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Abstract 
 

The mathematical formulation of the dynamics observed in fluid power systems in-

volves the numerical solution of differential equations. Because of the intrinsic characteris-

tics and physics of fluid power circuits, the numerical integrators employed to solve such 

system of equations must retain certain properties in order to guarantee the accuracy, stabil-

ity and efficiency of the numerical solution. In this thesis, different classes of numerical 

integration methods used for stiff systems have been analyzed and tested in order to quanti-

tatively and qualitatively assess their performance against the numerical stiffness, high non-

linearities and discontinuities typically shown in the differential equations arisen in fluid 

power circuits. 

Numerical integration methods of the Rosenbrock class � although rarely employed 

in the simulation of fluid power circuits � have shown excellent numerical stability proper-

ties and also above-the-average efficiency (solution accuracy to number of integration steps 

ratio) when compared to other popular single and multiple-step integration formulas. At the 

same time, the formulation of Rosenbrock methods involves a reduced number of linear 

algebra operations, which makes them computationally inexpensive. The main drawback of 

employing a Rosenbrock formula is the fact that an accurate Jacobian evaluation of the 

ODE system needs to be provided at each integration step in order to maintain the accuracy 

and stability of the formula. In order to solve this disadvantage, a method is presented in 

this thesis for the systematic modelling of fluid power components and systems as ODEs, 

following an object-oriented and modular approach. By following this methodology, the 

analytical form of the Jacobian matrix can be automatically generated and fed to the inte-

gration formula for any given fluid power system. This has the advantage that the Jacobian 



evaluation is done with a fraction of computational cost and also more accurately than a 

Jacobian obtained with numerical techniques. 

The tests conducted in this thesis have confirmed that Rosenbrock formulas are good 

candidates for being used in real-time simulations (fixed integration step size) and in offline 

simulations (variable integration step size) of fluid power circuits. Their easy implementa-

tion, good stability, high efficiency and low computational costs make them, in most of the 

cases tested, superior to other popular codes. 
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NOMENCLATURE 

 

Symbol Description Units 
   
aB constant of the bulk modulus equation model [Pa] 
aij real coefficients of Runge-Kutta formulas - 
A orifice/pipe cross-section area [m2] 
A matrix of Runge-Kutta coefficients aij - 
AA cross-section area of cylinder chamber A [m2] 
AB cross-section area of cylinder chamber B [m2] 
ATOL absolute error tolerance - 
b viscous friction coefficient [N s m-1] 
b vector of Runge-Kutta coefficients bi  
bB constant of the bulk modulus equation model [Pa] 
bi coefficients of Runge-Kutta formulas - 
B bulk modulus [Pa] 
Bc bulk modulus of container [Pa] 
Beff effective bulk modulus of fluid [Pa] 
Bg bulk modulus of gas [Pa] 
Bl bulk modulus of liquid [Pa] 
c1,c2,c3,c4 empirical constants defining the analytical model of a pres-

sure relief valve 
- 

Cq flow discharge coefficient - 
d orifice diameter [m] 
D pipeline diameter [m] 
e vector of errors of the numerical solution components - 
F force [N] 
FC Coulomb friction force [N] 
Fext external forces acting on a cylinder [N] 
Fhyd hydraulic piston force [N] 
FS static friction force [N] 
Fμ cylinder seal friction force [N] 
G vector of gravitational forces - 
h step size of the integration [s] 
H stiffness matrix of a mechanism - 



i control current [A] 
I identity matrix - 
J Jacobian matrix - 
k number of previous steps employed by a multi-step integra-

tion formula 
- 

ki intermediate stage i of the integration formula - 
K variable flow coefficient of pressure relief valve [m4 N-1/2 s-1] 
KL coefficient for laminar pressure losses [N s m-5] 
KT coefficient for turbulent pressure losses [N s2 m-8] 
L longitudinal length of a pipeline [m] 
( )m
kL  m-th derivative of the k-degree Laguerre polynomial - 

m mass connected to cylinder [kg] 
M inertia matrix of a mechanism  
nd motor shaft speed [rad s-1] 
N dimension of an ODE system - 
p - pressure 

- order of accuracy of an integration formula 
[Pa] 
- 

p1 upstream pressure in a conduit [Pa] 
p2 downstream pressure in a conduit [Pa] 
pA pressure in cylinder chamber A or at port A [Pa] 
pB pressure in cylinder chamber B or at port B [Pa] 
pi pressure at volume element i [Pa] 
pin pressure at the inlet of a pressure relief valve [Pa] 
pj pressure at volume element j [Pa] 
ploss total pressure loss across a short pipeline [Pa] 
pref setting pressure of a pressure relief valve [Pa] 
P(z) numerator polynomial of stability function R(z) - 
q joint coordinates - 
Q volumetric flow rate [m3 s-1] 
Q(z) denominator polynomial of stability function R(z) - 
Q1 - upstream volumetric flow rate in a conduit 

- flow rate from valve characteristic curve (3.9) 
[m3 s-1] 

Q2 - downstream volumetric flow rate in a conduit 
- flow rate from valve characteristic curve (3.9) 

[m3 s-1] 

QA volumetric flow entering port A or chamber A of a cylinder [m3 s-1] 
QB volumetric flow leaving port B or entering chamber B of a 

cylinder 
[m3 s-1] 

Qi volumetric flow rate entering a short pipeline [m3 s-1] 
Qin incoming volumetric flow rate [m3 s-1] 
Qj volumetric flow rate leaving a short pipeline [m3 s-1] 



   

Qij volumetric flow rate between internal volume elements of a 
short pipeline 

[m3 s-1] 

R stability function of a numerical integration method - 
Retr Reynolds number in the transition between laminar and tur-

bulent flows 
- 

RTOL relative error tolerance - 
s number of stages of an integration formula - 
t time [s] 
tol error tolerance - 
V volume of fluid container [m3] 
Vg volume of entrapped gas [m3] 
Vp volumetric pump displacement [m3 rad-1] 
Vt volume of liquid and entrapped gas [m3] 
x actuator piston position [m] 
xmax maximum position displacement of a cylinder piston [m] 

sx!  transient velocity from static to Coulomb friction regimes [m s-1] 
y(xn) exact solution of function y evaluated at point xn - 
yn numerical solution y after n integration steps -  
z - state variable of friction model 

- z hλ=  
[m] 
- 

Z characteristic impedance of a conduit [kg m-4 s-1] 
   
   
   

iα  free coefficients of a numerical integration formula - 

iβ  free coefficients of a numerical integration formula - 

ijβ  coefficient grouping ij ija γ+  - 
γ  value of the diagonal elements of matrix A in singly diago-

nally implicit Runge-Kutta formulas 
- 

ijγ  coefficients of the linear terms Jkj - 
Γ - torque 

- propagation function (2.3) 
[N m] 
- 

pΔ  pressure drop (difference) [Pa] 

1pΔ , 2pΔ  pressures from valve characteristic curve [Pa] 

ijpΔ  pressure difference between port volumes i and j of a short 
pipeline 

[Pa] 

LpΔ  pressure loss due to laminar flow [Pa] 

TpΔ  pressure loss due to turbulent flow [Pa] 

trpΔ  pressure drop in the transition between laminar and turbulent 
flows 

[Pa] 



( )h ntδ  local error after integration step n of the numerical solution - 
 εn global error at integration step n of the numerical solution - 
 λ - eigenvalue of Jacobian matrix 

- scalar of the test equation 
- 

μ constant in Van der Pol�s equation - 
ξ  resistance coefficient - 
ρ  fluid density [kg m-3] 
σ0 stiffness parameter of friction force model [N m-1] 
σ1 damping parameter of friction force model [N s m-1] 
ν  kinematic viscosity [m2 s-1] 
ø diameter [m] 
φ  non-linear system of equations - 
ω  angular position [rad] 
ω!  angular velocity [rad s-1] 
 



LIST OF ACRONYMS 

 

 

BDF  Backward Differentiation Formula 

CPU  Central Processing Unit 

DAE  Differential and Algebraic Equation 

DIRK  Diagonally Implicit Runge-Kutta 

DOF  Degree of Freedom 

FE  Function Evaluations 

FP  Fluid Power 

LMF  Linear Multi-stage Formula 

ODE  Ordinary Differential Equation 

RKF  Runge-Kutta-Formula 

RMS  Root Mean Square 

SDIRK  Singly-Diagonally Implicit Runge-Kutta 

SIRK  Semi-implicit Runge-Kutta 

 

 





1 INTRODUCTION 

This introductory chapter starts with a historical overview concerning the evolution 

of differential equations and the problems they arise from. The methods employed to solve 

these equations are also illustrated. Problem definition and justification of the research is 

then followed. Finally, a description of the structure of this thesis with a summary of its 

chapter is given. 

1.1 Background and brief historical overview 
Differential equations are often used to describe physical systems. The solution of 

such equations provides information on how the system evolves and what the effect of pa-

rameters is. A very brief description of the origin of differential equations and the evolution 

of numerical methods for solving ordinary differential equations is followed.  

1.1.1 Differential equations 

A first order differential equation is an equation of the form 

 ( ) ( )( ),y x f x y x′ = , (1.1) 

where ( ),f x y is a given function and ( )y x is the solution of the equation. The solution con-

tains also a free parameter y0 which is called the initial value problem and it is defined as  

 ( )0 0y x y= . (1.2) 

Differential equations of order n have the form 

 ( ) ( )( )1, , , ,...,n ny f x y y y y −′ ′′=  (1.3) 

and they can be rewritten as first order system of differential equations for obtaining their 

solution. 
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Another type of problem arises when the conditions determining the particular solu-

tion of a differential equation are not given at the same point x0 as in (1.2). Instead, the ini-

tial conditions are replaced by conditions of the type ( )0y x a= , ( )1y x b= . These types of 

problems are called boundary value problems, and their solution is more complex to obtain. 

Differential equations appeared in scientific literature at the same time as differential 

calculus. In 1671, Isaac Newton discussed a solution of a first order differential equation by 

series expansion, whose terms were obtained recursively. The main origin of differential 

equations was due to geometrical problems, such as the inverse tangent problems consid-

ered by Gottfried Leibniz and Jakob Bernoulli during the same century.  

In the 1750s the Euler-Lagrange equation was developed. This was one of the fun-

damental equations of the calculus of variations published later by Leonhard Euler. The 

Euler-Lagrange equation 

 0F d F
y dx y

∂ ∂
− =

′∂ ∂
 (1.4) 

 is used to solve functions of the type ( ), ,F x y y′  which minimize or maximize the func-

tional ( )1

0

, ,
x

x
S F x y y dx′= ∫ . It is generally used to solve optimization problems. 

The mathematical formulation of physics involved the use of differential equations. 

In his �Dynamique� (1743), Jean le Rond d'Alembert introduced second order differential 

equations to compute mechanical motion. Brook Taylor and Johann Bernoulli formulated 

the problem of the vibrating string as a system of n linear differential equations, whose so-

lutions determined the position of discretised mass points. From the previous system 

d�Alembert derived the famous partial differential equation for the vibrating string. The 

propagation of sound was also formulated similarly by Joseph-Louis Lagrange, who con-

sidered the medium to be a sequence of mass points. Lagrange introduced the terms eigen-

value and eigenvector to solve a second order linear equations with constant coefficients. 

The problem of heat conduction led to the earliest first order systems. Joseph Fou-

rier, in 1807, assumed that the energy that a particle passes to its neighbours is proportional 

to the difference of their temperatures. This can be expressed as a first order system with 

constant coefficients. Later, Fourier transformed the first order system to his well-known 

heat equation (a partial differential equation), which would be the origin of his Fourier se-

ries theory. 
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Lagrange formulated his Lagrangian mechanics (1788) combining the dynamics es-

tablished by d�Alembert with the Lagrange-Euler equation of variation calculus and with 

the principle of least action. Lagrange mechanics is still widely used nowadays as a tool to 

obtain the equations of motion of complex mechanical systems. The trajectory of an object 

is derived by finding the path which minimizes the integral of the Lagrangian, which is the 

difference between the kinetic and the potential energy of the system. 

1.1.2 Solution of differential equations 

In general, it is extremely difficult to obtain an analytic solution to a given differen-

tial equation. Some of the most elemental differential equations can be solved explicitly. 

Euler begun to compile all possible differential equations which could be integrated by ana-

lytical methods. The results are collected in 800 pages in the Euler�s opera Omnia. The 

book of [Kamke 1942] compiles a list with more than 1500 differential equations with their 

solutions. Numerical methods applied to problems of differential equations are needed to 

obtain an approximation of the solution when differential equations cannot be solved ana-

lytically.  

The Euler method (1768) can be considered as the most basic numerical integration 

formula to solve first order differential equations with a given initial value. In order to sim-

plify the illustration of the method, the autonomous form of a first order differential equa-

tion: 

 ( ) ( )( )y x f y x′ =  (1.5) 

is considered instead of the non-autonomous form given in (1.1). Integrating the equation 

through the interval [xn, xn+1] and approximating the integral of function f  by a rectangular 

quadrature, the Euler method is obtained: 

 ( ) ( )1n n n ny x h y y hf y++ ≈ = + , (1.6) 

where h = xn+1- xn is the integration step size, and yn+1 and yn are defined as approximations 

to ( )1ny x +  and ( )ny x  respectively. The Euler method has an order of accuracy of one. A 

method is said to have a numerical accuracy of order p if the local integration error 

( )1n ny y x h+ − +  is of the order of ( )1pO h + .The low accuracy of this method led the 

mathematicians to look for higher order methods. To achieve formulas with higher order of 

accuracy, there are two main approaches: 
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• To use not only the previous calculated solution yn to compute the next solution yn+1 

but to make the solution yn+1 to depend on more previously calculated solutions. This 

approach leads to the so-called multi-step methods. 

• To use more function evaluations f in the interval of integration [xn, xn+1] to compute 

the solution at the point xn+1. This procedure leads to the family of methods called 

multi-stage. 

The first multi-step methods were published by Adams and Bashforth in 1883. The 

Adams-Bashforth methods are a special case of the methods known currently as linear 

multi-step methods, which have the form 

 ( )1 1
0 0

k k

i n i i n i
i i

y h f yα β+ − + −
= =

=∑ ∑ , (1.7) 

where iα and iβ are free coefficients. Formula (1.7) is known as a k-step linear multi-step 

method since information of the last k steps is required to compute the solution yn+1. k func-

tion evaluations f are also needed at previous calculated solutions.  

