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Abstract

Computing the position of a personal mobile device based on a mix
of various types of measurements requires a wide array of math-
ematical concepts ranging from optimisation to robust estimation
and nonlinear filtering theory. Algorithms for positioning and navi-
gation have surfaced concurrently with the development of new
measurement equipment and navigation infrastructure. However,
most solutions and algorithms pertain only to certain equipment,
involving just a single or few measurement sources.

This work synthesises existing techniques into a general framework
covering static positioning, filtering, batch positioning and dead
reckoning. Measurements are not restricted to any specific tech-
nology, equation form or distribution assumption.

The static positioning problem, deducing position from a set of
simultaneous measurements, is considered first. Parallels between
geometric, least squares and statistical approaches are given. The
more complex problem of time series estimation can be solved by
navigation filters that also make use of all past measurements and
information about the system dynamics. Different filter implemen-
tations can be derived from the ideal Bayesian filter by choosing
different probability density function (pdf) approximation schemes.
The standard methods are briefly introduced in this context along
with a novel generalisation of a piecewise defined grid filter.

Finally, given the wide variety of existing and potential filter imple-
mentations, fair and expressive methods for comparing the quality
and performance of nonlinear filters are discussed.
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CHAPTER

Introduction

This thesis consists of an introduction and seven articles published
in scientific conferences and journals. The purpose of this intro-
ductory chapter is not to repeat the derivations or results given in
the publications [P1]-[P7], but rather to give a short unified back-
ground, and summarise the contribution in context.

The main contributions of the publications are:

¢ A global method for GPS time recovery [P1], which completes
the development of the idea originating from [74] and further
developed for the local case in the author’s MSc thesis. More-
over, the method is generalised to a class of global optimisa-
tion problems [P6]. See Section 3.2 for an overview.

e Geometric classification of closed form positioning problems
and a general solution process [P2], see Section 3.1 for details.

e A study and simulation testing of numerical integration
methods suitable for Bayesian positioning computations [P3],
see Section 3.3.




e A parallelepiped piecewise continuous grid filter for the

personal positioning problem [P4] and its generalisation to
nonlinear filtering [P7], see Section 4.3.

Concise treatment on why it is so difficult to evaluate the
quality of nonlinear filters [P5] and some new means to visu-
ally summarise the results of a large test bench, see Section 5.

The author’s role in the shared publications:

Publication P1: based on ideas originally presented in [74], the
author developed the presented algorithm and wrote the code
as well as the manuscript.

Publication P3: the author composed the code and ran the
tests jointly with Henri Pesonen, and wrote the manuscript
except for the introduction section.

Publication P4: the author developed the algorithm and the
code, and wrote the manuscript.

Publication P5: the author came up with the main ideas and
wrote the manuscript.



1 Background

navigation n

the science of getting ships, aircraft, or spacecraft from
place to place; especially : the method of determining
position, course, and distance traveled [53]

Navigation means have probably been the first subject of scientific
research right after fire, and involve technological breakthroughs
ranging from astrolabe and compass through seaworthy chrono-
meter (precise clock) needed for longitude determination to radio
and satellite navigation systems of the 1960’s.

The success of the satellite-based GPS (Global Positioning System)
around the turn of the millennium has brought navigation systems
from ships and aeroplanes to cars and personal hand-held devices,
and the next few years will see a GPS chip finding its way into the
majority of mobile phones and other wireless devices sold.

Precise and quick positioning is now globally available, provided
that enough of the sky is visible in order to get enough satellites in
fix. This leaves an availability gap in tightly built areas, indoors and
underground that is currently being filled with more or less sophis-
ticated solutions employing assisted GPS [1, 9, 75, 77], WLAN or
WiFi signals [33], the cellular network [8, 35], or even miniaturised
inertial navigation systems [19].

Still, there seems to be a lot of untapped potential for extraction of
location information from any “signal of opportunity” that a mobile
device might be able to receive, whether they be intended for posi-
tioning use or not. There are many exciting mathematical prob-
lems to be solved, requiring techniques from global optimisation,
analytic geometry, estimation theory, nonlinear filtering, numerical
analysis, information science, high-performance computing, soft-
ware design, not to mention all the mathematical and statistical
modelling to be done, for example, with measurement error and
user dynamics models.



1.1 Problem statement

By personal positioning, we mean computing the position, velo-
city, heading and possibly other states of interest of a personal
mobile device. The performance of especially the filtering methods
depends on the motion state of the receiver, and navigation should
be possible regardless of whether the device is being carried in hand,
pocket or in backpack or whether the user is walking, cycling, skiing,
in car, on bus, on boat, on aeroplane, or parachuting; both outdoors
and indoors as well as underground.

We call the device we wish to track the “receiver” although it may or
may not have also transmit capabilities. The fixed or moving signal
sources relative to which measurements are made are referred to as
“beacons”, and their coordinates are usually known. In the scope of
this work, it does not matter which of the entities initiates the posi-
tioning process, or whether the position computations take place in
the receiver, beacon, both or somewhere else.

In the Bayesian positioning framework [29, 67], all unknowns of
interest are stacked into the state vector, x; where subscript k refers
to the time instant #;, and the system described by the equations:

prior state: Xo (1a)
measurement model: Vie = hi(xr)+ vk (1b)
dynamics model: X1 = fr(xx) + wi (1c)

The unknown state x; cannot be measured directly; information
aboutitis given only indirectly through measurements y;.. The prior
state xo, and the measurement and process noises vy and w; are
usually stochastic and their distribution or some statistics known.
Usually, certain independence conditions are required to simplify
the computations, such as the x,, v; and wy being mutually inde-
pendent for all k.

A navigation filter uses all three pieces of information given by the
equation group (1), thus fusing together all measurements gath-
ered up and until the kth time step. We also consider algorithms
that use only the measurement model, called static positioning
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algorithms. If they use additionally the prior distribution, they are
called Bayesian static positioning.

Not considered in this work, batch positioning would use just the
measurement and dynamics model, and dead reckoning in this
framework is interpreted as propagating the prior distribution with
the dynamics model without any measurements.

2 Measurement models

Following is a short review of some possible sources of measure-
ments and associated types of measurement models. For now, we
just try to model the error characteristics of the measurement and
how the measurement depends on the true state of the receiver,
thus forming the measurement model (1b). This has to be seen as
a task separate from the inverse problem of deducing state based
on measurements, although technical publications usually do not
distinguish between modelling the problem and solving it.

Although we concentrate on radio navigation, the same principles
can readily be applied to non-radio signals, for example acoustic,
light, seismic waves, or possibly even surface waves in liquid.

2.1 Radio navigation

The signals of most radio networks can be exploited for positioning,
the ideal being to use any existing and available signals as they
are, without requiring any new infrastructure or costly changes to
existing transmitter station software. At the very least, even if the
signals were not designed for positioning purposes, the existence of
a signal indicates that the transmitter is near. This knowledge can be
converted to information about the receiver position with the help
of on-line hot-spot databases such as [63, 83].



The basic radio navigation measurement types are listed as follows.

Range between a beacon and the receiver is typically measured via
a propagation delay or round-trip time.

Biased range (or pseudo-range) is the geometrical range contami-
nated by an additive bias common to all range measurements.
A typical source of bias is the receiver clock error in propaga-
tion delay measurements. The clock bias is considered an
extra “nuisance” variable to be solved.

Range difference typically results from subtracting a biased range
measurement from another in order to eliminate the bias.
Now the bias does not have to be solved explicitly, but the
measurement errors become correlated if the same range is
used in forming several differences.

Deltarange is the time derivative of a range. Depending on the
implementation, it measures either the instantaneous rate of
change, or accumulated change over some period of time.
Deltaranges can also have a common bias that is treated simi-
larly as with range measurements.

Received signal power depends, among other things, on distance
and it can be either mapped to a distance measurement via
some loss function, or used as it is along with a pre-prepared
loss model.

Angle of arrival requires special antenna arrangements to detect
the direction of signal. The angle measurement usually has
poor accuracy but is still useful for excluding impossible loca-
tions.

Presence of signal implies receiver is within the maximum range
and transmission cone of the beacon.

Absence of signal can, in some cases, be used to infer that the
receiver is outside the maximum range or the transmission
cone of the beacon.

An additional variation to most measurement types comes from
quantisation of measured values that should be accounted for if
rounding causes errors of magnitude comparable to measurement



noise. Another variation is modular measurement where only, say,
the sub-millisecond part of the transmit delay can be measured so
that range is measured modulo 300 km [P1].

Navigation Satellite Systems

Each navigation satellite transmits a signal that, roughly speaking,
provides a means to determine the accurate time of transmission
and the position of the satellite at that time. Knowing the (biased)
time of reception, the (biased) range between the satellite and
receiver can be computed. The model for measurement noise
depends on the particulars of the satellite system and receiver used.

GPS is currently the only globally available satellite positioning
system. It was built for military purposes, but thanks to publicly
available signal specification [38], anyone with a suitable receiver
can use it for free. For a more comprehensive treatment on the
GPS, see for example [41, 54, 58]. Other satellite navigation systems
are the Russian Glonass, with a chronically incomplete constella-
tion and slightly different signalling scheme (frequency division
instead of code division [41]); the upcoming European Galileo
that has a signal structure compatible with GPS; and the Chinese
Compass Navigation Satellite System (also known as BeiDou-2), the
first generation of which features two-way communication between
satellites, ground beacons and the receiver. Second-generation
BeiDou will have global coverage and a passive positioning mode
similar to the other satellite navigation systems [17]. At the abstrac-
tion level of this work, all the satellite systems can be treated simi-
larly.

Due to the low power of the satellite signals, the receiver needs a
direct line of sight to the satellites, which is easy in the air, open
seas and deserts but often impossible indoors, near tall buildings or
under trees. Even if attenuated and reflected signals can be received
with a high-sensitivity receiver, the measurement errors will be diffi-
cult to model. Additionally, to extract the satellite orbit parameters,
the receiver has to decode several layers of data from the signal,
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which is not always possible or practical when the signal is attenu-
ated and noisy [76].

This gives rise to modelling the range measurements as modular
measurement. In the case of GPS, the length of one spreading
code cycle is approximately 300 km, and the relative phase of this
code between different satellites is always measurable as long as
the receiver has the satellites in track. Treating the code phase as
a modular range allows including it as a measurement even though
the unambiguous range to the satellite is not known [P1]. Simi-
larly, the GPS carrier phase measurements can be thought of as a
range measurement modulo about 19 cm, but making use of it is
much more difficult because positions agreeing with the received
measurement then occur every 19 centimetres.

In addition to the actual navigation satellites, several independent
satellite- and ground-based augmentation systems transmit real-
time corrections to GPS measurements that enable the removal of
spatially correlated errors from the measurements [80]. The correc-
tions given by these methods can be easily incorporated in the
measurement model and need not be considered separately after
this point. Additional tricks like dual-frequency or RTK processing
will not be considered in this work, although there is active research
on exploiting them also in personal positioning [2].

Terrestrial radio networks

The main difference between terrestrial radio beacons and navi-
gation satellites is that terrestrial beacons are much closer to the
receiver and thus nonlinearity and possible multimodal solutions
are a greater problem. A second practical point is that these signals
usually do not carry any information about the beacon position,
therefore that information has to be separately acquired. From
the algorithm point of view, it does not matter where the station
coordinates come from but it may have practical consequences on
time-to-first-fix, possible data transmission costs for the users, and
of course building and maintaining the required beacon location
database.



Possible sources for measurements include cellular phone networks,
wireless LAN, RFID and Bluetooth. There are also dedicated radio
navigation networks such as e-Loran or the Russian Alpha and
Chayka [37], but the size of the antenna required for their ultra-low
frequency signals may present practical difficulties in some applica-
tions. Possibly even (digital) TV [65] and FM radio [18] signals could
be used for ranging or at least presence-of-signal of measurements.

Signal propagation models for cellular channel are already being
used in network planning and can be exploited also in positioning
[11, 84]. The problem is that these models depend heavily on the
local environment, and it probably will not be feasible to store or
transfer the detailed 3D models of the surroundings to the receiver
and solve the propagation equations in real time.

Indoors and built-up urban areas are challenging positioning envi-
ronments in terms of radio propagation characteristics and the
amount and proximity of positioning beacons. Unlike the naviga-
tion satellite signals, radio communication signals are designed to
penetrate into buildings and round corners. Thus, even indoors
there might be a wealth of terrestrial radio signals available for posi-
tioning, like WLAN or other intra-building networks, but at the same
time the non-line-of-sight propagation makes it difficult to build
proper measurement models. Even if we successfully tune the error
models separately for outdoors and indoors operation, the problem
remains of deciding which one is more appropriate at any given
time.

2.2 Inertial sensors

An inertial measurement unit (IMU) contains a bundle of calibrated
acceleration and/or angular velocity sensors. Ideally, it measures
the acceleration of the unit with respect to the sensor frame and the
angular velocities of the frame. Thus, starting from an initial condi-
tion, the unit’s position, velocity and attitude can be solved.

The problem is that the error in initial state and the measure-
ment errors accumulate in the solution, and there might be very



little redundancy in the measurements. The position solution of
a consumer-grade unit becomes useless in minutes, depending on
the quality of the gyroscopes and accelerometers used. The chal-
lenges in using IMU as a stand-alone device thus lie in finding the
initial state and estimating the slowly varying biases in the measure-
ments, called calibration or in-motion alignment [19].

There is a wealth of published algorithms, and whole sessions in
navigation conferences, dedicated to optimally combining the long-
term unbiasedness of GPS and short-term relative accuracy of iner-
tial sensors [26, 30]. In the Bayesian modelling scheme, we just
augment the receiver state with the necessary bias and drift vari-
ables and include the appropriate measurement equations in the
system.

2.3 Offline Information

While not measurements as such, there is some additional non-real-
time information that can be considered as measurements or para-
meters to the measurement models.

The GPS signals carry information about the beacons’ positions
but terrestrial radio signals usually do not. One possibility to get
this information is to use online look-up databases of beacon loca-
tions for wireless LAN network and cellular network [14, 63, 83].
Open on-line databases will probably become more popular as the
penetration of location capabilities in mobile devices grows and
data transfer costs come down. Algorithms for maintaining such
databases and ensuring the accuracy and integrity of their data
should present lots of interesting problems in large-scale parameter
estimation and distributed data processing.

Additionally, there are several satellite-, radio network and internet-
based services providing range corrections for GPS as well as acqui-
sition aiding, almanac, ephemeris or precise ephemeris service,
either locally or globally [25, 80, 82].

For pedestrian and especially vehicle navigation, street maps can be
used to restrict the solution on streets, and aid in choosing a proper
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dynamics model. There are free proprietary solutions [72] as well as
open ones [57]. Street maps in suitable format are also essential for
routing applications, which are outside the scope of this thesis.

3 Static positioning techniques

The static positioning problem can often be posed as a system of
equations

y=h(x)+v 2)

where the measurement vector y € R” and the measurement equa-
tion h:R4 —R” are known, and the state x € R¢ and error vector
v € R" are to be solved for. One of the solutions to this system is
the actual true state x, and the realised measurement errors 7, in
addition to which there usually is an infinite number of other solu-
tions. Note that for arbitrary x, choosing v = y — h(x) constitutes
a solution. Among these state-error combinations that satisfy the
equation, we are usually interested in finding one with error vector
as small as possible or “likely” in some other sense.

Consider first the error-free system y = h(x). Some systems have a
unique solution x*, meaning that the equation is satisfied element-
wise and x* is the only argument with which this happens. Other
systems either are not satisfied for any x, or have a multitude of solu-
tions.

Unlike in the linear case, there are no general methods for solving
a non-linear system of equations, and, as carefully reasoned in [64],
“it is not hard to see why (very likely) there never will be any good,
general methods.” Moreover, there is no general systematic way of
learning how many solutions a system may have other than solving
the system. This is unfortunate in the positioning context, as we
would certainly like to know whenever the set of measurements
received implies more than one possible solutions, the simplest
example being two range measurements in 2D forming two circles
than can intersect in one or two points, not intersect at all or even
coincide.
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However, a non-linear system can often be linearised locally and
subsequently characterised by the properties of the linearised
system y — h(xo) — h'(xo)(x —x0) =0. It is then possible to try iter-
ative methods that either converge to a root very efficiently, or fail
spectacularly, indicating that there might not be a root nearby [64].

3.1 Closed-form and geometric solutions

One approach to solving the system (2) is to ignore the noise and
seek a closed-form solution with respect to x. This usually works
only for systems with as many equations as variables, so extra equa-
tions may have to be dropped from the system.

One of the most general formulations that have a closed-form
solution is a system of polynomial equations with integer coeffi-
cients. Such systems can be solved, for example, by using resultant
methods to eliminate all but one variable from the system, and then
finding the solution corresponding to the roots of the remaining
univariate polynomial [7]. Unfortunately, there does not seem to
be efficient numerical implementations of resultant methods, but
the algorithms require symbolic manipulation of polynomials with
up to thousands of terms [42, 51]. Polynomial systems could also be
solved by reducing them to a Grobner basis, but this approach also
requires symbolic machinery [7].

A more intuitive special case — at least if the problem is in two or
three dimensions — is to give the measurements a geometric inter-
pretation in the state space. A range measurement can be identified
with a sphere centred at the beacon with radius equal to the meas-
ured value, a range difference measurement with a hyperboloid, alti-
tude measurement with a horizontal plane, etc. Any points where all
such measurement surfaces intersect are then considered position
solutions as shown in Figure 1. This also gives a natural interpre-
tation for such measurement scenarios that have multiple possible
solutions.

For GPS-only situation, there are well-known closed-form least
squares solutions [4, 50], as well as ones that require only three
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GPS range difference plane

N

BS range sphere

altitude plane

intersection line

™ solutions

Figure 1: Geometric interpretation and multiple solution candidates

GPS measurements and an approximate altitude [62]. There are also
some extensions for special cases of mixed GPS-terrestrial measure-
ment combinations [3, 27].

The novel idea in [P2] is to combine the geometric interpretation of
measurement equations with the concept of local positioning. The
approach taken is to exploit the special structure of the problem, in
this case the rotational symmetry of the surfaces. For example, if
two quadrics of rotation have a focal point in common, their inter-
section can be proven to lie on a plane [50]. Then instead of solving
the intersection of two quadrics, it is enough to solve the intersec-
tion of a quadric and the plane.

For further simplification, [P2] also introduces the idea of local posi-
tioning where a rough position of the receiver is already known. In
the case of a cellular telephone, for example, the phone is known to
lie inside the coverage area of the serving base station. This rough
position information is exploited by linearising the measurements
to beacons that are distant enough for the linearisation error to be
negligible. A typical example of a distant beacon is a positioning
satellite usually situated 20 000 to 26 000 kilometres away. Another
example is the altitude that can be thought of as range measurement
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to the centre of the Earth, which can be comfortably linearised in
most settings.

The beacons that are not distant are called local beacons. They are
relatively close to the receiver and the directions to the beacons can
change drastically within the local region, and thus cannot be safely
linearised.

The threshold distance dividing the beacons to local and distant
ones depends on the accuracy of the rough position information
and the level of linearisation error that we are ready to accept. Take,
for example, position restricted inside a mobile cell with a radius of
3km. If we allow a maximum of 10 metres of linearisation error in
the measurements, then all beacons farther than 450 km away can
be considered distant.

The 3D surfaces encountered in local range and range difference
positioning are:

1. plane - defined by a range measurement to a distant beacon,
a range difference between distant beacons, or an altitude
measurement

2. sphere — defined by a range measurement to a local beacon

3. paraboloid of revolution - defined by a range difference
between a local and a distant beacon

4. branch of a hyperboloid of revolution - defined by a range
difference between two local beacons

All the quadrics involved can be written in the form [50]
Q: |s—x|+n"x=a (3)

where s is a focal point of the quadric and 7 is called the directrix
vector. In [P2], it is shown that if two quadrics of revolution share
either a focal point or the directrix vector, their intersection curve is
equal to the intersection of one of the quadrics with a plane. Usually,
all but one of the quadrics involved can be replaced with planes with
this method, and all the solutions of the resulting geometric system
can be easily found in closed form.
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A limitation of the method of [P2], as well as most closed-form
methods, is that measurement errors are not modelled and cannot
be accounted for. Moreover, the method only is able to use three
measurement surfaces at a time to compute the 3D position. If
there are more measurements available, the choices are either to
ignore the ones with larger estimated error variances, or the ones
that cannot be reduced to planes, or to compute many solution
candidates from different choices of three measurements.

3.2 Residual minimisation

Usually we assume that some statistics of the error vector v in the
system (2) are known. A standard technique for taking into account
the measurement errors is to write the system as a minimisation
problem

x"=argmin g (v = h(x)), 4)

where g(v) > 0 is called the loss function or the cost function. The
loss function models our concept of “small” measurement errors,
and it usuallyis zero only where v is zero. The quantity v* =y —h(x*)
is called the residual corresponding to the solution x*.

Least squares

A common choice for the loss function, and one that is consilient
with zero-mean Gaussian errors assumption, is g(v) = v’C-'v
where C is symmetric positive definite. Algorithms aiming to solve
this problem are known as least squares methods [28]. The least
squares solution is usually sought iteratively, although sometimes
the structure of the system permits also a closed form solution.

We call the global and local minimisers of (4) least squares solutions.
Note that any system, be it underdetermined or over-determined,
has at least one least squares solution under mild conditions'. Addi-
tionally, each exact solution of the system coincides with a least

I Example of sufficient condition: 4 continuous and | x| —o00 = |h(xy)|—o0. [56]
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squares solution. Unfortunately, there may also be additional local
minima of the least squares cost function, that do not correspond
to any approximate zeros of the original equation system. As an
example, Figure 2 shows a portion of the least squares loss func-
tion for a system of modular GPS range measurements. There is
a clear global minimum near the true position, but also numerous
local minima all over the state space.

1010 -
109
108
107 -
500
500
0 0
north /km 900 500 east / km

Figure 2: 2D portion of a five-dimensional least squares loss function
for a system of modular GPS range equations [P1].

