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Abstract	

This thesis presents the calculation method Hybrid su that  is  used  to  calculate  the
undrained shear strength or excess pore pressure in soft clay, based on effective strength
parameters, in a limit equilibrium (LEM) framework. The Hybrid su method (HSU) can
take into account the effects of anisotropy, consolidation state, volumetric hardening, and
to some extent, effects of undrained loading rate. The calculation method is intended to be
used  as  a  fairly  simple  design  tool  with  enough  complexity  to  account  for  the  most
important properties of undrained soil behavior.

Advanced finite element (FEM) soil models could be used to accurately model and
calculate embankment stability. While such models can be very accurate, they are
demanding in terms of user expertise, parameter determination and time. On the other
hand, basic stability design work is typically carried out with limit equilibrium methods
(LEM), where strength input often comes from field vane testing (φ =  0  analyses).  The
largest inaccuracy in φ =  0  analyses  is  often  in  strength  determination.  In  the  case  of
undrained effective stress calculations (c’-φ’ analyses), the inaccuracy lies in determining
excess pore pressure.

The HSU method provides improvements in the determination of su and Δu in the context
of LEM. It is based on the anisotropic critical state soil model S-CLAY1. The formulation
of the original model is simplified with reasonable assumptions to obtain a closed form
solution for undrained shear strength, based on effective strength parameters. The method
can also be used to derive excess pore pressure at the failure state. As the method relates
the calculated pore pressure and effective stresses to the assumed failure state, the known
property of overestimating shear strength in traditional undrained effective stress analyses
is effectively solved.

The  method is  validated  by  fitting  it  to  laboratory  data  on  various  soft  clays,  as  well  as
back-calculations of several failed embankments. HSU is shown to give good results with
very reasonable parameter combinations.

The recommended use of the HSU method is determining su, which is then used as input
in  a  typical  total  stress  limit  equilibrium  analysis.  The  proposed  approaches  of
determining Δu for undrained effective stress analyses work fairly well. However, the Δu
approach is mainly presented as a proof of concept due to its complex and redundant
nature compared to the su approach.
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Notation	

b Intermediate principal stress ratio

C HSU model parameter for setting K0NC

c’ Cohesion [kPa]

D pore pressure parameter

D HSU model parameter for setting K0 (overconsolidated soil)

e void ratio

F Factor of safety

f0 Correction factor in Janbu’s simplified method

G Shear modulus [kPa]

Ip Plasticity index [%]

J2 Second deviatoric invariant [kPa]

K0 Lateral stress coefficient

K0NC Lateral stress coefficient in the normally consolidated state

M Inclination of the critical stress line in (p’, q) space

m SHANSEP exponent

p Total effective stress [kPa]

p’ Mean effective stress, Cambridge definition: p’ = (σ’1 + σ’2 + σ’3) / 3 [kPa]

p’0 Initial mean effective stress [kPa]

p’c Mean effective stress at preconsolidation pressure [kPa]

p’m Yield surface size parameter, HSU & S-CLAY1 model [kPa]

q Deviatoric stress, Cambridge definition: q = σ’1 - σ’3 [kPa]

q0 Initial deviatoric stress [kPa]

qc Mean effective stress at preconsolidation pressure [kPa]

S SHANSEP strength ratio

su undrained shear strength [kPa]

u Pore pressure [kPa]
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Δu Excess pore pressure [kPa]

w Water content [%]

wL Liquid limit [%]

wP Plastic limit [%]

α Slope of failure surface against the horizontal direction [°]

αrot Inclination of the initial yield surface in HSU and S-CLAY1

β Rotational hardening parameter in the S-CLAY1 model

γ Unit weight [kN/m3]

γ Shear strain

γ Partial safety factor

εa Axial strain

εv Volumetric strain

η Stress ratio q/p’

θ Principal stress rotation [°]

κ Slope of the unloading-reloading line in (ln p’, e) space

λ Slope of the normal consolidation line in (ln p’, e) space

λ/κ Stress path control parameter in HSU

μ Reduction factor for su

σ’ Effective stress [kPa]

σ’v Preconsolidation stress [kPa]

σ’n Effective normal stress [kPa]

σ’v Effective vertical stress [kPa]

τ Shear stress [kPa]

τf Shear strength [kPa]

φ’ Friction angle [°]

χ Rotational hardening parameter in the S-CLAY1 model
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Common subscripts:

0 Initial state

1 Major principal stress or strain

2 Intermediate principal stress or strain

3 Minor principal stress or strain

c Preconsolidation state

f Failure state

Acronyms:

CAU Anisotropically consolidated, undrained triaxial test

CK0UC K0-consolidated, undrained triaxial compression test

CK0UE K0-consolidated, undrained triaxial extension test

COV Coefficient of variation

CSL Critical state line

DSS Direct simple shear test

ESA Effective stress analysis

FEM Finite Element Method

FTA Finnish Transport Agency

HSU Hybrid su method

LEM Limit Equilibrium Method

OCR Overconsolidation ratio

PSA Plane strain active (strength or stress state)

PSP Plane strain passive (strength or stress state)

SHANSEP Stress History And Normalized Soil Engineering Properties (design
procedure)

TC Triaxial compression

TE Triaxial extension

TSA Total stress analysis
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TUT Tampere University of Technology

USA Undrained strength analysis
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1 Introduction	

1.1 Background	of	the	research	issue	

Calculating slope and embankment stability is a challenging but essential task in any
geotechnical design project. The complex behaviour of soft soils adds yet further
challenge to stability calculations.

A fairly large proportion of the Finnish railway network is located on soft soil areas (clay
or peat), which emphasizes the need for accurate stability calculations. Typical Finnish
clays are normally consolidated or slightly overconsolidated, have fairly low shear
strength, medium to high plasticity and high sensitivity (Ronkainen 2012).

Further difficulties arise from the desire to increase the design loads of certain track
sections, for example due to mining operations. To this end, the Finnish Transport Agency
has conducted a study (Ratojen luokittelu; English translation: “Classification of tracks”)
to classify all track sections in Finland according to various properties, including
embankment stability. Quite often the resulting factor of safety from these stability
calculations is unrealistically low. It has been found that there are many existing
embankments on the Finnish railway network that have calculated global factors of safety
F < 1 for undrained loading, without the use of partial safety factors. As these
embankments are still standing without critical issues (although often closely monitored),
there obviously are problems either with determining the strength parameters or the
calculation methods themselves.

Until recently, by far the most dominant design practise in Finland has been to calculate a
global factor of safety F against short-term embankment failure by a total stress analysis
(φ = 0) using the limit equilibrium method (LEM). With the introduction of the Eurocodes
(EN-1997), stability analyses are increasingly conducted with partial safety factors
(especially in projects commissioned by the Finnish Traffic Agency, who require design
to be carried out according to Eurocodes). The codes and guidelines used do maintain
provision  for  undrained  effective  stress  stability  analyses,  but  this  is  only  used  for  a
minimal share of all analyses. The use of FEM in design work is slowly increasing, but is
typically reserved for large or difficult projects, and is only used by a handful of
specialists. The bulk of stability calculations are done using LEM.

In Finland the undrained shear strength of clay is most commonly determined in situ by
vane shear testing. The most common vane shear apparatus used is the Nilcon vane that
employs a slip coupling above the vane to account for rod friction. The torque is measured
from the ground surface. In addition, some soil investigation consultants use field vanes
that measure torque from the bottom. CPTU equipment is increasingly used, but still fairly
rarely in a national scale.

A recent study (Ukonjärvi 2015) indicates that the commonly used Nilcon vane has many
issues that result in unrealistically low measured shear strengths. Especially the slip
coupling  used  to  isolate  rod  friction  does  not  always  work  as  intended,  which  results  in
too large measured rod friction. This discussion is however outside the scope of this work,
but here it can be argued that the often conservative design strengths will then often lead
to overconservative and costly designs.
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Total stress analyses (φ =  0)  have  most  of  their  uncertainty  in  the  actual  strength
parameter (su) due to sometimes unreliable in situ determination. An alternative to total
stress analysis is the undrained effective stress analysis (undrained c’-φ’). Here the
strength parameters c’ and φ’ can be determined quite accurately, but now the uncertainty
is in the determination of excess pore pressure. Undrained c’-φ’ analyses also have issues
related to the use of the Mohr-Coulomb criterion which leads to an inherent
overestimation of F. These issues are discussed in Chapter 4.

The research project “RASTAPA” (2009-2015) commissioned and funded by the Finnish
Transport Agency and carried out by Tampere University of Technology seeks to improve
the commonly used (“state-of-practise”) stability calculation methods and to research new
calculation methods with emphasis on their usability for everyday design tasks.

One  part  of  the  project  RASTAPA  that  is  directly  linked  to  this  thesis  was  to  improve
methods for modelling excess pore pressure (Δu)  in  LEM,  thus  facilitating  the  use  of
undrained effective stress analyses for design. Special emphasis was put on modelling
yield-induced excess pore pressure which is quite difficult – often arbitrary – with
traditional parameters used in LEM. The premise was that improving the modelling of Δu
can make undrained c’-φ’ a viable option for stability calculations. The advantage over
total stress analyses would then be smaller uncertainty in strength parameters themselves.
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1.2 A	note	on	“LEM	versus	FEM	“	

Calculating embankment stability with LEM is admittedly constrained by comparison to
advanced finite element analyses. A natural question would then be: Does LEM have any
relevance in geotechnical design if FEM can be used to calculate stability potentially more
accurately (and at the same time give information about deformations)?

Advanced FEM soil models can take into account various physical phenomena affecting
soil strength, but this comes at the cost of complex models. Increasing the number of
physical parameters a model accounts for is accompanied by more parameters to be
determined, as well as increased calculation times. In comparison, LEM analyses require
very little input data, and calculation times with modern computers are close to negligible.

There are many recognised issues affecting the accuracy of LEM stability calculations
(Section 2.3), but nevertheless LEM remains a widely used and reasonably effective
engineering tool. Most of the practical stability design work (e.g. small-medium projects
and preliminary studies of more complex projects) is still done with LEM. For example, in
large railway or road projects the geotechnical designer needs to be able to quickly
calculate the stability of numerous cross-sections. This would often be a laborious and
time-consuming task with FEM, especially with variable soil deposits. In this example
LEM can be used quickly to identify the most critical cross-sections, and more accurate
FEM analyses can then be employed where necessary.

It also has been shown (Cheng et al 2007) that at least for simple, homogenous slopes in
drained conditions, both LEM, and FEM analyses using the Strength Reduction Method
(SRM), will give essentially the same factor of safety. An SRM analysis has the advantage
over LEM in that it implicitly finds the most critical slip surface, while a LEM analysis
can potentially fail to converge or find the most critical failure surface. In LEM analyses it
is important that the software has reliable and effective search algorithms for the most
critical slip surface.

It can be argued that LEM and FEM should not be seen as competing, but rather as
mutually complementary geotechnical design tools. At the same time, LEM stability
calculations do have room for improvement, especially regarding undrained analyses.	
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1.3 Aim	and	premise	of	the	study	

There is recognised need for a simple design-oriented calculation tool to better model the
shear strength of clay in undrained stability calculations. The calculation tool would need
to:

- be easily adaptable for use with LEM (preferably a closed form solution,
or at most minor iterations needed)

- analytically take into account the primary factors affecting the undrained
strength capacity of clays

- not  contain  too  many  model  parameters  to  be  determined,  so  as  to
preserve the “simple engineering tool” approach

This thesis presents an approach where a constitutive soil model can be applied to:

1. Calculate su based on the friction angle and consolidation stress of the clay (total stress
φ = 0)
2. Calculate excess pore pressure at failure (effective stress c’- φ’)

It will be shown that the proposed approach satisfies the aforementioned requirements.
The approach gives the designer more freedom to analytically model the factors affecting
undrained shear strength than has traditionally been possible with LEM. It also can be
seen as a solution to the inherent overestimation of the factor of safety in undrained
effective stress analyses.
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1.4 Defining	the	problem	framework	

Under loading, soil is generally considered either drained (Δu = 0, Δv ≠ 0) or undrained
(no pore water dissipation, Δu ≠ 0, Δv = 0), depending on soil permeability and the time
scale of loading. These are the two extremes of the possible drainage conditions. Partial
drainage occurs for example during consolidation, where excess pore pressure from
loading dissipates during a certain timescale and volume change is occurring.

For a loading problem (e.g. embankment on clay) the lowest factor of safety typically
occurs immediately after construction due to excess pore pressure build-up in the
undrained state. As consolidation occurs and pore pressures dissipate, the factor of safety
increases.  The  opposite  is  true  for  an  unloading  problem  on  clay:  Removal  of  soil  will
decrease pore pressure in clay, increasing the short-term strength. The clay will then
swell, pore pressure will equilibrate (increase) and shear strength will decrease. For
unloading problems the determining situation is then the long-term drained state.

As this thesis focuses on stability of embankments on clay soils, the focus naturally falls
on undrained stability calculations. Specific emphasis is put on railway embankments,
both existing (old) and new. While the stability of an old railway embankment might be
considered a drained (long-term) problem, this is not the case. The situation used to
determine  the  stability  of  a  railway  embankment  (both  new  and  old)  is  a  train  standing
still on the tracks (Ratahallintokeskus 2005). This large traffic load is inherently short-
term and thus the loading situation is undrained even for old embankments where
consolidation caused by the embankment itself has fully occurred.

A typical soil profile that is relevant for the discussed stability problem includes the
embankment and its various structural layers, possible fill layers on the subgrade, possible
stiff clay crust, soft soil layers (clay and/or silt), and underlying stiffer layers and/or
bedrock.

For sake of simplicity, no attempt is made here to describe partially saturated soil
behaviour. The embankment and various fill layers are generally considered dry, a stiff
clay crust may be considered dry or saturated depending on the circumstances, and soft
clay and any underlying layers are considered fully saturated.

In this thesis ground water conditions are considered static, i.e. the ground water
conditions are modelled by a clearly defined water table (which is not necessarily
horizontal). No seepage forces are considered.

The new calculation method is mainly intended to be used with soft, normally or slightly
overconsolidated clays, solely in undrained conditions. The initial consolidation state is
assumed to be cross-anisotropic, with K0 consolidation.

Due to the nature of the used models and assumptions, the method should not be used
with stiff, highly overconsolidated clays or more coarse-grained soils. Various
assumptions are made in the derivation of the method (see Section 5.4). In general the
results given by the method may not be correct if the conditions differ greatly from these
assumptions.
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2 About	Limit	Equilibrium	Methods	(LEM)	

2.1 General	characteristics	of	LEM	

In limit equilibrium analyses, as the term implies, the factor of safety is calculated by
comparing the available shear strength along a slip surface to a shear stress that is required
to achieve equilibrium. Very importantly, the factor of safety is assumed to be constant
along the slip surface (Abramson et al 2002 p. 333).

While there are many varieties of limit equilibrium analyses, such as sliding block,
infinite slope, planar surface and frictional surface analyses (for brief descriptions see e.g.
Abramson et al 2002), arguably the most used Limit Equilibrium Method (LEM) is the
method of slices. In the method of slices the soil mass defined by the slip surface is
divided into a finite number of vertical slices. From this point onwards this work uses the
terms “method of slices” and LEM interchangeably.

Duncan & Wright (1980) give four common characteristics, or implicit assumptions, that
are shared by all equilibrium methods (after Duncan & Wright 1980):

1) Factor of safety is given as

t
t fF = (2.1)

where τf is shear strength and τ the shear stress that is required for
equilibrium.

2) The same value of shear strength can be mobilized over a wide range of
shear strains along the slip surface. This is necessary because strains are not
considered, and in reality strains can (and will) vary along the slip surface.
Problems may arise if the soil exhibits notable post-peak strain softening. In
practical design the issue can be mitigated by using design strengths that are
lower than the peak strength (Skempton 1977).

3) A set of equilibrium equations is used to calculate the normal stress on the
slip surface. This is required because shear strength is calculated using the
Mohr-Coulomb failure criterion:

'tan'' jst nf c+= (2.2)

where c’ and φ’ are the effective Mohr-Coulomb strength parameters. A
total stress analysis (Section 4.2) will substitute these with total stress
strength parameters.

4) Since the number of unknowns is higher than the number of available
equilibrium equations, a number of assumptions are made to make the
problem solvable.

The reason for dividing the soil into several slices in LEM is that this allows complex
geometries, variable soil conditions and various external loads to be taken into account
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(Abramson et al 2002, Duncan & Wright 1980). Forces acting on a typical slice are slice
weight, shear and normal forces acting on the base and sides of the slice, water pressure
on the base of the slice and possible external forces. In addition to these unknowns, the
locations  and  directions  of  the  resulting  forces  also  need  to  be  solved  or  assumed.  The
overall factor of safety is then typically solved by a process of iteration.

External stresses are not distributed realistically in the soil, but instead they act directly
upon the slice where they are located. In effective stress analyses this has an effect on the
proper modelling of excess pore pressure (Section 4.3).

Calculating the factor of safety of a given slip surface is only one part of a stability
analysis using LEM. The other part is finding the most critical slip surface. For this task
different geotechnical software use various search algorithms. A typical calculation
process involves calculating tens of thousands of individual slip surfaces to find the most
critical one.
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2.2 Various	limit	equilibrium	methods	

The various limit equilibrium methods differ by the assumptions that they make to reduce
the number of unknowns. They correspondingly differ by the equilibrium conditions that
they satisfy. For brief descriptions of the various methods the reader is directed to
Abramson et al (2002). Some commonly used limit equilibrium methods are Bishop’s
simplified (Bishop 1955), Janbu’s simplified (Janbu 1954, 1973), Spencer’s method
(Spencer 1967, 1973), Morgenstern-Price method (Morgenstern & Price 1965), the
general limit equilibrium (GLE) (Fredlund et al 1981) and Janbu’s generalized method
(Janbu 1954, 1957).

Bishop’s and Janbu’s simplified methods are called “simplified” because they do not
satisfy all force and moment equilibriums. They also ignore interslice shear forces.
Bishop’s simplified method does not satisfy the horizontal equilibrium. It should be noted
that Bishop’s simplified method is limited only to circular slip surfaces, whereas the other
mentioned methods can be used for free-form surfaces as well. Janbu’s simplified method
does not fully satisfy moment equilibrium, but it includes a correction factor to take this
into account. (Abramson et al 2002)

The other mentioned methods are often termed “rigorous” because they satisfy both
horizontal and vertical force equilibrium and overall moment equilibrium (Janbu’s
generalized method satisfies moment equilibrium for individual slices). They mainly
differ in the assumptions that are made about interslice forces. Spencer’s method assumes
a constant (but unknown) inclination for the interslice force resultant. Morgenstern-Price
assumes a function for the inclination of the interslice force resultant, which makes
Spencer’s method a special case of Morgenstern-Price. (Abramson et al 2002). The GLE
method is quite similar to Morgenstern-Price as it uses similar assumptions of the
interslice force function. There are however subtle differences in the location of the
normal force resultant acting on the slice bottom.

Janbu’s generalized method differs from the aforementioned rigorous methods in that
instead of assuming an interslice force function, the locations of the side force resultants
are assumed (“line of thrust”). According to Krahn (2003) and Abramson et al (2002),
Janbu’s generalized method is sensitive to numerical problems, especially with slip
surfaces with sharp corners or large stress concentrations. The calculation is sensitive to
the assumption of the line of thrust location, which is often assumed to be located at 1/3 of
the way from the slice bottom (assuming “hydrostatic” stress distribution where stresses
increase linearly with depth).
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2.3 Recognised	issues	in	LEM	analyses	

While LEM has remained a useful and well used tool for stability analyses, there are many
recognised issues, discussed e.g. by Tavenas et al (1980), Ladd (1991) and Krahn (2003).
One issue (though not limited to LEM only) is the inherent overestimation of the factor of
safety in undrained effective stress analyses. This is discussed in detail in Section 4.3.

It  has  been  established  that  while  LEM  does  often  give  good  results  for  F  that  are
comparable with corresponding FEM analyses (Cheng et al 2007), the calculated stresses
along the slip surface can be very unrealistic (Wright et al 1973, Tavenas et al 1980,
Krahn 2003). This is at least partly due to the fact that LEM only considers statics; the
calculated forces only need to satisfy force and moment equilibriums instead of taking any
mechanical factors into account (Krahn 2003). The global factor of safety can still be very
close to reality, or at least correspond to a similarly conducted FEM analysis.

LEM  typically  assumes  a  uniform  degree  of  mobilization  of  strength  along  the  slip
surface, representing an “average” shear stress profile. In reality, the degree of
mobilization and stress profile will vary along the slip surface. Thus it may be unwise to
even expect realistic stress profiles from LEM calculations (Morgenstern and Sangrey
1978). It is debatable if the issue of unrealistic stress distribution is relevant in normal
engineering practise. Most often LEM is specifically used to obtain the global factor of
safety, and not so much to model stresses. Care should however be taken if there are stress
concentrations in the potential sliding mass, as these can affect the calculation result
(Krahn 2003).

The assumption of uniform mobilization coupled with no consideration of strains along
the slip surface presents problems with shear strength. In reality the shear strength of soil
will be different at different strains. Due to anisotropy, the strength and the strain at which
peak strength is obtained will also vary along the slip surface (see Section 3.3). The
strains themselves will in reality be very different in different parts of the slip surface.
Consequently, design should be based on post-peak strengths, as in reality the whole slip
surface cannot be at peak strength simultaneously. Certain strain compatibility techniques
(e.g. Ladd 1991, Karlsrud & Hernandez-Martinez 2013) may be used to determine
realistic design strengths.

One solution for considering the variable degree of mobilization along the slip surface can
be found in the proposed method of dual optimization (Cheng et al 2011). An
optimization algorithm is used to obtain individual factors of safety for each slice. This
approach  may  to  some  extent  be  used  to  account  for  the  effects  of  strain  softening  and
progressive failure. However, at least to the author’s knowledge this approach is by no
means widespread in design work, at least not outside China.

The way external loads act directly on the slice they are located on may lead to
inaccuracies in undrained effective stress analyses. Any pore pressure profile measured in
situ is a result of the true stress distribution in the soil. It is doubtful if this pore pressure
profile should be used as an input in effective stress LEM calculations, because the total
stress  distribution  does  not  correspond  to  reality.  In  other  words,  combining  a  realistic
pore pressures with inherently unrealistic total stresses will result in unrealistic effective
stresses, and consequently unrealistic shear strengths.
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2.4 Slip	surface	optimization	

Reliably finding the most critical failure surface can be an issue in LEM, depending on the
specifics of the search algorithm and calculation method used. Depending on the software,
the search algorithm might entail calculating different circular slip surfaces in a grid
pattern, or various trial-and-error search algorithms with different slip surface geometries.
Search algorithms of varying levels of sophistication are in use. The main goal is to find
the overall most critical slip surface, as well as the actual lowest factor of safety for that
given  slip  surface.  The  solution  may converge  to  a  local  minimum of  F  that  is  however
larger than some other solution (Cheng & Lau 2008).

It is also possible that various limit equilibrium methods are simply unable to converge to
a solution with certain slip surfaces. Krahn (2003) points out the possibility that the
critical slip surface may be found very close to other slip surfaces that do not converge.
This would make it difficult to find the critical surface. In any case, the engineer should
also use his/her own judgment to determine if the critical slip surfaces given by the
calculation program are correct. Gradually narrowing down the search boundaries may
also help in finding the critical slip surface. For more information on slip surface
generation, optimization and search algorithms, see e.g. Cheng & Lau (2008).
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3 Factors	affecting	the	undrained	shear	strength	of	clay	

3.1 On	critical	state	shear	strength	

The shear strength of soil can in general terms be described by the concept of critical
states (for extensive textbook descriptions of critical state soil mechanics, see e.g.
Schofield & Wroth 1968; Wood 1990; Atkinson 1993).

The critical state concept assumes that when sheared, soil ultimately flows as a “frictional
liquid” at constant specific volume v, effective stress p’, deviator stress q and pore
pressure u. This ultimate state of stress and volume is called the critical state. It is
assumed that critical state occurs when any soil structuration has been destroyed. Critical
state soil strength is thus often considered purely frictional (c’ = 0).  For a given soil, the
critical state can be illustrated by the critical state line in (p’,  q)  and  (p’,  v) coordinate
spaces (Figure 3.1).
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Figure 3.1.Drained (A-B, P-Q) and undrained (A-C, P-R) triaxial compression tests for NC (A-B, A-C)
and OC (P-Q, P-R) samples. The critical state lines in both coordinate spaces are represented by the long-
dashed lines. Note: “yl” = yield locus = yield surface, “url” = unloading-reloading line, “iso-ncl” =
isotropic normal compression line. (Wood 1990 p. 140)

The critical state strength envelope in (p’,q) space is the M-line, which is essentially
analogous to the Mohr-Coulomb strength envelope used in (σ’, τ) space. Defined
according to the Mohr-Coulomb failure criterion, the slope of the M-line for triaxial
compression is:
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for triaxial extension, where φ’ is the effective critical state friction angle of the soil. Any
intermediate stress state between triaxial compression and extension will have a slope for
the M-line that is “between” these two boundary values.

In (p’, v’) space the stress-volume state during shearing moves towards the critical state
line  as  well.  The  tendency  of  soil  to  compress  or  dilate  depends  on  whether  the  soil  is,
respectively,  on  the  “wet”  (right  side  of  CSL)  or  “dry”  side  (left  side  of  CSL)  of  the
critical state line. If the stress state lies on the wet side of CSL, the soil is loose and has a
tendency to contract, i.e. the soil particles tend to rearrange themselves to a smaller
volume. The opposite is true for stress states on the dry side, where the initially dense soil
particles tend rearrange into a larger volume.

In  the  case  of  undrained  shearing,  the  volume  will  remain  constant,  which  results  in  a
constant v path from the initial state to the CSL. This is illustrated by the cases A-C and P-
R in Figure 3.1. The tendency for plastic volumetric straining is counteracted in undrained
conditions by equal elastic straining, i.e. pore pressure changes:

0=+ e
v

p
v dd ee (3.3)

Shear strength can essentially be tied to the internal angle of friction, the initial relative
density (void ratio) and the compressive or dilative tendencies of the soil at that relative
density. In undrained loading, the stress state of a soil element moves towards the critical
state line at a constant volume. The compressive or dilative tendencies are then
counteracted by corresponding changes in pore pressure, resulting in changes in effective
stress p’. Modelling this pore pressure response in undrained effective stress stability
analyses is essential.

For  a  given  initial  effective  stress  and  density  (p’0,  q0,  v0) there is then a corresponding
critical state stress state (p’f, qf, vf), and thus a corresponding critical state shear strength.
The critical state concept describes shear strength in terms of effective stresses. Undrained
shear strength can be also described in terms of total stresses. For any effective stress state
(p’f, qf) in the critical state there is an infinite number of possible total stress states (pf, qf).
Note that for any of these total stress states, the deviator stress qf corresponds to the
undrained shear strength. In undrained conditions, the failure criterion can be given as

uf s±=t (3.4)

i.e. the Tresca failure criterion. This simple expression holds true for total stresses even
though the shear strength is still governed by effective stresses. It can be described as the
result of the interplay between total stress changes, volumetric tendencies and the
resulting pore pressure response. For a “given specific volume”, “a unique undrained
strength” can be given “as a consequence of the principle of effective stresses” (Wood
1990 p. 180). This “unique undrained strength” also implies a certain type of loading
regarding anisotropy and rate effects (sections 3.5 and 3.6).

Related to effective stresses, the pore pressure response correlates with OCR (i.e. the
relation of the initial consolidation stress to the critical state line). Low OCR clays (in the
order of OCR < 2,  Atkinson 1993 p.  140)) are initially on the wet side of the CSL, and
thus exhibit increasing pore pressure during shearing. The closer the initial stress state is
to the CSL, the less pore pressure is generated. Highly overconsolidated clays on the dry
side of CSL tend to dilate and thus exhibit negative pore pressure response during
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shearing. The higher the OCR and the further away the initial state is from CSL, the more
negative pore pressure is generated. Measured examples of the effect of OCR on shear-
induced pore pressure response can be found from e.g. Sheahan et al (1996). The pore
pressure response affects effective stresses, and consequently, the shear strength.
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3.2 Creep	and	structuration	

A matter related to consolidation pressure and undrained shear strength is the general
stress-strain-time-behaviour of clays. This is illustrated in Figure 3.2. Descriptions of
stress-void ratio-time-related processes can be found from e.g. Bjerrum (1967, 1973) and
Leroueil et al (1990).

Figure 3.2.Various time and stress-dependent processes in terms of effective stress and void ratio
(Länsivaara 1999)

During the sedimentation and primary consolidation process clays tend to follow the
virgin compression line α-α, which is a unique stress-volume property for a given soil. If a
naturally sedimented clay is then kept a constant effective stress after primary
consolidation, it tends to compress further (A-B) due to creep (secondary consolidation)
of the soil skeleton. While the initial maximum past pressure A (the maximum vertical
pressure the soil has been exposed to) doesn’t change during creep, the apparent
preconsolidation pressure C is higher.

With time, the soil skeleton may become cemented together due to various chemical
processes. This structuration will cause further increase in preconsolidation pressure. If
the clay is loaded from point B, it will not start yielding at the virgin compression curve
(C)  but  at  a  point  further  out  (D).  This  also  will  increase  the  peak  strength  of  the  clay.
When the clay is compressed or sheared further, the structure will be broken and the clay
state will return to the virgin compression curve (C*). At the same time, strains will start
to increase quickly as the clay yields.

Creep and structuration processes can thus increase the apparent preconsolidation pressure
)and consequently, undrained shear strength) with time even after primary consolidation
has ended. Such aged or structured clays may exhibit high peak strengths followed by
significant strain softening as the cementation between the soil particles is broken down.
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3.3 Typical	undrained	stress-strain	behaviour	

An important matter to consider in stability design is the post-peak strain softening
behaviour that is often found in structured clays.

Non-structured or remolded clays do not typically exhibit peak strengths and strain
softening in undrained conditions. Figure 3.3 shows typical “textbook” stress-strain curves
(Craig 2004), where both OC and NC undrained clays exhibit strain-hardening responses,
gradually reaching their maximum shear stress levels at high strains. In these cases, the
shear strength of the clay would quite unambiguously be interpreted as the level that is
asymptotically reached at high strain levels.

Figure 3.3. Stress-strain curves for clay, different test types and consolidation states (Craig 2004 p. 112)

Structured (cemented), sensitive clays often exhibit high peak strengths (τpeak)  at  low
strains (in the order of 1 % shear strain for good-quality samples), followed by post-peak
strain softening (down to roughly 10-20 % shear strains). This strength is often called the
fully softened strength (τfs).  During the softening process the clay is being remoulded,
shear-induced excess pore pressure increases, and eventually the clay will reach its critical
state strength. For very large strains the clay particles may further orient themselves into a
laminar orientation (slickenside), resulting in greatly reduced residual shear strength (τres).
These concepts are illustrated in Figure 3.4.
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The post-peak strain softening is often attributed to the initial soil structure and its
breakdown (reduction of c’ and/or φ’) during shearing (e.g. Skempton 1964, Burland
1990, Burland et al 1996). Typically it has been observed, especially for stiff OC clays,
that cohesion softening due to breakage between soil bonds is the predominant softening
mechanism at low strains. Reduction of friction angle may occur at high strains. It should
be noted that these findings are mainly based on drained tests.

Thakur et al (2014) however suggest that strain softening of undrained, normally
consolidated or slightly overconsolidated Norwegian clays is attributable to shear-induced
excess pore pressure, whereas c’ and φ’ remain fairly constant up to moderate laboratory
strain  levels  of  ca.  20  %   (Figure  3.5).   Thakur  et  al  (2014)  also  note  that  for  highly
overconsolidated Norwegian clays, cohesion softening (drop in apparent c’) in undrained
shearing is possible.

Figure 3.5. Idealised undrained strain softening behaviour in sensitive clays, up to 20 % axial strain.
(Thakur et al 2014)

τ [kPa]

γ [%]

τpeak

τfs
τres

Figure 3.4. A conceptual example of strain softening behavior in undrained shearing.
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It should be noted that sample quality has a very large effect on measured peak strengths,
especially for triaxial compression (e.g. Lunne et al 1997, Karlsrud & Hernandez-
Martinez 2013). High quality samples (e.g. large block samples) show much higher
triaxial compression strengths than (typically lower quality) piston samples (diameter in
the order of 50 mm). Block samples may show 10-50 % higher compression peak
strengths compared to 54 mm piston samples whereas in extension the difference may be
about 0-10 % (Karlsrud & Hernandez-Martinez 2013). In addition, the peak is attained at
higher strains for low quality samples than for block samples (Figure 3.6).

