
Julkaisu 763 Publication 763

Salvador Esqué

A New Approach for Numerical Simulation of Fluid
Power Circuits Using Rosenbrock Methods

Tampere 2008

Tampereen teknillinen yliopisto. Julkaisu 763
Tampere University of Technology. Publication 763

Salvador Esqué

A New Approach for Numerical Simulation of Fluid
Power Circuits Using Rosenbrock Methods

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Konetalo Building, Auditorium K1702, at Tampere
University of Technology, on the 28th of November 2008, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2008

ISBN 978-952-15-2055-6 (printed)
ISBN 978-952-15-2101-0 (PDF)
ISSN 1459-2045

Esqué Solé, Salvador �A New Approach for Numerical Simulation of Fluid
Power Circuits Using Rosenbrock Methods�

Tampere University of Technology, Finland, 2008

Keywords: numerical integration, Rosenbrock methods, fluid power, simulation,

ordinary differential equations

Abstract

The mathematical formulation of the dynamics observed in fluid power systems in-

volves the numerical solution of differential equations. Because of the intrinsic characteris-

tics and physics of fluid power circuits, the numerical integrators employed to solve such

system of equations must retain certain properties in order to guarantee the accuracy, stabil-

ity and efficiency of the numerical solution. In this thesis, different classes of numerical

integration methods used for stiff systems have been analyzed and tested in order to quanti-

tatively and qualitatively assess their performance against the numerical stiffness, high non-

linearities and discontinuities typically shown in the differential equations arisen in fluid

power circuits.

Numerical integration methods of the Rosenbrock class � although rarely employed

in the simulation of fluid power circuits � have shown excellent numerical stability proper-

ties and also above-the-average efficiency (solution accuracy to number of integration steps

ratio) when compared to other popular single and multiple-step integration formulas. At the

same time, the formulation of Rosenbrock methods involves a reduced number of linear

algebra operations, which makes them computationally inexpensive. The main drawback of

employing a Rosenbrock formula is the fact that an accurate Jacobian evaluation of the

ODE system needs to be provided at each integration step in order to maintain the accuracy

and stability of the formula. In order to solve this disadvantage, a method is presented in

this thesis for the systematic modelling of fluid power components and systems as ODEs,

following an object-oriented and modular approach. By following this methodology, the

analytical form of the Jacobian matrix can be automatically generated and fed to the inte-

gration formula for any given fluid power system. This has the advantage that the Jacobian

evaluation is done with a fraction of computational cost and also more accurately than a

Jacobian obtained with numerical techniques.

The tests conducted in this thesis have confirmed that Rosenbrock formulas are good

candidates for being used in real-time simulations (fixed integration step size) and in offline

simulations (variable integration step size) of fluid power circuits. Their easy implementa-

tion, good stability, high efficiency and low computational costs make them, in most of the

cases tested, superior to other popular codes.

Preface

The decision, on endeavouring oneself into a Doctor Degree program, is not easy to

make. Strong motivation and a great deal of commitment are both required in order to suc-

ceed. As to motivation, I am very grateful to Prof. Asko Ellman: first for accepting me as

an exchange student, and then for integrating me in his research group, where the interest

and passion for this research topic arose. I also want to thank Prof. Robert Piché from the

Department of Mathematics for his studies and papers dealing with Rosenbrock methods

and also for his collaboration in some of my publications.

I would like to thank also the financial and academic support that I have received

from the Graduate School Concurrent Mechanical Engineering, led by Prof. Erno Keskinen.

I also want to transmit my gratefulness to the Head of the Department of Intelligent Hy-

draulics and Automation (IHA) Prof. Matti Vilenius for encouraging me in the early mo-

ments and for giving me support and confidence through all this time. I express the same

gratitude to Dr Jouni Mattila for giving me the required time and flexibility, within working

hours, needed to complete the writing of this thesis. I am grateful as well with all the per-

sonnel and colleagues of IHA for their help and for forming such a good and pleasant work-

ing environment, and also to Prof. Jose LM Lastra for the hassle-free and friendly discus-

sions we have had during lunch and coffee breaks.

Concerning the commitment, all the dedication I have put in this work would not

have been possible without the support, understanding and sacrifices of my closest relatives

and companions. Therefore I express my warmest gratitude to Maarit, Salvador, Olga and

Natalia, especially during those moments which I could not share my time with them.

Salvador Esqué

Tampere, October 25th 2008

TABLE OF CONTENTS

NOMENCLATURE...9
LIST OF ACRONYMS..13
1 INTRODUCTION ...15

1.1 BACKGROUND AND BRIEF HISTORICAL OVERVIEW..15
1.1.1 Differential equations...15
1.1.2 Solution of differential equations...17

1.2 PROBLEM DEFINITION AND JUSTIFICATION FOR THE RESEARCH19
1.3 RESEARCH DESCRIPTION...21

1.3.1 Objectives ..21
1.3.2 Contributions..21
1.3.3 Methodology ..22
1.3.4 Assumptions and Limitations of Scope..23

1.4 THESIS STRUCTURE...23

2 STATE OF THE ART ..27
2.1 MODELLING APPROACHES FOR THE DYNAMICS OF FLUID POWER SYSTEMS...........27
2.2 NUMERICAL METHODS AND SIMULATION PACKAGES ..30

3 LUMPED-PARAMETER MODELS OF FLUID POWER COMPONENTS AND
SYSTEMS ...33

3.1 MODELLING TOPOLOGY..33
3.2 MATHEMATICAL FORMULATION OF FLUID POWER COMPONENTS..........................35

3.2.1 Fluid bulk modulus ..35
3.2.2 Pump elements ...36
3.2.3 Volume elements..37
3.2.4 Flow resistor elements..39
3.2.5 Actuator elements ..42

4 NUMERICAL INTEGRATION OF ODEs ARISING IN FLUID POWER SYSTEMS45
4.1 ON THE EFFICIENCY OF IMPLICIT LINEAR MULTI-STEP AND IMPLICIT RUNGE-

KUTTA FORMULAS..46

4.2 STABILITY PROPERTIES OF ONE-STEP METHODS.. 50
4.3 EQUATIONS OF CONDITIONS FOR MODIFIED ROSENBROCK FORMULAS 55

4.3.1 Order conditions .. 56
4.3.2 Stability conditions .. 57

4.4 ANALYTICAL FORM OF THE JACOBIAN MATRIX .. 59
4.4.1 Jacobian of individual components.. 61
4.4.2 Construction of the full Jacobian matrix.. 66

5 PERFORMANCE OF ROSENBROCK FORMULAS .. 69
5.1 REAL-TIME SIMULATIONS... 69

5.1.1 Test circuits.. 71
5.1.2 Numerical tests .. 73
5.1.3 Computational time.. 80
5.1.4 Conclusions of real-time integration tests.. 82

5.2 OFFLINE SIMULATIONS ... 82
5.2.1 Numerical tests .. 83
5.2.2 Conclusions of offline integration tests ... 95

5.3 ANALYTICAL AND NUMERICAL JACOBIANS .. 95

6 CONCLUSIONS.. 99
6.1 SUMMARY OF CONCLUSIONS .. 104

REFERENCES... 107
APPENDIX A ... 113
APPENDIX B ... 121

NOMENCLATURE

Symbol Description Units

aB constant of the bulk modulus equation model [Pa]
aij real coefficients of Runge-Kutta formulas -
A orifice/pipe cross-section area [m2]
A matrix of Runge-Kutta coefficients aij -
AA cross-section area of cylinder chamber A [m2]
AB cross-section area of cylinder chamber B [m2]
ATOL absolute error tolerance -
b viscous friction coefficient [N s m-1]
b vector of Runge-Kutta coefficients bi
bB constant of the bulk modulus equation model [Pa]
bi coefficients of Runge-Kutta formulas -
B bulk modulus [Pa]
Bc bulk modulus of container [Pa]
Beff effective bulk modulus of fluid [Pa]
Bg bulk modulus of gas [Pa]
Bl bulk modulus of liquid [Pa]
c1,c2,c3,c4 empirical constants defining the analytical model of a pres-

sure relief valve
-

Cq flow discharge coefficient -
d orifice diameter [m]
D pipeline diameter [m]
e vector of errors of the numerical solution components -
F force [N]
FC Coulomb friction force [N]
Fext external forces acting on a cylinder [N]
Fhyd hydraulic piston force [N]
FS static friction force [N]
Fμ cylinder seal friction force [N]
G vector of gravitational forces -
h step size of the integration [s]
H stiffness matrix of a mechanism -

i control current [A]
I identity matrix -
J Jacobian matrix -
k number of previous steps employed by a multi-step integra-

tion formula
-

ki intermediate stage i of the integration formula -
K variable flow coefficient of pressure relief valve [m4 N-1/2 s-1]
KL coefficient for laminar pressure losses [N s m-5]
KT coefficient for turbulent pressure losses [N s2 m-8]
L longitudinal length of a pipeline [m]
()m
kL m-th derivative of the k-degree Laguerre polynomial -

m mass connected to cylinder [kg]
M inertia matrix of a mechanism
nd motor shaft speed [rad s-1]
N dimension of an ODE system -
p - pressure

- order of accuracy of an integration formula
[Pa]
-

p1 upstream pressure in a conduit [Pa]
p2 downstream pressure in a conduit [Pa]
pA pressure in cylinder chamber A or at port A [Pa]
pB pressure in cylinder chamber B or at port B [Pa]
pi pressure at volume element i [Pa]
pin pressure at the inlet of a pressure relief valve [Pa]
pj pressure at volume element j [Pa]
ploss total pressure loss across a short pipeline [Pa]
pref setting pressure of a pressure relief valve [Pa]
P(z) numerator polynomial of stability function R(z) -
q joint coordinates -
Q volumetric flow rate [m3 s-1]
Q(z) denominator polynomial of stability function R(z) -
Q1 - upstream volumetric flow rate in a conduit

- flow rate from valve characteristic curve (3.9)
[m3 s-1]

Q2 - downstream volumetric flow rate in a conduit
- flow rate from valve characteristic curve (3.9)

[m3 s-1]

QA volumetric flow entering port A or chamber A of a cylinder [m3 s-1]
QB volumetric flow leaving port B or entering chamber B of a

cylinder
[m3 s-1]

Qi volumetric flow rate entering a short pipeline [m3 s-1]
Qin incoming volumetric flow rate [m3 s-1]
Qj volumetric flow rate leaving a short pipeline [m3 s-1]

Qij volumetric flow rate between internal volume elements of a
short pipeline

[m3 s-1]

R stability function of a numerical integration method -
Retr Reynolds number in the transition between laminar and tur-

bulent flows
-

RTOL relative error tolerance -
s number of stages of an integration formula -
t time [s]
tol error tolerance -
V volume of fluid container [m3]
Vg volume of entrapped gas [m3]
Vp volumetric pump displacement [m3 rad-1]
Vt volume of liquid and entrapped gas [m3]
x actuator piston position [m]
xmax maximum position displacement of a cylinder piston [m]

sx! transient velocity from static to Coulomb friction regimes [m s-1]
y(xn) exact solution of function y evaluated at point xn -
yn numerical solution y after n integration steps -
z - state variable of friction model

- z hλ=
[m]
-

Z characteristic impedance of a conduit [kg m-4 s-1]

iα free coefficients of a numerical integration formula -

iβ free coefficients of a numerical integration formula -

ijβ coefficient grouping ij ija γ+ -
γ value of the diagonal elements of matrix A in singly diago-

nally implicit Runge-Kutta formulas
-

ijγ coefficients of the linear terms Jkj -
Γ - torque

- propagation function (2.3)
[N m]
-

pΔ pressure drop (difference) [Pa]

1pΔ , 2pΔ pressures from valve characteristic curve [Pa]

ijpΔ pressure difference between port volumes i and j of a short
pipeline

[Pa]

LpΔ pressure loss due to laminar flow [Pa]

TpΔ pressure loss due to turbulent flow [Pa]

trpΔ pressure drop in the transition between laminar and turbulent
flows

[Pa]

()h ntδ local error after integration step n of the numerical solution -
 εn global error at integration step n of the numerical solution -
 λ - eigenvalue of Jacobian matrix

- scalar of the test equation
-

μ constant in Van der Pol�s equation -
ξ resistance coefficient -
ρ fluid density [kg m-3]
σ0 stiffness parameter of friction force model [N m-1]
σ1 damping parameter of friction force model [N s m-1]
ν kinematic viscosity [m2 s-1]
ø diameter [m]
φ non-linear system of equations -
ω angular position [rad]
ω! angular velocity [rad s-1]

LIST OF ACRONYMS

BDF Backward Differentiation Formula

CPU Central Processing Unit

DAE Differential and Algebraic Equation

DIRK Diagonally Implicit Runge-Kutta

DOF Degree of Freedom

FE Function Evaluations

FP Fluid Power

LMF Linear Multi-stage Formula

ODE Ordinary Differential Equation

RKF Runge-Kutta-Formula

RMS Root Mean Square

SDIRK Singly-Diagonally Implicit Runge-Kutta

SIRK Semi-implicit Runge-Kutta

1 INTRODUCTION

This introductory chapter starts with a historical overview concerning the evolution

of differential equations and the problems they arise from. The methods employed to solve

these equations are also illustrated. Problem definition and justification of the research is

then followed. Finally, a description of the structure of this thesis with a summary of its

chapter is given.

1.1 Background and brief historical overview
Differential equations are often used to describe physical systems. The solution of

such equations provides information on how the system evolves and what the effect of pa-

rameters is. A very brief description of the origin of differential equations and the evolution

of numerical methods for solving ordinary differential equations is followed.

1.1.1 Differential equations

A first order differential equation is an equation of the form

 () ()(),y x f x y x′ = , (1.1)

where (),f x y is a given function and ()y x is the solution of the equation. The solution con-

tains also a free parameter y0 which is called the initial value problem and it is defined as

 ()0 0y x y= . (1.2)

Differential equations of order n have the form

 () ()()1, , , ,...,n ny f x y y y y −′ ′′= (1.3)

and they can be rewritten as first order system of differential equations for obtaining their

solution.

16 Introduction

Another type of problem arises when the conditions determining the particular solu-

tion of a differential equation are not given at the same point x0 as in (1.2). Instead, the ini-

tial conditions are replaced by conditions of the type ()0y x a= , ()1y x b= . These types of

problems are called boundary value problems, and their solution is more complex to obtain.

Differential equations appeared in scientific literature at the same time as differential

calculus. In 1671, Isaac Newton discussed a solution of a first order differential equation by

series expansion, whose terms were obtained recursively. The main origin of differential

equations was due to geometrical problems, such as the inverse tangent problems consid-

ered by Gottfried Leibniz and Jakob Bernoulli during the same century.

In the 1750s the Euler-Lagrange equation was developed. This was one of the fun-

damental equations of the calculus of variations published later by Leonhard Euler. The

Euler-Lagrange equation

 0F d F
y dx y

∂ ∂
− =

′∂ ∂
 (1.4)

 is used to solve functions of the type (), ,F x y y′ which minimize or maximize the func-

tional ()1

0

, ,
x

x
S F x y y dx′= ∫ . It is generally used to solve optimization problems.

The mathematical formulation of physics involved the use of differential equations.

In his �Dynamique� (1743), Jean le Rond d'Alembert introduced second order differential

equations to compute mechanical motion. Brook Taylor and Johann Bernoulli formulated

the problem of the vibrating string as a system of n linear differential equations, whose so-

lutions determined the position of discretised mass points. From the previous system

d�Alembert derived the famous partial differential equation for the vibrating string. The

propagation of sound was also formulated similarly by Joseph-Louis Lagrange, who con-

sidered the medium to be a sequence of mass points. Lagrange introduced the terms eigen-

value and eigenvector to solve a second order linear equations with constant coefficients.

The problem of heat conduction led to the earliest first order systems. Joseph Fou-

rier, in 1807, assumed that the energy that a particle passes to its neighbours is proportional

to the difference of their temperatures. This can be expressed as a first order system with

constant coefficients. Later, Fourier transformed the first order system to his well-known

heat equation (a partial differential equation), which would be the origin of his Fourier se-

ries theory.

Introduction 17

Lagrange formulated his Lagrangian mechanics (1788) combining the dynamics es-

tablished by d�Alembert with the Lagrange-Euler equation of variation calculus and with

the principle of least action. Lagrange mechanics is still widely used nowadays as a tool to

obtain the equations of motion of complex mechanical systems. The trajectory of an object

is derived by finding the path which minimizes the integral of the Lagrangian, which is the

difference between the kinetic and the potential energy of the system.

1.1.2 Solution of differential equations

In general, it is extremely difficult to obtain an analytic solution to a given differen-

tial equation. Some of the most elemental differential equations can be solved explicitly.

Euler begun to compile all possible differential equations which could be integrated by ana-

lytical methods. The results are collected in 800 pages in the Euler�s opera Omnia. The

book of [Kamke 1942] compiles a list with more than 1500 differential equations with their

solutions. Numerical methods applied to problems of differential equations are needed to

obtain an approximation of the solution when differential equations cannot be solved ana-

lytically.

The Euler method (1768) can be considered as the most basic numerical integration

formula to solve first order differential equations with a given initial value. In order to sim-

plify the illustration of the method, the autonomous form of a first order differential equa-

tion:

 () ()()y x f y x′ = (1.5)

is considered instead of the non-autonomous form given in (1.1). Integrating the equation

through the interval [xn, xn+1] and approximating the integral of function f by a rectangular

quadrature, the Euler method is obtained:

 () ()1n n n ny x h y y hf y++ ≈ = + , (1.6)

where h = xn+1- xn is the integration step size, and yn+1 and yn are defined as approximations

to ()1ny x + and ()ny x respectively. The Euler method has an order of accuracy of one. A

method is said to have a numerical accuracy of order p if the local integration error

()1n ny y x h+ − + is of the order of ()1pO h + .The low accuracy of this method led the

mathematicians to look for higher order methods. To achieve formulas with higher order of

accuracy, there are two main approaches:

18 Introduction

• To use not only the previous calculated solution yn to compute the next solution yn+1

but to make the solution yn+1 to depend on more previously calculated solutions. This

approach leads to the so-called multi-step methods.

• To use more function evaluations f in the interval of integration [xn, xn+1] to compute

the solution at the point xn+1. This procedure leads to the family of methods called

multi-stage.

The first multi-step methods were published by Adams and Bashforth in 1883. The

Adams-Bashforth methods are a special case of the methods known currently as linear

multi-step methods, which have the form

 ()1 1
0 0

k k

i n i i n i
i i

y h f yα β+ − + −
= =

=∑ ∑ , (1.7)

where iα and iβ are free coefficients. Formula (1.7) is known as a k-step linear multi-step

method since information of the last k steps is required to compute the solution yn+1. k func-

tion evaluations f are also needed at previous calculated solutions.

Multi-stage methods appeared when Carle Runge described in 1895 an integration

formula which had its origin in the midpoint rule equation (a Gaussian quadrature)

 () 1 2n n n n
hy x h y y hf y x+

⎛ ⎞⎛ ⎞+ ≈ = + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (1.8)

The accuracy of the midpoint rule formula is of order 2, which makes this method faster in

achieving a desired accuracy, compared to the Euler formula in (1.6). However, to advance

the solution from xn to xn+1 the solution y at point (xn + h/2) is required though it is un-

known. Newton iteration schemes were used to solve these non-linear equations. Instead,

Runge applied the Euler formula (1.6) with a step size of h/2 to determine the solu-

tion ()/ 2ny x h+ . As a result, Runge rewrote the problem (1.8) into this multi-stage for-

mula:

()1

2 1

1 2

2

n

n

n n

k f y

hk f y k

y y hk+

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= +

. (1.9)

Introduction 19

Although the formula uses a first order approximation to determine an intermediate

solution, the method retains an accuracy of order 2. Martin Kutta (1901) formulated the

general scheme of the well-known Runge-Kutta methods. The following method:

()
()

()()

()()
()

1

2 21 1

3 31 1 32 2

1 1 , 1 1

1 1 1

n

n

n

s n s s s s

n n s s

k f y

k f y ha k

k f y h a k a k

k f y h a k a k

y y h b k b k
− −

+

=

= +

= + +

= + + +

= + + +

…

…

…

 (1.10)

is the general form of the s-stage explicit Runge-Kutta method, where ija and ib are real

coefficients. It was after the 1950s when implicit Runge-Kutta methods become of interest,

mainly due to the stiff equation problem and the availability of faster computing devices.

Butcher [Butcher 1964a] and Kuntzmann [Ceschino 1963] derived order conditions for the

free coefficients ija and ib , stating that by employing s-stages, an implicit Runge-Kutta

formula of order 2s could be obtained.

1.2 Problem definition and justification for the research
The search of numerical methods with higher accuracy, while retaining the computa-

tional efficiency, is conditioned by numerical stability issues of the formulas. Curtis and

Hirschfelder introduced the term stiff equations in the 1950s. They noticed that implicit

numerical methods performed much better than explicit methods when solving stiff equa-

tions. Simply defined, it is said that stiff equations arise in a system of ordinary differential

equations ()()y f y x′ = when eigenvalues of its Jacobian matrix /f y∂ ∂ differ in orders of

magnitude. Solutions to non-stiff equations are easy to obtain by simply using classical

methods such as Adams or explicit Runge-Kutta formulas. Nevertheless, these methods

become inefficient for solving stiff equations, since the step size is controlled to keep the

formula stable rather than to fulfil the accuracy required. Methods for solving stiff equa-

tions need therefore new concepts of stability.

Nearly all available numerical codes for solving ordinary differential equations can

be divided in two classes: those for solving stiff equations and those for solving non-stiff

equations. Implicit methods are employed to solve stiff equations. Implicit methods, in op-

20 Introduction

position to explicit methods, require more computational effort, since a set of non-linear

algebraic equations must be solved at each integration step. The latest requires a modified

Newton iteration scheme which makes use of an iteration matrix of the form ()ijI ha J− ,

where I is the identity matrix, J is the Jacobian and haij is a scalar. Every iteration of the

scheme involves the following computational costs: a) evaluation of the Jacobian and for-

mation of the Newton iteration matrix, b) factorization of the iteration matrix into LU form

and c) forward and backward substitution to compute the correction.

Ordinary differential equations describing the dynamics of fluid power systems are

of special interest. Numerical methods find these equations particularly difficult to solve

due to the following characteristics listed below:

• Stiffness: It appears when different sizes (in orders of magnitude) of volumes are found

in the system. Stiffness can also emerge due to the presence of large and small orifices

in the circuit. Such orifices bring different levels of coupling between volumes.

• Strong non-linearities: Mainly are due to the pressure-dependency of the bulk modulus,

the non-linear turbulent fluid flow equation and seal friction forces in actuators.

• Discontinuities: Might arise in the following situations: presence of on/off valves, and

sudden opening and closing of flow paths.

Traditional numerical methods might fail to give an acceptable solution to the stiff

fluid power equations unless excessive small time steps are taken. On the other hand, gen-

eral implicit methods, although they might overcome stability issues, require much more

computational effort than explicit methods.

Computational times have a major importance, especially in real-time applications,

such as on-line conditioning monitoring, teleoperation, and hardware-in-the-loop. An ex-

ample of such applications is showed in [Esqué 2003a], where a simulation model of a two-

dof crane is driven man-in-the-loop within a virtual reality environment. In this real-time

application, the employed numerical method required a relatively small integration step size

in order to guarantee the numerical stability. As a consequence, the computational of the

solution in real-time clock was compromised due to the excessive amount of operations.

Numerical methods capable of solving efficiently the dynamics involved in fluid

power systems are required, particularly in the real-time simulation of relatively large sys-

Introduction 21

tems, and in simulations with a long time intervals. The research presented in this thesis is

therefore justified according to these requirements.

1.3 Research description

1.3.1 Objectives

The two main objectives of this research are stated below:

• The investigation on numerical integration formulas capable of dealing with the

stiffness, non-linearities and discontinuities found in the formulation describing the

dynamics of fluid power systems. Despite these properties found in fluid power cir-

cuits, the numerical integrator should provide acceptable solution accuracy, very

good numerical stability and reduced computational costs. Integration formulas ful-

filling these properties might also be good candidates for being used in real-time

simulations involving fluid power circuits.

• Derivation of a systematic approach to formulate mathematical models of fluid

power components following an object-oriented methodology. The dynamics of the

resulting simulation models shall be formulated as system of ordinary differential

equations in order to be solved by the above numerical integration formulas.

1.3.2 Contributions
The guidelines for the systematic mathematical modelling of the dynamics of fluid

power components (as lumped-parameter models) have been presented. This has been de-

veloped following an object-oriented methodology, allowing the physical modelling of

large interconnected systems of different physical domains. With this object-oriented meth-

odology, modular subsystems and components can be constructed while retaining reusabil-

ity and hierarchical properties.

A class of Rosenbrock formulas are introduced as numerical solvers of the system of

ordinary differential equations originating in the formulation of fluid power systems. The

performance of Rosenbrock formulas outstands, in most of the cases, the performance

shown by numerical solvers commonly used in both real-time and offline simulations.