There is a multitude of optimisation methods for the least squares
problem, the simplest and often the most useful one being the
Gauss-Newton iteration [56] that starts from an initial guess x, and
generates new iterates with

X e—Xx— (C_%h’(x))\(c_% (y—h(x))) (5)

until convergence. Here the backslash \ stands for the linear least
squares solution of the related linear system and the derivative of h
naturally needs to exist and be computable in all points of interest. It
should be noted that such an iterative process only finds one (local)
minimum, namely the one whose attraction basin the initial guess
is in. In the case of Figure 2, iteration should be run from several
starting points arranged such that at least one of them is guaranteed
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to be in the attraction basin of the minimum corresponding to the
true solution [P6].

The weight matrix C used in the loss function can be an arbitrary
positive definite matrix. If the measurement error covariance matrix
V(v) is known, however, using it as the weight matrix results in a
minimum variance estimate in case h is linear function, and asymp-
totically so even when h is nonlinear and fulfils mild regularity
conditions [73].

Although state estimation is possible with very vague assumptions
about the measurement noise process, error estimation requires
something more specific. The Gauss-Newton iteration formula (5)
can be used for sensitivity analysis, for if the iteration has reached a
fixed point x*, then the iteration step is, by definition, zero:

s, y)= (W (@) € (%) W (@) ¢ (y — h(x9) =0.

A first-order approximation of the sensitivity of the fixed point with
respect to the measurements y is then

%s(x*,y} — (h/(x*)T Cflh/(x*))_l h/(x*)T Cil,

which will, if & is smooth enough near x*, predict how the measure-
ment noises affect the estimate x*. Note however that this analysis
only relates to the sensitivity of the estimate around the local least
squares minimum defined by the realised measurements and does
not necessarily say anything about the error of the estimate from the
true state.

3.3 Maximum likelihood and Bayesian methods

When the measurement error distributions are known, the measure-
ment model can be written as a conditional probability density
p(y | x), which is more flexible than the measurement equation
y = h(x)+ v. To write the density expression, it is only needed
to know how measurements are distributed at each fixed x. As an
example, if the measurement equation is already known, we get just

py | x)=p,(y — h(x)),
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where p,(:) is the probability density of the measurement error v.
The benefit of the density approach is that the errors do not have to
be additive and their distribution can also depend on the state.

The function p(y | x), when y is held constant and x as the variable,
is called the likelihood function, and it generally does not integrate
to 1 over x, thus itis not a proper probability density function. After
a measurement y is realised, the maximum likelihood estimate is
given by:

x*= argmxaxp(y | x). (6)

As an important special case, if the measurement errors are additive
and normal distributed with zero mean and non-singular joint
covariance Y, the likelihood function is

p(y | x)=cexp (—% (y—hx) = (y- h(x))) :

where c is a constant coefficient. Now the likelihood is maximised
exactly when the expression (y — h(x))" £~! (y — h(x)) is minimised.
Thus, in this special setting, the maximum likelihood method coin-
cides with the least squares method with X as the weight matrix.

Another appealing aspect of the likelihood approach is that further
measurements can be incorporated optimally by simply multiplying
the individual likelihoods, as long as the measurements are inde-
pendent.

Bayesian estimate

Finally, for error analysis and computing confidence regions, we
would preferably need the conditional distribution of the unknown
state given the measurements, i.e. the posterior density. This is given
by the Bayes’ formula

px)p(y | x)
Cely)= ,
P T pop(y 1 x)dx
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where p(y | x) is the likelihood function and p(x) is the prior density
that ideally should capture all the initial information about the state
not present in the measurements. The prior density can conveni-
ently include extra information in the computation, but it usually
is difficult to justify any choice of p(x) if “nothing” is known about
the state or if the prior information is not already in probabilistic
form. Additionally, the validity of the Bayesian notion of treating
the true state as a random variable while it evidently is some fixed
but unknown value can be debated [78, 85].

After the philosophical matters as well as the numerical challenges
in computing the integral in the denominator [P3] are conquered,
the posterior density can be used to compute, for example, expected
value and the covariance of the state, maximum a posteriori (MAP)
estimate or any confidence region required. Another important
detail is that this formulation allows for recursive processing of
subsequent measurements. Since the posterior represents the best
knowledge about the distribution of the state, it can be substituted
as the prior into the Bayes’ formula when additional independent
measurements arrive.

3.4 Database correlation

As a specific example of a positioning technique where the measure-
ment model and solution methods are intertwined, we consider
the database correlation methods (also known as location finger-
printing or pattern recognition methods) [43, 52, 84] for positioning
with received signal strength measurements in a wireless network.
The measurement model in these cases is complex and depends on
the 3D environment along the signal path. It is often easier to form
an empirical measurement model over the area of interest than to
model the signal path in order to get an analytical measurement
equation.

The suggested methods usually consist of a calibration phase where
measurements are made in a great number of test locations in order
to build a semi-empirical approximation of the measurement equa-
tion h(x) and possible pre-processing steps to reduce the amount

19



bs,

hss

oy
n

Figure 3: Database correlation: the mean reception power of each of
the n beacons in m different calibration locations is meas-
ured and stored. Contours of the reception power from the
first station shown.

of data stored in the database. In operation phase, when a measure-
ment is made in an unknown location, some kind of table look-up or
interpolation scheme is used to find the location (or set of locations)
to best match the measurements.

In the Bayesian framework, the numerical approximation of the
measurement equation can be included in the problem descrip-
tion as easily as any other measurement. The positioning problem
then is relatively easy to formulate, but solving it will be computa-
tion intensive. Iterative least squares methods are pretty much out
of the picture because the measurement equations will be multi-
modal and probably also discontinuous. Bayesian solution, on the
other hand, requires large-scale numerical integration over the state
space. The simplest method seems to be the maximum likelihood
method that collapses to picking the test location with the most
likely stored measurement as the estimate, but the accuracy of this
approach is obviously limited by the density of test locations, and
error or confidence estimates are hard to justify.

Creating or calibrating the signal strength map on-line is an inter-
esting sub-problem as it in practice leads to an infinite-dimensional
problem of estimating the measurement model /(x) itself.
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4 Time series estimation and navigation filters

In positioning and navigation context, time series estimation means
exploiting the fact that only a small range of velocities and acceler-
ations are possible when predicting the position for the next time
instant. In the scope of this thesis, we will only study discrete-
time case where measurements and state estimates are given only
at certain time instants and not continuously in time.

When both the measurements and user motion are modelled as
random processes, the discrete-time system is given by the two
equations

Vi = hi(xr)+ vk (measurement model) (1b)

X1 = fr(xx) + wi (dynamics model) (1c)

where f; : R? — R4 is a known state transfer function, w; € R4 is
the state noise with known statistics, hj : R4 — R™* is the known
measurement function, and v, € R™ is the measurement noise
with known statistics. The noises w; and v, are assumed inde-
pendent temporally, of each other and of the known initial state x,.

A nice feature of this formulation is that there is an optimal filtering
algorithm, given as Algorithm 1. We use the shorthand notation
Vik = {y1,2,..., ¥k} for the set of all measurements until time #,
and denote the initial distribution before any measurements are
received with p(xo) = p(xo | yo)

The state transition density p(xy | xx-;) is defined by the dynamics
model and the measurement likelihood p(yi | xx) by the measure-
ment model. Note that the formula for prior density could well
be substituted into the formula for posterior density, resulting in a
single equation, but the time step is usually split into two parts for
clarity and because there often are some intermediate approxima-
tions between them.

The ideal Bayesian filter can be exactly computed only for some
special cases where the number of parameters needed to describe
the densities remains bounded over time [21]. Most notably, in
the linear Gaussian situation the densities remain Gaussian, and
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Algorithm 1: Bayesian recursive filter

1. Start with initial distribution p(x, | y) at time #,. Set k = 1.

2. Form a prior estimate of the state at f; based on the state
estimate at f;_; and the dynamics model. The ideal prior pdf
is

p(x | Yik-1) =f pxe | Xi—)p(Xe—1 [ yi:k—1)dxp—1.  (7)

3. Update with measurements to get the posterior estimate. In
ideal form, the prior pdfis multiplied by the measurement like-
lihood p(yi | x) and then normalised to get the posterior pdf

pxi [ yie—0)p(ye | xi)
fp(xk | Vik-1)P (Vi | xk) dxe

p(xi [ y1)= 8)

4. Increment k and repeat from 2.

the ideal filter simplifies into the Kalman filter [40]. In the general
case, however, in order to be able to both evaluate the integrals and
express the resulting density functions with a finite number of para-
meters, practical filtering algorithms resort to one or several of the
following simplifications:

Approximate the system with simpler models, for example with
linear ones so that the approximated problem can be solved
exactly with the Kalman filter.

Approximate the pdf’s with simpler ones at various stages, see
Figure 4 for examples.

Approximate the integrals with some numerical method instead
of computing them analytically.
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(@) True pdf (b) Gaussian approximation

(c) Point-mass approximation (d) Piecewise approximation

Figure 4: A bimodal probability density in two dimensions (a) and
examples of its approximations (b)-(d).

Any numerical filtering algorithm, regardless of how it is derived,
can be viewed as an approximative Bayesian filter, and its proper-
ties often can be explained by the types of approximations used.

4.1 Kalman-type filters

While the Kalman filter [40] is equivalent to the ideal Bayesian filter
for linear systems and Gaussian noises [16] (if the outputs of the
filter are interpreted as the mean and covariance of a Gaussian
posterior density), there is no unique generalisation of the idea
to nonlinear systems. Nonlinear equations can be linearised in
different ways so that Kalman-type equations can be applied, and
the resulting algorithms can be interpreted either in the Bayesian
framework as a solution of a linear approximation of the filtering
problem, or deterministically as recursive least squares solvers.
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Instead of starting with the linear Kalman filter and moditying it for
nonlinear cases, we build on the weighted least squares estimation
framework as suggested in [73] and arrive at the same algorithms
with a little more generality and less “excess baggage”.

Given the previous state estimate X;_; and its squared error estimate
matrix P._;, we can form the a priori estimate of current state and
its approximate covariance, for example

X, = fr1(Xx-1)
P =fi_ (Fr—)Peor fr (Ze—)" + Qi1

where Q_; is the state noise covariance at f;_;. Some variants
like the Unscented Kalman Filter (UKF) use a numerical scheme to
form better prior approximations in terms of the expected value and
covariance of fi_1(xx_1).

The estimate of the current state is then found by minimising both
the measurement residual and the distance from the prior estimate,
using for example the least squares loss function:

% =argmin Hyk - hk(xk)Hik + Hx,; - xk“i,;

= argmin ly’il - lhk(xk)
Xk Xy Xk

Cr

Ry, O

0 P
so that h(xi)~ hi(x;)+ Hi(xx — x;), the system becomes a linear
least squares problem

where C, = . If hy islinearised about the prior estimate x,_,

2
min lJ/k - hk(xk_)+Hkxk] _ lHkl 0
Xk X 1
Ck
i 2
_1 — )+ Hix, -1 |H
<min ||C,? Yk hk(xk_)+ KX —C.* | xi
Xk Xy 1

< min ||b— Axi|?,
Xk
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the least squares solution for which results in the familiar formulas
for one step of the Extended Kalman Filter (EKF), also known as the
Kalman-Schmidt filter [21]:

X =(ATA)ATH
= (HIR; He+ (P,;)_l)_1 (HIRS (e — () + Hix ) — Prx;)
=...=x; + P H! (HePCHE+ R (v — hixp)
P.=(ATA)!
= (HIR; He+(P)")
=...= (1P H] (HePoHE+R) ™ He) P

The “extended Kalman filter” is not a single algorithm but a name
for a collection of filter variants, obtained by for example different
linearisations of hy, iteration, different coordinate systems, higher
order expansions or adding other ad-hoc tuning parameters [21].
There are also various ways to build so-called derivative-free filters
[24] that estimate H; numerically instead of analytically.

Furthermore, using loss functions other than the least squares one
may result in filters better suited for non-Gaussian error distribu-
tions or more tolerant to outliers, called robust filters [60]. Further
extensions to the linear filtering idea include mixture filters where
the prior estimate can consist of several components or that use
multiple linearisation points [15].

4.2 Sequential Monte Carlo filters

The Sequential Monte Carlo - or particle filter, or Bayesian bootstrap
filter — approach follows from representing the prior and posterior
distributions as a set of samples rather than a density function
[23, 32, 36]. Then it is natural to approximate the integrals in the
ideal filter with the Monte Carlo integration method. The sequen-
tial Monte Carlo filter, as given in Algorithm 2, propagates a set of
weighted samples that are approximately distributed according to
the posterior distribution.
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Algorithm 2: Sequential Monte Carlo

Here we denote particles with superscript i: xklk being the ith
particle at the t, and i =1... Ni.

1. Initialise samples from the 1r11t1al distribution x ~ Pop(x),
and assign all weights to wo ==.Setk=1.

2. Form the prior estimate at #; by sampling from the proposal
distribution qix—,. The proposal distribution can be almost
arbitrary, a common choice being the state transition density,
ie. xgcll)k L~ [,

3. Modify the weights of the samples with the measurement like-
lihood:

e PO 1 6 (x|
W) Wik Pk 1 X )P WXk | X
Witk 770

(l)

After normalisation, the weighted samples represent the
posterior approximation.

4. Resample [66] if needed, increment k and continue from 2.

Particle filtering in its several forms has been successfully applied
to a range of positioning problems, including aircraft terrain naviga-
tion [6], car navigation with map-aided dead reckoning [34], robot
laser localisation [49], and simultaneous localisation and mapping
[22, 55] to name just a few.

In principle, particle filtering is a very flexible method because it
deals with distributions directly and any form of likelihood or state
transition probability is easy to implement. Also, particle filter
has proven (asymptotic) convergence properties [20], meaning that
increasing the number of particles gives more accurate approxim-
ations of the optimal posterior distribution, limited only by the
computation power in reserve. However, it is not easy to evaluate
what is a sufficient number of particles in a given situation to guar-
antee reasonable accuracy.
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In addition, particle filters run into remarkable difficulties whenever
measurement noises are much smaller than state noises, as is the
case in GPS positioning for instance [61]. In these cases, the volume
of state space where the posterior distribution has non-zero density
is a tiny fraction of the same for prior distribution, and thus very
large number of particles (or some special proposal distribution) is
needed to ensure that a representative number of particles survive
with a non-zero weight. Another possibility is to treat the almost
linear variables and measurements separately, leading to quasi-
linear or Rao-Blackwellised particle filter [69]. Cases with singular
or nearly singular likelihood distributions also require special treat-
ment and detract from the flexibility of the method.

4.3 Numerical filters

Miscellaneous collection of filters can be arrived at with other
choices of approximating density functions [16] or numerical inte-
gration methods [P3]. Once the density function family is chosen,
the corresponding filter usually arises quite naturally. Additional
shortcuts in computing the integrals are usually taken to reduce
computation load.

Among first examples was the point mass filter [10] that approxi-
mates pdf’s with point masses on a regular grid spanned over the
region of state space where there is “significant portion” of prob-
ability. With this approximation, integrals reduce to sums and can
be efficiently computed with discrete convolution.

For a long time, the computational requirements of the point-mass
approach made it unpractical [10, 79]. Towards the end of the
millennium, plentiful supply of computation power made this an
interesting research subject, and adaptive [12] as well as anticipative
[71] grid design methods have been explored.

Among the more exotic approaches to nonlinear filtering is the
differential geometric filter [47] that develops a manifold structure
for the space of (un-normalised) probability densities and reformu-
lates the filtering problem as finding projections on the manifold.
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General piecewise filters

One variant of the point mass approach is to approximate pdf’s as
piecewise constant functions instead of point masses [46]. Grid
design is similar to the point-mass method, but the required inte-
grals reduce into an efficiently computable form only in certain
special cases [P4].

In [P7], the idea was further generalised to a class of nonlinear
filters that approximate probability density functions with para-
metric functions defined piecewise over a finite of collection of
elements. If G is a collection of non-overlapping bounded elements
{G(i)cR4|i=1,...,n} whose union adequately covers the “inter-
esting region” of the state space, then any density p(x) can be
approximated as

ﬁ(x)=Z Xewx)m(i, x), 9)
i=1
where y¢(;) is the characteristic function of the element G(i) and
n(i,-) € Z is a function from the chosen approximation family. The
function family # could be, for example, the family of constant,
linear, delta-peak, exponential or truncated Gaussian functions.

The piecewise approximation (9) is constructed by projecting the
actual density function to the approximation space. Figure 5 illus-
trates a simple piecewise constant filter in one dimension with
projection steps inserted in different points.

piecewise constant
exact posterior posterior approximation

project
7N

mulllp\y

predict
7 N\
9701501 multlply

initial
exact prior and
measurement likelihood

piecewise constant prior piecewise constant posterior
and likelihood approximations approximation (two-step)

Figure 5: One-step (top) and two-step (bottom) piecewise filters.

28



The elements do not necessarily have to be of uniform shape or
regularly arranged, but simpler choices such as a rectangular grid
often result in simpler algorithms. To make computations feasible,
we often use a coarse grid to track the approximate modes of the
posterior and some more accurate method, such as denser local grid
or an iterative local search, to pinpoint more accurate estimates.

Depending on which approximation function family and projection
criteria are chosen and which steps involve intermediate projec-
tions, different approximate filters are obtained. The general formu-
lation of a two-step piecewise variant, outlined in Algorithm 3, will
lose considerable detail of the density functions in the projections,
butin certain cases allows for an effective implementation as shown
in [P7] for a few tractable combinations of approximation family and
projection criteria.

Algorithm 3: General two-step piecewise filter

1. Start with an initial distribution pg in the form (9). Set k = 1.

2. (Prediction) Form a new grid Gy to cover the interesting region
of the state space. Approximate the prior density

Nj—1
Prli—(xk) =ZJ pxi | Xk1) Thmajea (7, Xk—1) dXga
i=1JG

k—1(7)

in the form (9) with the piecewise functions defined as
Trik-1(2,7) = projy(ck(i)) ZT=10)F

3. (Update) Compute the new posterior approximation 7 (i, )
as the product of prior and projected likelihood:

Tiik(d,+) o T (2,7) PTOj 6, iy (P (Vi 17)) -

Normalise, and compute the mean and covariance estimates.

4. Increase k and repeat from Step 2.
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5 Benchmarking navigation filters

In this work, all numerical filters are seen as approximations to the
ideal Bayesian filter (Algorithm 1). A natural criterion for such filters
is the closeness of the computed posterior distribution to the ideal
Bayesian posterior, expressed through some suitable pdf distance
measure. In this section, we use the term filter to cover both the
algorithm and its numerical implementation, so that we do not
distinguish between errors caused by the theoretical algorithm, like
linearisation, and the ones resulting from its implementation on a
digital computer.

Figure 6 demonstrates why it is better to compare the posterior
distributions instead of just the mean estimates. The ideal distri-
bution in this case is bimodal, with one mode corresponding to
the true state and the other caused by the measurement geometry.
Note that without knowing the true track, there are no grounds for
excluding either mode as the ideal posterior already contains all the
information given by the measurements. Both filters A and B use
a Gaussian approximation of the posterior; filter A gives about the
correct mean and covariance while filter B is tracking one of the
modes of the ideal posterior.

ideal filter

true track

Figure 6: Hypothetical contour curves of posterior distributions given
by an ideal filter and two approximate filters for a bimodal
distribution.

Looking only at the error of the posterior mean, filter B seems
to be doing better as its mean estimate is very close to the true
state, in fact closer than that of the ideal posterior. Filter A, on the
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other hand, captures the first two moments of the ideal posterior
almost perfectly but still loses the information about its modes. A
comparison criterion that considers the complete posterior distri-
bution is thus needed to get a correct picture of the quality of the
filters’ current estimate. A third filter that could track both modes of
the ideal posterior would then be rated superior to both A and B.

5.1 Comparison criteria

Commonly used pdf distance measures relate to the difference of
the density or cumulative density functions of the distributions of
interest [31, 39]. Other distance functions contain ratios (Kullback-
Leibler, y?) or products (Bhattacharyya) of the densities or cumu-
lative densities. In either case, the scalar distance between two pdf’s
is defined as either the supremum or an integral over a function
defined over the whole state space, which presents numerical diffi-
culties in accurate implementation. Note also that distance meas-
ures involving density functions are not directly applicable to point-
mass or particle representations of pdf’s.

An obvious problem with comparing to the ideal posterior distribu-
tion is thatit is accurately known only in some special cases. Usually,
the best we can do is compute an offline reference solution with, say,
a particle filter using as many particles as our computational facil-
ities can handle in reasonable time. This still leaves the practical
problem of storing the (density estimates of the) reference solution,
and implementing the comparison. If feasible, the test bank should
also contain some cases where the optimal solution is analytically
available, such as linear Gaussian cases, so that the quality of the
reference solution itself can be monitored.

Another problem is that the posterior density approximation of the
filter to be benchmarked is rarely explicitly available. Particle filters,
for example, propagate a sample from the posterior distribution,
and it is not a trivial task to derive the density function from it. The
cumulative density function, though, is well defined and straight-
forward to compute. As an additional problem, most of the filters
widely used in engineering do not even try to estimate the posterior

31



mean and covariance in the Bayesian sense, but might for example
track the mode of the posterior and the squared error of the estimate.
In these cases, we just have to interpret the results given by the filter
as if it is approximating the posterior with a Gaussian distribution
with the given mean and covariance.

Even if a filter propagates the mean and covariance of the posterior
distribution correctly, we still do not know what the posterior is,
only its first two moments. Figure 7 demonstrates density functions
of some symmetric one-dimensional distributions having the same
mean and variance. One can imagine more intricate examples if the
symmetry is not required, or in multiple dimensions.

(a) (b) H (©) N ﬂ (d)

Figure 7: Examples of symmetric distributions with same mean and
variance: a) normal, b) uniform, ¢) unimodal Gaussian
mixture, d) bimodal Gaussian mixture.

To summarise, it could be said that the three problems in computing
the distance of a posterior approximation to the ideal one are:

1. the (cumulative) density of the ideal posterior is intractable,

2. the (cumulative) density of the posterior approximation is
intractable, and

3. even if we knew the (cumulative) densities of the two distribu-
tions, computing their distance would be intractable.