Figure 3.6. Examples of triaxial test results from different size samples, Onsøy clay (Karlsrud &
Hernandez-Martinez 2013)

The effects of sample quality have an implication when laboratory results are analysed, as
low quality samples often indicate lower peak strengths than good ones. Therefore
knowledge of sample quality is essential when comparing test results from different
sources.

It is typically inadvisable to use the peak strength as a design parameter unless one can
apply a strain-softening soil model. While the peak strength can always be attained
locally, it is not attained simultaneously in every part of the slip surface due to the often
progressive nature of failure and varying strain levels. When close to failure, some parts
of the slip surface may have already surpassed the peak strength while other parts are just
approaching peak strength. In addition, peak strength is obtained at different strain levels
for different modes of failure (compression-direct shear-extension) (Ladd 1991).
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3.4 Undrained	shear	strength	as	a	function	of	consolidation	
pressure	

The effect of stress history (i.e. the past and present consolidation stress state) on the
strength of clay can constitutively be derived from the critical state concept. Any detailed
derivations are omitted here, but examples can be found in e.g. Wood (1990) and
Atkinson (1993). In general, higher preconsolidation pressure corresponds to higher
relative density, and higher relative density corresponds to higher undrained strength.
Undrained shear strength can generally be given as a function of current consolidation
pressure and OCR (Jamiolkowski 1985, Larsson et al 2007)
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where S is undrained strength ratio, σ’v0 is the current effective vertical consolidation
stress, OCR is the overconsolidation ratio and m is a material parameter that governs the
shape of the su = f(OCR) curve.

Equation 3.6 can also be rearranged to give su as a function of preconsolidation pressure
(i.e. maximum past pressure) σ’c:
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The undrained strength ratio S represents the undrained shear strength in the normally
consolidated state, normalized by vertical consolidation pressure:
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Typical values of S can vary between ca. 0.08 and 0.35, depending on the mode of
shearing and water content/plasticity (Karlsrud & Hernandez-Martinez 2013). Sample
quality can have a very large effect on measured strengths, especially for compression
strength.

The value of the exponent m depends on the material, but generally its values vary
between 0.7 and 0.95 (Karlsrud & Hernandez-Martinez 2013, Larsson et al 2007). Often
m = 0.8 can be used (Larsson et al 2007).

Parameters S and m can  be  obtained  by  fitting  a  curve  to  laboratory  test  results  of
normalized su versus  OCR.  The  curve  is  fitted  for  a  given  mode  of  shearing,  such  as
triaxial compression or extension test done at various OCR levels. The testing procedures
may differ in various design methodologies, such as SHANSEP or Recompression (see
Section  4.4).  An  illustrative  example  of  an su/σ’v0 versus OCR curve for triaxial
compression and extension is shown in Figure 3.7a. The example SHANSEP values are S
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= 0.35, m =  0.8  for  triaxial  compression,  and S = 0.15, m =  0.8  for  triaxial  extension.
Figure 3.7b shows the corresponding su curves for a case of homogenous, saturated clay
where γ’ = 5 kN/m3, and OCR = 1.5.

Figure 3.7. a) An example of normalized su versus OCR for triaxial compression (TC, S = 0.35, m= 0.8)
and extension (TE, S = 0.15, m = 0.8). b) Corresponding su versus depth, for γ’ = 5 kN/m3, OCR = 1.5.

If  the relevant OCR range is small  (e.g.  for homogenous lightly overconsolidated or NC
clays) it may be enough to give su as a simple linear function of preconsolidation pressure
where S is now the average normalized shear strength along that OCR range:

cavgu Ss 's×= (3.10)

When the relationship between su/σ’v0 and OCR is known (based on laboratory testing),
along  with  the  relevant  profile  of σ’v0 and OCR in the soil, the corresponding su profile
can be plotted for use in design. However, this assumes that su can truly be normalized
throughout the entire relevant range of σ’v0 and OCR. This assumption may not always
apply with structured clays that exhibit cohesion.	
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3.5 Anisotropy	

It  is  very  well  known  that  the  strength  and  stiffness  properties  of  clay  are  anisotropic.
Active (compression) shear strength is higher than field vane strength or DSS strength,
which in turn are higher than passive (extension) strength. This is illustrated in Figure 3.8.
Shown in Table 3.1 are collected findings from literature regarding the anisotropy of
undrained shear strength, friction angle and excess pore pressure response in undrained
shearing.

Figure 3.8. Variation in shear strength observed in samples cut in different directions. Active and passive
triaxial tests were performed for each direction. (Bjerrum 1973)
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Table 3.1 Selected literature on clay anisotropy in undrained tests. The list is not exhaustive; many other
studies consider anisotropic effects as well. Focus here is on strength and strength parameters. Most of
the given papers discuss strain properties as well, but those discussions are omitted here.

Author(s) Soil(s) studied Consolidation and
test type

Findings on:

Undrained shear strength
Friction angle

and failure
envelope

Excess pore
pressure

Bjerrum
1973 Various clays TC, TE, DSS, FV

Compression (active) strength
higher than extension
(passive),  anisotropy

increases with plasticity

Vaid &
Campanella

1974

Natural Haney
clay

K0 consolidation,
triaxial and plane

strain compression
and extension tests

Compression strength higher
than extension; plane strain
strength higher than triaxial

Depends on total
stress path;

effective stress
path is

independent of
total stress path
for given mode

of shearing

Lade &
Musante

1978

Remoulded NC
Grundite Clay

Isotropic, true
triaxial

Slight decrease with
increasing b

Highest φ’ values
for b =

0.20…0.70, true
failure envelope
outside of M-C
on octahedral
plane for b>0

Slight increase
with increasing

b

Larsson
1980,

Ladd 1991

Scandinavian
inorganic clays TC, TE, DSS, FV

Undrained shear strength is
distinctly anisotropic,

compression strength higher
than extension strength. Field
vane and DSS fall in between.
Shear strengths correlate with
plasticity, low plasticity clays

most anisotropic

Mayne 1985

(literature review
on effects of stress

anisotropy, 42
clays)

CAU, CIU triaxial

Anisotropically consolidated
clays have smaller su/σ’v0 than

isotropically consolidated
clays. Differences are largest

in extension.

φ’ is independent
of consolidation
stress anisotropy

Kirkgard &
Lade 1993

Remoulded NC
clay (SFBM)

Isotropic, true
triaxial

Generally decreases with
increasing b (large scatter

however), clearly decreases
with larger stress direction

angles

Highest φ’ values
for b =

0.20…0.75, true
failure envelope
outside of M-C
on octahedral
plane for b>0

Δu highest for
large values of b

(differences
fairly slight)

Prashant &
Penumadu

2004
OC kaolin clay K0 consolidation,

true triaxial

Deviator stress at failure
largest for b = 0…0.25,

smaller for b ≥ 0.5

True failure
envelope outside

of M-C on
octahedral plane

for b>0

Δu increases
with increasing

b, fairly constant
for b > 0.75

Nishimura
et al 2007

Highly OC
London Clay

K0 and isotropic,
hollow cylinder

apparatus

su maximum at θ = 0° or 90°.
Minimum shear strengths

possibly at b = 0.5, θ = 45°.
Large samples indicate su
minima also at θ = 90°.
Influence of b not well

defined.

True failure
envelope outside

of Mohr-
Coulomb on

octahedral plane
for b>0
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Strength anisotropy has two basic components: structural anisotropy and stress anisotropy.

Structural anisotropy is caused by the shape and orientation of the plate-like clay particles.
The particles themselves have electrochemical properties that cause them to align in
certain preferred orientations. Also more macroscopic structures occur in varved clay
where layers of varying particle size have been formed in the sedimentation process.
These alignment and layering properties result in a structure with directionally variable
shear strength. Generally it appears that the higher the angle between the major principal
stress and vertical, the lower the shear strength. Highest strengths are obtained for
principal stress rotation of 0°, and lowest for 90°. This is true even for isotropically
consolidated samples, which means that the cause is fabric anisotropy. (Jamiolkowski
1985)

Stress anisotropy is a result of the anisotropic stress state that typically occurs in the field.
In addition to this initial stress anisotropy, the rotation of principal stresses during
loading/consolidation also affects shear strength anisotropy. (Bjerrum 1973, Jamiolkowski
1985)

Due to the stress anisotropy during consolidation, the yield surface of the clay is generally
centered around the K0NC –line in (p’,q) stress space. It has been established by Länsivaara
(1999), that this anisotropic yield surface can be expressed using only the critical state
friction angle for a given preconsolidation pressure (see Section 4.3).

The anisotropic properties of soils can be described by shear tests done at different levels
of principal stress direction angle θ and intermediate principal stress ratio b. b is used to
describe the level of the intermediate principal stress in relation to the major and minor
principal stresses (Habib 1953):
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The intermediate principal stress can then be given as:

)''('' 3132 ssss -×+= b (3.12)

For triaxial compression b =  0  (σ’2 =  σ’3), and for triaxial extension b =  1  (σ’2 =  σ’1).
Possible values for b range from 0 to 1.
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It is evident from literature that at least for NC and lightly OC clays, largest strength and
smallest excess pore pressure are obtained at or close to b =  0  and θ =  0°,  i.e.  triaxial
compression. The opposite boundary values generally correspond to triaxial extension (b
= 1 and θ = 90°). Deviations from this trend may occur with heavily overconsolidated
clays.

It is also good no notice that the failure envelope itself is anisotropic. The “classical”
Mohr-Coulomb criterion results in an anisotropic hexagonal failure surface on the
octahedral plane. According to literature, the Mohr-Coulomb failure envelope is typically
valid for b =  0  (when  fitted  for  triaxial  compression).  For b >  0  (or  at  least  for
intermediate values between b =  0  and b =  1)  the  Mohr-Coulomb  criterion  tends  so
underestimate shear strength (More accurate anisotropic failure criteria have been
suggested, such as those by Lade (1977) and Matsuoka & Nakai (1974). Figure 3.9
illustrates the relationships between the total stress Tresca and Mises criteria, as well as
the effective stress Mohr-Coulomb and Matsuoka-Nakai criteria.

Figure 3.9. Various failure criteria plotted on the octahedral plane (Matsuoka & Nakai 1985)

Sometimes the anisotropic Mohr-Coulomb criterion is approximated using the isotropic
Drucker-Prager envelope (Drucker & Prager 1953, Figure 3.10). Drucker-Prager can be
mathematically somewhat simpler than Mohr-Coulomb, but it needs to be fitted for a
mode of shearing (e.g. triaxial compression or extension), so in some cases it is far less
accurate.

Figure 3.10. Mohr-Coulomb and different fits of Drucker-Prager compared (Nordal 2010)
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A general trend can be recognized for typical shearing modes (i.e. triaxial compression,
triaxial extension, direct (simple) shear, field vane). Larsson (1980) presents data from
several inorganic Scandinavian clays. Larsson compares CAU, CAE and simple shear
tests for clays with varying plasticity. For triaxial compression the normalized undrained
shear strength averages a fairly constant τfc/σ’v0 = 0.33. For other modes of shearing the
normalized shear strength is notably lower and seems to correlate heavily with plasticity
(wL or Ip). (Fig. 3.11).

Figure 3.11. Shear strength vs liquid limit for different test types. The strengths represent peak strengths,
except τcr, which is the mobilized shear stress in extension at the strain level where peak compression
strength occurs.  (Larsson 1980)

It would arguably be desirable to model the anisotropy of undrained shear strength as
accurately as possible in stability calculations. This can be done fairly simply by applying
measured shear strengths that are obtained by relevant test types to different parts of the
slip  surface.  A  common  division  would  be  to  use  triaxial  compression  strength  for  the
active part of the slip surface, direct simple shear strength for the middle (horizontal) part,
and triaxial extension strength for the passive part. (Fig. 3.12) This division is however
quite simplified, as the stress system in a given point on the slip surface is in all likelihood
closer to plane strain than triaxial conditions. The principal stress direction θ and
intermediate principal stress ratio b vary along the slip surface both spatially and
temporally.
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Figure 3.12. Relevance of different laboratory tests to different parts of a slip surface in the field
(Larsson 1980 after Bjerrum 1973)

Yet another method of modelling anisotropy would be the use of an anisotropic
constitutive soil model. Ideally such a model could predict the available shear strength for
any given combination of θ and b. Constitutive soil modelling is strongly associated with
the use of FEM. To the knowledge of the author, such models have not yet been applied to
LEM, at least not without accompanying FEM calculations that would be used to define a
shear strength profile along a slip surface.

In practice, laboratory testing programs including several modes of shearing are feasible
only in large projects where there are correspondingly large resources for soil testing. A
more common design approach is to use an “average” shear strength for the length of the
slip surface. This can be obtained e.g. by field vane or CPTU testing. The shear strength
obtained by field testing must then be corrected for various factors such as anisotropy and
rate of shearing to better represent the true average available shear strength on the slip
surface (Section 3.7).

	



37

3.6 Rate	and	time	effects	

The time-dependent (viscoplastic) properties of clays present yet another source of
variation in undrained shear strength. It is well established by various authors that strain
rate and duration of loading have various effects on various properties of clay in
undrained loading. Some findings from selected papers are presented in Table 3.2.

Table 3.2. A selection of literature results on rate and time effects on clays.

Author(s) Soil(s)
studied test type

Measured effect on:
Undrained

shear
strength

Creep failure Excess pore
pressure

Preconsolidation
pressure Other notes

Länsivaara
(1999)

Finnish
clays CRS oedometer

apparent σ’c
increases with

increasing dε/dt

Graham et al
(1983)

various
clays

various triax.
and oedometer

strength
increases

with
increasing

dε/dt

apparent σ’c
increases with

increasing dε/dt

10x decrease in
rate -> 10-20%

decrease in
strength and σ’c

Leroueil et al
(1985)

various
clays

CRS and VRS
oedometer

strength
increases

with
increasing

dε/dt

apparent σ’c

increases with
increasing dε/dt

σ’c/σ’v constant
for all values of

dε/dt

Vaid et al
(1979)

OC
structured

clay

CRS
consolidation

tests; CRS
undrained shear

tests; triax.
undrained creep

tests

strength
increases

with
increasing

dε/dt

time to failure
decreases with

increasing
creep stress

apparent σ’c

increases with
increasing dε/dt

Holzer et al
(1973) SFBM triax. undrained

creep tests

time to failure
decreases with

increasing
creep deviator

stress, low
enough

deviator stress
will not cause
creep failure

Δu increases with
time and deviator

stress level

Δu during creep
originates partly

from deviator
stress, partly from

arresting of
secondary

consolidation
(dominant)

Arulanandan
et al (1971) SFBM triax. undrained

creep tests

time to failure
decreases with

increasing
creep deviator

stress, low
enough

deviator stress
will not cause
creep failure

Δu increases with
increasing time,

deviator stress level
and consolidation

pressure

Sheahan et al
(1996)

Remoulded
BBC CK0UC

strength
increases

with
increasing

dε/dt
especially

for OCR = 1

Δu decreases with
increasing dε/dt

Peak φ’ increases
with dε/dt for low

OCR samples

Lefebvre &
Leboeuf
(1987)

Structured
and

remoulded
clays

triax.

strength
increases

with
increasing

dε/dt

Structured: no rate-
dependency before

peak strength
Remoulded: Δu
decreases with
increasing dε/dt

Berre &
Bjerrum
(1973)

Drammen
clay CK0U

strength
increases

with
increasing

dε/dt
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Based on papers presented in Table 3.2, increasing strain rate results in:

- increased shear strength
- higher measured preconsolidation pressure (and associated with this,

larger initial yield surfaces)
- lower shear-induced excess pore pressure for non-structured clay (post-

peak response of structured clay is also similarly time-dependent)

It should be noted that the observed increase of undrained shear strength with strain rate
can be considered a secondary effect. The rate/time-dependency of su seems to be largely
caused by the time-dependency of the pore pressure response and the consequent effective
stress changes.

The observed effects regarding the rate of loading and undrained creep seem
interchangeable. With “low” rates of continuous loading in the NC region, a given
deviator stress level is sustained for a “long” time, i.e. dq/dt is  small.  The  smaller  the
value of dq/dt, the higher the resulting excess pore pressure response, as a given deviator
stress level is sustained for a longer time. In undrained creep tests, a given deviator stress
is held constant for a time t. Longer creep times lead to higher pore pressure (Figure
3.13a). A similar pore pressure response could then be obtained either by slow constant
loading, or a faster loading followed by subsequent undrained creep. This is conceptually
illustrated in Fig. 3.13b.
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Figure 3.13. a) An example of undrained creep at various deviator stress levels (in percentage of a
reference compression test) (Arulanandan et al 1971). b) Illustration of differential “creep steps” in
constant rate compression tests at different rates.

Sheahan (1995) presents experimental evidence from several authors that stress paths
from triaxial creep tests that do not lead to failure terminate at a “static yield surface”
(SYS). The SYS seems to roughly correspond to the effective stress path of a very slow
CRS triaxial compression test.  Sheahan (1995) and Sheahan and Kaliakin (1999) suggest
a “correspondence principle” that states that rate-dependency and undrained creep effects
(as well as stress relaxation, which is not covered here) are all governed by same basic
mechanisms.

The physical causes of the time-dependent properties of clay in undrained loading are not
completely understood. Barden (1969) suggests that creep effects in clay can be caused by
jumping of bonds, structural viscosity, and micropore-macropore-fabric. Arulanandan et
al (1971) and Holzer et al (1973) suggest the migration of water from a micropore system
to a macropore system to be the main cause of clay creep.	

q

p’

”fast” loading – less time for
undrained creep for a given load step

”slow” loading – more time for
undrained creep for a given load step

dq

dp’
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3.7 Correction	factors	for	measured	su	

All laboratory and in situ strength tests are conducted at a given rate of strain or stress
increase. Typically, the rates at which tests are made are faster than would be involved in
true field cases. The measured shear strength needs then be corrected to better match
likely field conditions.  If  design does not explicitly take shear strength anisotropy or the
effects of progressive failure into account, the measured shear strength needs to be further
corrected.

If  vane shear strength is  to be used in design, it  thus needs to be corrected to match the
“true” average strength. To “calibrate” the measured su values to represent the average
shear strength on the slip surface, various correction factors have been proposed, e.g. by
Bjerrum (1972, 1973), Pilot (1972), Dascal & Tournier (1975), Helenelund (1977).
Typical correction factors reduce the measured field vane strenght as a function of
plasticity (liquid limit or plasticity index). Examples are shown in Figure 3.14.

Figure 3.14. Examples of empirical correction coefficients for various factors (Tavenas & Leroueil 1980)

The correction factors are often at least partially obtained by back-analysing sets of slope
failures with a given slope stability analysis method (e.g. Bishop’s Simplified). While
these correction factors often give good results, their validity depends on several issues.
Such issues may be how representative the dataset they are based on is; and the accuracy
of the stability calculation method used for the back-analyses. Engineering judgment is
needed in the proper determination of design strength parameters.

With CPTU testing, undrained shear strength is typically obtained using some semi-
empirical function and calibrated against another field or laboratory strength test. The
determination of suitable design values becomes, again, largely a matter of engineering
judgment.
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4 Types	of	stability	analyses	

4.1 General	

Ladd (1991) distinguishes three types of limit equilibrium stability analyses (Ladd 1991,
p. 544):

Effective stress analysis (ESA)
Total stress analysis (TSA)
Undrained strength analysis (USA)

The following sections discuss some of the details and implications of these three types of
stability analyses. Special emphasis is given on their suitability and validity for undrained
analyses.  Note  that  in  this  discussion  and  in  subsequent  use  Ladd’s  definitions  of  the
analysis types are not accurately followed, but the general division into the three groups
can be considered useful.
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4.2 Total	stress	analysis	

It is well established that saturated soils exhibit “frictionless” behaviour (i.e. φ =  0)  in
terms of total stresses when they are fully undrained. Due to this property it is possible in
LEM to simply substitute su in place of cohesion (and φ = 0) in the Mohr-Coulomb failure
criterion that is used to define shear strength in limit equilibrium equations. Due to this
substitution the failure criterion effectively becomes the Tresca criterion.

The corresponding factor of safety is then simply:

m

usF
t

= (4.1)

where su is the undrained shear strength determined for example by field vane, CPTU or
UU  laboratory  testing.  Often  such  analyses  model  shear  strength  as  isotropic,  or  more
precisely a “representative average” of the actual shear strength capacity along the slip
surface.

With this definition, the shear strength used corresponds to the top of the Mohr’s circle, or

2
31 ss -

=us . (4.2)

This means that the theoretical failure plane is inclined by θ =  45°  in  relation  to  the
principal stresses.

A total stress analysis as defined by e.g. Ladd (1991) corresponds to the “pre-
construction”, or initial consolidation stress state in the soil. As such it is applicable to the
immediate end-of-construction state. If any consolidation occurs and strength increases,
e.g. under an embankment, the strength given by pre-construction in situ testing is not
applicable. For simple loading problems this is not an issue, because the determining
situation where F is smallest is indeed at the end of construction.

Total stress analyses have a distinct theoretical advantage compared to traditional
effective stress analyses: The factor of safety is obtained by directly comparing the actual
shear capacity at failure to the mobilised shear stress along the slip surface. This of course
assumes that the strength profile determined is representative of the average undrained
shear strength along the slip surface.

The anisotropy of undrained shear strength (see Section 3.5) can be taken into account for
example by dividing the soil into active, direct shear and passive zones, as is done  in the
Norwegian ADP methodology (see e.g. Bjerrum 1973, Larsson 1980). Ideally, undrained
shear strength would be measured with plane strain compression, direct shear and
extension tests, which would correspond to strengths found in the active, direct and
passive parts of the slip surface (Figure 3.12). As plane strain testing equipment is very
rare, triaxial testing can be used instead.

While explicitly modelling the strength anisotropy of clay is possible, in practice this is
relatively rare (regional differences in engineering practices notwithstanding).  There are
however widely used correction factors for field vane strength that implicitly take
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anisotropy (among other factors) into account. The various correction factors (Section 3.7)
have been obtained by back-analysing various real-life failure cases. The correction
factors are generally functions of soil plasticity (Ip or wL). As they are determined from
back-analyses they include the effects of shearing rate, strength anisotropy etc. These
physical factors are further discussed in Chapter 3.
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4.3 Effective	stress	analysis		

In effective stress limit equilibrium analyses (ESA) the shear strength along the slip
surface is calculated using the Mohr-Coulomb effective stress failure criterion:

'tan)(''tan'' jsjst ucc nnf -+=+= (4.3)

The factor of safety is expressed as
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= (4.4)

where τm is the mobilized shear stress.

Assuming equal degree of mobilization for both tan φ’ and c’, the factor of safety can also
be expressed as:
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where φ’m is the mobilized friction angle

In the equations above, cohesion c’ and friction angle φ’ are the effective strength
parameters of the soil, and thus are treated as constants in the calculations. The values of
mobilized equilibrium shear stress τm and the total normal stress σn are  products  of  the
specific limit equilibrium method used.

The main applications of ESA are drained stability analyses where there is no excess pore
pressure and the effective stresses can be considered known. The usability of ESA for
undrained problems has traditionally been questionable due to issues with modelling
excess pore pressure, and the inherent overestimation of shear strength due to the use of
the Mohr-Coulomb failure criterion with effective stresses.

It is often convenient to describe the undrained pore pressure response of clays in the
(p’,q) stress space, (Cambridge definition, p’ = (σ’1+ σ’2+ σ’3) / 3). It has been found (see
e.g. Wood 1990) that in the overconsolidated (OC) region clay will often exhibit
behaviour that is close to linear elasticity, which corresponds to a constant p’ stress path.
This means that for any total stress increment dp there  will  be  an  equal  excess  pore
pressure increment du, resulting in constant mean effective stress (i.e. dp’ = 0), indicating
linearly elastic behaviour.

If the clay is normally consolidated (NC) the undrained effective stress path will depend
on the volumetric tendencies of the clay (compression or dilation), and the behaviour will
be elasto(visco)plastic (after Wood 1990). The change in effective mean stress p’ needs to
correspond to the tendency for plastic volumetric strains. In the NC region there is also the
same effect of counteracting the total stress change as in the OC region. Thus a general
incremental form for pore pressure response in (p’,q) stress space can be written as (Wood
1990 p. 34):
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'ppu ddd -= (4.6)

where δu, δp and δp’ are increments of pore pressure, total mean stress and effective mean
stress.

The expression (4.6) can be derived directly from the principle of effective stress. Here
the component δp’ is an unknown and would need to be determined either by applicable
laboratory testing or by means of constitutive modelling.

Modelling other components of pore pressure in soils, such as seepage pressures or static
pressure from free ground water is outside the scope of this work. It is however noted that
for a geotechnical stability calculation these are just as important as excess pore pressure.

Typical excess pore pressure parameters found in geotechnical design software utilizing
LEM (e.g. GeoCalc, Slope/W) offer a way to input desired values of excess pore pressure
in a soil layer.

The pore pressure parameter ru relates pore pressure in soil to vertical total stress:
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= (4.7)

where σv is the total vertical stress at the bottom of a slice. A value of ru is often specified
for a layer or sometimes for a given point.

Skempton (1954) introduced the parameter B , which relates loading-induced excess pore
pressure to the change of the major principal stress:
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For load-induced pore pressure at least the software GeoCalc uses the parameter ruq:
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where Δuq is the load-induced pore pressure and qapp is an externally applied vertical load
acting on the ground level (loads are fully transferred to the slice bottom in LEM, with no
distribution).

The parameter ruq is applied to a layer, but is active only in the bottoms of slices that are
externally loaded. Often ruq is utilized so that under loaded slices the resulting shear
strength should stay constant regardless of the load level, i.e. the pore pressure increase Δu
should be equal to the change of total normal stress Δσn.  This  assumes  that  the  clay
behaviour is elastic (which it generally is not). A commonly applied value is ruq =  1,
which means that excess pore pressure is equal to the calculated increase in vertical total
stress. Experience has however shown that the value of ruq often needs to be less than 1 to
avoid unrealistically low shear strength under loads.
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Another way of modelling pore pressure is to specify pore pressure iso-lines or points,
between which the values are interpolated. This makes inputting quite complex pore
pressure profiles possible.

Input values for pore pressure parameters and profiles can be based on in situ
measurements and/or laboratory testing, so the current pore pressure state can be modelled
quite accurately. It must however be noted that due to the inherent assumptions made in
conventional effective stress analyses, using measured pore pressure for undrained
calculations will lead to an overestimation of F.

A major limitation of a traditional undrained effective stress analysis is that only the pore
pressure response from the initial state to the mobilized state is considered, but further
pore pressure generation up to failure is generally ignored. Due to the use of the Mohr-
Coulomb strength envelope, this implicit assumption results in an inherent overestimation
of shear strength for any factor of safety greater than 1. Correspondingly, the factor of
safety will be overestimated. This problem is quite well recognised, e.g. by Ladd (1991),
Leroueil et al (1990) and Tavenas et al (1980).

The issue is conceptually illustrated in Figure 4.1. Consider a soil element of compressive
(“wet”) clay that during construction is loaded from an initial stress state (σ’0,  τ0)  to  a
mobilized design stress state A (σ’A,  τA). The corresponding shear strength is then τfA.  A
constant σ’ stress path between the design state A and failure is implicitly assumed. It is
however very likely that if the soil element is loaded further up to failure, more excess
pore pressure will be generated and the effective stress decreases from σ’A to σ’B, resulting
in an effective stress path that reaches the failure envelope at point (σ’B, τB). When the soil
is at failure, the shear stress is then τB = τfB < τfA.

Figure 4.1. Relationship between shear stress and shear strength in undrained effective stress analyses.

It is evident that the available shear strength at failure τfB is lower than the shear strength
τfA that is implicitly assumed at the “design” stress state A. In fact, the shear strength τfA
that is used in the definition of the factor of safety can never be attained. This means that
the resulting factor of safety is obtained by comparing the design state shear stress to an
unrealistically high shear strength that does not correspond to failure. This is obviously a
very undesirable property in any design task.
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Even if the mobilized pore pressure state can be perfectly modelled, the corresponding
calculated shear strength is higher than can in most cases be realistically attained. While
monitored pore pressures can be used as input values in, the resulting factor of safety will
likely not be correct if F > 1.

The inherent overestimation of shear strength and F in  undrained  ESA  also  means  that
corresponding total stress analyses cannot, in theory, give same results for any value of F
> 1. At F = 1 the two analysis types will coincide (Figure 4.2).

Figure 4.2. Variations in safety factors in corresponding total stress and undrained effective stress
analyses as a function of embankment height (Leroueil et al 1990, p. 200)

There may however be some situations where the inherent assumptions of traditional ESA
could apply. As ESA assumes no further shearing-induced pore pressure generation
between the design state and failure, it corresponds to very slow shearing “with complete
dissipation of shear induced pore pressure” (Ladd 1991 p. 550). Essentially this would
mean drained shearing while maintaining the initial excess pore pressure level from
loading to the design state. Another theoretical possibility could be moderately slow
shearing during consolidation, where shearing-induced excess pore pressure is precisely
counteracted by simultaneous pressure dissipation from consolidation. Whether these
scenarios would be plausible is questionable.

Another issue to consider when modelling excess pore pressure in LEM is that external
loads are not distributed as they are in reality, but they act directly on the slice bottoms
below. This means that the total stress distribution in the calculation does not correspond
to reality. The fact that different LE methods also give different total stress distributions
complicates the situation further. To obtain a realistic effective stress distribution (and
thus a realistic strength distribution), load-induced excess pore pressure should be
modelled only for slices upon which an external load is acting. If pore pressure is
modelled based on in situ measurements the pore pressured distribution should be
accordingly adjusted. This means that the user should ideally be able to decouple the
stress-induced and yielding-induced excess pore pressure components and the distribution
of external loading in the soil.
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Some geotechnical programs (e.g. Slope/W) utilizing LEM also give the option to model
pore  pressure  with  FEM.  The  accuracy  of  such  a  pore  pressure  profile  would  then  be
dependent on the particular calculation model used.

Svanø (1981) proposes a fairly simple method of calculating excess pore pressures based
on stress changes. The method UESA (Undrained Effective Stress Analysis) uses Janbu’s
excess pore pressure equation (after Janbu 1976, referred in Svanø 1981):

)( 31 ss D-D×-D=D Dpu (4.10)

where Δp is change in total mean stress, D is a dilatancy parameter, and Δσ1 and Δσ3 are
changes in the respective total principal stresses. The term )( 31 ss D-D×D effectively
describes the shear-induced pore pressure component which is dependent on the volume
change tendencies of the soil during shearing. Thus it is analogous to the component δp’
in equation 4.6.  The parameter D is determined by triaxial testing (secant value).

A method of calculating shear-induced excess pore pressure in LEM is the parameter ru’
(Länsivaara 2010). The shear-induced pore pressure component is calculated as a function
of the initial consolidation pressure. The parameter is defined as:
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where Δus is the shear-induced component of excess pore pressure and σ’v0 is the initial
effective vertical stress acting on a slice. The value of ru’ is derived from an assumed
initial yield surface (Figure 4.3a), with further assumptions of triaxial compression,
normal consolidation (OCR = 1) and initial K0 conditions. This means that the shear-
induced component of excess pore pressure is a function of consolidation pressure.
Furthermore, it is assumed that the effective stress path between the initial state
(intersection of the yield surface and the K0NC line) and failure state (intersection of the
yield surface and the failure line) travels along the initial yield surface. In normalized
(p’,q) space, ru’ is the change of effective mean stress between the initial state and failure,
or Δp’.
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Figure 4.3. a) Estimates of yield surfaces based on friction angle, normalized by vertical preconsolidation
stress. b) Solution for the parameter ru’ as a function of φ’ (Länsivaara 2010)

With the made assumptions, the value of ru’ becomes  simply  a  function  of φ’ (Figure
4.3b). The solution only gives the estimated shear-induced excess pore pressure, so the
load-induced component needs to be separately taken into accound (e.g. with the ruq
parameter). 	
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4.4 Undrained	strength	analysis	

Ladd (1991) differentiates a third type of undrained stability analysis, the Undrained
Strength Analysis (USA). USA considers effective stresses acting on the failure plane as
consolidation stresses (i.e. in situ effective stress before the start of undrained loading).
These consolidation stresses can be used to estimate undrained shear strength without
knowledge of the excess pore pressures caused by the subsequent undrained loading.
Therefore USA can be described as a hybrid between ESA and TSA: the shear strength is
solved based on effective (consolidation) stress, but the stability calculation itself can be
treated as a total stress analysis because excess pore pressure calculation is not necessary.