A systematic way to obtain the analytical expression of the Jacobian matrix of the

system has been also presented. This task can be performed by an algorithm prior to start-

ing the numerical integration. An analytical form of the Jacobian matrix is beneficiary for

22 Introduction

the numerical integration solver, since it can evaluate the Jacobian more accurately and

with less computational costs.

1.3.3 Methodology

Physical based lumped-parameter models of fluid power systems have been devel-

oped in the early stages of this research. Advantages of physical based models are that

model parameters have a physical meaning in the real component and therefore they can be

found in manufacturer�s data sheets or determined empirically. The developed models have

also been formulated taking into account a topology which confers modular and hierarchi-

cal properties. All simulation models have been compiled and organized in a software li-

brary from where they can be called as subroutines. In that way, a fluid power circuit is

defined within an algorithm by simply calling the subroutines, each representing a fluid

power component or subsystem. The algorithm then generates the system of ordinary dif-

ferential equations and its analytical Jacobian matrix, which are fed to the numerical inte-

gration formula. The use of this algorithm has provided a straight-forward way to define

and construction fluid power system models. Errors due to symbolic manipulation and

composition of the equations are also avoided since all the algebraic formulation is auto-

matically generated and in the adequate format in order to be used by the numerical integra-

tion formula.

During the past decades, there has been plenty of research on the construction of

numerical integration formulas for solving stiff ordinary differential equations. A broad

literature survey on the proposed formulas has been conducted. From this survey, many of

the proposed numerical formulas for solving ODEs have been tested by means of solving

test models of fluid power circuits constructed with the algorithm and library described

above.

All numerical integration formulas, their driver algorithms, the library of fluid

power components models and the algorithm used to define and construct the simulation

models have been coded in FORTRAN language, under the Digital Visual Fortran (Digital

Equipment Corporation) programming environment, running on a Windows XP computer

platform.

Introduction 23

1.3.4 Assumptions and Limitations of Scope
Both the mathematical modelling of fluid power systems and the numerical integra-

tion of differential equations are very broad fields, which can be approached in a number of

different ways. This research focuses in the mathematical formulation of fluid power ele-

ments, as lumped-parameter models, realized with ordinary differential equations. Model-

ling representations derived from energy-balance methods, transport delay lines, and fre-

quency domain are not within the scope of this research. Despite these assumptions and

simplifications models can still replicate accurately the behaviour of a fluid power circuit at

a system level [Ellman 1996a]. Empirical validation of mathematical models is not a target

of the research conducted in this thesis and therefore it has been omitted.

During the numerical tests, the maximum dimension (i.e. number of state variables)

of the modelled system has been 20. In the context of mobile fluid power applications, this

dimension represents a relatively mid-large system.

1.4 Thesis structure
This thesis is divided in five chapters, briefly described below, followed by conclu-

sions. The thesis is also supported by four peer-reviewed publications, not reprinted in this

thesis, which are referenced and summarized below.

The first introductory chapter starts with a historical overview concerning the use of

differential equations and their applications from the early days till the present. It is fol-

lowed by the definition of the problem, the justification for the research and a description of

the research, including objectives, contributions, methodology and limitations of scope.

Second chapter provides an overview of different formulation approaches employed

to model the dynamics of fluid power systems. This chapter also discusses the state of the

art on the numerical integration formulas and software packages employed to obtain the

numerical solution of the simulation models.

Third chapter, entitled �Lumped-parameter models of fluid power components and

systems�, introduces a systematic modelling method which ensures modular and hierarchi-

cal properties. The mathematical formulation of these models is presented for some of the

most common fluid power elements.

Fourth chapter, �Numerical integration of ODEs arising in fluid power systems�,

analyses the computational costs of implicit multi- and single-step integration formulas, as

24 Introduction

well as their numerical stability properties. Based on theoretical analyses, L-stable Rosen-

brock formulas are presented as a good candidate for the numerical integration of ODEs

arising in FP systems, due to their good stability properties and computational efficiency.

Finally, a systematic way to form the analytical Jacobian matrix of the system is shown.

This ensures an accurate and computationally cheap evaluation of the Jacobian.

In the fifth chapter, �Performance of Rosenbrock formulas�, numerical integration

tests are carried out employing different numerical integration formulas. Accuracy of the

solution, numerical stability and computational efficiency are analyzed. These numerical

tests confirm that the performance of Rosenbrock formulas, in most of the cases studied,

surpass the performance of other popular ODE integrators. The chapter concludes high-

lighting the advantages (in terms of accuracy and efficiency) of employing analytical Jaco-

bian matrices instead of numerically-evaluated Jacobians.

Refereed publications

Parts of this dissertation have also been published through the following peer-

reviewed publications:

I. Esqué, S., Raneda, A., Ellman, A. (2003), �Techniques for studying a mobile hydrau-

lic crane in virtual reality�. International Journal of Fluid Power Vol 4 No 2 pp. 25-

34.

The article addresses the problem of real-time simulation of a mobile hydraulic crane.

A mathematical model of a hydraulic system controlling a multi-body linked mecha-

nism by using Lagrange�s equations of motion is presented. The article describes the

hardware and software implementation of the virtual interface, as well as the compu-

tational performance of the simulation in terms of data transmission between com-

puters, visualization refresh rate, and numerical integration rate. It is concluded that

the bottleneck for achieving real-time simulation is located in the numerical integra-

tion of the mathematical model. Due to the stiffness of the system, the integration

time step had to be reduced excessively in order to avoid numerical oscillations in the

solution given by an A-stable formula

II. Esqué, S., Ellman, A. (2002), �Pressure Build-Up in Volumes�. Bath Workshop on

Power Transmission and Motion Control, PTMC 2002, Bath, UK. Published in the

Introduction 25

book Power Transmission and Motion Control, edited by C.R. Burrows and K.A.

Edge, Professional Engineering Publishing Limited. London, UK, pp. 25-38.

In this paper, the pressure generation equation is presented and used for modelling

three basic components widely present in fluid power systems: constant volume ele-

ment, cylinder actuator, and a pipeline. Flow variables are determined by a modified

orifice flow equation. The mathematical models of the presented components are

written as sets of ordinary differential equations. The paper also derives the Jacobian

matrices of the above elements. The modular approach of the formulation allows

building a volume-network, where volume-elements can be interconnected by orifice-

model interfaces (such as valves, pumps�) and therefore, a complete fluid power

system can be assembled.

III. Esqué, S., Ellman, A., Piché, R. (2002), �Numerical integration of pressure build-up

volumes using an L-stable Rosenbrock method�. Proceedings of the 2002 ASME In-

ternational Mechanical Engineering Congress and Exposition, November 17-22,

2002, New Orleans, Louisiana, USA.

The paper begins by reviewing the most popular single-step formulas used in solving

stiff ordinary differential equations. The author proposes a simple and efficient inte-

gration method for solving the ordinary differential equations arisen from fluid power

systems: a two-stage Rosenbrock formula derived from a general one-step semi-

implicit Runge-Kutta method. The formula has L-stability properties and its numeri-

cal accuracy is of second order. The integration algorithm also implements an embed-

ded estimation of the error and step size selection. The numerical method is tested in a

dynamic simulation model consisting of two fluid power component models. The

numerical method showed excellent numerical stability, even in stiff conditions and in

regions of discontinuity. The Rosenbrock formula also showed a remarkably good

computational efficiency.

IV. Esqué, S., Ellman, A. (2005), �An efficient numerical method for solving the dynamic

equations of complex fluid power systems�. Bath Workshop on Power Transmission

and Motion Control, PTMC 2005, Bath, UK. Published in the book Power Transmis-

26 Introduction

sion and Motion Control, edited by C.R. Burrows and K.A. Edge, Professional Engi-

neering Publishing Limited. London, UK, pp. 179-191

The paper is a clear continuation of the work presented in Paper III. The article fo-

cuses mainly in the computational efficiency of the formula presented in the previous

paper and also extends the simulation tests to fluid power systems composed of a

number of fluid power elements. It is shown that the efficiency of the numerical inte-

grator is further improved when the code is able to derive the full Jacobian matrix

analytically as a function of the system state variables. The advantages of this ap-

proach are quantified when compared to the conventional computation of the Jaco-

bian matrix by means of numerical differentiation. The results show that the use of an

analytical Jacobian matrix of the system reduces significantly the computational time

to advance in the integration. A second advantage is seen in the improvement of the

numerical stability of the integration formula.

2 STATE OF THE ART

A general overview on the mathematical modelling of the dynamics of fluid power

systems is presented. A broader description focused on the formulation of fluid power com-

ponents, as lumped-parameter models, is given in Chapter 3 and in [Esqué 2002a]. A sur-

vey and review of the most popular numerical integration methods for solving numerically

stiff systems of ODEs is then followed. More detailed analysis of these numerical methods

is given in Chapter 4. Chapter 3 ends with a brief survey of simulation software packages

used in the modelling and simulation of fluid power applications.

2.1 Modelling approaches for the dynamics of fluid power sys-
tems
Fluids are characterized by their continuous deformation and compressibility. One

of the main equations describing the state of a fluid is the pressure generation equation.

Such equation is derived from the continuity equation (conservation of mass law) and the

density equation of the fluid (a function of pressure and temperature), which is defined by

the term bulk modulus. The generally used pressure generation equation states that the pres-

sure p generated in a confined volume V is determined by

 effBdp dVQ
dt V dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.1)

where Q is the net incoming volumetric flow to the control volume and Beff is the effective

bulk modulus. A second equation, but not less important, is the fluid flow equation through

orifices. The turbulent orifice flow formula in (2.2) is the general accepted equation de-

scribing the volumetric fluid flow Q through a sudden short restriction for high Reynolds

numbers. Cq is called the discharge coefficient which depends on the contraction geometry

28 State of the art

of the orifice, A is the cross-sectional area of the orifice, ρ is the fluid density and Δp is the

pressure drop across the orifice.

 2
qQ C A p

ρ
= Δ (2.2)

The lumped-parameter modelling of fluid power circuits as systems of ordinary dif-

ferential equations is extensively used and motivated due to the existence of robust ODE

solution techniques, such as numerical methods and simulation software packages. In

lumped-parameter model approach, fluid power components such as actuators, accumula-

tors, and control valves can be formulated as a combination of control volumes (pressure

generation (2.1)) and orifices (flow equation (2.2)). A detailed description of the lumped-

parameter modelling of fluid power elements and components is presented in Chapter 3 and

in [Esqué 2002a].

The lumped-parameter model approach when applied to the problem of flow

through conduits is commonly formulated with the Hagen-Poiseuille laminar flow equation

(3.4)(a). In Section 3.2.3, a two-volume lumped model for a short pipe, which also accounts

for losses and flow inertial effects, is presented. However, long transmission lines such as

pipes and hoses have inertial, capacitive and resistive properties distributed along their

length, and therefore distributed-parameter models are used. These models relate the fluid

pressure and velocity as a function of position and time. Using Laplace transformed vari-

ables, the input-output behaviour of a straight transmission line with constant and circular

cross section and filled with compressible Newtonian fluid is described as

1 2 2

2
1 2

cosh sinh

sinh cosh

p p Q Z
pQ Q
Z

= Γ + Γ

= Γ + Γ
 (2.3)

where p and Q are Laplace transform of pressure and volumetric flow respectively, sub-

scripts 1 and 2 are upstream and downstream locations in the transmission line, Z is the

characteristic impedance of the conduit and Г is the propagation operator (which relates the

transformed variables at different location points). Since equation (2.3) is expressed in the

frequency domain, it needs to be approximated by a finite number of states in order to re-

formulate it in time-domain and as set of ODEs. Stecki and Davis [Stecki 1986a] have iden-

tified and classified the existing transmission line models in the literature into 7 groups,

according to their complexity. They conclude [Stecki 1986b] that the two-dimensional vis-

State of the art 29

cous compressible flow model is the most suitable for long transmission lines. Piché and

Ellman [Piché 1995] have derived a fluid transmission line model for one and two-

dimensional pipe flows. By means of a modal approach, the transcendental transfer func-

tions associated to the partial differential equations have been approximated to a lumped

parameter model that can be realized as a system of first order differential equations.

In terms of numerical simulation, the lumped-parameter modelling of fluid power

components may have a drawback; all the elements interconnected by a lumped volume

element are strongly coupled between them. Very small volumes will therefore induce very

fast transient and strong coupling. Due to this reason, partition of the lumped numerical

analysis into different tasks for parallel computation is not trivial and might be also non

viable. This implies that the simulation must be run in a centralized manner (rather than

distributed) in order to take into account all the possible couplings between components.

An alternative that overcomes the coupling found in the lumped-parameter model-

ling is proposed in [Krus 1990]. Krus introduces a distributed-parameter modelling ap-

proach of fluid power systems based on the utilization of transport delay lines in the pipe-

lines connecting components. In this approach the transmission of information is restricted

to the speed of wave propagation. There is no immediate communication between compo-

nents, and this allows the components to be decoupled. Distributed or partitioned numerical

simulations become therefore possible. Limitations of this approach are: a) numerical inte-

gration advances with a constant integrator step size and b) no general ODE solver can be

applied to integrate such formulation. Literature concerning the transmission line modelling

method applied to fluid power applications is found in [Kitsios 1986], [Boucher 1986],

[Burton 1994] and [Pollmeier 1996].

Another approach on the mathematical formulation of the dynamics of fluid power

systems is found the analytical system dynamics [Layton 1998]. This method is based on

the energy methods of Lagrange and Hamilton. This multidisciplinary modelling approach

includes the constraints of the system in the equations of motion such that the model com-

prises a set of implicit differential equations and a set of algebraic constraint equations.

This combination of equations is well known as differential algebraic equations (DAEs).

Although there are numerical codes available for solving such problems, the numerical so-

lution of initial value DAEs is still a current research topic.

30 State of the art

2.2 Numerical methods and simulation packages
Ordinary differential equations are by far the most utilized formulation to model the

physics arising in fluid power systems. One of the main reasons is the extensive research

carried out during the last decades [Gupta 1985] on numerical integration methods for solv-

ing ODEs. In addition, popular general purpose simulation software packages loaded with

ODE solvers have also contributed to the use of ODEs for describing the dynamics of sys-

tems.

Numerical integration formulas for the solution of ODEs can be classified in two

different groups: explicit and implicit formulas. While explicit formulas are more suited for

solving non-stiff systems, implicit formulas become more efficient when solving stiff sys-

tems of ODEs. Another classification among numerical integration formulas is made on the

basis of their internal formulations: Single-step methods only make use of the previous cal-

culated solution to determine the next one. In multi-step methods, the solution at one point

is calculated as a function of several previously obtained solutions. Multi-step methods

have therefore more complex formulation than single-step methods.

Runge-Kutta formulas � described in equations (1.9) and (1.10) � are the most popu-

lar single-step codes used in the integration of ODEs. Despite the numerically stiffness usu-

ally found in fluid power systems, explicit Runge-Kutta formulas are still used to integrate

the differential equations arisen in these systems. Popular codes from the explicit Runge-

Kutta family are the RK 4(5)* proposed by [Fehlberg 1969], and the DOPRI 5(4) formula

developed by Dormand and Prince [Dormand 1980]. Another advantage found in these

explicit codes is their easy programming implementation. On the other hand, the utilization

of such codes for solving numerically stiff systems may show a remarkably low computa-

tional efficiency, i.e. excessively small time steps are required to keep the numerical for-

mula within stable conditions. Implicit formulas (either single or multi-step methods) are

used instead for the integration of stiff systems. Despite requiring more number of opera-

tions per step, implicit formulas still perform much more efficiently than the explicit ones

in the integration of stiff systems.

Numerical codes from the implicit Linear Multi-step Formulas (LMF) and from the

single-step implicit Runge-Kutta family are the most used to solve the stiff systems of

* The pair notation 4(5) indicates that the integrator computes the solution with an order 4 formula while
it uses a solution approximation of order 5 to calculate the local error.

State of the art 31

ODEs arising in fluid power circuits. Although LMFs of order greater than 2 cannot retain

A-stability (a numerical integration formula is called A-stable when the numerical stability

of the formula is guaranteed for any size of the integration time step). The most popular

multi-step codes for stiff equations are based on the backward differentiation formula

(BDF) such as the GEAR and LSODE codes. They are part of the public domain library of

numerical methods ODEPACK [Hindmarsh 1983]. Both formulas implement variable order

and variable step-size and they can solve stiff and non-stiff systems by changing automati-

cally the integration formula to BDF or to Adams methods respectively.

Single-step implicit Runge-Kutta formulas are also widely employed for solving

stiff equations. Popular Runge-Kutta codes are: RADAU5 [Axelsson 1969], a fully implicit

Runge-Kutta method of order 5 based on the Radau quadrature; and SDIRK4 [Alexander

1977], a diagonally semi-implicit formula of order 4. Both methods are L-stable (an inte-

gration formula is L-stable when it is A-stable and, moreover, numerical oscillations arte-

facts associated to the stiffer modes are extinguished immediately). Modified Rosenbrock

formulas [Wolfbrandt 1977] have become of special interest due to its simple implementa-

tion and its efficiency. They can be interpreted as a generalization of Runge-Kutta formu-

las. However, in order to guarantee the numerical stability of the formula, an accurate Jaco-

bian matrix of the system must be provided at every integration step. Popular codes based

on the Rosenbrock method are GRK4 [Kaps 1979] and DEGRK [Shampine 1982].

The rapid growth in development and usage of simulation software packages to

model and/or to solve differential equations has gradually diminished the interest of engi-

neers towards implementing their own integration routines. Simulation software instead,

offers a small choice of numerical integrator formulas. The rest of this section introduces a

brief review of some popular simulation packages and the numerical integrators they in-

clude.

In general purpose simulation software such as MATLAB/SIMULINK and VisSim,

the user provides the model of the system, generally formulated as ODEs. A review of the

ODE solvers existing in MATLAB is presented in [Shampine 1997]. For non-stiff equa-

tions the software provides an order 2 Runge-Kutta formula (ode23) and an order 4 Dor-

mand Prince formula (ode113) [Dormand 1980]. An explicit multi-step integrator is also

supplied for non-stiff systems: the ode113, which is based on the Adams methods. Con-

cerning the integration of stiff equations, MATLAB/SIMULINK includes the ode15s code,

32 State of the art

which is a multi-step formula based on the Gear method and the ode23s, a Rosenbrock for-

mula of order 2. VisSim software includes similar implicit and explicit integration formulas

as well as the multi-step formulas from the ODEPACK library.

The following simulation software packages are partially or completely specialised

in fluid power systems: AMESIM and BathFp make use of a variation of the LSODE inte-

grator. EASY5 and DYMOLA offer a variety of single-step and multi-step codes such as

Gear, SDIRK, and RADAU of different orders. The HOPSAN [Krus 1990] software im-

plements a distributed simulation approach which allows partitioning the simulation tasks

in parallel. It makes use the transmission line modelling as a method of integration.

DYNAST and DYMOLA are other multi-physics simulation software including

special fluid power libraries. These packages can formulate the problems as differential

algebraic equations and therefore offer numerical integrators, such as the DASSL formula

[Brenan 1996], intended for these types of equations.

3 LUMPED-PARAMETER MODELS OF FLUID
POWER COMPONENTS AND SYSTEMS

This Chapter deals with the construction of fluid power circuit simulation models

from lumped-parameter models of fluid power components or elements. In the lumped-

parameter approach, the mathematical model of a physical system with spatially distributed

fields is simplified to single scalars. In this idealization, physical properties of the system

such as mass, stiffness, inductance and capacitance are concentrated into single physical

elements. The dynamic behaviour of these systems can be described by ODEs, being time

the only independent variable.

Simulation models are constructed following an object-oriented methodology and a

topology in which fluid power components are grouped into four different categories ac-

cording to their functionality. This topology allows the interconnection of different fluid

power elements of different groups in order to form a more complex fluid power circuit.

3.1 Modelling topology
Fluid power systems can often be represented as a combination of idealized ele-

ments, which describe the physical mechanisms of fluid power generation, storage, dissipa-

tion and transformation. Based on the previous classification, the topology adopted in this

formulation of equations comprises four main element groups:

• Pumps: Provide the power to the system by generating a flow from an external me-

chanical power source.

• Volumes: Behave as fluid power storage. Volume elements may act as fluid capacitors

and fluid inductors. Fluid capacitors store the energy in terms of the fluid pressure, and

fluid inductors store the energy by means of the inertial effects of the fluid flow.

• Flow resistors: These elements dissipate fluid power by means of pressure losses.

• Actuators: Convert the hydraulic power into mechanical power.

34 Lumped-parameter models of fluid power components and systems

The achievement of modular and hierarchal properties among the previous elements

is considered necessary in order to mathematically formulate fluid power systems in a

straight-forward and systematic approach. This is accomplished by means of defining com-

munication ports for each of the elements. Communication ports (represented as circles in

Figure 3.1) link two elements of different groups, establishing a two-way interaction be-

tween them. Communication ports are intrinsic to each element group and can be classified

into three different groups, according to the type of physical variables they transmit.

• Hydraulic ports : They are used to connect Volume elements with other hydraulic

elements such as pumps, flow resistors and actuators.

• Control ports : They are employed to input signals (control current i, pump dis-

placement Vp, setting pressures�) to those elements admitting controllability such as

variable displacement pumps, control valves, adjustable orifices�).

• Mechanical ports : They define a two-way interaction between the fluid power and

the mechanical domains by exchanging their dynamic variables.

Figure 3.1. Fluid power element groups and communication ports

Fluid power elements connected by hydraulic ports exchange flow and pressure

variables between each other. As it can be observed in the above figure, hydraulic ports

found in Volumes output pressure variables, while hydraulic ports found in pumps, flow

resistors and actuators output flow variables to their adjacent elements.

Mechanical ports allow the possibility to establish a co-simulation between fluid

power domains and mechanical domains. In a co-simulation, two different solvers, one

dedicated to the mechanical system and the other dedicated to the fluid power system, run

in parallel. Since both domains are coupled, components connecting the domains must ex-

change their dynamic variables at every integration step. In [Larsson 2003], software envi-

Lumped-parameter models of fluid power components and systems 35

ronments to implement co-simulations and stability analyses of coupled problems are in-

vestigated. As an example, Figure 3.1 shows a block diagram system of fluid power ele-

ments interconnected by their communication ports. From left to right the element blocks

represent a variable displacement pump, a short pipeline, an electrically operated propor-

tional valve, hoses, and a hydraulic actuator. The pump and the actuator are connected to a

mechanical system by means of their mechanical ports. In the case of the pump, it receives

the mechanical variable nD, which represents the rotational speed of an engine shaft. The

interaction is completed when the pump transmits resistance torque variable Г to the en-

gine. On the other hand, the actuator outputs the piston force F (or vane actuator torque Γ)

to the mechanical system, which acquires this variable as an external load. The mechanical

simulator then solves the dynamics of the mechanical system and returns the new piston

position x and velocity x! (or angular position ω and angular velocityω!) which are then

used in the fluid power simulator to calculate the new piston force (or torque).

3.2 Mathematical formulation of fluid power components
This section introduces the equations describing the dynamics of some representa-

tive fluid power components. Fluid power components are modelled as lumped-parameter

systems and therefore they can be described with ordinary differential equations. The for-

mulation and communication between components follows the topology introduced in the

previous section. A mathematical model of the fluid is also discussed.

3.2.1 Fluid bulk modulus

Due to practical considerations, in many applications the main physical fluid proper-

ties, such as density and viscosity, are considered invariable to fluid pressure and fluid tem-

perature. The bulk modulus of a liquid (which is a measure of the fluid stiffness) can be

substantially reduced by gas or vapour entrapped in the liquid in the form of bubbles. In

addition, bulk modulus may be also lowered by mechanical compliance of the fluid con-

tainer. In [Merritt 1967] a definition of effective bulk modulus is proposed and defined as

the reciprocal sums of individual bulk modulus of a mixture of air-liquid fluid and the

flexible container where the fluid is confined. The equation determining the effective bulk

modulus is:

36 Lumped-parameter models of fluid power components and systems

 1 1 1 1g

eff l c t g

V
B B B V B

= + + , (3.1)

where Bl , Bc and Bg are the liquid, container and gas bulk modulus respectively. Vg is the

volume of entrapped gas and Vt is the volume of liquid plus entrapped gas.

However, at low pressure levels the volume of entrapped air in the fluid can grow

substantially, reducing significantly the density and the stiffness of the fluid. Such changes

in the fluid density have a strong influence in the system performance, and therefore sys-

tems operating through a wide range of pressure levels require a more accurate definition of

fluid bulk modulus than the one proposed in equation (3.1).

A two-phase fluid model is derived in [Nykänen 2000], where the effective bulk

modulus of the fluid is determined as a function of the pressure of the fluid, the volumetric

fraction of entrapped gas, the bulk modulus of the liquid itself, the elasticity coefficient of

the structural expansion of the container enclosing the fluid, and the polytropic gas constant

of the entrapped air.

Another approach is presented in equation (3.2), which is a more generally accepted

formula to compute the effective oil bulk modulus. Although the formula is not derived

from a physical model, the approximation determines the effective bulk modulus as a non-

linear function of pressure p. The constants aB and bB are given in bar and can be found

tabulated for a specific oil.