Instead of comparing the full distributions, the following figures of
merit (or demerit) are easier to compute during simulation, and
cover different aspects of the filter performance.

Error from true track —as well as its mean or RMS value or percent-
iles — can be evaluated in simulation tests where the true track
is known. When working with real data, obtaining the ground
truth for all state variables is a problem and art form in itself.
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Note that the error consists of the error inherent to the data
(caused by measurement errors and insufficient geometry)
plus error caused by the approximations made by the filter.
These two error types might even cancel each other out.

Consistency is a function of the error from true track and the filter’s
covariance estimate. The general inconsistency test [R6] gives
a bound for the normalised error that is valid for any distribu-

tion with the given covariance:
/d
Z — S a,
a

d

where %; and ¥ are respectively the state and covariance
estimates, d is the dimension of the state, and « is the risk
level of the test. Even in most pathological cases, the fraction
of errors exceeding this bound should not be larger than the
risk level.

1 X
Zkz(xk — Xi)

Error from reference is the distance of the estimate from a refer-
ence solution, an “optimal” mean estimate conditioned on
the measurements. In most of the tested situations with six-
dimensional state, particle filters with 1-5 million particles
produced an acceptable reference solution. Note that only
point estimates of the reference solution need to be stored,
not the complete posterior density functions. If the reference
is sufficiently close to the optimal solution, this criterion is
equal to the error caused by the approximation process and
is not contaminated with the problem-dependent noise like
the error from true track.

Computation time is the relative time per fix of the implemented
algorithm, and depends on the amount of skill and effort put
in the programming, as well as to some extent on the proper-
ties of the memory management and cache structure of the
platform used. The order of magnitude still gives some indica-
tion of the filter’s performance.
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5.2 Combining the criteria

As some filters fare better with respect to one criterion and some
to the other, it is difficult to put the filters into an explicit order of
quality to decide which one is the “best”. In [P5], we call a filter
Pareto optimal (with respect to a set of filters and a set of criteria)
if any of the other filters that is better in some criteria does worse in
some other criteria. Conversely, if a filter is not Pareto optimal, then
some other filter is at least as good in all criteria. The concept of
Pareto optimality might not help in deciding which filter works best,
but it indicates which filters certainly do not.

Figure 8 depicts the trade-off between accuracy and computation
time. The data comes from a semi-realistic MATLAB simulation test-
bench used in [P4, P5, R5, R6, R7, R8], where a number of different
filters with varying parameters were run over a simulated dataset
of 60000 distinct time instants. The resulting square root of mean
squared 2D errors (rms) is plotted against the relative computa-
tion time. Pareto optimal filters are marked with crosses. Piece-
wise continuous grid filter and point mass filter, although slow and
with very rough accuracy, are nevertheless Pareto optimal because
of their near-zero inconsistency. The figure also shows that with
these simulation parameters, particle filters with varying sizes seem
to give the best performance in terms of computation time versus
the rms error.

6 Conclusions and future work

When building mathematical models of real-world problems, it is
crucial to aim for the simplest and most general form that still
enables one to draw conclusions about the model’s real-world coun-
terpart. Another important concept is to consider a question and its
answer separately, for the question might be very simple even when
the answer is prohibitively complex or intractable to compute.

This work began from a specific problem with a specific positioning
system, but the focus expanded to nonlinear filtering as that seems
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Figure 8: Mean RMS figures of different filters against computation
time. Crosses denote “Pareto optimal” filters. [P5]

to contain most of the situations of interest as special cases, and
has an elegant optimal yet intractable solution in the ideal Bayesian
filter.

Theoretical and practical knowledge of the strong and weak points
of different nonlinear filters enable the development of so-called
hybrid filters that optimally combine different types or implementa-
tions of filters. For this end, a comprehensive simulation test bench
was developed along with different measurement models and navi-
gation filters.

Based on quite extensive testing, it seems that a filter that approxi-
mates posterior distributions correctly will exhibit smaller average
rms error when run on enough test cases than some other filter with
inferior posterior distribution approximation. It might also be that
the computational work in comparing the whole distributions for a
short test track is of the same order as computing the rms errors for
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a large test set. Even then, checking the correctness of approximate
posterior densities over a short test track gives valuable qualitative
information of the behaviour of the filter that can only be guessed
at by looking at the averages of a large number of runs.

While most of the treatment of nonlinear filters in this work is
based on the Bayesian approach to estimation and filtering, this
is not the only plausible interpretation. Similar algorithms can be
developed from frequentist or deterministic viewpoint [78, 85], and
with prudently chosen assumptions even algorithms equivalent to
the Bayesian ones [73]. A possible weakness of the Bayesian view-
point is that the densities of measurement and state noises are
assumed known, which is not often the case with real-world data.
Therefore, in addition to studying deterministic filters that require
less assumptions about the noise statistics, the model mismatch
properties of Bayesian filters, their robust extensions [13, 60] as well
as outlier and error detection [48, 68] are an important area of future
additional research.

One more thing to consider is the validity of the dynamics model.
Brownian motion model is convenient for theoretical work, but
pedestrians or vehicles very rarely move anything like that. Alterna-
tive dynamics models usually require additional state variables such
as accelerations [44], or dismissing some of the convenient assump-
tions of the state model like the additivity of state noise or its inde-
pendence of the state.

Some of the aspects not yet touched in this work are the Cramér-
Rao bounds for sequential estimation [81], [70] and for point-mass
and particle filters [6]. Firstly, the computation of the bound seems
to require the accurate posterior density that is unknown in the
first place. Secondly, it is not entirely clear how the Cramér-Rao
approach relates to the Bayesian framework, and it might be that the
idea of best possible estimation accuracy in this context is already
captured by the optimal Bayesian posterior that we approximate
with our reference solution. The potentially more feasible Barankin
bound [5] has been applied to static positioning [45] but has not
been generalised to the filtering problem yet.
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For maximal use of prior information, digital street maps can
be integrated into position filtering. Depending on what can be
asserted about the receiver’s mode of transport (e.g. on bicycle or
in car), street maps may be used to considerably constrain the set
of possible positions. A greater challenge would be to produce
and exploit similar maps for indoor and underground environments.
However, it can be assumed that once the data representation and
storage problems are overcome, such information will be relatively
easy to incorporate into filtering.

Another future challenge is cooperative positioning [59] where a
number of mobile devices share measurements or even join forces
to solve for unknown beacon positions and/or error models. This
problem fits nicely into the Bayesian filtering framework, but poses
major challenges in practical implementation of the algorithms as
well as the implied privacy considerations.

37






[1]

2]

[3]

[4]

[5]

[6]

[7]

References

N. Agarwal, J. Basch, P Beckmann, P. Bharti, S. Bloebaum,
S. Casadei, A. Chou, P. Enge, W. Fong, N. Hathi, W. Mann,
A. Sahai, J. Stone, J. Tsitsiklis, and B. V. Roy. Algorithms for GPS
operation indoors and downtown. GPS World Magazine, 2002.

K. Alanen, L. Wirola, J. Képpi, and J. Syrjarinne. Mobile RTK:
Using low-cost GPS and internet-enabled wireless phones.
Inside GNSS, 1:32-39, May/June 2006.

M. R. Anderson, T. M. Tran, R. McCord, B. Yang, and A. Babich.
Direct position solutions from mixed ranging measurements.
In Proceedings of ION GNSS 2005, pages 1417-1424, Long
Beach, 13-16 September, 2005.

S. Bancroft. An algebraic solution of the GPS equations. IEEE
Transactions on Aerospace and Electronic Systems, 21(7):56-59,
1986.

E. W. Barankin. Locally best unbiased estimates. The Annals of
Mathematical Statistics, 20(4):477-501, 1949.

N. Bergman. Posterior Cramér-Rao bounds for sequential esti-
mation. In A. Doucet, N. de Freitas, and N. Gordon, editors,
Sequential Monte Carlo Methods in Practice. Springer-Verlag,
New York, 2001.

V. D. Borisevich, V. G. Potemkin, S. P. Strunkov, and H. G.
Wood. Global methods for solving systems of nonlinear alge-

39



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

braic equations. Computers and Mathematics with Applica-
tions, 40:1015-1025, 2000.

J. Borkowski, J. Niemeld, and J. Lempidinen. Performance of
Cell ID+RTT hybrid positioning method for UMTS radio net-
works. In Proceedings of the Fifth European Wireless Conference,
Feb 24-27, 2004, Barcelona, 2004.

R. Bryant. Assisted GPS using cellular telephone networks for
GPS Anywhere. GPS World Magazine, pages 40-45, May 2005.

R. S. Bucy and K. D. Senne. Digital synthesis of non-linear fil-
ters. Automatica, 7(3):287-298, 1971.

H. Biihler, H. Bonek, and B. Nemsic. Path tracing: estimation
of time dispersion for mobile radio channels. Technical Report
COST 231 TD(94) 034, European Cooperation in the Field of
Scientific and Technical Research, Lisboa, 1994.

Z.Caij, E L. Gland, and H. Zhang. An adaptive local grid refine-
ment method for nonlinear filtering. Research raport 2679,
INRIA Rennes, 1995.

A. Carosio, A. Cina, and M. Piras. The robust statistics method
applied to the Kalman filter: theory and applications. In Pro-
ceedings of ION GNSS 2005, pages 525-535, Long Beach, 13-16
September, 2005.

CellSpotting.com. A global location based information ser-
vice. Accessed 3 Apr 2007. URL http://www.cellspotting.
com/.

R. Chen and J. S. Liu. Mixture Kalman filters. J. Roy. Statistic
Soc. B, 62:493-508, 2000.

Z. Chen. Bayesian filtering: from Kalman filters to particle fil-
ters and beyond. Technical report, Adaptive Systems Labora-
tory, McMasters University, 2003.

Chinese Defence Today. Compass navigation satellite system
(BeiDou-2), 14 April 2007. URL http://www.sinodefence.
com/strategic/spacecraft/beidou?2.asp.

40


http://www.cellspotting.com/
http://www.sinodefence.com/strategic/spacecraft/beidou2.asp
http://www.sinodefence.com/strategic/spacecraft/beidou2.asp

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Cisneros, D. Kelley, and L. A. Greenbaum. An urban position-
ing approach applying differential methods to commercial FM
radio emissions for ground mobile use. In Proceedings of 50th
ION Annual Meeting, June 6-8, 1994, Colorado Springs, 1994.

J. Collin. Investigations of Self-Contained Sensors for Personal
Navigation. Dissertation, Tampere University of Technology,
2006.

D. Crisan. Particle filters a theoretical perspective. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo
Methods in Practice, pages 17-41. Springer-Verlag, 2001.

E Daum. Nonlinear filters: beyond the Kalman filter. [EEE
Aerospace & Electronical Systems Magazine, 20(8):57-69, 2005.

A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-
Blackwellised filtering for dynamic Bayesian networks. In Pro-
ceedins of the 16th Conference on Uncertainty in Artificial Intel-
ligence, pages 176-183, 2000.

A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential
Monte Carlo Methods in Practice. Springer-Verlag, 2001.

J. Dunik, M. Simandl, O. Straka, and L. Kral. Performance ana-
lysis of derivative-free filters. In Proceedings of the 44th IEEE
Conference on Decision and Control, and the European Con-
trol Conference 2005, pages 1941-1946, Seville, Spain, Decem-
ber 12-15 2005.

P. Enge, T. Walter, S. Pullen, C. Kee, Y.-C. Chao, and Y.-J. Tsai.
Wide area augmentation of the Global Positioning System. Pro-
ceedings of the IEEE, 84(8):1063-1088, 1996.

J. A. Farrell and M. Barth. The Global Positioning System & Iner-
tial Navigation. McGraw-Hill, 1999.

I. Fernandez-Corbaton, A. Vayanos, P. Agashe, and S. Soliman.
Method and apparatus for determining an algebraic solution
to GPS terrestrial hybrid location system equations. US Patent
6,289,280 B1, Sep. 11, 2001.

41



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Fletcher. Practical methods of optimization. John Wiley &
Sons, Chichester, second edition, 1987.

D. Fox, J. Hightower, H. Kauz, L. Liao, and D. J. Patterson.
Bayesian techniques for location estimation. In Proceedings
of Workshop on Location-aware Computing, part of UBICOMP
Conference, Seattle, October 2003, pages 16-18, 2003.

S. Fujioka, M. Tanikawara, M. Nishiyama, Y. Kubo, and S. Sug-
imoto. Comparison of nonlinear filtering methods for INS/GPS
in-motion alignment. In Proceedings of ION GNSS 2005, pages
467-477, 2005.

A. L. Gibbs and E E. Su. On choosing and bounding probability
metrics. International Statistical Review, 70(3):419-435, 2002.

N.J. Gordon, D.]J. Salmond, and A. E M. Smith. Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. [EE
Proceedings-F (Radar and Signal processing), 140(2):107-113,
1993.

E Gustafsson and E Gunnarsson. Mobile positioning using
wireless networks. IEEE Signal Processing Magazine, July:41-
53, 2005.

E Gustafsson, E Gunnarsson, N. Bergman, U. Forssell, J. Jans-
son, R. Karlsson, and P-J. Nordlund. Particle filters for posi-
tioning, navigation and tracking. IEEE Transactions on Signal
Processing, 50(2), 425-437 2002.

G. Hein, B. Eissfeller, V. Oehler, and J. Winkel. Synergies
between satellite navigation and location services of terrestrial
mobile communication. In Proceedings of the ION GPS 2000,
pages 535-544, 2000.

K. Heine. Unified framework for sampling/importance resam-
pling algorithms. In Proceedings of Fusion 2005, July 25-29,
2005, Philadelphia, 2005.

42



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

B. Hofmann-Wellenhof, K. Legat, and M. Wieser. Navigation:
principles of positioning and guidance. Springer-Verlag, New
York, 2003.

ICD. NAVSTAR GPS space segment/navigation user interfaces.
interface control document (ICD), ARINC Research Corpora-
tion, Fountain Valley, California, 2000. Rev. C (Public Release
Version).

D. H. Johnson and S. Sinanovic. Symmetrizing the Kullback-
Leibler distance, 2001. URL http://cmc.rice.edu/docs/
docs/Joh2001Mar1Symmetrizi.pdf. Submitted to IEEE
Transactions on Information Theory.

R. E. Kalman. A new approach to linear filtering and prediction.
Transactions of ASME, Journal of Basic Engineering, 82:35-45,
1960.

E. D. Kaplan, editor. Understanding GPS: principles and appli-
cations. Artech House, Norwood, 1996.

D. Kapur, T. Saxena, and L. Yang. Algebraic and geometric rea-
soning using Dixon resultants. In Proceedings of ACM Interna-
tional Symposium on Symbolic and Algebraic Computation '94.
ACM Press, 1994.

M. Khalaf-Allah and K. Kyamakya. Database correlation using
Bayes filter for mobile terminal localization in GSM suburban
environments. In Proceedings of 3rd Workshop on Positioning,
Navigation and Communication 2006 (WPNC’06), Hannover,
16 March, 2006.

S. Kitao, Y. Kubo, Y. Muto, and S. Sugimoto. Dynamical models
with constraint for precise RTK positioning. In Proceedings of
ION GNSS 2005, pages 1555-1563, Long Beach, 13-16 Septem-
ber, 2005.

H. Koorapaty. Barankin bounds for position estimation using
received signal strength measurements. In Proceedings of the
59th IEEE Vehicular Technology Conference, pages 2686-2690,
17-19 May 2004.

43


http://cmc.rice.edu/docs/docs/Joh2001Mar1Symmetrizi.pdf
http://cmc.rice.edu/docs/docs/Joh2001Mar1Symmetrizi.pdf

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

S. C. Kramer and H. W. Sorenson. Recursive Bayesian estima-
tion using piece-wise constant approximations. Automatica,
24(6):789-801, 1988.

R. Kulhavy. Recursive nonlinear estimation: geometry of a
space of posterior densities. Automatica, 28(2):313-323, 1992.

H. Kuusniemi. User-level reliability and quality monitoring in
satellite-based personal navigation. Dissertation, Tampere Uni-
versity of Technology, 2005.

C. Kwok, D. Fox, and M. Meild. Real-time particle filters. Pro-
ceedings of the IEEE, 92(2), 2004.

J. L. Leva. An alternative closed-form solution to the GPS
pseudo-range equations. IEEE Transactions on Aerospace and
Electronic Systems, 32(4):1430-1439, 1996.

D. Manocha. Efficient algorithms for multipolynomial result-
ant. The Computer Journal, 36(5):485-496, 1993.

M. McGuire, K. N. Plataniotis, and A. N. Venetsanopoulos.
Estimating position of mobile terminals from path loss
measurements with survey data. Wireless Communications
and Mobile Computing, 3:51-62, 2003.

Merriam-Webster. Merriam-Webster’s Online Dictionary.
Accessed 8 May 2007. URL http://www.m-w.com/.

P. Misra and P. Enge. Global Positioning System: Signals,
Measurements, and Performance. Ganga-Jamuna Press, 2nd
edition, 2001.

M. Montemerlo and S. Thrun. Simultaneous localization
and mapping with unknown data association using FastSLAM.
In Proceedings of the 2003 IEEE International Conference on
Robotics & Automation, Taipei, Taiwan, Sept 1419, 2003, pages
1985-1991, 2003.

J. M. Ortega and W. C. Rheinboldt. Iterative solution of non-
linear equations in several variables. Academic Press, Inc.,
Orlando, 1970.

44


http://www.m-w.com/

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

OSM. Openstreetmap project. Accessed 3 Apr 2007. URL
http://www.openstreetmap.org/.

B. Parkinson and J. Spilker, editors. Global positioning system:
theory and applications Volume I. Charles Stark Draper Labora-
tory, Inc., Cambridge, 1996.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses,
and N. S. Correal. Locating the nodes. IEEE Signal Processing
Magazine, July:54-69, 2005.

T. Perdld and R. Piché. Robust Extended Kalman filtering
in hybrid positioning applications. In Proceedings of the
4th Workshop on Positioning, Navigation and Communication
(WPNC’07), March 22, pages 55-64, 2007.

D. Petrovich and R. Piché. A comparison of particle filters for
personal positioning. In VI Hotine-Marussi Symposium of The-
oretical and Computational Geodesy, Wuhan, China, May 29 —
June 2, 2006.

M. Phatak, M. Chansarkar, and S. Kohli. Position fix from three
GPS satellites and altitude: a direct method. IEEE Transactions
on Aerospace and Electronic Systems, 36(1):350-354, 1999.

Place Lab. Place lab — a privacy-observant location system.
Accessed 7 May 2007. URL http://placelab.org.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical recipes: the art of scientific computing. Cambridge
University Press, Cambridge, 1987.

M. Rabinowitz and J. J. Spilker, Jr. A new positioning system
using television synchronization signals. IEEE Transactions on
Broadcasting, 51(1):51-61, 2005.

B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman
Filter, Particle Filters for Tracking Applications. Artech House,
Boston, London, 2004.

45


http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://placelab.org

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

T. Roos, P. Myllymédki, and H. Tirri. A statistical modeling
approach to location estimation. IEEE Transactions on Mobile
Computing, 1(1):59-69, 2002.

H. Sairo. Error Detection in Personal Satellite Navigation. Dis-
sertation, Tampere University of Technology, 2006.

T. B. Schon. Estimation of Nonlinear Dynamic Systems: Theory
and Applications. Dissertation, Linkdpings universitet, 2006.

M. Simand], J. Kralovec, and P. Tichavsky. Filtering, predictive,
and smoothing Cramér-Rao bounds for discrete-time nonlin-
ear dynamic systems. Automatica, 37:1703-1716, 2001.

M. Simandl, J. Kralovec, and T. Soderstréom. Anticipative grid
design in point-mass approach to nonlinear state estimation.
IEEE Transactions on Automatic Control, 47(4):699-702, April
2002.

smart2go. Smart2go — share the world with your friends.
Accessed 22 May 2007. URL http://www.smart2go.com/.

P. Swerling. Modern state estimation methods from the view-
point of the method of least squares. IEEE Transactions on
Automatic Control, 16(6):707-719, December 1971.

J. Syrjdrinne. Possibilities for GPS time recovery with GSM net-
work assistance. In Proceedings of the ION GPS 2000, pages 955—
966, 2000.

J. Syrjarinne. Wireless-assisted GPS, keeping time with mobiles.
GPS World Magazine, pages 22-31, January 2001.

J. Syrjarinne. Studies of modern techniques for personal posi-
tioning.  Dissertation, Tampere University of Technology,
Tampere, 2001.

J. Syrjdrinne and L. Wirola. Setting a new standard. Assisting
GNSS receivers that use wireless networks. Inside GNSS, pages
26-31, October 2006.

46


http://www.smart2go.com/

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

A. Tarantola. Popper, Bayes and the inverse problem. Nature
Physics, 2:492-494, August 2006.

P. Terwiesch and M. Agarwal. A discretized nonlinear state
estimator for batch processes. Computers & Chemical Engin-
eering, 19(2):155-169, 1995.

C. Tiberius. Navigation — the accuracy game. In Proceedings
of the European Navigation Conference GNSS 2003, Apr 22-25,
2003, Graz, 2003.

P. Tichavsky, C. H. Muravchik, and A. Nehorai. Posterior
Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE
Transactions on Signal Processing, 46(5):1386-1396, 1998.

E Toran-Marti, J. Ventura-Traveset, E. Gonzalez, M. Toledo,
A. Catalina, C. Barredo, and A. Salonico. Positioning via Inter-
net: SISNeT catches GPS in urban canyons. GPS World, 15(4):
28-35, 2004.

WiGLE. WiGLE wireless geographic logging engine. Accessed 3
Apr 2007. URLhttp://wuw.wigle.net/.

G. Wolfle, R. Hoppe, D. Zimmermann, and E M. Landstor-
fer. Enhanced localization technique within urban and indoor
environments based on accurate and fast propagation models.
In Proceedings of European Wireless 2002, Firenze, Feb 2002.