USA as defined by Ladd (1991) is very much connected to the SHANSEP (Ladd and
Foott 1974) and Recompression (Bjerrum 1973) concepts, as well as Casagrande’s QRS
method, where undrained shear strength is expressed as a function of effective
consolidation stress (Casagrande & Wilson 1960). For more discussion on the effect of
preconsolidation pressure on undrained shear strength, see Section 3.4.

Both  SHANSEP  (Stress  History  And  Normalized  Soil  Engineering  Properties)  and
Recompression methods contain the same basic steps (after Ladd 1991):

1.  The  initial  stress  history  of  the  soil  is  obtained  (in  situ  effective  vertical
stress σ’v0 and preconsolidation stress σ’c).

2. Stress changes due to proposed construction are evaluated.

3. Undrained strength is related to consolidation stresses using CK0U testing
(ideally) with relevant failure modes (compression, direct shear, extension).
Testing is done at various values of overconsolidation ratio (OCR).
Undrained strength is expressed as e.g. su/σ’v0 = f(OCR).

4. Strength profiles resulting from points 2. and 3. are used as input in
stability analyses.

SHANSEP entails consolidating the soil sample to stress states well beyond initial in situ
stresses to reliably reach the normally consolidated state. Testing at different levels of
overconsolidation is then done by unloading the sample to desired OCR value.

SHANSEP assumes that the strength of the soil can be reliably normalized by e.g.
consolidation stress. This is not the case for structured clays where strength will suddenly
drop when preconsolidation stress is exceeded and the soil structure is destroyed. The
Recompression method takes this into account by not going past the in situ
preconsolidation stress at any point so as to preserve the soil structure. (It should be noted
that the two methods were developed independently and fairly simultaneously.)

The advantage of USA with SHANSEP and Recompression methods is that the effect of
changing consolidation stress on shear strength can readily be estimated, which is not
possible with “traditional” total stress analyses (TSA) where shear strength is typically
determined solely for the initial in situ stress state. Soil investigations are typically carried
out before constructing an embankment, but subsequent investigations from below the
embankment can be difficult. The change in consolidation stress can however be fairly
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accurately estimated based on the initial (pre-construction) consolidation stress,
permeability, load and time.

The methodology also attempts to minimize the effect of sample disturbance. SHANSEP
deals with this by first consolidating the sample well beyond its natural preconsolidation
pressure, thus creating a new “virgin” state for the sample. This naturally destroys any
cementation or aging found in structured natural clays. It can be argued that the
Recompression method may be more sensitive to sample quality because its very idea is to
run the tests so that the original in situ structure of the sample is retained.

In undrained strength analyses (USA), soil strength is based on correlations with effective
consolidation stresses. The stability analysis itself remains a total stress analysis in the
sense that strength is given as a “fixed” undrained shear strength that is not affected by
effective stresses in the equilibrium calculations. As in traditional TSA, the factor of
safety in USA is obtained by comparing the mobilized equilibrium shear stress with a
strength that is actually available in failure. This avoids the inherent overestimation of
shear strength that happens in traditional undrained effective stress analyses.

The definition of undrained shear strength in USA is however different from the Tresca
criterion used in traditional TSA. The Tresca criterion relates strength simply to maximum
deviator stress, which is independent of effective stresses. The theoretical failure plane
orientation is 45° from both principal stress directions.

USA as defined by Ladd (1991) does not implicitly define the failure criterion. The failure
envelope may correspond either to Tresca or Mohr-Coulomb, depending on the test type
used to obtain the strength - consolidation stress relationship. The resulting undrained
shear strengths are often termed su and cu, respectively (Figure 4.4). The strength su is
solely defined by the radius of the Mohr’s circle at failure:
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The “effective stress” undrained shear strength cu represents the strength on a failure plane
inclined θ = 45° + φ’/2 from the minor principal stress direction. It can easily be derived
(e.g. using Mohr’s circle geometry) that:
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Figure 4.4. Definitions of su and cu

The strength cu therefore corresponds to the strength at failure, acting on a shear surface
consistent  with  the  assumptions  of  effective  stress  analyses.  According  to  Bishop  &
Bjerrum (1960), su with a failure surface 45° to horizontal gives the same failure height
for a vertical cut as cu with  with  a  failure  surface  45°  + φ’/2. From this it could be
concluded that if the failure surface corresponds to the assumptions used in a total stress
analysis (i.e. φ = 0), su should be used. Correspondingly, cu should be used if an effective
stress slip surface is used.

It can be argued that the strength cu, corresponding to τff, would be a more realistic shear
strength input for calculations as it is theoretically the “true” strength that can be
mobilized on the “true” failure surface at failure. According to Ladd (1991) this is exactly
what an undrained strength analysis should predict, which is why he advocates the use of
cu as defined by Equation 4.13.

It can be noted that the actual stability calculation in LEM using USA works like a typical
total  stress analysis,  as pore pressure is  not explicitly accounted for.  Additionally,  the cu
(or su) strength profile determined e.g. by the SHANSEP methodology acts solely an input
parameter value. From the standpoint of the equilibrium calculation, the USA strength
value functions identically to the su value used in “traditional” TSA. The friction angle
input  needs  to  be φ =  0,  as  in  TSA.  It  is  possible  that  a  software-generated  critical  slip
surface will then correspond to TSA assumptions, and in that case the strength su = τmax
could just as well be applicable.
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5 Proposed	modelling	approach		

5.1 Basic	premises	and	definitions	

This thesis presents a new method for calculating undrained shear strength and excess
pore pressure in soft clays.  The premise is that both can be calculated from stress changes
between the initial (“unloaded”) state and the failure state.

While one can unquestionably determine the strength of soils by extensive laboratory
testing programs, it is not always possible due to time or financial constraints. There is
also the question of anisotropy of shear strength, which may be difficult to take into
account without rather rarely used laboratory tests such as extension or DSS testing. On
the other hand, the critical state friction angle can be determined (for example) with fairly
straightforward CIU tests. In addition, oedometer tests to determine the preconsolidation
pressure and compressibility properties are routine in typical medium to large construction
projects.

The proposed Hybrid su (HSU) method uses effective strength parameters and
consolidation pressure coupled with a constitutive soil model to

- derive the undrained shear strength for use in total stress stability
analyses

- derive excess pore pressure at failure for use in undrained effective stress
stability analyses in a manner that is compatible with total stress
analyses

The general modelling premise is that both undrained shear strength and excess pore
pressure can be accurately and analytically calculated in LEM with a closed form or
iterative solution. This is achieved using a fairly simple constitutive soil model and
applying suitable assumptions and boundary conditions to reduce the number of unknown
factors.

The initial state (hereby denoted by subscript “0” means the stress state acting on a soil
element before applying an undrained stress change. An example is an existing
embankment upon which a traffic load is applied. The initial state then corresponds to the
stress state before applying the traffic load. The initial state also corresponds to the in situ
consolidation stress state before undrained loading.

The failure state (hereby denoted by subscript “f”) is in this thesis generally considered to
represent the critical state of the soil. In the context of employing soil models for
calculation of su or Δu, failure stress state is defined as the point in a stress space where
the effective stress path reaches the failure envelope. The model does not take strain
softening into account.

The mobilized state (hereby denoted by subscript “mob”) is simply the stress state that
results from a given undrained loading. Mobilized and failure stress states coincide for F
= 1.

The (p’,  q) stress space (Cambridge definition) is used for representing stress states and
stress paths. It is especially useful because elastic behaviour of soil results in a constant p’
effective stress path, making it easy to decouple load- and shear-induced pore pressure
changes.
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For sake of brevity in the text, undrained conditions are implicitly assumed unless stated
otherwise.
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5.2 The	S-CLAY1	soil	model	

To calculate undrained shear strength or excess pore pressure the effective stress path up
to failure needs to be modelled. To achieve this, certain selected features of the soil model
S-CLAY1 (Wheeler et al 2003) are used.

S-CLAY1 is essentially a derivative of the Modified Cam Clay (Roscoe and Burland
1968) soil model, with an anisotropic initial yield surface (Figure 5.1), coupled with
volumetric and rotational hardening of the yield surface. Further refinements of the model
also added strain softening caused by destructuration (S-CLAY1S, Koskinen et al 2002),
and creep effects (EVP-SCLAY1S, Karstunen et al 2008). What follows is a brief outline
of the original S-CLAY1 model, after Wheeler et al (2003).

Figure 5.1. The anisotropic yield surface predicted by S-CLAY1 (Wheeler et al 2003)

S-CLAY1 is intended for use with normally or slightly overconsolidated soft clays where
yielding is likely caused by small deformations. Therefore isotropic elasticity within the
initial yield locus can be assumed with reasonable accuracy. The elastic strain increments
are the same as used in MCC:
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where p’ and q are effective mean stress and deviatoric stress (Cambridge definition), v is
the specific volume, κ is the slope of the elastic swelling line in (v, ln p’) coordinates and
G’ is the elastic shear modulus.
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The general yield function is:
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where M is the critical state strength envelope in (p’, q) space, p’m is the size parameter of
the yield surface (see Fig. 5.1). σ’d and αd are the deviatoric stress vector and deviatoric
fabric tensor, respectively:
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In triaxial conditions, the yield function is reduced to:
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The parameter αrot describes the rotation angle of the yield curve in triaxial conditions.

S-CLAY1 assumes associative flow, which leads to the following flow rule between the
deviatoric and volumetric plastic strain components:
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where η is the stress ratio q/p’.
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The initial value of αrot can be calculated by assuming cross-anisotropic K0 consolidation.
The normally consolidated K0NC value can be calculated e.g. with the simplified Jaky’s
equation:

'sin10 j-=NCK (5.10)

In one-dimensional K0 straining (dεr = 0) during sedimentation the following relation
applies:
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If plastic strains are assumed to dominate during the consolidation process (i.e dεp >> dεe),
it can be estimated that:
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By applying this expression to the flow rule (5.9), the initial value of αrot can be given as:
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where ηK0 is the stress ratio during K0 consolidation. This can be calculated from K0NC:
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If Jaky’s equation is thought to apply, both ηK0 and M are functions of φ’. Thus the shape
of the initial yield surface is determined solely by the critical state friction angle, while its
size is given by the parameter p’m. By comparison, Länsivaara (1999) presents data that
states that normalized yield surfaces can be determined based solely on friction angle (see
Figure 4.1).

There are two hardening laws in S-CLAY1; volumetric and rotational. The volumetric
hardening law changes the size of the yield surface during yielding (namely, the
parameter p’m).  This change is related to plastic volumetric strains (as in Modified Cam
Clay):
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The rotational hardening law of S-CLAY1 describes the assumed change in structural
anisotropy with plastic straining. Essentially, rotational hardening changes the value of
αrot during yielding. It is proposed that plastic strains result in a rearrangement of the soil
particles in a way that the eventual arrangement has a different level of anisotropy
compared to the initial state. It is also assumed that plastic volumetric strain attempts to
“drag” the value of αrot towards a certain instantaneous target value χv(η) (Wheeler et al
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2003). At the same time, plastic deviatoric strains try to set αrot to an instantaneous target
value of χd(η). The proposed rotational hardening law of S-CLAY1 is:

[ ]p
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where μ is a parameter that controls the rate at which αrot is approaching its target value,
and β controls  the  ratio  of  the  effects  of χv(η) and χd(η). Wheeler et al (2003) propose
expressions for χv(η) and χd(η) for Otaniemi clay:
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5.3 Rotational	hardening	and	choice	of	failure	criteria	in	HSU	

While rotational hardening caused by plastic strains is a valid and fairly intuitive concept,
it may be problematic to implement in practice due to the number of parameters and
assumptions that are needed. This is contrasted by relatively little available experimental
data suitable for determining the rotational hardening parameters. Therefore it is useful to
consider if rotational hardening needs to be implemented into HSU. In the intended use of
the HSU method there are no resources for actually determining the rotational hardening
parameters so these would need to be assumed.

To illustrate the effect of rotational hardening on predicted shear strength, a theoretical
example using S-CLAY1 is presented. Shear strength is calculated in triaxial compression
and extension with and without rotational hardening, using Mohr-Coulomb and Drucker-
Prager failure criteria.

As the overall philosophy of the calculation method proposed in this thesis is “relative
simplicity”, further discussion of rotational hardening is omitted here. Taking rotational
hardening into account would present several additional parameters to determine and
assumptions to make, and would perhaps complicate the calculation unnecessarily.
However, the effect of (assumed) rotational hardening can be (crudely) counteracted by
universally using the critical state line M for triaxial compression for all stress states, as
shown in this example. Normally consolidated clay with parameters given in Table 5.1 is
simulated. Effective stress paths calculated with S-CLAY1 are presented for the following
cases:

A) No rotational hardening applied, Drucker-Prager fitted for compression
B) Rotational hardening applied, Drucker-Prager fitted for compression
C) No rotational hardening, Mohr-Coulomb
D) Rotational hardening, Mohr-Coulomb

Table 5.1. S-CLAY1 model parameters used in the example

property value description
φ’ [°] 30 friction angle
Mc 1.2 CSL slope for triaxial compression
Me 0.857 CSL slope for triaxial extension
OCR 1 overconsolidation ratio
K0NC 0.5 K0 for 1-D consolidation
ηK0NC 0.75 q/p’ for 1-D consolidation
αrot0 0.458 initial inclination of the yield surface (Eq. 5.13)
λ* 0.05 modified compression index (arbitrary value)
κ* 0.01 modified swelling index (arbitrary value)
β 0.5M relative rotational parameter
μ 300 absolute rotational parameter (μ = 15/λ*)

The parameters K0NC, ηK0NC, and αrot0 are determined using equations 5.10, 5.13, 5.14.

The parameters λ* and κ* are chosen arbitrarily so that the ratio λ*/κ* = 5. As strains are
not considered in the example, only the ratio λ*/κ* = λ/κ has an effect on the stress paths,
not the absolute values.
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The parameters β and μ are chosen based on suggestions given in literature. Wheeler et al
(2003) give an expression for β:
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However, Mansikkamäki (2015) notes that this expression is sensitive to the value of
K0NC.  If  the  value  of K0NC deviates from the simplified Jaky’s equation (Eq. 5.10), the
value of β calculated using Eq. 5.19 changes rapidly, and can even get very high positive
or slightly negative values. Wheeler et al (2003) suggest a value β = 0.5…1. In this
example, an arbitrary value of β = 0.5M is chosen.

The rotational parameter μ is chosen as 15/λ*. This falls in the middle of the range μ = 10/
λ*…20/ λ* proposed by Zentar et al (2002).

If the Mohr-Coulomb failure criterion is thought to apply, the value of M is different for
triaxial compression (Mc) and extension (Me):
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This can be modelled in triaxial applications by using M = Mc for η ≥ α, and M = Me for η
< α (Wheeler et al 2003). This is illustrated in Fig. 5.2. Note the “squishing” of the yield
surface on the extension side.

Figure 5.2. S-CLAY1 yield surface with anisotropic failure criteria (Wheeler et al 2003)

In the cases where Mohr-Coulomb failure is assumed, the value of M is changed
accordingly depending on the value of η (i.e. if η < 0, M will correspond to extension and
vice versa). This affects all equations that are dependent on M. The resulting effective
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stress paths and initial yield surfaces for the various cases are presented in Figure 5.3. The
corresponding undrained shear strengths are given in Table 5.2.

Figure 5.3. Calculated stress paths for the various cases. a) Drucker-Prager fitted for compression, b)
Mohr-Coulomb with fitted initial yield surface

Table 5.2. Normalized su calculated with the different assumptions.

No rot. hard.
DP

Rot. hard.
DP

No rot. hard.
MC

Rot. hard.
MC

suC/σ’c 0.314 0.305 0.314 0.305
suE/σ’c 0.165 0.305 0.132 0.218
suE/suC 0.526 1.000 0.419 0.714

The results of this arbitrary example show fairly small shear strength differences for
compression when applying rotational hardening as proposed for S-CLAY1, or when
rotational hardening is left out of the model. This is an expected result, because the stress
path in the elastoplastic zone (i.e. outside the initial yield surface) is short, and rotational
hardening is relatively minor.
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The differences are more notable for triaxial extension. Rotational hardening caused by
plastic straining pushes the yield surface towards a more isotropic state, which
consequently leads to a more vertical stress path and isotropic shear strength. It seems that
in this example, applying rotational hardening results in complete shear strength isotropy
(suC/suE = 1) for the Drucker-Prager failure criterion. This appears to be caused by a
coincidental “perfect” combination of parameters, and for a different set of parameters the
anisotropy would be different. By using the Mohr-Coulomb failure criterion where the
appropriate M value for extension is used, shear strength anisotropy is higher.

It may be argued that while proper selection of the rotational hardening parameters can
allow for quite accurate predictions of shear strength, it seems very difficult to determine
these parameters without a very extensive laboratory testing program. By relying on the
sparse parameter value recommendations found in literature one may not always expect
good accuracy.

From the standpoint of making the proposed model simple but still “accurate enough”,
rotational hardening can be omitted, but the failure criterion is set to Drucker-Prager. This
choice has some advantages over the “proper” use of rotational hardening and Mohr-
Coulomb. First, the Drucker-Prager criterion is mathematically convenient as it results in
a continuous and constant M value for all Lode angles. Omitting rotational hardening
further simplifies the model and reduces the number of unknown parameters.

Additonally, the use of Drucker-Prager fitted for compression slightly counteracts the
possible error that occurs in triaxial extension (and nearby stress states) if rotational
hardening is omitted from the model. This “corrective” effect is admittedly difficult to
quantify except in single cases, but can be seen as a qualitative improvement.
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5.4 On	the	assumptions	made	in	the	Hybrid	su	method	

The new calculation method named “Hybrid su” (HSU) is intended to be used with LEM
to calculate an appropriate undrained shear strength in total stress analyses. For undrained
effective stress analyses, the method can be used to calculate excess pore pressure so as to
arrive to a correct shear strength value.

The goal is to find a closed form solution with few enough input parameters, while at the
same  time  giving  the  ability  to  model  the  anisotropy  of  undrained  shear  strength  with
reasonable accuracy. The parameters needed would have to be such that they can either be
determined with simple laboratory testing or readily estimated by other means.

The HSU solution is based on the S-CLAY1 soil model (described in Section 5.2). S-
CLAY1 is used here due to its relative mathematical simplicity and potential for
accurately modelling anisotropy of shear strength.  A notable departure from the original
S-CLAY1 is that in this application, rotational hardening is altogether omitted.
Reasons for this are:

- There is still relatively little experimental data to support certain model
assumptions made regarding fabric anisotropy and rotational hardening.
There is also still some ongoing debate on certain theoretical aspects
(e.g. existence of fabric anisotropy in critical state). This is briefly
discussed by e.g. Dafalias and Taiebat (2014).

- Even if all theoretical aspects of rotational hardening were universally
accepted and the given model could as such be considered very accurate,
determining parameter values remains a problem. In typical design
projects where testing resources are limited, the parameters β and μ
cannot in practice be determined reliably, and literature values would
need to be relied upon. The rotation target value functions χv(η) and χd(η)
seem to have expressions based only on one Finnish clay as described by
Wheeler et al (2003), and cannot as such be considered universally valid.

- The intended use for the model is predicting shear strength. As such,
there is no pressing need to model strains and the entire stress path
between the initial state and failure all that accurately, as long as the
eventual shear strength can be obtained. Within this framework,
additional “obscure” parameters can even be considered a distraction for
the user.

The omission of rotational hardening from the method may induce errors especially in
determining shear strength in extension, as modelling changes in fabric anisotropy is left
out. It can however be argued that using rotational hardening with wrongly determined
parameters may also induce errors. It can be better to use a simpler model with fewer
parameters than to use a complex model whose parameters are difficult to determine
correctly.

There is however a LEM-specific approach that is applied in the HSU method: By
disregarding strains in the LEM application, an additional degree of freedom in modelling
stress paths is obtained in the use of compression and swelling indices λ and κ. By
“decoupling” these parameters from their original physical meaning, the ratio λ/κ can
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now be used to control the direction of the stress path. With this approach, the ratio λ/κ
effectively becomes a control parameter for su. This is illustrated in Figure 5.4, where
undrained “S-CLAY1-like” (no rotational hardening, Drucker-Prager) stress paths using
different λ/κ ratios are drawn.

Figure 5.4. Effective stress paths from S-CLAY1 (sans rotational hardening). φ’ = 30°, OCR = 1

As the physical meaning of λ/κ is to some extent ignored, it can even be given physically
impossible negative values if needed for controlling the effective stress path. This makes
the parameter somewhat arbitrary as it becomes something that cannot be readily
determined in the laboratory. λ/κ can however be considered a fairly “transparent” and
direct parameter as its effect on the stress path is quite apparent, even by sheer trial and
error.

λ/κ can for example be chosen so that HSU fits  a known (measured) undrained strength
value, such as triaxial compression strength or field vane strength. The method is then
essentially used to predict the anisotropy of shear strength based on the measured value. If
no “desired” shear strength value is available, λ/κ can be chosen so as to give a cautious or
conservative estimate of undrained shear strength. The value of λ/κ can also be based on
laboratory testing, but this is by no means a necessity.
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Another important assumption made in HSU is that the chosen failure criterion is the
Drucker-Prager envelope for triaxial compression, i.e. M = Mc for all stress states.

This departure from more “universally” applicable failure criteria (e.g. Mohr-Coulomb or
Matsuoka-Nakai criteria) has two main reasons:

- Convenience. Assuming constant M for all combinations of stress states
greatly simplifies the analytical solution as no Lode angle dependence
needs to be incorporated for M.

- An attempt to counteract the omission of rotational hardening in the
model. While there may be difficulties in obtaining proper rotational
hardening parameters, the basic concept of rotational hardening is at
least qualitatively valid. In extension, some decrease of anisotropy can
be expected due to the changes in principal stress directions. The
omission of rotational hardening in the model, coupled with the Mohr-
Coulomb (or similar) failure criterion, would lead to low predicted shear
strengths. By using the Drucker-Prager criterion matching triaxial
compression this effect can be counteracted.

The general approach in making these assumptions is that if parameters needed to model a
given physical phenomena cannot be reliably determined or assumed, it is better to leave
the property out of the model. In addition, assumptions are made so that any induced
errors would at least tend to cancel each other. A single, reasonably transparent “control”
parameter in the form of λ/κ is  retained to give the user an ability to fine-tune or fit  the
model to give appropriate results.
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5.5 Closed	form	solution	of	p’f			

For  the  purpose  of  this  thesis,  a  “stripped  down”  derivative  of  the  original  S-CLAY1
model is used. The applied solution retains volumetric hardening, but omits the rotational
hardening properties for the sake of simplicity. The main goal of the calculation is to
calculate the effective mean stress p’f at failure using easily obtainable parameters and
plausible assumptions. The value of p’f is then used to calculate either su in total stress
analyses, or excess pore pressure at failure Δuf in undrained effective stress analyses.

The general form of the S-CLAY1 yield function is expressed in terms of Cartesian
stresses. These can in turn be expressed in terms of principal stresses and principal stress
rotation angle θ using known properties of continuum mechanics.

Using simple substitutions and rearranging (see Appendix A), the S-CLAY1 yield
function can first be solved for σ’1, where the unknown variables are effective mean stress
p’, intermediate principal stress parameter b, principal stress rotation angle θ and the size
of the yield surface at failure p’mf. The critical state line parameter M and the yield surface
inclination αrot are considered constants. They are solved as functions of φ’ (eq’s 5.20 and
5.13) and do not depend on any other parameters. The M value used is for triaxial
compression. αrot is calculated assuming cross-anisotropic K0 consolidation (and in this
application, no rotation of the yield surface). As discussed in previous chapters, these
assumptions regarding M and αrot somewhat balance their corresponding errors.

The S-CLAY1 yield function solved for σ’1, (for the derivation, see Appendix A):
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where

σ’1S major principal stress solved from the S-CLAY1 yield function [kPa]
αrot yield surface rotation parameter (Eq. 5.13)
b intermediate principal stress parameter (Eq. 3.11)
θ principal stress rotation angle [°] (Eq. 5.43)
p’ effective mean stress [kPa]
M CSL parameter
p’m yield surface size parameter [kPa]

The term B is used to shorten the overall expression, and is defined as:

12 +-= bbB (5.23)

As the aim is to solve the effective mean stress at failure (p’f), a failure envelope needs to
be introduced. While an anisotropic effective stress failure envelope could be considered
accurate, for the sake of simplicity, the Drucker-Prager failure criterion corresponding to
triaxial compression is used here. In addition, no cohesion is assumed (at this point - see
Section 5.9 for an HSU formulation with cohesion). The assumption here is that in critical
state, any structuration that would cause true cohesion will be destroyed by large shear
straining.
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Essentially, the stress state at failure is calculated as the point in stress space where the
effective stress path (a point on a volumetrically expanding yield surface) intersects the
Drucker-Prager failure surface.

The Drucker-Prager envelope corresponding to triaxial compression with no cohesion can
be formulated as
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where the deviatoric invariant:
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The term C1 is defined as:
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The Drucker-Prager criterion can then be solved for σ’1, eventually resulting in:
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At failure, the S-CLAY1 and Drucker-Prager criteria coincide (i.e. the stress state at
failure lies both on the S-CLAY1 yield surface and the Drucker-Prager failure surface).
By assuming:

SDP 11 '' ss =

i.e. the major principal stresses at failure are equal, the mean effective principal stress at
failure p’f can be solved:
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where

rotBCC a×= 12 33 (5.29)

The final unknown variable here is p’mf. To calculate this, the S-CLAY1 volumetric
hardening law (eq. 5.15) is applied.  After solving a differential equation (Appendix A),
for undrained conditions it can be written that:
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Finally, inserting this expression into Eq. 5.30 and solving for p’f results (when trivial
solutions are omitted) in:
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M CSL inclination for triaxial compression (Eq. 5.20)
αrot yield surface inclination parameter (Eq 5.13)
b intermediate principal stress parameter (Eq 3.11)
θ principal stress rotation angle [°](Eq. 5.43)
p’0 initial effective mean stress [kPa] (Eq. 5.37)
p’m0 initial size of the yield surface [kPa] (Eq. 5.40) 	
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5.6 Review	of	HSU	parameters	

Table 5.3 gives a brief description of the various parameters used in Eqs. 5.31 and 5.33.

Table 5.3. List of parameters used in calculating p’f.

parameter description notes

M inclination of critical state
line soil parameter, function of φ’

αrot inclination of yield surface soil parameter,  function of φ’

b intermediate principal stress
ratio

state parameter, function of stress changes
during loading

θ principal stress rotation angle state parameter, function of φ’and slip
surface inclination α

p’0 initial effective mean stress state parameter, function of φ’, σ’v0 and σ’c
p’m0 initial size of the yield surface state parameter, function of φ’, σ’v0 and σ’c

λ (or λ*)  compression index in (ln p’,
e) space soil parameter

κ (or κ*)  swelling index in (ln p’, e)
space soil parameter

As is evident from Table 5.3, the basic input parameters needed for the model are the
critical state friction angle φ’, initial vertical (consolidation) stress σ’v0, preconsolidation
pressure σ’c, compression and swelling indexes λ and κ (or more specifically, their ratio
λ/κ), and intermediate  principal stress ratio at failure b.

As discussed in various chapters, the following assumptions are made:

- No  cohesion  at  failure,  all  structuration  is  assumed  to  be  broken  down
before reaching critical state

- The initial stress state is cross-anisotropic, with K0 conditions
- Isotropic elasticity inside the yield locus (constant p’ stress path)
- The Drucker-Prager failure criterion fitted for triaxial compression is

used, no cohesion
- Rotation of the yield surface is omitted. The value of αrot is constant.

The aforementioned parameters are calculated with a sequence of equations presented
next. Two additional parameters are introduced: the parameters “C” and “D” can be used
to adjust the values of K0NC and K0, respectively.

The M value for triaxial compression is used for all stress states:
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The NC value of K0 is obtained with a modified version of the Jaky equation:
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where C is a coefficient. By default it can be set to C = 1, but in many cases it can vary.
By adjusting the value of C, any known K0NC value can be replicated.

The  in  situ  value  for K0 is obtained by slightly modifying the equation suggested by
Mayne & Kulhawy (1982):
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where D is a coefficient. By default it can be set to D = 1, but in many cases it can vary.
By adjusting the value of D, any known K0 value can be replicated.

Vertical preconsolidation pressure:
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Initial effective mean stress:
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Deviatoric preconsolidation stress (i.e. deviator stress obtained at preconsolidation
pressure):
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Stress ratio during consolidation:
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The inclination of the yield surface:

3
3 2

0
2

0 MNCKNCK
rot

-+
=

hh
a (5.13bis)

The size of the initial yield surface can be solved from the triaxial yield function (eq. 5.6),
which results in:
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The  value  of  the  principal  stress  rotation  angle θ (i.e. angle of σ’1 from the vertical
direction) can be derived from the theory of plasticity. It is established that at failure, the
critical  shear plane is at  an angle of 45° - φ’/2 from the major principal stress.  It  can be
assumed that the critical slip surface corresponds to the critical shear plane. For a situation
where σ’1 is vertical (i.e. θ = 0), the inclination of the slip surface α would then need to be
45° + φ’/2 from horizontal (Fig. 5.5)

Figure 5.5. The relationship between principal stress direction and the inclination of the slip surface
(failure plane)

The principal stress rotation value is then

ajq -+°= 2'45 c (5.41)

where α is the inclination of the critical slip surface at a given point (Figure 5.6).



72

Figure 5.6. Principal stress rotation angle at various parts of a slip surface.

In LEM context the changes in total stresses could be calculated iteratively: First an initial
assumption of b is made, and the equilibrium is calculated. Then, the stress state on the
slip surface is used to calculate an updated value of b.  This  process  would  then  be
repeated until b converges.

While stress changes in LEM could be calculated using an iterative process, it may not be
feasible. As discussed in Chapter 2, limit equilibrium methods do not necessarily give
realistic stress distributions along the slip surface, as they only consider static equilibrium
requirements. In addition, external loads are not distributed at all inside the soil. Due to
this inaccuracy, just using a good assumption for b can well be justified. Such an
assumption should be realistic for the general loading pattern. The assumed value should
also  be  chosen  so  as  to  minimize  the  resulting  errors,  should  the  actual  value  of b be
significantly different from the assumption. The proposed value of b to be used in stability
calculations is b = 0.3. This choice is discussed further in Section 6.4.
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5.7 Calculating		undrained	shear	strength	in	LEM	context	

In Section 5.5 a solution for the effective mean stress at failure p’f was given (Eq. 5.28).
For a total stress stability calculation using undrained shear strength, HSU effectively uses
the von Mises criterion. This is consistent with the use of Drucker-Prager in calculating
p’f. The undrained shear strength obtained this way corresponds to the effective stress
shear strength at p’f. The undrained shear strength su is defined as:

2
'

2
Mpq

s ff
u

×
== (5.42)

This definition of undrained shear strength, or su, corresponds to the commonly used
definition of shear strength used in total stress analyses where the strength is solely
determined by the radius of the Mohr’s circle at failure (see e.g. Wood 1990 pp. 179-181).

The calculated value of su can be used as a completely normal strength parameter in a φ =
0 LEM analysis. It must be kept in mind that this strength depends both on the location
and direction of shearing, so the calculation of p’f and su is done for a given slip surface.
This does not preclude the search for a critical slip surface, as it only means that su needs
to be calculated separately for each slice of each slip surface generated by the search
algorithm.

The proposed workflow of the calculation in a geotechnical design software utilizing
LEM is as follows (Fig. 5.7):

Input:
1. Create the soil geometry, layers, water table, loads etc.
2. For each layer, specify if it employs the calculation method (termed “active

layers”), and whether it is a part of the initial stress state. For example, an
embankment layer can be included in the initial state (old embankment) or not (new
embankment).

3. For each external load, specify whether it is part of the initial state. Loads can be
either old (permanent) or new (transient or permanent). New loads are not
considered part of the initial stress state.

4. Soil parameter input. Input for active layers: γ, φ’, OCR, λ/κ, b (default b = 0.3) and
a coefficient for K0NC (default C = 1). Other soil layers have their relevant
parameters.

Calculations:
5. For active layers, calculate the following parameters: M, K0NC, ηK0NC, αrot
6. Define a slip surface and slices according to the search algorithm utilized by the

software
7. For each slice bottom that is located in an active layer, calculate the initial stresses

σ’v0, p’0; preconsolidation stresses σ’c, p’c,  qc; size of initial yield surface p’m0;
principal stress rotation at failure θ; effective mean stress at failure p’f.