 () () 1 ln 1 .B
B B

pB p b p
a b
⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (3.2)

3.2.2 Pump elements

Most of fluid power applications have a hydraulic pump as a source of power sup-

ply. As mechanical power to fluid power transformers, hydraulic pumps show volumetric

and mechanical losses which must be quantified in order to obtain an accurate value of the

delivered pump flow.

Several loss models for hydraulic pumps can be found in the literature. Formulas

based on coefficients, which might be obtained from data given by the manufacturer, are

the most common. In [Wilson 1948] one of the first coefficient models was presented. In

that approach the pump volumetric losses took into account laminar leakage and constant

leakage flow. [Schlösser 1961] and [Thoma 1969] expanded the work introduced by Wil-

Lumped-parameter models of fluid power components and systems 37

son adding further coefficients which would account for more flow losses and friction

sources. More recently, [Dorey 1988] presented a non-linear type of flow model with vari-

able coefficients. In general, the number of coefficients required to accurately describe the

losses is about five for the flow loss model and ten for the torque loss model, requiring

therefore a considerable amount of experimental data. Other formulas quantifying the

losses are based on measurements, from which losses can be tabulated as a function of the

system variables. One of the main drawbacks of these approaches is that many measure-

ments are needed to include the entire pump operating range.

In [Huhtala 1996], the so-called two-line model is proposed. In this approach, flow

and torque loss models are based on polynomial fittings obtained from measured data of the

hydraulic pump. The advantage of this method is that just few measurement points (be-

tween 30 and 40) are required and the accuracy obtained is found to be very good in all the

range of the pump operation.

According to the modelling topology presented in Section 3.1, pump (or flow gen-

erator) elements output the volumetric flow Q as a function of the following inputs: shaft

rotational speed nD, volumetric displacement Vp and pressure at the inlet and outlet ports of

the pump.

3.2.3 Volume elements
Two of the most representative fluid power components which behave as fluid en-

ergy storing elements are presented next. Such components are a fixed-size volume and a

short pipeline, the latter accounting for pressure losses and inertial effects. The equations

describing the dynamics of these elements are mainly obtained from the law of conserva-

tion of mass in control volumes and they are discussed in [Esqué 2002a].

Fixed-size volume

A fixed-size volume can be considered as a fluid capacitor in which the rate of

stored energy (in terms of pressure p) is expressed as a function of the net volumetric flow

Q entering a control volume of size V, as Figure 3.2 illustrates.

38 Lumped-parameter models of fluid power components and systems

Figure 3.2. Fixed-size volume

The well-known pressure generation equation (3.3), is used to formulate the prob-

lem.

()effB pdp dVQ

dt V dt
⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ (3.3)

Since the term dV/dt = 0 for a fixed-size volume, fluid capacitance can be identified

as being C = V / Beff (p).

Short pipeline

The short pipe model takes into account the pressure losses of the fluid flow across

the pipe, and it also accounts for the inertial effects caused by the acceleration of the fluid

in the pipe. The model is realized (see Figure 3.3) by two fluid capacitors (fixed-size vol-

ume elements) connected by a flow resistor (orifice).

Figure 3.3. Short pipeline

Pressures pi and pj generated in the volume elements are determined according to the

pressure generation equation (3.3). Energy losses along the pipe are determined by equation

(3.4)(c). The sources of those losses are the following:

• A pressure drop due to the laminar flow travelling through a pipe (it is assumed that

laminar flow is predominant). The flow equation is given by the Hagen-Poiseuille law,

see equation (3.4)(a), which describes the pressure loss ΔpL as a linear function of the

volumetric flow, pipe length L, fluid kinematic viscosity υ and density ρ, and inversely

proportional to the fourth power of pipe diameter D.

Lumped-parameter models of fluid power components and systems 39

• Minor losses, due to pipe elbows, bends and fittings are given by the turbulent flow

equation (3.4)(b). The resistance coefficientξ is determined experimentally according

to the pipe geometry changes. Values forξ can be found tabulated in [Merritt 1967].

()

()

()

4

2
2 4

128

8

L L L

T T T

loss L T L T

Lp K Q K a
D

p K Q K b
D

p p p K Q K Q Q c

ν ρ
π
ρ ξ

π

Δ = =

Δ = =

= Δ + Δ = +

 (3.4)

The inertial effects of the fluid flow (assuming constant cross-section area, steady

pipe and uniform velocity of the fluid in the pipe) are formulated according to Newton�s

second law applied to a lumped mass of fluid, as showed in the following equation,

 ()ij ij loss
AQ p p
Lρ

= Δ −! , (3.5)

where A is the cross-sectional area of the pipe and ρ is the fluid density.

Collecting and combining equations (3.3), (3.4) and (3.5) a set of ordinary differen-

tial equations defining the dynamics of a short pipe is obtained, with state vari-

ables ()i j ijp p Q

()

()

() ()

1
2

1
2

effi
i ij

eff
j ij j

ij i j L ij T ij ij

Bp
Q Q

AL

B
p Q Q

AL

AQ p p K Q K Q Q
Lρ

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = −
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎡ ⎤− − +⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠

!

!

!

 (3.6)

3.2.4 Flow resistor elements

Flow resistor elements are characterized by the function ()Q f p= Δ , where Q is the

volumetric flow rate through the resistor and Δp is the pressure loss across the conductor.

Fluid resistors dissipate fluid power, exchanging the power loss (Q x Δp) into heat. The

above definition assumes that the rate of change in the flow is small enough to ignore the

fluid inertia effects. The first flow resistor element introduced in this section is an orifice,

defined as a sudden and short restriction. The orifice element is the most elemental flow

resistor and it can be used as a subcomponent for building more complex flow resistor

40 Lumped-parameter models of fluid power components and systems

models. Figure 3.4 shows a schematic of a spool valve (a flow resistor component), which

consists of an orifice subcomponent and a spool dynamics model. The block accounting for

the dynamics of the spool passes the cross-sectional flow path area A to the orifice element

subcomponent.

Figure 3.4. Flow resistor component with orifice element as a subcomponent

Orifice

The flow through an orifice is commonly determined by using the turbulent flow

equation ()
1

2Q K p= Δ . However, its Jacobian evaluation at the origin shows a singularity.

Numerical integrators evaluating such Jacobian will fail to obtain a solution. In order to

overcome this problem Ellman and Piché [Ellman 1996b] derived the following empirical

two-regime fluid flow piece-wise equation

()

()

2 2

2

2

3 Re 3 0
4

9 Re ,
8

q tr

tr
tr

tr tr

tr
tr

q

pQ C A p p a

A p pQ p p b
d p p

with p
DC

ρ

ν

ν ρ

Δ
= Δ > Δ

⎛ ⎞⎛ ⎞Δ Δ
= − ≤ Δ ≤ Δ⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠⎝ ⎠

Δ =

 (3.7)

where a laminar flow equation (3.7)(b) describes the fluid flow for pressures lower than a

transition pressure level Δptr. The quadratic spline polynomial provides a smooth transition

between laminar and transition regimes and avoids the infinite derivative at the origin.

Pressure relief valve

A pressure relief valve can be a relatively complex element to model accurately. The

behaviour of this component is mainly dictated by the valve internal geometry and the dy-

Lumped-parameter models of fluid power components and systems 41

namics of the spool, which is governed by force quantities difficult to determine such as

flow, jet, friction, spring and damping forces. A method used for modelling a single-stage

pressure relief valve with a damping piston is presented in [Handroos 1990], where the ana-

lytical model of the valve is not based on physical parameters but in a reduced number of

parameters which can be determined from measured characteristic curves of the valve. In

order to achieve that, the model describing the dynamics of the spool is brought in the form

of equation (3.8), where pref is the setting pressure of the valve, pin is the pressure at the

inlet port of the valve, K is a variable proportional to the cross-section area of the flow pas-

sage between the spool and the outlet port and Q is the volumetric flow through the valve.

Parameters c1 and c2 are then identified from the typical pressure-flow characteristic curves

shown in Figure 3.5 and from the set of equations (3.9).

Figure 3.5. Pressure valve characteristic curve

() ()2 2

3 3 4 3 1 22in ref ref

in

K p p c c c K c c c p K

Q K p

= − − − +

=

!! !
 (3.8)

1 1 2 2 1 1 2 2 2 1
1

1 2 1 21 1 2 2

1 2
2 1

1 21 1 2 2

1 1 1 2 2 2

1
2 2 2 22 2

1 1 1
22 2

ref ref

p p p p p p p p p pc
Q Q p pQ p Q p

p pc c
p pQ p Q p

p p p p p p

Δ Δ Δ Δ Δ Δ
= + − − − − +

Δ ΔΔ Δ

⎛ ⎞
= + − +⎜ ⎟Δ ΔΔ Δ ⎝ ⎠
= Δ − = Δ −

 (3.9)

42 Lumped-parameter models of fluid power components and systems

In equation (3.9), pref1 and pref2 are two different valve setting pressures in which the pairs

(Δp1,Q1) and (Δp2,Q2) are measured. Values of the remaining parameters c3 and c4 of equa-

tion (3.8) are determined with dynamic response measurements of the valve.

3.2.5 Actuator elements

The ultimate purpose of a hydraulic system is to transmit its hydraulic power to me-

chanical power. Fluid power components providing this interface between mechanical and

fluid power domains are mainly cylinder actuators and hydraulic motors. The formulation

of a cylinder actuator is derived next.

Cylinder actuator

The formulation of a double acting cylinder actuator (schematized in Figure 3.6) can

be written as a combination of the elements presented formerly. Pressures in cylinder

chambers pA and pB are defined according to the pressure generation equation for volume

elements in (3.3). Incoming flows QA and QB through the cylinder ports are calculated fol-

lowing the orifice flow equation (3.7), where pA� and pB� are the pressures in the adjacent

volume elements connected to the cylinder ports. As a transformer element, the hydraulic

cylinder communicates its hydraulic piston force Fhyd to a mechanical system. The dynamic

equations describing the cylinder chambers pressures and the hydraulic piston force as a

function incoming volumetric flows are shown in (3.10).

Figure 3.6. Hydraulic cylinder

()

() ()
max

eff
A A A

A

eff
B B B

B

hyd A A B B

B
p Q xA

A x
B

p Q xA
A x x

F p A p A Fμ

= −

= +
−

= − −

! !

! !
 (3.10)

Position x and velocity x! of the piston is determined by the dynamic equations gov-

erning the mechanical system connected to the hydraulic cylinder. Figure 3.7 shows a

schematic representation of an actuator driving a multi-body mechanism with rotational

joints, with joint coordinates q. The hydraulic force Fhyd is transmitted to the mechanical

system as the joint torque Γ which drives the equations of motion of the mechanical device.

Lumped-parameter models of fluid power components and systems 43

The solution of these equations returns the position x and the velocity x! of the cylinder rod

back to the hydraulic system (3.10).

Mq Hq G+ + = Γ!!(),hydF qΓ

() , (,)x q x q q! !

Figure 3.7. Exchange of hydraulic and mechanical variables between a hydraulic

cylinder and a mechanical system

In applications where the external load Fext acting on the cylinder is a known vari-

able, the acceleration of the cylinder piston can be determined with Newton�s second law.

Adding this equation to (3.10), a set of a set of four ordinary differential equations is

formed, with ()A Bp p x x! as state variables:

()

() ()
max

eff
A A A

A

eff
B B B

B

A A B B ext

B
p Q xA

A x
B

p Q xA
A x x

x x

p A p A F F
x

m
μ

⎛ ⎞
⎛ ⎞ −⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ +⎜ ⎟
⎜ ⎟ −⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

! !

! !

! !

!!

 (3.11)

The friction force Fµ occurring in the cylinder seals is a highly non-linear phenome-

non which depends on the pressure difference between the chambers and piston velocity x! .

In [Olsson 1996], a relatively simple and realistic friction model is presented, where the

friction force is given by

() ()

()

0

0 1

1
s

x
x

C S Cg x F F F e

x
z x z

g x
F z z bxμ

σ

σ σ

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

= −

= + +

!
!!

!
!!

!
!!

 (3.12)

44 Lumped-parameter models of fluid power components and systems

where FC and FS are the Coulomb and static friction forces respectively, sx! is the transient

velocity from static to Coulomb friction regimes and b is the viscous friction coefficient.

The state variable z is related to the deformation of the cylinder seal. Fs/σ0 is the maximum

seal deformation and σ1 is a damping term. Another well accepted friction model, derived

from (3.12) by neglecting the dynamics associated to the deformation of the sealings, is the

following:

 () ()sgn s
x

x
C S CF x F F F e bxμ

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠

!
!! ! (3.13)

4 NUMERICAL INTEGRATION OF ODEs
ARISING IN FLUID POWER SYSTEMS

Backward Differentiation Formula (BDF) belongs to the family of linear multi-step

formulas (LMF). They were the first formulas proposed to solve stiff differential equations.

Gear [Gear 1971] implemented BDFs in a variable order and variable step size code called

DIFSUB. This code has shown to be efficient in solving general stiff differential equations.

The code is still in use, together with improved versions of DIFSUB such as GEAR and

LSODE codes. Despite the claimed good efficiency of these multi-step methods, the fol-

lowing drawbacks are found when the ODE equations to be integrated are originated in

fluid power systems:

• The main disadvantage of multi-step methods was found by Dahlquist when analyzing

their stability [Dahlquist 1963]. His theorem states that no linear multi-step method of

order greater than 2 can be A-stable.

• The stability region of BDF methods decreases as the order of the formula increases.

For many stiff problems, in which the eigenvalues do not have large imaginary com-

ponents, the numerical stability is not compromised. However, ODEs whose Jacobians

have eigenvalues with large imaginary parts, make the non A-stable BDF formulas

very inefficient for such problems (the formula has to reduce excessively the integra-

tion step size in order to achieve stability conditions).

• BDF methods lack of accuracy near discontinuities, which are very common in fluid

power systems.

• The above codes (DIFSUB, GEAR and LSODE) are implemented with fixed-

coefficients (i.e. previous calculated points of the solution are equally spaced). Gear

[Gear 1974] showed that codes based on fixed-coefficient implementation must restrict

the frequency in which the step-size is changed during the integration in order to re-

main stable.

46 Numerical integration of ODEs arising in fluid power systems

In the following sections of this chapter, the advantages of single-step methods over

LMF are discussed. The computational efficiency of both numerical integration approaches

is analyzed and compared in Section 4.1. Stability properties of single-step methods are

investigated in Section 4.2. In Section 4.3, the equations of order conditions determining

the order of accuracy and stability properties of Rosenbrock formulas are derived. Finally,

the last section of this chapter illustrates how the analytic form of the Jacobian matrix can

be automatically generated for any given system before the numerical integration starts.

The advantages of using the analytical form of the Jacobian � over a Jacobian obtained by

numerical techniques � are shown in Chapter 5.

4.1 On the efficiency of implicit Linear Multi-step and implicit
Runge-Kutta formulas
Implicit Runge-Kutta formulas (RKF) are one-step methods with a multi-stage

scheme that can be of high order and still retain A-stability. They do not present either the

disadvantages of BDF listed above. The main problem associated to RKFs is that the com-

putation of the solution requires the solution of a non-linear system of equations, which is

excessively expensive to compute when compared to the costs involved in solving multi-

step methods. In this section, the computational costs involved in the solution of multi-steps

and one-step methods are analyzed and compared.

The general form of a linear multi-step formula (LMF) was introduced in Section

1.1.2 as

 ()1 1
0 0

k k

i n i i n i
i i

hα β+ − + −
= =

=∑ ∑y f y . (4.1)

LMF computing the numerical solution 1n+y to the exact solution ()nx h+y can be

rewritten by grouping in a constant C the terms calculated in previous solution points,

yielding

 ()1 0 1n nhβ+ += +y f y C . (4.2)

Each step in (4.2) requires the solution of a non-linear system () = 0yφ , where

() ()1 1 0 1n n nhβ+ + += − −y y f y Cφ . This is usually done by a modified form of Newton itera-

Numerical integration of ODEs arising in fluid power systems 47

tion. The iterative Newton scheme computes in its m-th iteration the approximation to the

solution 1n+y as () () ()1
1 1 1

m m m
n n n

+
+ + += + Δy y y , with ()

1
m

n+Δy given by the linear system

 () ()() ()()0 1 1
m m

n nhβ + +− Δ = −Ι J y yφ , (4.3)

being J, the Jacobian matrix of the function f evaluated at ny , and I the N N× -

dimensional identity matrix. The iteration scheme is repeated until a convergence criterion

is achieved. The cost involved in solving a N-dimensional ODE system ()1, ,j j Ny f y y′ = …

with j = 1�N, by means of a linear multi-step method is then determined from the Newton

iteration scheme (4.3). The cost to solve each iteration m consists on:

• One function evaluation of f.

• Evaluation of the Jacobian J and LU-factorization of the iteration matrix ()0hβ−I J .

The LU-factorization of the iteration matrix is very costly, O (N 3/3) operations. Fortu-

nately, the same iteration matrix is employed for all Newton iterations required in one

integration step.

The costs in each integration step can be reduced by using the same iteration matrix for a

few number of steps. Some BDF codes use this approach in those cases where the Jacobian

varies slowly from step to step.

On the other hand, the formulation of one-step implicit RKF is formed with inter-

mediate stages ki. The s-stage implicit RKF has the form

1

1

1
where , 1,..., ,

n

s

n i i
i

s

i n ij j
j

h b

h a i s

+
=

=

= +

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠

∑

∑

y y k

k f y k
 (4.4)

where aij and bi are free-choice parameters, whose values will determine the solution accu-

racy of the formula and its numerical stability. The implementation of fully implicit RKF is,

by far, more costly than BDF methods. At each integration step, the following non-linear

algebraic system of s N× equations must be solved:

 () () , 1,...,i i n ij jh a i s= − + ∑ =k k f y kφ , (4.5)

 being N the dimension of the system ()′ =y f y , and s the number of stages. The non-

linear system is solved again with a modified Newton iteration scheme

48 Numerical integration of ODEs arising in fluid power systems

 () () ()1 , 1,...,m m m
i i i i s+ = + Δ =k k k , (4.6)

where the incremental values ()m
iΔk are obtained by solving the s N× -dimensional

linear system

()

()

()

()()
()()

()()

111 12 1 1

21 22 2 22

1 2

m
s

m
s

m
s s ss s s

ha ha ha
ha ha ha

ha ha ha

⎛ − ⎞− − − Δ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟− − − −Δ ⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − − Δ −⎝ ⎠⎝ ⎠ ⎝ ⎠

#
#

$ $ % $ $ $
#

m

m

m

kI J J J k
J I J J kk

J J I J k k

φ

φ

φ

 (4.7)

The cost of a Newton iteration applied to a fully implicit RKF method is:

• s function evaluations of f.

• Solution of the linear system (4.7), whose LU-factorization requires ()()3 / 3O sN op-

erations. Usually, the Jacobian J is evaluated once for all the iterations within one inte-

gration step, and therefore, only one LU-factorization of the s N× -dimensional itera-

tion matrix ()h− ×I A J is required at every integration step.

Such excessive linear algebra costs can be reduced by using Butcher�s technique [Butcher

1976], that exploits the special structure of the iteration matrix in (4.7). By transforming the

matrix A-1 to a Jordan canonical form, the LU-factors can be solved in diagonal blocks and

therefore the LU-factorization of the iteration matrix is reduced. However, implicit RKF

methods are still far from being competitive (in terms of efficiency) to BDF methods, since

the latter only requires O (N 3 / 3) operations to solve each iteration of the Newton scheme.

One way to reduce significantly the computational costs of implicit RKF is found in

the semi-implicit Runge-Kutta formulas (SIRK) [Alexander 1977], also named diagonally-

implicit Runge-Kutta formulas (DIRK). SIRK formulas are a particularization of implicit

RKF in which matrix A is lower triangular (i.e. 0ija = for i j<). As a result, the stages ki

in (4.4) can be solved successively i = 1, 2,�, s with only one N-dimensional non-linear

system ()iiha−I J to be solved at each stage. The computational cost per step in DIRK

methods is reduced from O ((sN) 3/3) to O (sN 3/3) operations.

A SIRK method with all the diagonal terms of matrix A equal (iia γ= for i = 1,�,s)

is called singly diagonally implicit (SDIRK) method:

Numerical integration of ODEs arising in fluid power systems 49

1

1

1

1
where , 1,...,

n

s

n i i
i

i

i n ij j i
j

h b

h a i sγ

+
=

−

=

= +

⎛ ⎞⎛ ⎞
= + + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

y y k

k f y k k
. (4.8)

The advantage of having a lower triangular A matrix with equal diagonal terms is that all

stages ki can be successively solved by using the same LU-factorization of the iteration

matrix ()hγ−I J . The dominant costs of a SDIRK method are therefore reduced to s func-

tion evaluations per iteration and one LU-factorization of an N-dimensional iteration matrix

per integration step, yielding to O (N 3/3) operations.

In the above presented LMF and RK implicit methods, the Newton scheme is iter-

ated several times at each integration step until certain convergence criterion is met. A new

class of implicit methods, which have the advantage of not using an iteration scheme, is

presented next. Rosenbrock formulas introduce the Jacobian term directly into the integra-

tion formula instead. Rosenbrock methods were first introduced in [Rosenbrock 1963] and

they can be interpreted as the application of only a single Newton iteration at each stage ki

of a SIRK formula. This yields to the following formulation:

1

1

1

1
where , 1,...,

n

s

n i i
i

i

i n ij j ii i
j

b

h a h a i s

+
=

−

=

= +

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠

∑

∑

y y k

k f y k J k
. (4.9)

Modified Rosenbrock methods (also known as ROW-methods, or generalized RKFs) can

be seen as a generalization of (4.9), since they introduce linear terms of Jkj to the stages ki

for j=1..i. By doing this, more freedom is obtained when establishing order conditions of

accuracy and stability properties [Wolfbrandt 1973, Kaps 1979]. The modified Rosenbrock

formula is written as

1

1

1

1 1
where , 1,..., .

n

s

n i i
i

i i

i n ij j ij j
j j

b

h a h i sγ

+
=

−

= =

= +

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠

∑

∑ ∑

y y k

k f y k J k
 (4.10)

Again, a formula with iiγ γ= is of special interest, since all stages ki can be solved by

using the same LU-factorization of ()hγ−I J for i = 1..s, as next equation sows:

50 Numerical integration of ODEs arising in fluid power systems

 ()
1 1

1 1
, 1,..., .

i i

i n ij j ij j
j j

h h a h i sγ γ
− −

= =

⎛ ⎞
− = + + =⎜ ⎟

⎝ ⎠
∑ ∑I J k f y k J k (4.11)

The fact that Rosenbrock methods do not require the solution of non-linear systems

make them, potentially, very efficient for the integration of stiff systems of ODEs. The

Rosenbrock method in (4.10) is the formula proposed in this thesis for the integration of

ODEs arising in fluid power systems. So far, it seems that Rosenbrock formulas have not

being used in fluid power systems, although they have proved to be very effective in other

applications and in the solution of test equations for low-moderate accuracy requirements.

4.2 Stability properties of one-step methods
The stability of a numerical integration formula can be studied by analyzing the be-

haviour of the local and global errors of the solution. The global error (also called true er-

ror) εn of a numerical solution at the point tn is defined as ()n n ny y tε = − , where yn is the

approximated solution computed by the formula, and ()ny t is the exact solution (usually

unknown). The local error ()h ntδ of the solution is the error of the numerical formula after

the integration of a single step starting from an exact solution ()ny t . Therefore, the global

error can be seen as a cumulative error, where errors add up during the integration, while

the local error only measures the error made at each step.

n

n+1

h(
tn

)

Exact
solution

Numerical
solution

tn tn+1 t

y

h

yn

yn+1

Figure 4.1. Local and global errors of a numerical solution

The stability of a one-step integration method is guaranteed when the error inequal-

ity (4.12) holds.

Numerical integration of ODEs arising in fluid power systems 51

 ()1n n h ntε ε δ+ ≤ + . (4.12)

The inequality states that the global error ε of the solution does not grow unboundedly as

the integration advances.

There is not a stability analysis of RKF methods dealing with non-linear and stiff

ODEs. Instead, to characterize and analyze the stability of a numerical method, the follow-

ing test equation is used:

 () ()0 0, , , Re 0y y with y t yλ λ λ′ = = ∈ ≤& . (4.13)

The advantage of this test equation is that its analytical solution is known

() ()0 expy t y tλ= . The behaviour of a numerical method in solving the test problem (4.13)

can be extrapolated to predict its behaviour in solving a non-linear equation of the type

()y f y′ = [Gupta 1985], since this can be approximated by

 () ()0 0
fy y y f y
y
∂′ = − +
∂

 (4.14)

over a small interval [t0 , t0 + h]. The term ()0f y seldom affects the stability and therefore

f y∂ ∂ may approximate λ . When dealing with a system of equations f y∂ ∂ is then the

Jacobian matrix, and the system () ()0 0′ = − +y J y y f y can be transformed to a set of

equations () ()0 0y y y f yλ′ = − + , whereλ is an eigenvalue of J. As a result, the test prob-

lem (4.13) can be used as a good model for analyzing the stability of numerical methods

solving the general case ()′ =y f y .

