗ J2S ⊗ I2 . (36)

In the following steps, the same procedure is repeated; the size of the exchanged

blocks is doubled at each recursion, thus at ith step the corresponding permutation

4.1. Decompositions of Permutation Matrices 49

matrix P(i)
S2 is

P(i)
22s = I2s−i−1 ⊗ J2s+1 ⊗ I2i , i = 0,1, . . . ,s−1. (37)

Based on the previous discussion, a decomposition for stride-by-S permutation of

order S2, PS2,S, is given as follows

P22s,2s = P(s−1)
22s . . .P(1)

22s P(0)
22s =

0

∏
i=s−1

P(i)
22s =

0

∏
i=s−1

I2s−i−1 ⊗ J2s+1 ⊗ I2i . (38)

An example of such a decomposition for 8 × 8 matrix transpose is illustrated in

Fig. 28(a).

In certain cases, however, the permutations of type JA ⊗ IB introduce difficulties in

realizations. In order to change the order of the matrices, the property in (22) can be

utilized. When applied to (37), the following form is obtained:

P(i)
22s = I2s−i−1 ⊗ [(

I2s ⊗P2i+1,2

)
J2s+i+1

(
I2s ⊗P2i+1,2i

)]
, i = 0,1, . . . ,s−1. (39)

By substituting this to (38), it can be seen that at consecutive steps i and i + 1, the

permutations P(i)
S2 and P(i+1)

S2 result in the following:

P(i+1)
22s P(i)

22s =
[
I2s−i−2 ⊗ ((

I2s ⊗P2i+2,2

)
J2s+i+2

(
I2s ⊗P2i+2,2i+1

))]
[I2s−i−1⊗ ((

I2s ⊗P2i+1,2

)
J2s+i+1

(
I2s ⊗P2i+1,2i

))]
=I2s−i−2 ⊗ [(

I2s ⊗P2i+2,2

)
J2s+i+2

(
I2s ⊗P2i+2,2i+1

(
I2 ⊗P2i+1,2

))
(I2 ⊗ J2s+i+1)

(
I2s+1 ⊗P2i+1,2i

)]
(40)

By referring to the definition of matrix JN in (21), JN = PN,N/2(I2 ⊗PN/2,2), it can

be seen that the term (I2s ⊗P2i+2,2i+1(I2 ⊗P2i+1,2)) in (40) can be replaced with (I2s ⊗
J2i+2), which results in

P(i+1)
22s P(i)

22s =
(
I22s−i−2 ⊗P2i+2,2

)
(I2s−i−2 ⊗ J2s+i+2)

(I22s−i−2 ⊗ J2i+2)(I2s−i−1 ⊗ J2s+i+1)
(
I22s−i−1 ⊗P2i+1,2i

)
. (41)

This approach is continued similarly at the third step, i.e.,

P(i+2)
22s P(i+1)

22s P(i)
22s =

(
I22s−i−3 ⊗P2i+3,2

)
(I2s−i−3 ⊗ J2s+i+3)(

I22s−i−3 ⊗P2i+3,2i+2

)(
I22s−i−2 ⊗P2i+2,2

)
(I2s−i−2 ⊗ J2s+i+2)

(I22s−i−2 ⊗ J2i+2)(I2s−i−1 ⊗ J2s+i+1)
(
I22s−i−1 ⊗P2i+1,2i

)
, (42)

50 4. Register-Based Stride Permutation Network

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

16
24
18
26
20
28
22
30
17
25
19
27
21
29
23
31

0
8
2
10
4

12
6

14
1
9
3

11
5

13
7

15

48
56
50
58
52
60
54
62
49
57
51
59
53
61
55
63

32
40
34
42
36
44
38
46
33
41
35
43
37
45
39
47

col 0

col 1

col 2

col 3

col 4

col 5

col 6

col 7

(I4⊗J16)(I2⊗J16⊗I2)

2
10
18
26
6
14

0
8

16
24
4
12
20
28
1
9
17
25
5
13
21
29

32
40
48
56

32
40
48
56

0
8

16
24

22
30

19
27

23
31

3
11

7
15

36
44

33
41

37
45

50
58

54
62

51
59

55
63

(J16⊗I4)

52
60

49
57

53
61
34
42

38
46

35
43

48
47

55
63

48
47

37
45

54
62

53
61

38
46

2
10
18
26

19
27

3
11

36
44
52
60

1
9
17
25

6
14

4
12
20
28

5
13
21
29

22
30

23
31

7
15

33
41

50
58

51
59

49
57

34
42

35
43

a)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

16
24
18
26
20
28
22
30
17
25
19
27
21
29
23
31

0
8
2
10
4
12
6
14
1
9
3
11
5
13
7

15

48
56
50
58
52
60
54
62
49
57
51
59
53
61
55
63

32
40
34
42
36
44
38
46
33
41
35
43
37
45
39
47

col 0

col 1

col 2

col 3

col 4

col 5

col 6

col 7

(I4⊗J16) (I2⊗J32)

2

0

1

29

32

32
40
48
56

0
8

16
24

30
3

33

63

J64

60

34

35

55
63

48
47

37
45

54
62

53
61

38
46

2
10
18
26

19
27

3
11

36
44
52
60

1
9

17
25

6
14

4
12
20
28

5
13
21
29

22
30

23
31

7
15

33
41

50
58

51
59

49
57

34
42

35
43

16

24
18

26

0

8
2

10

18

26

16

24

2

10

0

8

(I16⊗J4) (I8⊗J8)

4
6

14
1
3

11
5

12

9

13

4

1

5

12

9

13
7

15

20

28
22

30
17

25
19

27
21

29
23

31

48

56
50

58
52

60
54

62
49

57
51

59
53

61
55

63

32

40
34

42
36

44
38

46
33

41
35

43
37

45
39

47

22

30

19

27

23

31

20

28

17

25

21

29

6

14

3

11

7

15

50

58

54

62

51

59

55

63

32

40

36

44

33

41

37

45

34

42

38

46

35

43

39

47

48

56

52

60

49

57

53

61

(I8⊗P8,2)

31

8

20

28

10

9

22

23

21

11

40

52

54

62

55

41

42

43

53

61

6

14

7

15

36

44

37

45

38

46

39

47

4

5

12

13

18

26

16

24

19

27

17

25

48

56

49

57

50

58

51

59

2

0

1

3

8

10

9

11

18

26

16

24

19

27

17

25

63

60

52

54

62

55

53

61

36

44

37

45

38

46

39

47

32

33

34

35

40

41

42

43

48

56

49

57

50

58

51

59

29

30

31

20

28

22

23

21

6

14

7

15

4

5

12

13

b)

Fig. 28. Decomposition of 8×8 matrix transpose according to: a) (38), b)(44).

4.1. Decompositions of Permutation Matrices 51

where the term (I22s−i−3 ⊗P2i+3,2i+2)(I22s−i−2 ⊗P2i+2,2) is replaced with (I22s−i−3 ⊗ J2i+3),
which results in

P(i+2)
22s P(i+1)

22s P(i)
22s =

(
I22s−i−3 ⊗P2i+3,2

)
(I2s−i−3 ⊗ J2s+i+3)(I22s−i−3 ⊗ J2i+3)(I2s−i−2 ⊗ J2s+i+2)

(I22s−i−2 ⊗ J2i+2)(I2s−i−1 ⊗ J2s+i+1)
(
I22s−i−1 ⊗P2i+1,2i

)
. (43)

By continuing the described approach, the decomposition in (38) can be given in a

form where the middle terms consist of repetitive terms of type (IA ⊗ JB), and where

only two terms of type (IC ⊗PD) are located at the both ends. The rightmost term

(I22s−i−1 ⊗P2i+1,2i) can actually be left out since it results in an identity matrix, i.e.,

(I22s−1 ⊗P2,1) = I22s , when i = 0. As a result, the decomposition in (38) can be written

as

P22s,2s = P(s−1)
22s . . .P(1)

22s P(0)
22s

= (I2s ⊗P2s,2)
0

∏
i=s−1

[
(I2s−i−1 ⊗ J2s+i+1)(I22s−i−1 ⊗ J2i+1)

]
. (44)

This decomposition is illustrated in Fig. 28(b).

Finally, the decomposition of a square matrix transpose can be derived by combining

both the previous principal decompositions in (38) and (44), i.e., by using the inter-

pretations of P(i)
S2 in (37) and (39). The definition of P(i)

S2 in (39) can be used in the

first q steps and the remaining s− q steps are performed with the definition in (37).

This approach results in a decomposition where each 2q ×2q submatrix is first trans-

posed using (39) and then the remaining steps are performed using (37). Therefore,

the combined decomposition of a square matrix transpose can be written as

P22s,2s =
q

∏
m=s−1

[
I2s−m−1 ⊗ J2s+1 ⊗ I2m

]
(I22s−q ⊗P2q,2) ·

0

∏
i=q−1

[
(I2s−i−1 ⊗ J2s+i+1)(I22s−i−1 ⊗ J2i+1)

]
, 0 ≤ q ≤ s. (45)

4.1.2 One-Dimensional Network

In the following, a stride-by-2s permutation is decomposed into successive stride-by-

2 permutations, which can be efficiently mapped onto a one-dimensional network.

52 4. Register-Based Stride Permutation Network

The stride-by-2n−1 permutation of 2n-element sequence can be decomposed into con-

secutive P4,2 permutations as follows

P2n,2n−1 =
n−2

∏
i=0

I2n−i−2 ⊗P4,2 ⊗ I2i . (46)

By applying (15), a stride-by-S permutation can be given as

P2n,2s = (P2s+1,2s ⊗ I2n−s−1)(I2 ⊗P2n−1,2s) . (47)

In order to reduce the size of P2n−1,2s in (47), this factorialization can be recursively

applied until the size of the permutation equals to 2S, which is given as

P2n,2s =
n−s−1

∏
i=0

I2i ⊗P2s+1,2s ⊗ I2n−(s+i+1) . (48)

Permutations P2s+1,2s in (48) can be further decomposed to P4,2 permutations accor-

ding to (46), and thus (48) can be rewritten as

P2n,2s =
n−s−1

∏
i=0

[
I2i ⊗

s−1

∏
j=0

(I2s− j−1 ⊗P4,2 ⊗ I2 j)⊗ I2n−(s+i+1)

]
, (49)

which can be further simplified to

P2n,2s =
n−s−1

∏
i=0

s−1

∏
j=0

[
I2s+i− j−1 ⊗P4,2 ⊗ I2n+ j−s−i−1

]
. (50)

4.1.3 Two-Dimensional Network

Next, a decomposition of stride-by-S permutation for two-dimensional networks is

considered. In order to determine the network structure, three parametrizable decom-

positions of a stride permutation are derived in the following. In these decompositi-

ons, a modified stride R is used,

R = min(S,N/S) . (51)

The decompositions derived for P2n,2r are used as the basis for decompositions of

stride-by-S permutations, P2n,2s , which are obtained as following

P2n,2s(2q) =

{
P2n,2r(2q), S < N/S
PT

2n,2r(2q), otherwise
. (52)

4.1. Decompositions of Permutation Matrices 53

The previous statement can be described as follows: if the stride S is smaller than

N/S, R equals to S and the obtained stride-by-R permutation network can be used

directly for stride-by-S permutations. On the contrary, if the stride S is the same or

larger than N/S, the obtained stride-by-R permutation network must be reversed for

stride-by-S permutations, i.e., the network is flipped horizontally so that the output

ports become input ports and vice versa.

Next, three different decompositions are derived based on the design parameters N,

R, and Q. The decompositions are illustrated with two matrices, R×N/R and Q×
N/Q, which are both initialized with N data elements written in column-wise. In

the R×N/R matrix, such an initialization results in stride-by-R ordered rows, which

are reordered into stride-by-R ordered columns with the given decomposition. By

applying the same decomposition to the Q×N/Q matrix, the elements are reordered

also in column-wise stride-by-R order. Such a matrix describes the operation of a

permutation network since the number of rows equals to the number of ports of the

network.

CASE 1, Q > N/R

In this case, the number of ports is greater than the ratio of the sequence size and

modified stride, and the following theorems are obtained.

Theorem 8. The number of ports Q is always larger than stride R, if Q > N/R.

Proof. Assume R = min(S,N/S) = S in (51). Substituting S for R in the case

constraint, Q > N/R, results in Q > N/S > S. Thus it can be concluded that Q > R

when R = S. The same is true if R = min(S,N/S) = N/S. Substituting N/S for R

in the case constraint results in Q > N/(N/S), i.e., Q > S > N/S. Thus it can be

concluded that Q > R, also when R = N/S.

Corollary 2. The number of ports Q is always larger than N/Q, if Q > N/R.

Proof. Consider the case constraint Q > N/R, which can be written according to

Theorem 8, Q > R, as Q > N/R > N/Q.

54 4. Register-Based Stride Permutation Network

1

R

Q0

R-1

N-Q

N/Q

Q-1 2Q-1

QR/N

Q R-QR/N

N-1

a)

R
1

Q0 N-Q

N/Q

N/Q

Q-1 2Q-1

QR/N

R-QR/N

N-1

N/Q

R

R

R

1

Q

0

N-Q

N/Q

N/Q

QR/N R-QR/N

N-1

Q+R

R
0

N/Q

QR/N R-QR/N

N-1

2R

c)b) d)

QR/N

Fig. 29. Decomposition in Case 1 illustrated with Q×N/Q matrix: a) initial data order, b)

data after (53), c) after (54), and d) data in column-wise stride-by-R order.

To illustrate the decomposition in this case, consider Q×N/Q and R×N/R matri-

ces depicted in Fig. 29(a) and Fig. 30(a), respectively. A column of the matrix in

Fig. 29(a) consists of a block of Q elements taken as an input by a permutation net-

work at a time. The network performs a stride-by-R permutation so the elements in

the Q-port output should appear in stride-by-R order. Thus, if a decomposition is de-

rived, which defines how the data in the matrix is reordered from the initial order into

a column-wise stride-by-R order, the actual operation of the network is described.

The same decomposition can be applied to the R×N/R matrix depicted in Fig. 30(a).

Since Q > R, the block of Q data elements takes Q/R columns as illustrated with

dashed lines. In order to give a better view of the data permutations, the elements in

stride-by-R order are represented from the lightest to the darkest gray color. Thus, in

both the matrices, the gray shades should be reordered such that the leftmost columns

have the lightest shades while the rightmost columns have the darkest shades. Such

operation corresponds to the permutation of N data elements into a column-wise

stride-by-R order.

Next, the data elements are reordered into a column-wise stride-by-R order in a step-

by-step manner. Considering the initial data order in the given matrices, the first

operation is to reorder the data such that submatrix transposes can be applied for ha-

4.1. Decompositions of Permutation Matrices 55

0

R-1

R Q

Q/R

R

QR/N

N/R

Q-1

Q-R Q+R
1

QR/N

QR/N

QR/N

Q/R Q/R

R-QR/N

N-1

a)

0 R Q

Q/R

Q-R Q+R
QR/N

N/Q

1

N/Q

R-QR/N

Q/R Q/Rb)

R

0 R
Q

Q/R

Q-R
Q+R

QR/N

N/Q

1

N/Q

N-Q

Q+1

N-1

R-QR/N

Q/R Q/Rc)

R

0
R
2R

Q/R

QR/N

N-1

Q/R Q/R

R-QR/N

R

d)

Fig. 30. Decomposition in Case 1 illustrated with R×N/R matrix: a) initial data order, b)

data after applying (53) c) after (54), and d) data in column-wise stride-by-R order.

56 4. Register-Based Stride Permutation Network

ving the lightest gray shades on the left and darkest on the right columns. This prior

permutation can be determined based on the matrix in Fig. 29(a). In this case, the

maximum size of the transpose is limited by the number of columns, N/Q, accor-

ding to Corollary 2, Q > N/Q, i.e., the number of rows is greater than the number

of columns. Thus the maximum size of square submatrix transposes is N/Q×N/Q.

Applying the transposes directly does not make sense since the elements in QR/N

successive rows illustrated with the same gray shade should be found in the same

column in the final stride-by-R ordered matrix, and transposes would split such ele-

ments into different columns. Therefore, prior to transposes, a row permutation is

made by picking up every QR/Nth row, which is best illustrated with Fig. 30(a,b),

and such a permutation is given as

I2n−r ⊗P2r,2q+r−n . (53)

As a result, N/Q×N/Q submatrices are obtained with rows of unique gray shade as

depicted in Fig. 29(b) and such submatrices can be transposed as

(I2q ⊗P2n−q,2)
1

∏
i=n−q

[
(I2n−q−i ⊗ J2q+i)(I2n−i ⊗ J2i)

]
. (54)

The effect of N/Q×N/Q transposes is seen in Fig. 29(c) and Fig. 30(c). However,

the data elements in blocks of Q require further permutation since they are still not in

stride-by-R order. Instead, the stride-by-R elements are R elements apart in a block

of Q elements. Permutation of them in stride-by-R order is done by picking every Rth

element in such Q-element blocks, given as

I2n−r ⊗P2q,2r , (55)

which corresponds to a row-wise read of data in Q×Q/R submatrices in Fig. 30(c)

and writing them back into the same submatrix in column-wise order. The final

column-wise stride-by-R ordered matrices are depicted in Fig. 29(d) and Fig. 30(d).