8. For each slice bottom that is located in an active layer, calculate su
9. Conduct a φ = 0 limit equilibrium calculation using the desired limit equilibrium

method.
10. Continue according to the search algorithm, repeat steps 6-10 if necessary.
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Figure 5.7. Proposed workflow for a total stress calculation with modeling of su

A key issue here is that the parameters calculated in step 7 are calculated according to the
initial state, i.e. the effective stress state prior to short-term loading. Calculations
involving the initial state consider that layers and loads not present in the initial state have
zero unit weight and magnitude, respectively. The initial effective vertical stress σ’v0 at the
slice bottom is calculated based on the unit weight and thickness of the overlying layers
initially present (and old permanent loads, if applicable):

0000 '' dq appv ×S+= gs (5.53)

where qapp0 is the applied external long-term loading present in the initial state; γ’0 and d0
are effective unit weights and layer thicknesses for layers present in the initial state.
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As in any LEM calculations, there will admittedly be errors as the effects of non-
horizontal geometry on vertical stress are not taken into account. For geometries with
horizontal soil surface and layers, the calculation can be considered accurate.

It needs to be recognized that when using the method to calculate su, friction angle φ’ is
not treated as a strength input parameter per se, but as a calculation parameter for su. The
equilibrium calculation itself is carried out as a traditional φ = 0 analysis.

After calculating the undrained shear strength along the slip surface, a normal limit
equilibrium calculation can be made using the desired method. In this calculation, all
loads and layers are taken into account with their proper unit weights and magnitudes.
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5.8 Calculating	Δuf	in	LEM	context	

5.8.1 Introduction	

In addition to calculating undrained shear strength, the HSU method can also be used to
calculate excess pore pressure at failure. Ideally, an undrained effective stress analysis
would  give  the  same result  as  the  corresponding  total  stress  analysis  using su (assuming
that the result given by the total stress analysis is the correct one).

As was noted in Section 4.3, traditional undrained effective stress analyses suffer from the
inherent assumption that further excess pore pressure between the mobilized (design) state
and failure is not considered. This results in an unrealistic effective stress path, and an
overestimation of τf and F when F > 1.

The main problem in traditional undrained ESA is that the factor of safety F is obtained
by comparing the mobilized shear stress τ to a theoretical shear strength τf that in reality
cannot be mobilized at failure. Thus, even if mobilized excess pore pressure is calculated
correctly, the resulting shear strength is incorrect. Further difficulties can arise from the
fact that in typical LEM applications, external loads are not realistically distributed within
the soil, but any measured pore  pressure  profile  results  from  the  true  distribution  of
stresses in the soil. This can, again, result in an unrealistic shear strength distribution
along the slip surface.

To circumvent these issues, an approach is proposed where emphasis is put on obtaining a
realistic shear strength distribution instead of modelling the excess pore pressure as
accurately as possible. In a certain sense, pore pressure needs to be deliberately calculated
incorrectly, so that the resulting shear strength distribution is correct.

The following chapters present two approaches for calculating excess pore pressure in
undrained effective stress analyses: 1) forcing Δu to obtain a realistic value of τf; and 2)
calculating Δu based on stress changes at failure.
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5.8.2 Δuf	based	on	“forcing”	τf	

If everything else is kept constant, the key parameter that affects the result of a limit
equilibrium analysis is the shear strength on the slip surface. Thus if the shear strength
distribution resulting from an undrained effective stress analysis is identical to the su
distribution in a corresponding total stress analysis, one can expect the same results from
the two types of analyses. By assuming that the shear strength given by the HSU method
is correct (and that in the critical state, no cohesion is apparent), the following condition
can be set:

'tan)('tan' 0 cncnfu uus jsjst ×D--=×== (5.54)
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where σn is the total normal stress acting on a slice bottom, u0 is the initial pore pressure,
su is the undrained shear strength calculated with the HSU method, and φ’c is the critical
state friction angle of the soil. Note that here su is assumed to match the effective stress
shear strength (Drucker-Prager failure envelope) instead of the total stress shear strength
(Tresca/von Mises failure envelopes).

The profile of σn on the slip surface depends on the specific limit equilibrium method
chosen. More specifically, the σn values satisfy the equilibrium conditions with the set of
assumptions used by the limit equilibrium method. Thus, the total stress distribution may
not always reflect the true stress distribution in the soil. However, by forcing the effective
stresses to their  assumed value at  failure,  (i.e.  the value of σ’n where the resulting shear
strength τf matches the calculated value of su), the shear strength profile  represents  the
“correct” values available at failure.

In this sense, the values of total normal stress σn and the corresponding calculated Δu can
be notably different from reality, but the resulting σ’n value should in principle correspond
to reality.

The proposed workflow for the “forced” effective stress calculation is as follows:

Input:
1. Create the soil geometry, layers, water table, loads etc.
2. For each layer, specify if it employs the calculation method (termed “active

layers”), and whether it is a part of the initial stress state. For example, an
embankment layer can be included in the initial state (old embankment) or not (new
embankment).

3. For each external load, specify whether it is part of the initial state. Loads can be
either old (permanent) or new (transient or permanent). New loads are not
considered part of the initial stress state.

4. Soil parameter input. Input for active layers: γ, φ’c, OCR,  λ/κ,  b (default b = 0.3)
and a coefficient for K0NC (default  C  =  1).  Other  soil  layers  have  their  relevant
parameters.

Calculations:
5. For active layers, calculate the following parameters: M, K0NC, ηK0NC, αrot
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6. Define a slip surface and slices according to the search algorithm utilized by the
software

7. For each slice bottom that is located in an active layer, calculate the initial stresses
σ’v0, p’0,  p0; preconsolidation stresses σ’c, p’c,  qc; size of initial yield surface p’m0;
principal stress rotation at failure θ; effective mean stress at failure p’f undrained
shear strength su.

Δu iteration loop:
8. Make a first assumption for Δu.
9. Conduct an undrained c’-φ’ limit equilibrium calculation using the desired limit

equilibrium method.
10. From the output of the equilibrium calculation, take σn values for active slices
11. Calculate new value for Δu (Eq. 5.55)
12. Check if Δu converges
13. a) If Δu converges, continue according to the slip surface search algorithm OR

b) if Δu does not converge, use the new Δu value as input for next iteration then
return to Step 9.

For a given slip surface, this effective stress calculation will give the exact same result as
a corresponding total stress calculation. Arguably, the use of an effective stress calculation
where the shear strength is fixed to a predetermined value is redundant, as the exact same
result can be acquired by using a much simpler total stress analysis using the same
“target” su value. This approach to undrained effective stress analyses is however included
here as a conceptual example, and not so much as a proposed calculation method. The
“forced” Δu results  can  also  be  used  as  reference  values  for Δu results calculated with
other means (see next section).
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5.8.3 Δu	based	on	stress	changes	

A  more  “traditional”  way  of  conducting  an  undrained  effective  stress  analysis  with  the
HSU method is calculating excess pore pressure at failure based on stress changes. Now
excess pore pressure is not forced to give a “fixed” undrained shear strength. The HSU
method is used to derive the shear-induced component (through calculating effective
mean stress at failure p’f) of the excess pore pressure response. Two submethods of
calculating the load-induced component are proposed.

The principle of effective stresses states that at failure:

fff upp -=' (5.56)

upp D-D=D ' (5.57)

fff ppu '-= (5.58)

'ppu D-D=D (5.59)

)''()( 00 ppppu ff ---=D (5.60)

Excess pore pressure Δu at failure is therefore a sum of total and effective stress change
components. The total stress change component Δp is, by definition, a result of increase in
total mean stress acting on a soil element (or, the direct result of increasing external
stresses). In undrained conditions an increase in total mean stress is compensated by an
equal increase in excess pore pressure, resulting in constant volume (assuming isotropic
elasticity). The component Δp can therefore be termed as the load-induced component of
excess pore pressure.

The effective stress change component Δp’ depends on the volumetric tendencies of the
soil as a result of changing deviatoric stresses. A soil on the wet side of the critical state
line (CSL), such as normally consolidated or slightly overconsolidated clays, will have a
tendency for plastic volumetric compression when subjected to increasing deviatoric
stresses (i.e. shearing). In undrained conditions this tendency for compression is then
compensated by equal tendency for elastic expansion, i.e. excess pore pressure. The
opposite is true for shearing in the dry side of critical.

The link between Δp’ and deviatoric stress change can be illustrated with a slightly
modified expression for Δu (Wood 1990 p. 35):

qDpu D×-D=D (5.61)

where Δq is change in deviator stress and D is a pore pressure parameter. Using this
notation compressive behaviour corresponds to negative values of D, and vice versa.
Isotropically elastic behaviour corresponds to D = 0, and a constant p’ stress path.

For overconsolidated soil (where the initial stress state lies inside the initial yield locus)
the response is often assumed elastic, i.e. p’ remains constant. When the clay starts to
yield and the stress state moves outside the initial yield surface, p’ will change according
to the structural tendencies of the clay so that constant volume is maintained during
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undrained shearing. As Δp’ is coupled with an increase in deviator stresses, it can be
considered the shear-induced component of excess pore pressure.

As is the case with calculating undrained shear strength directly, effective mean stress at
failure (p’f) needs to be calculated to be able to calculate Δp’f. This can be done with the
HSU method as shown in Section 5.5. In addition, the load-induced pore pressure
component Δpf needs to be calculated.

Here two approaches for iteratively calculating Δpf are suggested. Approach A is based on
deriving the total mean stress p from  the  normal  stress  distribution  acting  on  the  slip
surface, while approach B derives p based on calculated vertical stresses. Approach A is
slightly modified from an approach suggested for the method UESA (Svanø 1980) in the
manual  for  the  software  BEAST  (Clausen  2003).  Approach  B  is  the  author’s  own
suggestion.
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Approach A:

The total mean stress at failure pf can, in principle, be calculated iteratively by using the
limit equilibrium assumptions. The result of the stress distribution on the slip surface will
however depend on the specific limit equilibrium method used (see Chapter 2).

The mean stress components p’f (from the HSU method), and the initial stresses p’0 and p0
are considered known at this point.

An initial assumption for Δu needs  to  be  made.  A  good  assumption  will  result  in  fast
convergence, but any realistic value should be sufficient. The suggested value of Δuass for
each active slice bottom is:

fappass pqu 'D-D=D (5.62)

where

0''' ppp ff -=D (5.63)

Δqapp is the sum of vertical loading (in kPa) applied on the slice in undrained conditions.

Then, an equilibrium analysis using the desired limit equilibrium method is run. The pore
pressure input for each active slice bottom should be

0uuu ass +D= (5.64)

where u0 is the initial (long-term) water pressure.

From the output data of the equilibrium analysis, values of σ’n and τf are used to calculate
principal stresses at failure, using continuum mechanics. The following equations assume
zero cohesion, as the critical state assumption is thought to apply. Refer to Fig.5.8 for the
geometry used to derive the equations.
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Figure 5.8. The geometry used to derive needed values for Approach A.
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Finally, a new value for Δuf can be calculated:

)''()(' 00 ppppppu fffff ---=D-D=D (5.71)

The new Δuf value is then applied as the new assumption, and the iteration loop is
continued until Δuf converges.
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While the total stress change calculation is quite straightforward, basing it on limit
equilibrium results can be problematic for two reasons: First, the calculated value of pf is
dependent on the specific limit equilibrium method used. Second, the calculated value of
σn will vary with each updated iteration of Δu, which can potentially cause convergence
problems.

The author’s own attempts to apply Approach A have been characterised by very frequent
convergence issues. Nearly invariably, at some point during the iteration loop of Δu the
calculated values of σn and τf may get very high or very low values, leading to a total
divergence in the iterations. This might be remedied by using better iteration algorithms,
but for the purposes of this thesis, Approach A is presented as a concept only and no
actual calculation results will be presented.
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Approach B:

Instead of iteratively using the limit equilibrium results for calculating Δp,  Approach  B
derives the total stresses from vertical stresses and the given slip surface geometry. While
an iteration loop is still needed to solve Δp, the result is now obtained independently of the
limit equilibrium calculations, which makes the calculation much more robust.

Again the initial stress state is considered known. An initial assumption Δuass is made for
the excess pore pressure at failure. In the loaded state, the “failure” effective vertical stress
is simply calculated as:

assv uuxW D--D= 0/'s (5.72)

where W is the slice weight and Δx is the slice width.  This does not take any distribution
of stress in the soil into account and as such is compatible with the general assumptions
made in LEM.

It is known that vertical stress and principal stresses are connected by:
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where θ is the rotation angle of the principal stresses.

The principal stress ratio at failure is:
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Based on Eq.5.73 and 5.74, the major and minor principal stresses can be solved as:
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The intermediate principal ratio b can be assumed. The default assumption that is used in
the HSU method is b = 0.3, which for the sake of consistency can be used here as well.
Then the corresponding total mean stress at failure is:
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Then, an updated assumption for Δu is calculated using Eq. 5.59. The process is repeated
until Δu converges. After a desired convergence criterion is satisfied, the resulting Δu
value is used as input in the effective stress limit equilibrium calculation.

The proposed iterative algorithm for an undrained effective stress limit equilibrium
analysis, using Approach B for calculating Δp is as follows:
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Input:
1. Create the soil geometry, layers, water table, loads etc.
2. For each layer, specify if it employs the calculation method (termed “active

layers”), and whether it is a part of the initial stress state. For example, an
embankment layer can be included in the initial state (old embankment) or not (new
embankment).

3. For each external load, specify whether it is part of the initial state. Loads can be
either old (permanent) or new (transient or permanent). New loads are not
considered part of the initial stress state.

4. Soil parameter input. Input for active layers: γ, φ’c,  OCR,  λ/κ,  b (default b = 0.3)
and a coefficient for K0NC (default C = 1). Other soil layers have their relevant
parameters.

Calculations:
5. For active layers, calculate the following parameters: M, K0NC, ηK0NC, αrot
6. Define a slip surface and slices according to the search algorithm utilized by the

software
7. For each slice bottom that is located in an active layer, calculate the initial stresses

σ’v0, p’0, p0; preconsolidation stresses σ’c, p’c,  qc; size of initial yield surface p’m0;
principal stress rotation at failure θ; effective mean stress at failure p’f.

Δu iteration loop:
8. Make a first assumption for Δu.
9. Calculate Δp, update Δu assumption, repeat until Δu converges.

Limit equilibrium calculation:
10. Use previously calculated Δu as input.
11. Conduct an undrained c’-φ’ limit equilibrium calculation using the desired limit

equilibrium method.
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Figure 5.9. Proposed workflow for calculation of an undrained effective stress analysis with calculation
of Δu
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5.9 Modelling	effective	cohesion	in	critical	state	

While thus far it has been considered that in critical state, there is zero effective cohesion
at critical state, it can be useful to give the possibility of modelling cohesion in the HSU
method. While the model S-CLAY1 itself assumes zero cohesion, a fairly simple
coordinate conversion can be used to include critical state cohesion in HSU if necessary.

No claims about the existence of critical state cohesion are made here, but the procedure is
presented to increase the flexibility of the model. The steps taken are as follows:

1) All data is input as usual.

2) From the cohesion value c’, the corresponding (p’, q) space intercept value qint  (q
value at p’ = 0) is calculated:

'cos
'2

int j
cq ×

= (5.78)

3) The initial mean stress p’0 and mean preconsolidation stress p’c are calculated as
usual. However, in subsequent calculations these are replaced with calculation
values p’0calc and p’ccalc:

attcalc ppp ''' 00 += (5.79)

attcccalc ppp ''' += (5.80)

where p’att is the value of attraction in the (p’,q) space (i.e. p’ value at q = 0). p’att
is defined as follows:

M
q

p att
int' = (5.81)

This conversion has the effect of moving the coordinate system so that the distance
between the initial stress state variables and the “tip” of the failure envelope
corresponds to the assumed “true” situation with cohesion. The shape of the initial
yield surface changes slightly from the corresponding “c’ = 0 situation” because
the assumed K0 is now different (q values remain unchanged).

4) Subsequent calculations are done as usual, using the values of p’0calc and p’ccalc as
relevant.

5) For illustrative purposes (e.g. drawing yield surfaces and stress paths) the resulting
p’ coordinates are converted back to their “true” values by subtracting p’att from
the calculation values.

The resulting initial yield surface is conceptually illustrated in Figure 5.10.
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Figure 5.10. Normal initial yield surface without cohesion, and a corresponding yield surface with
cohesion, resulting from the coordinate shift procedure.

In Figure 5.10, the yield surface with cohesion has been calculated with zero cohesion and
the “calculation” values of p’. Then, the p’ coordinates have been shifted back to their
“true” values.
Undrained shear strength is calculated as normal by using the resulting value p’fcalc in
Equation 5.42. This gives the same result for su as first converting the “calculation” value
to the “true” value and separately adding the qint value (i.e. cohesion).

When HSU with cohesion is used to calculate excess pore pressure (based on stress
changes), cohesion needs to be accounted for when using the relations between principal
stresses and the failure criterion. In the suggested Approach B (section 5.8.3), equations
5.75 and 5.76 are substituted with the Equations 5.82 and 5.83 that use cohesion:
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By combining 5.73 and 5.82 we can write:

12cos)2/'45(tan2cos)2/'45(tan
)2cos1(')2/'45tan(2'2' 223 +×+°+-+°

+××+°×-
=

qjqj
qjss cv (5.83)

q
=
σ'

1
-σ

' 3

p' = (σ'1 +σ'2 + σ'3 )/3

CSL, no cohesion CSL with cohesion

Yield surf., no cohesion Yield surf. with cohesion

p’att

qint



89

6 Parametric	studies	

6.1 General	

The main use of the Hybrid su (HSU) method is to calculate the undrained shear strength
at a given point of a slip surface. Even the suggested approaches for its use in undrained
effective stress calculations entail first calculating su or p’f (which is directly related to su).
Therefore it is suitable to perform sensitivity analyses with regards to normalized su
(su/σ’v0 or su/σ’c).

Sections 6.2-6.6 study different parameter combinations and their effects on the predicted
strength. Section 6.8 presents sensitivity analyses.  The analyses include OFAT (One
Factor At a Time), as well as Monte Carlo simulations on various parameters.

Baseline values for the sensitivity analyses are chosen as:

φ’ = 25°
λ/κ = 2
θ = 0, b = 0 (triaxial compression)
θ = 90°, b = 1 (triaxial extension)
C = 1 (coefficient for K0NC)
D = 1 (coefficient for K0)

The baseline values of φ’ and λ/κ are in a sense arbitrary, but they can be considered to
represent “averages” of the conceivable values of the said parameters. It is worth
mentioning that a value of λ/κ = 2 can be considered low relative to typical laboratory
values (Plaxis 2014), but for use with this soil model, it seems quite reasonable (see
Chapters 7 and 8). The choice of a λ/κ value is discussed further in Chapter 9.

The baseline value for K0NC (C = 1) is chosen to match the simplified Jaky equation due to
its widespread use in geotechnical engineering. The baseline value of D corresponds to the
basic Mayne & Kulhawy (1982) equation for overconsolidated K0 conditions.

For general reference, HSU effective stress paths resulting from different parameter
combinations are presented here.

The stress paths are presented (Figure 6.1) for triaxial compression and extension with
OCR = 1 and OCR =2.5; and λ/κ = 1.001, λ/κ = 2 and λ/κ = 5. Other parameters are kept at
their baseline values (φ’ = 25°, C = 1, D = 1).
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Figure 6.1. Examples of effective stress paths using HSU.

The effective stress paths for OCR = 1 begin from the initial stress state (i.e. intersection
of the K0NC-line and the initial yield surface). For triaxial compression, yielding starts
immediately, and the stress paths are directed towards the critical state line (M-line).
Lower λ/κ values result in more vertical stress paths and vice versa. For triaxial extension
at OCR = 1 it is assumed that the effective stress path first travels inside the initial yield
surface (decreasing q, constant p’) until reaching the yield surface on the opposite side.
From there, yielding commences and the stress path curves to the M-line.

For OCR = 2.5, triaxial compression occurs on the dry side of critical. Starting from the
initial stress state, the stress path proceeds at constant p’ to the initial yield surface. Now
the stress path falls back to the critical state line. In terms of undrained shear strength, the
effect of λ/κ is now reversed compared to shearing on the wet side of critical. For triaxial
extension  at  OCR  =  2.5,  the  shearing  still  occurs  on  the  wet  side  of  critical  and  the
behaviour is similar to the situation at OCR = 1. 	
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6.2 Effect	of	φ’	

The effective critical state friction angle φ’ is obviously an important parameter affecting
the shear strength of a soil. It can be considered a fairly easy parameter to determine with
laboratory testing. In addition, it can be considered quite fundamental in the sense that its
value  remains  constant  for  a  given  soil  deposit  regardless  of  the  stress  history. φ’ is  a
“primary” parameter in the sense that it in turn affects the “secondary” parameters M,
K0NC, K0 and αrot that are employed in the HSU method.

Figure 6.2 shows normalized undrained shear strength as a function of critical state
friction angle. In this example, φ’ is varied from 18° to 35°, which can roughly be
considered conceivable boundary values for soft clays. In addition, the values are
calculated for λ/κ values of 1.001 (roughly resulting in an upper boundary value for su), 2
(an arbitrary “intermediate” value for su) and 1000 (rough lower boundary value for su).
Note that using a value of λ/κ approaching unity results in linear elastic behaviour, i.e.
identical su values for all modes of shearing. The effect of λ/κ is further discussed in
Section 6.3.
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Figure 6.2. Normalized su versus φ’ for λ/κ values of 1.001, 2 and 1000. Figure a) shows values for OCR
= 1 and b) for OCR = 2.5.

As can be seen in Figures 6.2a and 6.2b, friction angle has a considerable effect on
undrained shear strength predicted by the method. This is of course highly consistent with
the fact that φ’ can be considered the main strength parameter of a soil.
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6.3 Effect	of	λ/κ	

Figure 6.3 shows the effect of varying the value of λ/κ for various values of OCR, for
triaxial compression (a) and extension (b). The range here is λ/κ = 1.001…10. This can be
considered a “natural” range for the parameter. Higher values are possible, but as is
evident from the results, increasing λ/κ further has practically no effect on su. Unless
otherwise mentioned, other parameters are kept at their baseline values defined at the start
of Chapter 6.

Figure 6.3. Normalized su versus λ/κ for a) triaxial compression and b) triaxial extension

It is apparent from Figure 6.3a that for triaxial compression in normally consolidated or
slightly overconsolidated soils, increasing λ/κ will quickly decrease su.  At OCR ≈ 1.5 su
will be independent from λ/κ. This happens because at this state, the initial stress p’0
corresponds to the intersection point between the initial yield surface and the failure
surface. As linear elasticity (constant p’ stress path) inside the yield locus is assumed, the
stress  path  will  terminate  very  close  to  the  point  of  yielding.  Thus  the  length  of  the
elastoplastic part of the stress path is very short and the effect of volumetric hardening
remains negligible.
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For overconsolidated soils (OCR > 1.5) increasing λ/κ results in higher triaxial
compression strength. It is however good to note that the OCR value where the trend is
reversed (i.e. the OCR value where p’0 = p’yield = p’f) depends on the assumptions made
about K0. In this example, it is assumed that C =1 and D = 1, i.e.

cNCK 'sin10 j-= (5.10bis)
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For triaxial extension, increasing λ/κ generally results in decreasing shear strength for low
to moderate values of OCR (up to ca. OCR = 4).  Again,  the OCR value where the trend
changes depends on assumptions made about K0 conditions.
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6.4 Effect	of	b	

The intermediate principal stress parameter b is defined as follows:
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=b (3.11ter)

The value of b can be slightly problematic to calculate in a LEM framework. However,
the expected range of b can, with some simplifications, be derived as follows:  Due to the
assumption of cross-anisotropic K0 initial conditions, initially σ’20 = σ’30 and thus b0 = 0.
If plane strain conditions during undrained (ν = 0.5) loading are then assumed (along with
the assumption of isotropic linear elasticity), the change in σ’2 can be estimated:
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while the new total intermediate principal stress is:
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With these assumptions (initial b = 0, subsequent undrained loading in plane strain
conditions) the value of b will vary between 0 and 0.5 depending on the relative amount
of stress increase needed to reach failure.

As a theoretical example, let us consider a soil element with the initial major principal
stress σ’10 = 100 kPa. In undrained conditions, σ1 is then gradually increased until failure
occurs, while σ3 is kept constant. For sake of simplicity it is assumed that Δu = Δp (elastic
behaviour). Figures 6.4a and 6.4b show b as a function of Δσ1 for various initial values of
K0, for φ’= 30°. The plotted curves end at failure.

Figure 6.4. Intermediate principal stress parameter b versus increase of major principal stress for φ’
=30°. The curves are plotted for different initial K0 values.
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From this theoretical exercise it is evident that the value of b at  failure  depends  on  the
initial anisotropy as well as friction angle (and pore pressure response, which is not varied
in the example). All of these factors govern the relative amount of deviatoric stress change
needed to cause failure for a given soil element. Higher the stress change needed for
failure, higher the value of b at failure. As a sidenote, increasing σ3 as well does not affect
the value of b at failure with these assumptions.

Accurately calculating the value of b in a LEM framework can be difficult. Stresses given
by the limit equilibrium may not be very accurate. In addition, calculating b based on
stresses given by a limit equilibrium will require an additional iteration loop (make an
assumption for b -> calculate equilibrium -> calculate b again -> repeat until b converges)
which complicates the overall analysis.

The value for b can however be simply set to an arbitrary value with reasonable accuracy.
It can be assumed that possible values for b range from 0 to 0.5 in plane strain conditions,
and likely values lie somewhere  close to 0.1…0.4, depending on the initial K0 value.

The b value used in LEM calculations should be chosen so that it is plausible and
minimizes possible errors, preferably so that the potential for unsafe errors is small. Based
on the author’s studies,  a good assumption that minimises the error potential  either way
seems to be b = 0.3. Figure 6.5 shows the relative error in predicted su from assuming b =
0.3.

The curves are plotted for φ’ = 25°; C = 1; D = 1;  θ values of 0°,  45° and 90°; and λ/κ
values of 2 and 1000 (Fig 6.5a and 6.5b, respectively). Note that OCR does not have any
influence on the relative effect of b. Varying φ’ would also have only a very small
influence on the relative effect of the b value.
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Figure 6.5. Relative difference in predicted shear strength for assumed vs “known” b value. Calculations
made with a) λ/κ = 2 and b)  λ/κ = 1000.

By assuming b = 0.3, the maximum error would be obtained for a true value of b = 0 at θ
= 90°. This error is on the safe side. The maximum unsafe error would be at b = 0.5, θ =
0°. The error is highest at large λ/κ values. Overall, typical calculated errors that might be
caused by assuming b = 0.3 are small, in the range of few percent in either direction.

Because this simple assumption allows the omission of a whole iteration loop in the
algorithm, it can be considered quite helpful. In any case, accurately calculating b in LEM
would be difficult without making several simplifying assumptions, which makes simply
assuming a value for b all the more valid.
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6.5 Effect	of	θ	

As has been demonstrated by numerous authors (Chapter 3.5) that the direction of
shearing has a large effect on undrained shear strength. Correspondingly, principal stress
direction θ is a key model parameter that affects the anisotropy of shear strength in the
HSU method. Figure 6.6 shows the effect of varying θ from 0 to 90°. The data is plotted
for φ’=25°; OCR = 1; C = 1. The figure shows curves for b values of 0, 0.3 and 1; and λ/κ
values of 1.001, 2 and 1000.

Figure 6.6. Normalised su versus θ for various combinations of b and λ/κ.

Due to the anisotropy of the yield surface, increasing the principal stress rotation angle
leads to decreasing su. This is highly consistent with data available from literature
(Chapter  3.5).  It  is  also  evident  that  in  terms  of  anisotropy, θ is a much more critical
model parameter than b (see previous section).
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6.6 Effects	of	K0	assumptions	

In HSU, the value of K0NC governs the inclination of the yield surface. The value of K0NC
is calculated as

)'sin1(0 j-×= CK NC    (5.34bis)

where C is a coefficient. The baseline (default) value is set as C = 1, which corresponds to
the simplified Jaky equation (Jaky 1948). While the simplified Jaky equation is generally
accepted, there is always the chance that for a given soil, the measured K0NC value will be
different. Ladd et al (1977) show (Figure 6.7) that for normally consolidated undisturbed
of remoulded clays, most values fall in the range of:

05.0'sin10 ±-= jNCK
(6.4)

Figure 6.7. K0 versus friction angle for several normally consolidated soils (Ladd et al 1977)

It also needs to be acknowledged that the original equation proposed by Jaky (1948) was
slightly different from the simplified version:

'sin1

'sin
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)'sin1(0 j

j
j

+

+
×-=NCK              (6.5)

Figure 6.8a shows the calculated K0NC values for Jaky’s simplified equation (with
additional ± 0.05 values), as well as Jaky’s original equation. Figure 6.8b shows the
corresponding C values to use with Eq. 5.34.
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Figure 6.8. a) K0NC versus friction angle with different assumptions. b) HSU parameter C value required
to match the given K0NC values with the different assumptions.

It is apparent that with these assumed K0NC-φ’ relationships, possible values for C can
range from ca. 0.88 to 1.12. It is not however impossible to encounter values even outside
these limits. Figure 6.9 shows an example of assumed initial yield surfaces for φ’ = 25°,
with C = 0.9, C = 1 and C = 1.1.
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Figure 6.9. Effect of varying C value on the initial yield surface (φ’ = 25°).

The effect of varying the C value is the most evident in the passive (extension) side of the
yield surface, while the relative effect is much smaller in the active side.

Varying the value of K0NC has a large influence on calculated shear strength, especially
close to the passive side (triaxial extension). As an example, Figure 6.10 shows the effect
of varying the coefficient C in HSU. The values are plotted for triaxial compression and
extension; φ’ = 25°; OCR = 1; λ/κ values 1.001, 2 and 1000.

Figure 6.10. Effect of varying the parameter C.

As seen in Figures 6.9 and 6.10, the effect of varying C is most evident for triaxial
extension, where decreasing C from the default value of 1 will decrease su quite
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drastically. For triaxial compression, su may either increase or decrease with decreasing C,
depending on λ/κ.

Figure 6.11 shows the corresponding relative effect of varying C, in relation to the su
value at C = 1.

Figure 6.11. Relative effect of varying the parameter C.

For triaxial extension, even a plausible value of C = 0.9 can result in a >20% difference in
su from C = 1.0. The relative trends are similar for different values of φ’ (not plotted), with
smaller friction angles being slightly more sensitive to changes in C.  OCR  has  a  very
small effect on the relative sensitivity to C.

The model is generally quite sensitive to specified the value of K0NC, especially for modes
of shearing close to triaxial extension. Care must be taken when selecting the value of C.
It is suggested here that if at all possible, the results given by the method should be
compared to laboratory results, or at least available literature data for similar clays.

The model is not very sensitive to changes in the relationship between K0 and OCR  (that
occur independently from K0NC). It is often assumed that K0 in the overconsolidated region
after primary unloading is a function of K0NC and OCR (Schmidt 1966):

m
NC OCRKK ×= 00 (6.6)

where m is a curve fitting exponent. A commonly used value is m  = sin φ’ (Mayne &
Kulhawy 1982). Note that this equation is valid for simple unloading problems only, but
for reloading problems K0 seems to be significantly lower (Ladd et al 1977).

In the HSU method, the OCR-dependency of K0 is modelled with the equation:
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where D is a control parameter.

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

0,9 0,95 1 1,05 1,1

s u
/s

u(
C=

1)

C

TC λ/κ= 1.001

TC λ/κ= 2

TC λ/κ= 1000

TE λ/κ= 2

TE λ/κ= 1000



103

It is somewhat tricky to determine “conceivable” limits for the parameter D. Here D is
varied from D = 0 to 2. D = 0 corresponds to a situation where the K0 value is equal to the
value of K0NC for all OCR values, while D = 2 is an arbitrary but somewhat plausible
choice.

The relative effect of varying the parameter D is illustrated in Figure 6.12. The curves are
plotted for φ’ = 25°, C =  1,  and  show results  for OCR =  2  and OCR =  4.  For  normally
consolidated clays the value of D has, of course, no effect.

Figure 6.12. Relative effect of varying D for a) OCR = 2, and b) OCR = 4. Note that the relative strength
differences are the same for all stress combinations (e.g. for TC or TE)

The sensitivity to changes in D increases slightly with increasing friction angle. Increasing
OCR increases the sensitivity to changes in D, which is very logical. For low OCR values
(say OCR < 2) for which the calculation method is primarily intended for, the overall
effect of varying D remains within ± 20%, even for “extreme” combinations of D and λ/κ.
The effect is relatively minor as D only affects the initial stress level p’0, not the shape of
the yield surface.
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In any case, the actual value of D for a given soil with its unique stress history is
somewhat difficult to ascertain without extensive soil testing. Therefore the HSU method
is intended for use with D = 1, which in light of available literature can be considered a
plausible assumption.
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6.7 Effect	of	Eurocode	7	partial	factor	for	φ’	

In typical design codes partial factors for materials may be used. In using effective
strength parameters, the partial factor is then applied to them instead of the resulting
strength. It is valuable to examine what effect the use of a partial factor has on the output
of  the  method.  In  other  words,  if  a  partial  factor  is  applied  to φ’,  what  would  the
corresponding partial factor be for calculated su?