P. Xu. Nonlinear filtering of continuous systems: foundational
problems and new results. Journal of Geodesy, 77:247-256,
2003.

47


http://www.wigle.net/




PUBLICATION

Niilo Sirola and Jari Syrjdrinne: GPS position can be computed
without navigation data. In Proceedings of the 15th International
Technical Meeting of the Satellite Division of the Institute of Navi-
gation ION GPS 2002, Portland, Oregon, Sept. 24-27, 2002, pages
2741-2744.

49







GPS Position Can Be Computed
without the Navigation Data

Niilo Sirola, Tampere University of Technology, Tampere, Finland

Jari Syrjérinne, Research and Technology Access, Nokia Mobile Phones, Finland

BIOGRAPHY

Niilo Sirola is a M.Sc. student at Tampere University of
Technology majoring in technical mathematics and
software design. He has been researching assisted GPS
positioning algorithms since 2000.

Jari Syrjérinne received his M.Sc. degree in 1996 and
Doctor of Technology degree in 2001 from Tampere
University of Technology, Finland. Since 1999, he has
been working for Nokia Mobile Phones where he also
finished his doctoral thesis about modern techniques for
personal positioning. His current research topics include
cellular positioning, sensor fusion, and AGPS.

ABSTRACT

This paper presents an algorithm for computing a GPS
receiver's position and the current time from C/A-code
phase measurements to at least six satellites and a set of
valid satellite ephemerides. Reference position and
reference time are not necessary. The process uses a cost
function having numerous local minima in addition to the
global minimum. An exhaustive search over the 5-
dimensional time-position-bias search space will reliably
find the global minimizer, and thus solve the approximate
position and time. Introducing a reference time within one
minute from the true time resulted in worst-case
computation time of a few seconds. If the current pseudo-
range correction parameters are available, the accuracy of
this method is comparable to that of the conventional
pseudo-range methods. As a conclusion, an accurate GPS
position can be solved in a reasonable time even without
the navigation data or precise system time.

INTRODUCTION

The method presented in this paper is intended for GPS
positioning in weak signal situations where the satellite
signals are so noisy that C/A codes can be tracked but the
navigation messages are beyond recognition [1,2,3]. The
ephemeris and pseudo-range correction parameters could
be already in the receiver's memory, or they could be
acquired via e.g. cellular network along with a delayed
reference time [1]. A local positioning algorithm for this

situation that requires initial time and position
approximations has already been presented in [4]. This
paper describes a global extension to the local algorithm.

BACKGROUND: THE LOCAL ALGORITHM
Use the following symbols:

t, r,b system time, 3D user position and user clock
bias to be solved,
o C/A code phase measurement to ith satellite,

& approximate ranging error compensation,

s (1) position of ith satellite at system time instant ¢,
and

T; approximate time-of-travel from ith satellite to
user.

The range fit to the ith satellite is defined by
s, (-1, )—rH)

where A =300 km is the length of the C/A code
sequence and the lambda-fraction operator is defined by

(1) g, (t.r,b)=frac, (¢, +€ +b—

2) frac, x £ x—Around%.

Note that the user clock bias b can be restricted between
—+A and 1A since the fraction operator eliminates

integer multiples of A.

t 9 (X)
Denoting x=|r | and q(x)=| |, we can write the
b q,(x)

sum of squares cost function

3 s(x)=%la(x)

2
>

which has a minimum at the true position (7,R,B).

When n > 5 and the satellite geometry is non-pathological,



i.e. both satellite positions and velocities are non-coplanar,
this minimum is the unique global minimum.

Figure 1 shows an example of the cost function projected
into two dimensions. There are various local minima in
addition to the global minimum at the true position. If any
gradient-based minimization method is initiated far
enough from the global minimum, the search will stray
into one of the local minima and not be able to find the
true position.

Range fitting cost function, 6 satellites

-500 0

Position error / km -1000 -15 e

System time error / min

Figure 1: Two-dimensional slice of the cost function

An initial point (Z,,r,,b,) lies "close enough" to the

global minimum (7, R, B) at least when
4 K|T 1| +[|R )| +]|B-b)| < LA,

where k= 710m/s (maximum Doppler velocity) [4]. If
this condition is satisfied, then the true position can
always be reached with just a couple of Gauss-Newton
steps given by

&) .
% =%, - Va(x) Va(x)] Va(x,) a(x,)

GLOBAL ALGORITHM

The local algorithm finds the correct solution given an
initial point inside the "attraction basin" of the true
solution. Next, we construct a global extension of the local
method. The purpose of the global phase is to launch the
local search with different starting points, and identify
whether the resulting point is the global minimum or not.

Fortunately, it is easy to detect when the search is going to
fail, because the cost function is smooth and convex near
the true solution. Most often, when started outside the
attraction basin, the Gauss-Newton search takes so large a
step that it would take the solution outside the region
defined by (4). This is a clear indication of failed search.

Also, the cost function value at the true position is
considerably smaller than in any of the local minima.

The search space

The search space is five-dimensional, consisting of the
system time a.k.a. GPS time, 3D position, and user clock
bias. Under the assumption that the satellite ephemeris is
valid, the system time is bound within two or three hours
from the time-of-ephemeris, depending on whether the
ephemeris is fitted for four or six hours. The user is
assumed to be on the Earth surface or within couple of
kilometers above or below it, and the clock bias range

equivalent is by definition inside 1A .

The brute-force approach is to span a grid over the search
space such that at least one grid point necessarily satisfies
the condition (4). If the system time is divided into
intervals of two minutes, it suffices to divide the surface
of the Earth into squares 100km across and the bias into
intervals of 100km. This results in over 15 million distinct
points to inspect. We can start the local search from every
point and pick the resulting minimum with the smallest
cost function value as the solution.

The computational load of the brute-force approach is
roughly equal to 15 million point position fixes. This is
hardly practical. There are two ways to accelerate the
search: reduce the number of grid points, and speed up the
local search.

Satellite visibility

Instead of searching the whole Earth, we can restrict the
user position to the area where all the measured satellites
are above the horizon. Figure 2 demonstrates the visibility
region of three satellites. The point r on the Earth surface
belongs to the visibility area roughly when

T 2 .
(6) s, r=r,, Vi.

BE

Figure 2: Satellite visibility region

In case of eight satellites, the visibility region has an
average area of 30 million square kilometers, which is



about 5% of the total Earth surface area. The more
satellites are available, the smaller the visibility area, and
thus less grid points to search. This suggests that all the
available satellites should be used in this visibility search
phase, even if some of those have such a low signal-to-
noise ratio that they should not be used in the actual
position solution.

In practice, it is most efficient to divide the four-hour
system time span into intervals of about 2 minutes and
search the whole visibility region of one interval before
moving to the next one.

Gradual local search

Secondly, we try to reduce the time spent inspecting one
point. Instead of executing the full local search at every
point, we try some heuristic methods to spot and eliminate
the "bad" points as fast as possible, leaving us hopefully
with just one point that satisfies all the conditions and is
the true solution.

First, given time and position, we check if there is a bias
value such that all range fits g; have absolute value smaller
than some pre-defined constant gy.. The denser the
search grid is, the lower value can be set for gpyes
However, if g is too small the search might miss the
true position.

If a good initial bias was found, we launch a rough local
search from the obtained point. This phase uses roughly
approximated cost function and takes just a few iteration
steps to check whether the search converges or not. The
search is terminated if the iteration step is too large and
would take the solution outside of the assumed attraction
basin or too far from the Earth surface.

Rough search initiated inside the attraction basin of the
true solution will produce a position estimate with an
accuracy of a few kilometers. However, a few additional
local minima are usually found.

In the final phase, the full-precision local search is
launched starting from the coarse minimum. Some of the
searches fail to converge, but most of them produce a
local minimizer of the cost function. Fortunately, the cost
function value at the global minimum is considerably
smaller than in any of the local minima. If f is below a
threshold value calculated from the chi-square
distribution, we have found the true position, and stop the
search.

Reference position or time

It is also possible to use any kind of additional position or
time information to further restrict the search space, e.g.
cell coverage if cellular base station coordinated are
available. Usual cell ranges are within few tens of
kilometers in rural area and few kilometers in more urban
areas.

Wireless assistance can also include a coarse position
estimate, which naturally can also be used. In this case,

the position search space reduces to just one point and
only the correct time has to be found. Conversely, roughly
known system time restricts the system time search to just
one two-minute interval.

TESTING

The proposed methods were implemented in Matlab for
testing and simulations. Actual ephemeris from the
morning of May 16" 2001 was used, but all the
measurements were simulated.

Figure 3 depicts a user in Tampere, Finland using
satellites 1, 6, 10, 17, 24, and 30 on May 16™ 2001 at 6:12
UTC. The figure shows the edge of the visibility region of
the satellites at the time and the points for which the initial
bias was found as red circles. The rough local search from
these points produced six solution candidates, marked
with blue crosses. Only one point, the actual user position,
satisfied the cost function threshold after the refined local
search, and it is marked in the figure as a blue asterisk.
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Figure 3: Visibility region, position candidates and
true position (Background: Day Earth Texture Map
©2002 The Living Earth, Inc.)

We also studied the time Matlab spent computing a single
position fix. While this does not predict the actual DSP
load, it will give some overall insight of the complexity of
the problem. Figure 4 shows statistics about the time-per-
fix as a function of satellites used. The more satellites are
available, the smaller the satellite visibility region gets
and thus the number of possible solutions to check
decreases. The position search is terminated as soon as a
satisfactory solution is found, which could with good luck
happen with very first points checked, or with bad luck
the last one. Thus, the total computation times vary from a
fraction of a second up to minutes. Overall, it seems that
at least eight satellites are required to fix the position in
reasonable time. The maximum observed positioning time
for seven satellites was 2.6 minutes, and for six satellites
over 7 minutes.
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Figure 4: Computation time using just satellite
visibility region

Finally, we also experimented with initial time known
within one minute. This is a very modest requirement for
timing assistance, and even the receiver's internal clock
should be able to meet this requirement. With this
information, the computation time is reduced by two
orders of magnitude (Figure 5).
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Figure 5: Computation time assuming reference time
within one minute

CONCLUSIONS

As a conclusion, an accurate GPS position can be solved
without the navigation data and without accurate time
assistance from the network, sometimes even in a
reasonable time. The receiver still needs the ephemeris
parameters and the pseudo-range correction parameters,
but they are valid for hours after reception and thus easy
to deliver to the receiver in time. In fact, there already are
cellular standards for US CDMA, US TDMA, and
European GMS and UMTS systems for network
assistance messages containing these information
elements [5,6]. The presented method makes it possible to
solve GPS position with rather modest assistance.

In comparison to the conventional GPS and AGPS
(Assisted GPS) or WAG (Wireless Assisted GPS)
solutions, this method has several potential advantages.
Most importantly, GPS navigation becomes possible in
some bad signal conditions, even with time assistance
significantly worse than the 1.5 or 3 seconds required by
the earlier solutions [2, 3]. Additionally, while the
conventional receiver must listen to at least a few seconds
of the navigation message in order to acquire the system
time, this algorithm can start calculating as soon as the
assistance data is present.

The drawback is, evidently, the increased requirement of
computational power at least in the case where even the
coarse reference time is unavailable.

When compared to the conventional least squares
pseudorange positioning method, range fitting produces
somewhat less accurate position fixes due to the system
time and thus satellite positions being solved inaccurately
[4]. However, the accuracy difference is marginal and
negligible in practice since it will be buried in multipath
etc. especially in weak signal situations.

Another downside of the presented method is that exact
GPS time cannot be solved thus not making it possible to
acquire accurate time from GPS. On the other hand, exact
time is not needed in navigation applications or in
emergency call positioning in which only good coverage
and rapid time-to-fix will make a difference.
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A Versatile Algorithm for
Local Positioning in Closed Form

Niilo Sirola, Institute of Mathematics, Tampere University of Technology, Finland

ABSTRACT

This paper presents an algorithm for computing the intersec-
tions of three surfaces that are either planes or quadrics of
revolution. The algorithm is directly applicable to calculating
position from various combinations of range and pseudo-
range measurements. With a locality assumption, the sys-
tem is reduced into a simplified form that is easy to solve
analytically.

The presented algorithm can be used as a preliminary step
to obtain an optimal set of starting points for least-squares
iteration. The testing section presents an example of how
the algorithm can be used to augment the conventional it-
erative least-squares method in the presence of a two-fold
ambiguity.

INTRODUCTION

This paper describes a versatile local closed-form
point position solution that can be computed from var-
ious minimally determined combinations of range and
pseudorange measurements. These measurements
are interpreted as quadratic surfaces and planes,
whose intersections coincide with the position solu-
tions.

A minimally determined system of quadratic surfaces
in three dimensions may have up to nine distinct solu-
tions. In satellite positioning, only one of the different
solutions is terrestrial and others can be ruled out [4].
This is not necessarily the case when some or all of
the positioning stations are terrestrial.

The widely used iterative least-squares method pro-
duces just one solution, usually the one closest to the
starting point of the iteration. Closed-form methods,
on the other hand, calculate all solutions ensuring that
the true solution is not overlooked.

There already exist various closed-form methods that
can handle homogenous measurements from one
type of stations [1, 5]. There also are methods that
cover some specific combinations [2, 7]. The method

described in this paper, however, can be applied to
almost any combination of station and measurement
types. A general minimally determined set of mea-
surements is transformed into a unified form, which
can be easily solved.

LOCAL POSITIONING

The novel idea in this contribution is to combine the
closed-form analytic solutions with the concept of local
positioning.

In the local positioning scheme, it is assumed that a
rough position of the user is already known. In the
case of a cellular telephone, for example, the position
of the phone is known to lie inside the coverage area
of the serving base station. The area inside which the
user is known to lie is called the local area.

The precise 3D position of the user inside the local
area is then solved from a set of measurements to
positioning stations. Stations can include positioning
satellites, cellular base stations, or other suitable bea-
cons with known locations.

The stations are classified into local and distant sta-
tions. A station is considered distant if it is so far
away that the direction from user to the station is con-
stant over the whole local area. This allows for the lin-
earization of the measurements to the distant station.
A typical example of a distant station is a positioning
satellite. Another example is the altitude than can be
modelled as a range measurement to the center of the
Earth, which is distant in most settings and can thus
be linearized.

The stations that are not distant are called local sta-
tions. They are relatively close to the user and the
directions to the stations can change drastically within
the local region.

The threshold distance dividing the stations to local
and distant ones depends on the size of the local area
and the level of linearization error that we are ready to



accept. Take, for example, a mobile cell with a radius
of 3 km. If we allow a maximum of 10 meters of lin-
earization error in the measurements, then all stations
farther than 450 km away can be considered distant.

MATHEMATICAL MODEL

The 3D surfaces encountered in local range and range
difference positioning and examples of the measure-
ments generating them are:

1. plane — defined by a range measurement to a
distant station, a range difference between dis-
tant stations, or an altitude measurement

2. sphere — defined by a range measurement to a
local station

3. paraboloid of revolution — defined by a range
difference between a local and a distant station

4. branch of a hyperboloid of revolution — defined
by a range difference between two local stations

In the following, we use a local coordinate frame. The
calculations are, however, easily generalized to ECEF
(Earth-Centered Earth-Fixed) coordinates that are of-
ten used in position calculations.

The equation of a plane is

P : nlrx = Q. (1)
A central idea of this contribution is to model the mea-
surements to distant stations as planes in order to
make the calculations more tractable. The surfaces
involving local stations can all be written in the form

Qi |lsi—x[[+nfx=a; 2)

where s; is a focal point of the quadric and n; is called
the directrix vector. This is the focal point/directrix rep-
resentation of a branch of a quadric of revolution. The
formulation is similar to that used by Leva in [5]. The
type of the surface depends on the values of the pa-
rameters s, n, and a. Table 1 summarizes the different
surface types, including the degenerate ones.

In the rest of the paper, the term quadric always refers
to a surface of the form (2).

BASIC INTERSECTIONS

The minimally determined positioning problem is
equivalent to solving the intersections of three sur-
faces that are either planes or quadratic surfaces. In

Table 1: Surfaces defined by ||s — x| + n"x =a

a<sTn (L:STI] (L>STII
n=20 - (point) sphere
0<|n|<1 - (point) (ellipsoid)
n|=1 - (line) paraboloid
n||>1 hyperboloid cone hyperboloid
branch branch branch

the following, we present the four possible intersection
types.

All the measurements are assumed independent in
the sense that any set of three normal vectors or di-
rectrix vectors is independent. This rules out some
degenerate intersections.

Three planes

The intersection of three planes (1)
PNP,NP; (3)

can be solved as a linear system

np ay
nl'| x=|as . 4)
Ilg as

Because the vectors ny, ny, and n3 are independent,
this system has exactly one solution.

Line and a quadric

The intersection of two planes (1) and a quadric (2)
PNPNQs

reduces to an intersection of a line and a quadric be-
cause the two non-parallel planes intersect in a line.
The system has either two distinct intersections, as
in the case illustrated in Figure 1, or one intersection
when the line touches the quadric, or no intersections

at all.

Figure 1: The two intersection points of a paraboloid
and a line are marked with circles.

See the Appendix for the general solution formula.



Plane and two quadrics

A more complex case of intersecting a plane with two
quadrics
PiNQ2NQs (5)

is illustrated in Figure 2.

Figure 2: Intersection of a plane and two quadrics, a
paraboloid and a sphere. The four intersec-
tion points are marked with circles.

This type of system can have 0 to 4 distinct solutions.
The Appendix gives a solution for a plane—sphere—
quadric intersection which is sufficient in most cases.

Three quadrics

The last case is that all three surfaces are quadrics.

Q1NQ2NQs (6)

The system may have up to nine solutions and can be
solved for example with the resultant method [6]. The
solution, however, requires symbolic computation and
is so sensitive to measurement errors that the closed-
form solution is of no use in positioning.

GEOMETRIC REDUCTION

The structure of the intersection is more complex the
more quadrics it involves. In the local positioning
scheme, we have already introduced the concept of
distant stations and managed to model some of the
measurements with planes.

Additionally, we can exploit the fact that if two quadrics
of revolution intersect in a plane, one of the quadrics
can be replaced with the intersection plane without af-
fecting the solution set.

The intersection curve of two quadrics of the form (2)
lies on a plane (at least) if the quadrics
1. share a focal point s, or

2. have the same directrix vector n.

The formulae for the intersection planes in the two
cases are given in the Appendix.

Consequently, if we have control over the order in
which the range differences are formed, it is benefi-
cial to form all the differences in respect with the same
station. Then the resulting quadrics share the station
as their focal point and their intersection is equivalent
to set planes intersecting at most one quadric.

Also, since all spheres have 0 as the directrix vector,
two spheres trivially intersect in a plane (provided that
they intersect at all.)

We arrive at the following algorithm for closed-form
minimally determined positioning:

Algorithm 1:

1. Acquire the raw measurements and transform the
measurements to a geometric form.

2. Reduce to a simpler geometry by checking each
pair of quadrics and substituting the intersection
plane for the other quadric if possible.

3. Solve the intersection(s).

4. Try to eliminate the incorrect solutions with the
help of base station sector information, additional
altitude information etc.

ON THE ITERATIVE LEAST-SQUARES METHOD

A common method for solving systems of nonlinear
algebraic equations is the Gauss-Newton iteration [3].
With n quadrics (2) and m planes (1), the system to
be solved is

Is1 — x|l +nfx —a,

x| +nTx —
f(X) — ”Sn XH +nnX an

T
N, X — Antl
T
nn,+mX — Gptm

Given a suitable starting point x,, the Gauss-Newton
iteration for finding an approximate solution to the sys-
tem (7) is

xper o [J0) I 0e)] T O) T F ki), (8)



where the Jacobian matrix .J is defined as

" .
_ _S1—x T
Tsi—x] T M

T
L nn+m J

The iteration is terminated after a predefined number
of steps or when x does not change much between
iterations. The obtained point x; minimizes the sum
of squared residuals 7™ fi(x)2.

The main advantage of the least-squares method is
that it is very generic and can make use of an ar-
bitrary number of measurements of any type. In-
cluding more measurements in the solution improves
the accuracy when compared to the geometric solu-
tion that uses three measurements only. Additionally,
the least-squares method readily provides an approx-
imation of the covariance of the solution, cov(x) ~

[J(x) T T ()]

On the other hand, the Gauss-Newton iteration step is
based on linearization, and may thus perform poorly
when the stations are near and the measurement
equations are strongly nonlinear. Moreover, the com-
putational load of the iterative method is sometimes
an issue.

In local positioning, the main problem is the presence
of multiple solutions. The least-squares iteration finds
only one solution at time. Even over-determined sys-
tems often have several local minima and the iteration
has to be run from multiple starting points in order to
find all solution candidates. The challenge is to gener-
ate enough starting points such that all solutions are
found but not too many to cause unnecessary compu-
tational load.

TESTING

The following simulation illustrates one possible appli-
cation of the presented closed-form algorithm.

Figures 3 and 4 depict the results of a positioning
simulation using an altitude measurement, a range
measurement to a base station, a range difference
to two satellites, and a range difference to two base
stations. All measurements have some normally dis-
tributed noise in them, and the position was computed
from 100 measurement sets both with the geometric
algorithm and the iterative least-squares method.
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Figure 3: True position (green star), base station
(black triangle), geometric solutions (red
dots), LS starting point (black cross), and LS
solutions (blue circles).
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Figure 4: True position (green star), base station
(black triangle), geometric solutions (red

dots), LS starting point (black cross), and LS
solutions (blue circles).

The closed-form geometric solution uses only the first
three measurements, while the iterative least-squares
method uses all four measurements. The geometric
method gives two position candidates per fix, result-
ing in two symmetric clusters of position candidates.
The iterative least-squares method produces only one
solution per fix.

Although the system is over-determined, the choice of
the starting point may have dramatic effect on the so-
lutions. In Figure 3, the starting point is to the left of
the base station, and all 100 position solutions end up
near the "wrong” minimum. The situation in Figure 4
is similar except for the more fortunate choice of the
starting point, and the least-squares solutions end up
being a little more accurate than the geometric solu-
tions.