CASE 2, Q ≤ N/R ∧ Q ≥ R

The initial data matrices are shown in Fig. 31(a) and Fig 32(a) and the decomposition

follows the same principle as in the previous case, i.e., the data elements in the matri-

ces are reordered into column-wise stride-by-R order. The number of ports is larger

4.1. Decompositions of Permutation Matrices 57

0 1

Q-R

R

R R

R-1

R+1

QR QR+1

2R

Q

Q+R

2R+1

QR-R

QR+R2R-1

c) d)

0 1

Q-R

R

N/(QR)

R-1

R+1

QR QR+1

2R

Q

Q+R

2R+1

QR-R

QR+R 2R-1

N/(QR) N/(QR)

0

1

Q

R-1

R

QR-Q

R

R

N/Q

Q

R+1

QR

QR+1

Q+R

R

R

a)

0 1

Q

R

R

R

R

R-1

QR-Q

R+1

QR QR+1

Q+R
R

b)

Q Q

Fig. 31. Decomposition in Case 2 illustrated with Q×N/Q matrix: a) initial data order, b)

data after applying (56) c) after (57), and d) data in column-wise stride-by-R order.

or equal to the modified stride, i.e., Q ≥ R, so there are Q/R data elements located in

R elements apart in blocks of size Q, and such elements should be found in the same

column of the final matrix. Any transpose larger than R×R would split them into

different columns, which is undesirable. Thus, in the first step, the R×R submatrices

are transposed as

(I2n−r ⊗P2r,2)
1

∏
i=r

[
(I2n−q−i ⊗ J2q+i)(I2n−i ⊗ J2i)

]
(56)

for having the blocks of size Q with the same gray shade.

An example of R×R submatrix is illustrated with a bolded line in Fig. 31(a) and

the resulting matrices after the submatrix transposes are depicted in Fig. 31(b) and

Fig. 32(b).

58 4. Register-Based Stride Permutation Network

0

R

1QR QR+1

QR+R

QR-R

N/R2

R

N/R2 N/R2

R-1

R+1 QR+R+1 2R-1

d)

c)

0

R

1 QR QR+1R-1

QR+R

QR-R

R
R+1

Q Q

Q/R Q/RQ/R Q/R Q/RQ/R

Q/R

R

0

1

R-1

R QQ-R

Q

Q/RQ/R

QR

Q/R

Q

N/R

Q/RQ/R

QR-R QR+RQR-Q

a)

0 R Q-R

Q

1 QR QR+1R-1

QR-R

Q Q

R

R+1

QR-Q

Q/R Q/RQ/R Q/R Q/RQ/R

b)

QR+1

Fig. 32. Decomposition in Case 2 illustrated with R×N/R matrix: a) initial data order, b)

data after applying (56) c) after (57), and d) data in column-wise stride-by-R order.

In the next step, the elements within the same gray shade are reordered into stride-by-

R order. Such a permutation can be described as a row-wise read of Q data elements

in the R×Q/R submatrices in Fig. 32(b) and writing them back in column-wise.

This operation corresponds to picking up every Rth row in the Q×N/Q matrix in

Fig. 32(b), and is given as

I2n−q ⊗P2q,2r . (57)

The resulting matrices are depicted in Fig. 31(c) and Fig. 32(c).

4.1. Decompositions of Permutation Matrices 59

In the final step, the Q-element blocks are reordered. Consider the Q×N/Q matrix

in Fig. 31(c) where the columns in the same gray shade are found in R columns apart.

By picking every Rth column, all N elements are obtained in column-wise stride-by-R

order. Such permutation is given as

P2n−q,2r ⊗ I2q , (58)

and the final stride-by-R ordered matrices are depicted in Fig. 31(d) and Fig. 32(d).

CASE 3, Q ≤ N/R ∧ Q < R

The number of ports is less than the modified stride, i.e., Q < R, which implies that

stride-by-R elements are found in blocks of size Q that are not consecutive but R/Q

blocks apart. In the first step, a permutation, which collects Q of such blocks into con-

secutive blocks, is made. This operation is illustrated with bolded edges in Fig. 33(a)

and Fig. 34(a). In general, such a permutation is given as

I2n−q−r ⊗P2r,2r−q ⊗ I2q , (59)

and the resulting matrices are depicted in Fig. 33(b), Fig. 34(b).

Next, Q×Q submatrix transposes can be applied to reordering the stride-by-R orde-

red rows into stride-by-R order columns in such matrices. The submatrix transposes

are given as

(I2n−q ⊗P2q,2)
1

∏
i=q

[
(I2n−q−i ⊗ J2q+i)(I2n−i ⊗ J2i)

]
, (60)

and the resulting matrices are depicted in Fig. 33(c), Fig. 34(c).

After the submatrix transposes, the Q-element blocks are reordered into stride-by-

R order by picking every Rth block, which is best illustrated in Fig. 33(c). Such

permutation is given as

P2n−q,2r ⊗ I2q , (61)

and the final column-wise stride-by-R ordered matrices are depicted in Fig. 33(d) and

Fig. 34(d).

60 4. Register-Based Stride Permutation Network

a)

0

1

Q R QR-R

0

1

QR Q+RQR-R

Q
Q+1

R+1

R

Q

N/Q

b)
Q Q

R/Q

N/Q

0 1 Q-1 QR

R

0 QR

R

QR-R

QR-R

R+1
Q

Q

N/R

N-1

N-1

Q

c)

d)

N/Q

Q Q

N/Q

N-1

R

QR

Q

QR+R 2QR-R

Q+R

QR-R+Q

N-1

Q

Q+R

QR-R+Q

Q

QR+R

2QR-R

QR+R

2QR-R

Q+1

Q+1

N/R N/R

Q-1 R-1

R-Q

R/Q R/Q

QR

R+1

Q-1

QR-1

QR-R+Q

R-1

R-Q

QR-1

QR-Q

QR-Q

N-1

N-1

R-Q

QR-Q

R-1

N-1

R

N-(R-Q)-1

Q

Q+R

QR-R+Q

QR+1

QR+1

QR+1

R-Q

QR-Q

Fig. 33. Decomposition in Case 3 illustrated with Q×N/Q matrix: a) initial data order, b)

data after (59), c) data after (60), and d) data in column-wise stride-by-R order.

4.1. Decompositions of Permutation Matrices 61

a)

1

Q

Q

R

0 R

Q

N/R

Q

QR

1

0

R

Q2/R

Q

QR-R

R

b)

Q

Q

QR-R

Q2/R

Q

Q+R

N/R

Q+R

QR

R

0

Q

QR-R

1

R

0

QR-R

QR

R

c) d)
N/R

R+1

Q

Q

N/R

R-1

Q

Q

Q

R
Q

Q

(R-Q)R

(R-1)R

N-1 N-1

N-1

Q-1 Q-1

Q2/R Q2/R

Q

Q

Q2/R Q2/R Q2/R Q2/R NQ/R2 NQ/R2 NQ/R2

R-Q

R-1

R-Q

Q

Q+R

2R-Q

Q

Q+R

N-(R-Q)-1

N-(R-Q)-1

R-Q

2R-Q

2R-Q

R-Q

2R-Q

Fig. 34. Decomposition in Case 3 illustrated with R×N/R matrix: a) initial data order, b)

data after (59), c) data after (60), and d) data in column-wise stride-by-R order.

62 4. Register-Based Stride Permutation Network

Decomposition Summary

Based on the previous discussion, the decompositions in three cases are summarized

as

P2n,2r(2q)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(I2n−q ⊗P2q,2r)(I2q ⊗P2n−q,2)∏1
i=n−q[(I2n−q−i ⊗ J2q+i)

·(I2n−i ⊗ J2i)](I2n−r ⊗P2r,2q+r−n), Q > N
R

(P2n−q,2r ⊗ I2q)(I2n−q ⊗P2q,2r)(I2n−r ⊗P2r,2)
·∏1

i=r[(I2n−q−i ⊗ J2q+i)(I2n−i ⊗ J2i)], Q ≤ N
R ∧Q ≥ R

(P2n−q,2r ⊗ I2q)(I2n−q ⊗P2q,2)∏1
i=q[(I2n−q−i ⊗ J2q+i)

·(I2n−i ⊗ J2i)](I2n−q−r ⊗P2r,2r−q ⊗ I2q), Q ≤ N
R ∧Q < R.

(62)

The modified stride R is used in the decompositions for simplicity. However, the

aim is to have a network for the stride-by-S permutation thus the modified stride R

has to be replaced with S. This can be done according to (52), which defines that

if S < N/S, the given decompositions in (62) can be used as such by replacing 2r

with 2s. In other case, the given decompositions must be transposed, which can be

interpreted as inverting the stride-by-R permutation network. As a summary, the

stride-by-S networks are constructed based on the decompositions in (62) and only if

S ≥ N/S, the obtained networks are inverted.

Decomposition Examples

In order to illustrate the decompositions for two-dimensional networks, examples for

each case are provided with fixed parameters. In the examples, the decompositions

are illustrated in step by step with a Q×N/Q matrix, which also describes the ope-

ration of the Q-port permutation network, i.e., the network takes a single column as

input at a time.

In Case 1, Q > N/R, the example is given with parameters N = 32, R = 4, and

Q = 16. The resulting decomposition is given according to (62) as (I2 ⊗P16,4)(I16 ⊗
P2,2)J32(I16 ⊗ J2)(I8 ⊗P4,2), which can be further simplified to (I2 ⊗P16,4)J32(I8 ⊗
P4,2). Let us remark that the decomposition is read in opposite order, i.e., the first per-

mutation to be performed is (I8 ⊗P4,2), as illustrated with the data matrix in Fig. 35.

Such a permutation is an example of spatial permutations since it can be done with

hardwirings. In the second step, 2×2 submatrices are transposed with J32. This per-

mutation is an example of temporal permutations, which implies a need for a dynamic

4.1. Decompositions of Permutation Matrices 63

0 16

2 18

1 17

3 19

4 20

6 22

5 21

7 23

8 24

10 26

9 25

11 27

12 28

14 30

13 29

15 31

0 16

2 18

1 17

3 19

4 20

6 22

5 21

7 23

8 24

10 26

9 25

11 27

12 28

14 30

13 29

15 31

0

18

1

19

4

22

5

23

8

26

9

27

12

30

13

31

16

17

20

21

24

25

28

29

2

3

6

7

10

11

14

15

0

4

8

12

16

20

24

28

1

5

9

13

17

21

25

29

2

6

10

14

18

22

26

30

3

7

11

15

19

23

27

31

I8⊗P4,2 I2⊗P16,4J32

Fig. 35. Decomposition example in Case 1 with design parameters N = 32, R = 4, Q = 16.

unit. The last permutation is a row permutation (I2⊗P16,4) and the final column-wise

stride-by-R ordered matrix is shown on the right in Fig. 35.

In Case 2, (Q ≤ N/R)∧ (Q ≥ R), the example in is given with design parameters

N = 32, R = 4, and Q = 4 resulting in (P8,4 ⊗ I4)(I8 ⊗P4,4)(I8 ⊗P4,2)(I16 ⊗P2,2)(I4 ⊗
J8)(I16 ⊗J2) according to (62). The given decomposition can be further simplified to

(P8,4⊗I4)(I8⊗P4,2)(I4⊗J8). In the first step, 4×4 submatrix are transposed, given as

(I8⊗P4,2)(I4⊗J8). Then, the columns are reordered with (P8,4⊗ I4) and the resulting

matrix is obtained in column-wise stride-by-4 order as illustrated in Fig. 36.

In Case 3, (Q≤N/R)∧(Q < R), the example is given with parameters N = 32, R = 4,

and Q = 2, resulting in (P16,4 ⊗ I2)(I16 ⊗P2,2)(I8 ⊗ J4)(I16 ⊗ J2)(I4 ⊗P4,2 ⊗ I2). By

discarding the terms that equal to identity matrix, the decomposition is simplified to

(P16,4 ⊗ I2)(I8 ⊗ J4)(I4 ⊗P4,2 ⊗ I2). In the first step, a column permutation is made

where every R/Qth column is picked up in Q×R submatrices, i.e., (I4 ⊗P4,2 ⊗ I2).
In the second step, 2×2 submatrices are transposed as (I8 ⊗ J4). Finally, in the third

step, the columns are reordered according to (P16,4⊗ I2). The given decomposition is

illustrated in Fig. 37.

64 4. Register-Based Stride Permutation Network

0

2

1

3

16

18

17

19

4

6

5

7

20

22

21

23

8

10

9

11

24

26

25

27

12

14

13

15

28

30

29

31

0

4

8

12

16

20

24

28

1

5

9

13

17

21

25

29

2

6

10

14

18

22

26

30

3

7

11

15

19

23

27

31

P8,4⊗I4

(I8⊗P4,2)(I4⊗J8)

0

4

8

12

16

20

24

28

1

5

9

13

17

21

25

29

2

6

10

14

18

22

26

30

3

7

11

15

19

23

27

31

Fig. 36. Decomposition example in Case 2 with design parameters N = 32, R = 4, Q = 4.

0

1

2

3

16

17

18

19

4

5

6

7

20

21

22

23

8

9

10

11

24

25

26

27

12

13

14

15

28

29

30

31

0

1

2

3

16

17

18

19

4

5

6

7

20

21

22

23

8

9

10

11

24

25

26

27

12

13

14

15

28

29

30

31

I4⊗P4,2⊗I2

0 1 2 3 16 17 18 19

4 5 6 7 20 21 22 23

8 9 10 11 24 25 26 27

12 13 14 15 28 29 30 31

P16,4⊗I2

0 1 2 316 17 18 19

4 5 6 720 21 22 23

8 9 10 1124 25 26 27

12 13 14 1528 29 30 31

I8⊗J4

Fig. 37. Decomposition example in Case 3 with design parameters N = 32, R = 4, and Q = 2.

4.2. Realization Structures 65

4.2 Realization Structures

Next, realizations of the derived decompositions are given. The discussion begins

with the basic switching units and their capability to perform different permutati-

ons. Then the realizations of square matrix transposes are reviewed followed by a

realization of stride-by-S permutation over a one-dimensional network. Last, the rea-

lizations of stride-by-S permutations over two-dimensional networks are given.

4.2.1 Basic Switching Units

For the realization of temporal permutations, a 2-port DSD and a 1-port SEU are

used as the basic switching units. In the DSDD unit, there are 2D registers in total

and a 2× 2 switch, as illustrated in Fig. 13(b). With DSD units, the permutations

originated from the folding of J permutations can be realized: a JK permutation over

Q ports can be realized with Q/2 parallel DSDD/(2Q) units as shown in Fig. 38(a,b).

Furthermore, all permutations of type (IM ⊗ JK) can be mapped on the same Q-port

structure independent on M, M = 2m. As an example, a 2-port realization of (I2⊗J16)

is given in Fig. 38(c), which can be used for all (IM ⊗ J16) permutations, M = 2m,

m = 0,1,2,

In SEUD, there are D registers and two 2-to-1 multiplexers, as shown in Fig. 9(a). In

principle, SEUD can exchange the data elements D apart in a sequential data stream.

Therefore, SEUK/2−1 can be used to realize JK permutations for sequential data stre-

ams. In addition, a Q-port structure can be obtained for (JK ⊗ IQ) permutations by

placing Q SEUK/2−1 in parallel. In general, permutations of type (IN ⊗ JK ⊗ IMQ)
can be realized with Q SEUM(K/2−1) units in parallel, M = 2m, Q = 2q, K = 2k. As

an example, a 2-port realization of (J16 ⊗ I2) is illustrated in Fig. 39(a).

Furthermore, SEUs can be applied to permutations of type (P4,2 ⊗ IQK) over Q ports,

which are realized with a network where Q SEUK units operate in parallel, since

the Q-element subsequences to be exchanged are K cycles apart, Q = 2q, K = 2k.

Permutations of type (IM ⊗P4,2 ⊗ IQK) can also be mapped onto the same Q-port

structure, M = 2m. As an example, a 2-port realization of (P4,2 ⊗ I4) is illustrated in

Fig. 39(b).