For example, Eurocode 7 (EN-1997-1) states that the following material partial factors are
to be used (in design approaches that incorporate such factors):

Table 6.1. Partial factors for soil parametes (EN-1997-1)

The partial factor γφ’ is applied to tan φ’k. The resulting design friction angle φ’d is then:
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All other parameters are kept at their baseline values:

b = 0.3 (proposed assumption for LEM)
C = 1 (corresponds to Jaky’s simplified equation, Eq. 5.34)
D = 1 (corresponds to assumption made by Mayne & Kulhawy (1982), Eq. 5.35)

The corresponding “output” partial factor γsu is calculated as:
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To study the “resultant” reduction of undrained shear strength when a partial safety factor
is applied to the friction angle, a set of calculations was run. Various characteristic friction
angles from φ’k =  15°  to φ’k =  35°  were  studied  at  OCR  =  1  and  OCR  =  2.  The
calculations were done with λ/κ = 1000, 2, and 1.001; and θ =  0°,  45°  and  90°.  Other
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parameters were kept at their baseline values of b = 0.3, C = 1 and D = 1.The results are
given in Table 6.2a and 6.2b, for OCR = 1 and OCR = 2 respectively.

Table 6.2.Partial safety factors for su, calculated by using EN-1997-1 partial factors for φ’.

a) OCR = 1 φ’k = 15°;
φ’d = 12.1°

φ’k = 20°;
φ’d = 16.2°

φ’k = 25°;
φ’d = 20.5°

φ’k = 30°;
φ’d = 24.8°

φ’k = 35°;
φ’d = 29.3°

λ/κ θ γsu = suφ’k/suφ’d

1000
0° 1.21 1.19 1.17 1.15 1.13
45° 1.23 1.22 1.19 1.16 1.13
90° 1.24 1.23 1.20 1.17 1.13

2
0° 1.21 1.19 1.17 1.15 1.12
45° 1.22 1.20 1.18 1.15 1.12
90° 1.23 1.21 1.18 1.15 1.12

1.001
0° 1.21 1.19 1.16 1.14 1.11
45° 1.21 1.19 1.16 1.14 1.11
90° 1.21 1.19 1.16 1.14 1.11

b) OCR = 2 φ’k = 15°;
φ’d = 12.1°

φ’k = 20°;
φ’d = 16.2°

φ’k = 25°;
φ’d = 20.5°

φ’k = 30°;
φ’d = 24.8°

φ’k = 35°;
φ’d = 29.3°

λ/κ θ γsu = suφ’k/suφ’d

1000
0° 1.21 1.19 1.17 1.15 1.13

45° 1.23 1.22 1.19 1.16 1.13
90° 1.24 1.23 1.20 1.17 1.13

2
0° 1.22 1.20 1.18 1.16 1.13

45° 1.23 1.22 1.19 1.16 1.13
90° 1.24 1.22 1.20 1.17 1.13

1.001
0° 1.23 1.22 1.19 1.16 1.13

45° 1.23 1.22 1.19 1.16 1.13
90° 1.23 1.22 1.19 1.16 1.13

It can be seen from the results that the resulting “output” partial factors γsu are in fact
smaller than the partial factor γcu that is prescribed by Eurocode 7, and even slightly
smaller than the “input” partial factor γφ’. This means that with the HSU method, the
“effective” reduction of undrained strength is slightly smaller than when using a total
stress model where a larger partial factor is applied directly to the undrained shear
strength. This may allow slightly more economical designs.

Admittedly, there are further sources of variability in the other input parameters. Design
codes however often put all of the material uncertainties into a measured strength
parameter, as is done in this example.
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6.8 Sensitivity	analyses	

6.8.1 OFAT	sensitivity	analysis	

To study the relative sensitivity of HSU to its various parameters, a simple one-factor-at-
a-time (OFAT) sensitivity analysis is conducted. First, a set of baseline parameter values
and the corresponding value of su/σ’v0 are established. Each relevant parameter is then in
turn varied to its predetermined minimum or maximum value, and the result is compared
to the baseline value.

The baseline values can be thought to represent an “average” soil with parameters that
result roughly in “average” values of su throughout the conceivable range of a given
parameter. The baseline values are as follows:

φ’ = 25° (arbitrary “average” value)
λ/κ = 2 (arbitrary “average” value)
b = 0.3 (proposed assumption for LEM)
C = 1 (corresponds to Jaky’s simplified equation, Eq. 5.34)
D = 1 (corresponds to assumption made by Mayne & Kulhawy (1982), Eq. 5.35)

The relative changes from baseline are calculated by changing one parameter at a time
from its baseline value. The chosen minimum and maximum values are as follows:

φ’ = 20°…30° (plausible 20% variance from baseline, corresponds to a 95%
tolerance interval for σ = 2.5°)

λ/κ = 1.001…1000 (possible theoretical range from very fast to very slow rate of
shearing)
b = 0.0…0.5 (possible theoretical range for plane strain loading)
C = 0.9…1.1 (the range presented by Ladd et al (1977))
D = 0.0…2.0 (arbitrary)

The data is plotted for principal stress rotation values of 0°, 45° and 90°, and the average
of the three values.  Fig.  6.13a presents data for OCR = 1; Fig.  6.13b for OCR = 2; and
Fig. 6.13c for OCR = 4.

It is apparent that most crucial parameters are friction angle φ’, hardening parameter λ/κ,
and coefficient C (i.e coefficient for K0NC). The importance of friction angle for undrained
shear strength is quite self-explanatory. The hardening parameter λ/κ as it is used in HSU
is not a soil parameter per se, but more like a control parameter that controls the shape of
the effective stress path. The parameter C controls the shape of the initial yield surface,
and has the largest effect for extension (θ = 90°)
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Figure 6.13. OFAT sensitivity analysis results for a) OCR = 1, b) OCR = 2, c) OCR = 4
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6.8.2 Monte	Carlo	simulation	with	varying	φ’		

In the following Monte Carlo sensitivity analyses both λ/κ and θ are treated as “known”
model parameters.

A distribution for the state parameter λ/κ is difficult to obtain, as its value is highly
dependent on the elasto-viscoplastic properties of the soil, and importantly, time (i.e. the
rate and duration of loading). The strength output is also a highly non-linear function of
λ/κ (see Section 6.3), and any realistic frequency distribution for λ/κ should be
asymmetric. Choosing a correct distribution and suitable parameters cannot be done here
with enough credibility.  As such, no attempt is made to randomly generate values for λ/κ,
but the simulation is conducted separately for “very conservative”, “intermediate” and
“highly non-conservative” cases (respective λ/κ values 1000, 2, and 1.001).

To  further  examine  the  sensitivity  of  HSU  to  its  main  strength  parameter φ’, a pseudo-
random Monte Carlo simulation is conducted by generating normally distributed φ’
values. The distributions of su/σ’v0 are examined for the following combinations:

θ = 0°, 45° and 90° (active, direct, passive)
λ/κ = 1000, 2 and 1.001 (“very conservative”, “intermediate” and “highly non-
conservative”)
OCR = 1 and 2.

All other parameters are kept at their baseline values:

b = 0.3
C = 1
D = 1

In the simulation, 50,000 normally distributed values were generated for φ’ with the
following normal distribution:

μφ’ = 25°, σφ’ = 2.5°

The normalized undrained shear strength su/σ’v0 was then calculated using the generated
dataset of φ’ values. The resulting statistical properties from generated datasets are
presented in Tables 6.3a (OCR = 1), and 6.3b (OCR = 2). The tables also give values of
sud/σ’v0 (“design value” for normalized su) and the corresponding cumulative percentage
taken from the dataset. Note that for λ/κ = 1.001, only the case θ = 0° is shown, as HSU
gives identical shear strengths for all angles at this λ/κ level.

The design value sud/σ’v0  is calculated for a given case by applying the baseline values for
b, C and D, and the design value for friction angle φ’d:
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The cumulative percentage Φ(sud/σ’v0) represents the percentage of values in the output
dataset that have a value < sud/σ’v0.



110

Table 6.3. Simulation results for varying φ’.

OCR = 1
λ/κ θ Sample

mean x
Sample standard

deviation sN
COV sud/σ’v0

(for γφ’=1.25) Φ (sud/σ’v0)

1000

0° 0.251 0.019 0.078 0.214 3.4 %
45° 0.165 0.014 0.084 0.139 3.4 %
90° 0.123 0.011 0.088 0.102 3.4 %

(su average) 0.179

2

0° 0.297 0.022 0.075 0.255 3.4 %
45° 0.241 0.019 0.079 0.205 3.4 %
90° 0.208 0.017 0.080 0.176 3.4 %

(su average) 0.249
1.001 0° 0.352 0.026 0.073 0.303 3.4 %

OCR = 2
λ/κ θ

Sample
mean x

Sample standard
deviation sN

COV sud/σ’v0
(for γφ’=1.25) Φ (sud/σ’v0)

1000

0° 0.501 0.039 0.077 0.428 3.4 %
45° 0.329 0.028 0.084 0.277 3.4 %
90° 0.245 0.021 0.087 0.205 3.4 %

(su average) 0.358

2

0° 0.457 0.037 0.080 0.387 3.4 %
45° 0.370 0.031 0.084 0.311 3.4 %
90° 0.320 0.027 0.085 0.268 3.4 %

(su average) 0.382
1.001 0° 0.417 0.035 0.083 0.351 3.4 %

The resulting sud/σ’v0 frequency histograms (Shown for the OCR = 1 case in Fig. 6.14a,
6.14b) are very close to normally distributed. COV does not vary greatly from between
the different values of λ/κ, θ and OCR (not illustrated here).
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Figure 6.14. Frequency histograms for different λ/κ values for OCR = 1.

It is evident that the model response to variations in φ’ is  straightforward  and  fairly
robust: For a normally distributed input, the output is also normally distributed. The
resulting COV values of sud/σ’v0 for the presented cases are also smaller than the COV of
the φ’ population.

With the given φ’ distributions, the calculated design value sud/σ’v0 represents a
cumulative percentage of 3.4 %. This corresponds to a reliability index β = 1.89. For a φ’
population with a smaller COV the reliability index would be higher, and vice versa.
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6.8.3 Monte	Carlo	simulation	with	varying	C	

In this simulation the K0NC coefficient C is varied. 50,000 normally distributed values for
C were generated. The distribution used to generate C is a normal distribution (μC = 1, σC
= 0.05) that is truncated at C = 0.85 and 1.15. The distribution is truncated to avoid
numerical issues associated with very low values of C. In addition, available literature
(see Chapter 6.6) seems to indicate that C values outside these limits would be fairly
unreasonable. With the given distribution only a very small percentage of the population
would otherwise lie outside these limits.The distributions of su/σ’v0 are examined for the
following combinations:

θ = 0°, 45° and 90° (active, direct, passive)
λ/κ = 1000, 2 and 1.001 (“very conservative”, “intermediate” and “highly non-
conservative”)
OCR = 1 and 2.

All other parameters are kept at their baseline values:

φ’ = 25°
b = 0.3
D = 1

Tables 6.4a and 6.4b show statistical parameters for the su/σ’v0 distributions. Figures 6.15a
and 6.15b show the resulting su/σ’v0 frequency histograms for OCR = 1 cases.

Table 6.4. Simulation results for varying C.

OCR = 1
λ/κ θ

Sample
mean x

Sample standard
deviation sN

COV

1000

0° 0.251 0.003 0.014
45° 0.164 0.016 0.099
90° 0.123 0.018 0.150

(su average) 0.179

2

0° 0.297 0.002 0.007
45° 0.240 0.015 0.063
90° 0.208 0.019 0.089

(su average) 0.249
1.001 0° 0.353 0.009 0.027
OCR = 2

λ/κ θ Sample
mean x

Sample standard
deviation sN

COV

1000

0° 0.501 0.007 0.014
45° 0.328 0.032 0.099
90° 0.245 0.037 0.150

(su average) 0.358

2

0° 0.457 0.004 0.008
45° 0.370 0.024 0.065
90° 0.320 0.029 0.091

(su average) 0.382
1.001 0° 0,418 0,013 0,030
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Figure 6.15. Frequency histograms for different λ/κ values at OCR = 1.

It is apparent that for active shearing (θ = 0°),  HSU is quite insensitive to changes in C,
but the sensitivity increases notably when principal stress rotation is increased. The
variability for extension is rather high at COV = 0.15 at λ/κ = 1000. This is due to the fact
that changing C can dramatically change the size of the initial yield surface, specifically
on the extension side (or in more general terms “not in compression”). This is discussed in
Chapter 6.6. With this in mind, a poor choice of C can give dangerously high or
overconservatively low shear strengths.
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6.8.4 Monte	Carlo	simulation	with	varying	OCR	

In the previous examples OCR has been treated as a constant, but there can be
considerable uncertainty in determining OCR. An attempt is made here to model the
sensitivity of HSU to fluctuations in OCR with a Monte Carlo simulation. For example,
sample disturbance and rate effects can affect the value of σ’c obtained in the laboratory.
According to Graham et al (1983) a tenfold difference in strain rate will generally result in
a 10-20 % difference in apparent σ’c.  According to data from Holtz et  al  (1986),  85 mm
piston samples (presumably somewhat disturbed) give very slightly lower σ’c values and
higher scatter in oedometer testing than block samples. According to Berre et al (1969, as
referred to by Karlsrud & Hernandez-Martinez 2013), yield stresses given by 54 mm and
95 mm samples are not very different, but scatter of the results was higher for the 54 mm
samples.

For generating OCR values in a simulation, it can be difficult to validate the choice of a
distribution. In this example a normal distribution truncated at OCR = 1 is assumed. This
is admittedly a fairly arbitrary assumption, but can be considered “good enough” as there
does not seem to be much data available about statistical variability of OCR or σ’c. It can
however be argued that COV should probably be around 10-20 % based on available
literature, and the mode of the truncated distribution should represent the mean of the
corresponding “non-truncated” normal distribution.

The following baseline parameter values were used in the Monte Carlo analysis:

φ’ = 25°
b = 0.3
C = 1
D = 1

OCR = 1.3 was chosen as the assumed baseline value.  Results are plotted for λ/κ values
1.001, 2 and 1000; and θ values 0, 45° and 90°.

In the analysis 50,000 values of OCR were generated. The distribution used was a normal
distribution with μ = 1.3 and σ = 0.2 (COV ≈ 0.16). The distribution was then truncated at
OCR = 1. The resulting OCR distribution (Fig. 6.16) of the generated 50,000 point sample
has the following statistical parameters:

μ = 1.328
σ = 0.176
COV = 0.133



115

Figure 6.16. Frequency histogram of the generated OCR data set.

Statistical parameters for the output (su/σ’v0) are given in Table 6.5. It is evident that COV
does not depend on θ, but the value of λ/κ has a large effect. COV is largest for large λ/κ
values.  The  2.28  %  quantile  (2σ)  and  the  corresponding  partial  safety  factor  for su are
given. Overall, the γsu values with the given assumptions are quite small.

Table 6.5 Simulation results for varying OCR.

λ/κ θ Sample mean x Sample standard
deviation sN

COV 2.28%
quantile q2.28

γsu

1000

0° 0.333 0.044 0.132 0.259 1.29
45° 0.219 0.029 0.132 0.170 1.29
90° 0.164 0.022 0.132 0.127 1.29

(su average) 0.239

2

0° 0.354 0.029 0.082 0.303 1.17
45° 0.287 0.023 0.082 0.246 1.17
90° 0.248 0.020 0.082 0.212 1.17

(su average) 0.296
1.001 0° 0.377 0.012 0.032 0.356 1.06

Figures 6.17a and 6.17b show the resulting frequency histograms of su/σ’v0. Now the
histograms  are  not  normally  distributed,  but  exhibit  a  notable  skew  to  the  right.  The
distributions  do  not  have  a  tail  on  the  left,  as  the  smallest  value  of  a  distribution
corresponds to OCR = 1.
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Figure 6.17. Frequency histograms for different λ/κ values.
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7 HSU	results	compared	with	data	on	various	clays	

7.1 Perniö	clay	

Clay from the site of Perniö, Finland has been extensively researched from 2009 onwards.
Perniö is located in the municipality of Salo, near the southern coast of Finland. A full-
scale embankment failure test was conducted at the site in 2009 to study the ultimate
bearing capacity of a small railway embankment. A description of the experiment can be
found in Lehtonen et al (2015).

Samples have been taken from two locations that differ mostly by the stratigraphy of their
topmost layers. In 2009 samples were taken at the site of the failure experiment (Location
A).  The  layers  from  top  down  consist  of  a  sand  fill,  a  stiff  crust  that  at  the  time  of
sampling was located under the ground water table, soft plastic clay, varved silty clay, and
sand and moraine followed by bedrock. Undisturbed samples were taken using 50 mm and
54 mm piston tube samplers.

In 2013 large diameter (d = 84 mm) piston samples were taken from a nearby field
(Location B). The general stratigraphy is the similar to Location A, but instead of a sand
fill the topmost layer is an organic agricultural layer followed by the crust and other
layers.

The 2009 laboratory testing program for samples taken from Location A included index
tests, CRS oedometer tests and triaxial (mostly CAU) compression tests. The main aim of
the triaxial testing was to determine the initial yield surface and friction angle. With this in
mind, all but one sample were consolidated to or beyond the initial stress state, typically
to 1.5…2 times σ’v0.

Mansikkamäki (2015) gives a friction angle of φ’ = 25°-26° (c’ = 0) when fitted through
the peaks of the effective stress paths (Figure 7.1). When fitted for maximum principal
stress ratio, the friction angle seems similar, but with some apparent cohesion . There may
have been some issues with sample disturbance due to the small diameter sample tubes, as
suggested by Lunne et al (1997). The sample quality was deemed as “Poor” or “Good to
fair” based on volume change during oedometer sample reconsolidation, as categorized by
Lunne et al (1997).
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Figure 7.1. Effective stress paths from triaxial testing, failure line fitted through the peaks
(Mansikkamäki 2015)

In 2013-2014 a new testing program for samples taken from Location B was conducted to
study  the  strength  anisotropy  of  Perniö  clay.  More  emphasis  was  based  on  the
determination of the undrained shear strength at various values of OCR.

CRS oedometer tests were used to determine the in situ preconsolidation pressure.
Sensitivity and liquid limit were determined with fall cone tests. Hydrometer tests were
run to establish the clay content, and burn tests were used to determine organic content
from the samples. Additional field vane tests and CPTU borings were conducted at the
site as well.
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Figure 7.2. Selected properties of Perniö clay, Location B.

As is evident in Figure 7.2, the measured water content and unit weight have linear but
opposite trends from 2.5 to 4 meter depths, after which there is considerable scatter in all
measured quantities. Below 4 meters a single sample tube could contain several different
layers especially with regards to water content/void ratio. The clay content (fraction of
<0.002 mm particles) determined by hydrometer tests was around 60 %.

The clay layer most relevant for the stability analysis for the embankment failure
experiment  is  located  between  about  2.5  m  to  4.3  m  depths  at  Location  B.  This  layer
contains the same soft clay that is found at Location A.

Triaxial compression and extension tests were conducted with anisotropic consolidation to
the approximated in situ stress state. Two parallel 35.8 mm diameter triaxial samples were
trimmed from 84 mm tube samples so that a pair of compression and extension tests could
be run from the same exact depth. A stress path controlled loading frame was used to
consolidate the compression samples close to the in situ stress state. Extension samples
were consolidated to the same anisotropic stress state by using external weights. This was
necessary due to certain mechanical limitations that precluded the use of the stress path
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controlled frame for extension tests. The value of σ’r/ σ’a in the tests was slightly higher
than the approximate in situ value of K0. This was decided as a precaution as a few
samples almost failed during consolidation. Undrained shearing was conducted at a
constant rate of ha /%1=e&  for most samples. Exceptions were compression test samples
4P3 and 4P4, which were sheared at ha /%1.0=e& .  The extension failure occurred by
decreasing the applied axial stress.

In addition to tests at the slightly overconsolidated in situ stress state (OCR = 1.2…1.5),
some NC and high OC tests were done to determine a su/σ’v0 versus OCR curve. The NC
tests were consolidated to stresses higher than the initial preconsolidation pressure, while
all OC tests were consolidated so that the initial preconsolidation stress was never
achieved during consolidation (as opposed to the “proper” SHANSEP methodology where
σ’c is first surpassed, after which the sample is unloaded to the desired OCR).

Despite the relatively large diameter sample tubes, sample disturbance was an issue with
some tubes, especially for those taken from a depth of 4.5 m and below. Below this level
the soil becomes increasingly inhomogenous, with occasional stripes of silt or sand, as
well as organic layers. High scatter was observed in index properties and unit weight as
well.  Typically entire tubes taken from below 4.5 m exhibited symptoms of sample
disturbance (low initial stiffness both for oedometers and triaxials, preconsolidation
pressure not readily visible as a change in stiffness, low peak strengths), which suggests
that the disturbance may have occurred already during sampling. There was no difference
in observed disturbance effects between laboratory samples were trimmed from the center
of the 84 mm sample or near the edge.

Figures 7.3a and 7.3b show the normalized stress-strain curves for compression and
extension, respectively for samples taken from the fairly homogenous clay layer (sample
depths from 2.55 to 4.05 meters). Typical su/σ’c for compression values are close to 0.35,
which is fairly well in line with typical literature values for similar clays (see following
chapters). The corresponding extension strength is on both sides of su/σ’c =  0.2  with
considerable scatter. There are differences with initial stiffness in the tests. At least for
compression tests, the least stiff samples were from tube 4 (samples named 4Px), which
would indicate sample disturbance in that tube.
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Figure 7.3. Triaxial test results from Perniö Location B. a) compression tests, b) extension tests.
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Table 7.1. Triaxial test results, Perniö Location B.

In situ stress state
(approx.)

Consolidation state
(test) Test results

Test
ID type depth

[m] σ’v0 σ’c OCR σ’1 σ’3
OCR
(test) su su/σ’v0 su/σ’c

HP1 CIUC 2.75 25 36 1.44 15.0 15.0 2.40 13.1 0.873 0.364
HP2 CAUC 2.65 25 36 1.44 31.8 16.8 1.13 12.8 0.403 0.356
HP3 CAUC 2.55 24 35 1.46 30.5 16.5 1.15 11.7 0.383 0.334
2P1 CAUC 2.65 25 36 1.46 51.4 30.0 1.00 17.7 0.344 0.344
2P2 CAUC 2.55 24 35 1.46 18.5 14.0 1.90 12.1 0.656 0.345
3P1 CAUC 3.45 28 38 1.36 24.2 15.5 1.57 13.7 0.564 0.359
4P1 CAUC 4.05 31 41 1.31 52.0 40.5 1.00 18.5 0.355 0.355
4P2 CAUC 3.95 30 40 1.32 16.5 12.5 2.42 10.7 0.647 0.267
4P3 CAUC 3.85 30 40 1.33 46.5 41.5 1.00 15.3 0.330 0.330
4P4 CAUC 3.85 30 40 1.33 60.5 55.5 1.00 21.4 0.354 0.354
HV1 CIUE 2.75 25 36 1.44 16.5 16.5 2.18 9.18 0.556 0.255
HV2 CAUE 2.65 25 36 1.44 29.3 19.0 1.23 9.64 0.329 0.268
HV3 CAUE 2.55 24 35 1.46 29.1 19.0 1.24 8.56 0.294 0.238
2V1 CAUE 2.65 25 36 1.46 52.0 31.0 1.00 11.0 0.211 0.211
2V2 CAUE 2.55 24 35 1.46 18.9 14.0 1.85 8.7 0.460 0.249
3V1 CAUE 3.45 28 38 1.36 31.1 19.0 1.22 7.1 0.227 0.186
3V2 CAUE 3.35 28 38 1.36 32.1 20.0 1.18 7.6 0.236 0.199
4V1 CAUE 4.05 31 41 1.31 61.6 37.5 1.00 9.1 0.148 0.148
4V2 CAUE 3.95 30 40 1.32 16.9 13.0 2.37 7.4 0.438 0.184

Note: test 3P2 (not shown) failed during consolidation with valve open, results omitted
Tests 4P2 and 4V1 are likely badly disturbed as their measured shear strength is quite low.

Table 7.1 presents some further triaxial test results. The given su values correspond to
peak τ values for the strain range shown in Figure 7.4. Exceptions were extension tests
3V1  and  HV3,  where  at  high  strains  (εa > 11 %) the measured shear stress started to
increase after being at a plateau for some time. This has been attributed to the membrane
around the sample, which may have started to stretch at high axial strains, adding to the
deviator stress. In these cases, the peak τ value is simply taken for the strain range before
the obvious stress increase.
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Figure 7.4. Perniö clay failure line fitted through points of maximum obliquity.

To determine the critical state friction angle for compression, a line is fitted through stress
points at maximum obliquity, i.e. stress points corresponding to the maximum q/p’ value.
The data is  taken from both locations A and B, totaling 27 CIUC and CAUC tests.  The
stress points and the corresponding linear fit through the points are shown in Figure 7.4.
The linear fit indicates the following effective critical state strength parameters in (p’,q)
space:

M = 1.106
qint = 7.76 kPa

The linear fit is very good (R2 = 0.98). There is however some uncertainty regarding the
accuracy of the pore pressure measurements (which is done from the end of the sample,
not from the failure plane). Also at large strains the assumed corrections for the sample
cross-section area and membrane stress may not always be accurate. The above numbers
are nevertheless what laboratory testing indicates, and the linear fit through the data points
is excellent.  It is however unclear if the apparent cohesion really exists or whether it is an
artifact of testing.
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In slight contrast, Mansikkamäki (2015) has determined the peak friction angle (fitted for
maximum deviator stress) for Perniö clay to be φ’ = 25-26° (from Location A tests, see
Figure 7.1).

Figure 7.5. Effective stress paths of compression tests, Location B.

Figure 7.5 shows effective stress paths for tests from Location B. Additionally, the critical
state M-line for M = 1.106, qint = 7.76 kPa is shown. Overall, the visual fit between the
assumed M-line and the tail parts of the stress paths is quite good.
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Figure 7.6. SHANSEP-type curve fit, Location B

Figure 7.6 shows the Location B normalized shear strengths versus OCR. The data is
supplemented with a single OC compression test from Location A (marked as “T13”),
which was added to get better data coverage for the larger OCR values. The likely badly
disturbed  samples  4P2  and  4V1  were  omitted  from  the  data  set.  The  SHANSEP
parameters (although not resulting from a “pure” SHANSEP procedure) are obtained by
the standard MS Excel curve fit for a power function, and as is shown in the figure, are:

Triaxial compression (TC): S = 0.344, m = 1.065
Triaxial extension (TE): S = 0.219, m = 1.031

It must be acknowledged that the apparent SHANSEP parameters for triaxial extension
are quite high when compared to typical values found in literature (see e.g. Sections 7.2
and 7.3). An obvious caveat is that the laboratory data consistently indicates cohesion at
high strain levels (Figures 7.4 and 7.5). If cohesion is present in the data, the measured
strengths are difficult to normalize either by σ’v0 or σ’c. This is so because the relative
strength contribution of cohesion depends on the absolute magnitude of the consolidation
stress level, as is illustrated in Figure 7.7. Therefore samples that share the same OCR
value  but  have  differing  in  situ  consolidation  stresses  cannot,  in  theory,  share  the  same
locations on the (su/σ’v0, OCR) plot.
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Figure 7.7. Relative strength contribution of a given amount of cohesion versus stress level

If φ’ = 27.8° is accepted and c’ = 0 is assumed, coupled with the measured K0NC = 0.52,
the HSU parameters for Perniö clay become:

φ’ = 27.8°
C = 0.97
D = 1 (basic assumption).

Mansikkamäki (2015) gives the following compressibility parameters for Perniö clay:

λ = 0.50-0.60
κ = 0.045-0.060

These values would then amount to λ/κ ≈ 10.
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A non-normalized model fit (i.e. an attempt to recreate the measured stress paths at
laboratory stress levels) using the HSU method is quite possible. The basic concept is
described in section 5.9. The steps taken are as follows:

1) A preconsolidation stress level is chosen. In this case σ’c = 36 kPa is chosen as the
in situ preconsolidation stress of the samples was at  or close to that number.  All
data is first normalized by their actual σ’c values, and then multiplied by the new
value σ’c = 36 kPa to normalize the dataset to the same preconsolidation pressure.
This is necessary to be able to present the data in relation to a single initial yield
surface.

2) Necessary data is input as usual.

3) The initial mean stress p’0 and mean preconsolidation stress p’c are calculated as
usual. However, in subsequent calculations these are replaced with calculation
values p’0calc and p’ccalc:

attcalc ppp ''' 00 += (7.1)

attcccalc ppp ''' += (7.2)

where p’att is the value of attraction in the (p’,q) space. p’att is defined as follows:

M
q

p att
int' = (7.3)

4) Undrained shear strength is calculated as usual, using the values of p’0calc and
p’ccalc as relevant.

5) The stress path resulting from this calculation corresponds to the calculation
values of p’. To draw the proper stress path, the stress paths are moved back to the
left by p’att.

Figure 7.8 shows some selected effective stress paths from Location B, normalized to σ’c
= 36 kPa when necessary. NC tests with much higher consolidation pressures have been
omitted, as the apparent cohesion makes accurate normalization difficult when the stress
states differ greatly. In addition, effective compression and extension stress paths
predicted by the HSU method are shown (σ’c = 36 kPa, OCR = 1.2, λ/κ = 10).
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Figure 7.8. HSU stress paths and yield surface with measured stress paths.

The HSU method matches the compression strength at OCR = 1.2, λ/κ = 10 very well. On
the other hand, using the same λ/κ results in low extension strength when compared to the
laboratory data. Apparently, a much lower λ/κ value would be needed to match the
indicated extension strength of 5-10 kPa. For example, λ/κ = 2 would result  in suE = 8.9
kPa, which is close to what many stress paths starting from the same initial stress levels
would indicate.

Finally, each test from Location B is modelled using HSU. Now, the value of λ/κ is treated
as an unknown, and is chosen so as to match the su value of each individual test. This is
done to study which λ/κ values would be applicable. The initial stress states are matched
as accurately as possible. The apparent cohesion is taken into account as described
previously.
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The strength parameters for all modelled tests are:

φ’ = 27.8°
qint = 7.8 kPa

For each modelled test, the preconsolidation stress σ’c and OCR were directly set to match
the conditions in the laboratory. If OCR > 1 in the test, σ’c is set to the approximate in situ
value. If OCR = 1, σ’c = σ’10.

For tests where the in situ preconsolidation stress was not surpassed (i.e. OCR > 1), the
value of C = 0.97 was used to match the measured K0NC value. For tests that were
consolidated beyond the in situ preconsolidation stress, the C value was chosen so as to
match the initial stress state in the test.

The parameter D was chosen to match the initial stress state with the laboratory
conditions. Note that in many tests the K0 value was significantly higher than in situ,
which explains the high D values needed.  For OCR = 1, D was set to 1, as the parameter
does not affect anything at OCR = 1.

Finally, λ/κ was set to match the undrained shear strength given by the corresponding test.
The results are presented in Table 7.2.