The test equation (4.13) applied to the forward Euler method ()1n n ny y hf y+ = +

yields to (4.15) when substituting function f by yλ .

 1 1n

n

y
h R

y
λ+ = + = . (4.15)

R is the ratio of computed solutions at tn+1 and tn and it is known as the stability function or

the amplification factor of the numerical method. The stability function R of the test equa-

tion exact solution is

 ()
()

1n h

n

y t
R e

y t
λ+= = . (4.16)

52 Numerical integration of ODEs arising in fluid power systems

For all values of λ which make the exact solution of y yλ′ = stable, i.e. ()λ' <0,

the stability function R of the exact solution holds () 1R hλ ≤ . This becomes then the con-

dition of stability for which the solution of a numerical method does not grow unbounded.

Imposing the condition () 1R hλ ≤ to the Euler method in (4.15), it turns that Euler method

is stable if and only if 1 1hλ+ ≤ . Therefore Euler method is stable for values

of [2,0]hλ = − , assuming thatλ ∈' .

Stability regions can be represented graphically for each numerical method. In the

general case, whereλ ∈& are the eigenvalues of the Jacobian matrix of a set of equations,

the stability regions are plotted in the complex hλ plane, and show the values of hλ which

make the numerical method stable, i.e. regions where () 1R hλ ≤ .

In Figure 4.2 the stability regions (shaded in gray) of some numerical integration

formulas are plotted. As stated above, the forward Euler method is stable whenever

1 1hλ+ ≤ , which is the inner area of a circle or radius 1 and centre in (-1,0) in the com-

plex hλ plane. This method is therefore not suited for the integration of stiff ODEs having

large negative eigenvalues λi, since very small step sizes h should be required in order to fit

the method within its stability region. It is desirable then that numerical methods to be used

for the integration of stiff ODEs should be stable for a large region in the left half-plane (hλ

with negative real part), since the left-half plane is the location of all the eigenvalues λ

which makes the exact solution of stable too.

Numerical methods whose stability region comprises the entire left-half hλ plane

(() 1R hλ ≤ for all real λ) are called A-stable. In other words, A-stable methods are stable

for any positive time step h whenever λ has a negative real part. According to the stability

regions plotted in Figure 4.2, the trapezoidal rule, with () () ()1 1
2 21 1R h h hλ λ λ= + − , is

stable in the whole left-hand side hλ plane, while the backward Euler formula, with

() ()1 1R h hλ λ= − , is stable for all hλ values except for the unit circle cantered at (1,0).

Both integrations formulas are therefore A-stable.

Numerical integration of ODEs arising in fluid power systems 53

Figure 4.2. Stability regions of some
simple one-step formulas.

Figure 4.3. Stability regions of explicit
RKFs, with p=s.

A-stability might not be a sufficient condition for numerical methods dealing with

stiff systems of ODEs. Another desired property for the numerical method is that its stabil-

ity function accomplish () 1R hλ (as hλ → −∞ . This requirement can be understood

when solving the test equation (4.13) with a very large negative λ. Since 1/ λ− is the time

constant of the exact solution, a λ → −∞ means that the solution decays exponentially to

zero immediately. This asymptotic behaviour should be then also reflected in the numerical

formula, yielding

 1 0 asn

n

y
h

y
λ+ → → −∞ . (4.17)

Numerical methods not satisfying the previous condition cannot damp out fast enough the

solutions of very stiff ODEs. As a consequence, stability and accuracy problems may arise.

An example of such behaviour is shown in Figure 4.4, where a stiff system is integrated by

means of two different methods:

• Backward Euler formula: ()1 1n n ny y hf y+ += + , with () ()1 1R h hλ λ= −

• Trapezoidal rule: ()1 12
h

n n n ny y f y y+ += + + , with () ()
()

1
2

1
2

1
1

h
R h

h
λ

λ
λ

+
=

−

54 Numerical integration of ODEs arising in fluid power systems

From their stability regions, plotted in Figure 4.2, it can be concluded that both methods are

A-stable and therefore, for any size of the integration step h, the numerical stability should

be granted. Nonetheless, it will be seen in the following integration example that A-

stability does not always lead to an optimum integration when stiff systems are present.

The stiffness in the hydraulic circuit example in Figure 4.4 arises due to the size difference

of the two volumes, where V2/V1 = 100 (the same ratio is observed between the eigenvalues

λ1 and λ2 of the Jacobian matrix). Due to this stiffness, slow asymptotic convergence prob-

lems may arise. Examining again the stability functions of the formulas, the trapezoidal

method shows the following asymptotic behaviour () 1R −∞ = , while in the backward

Euler method () 0R −∞ = . The asymptotic behaviour of the trapezoidal method is therefore

undesired when integrating stiff systems. This can be seen in the plot of Figure 4.4, where

the solution of the pressure p1 provided by the trapezoidal rule results in an oscillatory solu-

tion. Despite these oscillations, the solution is considered to be stable, as long as the oscilla-

tions gradually vanish. On the other hand, the backward Euler method provides a satisfac-

tory numerical solution without numerical oscillations around the transient response.

18 l/m 0.05 s
20 l/m 0.05 s

in

in

Q t
Q t

= <⎧
⎨ = ≥⎩

()
()

1 1 1 2

2 2 2

,p f p p
p f p

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

!
!

4
1 21 10 , 100λ λ= − × = −

Figure 4.4. Numerical integration of a stiff system using the backward Euler method
and the trapezoidal rule.

A-stable methods with maximally damped behaviour () 0R hλ = as hλ → −∞ are

called L-stable. The advantages of L-stable methods over non L-stable ones have been

shown in the previous example. The oscillations shown in non L-stable methods can only

Numerical integration of ODEs arising in fluid power systems 55

be reduced or avoided by making the integration step small enough, which makes the inte-

gration less efficient.

The need of an L-stable formula for the integration of stiff systems of ODEs is there-

fore justified if integration efficiency is sought. Advantages of low order L-stable Rosen-

brock formula over other SIRK methods are also pointed out in [Piché 1996], where the

robust stability properties of the method are praised. In [Esqué 2002b] the stability of L-

stable Rosenbrock formula with a variable step size is tested in the dynamic simulation of

some hydraulic components. The formula shows, again, excellent stability against disconti-

nuities and numerical stiffness.

4.3 Equations of conditions for modified Rosenbrock formulas
The overall efficiency of a numerical formula should not be only measured in terms

of the number of operation required to advance one step. As it has been showed in the pre-

vious section, an efficient integration is also subject to the stability properties of the for-

mula and to the nature of the system to be integrated. Since the characteristics of the system

equations governing the fluid power circuits are well-known, an efficient numerical integra-

tion formula for those applications should retain the following properties:

- Computationally inexpensive linear algebra

- Excellent stability properties

- Able to detect and handle discontinuities

- Simple implementation of a step size predictor, based on a local error estimation

The Rosenbrock method (4.10) is a good candidate to compete with the current numerical

methods used in the integration of fluid power systems. The main characteristics of Rosen-

brock methods are listed next:

- Reduced computational costs: the method can achieve full accuracy and stability with a

single Newton iteration of an N-dimensional iteration matrix per integration step.

- Rosenbrock methods can be L-stable.

- Error estimators can be embedded into the formula with almost no extra numerical

costs.

The main drawback of Rosenbrock methods is that not only the evaluation of the full Jaco-

bian must be provided at every integration step, but also this Jacobian must be computed

accurately. Otherwise, the numerical stability of the Rosenbrock formula might be affected

56 Numerical integration of ODEs arising in fluid power systems

by inaccuracies in the Jacobian. This difficulty is dealt in Section 4.4, where a systematic

approach for obtaining the analytic expression of the Jacobian matrix for any given hydrau-

lic system is presented.

This Section focuses on the Rosenbrock formulas introduced in (4.10). Conditions

concerning the order of accuracy of the formula and its stability are also presented.

4.3.1 Order conditions

The free parameters aij, γij, bi of the s-stage Rosenbrock formula

1

1

1

1 1

where , 1,...,

n

s

n i i
i

i i

i n ij j ij j
j j

b

h a h i sγ

+
=

−

= =

= +

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠

∑

∑ ∑

y y k

k f y k J k

will determine the order of accuracy of the integration formula and they will also character-

ize its numerical stability. A method is of order p if the local error

() ()1
1

p
n ny y x h O h +

−− + = , where yn is the numerical solution, y is the exact solution and h

is the integration step size. Order conditions for the free parameters can be determined by

differentiation [Hairer 1996] or by applying the theory of Butcher series [Hairer 1974, Kaps

1981]. In the first approach, the order conditions for the free parameters are determined

when comparing the Taylor series of the test equation exact solution to the Taylor series of

the numerical method. By doing so, the conditions for the free parameters are defined by

equalling the derivative terms of both Taylor expansions. This differentiation approach is

straightforward for establishing order conditions of lower Rosenbrock formulas. For higher

orders conditions the formulation becomes too complex (formulas of order 6 and 8 require

37 and 200 order conditions respectively) and a new form of representation is needed. This

new notation consists of a graphical representation called labelled trees. The vertices of

labelled trees represent summation indices and the derivative terms of the Taylor expan-

sions can be represented and built with this notation. Labelled trees have been used in the

derivation of order conditions of Runge-Kutta methods in [Hairer 1993]. In [Kaps 1981]

labelled trees are applied to the Butcher series theory to derive high order Rosenbrock

methods.

Numerical integration of ODEs arising in fluid power systems 57

The table below lists the order conditions for the free parameters of Rosenbrock

methods up to order 4, where ij ij ijaβ γ= + . An expansion of this table with order condition

up to order 6 can be found in [Kaps 1981].

Table 4.1. Order conditions for Rosenbrock formulas (Source: [Kaps 1981])

Order Order condition

1 1jj
b =∑

2 1
2, j jkj k

b β γ= −∑

3 1
3, ,

21
6, ,

j jk jlj k l

j jk jlj k l

b a a

b β β γ γ

=

= − −

∑
∑

4

2

1
4, , .

1
8 3, , .

1
12 3, , .

3 31
24 2 2, , .

j jk jl jmj k l m

j jk kl jmj k l m

j jk kl kmj k l m

j jk kl lmj k l m

b a a a

b a a

b a a

b

γ

γ

γ γ

β

β

β β β γ

=

= −

= −

= − + −

∑
∑
∑
∑

4.3.2 Stability conditions

Recalling from Section 4.2, one-step methods applied to the scalar test equation

(4.13) can be expressed as ()1n ny R h yλ+ = , where R is the stability function of the for-

mula. The method is then stable if and only if () 1R hλ ≤ . If the previous inequality is

valid for any arbitrary hλ, with Re(λ)<0, then the formula is called A-stable. If in addition

of being A-stable, the stability function of the formula also accomplish

() 0R hλ = as hλ → −∞ , then the formula is L-stable. In this section, the stability functions

of RKF and Rosenbrock methods are presented. They will be used later to determine the

free parameters that make Rosenbrock formulas L-stable.

The stability function of an explicit s-stage RKF:

58 Numerical integration of ODEs arising in fluid power systems

()
()

()()

()()
()

1

2 21 1

3 31 1 32 2

1 1 , 1 1

1 1 1

n

n

n

s n s s s s

n n s s

k f y

k f y ha k

k f y h a k a k

k f y h a k a k

y y h b k b k
− −

+

=

= +

= + +

= + + +

= + + +

…

…

…

 (4.18)

can be explicitly computed from (4.18) as the following polynomial of degree ≤ s:

 () () ()2 3

, , ,
1 j j jk j jk kl

j j k j k l
R h h b h b a h b a aλ λ λ λ= + + + +∑ ∑ ∑ # . (4.19)

The above stability function shows that explicit RK methods cannot be A-stable, since its

region of stability () 1R hλ ≤ is bounded. Figure 4.3 plots the stability regions of s-stage

explicit RKFs for s = 1...4.

The s-stage implicit RKF (4.4) applied to the test equation (4.13) yields the stability

function (4.20) [Stetter 1973], in which R becomes a rational function whose numerator and

denominator polynomials are function of the free parameters.

 () ()
()

()
()

det

det

Tz zP z
R z

Q z z

− +
= =

−

I A 1b

I A
 (4.20)

In the above stability function, z = hλ, I is the identity matrix, A is the matrix of RK coeffi-

cients aij, b is the vector of RK elements bi and 1 is a vector of ones. Implicit RKF are A-

stable if the degree of the polynomial P is not larger than the degree of Q.

In SDIRK methods (4.8) � a particularization of implicit RK formulas with a lower

triangular A matrix and equal diagonal terms � the denominator of the rational function R

simplifies to () ()1 sQ z zγ= − . The polynomial P can be rewritten [Kaps 1979] as

 () () ()()1

0

s
ks k

k
k

P z L zγ γ−

=

= −∑ , (4.21)

where () () () ()
() ()0

!
1

! ! !

ik
im

k
i

k m xL x
m i k i i=

+
= −

+ −∑ is the m-th derivative of the k-degree Laguerre

polynomial, which outputs a polynomial with real coefficients and one variable x.

Rosenbrock methods of the form (4.10) applied to the scalar test equation show the

same stability function R as SDIRK methods, that is

Numerical integration of ODEs arising in fluid power systems 59

 ()
()

() ()()1

0

1
1

s
ks k

ks
k

R z L z
z γ γ

γ
−

=

= −
−

∑ . (4.22)

This stability function R of Rosenbrock formulas is then uniquely determined by the pa-

rameter γ, and therefore the regions of stability can be defined as a function of this parame-

ter, as Table 4.2 displays.

Table 4.2. Values of the free parameter γ, for which A- and L- stability are achieved.
(Source: [Hairer 1996])

 Rosenbrock formulas,
with p = s

Stiffly Accurate Rosen-
brock formulas, with p = s-1

Order s A-stability L-stability A- and L-stability

2 1/4�∞ (2 2) / 2± (2 2) / 2− � (2 2) / 2+

3 1/3�1.06857902 0.43586652 0.18042531�2.18560010

4 0.39433757�1.28057976 0.57281606 0.22364780�0.57281606

5
0.24650519 0.36180340
0.42078251 0.47326839
⎧
⎨
⎩

…
…

 0.27805384 0.24799464�0.67604239

6 0.28406464�0.54090688 0.33414237 0.18391465�0.33414237

An interesting group of Rosenbrock formulas are the so-called Stiffly Accurate for-

mulas. These methods are built by imposing the following condition on the free parameters

for 1,...,

1
si si i

s

a b i s
a

γ+ = =
=

. (4.23)

The above conditions force the numerical solution yn to be exactly the same as the last in-

ternal stage s. The benefit of imposing such condition is that the highest coefficient of P(z)

in (4.21) becomes zero and therefore, the stability function R of a stiffly accurate Rosen-

brock formula always satisfies () 0R z = at z → −∞ , i.e. the formula becomes L-stable.

4.4 Analytical form of the Jacobian matrix
One of the drawbacks of Rosenbrock methods lies in that they need to be provided

with the instantaneous value of the full Jacobian matrix of the system at every integration

step. Such demand can affect negatively the computational efficiency of Rosenbrock meth-

60 Numerical integration of ODEs arising in fluid power systems

ods. The construction of the Jacobian matrix from a system of ODEs can, in some cases,

become the most time consuming task involved in the numerical integration. In [Esqué

2005], it is shown that the computation of the Jacobian, by means of numerical approxima-

tion, can account up to 40% of the computational costs required to advance one step in the

numerical integration. The test was performed by integrating middle-sized fluid power cir-

cuits (from 5 to 20 state variables) using a single-step Rosenbrock numerical formula,

which required two function evaluations per step.

Yet another disadvantage of Rosenbrock methods arises due to the fact that the Jaco-

bian matrix in the integration formula itself, rather than Jacobian being part of a Newton

iteration scheme. This implies that the accuracy of the provided Jacobian affects both solu-

tion accuracy and the numerical stability of the integration formula. The computation of an

accurate Jacobian for each integration step might become too computationally expensive

and, in some cases, an accurate or realistic Jacobian might even be difficult to calculate, for

example near discontinuities. The latter could even make the numerical integration unsta-

ble.

The calculation of an analytical form of the Jacobian matrix � as a function of the

state variables of the system � guarantees an accurate evaluation of the Jacobian at each

integration point. In addition, such evaluation of the analytical Jacobian is also less compu-

tationally expensive than obtaining the Jacobian by numerical differentiation. However, the

derivation of an analytical Jacobian from the set of ODEs is not always a straightforward

task and in most cases the associated symbolic manipulation can be a tedious and error-

prone task to perform, especially when the dimension of the system is relatively large. The

modelling approach presented in Chapter 2 makes possible to obtain the analytical Jacobian

matrix of a fluid power circuit in a systematic way. The process can be automated by an

algorithm, able to generate a subroutine containing the algebraic expression of the Jacobian

matrix. This subroutine will then return the numerical evaluation of the Jacobian at a spe-

cific integration point when called by the numerical integration formula.

Figure 4.5 shows a flowchart of the tasks involved during the numerical integration

of a system of ODEs by means of a Rosenbrock formula. The pre-process described above,

in which the analytical Jacobian matrix is computed, is also illustrated. Next Section de-

scribes in more detail how the analytical Jacobian matrix of a fluid power circuit is calcu-

lated from a formal definition of the fluid power circuit.

Numerical integration of ODEs arising in fluid power systems 61

FP Circuit
Definition

Library of FP
models

System of ODEs

()f=!y y

Analytical
Jacobian matrix

Evaluation of the
Jacobian

Pre-Processor

Calculation of stages ki
(solution of linear systems)

()

()
1

1 1 11 1

2 2 21 1 22 2

1 1

1 1

...
...

n

s s s ss s

n s s

h h
h h

h h
b b

γ
γ γ

γ γ

+

= +

= + +

= + + +

= + + +

k F J k
k F J k k

k F J k k
y y k k

$

Algorithm generating subroutines
containing the FP equations

Numerical evaluations of F

()
()

()

1

2 21 1

1 1 , 1 1...

n

n

s n s s s s

a

a a − −

=

= +

= + + +

$

F f y
F f y k

F f y k k

Output numerical
solution

Numeical
integration loop

()J y

()
ny y=J y

()nJ y1, , nF F…

jk

0 1 1, , , ,n n+y y y y…

1n+y

ny

Figure 4.5. Flowchart of the tasks involved in a numerical integration with a

Rosenbrock formula

4.4.1 Jacobian of individual components
For each dynamic model of a fluid power component stored in the simulation mod-

els library, information of its Jacobian matrix must be also available. This section illus-

trates how Jacobians of individual components are calculated, stored, and indexed so that

they can be retrieved and assembled into the full Jacobian matrix of a fluid power circuit.

62 Numerical integration of ODEs arising in fluid power systems

In the following example, illustrated in Table 4.3, the analytical Jacobian of a vol-

ume element is presented. The Jacobian of a single component is derived from the set of

ODEs describing its dynamics (Chapter 2). In this case this is the pressure generation equa-

tion (), ,i i g i rp F p p p=! of the volume component Vi with two hydraulic ports. These hy-

draulic ports will be connected to other volume elements (dashed circles) when assembled

into a larger system. As showed in the middle row of Table 4.3, Jacobian elements Jii, Jig,

and Jir are determined analytically by derivation of Fi with respect to the state variables pi,

pg and ph respectively. The indexing of the state variables with subscripts (i, g, h) deter-

mines the position of these Jacobian elements within the full Jacobian matrix of the system

(an N N× -dimensional matrix, where N is the number of state variables). The indexing of

the state variables establishes the connections between the different ports of the fluid power

elements. The indexing is carried out during the definition of the fluid power circuit model.

Table 4.3. Jacobian of a volume component

Formulation as a system of ODEs

() () (), ,i i
i i gi g i ir i r

i

B p
p F Q p p Q p p

V
⎡ ⎤= = × −⎣ ⎦!

Jacobian elements

()1 gii i ir
ii gi ir i

i i i i i

QF B Q
J Q Q B

p V p p p
⎛ ⎞∂⎛ ⎞∂ ∂ ∂

= = × × − + × −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

gii i i i ir
ig ir

g i g r i r

QF B F B Q
J J

p V p p V p
∂∂ ∂ ∂

= = × = = − ×
∂ ∂ ∂ ∂

Location of the Jacobian elements in the full Jacobian matrix

 1 � g � i �. r � N
1 0 � 0 � 0 � 0 � 0
$ $ $ $ $ $
i 0 � Jig � Jii � Jir � 0
$ $ $ $ $ $
N 0 � 0 � 0 � 0 � 0

Numerical integration of ODEs arising in fluid power systems 63

The expressions of the volumetric flow rate Qgi and Qir are known from Section

3.2.4 to be

() ()

() () ()

2

3 Re 3 0 ,
4

g i
gi q g i tr

g i g itr
gi g i tr

tr tr

p p
Q C A p p p

p p p pAQ p p p
d p p

ρ

ν

⎧ −⎪ = − > Δ
⎪⎪
⎨

⎛ ⎞⎛ ⎞− −⎪ ⎜ ⎟⎜ ⎟= − ≤ − ≤ Δ⎪ ⎜ ⎟⎜ ⎟Δ Δ⎪ ⎝ ⎠⎝ ⎠⎩

 (4.24)

with their partial derivatives with respect to pressure variables expressed as

()
()

()() ()

2

3 Re 2 3
0

4

gi q
g i tr

g g i

tr g i trgi
g i tr

g tr

gi gi

i g

Q C A
p p p

p p p

A p p pQ
p p p

p d p

Q Q
p p

ρ

ν

∂⎧
= − > Δ⎪ ∂ −⎪⎪

⎨
− − Δ⎪∂

= ≤ − ≤ Δ⎪
∂ Δ⎪⎩

∂ ∂
= −

∂ ∂

 (4.25)

The algebraic expression of the pressure dependent bulk modulus ()i iB p is formed

from equation (3.2), as

 () () 1 ln 1 i
i i B i

B B

pB p b p
a b
⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (4.26)

and its partial derivative with respect to pressure pi is

 1lni i B B

i B B

B p b a
p b a

⎛ ⎞∂ + −
= − −⎜ ⎟∂ ⎝ ⎠

 (4.27)

 Table 4.4 and Table 4.5 show the construction of the analytical Jacobian elements

associated to a pipeline and a cylinder actuator respectively.

64 Numerical integration of ODEs arising in fluid power systems

Table 4.4. Jacobian of a pipeline component

Formulation as a system of ODEs

() ()
() ()

()

2
,

2
,

i i
i i gi g i k

j j
j j k jr j r

k k i j L k T k k

B p
p F Q p p Q

AL
B p

p F Q Q p p
AL

AQ F p p K Q K Q Q
Lρ

⎡ ⎤= = × −⎣ ⎦

⎡ ⎤= = × −⎣ ⎦

= = − − −

!

!

!

Jacobian elements

()

()

()()

2

2

sgn

22

2

gii i
ii gi k i

i i i

j j jr
jj k jr j

j j j

k
kk L T k T k k

k

j ji i k k
ik jk ki kj

k k i j

i i
ig

g

QF B
J Q Q B

p AL p p

F B Q
J Q Q B

p AL p p

F AJ K K Q K Q Q
Q L

F BF B F FA AJ J J J
Q AL Q AL p L p L

F B
J

p

ρ

ρ ρ

∂⎛ ⎞∂ ∂
= = × × − + ×⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
= = × × − − ×⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∂

= = − × + +
∂

∂∂ ∂ ∂
= = − = = = = = −
∂ ∂ ∂ ∂

∂
= =
∂

2gi j j jr
jr

g r r

Q F B Q
J

AL p p AL p
∂ ∂ ∂

× = = − ×
∂ ∂ ∂

Location of the Jacobian elements in the full Jacobian matrix

 1 � g � i j k �. r � N
1 0 � 0 � 0 0 0 � 0 � 0
$ $ $ $ $ $ $ $
i 0 � Jig � Jii 0 Jik � 0 � 0
j 0 � 0 � 0 Jjj Jjk � Jjr � 0

k 0 � 0 � Jki Jkj Jkk � 0 � 0
$ $ $ $ $ $ $ $
N 0 � 0 � 0 0 0 � 0 � 0

Numerical integration of ODEs arising in fluid power systems 65

Table 4.5. Jacobian of a cylinder actuator component

Formulation as a system of ODEs

() ()

()
() ()

()

max

,
,

,
,

i i
i i ri r i i

i

j j
j j tj t j j

j

k

i i j j ext
l

B p x
p F Q p p xA

A x

B p x
p F Q p p xA

A x x

x F x
p A p A F x F

x F
m

μ

= = −⎡ ⎤⎣ ⎦

⎡ ⎤= = +⎣ ⎦−

= =

− − −
= =

! !

! !

! !
!

!!