Multi-stage methods appeared when Carle Runge described in 1895 an integration 

formula which had its origin in the midpoint rule equation (a Gaussian quadrature) 

 ( ) 1 2n n n n
hy x h y y hf y x+

⎛ ⎞⎛ ⎞+ ≈ = + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (1.8) 

The accuracy of the midpoint rule formula is of order 2, which makes this method faster in 

achieving a desired accuracy, compared to the Euler formula in (1.6). However, to advance 

the solution from xn to xn+1 the solution y at point (xn + h/2) is required though it is un-

known. Newton iteration schemes were used to solve these non-linear equations. Instead, 

Runge applied the Euler formula (1.6) with a step size of h/2 to determine the solu-

tion ( )/ 2ny x h+ . As a result, Runge rewrote the problem (1.8) into this multi-stage for-

mula: 

 

( )1

2 1

1 2

2

n

n

n n

k f y

hk f y k

y y hk+

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= +

. (1.9) 
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Although the formula uses a first order approximation to determine an intermediate 

solution, the method retains an accuracy of order 2. Martin Kutta (1901) formulated the 

general scheme of the well-known Runge-Kutta methods. The following method: 

 

( )
( )

( )( )

( )( )
( )

1

2 21 1

3 31 1 32 2

1 1 , 1 1

1 1 1

n

n

n

s n s s s s

n n s s

k f y

k f y ha k

k f y h a k a k

k f y h a k a k

y y h b k b k
− −

+

=

= +

= + +

= + + +

= + + +

…

…

…

 (1.10) 

is the general form of the s-stage explicit Runge-Kutta method, where ija and ib are real 

coefficients. It was after the 1950s when implicit Runge-Kutta methods become of interest, 

mainly due to the stiff equation problem and the availability of faster computing devices. 

Butcher [Butcher 1964a] and Kuntzmann [Ceschino 1963] derived order conditions for the 

free coefficients ija and ib , stating that by employing s-stages, an implicit Runge-Kutta 

formula of order 2s could be obtained. 

1.2 Problem definition and justification for the research 
The search of numerical methods with higher accuracy, while retaining the computa-

tional efficiency, is conditioned by numerical stability issues of the formulas. Curtis and 

Hirschfelder introduced the term stiff equations in the 1950s. They noticed that implicit 

numerical methods performed much better than explicit methods when solving stiff equa-

tions. Simply defined, it is said that stiff equations arise in a system of ordinary differential 

equations ( )( )y f y x′ =  when eigenvalues of its Jacobian matrix /f y∂ ∂ differ in orders of 

magnitude. Solutions to non-stiff equations are easy to obtain by simply using classical 

methods such as Adams or explicit Runge-Kutta formulas. Nevertheless, these methods 

become inefficient for solving stiff equations, since the step size is controlled to keep the 

formula stable rather than to fulfil the accuracy required. Methods for solving stiff equa-

tions need therefore new concepts of stability. 

Nearly all available numerical codes for solving ordinary differential equations can 

be divided in two classes: those for solving stiff equations and those for solving non-stiff 

equations. Implicit methods are employed to solve stiff equations. Implicit methods, in op-
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position to explicit methods, require more computational effort, since a set of non-linear 

algebraic equations must be solved at each integration step.  The latest requires a modified 

Newton iteration scheme which makes use of an iteration matrix of the form ( )ijI ha J− , 

where I is the identity matrix, J is the Jacobian and haij is a scalar. Every iteration of the 

scheme involves the following computational costs: a) evaluation of the Jacobian and for-

mation of the Newton iteration matrix, b) factorization of the iteration matrix into LU form 

and c) forward and backward substitution to compute the correction. 

Ordinary differential equations describing the dynamics of fluid power systems are 

of special interest. Numerical methods find these equations particularly difficult to solve 

due to the following characteristics listed below: 

• Stiffness: It appears when different sizes (in orders of magnitude) of volumes are found 

in the system. Stiffness can also emerge due to the presence of large and small orifices 

in the circuit. Such orifices bring different levels of coupling between volumes. 

• Strong non-linearities: Mainly are due to the pressure-dependency of the bulk modulus, 

the non-linear turbulent fluid flow equation and seal friction forces in actuators. 

• Discontinuities: Might arise in the following situations: presence of on/off valves, and 

sudden opening and closing of flow paths.  

Traditional numerical methods might fail to give an acceptable solution to the stiff 

fluid power equations unless excessive small time steps are taken. On the other hand, gen-

eral implicit methods, although they might overcome stability issues, require much more 

computational effort than explicit methods.  

Computational times have a major importance, especially in real-time applications, 

such as on-line conditioning monitoring, teleoperation, and hardware-in-the-loop. An ex-

ample of such applications is showed in [Esqué 2003a], where a simulation model of a two-

dof crane is driven man-in-the-loop within a virtual reality environment. In this real-time 

application, the employed numerical method required a relatively small integration step size 

in order to guarantee the numerical stability. As a consequence, the computational of the 

solution in real-time clock was compromised due to the excessive amount of operations. 

Numerical methods capable of solving efficiently the dynamics involved in fluid 

power systems are required, particularly in the real-time simulation of relatively large sys-
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tems, and in simulations with a long time intervals. The research presented in this thesis is 

therefore justified according to these requirements. 

1.3 Research description 

1.3.1 Objectives 

The two main objectives of this research are stated below: 

• The investigation on numerical integration formulas capable of dealing with the 

stiffness, non-linearities and discontinuities found in the formulation describing the 

dynamics of fluid power systems. Despite these properties found in fluid power cir-

cuits, the numerical integrator should provide acceptable solution accuracy, very 

good numerical stability and reduced computational costs. Integration formulas ful-

filling these properties might also be good candidates for being used in real-time 

simulations involving fluid power circuits. 

• Derivation of a systematic approach to formulate mathematical models of fluid 

power components following an object-oriented methodology. The dynamics of the 

resulting simulation models shall be formulated as system of ordinary differential 

equations in order to be solved by the above numerical integration formulas. 

1.3.2 Contributions 
The guidelines for the systematic mathematical modelling of the dynamics of fluid 

power components (as lumped-parameter models) have been presented. This has been de-

veloped following an object-oriented methodology, allowing the physical modelling of 

large interconnected systems of different physical domains. With this object-oriented meth-

odology, modular subsystems and components can be constructed while retaining reusabil-

ity and hierarchical properties. 

A class of Rosenbrock formulas are introduced as numerical solvers of the system of 

ordinary differential equations originating in the formulation of fluid power systems. The 

performance of Rosenbrock formulas outstands, in most of the cases, the performance 

shown by numerical solvers commonly used in both real-time and offline simulations. 

A systematic way to obtain the analytical expression of the Jacobian matrix of the 

system has been also presented. This task can be performed by an algorithm prior to start-

ing the numerical integration. An analytical form of the Jacobian matrix is beneficiary for 
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the numerical integration solver, since it can evaluate the Jacobian more accurately and 

with less computational costs. 

1.3.3 Methodology 

Physical based lumped-parameter models of fluid power systems have been devel-

oped in the early stages of this research. Advantages of physical based models are that 

model parameters have a physical meaning in the real component and therefore they can be 

found in manufacturer�s data sheets or determined empirically. The developed models have 

also been formulated taking into account a topology which confers modular and hierarchi-

cal properties. All simulation models have been compiled and organized in a software li-

brary from where they can be called as subroutines. In that way, a fluid power circuit is 

defined within an algorithm by simply calling the subroutines, each representing a fluid 

power component or subsystem. The algorithm then generates the system of ordinary dif-

ferential equations and its analytical Jacobian matrix, which are fed to the numerical inte-

gration formula. The use of this algorithm has provided a straight-forward way to define 

and construction fluid power system models. Errors due to symbolic manipulation and 

composition of the equations are also avoided since all the algebraic formulation is auto-

matically generated and in the adequate format in order to be used by the numerical integra-

tion formula. 

During the past decades, there has been plenty of research on the construction of 

numerical integration formulas for solving stiff ordinary differential equations. A broad 

literature survey on the proposed formulas has been conducted. From this survey, many of 

the proposed numerical formulas for solving ODEs have been tested by means of solving 

test models of fluid power circuits constructed with the algorithm and library described 

above. 

All numerical integration formulas, their driver algorithms, the library of fluid 

power components models and the algorithm used to define and construct the simulation 

models have been coded in FORTRAN language, under the Digital Visual Fortran (Digital 

Equipment Corporation) programming environment, running on a Windows XP computer 

platform. 
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1.3.4 Assumptions and Limitations of Scope 
Both the mathematical modelling of fluid power systems and the numerical integra-

tion of differential equations are very broad fields, which can be approached in a number of 

different ways. This research focuses in the mathematical formulation of fluid power ele-

ments, as lumped-parameter models, realized with ordinary differential equations. Model-

ling representations derived from energy-balance methods, transport delay lines, and fre-

quency domain are not within the scope of this research. Despite these assumptions and 

simplifications models can still replicate accurately the behaviour of a fluid power circuit at 

a system level [Ellman 1996a]. Empirical validation of mathematical models is not a target 

of the research conducted in this thesis and therefore it has been omitted. 

During the numerical tests, the maximum dimension (i.e. number of state variables) 

of the modelled system has been 20. In the context of mobile fluid power applications, this 

dimension represents a relatively mid-large system. 

1.4 Thesis structure 
This thesis is divided in five chapters, briefly described below, followed by conclu-

sions. The thesis is also supported by four peer-reviewed publications, not reprinted in this 

thesis, which are referenced and summarized below. 

The first introductory chapter starts with a historical overview concerning the use of 

differential equations and their applications from the early days till the present. It is fol-

lowed by the definition of the problem, the justification for the research and a description of 

the research, including objectives, contributions, methodology and limitations of scope. 

Second chapter provides an overview of different formulation approaches employed 

to model the dynamics of fluid power systems. This chapter also discusses the state of the 

art on the numerical integration formulas and software packages employed to obtain the 

numerical solution of the simulation models. 

Third chapter, entitled �Lumped-parameter models of fluid power components and 

systems�, introduces a systematic modelling method which ensures modular and hierarchi-

cal properties. The mathematical formulation of these models is presented for some of the 

most common fluid power elements. 

Fourth chapter, �Numerical integration of ODEs arising in fluid power systems�, 

analyses the computational costs of implicit multi- and single-step integration formulas, as 
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well as their numerical stability properties. Based on theoretical analyses, L-stable Rosen-

brock formulas are presented as a good candidate for the numerical integration of ODEs 

arising in FP systems, due to their good stability properties and computational efficiency. 

Finally, a systematic way to form the analytical Jacobian matrix of the system is shown. 

This ensures an accurate and computationally cheap evaluation of the Jacobian. 

In the fifth chapter, �Performance of Rosenbrock formulas�, numerical integration 

tests are carried out employing different numerical integration formulas. Accuracy of the 

solution, numerical stability and computational efficiency are analyzed. These numerical 

tests confirm that the performance of Rosenbrock formulas, in most of the cases studied, 

surpass the performance of other popular ODE integrators. The chapter concludes high-

lighting the advantages (in terms of accuracy and efficiency) of employing analytical Jaco-

bian matrices instead of numerically-evaluated Jacobians. 

Refereed publications 

Parts of this dissertation have also been published through the following peer-

reviewed publications:  

I. Esqué, S., Raneda, A., Ellman, A. (2003), �Techniques for studying a mobile hydrau-

lic crane in virtual reality�. International Journal of Fluid Power Vol 4 No 2 pp. 25-

34. 

The article addresses the problem of real-time simulation of a mobile hydraulic crane. 

A mathematical model of a hydraulic system controlling a multi-body linked mecha-

nism by using Lagrange�s equations of motion is presented. The article describes the 

hardware and software implementation of the virtual interface, as well as the compu-

tational performance of the simulation in terms of data transmission between com-

puters, visualization refresh rate, and numerical integration rate. It is concluded that 

the bottleneck for achieving real-time simulation is located in the numerical integra-

tion of the mathematical model. Due to the stiffness of the system, the integration 

time step had to be reduced excessively in order to avoid numerical oscillations in the 

solution given by an A-stable formula 

II. Esqué, S., Ellman, A. (2002), �Pressure Build-Up in Volumes�. Bath Workshop on 

Power Transmission and Motion Control, PTMC 2002, Bath, UK. Published in the 
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book Power Transmission and Motion Control, edited by C.R. Burrows and K.A. 

Edge, Professional Engineering Publishing Limited. London, UK, pp. 25-38. 

In this paper, the pressure generation equation is presented and used for modelling 

three basic components widely present in fluid power systems: constant volume ele-

ment, cylinder actuator, and a pipeline. Flow variables are determined by a modified 

orifice flow equation. The mathematical models of the presented components are 

written as sets of ordinary differential equations. The paper also derives the Jacobian 

matrices of the above elements. The modular approach of the formulation allows 

building a volume-network, where volume-elements can be interconnected by orifice-

model interfaces (such as valves, pumps�) and therefore, a complete fluid power 

system can be assembled. 

III. Esqué, S., Ellman, A., Piché, R. (2002), �Numerical integration of pressure build-up 

volumes using an L-stable Rosenbrock method�. Proceedings of the 2002 ASME In-

ternational Mechanical Engineering Congress and Exposition, November 17-22, 

2002, New Orleans, Louisiana, USA. 

The paper begins by reviewing the most popular single-step formulas used in solving 

stiff ordinary differential equations. The author proposes a simple and efficient inte-

gration method for solving the ordinary differential equations arisen from fluid power 

systems: a two-stage Rosenbrock formula derived from a general one-step semi-

implicit Runge-Kutta method. The formula has L-stability properties and its numeri-

cal accuracy is of second order. The integration algorithm also implements an embed-

ded estimation of the error and step size selection. The numerical method is tested in a 

dynamic simulation model consisting of two fluid power component models. The 

numerical method showed excellent numerical stability, even in stiff conditions and in 

regions of discontinuity. The Rosenbrock formula also showed a remarkably good 

computational efficiency. 

IV. Esqué, S., Ellman, A. (2005), �An efficient numerical method for solving the dynamic 

equations of complex fluid power systems�. Bath Workshop on Power Transmission 

and Motion Control, PTMC 2005, Bath, UK. Published in the book Power Transmis-
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sion and Motion Control, edited by C.R. Burrows and K.A. Edge, Professional Engi-

neering Publishing Limited. London, UK, pp. 179-191 

The paper is a clear continuation of the work presented in Paper III. The article fo-

cuses mainly in the computational efficiency of the formula presented in the previous 

paper and also extends the simulation tests to fluid power systems composed of a 

number of fluid power elements. It is shown that the efficiency of the numerical inte-

grator is further improved when the code is able to derive the full Jacobian matrix 

analytically as a function of the system state variables. The advantages of this ap-

proach are quantified when compared to the conventional computation of the Jaco-

bian matrix by means of numerical differentiation. The results show that the use of an 

analytical Jacobian matrix of the system reduces significantly the computational time 

to advance in the integration. A second advantage is seen in the improvement of the 

numerical stability of the integration formula. 