Table 7.2. Summary of HSU strength predictions compared to the test results.

consolidation state HSU
parameters

Measured su and
corresponding λ/κ

Strength with
λ/κ = 10

Test
ID type

σ’c
[kPa]

(in
situ)

σ’10
[kPa]
(test)

σ’30
[kPa]
(test)

OCR
(test) C D su

meas

[kPa] λ/κ su
HSU

[kPa]

su
HSU

/
su

meas

HP1 CIUC 36 15.0 15.0 2,40 0.97 1.61 13.1 *) 12.5 0.95
HP2 CAUC 36 31.8 16.8 1,13 0.97 0.36 12.8 9,50 12.8 1.00
HP3 CAUC 35 30.5 16.5 1,15 0.97 0.68 11.7 -5,38 12.5 1.07
2P1 CAUC 36 51.4 30.0 1,00 1.09 1 17.7 3,91 16.6 0.94
2P2 CAUC 35 18.5 14.0 1,90 0.97 1.27 12.1 -1,25 12.3 1.01
3P1 CAUC 38 24.2 15.5 1,57 0.97 1.01 13.7 1,53 13.1 0.96
4P1 CAUC 41 52.0 40.5 1,00 1.46 1 18.5 2,48 14.9 0.80
4P2 CAUC 40 16.5 12.5 2,42 0.97 0.92 10.7 **) 13.4 1.25
4P3 CAUC 40 46.5 41.5 1,00 1.67 1 15.3 3,4 12.7 0.83
4P4 CAUC 40 60.5 55.5 1,00 1.72 1 21.4 2,4 15.8 0.74
HV1 CIUE 36 16.5 16.5 2,18 0.97 1.81 9.18 1,59 5.5 0.60
HV2 CAUE 36 29.3 19.0 1,23 0.97 2.33 9.64 1,80 5.6 0.58
HV3 CAUE 35 29.1 19.0 1,24 0.97 2.31 8.56 2,20 5.6 0.66
2V1 CAUE 36 52.0 31.0 1,00 1.12 1 11.0 10,68 11.1 1.01
2V2 CAUE 35 18.9 14.0 1,85 0.97 1.25 8.7 1,63 5.4 0.62
3V1 CAUE 38 31.1 19.0 1,22 0.97 1.79 7.1 3,76 5.9 0.82
3V2 CAUE 38 32.1 20.0 1,18 0.97 2.4 7.6 3,16 5.9 0.77
4V1 CAUE 41 61.6 37.5 1,00 1.14 1 9.1 -2,91 13.3 1.47
4V2 CAUE 40 16.9 13.0 2,37 0.97 0.98 7.4 2,52 5.9 0.80

*) Measured strength not reached with any λ/κ value (measured strength too high)
**) Measured strength not reached with any λ/κ value (measured strength too low)

It is evident that by varying λ/κ, the measured su values  can  be  predicted  with  HSU  in
most cases. Sometimes, a negative λ/κ value may be needed. If shearing occurs in the wet
side, a negative λ/κ value causes the effective stress path to fall back inside the initial yield
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surface. In the dry side, a negative λ/κ value causes the effective stress path to go outside
the initial yield surface. This can be useful if the result of a given test needs to be
matched, but there is no physical meaning for negative λ/κ values. The samples that
require negative λ/κ values for matching su may be disturbed or there may have been
unrecognized errors in the test (pore pressure measurements, incorrect zero values for
axial stress, contact problems between the sample and the pedestal etc.).

Figure 7.9. λ/κ values needed to match the measured undrained shear strengths versus OCR.

Figure 7.9 shows the λ/κ values required for the HSU method to match the measured su
values. There is no visible trend with OCR, and no difference between the compression
and extension tests. When the outliers are ignored, it appears that the applicable range is
λ/κ = 1.5…3.

When the value of λ/κ = 10 (Mansikkamäki 2015) is used, the compression strength
predicted by HSU is well in line with the measured values from tubes H, 2 and 3. This is
because the model is not very sensitive in triaxial compression, so varying λ/κ has  a
relatively small effect on predicted compression strength (see Section 6.3). Tube 4 results
do not match as well as tubes 2 and 3. The likely reason for poor results in modelling the
tube 4 was that tests 4P1, 4P3 and 4P4 were normally consolidated with quite high K0
values that did not occur in situ, and the resulting model yield surfaces can be considered
unrealistic because HSU assumes K0 consolidation. In addition, sample 4P2 (OCR = 2.4)
is likely disturbed.

The HSU method does not predict the measured extension strengths well with λ/κ = 10,
but generally underestimates the extension strength. Much better results are obtained with
values of λ/κ = 2…4. It can well be that the model does not capture the hardening
properties in extension all that well, but it must be noticed that the plasticity of Perniö clay
is quite high. As is generally seen from literature (see e.g. Section 7.3), especially the
extension  strength  is  quite  sensitive  to  plasticity.  As  such  the  HSU  value  of λ/κ in
extension might be needed to be adjusted accordingly so that higher plasticity requires
lower λ/κ in extension. This issue is further addressed in Chapter 9, where the choice of
λ/κ is discussed.
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7.2 Strength	fits	based	on	data	on	Norwegian	clays	

7.2.1 General	

There are some correlations for normalized shear strengths gathered from inorganic
Scandinavian clays. A recent paper by Karlsrud & Hernandez-Martinez (2013) presents
data collected from several sites in Norway (22 sites) and UK (1 site) between 1982 and
2010. High-quality block samples were taken using the Sherbrooke sampler (Lefebvre &
Poulin 1979). Triaxial compression, extension and DSS test were carried out. The sample
quality  was  determined  to  be  superior  to  typical  piston  samples.  As  such,  the  data
presented in the paper can well be used to verify the results given by the HSU method.

Figure 7.10 shows normalized compression and extension su versus  OCR  plots  and
inferred SHANSEP (see Section 4.4) curves from the test series (Karlsrud & Hernandez-
Martinez 2013). Similar DSS results are omitted here for brevity and because the
regressions derived from DSS results are based on a relatively low number of tests.

Figure 7.10. Peak strengths for Norwegian clays, a) compression, b) extension (Karlsrud & Hernandez-
Martinez 2013)

Figures 7.10a and 7.10b show results for from triaxial compression and extension tests,
respectively. Based on this data, three “cases” can be distinguished (Table 7.3).
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Table 7.3.Representative SHANSEP parameter values for Norwegian clays (Karlsrud & Hernandez-
Martinez 2013)

case Triax. comp Triax. ext
S m S m Sext/Scomp

“Low” 0.25 0.65 0.08 0.75 0.32
“Average” 0.30 0.70 0.12 0.80 0.40

“High” 0.35 0.75 0.16 0.94 0.46

There is of course the question whether the regression is valid for clays with higher water
content (up to or above w = 100 %). Additionally, there is quite a lot of scatter with the
extension strength data, and the regression parameters are based on a relatively low
number of measurements. The given regression parameters are still used as the basis for a
HSU  fit  as  they  are  generally  based  on  a  reasonably  robust  data  set  from  high  quality
samples.

The HSU method can be used to predict similar SHANSEP curves. At this point, φ’, λ/κ
and C can be considered unknown. The parameter D is set at its default value D = 1.

While the friction angles for the single data points are not explicitly given, Karlsrud &
Hernandez-Martinez (2013) give maximum friction angles obtained by assuming zero
attraction intercept (i.e. zero cohesion):

Figure 7.11. Peak friction angle versus water content (Karlsrud & Hernandez-Martinez 2013)

It is apparent from Figure 7.11 that the applicable “wet side” peak friction angles
generally  range  from  25°  to  35°,  which  is  a  typical  range  for  Scandinavian  clays.  The
highest friction angles in the figure most likely correspond to tests exhibiting apparent
effective stress cohesion at low stress levels. Fitting such data with the assumption of c’ =
0 results in very high apparent friction angle.
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7.2.2 HSU	fitted	for	both	compression	and	extension	

Here, an HSU fit is produced by iteratively varying the values of φ’, λ/κ and C. The aim is
to achieve a fit as good as possible for both triaxial compression and extension.

When φ’ and λ/κ are varied together, it becomes apparent that varying λ/κ has a large
effect on the SHANSEP exponent m. Thus the HSU fit can be done in an iterative fashion
by first setting λ/κ to produce the desired m value, changing the φ’ to obtain the desired
strength ratio S, and then repeating the process until a desired fit for triaxial compression
is achieved.

After this, the model is fitted for triaxial extension. The parameter C controls the level of
anisotropy by controlling the inclination of the yield surface. Its effect is fairly slight for
triaxial compression, but quite notable for extension. First, the λ/κ value is chosen for
extension to set the exponent m after which the parameter C is chosen to set the stress
ratio S.

After this, some further iterative tweaking is done to set the parameters to give the desired
result.

Overall, the process of fitting was:

1. Set λ/κ in compression to give the desired m value
2. Set φ’ to give the desired S value in compression
3. Set λ/κ in extension to give the desired m value
4. Set C to give the desired S value in extension
5. Repeat steps 1-4 until the fit is satisfactory (here no explicit requirements
were set, but an overall “good” fit was attempted)

Table 7.4 shows the HSU parameters obtained in the fitting process and the corresponding
SHANSEP parameters. Some boundary conditions were applied: The range of the
parameter C was restricted to C = 0.9…1.1, as values beyond this range can be considered
unlikely (see Section 6.6). Additionally, the value of λ/κ was restricted to 1000. This was a
slight issue in fitting HSU for extension, as negative λ/κ would have been required for m >
1.

Table 7.4. HSU fit results.

compression extension
case φ’ C D λ/κ S m λ/κ S m

“low” 20.0° 0.90 1 2.24 0.251 0.650 3.13 0.095 0.750
“average” 25.9° 0.91 1 2.43 0.300 0.699 3.60 0.123 0.798

“high” 33.1 1.01 1 2.64 0.36 0.750 11.0 0.160 0.940

When the results of Table 7.4 are compared with the target values given in Table 7.3, it is
evident that HSU could be fitted to perfectly produce the SHANSEP compression
parameters, but the extension parameters could not quite be attained. Figure 7.12 shows
the “target” SHANSEP curves and those resulting from the HSU fit for triaxial extension.
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Figure 7.12. Target SHANSEP curves and HSU fits for a) compression and b) extension.

Fitting  HSU for  compression  was  simple,  and  the  parameter  values  required  were  quite
reasonable. However, in extension the fitting is not quite as straightforward. If the
“reasonable” ranges of parameter values are respected, the fit is not perfect. In the “low”
case, a low enough strength ratio S (high enough strength anisotropy) could be achieved
only by decreasing the C value below C = 0.9. In the “average” and “high” cases, an m
value over 1 could only be achieved with negative λ/κ values. It should however be noted
that the m values given by Karlsrud & Hernandez-Martinez (2013) are based on relatively
sparse data with large scatter, which reduces the reliability of the given regression
parameters.

A notable issue here is that the data given by Karlsrud & Hernandez-Martinez (2013)
corresponds to peak strengths of good quality samples, whereas the HSU method does not
account for any post-peak strain softening. Therefore in practical engineering use it should
be considered somewhat unwise to fit HSU directly to peak strengths, as in reality peak
strengths are not simultaneously achieved along the slip surface. The HSU method is
intended to be used so that its predicted shear strengths correspond to reasonable post-
peak strengths that can be used in design. As such, HSU is not necessarily capable for
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capturing the extremely high strength anisotropy exhibited by good quality low plasticity
samples.

HSU is mainly intended for normally consolidated or slightly overconsolidated clays.
Practical model fitting should focus on predicting the undrained shear strength over a
relatively small OCR range (e.g., OCR = 1…2). As such, properly predicting the strength
ratio S can be considered more important than the exponent m when compromises need to
be made.

As shown in Figure 7.11, there is no clear trend between water content and friction angle
in the original data. In the model fits there is however a clear correlation between these
parameters (high SHANSEP parameter values correlate with high water content, and
require high friction angle in the HSU method). As such the fit can be considered
somewhat artificial. This fitting exercise however shows that HSU can be readily adapted
for predicting the strength of various clays. The friction angles required for fitting HSU to
the given data fall quite well in the general range of ca. φ’ = 25°…35° given by Karlsrud
& Hernandez-Martinez (2013).
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7.2.3 HSU	fit	with	baseline	values	

A SHANSEP fit that may be closer to the intended real life usage (where few parameters
are known) is presented for comparison. Here only the friction angle is considered known.
Values φ’ = 25°, φ’ = 30° and φ’ = 35° are studied. These values are well in line with the
range presented in the data (when the very high φ’ values for samples exhibiting cohesion
are omitted). Parameters C and D are considered unknown, and by default they are set at
their baseline values C = D =  1  as  no  better  information  is  available.  Now  only λ/κ is
varied and the results are compared to the target SHANSEP parameters presented by
Karlsrud & Hernandez-Martinez (2013), (see Section 7.2.1, Table 7.3).

Furthermore, λ/κ is  set  to  the  same  value  for  both  compression  and  extension  to  reflect
more simplified “real life” (consultant) usage where choosing individual values would not
be feasible. This results in the same m value for triaxial compression and extension.
Overall, the fit would then have to be a compromise between the S and m parameters, and
between compression and extension strengths.

As HSU is mainly intended for use with normally or slightly overconsolidated clays, the
fitting is done here only for the range OCR = 1…2. This makes obtaining an overall fit
somewhat easier and more in line with the intended usage.

Based on the fits with varying φ’ (Section 7.2.1), no specific attempt is made to match the
“Low” boundary values suggested by Karlsrud & Hernandez-Martinez (2013), as it is
clear that quite low friction angles are needed to match the lower boundary of the data.
Instead, the SHANSEP parameter range “available” with the given friction angles is
studied.

Figure 7.13 shows the effect on the calculated SHANSEP parameters S and m when λ/κ is
varied. Additionally, the “Low”, “Average” and “High” S and m values presented by
Karlsrud & Hernandez-Martinez (2013) are shown in the respective figures.
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Figure 7.13. SHANSEP parameters as functions of λ/κ: a) S for compression; b) S for extension; c) m
(shared). The “target values” correspond to the “Low”, “Average” and “High” parameters suggested by
Karlsrud & Hernandez-Martinez (2013).
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It is apparent from Figure 7.13 that the exponent m can be matched by using a fairly small
λ/κ value  in  all  cases.  The  range  of λ/κ values capable of matching a given case is
considerably larger (and with the given friction angles, the “low” case cannot be matched
with any value of λ/κ between 1 and infinity).

Thus  the  choice  of λ/κ value to match a given set of SHANSEP-type data should be a
compromise between a “local” fit at a given OCR (especially the parameter S), and fitting
over a large OCR range (parameter m). For example, if HSU is fitted to give accurate su
values at low OCR (i.e. fitted for S), the results will be notably worse at high OCR levels.

As an example, the case of φ’ = 30° with a high water content (typical of inorganic clays
found in Southern Finland) could plausibly correspond to the “High” case of the Karlsrud
& Hernandez-Martinez (2013) data set. The “target” parameters would then be S = 0.35,
m = 0.75 for compression, and S = 0.18, m = 0.94 for extension. Using the combination of
baseline values C = D =  1  and φ’ = 30°, the “High” SHANSEP target values could be
matched with the following λ/κ values:

S for compression: λ/κ = 1.63
S for extension: λ/κ = 3.41
m for compression: λ/κ = 2.73
m for extension: λ/κ = 11.3

For reference, the two “extremes”, or curves resulting from λ/κ = 1.63 and λ/κ = 11.3 are
plotted  in  Figure  7.14,  along  with  the  “High”  target  SHANSEP  curves.  In  addition,  a
rough compromise value λ/κ = 5 that results in a good extension fit is shown as well.
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Figure 7.14. SHANSEP target values and curve fits for a) triaxial compression, and b) triaxial extension.

When the resulting compression and extension curves are examined together, it becomes
apparent that the best overall fit is obtained by placing emphasis on fitting HSU for
extension. If HSU is accurately fitted for compression (low λ/κ values), the extension
strength becomes too large, which can be dangerous. On the other hand, fitting for
extension results in slightly “too low” compression strength.

However, it needs to be remembered that the data is for peak strengths, which should not
be directly used as design values due to strain softening and strain compatibility. Karlsrud
& Hernandez-Martinez (2013) recommend a reduction of 10-15 % for the compression
strength to account for these issues in design. In this view, the “too low” predicted
compression strengths become quite beneficial.
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7.3 Various	Scandinavian	clays	

Larsson (1980) presents well-known correlations between plastic properties and
normalized undrained shear strengths of some Scandinavian clays. The data (Table 7.5)
shows fairly clear trends of su/σ’c versus wL or Ip for triaxial compression, simple shear
and triaxial extension (Figure 7.15).

Table 7.5. Plasticity and normalized undrained shear strength data from various Scandinavian clays
(Larsson 1980).

Figure 7.15. Undrained shear strength versus liquid limit (Larsson 1980)

Larsson (1980) concludes from the data that for triaxial compression, the normalized
undrained shear strength is a constant su/σ’c = 0.33 independent from liquid limit or
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plasticity index. Simple shear and extension strengths are functions of plasticity. Larsson
(1980) does not mention friction angles for his data, but the original sources mentioned by
Larsson indicate friction angles of about φ’ = 30…32°. OCR values are not specified by
Larsson  (1980),  but  at  least  the  results  taken  from  Berre  &  Bjerrum  (1973)  have  OCR
values from 1.25 to 1.5. The fact that the data is normalized with preconsolidation
pressure with no regard to OCR can be problematic, as this ratio seems not to be constant
with OCR. In the SHANSEP approach for example, it can be derived that:
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0 ''
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(7.4)

Therefore the ratio su/σ’c is constant with OCR only if the exponent m = 1. Typically this
seems not to be the case (see e.g. data presented in Section 7.2).

HSU is then fitted to Larsson’s (1980) data, which is taken at face value. The chosen HSU
parameters are:

φ’ = 30.5° (an average of values given by Berre & Bjerrum (1973) and Larsson (1977))
OCR = 1.3 (an average of values given by Berre & Bjerrum (1973))
C = 0.9 or 1 (arbitrary but plausible, calculated for both cases)
D = 1 (base assumption)

The compression and extension values for θ and b are the basic θ = 0, b = 0, and θ = 90°,
b =  1,  respectively.  For  simple  shear  principal  stress  rotation  is  set  to θ = 60°, which
corresponds to horizontal shearing for φ’ = 30°. The intermediate principal stress
parameter is set to b = 0.3, which is just the basic assumption used in HSU for design
purposes.

The value of λ/κ is  then  varied  to  fit  HSU to  Larsson’s  (1980)  data.  The  range  of λ/κ =
1.5…5 seems to give values that fit  the given data fairly well.  The results are plotted in
Figure 7.16, for cases of λ/κ = 1.5 and λ/κ = 5, and for C = 0.9 and C = 1.0. The calculated
strengths are superimposed on Larsson’s data of su/σ’c versus wL, where wL is chosen so
that the data point for extension matches the correlation line given by Larsson (1980). It
needs to be remembered that HSU does not explicitly include any measure of plasticity,
but the calculated data points are simply placed so that the points “line up” with the
original measured data.
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Figure 7.16. HSU results plotted with the data from Larsson (1980). Note that the HSU data points have
been manually placed on a wL coordinate where the strengths “line up” with Larsson’s (1980) data.

HSU can well be fitted to the data presented by Larsson (1980). While the predicted
compression strengths are lower than the constant su/σ’c line proposed by Larsson, the
points fit very well to the measured data. The caveat here is that the yield point for
compression at OCR = 1.3 is very close to the critical state line, which makes the
predicted compression strength relatively immune to changes in either λ/κ or C. Changing
these two parameters has an effect mostly on the extension strength, and many parameter
combinations fitting the measured extension strength data can be found. That being said,
the parameter combinations resulting in the shown values can be considered highly
plausible.
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7.4 Drammen	Clay	

Drammen clay deposits in Drammen, Norway have been extensively researched. The
Drammen clay deposit contains several different clay layers. Typically plastic and lean
clay layers are distinguished in the stratigraphy. The plastic clay layer lies at a depth of ca.
6.3…9.3 meters, while the lean clay lies at ca. 6.0…12.5 meters (Berre & Bjerrum 1973).

Table  7.6  presents  some  selected  properties  and  test  results  of  Drammen  Plastic  and
Drammen Lean clays as reported by Berre & Bjerrum (1973).

Table 7.6. Properties of Drammen clay (Berre & Bjerrum (1973)

w [%]wL [%]wP [%] Ip
[%] St OCRK0NC K0

K0 in triax.
tests τTC/σ’v0τTE/σ’v0φ’ [°]τSS/σ’v0τFV/σ’v0

Drammen (plastic) 52 60 29 31 8 1.5 0.490.61 0.50 0.40 0.16 31.7 0.32 0.36
Drammen (lean) 32 33 23 10 8 1.3 0.490.64 0.50 0.34 0.07 30.0 0.22 0.14

In Table 7.6 there are normalized undrained shear strengths from CK0U triaxial
(compression and extension), simple shear and field vane tests. The laboratory tests were
consolidated to the in situ vertical effective stress σ’v0 to match the field conditions.

Further results (Berre & Bjerrum 1973) for the Drammen Plastic clay are presented in Fig.
7.17a (effect of strain rate in undrained compression tests) and Fig. 7.17b (stress-strain
curves for triaxial compression and extension).

Figure 7.17. Stress-strain curves for Drammen clay (Berre & Bjerrum 1973)

HSU can in principle be fitted using the data given by Berre & Bjerrum (1973). There is
however data available on the yield surface of plastic Drammen clay (Larsson 1977, data
from Länsivaara 1999) that can be used to fit the model. The yield points indicate a yield
surface that is somewhat smaller than what has been determined for other clays with
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similar friction angles (see Fig. 7.24 in Section 7.6), especially on the extension side. The
best yield surface compromise for φ’ = 30°, at least for triaxial compression, seems to be
C = 1, which results in K0NC = 0.500. The yield stress points for the extension side are well
inside the HSU yield surface. Choosing the friction angle φ’ =  31.7°  that  is  given  for
plastic Drammen clay results in a HSU yield surface (C = 1.05, K0NC = 0.498) with even
higher discrepancies. The two yield surfaces and the yield point data are shown in Fig.
7.18.

Figure 7.18. Yield points and modelled yield surfaces for Drammen clay.

Based on the yield surface fit, both Drammen clays are modelled using φ’ = 30° and C =
1. The D values are chosen to match the given K0 values. The only “free” control variable
is λ/κ, which is used to match the strengths given by Berre & Bjerrum (1973). Table 7.7
shows the resulting λ/κ values. The experimental shear strengths (plotted on the lines of M
= 1.2, which corresponds to φ’ = 30°), the yield surface used and the stress paths predicted
by HSU are shown in Fig. 7.19.
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Table 7.7. HSU results for Drammen clay.

φ’
(model)

OCR
(model)

K0NC
(model)

K0
(model) C D λ/κTC λ/κTE suTC/σ’v0 suTE/σ’v0 suTC/σ’c suTE/σ’c

Drammen
(plastic) 30.0° 1.5 0.5 0.61 1.00 0.98 -1.01 -3.78 0.442 0.160 0.295 0.107

(experimental results given by Berre & Bjerrum 1973) 0.40 0.16 0.27 0.11
Drammen

(lean) 30.0° 1.3 0.5 0.64 1.00 1.88 -1.42 -1.09 0.340 0.070 0.261 0.054

(experimental results given by Berre & Bjerrum 1973) 0.34 0.07 0.26 0.05

Figure 7.19. Modelled effective stress paths for Drammen clay.

It is obvious that to reach the measured strengths of Drammen plastic and lean clays, the
HSU method needs to resort to “impossible” negative values of λ/κ.  Model  fitting  is
especially  difficult  for  the  plastic  clay,  as  the  in  situ  stress  state  lies  very  close  to  the
boundary between the wet and dry sides of critical. This results in a very short effective
stress path outside the initial yield surface, and consequently low ability to control the
stress path with a choice of λ/κ. It can be noted that the compression and extension shear
strengths given by Berre & Bjerrum (1973) lie on or inside the initial yield surface
determined for Drammen clay (Fig. 7.18), and well inside the yield surface predicted by
the HSU method (Figure 7.19). They can be also seen as low outliers in Larsson’s (1980)
correlation data (see Section 7.3). There is therefore some reason to doubt the reliability of
these results.
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7.5 Resedimented	Boston	Blue	Clay	

Sheahan et al (1996) describe a test series of 25 CK0U tests on resedimented Boston Blue
Clay  (BBC)  that  were  conducted  to  study  undrained  rate  effects  of  the  clay.  A
resedimented clay mass was consolidated to a vertical stress of σ’v0 = 100 kPa, and then
rebounded to 25 kPa. The resulting soil had an average water content w = 39.9 %; liquid
limit wL =  45.4  %;  and  plastic  limit wP =  23.7  %.  The  resedimented  samples  were  then
anisotropically consolidated to high vertical stresses and then rebounded to desired OCR
values, as per the SHANSEP approach.

CK0U triaxial compression tests were performed at OCR values of 1, 2, 4 and 8; using
axial strain rates of 0.05, 0.5, 5 and 50 %/h. The obtained test results are summarized in
Table 7.8 (Sheahan et al 1996). Note that the p’ and q values given in the table follow the
MIT (Lambe) notation, and thus correspond to s’ and t in Cambridge notation.

Table 7.8. Test results on resedimented Boston Blue Clay (Sheahan et al 1996)
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The test results are used for comparison with the HSU method. As HSU is intended for
use with NC to slightly OC clays, test results from OCR = 1 and OCR = 2 test are used to
determine the model parameters.

The average large strain friction angle (at maximum principal stress ratio) was φ’ = 32.4°
for tests done at OCR = 1 and OCR = 2. This is directly used as the value of φ’ in HSU.

According to Sheahan et al (1996), the samples were first consolidated with zero radial
strains (K0 conditions), and then unloaded so that the value of cell pressure was:

uOCRvh +××= 41.0'48.0 ss (7.5)

HSU employs the following equation for modelling K0:

'sin'sin
00 )'sin1( jj j ×× ×-×=×= DD

NC OCRCOCRKK (5.34ter)

The coefficients C and D are then calculated based on the given values (based on Eqs.
5.34 and 7.5) as:

035.1
48.0

4.32sin1'sin1

0

=
°-

=
-

=
NCK

C j (7.6)

77.0
41.0

4.32sin
=

°
=D (7.7)

As the tests were triaxial compression tests, applicable model parameter values are b = 0
and θ = 0.

By setting the values of φ’, OCR, b, θ, C and D, the only unknown input variable in the
model is λ/κ. Applicable λ/κ values can be back-calculated to match the results given by
Sheahan et al (1996). Table 7.9 presents a summary of test results and the corresponding
λ/κ value needed for HSU to match that value.
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Table 7.9. λ/κ fits for resedimented BBC.

OCR dε/dt (%/h) su/σ’v0
(peak)

λ/κ
(peak)

su/σ’v0
(max PSR)

λ/κ
(max PSR)

1 0.05 0.299 -* 0.276 -*
1 0.5 0.322 7.90 0.25 -*
1 5 0.342 3.20 0.24 -*
1 50 0.374 1.69 0.297 -*
2 0.05 0.488 -* 0.42 -*
2 0.5 0.518 1.25 0.445 -*
2 5 0.539 1.62 0.495 -*
2 50 0,579 3.45 0.514 1.20
4 0.05 0.826 1.85 0.816 1.79
4 0.5 0.854 2.01 0.785 1.64
4 5 0.882 2.20 0.805 1.74
4 50 0.939 2.71 0.768 1.56
8 0.05 1.419 2.25 1.196 1.72
8 0.5 1.425 2.27 1.223 1.77
8 5 1.418 2.24 1.189 1.70
8 50 1.550 2.68 1.318 1.99

*Measured value too low to be replicated with HSU.
OCR = 1: su/σ’v0,min = 0.309 (@ λ/κ = 1000)
OCR = 2: su/σ’v0,min = 0.496 (@ λ/κ = 1.01)

In the presented test data, the peak strength response is quite consistent. Peak strength
generally increases with increasing strain rate and OCR. The strength at maximum
principal stress ratio is not quite as consistent. This can be because at large strains the
principal stress ratio changes very slightly near its maximum level over a fairly large
range of strains, and the exact point where the maximum PSR value is obtained can vary
greatly. Therefore in this study fairly little attention is given for the large strain su values.
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Figure 7.20. Effective stress paths for a) OCR = 1, and b) OCR = 2 (Sheahan et al 1996). Note that the
stress space uses the MIT definitions for p’ and q.

Figures 7.20a and 7.20b show the measured effective stress paths for OCR = 1 and OCR =
2, respectively (Sheahan et al 1996). Note that the p’ and q in the Fig. 7.20 use the MIT
definition.
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Figure 7.21. HSU effective stress paths and given points of peak strength.

Figure 7.21 shows the yield surface given by HSU, measured peak strength stress points
for OCR = 1 and OCR = 2, and the effective stress paths given by HSU using the back-
calculated λ/κ values.  The  (p’,q) stress space is plotted with the Cambridge stress
definition. The stress paths given by the HSU do not match those measured. This is
because the model does not attempt to account for strain softening and peak states. The
measured stress paths exhibit an initially elastic behaviour followed by post-peak strain
softening before reaching critical state. The measured peak strengths do not therefore lie
on the critical state line, whereas HSU always gives its strength value somewhere on the
critical state line.

It  is  apparent  that  for  slow  strain  rates,  HSU  is  in  some  cases  unable  to  match  the
measured su/σ’v0 values.  In  addition,  the λ/κ response resulting from back-calculation is
not consistent: For tests starting on the wet side (OCR = 1), faster rates of shearing result
in lower λ/κ values.  For  higher  OCR,  the  trend  is  reversed.  This  is  due  to  the  way
volumetric hardening is implemented in HSU (and S-CLAY1), and concerns all Cam Clay
model derivatives.
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Sheahan et  al  (1996) also provide SHANSEP strength parameters for the different strain
rates (Table 7.10). As all other HSU parameters are fixed, curve fitting attempts are made
by varying the value of λ/κ.

Table 7.10. SHANSEP parameters based on test results (Sheahan et al 1996)

First, an attempt is made to fit HSU to match the given SHANSEP curves throughout the
entire OCR range up to OCR = 8.  Here a single λ/κ value is  chosen for the entire OCR
range by minimizing the residual sum of squares between the target curve and the HSU
curve. Table 7.11 shows the λ/κ value which results in the best fit, and resulting
SHANSEP parameters.

Table 7.11. λ/κ values for best fits to target curves (OCR = 1…8) and resulting SHANSEP parameters

dε/dt (%/h) λ/κ S m
0.05 2.22 0.354 0.662
0.5 2.17 0.355 0.654
5 2.25 0.354 0.666

50 2.79 0.344 0.731

Figure 7.22 shows the target SHANSEP curves, and the HSU curves for dε/dt = 0.5 %/h
and dε/dt = 50 %/h. The other two model curves are omitted for clarity; they are very
close to the 0.5 %/h curve.
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Figure 7.22. Target curves from the data (Sheahan et al 1996) and best fits from the HSU method, OCR
= 1…8.

It becomes apparent that using these HSU fits, the resulting SHANSEP parameters are
virtually identical, even though the target parameters vary notably with strain rate. The
calculated fits between the target curves and the HSU curves are still very good when the
whole range of OCR = 1…8 is examined. Especially the fit for dε/dt = 5 %/h is excellent.

However,  the  fit  in  the  intended  range  of  application  for  the  HSU  method,  say  OCR  =
1…2, is quite poor. Therefore it is would be beneficial to fit HSU separately for this
range. Fitting was again done by varying λ/κ so that the residual sum of squares for the
given OCR range is minimized.

Table 7.12 shows the best fits to the given SHANSEP curves for OCR = 1…2. Figure
7.23 shows the target SHANSEP curves, and the HSU method curves for dε/dt = 0.05 %/h
and dε/dt = 50 %/h. The other two model curves are omitted for clarity.

Table 7.12. λ/κ values for best fits to target curves (OCR = 1…2) and resulting SHANSEP parameters

dε/dt (%/h) λ/κ S m
0.05 3.50 0.339 0.776
0.5 2.90 0.345 0.730
5 2.50 0.351 0.687

50 2.30 0.355 0.659
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Figure 7.23. Target curves from the data (Sheahan et al 1996) and best fits from HSU, OCR = 1…2.

The fits for OCR = 1…2 are not very good except for the given SHANSEP curve for the 5
%/h tests. In this particular case it seems that HSU is not very well able to match a given
SHANSEP curve based on the test data with a single set of parameters. Matching both S
and m to the values given by Sheahan et al (1996) is difficult; a compromise needs to be
made so that the average predicted strength over a range of OCR remains acceptable.
HSU can however be used to match any single su value at a given OCR, provided that the
measured value remains within the boundaries prescribed by the boundary values of λ/κ.

It is also good to note that the tests were done for resedimented samples that should lack
all structuration effects, and do not necessarily represent a natural clay that exhibits at
least some structuration. The measured peak strengths are thus probably lower than what
could be expected from a corresponding undisturbed natural sample.
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7.6 Yield	surface	fits	on	experimental	data	

Länsivaara (1999) presents data of yield points for various clays measured in triaxial tests.
The data is grouped by friction angle.

The data used is collected from the following geographical locations:

φ’ = 17.5°: Winnipeg (Canada)
φ’ = 21-23°: Atchafalaya (USA), Perno (Finland), Turku (Finland)
φ’ = 25-27°: Otaniemi (Finland), Riihimäki (Finland), Saint-Louis (Canada), Ottawa
(Canada), Osaka (Japan), Turku (Finland)
φ’ = 28-30°: Champlain (Canada), Bäckebol (Sweden), Drammen (Norway), Pornic
(France)
φ’ = 32°: Favren (Sweden), Saint-Jean-Vianney (Canada), Cubzac-les-Ponts (France)
φ’ = 34-35°: Bogota (Colombia), Bothkennar (United Kingdom)

To study the general validity of the HSU (and S-CLAY1) initial yield surface
assumptions, the HSU yield surfaces are drawn against the data presented by Länsivaara
(1999). The HSU parameters that affect the shape of the yield surface are friction angle φ’
and the K0NC parameter C. The data was grouped according to friction angle as presented
by Länsivaara (1999). For each group, the HSU friction angle value vas chosen from the
middle of the range, if applicable. The parameter C was kept at its baseline value C = 1.