Jacobian elements

()

() ()
max

2

max

1

1

1

i i ri
ii ri i i

i i i i

j j tj
jj tj j j

j j j j

l i ri i i i i
ll ik i il

i

j j
jl jk

F B Q
J Q xA B

p A x p p

F B Q
J Q xA B

p A x x p p

FF F Q xA B F B
J J x B J

x m x x x x xA x
F B

J J
x x x

μ

⎛ ⎞∂ ∂ ∂
= = × × − + ×⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
= = × × + + ×⎜ ⎟⎜ ⎟∂ − ∂ ∂⎝ ⎠

∂∂ ∂ − ∂ ∂⎛ ⎞= = − × = = × − = = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∂

= = =
∂ −

!

!

!
! ! !

! ()
()

()

max2
max

max

1

j tj j j
j

j

jk l i l
kl li lj

i j

j j tji i ri
ir jt

r i r t j t

F Q xA B
x x B

x xA x x

AF F A F
J J J

x p m p m

F B QF B Q
J J

p A x p p A x x p

∂ + ∂⎛ ⎞
= × × − +⎜ ⎟∂ ∂− ⎝ ⎠

∂ ∂ ∂
= = = = = = −
∂ ∂ ∂

∂ ∂∂ ∂
= = × = = ×
∂ ∂ ∂ − ∂

!

!

Location of the Jacobian elements in the full Jacobian matrix

 1 � i j k l �. r � t � N
1 0 � 0 0 0 0 � 0 � 0 � 0
$ $ $ $ $ $ $ $
i 0 � Jii 0 Jik Jil � Jir � 0 � 0
j 0 � 0 Jjj Jjk Jjl � 0 � Jjt � 0

k 0 � 0 0 Jkk 0 � 0 � 0 � 0
l 0 � Jli Jlj 0 Jll � 0 � 0 �
$ $ $ $ $ $ $ $
N 0 � 0 0 0 � 0 � 0 � 0

66 Numerical integration of ODEs arising in fluid power systems

4.4.2 Construction of the full Jacobian matrix
The analytical form of the full Jacobian matrix can be defined by collecting the

Jacobian elements associated to each of the individual fluid power components of the sys-

tem [Esqué 2005]. The algorithm making this task must be provided with a formal defini-

tion of the hydraulic circuit. In this formal definition:

- The fluid power components of the system are listed and their state variables are in-

dexed with integers, going from 1 to N (as shown in the circuit of Figure 4.6).

- Connections between different components are defined by pairing their ports. The

above index notation is used to describe these connections.

In order to illustrate the processes involved in building the full Jacobian matrix from

a generic circuit, the example shown in Figure 4.6 is followed:

i) The system of ODEs is formed as ()1 2 11, ,...,i iy F y y y=! for i = 1�11, where the

vector of state variables 1 2 3 4 5 6 7 8 9 10 11
Tp p x x p p Q p p Q p= ⎡ ⎤⎣ ⎦y is formed ac-

cording to the given indexes. The functions Fi are obtained from the library of fluid

power elements (Tables 4.3-5) by assigning the subscript indexes i, j, k,� according

to the state variable vector y. For example, the state variable yi with index i = 11 cor-

responds to the pressure 11p of a volume component with hydraulic ports connected

to state variables 6 and 9. According to the volume component formulation stored in

the library, the ODE associated to this fluid power component is then defined as

() () ()11 11

11 11 6,11 6 11 11,9 11 9
11

, ,
B p

p F Q p p Q p p
V

⎡ ⎤= = × −⎣ ⎦! (4.28)

ii) The same approach is used to determine the Jacobian elements Jij of the individual

fluid power components in the system. The algorithm reads the formal description of

every component, it accesses the library, it assigns the indexes, and it returns the

analytic expressions of the Jacobian elements.

iii) The full Jacobian matrix is formed by assigning the Jacobian elements Jij to the i-th

row and j-th column of the full Jacobian matrix.

Numerical integration of ODEs arising in fluid power systems 67

Full Jacobian matrixLibrary of FP models

Formal definition of the
fluid power circuit

� components

� indexing of state variables

� communication ports
p1

p2 p8
Q10 p9

p5
Q7 p6 A

B T

P
p11

 1 2 3 4 5 6 7 8 9 10 11

p1 J1,1 J1,3 J1,4 J1,5

p2 J2,2 J2,3 J2,4 J2,8

x 3 J3,3

 x! 4 J4,1 J4,2 J4,3

p5 J5,1 J5,5 J5,7

p6 J6,6 J6,7 J6,9 J6,11

Q7 J7,5 J7,6 J7,7

p8 J8,2 J8,8 J8,10

p9 J9,6 J9,9 J9,10 J9,11

Q10 J10,8 J10,9 J10,10

p11 J11,6 J11,9 J11,11

Figure 4.6. Construction of the analytical Jacobian matrix for a generic hydraulic
circuit

5 PERFORMANCE OF ROSENBROCK
FORMULAS

In this chapter Rosenbrock formulas are tested and compared against other numeri-

cal integration methods. The performance of Rosenbrock formulas are evaluated in two

different types of simulation: real-time and offline simulations. In real-time simulations, the

simulation time matches the clock time and numerical integration is performed with a con-

stant step size throughout the entire simulation. Offline simulations usually advance with

integration steps of different sizes, which are controlled by an error estimator. Real-time

and offline simulations require numerical integration formulas with different properties.

At the end of this chapter, the advantages of using Jacobian matrices obtained ana-

lytically over the ones obtained by numerical approximation are discussed. It will be shown

that the first approach enhances stability and accuracy, while it reduces the computational

time of the integration.

5.1 Real-time simulations
Real-time simulations are found in many applications where simulated results need

to be computed and acquired in real-time (clock time). Numerical integration methods for

real-time simulations must show the following properties:

• Advance the integration with a constant step size h in order to provide solutions at

equidistant time intervals.

• Computational efficiency: CPU time required to advance the integration of the

system ()'y F y= from ()y t to ()y t h+ must be less or equal than the clock

time interval h.

• Good numerical stability properties in order to integrate successfully stiff equa-

tions with a given fix step size h.

• Provide an acceptable solution accuracy.

70 Performance of Rosenbrock formulas

Explicit Runge-Kutta formulas of low order of accuracy are often used in real-time

simulations. They have the advantage of having a simple algebraic formulation and there-

fore fast computational times. However, it is known that the main drawback of explicit

formulas is their poor numerical stability when integrating stiff systems of ODEs.

Singly diagonally implicit Runge Kutta (SDIRK) formulas of the Rosenbrock class

have the disadvantage of being more costly in terms of computational operations. They

need to form a Jacobian in each integration step and solve a linear system of equations for

each stage in every integration step. An analysis of the computational costs involved in

implicit Runge-Kutta formulas was already presented in Section 4.1. Concerning numerical

stability, SIRK formulas have clear advantages over the explicit RK ones, especially when

the formulas have to deal with numerically stiff systems.

Table 5.1 shows all numerical formulas (explicit and semi-implicit) used in the real-

time integration tests carried out in this section. A short description of each formula is

given below.

Table 5.1. Real-time integration algorithms (FE = function evaluations)

Method family Order of
accuracy

Method Properties

RK
Fully-Implicit

Order 5 RADAU5 Used for obtaining the
approximate exact solution

Order 3 ODE23 3 FE
RK-Explicit

Order 5 DOPRI5 6 FE

ROS2 2 FE; 2 Stages

ROS2p 2 FE; 2 Stages Order 2

ODE23s 2 FE; 2 Stages

ROS3p 2 FE; 3 Stages

ROSENBROCK

Order 3

RODAS3 3 FE; 4 Stages

Performance of Rosenbrock formulas 71

RADAU5 [Hairer 1996] is an implicit Runge-Kutta code based on the 3-satge Radau

IIA method [Butcher 1964b].

ODE23 and DOPRI5 are explicit Runge-Kutta formulas. The first is a 2(3) pair of

Bogacki & Shampine [Bogacki 1989] and the latter is a 5(4) pair by Dormand & Prince

[Dormand 1980]. Both formulas ore offered as ODE solvers in the MATLAB® software

package.

ROS2 is an L-stable second-order two-stage SDIRK formula proposed by Verwer

[Verwer 1999] to solve partial differential equations arisen in photochemical dispersion

problems. In his paper, Verwer highlighted the good stability properties of the formula

when using large integration step sizes.

ROS2p is a SDIRK L-stable two-stage second-order method proposed by Piché &

Ellman [Piché 1994]. The formula was compared to other popular SIRK formulas by means

of integrating a simple fluid power circuit test. The authors claimed that that the use of

ROS2p was the best choice for simulating that particular numerically stiff test.

ODE23s is another second-order L-stable Rosenbrock formula by [Shampine 1997]

which is also offered as a numerical integration solver for stiff systems in the

MATLAB/Simulink® package. The integrator can be used as a MATLAB command

(ode23s) or it can be chosen from the Simulink solvers list.

ROS3p [Lang 2000] is a third-order A-stable method with stability function

() 0.73R ∞ ≈ . It is realized with three stages and only two function evaluations. Lang de-

rived this efficient solver claiming that it retained its third-order accuracy when solving

stiff non-linear parabolic problems.

RODAS3 [Sandu 1996] was designed following the same principles as the L-stable

Rosenbrock solver RODAS4 [Hairer 1991] but reducing its order from four to three.

5.1.1 Test circuits

Fluid power tests circuits are used to evaluate the performance of the numerical

methods listed in Table 5.1, among them the Rosenbrock formulas. The performance of

each method will be measured in terms of a) numerical accuracy (by comparing the nu-

merical solution to an approximate exact solution) and b) the computational time required

to execute the integration.

72 Performance of Rosenbrock formulas

Circuit #1: (stiffness)

This is a simple fluid power circuit consisting of two volumes V1 and V2. A variable

flow Qin is entering V1 and going to V2 through an orifice of diameter d1, and from V2 to a

tank through another orifice d2. The main characteristic of this circuit is the relative size of

the volumes with respect to each other, which is of two orders of magnitude. This charac-

teristic makes this circuit to behave as stiff and therefore it constitutes a simple but yet a

challenging integration problem. The schematic of the circuit as well as the size of its com-

ponents is shown in Figure 5.1.

V1 = 0.05 l
V2 = 1 l
d1 = 4 mm
d2 = 4 mm

40 10 sin(2 10)inQ tπ= + × × l/min

Figure 5.1. Test circuit #1: Two-volume two-orifice fluid power circuit

Circuit #2: (friction and discontinuities)

This test circuit contains a cylinder actuator controlled with a 4/3 proportional valve.

As shown in the schematic of Figure 5.2, the system also comprises pipes (whose mathe-

matical model considers fluid flow inertia) and a pressure relieve valve. The mathematical

formulation of all these fluid power components is presented in detail in Chapter 3. The

most relevant physical parameters of the circuit are shown in Table 5.2.

The numerical integration algorithm solving this test has to overcome the following

two difficulties: mechanical friction and discontinuities. The cylinder seal friction is mod-

elled in this test with static, Coulomb and viscous friction forces components (see equation

(3.13)). The friction behaviour is highly non-linear and also adds relatively fast transients to

the overall system, especially when the cylinder piston oscillates around an equilibrium

position. Discontinuities might originate during the commanding of the proportional valve.

Fast openings and closures of the valve induce abrupt and even discontinuous changes in

volumetric fluid flows. Another source of discontinuities is found in the pressure relief

valve, whose spool operates with small constant times (of the order of milliseconds).

Performance of Rosenbrock formulas 73

0 2 4 6 8 10
-0.5

0

0.5

1
Relative valve spool position u

Figure 5.2. Test circuit #2

Table 5.2. Parameter values of the simulation model sketched in Figure 5.2

Cylinder Pipes PRV
øp/ør - stroke 50/28�500 mm L 3 m

m 1000 kg D 10 mm

Fc 200 N B 107 MPa

Fs 500 N ξ 100

b 500 N m-1 s2 Other

sx! 20 mm s-1 V11 1 l pref1 10 Mpa pref2 12 Mpa

øports 9.5 mm V12 1 l p1 11 Mpa p2 13 Mpa

 øorifices 4 mm Q1 10 l/min Q2 60 l/min

5.1.2 Numerical tests

Test 1

In this test, the Circuit #1 of Figure 5.1 is solved using all the numerical integration

algorithms listed in Table 5.1. In addition, each of these numerical codes will integrate the

circuit employing five different integration step sizes, ranging from 0.25 to 10 milliseconds.

The input volumetric flow Qin follows a sinusoidal profile with a frequency of 10 Hz

and with an amplitude of 10 l/min. After t = 0.8 s the input flow is kept constant. The volu-

74 Performance of Rosenbrock formulas

metric flow profile is shown in the left plot of Figure 5.3. The numerical integration of the

Circuit #1, resulting from the previous input flow, gives the solutions p1 and p2, shown in

the right-hand side plot of Figure 5.3. This numerical integration was carried out employing

the RADAU5 algorithm, a Runge-Kutta fully-implicit order-5 method, using variable step

size. The level of accuracy was set by imposing relative and absolute error tolerances of

10-8. The numerical solution given by RADAU5 can be considered, for our purposes, as an

approximation to the exact solution.

0 0.5 1 1.5
25

30

35

40

45

50

55

V
ol

um
et

ric
 fl

ow
 q i

n
[l/

m
in

]

Time [s]
0 0.5 1 1.5

20

30

40

50

60

70

80

90

100

110

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

p1

p2

Figure 5.3. Test 1: Incoming volumetric flow (left-hand side) and approximate exact
solution (right-hand side)

The accuracy of the numerical integration is obtained when comparing the solution

()xy of that formula to the exact solution ()xy obtained from the RADAU5 formula.

Since the latter integration has advanced with variable step size, the solutions at the integra-

tion time points x = 0, h, 2h � have been calculated in the RADAU5 integration by means

of interpolation, implemented in the subroutine �contr5�. The integration relative error (a

scalar) of each component i of the solution []1 2
Tp p=y is obtained using the root-mean-

square (RMS):

 ()
() ()

()

2

1

1 i in
i j j

i
j j

y y
n y=

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑e (5.1)

where n is the total number of integration steps (length of the solution). Finally, the integra-

tion error accounting all the components of the solution is computed as the norm of vector

Performance of Rosenbrock formulas 75

e. This relative error, obtained from the numerical integration of Test 1, is plotted in Figure

5.4 using a logarithmic scale. The error has been computed for all numerical formulas listed

in Table 5.1. The experiment has been repeated using five different integration step sizes h.

Numerical integrations, using certain h, which did not succeed (due to stability problems)

can be identified in the plot as the ones which have not an error bar. Bars with green high-

lighted borders represent minimum errors among all formulas integrating with same inte-

gration step h.

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

ODE23 DOPRI5 ODE23s ROS2 ROS2p ROS3p RODAS3

lo
g(

er
ro

r)

h=0.25ms h=0.50ms h=1ms h=4ms h=10ms

Figure 5.4. Test 1: Relative error of the numerical solutions (an absence of error bar

means that the numerical integration failed)

Analysis of Test 1:

- In this first test, volume sizes and orifice diameters have been chosen (values displayed

in Figure 5.1) with the purpose of making the system not too stiff, i.e. the numerical

problem can also be solved with explicit integration formulas.

- The above figure shows that Rosenbrock formulas provide more accurate solutions

than the explicit formulas. Rosenbrock formulas advancing the integration with h = 4

ms provide similar accuracy as explicit formulas using h = 1 ms.

76 Performance of Rosenbrock formulas

- Among the Rosenbrock formulas, ODE23s gives the best accuracy for integration steps

h = 0.25..1 ms. For larger h, the solution provided by ROS3p is more accurate than the

rest of Rosenbrock formulas.

- Explicit methods suffer from instability and fail to integrate the test problem when us-

ing integration step sizes of 4 and 10 ms.

Test 2

This test is based on the same fluid power circuit as the previous Test 1. However

the stiffness of the system has been increased by decreasing the size of V1 from 0.05 to 0.01

l. Flow and pressure transients have also been augmented by enlarging the orifice diameter

d1 to 6 mm and by amplifying the sinusoidal input flow 60 40 sin(2 10)inQ tπ= + × × l/min.

The profile of the new input flow Qin and plots of the approximate exact solution p1, p2 of

this test are shown in Figure 5.5.

0 0.5 1 1.5
0

10

20

30

40

50

60

70

80

90

100

110

V
ol

um
et

ric
 fl

ow
 q i

n
[l/

m
in

]

Time [s]
0 0.5 1 1.5

0

20

40

60

80

100

120

140

160

180

200

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

p1

p2

Figure 5.5. Test 2: Incoming volumetric flow (left-hand side) and approximate exact
solution (right-hand side)

The accuracy of the numerical formulas of Table 5.1 is displayed in the bar diagram

of Figure 5.6 for different fixed-size integration step h.

Performance of Rosenbrock formulas 77

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

ODE23 DOPRI5 ODE23s ROS2 ROS2p ROS3p RODAS3

lo
g(

er
ro

r)

h=0.25ms h=0.50ms h=1ms h=4ms h=10ms

Figure 5.6. Test 2: Relative error of the numerical solutions (an absence of error bar

means that the numerical integration failed)

Analysis of Test 2:

- The numerical stiffness of the system is increased, when compared to previous Test 1.

- The lack of stability of ODE23, caused by the system stiffness, is responsible of the

high errors in the solution (more than 100% of relative error). DOPRI5 did not provide

a satisfactory solution for any of the integration step sizes.

- Among the Rosenbrock formulas, ODE23s still is the more accurate formula for h =

0.25..1 ms although it is not capable of integrating successfully the numerical problem

for h = 4 and h = 10 ms.

Test 3

This numerical test consists on the numerical integration of the fluid power circuit

model displayed in Figure 5.2. This circuit includes fluid power components which are pre-

sent in many fluid power applications, such as pipelines, control and pressure valves, linear

actuators. Another characteristic of this test is that the dimension N of the system of ODEs

has increased from N=2 to N=13.

78 Performance of Rosenbrock formulas

Figure 5.7 shows the approximate exact solution of the Test 3 when solved with the

RADAU5 formula. The hydraulic circuit is fed with a constant flow source of 25 l/min and

the hydraulic actuator is controlled by a proportional valve whose spool is driven by signal

u. As it can be seen in Figure 5.2, the profile of this signal is discontinuous and therefore

this can induce stability problems to the numerical integrator. A similar discontinuous be-

haviour is observed in the pressure relief valve, whose flow passage (plotted in Figure 5.7

as CqA) changes abruptly. The same figure also shows that the cylinder seal friction, with

its large oscillations, might also cause numerical stability problems to the solver.

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300
Position (mm)

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

0.3
Piston velocity (m/s)

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04
cqA

0 1 2 3 4 5 6 7 8 9 10
20

40

60

80

100

120

140
Cylinder pressures (bar)

0 1 2 3 4 5 6 7 8 9 10
-30

-20

-10

0

10

20

30
Flow through pipes (l/min)

0 1 2 3 4 5 6 7 8 9 10
-400

-200

0

200

400
Cylinder seal friction (N)

p1

p2

q7

q10

Figure 5.7. Exact solution to the Test Circuit #3 in Figure 5.2

The accuracy of the numerical solution provided by the integration formulas in

Table 5.1 is shown in Figure 5.8. The bars show the maximum relative error of the cylinder

piston position, when compared to the approximate exact solution.

Performance of Rosenbrock formulas 79

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

ODE23 DOPRI5 ODE23s ROS2 ROS2p ROS3p RODAS3

lo
g(

er
ro

r)

h=0.25ms h=0.50ms h=1ms h=4ms h=10ms

Figure 5.8. Relative error of the numerical solutions (an absence of error bar means

that the numerical integration failed)

Analysis of Test 3:

- It can be seen that explicit formulas ODE23 and DOPRI5 fail to integrate the system

for the larger step sizes of h = 4 and h = 10 ms.

- Explicit formulas can produce a numerical solution with a maximum integration step

size of 1 ms. Nonetheless, numerical oscillations (typically shown by explicit methods

when solving stiff systems) can be seen in the solution, even for the smaller h = 0.25

ms (see Figure 5.9)

- Similarly to the previous tests, ODE23s fails the integration when using the larger inte-

gration step sizes. In this case the solution becomes unstable for h = 10 ms while the

rest of Rosenbrock formulas are providing a successful numerical solution.

80 Performance of Rosenbrock formulas

0 1 2 3 4 5 6 7 8 9 10
80

100

120

140

160

180

200

220

240

260

280
Position (mm)

h = 0.25 ms

0 1 2 3 4 5 6 7 8 9 10
80

100

120

140

160

180

200

220

240

260

280
Position (mm)

h = 0.5 ms

0 1 2 3 4 5 6 7 8 9 10
80

100

120

140

160

180

200

220

240

260

280
Position (mm)

h = 1 ms

Figure 5.9. Numerical oscillations in the solution shown by explicit ODE23 formula

5.1.3 Computational time
The computational time required to advance the integration one step of size h, is of

considerable importance in the real-time simulations. A common practice in real-time simu-

lations is to increase the size of the integration step h if the computational processor unit is

not able to provide the required 1/h solutions per unit time. By increasing the integration

step size, not only the accuracy of the solution decreases but also the stability of the nu-

merical integration is affected. The latter increases the risk of a simulation crash (i.e. nu-

merical solution does not converge, resulting in an overflow). The computational time re-

quired to advance one step the integration depends on many factors of different nature:

- Processor unit speed

- Size of the mathematical model (dimension of the system of ODEs to be solved)

- Formulation of the numerical integration method. In the case of single-step im-

plicit methods (see Section 4.1 for a detailed formulation and its associated

computational costs):

o Number of Newton iterations per step

o Number of function and Jacobian evaluations per step

o Number of stages (backsolves or solutions of linear system) per step

Computational times of the numerical integration formulas employed in the previous

tests have been measured and they are presented in Figure 5.10. All measurements have run

in the same computer (equipped with a 2.0 GHz Intel Core Duo processor) and under the

same conditions. These results must be analyzed taking into account the two different types

of numerical methods employed. In one hand, the explicit methods (ODE23 and DOPRI5)

are theoretically the fastest since they do not use Jacobians nor they need to solve algebraic

Performance of Rosenbrock formulas 81

linear systems. Their computational efficiency is approximately proportional to the number

of function evaluations. On the other hand, Rosenbrock formulas (ODE23s, ROS2, ROS2p,

ROS3p and RODAS3) need to build one Jacobian matrix and solve multiple linear systems

(as many as stages) in each integration step.

1.00

1.70

1.08 1.07 1.04
1.20

1.56

1.00

1.42

2.07 2.05 2.04

2.28

2.77

0.00

0.50

1.00

1.50

2.00

2.50

3.00

ODE23 DOPRI5 ODE23s ROS2 ROS2p ROS3p RODAS3

C
P

U
 ti

m
e

/ C
P

U
 ti

m
e

od
e2

3

N=2 N=13

Figure 5.10. CPU time employed to integrate Circuit #1 (N=2) and Circuit #2 (N=13),
relative to CPU time employed by formula ODE23

The above figure displays the computational time required to integrate Circuit #1

(with dimension N=2) and Circuit #2 (with dimension N=13) employing the explicit and

implicit numerical formulas in Table 5.1. Computational times (CPU time) in Figure 5.10

are relative values with respect to the CPU time employed by ODE23, the fastest algorithm.

For the ODE23 formula, the absolute CPU time required to advance one integration step

was 1.6 sμ and 14.0 sμ for N=2 and N=13 respectively.

For ODE systems of N=2, Rosenbrock formulas of order 2 only require 4-8% more

CPU time that explicit formulas of the same order, while order 3 Rosenbrock formulas need

20-56% more CPU time to advance the integration step. Differences in CPU time, between

explicit and implicit formulas, are more accentuated when integrating larger systems of

ODEs. In this case, for a system of dimension N=13, the CPU time required to solve one

integration step employing an order 2 Rosenbrock formula doubles when compared to the

time employed by ODE23.

82 Performance of Rosenbrock formulas

5.1.4 Conclusions of real-time integration tests
Low order SDIRK Rosenbrock formulas have clear advantages over classical ex-

plicit RK formulas when employed as numerical solvers of real-time integrations. These

advantages are reflected in their superior numerical stability and accuracy. The drawback of

SDIRK Rosenbrock formulas is that the computational costs do not grow linearly with the

dimension o the system (as explicit formulas do). However, Rosenbrock methods can over-

come this problem by employing larger integration step sizes (if the real-time application

allows it). On the other hand, explicit RK formulas may be forced to use smaller (than re-

quired) integration step sizes in order to keep the numerical integration stable.

5.2 Offline simulations
Offline simulations can be understood as those simulations whose execution time is

not synchronized with the clock time. Usually, full power of digital computer�s CPU is

used to execute the numerical integration.

All of the numerical formulas used in these offline simulation tests (listed in Table

5.3) have an embedded error estimator, which is used within the algorithm to accept or re-

ject the solution after each integration step. At the same time, the embedded error estimator

is also used to predict the size of the next integration step. The criterion used to accept or

reject an integration step is based on the comparison between the estimated error and an

error tolerance provided by the user. The first five formulas Table 5.3 have already been

described in previous Section 5.1. For the rest of integration formulas considered in these

tests, a brief description follows below:

ROS4 [Hairer 1991] is a SDIRK L-stable Rosenbrock formula implemented with 4

stages and four function evaluations per step. The formula is a 4(3) pair*.