Finally, Figure 5 gives the results when the two ge-
ometric solutions are computed first and the least-
squares iteration then started from both solutions. Of
the resulting two local minima, we have here chosen
the one with the smaller residual. As can be seen,
this is not a 100% reliable criterion, but still only a few
solutions have strayed near the false solution.
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Figure 5: True position (green star), base station
(black triangle), geometric solutions (red
dots), and LS solutions (blue circles).

For more test results, see [8].

CONCLUSIONS

This paper presents an algorithm for computing the
intersections of three surfaces that are either planes
or (branches of) quadrics of revolution.

In the context of local positioning, the presented algo-
rithm can be used as a preliminary step to obtain a
set of starting points for least-squares iteration that is
optimal in some sense.

As the geometries encountered in local positioning of-
ten produce more than one solution, the choice of the
most likely of the solutions is an important topic for
future research.
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APPENDIX

Line—quadric intersection

To solve the system of two planes and one arbitrary
quadric

ulx = q
ul'x = dy | (10)

ls — x| +nTx a

construct the parametric equation of the line that sat-
isfies the two linear equations:

x=p+iw, teR, (11)
where p is any point on the line and w is the unit di-
rection of the line, obtained from

u; X Uug (12)

W= —
[[ur x uofl



As p can be any point on the line, we choose — with a
little forethought — the solution of the linear system

ul dy
{ uj } p= [ do ] - (19)
wT (nn” — 1) wT(an — s)

Substitute x as defined in (11) into the last equation in
(10) to get

Is = (p+tw)|l + n"(p +tw) =a, or
|[s—p—tw||=a—nTp—tnTw.
(14)

Squaring and rearranging, the first-order terms cancel
out because of our choice of p, and what remains is a
second-degree polynomial in ¢:

[1-@"w)?|t*=(a—n"p)?*—[s—p|*>. (15

Solve this for ¢, substitute to (11), and get the solu-

tions
_ T 2 _ . 2
Xp#(a n’p? s —pl* g

Plane-sphere—quadric intersection

Write the system as

W'x = o Jul=1
la-x| = e (17)

ls — x| + nTx b

where u and n are not parallel. The intersection of the
sphere and the plane is a circle with the parametric
presentation

x=p+tvty1-t?w, —-1<t<1 (18)
where

p=q+(a—u'qu (19)

uxn vV=uxw (20)

W =7r—
[ n|

r=4/c2— (a —ulq)?. (21)

Substitute (18) into the last equation of (17). Rear-

range and square twice to obtain a fourth-degree poly-
nomial

a2t 4 2aya0t® 4 (a3 + 2a1a3 + a3)t*+
2asast + ag - azzL (22)

where

a = (nTv)2

as =2 [er(nTpfb)nfp}Tv (23)
az =b"—r?—|s|® + [2s + (n"p—2b)n — p]T p
as =2(s — p)Tw.

Solve this and substitute the real roots into (18) to get

0—4 solutions.

Focal presentation of a hyperboloid branch

Starting from the range difference equation

l[s1 = x|l = [ls2 — x| = d, (24)
we can write
_ d+s1— x| +[ls2 — x|
sy — x| = )
_Prds =X+l =xl)
2d (25)
_ Pt [l —x]? — [ls — x|
2d
_ @+ lsaf” = 2(s1 — 50)Tx — [[s]?
2d
and rearrange this to
(s1—s2)" _ d®+|lsa]* = [|safl?
_ = 2
s = x|+ = T (26)
which is of the form (2).
First type of reduction
Start with two quadrics sharing a focal point
ls—x||+nfx = a
R e &

and subtract the second equation from the first one to
see that the intersection lies on the plane

(n; — nz)Tx = a; — as. (28)

Second type of reduction

Start with two quadrics sharing the directrix vector

ls1 — x| +nTx = a
ls2 — x| +nTx as

(29)

and subtract the second equation from the first to get
81 = x|l = lls2 = x[| = a1 — as. (30)

This is the equation of a hyperboloid branch, which we
transform according to Egs. (24) and (26) to
(s1-%2)" (a1 —a2)* + [|sa]|* = [Is2]>

S1 — X|| + X =
” H a; — ag 2(&1 — 0,2)

(31)

Substitute ||s; — x|| = a; — nx to get

_ T )2 2 2
o —nTxy 1782 (a1 =) +lsi|” — sl
a1 — as 2(a1 — az)
(32)
and simplify to
2[(as —a)n +s1 —s2]" x = a3 —af + sl — [ls2]”

which is the equation of the intersection plane.
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Abstract - A Bayesian approach to position estimation requires the evaluation of
multidimensional integrals which, except for special cases, must be evaluated
numerically. In this paper different numerical integration methods are compared:
nodal quadrature with uniform grid, Monte Carlo with random and quasi-random
nodes, and adaptive cubature. The methods are used to compute a number of
two- and three- dimensional integrals having features typical of “local”
positioning. It is found that adaptive cubature methods outperform the other
approaches both in terms of accuracy and computation time, at least in low
dimensions and when the probability densities are smooth.

1 Local Positioning

One of the challenges of positioning and tracking is that the number and locations of the reference
signal sources can be, at best, barely sufficient. Under these circumstances, the estimation
algorithm should use all the available information as effectively and efficiently as possible. In
local positioning and tracking, which is based on reference signals from nearby sources such as
Bluetooth, WLAN;, acoustic sensors, or cellular networks, the measurement geometry is strongly
non-linear and the measurement errors are strongly non-normal, with multiple modes and curved
ridges. These characteristics can seriously degrade the accuracy and reliability of conventional
least-squares methods, which are optimal for linear geometry and normal error distributions.

The Bayesian approach[2] offers a general framework for positioning and tracking for arbi-
trary geometries and probability distributions. Many conventional methods can be formulated
as special cases of Bayesian positioning and tracking. A Bayesian position estimate is based
on the posterior probability distribution of the position. By Bayes’ theorem, the posterior dis-
tribution is proportional to the product of the measurement likelihood function and the prior
distribution. A Bayesian model of a typical positioning problem is presented in section 2.

The position estimate can be derived from the posterior probability distribution in different
ways. The mazimum likelihood estimate is the point at which the posterior distribution is
maximum. When the measurement errors have normal distributions, the computation of the
maximum likelihood estimate is equivalent to the conventional iterative least squares method.
For general multimodal distributions, however, numerically finding the global maximum can be
challenging.

An alternative estimate is the mean value of the posterior distribution. In the special case
of a unimodal and symmetric posterior distribution, the maximum likelihood estimate coincides
with the mean. Apart from some special cases, computing the mean value requires a numerical
method to approximate integrals in several dimensions. The challenge is then to find a numerical
method to compute these integrals with reasonable speed and accuracy, especially taking into
account the limited computing power available in mobile positioning settings.

In section 3, we describe three standard numerical integration methods:
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Monte Carlo integration is a popular choice for multidimensional integrals. The samples can
be from a random number generator or from a quasi-random sequence (lattice). The error
of the approximation can be evaluated using standard variance estimation formulas.

Nodal quadrature with a uniform rectangular grid is a generalization of the trapezoid rule;
error can be estimated by combining solutions from different grid refinements.

Adaptive quadrature methods combine sophisticated subregion grid refinement and integra-
tion formulas of different orders. Schiirer [4] reports that such methods can be competitive
with Monte Carlo methods even for problems of up to 100 dimensions.

In section 4, we report on a series of numerical tests of these methods applied to two- and
three-dimensional integrals arising in a typical position estimation problem.
The paper closes with a summary of our conclusions and an outline of further investigations.

2 Model

In this work we consider only positioning with range measurements, but any types of mea-
surements with a known error model, such as range difference measurements, can be modeled
similarly and incorporated to the model.

The range measurement to the ith fixed station can be modeled as

ri = [|s;i — x| + &

where s; is the known station position, x is the unknown user position, and ¢; is a random
variable that represents the measurement error. Denoting the measurement error probability
density as ¢;, the measurement likelihood function can be defined as

p(ri | x) = ¢i(llsi — x[| — 7).

This formula can be interpreted as the probability density of the measurement given a particular
user position. For example, if the measurement error has normal distribution with zero mean
and variance oiz, then the measurement likelihood would be

L o= lsimxll=ri)?/(202)

p(riIX):Oim

In general, however, the measurement error distribution need not be normal, or even symmetric
or zero-mean. In the case of several independent measurements r1, ..., r,, stacked into a vector
r, we have

n
p(r | %) = [ dilllsi — x|l —r2).
i=1
Bayes’ formula gives the posterior distribution, modulo a normalising factor, as
p(x | 1) o p(x)p(r | %),

where p(x) is the prior density for x. A position estimate is then given by the mean value of

the posterior density,
Jxp(x)p(r | x) dx

Jp)p(r | x)dx

(1)

X =
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Adaptive cubature Grid Quasi—-Monte Carlo Monte Carlo

00 a0 % 0

Figure 1: Sample points chosen by different numerical integration methods for N = 500.

In the scope of this work, we take the prior to be constant in a given bounded area of interest
Q) and zero outside this area, although other sensible choices for the prior also exist. With this
prior the position estimate (1) reduces to

Joxp(r | x) dx
Jop(r|x)dx
It is interesting to note that the Bayesian approach provides a position estimate even when the

number of range measurements is too small to determine a unique geometric position fix or least
squares position estimate.

X =

3 Integration methods

All the numerical integration methods discussed here can be written in the form

N

/Q f(x)dx ~ v% > )

k=1

where the number of integration points N and the integration points xj are either decided
beforehand independent of the integrand, or adaptively during the integration. The integration
region (2 is taken to be a multidimensional cube and V' denotes the volume of (2.

In choosing a suitable integration method for this particular application, there are several
considerations. As opposed to asymptotic error analysis, we are interested in the accuracy gained
with a minimum amount of work. The measurements usually have errors in the order of tens to
hundreds of meters in them, so that it does not make sense to look for more than two or three
decimals of accuracy. A more important quality of an integration method is to find a coarse
solution with as few function evaluations as possible. In addition, the method should come with
a robust error estimate, but not an overly pessimistic one.

Figure 1 illustrates how the three considered integration schemes distribute the integration
points in the case of a 2-dimensional example integrand. The distribution produced by the plain
Monte Carlo is also given for reference.

3.1 Nodal quadrature

Nodal quadrature (“grid method”) is a generalization of the trapezoid rule to multiple dimen-
sions. The integration nodes xj are chosen to form an equispaced rectangular grid over the
integration domain. For irregular regions a triangular or tetrahedral grid may be used. The
integral over each element is then approximated as the element area or volume times the average
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of the integrand values at the vertices. The error of the nodal quadrature can be estimated by

extrapolation of the solutions for two grids of different densities, using the fact that the error is

proportional to the square of the element dimension.

3.2 Monte Carlo and Quasi Monte Carlo Integration

In Monte Carlo approach, the integration points are chosen at random. In this application, we
choose the points from a uniform distribution over the integration domain.
The variance of the Monte Carlo estimate is

2 NV 2 [N 2
P (Z f<xk>) , 2)
k=1 k=1

which is easy to compute along with the integral. The integration can be run until desired
accuracy is reached. The error estimate is only probabilistic, though. A variant of the method
is called quasi-Monte Carlo. Quasi-random numbers are a deterministic sequence that has the
properties of a uniform random sequence, but the points are “more uniformly” distributed in
space. The rightmost plot in Figure 1 illustrates how the uniformly random points can sometimes
miss the important regions even in two dimensions.

3.3 Adaptive Cubature

In an adaptive scheme, the integration nodes are concentrated to where the integrand is chang-
ing most rapidly. For testing, we used an experimental CUBPACK package[1] that performs
adaptive subregion division and provides error estimates.

Figure 1 illustrates how the adaptive method concentrates its effort around a discontinuous
edge in the integrand since that is where integrand is changing most rapidly. This may not be
preferable behavior for this application.

4 Numerical testing and results

In the testing phase, we generated a large amount of test cases where range measurements from
two stations are received. In addition, linear constraints may be imposed, simulating the effect
of sector boundaries.

The measurement errors are assumed normal, and thus the test problems are of the form

2

ol — )2
p(r | x) o< I4p(x)exp (; Z w> @)

i=1 i
where the indicator function I4;(x) =1 if Ax > b and 0 otherwise.

The integration methods are used to compute the mean value of the integrand over a 1 km
by 1 km domain. The integrands in this case may have either one or two peaks in the domain,
and depending on the linear constraints, they may have discontinuous edges.

We chose the parameters s;, r;, 0;, A, and b for each test case such that we get an equal
number of each of the three types of test functions:

Type 1 - unimodal continuous

Type 2 - multimodal continuous

Type 3 - unimodal with a discontinuity

Type 4 - multimodal with one or more discontinuities
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The measurement errors have standard deviation o between 50 and 150 meters, which could
corresponds to either good-quality base station measurements or bad-quality satellite measure-
ments (without multipath).

Type 1 Type 2 Type 3 Type 4
1000 1000 1000 1000

=
500 500 500 500 ’

(@

0 0 0
0 500 1000 O 500 1000 O 500 1000 O 500 1000

Figure 2: Examples of the different types of test functions.

Figure 2 shows contour plots of some example functions of each type.

For each test case, a reference solutions was sought using Cubpack with a maximum of
150 000 integrand evaluations allowed. In most cases, this took the accuracy of the reference
solution to the centimeter-level.

Type 1 integrand Type 3 integrand
2501 2507y ¢
Cubpack 1 Cubpack
1 Grid Grid
200 1 Quasi-Monte Carlo 200 | 1 Quasi-Monte Carlo
11
£ 1s0Y 1 £ 1501
= Vi z
= \i S
w 100 b \ w100
AN
1 \\ 50
st \ \h‘_—-———
~ - — — -
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
No of integrand evaluations No of integrand evaluations

Figure 3: Integration errors (solid lines) and error bounds (dashed lines) with different numbers
of integration points.

Obviously, performing this many integrand evaluations is hardly practical, when compared
to the iterative point position methods that rarely need to evaluate the cost function more than
ten times. Figure 3 illustrates the behavior of the methods with a low number of integration
points. In the first plot, the integrand is a well-behaved one and all methods settle to a couple
of meters accuracy if more than 1000 integration points are used. Cubpack’s error bound comes
down rather quickly, but the slack probabilistic error estimates of the other two methods would
require a lot more integration points to reach, say, 10 meters.

The second plot in Figure 3 shows an example of a more difficult discontinuous integral. In
this plot, it is seen how the quasi-Monte Carlo method produces notably different methods with
different amount of integration points although the points are assigned deterministically.
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Figure 4: N=500.
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Figure 5: N=10000.
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Next, we ran a larger test set using 500, 1 000, 5 000, and 10 000 integration points and
compared the accuracies. Figures 4 and 5 break down the results for the different integrand
types. These plots represent the distribution of the integration errors, and thus the higher a
curve is the better. From Figure 4, it is interesting to notice that with 500 integration points
the grid method performs best in all cases but the Type 2 (multimodal continuous). The quasi-
Monte Carlo methods is clearly worse than the two others in the continuous cases (Types 1 and
2), but in the discontinuous cases it comes second between the grid method and Cubpack. It is
worth to note that Cubpack, being a general-purpose package, needs more points than this to
be effective.

As can be seen in Figure 5, when 10 000 integration points are used, Cubpack dominates
the results in the continuous cases and reaches centimeter accuracy almost certainly. In the
discontinuous tests, Cubpack and the grid method perform comparably. The quasi-Monte Carlo
seems to give almost an order of magnitude worse results in all problem types.

N =500 Typel Type2 Typed Type4 | Total

Cubpack 41 7 21 8 35
Grid 73 24 56 89 61
Quasi-MC 3 4 23 14 11
N =1000 | Typel Type2 Typed Typed | Total
Cubpack 91 96 59 52 74
Grid 57 7 32 45 35
Quasi-MC 10 5 12 14 10
N =5000 | Typel Type2 Typed Typed | Total
Cubpack 100 98 69 69 84
Grid 83 16 32 35 42
Quasi-MC 36 31 14 27 27
N = 10000 ‘ Type 1l Type2 Type3d Type4 | Total
Cubpack 100 98 55 56 7
Grid 93 28 48 55 56
Quasi-MC 54 50 26 40 46

Table 1: How many times (%) each method gave the best answer.

The Table 1 gives another perspective to the comparison. The table shows how often a
particular method found the best solution to the problem. The columns do not add to 100%
because often more than one method produced the same solution (within a tolerance). Again,
the table shows that apart from the case of only 500 integration points allowed, the adaptive
Cubpack is most often the most accurate of the tested methods.

4.1 A 3D case

For comparison, we did small-scale testing on tree-dimensional test functions also. The 3D test
case was formed by adding an “altitude measurement” to the 2D case. The test function was

formed by multiplying Eq. (3) by

2
€Xp — 5 0_737

2

simulating a normally distributed zero-altitude measurement with variance o;.
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Figure 6: 3D with N=1000.

Figure 6 again shows the superiority of the adaptive method in continuous cases 1 and 2. In
the discontinuous cases 3 and 4, the quasi-Monte Carlo method is for the first better than the
two others in some regions.

N = 1000 ‘ Typel Type2 Type3d Typed Total

Cubpack 73 75 23 36 52
Grid 7 1 43 21 18
Quasi-MC 69 74 67 75 71

Table 2: How many times (%) each method gave the best answer in 3D.

Table 2 also shows how the quasi-Monte Carlo is more feasible in a higher dimension.

5 Conclusion

It is found that adaptive cubature methods outperform the Monte Carlo approach both in terms
of accuracy and computation time, at least in low dimensions and when the measurement error
densities are smooth. With discontinuous integrands, however, the advantage of the adaptive
cubature is not so obvious. This can, however, be improved in the future by using polyhedral
integration domains with the discontinuities placed at the edges of the domain.

At this point, we assumed that the computational load of each method depends only on the
number of integration nodes, ignoring the overhead in the algorithms themselves. More detailed
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performance analysis would call for a more thorough implementation of the different methods,
otherwise we are comparing implementations instead of algorithms.
Future research topics include more detailed error analysis, where the analytical properties
of the family of integrand functions is taken into account. Furthermore, the adaptive strategy
can also be applied to Monte Carlo type methods, yielding very promising results[3].
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Abstract

A novel moving grid filter, a generalization of the point-mass filter, is given for the hy-
brid local positioning problem. Preliminary test results are given to show that the algorithm
is computationally feasible, and produces accuracy of the same order as the grid separation.

1 Introduction

As opposed to single-fix position algorithms where only current measurements are used in com-
putations, position filters try to extract information about the user’s current state (position, veloc-
ity, heading, etc.) by using all data measured up and until current time. In the Bayesian filtering
framework [Fox et al., 2003, Roos et al., 2002], the density function of the state is computed
conditional on all current and past measurement data. If the state and measurement processes
are modelled as Markov chains, the Bayesian posterior density can be computed recursively, so
that all the information in the past measurements is fused into the state probability density, and
there is no need to store the old measurements explicitly.

With a navigation filter, we want to estimate the state as given by the discrete-time system
defined by the motion model:
Ti1 = fr(xr) + wg,

and the measurement model.
Y = hy(zr) + vg,

where fj and hy are known transition functions and measurement functions, respectively. As-
suming noises vg,wy, independent in time, from each other and from initial state, the optimal
algorithm for recursive Bayes estimation is:

1. Start with initial distribution p(z | yo) and k = 1

2. Prediction: compute the prior distribution p(x|yx—1) = Jra P(Tr—1|Yk—1)P(Tk|Tr—1)dTr—1

3. Correction: compute the posterior distribution p(xy | yx) o< p(zx | yr—1)p(yr | 1)

4. Output posterior mean E'(x) and variance V' (xy,).

5. Increase k and repeat from 2.



Analytical solutions to the Bayesian filtering problem are known only for a few special cases.
In the general case, it is intractable to solve the filtering densities exactly. Instead, the density
functions and sometimes also the motion and measurement models are approximated appropri-
ately to make the computation feasible. For example, with linear-Gaussian approximation, the
optimal filter reduces to the Extended Kalman filter. Approximating the densities with a set of
points distributed accordingly leads to a particle filter. In this paper, we show how a piece-wise
constant approximation of the density functions can be used to derive a moving grid filter.

As an additional problem, the output desired from a filter is usually a point estimate, poste-
rior mean, instead of the full posterior distribution. The mean error of the point estimate
does not necessarily correlate at all with the quality of the estimated posterior distribution
[Dunik et al., 2005]. The practical problem of implementing and testing a position filter is thus
two-fold. The first problem is to find the optimal filtering solution or at least derive some of its
properties like the Cramér-Rao lower bound [Bergman, 2001]. The second problem is to try to
approximate the optimal filter in some computationally feasible way. Neither of these problems
has been satisfactorily solved.

1.1 Hybrid positioning problem

In the hybrid positioning scheme, measurements and other information from different systems
are fused together. One of the challenges is to provide accurate or at least correct position
information in urban areas or indoors. The behaviour of satellite-based systems such as GPS
is unpredictable at best when used indoors in high-sensitivity mode. Local wireless networks,
such as the cellular network, WLAN [Syrjarinne, 2001], or Bluetooth [Kotanen et al., 2003],
offer some positioning capacity but with accuracy inferior to GPS. Another possible component
of a personal navigator are the on-board sensors such as accelerometers, barometers or digital
compasses.

Combining the various measurement sources is difficult because of different error characteris-
tics, unpredictable distortions, or systematic errors in measurements, strong nonlinearity, com-
plex time-dependencies, and missing data. It is not simple to explicitly model all the cases in
a general way, let alone solve the models accurately. Even with correct models, the commonly
used Kalman filter and its nonlinear extensions can fail without warning [Ali-Loytty et al., 2005].

Table 1 gives some examples of measurements and corresponding measurement equations. The
clock bias (5 and drift « present in the pseudorange and deltarange measurements can be either
estimated as two additional states, or preferably eliminated by differencing.