66 4. Register-Based Stride Permutation Network

I1

c

I0

I3
I2

O1

O0

O3

O2

clk

1
0

2
3

5
4

6
7

I0
I1
I2
I3

O0
O1
O2
O3

c

clk

DSD1

DSD1

a)

I0
I1
I2
I3

O0
O1
O2
O3

c

clk

DSD4

DSD4

4
0

2
6

5
1

3
7

I1

c

I0

I3
I2

O1
O0

O3

O2

clk

17
16

18
19

21
20

22
23

25
24

26
27

29
28

30
31

1
0

2
3

5
4

6
7

9
8

10
11

13
12

14
15

1716

18 19

2120

22 23

2524

26 27

2928

30 31

10

2 3

54

6 7

98

10 11

1312

14 15

0 2 1 34 6 5 7

8 12 9 1310 14 11 15

1 3 5 7 9 11 1315

0 2 4 6 8 10 1214

171921232527 2931

161820222426 2830

17192123

2527 2931

16182022

2426 2830

I1
c

I0

O1

O0

clk

I0
I1

O0
O1

c

DSD4

clk

c)

b)

Fig. 38. Permutations with DSD units: a) J8, b) J32, c) I2 ⊗ J16 and corresponding timing

diagrams. c: control. clk: clock.

c

0

1

1 3 5 7 9 11 13 15

0 2 4 6 8 10 12 14

17 19 21 23 2527 29 31

16 18 20 22 2426 28 30

5 11 15

4 10 14

17

16

3

2

7

6

13

12

9

8

17 1921 2325 2729 31

16 1820 2224 2628 30 0 2 4 68 10 12 14

1 9 5 133 11 7 15

1 3 5 7 9 11 13 15

0 2 4 6 8 10 12 14
I1

I0

clk

a)
I0

I1

O0

O1

c

clk

SEU3

SEU3

O1

O0

c

I1

I0

clk

O1

O0

I0

I1

O0

O1

c

clk

SEU2

SEU2
b)

Fig. 39. Permutations with SEUs: a) J16 ⊗ I2 and b) P4,2 ⊗ I4 and corresponding timing dia-

grams. c: control. clk: clock.

4.2.2 Networks for Square Matrix Transpose

The decomposition of a square matrix transpose is given in (45). By assigning q = 0

in (45), a decomposition for one-dimensional network is obtained. This contains

only permutations of type (IA ⊗ JK ⊗ IB) which are realized by cascading s SEUs in

increasing order of size as in Fig. 40. Since the network will be used as a part of two-

dimensional networks, it is referred to as a sequential permutation network SPNS2,S

for brevity.

By assigning q = s in (45), a decomposition is obtained for a network where the

number of ports equals to the stride. In the resulting decomposition, there are three

different types of permutations to be realized. The permutation (I2s−i−1 ⊗ J2s+i+1) over

2q ports, i < q, can be realized with 2q−1 DSD2s+i−q units in parallel. The other

4.2. Realization Structures 67

SPNS2,S

SEU(2s-1) SEU21(2s-1) SEU2s-1(2s-1)

s SEUs

Fig. 40. One-dimensional permutation network for square matrix transpose. S = 2s.

I 2
q-

2
⊗

 J
22DSD20

DSD20

DSD21

DSD21

I 2
q-

3
⊗

 J
23

HW HW HW HW

I 2
q-

x ⊗
P

2x ,2

DSD2x-1

DSD2x-1

I 2
q-

x ⊗
J 2

x

HW HW

I0

I1

I2x-1

O0

O1

O2x-1

O2x-2I2x-2

x DSD stages

MTNX

Fig. 41. Permutation network for X ×X matrix transpose over X ports. X = 2x. HW: hard-

wired permutation.

permutations, (I22s−i−1 ⊗ J2i+1) and (I22s−q ⊗P2q,2), represent spatial permutations since

their sizes are at most the number of ports; order of J2i+1 and P2q,2 is at most 2q, i < q.

Such permutations are realized with hardwirings. In Fig. 41, the resulting network

for X ×X matrix transpose over X ports is depicted. The network will be used as a

part of two-dimensional networks for power-of-two strides where it is referred to as

a matrix transpose network (MTNX) for brevity.

In cases where 0 < q < s, the decomposition in (45) is realized as depicted in Fig. 42.

In the decomposition, the first term of type (IA ⊗JK ⊗ IB) results in s−q SEU stages.

The other terms follow the realization of X ×X matrix transpose network over X

ports, i.e., they result in q stages of DSD units coupled with hardwired permutation

stages.

4.2.3 Networks for Power-of-Two Strides

In (50), a stride-by-S permutation of order N is decomposed into smaller permutations

of type (IA ⊗P4,2 ⊗ IB), which can be realized with consecutive SEUs, as depicted in

Fig. 43. This network will also be used as a part of two-dimensional networks where

it is referred to as SPNN,S, N �= S2.

68 4. Register-Based Stride Permutation Network

I0

I1

I2q-1

O0

O1

c0

...

...

O2q-1...
I 2

q-
2 ⊗

J 2
2

q DSD stages

P
2q ,2

s-q SEU stages

. .
 .

...

...

...

...

DSD2s-q

. .
 .

DSD2s-q

DSD2s-q+1

. .
 .

DSD2s-q+1

I 2
q-

3 ⊗
J 2

3

DSD2s-1

. .
 .

DSD2s-1

J 2
q

SEU20(2s-1)

SEU20(2s-1)

SEU20(2s-1)

cs-1

. .
 .

SEU2s-q-1(2s-1)

SEU2s-q-1(2s-1)

SEU2s-q-1(2s-1)

I2q-2

HW HW HW HW

Fig. 42. Principal block diagram of 2q-port network for 2s ×2s matrix transpose. HW: hard-

wired permutation.

SEU2s-1 SEU2s-2 SEU20 SEU2s SEU2s-1 SEU21 SEU2n-2 SEU2n-3 SEU2n-s-1

s SEUs s SEUs s SEUs

n-s blocks

SPNN,S

Fig. 43. One-dimensional stride permutation network for power-of-two strides. N = 2n. S =
2s. n �= 2s.

The decomposition of stride permutations for two-dimensional networks in (62) is

divided into three different cases. In Case 1, Q > N/R, starting in opposite order, the

first permutation to be made is (I2n−r ⊗P2r,2q+r−n), which can be hardwired because

the size of the permutation, 2r, is smaller than the number of ports according to

Theorem 8. The next three terms are due to 2n−q ×2n−q submatrix transposes, which

can be done with 2q−n parallel MTN2n−q units since 2n−q is smaller than the number

of ports according to Corollary 2. The final term (I2n−q ⊗P2q,2r) can be hardwired

since its size equals to the number of ports. A general block diagram of the resulting

network is depicted in Fig. 44(a).

In Case 2, Q≤N/R ∧ Q≥R, the first three terms correspond to submatrix transposes

of size 2r × 2r performed with 2q−r parallel MTN2r units. The next permutation,

(I2n−q ⊗P2q,2r), can be hardwired since its size equals to the number of ports. The

final permutation (P2n−q,2r ⊗ I2q) reorders Q-element blocks and can be realized with

2q parallel SPN2n−q,2r units. The resulting network is depicted in Fig. 44(b).

In Case 3, Q ≤ N/R ∧ Q < R, the first permutation to be made is (I2n−q−r ⊗P2r,2r−q ⊗
I2q), which reorders the Q-element blocks. This permutation is realized with 2q par-

allel SPN2r,2r−q units. The following 2q × 2q submatrix transposes can be done with

4.2. Realization Structures 69

I0

I2n-q-1

MTN2n-q

I2n-q+1-1

MTN2n-q

I2n-q

MTN2n-q

I2q-2n-q

I2q-1

I 2
q-

r
⊗

 P
2r ,2

q+
r-

n

HW

O0

O2n-q-1

O2n-q+1-1

O2n-q

O2q-2n-q

O2q-1

I0

HWI2r-1

MTN2r

I2r+1-1

MTN2r

I2r

MTN2r

I2q-2r

I2q-1

P
2q ,2

r

HW

SPN2n-q
,2r O0

O2r-1

O2r+1-1

O2r

O2q-2r

O2q-1

SPN2n-q
,2r

SPN2n-q
,2r

SPN2n-q
,2r

SPN2n-q
,2r

SPN2n-q
,2r

I0 SPN2r
,2r-q

I2q-1 SPN2r
,2r-q

MTN2q

SPN2n-q
,2r

SPN2n-q
,2r

O0

O2q-1

a) b)

c)

 P
2q ,2

r

HW

Fig. 44. Principal block diagrams of two-dimensional permutation networks for a) Case 1,

b) Case 2, and c) Case 3. HW: hardwired permutation.

a MTN2q unit. The final term (P2n−q,2r ⊗ I2q) reorders Q-element blocks and thus it

can be realized with 2q parallel SPN2n−q,2r units. A block diagram of the network is

illustrated in Fig. 44(c).

The given two-dimensional networks are described for the PN,R permutations. Accor-

ding to (51), the decompositions of such permutations are converted into decomposi-

tions of PN,S by the transpose, if S ≥N/S. As a result, each term in the decomposition

is transposed and their order is reversed, which corresponds to reversing the data flow

in the given networks. This operation is illustrated with fixed design parameters in

the following.

Consider a stride-by-4 permutation of 32 elements is made over 16 ports, P32,4(16),
i.e., the design parameters are N = 32, Q = 16, and S = 4. According to (51),

the modified stride R = S = 4 thus the decomposition is made according to Case

1 since Q > N/R resulting in (I2⊗P16,4)(I16⊗P2,2)J32(I16⊗J2)(I8⊗P4,2). By noting

that P2,2 and J2 result in identity matrices, the decomposition can be simplified to

(I2 ⊗P16,4)J32(I8 ⊗P4,2) and the corresponding network is depicted in Fig. 45(a). As

shown, the only temporal permutations are 2×2 submatrix transposes, J32, which are

realized with eight parallel MTN2 units. The other terms represent spatial permutati-

ons and can be realized as hardwired.

70 4. Register-Based Stride Permutation Network

Consider a stride-by-8 permutation of 32 data elements made over 16 ports, i.e.,

N = 32, Q = 16, and S = 8. In this case, the modified stride R = 4 and thus the

decomposition is exactly the same as in the previous example. By transposing it, the

decomposition for P32,8(16) is obtained resulting in (I8 ⊗P4,2)J32(I2 ⊗P16,4). The

corresponding network is depicted in Fig. 45(b). As seen, the network is obtained by

reversing the network in Fig. 45(a).

Next, a stride-by-4 permutation of 32 elements is made over four ports, P32,4(4),
i.e., N = 32, Q = 4, and S = R = 4. The decomposition is made according to Case 2

resulting in (P8,4⊗ I4)(I8⊗P4,2)(I2⊗J16)(I8⊗J4)(I4⊗J8) and the corresponding net-

work is given in Fig. 45(c). By transposing the decomposition, the decomposition for

P32,8(4) is obtained as (I4 ⊗ J8)(I8 ⊗ J4)(I2 ⊗ J16)(I8 ⊗P4,2)(P8,2 ⊗ I4). The resulting

network is depicted in Fig. 45(d).

In the last example, a stride-by-4 permutation of 32 elements is made over two ports,

P32,4(2), i.e., N = 32, Q = 2, and S = R = 4. The decomposition is made according to

Case 3 resulting in (P16,4 ⊗ I2)(I8 ⊗ J4)(I4 ⊗P4,2 ⊗ I2). By noting that terms (P16,4 ⊗
I2) and (I4 ⊗P4,2 ⊗ I2) are actually temporal square matrix transposes, SPN22s,2s in

Fig. 40 is used for their realizations. The resulting network shown in Fig. 45(e).

By transposing the given decomposition, a decomposition for P32,8(2) is obtained

as (I4 ⊗P4,2 ⊗ I2)(I8 ⊗ J4)(P16,4 ⊗ I2), and the corresponding network is depicted in

Fig. 45(f).

4.3 Complexity Analysis

The complexity of the networks is analysed according to the number of registers, D,

and multiplexers, M. Thus, the complexity of DSDD unit is 2D registers and two

multiplexers. Similarly, the complexity of SEUD is D registers and two multiplexers.

In this section, the number of multiplexers and registers of the proposed networks

are given. In order to show the area-efficiency of the proposed networks, the lower

bound of register complexity in stride permutations is derived.

4.3.1 Lower Bound of Register Complexity

The minimum number of registers can be obtained with the methodology proposed

by Parhi in [80], which is illustrated in Table 1. This methodology can be applied

4.3. Complexity Analysis 71

DSD1

DSD1

DSD1

DSD1

MTN2

DSD1

DSD1

DSD2

DSD2

SEU2

SEU2

SEU2

SEU2

SEU1

SEU1

SEU1

SEU1

MTN4 SPN8,4

SEU2

SEU2

SEU2

SEU2

SEU1

SEU1

SEU1

SEU1

DSD1

DSD1

DSD2

DSD2

DSD1
SEU1

SEU1

SEU3

SEU3

SEU6

SEU6

MTN2

DSD1
SEU1

SEU1

SEU3

SEU3

SEU6

SEU6

a) b) c)

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

DSD1

I4⊗P4,2 P16,4

d)

e)

f)

SPN16,4SPN4,2

Fig. 45. Permutation networks for: a) P32,4(16), b) P32,8(16), c) P32,4(4), d) P32,8(4), e)

P32,4(2) and f) P32,8(2) permutations.

to arbitrary permutations and it requires a new life time analysis of data elements

whenever the permutation is changed. Based on such methodology, it is not convin-

cing to claim that all the proposed networks reach the minimum register complexity.

Therefore, closed-form expressions of the minimum number of registers in stride

permutations are derived where the same parameters are used as in the proposed net-

works. This will prove the efficiency of the proposed networks in terms of register

usage.

Consider a one-dimensional permutation network, which reads sequentially N ele-

ments, reorders them, and writes the reordered elements sequentially out. Suppose

the elements in the input and output sequences are in the same order, i.e., the network

performs a stride-by-1 permutation. In such a case, it is obvious that no registers are

needed since the input sequence can be passed directly to output. As the second ex-

ample, suppose the network exchanges the first and the last element in the sequence,

which implies that the first N −1 elements must be stored, the last element is passed

from the input to output, and the stored elements are written out one by one. Permu-

72 4. Register-Based Stride Permutation Network

I0
I1

O0

N/S

S I2

IN-1

O1 O2

ON/S-1 IN-S

a) b)

I0

O0

S

S

IN/Q-1

OS-1

IN/Q-S/Q

1

1

1

1

Fig. 46. Determining the minimum number of registers in a) one-dimensional stride-by-S net-

work and b) square matrix transpose network.

tation of the stored elements in such a case does not affect to the number of required

registers, N −1. Thus, it can be concluded that the minimum number of registers in

a one-dimensional permutation network equals to the maximum distance the element

is moved in the sequence during the permutation. In the stride-by-S permutations,

such an element is the (N −S)th element in the N-element input sequence.

The stride-by-S permutation of N elements with a one-dimensional network can be

described with an S×N/S matrix shown in Fig. 46(a). The matrix is initialized with

N data elements written in column-wise, and the input and output data elements of the

network are illustrated with the dashed and grey boxes, respectively. As shown, the

input data sequence is represented by the elements in column-wise while the output

sequence consists of elements taken in row-wise. In such a case, the elements in the

input sequence are in stride-by-1 order and the elements of the output sequence in

stride-by-S order. Note that the input and output sequences are continuous, i.e., in the

one-dimensional networks the sequence takes N clock cycles.

The (N −S)th element in the input sequence, which has the maximum relocation di-

stance, is illustrated with a black dot. Such element is passed straight to output when

it is available in the input port. Meanwhile, when such bypassing occurs, the num-

ber of stored data elements in the network equal to the lower bound of the number

of registers. In Fig. 46(a), the stored data is illustrated with a bolded line compo-

sing of overall (S−1)(N/S−1) data elements, which is the lower bound of register

complexity in one-dimensional stride-by-S permutation networks.

Consider a square matrix transpose made over Q ports, Q ≤ S, depicted in Fig. 46(b).

In this case, the input and output data consists of blocks of Q elements. When the

4.3. Complexity Analysis 73

I0 I1 IN/Q-1

O0

I0 IN/Q-1

O0 ON/(QR)-1

I1

I0

IN/Q-1

O0 ON/(QR)-1

IN/Q-

(QR)/N

N/R

1

R

N/R

Q-1

1

R

R

N/R
Q/RQ/R

1

a) b)

c)

Q Q

Q Q

Q

R/Q

Fig. 47. Determining the minimum number of registers for two-dimensional stride permuta-

tion networks in a) Case 1: Q > N/R, b) Case 2: (Q ≤ N/R) ∧ (Q ≥ R), and c)

Case 3: (Q ≤ N/R) ∧ (Q < R).

input block contains an element with the maximum relocation distance, the element

is passed to output and the rest Q− 1 elements in the block are stored among the

other (S− 1)2 elements, thus the lower bound for square matrix transpose networks

is (S−1)2 +Q−1 registers.