The comparisons are shown in Figure 7.24 (also compare to Figure 4.3 for yield surfaces
produced  with  a  different  model).  It  is  evident  that  while  there  is  some  scatter  in  the
measured data (resulting e.g. from variations in strain rate), the shown HSU fits do not
systematically over- or underestimate the size of the initial yield surface. The fit is
generally the best for compression in the wet side of critical. Overall, it can be said that
the HSU anisotropic yield surfaces match experimental data reasonably well.



156

Figure 7.24. HSU yield surfaces compared with experimental data from various sites (collected data from
Länsivaara 1999). 	
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8 Calculation	examples	of	failed	embankments	

8.1 Perniö	failure	experiment		

In 2009 Tampere University of Technology and the Finnish Traffic Agency conducted an
experiment where a small trial embankment in Perniö, Finland was brought to failure by
rapid loading. The experiment simulated a heavy train coming to a standstill on a small
embankment  built  on  clay  subsoil.  The  purpose  of  the  experiment  was  to  gather  data  of
such a loading event, and to test the suitability of various monitoring systems.

This section discusses the experiment in the depth required for a LEM stability analysis
using the HSU method. For an outline of the experiment arrangements and
instrumentation see Lehtonen et al (2015). Mansikkamäki (2015) presents more detailed
laboratory test data, as well as advanced finite element analyses of the experiment using
anisotropic, viscoplastic, strain softening soil models.

The soil conditions at the site consisted of a ca. 1.5 m thick sandy fill layer (added some
decades ago), a 0.6-0.9 m thick stiff crust, a 3.5-4.5 m thick soft sensitive clay layer,
followed by varved silty clay and more coarse layers (sand, moraine). Ground water level
was at a depth of ca. 1.3 m. The soil layers and some field vane results are shown in
Figure 8.1. The parameters of the clay layer and a corresponding HSU fit are discussed in
Section 7.1.

A small embankment (h = 0.55 m) was built  on the site in place of old,  disused railway
tracks. On the embankment new rails on concrete sleepers were installed. Prior to
constructing the embankment, roughly two months prior to the experiment, the soil
surface was cut on one side of the small embankment. Additionally a 2 m deep, 7 m wide
ditch was dug 13.5 m from the embankment centreline to reduce the overall stability and
to direct the location of the slip surface.

The embankment was brought to failure by loading modified shipping containers (Figure
8.2) with sand during a period of 30 hours. The containers rested on steel frameworks that
simulated the axle configuration of two-bogey freight cars. The frameworks themselves
rested on the rail tracks. The loaded length of the embankment was 50 meters.

The test area was extensively instrumented with pore pressure transducers, total stations,
inclinometers, settlement tubes and other various instruments. Special emphasis was put
on measuring pore pressure close to the predicted slip surface. This was achieved by 37
strain-gauge based pore pressure transducers installed close to the center cross-section of
the loaded area. Most instrument readings were automatically recorded throughout the
experiment at set time intervals.
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Figure 8.1. a) Soil cross-section from the center of the experiment area. b) Field vane strength along the
toe of the new embankment. (Lehtonen et al 2015)

a)

b)



159

Figure 8.2. The containers before loading. (Lehtonen et al 2015)

During the first hours of loading a load equivalent to 24 kPa (load per length of track
divided by the sleeper length of 2.5 m) was added in the two middle cars, and 21 kPa in
the two outer cars. Loading was stopped for the night (at t = 3:20 hours from the start of
loading), and continued in the following morning (t = 16:45 from the start of loading).
During the second day loading was continued an average rate of 5.5 kPa/h until the
containers were full at t = 28:04. At this point the center containers were loaded with 87
kPa, and the outer cars with 85 kPa equivalent loads.

The general displacement and pore pressure responses were fairly linear up to ca. t =
26:40, at which point the loading in the center cars was 83 kPa. After this point the
displacements and excess pore pressure started to increase at an accelerating rate. This
accelerating increase continued without interruptions until failure occurred at t = 29:57,
about two hours after loading had ended.

At failure, the cars settled nearly instantaneously about 1 m before falling on their sides.
Simultaneously the soil mass between the embankment and the ditch moved upwards and
outwards roughly the same amount. After the failure, no further movements were
observed, which indicates that the soil mass reached its new equilibrium instantaneously.

No clearly defined slip surface was detected by any means, but a more gradual “shearing
band” could be distinguished based on aggregated data from inclinometers, pore pressure
transducers and surface displacements. Figure 8.3 shows the likely failure mechanism.
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Figure 8.3. Assumed failure mechanism in the Perniö experiment. (Lehtonen et al 2015)

The most probable failure surface is not circular, but rather wedge-like with a steep active
wedge, a nearly horizontal direct shear part, and a passive part close to the ditch.

The extents of the failure (Fig. 8.4) could be easily determined from the movements of
surveying points installed on the soil surface. These points were surveyed before and after
the experiment.

Figure 8.4. The extents of the failure. (Lehtonen et al 2015)

A factor that makes this experiment different from most other failure tests is the rate of
loading. Most of pore pressure and displacement increase happened only after loading had
ended and the load remained steady. The failure mechanism can thus be termed an
undrained creep failure under a constant external load.

It is apparent that the failure could as well have happened at a lower external load level.
According to advanced FE back-analyses conducted by Mansikkamäki (2015), the loading
rate (and the time that a load is sustained for) has a significant impact on the resulting
failure load magnitude. Even though the realized failure load was 87 kPa, failure might
well have occurred at a load of ca. 70-75 kPa sustained over a long period. Figure 8.5
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shows the failure load calculated using the elasto-viscoplastic, anisotropic, strain softening
soil model EVP-SCLAY1S (Mansikkamäki 2015). The model in question is a derivative
of the original S-CLAY1 model from which the HSU method is also derived.

Figure 8.5. Calculated failure load of the Perniö embankment using the EVP-SCLAY1S soil model for
the soft clay. (Mansikkamäki 2015).

The layers modelled for the HSU analysis are the embankment, the fill layer, crust, and
the clay layer. As the failure did not reach the layer of varved silty clay, there is no need
to model it in LEM context. The clay layer is modelled with the HSU method, while the
crust is modelled with a given su profile. The embankment and fill layers are considered
drained, frictional materials.

The friction angle and unit weight of the embankment and fill have been approximated
from nuclear density gauge tests done from the finished embankment structure and fill
surface, as well as numerous back-calculations and stability analyses conducted since. The
strength and unit weight of the crust is based on laboratory testing and vane shear tests.

The OCR values vary with depth in the clay layer. The OCR profile used in the analysis is
based on fitting the calculated preconsolidation stress for each slice bottom (which is the
product of calculated effective vertical stress and OCR) with the available oedometer test
data.
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Table 8.1. Soil parameters for Perniö.

φ’ [°] su [kPa] dsu [kPa/m] γ [kN/m3] γsat [kN/m3] OCR C D
Embankment 40 0 0 18 21 - - -

Sand fill 38 0 0 15 19 - - -
Crust 0 35 0 - 17 - - -

Sensitive clay 28 0 0 - 15 * 0.97 1
*) Set for each slice so that σ’c matches measured values.

Based on studies presented in Section 7.1, the HSU parameters φ’, C and D for Perniö
clay are:

φ’ = 27.8°
C = 0.97
D = 1 (basic assumption).

While the laboratory tests (Section 7.1) consistently indicate some cohesion (c’ =  3.4
kPa), it remains debatable if this apparent cohesion can be considered “real”. It may for
example be a testing artefact related to pore pressure measurements, or perhaps the stress-
strain states at the final stages of the tests were still too far from a “true”, non-cohesive
critical state. At this point no strong opinions are adopted either way and the calculations
are thus presented with both assumptions of c’ = 0, and c’ = 3.4 kPa.

The current application of the HSU method requires a predetermined failure surface (i.e. it
is not possible to search for the most critical failure surface). The failure surface was
determined so that it roughly matches the estimated failure surface in the experiment
(Figure 8.3). Limit equilibrium convergence was checked by applying the chosen failure
surface in the software GeoCalc and conducting a total stress analysis with Spencer’s
method, with a rough anisotropic su profile.  The  chosen  slip  surface  and  the  slice
geometry are shown in Figure 8.6.

Figure 8.6. The slip surface and slices used in the analysis.
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The initial effective vertical stress is calculated directly as the geostatic stress resulting
from the calculation geometry. The initial effective stress state is assumed to correspond
to the situation after cutting the top soil and excavating the ditch, but before applying the
small embankment. Therefore when calculating the initial effective stress state, the
embankment is considered weightless.

The OCR values for the slice bottoms were obtained by “hand-matching” the calculated
σ’c values  to  lab  results  taken  from  a  corresponding  elevation  and  distance  from  the
embankment. For this purpose, the oedometer results were divided into two groups, “Toe”
and “Ditch” according to their sampling location in relation to the cross-section geometry.
Roughly  half  of  the  samples  were  taken  close  to  from  the  toe  of  the  new  embankment
(before  building  the  said  embankment)  and  half  from  the  edge  of  the  ditch.  The  slices
were divided correspondingly so that slices 4…9 belong to the “Toe” group and slices
10…19 belong to the “Ditch” group. The group division is slightly arbitrary, as the line
could be drawn a bit closer to or farther from the ditch, but the overall difference from a
slightly different choice would be small. The hand-matched σ’c values for the slices and
the measured values are shown in Figure 8.7. The resulting OCR, σ’v0 and σ’c values that
were used as input in the calculations are shown in Table 8.2.

Figure 8.7. Measured and modelled preconsolidation pressure values.
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Table 8.2. Consolidation state applied in the analysis.

Slice Slice bottom layer(s) x [m] σ’v0 [kPa] OCR σ’c [kPa]
1 Emb/sand/crust -0.40 12.5 1 12.5
2 Crust 0.16 25.8 1 25.8
3 Clay 0.56 29.8 2.7 80.5
4 Clay 1.15 35.3 1.55 54.7
5 Clay 1.85 39.7 1.6 63.6
6 Clay 2.40 43.3 1.6 69.3
7 Clay 2.76 44.4 1.6 71.1
8 Clay 3.38 43.6 1.6 69.7
9 Clay 4.31 41.2 1.65 67.9
10 Clay 5.24 39.0 1.55 60.5
11 Clay 6.17 37.2 1.55 57.6
12 Clay 7.10 35.4 1.55 54.9
13 Clay 8.03 33.7 1.55 52.2
14 Clay 8.96 31.9 1.55 49.4
15 Clay 9.89 30.1 1.6 48.1
16 Clay 10.82 28.3 1.65 46.6
17 Clay 11.75 26.4 1.8 47.5
18 Clay 12.68 19.4 2.6 50.3
19 Clay 13.66 9.3 8 74.1
20 Crust 14.32 0.7 1 0.7
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Unfortunately, in this case there were bad convergence problems with HSU effective
stress analyses using Spencer’s method (or any other variant of Morgenstern-Price, or
GLE, for that matter). TSA calculations using Spencer’s method however converged well.
The convergence issues in ESA may be due to the fairly complex slip surface and soil
layer geometry. Therefore, the following calculations have been done using Janbu’s
Simplified method (formulation given in Abramson et al 2002), which converges reliably
both in TSA and ESA. The given results include the correction factor f0 used with Janbu’s
Simplified method. For the chosen slip surface, f0 = 1.12, which means that Fcorr = 1 when
F = 1/1.12 = 0.893. In other words, a calculated, uncorrected factor of safety F = 0.893
should correspond to a “true”, corrected factor of safety Fcorr = 1.

When effective stress calculations are conducted by forcing the Δu value so that the same
su value as in TSA is obtained, the ESA and TSA results are inherently similar and
mutually redundant. Instead, the ESA results presented in the following tables use Δu
calculated from vertical stresses (Approach B, see Section 5.8.3). The stress changes are
calculated from the state before adding the small embankment. Additionally, the excess
pore pressure distributions with the two methods are later compared for selected
calculations.

The first analyses are done with two load levels,  qapp =  87  kPa  and qapp =  80  kPa.  The
embankment failed at 87 kPa, but it is very likely that given enough time, it could have
just  as  well  have  failed  at  80  kPa  or  below due  to  undrained  creep.  If λ/κ is  used  as  an
adjustment parameter to account for time/rate effects, HSU should be able to reproduce at
least these two failure loads at plausible λ/κ levels.

Table 8.3 shows the calculated factors of safety at 80 and 87 kPa loads, with c’ = 0 and c’
= 3.4 kPa. Note that the given Janbu’s Simplified Method F values include the correction
factor.



166

Table 8.3.Stability calculation results with HSU, using Janbu’s Simplified method

qapp = 80 kPa
c’ = 0 λ/κ = 1000 λ/κ = 5 λ/κ = 3 λ/κ = 1.5 λ/κ = 1.01

F (TSA) 0.72 0.77 0.80 0.86 0.93
F (ESA) 0.60 0.62 0.63 0.68 0.74

difference -16.8 % -19.7 % -20.5 % -20.8 % -20.4 %

qapp = 87 kPa
c’ = 0 λ/κ = 1000 λ/κ = 5 λ/κ = 3 λ/κ = 1.5 λ/κ = 1.01

F (TSA) 0.67 0.72 0.75 0.81 0.87
F (ESA) 0.56 0.58 0.59 0.64 0.69

difference -16.7 % -19.8 % -20.7 % -21.0 % -20.7 %

qapp = 80 kPa
c’ = 3.4 kPa λ/κ = 1000 λ/κ = 5 λ/κ = 3 λ/κ = 1.5 λ/κ = 1.01

F (TSA) 0.84 0.89 0.93 1.02 1.13
F (ESA) 0.66 0.70 0.72 0.80 0.88

difference -20.7 % -22.2 % -22.4 % -22.1 % -21.6 %

qapp = 87 kPa
c’ = 3.4 kPa λ/κ = 1000 λ/κ = 5 λ/κ = 3 λ/κ = 1.5 λ/κ = 1.01

F (TSA) 0.78 0.84 0.87 0.96 1.06
F (ESA) 0.62 0.65 0.67 0.74 0.83

difference -20.7 % -22.5 % -22.8 % -22.5 % -21.9 %

From the results the following is evident:

- If c’ = 0 is assumed, HSU is unable to give correct failure loads with any
plausible values of λ/κ. It is evident that the predicted strengths are too
low (all possible factors of safety are below 1).

- The method of predicting excess pore pressure from vertical stress
changes results in too high Δu values, and consequently too low factors
of safety.

However, total stress analyses (and effective stress analyses with forced Δu) with c’ = 3.4
kPa give good results. Both failure load levels are obtainable with very plausible λ/κ
values. In subsequent analyses the assumption of c’ = 3.4 kPa is used.

It is useful to further study the link between calculated failure load and λ/κ. Table 8.4 and
Figure 8.8 show calculated failure loads at different λ/κ values.

Table 8.4. λ/κ needed to reach failure at different load levels. Total stress analysis with c’ = 3.4 kPa used.

c’ = 3.4 kPa qapp =
65 kPa

qapp =
70 kPa

qapp =
75 kPa

qapp =
80 kPa

qapp =
85 kPa

qapp =
87 kPa

qapp =
90 kPa

λ/κ (TSA) 22.1 4.10 2.33 1.67 1.33 1.24 1.13
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Figure 8.8. λ/κ needed to reach failure at different load levels. Total stress analysis with c’ = 3.4 kPa
used.

Table 8.5 presents the calculated failure load at different failure loads for total stress
analyses with c’ = 3.4 kPa.

Table 8.5. Failure load qf at different λ/κ values. Total stress analysis with c’ = 3.4 kPa used.

c’ = 3.4 kPa λ/κ = 1000 λ/κ = 10 λ/κ = 5 λ/κ = 3 λ/κ = 2 λ/κ = 1.5 λ/κ = 1.2 λ/κ = 1.01
qf [kPa] 63.9 66.4 68.9 72.3 77.0 82.2 88.1 94.4

It is noteworthy that the range of failure loads available by varying λ/κ (range λ/κ ≈
10…1.01) compares very well with model results obtained by Mansikkamäki (2015)
where loading time was varied (Fig. 8.5). In this case, the largest λ/κ values correspond to
failure loads that could have caused failure if sustained over a very long period (while still
remaining undrained – at some point primary consolidation will begin at a significant
enough scale). Smaller λ/κ values then correspond to failure loads that are applied very
quickly. This suggests that λ/κ can indeed be used to model rate effects on undrained shear
strength.	

Figure 8.9 shows the calculated TSA shear stress distributions at failure for qapp = 87 kPa,
λ/κ = 1.24; and qapp = 75 kPa, λ/κ = 2.33. The difference in predicted shear strength is
most evident in the direct shear/extension part of the slip surface, where changing λ/κ has
the largest effect (see Section 6.3). In the compression part (ca. x = 1…3) the effective
stress path from yielding to failure is quite short, so the strength there is almost immune to
changes in λ/κ.
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Figure 8.9. Mobilized shear stress at failure for total stress analyses at different load levels.

Pore pressure calculations in effective stress analyses seem slightly problematic. Figure
8.10 shows the distributions of forced excess pore pressure (giving the same factor of
safety as TSA) and excess pore pressure calculated from vertical stress changes
(Approach B). The calculations are done at qapp = 87 kPa, λ/κ = 1.24; and qapp = 75 kPa,
λ/κ = 2.33, both corresponding to failure at the respective load levels.
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Figure 8.10.Excess pore pressure along the slip surface calculated by forcing to su, and based on vertical
stresses.

The excess pore pressure calculated based on vertical stress changes is notably higher than
the “forced” pore pressure, resulting in much lower factors of safety. In the case of the
Perniö failure experiment, it can be said that the proposed method (Approach B) of
calculating Δu is too conservative. On the other hand, the “forced” Δu will always give the
undrained shear strength that is considered correct by the HSU method, but its use is
completely  redundant  as  a  total  stress  analysis  with  the  same su is considerably simpler
and more reliable in terms of convergence.

For comparison, Figure 8.11 shows measured excess pore pressure from the center cross-
section of the experiment area right before failure. It is evident that right under the load,
the modelled excess pore pressure is somewhat higher than measured, due to the way
external loading is handled by LEM (without any realistic distribution of loads in the soil).
On the other hand, the modelled Δu levels are quite well within the correct range of ca.
10-40 kPa, depending on the lateral position.
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Figure 8.11. Measured excess pore pressure profile at failure. The loaded embankment is located on the
top left. Pore pressure transducers are shown as black dots.

Overall, the HSU method gives very good results in total stress analyses of the Perniö
failure experiment. Even the undrained creep effects associated with fast loading can be
rudimentarily taken into account with proper selection of the λ/κ value.  The  range  of
failure loads available by varying λ/κ is well in line with analysis results using advanced
elastoviscoplastic soil models (Mansikkamäki 2015). While the total stress analysis results
are good, there are some issues with calculating Δu for undrained effective stress analyses.
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8.2 Saint	Alban	Test	Fill	A		

An  embankment  in  Saint-Alban,  Quebec,  Canada  was  brought  to  failure  as  a  part  of  a
testing program conducted by Laval University in 1972. An embankment built on
sensitive Champlain Sea clay failed after being raised to a height of 3.9 m above the
ground surface. The embankment and failure geometries are shown in Figure 8.12.

Figure 8.12. Geometry of Saint-Alban Fill A and the failure (La Rochelle et al 1974)

The soil conditions at the site are shown in Figure 8.13.
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Figure 8.13. The soil profile at Saint-Alban.  (Trak et al 1980)

The  relevant  soil  profile  consists  of  a  1.5-2  m  thick  crust  layer,  followed  by  slightly
overconsolidated, sensitive silty clay. The stated thickness of the crust seems to vary
between sources, for example Trak et al (1980) indicate 1.5 m, while Zdravkovic et al
(2002) give 2 m crust thickness. The preconsolidation stress profile given by Trak et al
(1980, see Figure 8.12) indicates that the soil from 0 to 2 m depth can be considered as
stiff crust.  Zdravkovic et al (2002) give a value of OCR = 2.2 for the sensitive clay layer.
Very notable is that the in situ water content is at some places double the measured liquid
limit, indicating very high sensitivity. The water table lies at a depth of ca. 0.7 m.

The effective friction angle in triaxial compression is φ’ =  27°,  and K0NC = 0.49
(Zdravkovic et al 2002). This corresponds to HSU parameter value C = 0.9. In their own
analyses, Zdravkovic et al (2002) assume the K0OC value according to the Mayne &
Kulhawy (1982) equation (Eq. 6.6), which would correspond to D = 1.

The chosen parameters for the soil layers in the HSU analysis are given in Table 8.6. The
parameters are determined based on data given by La Rochelle et al (1974), Trak et al
(1980) and Zdravkovic et al (2002).

Table 8.6. Soil parameters.

φ’ [°] su [kPa] dsu [kPa/m] γ [kN/m3] OCR C D
Embankment 44 0 0 19 - - -

Crust (0-1 m, active side) 0 30 0 19 - - -
Crust (1-2 m, active side) 0 30 (top of layer) -20 19 - - -

Crust (0-2 m, passive side) 0 13 (top of layer) -4 19 - - -
Clay (2 m-) 27 0 0 16 2.2 0.9 1

Both the assumed slip surface (La Rochelle et al 1974) and the mechanism calculated by
Zdravkovic et al (2002) are circular or very close to that. A circular slip surface is then
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assumed  for  the  HSU  analysis  as  well.  The  coordinates  and  other  properties  of  the
selected slip surface are given in Table 8.7 and shown in Figure 8.14.

Table 8.7. Properties of the slip surface used in the analysis.

Slice no. layer x [m] y [m] width [m] base length [m] base angle [°] φ’ c’ OCR
1 crust 0.42 -0.58 0.83 1.43 -54.4 0.0 10.7 -
2 crust 1.25 -1.58 0.84 1.18 -44.9 0.0 6.7 -
3 clay 1.98 -2.24 0.62 0.78 -37.9 27.0 0.0 2.2
4 clay 2.60 -2.67 0.62 0.73 -32.4 27.0 0.0 2.2
5 clay 3.21 -3.03 0.62 0.69 -27.2 27.0 0.0 2.2
6 clay 3.83 -3.31 0.62 0.67 -22.3 27.0 0.0 2.2
7 clay 4.50 -3.55 0.73 0.77 -17.1 27.0 0.0 2.2
8 clay 5.24 -3.74 0.73 0.75 -11.7 27.0 0.0 2.2
9 clay 5.97 -3.86 0.73 0.74 -6.3 27.0 0.0 2.2
10 clay 6.70 -3.90 0.73 0.73 -1.0 27.0 0.0 2.2
11 clay 7.43 -3.88 0.73 0.73 4.3 27.0 0.0 2.2
12 clay 8.16 -3.79 0.73 0.74 9.6 27.0 0.0 2.2
13 clay 8.89 -3.63 0.73 0.76 15.0 27.0 0.0 2.2
14 clay 9.62 -3.40 0.73 0.78 20.6 27.0 0.0 2.2
15 clay 10.49 -3.00 1.01 1.14 27.5 27.0 0.0 2.2
16 clay 11.50 -2.37 1.01 1.25 36.2 27.0 0.0 2.2
17 crust 12.35 -1.66 0.69 0.96 44.2 0.0 16.7 -
18 crust 13.04 -0.89 0.69 1.11 51.7 0.0 30.8 -
19 fill/crust* 13.74 0.16 0.69 1.41 60.8 31.4 11.1 -
20 fill 14.43 2.34 0.69 3.20 77.5 44.0 0.0 -
*slice bottom located partly in fill and partly in crust, parameters for the slice are weighted averages

Figure 8.14. Slip surface geometry.

With  the  given  assumptions,  the  only  unknown factor  is  the  value  of λ/κ, which is then
varied. Calculations are done both by using HSU for calculating su (total stress analysis),
and for calculating Δu (effective stress analysis).

Figure 8.15a plots factor of safety from TSA as a function of λ/κ using Spencer’s Method,
while Figure 8.15b shows the corresponding shear strength and normalized shear strength
profiles for various values of λ/κ.
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Figure 8.15. a) Factor of safety versus λ/κ, b) Shear strength along the slip surface at different λ/κ values.

The TSA results are quite realistic. By varying λ/κ, the factor of safety remains fairly close
to unity. F = 1 is achieved with λ/κ = 2.53, which can roughly be considered a plausible
“halfway estimate” for λ/κ when using the model with slightly overconsolidated clays.

An interesting graph for comparison is presented by Zdravkovic et al (2002) where they
plot the mobilized shear strength along the failure plane as predicted by their FEM
analyses using the anisotropic soil model MIT-E3 (Figure 8.16a). Their predicted
mobilized shear strength curve is highly similar to that given by the HSU method at λ/κ =
2.53 (Figure 8.16b). Note however that the slip surface geometries are slightly different so
the x-coordinates in the two figures are not fully comparable.
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Figure 8.16. a) Shear strength profiles calculated with the MIT-E3 model (Zdravkovic et al 2002). b)
HSU strength profile with λ/κ = 2.53 (F = 1)

The ESA results with excess pore pressure calculated based on vertical stress changes are
somewhat lower than the TSA results (Table 8.8). To reach F = 1.0, the value λ/κ = 1.42 is
needed. This value is quite low, and is fairly close to the theoretical upper boundary of
shear strength attainable with HSU.

Table 8.8. TSA and ESA (based on stress changes) results compared.

λ/κ = 1000 λ/κ = 5 λ/κ = 3 λ/κ = 1.5 λ/κ = 1.01
F (TSA) 0.9188 0.9575 0.9861 1.0680 1.1644
F (ESA) 0.8615 0.8958 0.9208 0.9912 1.0719

difference -6.2 % -6.4 % -6.6 % -7.2 % -7.9 %

ESA shear strength profiles at various λ/κ are shown in Figure 8.17. The calculated shear
strength in ESA is lower than in TSA (compare to Figure 8.14).
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Figure 8.17. ESA strength profiles (based on stress changes)	

Figure 8.18 shows the calculated excess pore pressure profile for the ESA at λ/κ = 2.53
(i.e. F = 1.0 for TSA), as well as the “forced” excess pore pressure profile that gives TSA-
equivalent shear strength for comparison. Overall, the pore pressure that is derived from
calculated stress changes results in higher Δu and lower shear strength than what results
from total stress analyses.

Figure 8.18. Comparison of Δu based on vertical stress changes, and forced based on predicted su

The HSU method gives very good results for the Saint-Alban A test fill when it is used to
provide strength input for a total stress analysis. There are some issues in calculating Δu
for undrained effective stress analyses, but the discrepancy between TSA and ESA are
much smaller than in the case of Perniö (Section 8.1).
	

	

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

τ f
[k

Pa
]

x [m]

λ/κ = 1000 λ/κ = 3 λ/κ = 1.5

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

Δu
[k

Pa
]

x [m]

Calculated Δu Forced Δu



177

8.3 New	Liskeard	embankment	

In 1963 in New Liskeard, Ontario, Canada, a highway embankment built on a varved clay
deposit failed during construction, right after a lift had been completed. The failure
(Figure 8.19) occurred less than one month after the start of construction. The failure
length was ca. 105 m. The height of the embankment at the center part of the failure was
5.8-6.1 m. (Lacasse et al 1977)

Figure 8.19. Failure and stability analyses of the New Liskeard embankment. DSS = Direct simple shear,
PSA = plane strain active, PSP = plane strain passive (Lacasse 1977)

The soil conditions consist of a 2.1-3.7 m thick desiccated clay crust, below which lies a
varved layer consisting of alternating clay and silt varves. Soil properties reported by
Lacasse et al (1977) are given in Table 8.9. The presence of carbonates in both the clay
and silt layers indicates “a high degree of natural cementation” in the soil (Lacasse et al
1977).

Table 8.9. Properties of New Liskeard varved clay (Lacasse et al 1977)

w
(%)

wL

(%) Ip (%) OCR

Varved
clay

Clay
varves

60-
80 70±10 47±13 1.1-

1.5Silt
varves

24-
30 30±5 10±6

Stress properties, measured and normalised undrained strength properties and effective
strength properties are shown in Figures 8.20-8.22 (Lacasse et al 1977). Interestingly, the
measured DSS strength is considerably lower than passive plane strain strength. This is
due to the horizontal varving: For active and passive shearing, the shear plane is directed
across the alternating silt and clay varves, whereas for horizontal DSS shearing the lower
strength of the clay varves determines the strength.
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Figure 8.20. Consolidation stress state of New Liskeard clay (Lacasse et al 1977)

Figure 8.21. Undrained shear strength of New Liskeard clay. DSS = Direct simple shear, PSA = plane
strain active, PSP = plane strain passive. (Note: 1 ft = 0.305 m) (Lacasse et al 1977)
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Figure 8.22. Effective strength envelope of New Liskeard clay. (Lacasse et al 1977)

No data of unit weight of the soil or measured water table elevation is given by Lacasse et
al (1977). It is however mentioned that due to apparent downward seepage the in situ
effective vertical stress level is higher than for hydrostatic conditions.

Lacasse  et  al  (1977)  present  various  stability  analyses  of  their  own  as  well  as  previous
analyses done by several other authors. Depending on assumptions made about the
strength  of  the  embankment  fill  and  crust,  as  well  as  OCR  in  the  varved  clay,  the
calculated factors of safety are on both sides of F = 1. Total stress analyses conducted by
Lacasse et al (1977) give F = 0.99…1.12, whereas their effective stress analyses result in
F = 1.05…1.23.

For an analysis using the HSU method quite many assumptions need to be made. Fill and
crust properties used by Lacasse et al (1977) in their analyses are used “as is”, since they
result in good computed factors of safety by the authors. No data is given about the unit
weight of the soil, but setting the water table at a depth of 1.8 m from the initial ground
surface as done by Lacasse et al, and using a dry unit weight γ = 15 kN/m3 and a saturated
unit weigh γsat = 18 kN/m3 results  in  a σ’v0 profile that is highly similar to that given in
Figure 8.20. The OCR values used in the analysis are chosen so that they correspond with
the “average” σ’c profile presented by Lacasse et al (1977).

The soil parameters used in the analysis are given in Table 8.10. As there is no explicit
data about K0 conditions, the HSU parameters C and D are left at their default values. The
clay is divided into two sections: For slices where the base inclination is low, i.e. α =  -
15°…15° (arbitrary), the friction angle is set to φ’ = 19° to reflect the low DSS strength
that is governed by the clay varves. Other slices are set to φ’ = 28°. These values
correspond to those given by Lacasse et al (1977).
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Table 8.10. Model parameters for the analysis

φ’ [°] su [kPa] dsu [kPa/m] γ [kN/m3] γsat [kN/m3] OCR C D
Fill 40 0 0 20.4 20.4 - - -

Crust 0 48 -4.0 15 18 - - -
Clay (direct shear) 19 0 0 15 18 *) 1 1

Varved clay (across varves) 28 0 0 15 18 *) 1 1
*) Set for each slice so that σ’c matches the average profile given by Lacasse et al (1977)

As the spreadsheet implementation of the HSU method does not allow for slip surface
optimization, a preset slip surface is obtained using the GeoCalc software. This is done by
conducting a basic total stress analysis where the varved clay is modelled with a field
vane strength of su =  15  kPa  on  top  of  the  layer,  and  an  increase  of dsu =  2  kPa/m.
Spencer’s method is used. The coordinates of the critical slip surface are then imported to
the HSU spreadsheet.

The critical slip surface from the initial total stress analysis is shown in Fig. 8.23. Both
free-form and circular slip surfaces were used, but the critical slip surface most
compatible with the data given by Lacasse et al (1977) was a circular one. It is recognized
that no data was available on the shape of the actual surface, but circular surfaces seemed
to result in failure dimensions that are most compatible with the measured extents of the
failure. Free-form surfaces tended to result in too long critical slip surfaces.

Figure 8.23. Slip surface geometry.

The location and other properties for each slice bottom are given in Table 8.11. The
coordinate origin is fixed at the left end of the slip surface, at ground level (i.e. “global”
initial ground level).
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Table 8.11. Properties of the slip surface used in the analysis.