RODAS4, a Rosenbrock formula from [Hairer 1991] is based on a stiffly accurate

pair 4(3), where both formulas are L-stable. It is however more computationally expensive

than its predecessors, since it requires six function evaluations and six backsolves (solution

of linear systems) per integration step.

LSODE, the Livermore Solver written by Hindmarsh [Hindmarsh 1983, Rad-

hakrishnan 1993], is a Backward Differentiation Formulas (BDF) belonging to the family

* The pair notation 4(3) indicates that the integrator computes the solution with an order 4 formula while
it uses a solution approximation of order 3 to calculate the local error.

Performance of Rosenbrock formulas 83

of Linear Multi-step Formulas. Properties and formulation of BDF were already discussed

in Chapter 4 and in Section 2.2. The LSODE formula uses two different methods, a BDF

formula for stiff problems and an Adams-Moulton formula for non-stiff problems. Both

integration formulas belong to the family of linear multi-step formulas. LSODE implements

these methods in the way that the method order can vary (from 1 to 12 for the Adams for-

mula and from 1 to 5 for the BDF) during the integration.

Table 5.3. Offline integration algorithms (FE = function evaluations)

Method family Order of
accuracy

Method Properties

RK
Fully-Implicit

Order 5 RADAU5 Used for obtaining the
approximate exact solution

Order 3 ODE23 3 FE
RK-Explicit

Order 5 DOPRI5 6 FE

Order 2 ODE23s 2 FE; 2 Stages

Order 3 RODAS3 3 FE; 4 Stages

ROS4 4 FE; 4 Stages
ROSENBROCK

Order 4
RODAS4 6 FE; 6 Stages

Multi-Step
(BDF)

Variable LSODE -

5.2.1 Numerical tests

Test 1

This test consists on the numerical integration of the Circuit #1 in Figure 5.1. The

sizes of volumes are V1 = 0.01 l and V2 = 10 l, and the diameters of both orifices are set to 4

mm. The volumetric flow entering to V1 changes from 60 to 30 l/min and then from 30 to

60 l/min following a step function, introducing therefore a discontinuous signal in the sys-

tem. The shape of the volumetric flow function entering V1 is plotted in the left-hand side

of Figure 5.11. The right-hand side of this figure shows the approximate exact solution (ob-

tained with the RADAU5 integration formula) of the volume pressures p1 and p2.

84 Performance of Rosenbrock formulas

0 1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

V
ol

um
et

ric
 fl

ow
 q i

n
[l/

m
in

]

Time [s]
0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

160

180

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

p1

p2

Figure 5.11. Test 1: Incoming volumetric flow (left-hand side) and approximate exact

solution (right-hand side)

Number of integration steps and accuracy of the solution is plotted in Figure 5.12 for

each of the numerical formulas and for different error tolerances. In the figure, each pair

(accuracy � number of steps) is represented by a dot. The test problem is integrated four

times for each numerical formula, using in each integration a different relative error toler-

ance: 10-1, 10-2, 10-3 and 10-4. However, the plot shows only three integration results (dots)

for the LSODE formula. This means that LSODE could not succeed in the numerical inte-

gration of the test problem for one of the given error tolerances. In particular, LSODE

failed to complete the integration when an error tolerance of 10-2 was required.

101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

Number of steps

R
el

at
iv

e
er

ro
r

ODE23s
RODAS3
RODAS4
ROS4
LSODE
ODE23
DOPRI5

Figure 5.12. Test 1: Performance of the numerical integration in terms of relative

error and number of integration steps

Performance of Rosenbrock formulas 85

Analysis of Test 1:

- From the performance plot in Figure 5.12, it can be seen that Rosenbrock methods out-

perform the LSODE formula not only in terms of accuracy but also in that they re-

quired fewer integration steps.

- A significant behaviour of the explicit methods, related to the difficulty they encounter

when integrating stiff systems, is observed in Figure 5.12: no matter the error tolerance

imposed to the integration, ODE23 and DOPRI5 formulas always employ a similar

amount of integration steps, when the expected behaviour is to use more number of

steps as more accuracy is demanded. The explanation of this behaviour can be found in

the integration step size predictor embedded in the explicit formula. Normally, step size

predictors will adjust the integration step in order to satisfy that the solution accuracy is

kept below a given error tolerance. However, when integrating stiff systems, the step

size predictor will have to adjust the integration step in order to keep numerical oscilla-

tions and other instabilities under control. This normally requires the use of many

smaller integrations steps than when controlling simply the accuracy of the solution.

- The use of relatively large error tolerances for integrating ODEs with discontinuities

might lead to numerical instabilities, localized in the vicinity of those discontinuity

points. This occurrence has been observed in this numerical test, particularly when us-

ing a relative error tolerance of 0.1. Upper plots of Figure 5.13 show some clear devia-

tions of the numerical solution, provided by ODE23s and LSODE, with respect to the

exact solution. ODE23s shows a clear deviation of a single solution point at t=2 s,

which can easily be identified as a numerical error. However, the LSODE solution dis-

plays a larger error region around t=2 s with a maximum relative error of 14% at t=2.1

s and a mean relative error of 5% in the time range t = [2, 3] s.

- The relatively large stiffness of this system is expected to introduce numerical oscilla-

tions in the solution when explicit numerical formulas are employed to integrate the

system. These numerical oscillations are especially visible when large integration step

sizes or large tolerances are employed in the integration. The lower plots of Figure 5.13

show this phenomena occurring when ODE23 and DOPRI5 explicit formulas are used

with a given relative error tolerance of 0.1. It has been observed that, by employing

smaller error tolerances, these numerical oscillations do not show up anymore in the

86 Performance of Rosenbrock formulas

DOPRI5 formula. Nonetheless, when smaller error tolerances are applied to ODE23,

the oscillations do not totally damp out but instead their amplitude is reduced.

- For that particular test, it was found that RODAS3, RODAS4 and ROS4 were able to

perform the numerical integration for all given error tolerances without any type of

numerical instability or significant deviation from the exact solution.

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

100

150

200

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

ODE23s, TOL = 0.1

p1

p2

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

120

140

160

180

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

LSODE, TOL = 0.1

p1

p2

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

ODE23, TOL = 0.1

p1

p2

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

DOPRI5, TOL = 0.1

p1

p2

Figure 5.13. Test 1: Effect of discontinuities and numerical stiffness on the solution

given by some numerical integrators.

Test 2

In this numerical test, the same Test Circuit #1 is employed but the incoming volu-

metric flow to volume V1 is now a sinusoidal signal characterized by a frequency of 4 Hz

and an amplitude of 20 l/min. This flow profile is shown in the left-hand side plot of Figure

5.14. The size of the volumes are V1 = 0.02 l and V2 = 10 l, and the size of the orifices are

d1 = 6 mm and d2 = 4 mm.

Performance of Rosenbrock formulas 87

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

V
ol

um
et

ric
 fl

ow
 q i

n
[l/

m
in

]

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20

25

30

35

40

45

50

55

60

65

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

p1

p2

Figure 5.14. Test 2: Incoming volumetric flow (left-hand side) and approximate exact

solution (right-hand side)

The performance (accuracy � number of steps) of the numerical integration formulas

for this test is shown in Figure 5.15. For these tests the same set of given error tolerances,

as in the previous test, are used. As it can be observed in the plot, the numerical formula

ODE23s only succeed in three of the four numerical integrations. This failure occurred

when a relative error tolerance of 10-1 was imposed in the numerical integrator.

101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

Number of steps

R
el

at
iv

e
er

ro
r

ODE23s
RODAS3
RODAS4
ROS4
LSODE
ODE23
DOPRI5

Figure 5.15. Test 2: Performance of the numerical integration in terms of relative

error and number of integration steps

88 Performance of Rosenbrock formulas

Analysis of Test 2:

- Practically all numerical integration algorithms succeed to complete the numerical test.

The only exception was the Rosenbrock formula ODE23s, which failed to integrate the

test problem for a tolerance of 10-1.

- All Rosenbrock methods show a similar pattern in the performance plot of Figure 5.15.

They all show the same ratio (slope) between relative error and number of steps. Per-

formance curve of LSODE shows that this formula is capable of providing higher accu-

racy solutions employing less integration steps than Rosenbrock formulas. On the other

hand, for lower accuracy demands (tolerances of 10-2 and larger), some of the Rosen-

brock formulas appear to be more computationally efficient than LSODE.

- As it occurred in the previous numerical test, LSODE formulas suffer again at low ac-

curacy tolerances. Figure 5.16, in its upper plot, shows the numerical solution provided

by the LSODE integrator for a relative error tolerance of 0.1. When compared to the

exact solution (plotted in Figure 5.14), it can be seen that the sinusoidal shape of solu-

tion p1 does not show constant amplitude. Furthermore, exceptionally high peaks arise

randomly. This problem still persists when integrating the numerical test with LSODE

using a tolerance of 10-2: although the accuracy of the solution improves substantially,

random pressure peaks (up to 180 bar) are still visible in the solution. Rosenbrock for-

mulas have not shown these problems when solving the test problem with low accuracy

demands.

- Explicit formulas ODE23 and DOPRI5, as expected, suffer again due to the stiffness of

the system. The lower plots of Figure 5.16 display the numerical oscillations of the so-

lution p1. These numerical oscillations still persist for tolerances of 10-2 and finally dis-

appear for tolerances smaller or equal than 10-3.

Performance of Rosenbrock formulas 89

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

40

60

80

100

120

140

160

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

LSODE, TOL = 0.1

p1

p2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

30

40

50

60

70

80

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

ODE23 ,TOL = 0.1

p1

p2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

Time [s]

V
ol

um
e

pr
es

su
re

s
[b

ar
]

DOPRI5, TOL = 0.1

p1

p2

Figure 5.16. Test 2: Numerical integration difficulties found in some of the algorithms

Test 3

In this test problem, Circuit #2 described in Figure 5.2 is employed. As stated previ-

ously, this circuit differs from the previous one in that a) its size is relatively much larger

(dimension 13 versus dimension 2) and b) new non-linearities and discontinuities are intro-

duced (pressure relief valve, control proportional valve, mechanical seal friction). The main

dimensions and component characteristics of the fluid power circuit were presented in

Table 5.2. In Figure 5.7 the approximate exact solution of a selected number of variables is

plotted.

Due to the different nature of the state variables to be integrated (position, velocity,

flow, pressure, forces�), special attention is required when imposing error tolerances to

these variables. Different absolute and relative error tolerances have been employed for

different variables, depending on their scaling and the numerical magnitude of their solu-

tion. As in the previous tests, four different levels of required accuracy are used. In order to

keep an analogy with the previous tests, the four levels of error tolerances will be named

10-1, 10-2, 10-3 and 10-4, from the least to the most accurate tolerance.

90 Performance of Rosenbrock formulas

The plot in Figure 5.17 shows the maximum relative error of the cylinder piston po-

sition for the different numerical formulas and for the four different levels of required accu-

racy. As it can be observed, many numerical formulas have failed to succeed in the numeri-

cal integration of the test problem: ODE23s and ROS4 failed for error tolerance tol = 10-1,

LSODE failed twice for tol = 10-1 and tol = 10-2. Performance levels of DOPRI5 and

ODE23 for tol = 10-3 and tol = 10-4 have been omitted in the plot due to the high number

steps they required (more than 300 000).

10
1

10
2

10
3

10
4

10
5

10-6

10-5

10
-4

10
-3

10
-2

10
-1

10
0

Number of steps

R
el

at
iv

e
er

ro
r

ODE23s
RODAS3
RODAS4
ROS4
LSODE
ODE23
DOPRI5

Figure 5.17. Test 3: Performance of the numerical integration in terms of relative

error and number of integration steps

Analysis of Test 3:

- Figure 5.17 clearly shows that performance pairs (relative error � number of steps) of

Rosenbrock formulas indicate that these have a clear advantage over LSODE and ex-

plicit formulas, both in terms of computational efficiency and stability.

- As already stated in previous chapters, multi-step methods (LSODE) are prone to have

difficulties when dealing with discontinuities. This is the case of the LSODE formula,

which can complete successfully the numerical integration only in two of the four error

tolerances, and using approximately ten times more integration steps than some of the

Rosenbrock formulas.

- Among the Rosenbrock formulas, higher order formulas (ROS4 and RODAS4) seem to

be more efficient for high accuracy solutions (small error tolerances).

Performance of Rosenbrock formulas 91

- RODAS3 with tol = 0.1 suffer from numerical oscillations after simulation time t = 4 s.

As a consequence the relative error rises up to 15% and error predictor formula tries to

correct this behaviour by reducing the integration step size. This is reflected in the plot,

where RODAS3 (with tol = 0.1) uses more integration steps than expected.

- Numerical solutions provided by explicit methods show, as in previous numerical tests,

the typical numerical oscillations which result from integrating stiff systems. This leads

(as shown in Figure 5.17) to lower solution accuracies and much larger number of inte-

gration steps. Figure 5.18 plots the numerical solution of the piston position (left-hand

side plot) and cylinder chamber pressures (right-hand side plot) given by ODE23 when

using a relative error tolerance of 10-1.

0 2 4 6 8 10
50

100

150

200

250

300

P
os

iti
on

 (m
m

)

0 2 4 6 8 10
20

40

60

80

100

120

140

160

180
C

yl
in

de
r c

ha
m

er
s

pr
es

su
re

 (b
ar

)

ODE23, TOL = 0.1

p1

p2

Figure 5.18. Test3: Numerical oscillations in the solution. Solver ODE23. Tol = 0.1

Test 4 (generic numerical test problems from literature)

In this section the numerical formulas are being tested against two additional nu-

merical tests problems. These numerical tests are commonly used in the literature, among

many others, to evaluate the efficiency of generic first order differential equations.

Van der Pol�s equation:

The solution of Van der Pol�s equation (5.2) is a periodic non-linear oscillation

where small oscillations are amplified (unstable) and large oscillations are damped. The

rate at which the damping factor changes is defined by the constant μ .

 ()2 1 0, 0.y y y yμ μ+ − + = >!! ! (5.2)

For this numerical test, μ has been chosen to be 610μ = . This value ensures very

stiff conditions and extremely fast transients in the solution y, as it can be seen in the left-

92 Performance of Rosenbrock formulas

hand side plot of Figure 5.19. The performance of the numerical formulas, when integrating

the problem (5.2), is shown in the right-hand side of Figure 5.19. The vertical axis quanti-

fies the mean value of relative error of solution y from t = 0..12 s. Each numerical integra-

tion formula has computed the solution using four different orders of accuracy, which are

defined by using both relative error (RTOL) and absolute error (ATOL) tolerances as

 nTOL ATOL RTOL y= + ⋅ , (5.3)

where RTOL = 10 n− and ATOL = RTOL, with n = 1, 2, 3, 4. ny is the numerical so-

lution computed at the previous step.

0 2 4 6 8 10 12
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Y 1

Time [s]
0 1000 2000 3000 4000 5000 6000

10-4

10
-3

10
-2

10
-1

10
0

Number of steps

R
el

ar
iv

e
er

ro
r

ODE23s
RODAS3
RODAS4
ROS4
LSODE

Figure 5.19. Solution of Van der Pol�s equation (left-hand side). Performance of the

numerical integrators solving Van der Pol�s equation (right-hand side).

Analysis:

- Explicit formulas ODE23 and DOPRI5 were not able to integrate such stiff second or-

der system for any of the requested accuracy tolerances. Reducing the constant μ (and

therefore the stiffness) to a value of μ = 104 made the explicit formulas to succeed.

- Among Rosenbrock and multi-step formulas, they all completed the numerical integra-

tion except RODAS4, when a level of accuracy of 10-1 was required.

- High order Rosenbrock formulas (RODAS4 and ROS4) provide better accuracy than

the lower order ones.

- Van der Pol�s equation causes difficulties to the LSODE formula, which cannot pro-

vide enough accurate results even though it employs smaller integration steps than the

Rosenbrock family methods. Error plots for LSODE and ROS4 solutions are shown in

Figure 5.20: when imposing a relative accuracy of 10-2, the numerical integration per-

Performance of Rosenbrock formulas 93

formed by LSODE shows that its accuracy surrounding the fast transients is worsened

as the integration advances. However, right-hand side plot of the figure shows that the

accuracy of the numerical solution provided by ROS4 is just affected in the very near

surrounding of the transient points.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

Time [s]

R
el

at
iv

e
er

ro
r

LSODE, TOL = 0.01, nsteps = 2328

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

Time [s]

R
el

at
iv

e
er

ro
r

ROS4, TOL = 0.01, nsteps = 1149

Figure 5.20. Accuracy of LSODE and ROS4 formulas in the integration of Van der

Pol�s equation with tol = 0.01

Hires� equation:

This is a stiff system of 8 non-linear ordinary differential equations proposed by

Schäfer [Schäfer 1975]. The equation describes high irradiance responses of photo-

morphogenesis by means of chemical reaction involving eight reactants. The system is

formulated in (5.4) and its numerical solution is shown in the left-hand side plot of Figure

5.21.

 () () 0, 0 ,y f y y y= =! (5.4)

with

()

1 2 3

1 2

3 4 5

2 3 4

5 6 7

6 8 4 5 6 7

6 8 7

6 8 7

1.71 0.43 8.32 0.0007
1.71 8.75

10.03 0.43 0.035
8.32 1.71 1.12

1.745 0.43 0.43
280 0.69 1.71 0.43 0.69
280 1.81
280 1.81

y y y
y y
y y y
y y y

f y
y y y

y y y y y y
y y y
y y y

− + + +⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− + +
⎜ ⎟

+ −⎜ ⎟= ⎜ ⎟− + +
⎜ ⎟
− + + − +⎜ ⎟
⎜ ⎟−⎜ ⎟⎜ ⎟− +⎝ ⎠

()0

,

1,0,0,0,0,0,0,0.0057 .Ty =

94 Performance of Rosenbrock formulas

The performance of the numerical formulas when integrating the problem (5.4) is

shown in the right-hand side of Figure 5.21. The vertical axis indicates the maximum rela-

tive error found in the integration interval t = 0...370 s. Each numerical integration formula

has computed the solution successfully using four different orders of accuracy: RTOL =

10 n− , ATOL = 410 RTOL− , with n = 1, 2, 3, 4.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y

Time [s]

Y1

Y2
Y3

Y4

Y5

Y6
Y7

Y8

50 100 150 200 250 300 350
10-5

10-4

10-3

10-2

10-1

100

Number of steps

R
el

ar
iv

e
er

ro
r

ODE23s
RODAS3
RODAS4
ROS4
LSODE

Figure 5.21. Solution of Hairer�s equation (left-hand side). Performance of numerical
integrators solving Hairer�s equations (right-hand side)

Analysis:

- Due to the lower stiffness of Hirer�s equations, when compared to the previous tests, all

explicit and implicit formulas succeed in performing the numerical integration in the

interval t = 0...370 s. However, performance results of ODE23 and DOPRI5 are not

shown in Figure 5.21 due to the high number of integration steps employed by this

formulas (approx. 5000 and 10000 steps respectively)

- Among Rosenbrock formulas, RODAS4 and RODAS3 show better performance levels

than the rest of formulas, especially in the higher accuracy solutions.

- LSODE shows a poor performance for the two lowest levels of accuracy. This can be

clearly seen in the right-hand side plot of Figure 5.21, where the relative error of the

LSODE solution is considerably larger than the other solution errors provided by

Rosenbrock formulas.

Performance of Rosenbrock formulas 95

5.2.2 Conclusions of offline integration tests
The previous tests have shown that popular explicit RK formulas are clearly not the

best option for the integration of stiff systems or systems with discontinuities. Such formu-

las, with reduced stability properties, need in some cases of extremely small integration

step sizes in order to keep the integration under stable conditions.

All Rosenbrock formulas have shown similar behaviour in their performance during

the tests. Concerning the multi-step LSODE code, the problems announced previously in

Chapter 4 regarding multi-step BDF formulas have been confirmed, such as the lack of

accuracy near discontinuities (Test 1 and Test 4) and stability problems for low orders of

accuracy (Test 2 and Test 3). It has been found that, in general, Rosenbrock formulas have

provided substantially better results (accuracy, efficiency and stability) in all tests per-

formed.

5.3 Analytical and numerical Jacobians
As previously stated, the numerical integration of numerically stiff systems of ODEs

is better accomplished using implicit integration methods. One of the main differences be-

tween implicit and explicit methods is that the former solver requires the Jacobian matrix of

the ODE system. The need of a Jacobian evaluation at each integration step (or at sampled

intervals) raises the following concerns: how the Jacobian matrix is formed? And what are

the associated computational costs?

Generally, two different approaches are used to form the Jacobian matrix. Jacobian

evaluations can either be done numerically (e.g. by finite differences) or symbolically,

through the analytical expression of the Jacobian. The use of the analytical expression of

the Jacobian has clear advantages [Esqué 2005]:

- It evaluates the Jacobian more accurately, leading to better solution accuracies and

better numerical stability.

- Evaluation of Jacobian, from its analytical form, is less computationally expensive

than using numerical techniques. This leads to significantly better simulation per-

formance.

Among the implicit ODE solvers, the Rosenbrock formulas are especially sensitive

to the accuracy of the Jacobian. This is due to the fact that Rosenbrock formulas only use a

96 Performance of Rosenbrock formulas

single Newton iteration to solve the non-linear set of equations. Although the numerical

tests presented in this chapter have made use of the analytical Jacobian approach, the same

tests have been repeated employing a Jacobian evaluation by numerical differentiation (5.5)

instead. The tests have shown that Rosenbrock formulas, using a numerically-obtained

Jacobian, are still able to integrate successfully most of the tests. Nonetheless, the accuracy

of these solutions is in general worsened. In some other cases, the results provided by

Rosenbrock integration with a numerically-obtained Jacobian were unacceptable. This can

be seen in Figure 5.22, where numerical integration of the test circuit in Figure 5.2 is per-

formed with RODAS3 using the analytical and the numerical approaches for the Jacobian

evaluation. Results are compared to the approximate exact solution provided by the code

RADAU5. The results show that the solver employing the analytical Jacobian provides a

solution closely matching the exact solution. However, when the same solver evaluates the

Jacobian numerically, the accuracy of the solution obtained is unacceptable

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Time [s]

C
yl

in
de

r d
is

pl
ac

em
en

t [
m

m
]

analytical
numerical
exact solution

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Time [s]

C
yl

in
de

r c
ha

m
be

r p
re

ss
ur

e
[b

ar
]

analytical
numerical
exact solution

Figure 5.22. Comparison of numerical integrations of Test Circuit #2 when employing
numerical and analytical Jacobians

The computational cost (in terms of CPU time) involved in the formation of the

Jacobian matrix is yet another concern. In general, an evaluation of the Jacobian is needed

in every integration step of implicit Rosenbrock methods. Among all operations required to

advance one step with a Rosenbrock formula, only the computation of the Jacobian matrix

can take up to 40% of the total CPU time [Esqué 2005]. The rest of computation (60 % of

CPU time) is dedicated to function evaluations, solution of linear systems and other minor

operations.

Performance of Rosenbrock formulas 97

In terms of computational costs, the use of an analytical expression of the Jacobian

matrix shows, once again, advantages over the use of numerically-obtained Jacobians. The

following test confirms the above. In this test, numerical integration of fluid power circuits

of dimensions N = 5, 10, 15, 20 are performed using different methods to evaluate the

Jacobian.:

- Analytical Jacobian: The Jacobian matrix is determined symbolically before the

integration starts. The Jacobian is then evaluated as a function of the state vari-

ables of the system [Section 4.4].

- Numerical Jacobian (1): Instantaneous value of the Jacobian matrix J of the sys-

tem ()y F y=! is computed numerically by finite differences as:

 () ()() /ij i j i jJ F y F y= + Δ − Δ (5.5)

- Numerical Jacobian (2): The subroutine NUMJAC, from the MATLAB ODE suite

is employed to evaluate the Jacobian numerically. NUMJAC is an implementation

of a robust scheme due to Salane [Salane 1986] for the approximation of partial

derivatives.

Figure 5.23 plots the pairs (CPU time (t) � system dimension (N)) obtained after

conducting all the integrations. The purpose of this plot is to show the computational time

of the RODAS3 Rosenbrock formula as a function of the system dimension and for the

different Jacobian evaluation techniques described above. From the analysis presented in

Chapter 4, it is known that the time required to integrate a system of ODEs of order N with

an implicit formula is aNα , where a is a constant, and the power termα is a function of the

algebraic formulation of the numerical formula (including the Jacobian computation). As

shown in Figure 5.23, the power curve t aN bα= + fits reasonably well (with R-square >

0.99) to all three series of integrations. Computational costs associated to the different

Jacobian evaluation techniques are given by the exponential termα . The lowest value

ofα is clearly obtained when the solver uses the analytical form of the Jacobian.

98 Performance of Rosenbrock formulas

5 10 15 20
0

20

40

60

80

100

120

140

160

System dimension (N)

R
la

tiv
e

C
P

U
 ti

m
e

(t)

Analytical
Numerical (1)
Numerical (2)

t aN bα= +

Power termsα of the curve fitting:

Analytical.: α = 1.15

Numerical (1): α = 2.04

Numerical (2): α = 2.00

Figure 5.23. Determining the costs in evaluating the Jacobian, as a function of the
system dimension N.