Next, the lower bound of the number of registers is given for the two-dimensional

stride-by-R networks. The obtained lower bound is the same for the two-dimensional

stride-by-S networks since they are the same or reversed versions of stride-by-R net-

works. Consider Case 1 depicted in Fig. 47(a). In this case, the element with the

maximum relocation distance is in the last Q-element input block, and is outputted

together with the elements in the first QR/N rows. Meanwhile, the other N −Q ele-

ments must be stored, which is the lower bound of the number of registers in this case.

Similar approach is used in Case 2 depicted in Fig. 47(b), where the lower bound of

the number of registers is N−N/R. In Case 3 depicted in Fig. 47(c), the lower bound

of the number of registers is (R−1)(N/R−1)+Q−1, i.e., N −R−N/R+Q.

74 4. Register-Based Stride Permutation Network

4.3.2 Register and Multiplexer Complexities of Proposed Networks

The numbers of registers, D, and multiplexers, M, in the proposed networks can be

determined from the given general block diagrams. In case of the square matrix

transpose network in Fig. 42, the numbers of registers and multiplexers are given as

follows.

D22s,2q = 22s −2s+1 +2q; M22s,2q = (s−q)2q+1 +q2q (63)

By comparing D22s,2q to the derived lower bound for the square matrix transpose,

(S−1)2 +Q−1, it can be seen that they are equal. Thus the proposed square matrix

transpose networks meet the minimum register complexity.

By assigning q = 0 in (63), the numbers of registers and multiplexers of the one-

dimensional square matrix transpose network in Fig. 40 are obtained. These are

given as follows.

DSPN22s ,2s = (2s −1)2; MSPN22s,2s = 2s (64)

Furthermore, by assigning x = q = s in (63), the numbers of registers and multiplexers

of the MTN2x network are obtained as follows.

DMTN2x = 22x −2x; MMTN2x = x2x (65)

For the one-dimensional stride-by-S permutation network in Fig. 43, the numbers of

registers and multiplexers are given as

DSPN2n ,2s = (2s −1)(2n−s −1); MSPN2n ,2s = 2s(n− s). (66)

By comparing DSPN2n,2s to the derived lower bound, (S−1)(N/S−1), it can be seen

that they are equal, and thus it can be concluded that the proposed SPN2n,2s network

has the minimum register complexity.

Finally, the complexities of two-dimensional stride-by-two permutation networks in

Fig. 44 are given as

M2n,2r,2q =

⎧⎪⎨⎪⎩
22q−nMMTN2n−q , Q > N/R
2q−rMMTN2r +2qMSPN2n−q,2r , Q ≤ N/R∧Q ≥ R

2qMSPN2r ,2r−q +MMTN2q +2qMSPN2n−q,2r , Q ≤ N/R∧Q < R
(67)

D2n,2r,2q =

⎧⎪⎨⎪⎩
22q−nDMTN2n−q , Q > N/R
2q−rDMTN2r +2qDSPN2n−q,2r , Q ≤ N/R∧Q ≥ R

2qDSPN2r ,2r−q +DMTN2q +2qDSPN2n−q,2r , Q ≤ N/R∧Q < R.

(68)

4.3. Complexity Analysis 75

Consider Case 1, Q > N/R, in (68). By rewriting D2n,2r,2q as

D2n,2r,2q = 22q−nDMTN2n−q

= 22q−n(22(n−q)−2n−q)

= 2n −2q = N −Q, Q > N/R, (69)

it can be concluded that the proposed network in Case 1 results in the derived mini-

mum number of registers, N −Q.

Consider Case 2, Q ≤ N/R∧Q ≥ R, in (68). By rewriting D2n,2r,2q as

D2n,2r,2q = 2q−rDMTN2r +2qDSPN2n−q,2r

= 2q−r(22r −2r)+2q(2r −1)(2n−q−r −1)

= 2q+r −2q +2n −2q+r −2n−r +2q

= 2n −2n−r = N −N/R, (Q ≤ N/R) ∧ (Q ≥ R), (70)

it can be seen that it equals to the derived minimum number of registers, N −N/R.

Finally, consider Case 3, Q ≤ N/R∧Q < R, in (68). In this case, the derived lower

bound of the number of registers is N −R−N/R + Q. By rewriting the D2n,2r,2q , in

(68) as

D2n,2r,2q = 2qDSPN2r ,2r−q +DMTN2q +2qDSPN2n−q,2r

= 2q(2r−q −1)(2q −1)+22q −2q +2q(2r −1)(2n−q−r −1)

= 2q+r −2r −22q +2q +22q −2q +2n −2r+q −2n−r +2q

= 2n −2r −2n−r +2q

= N −R−N/R+Q, (Q ≤ N/R) ∧ (Q < R), (71)

it can be seen that it equals to the lower bound. Thus, it can be concluded that all the

proposed networks have the minimum register complexity.

Based on the given numbers of registers D, the latency L of the proposed networks is

given as

L = �D/Q�. (72)

76 4. Register-Based Stride Permutation Network

Table 2. Comparison of permutation networks realizing 2s ×2s matrix transpose. Q: number

of ports. D: number of registers. M: number of 2-to-1 muxes. L: latency.

[59] [96] [P2] [80] Proposed [16] Proposed
Q 1 1 1 1 1 2s 2s

D 22s+1 3
2 22s −2 (2s −1)2 (2s −1)2 (2s −1)2 22s −2s 22s −2s

M 22s −1 8s−2 2s2 2(2s −1) 2s s2s s2s

L 22s +1 22s +1 (2s −1)2 (2s −1)2 (2s −1)2 2s −1 2s −1

4.4 Comparison

The proposed permutation networks are compared in the following against the state-

of-the-art networks reviewed in Chapter 3. In Table 2, the comparison of the square

matrix transpose networks is given. In case of the one-dimensional networks, Q = 1,

it can be concluded that the proposed SPN22s,2s network results in less complexity

than the other one-dimensional networks in terms of the number of multiplexers and

registers. From the proposed two-dimensional square matrix transpose networks,

MTN22s is taken as an another example. As seen, the complexity of MTN22s equals

to the network of Carlach et al. in [16]. However, the network supports only S× S

transposes over S ports while the proposed networks support the transposes over Q

ports, Q = 2q, 0 ≤ q ≤ 2s.

For other strides permutation networks, the results are shown in Table 3. In this case,

the results cannot be given in general form as in the previous square matrix transpo-

ses due to variations in the network generation procedures. Instead, the comparison

is made with fixed parameters, i.e., the sequence size, stride and number of ports

are fixed. All the compared networks reach the theoretical lower bound on register

complexity. However, the design methodologies differ which has also an effect on

the network topologies. In [6, 104], a heuristic design methodology is used for de-

termining the number of multiplexers and their placement as well as the register and

multiplexer interconnections. A drawback of networks in [6] is that they cannot be

used when the number of ports is less than the stride. In the proposed and Parhi’s

networks [80], a systematic design methodology is employed. Such design metho-

dology is applicable to automated design procedures whereas the heuristic design

methodology may be too complex. However, the topologies of the Parhi’s networks

are strictly one-dimensional.

4.5. Summary 77

Table 3. Comparison of power-of-two stride permutation networks all resulting in minimum

register complexity. NA: not applicable. D: number of registers. M: number of

2-to-1 multiplexers.

Stride permutation P16,4(4)P32,2(2)P32,4(4)P64,8(8)P16,4(1)P32,2(1)P32,4(1)P64,8(1) Design
methodology

M
[6] 12 30 40 56 NA NA NA NA heuristic

[104] 16 23 heuristic
[80] NA NA NA NA 6 30 32 14 systematic

Proposed 8 14 24 24 4 8 12 6 systematic
D 12 16 24 56 9 15 32 49

4.5 Summary

To conclude this chapter, the main results are summarized. In this chapter, a systema-

tic design methodology for register-based power-of-two stride permutation networks

was proposed. The networks were derived based on the decompositions of stride per-

mutation matrices into smaller, more efficiently implementable permutations. The

permutations were represented with Boolean matrices and the obtained decomposi-

tions were mapped directly onto hardware structures consisting of interconnection

wirings, registers, and multiplexers.

The number of registers in the networks was shown to be equal to the derived theo-

retical lower bound. In addition, the number of multiplexers was shown to be lower

than in the other state-of-the-art networks. The attractive feature of the proposed

networks is that they can be generated without heuristics. Such a property is useful

especially in an automated design generation.

78 4. Register-Based Stride Permutation Network

5. MEMORY-BASED STRIDE PERMUTATION NETWORKS

When permuted data sequences are long and considerable amount of storage is requi-

red, memory-based permutation networks are better alternatives than register-based

networks. In the memory-based approach, the data is split into several parallel me-

mories, which are accessed concurrently. When the scheme uses only one memory

location per data element, it is referred to as an in-place scheme. As a drawback,

in-place schemes tend to have more complex control generation and interconnection

networks.

The aim in this chapter is to design systematic parallel memory access schemes for

stride permutations. Since the complexity in such schemes comprises of control com-

plexity and interconnection complexity, solutions for these two problems are provi-

ded in the following. As the first proposal, a scheme resulting in simple control

generation is developed. The scheme uses an in-place data storage and supports all

power-of-two stride permutation accesses. The second proposed scheme simplifies

the interconnection complexity by minimizing the different connection patterns bet-

ween the processing elements and memory modules. Similarly to the first scheme, it

uses also an in-place data storage method and supports all power-of-two stride per-

mutations.

The outline of this chapter is the following. First the low control complexity scheme

is to be developed. Initial assumptions are given followed by the definition of the

scheme. Then, validation of the scheme and an address generator are discussed. As

the second proposal, the low interconnection complexity scheme is to be developed

followed by a design example, row address generation, and complexity evaluation.

Then both the schemes are compared against the earlier published schemes. The

chapter is closed with a brief summary.

80 5. Memory-Based Stride Permutation Networks

5.1 Low Control Complexity Scheme

Based on the review of different memory access schemes in Chapter 3, it was conclu-

ded that when an N-element data array is accessed according to a stride permutation,

there is a need to support several strides. Often the array lengths are powers-of-two

which implies that all the power-of-two strides from 1 to N/2 need to be supported.

Furthermore, the numbers of system elements, e.g., processing elements or memory

modules, are often powers-of-two.

In this section, a conflict-free parallel access scheme supporting power-of-two stride

permutations is proposed. The aim in designing of the scheme is at low control

complexity, hence the name low control complexity scheme. Since the parallel com-

putation of radix-K algorithms has been used as the main motivation throughout the

thesis, a principal block diagram of the low control complexity scheme for such com-

putation is illustrated in Fig. 48. In this case, an N-element data array is stored into

Q parallel dual-port memory modules of size N/Q, which are accessed concurrently.

The computation is managed with Q/K parallel processing elements, each with K

inputs and outputs, which require that the input data is in stride-by-S order, thus the

Q input data elements must be reordered with a switching network. The results of

computations are reordered with another switching network before their storage into

the memory modules.

The proposed method is based on linear transformations since they suit well to sys-

tems with a power-of-two number of memory modules. Although Theorem 7 sug-

gests that a conflict-free access scheme supporting multiple strides cannot be desi-

gned, the constraints may be relaxed with the following assumptions: a) the array

length is constant and power-of-two, N = 2n, b) the array is stored in n-word boun-

daries, c) the number of memory modules is a power-of-two, Q = 2q, and d) the

strides in stride permutation access are powers-of-two, S = 2s. Assumption a) im-

plies that constraints on the initial address need to be set resulting in the assumption

b). Such a constraint has already been used in several commercial DSP processors

for performing circular addressing [62]. Assumption c) implies that the address map-

ping should produce a q-bit memory module address and a (n− q)-bit row address.

Assumption d) is actually a practical assumption in digital systems.

5.1. Low Control Complexity Scheme 81

PE0

PEQ/K-1

Sw
itc

hi
ng

 N
et

w
or

k

B

B

Row Address
 Generator

0

K-1

BQ-K

BQ-1
Sw

itc
hi

ng
 N

et
w

or
k

Control

Fig. 48. Block diagram of radix-K computation kernel for low control complexity scheme. B:

dual-port memory module. PE: processing element. N = 2n, Q = 2q, K = 2k.

5.1.1 Access Scheme

To start with, a row address ra = (ran−q−1,ran−q−2, . . . ,ra0)T can be obtained accor-

ding to (29) by extracting the (n−q) most significant bits from the address a:

rai = ai+q, i = 0,1, . . . ,n−q−1 . (73)

The given assumptions define that the transformation matrices will be specific for

each array length N and the number of modules Q. However, the stride is not any-

more a parameter for the matrix. Therefore, a new notation is given for the linear

transformation matrix: TN,Q, which defines clearly the array length and number of

modules.

In the following, the linear transformation matrix TN,Q is determined based on the

other earlier reported transformation matrices reviewed in Chapter 3. The discussion

in Chapter 3 relating to the example in Fig. 20 implies that the periodicity of the

linear transformation scheme used in the example is not large enough, which is seen

by comparing the order of elements in each row; the ordering repeats after the fourth

column, i.e., the period is 16. This is due to the fact that the module address is

generated by using only four bits from the address. As a solution, the periodicity

can be increased by adding the number of bits affecting the module address. This

is already suggested by Valero et al. [115] for unmatched memory systems but the

additional bit fields are only copied, not included into the bit-wise XOR operations.

A special case of perfect shuffle access was proposed by Cohen [23], where two

elements are accessed from a two-memory system, Q = 2. In such a case, the module

82 5. Memory-Based Stride Permutation Networks

ma 10 2 3
0 1 2 3
5 4 7 6
10 11 8 9
15 14 13 12
17 16 19 18
20 21 22 23
27 26 25 24
30 31 28 29

ra

ma

34 35 32 33
39 38 37 36
40 41 42 43
45 44 47 46
51 50 49 48
54 55 52 53
57 56 59 58
60 61 62 63

a0a1a2a3a4a5

a) b)

Fig. 49. Access scheme for 64-element array on 4-module system corresponding to transfor-

mation matrix in (74): a) module address generation and b) contents of memory

modules.

address is defined by the parity of the address, thus the transformation matrix T2n,2 is

a vector of n elements of 1’s. This implies that the additional bits should be included

into the bit-wise XOR operations, i.e., each row in TN,Q should contain multiple 1’s.

Harper suggested the use of diagonals in [45] thus the obvious solution would be to

add diagonals to T . This approach is illustrated with an example where a 64-element

array is distributed over four memory modules resulting in the transformation matrix

T64,4,

T64,4 =

(
1 0 1 0 1 0
0 1 0 1 0 1

)
. (74)

This will result in the storage depicted in Fig. 49 and it is easy to see that all the

stride permutation accesses with power-of-two strides from 1 to 32 are conflict-free.

Performed simulations verified that the transformation matrix can be designed by

filling the matrix with q× q diagonals in cases where n rem q = 0; transformation

matrices Ti2q,2q can be obtained by concatenating i identity matrices Iq.

The next question is how the matrix is formed in other cases, i.e., when n rem q �= 0.

For this purpose, additional 1’s need to be included into TN,Q. Harper [45] added

such 1’s as diagonals or antidiagonals off from the main diagonals. Sohi proposed

in [101] an approach where the main diagonals may contain 0’s thus the additional

1’s are spread over the matrix for fulfilling the full rank requirement. As a drawback

of such a method, the rows may contain large number of ones, thus the number of

5.1. Low Control Complexity Scheme 83

bits needed in XOR-operations is increased. The effect is even worse in the scheme

proposed by Norton and Melton [78] where the rows may contain different number of

1’s; one row is full of 1’s, another contains only a single 1. From the implementation

point of view, this is extremely uncomfortable when several array lengths need to be

supported since the transformation matrix will be different for each array length. In

such a case, the number of bits XOR’ed together varies from 1 to n.

The previous discussion implies that the additional bits should be concentrated to the

right part of TN,Q, i.e., to TL in the original matrix T in (30). Such an arrangement

eases the configuration of the address generation when the array length changes. If

the 1’s are in matrix TH , the address bits ai, which need to be included into XOR

operations may change requiring multiplexing. Now, if all the configurations are

performed for the least significant bits of a, these are always in the same position

independent on the array length.