 



2 STATE OF THE ART 

A general overview on the mathematical modelling of the dynamics of fluid power 

systems is presented. A broader description focused on the formulation of fluid power com-

ponents, as lumped-parameter models, is given in Chapter 3 and in [Esqué 2002a]. A sur-

vey and review of the most popular numerical integration methods for solving numerically 

stiff systems of ODEs is then followed. More detailed analysis of these numerical methods 

is given in Chapter 4. Chapter 3 ends with a brief survey of simulation software packages 

used in the modelling and simulation of fluid power applications. 

2.1 Modelling approaches for the dynamics of fluid power sys-
tems 
Fluids are characterized by their continuous deformation and compressibility. One 

of the main equations describing the state of a fluid is the pressure generation equation. 

Such equation is derived from the continuity equation (conservation of mass law) and the 

density equation of the fluid (a function of pressure and temperature), which is defined by 

the term bulk modulus. The generally used pressure generation equation states that the pres-

sure p generated in a confined volume V is determined by 

 effBdp dVQ
dt V dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.1) 

where Q is the net incoming volumetric flow to the control volume and Beff is the effective 

bulk modulus. A second equation, but not less important, is the fluid flow equation through 

orifices. The turbulent orifice flow formula in (2.2) is the general accepted equation de-

scribing the volumetric fluid flow Q through a sudden short restriction for high Reynolds 

numbers. Cq is called the discharge coefficient which depends on the contraction geometry 
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of the orifice, A is the cross-sectional area of the orifice, ρ is the fluid density and Δp is the 

pressure drop across the orifice. 

 2
qQ C A p

ρ
= Δ  (2.2) 

The lumped-parameter modelling of fluid power circuits as systems of ordinary dif-

ferential equations is extensively used and motivated due to the existence of robust ODE 

solution techniques, such as numerical methods and simulation software packages. In 

lumped-parameter model approach, fluid power components such as actuators, accumula-

tors, and control valves can be formulated as a combination of control volumes (pressure 

generation (2.1)) and orifices (flow equation (2.2)). A detailed description of the lumped-

parameter modelling of fluid power elements and components is presented in Chapter 3 and 

in [Esqué 2002a].  

The lumped-parameter model approach when applied to the problem of flow 

through conduits is commonly formulated with the Hagen-Poiseuille laminar flow equation 

(3.4)(a). In Section 3.2.3, a two-volume lumped model for a short pipe, which also accounts 

for losses and flow inertial effects, is presented. However, long transmission lines such as 

pipes and hoses have inertial, capacitive and resistive properties distributed along their 

length, and therefore distributed-parameter models are used. These models relate the fluid 

pressure and velocity as a function of position and time. Using Laplace transformed vari-

ables, the input-output behaviour of a straight transmission line with constant and circular 

cross section and filled with compressible Newtonian fluid is described as 

 
1 2 2

2
1 2

cosh sinh

sinh cosh

p p Q Z
pQ Q
Z

= Γ + Γ

= Γ + Γ
 (2.3) 

where p and Q are Laplace transform of pressure and volumetric flow respectively, sub-

scripts 1 and 2 are upstream and downstream locations in the transmission line, Z is the 

characteristic impedance of the conduit and Г is the propagation operator (which relates the 

transformed variables at different location points). Since equation (2.3) is expressed in the 

frequency domain, it needs to be approximated by a finite number of states in order to re-

formulate it in time-domain and as set of ODEs. Stecki and Davis [Stecki 1986a] have iden-

tified and classified the existing transmission line models in the literature into 7 groups, 

according to their complexity. They conclude [Stecki 1986b] that the two-dimensional vis-
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cous compressible flow model is the most suitable for long transmission lines. Piché and 

Ellman [Piché 1995] have derived a fluid transmission line model for one and two-

dimensional pipe flows. By means of a modal approach, the transcendental transfer func-

tions associated to the partial differential equations have been approximated to a lumped 

parameter model that can be realized as a system of first order differential equations.   

In terms of numerical simulation, the lumped-parameter modelling of fluid power 

components may have a drawback; all the elements interconnected by a lumped volume 

element are strongly coupled between them. Very small volumes will therefore induce very 

fast transient and strong coupling. Due to this reason, partition of the lumped numerical 

analysis into different tasks for parallel computation is not trivial and might be also non 

viable. This implies that the simulation must be run in a centralized manner (rather than 

distributed) in order to take into account all the possible couplings between components. 

An alternative that overcomes the coupling found in the lumped-parameter model-

ling is proposed in [Krus 1990]. Krus introduces a distributed-parameter modelling ap-

proach of fluid power systems based on the utilization of transport delay lines in the pipe-

lines connecting components. In this approach the transmission of information is restricted 

to the speed of wave propagation. There is no immediate communication between compo-

nents, and this allows the components to be decoupled. Distributed or partitioned numerical 

simulations become therefore possible. Limitations of this approach are: a) numerical inte-

gration advances with a constant integrator step size and b) no general ODE solver can be 

applied to integrate such formulation. Literature concerning the transmission line modelling 

method applied to fluid power applications is found in [Kitsios 1986], [Boucher 1986], 

[Burton 1994] and [Pollmeier 1996]. 

Another approach on the mathematical formulation of the dynamics of fluid power 

systems is found the analytical system dynamics [Layton 1998]. This method is based on 

the energy methods of Lagrange and Hamilton. This multidisciplinary modelling approach 

includes the constraints of the system in the equations of motion such that the model com-

prises a set of implicit differential equations and a set of algebraic constraint equations. 

This combination of equations is well known as differential algebraic equations (DAEs). 

Although there are numerical codes available for solving such problems, the numerical so-

lution of initial value DAEs is still a current research topic. 
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2.2 Numerical methods and simulation packages 
Ordinary differential equations are by far the most utilized formulation to model the 

physics arising in fluid power systems. One of the main reasons is the extensive research 

carried out during the last decades [Gupta 1985] on numerical integration methods for solv-

ing ODEs. In addition, popular general purpose simulation software packages loaded with 

ODE solvers have also contributed to the use of ODEs for describing the dynamics of sys-

tems. 

Numerical integration formulas for the solution of ODEs can be classified in two 

different groups: explicit and implicit formulas. While explicit formulas are more suited for 

solving non-stiff systems, implicit formulas become more efficient when solving stiff sys-

tems of ODEs. Another classification among numerical integration formulas is made on the 

basis of their internal formulations: Single-step methods only make use of the previous cal-

culated solution to determine the next one. In multi-step methods, the solution at one point 

is calculated as a function of several previously obtained solutions. Multi-step methods 

have therefore more complex formulation than single-step methods. 

Runge-Kutta formulas � described in equations (1.9) and (1.10) � are the most popu-

lar single-step codes used in the integration of ODEs. Despite the numerically stiffness usu-

ally found in fluid power systems, explicit Runge-Kutta formulas are still used to integrate 

the differential equations arisen in these systems. Popular codes from the explicit Runge-

Kutta family are the RK 4(5)* proposed by [Fehlberg 1969], and the DOPRI 5(4) formula 

developed by Dormand and Prince [Dormand 1980]. Another advantage found in these 

explicit codes is their easy programming implementation. On the other hand, the utilization 

of such codes for solving numerically stiff systems may show a remarkably low computa-

tional efficiency, i.e. excessively small time steps are required to keep the numerical for-

mula within stable conditions. Implicit formulas (either single or multi-step methods) are 

used instead for the integration of stiff systems. Despite requiring more number of opera-

tions per step, implicit formulas still perform much more efficiently than the explicit ones 

in the integration of stiff systems. 

Numerical codes from the implicit Linear Multi-step Formulas (LMF) and from the 

single-step implicit Runge-Kutta family are the most used to solve the stiff systems of 
                                                           
* The pair notation 4(5) indicates that the integrator computes the solution with an order 4 formula while 
it uses a solution approximation of order 5 to calculate the local error. 
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ODEs arising in fluid power circuits. Although LMFs of order greater than 2 cannot retain 

A-stability (a numerical integration formula is called A-stable when the numerical stability 

of the formula is guaranteed for any size of the integration time step). The most popular 

multi-step codes for stiff equations are based on the backward differentiation formula 

(BDF) such as the GEAR and LSODE codes. They are part of the public domain library of 

numerical methods ODEPACK [Hindmarsh 1983]. Both formulas implement variable order 

and variable step-size and they can solve stiff and non-stiff systems by changing automati-

cally the integration formula to BDF or to Adams methods respectively. 

Single-step implicit Runge-Kutta formulas are also widely employed for solving 

stiff equations. Popular Runge-Kutta codes are: RADAU5 [Axelsson 1969], a fully implicit 

Runge-Kutta method of order 5 based on the Radau quadrature; and SDIRK4 [Alexander 

1977], a diagonally semi-implicit formula of order 4. Both methods are L-stable (an inte-

gration formula is L-stable when it is A-stable and, moreover, numerical oscillations arte-

facts associated to the stiffer modes are extinguished immediately). Modified Rosenbrock 

formulas [Wolfbrandt 1977] have become of special interest due to its simple implementa-

tion and its efficiency. They can be interpreted as a generalization of Runge-Kutta formu-

las. However, in order to guarantee the numerical stability of the formula, an accurate Jaco-

bian matrix of the system must be provided at every integration step. Popular codes based 

on the Rosenbrock method are GRK4 [Kaps 1979] and DEGRK [Shampine 1982]. 

The rapid growth in development and usage of simulation software packages to 

model and/or to solve differential equations has gradually diminished the interest of engi-

neers towards implementing their own integration routines. Simulation software instead, 

offers a small choice of numerical integrator formulas. The rest of this section introduces a 

brief review of some popular simulation packages and the numerical integrators they in-

clude. 

In general purpose simulation software such as MATLAB/SIMULINK and VisSim, 

the user provides the model of the system, generally formulated as ODEs. A review of the 

ODE solvers existing in MATLAB is presented in [Shampine 1997]. For non-stiff equa-

tions the software provides an order 2 Runge-Kutta formula (ode23) and an order 4 Dor-

mand Prince formula (ode113) [Dormand 1980]. An explicit multi-step integrator is also 

supplied for non-stiff systems: the ode113, which is based on the Adams methods. Con-

cerning the integration of stiff equations, MATLAB/SIMULINK includes the ode15s code, 
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which is a multi-step formula based on the Gear method and the ode23s, a Rosenbrock for-

mula of order 2. VisSim software includes similar implicit and explicit integration formulas 

as well as the multi-step formulas from the ODEPACK library. 

The following simulation software packages are partially or completely specialised 

in fluid power systems: AMESIM and BathFp make use of a variation of the LSODE inte-

grator. EASY5 and DYMOLA offer a variety of single-step and multi-step codes such as 

Gear, SDIRK, and RADAU of different orders. The HOPSAN [Krus 1990] software im-

plements a distributed simulation approach which allows partitioning the simulation tasks 

in parallel. It makes use the transmission line modelling as a method of integration.  

DYNAST and DYMOLA are other multi-physics simulation software including 

special fluid power libraries. These packages can formulate the problems as differential 

algebraic equations and therefore offer numerical integrators, such as the DASSL formula 

[Brenan 1996], intended for these types of equations. 

 



3 LUMPED-PARAMETER MODELS OF FLUID 
POWER COMPONENTS AND SYSTEMS 

This Chapter deals with the construction of fluid power circuit simulation models 

from lumped-parameter models of fluid power components or elements. In the lumped-

parameter approach, the mathematical model of a physical system with spatially distributed 

fields is simplified to single scalars. In this idealization, physical properties of the system 

such as mass, stiffness, inductance and capacitance are concentrated into single physical 

elements. The dynamic behaviour of these systems can be described by ODEs, being time 

the only independent variable. 

Simulation models are constructed following an object-oriented methodology and a 

topology in which fluid power components are grouped into four different categories ac-

cording to their functionality. This topology allows the interconnection of different fluid 

power elements of different groups in order to form a more complex fluid power circuit. 

3.1 Modelling topology 
Fluid power systems can often be represented as a combination of idealized ele-

ments, which describe the physical mechanisms of fluid power generation, storage, dissipa-

tion and transformation. Based on the previous classification, the topology adopted in this 

formulation of equations comprises four main element groups: 

• Pumps: Provide the power to the system by generating a flow from an external me-

chanical power source.  

• Volumes: Behave as fluid power storage. Volume elements may act as fluid capacitors 

and fluid inductors. Fluid capacitors store the energy in terms of the fluid pressure, and 

fluid inductors store the energy by means of the inertial effects of the fluid flow. 

• Flow resistors: These elements dissipate fluid power by means of pressure losses. 

• Actuators: Convert the hydraulic power into mechanical power. 
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The achievement of modular and hierarchal properties among the previous elements 

is considered necessary in order to mathematically formulate fluid power systems in a 

straight-forward and systematic approach. This is accomplished by means of defining com-

munication ports for each of the elements. Communication ports (represented as circles in 

Figure 3.1) link two elements of different groups, establishing a two-way interaction be-

tween them. Communication ports are intrinsic to each element group and can be classified 

into three different groups, according to the type of physical variables they transmit. 

 

• Hydraulic ports : They are used to connect Volume elements with other hydraulic 

elements such as pumps, flow resistors and actuators. 

• Control ports : They are employed to input signals (control current i, pump dis-

placement Vp, setting pressures�) to those elements admitting controllability such as 

variable displacement pumps, control valves, adjustable orifices�). 

• Mechanical ports :  They define a two-way interaction between the fluid power and 

the mechanical domains by exchanging their dynamic variables. 

 

 

Figure 3.1. Fluid power element groups and communication ports 

Fluid power elements connected by hydraulic ports exchange flow and pressure 

variables between each other. As it can be observed in the above figure, hydraulic ports 

found in Volumes output pressure variables, while hydraulic ports found in pumps, flow 

resistors and actuators output flow variables to their adjacent elements. 

Mechanical ports allow the possibility to establish a co-simulation between fluid 

power domains and mechanical domains. In a co-simulation, two different solvers, one 

dedicated to the mechanical system and the other dedicated to the fluid power system, run 

in parallel. Since both domains are coupled, components connecting the domains must ex-

change their dynamic variables at every integration step. In [Larsson 2003], software envi-
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ronments to implement co-simulations and stability analyses of coupled problems are in-

vestigated. As an example, Figure 3.1 shows a block diagram system of fluid power ele-

ments interconnected by their communication ports. From left to right the element blocks 

represent a variable displacement pump, a short pipeline, an electrically operated propor-

tional valve, hoses, and a hydraulic actuator. The pump and the actuator are connected to a 

mechanical system by means of their mechanical ports. In the case of the pump, it receives 

the mechanical variable nD, which represents the rotational speed of an engine shaft. The 

interaction is completed when the pump transmits resistance torque variable Г to the en-

gine. On the other hand, the actuator outputs the piston force F (or vane actuator torque Γ) 

to the mechanical system, which acquires this variable as an external load. The mechanical 

simulator then solves the dynamics of the mechanical system and returns the new piston 

position x and velocity x!  (or angular position ω  and angular velocityω! ) which are then 

used in the fluid power simulator to calculate the new piston force (or torque). 