Because of its better accuracy, stability and computational performance, Jacobian

evaluation from its analytical expression should be performed, if possible. However there

are situations where symbolic information of the dynamics of the system is not completely

available. This is often the case when computer software packages are used to construct the

model and to perform the simulation employing the software�s own numerical integration

solvers. Chapter 3 of this thesis has presented a model topology and a systematic formula-

tion of fluid power elements and systems from which the analytical form of the Jacobian

matrix can be automatically derived by an algorithm, as a pre-process prior the starting of

the integration, and without the need of any manual symbolic manipulation.

6 CONCLUSIONS

Numerical problems are commonly present in the numerical simulation of fluid

power circuits. Such numerical integration difficulties are due to the nature and characteris-

tics of the physics governing fluid power systems, such as a) the highly non-linear behav-

iour of certain physical phenomenon (e.g. fluid compressibility, turbulent flow) or compo-

nents (e.g. cylinder seal friction forces), b) numerically stiffness due to big differences in

response times of different variables, and c) discontinuities due to digital control signals

and due to limited displacement of actuators. All these characteristics can certainly cause

stability and accuracy problems to the numerical integration algorithms.

Simulation applications (such as virtual prototyping, hardware-in-the-loop, man-in-

the-loop simulators, offline computer-based simulations) are extendedly used in research

and in industrial fields. Fluid power engineers posses a deep understanding of the physics

and dynamics linked to fluid power systems. This allows them to mathematically formulate

the problems and construct simulation models. However, engineers might not be enough

acquainted with the theory behind the numerical integration of differential equations and, in

many other cases they might even lack the criteria to choose a proper numerical integration

formula based on the characteristics of the simulation models to be solved. As a conse-

quence, general-purpose simulation software is often employed in order to numerically in-

tegrate the generated differential equations. A drawback in this practice is that these soft-

ware packages often offer a limited number of numerical integration solvers to choose

from. The choice of a wrong numerical solver usually leads the engineer to take some cor-

rective actions which, in many cases, degrades the simulation performance. Some of these

actions are: a) reducing the size of the integration step size in order to correct stability prob-

lems or to gain more accuracy in the solution. Nonetheless, this action also leads to an im-

portant increase of computational time, which can be critical in a real-time application. b)

When real-time simulations are not achievable because of the heavy computational times,

100 Conclusions

simulation models are often simplified (compromising the level of accuracy) or the integra-

tion step size is increased (now compromising both the solution accuracy and the numerical

stability of the method). Poor numerical stability properties of the solver can cause numeri-

cal oscillations in the solution of a stiff system. These oscillations sometimes are wrongly

interpreted as a physical behaviour.

From the above exposed, it can be concluded that a general knowledge on the prop-

erties of numerical integration methods is essential for the choice of an appropriate numeri-

cal integrator. The choice will be made based on the characteristics and the estimated be-

haviour of the simulation model. In this thesis, a series of L-stable Rosenbrock formulas,

derived from the semi-implicit Runge Kutta family, have been proposed for the numerical

integration of fluid power circuits. The implementation of these Rosenbrock formulas in a

programming language is simple and straightforward when compared to general implicit or

multi-steps methods. Rosenbrock formulas are implicit single-step formulas which do not

require the solution a non-linear algebraic system. Instead, the stages are solved consecu-

tively as unknowns of a linear system. In addition, no special modifications of the code are

required in order to adapt the formula to systems containing discontinuities. Discontinuities

can become an issue in the more complex integration methods like the Linear Multi-step

Formulas.

Numerical simulations have been conducted in order to evaluate the proposed

Rosenbrock formulas and to compare their performance to other popular codes. Most of the

numerical tests have been built employing systems of ODEs originating in fluid power cir-

cuit simulation models due to the special characteristics found in fluid power systems.

Other test problems popularly used for evaluating generic numerical integrators of ODEs

have also been employed.

Concerning the real-time simulations, the following conclusion can be extracted:

- In the real-time simulation of systems with fast dynamics, where a relatively small

sampling time (i.e. integration step size) is required, explicit formulas are commonly

employed due to their computational simplicity (no Jacobian evaluations, no need of

solving linear or non-linear algebraic systems). Nonetheless, explicit formulas show

very clear limitations when dealing with stiff systems. These limitations have already

been observed in this thesis when comparing the solution accuracy provided by ex-

Conclusions 101

plicit and implicit Rosenbrock formulas. Implicit Rosenbrock formulas have provided

solutions with much better levels (in most cases several orders of magnitude) of accu-

racy than explicit formulas of the same order and for the same integration step size.

- Another limitation found in explicit formulas is due to their poor numerical stability.

This fact has also been clearly observed in the performance tests carried out in Chapter

5. Numerical stability problems might be solved or partially solved by reducing the

step size of the explicit integration, although the computational costs of the integration

are then increased by the same ratio.

- The stability shown by the tested Rosenbrock formulas is certainly superior: Rosen-

brock formulas have remained still stable even when using integration step sizes up to

ten times larger than the largest possible step size used in explicit formulas. Rosen-

brock formulas have also provided much better accuracy. In most cases the solution

accuracy provided by Rosenbrock integration with time step h has been better than the

one provided by explicit methods using h/10.

- The outstanding stability and accuracy properties or Rosenbrock formulas can make

them faster than explicit formulas. As computational costs of explicit formulas grow

linearly with the dimension N of the system, computational costs associated to implicit

formulas can be as high as of the order of ()3O N . Nonetheless, and as it has been

shown in the numerical tests, the proposed Rosenbrock formulas have shown compu-

tational costs of the order ()1.15O N . These reduced computational costs are also due to

the fact that an analytical form of the Jacobian matrix has been used to obtain its nu-

merical evaluation at each integration step. The proposed Rosenbrock formulas are,

among all implicit formulas, one of the less computationally demanding, in terms of

the number of operations required to advance one step the integration.

Conclusions with respect to offline simulations are exposed next:

- In offline simulations, integration formulas normally make use of an adaptive integra-

tion step size according to an estimation of the local integration error. By means of

controlling the integration error, the formulas are also implicitly detecting numerical

instabilities and therefore they can reduce these instabilities by reducing the size of the

integration step. However, instabilities cannot be always avoided, especially if the

102 Conclusions

numerical formula employed is not suited for the particular characteristics and behav-

iour of system being solved. For example, numerical formulas which are not good at

detecting discontinuities might turn unstable despite being able to control the local er-

ror. Another case is found in the integration of numerically stiff system by those for-

mulas which do not have L-stability properties. Under these conditions, high fre-

quency oscillations are seen in the numerical solution. The embedded local error esti-

mator in the formula can partially or totally damp these oscillations if smaller error

tolerances are used. However this leads to an inefficient way of solving the numerical

problem.

- Numerical integrators for the offline simulation of fluid power circuits need to have

excellent stability properties and also need to perform efficiently. The efficiency is

measured as the rate between the accuracy of the solution and the number of integra-

tion steps. Bad stability properties of the integration formula not only can lead to

simulation crashes (i.e. error of the solution grows unbounded, causing a computa-

tional overflow) but they can also have an important effect on the overall efficiency of

the integration. Efficiency is degraded when the error predictor of the formula has to

reduce the integration step size in order to mitigate numerical instabilities arisen dur-

ing the integration. Formulas perform efficiently when a change in the integration step

size is solely targeted to control the error of the numerical solution.

- The proposed family of Rosenbrock formulas have proven, in general, to hold excel-

lent stability properties throughout all the numerical tests performed in this research.

These numerical tests have been performed on fluid power circuits showing disconti-

nuities, highly non-linear behaviour, and numerical stiffness.

- As it could be expected, the efficiency shown by explicit Runge-Kutta formulas during

the offline simulation tests is considerably degraded due to their limited stability under

numerically stiff conditions. As a consequence, explicit formulas have required ap-

proximately between 100 and 1000 times more integration steps than the implicit for-

mulas. Even employing such small step sizes, numerical oscillations have still been

visible in many of the provided solutions. Although showing a limited stability, ex-

plicit Runge-Kutta formulas have been able to complete all numerical tests, proving

that these formulas can detect and handle discontinuities and non-linearities. This can

Conclusions 103

explain why explicit Runge-Kutta formulas are still popular and are commonly used as

a first choice for solving any type of ordinary differential equation system.

- As a representative of the multi-step Backward Differentiation Formulas, the code

LSODE has also proven to be very efficient and stable during those numerical integra-

tion tests containing no discontinuities. Nonetheless, when discontinuities were intro-

duced, some of the tests could not be successfully solved due to stability crashes.

LSODE also suffered from poor solution accuracy when dealing with highly non-

linear systems.

- Semi-implicit L-stable Rosenbrock formulas, in special those of order 3 and 4, have

proved their polyvalence throughout all the numerical tests. Their excellent stability

properties, not only allowed them to complete successfully all of the integration tests,

but their stability also awarded them with a very good efficiency rate. These good re-

sults support therefore the theoretical analysis of Rosenbrock formulas carried out in

Chapter 4.

- The main drawback of Rosenbrock formulas is that an accurate Jacobian matrix needs

to be formed at each numerical integration step, while other implicit formulas may just

require a crude approximation or even might only need a Jacobian evaluation after cer-

tain interval of steps. The supply of a Jacobian at each integration step is sometimes

necessary in order to guarantee the numerical stability of the formula. This is caused

by the fact that Rosenbrock formulas only make use of a single Newton iteration for

solving the non-linear systems at each stage. The need for an accurate Jacobian

evaluation at each integration step can imply important additional computational costs.

A systematic approach for constructing an analytical Jacobian matrix of the system,

prior to the numerical integration, has been presented. This has shown the following advan-

tages:

- The numerical evaluation of a Jacobian matrix from its analytical form requires sig-

nificantly less computational costs than evaluating the Jacobian using numerical ap-

proximations.

104 Conclusions

- The analytical expression of the Jacobian matrix provides an accurate Jacobian evalua-

tion. The Jacobian accuracy contributes positively to the numerical stability of the

numerical integration formula and also the accuracy of the solution.

- From a simulation model built according to the topology introduced in Chapter 3, it is

possible to obtain the Jacobian matrix of the system in its analytical form and without

the need of any symbolic manipulation by the user. This task can be executed auto-

matically by means of an algorithm, which collects partial Jacobian definitions of each

component and assembles them into the full Jacobian matrix.

Finally, a modelling topology for the systematic construction of dynamic simulation

models of fluid power circuits has also been presented in this thesis. With this methodol-

ogy, fluid power elements are interconnected through communication ports, where physical

variables are exchanged. Elements and subsystems retain modular and hierarchical proper-

ties. During his research, the author has contributed to the development of a fluid power

library containing more than 30 simulation models of fluid power elements [Esqué 2003b].

The construction of a fluid power circuit is easily defined by using a formal description of

the components and their port interconnections. An algorithm is then used process this for-

mal description and to derive the system of ordinary differential equations and its analytical

Jacobian matrix. This constitutes the pre-process prior to the numerical integration of the

system.

6.1 Summary of conclusions

- Explicit integration algorithms are typically used in real-time simulation and implicit

algorithms in stiff offline simulation. Rosenbrock formulas have shown superior sta-

bility, accuracy and efficiency in both cases.

- The special characteristics found in fluid power systems require that numerical inte-

gration tests need to be performed in specific fluid power simulation models. This

provides the optimum conditions to evaluate the different algorithms.

Conclusions 105

- Rosenbrock methods are a special class of implicit integration formulas requiring an

accurate evaluation of the Jacobian matrix at each integration step.

- A systematic way to provide an accurate numerical evaluation of Jacobian to the

Rosenbrock formula employing relatively low computational costs has been presented.

REFERENCES

[Alexander 1977] Alexander, R. (1977), �Diagonally implicit Runge-Kutta methods for
stiff O.D.E.�s� SIAM J. Numer. Anal. Vol 14, pp. 1006-1021

[Axelsson 1969] Axelsson, O. (1969), �A Class of A-stable methods�, BIT Vol 9, pp.
185-199

[Bogacki 1989] Bogacki, P., Shampine, L.F., (1989), �A 3(2) pair of Runge-Kutta
formula�, Math. Lett. Vol 2, pp. 1.9

[Boucher 1986] Boucher, R.F., Kitsios, E.E. (1986), �Simulation of Fluid Network
Dynamics by Transmission Line Modelling�, Proc Instn Mech Engrs
Vol 200 No C1, pp. 21-29

[Brenan 1996] Brenan, K.A., Campbell, S.L., Petzold, L.R. (1996), �Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Equations�,
SIAM, 1996

[Burton 1994] Burton, J.D., Edge, K.A., Burrows, C.R. (1994), �Modeling Require-
ments for the Parallel Simulation of Hydraulic Systems�, ASME
Journal of Dynamic Systems, Measurement, and Control Vol 116, pp.
137-145

[Butcher 1964a] Butcher, J.C. (1964), �Implicit Runge-Kutta Processes�, Math Com-
put Vol 18, pp. 50-64

[Butcher 1964b] Butcher, J.C. (1964), �Integration processes based on Radau quadra-
ture formulas�, Math. Comput. Vol 18, pp. 233-244

[Butcher 1976] Butcher, J.C. (1976), �On the implementation of Runge-Kutta implicit
methods�, BIT Vol 16, pp. 237-240

[Ceschino 1963] Ceschino, F., Kuntzmann, J. (1963), �Problèmes différentiels de
conditions initials (methods numériques)�, Dunod Paris, 372 p.

[Dahlquist 1963] Dahlquist, G. (1963), �A special stability problem for linear multistep
methods�, BIT Vol 3 pp. 27-43

[Dorey 1988] Dorey, R. (1988), �Modelling of Losses in Pumps and Motors�, Pro-
ceedings of First Bath International Fluid Power Workshop, Bath,
UK.

[Dormand 1980] Dormand, J.R., Prince, P.J. (1980), �A Family of Embedded Runge-
Kutta formulae�, J Comp Appl Math Vol 6, pp. 19-26

108 References

[Ellman 1996a] Ellman, A., Käppi, T., Vilenius, M. (1996), �Simulation and analysis
of hydraulically-driven boom mechanism�, Proceedings of Ninth Bath
International Fluid Power Workshop, Bath, UK.

[Ellman 1996b] Ellman A., Piché R. (1996), �A modified orifice flow formula for nu-
merical simulation�. Fluid Power Systems and Technology, Collected
papers of 1996 ASME IMECE, Atlanta, pp. 59-63

[Esqué 2002a] Esqué, S., Ellman, A. (2002), �Pressure Build-Up in Volumes�. Bath
Workshop on Power Transmission and Motion Control, PTMC 2002,
Bath, UK. Published in the book Power Transmission and Motion
Control, edited by C.R. Burrows and K.A. Edge, Professional Engi-
neering Publishing Limited. London, UK, pp. 25-38

[Esqué 2002b] Esqué, S., Ellman, A., Piché, R. (2002), �Numerical integration of
pressure build-up volumes using an L-stable Rosenbrock method�.
Proceedings of the 2002 ASME International Mechanical Engineering
Congress and Exposition, New Orleans, Louisiana, USA

[Esqué 2003a] Esqué, S., Raneda, A., Ellman, A. (2003), �Techniques for studying a
mobile hydraulic crane in virtual reality�, International Journal of
Fluid Power Vol 4 No 2 pp. 25-34

[Esqué 2003b] Esqué, S. (2003), �WINSIMU, Software for modelling and simulation
of fluid power systems�, International Journal of Fluid Power Vol 4
No 2 pp. 67-71

[Esqué 2005] Esqué, S., Ellman, A. (2005), �An efficient numerical method for
solving the dynamic equations of complex fluid power systems�. Bath
Workshop on Power Transmission and Motion Control, PTMC 2005,
Bath, UK. Published in the book Power Transmission and Motion
Control, edited by C.R. Burrows and K.A. Edge, Professional Engi-
neering Publishing Limited. London, UK, pp. 179-191

[Fehlberg 1969] Fehlberg, E. (1969), �Low-order Classical Runge-Kutta Formula with
Step Size Control and their Application to Some Heat Transfer Prob-
lems�, NASA Technical Report 315, extract published in Computing
Vol 6, pp. 61-71

[Gear 1971] Gear, C.W. (1971), �Algorithm 407 � DIFSUB for solution of ordi-
nary differential equations�, Commun. ACM 14, 3 (Mar.), pp. 185-
190

[Gear 1974] Gear, C.W. (1974), �Multirate methods for ordinary differential equa-
tions�, Tech. Rep. UIUCDCS-74-880, Dept. of Computer Science,
University of Illinois

[Gupta 1985] Gupta, G.K., Sacks-Davis, R., Tischer, P.E. (1985) �A Review of Re-
cent Developments in Solving ODEs�, ACM Computing Survey Vol
117 No 1, pp. 5-47

[Hairer 1974] Hairer, E., Wanner, G. (1974), �On the Butcher group and general
multivalue methods�, Comput J Vol 13, pp. 1-15

References 109

[Hairer 1991] Hairer, E., Wanner, G. (1996), �Solving ordinary differential equa-
tions II: Stiff and Differential-Algebraic Problems�, Springer-Verlag

[Hairer 1993] Hairer, E., Nørsett, S.P., Wanner, G. (1993), �Solving ordinary differ-
ential equations I: Nonstif problems�, Springer-Verlag

[Hairer 1996] Hairer, E., Wanner, G. (1996), �Solving ordinary differential equa-
tions II: Stiff and Differential-Algebraic Problems�, Springer-Verlag

[Handroos 1990] Handroos, H., Vilenius, M. (1990), �The utilization of experimental
data in modelling of hydraulic single stage pressure control valves�.
ASME journal of dynamic systems, measurements and control, Vol
112 No 3

[Hindmarsh 1983] Hindmarsh, A.C. (1983), �ODEPACK, A Systematized Collection of
ODE Solvers�, in Scientific Computing, R. S. Stepleman et al. (eds.),
North-Holland, Amsterdam, 1983 (vol. 1 of IMACS Transactions on
Scientific Computation), pp. 55-64

[Huhtala 1996] Huhtala, K. (1996), �Modelling of Hydrostatic Transmission � Steady
State, Linear and Non-Linear Models�, PhD Dissertation, Tampere
University of Technology, Acta Polytechnica Sacandinavica. 101 p.

[Kamke 1942] Kamke, E. (1942), �Differentialgleichungen, Lösungsmethoden und
Lösungen�, Becker & Erler, Leipzig, 642p.

[Kaps 1979] Kaps, P., Rentrop, P. (1979), �Generalized Runge-Kutta Methods of
Order Four with Stepsize Control for Stiff Ordinary Differential Equa-
tions�, Numer. Math. 33, pp. 55-68

[Kaps 1981] Kaps, P., Wanner, G. (1981), �A Study of Rosenbrock-Type Methods
of High Order�, Numer Math Vol 38, pp. 279-298

[Kitsios 1986] Kitsios, E.E., Boucher, R.F. (1986), �Transmission Line Modelling of
a Hydraulic Position Control System�, Proc Instn Mech Engrs Vol
200 No B4, pp. 229-236

[Krus 1990] Krus, P., Jansson, A., Palmberg, J-O. and Weddfelt, K. (1990), �Dis-
tributed Simulation of Hydromechanical Systems�, Proceedings of
Third Bath International Fluid Power Workshop, Bath, UK.

[Lang 2000] Lang, J., Verwer, J.G. (2000), �ROS3P � An accurate Third-Order
Rosenbrock Solver Designed for Parabolic Problems�, Report MAS-
R0013, CWI-National Research Institute for Mathematics and Com-
puter Science, Stichting Mathematisch Centrum, The Netherlands.

[Larsson 2003] Larsson, J. (2003), �Interoperability in Modeling and Simulation�,
PhD Dissertation, Linköping University, Sweden. 178 p.

[Layton 1998] Layton, R.A. (1988), �Principles of Analytical System Dynamics�,
Springer, Mechanical Engineering Series.

[Merritt 1967] Merritt, H.E. (1967), �Hydraulic Control Systems�. John Wiley &
Sons, Inc. New York. 358 p.

110 References

[Nykänen 2000] Nykänen T., Esqué S., Ellman A. (2000), �Comparison of Different
Fluid Models�, Bath Workshop on Power Transmission and Motion
Control, PTMC 2000, Bath, UK. Published in the book Power Trans-
mission and Motion Control, edited by C.R. Burrows and K.A. Edge,
Professional Engineering Publishing Limited. London, UK, pp. 101-
110.

[Olsson 1996] Olsson, H. (1996), �Control Systems with Friction�, PhD Dissertation,
Lund Institute of Technology, Sweden. 172 p.

[Piché 1994] Piché, R., Ellman, A. (1994), �Numerical integration of fluid power
circuit models using two-stage semi-implicit Runge-Kutta methods�,
Proc Instn MEch Engrs Vol 208, pp. 167-175

[Piché 1995] Piché, R., Ellman, A. (1995), �A Fluid Transmission Line Model for
Use with ODE Simulators�, Proceedings of Eighth Bath International
Fluid Power Workshop, Bath, UK

[Pollmeier 1996] Pollmeier, K., Burrows, C.R., Edge, K.A. (1996), �Partitioned Simula-
tion of Fluid Power Systems � an Approach for Reduced Communica-
tion Between Processors�, Proc Instn Mech Engrs Vol 210, pp. 221-
230

[Radhakrishnan 1993] Radhakrishnan, K., Hindmarsh, A. (1993), �Description and Use
of LSODE, the Livermore Solver for Ordinary Differential Equa-
tions�, NASA Reference Publication 1327 / Lawrence Livermore Na-
tional Laboratory Report UCRL-ID-113855, 124p.

[Rosenbrock 1963] Rosenbrock, H.H. (1963), �Some general implicit processes for the
numerical solution of differential equations�, Comput J Vol 5 pp. 329-
330

[Salane 1986] Salane, D.E. (1986), �Adaptive Routines for Forming Jacobians Nu-
merically�, Tech. Report SAND86-1319, Sandia National Laborato-
ries, Albuquerque, NM, USA.

[Sandu 1996] Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R.
(1996), �Benchmarking stiff ODE solver for atmospheric chemistry
problems. II: Rosenbrock solvers�, Report NM-R9614, CWI-National
Research Institute for Mathematics and Computer Science, Stichting
Mathematisch Centrum, The Netherlands.

[Schlösser 1961] Schlösser, W. (1961), �Mathematical Model for Displacement Pump
and Motors�, Hydraulic Power Transmission April 1961 pp. 252-257
and May 1961, pp. 324,328

[Schäfer 1975] Schäfer, E. (1975), �A new approach to explain �high irradiance re-
sponses of photomorhogenesis on the basis of phytochrome�. J. of
Math. Biology, Vol 2, pp. 41-56

[Shampine 1982] Shampine, L.F. (1982), �Implementation of Rosenbrock methods�,
ACM Transactions of Mathematical Software, Vol 8 No 2, pp. 93-113

References 111

[Shampine 1997] Shampine, L.F., Reichelt, M.W. (1997), �The MATLAB ODE Suite�,
SIAM J Sci Comput Vol 18 No 1, pp. 1-22

[Stecki 1986a] Stecki, J.S., Davis, D.C. (1986), �Fluid Transmission Lines - Distrib-
uted Parameter Models. Part1: a review of the state of the art�, proc
Instn Mech Engrs Vol 200 No 4, pp. 215-228

[Stecki 1986b] Stecki, J.S., Davis, D.C. (1986), �Fluid Transmission Lines - Distrib-
uted Parameter Models. Part2: comparison of models�, proc Instn
Mech Engrs Vol 200 No 4, pp. 229-236

[Stetter 1973] Stetter, H.J. (1973), �Analysis of discretization methods for ordinary
differential equations�, Springer, Berlin.

[Thoma 1969] Thoma, J. (1969), �Mathematical Models and Effective Performance
of Hydrostatic Machines and Transmisions�, Hydraulic and Pneu-
matic Power, Nov. 1969, pp. 642-651

[Verwer 1999] Verwer, J.G., Spee, E.J., Blom, J.G. and Hundsdorfer, W., (1999), �A
second-order Rosenbrock method applied to photochemical dispersion
problems�, SIAM J. Sci. Comput. Vol 20, No. 4, pp. 1456-1480

[Wilson 1948] Wilson, W.E. (1948), �Performance criteria for positive displacement
pumps and fluid motors�, ASME Semi-annual meeting 1948, paper
No 48-SA-14

[Wolfbrandt 1973] Wolfbrandt, A. (1977), �A study of Rosenbrock Processes with Re-
spect to order conditions and stiff stability�, Thesis, Chalmers Univ.
of Technology, Goteborg, Sweden

[Wolfbrandt 1977] Wolfbrandt, A. (1977), �A Study of Rosenbrock Processes with Re-
spect to Order Conditions and Stiff Stability�, Ph.D. dissertation,
Chalmers Univ of Technology, Goteborg, Sweden

APPENDIX A

FORTRAN routines for the offline numerical integration of fluid power systems.