Therefore, in cases where n rem q �= 0, the transformation matrix is filled with dia-

gonals starting from the right lower corner and, if there is not enough space available

in the left of the matrix, a partial diagonal is placed. The remaining partial diagonal

wraps back to the right and the filling is started from the rightmost column of TN,Q in

a row, which is above the row where the last 1 in the leftmost column was placed. If

the diagonal will hit the top row, it will be continued from the bottom row in the pre-

ceding column. All in all, (n+q−gcd(q,< n >q)) ones will be used in T2n,2q where

gcd(·) is the greatest common denominator and < · >x is the modulo x. The entire

access scheme can be formalized as follows:

mai =
ln,q(i)⊕
k=0

a< jq+i>n , i = 0,1, . . . ,q−1 ;

ln,q(i) = �(n+q−gcd(q,< n >q)− i−1)/q� (75)

where ⊕ denotes bit-wise XOR operation. The row address is obtained according

to (73).

This approach provides a solution to the example shown in Fig. 20 and results in the

transformation matrix T32,4,

T32,4 =

(
0 1 0 1 1
1 0 1 0 1

)
. (76)

The contents of the memory modules stored according to T32,4 is illustrated in Fig. 50.

84 5. Memory-Based Stride Permutation Networks

ma 10 2 3
0 3 2 1
7 4 5 6

10 9 8 11
13 14 15 12
19 16 17 18
20 23 22 21
25 26 27 24
30 29 28 31

ra

ma

a0a1a2a3a4

b)a)

Fig. 50. Access scheme for 32-element array on 4-module system corresponding to transfor-

mation matrix in (76): a) module address generation and b) contents of memory

modules.

It can be seen that the all the following stride permutation accesses are supported;

P32,1 : ([0,1,2,3], [4,5,6,7], [8,9,10,11], [12,13,14,15],

[16,17,18,19], [20,21,22,23], [24,25,26,27], [28,29,30,31]);

P32,2 : ([0,2,4,6], [8,10,12,14], [16,18,20,22], [24,26,28,30],

[1,3,5,7], [9,11,13,15], [17,19,21,23], [25,27,29,31]);

P32,4 : ([0,4,8,12], [16,20,24,28], [1,5,9,13],

[17,21,25,29], [2,6,10,14], [18,22,26,30], [3,7,11,15], [19,23,27,31]);

P32,8 : ([0,8,16,24], [1,9,17,25], [2,10,18,26],

[3,11,19,27], [4,12,20,28], [5,13,21,29], [6,14,22,30], [7,15,23,31]);

P32,16 : ([0,16,1,17], [2,18,3,19], [4,20,5,21],

[6,22,7,23], [8,24,9,25], [10,26,11,27], [12,28,13,29], [14,30,15,31]),

i.e., all the power-of-two strides from 1 to N/2 are conflict-free. Also bit reversal

access is supported, e.g., ([0,16,8,24], [4,20,12,28], [2,18,10,26], [6,22,14,30],
[1,17,9,25], [5,21,13,29], [3,19,11,27], [7,23,15,31]).

The presented access scheme has been verified with simulations by generating sto-

rage organizations and verifying that each access is conflict-free. For a given array

length N = 2n, the number of memory modules Q was varied to cover all the possible

numbers of powers-of-two, i.e., Q = 20,21, . . . ,2n−1. For each parameter pair (N,Q),

5.1. Low Control Complexity Scheme 85

all the stride permutation accesses were performed with strides covering all the pos-

sible powers-of-two: S = 20,21, . . . ,2n−1 and each parallel access was verified to be

conflict-free. Similarly, the bit reversal accesses were verified to be conflict-free.

The power-of-two array lengths were iterated from 21 to 220. Since no conflicts were

found, it can be stated that the presented access scheme provides conflict-free stride

permutation and bit reversal accesses in practical cases. Thus, the scheme supports

two main access schemes present in FFT computations: stride permutation and bit

reversal.

5.1.2 Row Address Generation

Before going into implementations, the effect of varying N on the structure of TN,Q

is studied. Since the number of modules is determined during the design time, Q is a

constant. As an example, module transformation matrices for 16 and 64-module sys-

tems are illustrated in Fig. 51. As the first remark, the matrices contain two principal

diagonal structures: concatenated diagonals from the bottom-right corner to left and

additional off-diagonals. The concatenated diagonals imply that the address a should

be divided into q-bit fields and a bit-wise XOR is performed between these fields.

Since the concatenated diagonals in the matrix for a shorter array are included in the

matrix for longer arrays, several array lengths can be supported easily; shorter arrays

can be supported by feeding 0’s to the most significant address bits.

The second remark is that the off-diagonals affect at most the q− 1 least significant

bits of the address a. In fact, (75) dictates that the number of 1’s in off-diagonals

is q− gcd(q,< n >q). The structure of off-diagonals depends on the relation bet-

ween n and q but, since q is constant, the structure depends on the array length only.

However, there are only q different structures; the off-diagonal structure has peri-

odic behavior when the array length is increasing. In Fig. 51, one complete period

is shown and T8192,64 would have the same off-diagonal structure as T128,64. The

structure of off-diagonals implies that several array lengths can be supported if a pre-

determined control word configures additional hardware to perform the functionality

of the off-diagonals. Such a configuration is actually simple by noting that the form

of off-diagonals in different array lengths indicates rotation of the least significant

bits in a. The number of bits rotated depends on the relation between n and q.

86 5. Memory-Based Stride Permutation Networks

b)a)

100000100000
010000010000
001000001000
000100000100
000010000010
000001000001

1000100010
0100010001
1010001000
0101000100

11000010000
01100001000
00110000100
00011000010
00001000001
10000100000

100010001
110001000
011000100
001100010

1010001000
0101000100
0010000010
0001000001
1000100000
0100010000

10001000
01000100
00100010
00010001

100000100
010000010
001000001
100100000
010010000
001001000

1100100
0110010
0010001
1001000

10000010
01000001
10100000
01010000
00101000
00010100

100010
010001
101000
010100

1000001
1100000
0110000
0011000
0001100
0000110

64,409616,1024

64,204816,512

64,102416,256

64,51216,128

64,25616,64

64,128

==

==

==

==

==

=

TT

TT

TT

TT

TT

T
10001
11000
01100
00110

16,32 =T

Fig. 51. Transformation matrices for module address generation in: a) 16 and b) 64-module

systems.

According to the previous remarks, the computation of the module address ma is

given as follows. First, the address a is divided into q-bit fields, Fi, starting from the

least significant bit of a, i.e., Fi = (aiq+q−1, aiq+q−2, . . . , aiq+1,aiq)T . If e =< n >q >

0, the e most significant bits of a exceeding the q-bit block border are extracted as a

bit vector L, i.e.,

L = (an−1,an−2, . . . ,an−e)
T . (77)

Next, a q-bit field X = (xq−1,xq−2, . . . ,x0) is formed by extracting the (q−gcd(q,e))
least significant bits of the address a and placing zeros to the most significant bits;

X =
(
0, . . . ,0,aq−gcd(q,e)−1, . . . ,a1,a0

)T
. (78)

The X is rotated g =< n− q >q bits left to obtain a bit vector O = (oq−1, . . . ,o0)
T ,

5.2. Low Interconnection Complexity Scheme 87

i.e.,

O = rot<n−q>q (X) (79)

where rotg(·) denotes g-bit left rotation (circular shift) of the given bit vector, i.e.,

rotg
(
(ak−1,ak−2, . . . ,a0)T)

=

(ak−g−1,ak−g−2, . . . ,a0,ak−1, . . . ,ak−g+1,ak−g)
T . (80)

Finally the module address ma is obtained by performing bit-wise XOR operation

between the vectors Fi, X , and L:

mai =

⎧⎨⎩ oi ⊕
(⊕�n/q�−1

j=0 a jq+i

)
, i ≥ e

li ⊕oi ⊕
(⊕�n/q�−1

j=0 a jq+i

)
, i < e

. (81)

A block diagram of the module address generation according to the previous inter-

pretation is illustrated in Fig. 52. This block diagram contains a rotation unit shown

in Fig. 53, which computes the vector O. The unit obtains q− 1 least significant

bits of a as an input and the gcd(q,e)− 1 most significant bits of input are zeroed,

thus the q−gcd(q,e) least significant bits are passed through, to form a q-bit vector

X = (0, . . . ,0,aq−gcd(q,e)−1,aq−gcd(q,e)−2, . . . ,a1, a0)T . These bits can be selected with

the aid of a bit vector f = (fq−2, . . . , f1, f0))T , where the q− gcd(q,e) least signifi-

cant bits are 1’s and the gcd(q,e)− 1 most significant bits are 0’s. A bit-wise AND

operation is performed with the input vector and the obtained vector X is then rotated

g bits to the left, the q-bit vector O is obtained.

5.2 Low Interconnection Complexity Scheme

In this section, a scheme is developed, which reduces interconnection complexity

between processing elements and parallel memory modules. The previous scheme

required two switching networks, which performed several connection patterns for

data permutations. In order to simplify these networks, the number of connection

patterns should be minimized, which is the approach exploited in this scheme. Ho-

wever, it may require more complex address generation than in the previous scheme.

A principal block diagram of the structure the proposed scheme is aimed at is illus-

trated in Fig. 54. As seen the number of switching networks has been reduced to

one.

88 5. Memory-Based Stride Permutation Networks

aq-2 a1...aq-1

ma0

maq-1

Rctrl

ajq

...

...an-1

maq-2

...

...

aq-2 a0

oq-1 o0oq-2
Rotation

q bits

a0ajq+q-1 ajq+1......

q bitse bits

a1

o1

an-e

ma1

an-e+1

FSctrl

...

mae-1

F0F ºn/qß-1L

...

...

...

Fig. 52. Block diagram of module address generation in low control complexity scheme.

Rctrl: rotation control. FSctrl: field selection control.

aq-2 a0a1aq-3

...

field selection control
fq-2

f0

fq-3

f1

X

oq-2 o0o1oq-1 oq-3

Rotation to LEFT
...

rotation control
xq-1 xq-2 xq-3 x1 x0g

0

Fig. 53. Block diagram of rotation unit in module address generation.

5.2. Low Interconnection Complexity Scheme 89

PE0

PEQ/K-1

 S
w

itc
hi

ng
N

et
w

or
k

(S
N

)

B

B

Row Address
 Generator

0

K-1

BQ-K

BQ-1

Control

Fig. 54. Block diagram of radix-K computation kernel for low interconnection complexity

scheme. PE: processing element. B: dual-port memory module. Q: number of

memory modules. Q = 2q. K = 2k.

By investigating a signal flow graph whose computation is managed with radix-2k

processing elements, it can be seen that each such element has 2k input and output

operands. By allowing the operands to deviate from the initial order, it may be pos-

sible to simplify the overall permutations when accessing them in memory modules.

Similarly, the order of computation can be changed, i.e., it is not necessary to compute

the computational nodes from top to bottom order in the signal flow graph. Exploi-

ting these two remarks cause that the permutation between the computational stages

will be altered from the original stride permutation. However, if such changes reduce

the interconnection complexity with little additional costs in row address generation,

it may be attractive especially when the parallelism of computation is large.

5.2.1 Operation Scheduling

Consider a radix-2k, N-element signal flow graph, where all the operations in a com-

putation stage are computed at a time, i.e., Q = N. In such a case, the data ele-

ments are read in F = (F0,F1, . . . ,FN−1)T order where Fa = dt−1
f (a), and dt

i denotes the

ith data element at stage t. After computations, the resulting data elements are in

G = (G0,G1, . . . ,GN−1)T order where Ga = dt
g(a). The mapping functions used for

definition of F and G are f (a) and g(a), respectively, and they are defined as

f (a) = < a2n−k >2n +�a2n−k/2n�; (82)

g(a) = a, (83)

for a = 0,1, . . . ,2n −1.

90 5. Memory-Based Stride Permutation Networks

0
1
2
3
4
5
6
7

9
8

12
11
10

13
14
15
16
17
18
19

28
27
26

29
30

22
21
20

23
24
25

31

0
16
1

17
18
2

19
3

21
5

20
4

22
6

23
7

8
24
9

25

10
26

27
11

29
13

12
28
31
15
30
14

0
1
2
3
5
4
7
6

11
10

9
8

13
12

15
14

16
17
18
19

20
21

23
22

27
26

24
25
31
30
29
28

PE0

F G F' G'
0
16
1
17
2
18
3
19

20
4

6
21
5

22
7
23
8
24
9
25

14
29
13

30
15

11
26
10

27
12
28

31

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

0
2
1
3
5
7
4
6

10
8

13
11
9

15
12
14
18
16
19
17

31
25
27

29
30

22
21
23

20
26
24

28

SNF' G' H
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0
16
1

17
18
2

19
3

21
5

20
4

22
6

23
7

8
24
9

25

10
26

27
11

29
13

12
28
31
15
30
14

0
1
2
3
5
4
7
6

11
10

9
8

13
12

15
14

16
17
18
19

20
21

23
22

27
26

24
25
31
30
29
28

0
1
2
3
4
5
6
7

9
8

12
11
10

13
14
15
16
17
18
19

28
27
26

29
30

22
21
20

23
24
25

31

0
1
2
3
4
5
6
7

9
8

12
11
10

13
14
15
16
17
18
19

28
27
26

29
30

22
21
20

23
24
25

31

PE1

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE0

PE1

PE0

PE1

PE0

PE1

PE0

PE1

PE0

PE1

PE0

PE1

PE0

PE1

PE0

PE1

a) b) c) d)

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15
P32,16

Fig. 55. Operation scheduling in case n = 5, k = 1, and q = 2: a) initial computation stage, b)

proposed changes, c) after rescheduling, d) mapping onto two processing elements.

F: data element read order. G: data element write order. H: data element storage

order. PE: processing element. B: memory module. SN: switching network.

In other words, the data elements are read in stride-by-2(n−k) order while the resulting

data appear in stride-by-1 order [1,13]. An example of the computation stage, where

data elements are read in stride-by-16 order, is shown in Fig. 55. In such a case, the

orders of data element read and write are given with F and G, respectively.

By reducing the parallelism of computation (Q < N), the complexity of interconnec-

tions increases. In order to simplify these interconnections, the following approach

is proposed. First, the PE inputs are directly connected to Q memory modules, which

implies that the switching network between the memory modules and PEs inputs is

discarded. In addition, F and G are reordered by redefining the mapping functions

f (a) and g(a) through linear transformations, hence a is expressed in binary notation

as a = (an−1, . . . ,a1,a0)T where an−1 refers to the most significant bit. The trans-

5.2. Low Interconnection Complexity Scheme 91

formation is based on Boolean matrices X , Y , and Z and arithmetic operations are

defined over the Galois field GF(2) where multiplication and addition correspond to

bitwise AND and XOR operations, respectively. The new mapping functions are:

f ′(a) = Xa, (84)

g′(a) = Ya. (85)

As a result, the input data elements are read in F ′ order, F ′
a = dt−1

f ′(a), while the resul-

ting data elements appear in G′ order, G′
a = dt

g′(a). Furthermore, the resulting data

elements are ordered into H = (H0,H1, . . . ,HN−1)T where Hh(a) = dt
a,

h(a) = Za. (86)

From H, the data elements are stored in blocks of Q into the memory modules.

In Fig. 55, the operation rescheduling is shown for 32-element array computed with

two radix-2 PEs. Initially, the input data is read in stride-by-16 order while the results

are given in stride-by-1 order, as depicted in Fig. 55(a). These orders are now changed

by the operation rescheduling. The arrows in Fig. 55(b) indicate the swapping of data

elements and the framed PEs represent the change in the PEs’ order from the initial

top to bottom order. The result is depicted in Fig. 55(c), which can be mapped onto

two PEs, as shown in Fig. 55(d). As a benefit of the rescheduling, the number of

different connection patterns is reduced to two, which can be realized with a single

switching network requiring only four 2-to-1 multiplexers in this case.

The construction of the transformation matrices X , Y , and Z is described in the follo-

wing where [X]i, j represents an entry at row i and column j, and [X]0,0 is in the lower

right corner of the matrix. A matrix with i rows and j columns and full of zeros or

ones is denoted as 0i× j or 1i× j, respectively. An identity matrix of order i is denoted

as Ii. Let us first define a q×n matrix T as

T = (U,11×�n/q� ⊗ Iq), (87)

where U is a q× < n >q matrix defined as

[U]i, j =

{
1, (j =< i >n−q)∧ (1 < n/q < 2)
0, otherwise

. (88)

Eg., if n = 5, and q = 2 the matrix T will be

T =

(
0 1 0 1 0
0 0 1 0 1

)
.

92 5. Memory-Based Stride Permutation Networks

Next, the transformation matrix Y is defined with the aid of T as

Y =

(
In−q 0n−q×q

T

)
, (89)

which, in case of n = 5, and q = 2, is

Y =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎠ .

The transformation matrix X is derived from Y as

[X]i, j = [Y]<i−k>n, j, (90)

which, in case n = 5, q = 2, and k = 1, becomes

X =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎠ .

For the definition of the transformation matrix Z, the matrix T is modified as

[T ′]i, j = [T]i,< j−k>n , (91)

and is then used as a part of Z as

Z =

(
In−q 0n−q×q

T ′

)
. (92)

Hence, the transformation matrix Z in case of n = 5, q = 2, and k = 1 is

Z =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ .

The generation of the transformation matrices X , Y , and Z can also be given as the

following procedure:

5.2. Low Interconnection Complexity Scheme 93

1. Initialize X , Y , and Z as identity matrices of order n.

2. Define matrix T according to (87).

3. Replace the lowest q rows in X and Y with T .

4. Shift the rows in X cyclically by k downwards.

5. Shift the columns in T cyclically by k rightwards.

6. Replace the lowest q rows in Z with T .

5.2.2 Row Address Generation

The operation scheduling defines the data allocation to memory modules and, fur-

thermore, the order the data appear at the PEs’ input/output ports. As the input ports

are directly connected to the memory modules, the row address generator is respon-

sible for providing the addresses for Q memory modules such that the processing

elements receive the data elements in correct order. In case of a full column struc-

ture, i.e., Q = N, no storage is needed and thus no row address needs to be computed.

Let A(t,i, j) be the row address for module i at jth data element access at computation

stage t.

The row addresses for Q memory modules are constructed in the following where

x >> y is a cyclic shift of x by y bits towards least significant bit (LSB), and x⊕ y

represents a bitwise XOR of x and y:

1. Compute the base address

C(t, j) = j >> kt (93)

where j = 0,1, . . . ,2n−q −1.

2. Define (n−q)× (n−q) matrix W as

[W]i, j =

⎧⎪⎨⎪⎩
1, i = j∨ ((n−q)/q ≥ 2∧ i < k∧

j < �n/q�−1∧ < j >q= 1)
0, otherwise

(94)

3. Compute a correction coefficient

E(t,i) =

{
i, t = 0
(WE(t−1,i)) >> k, otherwise

(95)

where E(t−1,i) = (E(t−1,i)
n−q−1, E(t−1,i)

n−q−2, . . ., E(t−1,i)
0)T ; i = 0,1, . . . ,2k −1.

94 5. Memory-Based Stride Permutation Networks

4. Compute a correction coefficient

D(t,i) =

⎧⎪⎨⎪⎩
0, t ∨ i = 0
(D̂(t−1,i) >> k)⊕ î, k > n−q
E(t,i)⊕D(t−1,i), otherwise

(96)

where i = 0,1, . . ., 2k −1; î=(ik−1, ik−2, . . ., ik−<n>q) and

D̂(t−1,i) = (D(t−1,i)
n−q−1, D(t−1,i)

n−q−2, . . ., D(t−1,i)
n−q−<n>q

).

5. Compute a row address for module i at access j at stage t as A(t,i,2n−q−1)),

A(t,i, j) = D(t,<i>K)⊕C(t, j) (97)

where i = 0,1, . . . ,2q −1; j = 0,1, . . ., 2n−q −1.

The row address A(t,i, j) is computed by taking a bitwise XOR between the correction

coefficient D(t,<i>2k) and the base address C(t, j). Because only 2k coefficients are used

in the XOR operation, 2k different row addresses are resulted for all the 2q modules

at each access instant j.

5.2.3 Design Example

To illustrate the proposed scheme, a design case is considered where a radix-2, 32-

element signal flow graph is computed with two PEs, as illustrated in Fig. 55. In such

a case, the design parameters are n = 5, q = 2, and k = 1. The input and output data

is in the order specified by F ′ and G′, respectively, as depicted in Fig. 55(c). The

output data is further reordered with a switching network in the order given by H.

The corresponding block diagram of the kernel is depicted in Fig. 56.

Computation of the row address begins with generation of the base address C(t, j). As

the base address is computed by cyclically shifting the (n−q)-bit access index j, the

period of C(t, j) is lcm(n−q,k)/k where lcm(x,y) denotes the least common multiple

of x and y. In the given example case, the period is lcm(3,1)/1 = 3 resulting in the

base address C(t, j) as follows:

C0 = (0,1,2,3,4,5,6,7), t = 0
C1 = (0,4,1,5,2,6,3,7), t = 1
C2 = (0,2,4,6,1,3,5,7), t = 2
C3 = (0,1,2,3,4,5,6,7), t = 3

...
...

5.2. Low Interconnection Complexity Scheme 95

B0

B1

B2

B3

A(t,0,j)A

A A

(t,1,j)

(t,3,j) (t,2,j)

SN

PE0

PE1

Fig. 56. Block diagram of radix-2 computation kernel in example case when n = 5, k = 1, q =
2. PE: processing element. SN: switching network. B: dual-port memory module.

A(t,i, j): row address.

Next, the correction coefficient E(t,i) is defined according to (95). As a result, E(t,0)

equals zero irrespective of t and E(t,1) becomes

E(t,1) = 1,4,2,1,4,2,1, . . .

where t = 0,1,2,3,4,5,6,

In step 4 of the row address generation procedure, the correction coefficient D(t,i) is

defined. In this case, D(t,0) is always zero and D(t,1) is a bitwise XOR between E(t,1)

and D(t−1,1) resulting in

D(t,1) = 0,4,6,7,3,1,0,4,6, . . .

where t = 0,1,2,3,4,5,6,7,8, . . .

Finally, in step 5, the row address A(t,i, j) is computed and two different address se-

quences are obtained:

A(0,2i) = (0,1,2,3,4,5,6,7), t = 0
A(1,2i) = (0,4,1,5,2,6,3,7), t = 1
A(2,2i) = (0,2,4,6,1,3,5,7), t = 2
A(3,2i) = (0,1,2,3,4,5,6,7), t = 3
A(4,2i) = (0,4,1,5,2,6,3,7), t = 4
A(5,2i) = (0,2,4,6,1,3,5,7), t = 5

...
...

...

96 5. Memory-Based Stride Permutation Networks

1385 31262318

t = 0

B0
B1
B2
B3

0
15107 292421162
1294 302722191
14116 282520173

0
7
1
6

8
15
9

14

18
21
19
20

26
29
27
28

5
2
4
3

13
10
12
11

23
16
22
17

31
24
30
25

0
15
1

14

18
29
19
28

5
10
4

11

23
24
22
25

8
7
9
6

26
21
27
20

13
2

12
3

31
16
30
17

0
29
1
28

5
24
4
25

8
21
9
20

13
16
12
17

18
15
19
14

23
10
22
11

26
7

27
6

31
2

30
3

0
24
1
25

8
16
9

17

18
10
19
11

26
2
27
3

5
29
4
28

13
21
12
20

23
15
22
14

31
7

30
6

0
16
1

17

18
2

19
3

5
21
4
20

23
7
22
6

8
24
9
25

26
10
27
11

13
29
12
28

31
15
30
14

row index
321 76540

t = 1

B0
B1
B2
B3

B0
B1
B2
B3

B0
B1
B2
B3

B0
B1
B2
B3

B0
B1
B2
B3

t = 2 t = 3

t = 4 t = 5

321 76540

321 76540 321 76540

321 76540321 76540

Fig. 57. Data evolution in four memory modules in the example case with design parameters

n = 5, k = 1, q = 2.

A(0,2i+1) = (0,1,2,3,4,5,6,7), t = 0
A(1,2i+1) = (4,0,5,1,6,2,7,3), t = 1
A(2,2i+1) = (6,4,2,0,7,5,3,1), t = 2
A(3,2i+1) = (7,6,5,4,3,2,1,0), t = 3
A(4,2i+1) = (3,7,2,6,1,5,0,2), t = 4
A(5,2i+1) = (1,3,5,7,0,2,4,6), t = 5

...
...

...

where i ∈ {0,1}. The evolution of the data elements in four memory modules based

on the presented row address generation is depicted in Fig. 57. When t = 0, only

write operations are made corresponding to the initialization of memory modules. In

Fig. 57, the contents of the modules are shown after the write operations. When t = 6,

the memory contents return back to the initial order and thus the sequence starts over.

5.2.4 Implementation Complexity

Based on the given row address generation procedure, implementation issues are dis-

cussed in the following. Complexity figures of the scheme are given in terms of the

number of multiplexers, registers, and logic gates. In addition, flexibility to support

various data array sizes is discussed. Finally, complexity of the switching network is

reviewed in terms of different connection patterns.

5.2. Low Interconnection Complexity Scheme 97

D
(t,0)

D
(t,1)

A

D(t,K-1)

C

C
(t,j)

n-q

j0

j>>t

j

C0C(t,j)
n-q-1

(t,j)

n-q-1 D0D(t-1,i) (t-1,i)E0E(t,i) (t,i)

D(t,i) D0
(t,i)

n-q-1 n-q-1

n-q-1

n-q
D

(t,i)

D

n-q n-q

E0
(t-1,i)E1

(t-1,i)Evq
(t-1,i)Evq+1

(t-1,i)En-q-1
(t-1,i) Ek-1

(t-1,i)Evq+k-1
(t-1,i) Ek

(t-1,i)

>>

E0
(t,i)E1

(t,i)En-q-1
(t,i)

k

n-q
E

(t,i)

E(t,0)

n-q

E(t,1)

n-q

E(t,K-1)

n-q

n-q

A0
(t,0,j)A(t,0,j)A0

(t,1,j)
A(t,1,j)

C0
(t,j)C (t,j)D(t,1) D0

(t,1)

n-q-1n-q-1

n-q-1n-q-1

A0
(t,K-1,j)A(t,K-1,j)

D D0

n-q-1

n-q-1
(t,K-1)(t,K-1)

n-q

A
(t,0+vK,i)

n-q

A
(t,1+vK,i)

n-q

A
(t,K-1+vK,i)

E

n-q

A(t,0,j)
A(t,Q-1,j)

n-q

A(t,1,j)

n-q

Fig. 58. Row address generator. i = {0, . . . ,2k − 1}. x >> y: cyclic shift of x towards the

LSB by y bits. K = 2k. vK < Q, v = 0,1,2,3,

To begin with, the functionality of row address generator can be divided into four

operational parts based on the generated coefficient, i.e., C, D, E, and A generators,

as depicted in Fig. 58. Next, the realizations of such generators are discussed in

detail.

The (n−q)-bit base address C(t, j) is produced by the C generator at each data element

access j with cyclic shifting. Index j is cyclically shifted right by kt bits, which in

general requires multiplexers due to variable length shifting. While k is constant, t is

not, hence the cyclic shift is variable.

In the E generator, 2k (n− q)-bit coefficients are computed. In Fig. 58, a general

illustration of the coefficient generation is shown where only XOR ports and registers

are needed. The operation is described as follows: the (n− q)-bit E(t−1,i) is divided

into �(n−q)/q� fields starting from the LSB side. From each field, k LSBs are taken

and the bits from the same position of the fields are XOR’ed together resulting into

k bits that form the LSBs of the intermediate result. The (n− q− 1− k) MSBs are

taken as such from E(t−1,i) into the cyclic shift which is then conveniently made with

hardwirings of bits as it is constant. Hence, the only hardware requirements come

from the storage of 2k (n−q)-bit coefficients, and 2k �(n−q)/q�-input XOR ports.

98 5. Memory-Based Stride Permutation Networks

Table 4. Complexity of row address generator given in number of 2-to-1 multiplexers, 1-bit

registers, and 2-input logic ports.

Multiplexers Registers XOR AND

C
{

((n−q)/k−1)(n−q) if < n−q >k= 0
(n−q−1)(n−q) otherwise

n−q n−q n−q

D none (n−q)(2k −1) (n−q)(2k −1) none
E none (n−q)2k (�(n−q)/q�−1)2k none
A none none (n−q)(2k −1) none

In the D generator, a bitwise XOR of D(t−1,i) and E(t,i) is made requiring XOR ports

and registers for storing the D(t−1,i) coefficients, i ∈ {0,1, . . . ,K −1}. Because D(t,0)

is zero with all t, only 2k − 1 coefficients need to be XOR’ed. Thus the number of

2-input XOR ports is (n− q)(2k − 1) where n− q is the coefficient size in bits. A

special case occurs when k > n−q. In such a case, the < n >q MSBs of D(t−1,i) are

cyclically shifted right by k bits, which is simply a hardwiring of bits, and the result

is XOR’ed with < n >q MSBs of index i to produce D(t,i).

In the A generator, the row address A(t,i, j) is computed with K − 1 bitwise XOR

operations between D(t,<i>K) and C(t, j), where only (n− q)(2k − 1) XOR ports are

required, i ∈ {0,1, . . . ,Q−1}. The < ·>K operator in D(t,<i>K) causes that the result

of a bitwise XOR operation is used as row address for Q/K different memory modu-

les. As an example, the D(t,0) is always zero, thus A(t,0+vK, j) is a straight copy of the

base address C(t, j),vK < Q, v = 0,1,2,3,

The complexity figures of the proposed row address generator are shown in Table 4,

where the figures are given in terms of 1-bit 2-to-1 multiplexers, 2-input logic gates,

and 1-bit registers. It is worth noting that these complexity figures are given with base

2 logarithms of the actual design parameters, i.e., n = log2 N, q = log2 Q, k = log2 K.

In certain cases, it may be useful to support different array lengths N. In such a

case, the PEs remain unchanged but the data element connectivity changes, and thus,

some modifications to the presented row address generator have to be done. In the

generation of C(t, j), the sequence length of binary up counter has to be configurable.

In addition, the number bits in the cyclic shift varies, as j changes. This will require

more multiplexers, in general. In the generation of E(t,i), the number of bits taken into

XOR operations has to be controlled, i.e., the unnecessary MSBs must be masked.

Furthermore, the cyclic shift becomes more complex since the number of bits varies

5.2. Low Interconnection Complexity Scheme 99

requiring multiplexers for control. In the generation of D(t,i), there is also a cyclic

shift in case k > (n− q), which has to be controlled with multiplexers if n changes.

As a conclusion, the presented row address generator can be modified with minor

supplementary logic to support variable size n.

In order to estimate the complexity of the switching network, the number of required

connection patterns, CP, is given as

CP =

⎧⎪⎨⎪⎩
1, (< n >q= 0) ∨ ((n/q < 2) ∧ (< q >n−q= 0))
2k, (n/q > 2) ∧ (< n >q �= 0)
2min(β�α/β�,k), otherwise

(98)

where �·� is the ceiling function, min(·,·) and max(·,·) return the minimum and maxi-

mum value, respectively, and α and β are defined as

α = max(< n >q − < q >n−q,< n >n−q)

β = min(< n >q − < q >n−q,< n >n−q).

The upper bound for CP is 2k, which requires 2q(2k − 1) multiplexers of type 2-

to-1. On the contrary, multiplexers are totally avoided when CP = 1 and thus the

switching network is simply a hardwired network. When < n >q= 0, an interesting

case is found where the connection pattern is a stride-by-2(q−k) permutation. This

can be exploited when several array lengths are supported; k and q are constants, and

the same hardwired network can be used for each n, when < n >q= 0. For example,

consider the case where k = 1, q = 1 and n is varied. It is found that for each even n,

the connection pattern is a stride-by-2 permutation.

Configuration of the proposed scheme for variable array lengths and radices is illus-

trated with an example. Consider a 16-port kernel, Q = 16, where the array lengths

are N = {16,64,256} and radices K = {2,4}. The required connection patterns in

this case are shown in Fig. 59(a-d) and the corresponding switching networks in

Fig. 59(e-g). The switching network in Fig. 59(e) supports radix-2 algorithms of

lengths N = {16,64,256}. Correspondingly, the switching network in Fig. 59(f)

can be used for radix-4 algorithms of array lengths N = {16,64,256}. The com-

bined switching network in Fig. 59(g) realizes all the given connection patterns in

Fig. 59(a-d).

100 5. Memory-Based Stride Permutation Networks

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

PE0

PE1

PE2

PE3

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15

PE0

PE1

PE2

PE3

S

S

S

S

S

S

S

S

M
M
M
M
M
M
M
M
M
M
M
M
M
M

S

S

S

S

S

S

S

S

S

S

a) b) c) d)

e) f) g)

Fig. 59. Connection patterns and corresponding switching networks for 16-port kernel: a)

N = {16,256}, K = 2, b) N = 64, K = 2, c) N = {16,256}, K = 4, d) N = 64,

K = 4, e) switching network for (a,b), f) switching network for (c,d), g) switching

network for (a,b,c,d). PE: processing element. B: dual-port memory module. S:

switch. M: multiplexer.

5.3 Comparison

In the following the proposed two schemes, the low control complexity and low in-

terconnection complexity schemes, are compared against the other reported schemes.

An overview of different memory-based scalable structures of radix-2k FFT and Vi-

terbi algorithms is given followed by a brief comparison.