3.2 Mathematical formulation of fluid power components 
This section introduces the equations describing the dynamics of some representa-

tive fluid power components. Fluid power components are modelled as lumped-parameter 

systems and therefore they can be described with ordinary differential equations. The for-

mulation and communication between components follows the topology introduced in the 

previous section.  A mathematical model of the fluid is also discussed. 

3.2.1 Fluid bulk modulus 

Due to practical considerations, in many applications the main physical fluid proper-

ties, such as density and viscosity, are considered invariable to fluid pressure and fluid tem-

perature. The bulk modulus of a liquid (which is a measure of the fluid stiffness) can be 

substantially reduced by gas or vapour entrapped in the liquid in the form of bubbles. In 

addition, bulk modulus may be also lowered by mechanical compliance of the fluid con-

tainer. In [Merritt 1967] a definition of effective bulk modulus is proposed and defined as 

the reciprocal sums of individual bulk modulus of a mixture of air-liquid fluid and the 

flexible container where the fluid is confined. The equation determining the effective bulk 

modulus is:  



36 Lumped-parameter models of fluid power components and systems 

 

 1 1 1 1g

eff l c t g
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= + + , (3.1) 

where Bl , Bc and Bg are the liquid, container and gas bulk modulus respectively. Vg is the 

volume of entrapped gas and Vt is the volume of liquid plus entrapped gas. 

However, at low pressure levels the volume of entrapped air in the fluid can grow 

substantially, reducing significantly the density and the stiffness of the fluid. Such changes 

in the fluid density have a strong influence in the system performance, and therefore sys-

tems operating through a wide range of pressure levels require a more accurate definition of 

fluid bulk modulus than the one proposed in equation (3.1). 

A two-phase fluid model is derived in [Nykänen 2000], where the effective bulk 

modulus of the fluid is determined as a function of the pressure of the fluid, the volumetric 

fraction of entrapped gas, the bulk modulus of the liquid itself, the elasticity coefficient of 

the structural expansion of the container enclosing the fluid, and the polytropic gas constant 

of the entrapped air. 

Another approach is presented in equation (3.2), which is a more generally accepted 

formula to compute the effective oil bulk modulus. Although the formula is not derived 

from a physical model, the approximation determines the effective bulk modulus as a non-

linear function of pressure p. The constants aB and bB are given in bar and can be found 

tabulated for a specific oil.  

 ( ) ( ) 1 ln 1 .B
B B

pB p b p
a b
⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (3.2) 

3.2.2 Pump elements 

Most of fluid power applications have a hydraulic pump as a source of power sup-

ply. As mechanical power to fluid power transformers, hydraulic pumps show volumetric 

and mechanical losses which must be quantified in order to obtain an accurate value of the 

delivered pump flow. 

Several loss models for hydraulic pumps can be found in the literature. Formulas 

based on coefficients, which might be obtained from data given by the manufacturer, are 

the most common. In [Wilson 1948] one of the first coefficient models was presented. In 

that approach the pump volumetric losses took into account laminar leakage and constant 

leakage flow. [Schlösser 1961] and [Thoma 1969] expanded the work introduced by Wil-
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son adding further coefficients which would account for more flow losses and friction 

sources. More recently, [Dorey 1988] presented a non-linear type of flow model with vari-

able coefficients. In general, the number of coefficients required to accurately describe the 

losses is about five for the flow loss model and ten for the torque loss model, requiring 

therefore a considerable amount of experimental data. Other formulas quantifying the 

losses are based on measurements, from which losses can be tabulated as a function of the 

system variables. One of the main drawbacks of these approaches is that many measure-

ments are needed to include the entire pump operating range. 

In [Huhtala 1996], the so-called two-line model is proposed. In this approach, flow 

and torque loss models are based on polynomial fittings obtained from measured data of the 

hydraulic pump. The advantage of this method is that just few measurement points (be-

tween 30 and 40) are required and the accuracy obtained is found to be very good in all the 

range of the pump operation. 

According to the modelling topology presented in Section 3.1, pump (or flow gen-

erator) elements output the volumetric flow Q as a function of the following inputs: shaft 

rotational speed nD, volumetric displacement Vp and pressure at the inlet and outlet ports of 

the pump. 

3.2.3 Volume elements 
Two of the most representative fluid power components which behave as fluid en-

ergy storing elements are presented next. Such components are a fixed-size volume and a 

short pipeline, the latter accounting for pressure losses and inertial effects. The equations 

describing the dynamics of these elements are mainly obtained from the law of conserva-

tion of mass in control volumes and they are discussed in [Esqué 2002a]. 

Fixed-size volume 

A fixed-size volume can be considered as a fluid capacitor in which the rate of 

stored energy (in terms of pressure p) is expressed as a function of the net volumetric flow 

Q entering a control volume of size V, as Figure 3.2 illustrates.  
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Figure 3.2. Fixed-size volume 

The well-known pressure generation equation (3.3), is used to formulate the prob-

lem. 

 
( )effB pdp dVQ

dt V dt
⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  (3.3) 

Since the term dV/dt = 0 for a fixed-size volume, fluid capacitance can be identified 

as being C = V / Beff (p).  

Short pipeline 

The short pipe model takes into account the pressure losses of the fluid flow across 

the pipe, and it also accounts for the inertial effects caused by the acceleration of the fluid 

in the pipe. The model is realized (see Figure 3.3) by two fluid capacitors (fixed-size vol-

ume elements) connected by a flow resistor (orifice).  

 

 

Figure 3.3. Short pipeline 

Pressures pi and pj generated in the volume elements are determined according to the 

pressure generation equation (3.3). Energy losses along the pipe are determined by equation 

(3.4)(c). The sources of those losses are the following:  

• A pressure drop due to the laminar flow travelling through a pipe (it is assumed that 

laminar flow is predominant). The flow equation is given by the Hagen-Poiseuille law, 

see equation (3.4)(a), which describes the pressure loss ΔpL as a linear function of the 

volumetric flow, pipe length L, fluid kinematic viscosity υ and density ρ, and inversely 

proportional to the fourth power of pipe diameter D.  
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• Minor losses, due to pipe elbows, bends and fittings are given by the turbulent flow 

equation (3.4)(b). The resistance coefficientξ  is determined experimentally according 

to the pipe geometry changes. Values forξ  can be found tabulated in [Merritt 1967]. 
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The inertial effects of the fluid flow (assuming constant cross-section area, steady 

pipe and uniform velocity of the fluid in the pipe) are formulated according to Newton�s 

second law applied to a lumped mass of fluid, as showed in the following equation, 

 ( )ij ij loss
AQ p p
Lρ

= Δ −! , (3.5) 

where A is the cross-sectional area of the pipe and ρ is the fluid density. 

Collecting and combining equations (3.3), (3.4) and (3.5) a set of ordinary differen-

tial equations defining the dynamics of a short pipe is obtained, with state vari-

ables ( )i j ijp p Q   
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 (3.6) 

3.2.4 Flow resistor elements 

Flow resistor elements are characterized by the function ( )Q f p= Δ , where Q is the 

volumetric flow rate through the resistor and Δp is the pressure loss across the conductor. 

Fluid resistors dissipate fluid power, exchanging the power loss (Q x Δp) into heat. The 

above definition assumes that the rate of change in the flow is small enough to ignore the 

fluid inertia effects. The first flow resistor element introduced in this section is an orifice, 

defined as a sudden and short restriction. The orifice element is the most elemental flow 

resistor and it can be used as a subcomponent for building more complex flow resistor 
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models. Figure 3.4 shows a schematic of a spool valve (a flow resistor component), which 

consists of an orifice subcomponent and a spool dynamics model. The block accounting for 

the dynamics of the spool passes the cross-sectional flow path area A to the orifice element 

subcomponent. 

 
Figure 3.4. Flow resistor component with orifice element as a subcomponent 

Orifice 

The flow through an orifice is commonly determined by using the turbulent flow 

equation ( )
1

2Q K p= Δ . However, its Jacobian evaluation at the origin shows a singularity. 

Numerical integrators evaluating such Jacobian will fail to obtain a solution. In order to 

overcome this problem Ellman and Piché [Ellman 1996b] derived the following empirical 

two-regime fluid flow piece-wise equation 
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where a laminar flow equation (3.7)(b)  describes the fluid flow for pressures lower than a 

transition pressure level Δptr. The quadratic spline polynomial provides a smooth transition 

between laminar and transition regimes and avoids the infinite derivative at the origin. 

Pressure relief valve 

A pressure relief valve can be a relatively complex element to model accurately. The 

behaviour of this component is mainly dictated by the valve internal geometry and the dy-
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namics of the spool, which is governed by force quantities difficult to determine such as 

flow, jet, friction, spring and damping forces. A method used for modelling a single-stage 

pressure relief valve with a damping piston is presented in [Handroos 1990], where the ana-

lytical model of the valve is not based on physical parameters but in a reduced number of 

parameters which can be determined from measured characteristic curves of the valve. In 

order to achieve that, the model describing the dynamics of the spool is brought in the form 

of equation (3.8), where pref is the setting pressure of the valve, pin is the pressure at the 

inlet port of the valve, K is a variable proportional to the cross-section area of the flow pas-

sage between the spool and the outlet port and Q is the volumetric flow through the valve. 

Parameters c1 and c2 are then identified from the typical pressure-flow characteristic curves 

shown in Figure 3.5 and from the set of equations (3.9). 

 
Figure 3.5. Pressure valve characteristic curve 
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In equation (3.9), pref1 and pref2 are two different valve setting pressures in which the pairs 

(Δp1,Q1) and (Δp2,Q2) are measured. Values of the remaining parameters c3 and c4 of equa-

tion (3.8) are determined with dynamic response measurements of the valve. 

3.2.5 Actuator elements 

The ultimate purpose of a hydraulic system is to transmit its hydraulic power to me-

chanical power. Fluid power components providing this interface between mechanical and 

fluid power domains are mainly cylinder actuators and hydraulic motors. The formulation 

of a cylinder actuator is derived next. 

Cylinder actuator 

The formulation of a double acting cylinder actuator (schematized in Figure 3.6) can 

be written as a combination of the elements presented formerly. Pressures in cylinder 

chambers pA and pB are defined according to the pressure generation equation for volume 

elements in (3.3). Incoming flows QA and QB through the cylinder ports are calculated fol-

lowing the orifice flow equation (3.7), where pA� and pB� are the pressures in the adjacent 

volume elements connected to the cylinder ports. As a transformer element, the hydraulic 

cylinder communicates its hydraulic piston force Fhyd to a mechanical system. The dynamic 

equations describing the cylinder chambers pressures and the hydraulic piston force as a 

function incoming volumetric flows are shown in (3.10). 

 
Figure 3.6. Hydraulic cylinder 
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Position x and velocity x! of the piston is determined by the dynamic equations gov-

erning the mechanical system connected to the hydraulic cylinder. Figure 3.7 shows a 

schematic representation of an actuator driving a multi-body mechanism with rotational 

joints, with joint coordinates q. The hydraulic force Fhyd is transmitted to the mechanical 

system as the joint torque Γ which drives the equations of motion of the mechanical device. 
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The solution of these equations returns the position x and the velocity x! of the cylinder rod 

back to the hydraulic system (3.10). 

 

Mq Hq G+ + = Γ!!( ),hydF qΓ

( ) , ( , )x q x q q! !

 
Figure 3.7. Exchange of hydraulic and mechanical variables between a hydraulic 

cylinder and a mechanical system 

In applications where the external load Fext acting on the cylinder is a known vari-

able, the acceleration of the cylinder piston can be determined with Newton�s second law. 

Adding this equation to (3.10), a set of a set of four ordinary differential equations is 

formed, with ( )A Bp p x x!  as state variables: 
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The friction force Fµ occurring in the cylinder seals is a highly non-linear phenome-

non which depends on the pressure difference between the chambers and piston velocity x! . 

In [Olsson 1996], a relatively simple and realistic friction model is presented, where the 

friction force is given by 
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where FC and FS are the Coulomb and static friction forces respectively, sx! is the transient 

velocity from static to Coulomb friction regimes and b is the viscous friction coefficient. 

The state variable z is related to the deformation of the cylinder seal. Fs/σ0 is the maximum 

seal deformation and σ1 is a damping term. Another well accepted friction model, derived 

from (3.12) by neglecting the dynamics associated to the deformation of the sealings, is the 

following: 

 ( ) ( )sgn s
x

x
C S CF x F F F e bxμ

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠

!
!! !  (3.13) 



4 NUMERICAL INTEGRATION OF ODEs 
ARISING IN FLUID POWER SYSTEMS 

Backward Differentiation Formula (BDF) belongs to the family of linear multi-step 

formulas (LMF). They were the first formulas proposed to solve stiff differential equations. 

Gear [Gear 1971] implemented BDFs in a variable order and variable step size code called 

DIFSUB. This code has shown to be efficient in solving general stiff differential equations. 

The code is still in use, together with improved versions of DIFSUB such as GEAR and 

LSODE codes.  Despite the claimed good efficiency of these multi-step methods, the fol-

lowing drawbacks are found when the ODE equations to be integrated are originated in 

fluid power systems: 

• The main disadvantage of multi-step methods was found by Dahlquist when analyzing 

their stability [Dahlquist 1963]. His theorem states that no linear multi-step method of 

order greater than 2 can be A-stable.  

• The stability region of BDF methods decreases as the order of the formula increases. 

For many stiff problems, in which the eigenvalues do not have large imaginary com-

ponents, the numerical stability is not compromised. However, ODEs whose Jacobians 

have eigenvalues with large imaginary parts, make the non A-stable BDF formulas 

very inefficient for such problems (the formula has to reduce excessively the integra-

tion step size in order to achieve stability conditions). 

• BDF methods lack of accuracy near discontinuities, which are very common in fluid 

power systems. 

• The above codes (DIFSUB, GEAR and LSODE) are implemented with fixed-

coefficients (i.e. previous calculated points of the solution are equally spaced). Gear 

[Gear 1974] showed that codes based on fixed-coefficient implementation must restrict 

the frequency in which the step-size is changed during the integration in order to re-

main stable. 
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In the following sections of this chapter, the advantages of single-step methods over 

LMF are discussed. The computational efficiency of both numerical integration approaches 

is analyzed and compared in Section 4.1. Stability properties of single-step methods are 

investigated in Section 4.2. In Section 4.3, the equations of order conditions determining 

the order of accuracy and stability properties of Rosenbrock formulas are derived. Finally, 

the last section of this chapter illustrates how the analytic form of the Jacobian matrix can 

be automatically generated for any given system before the numerical integration starts. 