Each measurement together with the distribution of the measurement error defines a likeli-
hood function L;(z | m;), and the likelihood implied by several simultaneous measurements
is found by multiplying the individual likelihoods. The measurement error € need not be nor-
mal. Ideally, we would use an empirically determined distribution that matches the real situa-
tion, as is done in the location fingerprinting methods for mobile phone or WLAN positioning
[McGuire et al., 2003, Teuber and Eissfeller, 2006]. From the algorithm point of view, the mea-
surement likelihood can be a “black box™ function, as only the function values in certain points
are needed.



Table 1: Examples of measurement equations

range [s — z13]| =m +¢

maximum range | ||s — zy3]| <m

pseudorange s — x5l + 8=m+e¢

quantized range | roundy||s — z13]| =m +¢

sector L(z19 — S1:2) € [Mm—0/2, m+60/2]
altitude r3=m-+e¢€

deltarange (Hij—ggﬂy (8" —a46) +y=m+e
heading lTys =m+e€

2 The grid mass filter

Model the density functions as piecewise constant over a finite collection of bounded elements.
The element size is ideally of the same order as the expected accuracy. A coarser grid may be
used to detect the approximate local maxima of the likelihood and some more accurate method,
such as denser local grid or an iterative search, to pinpoint the exact maximum likelihood esti-
mates.

As suggested in [Kramer and Sorenson, 1988] and refined in [Sirola and Ali-Loytty, 2006], ap-
proximate density functions with

B ()
P) = 2 xe0 Wiy

where G/(i) is the ith parallelepiped element and x(;) its characteristic function, |G(%)] is the
volume of the ith element, and 7(z) € [0,1] is the probability of the state being inside the ith

element. The density function is thus constant |g(é))| inside each element.

An evenly spaced d-dimensional parallelepiped grid can be uniquely described with vectors
e € R% n € Z¢ and a non-singular basis matrix E € R%*%. The centre points of the elements
are

cli)=e+ FEi, 0<i<n,

where i € Zi. The element with multi-index 7 is then defined as
. ) 1 179
G(0) = {eli) + By [ € (—55] 1

All elements have an equal volume of |det E|. It is easy to see that the elements are disjoint and
cover a parallelepiped region.

2.1 Algorithm

To derive the moving grid algorithm, we approximate each step of the optimal Bayesian recur-
sive filter with its grid counterpart. Having chosen suitable grids, we only have to compute and



update the probabilities of the state being inside each element. We assume the motion model is
linear, that is f(z) = Tz.

1. Approximate the initial distribution pgjo by computing the element probabilities mojo(%),
see Figure la. Set k = 1.

2. Prediction step: propagate the grid basis with Ey, = T'Ej;_; and compute new element
probabilities for the prior distribution (Figure 1b) from

Nk—1

Tee—1(1) = z_: Th—1(k—1(J) Thjk—1(i — 7)

which is fast to compute as a discrete linear convolution. Here 7,1 (i—7) is the transition
probability from jth element of (5 — 1)th grid to ¢th element of kth grid, and it depends
on the motion model and the relative positions of the grids (see below).

3. Correction step: use the current measurements to update element probabilities as

mieli) = migea (1) [ Larlye) dae
k(2

This step requires either the analytic or numerical integration of the likelihood function
(Figure 1c) over each element. Because the integrands are often discontinuous, the quasi
Monte Carlo method seems best suited for this. After update, normalize the element
probabilities so that they sum to 1, to form the posterior distribution shown in Figure 1d.

4. Output current mean and variance estimates

= éﬂkk(i)ck(i)

< NN 1
Vie =Y mepe(i)er(i)er(i)” — prpsy + EEkE,f.
=0

5. Increase k and repeat from 2.

2.2 Computing the transition probabilities

The general transition probability from jth element to ¢th element is given by

rw(ily) = /Gkﬂ(i) (/Gk(j) Grr1p( | 2) dz) dx.

With the linear motion model f(x) = Tz and that fact that the new and old grid orientations are
related by Fy,, = T E}, the transition probability can be simplified to

Cryar(ily) = /

y P (E1(i — J) + eps1 — Tep + Epa X)) dA,

11
2°2



Figure 1: Steps of the moving grid algorithm, showing the ideal distributions with contour lines,
and corresponding grid approximations with shaded elements.

where p,, is the density function of the noise wy. Note that I'; 14(7|j) now depends only on
the difference i — j, not on 4 and j separately. Thus, we write 7;41)x(i — j) = Ijj%(i[7), and
further

(i =) = [ puis() dX

where p,, ;_; is shorthand for the modified process noise probability density function. Specifi-
cally, if w ~ N (0, @), then

wij~ N (=i — Bl (ersn — Tew), BLLQELL).

Then the transition probability for each value of < — 7 is just multinormal probability in a hyper-
box and can be computed efficiently [Genz, 1992].

2.3 Projection between grids

Because the consecutive grid bases are related by Ej.; = T'E}, the elements will eventually
become “sheared” along the velocity dimension. In practice, it is best to straighten the grid by



projecting the density to a new grid every once in a while. Figure 2 illustrates the projection
process. For accurate projection, the mean density in the new element is computed by taking
intersection with every element in the old grid and summing the weighted densities. Accurate
projection is computationally expensive in the general multidimensional case, and is still work
in progress. With a large number of small elements, the projection method does not have to
be very sophisticated, as long as it is asymptotically correct. With a few large elements, on the
other hand, it is important to lose as little information as possible in the projection.

Figure 2: Straightening the grid (left) by projecting to a rectangular grid (right)

2.4 Grid design

By grid design we mean deciding what area the grid should cover and how large grid elements
to use. One extreme choice is to generate massive amount of very small elements. Then the
approximation will be asymptotically accurate even if the 7 (i) are chosen sub-optimally, for
example using just the density value in the element centre as is done in the classical point-mass
filter [Bucy and Senne, 1971].

Another extreme is to use just a few very large elements. Then it is essential that the mean
densities in the elements be computed as accurately as possible. Most of the structure of the
pdf is however lost when large parts of the pdf are approximated with constant patches. Fortu-
nately, it usually is not necessary to use grid spacing much denser than the expected positioning
accuracy.

In the implementation it is thus possible to try to strike a balance between computation load
and accuracy. Optimally, the element should not be much smaller than the finest features of the
posterior distribution. There are some analytic results on how to anticipatively design 1D and
2D grids for the point-mass method [éimandl et al., 2002], but these are yet to be generalised
for the multidimensional piecewise constant grids.

3 Testing

The moving grid method was implemented in MATLAB along with a test bench for comparison
between other nonlinear filters.



The simulation test bench was designed to produce dynamic test data similar to what could
be expected in real-world personal positioning scenario. The main difference from the real
data is that in the simulation the true track and correct measurement and motion models are
available for verification of the results. The testing process consists of first generating a true
track of 120 points with one second intervals with a velocity-restricted random walk model,
then generating the base station along the track with maximum ranges set so that one to three
stations can be heard from every point on the track. A GPS constellation is then simulated with
an elevation mask and shadowing profile set so that only 14 satellites are visible at a time.
Finally, noisy measurements are generated for each time step from the visible satellite ranges
and delta-ranges, base stations ranges and sector information, and optionally also compass and
altitude measurements.

Several track and measurement sets were generated with different parameters for the user mo-
tion model, available measurement sources, and measurement noises. The testing scenarios
range from positioning with just one or two base stations with up to 500 m ranging errors
through a hybrid case with a couple of base stations and a two-three satellites to an over-
determined satellite-only case.

The test tracks were run through the moving grid filter, and the mean and covariance of the pos-
terior distribution recorded at each time step. For comparison, the data was also processed with
an extended Kalman filter (EKF) [Ali-Loytty et al., 2005], and a 2-million point “bootstrap”
particle filter, which requires about hundred times more computation but is what we think the
closest we can get to the optimal solution without spending months of CPU time. The particle
filter solution is used as reference in the testing.

The focus of these preliminary results is on gaining insight into the problem and the behaviour
of the grid solver by inspecting the results of some individual runs. Quantitative results would
not make much sense at this point because, firstly, the data is simulated with arbitrarily chosen
parameters so we can expect arbitrary results, and secondly, there is not yet a sound and fair
way of comparing different filters either to each other or to the true/optimal solution.

Figure 3 shows an example run using just two base station range measurements. The ellipses
represent the one-sigma approximation of the estimated posterior distributions. In the last part
of the track (bottom left), the optimal posterior distribution is bi-modal, and the reference esti-
mate travels somewhere in between the two. It can be seen how the EKF strayed onto the wrong
branch of the posterior and gives over-optimistic variance estimates.

The 2D error of the grid filter is compared to the element radius in Figure 4. The error of the
estimated mean from the reference mean, that is taken to be quite close to the optimal posterior
mean, is indeed always smaller than the element radius. Thus, the grid filter works as well as is
to be expected. The accuracy can be improved by either using more elements, which results in
more computation, or to use a tighter significant domain, in which case there is a risk of leaving
too much of the posterior density outside the grid.

4 Discussion

Personal positioning often is required although there are only a few measurement sources avail-
able that might have large errors with unusual distributions. In these cases, it is essential that the
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Figure 3: An example run using range measurements from two base stations. Plot a) shows the true
track and the 2-million point bootstrap particle filter reference solution, plot b) presents
the strayed EKF solution. Plot ¢) shows the moving grid solution with 200 elements, and
plot d) the 2-D projection of the grid estimate at ¢t = 10.

maximum amount of information be extracted from every measurement. One way of achieving
this is to approximate the ideal Bayesian filter as accurately as possible.

The moving grid filter presented in this paper is a conservative approach to Bayesian filtering. A
coarse grid may not be able to present the finer features of posterior density function accurately,
but it should at least keep track of the shape of the posterior and not drop any its peaks. Pre-
liminary testing of the MATLAB implementation shows that although accurate solution would
require huge number of grid elements, the filter can be run with very coarse grids and it succeeds
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Figure 4: The 2D error of the moving grid filter mean estimate compared to the element radius

in keeping the magnitude of the error about the same as the grid element radius.

This work also underlines the question of how to evaluate the accuracy of nonlinear filters.
The most common approach is to evaluate the errors between posterior mean and the true track.
However, this error consists of two components: the error of the optimal posterior mean estimate
from the true track, and the error of the approximated posterior mean from the optimal posterior
mean.

Especially in bimodal cases, it often happens that the optimal mean estimate is in between the
two peaks, and thus far away from the true track. In these cases, unimodal filters such as EKF
produce posterior distributions that are clearly wrong (unimodal vs. bimodal), but their mean
estimate still may be much closer to the true track than that of the optimal filter, depending on
which of the peaks they happen to follow.

In this work, we compared the filtered mean not only with the true track but also with the
means of the classical EKF and that of a 2-million point particle filter. Ideally, we would like to
compare the approximated posterior distribution to the true posterior distribution, but as of yet
no feasible numerical method of doing so is known. This is a topic for future research.
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ABSTRACT

Algorithm developers need relevant and practical criteria
to evaluate and compare the performance of different discrete-
time filters or filter variants. This paper discusses some pit-
falls in different approaches and proposes a combination of
criteria on which to base comparisons. A comparison of eight
filters for a class of hybrid personal positioning problems is
presented as an example.

1. INTRODUCTION

Hybrid personal positioning means sequentially estimating
the three-dimensional position and velocity of a mobile ter-
minal using various types of discrete-time measurements such
as ranges to cellular base stations, satellite pseudoranges and
delta ranges, and barometric altitude. Typically there are just
a few measurements at each time step (not enough for a static
position fix) and the posterior distribution has ridges or mul-
tiple peaks. Our research group has investigated several dif-
ferent kinds of nonlinear filters, including several flavours of
Kalman-type filters [1, 2], mixture filters, particle filters [3],
and grid-based filters [4].

In order to identify promising and relevant filtering tech-
niques we have developed a software test bench in which all
the filters can be simulated on a wide range of fairly realis-
tic hybrid positioning scenarios. Even with the “level playing
field” provided by our test bench, the question of finding fair
and meaningful ways to benchmark and rank different filters
still presents many conceptual and practical difficulties.

All the filters we study can be cast as numerical approx-
imations of the ideal discrete-time Bayesian filter, which we
summarize in Section 2. We therefore seek to compare the
sequence of estimates computed by the approximate filter to
the sequence of posterior probability distribution functions
(pdf’s) that would be produced by the ideal Bayesian filter.
This differs from the usual practice for simulation tests in the

This study was funded by Nokia Corporation. Additionally, Simo Ali-
Loytty recognises the financial support from the Tampere Graduate School
in Information Science and Engineering (TISE) and the Nokia Foundation.

literature which present computed measures of difference be-
tween true and estimated trajectories, from which it is impos-
sible to distinguish the contributions of estimation error and
numerical approximation.

In Sections 3-5 we discuss some issues related to devis-
ing relevant and computable numerical performance indica-
tors based on pdf’s, and we propose a combination of com-
parison criteria. These are applied in Section 6 to compare
filters for the personal positioning problem.

2. FILTERING IN PERSONAL POSITIONING

Consider a discrete-time stochastic system whose state z;, €
R? and measurements yr € R™* at time instant ¢; are de-
scribed by the two equations:

Tk = fr—1(Th—1) + Wp—1 (dynamic model) (1)

Yk = hi(zx) + vk (measurement model)  (2)
where f;, : R — R? is a known function, wy, € R? is the
state noise with known distribution, hj : R¢ — R™* is the
known measurement function, and vy, € R™* is the measure-
ment noise with known distribution. The noises w;, and vy,
are assumed white and independent of each other and of the
initial state xg.

The dynamic model (1) can be used to define the state
transition probability, i.e. the probability of moving from state
Tg—1 tO T

k(x| Th-1) = Puy, (Tk — fr—1 (T-1)) -

Similarly, the measurement model (2) defines the likeli-
hood function

Li(yr | @) = po, (yr — e (1)) -

The ideal recursive Bayesian algorithm computes the prob-
ability distribution function of the state x;, at each time step
conditioned on a known initial state distribution and all mea-
surements up to that time. Denote the set of all measurements
up to kth time instant {yy, y2, . . ., yx } with the shorthand no-
tation y1.x.



(a) True pdf (b) Gaussian approximation

(c) Point-mass approximation (d) Piecewise approximation

Fig. 1. A bimodal probability density in two dimensions (a)
and examples of its approximations (b)-(d).

The algorithm for recursive Bayesian estimation is:
1. Start with initial distribution pgjo(wo) and k = 1.

2. Compute the prior pdf:

Prji—1(Tr | Y1:6-1)

(3)
= /pk—l\k—l(xk—l | Y1:—1)0n 2k | Tp—1)drr—1.
R4

3. Compute the posterior pdf:
Pre(Tr | Y1:k) X Prjp—1(Tr | Yre—1) Lr(ye | 2k)-

4. Output mean and variance of py (%% | y1:x)-

5. Increase k and repeat from 2.

3. PARAMETRIC PDF REPRESENTATIONS

The integral in Eq. (3) makes the recursive Bayesian algo-
rithm difficult to implement in practice. In order to perform
the computations in finite time and memory, the filters must
store the densities in some parametric form with a finite num-
ber of parameters. Except for some special cases, it is im-
possible to preserve the form of the distributions exactly, as
illustrated in Figure 1.

Most algorithms traditionally used for the filtering prob-
lem can be cast as approximations to the Bayesian filter. The

type of pdf approximation determines the properties of the
filter. Some examples of parametric forms and implied filter
families are:

Gaussian — (Extended) Kalman filter and variants: second
order EKF, unscented Kalman filter, etc.

Mixture of Gaussians — Gaussian mixture filter
Sample - particle filter (i.e. sequential Monte Carlo filter)
Point mass on a grid — point mass filter [5, 6]

Piecewise constant function — grid mass filter [7, 4]

4. COMPARISON CRITERIA

The ultimate goal is to compare the approximate posterior
distribution given by the filter to the optimal distribution ob-
tained with the ideal Bayesian recursive algorithm. Table 1
lists some distance functions for two pdf’s f and g with sup-
portin A. Most of the distance alternatives require the compu-
tation of an integral over the region of interest, while infinity
norm requires “only” finding the maximum absolute differ-
ence. None of the listed distance measures is appropriate for
point-mass or particle representations.

Table 1. Probability density distances
name | da(f.9)
1) infinity norm supgealf(z) — g(z)]
2) Lissack-Fu Jalf (@) — g(2)|Pda
3) Bhattacharyya —log [, v/ f(x)g(x)dx
4)  Kullback-Leibler | [, f(x)log {3 dx
5) Simandl [6] 1— [, min(f(z), g(x)) dz

It should be noted that our Bayesian interpretation of the
filtering problem presents some practical and conceptual dif-
ficulties. Not all filters seek to estimate the posterior mean
and variance, they may instead use, for example, the posterior
mode and the estimate squared error.

Even if a filter reports a posterior mean and variance, this
does not suffice to specify a general posterior pdf. Even in one
dimension, symmetric pdf’s having the same mean and co-
variance can differ significantly (Figure 2). The pdf distance
measures can detect differences that are not evident from only
the first two moments. For example, a biased normal distri-
bution A(0.5, 1) is actually more similar to the standard nor-
mal distribution A/ (0, 1) with respect to any of the probability
density measures in Table 2 than the other pdf’s in Figure 2
that have the correct mean and variance.

Another example where the posterior density is not known
explicitly is the particle filter. Particle filters propagate a sam-
ple from the posterior distribution, and it is not a trivial task
to derive the density function from it.
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and variance 1: a) normal distribution, b) uniform between
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Table 2. Distances of densities in Fig. 2 from A/(0, 1) with
respect to distance measures 1)-5)

@ ® (@© @ |N(051)
D] 0 020 053 065 012
2| 0 004 013 042 003
3 0 007 005 031] 003
Hl 0o 28 019 27 0.11
5] 0 020 027 055| 020

An alternative comparison strategy, studied in [3], is to
test statistically whether samples from the approximate dis-
tribution and the reference distribution indeed come from the
same distribution. This technique applies mainly to compar-
ing two particle filters, as samples from the estimated poste-
riors are readily available.

The state space is partitioned into hyper-rectangular bins
so that each bin contains roughly an equal fraction of the pos-
terior probability. If the two samples under comparison are
from the same distribution, they should have roughly the same
expected frequency in each bin. A standard two-sample x?
test is then employed on each bin to check this.

The adaptive binning method could be generalized to work
with the integrals of the posterior approximations over the
bins. Some practical difficulties still remain.

A practical difficulty in comparing pdf’s is that the refer-
ence posterior (that would be produced by the ideal Bayesian
filter) is usually unavailable. The best we can do is compute
an offline reference solution with, say, a particle filter with
as many particles as our computational facilities can handle
in reasonable time. This still leaves the practical problem of
storing the reference solutions, and implementing the com-
parison.

5. PRACTICAL CRITERIA

Instead of comparing the full distributions, the following cri-
teria are easier to compute in the test bench, and cover differ-
ent aspects of the filter performance:

Error from true track is simple to calculate in pure simula-
tion tests where the true track is known. We compute
the mean error, RMS error, and 95% percentile.

When comparing different solvers, note that this error
consists of the error inherent to the data (caused by
measurement errors and insufficient geometry) plus er-
ror caused by the approximations made by the filter.
These two error types might even cancel each other out.

Circular error percentiles describe how often the estimate
is within a predetermined distance from the true state.
The smaller the distance, the more this criterion favours
filters that seek the posterior mode instead of mean.

Consistency measures the conservativeness of covariance es-
timates. According to the general inconsistency test [1]

_1 d
P (ck o -2l 2 \/;> <a,

where zj, and C}, are respectively the state and covari-
ance estimates d is the dimension of the state, and « is
the risk level of the test. The more estimates during the
simulation satisfy the inequality, the more inconsistent
the solver is.

Error from reference is the distance to a pre-computed “op-
timal” mean estimate conditioned on the measurements.

Note that this requires storing only the point estimates
of the reference solution, not the whole particle swarms.
If the reference is sufficiently close to the optimal solu-
tion, this criterion is equal to the error caused by the
approximation process and is not contaminated with
the problem-dependent noise. Alas, in some situations
the solution apparently does not converge after even in-
creasing the number of particles to ten million.

Computation time is just the time per fix in our MATLAB
implementation, and obviously depends on the amount
of skill and effort put in the implementation of the al-
gorithms. The order of magnitude still gives some in-
dication of the solver’s performance.

As there are multiple criteria, it is difficult to put different
solvers into order, as naturally some fare better with respect
to one criterion and some to the other. We call a solver Pareto
optimal with respect to a set of criteria if there is no solver
that would improve one or more criteria without weakening
any of the others. Conversely, a solver will not be Pareto opti-
mal if some other solver is at least as good in all criteria. The



concept of Pareto optimality will not help in deciding which
solver is the “best”, but it indicates which solvers certainly
are not.

6. APPLICATION: PERSONAL POSITIONING

For the test bench, we generated 500 different tracks, each
consisting of 120 time instants at one-second intervals, and
measurements generated for each time instant. For simplic-
ity, the motion model is linear Gaussian and the measure-
ment model consists of linear and nonlinear measurements
with additive Gaussian noise, and additionally restrictive in-
formation, such as maximum ranges and mobile cell sector
bounds. The resulting optimal posteriors contain “banana”
and “donut” shaped densities, bimodal densities, almost de-
generate distributions (very large variance in some direction
and small in others) and sharp edges.

We chose to generate only one set of measurements per
track, and to run each track only once. As there are 500 dif-
ferent tracks, the statistics computed from the whole bench
have some meaning, but there is still the possibility to exam-
ine individual cases qualitatively.

Figure 3 presents an example of the output, plotting the
mean error from the reference track of each solver against
the relative computation time. There is a distinct trade-off
between computation time and performance. Solvers towards
the bottom left of the figure achieve the best results with the
least computation.

7. CONCLUSIONS

Numerical comparison of nonlinear filters remains an essen-
tial although maybe an overlooked problem. We have laid
some theoretical framework in which to perform the com-
parison, but we fear we have raised more questions than an-
swers, and found more pitfalls than solutions. The individual
comparison criteria proposed in Section 5 are not themselves
novel, but we believe that a systematic use a diverse set of cri-
teria gives a more complete picture of the strengths and weak-
nesses of different solvers, as well as the hardness of different
filtering problems.