In general, the overall complexity of a storage scheme depends on the size and type

of memory, the complexities of interconnections, and control generation. In many

schemes, dual-port memories are used because of the simultaneous read and write

operations. However, the number of parallel memories varies as several data elements

may occupy one memory word. In addition, the interconnections differ as hardwired

5.3. Comparison 101

Table 5. Overview of memory-based scalable structures for radix-2k algorithms.
Scalability Interconnections In-Place Modules RA PEs Cycles Limitations

[27, 28] 2q,k ≤ q ≤ n− k 2×2 switches yes 2q yes 2q 2k −
[96, 97] 2q,< 2n >2q= 0, 2×2 switches / no 2q+1 no 2q 2k multiport

q < n hardwired memories
[112] 2q,1 ≤ q ≤ n registers and muxes yes single yes 2q−1 1 radix-2
[58] 2q,1 ≤ q ≤ n 2×2 switches yes 2q no 2q−1 1 radix-2
[51] 2q,k ≤ q ≤ n registers and muxes yes 2q−k yes 2q−k 1 −
[94] 2q,0 ≤ q ≤ n muxes yes 2q yes 2q−k 1 −
[121] 2q,< n >q= 0 hardwired yes 2q yes 2q−k 1 −

Proposed 1 2q,k ≤ q ≤ n muxes yes 2q yes 2q−k 1 −
Proposed 2 2q,k ≤ q ≤ n muxes/hardwired yes 2q yes 2q−k 1 −

networks are supported by some schemes while multistage interconnection networks

are required in other schemes.

An overview of memory-based scalable structures for radix-2k algorithms is shown

in Table 5. The low control complexity scheme is referred to as Proposed 1 and the

low interconnection complexity scheme as Proposed 2. In all the given structures,

memories are used for data storage and their access is made conflict-free.

In the given overview, the scalability of a structure is reported, which determines the

degree of parallelism it supports, i.e., the number of parallel computed operations.

With Interconnections, the type of the interconnection network is described. If no

switching elements or registers are needed, the network is referred to as hardwired.

By using only the minimum amount of memory for the data storage, the scheme is

remarked as in-place. The term Modules refers to the number of individual memory

modules and the term RA to the definition of row address generation. The number

of processing elements is remarked in the PEs column and the number of clock cy-

cles needed for a computational node is given in the Cycles column. If the scheme

has constraints, which do not appear in all the other schemes, they are given in the

Limitations column.

The main advantage of the proposed low control complexity scheme is the simple

address generator. In the address generation, each individual XOR is performed on

at most �n/q�+2 bit lines while in other schemes, e.g., in [78], some XORs require

all the n address bits, which complicates implementations when several array lengths

need to be supported. The support for different array lengths in the implementation

requires only a single predetermined control word defining the bit selection and rota-

102 5. Memory-Based Stride Permutation Networks

Table 6. Comparison of interconnection networks in radix-2k structures. D: number of regis-

ters. M: number of multiplexers. HW: conditions when no multiplexing is needed.

For CP, see (98). (†): (n−q+1) ≤ n ≤ (n−q+ k), (‡): otherwise.

[58] [94] [121] [51] [27] Proposed 2

Limits radix-2 − <n>q=0 − − −
HW never never <n>q=0 never never < n >q= 0 ∨

((n/q < 2) ∧
(< q >n−q= 0))

Radix-2
M 2q 2q(2q+1 −2) − 2q 2q 2q(CP−1) ≤ 2q,

CP ∈ {1,2}
D − − − 2q−1 ·3 − −

Radix-2k

M − 2q(2q+1 −2) − 2q(2k −1)
{

2q(2k −1) (†)
k2q (‡)

2q(CP−1) ≤ 2q(2k −1),

CP ∈ {1, . . . ,2k−1}
D − − − 2q−k(2k(2k −1) − −

+∑2k−1
i=0 i)

tion. This control word needs to be modified only when the length of the array to be

accessed is changed. There is no need to store the complete transformation matrix as

in some proposed realizations, e.g., in [78].

In order to estimate the complexity of interconnection networks, the number of swit-

ching elements and registers must be known. By giving the estimate as a function

of the design parameters n, q, and k, an insight into the complexity change is seen if

the parameters are varied. In Table 6, the schemes, whose interconnection networks

can be expressed as a function of the design parameters, are compared. The other

schemes exploited heuristics or the details of the permutation networks were omitted

and, therefore, they were left out from the comparison.

The structure presented in [58] supports only radix-2 algorithms and does not result

in a hardwired network in any case. In addition, the number of multiplexers is the

same or larger than in the proposed scheme. In [94], more multiplexers are needed

and no hardwired network is supported in any case. The proposed scheme results in

a hardwired network more often than [121] without the limitation < n >q= 0. Com-

pared to [51], the proposed scheme results fewer or the same number of multiplexers

and does not require any registers. In addition, the scheme in [51] supports no hard-

wired network in any case. The scheme in [27], on the other hand, results in fully

5.4. Summary 103

connected PEs when (n− q + 1) ≤ n ≤ (n− q + k). In certain cases, the scheme re-

sults in the network with same complexity as the proposed scheme. However, it never

results in a hardwired network as [121] and the proposed scheme.

5.4 Summary

In this chapter, systematic design methods for the stride permutation access in parallel

memory systems were developed. Since the complexity in in-place access schemes

comprises of control and interconnection complexities, solutions to these two pro-

blems were provided.

First, the low control complexity scheme was proposed, which supports also bit rever-

sal access thus it covers all the access patterns in Cooley-Tukey radix-2 FFT. In this

scheme, all the possible power-of-two stride permutation accesses are conflict-free.

The module address generation is simple requiring only bit-wise XOR operations. It

was shown that several array lengths can be supported by including a q-bit left shif-

ter into the module address generator. In this case, all the additional operations are

performed on the q−1 least significant bits of the address independent on the array

length. The presented scheme supports different initial addresses but arrays need to

be stored into n-word boundaries.

In order to reduce the interconnection complexity, the number of connection pat-

terns between processing elements and memory modules needs to be reduced. This

approach was utilized in the low interconnection complexity scheme where the ope-

rations were rescheduled. Similar to the first scheme, it provides a conflict-free stride

permutation access to data elements. It is aimed at algorithms where the interconnec-

tion topology is according to the stride permutation and where the computation is

performed with radix-2k processing elements. Compared to the other reviewed sche-

mes, it results in lower interconnection complexity.

104 5. Memory-Based Stride Permutation Networks

6. CONCLUSIONS

In this Thesis, systematic methods for designing hardware realizations of stride per-

mutation interconnections have been studied. Managing the interconnections is cru-

cial in parallel hardware structures because of the time dependencies of data ele-

ments. Especially in the cascaded and partial column structures, the interconnections

become complex requiring the use of registers or memories. Based on the review of

previous work, two alternative approaches for the realization of stride permutation in-

terconnections were developed: register- and memory-based stride permutation net-

works.

6.1 Main Results

The proposed register-based networks were derived based on the decompositions of

stride permutation matrices into smaller, more efficiently implementable permuta-

tions. The derived decompositions were directly mapped onto efficient hardware

structures. It was shown that the resulting networks reach the minimum register com-

plexity in all cases. Also the multiplexing complexity was reduced compared to the

other reviewed networks.

As the second approach, memory-based stride permutation networks based on par-

allel memories were considered. The in-place update method in such cases results

in the minimum memory usage but implies more complex address generation and

interconnections. For resolving such problems, two different access schemes were

proposed, where the first scheme resulted in simplified control generation and the

second scheme in reduced interconnection complexity.

Based on the studies in this Thesis, it can be concluded that the proposed systematic

design methods are applicable to designing parallel hardware structures for the algo-

rithms with stride permutation topology. The resulting stride permutation networks

106 6. Conclusions

have the minimum storage complexity and their interconnection complexity is redu-

ced compared to the reviewed state-of-the-art networks. The attractive feature of the

proposed networks is that they lend themselves for automated design generation.

6.2 Future Development

In some applications, a run-time configuration of sequence sizes and strides may be

needed. While such configurability can be embedded in the proposed memory-based

networks, it is not applicable to the given register-based networks. Therefore, the de-

velopment of register-based networks could be continued with designing the run-time

configuration support. Moreover, power consumption in the register-based networks

is of great concern due to the continuous movement of data elements. Reduction of

this switching activity and utilization of clock gating would be profitable for power

savings.

BIBLIOGRAPHY

[1] D. Akopian, J. Takala, J. Astola, and J. Saarinen, “Multistage interconnection

networks for parallel Viterbi decoders,” IEEE Transactions on Communicati-

ons, vol. 51, no. 9, pp. 1536–1545, Sep. 2003.

[2] H. M. Alnuweiri and S. M. Sait, “Efficient network folding techniques for

routing permutations in VLSI,” IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, vol. 3, no. 2, pp. 254–263, Jun. 1995.

[3] F. Argüello, J. D. Bruguera, R. Doallo, and E. L. Zapata, “Parallel architecture

for fast transforms with trigonometric kernel,” IEEE Transactions on Parallel

and Distributed Systems, vol. 5, no. 10, pp. 1091–1099, Oct. 1994.

[4] J. Astola and D. Akopian, “Architecture-oriented regular algorithms for dis-

crete sine and cosine transforms,” IEEE Transactions on Signal Processing,

vol. 47, no. 4, pp. 1109–1124, Apr. 1999.

[5] B. M. Baas, “A low-power, high-performance, 1024-point FFT processor,”

IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp. 380–387, Mar. 1999.

[6] J. Bae and V. K. Prasanna, “Synthesis of area-efficient and high-throughput

rate data format converters,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 6, no. 4, pp. 697–706, Dec. 1998.

[7] J. Bae, V. K. Prasanna, and H. Park, “Synthesis of a class of data format con-

verters with specific delays,” in Proc. IEEE International Conference on Ap-

plication Specific Array Processors, San Francisco, CA, U.S.A., Aug. 22–24

1994, pp. 283–294.

[8] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone

Traffic. New York, NY, U.S.A.: Academic Press, 1965.

108 Bibliography

[9] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”

IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[10] L. N. Bhuyan, Q. Yang, and D. P. Agrawal, “Performance of multiprocessor

interconnection networks,” IEEE Computer, vol. 22, no. 2, pp. 25–37, Feb.

1989.

[11] M. Biver, H. Kaeslin, and C. Tommasini, “In-place updating of path metrics

in Viterbi decoders,” IEEE Journal of Solid-State Circuits, vol. 24, no. 4, pp.

1158–1160, Aug. 1989.

[12] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi decoder,”

IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1877–1885, Dec.

1992.

[13] M. Bóo, F. Argüello, J. Bruguera, R. Doallo, and E. Zapata, “High-

performance VLSI architecture for the Viterbi algorithm,” IEEE Transactions

on Communications, vol. 45, no. 2, pp. 168–176, Feb. 1997.

[14] P. Budnik and D. Kuck, “The organization and use of parallel memories,” IEEE

Transactions on Computers, vol. 20, no. 12, pp. 1566–1569, Dec. 1971.

[15] H. Cam and J. A. B. Fortes, “A fast VLSI-efficient self-routing permutation

network,” IEEE Transactions on Computers, vol. 44, no. 3, pp. 448–453, Mar.

1995.

[16] J. C. Carlach, P. Penard, and J. L. Sicre, “TCAD: a 27 MHz 8× 8 discrete

cosine transform chip,” in Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing, Glasgow, UK, May 23–26 1989, pp. 2429–

2432.

[17] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in

digital CMOS ciruits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523,

Apr. 1995.

[18] C. H. Chang, C. L. Wang, and Y. T. Chang, “A novel memory-based FFT pro-

cessor for DMT/OFDM applications,” in Proc. IEEE International Conference

on Acoustics, Speech, and Signal Processing, Phoenix, AZ, U.S.A., Mar. 15–

19 1999, pp. 1921–1924.

Bibliography 109

[19] ——, “Efficient VLSI architectures for fast computation of the discrete Fourier

transform and its inverse,” IEEE Transactions on Signal Processing, vol. 48,

no. 11, pp. 3206–3216, Nov. 2000.

[20] Y. N. Chang, “An efficient in-place VLSI architecture for Viterbi algorithm,”

The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video

Technology, Kluwer Academic Publishers, vol. 33, no. 3, pp. 317–324, Mar.

2003.

[21] Y. N. Chang and K. Parhi, “An efficient pipelined FFT architecture,” IEEE

Transactions on Circuits and Systems—Part II: Analog and Digital Signal Pro-

cessing, vol. 50, no. 6, pp. 322–325, Jun. 2003.

[22] H. J. Chao, “Next generation routers,” Proceedings of the IEEE, vol. 90, no. 9,

pp. 1518–1558, Sep. 2002.

[23] D. Cohen, “Simplified control of FFT hardware,” IEEE Transactions on Acou-

stics, Speech, and Signal Processing, vol. 24, no. 6, pp. 577–579, Dec. 1976.

[24] J. Cooley and J. Tukey, “An algorithm for the machine calculation of the com-

plex Fourier series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–

301, Apr. 1965.

[25] T. H. Cormen, “Virtual memory for data-parallel computing,” Ph.D. disser-

tation, Massachusetts Institute of Technology, Cambridge, MA, U.S.A., Feb.

1993.

[26] T. H. Cormen and D. M. Nicol, “Performing out-of-core FFTs on parallel disk

systems,” Parallel Computing, vol. 24, no. 1, pp. 5–20, Jan. 1998.

[27] F. Daneshgaran and K. Yao, “The iterative collapse algorithm: a novel ap-

proach for the design of long constraint length Viterbi decoders – part I,”

IEEE Transactions on Communications, vol. 43, no. 2/3/4, pp. 1409–1418,

Feb./Mar./Apr. 1995.

[28] ——, “The iterative collapse algorithm: a novel approach for the design of

long constraint length Viterbi decoders – part II,” IEEE Transactions on Com-

munications, vol. 43, no. 2/3/4, pp. 1419–1428, Feb./Mar./Apr. 1995.

110 Bibliography

[29] M. Davio, “Kronecker products and shuffle algebra,” IEEE Transactions on

Computers, vol. 30, no. 2, pp. 116–125, Feb. 1981.

[30] W. R. Davis, N. Zhang, K. Camera, D. Marković, T. Smilkstein, M. J. Am-

mer, E. Yeo, S. Augsburger, B. Nikolić, and R. W. Brodersen, “A design envi-

ronment for high-throughput low-power dedicated signal processing systems,”

IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 420–431, Mar. 2002.

[31] A. Deb, “Multiskewing - a novel technique for optimal parallel memory ac-

cess,” IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 6,

pp. 595–604, Jun. 1996.

[32] A. Edelman, S. Heller, and S. L. Johnsson, “Index transformation algorithms

in a linear algebra framework,” IEEE Transactions on Parallel and Distributed

Systems, vol. 5, no. 12, pp. 1302–1309, Dec. 1994.

[33] D. Edenfeld, A. B. Kahng, M. Rodgers, and Y. Zorian, “2003 technology road-

map for semiconductors,” IEEE Computer, vol. 37, no. 1, pp. 47–56, Jan.

2004.

[34] Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, por-

table and fixed receivers, European Telecommunications Standards Institute

(ETSI) ETSI EN 300 401, 1997.

[35] Broadband radio access networks (BRAN): Hiperlan type 2: physical (PHY)

layer, European Telecommunications Standards Institute (ETSI) TS 101 475

V1.1.1, 2000.

[36] Digital video broadcasting (DVB-T); framing structure, channel coding and

modulation for digital terrestrial television, European Telecommunications

Standards Institute (ETSI) ETSI EN 300 744, 2001.

[37] J. Eyre and J. Bier, “The evolution of DSP processors,” IEEE Signal Proces-

sing Magazine, vol. 17, no. 2, pp. 43–51, Mar. 2000.

[38] G. Fettweis and H. Meyr, “High-speed parallel Viterbi decoding: algorithm

and VLSI-architectures,” IEEE Communications Magazine, vol. 29, no. 5, pp.

46–55, May 1991.

Bibliography 111

[39] G. Feygin, P. G. Gulak, and P. Chow, “A multiprocessor architecture for Vi-

terbi decoders with linear speedup,” IEEE Transactions on Signal Processing,

vol. 41, no. 9, pp. 2907–2917, Sep. 1993.

[40] J. M. Frailong, W. Jalby, and J. Leflant, “XOR-schemes: A flexible data or-

ganization in parallel memories,” in Proc. of the International Conference on

Parallel Processing, University Park, PA, U.S.A., Aug. 1985, pp. 276–283.

[41] G. D. Forney, Jr., “Review of random tree codes,” NASA Ames Research Cen-

ter, Moffett Field, CA, U.S.A., Final Report CR 73176, Dec. 1967.