The advantages of using the analytical form of the Jacobian � over a Jacobian obtained by 

numerical techniques � are shown in Chapter 5. 

4.1 On the efficiency of implicit Linear Multi-step and implicit 
Runge-Kutta formulas 
Implicit Runge-Kutta formulas (RKF) are one-step methods with a multi-stage 

scheme that can be of high order and still retain A-stability. They do not present either the 

disadvantages of BDF listed above. The main problem associated to RKFs is that the com-

putation of the solution requires the solution of a non-linear system of equations, which is 

excessively expensive to compute when compared to the costs involved in solving multi-

step methods. In this section, the computational costs involved in the solution of multi-steps 

and one-step methods are analyzed and compared. 

The general form of a linear multi-step formula (LMF) was introduced in Section 

1.1.2 as 

 ( )1 1
0 0

k k

i n i i n i
i i

hα β+ − + −
= =

=∑ ∑y f y . (4.1) 

LMF computing the numerical solution 1n+y   to the exact solution ( )nx h+y  can be 

rewritten by grouping in a constant C  the terms calculated in previous solution points, 

yielding 

 ( )1 0 1n nhβ+ += +y f y C . (4.2) 

Each step in (4.2) requires the solution of a non-linear system ( ) = 0yφ , where 

( ) ( )1 1 0 1n n nhβ+ + += − −y y f y Cφ . This is usually done by a modified form of Newton itera-
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tion. The iterative Newton scheme computes in its m-th iteration the approximation to the 

solution 1n+y  as ( ) ( ) ( )1
1 1 1

m m m
n n n

+
+ + += + Δy y y , with ( )

1
m

n+Δy  given by the linear system 

 ( ) ( )( ) ( )( )0 1 1
m m

n nhβ + +− Δ = −Ι J y yφ , (4.3) 

being J, the Jacobian matrix of the function f evaluated at ny , and I the N N× -

dimensional identity matrix. The iteration scheme is repeated until a convergence criterion 

is achieved. The cost involved in solving a N-dimensional ODE system ( )1, ,j j Ny f y y′ = …  

with j = 1�N, by means of a linear multi-step method is then determined from the Newton 

iteration scheme (4.3). The cost to solve each iteration m consists on: 

• One function evaluation of f. 

• Evaluation of the Jacobian J and LU-factorization of the iteration matrix ( )0hβ−I J . 

The LU-factorization of the iteration matrix is very costly, O (N 3/3) operations. Fortu-

nately, the same iteration matrix is employed for all Newton iterations required in one 

integration step. 

The costs in each integration step can be reduced by using the same iteration matrix for a 

few number of steps. Some BDF codes use this approach in those cases where the Jacobian 

varies slowly from step to step. 

On the other hand, the formulation of one-step implicit RKF is formed with inter-

mediate stages ki. The s-stage implicit RKF has the form 
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where aij and bi are free-choice parameters, whose values will determine the solution accu-

racy of the formula and its numerical stability. The implementation of fully implicit RKF is, 

by far, more costly than BDF methods. At each integration step, the following non-linear 

algebraic system of s N×  equations must be solved: 

 ( ) ( ) , 1,...,i i n ij jh a i s= − + ∑ =k k f y kφ , (4.5) 

 being N the dimension of the system ( )′ =y f y , and s the number of stages. The non-

linear system is solved again with a modified Newton iteration scheme 
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 ( ) ( ) ( )1 , 1,...,m m m
i i i i s+ = + Δ =k k k , (4.6) 

where the incremental values ( )m
iΔk are obtained by solving the s N× -dimensional 

linear system  
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The cost of a Newton iteration applied to a fully implicit RKF method is: 

• s function evaluations of f. 

• Solution of the linear system (4.7), whose LU-factorization requires ( )( )3 / 3O sN  op-

erations. Usually, the Jacobian J is evaluated once for all the iterations within one inte-

gration step, and therefore, only one LU-factorization of the s N× -dimensional itera-

tion matrix ( )h− ×I A J  is required at every integration step. 

Such excessive linear algebra costs can be reduced by using Butcher�s technique [Butcher 

1976], that exploits the special structure of the iteration matrix in (4.7). By transforming the 

matrix A-1 to a Jordan canonical form, the LU-factors can be solved in diagonal blocks and 

therefore the LU-factorization of the iteration matrix is reduced. However, implicit RKF 

methods are still far from being competitive (in terms of efficiency) to BDF methods, since 

the latter only requires O (N 3 / 3) operations to solve each iteration of the Newton scheme. 

One way to reduce significantly the computational costs of implicit RKF is found in 

the semi-implicit Runge-Kutta formulas (SIRK) [Alexander 1977], also named diagonally-

implicit Runge-Kutta formulas (DIRK). SIRK formulas are a particularization of implicit 

RKF in which matrix A is lower triangular (i.e. 0ija = for i j< ). As a result, the stages ki 

in (4.4) can be solved successively i = 1, 2,�, s with only one N-dimensional non-linear 

system ( )iiha−I J  to be solved at each stage. The computational cost per step in DIRK 

methods is reduced from O ((sN) 3/3) to O (sN 3/3) operations. 

A SIRK method with all the diagonal terms of matrix A equal ( iia γ= for i = 1,�,s) 

is called singly diagonally implicit (SDIRK) method: 
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The advantage of having a lower triangular A matrix with equal diagonal terms is that all 

stages ki can be successively solved by using the same LU-factorization of the iteration 

matrix ( )hγ−I J . The dominant costs of a SDIRK method are therefore reduced to s func-

tion evaluations per iteration and one LU-factorization of an N-dimensional iteration matrix 

per integration step, yielding to O (N 3/3) operations. 

In the above presented LMF and RK implicit methods, the Newton scheme is iter-

ated several times at each integration step until certain convergence criterion is met. A new 

class of implicit methods, which have the advantage of not using an iteration scheme, is 

presented next. Rosenbrock formulas introduce the Jacobian term directly into the integra-

tion formula instead. Rosenbrock methods were first introduced in [Rosenbrock 1963] and 

they can be interpreted as the application of only a single Newton iteration at each stage ki 

of a SIRK formula. This yields to the following formulation: 
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Modified Rosenbrock methods (also known as ROW-methods, or generalized RKFs) can 

be seen as a generalization of (4.9), since they introduce linear terms of Jkj to the stages ki 

for j=1..i. By doing this, more freedom is obtained when establishing order conditions of 

accuracy and stability properties [Wolfbrandt 1973, Kaps 1979]. The modified Rosenbrock 

formula is written as 
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Again, a formula with iiγ γ=   is of special interest, since all stages ki can be solved by 

using the same LU-factorization of ( )hγ−I J  for i = 1..s, as next equation sows: 
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The fact that Rosenbrock methods do not require the solution of non-linear systems 

make them, potentially, very efficient for the integration of stiff systems of ODEs. The 

Rosenbrock method in (4.10) is the formula proposed in this thesis for the integration of 

ODEs arising in fluid power systems. So far, it seems that Rosenbrock formulas have not 

being used in fluid power systems, although they have proved to be very effective in other 

applications and in the solution of test equations for low-moderate accuracy requirements. 

4.2 Stability properties of one-step methods 
The stability of a numerical integration formula can be studied by analyzing the be-

haviour of the local and global errors of the solution. The global error (also called true er-

ror) εn  of a numerical solution at the point tn is defined as ( )n n ny y tε = − , where yn is the 

approximated solution computed by the formula, and ( )ny t  is the exact solution (usually 

unknown). The local error ( )h ntδ  of the solution is the error of the numerical formula after 

the integration of a single step starting from an exact solution ( )ny t . Therefore, the global 

error can be seen as a cumulative error, where errors add up during the integration, while 

the local error only measures the error made at each step.  
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Figure 4.1. Local and global errors of a numerical solution 

The stability of a one-step integration method is guaranteed when the error inequal-

ity (4.12) holds. 



Numerical integration of ODEs arising in fluid power systems 51 

   

 ( )1n n h ntε ε δ+ ≤ + . (4.12) 

The inequality states that the global error ε of the solution does not grow unboundedly as 

the integration advances. 

There is not a stability analysis of RKF methods dealing with non-linear and stiff 

ODEs. Instead, to characterize and analyze the stability of a numerical method, the follow-

ing test equation is used: 

 ( ) ( )0 0, , , Re 0y y with y t yλ λ λ′ = = ∈ ≤& . (4.13) 

The advantage of this test equation is that its analytical solution is known 

( ) ( )0 expy t y tλ= . The behaviour of a numerical method in solving the test problem (4.13) 

can be extrapolated to predict its behaviour in solving a non-linear equation of the type 

( )y f y′ =  [Gupta 1985], since this can be approximated by 

 ( ) ( )0 0
fy y y f y
y
∂′ = − +
∂

 (4.14) 

over a small interval [t0 , t0 + h]. The term ( )0f y  seldom affects the stability and therefore 

f y∂ ∂ may approximate λ . When dealing with a system of equations f y∂ ∂ is then the 

Jacobian matrix, and the system ( ) ( )0 0′ = − +y J y y f y   can be transformed to a set of 

equations ( ) ( )0 0y y y f yλ′ = − + , whereλ  is an eigenvalue of J. As a result, the test prob-

lem (4.13) can be used as a good model for analyzing the stability of numerical methods 

solving the general case ( )′ =y f y .  

The test equation (4.13) applied to the forward Euler method ( )1n n ny y hf y+ = +  

yields to (4.15) when substituting function f by yλ . 

 1 1n

n

y
h R

y
λ+ = + = . (4.15) 

R is the ratio of computed solutions at tn+1 and tn and it is known as the stability function or 

the amplification factor of the numerical method. The stability function R of the test equa-

tion exact solution is 

 ( )
( )

1n h

n

y t
R e

y t
λ+= = . (4.16) 
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For all values of λ  which make the exact solution of y yλ′ = stable, i.e. ( )λ' <0, 

the stability function R of the exact solution holds ( ) 1R hλ ≤ . This becomes then the con-

dition of stability for which the solution of a numerical method does not grow unbounded. 

Imposing the condition ( ) 1R hλ ≤  to the Euler method in (4.15), it turns that Euler method 

is stable if and only if 1 1hλ+ ≤ . Therefore Euler method is stable for values 

of [ 2,0]hλ = − , assuming thatλ ∈' . 

Stability regions can be represented graphically for each numerical method. In the 

general case, whereλ ∈&  are the eigenvalues of the Jacobian matrix of a set of equations, 

the stability regions are plotted in the complex hλ plane, and show the values of hλ which 

make the numerical method stable, i.e. regions where ( ) 1R hλ ≤ . 

In Figure 4.2 the stability regions (shaded in gray) of some numerical integration 

formulas are plotted. As stated above, the forward Euler method is stable whenever 

1 1hλ+ ≤ , which is the inner area of a circle or radius 1 and centre in (-1,0) in the com-

plex hλ plane. This method is therefore not suited for the integration of stiff ODEs having 

large negative eigenvalues λi, since very small step sizes h should be required in order to fit 

the method within its stability region. It is desirable then that numerical methods to be used 

for the integration of stiff ODEs should be stable for a large region in the left half-plane (hλ 

with negative real part), since the left-half plane is the location of all the eigenvalues λ 

which makes the exact solution of stable too. 

Numerical methods whose stability region comprises the entire left-half hλ plane 

( ( ) 1R hλ ≤  for all real λ) are called A-stable. In other words, A-stable methods are stable 

for any positive time step h whenever λ has a negative real part. According to the stability 

regions plotted in Figure 4.2, the trapezoidal rule, with ( ) ( ) ( )1 1
2 21 1R h h hλ λ λ= + − , is 

stable in the whole left-hand side hλ plane, while the backward Euler formula, with  

( ) ( )1 1R h hλ λ= − , is stable for all hλ  values except for the unit circle cantered at (1,0). 

Both integrations formulas are therefore A-stable. 
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Figure 4.2. Stability regions of some 
simple one-step formulas. 

Figure 4.3. Stability regions of explicit 
RKFs, with p=s. 

 

A-stability might not be a sufficient condition for numerical methods dealing with 

stiff systems of ODEs.  Another desired property for the numerical method is that its stabil-

ity function accomplish ( ) 1R hλ (  as hλ → −∞ . This requirement can be understood 

when solving the test equation (4.13) with a very large negative λ. Since 1/ λ− is the time 

constant of the exact solution, a λ → −∞  means that the solution decays exponentially to 

zero immediately. This asymptotic behaviour should be then also reflected in the numerical 

formula, yielding 

 1 0 asn

n

y
h

y
λ+ → → −∞ . (4.17) 

Numerical methods not satisfying the previous condition cannot damp out fast enough the 

solutions of very stiff ODEs. As a consequence, stability and accuracy problems may arise. 

An example of such behaviour is shown in Figure 4.4, where a stiff system is integrated by 

means of two different methods: 

• Backward Euler formula:  ( )1 1n n ny y hf y+ += + ,  with ( ) ( )1 1R h hλ λ= −  

• Trapezoidal rule: ( )1 12
h

n n n ny y f y y+ += + + , with ( ) ( )
( )

1
2

1
2

1
1

h
R h

h
λ

λ
λ

+
=

−
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From their stability regions, plotted in Figure 4.2, it can be concluded that both methods are 

A-stable and therefore, for any size of the integration step h, the numerical stability should 

be granted.  Nonetheless, it will be seen in the following integration example that A-

stability does not always lead to an optimum integration when stiff systems are present.   

The stiffness in the hydraulic circuit example in Figure 4.4 arises due to the size difference 

of the two volumes, where V2/V1 = 100 (the same ratio is observed between the eigenvalues 

λ1 and λ2 of the Jacobian matrix). Due to this stiffness, slow asymptotic convergence prob-

lems may arise. Examining again the stability functions of the formulas, the trapezoidal 

method shows the following asymptotic behaviour ( ) 1R −∞ = , while in the backward 

Euler method ( ) 0R −∞ = . The asymptotic behaviour of the trapezoidal method is therefore 

undesired when integrating stiff systems. This can be seen in the plot of Figure 4.4, where 

the solution of the pressure p1 provided by the trapezoidal rule results in an oscillatory solu-

tion. Despite these oscillations, the solution is considered to be stable, as long as the oscilla-

tions gradually vanish. On the other hand, the backward Euler method provides a satisfac-

tory numerical solution without numerical oscillations around the transient response.  

 

 

 

18 l/m 0.05 s
20 l/m 0.05 s

in

in

Q t
Q t

= <⎧
⎨ = ≥⎩
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,p f p p
p f p

⎛ ⎞⎛ ⎞
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4
1 21 10 , 100λ λ= − × = −   

Figure 4.4. Numerical integration of a stiff system using the backward Euler method 
and the trapezoidal rule. 