Slice
no. layer x [m] y

[m]
width
[m]

base length
[m]

base angle
[°] φ’ c’ OCR

1 crust 0.55 -0.69 1.10 1.77 -51.5 0.0 45.2 -
2 crust 1.65 -1.95 1.10 1.58 -45.8 0.0 40.2 -
3 varved clay 2.76 -2.99 1.10 1.45 -40.6 28.0 0.0 2.6
4 varved clay 3.86 -3.86 1.10 1.36 -35.8 28.0 0.0 2.1
5 varved clay 5.29 -4.76 1.75 2.02 -30.0 28.0 0.0 1.7
6 varved clay 6.99 -5.63 1.66 1.81 -23.4 28.0 0.0 1.5
7 varved clay 8.65 -6.24 1.66 1.74 -17.3 28.0 0.0 1.4
8 clay (DSS) 10.32 -6.67 1.66 1.70 -11.4 19.0 0.0 1.4
9 clay (DSS) 11.98 -6.92 1.66 1.67 -5.6 19.0 0.0 1.35

10 clay (DSS) 13.64 -7.00 1.66 1.66 0.1 19.0 0.0 1.35
11 clay (DSS) 15.31 -6.91 1.66 1.67 5.9 19.0 0.0 1.35
12 clay (DSS) 16.97 -6.65 1.66 1.70 11.6 19.0 0.0 1.4
13 varved clay 18.63 -6.22 1.66 1.74 17.5 28.0 0.0 1.4
14 varved clay 20.01 -5.73 1.10 1.19 22.6 28.0 0.0 1.5
15 varved clay 21.11 -5.22 1.10 1.24 26.8 28.0 0.0 1.6
16 varved clay 22.77 -4.22 2.21 2.64 33.4 28.0 0.0 2

17 varved
clay* 24.97 -2.46 2.21 3.02 43.1 28.0 0.0 3.2

18 crust 26.63 -0.73 1.10 1.77 51.4 0.0 45.3 -
19 fill 27.73 0.84 1.10 2.08 58.0 40.0 0.0 -
20 fill 29.10 3.94 1.65 4.74 69.7 40.0 0.0 -

*slice bottom located partly in the crust, but whole slice treated as varved clay

With  the  given  assumptions,  the  only  unknown factor  is  the  value  of λ/κ, which is then
varied in this analysis. Calculations are done both by using HSU for calculating su (total
stress analysis, TSA), and for calculating Δu (effective stress analysis, ESA).

Figure 8.24a plots factor of safety from TSA as a function of λ/κ using Spencer’s Method,
while Figure 8.24b shows the corresponding shear strength and normalized shear strength
profiles for various values of λ/κ.
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Figure 8.24. a) Factor of safety versus λ/κ, b) Shear strength along the slip surface at different λ/κ values.

Overall,  the  TSA  results  with  the  HSU  method  are  very  good.  With  the  given  set  of
assumptions regarding the fill and crust layers, the value λ/κ = 3 gives a calculated factor
of safety of F = 0.998.

Corresponding undrained effective stress analyses with the HSU method (Approach B)
give very similar results. Table 8.12 shows the factors of safety with different λ/κ values
for  both  TSA and ESA.  The  differences  between the  analysis  types  are  negligible  when
close to F = 1, but the differences seem to increase when F is increasing.

Table 8.12. TSA and ESA (based on stress changes) results compared.

λ/κ = 1000 λ/κ = 5 λ/κ = 3 λ/κ = 1.5 λ/κ = 1.01
F (TSA) 0.9367 0.9712 0.9977 1.0773 1.1751
F (ESA) 0.9360 0.9689 0.9938 1.0671 1.1554
difference -0.1 % -0.2 % -0.4 % -0.9 % -1.7 %
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Figure 8.25 shows the resulting shear strength profiles at various λ/κ values. Overall, the
differences between TSA and ESA are very small, as is reflected in the calculated factors
of safety as well.

Figure 8.25 ESA strength profiles (based on stress changes)	

Figure 8.26 shows the calculated excess pore pressure profile for the ESA at λ/κ = 3,  as
well as the “forced” excess pore pressure profile that gives TSA-equivalent shear strength
for comparison. The profiles are nearly identical, with most differences in the passive part
of the slip surface.

Figure 8.26. Comparison of Δu based on vertical stress changes, and forced based on predicted su

 Overall, the back.calculation results of applying the HSU method to the New Liskeard
embankment are excellent. Failure is attained with very realistic parameter levels and all
calculation methods (TSA and the two different ESA approaches) give very similar
results.
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9 Discussion	

9.1 General		

The formulation of the HSU method and the proposed modelling approach have been
presented in Chapter 5. Formulations have been presented for modelling su in total stress
stability calculations, and for modelling excess pore pressure in undrained effective stress
stability calculations. The different concepts and approaches of the method are
schematically presented in Figure 9.1.

Figure 9.1. ”Family tree” for the HSU method

Modelling su gives a shear strength value that is directly usable as input strength in the
stability calculation. Modelling Δu can be approached in two ways: Δu can be forced to a
value so that a given undrained shear strength is obtained. This approach essentially
solves the issue of overestimating shear strength when F > 1 that occurs in traditional
undrained effective stress analyses. The other approach in calculation Δu is done based on
assumed stress changes on the failure surface. This approach also attempts to calculate the
true pore pressure at failure, resulting in the true undrained strength at failure. These
approaches are further discussed in Section 9.2.

Chapter 6 studies the influence of the various model parameters to the undrained shear
strength predicted by the method. HSU generally gives plausible results, the various
parameters affect the results quite logically. The method does not seem to be overly
sensitive to any of the parameters.
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The method makes a number of simplifying assumptions to simplify the overall process.
Such  assumptions  are  the  omission  of  rotational  hardening  (present  in  the  original  S-
CLAY1 model, Wheeler et al 2003), use of the Drucker-Prager failure criterion, and the
use of the intermediate principal stress parameter b = 0.3 for stability calculation
applications. In the light of the generally good results, these assumptions can be
considered good trade-offs between simplicity and accuracy. In the case of rotational
hardening, the selection of proper parameters can be considered quite difficult, if not
impossible in typical engineering use, which makes its omission all the more acceptable.
The assumed effect of rotational hardening is however counteracted to some extent with
the use of the Drucker-Prager failure criterion fitted for triaxial compression.

Perhaps the biggest potential issue with the model is the relative sensitivity of the
predicted extension strength (or the strength at any stress state where the principal stress
rotation is close to θ = 90°). Especially the parameters C (which governs the inclination of
the yield surface) and λ/κ which controls the direction of the effective stress path have a
quite large effect on the extension strength.  The proper choice of parameters to avoid
troubles with extension strength is discussed further in the following sections.

In  Chapter  7,  the  HSU method was  fitted  to  laboratory  test  results  on  various  soft  clays
using different fitting methods. Based on the studied cases, it can be said that the HSU
method can predict the anisotropic undrained shear strength (triaxial compression and
extension) quite well with proper parameter selection. Especially for a given OCR value,
the model could be fitted in most cases to produce proper undrained strengths. If the
model is fitted to predict undrained strength over a range of OCR (e.g. the SHANSEP
approach), the fit typically needs to be a compromise, as a given “target” SHANSEP
curve is likely very difficult to replicate accurately over a large OCR range.

In Chapter 8, the model was applied to back-calculate some well documented failures.
The stability calculation results were very good, with F = 1 reachable with plausible
parameter combinations without “forcing” any parameters to unreasonable values.

Overall, it can thus be said that the model works for its intended purpose: calculating the
anisotropic undrained shear strength of normally consolidated or slightly overconsolidated
soft clays, especially for stability calculations with LEM.

	



186

9.2 Total	stress	versus	effective	stress	applications	

The HSU method offers three options for undrained stability calculations (see Chapter 5):

1. Calculating undrained shear strength su, which is then used as strength
input in LEM stability calculations. The stability calculation can be done as
a total stress analysis.

2. Calculating Δu so that the resulting shear strength τf =  su. The stability
calculation is an effective stress analysis. As the shear strength is forced to
match the undrained shear strength predicted by HSU, the end result is
identical to a total stress calculation using su. It is good to note that the
resulting excess pore pressure is not necessarily correct or even realistic, but
instead depends on the target strength and the total stress state given by the
limit equilibrium calculation. This approach avoids the overestimation of
shear strength at F > 1 that is inherent in traditional undrained effective
stress analyses. An iteration loop is required as the calculation requires the
output of the limit equilibrium as its input.

3. Calculating Δu based on assumed stress changes. Here, the excess pore
pressure response is divided into two parts:

'ppu D-D=D (9.1)

The effective stress component Δp’ represents the yield-induced excess pore
pressure, and is calculated from the HSU method, representing the stress
change from the initial state to failure. The total stress component Δp is
calculated from assumed stress changes on each slice bottom, again
representing the change at failure. As the excess pore pressure is calculated
at failure, it should result in shear strength that is the actual strength at
failure, which again avoids the overestimation of shear strength for F > 1.

This approach also requires an iteration loop for the calculation of Δu.

All approaches have been shown to give good results in the back-calculations presented in
Chapter 8. However, the proposed effective stress approaches with calculation of Δu are
mainly to be considered as “proof of concept”, whereas the calculation of su for total stress
stability calculations is intended as a proper engineering tool.

The main reason for this consideration is that in stability calculations (especially using
limit equilibrium), the main unknown that has the most effect in the end result is shear
strength. The main purpose of a limit equilibrium stability analysis is the correct
calculation of the factor of safety F, not so much modelling the stress state along the slip
surface. Additionally, the use of the whole HSU method is based on the assumption that
the undrained shear strength predicted by HSU is reasonably correct.

If we assume the shear strength predicted by HSU to be correct, this makes the use of Δu
based on stress changes less favourable, as the resulting shear strength at failure is not
always the “correct” value predicted by HSU (although it can be very close, as evidenced
by Sections 8.2 and 8.3).
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The use of forced Δu to arrive in a given shear strength does give the “correct” shear
strength at failure. An effective stress limit equilibrium calculation using this Δu gives the
same overall result as using the predicted su in a total stress calculation. However, the
effective stress calculation is notably more complicated (including an iteration loop that
requires that the limit equilibrium is calculated several times per failure surface) than the
total stress calculation. In addition, the iteration of Δu may not always converge,
especially with more rigorous limit equilibrium methods (e.g. the Morgenstern-Price
method and its special case, Spencer’s method). As the total stress calculation with su is
simpler and more reliable, there simply is no reason to use an undrained effective stress
calculation with forced Δu.

There might be an application for calculating Δu with the HSU method, where a rough
estimate of excess pore pressure at failure is needed for comparison to measured values on
an instrumented low stability embankment. On the other hand, if there is time to
instrument and monitor an embankment, there probably is also time to use a more
advanced FEM model to calculate pore pressures at failure.
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9.3 Guidelines	for	parameter	selection	

9.3.1 Friction	angle	φ’	

Friction angle φ’ is the basic effective strength parameter and when its value is chosen
based  directly  on  laboratory  test  results,  HSU  typically  gives  good  results.  As  HSU  is
essentially a critical state model, the friction angle should also correspond to high strains
/critical state as well as possible to obtain the correct slope of the critical state line M. It is
recommended that good quality CK0U triaxial tests sheared to a high enough strain level
(e.g. εa > 15 %) are used to determine φ’. The test series should preferably include at least
one  test  done  at  or  close  to  the in situ consolidation state to provide a shear strength
reference for model fitting.

The consolidation stresses used in testing should preferably be high enough to avoid
dilation and shearing on the dry side of critical, which would complicate the determination
of the critical  state friction angle.  The geotechnical engineer should always know which
stress and strain levels in laboratory testing are applicable for use with a given soil model.

9.3.2 A	note	on	applying	cohesion	

As many typical critical state models do, the HSU method by default assumes that at
critical state all bonding between the clay particles have been destroyed and the soil acts a
completely frictional material, i.e. c’ = 0. However, in some cases clays can exhibit
effective cohesion in triaxial testing, even at high strains on the wet side of critical (see
e.g. the results on Perniö clay, Figure 7.4).While no claims of “true” effective cohesion
are made here, the option of modelling effective cohesion is offered in the HSU method
(see Section 5.9).

In the case of Perniö clay, the stability calculation did not really work without cohesion.
On the other hand, applying some cohesion in HSU resulted in very good calculation
results. While there is a large number of other variables that might affect the results (e.g.
the strengths of the sand fill and dry crust), it seems that modelling cohesion was essential
for obtaining good back-calculation results.

It is still recommended that c’ = 0 is generally assumed in accordance to the general
critical state assumptions. However, if laboratory results consistently indicate effective
cohesion at large strains, and the corresponding stability calculation results give
unrealistically low factors of safety, applying cohesion as described in Section 5.9 can be
relevant. Still, careful engineering judgment needs to be exercised when applying
cohesion in HSU so as to avoid dangerous overprediction of shear strength.

9.3.3 Preconsolidation	stress	σ’c	

Another quite essential parameter for HSU is the preconsolidation stress σ’c. This should
be determined by oedometer testing (CRS or traditional), or possibly by K0NC testing on
triaxial samples (i.e. drained test where the stress path is controlled with the requirement
of zero lateral strains.
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σ’c is  an important parameter in the HSU method (and indeed in any model with a yield
surface) as the size of the initial yield surface is directly proportional to σ’c.  The size of
the initial yield surface then greatly affects the predicted strength.

Sample quality and strain rate in the test are important issues to consider (and not just
restricted to the use of HSU) in determining σ’c. Poor quality samples make determining
preconsolidation stress difficult and unreliable.

It has been established that strain rate affects the apparent preconsolidation pressure (see
Section 3.6). High strain rates result in high apparent preconsolidation stress and vice
versa. Therefore basing the value of σ’c on  a  very  fast  or  slow  tests  that  may  not  be
applicable to the in situ loading case can result in incorrect prediction of shear strength.
For example, traditional staged loading oedometer tests are typically much slower than
typical CRS oedometer tests, so the preconsolidation stress values determined from CRS
tests are typically higher (Länsivaara 1999).

No specific recommendations are given here for applicable strain rates in oedometer
testing, as such a discussion is outside the scope of this thesis and not at all restricted to
the  use  of  the  HSU  method.  However,  one  should  use  their  engineering  judgment  in
analysing the problem: is the potential loading case “fast” (e.g. a train coming to a
standstill) or “slow” (e.g. a gradually built landfill)? For example, results from a relatively
fast CRS test are more applicable to the “stopping train” than the “landfill” case.

9.3.4 “Control	parameter”	λ/κ	

The parameter λ/κ is the ratio between the compression and swelling indices, or the ratio
between elastoplastic and elastic strains. In the HSU method its value effectively controls
the direction of the effective stress path, and therefore the predicted shear strength. This
relationship can be derived from the concept of undrained loading: A high λ value means
that the clay has a large tendency for plastic volumetric straining. In undrained conditions
this tendency is offset by corresponding elastic expansion, or excess pore pressure. High
compressibility therefore results in high excess pore pressure and a “flat” effective stress
path. Correspondingly, low λ would result in low Δu and a more vertical effective stress
path. For reference, see Figure 6.1.

As strains are not considered in the HSU method, the parameter λ/κ is effectively detached
from its physical meaning, and becomes a control parameter for the shape of the effective
stress path. Therefore the selection of λ/κ should not necessarily be based on an actual
laboratory value (obtainable e.g. from oedometer testing), but on producing relevant stress
paths.

Another issue that affects the choice of λ/κ is the rate of undrained shearing. As soil also
has viscous properties, high rates of shearing result in less excess pore pressure than
slower rates, and thus a more vertical effective stress path (see Section 3.6). Because λ/κ
can in this application be decoupled from its physical meaning, it can thus be used also to
take rate effects into account to some extent.

When λ/κ is considered a control variable instead of a physical parameter, it becomes an
unknown in the model that cannot be determined accurately. However, based on the
properties  shown  in  Section  6.3  and  Chapters  7  and  8,  a  reasonable  range  and
recommended values for engineering use can be established.
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 “Physically” meaningful values of λ/κ are between 1 and infinite. λ/κ = 1 means
completely elastic behaviour (i.e. elastic + plastic strain = elastic strain, i.e. no plastic
strains,  vertical  (p’,q) stress path), while large λ/κ means large plastic strains (i.e. little
volumetric hardening, stress path directed along the initial yield surface). Negative λ/κ
values are also mathematically possible and can be used to direct the stress path further,
but have no realistic physical meaning.

In terms of undrained shear strength, highest strengths are obtained with λ/κ ≈ 1.000… (a
value of unity results in division by zero in the model).  Increasing λ/κ quickly decreases
the resulting su value, and above λ/κ ≈ 10, su practically reaches a constant value (the
stress path closely follows the initial yield surface).

It is good to recognize that λ/κ has a larger effect on extension strength than compression
strength. This is because the extension stress path is much longer than in compression, so
changing its direction also has a larger influence in su.

Some representative values of λ/κ resulting from the model fits and back-calculation
examples in Chapters 7 and 8 are collected in Table 9.1. For the details of these fits and
calculations, please see the corresponding sections.

Table 9.1. Selection of λ/κ values that result from model fits and back-calculations of failures.

Section Case λ/κ Notes
7.1 Perniö clay compression 2.1 average for compression, Table 7.2
7.1 Perniö clay extension 2.7 average for extension, Table 7.2

7.2 Norwegian clays,
compression 2.4 “average” case, Table 7.4

7.2 Norwegian clays, extension 3.6 “average” case, Table 7.4

7.3 Scandinavian clays, fit for
comp. and ext. 1.5-5 values that allow the HSU to be fitted to the data

7.4 Drammen clay negative
values the HSU yield surface fit the data poorly

7.5 Resedimented BBC,
compression 2.7

8.1 Perniö failure experiment, c’
= 3.4 kPa

4.1 TSA with su; failure at qapp = 70 kPa
1.7 TSA with su; failure at qapp = 80 kPa
1.2 TSA with su; failure at qapp = 87 kPa

8.2 Saint Alban test fill A 2.5 TSA with su
8.3 New Liskeard embankment 3.0 TSA with su

While the methodology used in obtaining these values varies as the data available in the
examples varies somewhat, it can be observed that applicable λ/κ values generally range
from close to 1 (e.g. very fast loading in Perniö) to around 4-5. Even if these results
remain anecdotal, it may be cautiously said that in engineering purposes a similar range of
values would be applicable.

Ideally, the engineer would have some kind of undrained shear strength data to help in
fitting the model and choosing the value of λ/κ. If the loading rate can be considered
“ordinary”, i.e. not extremely fast, applicable values might be in the range of λ/κ = 2.5…5.
For a cautious estimate, λ/κ = 5 might be a good starting point.

In the case of very fast loading, a low λ/κ value  close  to  1  might  be  applicable.  An
example could be external loading from a rapidly applied load, such as a train or a heavy
container. However, if the quickly applied loading is then sustained for some time, due to
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undrained creep effects (see Section 3.6) pore pressure will increase and the “equivalent”
effective stress path will correspond to a more slowly applied load (Figure 3.13).
Therefore assuming a low λ/κ and consequently a very high undrained strength can be
extremely dangerous unless the rapidly applied load is sustained only for a very short
time.

No “hard” values for λ/κ are suggested, but the engineer should still use his or her best
judgment and ideally vary the value of λ/κ and study its effect on the end results. A good
idea would be to plot the yield surface and effective stress path with the chosen model
parameters and see if the predicted stress path is realistic. For reference, see e.g. Figure
6.1.

9.3.5 K0	parameters	C	and	D	

The K0 parameters C and D can be chosen based on known K0 data,  fitting  on  a
sufficiently large strength data set, or in the absence of such data, can be left at their
default values.

As there is a fairly reliably established connection between K0NC and φ’ in the Jaky
equation (see Section 6.6), it can be said that the theoretical range of C varies roughly in
the  range  of C =  0.9…1.  However,  as C is primarily a parameter that controls the
inclination  of  the  yield  surface  (with  the  assumption  of  associated  flow),  the  value  of C
should also be considered from this viewpoint. The shape of the yield surface especially
affects the predicted extension strength.

Based on the examples in Chapters 7 and 8, it appears that applicable C values are broadly
in the range of C = 0.9…1.1. When C has been fitted to given data, its value is often close
to  1,  and  the  results  in  terms  of  predicted  strength  or  factor  of  safety  are  also  quite
plausible. When the overall functionality of the model (including the initial yield surface
and resulting effective stress paths) is examined, the following suggestions are given for
the choice of C:

a) In the absence of K0NC data, choose C = 1

b) If K0NC is known, choose:

'sin1
0

j-
= NCKC

(9.2)

or c) Choose C (together with λ/κ) so that a desired degree of strength
anisotropy is obtained, staying within C = 0.9…1.1 if possible (see Section
9.4)

The K0 parameter D can be considered less important than the others, as in HSU it only
has a slight effect on the initial mean effective stress p’0. The value of D is quite difficult
to obtain reliably and in situ it is also affected by the loading-unloading history of the soil.
Therefore it is recommended here that D is set to its default value D = 1 (corresponding to
the equation proposed by Mayne & Kulhawy (1982), see Section 6.6), and changed only if
a very specific parameter combination is desired for some reason. 	
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9.4 On	strain	softening	and	strain	compatibility	

It should be noted that the model fits presented in Chapter 7 were done based on peak
strength data. Soft clay typically exhibits notable strain softening after the peak strength is
attained (Section 3.3), especially in triaxial compression. For direct shearing and
extension, the peak is not as pronounced and occurs at much higher strains.

It is known that along a slip surface, these peak strengths are not attained simultaneously:
the peak occurs at different strain levels for compression, direct shear and extension, and
the  strain  levels  along  the  slip  surface  vary  as  well  (e.g.  Ladd  1991).  Often  the  active
portion (compression) of the slip surface is first mobilized past failure, later followed by
other parts of the slip surface.

If a model could accurately capture the strain softening (and the strain level) of the soil,
peak strengths could be used in design. HSU does not however model strain softening nor
are strains considered in limit equilibrium calculations. Therefore the design strength
value should take strain compatibility and softening into account on average. This issue
naturally applies to other similar soil models and LEM in general.

In typical engineering practise, peak strengths are however sometimes used as the
characteristic strength applied in the design. This perhaps works because of low quality
samples that do not exhibit “ideally” high peak strengths that very high quality samples
would. Also the required safety factors give some margin for error here.

Ladd (1991) suggests that failure occurs when the maximum average shear strength along
the slip surface is mobilised. Therefor the characteristic strength should correspond to the
strain level where the average strength reaches its maximum. For this, stress-strain curves
from undrained compression and extension tests (at minimum) would be needed. If this
thought is applied to HSU, fitting should be done so that the predicted strength
corresponds to those “maximum average” strengths determined by laboratory testing.

Karlsrud & Hernandez-Martinez (2013) suggest reducing the measured peak strengths by
a  given  amount  to  account  for  strain  softening  and  strain  compatibility  in  design
applications. These values would apply for good quality samples.

Table 9.2. Suggested reductions (in %) to peak strengths to account for strain softening and strain
compatibilty (Karlsrud & Hernandez-Martinez 2013)

If both extension and compression strengths would be available for fitting HSU, the kind
of reduction could be achieved by fitting the more accurately for extension (according to
the peak extension strength), and with a lower compression strength compared to the peak
strength. This can be achieved with a proper combination of C and λ/κ (see Section 9.5).
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9.5 Suggested	model	fitting	and	parameter	choice	
procedures	

In Chapters 7 and 8, many different methods of fitting the HSU parameters to available
data were used. It can be said that HSU can in most cases be fitted for both compression
and extension at a given OCR level (unless the “target strength” is much lower or higher
than what the yield surface geometry allows). If the strength over a broader OCR range is
targeted, the fit needs to be a compromise between compression and extension strengths at
the different OCR levels.

The fitting procedure also depends on the amount and quality of the data that is available.
HSU is completely usable if only friction angle φ’, preconsolidation pressure σ’c and the
in situ vertical stress σ’v0 are known. Assuming these are reliably determined, their input
values in HSU should be set at their laboratory/calculated values. In that case the
parameters C and D are simply left at their default values C = D = 1, and λ/κ can be set at
e.g. λ/κ = 5 (although λ/κ should be treated as an unknown that is varied to ascertain its
effect on the results).

If in addition to φ’, σ’c and σ’v0 undrained shear strength data is available (CK0U tests,
DSS tests etc.), the strength data should be used to choose the value of λ/κ. If extension or
direct shear data is available in addition to compression strength data, the value of C can
be slightly adjusted to better match the strength in extension. Changing the value of C has
a relatively low effect on compression strength (see Section 6.2), so the degree of strength
anisotropy can thus be adjusted almost independently. The values of λ/κ and C can be
changed iteratively until both compression and extension strengths are matched. Of
course, matching compression and extension strengths does not completely ensure that
strengths for the in between stress states are correct, but could still be considered “close
enough”.

If there is data on K0NC and the in situ K0 value, this data could additionally be used to
determine the values of C and D, respectively. In theory, assuming that the assumptions
made in the HSU method are correct, this should result in correct predicted strengths. If
there is no measured undrained shear strength data, C and D should thus be determined as
accurately as possible. If the “correct” C and D values however lead to predicted shear
strength that differs from measured strengths, these parameters could be adjusted as
needed.

If HSU is fitted over a large OCR range, the parameter fit most likely needs to be a
compromise that emphasizes strength at some chosen OCR value. Paradoxically, having
“too much” measured data on the different parameters reduces the ability of the method to
be  fitted  well  to  a  given  set  of  SHANSEP  parameters.  If  a  SHANSEP  parameter  fit  is
attempted, it can generally be said that the value of λ/κ controls the exponent m, while φ’
and C control the strength ratio S. While λ/κ also controls S, it should be set to produce the
desired m value as other parameters do not affect m effectively.
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Good engineering judgment and knowledge of the model parameters’ influence is
generally required in choosing the parameters for HSU, especially if values other than
measured  or  default  are  chosen.  For  the  choice  of λ/κ, experimentation with different
values is recommended to see its effect on the end result. While proper usage is
emphasized here, the HSU method should not be thought as an overly complex model
(actually it is relatively simple). The same basic principles apply in all aspects of soil
modelling.
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10 Conclusions	

10.1 Present	state	

The presented Hybrid su (HSU) method offers a new approach of conducting an undrained
stability analysis based on effective strength parameters. HSU is intended to be used for
limit equilibrium stability analyses on soft, normally or slightly overconsolidated clays. It
is  based on the anisotropic critical  state soil  model S-CLAY1 (Wheeler et  al  2003).  The
HSU method can take into account the effects strength anisotropy, consolidation state and
to some extent the rate of loading on the predicted undrained strength.

The method is shown to effectively predict anisotropic undrained shear strength su of soft
clays with a relatively small amount of parameters. The equilibrium analysis itself can be
carried out just like a typical total stress analysis, with the calculated su value acting as
strength input for the limit equilibrium. This makes HSU a good compromise between
“traditional” total stress analyses and notably more complicated finite element analyses
with intricate soil models. Therefore the HSU method can be considered a suitable tool for
everyday stability design work. It is not however intended for detailed analyses of soil
stress states.

The  HSU  method  also  offers  the  option  of  undrained  effective  stress  analysis  by
calculating the excess pore pressure Δu.  This can be approached by two ways: Either by
forcing Δu so that the strength predicted by HSU is achieved in terms of effective stresses,
or by calculating the value of Δu based on the assumed stress changes at the failure state.
Both approaches solve the theoretical issue of overpredicting shear strength that is
inherent in traditional undrained effective stress analyses when F > 1. This is because
different approaches of the HSU method always relate shear strength to the actual
(assumed) stress state at failure, not the mobilized stress state. This means that the factor
of safety given by an undrained effective stress analysis is directly comparable to a
corresponding total stress analysis.

While the suggested methods of undrained effective stress stability analysis do generally
give good results and solve an important theoretical issue in predicting the shear strength
at  failure,  it  is  debatable  if  they  offer  any  extra  value  over  the  offered  method of  using
predicted su in total stress limit equilibrium calculations. This is because the end result
(i.e. factor of safety) is roughly the same between the methods, and if there is a difference,
the total stress approach should be considered correct (as the value of Δu is derived from
the calculated su value). On the other hand, the undrained effective stress calculations are
somewhat more complex, time-consuming and prone to errors due to the added iteration
loops. Therefore the suggested approach of HSU is to use it to calculate su and apply this
strength input to a total stress analysis.

Another novelty of the HSU method is that it offers the option of modelling cohesion with
a critical state model. This may provide useful if laboratory data consistently indicates
cohesion at large strains. By modelling cohesion where relevant, one avoids the need for
compensating the high strength with overly large friction angle values, which could then
lead to inaccuracies. However, applying cohesion in HSU should be based on careful
engineering judgment as it can result in dangerously high predicted strengths if applied
erroneously.
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10.2 Future	research	potential	

A matter that could not be included in this thesis is the implementation of the HSU
method with the search for the most critical slip surface. While calculation algorithms for
the different approaches are suggested (Chapter 5), the technical details involved are not
complete. While the main purpose of HSU in limit equilibrium applications is “only” to
generate strength or pore pressure input for the equilibrium calculation, the strength (or
excess pore pressure) depends on the geometry of a given slip surface. Therefore the
strength needs to be separately calculated separately for each individual slip surface.
While there is no doubt that a working implementation in a geotechnical design software
will be found, at the time of writing this has not been tested in practise.

Improvements could also be made in calculating Δu. Improving the iteration procedures
might increase the reliability and robustness of the method. The calculation of excess pore
pressure based on stress changes could also have potential for improvement. The
theoretical approach that solves the inherent overestimation of shear strength that occurs
in traditional undrained effective stress analyses could be useful in other applications as
well, so research on this issue could be useful.

Finally, the presented HSU method demonstrates the concept of applying a fairly
advanced soil model to a limit equilibrium framework. Such an approach could be used to
implement even more advanced models that account for e.g. strain softening. With
suitable assumptions, the overall complexity of such a model could be kept at a
manageable level.
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12 Appendix	A:	Derivation	of	the	HSU	method	

The general initial yield surface is expressed as (Wheeler et al 2003):
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where the deviatoric stress vector and the deviatoric fabric tensor are respectively defined
as:
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Due to assumed plane strain constraints (τxy = τyz = 0) and cross-anisotropy (αx = αy, αxy =
αyz = αxz = 0) the vectors can be written as:
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It is more convenient to express the components of the fabric tensor as functions of the
scalar anisotropy parameter αrot. The components have the property:
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The scalar anisotropy parameter is given as:
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The previous equations lead to the expression:
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The deviatoric stress vector is expressed in terms of Cartesian stresses. These can in turn
be expressed using principal stresses, principal stress rotation θ and the intermediate
principal stress term b:
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The aim is to express the yield surface as a function of p’, b and θ.
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By substituting the previous equations into the deviatoric vector we get:
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The vectors in the yield function can be combined, resulting in (intermediate steps
omitted):
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Using the previous expression the S-CLAY1 yield function (Eq. A.1) can be solved for σ’1
(intermediate steps omitted):
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where

12 +-= bbB (A.19)

The parameters M and αrot can at this point be considered known soil parameters and used
as constants.



206

To remove the unknown σ’1 from the final equation of p’f, the Drucker-Prager failure
condition is used. Assuming no cohesion and triaxial compression, the Drucker-Prager
criterion can be expressed as:
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where
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Using the relationships between the principal stresses, J2 can be rewritten as
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The Drucker-Prager criterion can then be solved for σ’1, eventually resulting in:
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At failure, the S-CLAY1 and Drucker-Prager yield rules coincide (i.e. the stress state at
failure lies both on the S-CLAY1 surface and the Drucker-Prager cone). By assuming:

SDP 11 '' ss = (A.25)

p’f as a function of b and θ can be solved:

m
rot

f p
CCBCCMbbMM

MBbp '
sin3227)(

)(),('
2

22
2

12
2222

22

q
aq

×+-×+--+
-

= (A.26)

where
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The previous form only describes the intersection of the initial yield surface and the
Drucker-Prager cone i.e. there is no hardening. Volumetric hardening (i.e. change of p’m)
needs to be accounted for.

At failure it can be written after Equation A.26 that:
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Now p’mf needs to be solved.

The volumetric hardening law in S-CLAY1 is given as
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For undrained conditions the following applies:
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This results in:
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To simplify the expression it can be written that:
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The volumetric hardening law the can be expressed as the differential equation:
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The expression is then integrated from the initial state “0” to failure “f”:
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The unknowns here are p’f and p’mf, (the initial state variables p’0 and p’m0 are known).
Solving for p’mf we get:
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Previously it was written that:
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It can be further expressed that
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By further arranging the expression, we can write the easily solvable form for p’f:
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where (after some simplifying):
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Solving Eq. A.40 for p’f we get:
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(For equations for the other parameters in the equations, see Section 5.6)

Finally, su can be calculated as:
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