Several open questions remain, ranging from the issue of
balancing the test bank so that it does not favour any partic-
ular type of solver, to the validity of the Bayesian approach
itself [8]. Future work also includes taking model mismatch
and blunder measurements into account.
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Abstract. A global grid search algorithm with an application in weak signal satellite
positioning is implemented and tested numerically. The algorithm consists of local Gauss-
Newton search and a global starting point chooser, and it can be generalized as a global
optimization method for functions with an attraction basin of computable minimum radius.
The method is shown to find the global minimum in a bounded region in predictable time.

1. Introduction

The Global Positioning System (GPS) is a satellite positioning system that was built for military
purposes, but can be used for free by anyone with a suitable receiver [1]. Currently, the number
of civil and commercial GPS users is growing faster than ever.

The GPS position is computed as a solution to a nonlinear optimization problem. The
basic GPS algorithms have been used for decades and found to perform well. However, with
GPS receivers becoming more common, there is a growing demand for precise positioning in
environments very different to those for which the GPS system was originally designed. While
the satellites and the signals they are broadcasting have remained essentially unchanged for
the last three decades, the continuing development of receivers and navigation algorithms has
enabled significant improvements in accuracy and availability.

Due to the low power of the satellite signals, the GPS receiver needs a direct line of sight with
several satellites, which is easy in the air, open seas, and deserts but often impossible indoors,
near tall buildings or under trees. The receiver has to decode several layers of data from the
signal, which is not always possible or practical when the signal is attenuated and noisy [2].

In this paper, we study a case where only a part of the necessary information for GPS
positioning is available, and the problem becomes a mixed integer nonlinear optimization
problem. We eliminate the integer variables and devise a global optimization algorithm to
solve the problem.

2. Background
Each GPS satellite transmits a signal that provides a means to determine the position of the
satellite and the distance between the satellite and the receiver. The position of the receiver in
n dimensions can be computed from n distance measurements.

We model the GPS positioning problem as the equation system

pi=llsi—rly+8, i=1..n (1)

© 2006 IOP Publishing Ltd 73
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where p; € R is called the pseudo-range. Pseudo-range is equal to the Euclidean distance
between the ith satellite s; € R3 and the receiver r € R3 plus an additive bias 3 that is common
to all the pseudo-ranges. The bias results from the measurement process and is treated as the
fourth unknown of the positioning problem. This model has been simplified by ignoring various
errors and corresponding corrections that must be considered in actual GPS computations.
These include the signal travelling in the atmosphere, Earth rotation, instability of satellite and
receiver clocks, special relativity, and satellite orbit prediction errors, and their corrections. For
a more comprehensive treatment on the GPS, see [1] for example.

Let the pseudoranges be measured such that p; = p; + ¢;, where ¢; are independent
measurement errors with zero mean. Given four pseudo-range measurements and the
corresponding satellite positions, we can solve the system (1) and obtain estimates for the
receiver position and bias. When n > 4, the system does not necessarily have an exact solution
and a least-squares estimator is needed. Several closed-form [3, 4] as well as iterative [5, 6]
estimators have been published for this problem.

The existence and uniqueness of the solution have been studied through geometric
interpretation, and it has been found that in case n = 4, there may be two distinct solutions
or no solutions at all [7]. For overdetermined cases, it is noted that a solution always exists in
least squares sense and is unique ”in all but degenerate cases”, but the cost function is often
bimodal, the other minimum fortunately always lying somewhere in outer space.

There are no convergence proofs published for the iterative methods, at least known to the
author. The typically used Gauss-Newton iteration [8] seems to converge to the correct solution
from practically any starting point on Earth, and it is widely agreed among GPS practitioners
that the lack of convergence proofs is no problem.

3. Problem formulation
In this paper, we consider the case where the pseudo-ranges are measured modulo a constant
A (= 300 km), and the satellite positions are known as functions of time but the exact time is
not known. This corresponds to the situation where the satellite signals are very weak or are
observed only for a short period [9].

We may write the pseudo-ranges in terms of whole and fractional multiples of A, such that
pi = AN; + ¢; where N; is a positive integer and —1A < ¢; < 3A. Now the system (1) becomes

Nih+ ¢ = [si(t) —rll, + 8, i=1...n (2)

where s;(t) € R? is the position of ith satellite as the function of time. The functions s; are
assumed known and the code phases ¢; can be measured. The magnitude of the measurement
errors is negligible when compared to the other quantities involved, and we develop the theory
assuming errorless measurements.

The system (2) has unknowns ¢, r, 8 and additionally the integers NNV;, which we eliminate
from the system rather than solving them explicitly. Define the lambda-fraction operator as

fracp(z) =a — A - round(%) (3)

where round is the usual rounding to the nearest integer with half-integers rounded up.
Now denote x = [t rT S]7 € R® and assume n > 5. Let x; be the true solution.
The system

q1(x) fraca([[s1(t) —rlly + 8 — ¢1)
q(x) = : = : =0. (4)
qn(x) fraCA(HSn(t) - I‘H2 + 8= ¢n)
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is equivalent to the system (2), and the minimizer of min %Hq(x)Hg is the best estimate for x;.

A global optimization method is called hybrid if it has a global stage to find a coarse
approximation to the global minimum and a local search that is guaranteed to converge quickly
when started sufficiently close to the optimum [10].

If the local search has an attraction basin with known minimum radius, the global search
then only has to find at least one feasible point that is inside the attraction basin and then start
the local search to yield the global minimum. This idea is the basis for the algorithm we propose
to solve the positioning problem.

4. Local search
We seek the approximate solution for gq(x) = 0 with the Gauss-Newton iteration [8, Section 8.5]

X1 = x5, — [J(x)TT()] T ()" a(xk) (5)
where the Jacobian of q(x) is
ufs|(t) —uf 1 ‘
I = w2t ()

REOES
ugS,’,l(t) 7112 1 H Z( ) ”2

The iteration is terminated when k > kmax or ||Xp4+1 — Xgll; < €, where kyax and e are some
predetermined values.

This iteration converges given a starting point x¢ sufficiently close to the minimum when
q”(x) is sufficiently small [11, Chapter 6]. The solution minimizes ||q(x)||,. The rate of
convergence, when convergence occurs, is no worse than linear.

Definition 1 Let x* be a solution to f(x) = 0. Let B(x*,r) = {x| ||lx —=x*|| <r}. If the
Gauss-Newton iteration converges to x* from any starting point inside an open ball B(x*,r),
then this ball is an attraction basin of x*.

For the unknown vector x = [t r7 S]T € R in the system (4), we find it advantageous to
use the following norm instead of the Euclidean one.

Definition 2 Define k-norm as
1x[ls = # [t + [lell; + 15] (7)
where K is a positive constant dependent on the relative geometry between the user and the

satellite system:

i(t)—r
Kk = max |s}(t r_sil)=r 8)
B P o) o (

Note that in the general case k = max ||s'(t)||,. When the receiver is terrestrial, however,
the velocities of the satellites are almost perpendicular to the line-of-sight vector s;(¢t) — r and
k is thus much smaller than the maximum velocity of the satellite. For example, for the GPS
system and user restricted on the surface of the Earth, k = 830 m/s.

We denote the open ball B, with

Bi(p,r) = {x | [x=pllx <7} 9)

Next, we establish some properties of the system (4).
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Lemma 1 If x € B(x, %), then
lgi ()] < llx — x|« (10)

Proof. Denote x = x¢ + Ax. Then consider the Taylor expansion

¢i(x¢ + AX) = q;(x¢) +¢(x¢ + AMAX)Ax (11)
——
=0
for some A € (0,1). From
Ny T (y_p T
doo = | 20T gy - SOZE T (12)
[Isi(t) =l l[si(t) —xll
we notice that q/(x; + AAx) is also of the form [y”si(7)) —yT 1] where y is a unit vector.
Thus
lg;(x)] = lgi(x¢ + Ax)| = |gi(x + AAx)Ax]
< |yTsi(r)At| + |y Ar| + |AB) (13)
< m|At A+ [Ar]ly + [AS] =[x = x4ls
because, by definition (8), k > ’yng(Tﬂ. [ ]

Lemma 2 The least-squares fit function f(x) = %Hq(x)”% is smooth and has a unique minimum
in Q = By(x¢, §) if o' (x) has full rank and || (¢ (x)"q'(x)) 7P 30 @:(x)q/ (x)|| < 1 for allx € Q.

Proof. If f is convex and has a critical point x* in convex region (), then x* is a global
minimum of f. If f is strictly convex, the minimum is unique. [11, Theorem 9.4.1]

(i) The function f is smooth in Q if g(x) is. The Euclidean norm as well as the satellite orbit
functions are smooth, and lambda-fraction is smooth everywhere except when |g;(x)| = A/2.
But, when x € Q = By (xt, %), then |g;(x)| < A/2 by Lemma 1, and thus q is smooth in €.

(ii) Function f is strictly convex in § if f” exists and is positive definite in Q [8, 3.4.6].

F'x) =d'x)"dx) + Y ax)d (%) (14)
i=1

where the second term is very small. The first term is positive definite when q'(x) has full
rank. Then f”(x) is non-singular because |(q(x)7q'(x))™" Y | ¢i(x)q/ (x)|| < 1 [12, Theorem
2.3.4]. Moreover, since the second term is symmetric and not large enough to reduce any of the
eigenvalues of f”(x) to zero, it cannot make any of them negative either, thus f”(x) is positive
definite.

(iii) The function f has a critical point x; € Q because f'(x;) = q'(x¢)7q(x¢) = o' (x¢)70 = 0.

(iv) The region {2 is a unit ball and thus convex. [ ]

Although convexity or unique minimum do not guarantee the convergence of the Gauss-
Newton iteration (5), numerical testing corroborates the conjecture that € is an attraction
basin for x¢. This is because the ¢; are locally almost linear. The local search thus virtually
guarantees good solution given a starting point xg € €. Although there are several convergence
theorems for Newton-like methods [13], none of them was found to guarantee convergence in
whole €2 in this case, so we will have to settle on numerical evidence until further study.
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5. Global search

We will now have to assume that the true solution x; is the global minimum of f over the whole
feasible region A. This is not true in the general case. Since each ¢;(x) has infinite number of
roots, it is easy to construct satellite geometries where f(x) = 0 for several x. This happens
also in the real world, but the probability is small at least when n > 6.

The role of the global stage of the algorithm is to find the feasible region A C R®, generate
starting points in A, run the local search for each starting point, and determine which of the
resulting local minima is the solution.

The global method could be a stochastic method such as Monte-Carlo or simulated annealing.
In general case, these do not guarantee global convergence [10]. Instead, we develop a
deterministic global stage feasible point finder that is guaranteed to find at least one point
in an attraction basin of given size. First, define a covering.

Definition 3 A point set P covers a region A with covering radius r if for any x € A there
is p € P such that x € B(p, 7).

The set {B(p,r) | p € P} is called the covering of A. It is called the optimal covering if
there is no covering with smaller cardinality.

It is relatively easy to find a covering, but the optimal coverings are known only for a few
simple cases [14], and there are no general algorithms for finding the sharp covering radius of
a given point set. Fortunately, we can quite easily generate a point set with covering radius at
most a given r, a trivial example being a rectangular lattice with spacing 2r/,/p, where p is the
number of dimensions.

Combining the concepts of attraction basin and covering radius gives the following
convergence theorem for global optimization.

Theorem 1 Let f: A CR" — R have a global minimum x*. Let the open ball B(x*,d) be an
attraction basin of x*. Let P be a point set that covers A with covering radius smaller than d.
Then the Gauss-Newton method converges to X* from at least one point in P.

Proof. Because P has covering radius less than d in A, there exists by Definition 3 some
p € P such that ||p — x*|| < d. Then p € B(x*,d), which is an attraction basin for x*, and the
Gauss-Newton iteration converges by Definition 1. |

Note that if A is bounded, then P has a finite number of points, and the global minimum
is found by starting the local search from each point and choosing the smallest of the resulting
minima. This requires a total of at most kmax - |P| Gauss-Newton iterations (5) and the basic
algorithm is as follows.

Algorithm 0:
generate P that covers the feasible region A with radius smaller than d
for each x € P
run the local search with starting point x
if the search converged, add the obtained minimum x* to solution list X
end for
the global optimum is the local minimum with the smallest cost function value f(x*)

Returning to our particular problem, the feasible region A has several natural constraints.
The system time ¢ is restricted within the time of validity of the satellite orbit functions, which
is about four hours. The receiver position r lies on or near the Earth surface, between some
predetermined minimum and maximum altitudes. This forms a spherical shell. Finally, the bias
can be restricted between —A/2 and A/2. Thus, the feasible region A is bounded and Algorithm
0 can be used.
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We arrange the search grid as a Cartesian product of the time grid T, position grid R and
bias grid B. The most natural time and bias grids are evenly spaced with AT and AB as the
differences between elements. We construct the position search grid on the surface of the Earth
analogous to a rectangular grid with spacing AR.

Taking into account that receiver position may be up to, say, 8 kilometers above the Earth,
the point set P = T X R x B then covers the feasible region A with covering radius at most
d = 3|[AT AR AR 8km AB]||,. This is not an optimal covering but fast to generate. The grid
spacing parameters AT, AR, and AB can be freely chosen as long as d < A/2.

When using, for example, AT = 120 s, AR = 100 km, and AB = 60 km, we get about 2.5
million points in P. Set kyax = 8. Since one iteration of (2) takes about one millisecond (on a
800MHz Pentium III), the whole search would last less than six hours.

The computation can be made faster by restricting the feasible region and speeding the local
search. In this paper we concentrate on restricting the feasible region.

Lemma 3 If a terrestrial receiver sees satellites si...s, simultaneously, then the receiver
position v and time t must satisfy the visibility conditions

sit) e >rd e, i=1...n (15)

Proof. For a satellite s; to lie over the horizon when viewed from point r on Earth, the line-
of-sight vector (s; —r) must lie on or above the local horizontal plane. The horizontal plane has
normal vector parallel to r, so the line-of-sight vector must satisfy 0 < r7(s; —r) = r’s; — ||r\|§

The visibility condition typically excludes over 90 percent of the search space. The more
satellites, the smaller is the visible area on average.

Rather than checking each of the 2.5 million points against the visibility condition, it is
faster to compute the visibility region explicitly at each ¢ and cover only the visible area of
Earth with R.

Furthermore, if we construct the search grid with covering radius d considerably smaller
than A/2, we may reject the starting points with too large residuals because, by Lemma 1,
|gi(x)| < ||x — x¢||x < d. These ideas give the following improved algorithm.

Algorithm 1:
choose a radius d and generate a search grid T' x R x B with covering radius at most d
foreach t € T
if the visible region V'(¢) is empty, proceed to next t
generate R, that covers V()
foreachr € Ry and be B
if for any i, |¢;(x)| > d, proceed to next point
run the local search with starting point x
if the search did not converge in k.« iterations, proceed to next point
if the altitude of the solution x* is out of bounds, proceed to next point
add x* to solution list X
end for
end for
if X is nonempty, choose the solution with smallest cost function value f(x)

How should we choose AT, AR, and AB for maximum efficiency? Large values minimize
the number of points to search grid, but on the other hand the local search has to be started
from all points. Choosing very small values produces very dense search grid, but most of the
points can be rejected based on large residuals without having to start the local search. The
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optimal choice lies somewhere between the extremities and depends on the relative efficiently of
the different parts of the implementation. One possibility is to use heuristic optimization with
the computation time of a fixed set of positioning cases as the cost function to find the optimal
parameters.

6. Numerical testing

Because of the lack of a theoretical proof of Q = B(xt, %) being an attraction basin of the
true solution, it is important to verify this assumption at least numerically. The model and
algorithms were implemented in Matlab. Using actual GPS orbit data for satellite tracks, a
million sets of pseudo-range measurements to 5-11 satellites were generated for randomly chosen
true solutions. For each true solution, a random starting point was generated such that about
half of the starting points lay inside the assumed basin of attraction {2 and about half outside,
and the position estimate computed with the iteration (5).

The results, as listed in Table 1, show that the search converged from all starting points
in Q. Convergence occurred also from some points outside €2, even as far as 2A away from the
minimum. Inside €2 it took a maximum of five iterations for the search to converge and one
iteration took less than one millisecond of computation time.

Table 1. Convergence tests from inside and outside attraction basin €2

X0 € x0¢Q
converged to X 543686 155918
converged to other minimum 0 277814
diverged 0 22582

A similar simulation was also run with Gaussian noise added to the measurements. The noise
had one sigma of 15 meters, which is a typical value for a GPS receiver in poor signal conditions.
Although these errors are small when compared with the other quantities in the equations, they
can cause very large errors in the position solution when the satellite geometry is near degenerate.
Therefore an additional test for the condition of the approximate Hessian J7J (see Eq. 5) was
added and iterations finishing with an ill-conditioned Hessian were considered divergent. As
seen in Table 2, bad geometries happen also inside the basin of attraction, but still no false
solutions are found.

Table 2. Convergence tests with noisy measurements

xp € x0¢Q
converged to X 519050 142469
converged to other minimum 0 276288
diverged 24300 37893

The global algorithm could not be tested as extensively because of much longer computation
times. Setting AT =60 s, AR = 80 km, and AB = 33 km reduced the execution time to about
half when compared to the initial choices, but not much more tweaking was done on the Matlab
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code itself. However, the computation time could be drastically reduced by implementing the
inner loops with a compiled language instead of Matlab. Preliminary results of this approach
have been presented in a conference paper [15].

When there is no initial information about time ¢ other than the four-hour period, a single
position fix takes an average of 10 minutes to compute with Algorithm 1. The couple of hundred
position fixes computed indicate that the correct solutions are found when n > 7, and most of
the time when n = 6.

When an approximate time ¢ is known within one minute of the true time, the search is
very fast because the solver can reduce the time search grid T to just one point. The simulation
consisted of 10000 position fixes from random coordinates, of which about 93% produced the
correct position estimate. As expected, all of the failed searches occurred when using six
satellites. In average, one search took only a few seconds, the worst-case computation time
being 31 seconds for six satellites and 4.8 seconds for eleven.

7. A numerical example
For a practical example with real-world data, we took a set of actual GPS measurements and
chopped them to modulo A to get the measurement

¢ =[—99575 124457 3316 106688 —60690 —129977 —17471 143623]7 m.

These measurements were made on June 18th 2003 at about 12:12:46 UTC (GPS week 199,
GPS time 303166 s) to GPS satellites 1, 25, 13, 4, 11, 30, 7, and 20, in that order.

In addition to the modular range measurements, the input information consists of the orbit
functions for the eight satellites. The orbit functions actually used in GPS positioning have
sixteen parameters, but for illustrative purposes we use just a four-parameter truncation: radius
of the orbit 7;, inclination of orbit I;, longtitude of the ascending node €2;, and argument of
perigree w;. The position of ith satellite at time ¢ can then be computed from

cos ¢; cos §2; — sin ¢; cos I; sin ;
si(t) =r; | cosg;sinQ; +sing(t)coscos |, ¢i=,/ %t + w; (16)
i

sin ¢; sin I;

where 1 = 3.986005 - 10 ‘;‘—23 is the Earth’s universal gravitational constant. The values of the

satellite orbit parameters for the eight satellites are given in Table 3.

Table 3. Example satellite orbit parameters

.

r; / m I; / rad Q; / rad w; [ rad

26669227 0.97473256  2.75165527  0.52532410
26840334 0.94188151 -2.58537518 0.65523150
26506596 0.97894959  2.73303135  0.43003718
26567035 0.96493395  0.65864692  1.45288770
26604895 0.91225596  0.54902289  3.05310217
26385686 0.94217798 -1.48942712 1.98092506
26614305 0.93954499 -0.45657542  2.52472498
26499187  0.96450580 1.67606780  2.02825701

CO g O Ut = W N+

The time of validity for the satellite orbit functions is ¢ € [296010, 310410] s.
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We proceed according to Algorithm 1 by first choosing the search grid AT = 60 s,
AR =80 km, and AB = 33 km.

The four-hour time search space is divided to 240 time steps, of which 145 have a non-empty
visibility region, containing a total of 2326980 points. The condition |¢;(x)| < d holds for 77421
points, and the local search is started from each one. 68049 of the searches converge to some
local minimum within eight iterations, and after pruning out the solutions at too high or too
low altitude, 2739 solution candidates remain and are added into the solution list.

The solution list entry with the smallest smallest objective function is chosen as the solution,
and is in this case

t &~ 303165.9 s, r=~[2795073 1236237 5579648] m, [~ —59556 m

with the objective function value f(x) ~ 682.2.

There are 22 other solution candidates within 10™* seconds and 10 cm of this one, with
objective function values less than 683. This is because the dense search grid contains multiple
points within the attraction basin of the true solution. The next smallest objective function
value, however, is over 2 - 108 and the corresponding position thousands of kilometers away.

In this experiment, the true position was known to be around [2795076 1236239 5579613],
and the resulting positioning error 35 meters is well within the expected GPS accuracy. The
search took little less than 14 minutes.

8. Conclusions

A solution method was developed for a special case of GPS positioning problem with minimal
initial information required. The proposed method is applicable also to other satellite positioning
systems, such as the European Galileo, and even to terrestrial positioning systems where
distances are measured by repeating codes and positioning stations are relatively far away from
the receiver.

Most of the previous GPS algorithms assume that the exact time can be deciphered from the
signal and satellite positions can thus be accurately determined. The concept of time recovery,
where the time has to be solved along with receiver position and bias was first suggested in [9]
but with the requirement of an initial point sufficiently close to the solution. The modular GPS
range problem has also been addressed by several authors, but the solutions assume that an
initial position estimate within 150 km (~ A/2) from the true position is known [6]. The present
work gives bounds for a feasible initial estimate also in terms of time and bias, and provides an
algorithm for positioning that requires the time to be known only within four hours.
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Nonlinear Filtering with Piecewise Probability Densities

Niilo Sirola

Abstract— A general framework for discrete nonlinear filtering using
piecewise defined approximating probability density functions is pre-
sented. The filtering algorithm is based on projecting the predictive
density functions and likelihood functions to a family of parametric
functions defined over bounded el t

Impl tation ex:

I are given for some specific approximation
function families and projection criteria. A numerical example on a well-
known two-dimensional radar tracking problem is presented.