A-stable methods with maximally damped behaviour ( ) 0R hλ =  as hλ → −∞  are 

called L-stable. The advantages of L-stable methods over non L-stable ones have been 

shown in the previous example. The oscillations shown in non L-stable methods can only 
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be reduced or avoided by making the integration step small enough, which makes the inte-

gration less efficient. 

The need of an L-stable formula for the integration of stiff systems of ODEs is there-

fore justified if integration efficiency is sought. Advantages of low order L-stable Rosen-

brock formula over other SIRK methods are also pointed out in [Piché 1996], where the 

robust stability properties of the method are praised. In [Esqué 2002b] the stability of L-

stable Rosenbrock formula with a variable step size is tested in the dynamic simulation of 

some hydraulic components. The formula shows, again, excellent stability against disconti-

nuities and numerical stiffness. 

4.3 Equations of conditions for modified Rosenbrock formulas 
The overall efficiency of a numerical formula should not be only measured in terms 

of the number of operation required to advance one step. As it has been showed in the pre-

vious section, an efficient integration is also subject to the stability properties of the for-

mula and to the nature of the system to be integrated. Since the characteristics of the system 

equations governing the fluid power circuits are well-known, an efficient numerical integra-

tion formula for those applications should retain the following properties: 

- Computationally inexpensive linear algebra 

- Excellent stability properties 

- Able to detect and handle discontinuities 

- Simple implementation of a step size predictor, based on a local error estimation 

The Rosenbrock method (4.10) is a good candidate to compete with the current numerical 

methods used in the integration of fluid power systems. The main characteristics of Rosen-

brock methods are listed next: 

- Reduced computational costs: the method can achieve full accuracy and stability with a 

single Newton iteration of an N-dimensional iteration matrix per integration step. 

- Rosenbrock methods can be L-stable. 

- Error estimators can be embedded into the formula with almost no extra numerical 

costs. 

The main drawback of Rosenbrock methods is that not only the evaluation of the full Jaco-

bian must be provided at every integration step, but also this Jacobian must be computed 

accurately. Otherwise, the numerical stability of the Rosenbrock formula might be affected 
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by inaccuracies in the Jacobian. This difficulty is dealt in Section 4.4, where a systematic 

approach for obtaining the analytic expression of the Jacobian matrix for any given hydrau-

lic system is presented. 

This Section focuses on the Rosenbrock formulas introduced in (4.10). Conditions 

concerning the order of accuracy of the formula and its stability are also presented. 

4.3.1 Order conditions 

The free parameters aij, γij, bi of the s-stage Rosenbrock formula 
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1

1 1

where , 1,...,

n
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−

= =
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y y k
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will determine the order of accuracy of the integration formula and they will also character-

ize its numerical stability. A method is of order p if the local error 

( ) ( )1
1

p
n ny y x h O h +

−− + = , where yn is the numerical solution, y is the exact solution and h 

is the integration step size. Order conditions for the free parameters can be determined by 

differentiation [Hairer 1996] or by applying the theory of Butcher series [Hairer 1974, Kaps 

1981]. In the first approach, the order conditions for the free parameters are determined 

when comparing the Taylor series of the test equation exact solution to the Taylor series of 

the numerical method. By doing so, the conditions for the free parameters are defined by 

equalling the derivative terms of both Taylor expansions. This differentiation approach is 

straightforward for establishing order conditions of lower Rosenbrock formulas. For higher 

orders conditions the formulation becomes too complex (formulas of order 6 and 8 require 

37 and 200 order conditions respectively) and a new form of representation is needed. This 

new notation consists of a graphical representation called labelled trees. The vertices of 

labelled trees represent summation indices and the derivative terms of the Taylor expan-

sions can be represented and built with this notation.  Labelled trees have been used in the 

derivation of order conditions of Runge-Kutta methods in [Hairer 1993]. In [Kaps 1981] 

labelled trees are applied to the Butcher series theory to derive high order Rosenbrock 

methods. 
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The table below lists the order conditions for the free parameters of Rosenbrock 

methods up to order 4, where ij ij ijaβ γ= + . An expansion of this table with order condition 

up to order 6 can be found in [Kaps 1981]. 

Table 4.1. Order conditions for Rosenbrock formulas (Source: [Kaps 1981]) 

Order Order condition 

1 1jj
b =∑  

2 1
2, j jkj k

b β γ= −∑  

3 1
3, ,

21
6, ,

j jk jlj k l

j jk jlj k l

b a a

b β β γ γ

=

= − −

∑
∑

 

4 

2

1
4, , .

1
8 3, , .

1
12 3, , .

3 31
24 2 2, , .

j jk jl jmj k l m

j jk kl jmj k l m

j jk kl kmj k l m

j jk kl lmj k l m

b a a a

b a a

b a a

b

γ

γ

γ γ

β

β

β β β γ

=

= −

= −

= − + −

∑
∑
∑
∑

 

 
 

4.3.2 Stability conditions 

Recalling from Section 4.2, one-step methods applied to the scalar test equation 

(4.13) can be expressed as ( )1n ny R h yλ+ = , where R is the stability function of the for-

mula. The method is then stable if and only if ( ) 1R hλ ≤ . If the previous inequality is 

valid for any arbitrary hλ, with Re(λ)<0, then the formula is called A-stable. If in addition 

of being A-stable, the stability function of the formula also accomplish 

( ) 0R hλ = as hλ → −∞ , then the formula is L-stable. In this section, the stability functions 

of RKF and Rosenbrock methods are presented. They will be used later to determine the 

free parameters that make Rosenbrock formulas L-stable.  

The stability function of an explicit s-stage RKF: 
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 (4.18) 

can be explicitly computed from (4.18) as the following polynomial of degree ≤ s: 

 ( ) ( ) ( )2 3

, , ,
1 j j jk j jk kl

j j k j k l
R h h b h b a h b a aλ λ λ λ= + + + +∑ ∑ ∑ # . (4.19) 

The above stability function shows that explicit RK methods cannot be A-stable, since its 

region of stability ( ) 1R hλ ≤  is bounded. Figure 4.3 plots the stability regions of s-stage 

explicit RKFs for s = 1...4. 

The s-stage implicit RKF (4.4) applied to the test equation (4.13) yields the stability 

function (4.20) [Stetter 1973], in which R becomes a rational function whose numerator and 

denominator polynomials are function of the free parameters. 

 ( ) ( )
( )

( )
( )

det

det

Tz zP z
R z

Q z z

− +
= =

−

I A 1b

I A
 (4.20) 

In the above stability function, z = hλ, I is the identity matrix, A is the matrix of RK coeffi-

cients aij, b is the vector of RK elements bi and 1 is a vector of ones. Implicit RKF are A-

stable if the degree of the polynomial P is not larger than the degree of Q. 

In SDIRK methods (4.8) � a particularization of implicit RK formulas with a lower 

triangular A matrix and equal diagonal terms � the denominator of the rational function R 

simplifies to ( ) ( )1 sQ z zγ= − . The polynomial P can be rewritten [Kaps 1979] as  

 ( ) ( ) ( )( )1

0

s
ks k

k
k

P z L zγ γ−

=

= −∑ , (4.21) 

where ( ) ( ) ( ) ( )
( ) ( )0

!
1

! ! !

ik
im

k
i

k m xL x
m i k i i=

+
= −

+ −∑  is the m-th derivative of the k-degree Laguerre 

polynomial, which outputs a polynomial with real coefficients and one variable x.  

Rosenbrock methods of the form (4.10) applied to the scalar test equation show the 

same stability function R as SDIRK methods, that is 
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 ( )
( )

( ) ( )( )1

0

1
1

s
ks k

ks
k

R z L z
z γ γ

γ
−

=

= −
−

∑ . (4.22) 

This stability function R of Rosenbrock formulas is then uniquely determined by the pa-

rameter γ, and therefore the regions of stability can be defined as a function of this parame-

ter, as Table 4.2 displays. 

 

Table 4.2.  Values of the free parameter γ, for which A- and L- stability are achieved. 
(Source: [Hairer 1996]) 

 Rosenbrock formulas, 
with p = s 

Stiffly Accurate Rosen-
brock formulas, with p = s-1 

Order s A-stability L-stability A- and L-stability 

2 1/4�∞ (2 2 ) / 2±  (2 2 ) / 2− � (2 2 ) / 2+  

3 1/3�1.06857902 0.43586652 0.18042531�2.18560010 

4 0.39433757�1.28057976 0.57281606 0.22364780�0.57281606 

5 
0.24650519 0.36180340
0.42078251 0.47326839
⎧
⎨
⎩

…
…

 0.27805384 0.24799464�0.67604239 

6 0.28406464�0.54090688 0.33414237 0.18391465�0.33414237 

 

An interesting group of Rosenbrock formulas are the so-called Stiffly Accurate for-

mulas. These methods are built by imposing the following condition on the free parameters 

 
for 1,...,

1
si si i

s

a b i s
a

γ+ = =
=

. (4.23) 

The above conditions force the numerical solution yn to be exactly the same as the last in-

ternal stage s. The benefit of imposing such condition is that the highest coefficient of P(z) 

in (4.21) becomes zero and therefore, the stability function R of a stiffly accurate Rosen-

brock formula always satisfies ( ) 0R z =  at z → −∞ , i.e. the formula becomes L-stable.  

4.4 Analytical form of the Jacobian matrix 
One of the drawbacks of Rosenbrock methods lies in that they need to be provided 

with the instantaneous value of the full Jacobian matrix of the system at every integration 

step. Such demand can affect negatively the computational efficiency of Rosenbrock meth-
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ods. The construction of the Jacobian matrix from a system of ODEs can, in some cases, 

become the most time consuming task involved in the numerical integration. In [Esqué 

2005], it is shown that the computation of the Jacobian, by means of numerical approxima-

tion, can account up to 40% of the computational costs required to advance one step in the 

numerical integration. The test was performed by integrating middle-sized fluid power cir-

cuits (from 5 to 20 state variables) using a single-step Rosenbrock numerical formula, 

which required two function evaluations per step. 

Yet another disadvantage of Rosenbrock methods arises due to the fact that the Jaco-

bian matrix in the integration formula itself, rather than Jacobian being part of a Newton 

iteration scheme. This implies that the accuracy of the provided Jacobian affects both solu-

tion accuracy and the numerical stability of the integration formula. The computation of an 

accurate Jacobian for each integration step might become too computationally expensive 

and, in some cases, an accurate or realistic Jacobian might even be difficult to calculate, for 

example near discontinuities. The latter could even make the numerical integration unsta-

ble.  

The calculation of an analytical form of the Jacobian matrix � as a function of the 

state variables of the system � guarantees an accurate evaluation of the Jacobian at each 

integration point. In addition, such evaluation of the analytical Jacobian is also less compu-

tationally expensive than obtaining the Jacobian by numerical differentiation. However, the 

derivation of an analytical Jacobian from the set of ODEs is not always a straightforward 

task and in most cases the associated symbolic manipulation can be a tedious and error-

prone task to perform, especially when the dimension of the system is relatively large. The 

modelling approach presented in Chapter 2 makes possible to obtain the analytical Jacobian 

matrix of a fluid power circuit in a systematic way. The process can be automated by an 

algorithm, able to generate a subroutine containing the algebraic expression of the Jacobian 

matrix. This subroutine will then return the numerical evaluation of the Jacobian at a spe-

cific integration point when called by the numerical integration formula. 

Figure 4.5 shows a flowchart of the tasks involved during the numerical integration 

of a system of ODEs by means of a Rosenbrock formula. The pre-process described above, 

in which the analytical Jacobian matrix is computed, is also illustrated.  Next Section de-

scribes in more detail how the analytical Jacobian matrix of a fluid power circuit is calcu-

lated from a formal definition of the fluid power circuit.  
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Figure 4.5.  Flowchart of the tasks involved in a numerical integration with a 

Rosenbrock formula 

4.4.1 Jacobian of individual components 
For each dynamic model of a fluid power component stored in the simulation mod-

els library, information of its Jacobian matrix must be also available. This section illus-

trates how Jacobians of individual components are calculated, stored, and indexed so that 

they can be retrieved and assembled into the full Jacobian matrix of a fluid power circuit. 
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In the following example, illustrated in Table 4.3, the analytical Jacobian of a vol-

ume element is presented. The Jacobian of a single component is derived from the set of 

ODEs describing its dynamics (Chapter 2). In this case this is the pressure generation equa-

tion ( ), ,i i g i rp F p p p=!  of the volume component Vi with two hydraulic ports. These hy-

draulic ports will be connected to other volume elements (dashed circles) when assembled 

into a larger system. As showed in the middle row of Table 4.3, Jacobian elements Jii, Jig, 

and Jir are determined analytically by derivation of Fi with respect to the state variables pi, 

pg and ph respectively. The indexing of the state variables with subscripts (i, g, h) deter-

mines the position of these Jacobian elements within the full Jacobian matrix of the system 

(an N N× -dimensional matrix, where N is the number of state variables). The indexing of 

the state variables establishes the connections between the different ports of the fluid power 

elements. The indexing is carried out during the definition of the fluid power circuit model. 

 

Table 4.3. Jacobian of a volume component 

Formulation as a system of ODEs 

 

( ) ( ) ( ), ,i i
i i gi g i ir i r

i

B p
p F Q p p Q p p

V
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Jacobian elements 
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i i i i i

QF B Q
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p V p p p
⎛ ⎞∂⎛ ⎞∂ ∂ ∂
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gii i i i ir
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g i g r i r

QF B F B Q
J J
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= = × = = − ×
∂ ∂ ∂ ∂

 

Location of the Jacobian elements in the full Jacobian matrix 

 1 � g � i �. r � N 
1 0 � 0 � 0 � 0 � 0 
$  $   $   $   $   $  
i 0 � Jig � Jii � Jir � 0 
$  $   $   $   $   $  
N 0 � 0 � 0 � 0 � 0  
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The expressions of the volumetric flow rate Qgi and Qir are known from Section 

3.2.4 to be 

 

( ) ( )

( ) ( ) ( )

2

3 Re 3 0 ,
4
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 (4.24) 

with their partial derivatives with respect to pressure variables expressed as 
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 (4.25) 

The algebraic expression of the pressure dependent bulk modulus ( )i iB p is formed 

from equation (3.2), as 

 ( ) ( ) 1 ln 1 i
i i B i

B B

pB p b p
a b
⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (4.26) 

and its partial derivative with respect to pressure pi is 

 1lni i B B

i B B

B p b a
p b a

⎛ ⎞∂ + −
= − −⎜ ⎟∂ ⎝ ⎠

 (4.27) 

 

 Table 4.4 and Table 4.5 show the construction of the analytical Jacobian elements 

associated to a pipeline and a cylinder actuator respectively. 
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Table 4.4. Jacobian of a pipeline component 

Formulation as a system of ODEs 
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Location of the Jacobian elements in the full Jacobian matrix 

 1 � g � i j k �. r � N 
1 0 � 0 � 0 0 0 � 0 � 0 
$  $   $   $  $  $   $   $  
i 0 � Jig � Jii 0 Jik � 0 � 0 
j 0 � 0 � 0 Jjj Jjk � Jjr � 0 

k 0 � 0 � Jki Jkj Jkk � 0 � 0 
$  $   $   $  $  $   $   $  
N 0 � 0 � 0 0 0 � 0 � 0  
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Table 4.5. Jacobian of a cylinder actuator component 

Formulation as a system of ODEs 
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Location of the Jacobian elements in the full Jacobian matrix 

 1 � i j k l �. r � t � N 
1 0 � 0 0 0 0 � 0 � 0 � 0 
$  $   $  $  $    $   $   $  
i 0 � Jii 0 Jik Jil � Jir � 0 � 0 
j 0 � 0 Jjj Jjk Jjl � 0 � Jjt � 0 

k 0 � 0 0 Jkk 0 � 0 � 0 � 0 
l 0 � Jli Jlj 0 Jll � 0 � 0 �  
$  $   $  $  $    $   $   $  
N 0 � 0 0 0  � 0 � 0 � 0  
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4.4.2 Construction of the full Jacobian matrix 
The analytical form of the full Jacobian matrix can be defined by collecting the 

Jacobian elements associated to each of the individual fluid power components of the sys-

tem [Esqué 2005]. The algorithm making this task must be provided with a formal defini-

tion of the hydraulic circuit. In this formal definition: 

- The fluid power components of the system are listed and their state variables are in-

dexed with integers, going from 1 to N (as shown in the circuit of Figure 4.6). 