[42] S. F. Gorman and J. M. Wills, “Partial column FFT pipelines,” IEEE Transac-

tions on Circuits and Systems—Part II: Analog and Digital Signal Processing,

vol. 42, no. 6, pp. 414–423, Jun. 1995.

[43] M. Gössel, B. Rebel, and R. Creutzburg, Memory Architecture & Parallel Ac-

cess. Amsterdam, The Netherlands: North Holland, 1994.

[44] J. Granata, M. Conner, and R. Tolimieri, “Recursive fast algorithms and the

role of the tensor product,” IEEE Transactions on Signal Processing, vol. 40,

no. 12, pp. 2921–2930, Dec. 1992.

[45] D. T. Harper III, “Block, multistride vector, and FFT accesses in parallel me-

mory systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 2,

no. 1, pp. 43–51, Jan. 1991.

[46] ——, “Increased memory performance during vector accesses through the use

of linear address transformations,” IEEE Transactions on Computers, vol. 41,

no. 2, pp. 227–230, Feb. 1992.

[47] H. Hayashi, H. Kobayashi, M. Umezawa, S. Hosaka, and H. Hirano, “DVD

players using a Viterbi decoding circuit,” IEEE Transactions on Consumer

Electronics, vol. 44, no. 2, pp. 268–272, May 1998.

[48] J. F. Hayes, “The Viterbi algorithm applied to digital data transmission,” IEEE

Communications Magazine, vol. 40, no. 5, pp. 26–32, May 2002.

[49] H. Hendrix, Viterbi decoding techniques for the TMS320C54x DSP

generation, spra071a, Texas Instruments, Jan. 2002. [Online]. Available:

http://www.ti.com

112 Bibliography

[50] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Third Edition. San Francisco, CA, U.S.A.: Morgan Kaufmann

Publishers, 2003.

[51] J. A. Hidalgo, J. Lopez, F. Argüello, and E. L. Zapata, “Area-efficient architec-

ture for fast Fourier transform,” IEEE Transactions on Circuits and Systems—

Part II: Analog and Digital Signal Processing, vol. 46, no. 2, pp. 187–193,

Feb. 1999.

[52] D. E. Hocevar and A. Gatherer, “Achieving flexibility in a Viterbi decoder DSP

coprocessor,” in Proc. IEEE Vehicular Technology Conference, Boston, MA,

U.S.A., Sept. 2000, pp. 2257–2264.

[53] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spe-

cifications, IEEE 802.11 Std., Aug. 1999.

[54] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications: High-Speed Physical Layer in the 5GHz band, IEEE

802.11a Std., Sept. 1999.

[55] L. G. Johnson, “Conflict free memory addressing for dedicated FFT hard-

ware,” IEEE Transactions on Circuits and Systems—Part II: Analog and Digi-

tal Signal Processing, vol. 39, no. 5, pp. 312–316, May 1992.

[56] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT algorithm and pipeline

implementation results for OFDM/DMT applications,” IEEE Transactions on

Consumer Electronics, vol. 49, no. 1, pp. 14–20, Feb. 2003.

[57] A. B. Kahng, “Directions for drivers and design,” IEEE Circuits and Devices

Magazine, vol. 18, no. 4, pp. 32–39, Jul. 2002.

[58] S. Y. Kim, H. Kim, and I. C. Park, “Path metric memory management for mini-

mising interconnections in Viterbi decoders,” IEE Electronics Letters, vol. 37,

no. 14, pp. 925–926, Jul. 2001.

[59] M. Kovac and P. Ranganathan, “JAGUAR: a high speed VLSI chip for JPEG

image compression standard,” in Proc. IEEE International Conference on

VLSI Design, New Delhi, India, Jan. 4–7 1995, pp. 220–224.

Bibliography 113

[60] S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ, U.S.A.: Prentice

Hall, 1988.

[61] J. Kwak, S. S. Yoon, S. M. Park, K. S. Kim, and K. Lee, “A simple and effi-

cient path metric memory management for Viterbi decoder composed of many

processing elements,” IEICE Transactions on Communications, vol. E86-B,

no. 2, pp. 844–846, Feb. 2003.

[62] P. D. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamen-

tals: Architectures and Features. Fremont, CA, U.S.A.: Berkeley Design

Technology, Inc., 1996.

[63] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE

Transactions on Computers, vol. C-24, no. 12, pp. 1145–1155, Dec. 1975.

[64] D. H. Lawrie and C. R. Vora, “The prime memory system for array access,”

IEEE Transactions on Computers, vol. 31, no. 5, pp. 435–442, May 1982.

[65] E. A. Lee and D. G. Messerschmitt, Digital Communication. Norwell, MA,

U.S.A.: Kluwer Academic Publishers, 1994.

[66] K. J. Liszka, J. K. Antonio, and H. J. Siegel, “Is an alligator better than an

armadillo?” IEEE Concurrency, vol. 5, no. 4, pp. 18–28, Oct.-Dec. 1997.

[67] W. Liu, T. H. Hildebrandt, and R. Cavin, III, “Hamiltonian cycles in the

shuffle-exchange network,” IEEE Transactions on Computers, vol. 38, no. 5,

pp. 745–750, May 1989.

[68] X. Liu and M. C. Papaefthymiou, “Design of a 20-Mb/s 256-state Viterbi de-

coder,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 11, no. 6, pp. 965–975, Dec. 2003.

[69] H. F. Lo, M. D. Shieh, and C. M. Wu, “Design of an efficient FFT processor

for DAB system,” in Proc. IEEE International Symposium on Circuits and

Systems, Sydney, Australia, May 6–9 2001, pp. 654–657.

[70] Y. Ma, “An effective memory addressing scheme for FFT processors,” IEEE

Transactions on Signal Processing, vol. 47, no. 3, pp. 907–911, Mar. 1999.

114 Bibliography

[71] M. Majumdar and K. K. Parhi, “Design of data format converters using two-

dimensional register allocation,” IEEE Transactions on Circuits and Systems—

Part II: Analog and Digital Signal Processing, vol. 45, no. 4, pp. 504–508,

Apr. 1998.

[72] “Webster’s revised unabridged dictionary,” MICRA Inc., 735 Belvidere Ave,

Plainfield, New Jersey, U.S.A., 1998. [Online]. Available: http://www.dict.org

[73] S. C. Moon and I. C. Park, “Area-efficient memory-based architecture for FFT

processing,” in Proc. IEEE International Symposium on Circuits and Systems,

Bangkok, Thailand, May 25–28 2003, pp. 101–104 vol.5.

[74] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for

Signal Processing. Upper Saddle River, NJ, U.S.A.: Prentice Hall, Inc.,

2000.

[75] D. Nassimi and S. Sahni, “An optimal routing algorithm for mesh-connected

parallel computers,” Journal of ACM, vol. 27, no. 1, pp. 6–29, Jan. 1980.

[76] ——, “A self-routing Benes network and parallel permutation algorithms,”

IEEE Transactions on Computers, vol. C-30, no. 5, pp. 332–340, May 1981.

[77] ——, “Optimal BPC permutations on a cube connected SIMD computer,”

IEEE Transactions on Computers, vol. C-31, no. 4, pp. 338–341, Apr. 1982.

[78] A. Norton and E. Melton, “A class of boolean linear transformations for

conflict-free power-of-two stride access,” in Proc. of the International Confe-

rence on Parallel Processing, St. Charles, IL, U.S.A., Aug. 1987, pp. 247–254.

[79] K. K. Parhi, “Register minimization in DSP data format converters,” in Proc.

IEEE International Symposium on Circuits and Systems, Singapore, Jun. 11–

14 1991, pp. 2367–2370.

[80] ——, “Systematic synthesis of DSP data format converters using life-time ana-

lysis and forward-backward register allocation,” IEEE Transactions on Cir-

cuits and Systems—Part II: Analog and Digital Signal Processing, vol. 39,

no. 7, pp. 423–440, Jul. 1992.

Bibliography 115

[81] ——, “Video data format converters using minimum number of registers,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 2, no. 2,

pp. 255–267, Jun. 1992.

[82] K. K. Parhi and J. S. Lee, “Register allocation for design of data format con-

verters,” in Proc. IEEE International Conference on Acoustics, Speech, and

Signal Processing, Toronto, Ont., Canada, Apr. 14–17 1991, pp. 1133–1136.

[83] M. C. Pease, “Organization of large scale Fourier processors,” Journal of

ACM, vol. 16, no. 3, pp. 474–482, Jul. 1969.

[84] G. F. Pfister, K. P. McAuliffe, E. A. Melton, V. A. Norton, and S. P. Wake-

field, “An aperiodic mapping method to enhance power-of-two stride access to

interleaved devices,” European Patent EP0 313 788, 1988.

[85] P. Pirsch, Architectures for Digital Signal Processing. Chichester, United

Kingdom: John Wiley & Sons, Ltd., 1998.

[86] J. G. Proakis, “Equalization techniques for high-density magnetic recording,”

IEEE Signal Processing Magazine, vol. 15, no. 4, pp. 73–82, Jul. 1998.

[87] ——, Digital Communications. New York, U.S.A.: McGraw Hill, 2001.

[88] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Proces-

sing. Englewood Cliffs, NJ, U.S.A.: Prentice Hall, 1975.

[89] C. Rader, “Memory management in a Viterbi decoder,” IEEE Transactions on

Communications, vol. 29, no. 9, pp. 1399–1401, Sep. 1981.

[90] C. S. Raghavendra and R. V. Boppana, “On self-routing in Benes and shuffle-

exchange networks,” IEEE Transactions on Computers, vol. 40, no. 9, pp.

1057–1064, Sep. 1991.

[91] D. N. Rockmore, “The FFT: an algorithm the whole family can use,” Compu-

ting in Science & Engineering, vol. 2, no. 1, pp. 60–64, Jan.-Feb. 2000.

[92] S. Sahni, “Matrix multiplication and data routing using a partitioned optical

passive stars network,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 11, no. 7, pp. 720–728, Jul. 2000.

116 Bibliography

[93] A. Seznec and J. Lenfant, “Interleaved parallel schemes,” IEEE Transactions

on Parallel and Distributed Systems, vol. 5, no. 12, pp. 1329–1334, Dec. 1994.

[94] M. D. Shieh, M. H. Sheu, C. H. Wu, and W. S. Ju, “Efficient management of

in-place path metric update and its implementation for Viterbi decoders,” in

Proc. IEEE International Symposium on Circuits and Systems, Monterey, CA,

USA, May 31 – Jun. 3 1998, pp. 449–452.

[95] M. D. Shieh, C. M. Wu, H. H. Chou, M. H. Chen, and C. L. Liu, “Design and

implementation of a DAB channel decoder,” IEEE Transactions on Consumer

Electronics, vol. 45, no. 3, pp. 553–562, Aug. 1999.

[96] C. B. Shung, H. D. Lin, R. Cypher, P. H. Siegel, and H. K. Thapar, “Area-

efficient architectures for the Viterbi algorithm – part I: theory,” IEEE Tran-

sactions on Communications, vol. 41, no. 4, pp. 636–644, Apr. 1993.

[97] ——, “Area-efficient architectures for the Viterbi algorithm – part II: applica-

tions,” IEEE Transactions on Communications, vol. 41, no. 5, pp. 802–807,

May 1993.

[98] H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing:

Theory and Case Studies. Lexington, MA, U.S.A.: Lexington Books, 1985.

[99] B. Sklar, “How I learned to love the trellis,” IEEE Signal Processing Magazine,

vol. 20, no. 3, pp. 87–102, May 2003.

[100] N. Slingerland and A. J. Smith, “Measuring the performance of multimedia

instruction sets,” IEEE Transactions on Computers, vol. 51, no. 11, pp. 1317–

1332, Nov. 2002.

[101] G. S. Sohi, “High-bandwidth interleaved memories for vector processors - a

simulation study,” IEEE Transactions on Computers, vol. 42, no. 1, pp. 34–44,

Jan. 1993.

[102] B. S. Son, B. G. Jo, M. H. Sunwoo, and S. K. Yong, “A high-speed FFT

processor for OFDM systems,” in Proc. IEEE International Symposium on

Circuits and Systems, Scottsdale, AZ, U.S.A., May 26–29 2002, pp. 281–284

vol.3.

Bibliography 117

[103] K. Srivatsan, C. Chakrabarti, and L. Lucke, “Low power data format conver-

ter design using semi-static register allocation,” in Proc. IEEE International

Conference on Computer Design: VLSI in Computers and Processors, Austin,

TX, U.S.A., Oct. 2–4 1995, pp. 460–465.

[104] ——, “A new register allocation scheme for low-power data format conver-

ters,” IEEE Transactions on Circuits and Systems—Part II: Analog and Digital

Signal Processing, vol. 46, no. 9, pp. 1250–1253, Sep. 1999.

[105] H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Transactions on

Computers, vol. 20, no. 2, pp. 153–161, Feb. 1971.

[106] W. Strauss, “The embedded DSP trend,” IEEE Signal Processing Magazine,

vol. 21, no. 3, pp. 101–101, May 2004.

[107] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph, “A radix 4 delay com-

mutator for fast Fourier transform processor implementation,” IEEE Journal

of Solid-State Circuits, vol. 19, no. 5, pp. 702–709, Oct. 1984.

[108] J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Constant geometry algo-

rithm for discrete cosine transform,” IEEE Transactions on Signal Processing,

vol. 48, no. 6, pp. 1840–1843, Jun. 2000.

[109] ——, “Scalable interconnection networks for partial column array processor

architectures,” in Proc. IEEE International Symposium on Circuits and Sys-

tems, Geneva, Switzerland, May 28–31 2000, pp. 514–516.

[110] TMS320C64x DSP Viterbi-decoder coprocessor (VCP) reference guide,

spru533c, Texas Instruments, Nov. 2003. [Online]. Available:

http://www.ti.com

[111] Multiplexing and channel coding (FDD), Third generation partnership project

(3GPP) Technical specification 25.212 v3.11.0, 2002.

[112] M. Träber, “A novel ACS-feedback scheme for generic, sequential Viterbi-

decoder macros,” in Proc. IEEE International Symposium on Circuits and Sys-

tems, Sydney, Australia, May 6 – 9 2001, pp. 210–213.

118 Bibliography

[113] M. Valero, T. Lang, and E. Ayguade, “Conflict-free access of vectors with

power-of-two strides,” in Proc. of the 6th International Conference on Super-

computing, Washington, D. C., U.S.A., Jul. 1992, pp. 149–156.

[114] M. Valero, T. Lang, J. M. Llaberia, M. Peiron, E. Ayguade, and J. J. Navarro,

“Increasing the number of strides for conflict-free vector access,” in Proc. of

the 19th Annual International Symposium on Computer Architecture, Queens-

land, Australia, May 1992, pp. 372–381.

[115] M. Valero, T. Lang, M. Peiron, and E. Ayguade, “Conflict-free access for stre-

ams in multimodule memories,” IEEE Transactions on Computers, vol. 44,

no. 5, pp. 634–646, May 1995.

[116] A. Varma and C. S. Raghavendra, “Rearrangeability of multistage

shuffle/exchange networks,” IEEE Transactions on Communications, vol. 36,

no. 10, pp. 1138–1147, Oct. 1988.

[117] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm,” IEEE Transactions on Information Theory,

vol. 13, pp. 260–269, Apr. 1967.

[118] A. Waksman, “A permutation network,” Journal of ACM, vol. 15, no. 1, pp.

159–163, Jan. 1968.

[119] H. A. G. Wijshoff and J. van Leeuwen, “The structure of periodic storage

schemes for parallel memories,” IEEE Transactions on Computers, vol. 34,

no. 6, pp. 501–505, May 1985.

[120] C. M. Wu, M. D. Shieh, C. H. Wu, and M. H. Sheu, “An efficient approach for

in-place scheduling of path metric update in Viterbi decoders,” in Proc. IEEE

International Symposium on Circuits and Systems, vol. 3, Geneva, Switzer-

land, May 28–31 2000, pp. 61–64.

[121] ——, “VLSI architecture of extended in-place path metric update for Viterbi

decoders,” in Proc. IEEE International Symposium on Circuits and Systems,

Sydney, Australia, May 6 – 9 2001, pp. 206–209.

[122] Y. Zhu and M. Benaissa, “Reconfigurable Viterbi decoding using a new ACS

pipelining technique,” in Proc. IEEE International Conference on Application-

Bibliography 119

Specific Systems, Architectures, and Processors, The Hague, The Netherlands,

Jun. 24–26 2003, pp. 360–368.

���������	
��������	������
�
��	���
�����	�������

�������	��������
�	��	���������
�� �	!�"	���
#$%&�����	�������'	#����(

	jarvinen505.pdf
	jarvinen505.pdf
	Tuomas Järvinen