Solvers: RODAS3 and RODAS4 (see Section 5.2 for a description of the solvers)

Driver of the numerical integration using RODAS3 or RODAS4

PARAMETER (NVAR=13) ! NVAR = Dimension of the ODE system

REAL*8 X, Y, XEND, RTOL, ATOL, ITOL, H, HMIN, HMAX, HFIX
EXTERNAL FUN, JAC
DIMENSION Y(NVAR), ATOL(NVAR), RTOL(NVAR)
INTEGER nsteps, IJAC, AUTON, i, N

IJAC = 1 ! IJAC = 1 -> Jacobian is provided
 ! IJAC = 0 -> Jacobian is computed internally by finite differences
AUTON = 0 ! AUTON = 1 -> Autonomous system of ODEs
 ! AUTON = 0 -> Non-autonomous system of ODEs

X =0.D0 ! Integration starting time
XEND = 10.0D0 ! Integration ending time
H = 1.D-6 ! Initial step size
HMIN = 1.D-8 ! Minimum integration step size allowed
HMAX = .1D0 ! Maximum integration step size allowed

i=1
DO WHILE (i.le.NVAR)
 RTOL(i) = 1.D-1 ! Num. integration Relative error tolerance
 ATOL(i) = 1.D-1 ! Num. integration Absloute error tolerance
 i=i+1
END DO

N=NVAR
CALL IC(Y,N) ! Returns initial conditions vector Y(0) of Y'=F(Y)

! Executes the numerical integraion routine by using the integrator RODAS3 or RODAS4
CALL RODAS3(N,X,Y,XEND,FUN,JAC,H,HMIN,HMAX,HFIX,RTOL,ATOL,ITOL,nsteps,IJAC,AUTON)
! CALL RODAS4(N,X,Y,XEND,FUN,JAC,H,HMIN,HMAX,HFIX,RTOL,ATOL,ITOL,nsteps,IJAC,AUTON)

! Writes numerical solution vector (Y) in an ASCII file for each integration step
CALL write_solution(nsteps,N)

STOP
END

RODAS3

SUBROUTINE RODAS3(N,X,Y,XEND,FUNC,JACOB,H,HMIN,HMAX,HFIX,RTOL, ATOL, ITOL, nsteps,IJAC,

AUTON)

INTEGER N
REAL*8 RPAR, FAC, ITOL
REAL*8 X, Y(N), YNEW(N), Y1(N), Ye(N), E(N,N), DY(N), DFY(N,N)
REAL*8 H, HMIN, HMAX, XEND, ATOL, RTOL, HFIX

114 APPENDIX A

REAL*8 er, erk(N), hnew,q, gamma
REAL*8 a21,a31,a32,a41,a42,a43
REAL*8 c21,c31,c32,c41,c42,c43
REAL*8 m1,m2,m3,m4,m5,m6,me1,me2,me3,me4
REAL*8 C2, C3, C4
REAL*8 K1(N),K2(N),K3(N),K4(N)
INTEGER nsteps, rej, rejcount, i, j, IJAC, AUTON
INTEGER IP(N)
EXTERNAL FUNC,JACOB

DO I=1,N
 DO J=1,N
 DFY(I,J)=0.D0
 E(I,J) =0.D0
 END DO
END DO

! Coefficients (free parameters) of the Rosenbrock formula
gamma = 0.5D0
a21 = 0.D0
a31 = 2.D0
a32 = 0.D0
a41 = 2.D0
a42 = 0.D0
a43 = 1.D0

c21 = 4.D0
c31 = 1.D0
c32 = -1.D0
c41 = 1.D0
c42 = -1.D0
c43 = -2.666666666666667D0

m1 = 2.D0
m2 = 0.D0
m3 = 1.D0
m4 = 1.D0

me1 = 2.D0
me2 = 0.D0
me3 = 1.D0
me4 = 0.D0

IF (AUTON.EQ.0) THEN
 C2 = 0.D0
 C3 = 1.D0
 C4 = 1.D0
ELSE IF (AUTON .EQ. 1) THEN
 C2=0.D0
 C3=0.D0
 C4=0.D0
END IF

q=3.D0 ! q is the order accuracy of the Rosenbrock formula

! Initialization of parameters
nsteps=0
rej=0
rejcount=0

DO WHILE (X.LT.XEND)

 IF (rej.eq.0) THEN
 IF (IJAC .EQ. 0) THEN
! JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of
! numerical differentiation
 call JACA(N,X,Y,DFY,FUNC)
 ELSE IF (IJAC .EQ. 1) THEN
! JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its

APPENDIX A 115

! analytical form
 call JACOB(N,X,Y,DFY)
 END IF
! skips jacobian computation for the new solution if step has been rejected (req==1)
 END IF

 FAC = 1.D0/(h*gamma)
 DO i = 1,N
 DO j = 1,N
 E(i,j) = -DFY(i,j)
 END DO
 E(i,i) = E(i,i) + FAC
 END DO
! Triangularization of matrix E by Gaussian eliminatiion
 CALL DEC(N,N,E,IP,INFO)

! Returns DY, the evaluation of function F(Y) at point (X,Y)
 CALL FUNC(N,X,Y,DY)
 DO i=1,N
 K1(i) = DY(i)
 END DO
! Solution of linear system E*X = K1. Output: K1 = solution vector X
 CALL SOL(N,N,E,K1,IP)
 DO i=1,N
 K2(i) = DY(i)+c21/h*K1(i)
 END DO
 CALL SOL(N,N,E,K2,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a31*K1(i)+a32*K2(i)
 END DO
 CALL FUNC(N,X+C3*h,YNEW,DY)
 DO i=1,N
 K3(i) = DY(i)+c31/h*K1(i)+c32/h*K2(i)
 END DO
 CALL SOL(N,N,E,K3,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a41*K1(i)+a42*K2(i)+a43*K3(i)
! Ye = Solution of different order of accuracy for error estimation
 Ye(i) = YNEW(i)
 END DO
 CALL FUNC(N,X+c4*h,YNEW,DY)
 DO i=1,N
 K4(i) = DY(i)+c41/h*K1(i)+c42/h*K2(i)+c43/h*K3(i)
 END DO
 CALL SOL(N,N,E,K4,IP)

 DO i=1,N
! Y1 = Solution of RODAS3
 Y1(i) = Ye(i) + K4(i)
 END DO

! Local error estimation and prediction of new integrration step size
 ER = 0.D0
 CALL ERROR(N,Y,Y1,YE,H,HMAX,HMIN,ATOL,RTOL,q, er,hnew,erk)
 IF (er.LE.1.D0) THEN
 rej=0 ! Integration is accepted
 ELSE IF (er.GT.1.D0) THEN
 rej=1 ! Integration is rejected
 END IF
 IF (rej.EQ.0 .OR. rejcount.EQ.100) THEN
 nsteps = nsteps+1
 X = X + h
! Solution vector Y1 at point X is stored in the memory
 CALL STORE_SOLUTION(X,Y1,h,er,rejcount,nsteps,N, erk)
 rejcount=0
 DO j=1,N
 Y(j)=Y1(j)
 END DO
 ELSE

116 APPENDIX A

 rejcount=rejcount+1
 END IF
 h=hnew

END DO

RETURN
END

RODAS4

SUBROUTINE RODAS4(N,X,Y,XEND,FUNC,JACOB,H,HMIN,HMAX,HFIX,RTOL, ATOL, ITOL, nsteps,

IJAC, AUTON)

INTEGER N
REAL*8 RPAR, FAC, ITOL
REAL*8 X, Y(N), YNEW(N), Y1(N), Ye(N), E(N,N), DY(N), DFY(N,N)
REAL*8 H, HMIN, HMAX, XEND, ATOL, RTOL, HFIX
REAL*8 er, erk(N), hnew,q, gamma
REAL*8 a21,a31,a32,a41,a42,a43,a51,a52,a53,a54,a61,a62,a63,a64,a65
REAL*8 c21,c31,c32,c41,c42,c43,c51,c52,c53,c54,c61,c62,c63,c64,c65
REAL*8 m1,m2,m3,m4,m5,m6,me1,me2,me3,me4,me5,me6
REAL*8 C2, C3, C4, C5, C6
REAL*8 K1(N),K2(N),K3(N),K4(N),K5(N),K6(N)
REAL*8 DELT, XDELT, DY1(N), FX(N)
INTEGER nsteps, rej, rejcount, i, j, IJAC, AUTON
INTEGER IP(N)
EXTERNAL FUNC,JACOB

DO I=1,N
 DO J=1,N
 DFY(I,J)=0.D0
 E(I,J) =0.D0
 END DO
END DO

! Coefficients (free parameters) of the Rosenbrock formula
gamma = 0.25D0
a21 = 0.1544000000D1
a31 = 0.9466785232D0
a32 = 0.2557011578D0
a41 = 0.3314825181D1
a42 = 0.2896124002D1
a43 = 0.9986419144D0
a51 = 0.1221224447D1
a52 = 0.6019134331D1
a53 = 0.1253708333D2
a54 = -0.6878860364D0
a61 = a51
a62 = a52
a63 = a53
a64 = a54
a65 = 0.1000000000D1
c21 = -0.5668800000D1
c31 = -0.2430093338D1
c32 = -0.2063598669D0
c41 = -0.1073528206D0
c42 = -0.9594562000D1
c43 = -0.2047028614D2
c51 = 0.7496443504D1
c52 = -0.1024680392D2
c53 = -0.3399990354D2
c54 = 0.1170890893D2
c61 = 0.8083246972D1
c62 = -0.7981132631D1
c63 = -0.3152159434D2
c64 = 0.1631930543D2

APPENDIX A 117

c65 = -0.6058818238D1
m1 = a61
m2 = a62
m3 = a63
m4 = a64
m5 = a65
m6 = 1.D0
me1 = a61
me2 = a62
me3 = a63
me4 = a64
me5 = 1.D0
me6 = 0.D0

IF (AUTON.EQ.0) THEN
 C2=0.386D0
 C3=0.21D0
 C4=0.63D0
 C5=1.D0
 C6=1.D0
ELSE IF (AUTON .EQ. 1) THEN
 C2=0.D0
 C3=0.D0
 C4=0.D0
 C5=0.D0
 C6=0.D0
END IF

q=4.D0 ! q is the order accuracy of the Rosenbrock formula

! Initialization of parameters
nsteps=0
rej=0
rejcount=0

DO WHILE (X.LT.XEND)

 IF (rej.eq.0) THEN
 IF (IJAC .EQ. 0) THEN
! JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of
! numerical differentiation
 call JACA(N,X,Y,DFY,FUNC)
 ELSE IF (IJAC .EQ. 1) THEN
! JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its
! analytical form
 call JACOB(N,X,Y,DFY)
 END IF
! skips jacobian computation for the new solution if step has been rejected (req==1)
 END IF

 FAC = 1.D0/(h*gamma)
 DO i = 1,N
 DO j = 1,N
 E(i,j) = -DFY(i,j)
 END DO
 E(i,i) = E(i,i) + FAC
 END DO
! Triangularization of matrix E by Gaussian eliminatiion
 CALL DEC(N,N,E,IP,IER)

! Returns DY, the evaluation of function F(Y) at point (X,Y)
 CALL FUNC(N,X,Y,DY,RPAR,IPAR)
 DO i=1,N
 K1(i) = DY(i)
 END DO
! Solution of linear system E*X = K1. Output: K1 = solution vector X
 CALL SOL(N,N,E,K1,IP)
 DO i=1,N

118 APPENDIX A

 YNEW(i) = Y(i)+a21*K1(i)
 END DO
 CALL FUNC(N,X+C2*H,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K2(i) = DY(i)+c21/h*K1(i)
 END DO
 CALL SOL(N,N,E,K2,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a31*K1(i)+a32*K2(i)
 END DO
 CALL FUNC(N,X+C3*H,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K3(i) = DY(i)+c31/h*K1(i)+c32/h*K2(i)
 END DO
 CALL SOL(N,N,E,K3,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a41*K1(i)+a42*K2(i)+a43*K3(i)
 END DO
 CALL FUNC(N,X+C4*H,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K4(i) = DY(i)+c41/h*K1(i)+c42/h*K2(i)+c43/h*K3(i)
 END DO
 CALL SOL(N,N,E,K4,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a51*K1(i)+a52*K2(i)+a53*K3(i)+a54*K4(i)
 END DO
 CALL FUNC(N,X+C5*H,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K5(i) = DY(i)+c51/h*K1(i)+c52/h*K2(i)+c53/h*K3(i)+c54/h*K4(i)
 END DO
 CALL SOL(N,N,E,K5,IP)
 DO i=1,N
 YNEW(i) = YNEW(i)+K5(i)
 END DO
 CALL FUNC(N,X+C6*H,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K6(i) = DY(i)+c61/h*K1(i)+c62/h*K2(i)+c63/h*K3(i)+c64/h*K4(i)+c65/h*K5(i)
 END DO
 CALL SOL(N,N,E,K6,IP)

 DO i=1,N
! Ye = Solution of different order of accuracy for error estimation
 Ye(i) = YNEW(i)
! Y1 = Solution of RODAS4
 Y1(i) = Ye(i) + K6(i)
 END DO

! Local error estimation and prediction of new integrration step size
 ER = 0.D0
 CALL ERROR(N,Y,Y1,YE,H,HMAX,HMIN,ATOL,RTOL,Q, er,hnew,erk)
10 IF (er.LE.1.D0) THEN
 rej=0 ! Integration is accepted
 ELSE IF (er.GT.1.D0) THEN
 rej=1 ! Integration is rejected
 END IF
 IF (rej.EQ.0 .OR. rejcount.EQ.100) THEN
 nsteps = nsteps+1
 X = X + h
! Solution vector Y1 at point X is stored in the memory
 CALL STORE_SOLUTION(X,Y1,h,er,rejcount,nsteps,N,erk)
 rejcount=0
 DO j=1,N
 Y(j)=Y1(j)
 END DO
 ELSE
 rejcount=rejcount+1
 END IF
 h=hnew

APPENDIX A 119

END DO

RETURN
END

Linear Algebra subroutines

DEC and SOL are linear algebra routines for the decomposition and back-substitution of

linear systems. They are public codes available from different sources (e.g. from

http://www.unige.ch/~hairer/prog/stiff/decsol.f).

Routine DEC performs a matrix triangularization by Gaussian elimination.

Routine SOL gives the solution of a linear system A*X = B, where A is the triangularized

matrix obtained from DEC.

Function and Jacobian evaluation Routines

SUBROUTINE FUNC(N,X,Y,F)
! Subroutine FUNC evaluates the function F from the ODE system Y�=F(X,Y)
! Analytical form of function F is to be defined by the user below
!
! INPUT:
! N: dimension of the system Y�=F(X,Y)
! X: independent variable
! Y: vector of solutions at point X
!
! OUTPUT:
! F: evaluation of function F (Y�=F(X,Y)) at (X,Y)

INTEGER N
REAL*8 X, Y, F
DIMENSION Y(N),F(N)

! Analytical definition of F as a function of X and Y

F(1) =
F(2) =

RETURN
END

SUBROUTINE JACOB(N,X,Y,DFY)
! Subroutine JACOB evaluates the Jacobian matrix of the ODE system Y�=F(X,Y)
! Analytical form of the Jacobian is to be defined by the user below
!
! INPUT:
! N: dimension of the system Y�=F(X,Y)
! X: independent variable
! Y: vector of solutions at point X
!
! OUTPUT:
! DFY: Jacobian evaluation at (X,Y)

INTEGER N

120 APPENDIX A

REAL*8 X, Y(N), DFY(N,N)

DFY(1,1)=
DFY(1,2)=
DFY(2,1)=
DFY(2,2)=

RETURN
END

APPENDIX B 121

APPENDIX B

FORTRAN routines for the numerical integration in real-time of fluid power systems.

Solvers: ROS2p and ROS3p (see Section 5.1 for a description of the solvers)

Driver of the numerical integration using ROS2p or ROS3p

PARAMETER (NVAR=13) ! NVAR = Dimension of the ODE system

REAL*8 X, Y, XEND, HFIX
EXTERNAL FUN, JAC
DIMENSION Y(NVAR)
INTEGER nsteps, IJAC, AUTON, N

IJAC = 1 ! IJAC = 1 -> Jacobian is provided
 ! IJAC = 0 -> Jacobian is computed internally by finite differences
AUTON = 0 ! AUTON = 1 -> Autonomous system of ODEs
 ! AUTON = 0 -> Non-autonomous system of ODEs

X =0.D0 ! Integration starting time
XEND = 10.0D0 ! Integration ending time
HFIX = 1.D-3 ! Integration fix step size

N=NVAR
CALL IC(Y,N) ! Returns initial conditions vector Y(0) of Y'=F(Y)

! Executes the numerical integraion routine by using the integrator RODAS3 or RODAS4
CALL ROS2p(N,X,Y,XEND,FUN,JAC,HFIX,nsteps,IJAC,AUTON)
! CALL ROS3p(N,X,Y,XEND,FUN,JAC,HFIX,nsteps,IJAC,AUTON)

! Writes numerical solution vector (Y) in an ASCII file for each integration step
CALL write_solution(nsteps,N)

STOP
END

ROS2p

SUBROUTINE ROS2p(N,X,Y,XEND,FUNC,JACOB,HFIX,nsteps,IJAC,AUTON)

INTEGER N
REAL*8 X, Y(N), YNEW(N), Y1(N), E(N,N), DY(N), DFY(N,N)
REAL*8 H, XEND, HFIX, hnew
REAL*8 gamma, a21, c21, m1, m2, C2
REAL*8 K1(N),K2(N)
INTEGER nsteps, i, j, IJAC, AUTON
INTEGER IP(N)
EXTERNAL FUNC,JACOB

DO I=1,N
 DO J=1,N
 DFY(I,J)=0.D0
 E(I,J) =0.D0
 END DO

122 APPENDIX B

END DO

! Coefficients (free parameters) of the Rosenbrock formula
gamma = 1.D0-1.D0/DSQRT(2.D0)
a21 = (DSQRT(2.D0)-1.D0)/2.D0
c21 = 0.D0
m1 = 0.D0
m2 = 1.D0

IF (AUTON.EQ.0) THEN
 C2=a21
ELSE IF (AUTON .EQ. 1) THEN
 C2=0.D0
END IF

q=2.D0 ! q is the order accuracy of the Rosenbrock formula

! Initialization of parameters
nsteps=0
rej=0
rejcount=0

DO WHILE (X.LT.XEND)

 IF (IJAC .EQ. 0) THEN
! JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of
! numerical differentiation
 call JACA(N,X,Y,DFY,FUNC)
 ELSE IF (IJAC .EQ. 1) THEN
! JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its
! analytical form
 call JACOB(N,X,Y,DFY)
 END IF

 FAC = 1.D0
 DO i = 1,N
 DO j = 1,N
 E(i,j) = -h*gamma*DFY(i,j)
 END DO
 E(i,i) = E(i,i) + FAC
 END DO
! Triangularization of matrix E by Gaussian eliminatiion
 CALL DEC(N,N,E,IP,INFO)

! Returns DY, the evaluation of function F(Y) at point (X,Y)
 CALL FUNC(N,X,Y,DY,RPAR,IPAR)
 DO i=1,N
 K1(i) = h*DY(i)
 END DO
! Solution of linear system E*X = K1. Output: K1 = solution vector X
 CALL SOL(N,N,E,K1,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a21*K1(i)
 END DO
 CALL FUNC(N,X+C2*h,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K2(i) = h*DY(i)
 END DO
 CALL SOL(N,N,E,K2,IP)
 DO i=1,N
! Y1 = Solution of ROS2p
 Y1(i) = Y(i)+m2*K2(i)
 END DO

 hnew = hfix
 nsteps = nsteps+1
 X = X +h
! Solution vector Y1 at point X is stored in the memory
 CALL STORE_SOLUTION(X,Y1,h,nsteps,N)

APPENDIX B 123

 DO j=1,N
 Y(j)=Y1(j)
 END DO
 h=hnew

END DO

RETURN
END

ROS3p

SUBROUTINE ROS3p(N,X,Y,XEND,FUNC,JACOB,HFIX,nsteps,IJAC,AUTON)

REAL*8 X, Y(N), YNEW(N), Y1(N), E(N,N), DY(N), DFY(N,N)
REAL*8 H, XEND, HFIX, hnew
REAL*8 gamma
REAL*8 a21,a31,a32
REAL*8 c21,c31,c32
REAL*8 m1,m2,m3
REAL*8 C2, C3
REAL*8 K1(N),K2(N),K3(N)
INTEGER nsteps, i, j, IJAC, AUTON
INTEGER IP(N)
EXTERNAL FUNC,JACOB

DO I=1,N
 DO J=1,N
 DFY(I,J)=0.D0
 E(I,J) =0.D0
 END DO
END DO

! Coefficients (free parameters) of the Rosenbrock formula
gamma = 7.886751345948129D-1
a21 = 1.267949192431123D0
a31 = 1.267949192431123D0
a32 = 0.D0
c21 = -1.607695154586736D0
c31 = -3.464101615137755D0
c32 = -1.732050807568877D0
m1 = 2.D0
m2 = 5.773502691896258D-1
m3 = 4.226497308103742D-1

IF (AUTON.EQ.0) THEN
 C2 = 1.D0
 C3 = 1.D0
ELSE IF (AUTON .EQ. 1) THEN
 C2=0.D0
 C3=0.D0
END IF

q=3.D0 ! q is the order accuracy of the Rosenbrock formula

! Initialization of parameters
nsteps=0
rej=0
rejcount=0

DO WHILE (X.LT.XEND)

 IF (IJAC .EQ. 0) THEN
! JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of
! numerical differentiation

124 APPENDIX B

 call JACA(N,X,Y,DFY,FUNC)
 ELSE IF (IJAC .EQ. 1) THEN
! JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its
! analytical form
 call JACOB(N,X,Y,DFY)
 END IF

 FAC = 1.D0/(h*gamma)
 DO i = 1,N
 DO j = 1,N
 E(i,j) = -DFY(i,j)
 END DO
 E(i,i) = E(i,i) + FAC
 END DO
! Triangularization of matrix E by Gaussian eliminatiion
 CALL DEC(N,N,E,IP,INFO)

 ! Returns DY, the evaluation of function F(Y) at point (X,Y)
 CALL FUNC(N,X,Y,DY,RPAR,IPAR)
 DO i=1,N
 K1(i) = DY(i)
 END DO
! Solution of linear system E*X = K1. Output: K1 = solution vector X
 CALL SOL(N,N,E,K1,IP)
 DO i=1,N
 YNEW(i) = Y(i)+a21*K1(i)
 END DO
 CALL FUNC(N,X+h*C2,YNEW,DY,RPAR,IPAR)
 DO i=1,N
 K2(i) = DY(i)+c21/h*K1(i)
 END DO
 CALL SOL(N,N,E,K2,IP)
 DO i=1,N
 K3(i) = DY(i)+c31/h*K1(i)+c32/h*K2(i)
 END DO
 CALL SOL(N,N,E,K3,IP)

 DO i=1,N
! Y1 = Solution of ROS3p
 Y1(i) = Y(i)+m1*K1(i)+m2*K2(i)+m3*K3(i)
 END DO

 hnew = hfix
 nsteps = nsteps+1
 X = X +h
! Solution vector Y1 at point X is stored in the memory
 CALL STORE_SOLUTION(X,Y1,h,nsteps,N)
 DO j=1,N
 Y(j)=Y1(j)
 END DO
 h=hnew

END DO

RETURN
END

Linear Algebra subroutines

DEC and SOL are linear algebra routines for the decomposition and back-substitution of

linear systems. They are public codes available from different sources (e.g. from

http://www.unige.ch/~hairer/prog/stiff/decsol.f).

APPENDIX B 125

Routine DEC performs a matrix triangularization by Gaussian elimination.

Routine SOL gives the solution of a linear system A*X = B, where A is the triangularized

matrix obtained from DEC.

Function and Jacobian evaluation Routines

SUBROUTINE FUNC(N,X,Y,F)
! Subroutine FUNC evaluates the function F from the ODE system Y�=F(X,Y)
! Analytical form of function F is to be defined by the user below
!
! INPUT:
! N: dimension of the system Y�=F(X,Y)
! X: independent variable
! Y: vector of solutions at point X
!
! OUTPUT:
! F: evaluation of function F (Y�=F(X,Y)) at (X,Y)

INTEGER N
REAL*8 X, Y, F
DIMENSION Y(N),F(N)

! Analytical definition of F as a function of X and Y

F(1) =
F(2) =

RETURN
END

SUBROUTINE JACOB(N,X,Y,DFY)
! Subroutine JACOB evaluates the Jacobian matrix of the ODE system Y�=F(X,Y)
! Analytical form of the Jacobian is to be defined by the user below
!
! INPUT:
! N: dimension of the system Y�=F(X,Y)
! X: independent variable
! Y: vector of solutions at point X
!
! OUTPUT:
! DFY: Jacobian evaluation at (X,Y)

INTEGER N
REAL*8 X, Y(N), DFY(N,N)

DFY(1,1)=
DFY(1,2)=
DFY(2,1)=
DFY(2,2)=

RETURN
END