- Connections between different components are defined by pairing their ports. The 

above index notation is used to describe these connections. 

 

In order to illustrate the processes involved in building the full Jacobian matrix from 

a generic circuit, the example shown in Figure 4.6 is followed: 

i) The system of ODEs is formed as ( )1 2 11, ,...,i iy F y y y=! for i = 1�11, where the 

vector of state variables 1 2 3 4 5 6 7 8 9 10 11
Tp p x x p p Q p p Q p= ⎡ ⎤⎣ ⎦y is formed ac-

cording to the given indexes. The functions Fi are obtained from the library of fluid 

power elements (Tables 4.3-5) by assigning the subscript indexes i, j, k,� according 

to the state variable vector y. For example, the state variable yi with index i = 11 cor-

responds to the pressure 11p of a volume component with hydraulic ports connected 

to state variables 6 and 9. According to the volume component formulation stored in 

the library, the ODE associated to this fluid power component is then defined as  

 
( ) ( ) ( )11 11

11 11 6,11 6 11 11,9 11 9
11

, ,
B p

p F Q p p Q p p
V

⎡ ⎤= = × −⎣ ⎦!  (4.28) 

ii) The same approach is used to determine the Jacobian elements Jij of the individual 

fluid power components in the system. The algorithm reads the formal description of 

every component, it accesses the library, it assigns the indexes, and it returns the 

analytic expressions of the Jacobian elements. 

iii) The full Jacobian matrix is formed by assigning the Jacobian elements Jij to the i-th 

row and j-th column of the full Jacobian matrix. 
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Full Jacobian matrixLibrary of FP models

Formal definition of the 
fluid power circuit

� components

� indexing of state variables 

� communication ports 
p1

p2 p8
Q10 p9

p5
Q7 p6 A

B T

P
p11

  1 2 3 4 5 6 7 8 9 10 11 

p1 J1,1  J1,3 J1,4 J1,5       

p2  J2,2 J2,3 J2,4    J2,8    

x 3   J3,3         

 x! 4 J4,1 J4,2  J4,3        

p5 J5,1    J5,5  J5,7     

p6      J6,6 J6,7  J6,9  J6,11 

Q7     J7,5 J7,6 J7,7     

p8  J8,2      J8,8  J8,10  

p9      J9,6   J9,9 J9,10 J9,11 

Q10        J10,8 J10,9 J10,10  

 
p11      J11,6   J11,9  J11,11 

 
 

Figure 4.6.  Construction of the analytical Jacobian matrix for a generic hydraulic 
circuit 

 





5 PERFORMANCE OF ROSENBROCK 
FORMULAS 

In this chapter Rosenbrock formulas are tested and compared against other numeri-

cal integration methods. The performance of Rosenbrock formulas are evaluated in two 

different types of simulation: real-time and offline simulations. In real-time simulations, the 

simulation time matches the clock time and numerical integration is performed with a con-

stant step size throughout the entire simulation. Offline simulations usually advance with 

integration steps of different sizes, which are controlled by an error estimator. Real-time 

and offline simulations require numerical integration formulas with different properties. 

At the end of this chapter, the advantages of using Jacobian matrices obtained ana-

lytically over the ones obtained by numerical approximation are discussed. It will be shown 

that the first approach enhances stability and accuracy, while it reduces the computational 

time of the integration. 

5.1 Real-time simulations 
Real-time simulations are found in many applications where simulated results need 

to be computed and acquired in real-time (clock time). Numerical integration methods for 

real-time simulations must show the following properties: 

• Advance the integration with a constant step size h in order to provide solutions at 

equidistant time intervals. 

• Computational efficiency: CPU time required to advance the integration of the 

system ( )'y F y=  from ( )y t to ( )y t h+  must be less or equal than the clock 

time interval h.  

• Good numerical stability properties in order to integrate successfully stiff equa-

tions with a given fix step size h. 

• Provide an acceptable solution accuracy. 



70 Performance of Rosenbrock formulas 

 

 

Explicit Runge-Kutta formulas of low order of accuracy are often used in real-time 

simulations. They have the advantage of having a simple algebraic formulation and there-

fore fast computational times. However, it is known that the main drawback of explicit 

formulas is their poor numerical stability when integrating stiff systems of ODEs. 

Singly diagonally implicit Runge Kutta (SDIRK) formulas of the Rosenbrock class 

have the disadvantage of being more costly in terms of computational operations. They 

need to form a Jacobian in each integration step and solve a linear system of equations for 

each stage in every integration step. An analysis of the computational costs involved in 

implicit Runge-Kutta formulas was already presented in Section 4.1. Concerning numerical 

stability, SIRK formulas have clear advantages over the explicit RK ones, especially when 

the formulas have to deal with numerically stiff systems. 

Table 5.1 shows all numerical formulas (explicit and semi-implicit) used in the real-

time integration tests carried out in this section. A short description of each formula is 

given below. 

 

Table 5.1. Real-time integration algorithms (FE = function evaluations) 

Method family Order of 
accuracy 

Method Properties 

RK 
Fully-Implicit 

Order 5 RADAU5 Used for obtaining the 
approximate exact solution 

Order 3 ODE23 3 FE 
RK-Explicit 

Order 5 DOPRI5 6 FE 

ROS2 2 FE; 2 Stages 

ROS2p 2 FE; 2 Stages Order 2 

ODE23s 2 FE; 2 Stages 

ROS3p 2 FE; 3 Stages 

ROSENBROCK 

Order 3 

RODAS3 3 FE; 4 Stages 
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RADAU5 [Hairer 1996] is an implicit Runge-Kutta code based on the 3-satge Radau 

IIA method [Butcher 1964b]. 

ODE23 and DOPRI5 are explicit Runge-Kutta formulas. The first is a 2(3) pair of 

Bogacki & Shampine [Bogacki 1989] and the latter is a 5(4) pair by Dormand & Prince 

[Dormand 1980]. Both formulas ore offered as ODE solvers in the MATLAB® software 

package. 

ROS2 is an L-stable second-order two-stage SDIRK formula proposed by Verwer 

[Verwer 1999] to solve partial differential equations arisen in photochemical dispersion 

problems. In his paper, Verwer highlighted the good stability properties of the formula 

when using large integration step sizes. 

ROS2p is a SDIRK L-stable two-stage second-order method proposed by Piché & 

Ellman [Piché 1994]. The formula was compared to other popular SIRK formulas by means 

of integrating a simple fluid power circuit test. The authors claimed that that the use of 

ROS2p was the best choice for simulating that particular numerically stiff test. 

ODE23s is another second-order L-stable Rosenbrock formula by [Shampine 1997] 

which is also offered as a numerical integration solver for stiff systems in the 

MATLAB/Simulink® package. The integrator can be used as a MATLAB command 

(ode23s) or it can be chosen from the Simulink solvers list. 

ROS3p [Lang 2000] is a third-order A-stable method with stability function 

( ) 0.73R ∞ ≈ . It is realized with three stages and only two function evaluations. Lang de-

rived this efficient solver claiming that it retained its third-order accuracy when solving 

stiff non-linear parabolic problems. 

RODAS3 [Sandu 1996] was designed following the same principles as the L-stable 

Rosenbrock solver RODAS4 [Hairer 1991] but reducing its order from four to three. 

5.1.1 Test circuits 

Fluid power tests circuits are used to evaluate the performance of the numerical 

methods listed in Table 5.1, among them the Rosenbrock formulas. The performance of 

each method will be measured in terms of a) numerical accuracy (by comparing the nu-

merical solution to an approximate exact solution) and b) the computational time required 

to execute the integration. 
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Circuit #1: (stiffness) 

This is a simple fluid power circuit consisting of two volumes V1 and V2. A variable 

flow Qin is entering V1 and going to V2 through an orifice of diameter d1, and from V2 to a 

tank through another orifice d2. The main characteristic of this circuit is the relative size of 

the volumes with respect to each other, which is of two orders of magnitude. This charac-

teristic makes this circuit to behave as stiff and therefore it constitutes a simple but yet a 

challenging integration problem. The schematic of the circuit as well as the size of its com-

ponents is shown in Figure 5.1. 

 

 

V1 =  0.05 l 
V2 =  1 l 
d1 =  4 mm 
d2 =  4 mm 

40 10 sin(2 10 )inQ tπ= + × ×  l/min 

Figure 5.1. Test circuit #1: Two-volume two-orifice fluid power circuit  

 

Circuit #2: (friction and discontinuities) 

This test circuit contains a cylinder actuator controlled with a 4/3 proportional valve. 

As shown in the schematic of Figure 5.2, the system also comprises pipes (whose mathe-

matical model considers fluid flow inertia) and a pressure relieve valve. The mathematical 

formulation of all these fluid power components is presented in detail in Chapter 3. The 

most relevant physical parameters of the circuit are shown in Table 5.2. 

The numerical integration algorithm solving this test has to overcome the following 

two difficulties: mechanical friction and discontinuities. The cylinder seal friction is mod-

elled in this test with static, Coulomb and viscous friction forces components (see equation 

(3.13)). The friction behaviour is highly non-linear and also adds relatively fast transients to 

the overall system, especially when the cylinder piston oscillates around an equilibrium 

position. Discontinuities might originate during the commanding of the proportional valve. 

Fast openings and closures of the valve induce abrupt and even discontinuous changes in 

volumetric fluid flows. Another source of discontinuities is found in the pressure relief 

valve, whose spool operates with small constant times (of the order of milliseconds). 
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1
Relative valve spool position u

 
Figure 5.2. Test circuit #2 

 

Table 5.2. Parameter values of the simulation model sketched in Figure 5.2 

Cylinder Pipes PRV 
øp/ør - stroke 50/28�500 mm L 3 m 

m 1000 kg D 10 mm 

Fc 200 N B 107 MPa 

Fs 500 N ξ 100 

b 500 N m-1 s2 Other  

sx!  20 mm s-1 V11 1 l pref1 10 Mpa pref2 12 Mpa 

øports 9.5 mm V12 1 l p1 11 Mpa p2 13 Mpa 

  øorifices 4 mm Q1 10 l/min Q2 60 l/min 

 

5.1.2 Numerical tests 

Test 1 

In this test, the Circuit #1 of Figure 5.1 is solved using all the numerical integration 

algorithms listed in Table 5.1. In addition, each of these numerical codes will integrate the 

circuit employing five different integration step sizes, ranging from 0.25 to 10 milliseconds. 

The input volumetric flow Qin follows a sinusoidal profile with a frequency of 10 Hz 

and with an amplitude of 10 l/min. After t = 0.8 s the input flow is kept constant. The volu-
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metric flow profile is shown in the left plot of Figure 5.3. The numerical integration of the 

Circuit #1, resulting from the previous input flow, gives the solutions p1 and p2, shown in 

the right-hand side plot of Figure 5.3. This numerical integration was carried out employing 

the RADAU5 algorithm, a Runge-Kutta fully-implicit order-5 method, using variable step 

size. The level of accuracy was set by imposing relative and absolute error tolerances of  

10-8. The numerical solution given by RADAU5 can be considered, for our purposes, as an 

approximation to the exact solution.  
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Figure 5.3. Test 1: Incoming volumetric flow (left-hand side) and approximate exact 
solution (right-hand side) 

The accuracy of the numerical integration is obtained when comparing the solution 

( )xy  of that formula to the exact solution ( )xy  obtained from the RADAU5 formula. 

Since the latter integration has advanced with variable step size, the solutions at the integra-

tion time points x = 0, h, 2h � have been calculated in the RADAU5 integration by means 

of interpolation, implemented in the subroutine �contr5�. The integration relative error (a 

scalar) of each component i of the solution [ ]1 2
Tp p=y is obtained using the root-mean-

square (RMS): 

 ( )
( ) ( )

( )

2

1

1 i in
i j j

i
j j

y y
n y=

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑e  (5.1) 

where n is the total number of integration steps (length of the solution). Finally, the integra-

tion error accounting all the components of the solution is computed as the norm of vector 
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e. This relative error, obtained from the numerical integration of Test 1, is plotted in Figure 

5.4 using a logarithmic scale. The error has been computed for all numerical formulas listed 

in Table 5.1. The experiment has been repeated using five different integration step sizes h. 

Numerical integrations, using certain h, which did not succeed (due to stability problems) 

can be identified in the plot as the ones which have not an error bar. Bars with green high-

lighted borders represent minimum errors among all formulas integrating with same inte-

gration step h.  
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Figure 5.4. Test 1: Relative error of the numerical solutions (an absence of error bar 

means that the numerical integration failed) 

 

Analysis of Test 1:  

- In this first test, volume sizes and orifice diameters have been chosen (values displayed 

in Figure 5.1) with the purpose of making the system not too stiff, i.e. the numerical 

problem can also be solved with explicit integration formulas. 

- The above figure shows that Rosenbrock formulas provide more accurate solutions 

than the explicit formulas. Rosenbrock formulas advancing the integration with h = 4 

ms provide similar accuracy as explicit formulas using h = 1 ms. 
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- Among the Rosenbrock formulas, ODE23s gives the best accuracy for integration steps 

h = 0.25..1 ms. For larger h, the solution provided by ROS3p is more accurate than the 

rest of Rosenbrock formulas. 

- Explicit methods suffer from instability and fail to integrate the test problem when us-

ing integration step sizes of 4 and 10 ms. 