I. INTRODUCTION

Consider a discrete-time stochastic system whose state 2, € R?
and measurements y, € R™* at time instant {5 are given by the
equations:

@ = fra (Tea) + W (dynamic model) (1)

yk = hi(zk) + vk (measurement model) ?2)

where f : R% — R? is a known state transfer function, wy, € R? is
the state noise with known distribution, hy : R? — R™* is the known
measurement function, and v, € R™* is the measurement noise with
known distribution. The noises wy and vy are assumed white and
independent of each other and of the initial state distribution poo (o).

The object of study is to find the conditional probability density of
the unknown state = given measurements up to time t5. The recur-
sive Bayesian filter, given in Algorithm 1, is the theoretical solution to
this problem. In the algorithm, the dynamic model (1) is rewritten as
the state transition density ¢(x) | 1) = Pw, (Tx — fe1 (1)),
where p.,, is the state noise density function. Similarly, the measure-
ment model (2) is contained in the measurement likelihood function
Li(yr | @) = po, (r — he (zx)) . The set of measurements up
to kth time instant has been denoted with the shorthand notation
Yk = {y1, 92, ... Y}

Algorithm 1 Ideal Bayesian filter
1) Start with initial distribution po|o(zo) and k = 1.
2) Compute the prior density:

Prik—t (T | Y1:6-1)

3)
:/ O (@k | ro1)Prt ot (Thar | Yrepaa A
Rd
3) Compute the posterior density:
Pk @k | y1:6) X P (Th | Y1) Lo (Y | 2x)-

4) Output mean and covariance of py.(zk | Y1:x)-
5) Increase k and repeat from 2.

The practical difficulties with the ideal Bayesian filter are eval-
uating the integrals exactly and storing the intermediate probability
density functions. Except for some special cases, practical implemen-
tations rely on analytic and/or numerical approximations of both the
density functions and the required integrals.

The most often used approximative filter is the extended Kalman
filter and its variants that use local linearization or series expansion
of the measurement and dynamic models and are thus prone to errors
when the models are not “almost linear”. The point-mass filter intro-
duced in [1], on the other hand, works with global approximations
of the measurement model and the state distribution, and produces
more reliable results in certain situations, although at prohibitive

computational cost. Improvements on the point-mass filter include
anticipative grid design [2], and multi-grid extensions [3], [4].

This paper generalizes on the concept of piecewise constant
parallelepiped grid filter introduced in [5] and further developed by
the author in [6].

II. GENERAL PIECEWISE FILTER

We develop a class of nonlinear filters by approximating proba-
bility density functions with parametric functions defined piecewise
over a finite collection of bounded elements.

Consider a single time instant and drop the subscript k for clarity.
Let G be a collection of n non-overlapping bounded elements
{G(i) cR?|i=1,...,n} whose union adequately covers the “in-
teresting region” of the state space. The simplest example of such a
collection is the rectangular grid, but in general we do not require
the elements to be of the same shape, regularly arranged, or even
connected. With G given, the density p(x) is approximated as

Pe) = 3 Xot (@) 2) @

where X () is the characteristic function of the element G/(i) and
7(i,-) € F(G(7)) is a function defined over the ith element. The
approximation function family F could be, for example, the family
of constant, linear, delta-peak, polynomial, exponential, or truncated
Gaussian functions. The approximation (4) is constructed by project-
ing the actual density function to the approximation space. Using this
method in storing the intermediate densities in the ideal Bayesian
filter yields Algorithm 2. A variant given in Algorithm 3 makes
separate projections on the prediction and update steps. This two-step
variant will lose more detail of the density functions in projections,
but in some cases allows for a more efficient implementation.

Algorithm 2 General one-step piecewise filter

1) Start with an initial distribution pg|o given in the form (4). Set
k=1

2) Compute the new significant domain S and form a new grid
Gy, that covers Sk.
Given the previous posterior approximation pjijx—1 and the
dynamic model, the accurate expression for the new posterior
density is 5)

Prjr(x) o< Li(x) i

i=1 .
TG ()

(2 | ) T (4,€) dE.

Approximate this in the form (4) with the piecewise functions
defined as

Tk (i) o< Projzay (i) Bri () -

Then normalize the density.
3) Compute and output the mean and covariance estimates.
4) Increase k and repeat from Step 2.

A. The significant domain

Computing integrals is the heart of any nonlinear filtering method.
In some cases, it is possible to analytically solve the integrals, but
the more general methods use numerical integration that usually
operate over a bounded subset of the state space. The time-honored
convention of modeling real-world noise with Gaussian distributions
presents a problem of all probability density functions extending to
infinity. This is in contrast to real processes that, in a sense, always



Algorithm 3 General two-step piecewise filter

1) Start with an initial distribution pg|o given in the form (4). Set
k=1
(Prediction) Compute the new significant domain Sy and form
a new grid G, that covers Sj.
Given the previous posterior approximation py1jx—1 and the
dynamic model, the accurate expression for the prior density is

2

-

N1

Prira(®) = )

i=1 )
T aa )

Ora (@ | &) T o (4,6) € (6)
Approximate this in the form (4) with the piecewise functions
defined as

Tia (4, 2) = Projz(a, oy (Brira () -
3

=

(Update) Compute the new posterior approximation 7y (i, -)
by projecting the product of prior and likelihood functions to
the approximation space:

x|k (4, ) o Proj £(c,. (i) (“k\kgl (4,7) L (‘)) .

Then normalize the density.
4) Compute and output the mean and covariance estimates.
5) Increase k and repeat from Step 2.

stay “on the map” and real measurement devices whose output range
is usually limited.

The significant domain S is the region in R in which the solution
probability is non-negligible [7]. The numerical solution process then
only needs to cover S, which we assume to be bounded.

B. Grid design

‘We have not yet fixed any structure for the grid, but for an efficient
implementation it is often unavoidable. Most common choices are
evenly spaced rectangular or parallelepiped grids, but also more
exotic structures like hexagonal or triangle mesh could be imple-
mentable.

The goal of grid design is to cover the significant domain as
efficiently as possible. The approximation should be able to capture
the smallest features of the probability density functions, which is
accomplished either by using a grid with many small elements, or
larger elements but a more intricate approximation function family.

C. Projection criteria

Piecewise filters use the conceptually simple idea of projecting
density functions to the chosen piecewise approximation function
family F. Using a function distance measure d 4 (f, g), the projection
operator can be defined as

. _ i dalf,
Proj 4y (9) = arg S uin A(f,9)

so that the projection is the function from family F that is closest
to the original function g within the region A. Table I gives some
examples of density distance functions, not all of which are proper
metrics. Luckily, metric properties are not needed for the projections,
although they might be useful in further investigations (see [8]).

III. PREDICTION STEP UNDER SOME PROJECTION CRITERIA AND
APPROXIMATION FAMILIES

In the following, we give formulas for a couple of simple choices
of distance functions and approximation families. It is a subject
of further study if any other combinations yield practical filter
implementations.

TABLE I
EXAMPLES OF DENSITY FUNCTION DISTANCE MEASURES

name da(f.9)
infinity norm maxgealf(z) — g(z)]
Lissack-Fu Jalf(@) = g(z)|Pda

Ja fz)log 1z) gy

Kullback-Leibler
g(z)

Simandl [4] 1— [, min(f(z),g(z))dz
Bhattacharyya —log [, \/f(z)g(x)dz
mass-matching |{A f(z)dz — f?g(r)dz\

mean-matching |[4 f(@)zde — [, g(z)zdz|

A. Mass-matching

Given that we are projecting probability densities in a bounded
area, it would seem reasonable to require that the total probability
inside the element be conserved in the projection.

Consider the prediction step (6) in the two-step filter. We find
an approximation pyx—1 within the chosen approximation function
family so that the probability in the element is conserved. The formula
for this can be found by integrating the accurate prediction py—; and
the approximation over the one element at a time, setting the integrals
equal, and solving the parameters of the approximating function from
the equation.

Piecewise constant approximation: Let F be the family of constant
functions, so that 7 (%, -) = (7). Then the prediction formula is found
to be

N1

Tepraa (1) = |Gr(i)] ™ Z Tha ket () Tk (4, 5) N
j=1

where Ty (4,7) = ka(l) ka—l (;) G (xk, T )dxpaday is the
transition probability from jth element of the old grid to the ith
element in the new grid, and |Gy (7)| = ka-(i) dz is the volume of
the element.

Delta function approximation: Another easy choice of approx-
imation family is the weighted point-mass functions: m(i,z) =
m(i)d(x — ¢(i)), where ¢(i) is the mass center of the ith element.
The corresponding prediction formula is

k-1

Thik (1) = Z Tt b (7) Pl (Cr+1(3), cx (F))-

This is equivalent to the formula used in the conventional point-
mass method [1]. The difference from the piecewise constant ap-
proximation is that the state transition density is evaluated only in
the element centers instead of computing the element-to-element
transition densities.

Piecewise linear: As our third simplest choice, we try a linear
approximation, that is, m. (i,2) = ax(i)” @ + bi(i). Matching
element probabilities gives a condition which leaves d degrees of
freedom for the choice of approximation parameters a () and b(7):

1G] [ar() T er (i) + bu(i)

Mk—1

=Y <ak|k—l ()" Crpr (4, 9) + brjrr (T kjia (Lj)) :
j=1
where
Uy (4,9) = Sk (T | That) Thmr dzpada

Cr(i) Gia (4)

can be thought of as the first moment of the element-to-element
transition probability.



The other d degrees of freedom can be fixed with boundary
conditions, for example. In the one-dimensional case, the boundary
conditions can be used to make the approximation continuous. In
higher dimensions, there are no obvious candidates for boundary
conditions and the mass-matching criterion cannot be sensibly applied
to piecewise linear projections.

B. Lissack-Fu distance

We repeat the computations using Lissack-Fu distance with p = 2
(or L2 distance). The criterion is more complex than mass-matching,
requiring the density functions to match point-wise. Point mass
representation cannot deal with this kind of distance.

The parameters of the approximating functions are found by
minimizing the distance function, which can lead to lengthy but
straightforward computations.

Piecewise constant approximation: The L2 distance of the piece-
wise constant approximation 7 |_; from the accurate prediction is

day, iy (Prik-1, Dr k1 (1))

= / [Brjot () — s () da.
Gy (i)

The approximation has just one free parameter, my (7). We
find the projection by symbolically differentiating the distance with
respect to 7y, (¢) and setting the derivative to zero. The resulting
prediction formula is

M -1

Toier = [Gr(@)| ™Y mooajer ()Tra (i | 5)
=1

which is equivalent to the formula (7) derived from the mass-
matching criterion. This does not generalize to all distance candidates,
for example the Kullback-Leibler criterion will give a different
approximation and thus does not conserve element probabilities.

Piecewise linear approximation: Whereas the mass-matching cri-
terion failed to produce unique projection for the family of linear
functions, L2 criterion will. The computations for finding the zeros
of the derivative of dg, (i)(Pk|k—1,Pr|r-1(i)) With respect to the
parameters a1 (¢) and by, (i) are lengthy but straightforward.
The result is that for each 4, the new approximation parameters are
solved from the linear system

[Vk(i) ck(i)] {amm(i)]

()T 1 brej (2)

=[G(i) ! "f [%H(i’j)} i () + [Ak‘kfl(i’j)} bia i1 (7),

Wi (4, ) Dajiea (4, )

j=1

®)

where the functions depending only on the grid geometry and motion
model are

e i) = \Gk(z’)\_l/ ox da
Gr)

Vili) = \Gk(i)rl/ weal da
Gr)

T (2, 9) :/ / Ora(xk | Tpm1) dzpadar

G (i) G (9)

Apjra (4, 7) :/ Ora (x| o) o dogade
G (i) G (4)

o (4, 9) :/ Sra (x| Tpat) Ty dagaday,
G (i) Gi1(5)

Ok (i, 7) :/

Gr(i) G (4)

Ot (wn | wr1) Thziy dzpaday.

Computing all these integrals (3n d-dimensional integrals and 4n?
2d-dimensional ones) to sufficient accuracy will probably not be
tractable in the general multi-dimensional case.

Another problem with the piecewise linear approximation is that it
may well get negative values unless a more complicated constrained
minimization process is used.

C. Projections in the one-step algorithm

In the one-step method given in Algorithm 2, the function to be
projected (5) depends on the measurement likelihood function Ly (x):

k-1

Pon(@) = Cla@) 3 [ onae € moan(19) e

=
=G ()

where C}, is the normalization factor. Whereas the approximation
function family F is chosen by the algorithm designer and is
thus known analytically, we would prefer to work with a “black-
box” likelihood. This approach prevents us from deriving simplified
projection formulas as we did for the two-step algorithm, but allows
for more flexible measurement likelihoods.

The projections are done by numerical
d(ﬁk\k,ﬁkﬂc) . In the simplest case of piecewise constant functions
and mass-matching criterion, we use the procedure similar to the
two-step case to get the combined prediction-update step

minimization of

M -1
mk(®) = 61O Co Y- Mo () [ L) (o)
=t G
The computation of the integrals requires more effort than in the
two-step version because the likelihood term is inside the integral.
Additionally, we will not be able to use certain fast techniques for
computing the prediction. Still, in some cases, the smaller approxima-
tion error of the one-step method outweighs the performance penalty.

IV. PIECEWISE CONSTANT PARALLELEPIPED GRID FILTER

As a practical example, we develop a specific instance of the
general two-step grid algorithm (Algorithm 3) that approximates
density functions in piecewise constant form

B(z) = GO 3 Xaw (@) ().

An evenly spaced d-dimensional parallelepiped grid is described
with vectors e € R%, n € Zi and basis matrix £ € R™¢ det E #
0. The element centers are computed from

c(i)=e+Fi, 0<i<n
where the multi-indices i, n € Zd, and the ith element is given as
. . d
GG) = {e)) + By [ 7€ (-3, 3]}
Note that rectangular grid is also covered by this definition as a
special case.



A. Prediction step

As derived in (7), the prediction equation is
T (8) 2 1G] D mre (DT hr s (65 5) (C)]
Jj=1

where T’y 1)5(4, §) is the transition probability from jth element to
ith element. Another choice would have been to write this in terms
of the pre-image of the target element, as is done in [5].

Computing the transition probabilities T’y 1% (4, 7) efficiently is
crucial. This term does not depend (directly) on measurements or
current state, but only on the state model and the topology of the
grids. We aim to make the transition probability depend on only i — j
instead of ¢ and j separately, so that the prediction can be computed
efficiently with discrete convolution.

Thus assume a linear state model f(z) = Tz, and that the
consecutive grid bases are compatible so that 1, = TEj. Then
Or(Tet1 | Tk) = Puwy(Tr41 — Tar), where po, is the density
function of the state noise. Now the element-to-element transition
probability is

Tian(i,j) = Puwy, (Tr1 — Txy) depprdag

Gr(J) Gr1(9)

Make changes of variables z = ex+ Ex(j+7) and 41 = epp1+
Ext1(i+ A), and use Fyxy1 = TEj to get

Py, (Tr1 — Tar)
= puy, (ert1 — Ter + Ery1(i — ) + Er1(A — 7))
= Pugs_; (A=)

where p.,i—; is shorthand for the modified process noise probability

density function. Denote K = [—1, 1]? to get
Puoip(iod) = [ [ puscy =) [BusaldA Exldy
e (10)

= Tk+1\k(i - j)»

Specifically, if w, ~ N(0, Qx), then
Whieg ~ N (j —i— Byl (exsr — Tex), (E,;il)TQkE,;il) .

The transition probability (10) is then computed by integrating
multinormal probability in a 2d-dimensional hyper-box using, for
example, [9]. Moreover, only a few small values of ¢ — j have to be
considered because the probability of larger transitions is negligible.

Note that propagating the element basis matrix through Ej1 =
T E), repeatedly may lead to very “skewed” grids, so it is in practice
best to straighten the grid and use the general prediction step instead
of the convolutionized one every once in a while.

B. Update step

In general, we find the likelihood within each element by numerical
integration over the element rather than hard-coding any specific
likelihood equations. Thus, the integral

Li(i) = / L(x,yx) da (11)
xp (i) +EK
has to be computed numerically via, for example, cubature or quasi
Monte Carlo integration [10]. As a special case, quasi Monte Carlo
with just one point means evaluating the likelihood only in the center
of each element center, which is equal to the update in the point-mass
approach.

Algorithm 4 Piecewise constant two-step parallellepiped grid filter

1) Span an initial grid G and approximate the initial distribution
as

no
Pojo(z) = [Eo| ZXG(i) () 7o)0()
i=1

Set k= 1.

2) (Prediction) Compute the new significant domain Sj.
(2a) If the propagated element basis Tj_1Er—_1 is not too
skewed, use it as basis for the new grid Gy, that covers Si.
The grid anchor ej can be chosen arbitrarily. Compute the
element-to-element relative transition probabilities 75 (i —j)
from (10) for suitable values of i— j, and approximate the prior

density as
ng_1
T (1) & | B |7 Z Tt | () Thoppr (2 — 7).
=1

using multi-dimensional convolution.
(2b) Else generate new grid G to cover Sy and approximate
the prior density using the general form

Ng—1
T (1) = | B |7 Z Tt bt () T (815)-
j=1
3) (Update) Compute the new posterior approximation 7 (4, -)
ek (8) o¢ Tree (4) L (4),

where the likelihood over ith element Lyj(7) is computed
numerically according to (11). Normalize the density so that

2 ity mp = 1.
4) Output the mean and covariance of the piecewise distribution

Tk
Br= Y mrpi(i)ex (i)
=1
N l
= ;Wk\k(i)c(i)C(i)T —anif + S BB

5) Increase k and repeat from Step 2.

C. Algorithm

The steps (9), (10), and (11) are combined with some logic to
manage the significant domains and grid design to get Algorithm 4.

V. NUMERICAL EXAMPLE

For numerical simulation, we use the simple two-dimensional
passive tracking problem from [1], [2], [5], where

09 0 0.1 0.05
Tp1 = [ 0 1} Tk + Wk, Wk NN(O’ [0.05 01 ])

+ vk, v~ ./\/(0, 0.1).
with zo ~ N ([5 O]T , diag(9, 4)) Note that it is impossible to
replicate the results given in [1], [5] because they do not mention
their choice of xo. On the other hand, the starting point [27,0]"
from [2] makes the measurement model almost linear and as such is
not a good test for a general nonlinear filter.

A MATLAB simulation was run for a hundred cases consisting
of a simulated track and measurement realizations. Each case was
solved with an extended Kalman filter (EKF), Unscented Kalman
Filter (UKF), sequential Monte Carlo filter (SMC) with different
numbers of particles, point mass filter (PM), and a piecewise constant



grid filter (PCG) from Algorithm 4 with various element densities.
The results are given in Table II.

TABLE II
SIMULATION RESULTS

time per incons-  reference pdf

fix (ms) RMSE istent error (95%)  quality
EKF 0.3 2.7 8 % 6.6 14
UKF 0.5 2.0 2.0 % 4.0 13
SMCio0 0.6 2.0 1.4 % 1.0 103
SMC1000 2 14 0.1 % 0.3 0.27
PMas 10 32 0 % 59 7.7
PMi00 20 2.1 0 % 3.6 3.5
PM1000 90 1.4 0.1 % 0.4 0.25
PCGas 20 34 0 % 6.4 2.8
PCG1o0 70 1.5 0 % 1.2 0.84
PCG1000 800 1.4 0.1 % 0.2 0.21

The timings are from a MATLAB 7.1 implementation running on
a laptop with 1.4GHz Intel Celeron. While the computation time of
the grid method is several orders larger than that of EKF and particle
filters, it is still under one second per fix and thus admissible for a
real-time application, especially if implemented efficiently.

The RMSE (root mean square error) figure is the error of the mean
estimate against the true track from which the measurement were
simulated. The inconsistency column gives the percentage of time
instants the error was “too large” in comparison to the estimated
covariance, i.e. HZ_%(.% — )|l > /555 where & and ¥ are the
estimated mean and covariance, n = 2 is the dimension of the state,
and 0.05 is the risk level [11]. The smaller PM and PCG filters show
0% inconsistency because their large element size causes them to
over-estimate the covariance.

The last two columns of the results table relate to a reference
solution computed with a particle filter with one million particles,
which we consider to be acceptably close to the optimal filtering
solution. The reference error column gives a radius within which
95% of the mean estimates are from the corresponding reference
mean. Finally, the pdf quality column gives the mean Kullback-
Leibler distance (see Table I) between the reference density function
and the approximated density function on the final step of each run.
The Kullback-Leibler distances were computed numerically over a
rectangular grid of 50 000 elements spanning over the support of the
reference density. The probability density functions of the particle
filters were evaluated by substituting each particle with a small
Gaussian distribution. Figure V shows examples of the probability
densities obtained by different filters.

VI. CONCLUDING REMARKS

A piecewise nonlinear filter was given that generalizes the notion
of the point-mass filter. A few specific implementation possibilities
for the filter were described. The set of efficient implementations is
expected to be quite small, because the more sophisticated the ap-
proximation is, the more work is required to compute the predictions
and likelihood updates accurately.

Numerical testing shows that the efficiency and accuracy of a
vanilla particle filter is hard to match even in a low dimension
problem. The implemented point-mass and piecewise constant grid
filters require several orders more computation time than a basic
particle filter reaching almost the same accuracy.

The problem with particle filters is that we do not know how many
particles are enough to keep the quality of the approximated posterior
density good. Piecewise filters, on the other hand, can feasibly cover
the whole significant region and maintain accuracy governed by the

reference ukfsolver, err=1.17
2
T
-2
0 2 0 2

smcsolver, err=0.0229 gridsolver, err=0.0216

2 2
0 ' 0 '
-2 -2
0 2 0 2
Fig. 1. Examples of density functions and their Kullback-Leibler distances

from the reference density at time step k& = 30.

element size. The accuracy and efficiency of the piecewise algorithms
can be further improved with a more advanced grid management
strategy.
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