 

Test 2 

This test is based on the same fluid power circuit as the previous Test 1. However 

the stiffness of the system has been increased by decreasing the size of V1 from 0.05 to 0.01 

l. Flow and pressure transients have also been augmented by enlarging the orifice diameter 

d1 to 6 mm and by amplifying the sinusoidal input flow 60 40 sin(2 10 )inQ tπ= + × ×  l/min. 

The profile of the new input flow Qin and plots of the approximate exact solution p1, p2 of 

this test are shown in Figure 5.5.  
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Figure 5.5. Test 2: Incoming volumetric flow (left-hand side) and approximate exact 
solution (right-hand side) 

 

The accuracy of the numerical formulas of Table 5.1 is displayed in the bar diagram 

of Figure 5.6 for different fixed-size integration step h. 
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Figure 5.6. Test 2: Relative error of the numerical solutions (an absence of error bar 

means that the numerical integration failed) 

Analysis of Test 2: 

- The numerical stiffness of the system is increased, when compared to previous Test 1. 

- The lack of stability of ODE23, caused by the system stiffness, is responsible of the 

high errors in the solution (more than 100% of relative error). DOPRI5 did not provide 

a satisfactory solution for any of the integration step sizes. 

- Among the Rosenbrock formulas, ODE23s still is the more accurate formula for h = 

0.25..1 ms although it is not capable of  integrating successfully the numerical problem 

for h = 4 and h = 10 ms. 

 

Test 3 

This numerical test consists on the numerical integration of the fluid power circuit 

model displayed in Figure 5.2. This circuit includes fluid power components which are pre-

sent in many fluid power applications, such as pipelines, control and pressure valves, linear 

actuators. Another characteristic of this test is that the dimension N of the system of ODEs 

has increased from N=2 to N=13. 
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Figure 5.7 shows the approximate exact solution of the Test 3 when solved with the 

RADAU5 formula. The hydraulic circuit is fed with a constant flow source of 25 l/min and 

the hydraulic actuator is controlled by a proportional valve whose spool is driven by signal 

u. As it can be seen in Figure 5.2, the profile of this signal is discontinuous and therefore 

this can induce stability problems to the numerical integrator. A similar discontinuous be-

haviour is observed in the pressure relief valve, whose flow passage (plotted in Figure 5.7 

as CqA) changes abruptly. The same figure also shows that the cylinder seal friction, with 

its large oscillations, might also cause numerical stability problems to the solver. 
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Figure 5.7. Exact solution to the Test Circuit #3 in Figure 5.2 

The accuracy of the numerical solution provided by the integration formulas in 

Table 5.1 is shown in Figure 5.8. The bars show the maximum relative error of the cylinder 

piston position, when compared to the approximate exact solution. 
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Figure 5.8. Relative error of the numerical solutions (an absence of error bar means 

that the numerical integration failed) 

Analysis of Test 3: 

- It can be seen that explicit formulas ODE23 and DOPRI5 fail to integrate the system 

for the larger step sizes of h = 4 and h = 10 ms. 

- Explicit formulas can produce a numerical solution with a maximum integration step 

size of 1 ms. Nonetheless, numerical oscillations (typically shown by explicit methods 

when solving stiff systems) can be seen in the solution, even for the smaller h = 0.25 

ms (see Figure 5.9) 

- Similarly to the previous tests, ODE23s fails the integration when using the larger inte-

gration step sizes. In this case the solution becomes unstable for h = 10 ms while the 

rest of Rosenbrock formulas are providing a successful numerical solution. 
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Figure 5.9. Numerical oscillations in the solution shown by explicit ODE23 formula 

5.1.3 Computational time 
The computational time required to advance the integration one step of size h, is of 

considerable importance in the real-time simulations. A common practice in real-time simu-

lations is to increase the size of the integration step h if the computational processor unit is 

not able to provide the required 1/h solutions per unit time. By increasing the integration 

step size, not only the accuracy of the solution decreases but also the stability of the nu-

merical integration is affected. The latter increases the risk of a simulation crash (i.e. nu-

merical solution does not converge, resulting in an overflow). The computational time re-

quired to advance one step the integration depends on many factors of different nature: 

- Processor unit speed 

- Size of the mathematical model (dimension of the system of ODEs to be solved) 

- Formulation of the numerical integration method. In the case of single-step im-

plicit methods (see Section 4.1 for a detailed formulation and its associated 

computational costs): 

o Number of Newton iterations per step 

o Number of function and Jacobian evaluations per step 

o Number of stages (backsolves or solutions of linear system) per step 

 

Computational times of the numerical integration formulas employed in the previous 

tests have been measured and they are presented in Figure 5.10. All measurements have run 

in the same computer (equipped with a 2.0 GHz Intel Core Duo processor) and under the 

same conditions. These results must be analyzed taking into account the two different types 

of numerical methods employed. In one hand, the explicit methods (ODE23 and DOPRI5) 

are theoretically the fastest since they do not use Jacobians nor they need to solve algebraic 
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linear systems. Their computational efficiency is approximately proportional to the number 

of function evaluations. On the other hand, Rosenbrock formulas (ODE23s, ROS2, ROS2p, 

ROS3p and RODAS3) need to build one Jacobian matrix and solve multiple linear systems 

(as many as stages) in each integration step. 
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Figure 5.10. CPU time employed to integrate Circuit #1 (N=2) and Circuit #2 (N=13), 
relative to CPU time employed by formula ODE23 

The above figure displays the computational time required to integrate Circuit #1 

(with dimension N=2) and Circuit #2 (with dimension N=13) employing the explicit and 

implicit numerical formulas in Table 5.1. Computational times (CPU time) in Figure 5.10 

are relative values with respect to the CPU time employed by ODE23, the fastest algorithm. 

For the ODE23 formula, the absolute CPU time required to advance one integration step 

was 1.6 sμ  and 14.0 sμ  for N=2 and N=13 respectively. 

For ODE systems of N=2, Rosenbrock formulas of order 2 only require 4-8% more 

CPU time that explicit formulas of the same order, while order 3 Rosenbrock formulas need 

20-56% more CPU time to advance the integration step. Differences in CPU time, between 

explicit and implicit formulas, are more accentuated when integrating larger systems of 

ODEs. In this case, for a system of dimension N=13, the CPU time required to solve one 

integration step employing an order 2 Rosenbrock formula doubles when compared to the 

time employed by ODE23.  
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5.1.4 Conclusions of real-time integration tests 
Low order SDIRK Rosenbrock formulas have clear advantages over classical ex-

plicit RK formulas when employed as numerical solvers of real-time integrations. These 

advantages are reflected in their superior numerical stability and accuracy. The drawback of 

SDIRK Rosenbrock formulas is that the computational costs do not grow linearly with the 

dimension o the system (as explicit formulas do). However, Rosenbrock methods can over-

come this problem by employing larger integration step sizes (if the real-time application 

allows it). On the other hand, explicit RK formulas may be forced to use smaller (than re-

quired) integration step sizes in order to keep the numerical integration stable. 

5.2 Offline simulations 
Offline simulations can be understood as those simulations whose execution time is 

not synchronized with the clock time. Usually, full power of digital computer�s CPU is 

used to execute the numerical integration. 

All of the numerical formulas used in these offline simulation tests (listed in Table 

5.3) have an embedded error estimator, which is used within the algorithm to accept or re-

ject the solution after each integration step. At the same time, the embedded error estimator 

is also used to predict the size of the next integration step. The criterion used to accept or 

reject an integration step is based on the comparison between the estimated error and an 

error tolerance provided by the user. The first five formulas Table 5.3 have already been 

described in previous Section 5.1. For the rest of integration formulas considered in these 

tests, a brief description follows below: 

ROS4 [Hairer 1991] is a SDIRK L-stable Rosenbrock formula implemented with 4 

stages and four function evaluations per step. The formula is a 4(3) pair*.  

RODAS4, a Rosenbrock formula from [Hairer 1991] is based on a stiffly accurate 

pair 4(3), where both formulas are L-stable. It is however more computationally expensive 

than its predecessors, since it requires six function evaluations and six backsolves (solution 

of linear systems) per integration step. 

LSODE, the Livermore Solver written by Hindmarsh [Hindmarsh 1983, Rad-

hakrishnan 1993], is a Backward Differentiation Formulas (BDF) belonging to the family 

                                                           
* The pair notation 4(3) indicates that the integrator computes the solution with an order 4 formula while 
it uses a solution approximation of order 3 to calculate the local error. 
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of Linear Multi-step Formulas. Properties and formulation of BDF were already discussed 

in Chapter 4 and in Section 2.2. The LSODE formula uses two different methods, a BDF 

formula for stiff problems and an Adams-Moulton formula for non-stiff problems. Both 

integration formulas belong to the family of linear multi-step formulas. LSODE implements 

these methods in the way that the method order can vary (from 1 to 12 for the Adams for-

mula and from 1 to 5 for the BDF) during the integration. 

 

Table 5.3. Offline integration algorithms (FE = function evaluations) 

Method family Order of 
accuracy 

Method Properties 

RK 
Fully-Implicit 

Order 5 RADAU5 Used for obtaining the 
approximate exact solution 

Order 3 ODE23 3 FE 
RK-Explicit 

Order 5 DOPRI5 6 FE 

Order 2 ODE23s 2 FE; 2 Stages 

Order 3 RODAS3 3 FE; 4 Stages 

ROS4 4 FE; 4 Stages 
ROSENBROCK 

Order 4 
RODAS4 6 FE; 6 Stages 

Multi-Step 
(BDF) 

Variable LSODE - 

 

5.2.1 Numerical tests 

Test 1 

This test consists on the numerical integration of the Circuit #1 in Figure 5.1. The 

sizes of volumes are V1 = 0.01 l and V2 = 10 l, and the diameters of both orifices are set to 4 

mm. The volumetric flow entering to V1 changes from 60 to 30 l/min and then from 30 to 

60 l/min following a step function, introducing therefore a discontinuous signal in the sys-

tem. The shape of the volumetric flow function entering V1 is plotted in the left-hand side 

of Figure 5.11. The right-hand side of this figure shows the approximate exact solution (ob-

tained with the RADAU5 integration formula) of the volume pressures p1 and p2. 
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Figure 5.11. Test 1: Incoming volumetric flow (left-hand side) and approximate exact 

solution (right-hand side) 

Number of integration steps and accuracy of the solution is plotted in Figure 5.12 for 

each of the numerical formulas and for different error tolerances. In the figure, each pair 

(accuracy � number of steps) is represented by a dot. The test problem is integrated four 

times for each numerical formula, using in each integration a different relative error toler-

ance: 10-1, 10-2, 10-3 and 10-4. However, the plot shows only three integration results (dots) 

for the LSODE formula. This means that LSODE could not succeed in the numerical inte-

gration of the test problem for one of the given error tolerances. In particular, LSODE 

failed to complete the integration when an error tolerance of 10-2 was required. 
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Figure 5.12. Test 1: Performance of the numerical integration in terms of relative 

error and number of integration steps 
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Analysis of Test 1: 

- From the performance plot in Figure 5.12, it can be seen that Rosenbrock methods out-

perform the LSODE formula not only in terms of accuracy but also in that they re-

quired fewer integration steps. 

- A significant behaviour of the explicit methods, related to the difficulty they encounter 

when integrating stiff systems, is observed in Figure 5.12: no matter the error tolerance 

imposed to the integration, ODE23 and DOPRI5 formulas always employ a similar 

amount of integration steps, when the expected behaviour is to use more number of 

steps as more accuracy is demanded. The explanation of this behaviour can be found in 

the integration step size predictor embedded in the explicit formula. Normally, step size 

predictors will adjust the integration step in order to satisfy that the solution accuracy is 

kept below a given error tolerance. However, when integrating stiff systems, the step 

size predictor will have to adjust the integration step in order to keep numerical oscilla-

tions and other instabilities under control. This normally requires the use of many 

smaller integrations steps than when controlling simply the accuracy of the solution. 

- The use of relatively large error tolerances for integrating ODEs with discontinuities 

might lead to numerical instabilities, localized in the vicinity of those discontinuity 

points. This occurrence has been observed in this numerical test, particularly when us-

ing a relative error tolerance of 0.1. Upper plots of Figure 5.13 show some clear devia-

tions of the numerical solution, provided by ODE23s and LSODE, with respect to the 

exact solution. ODE23s shows a clear deviation of a single solution point at t=2 s, 

which can easily be identified as a numerical error. However, the LSODE solution dis-

plays a larger error region around t=2 s with a maximum relative error of 14% at t=2.1 

s and a mean relative error of 5% in the time range t = [2, 3] s. 

- The relatively large stiffness of this system is expected to introduce numerical oscilla-

tions in the solution when explicit numerical formulas are employed to integrate the 

system. These numerical oscillations are especially visible when large integration step 

sizes or large tolerances are employed in the integration. The lower plots of Figure 5.13 

show this phenomena occurring when ODE23 and DOPRI5 explicit formulas are used 

with a given relative error tolerance of 0.1. It has been observed that, by employing 

smaller error tolerances, these numerical oscillations do not show up anymore in the 
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DOPRI5 formula. Nonetheless, when smaller error tolerances are applied to ODE23, 

the oscillations do not totally damp out but instead their amplitude is reduced. 

- For that particular test, it was found that RODAS3, RODAS4 and ROS4 were able to 

perform the numerical integration for all given error tolerances without any type of 

numerical instability or significant deviation from the exact solution. 
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Figure 5.13. Test 1: Effect of discontinuities and numerical stiffness on the solution 

given by some numerical integrators. 

 

Test 2 

In this numerical test, the same Test Circuit #1 is employed but the incoming volu-

metric flow to volume V1 is now a sinusoidal signal characterized by a frequency of 4 Hz 

and an amplitude of 20 l/min. This flow profile is shown in the left-hand side plot of Figure 

5.14. The size of the volumes are V1 = 0.02 l and V2 = 10 l, and the size of the orifices are 

d1 = 6 mm and d2 = 4 mm. 
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Figure 5.14. Test 2: Incoming volumetric flow (left-hand side) and approximate exact 

solution (right-hand side) 

The performance (accuracy � number of steps) of the numerical integration formulas 

for this test is shown in Figure 5.15. For these tests the same set of given error tolerances, 

as in the previous test, are used. As it can be observed in the plot, the numerical formula 

ODE23s only succeed in three of the four numerical integrations. This failure occurred 

when a relative error tolerance of 10-1 was imposed in the numerical integrator. 
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Figure 5.15. Test 2: Performance of the numerical integration in terms of relative 

error and number of integration steps 
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Analysis of Test 2: 

- Practically all numerical integration algorithms succeed to complete the numerical test. 

The only exception was the Rosenbrock formula ODE23s, which failed to integrate the 

test problem for a tolerance of 10-1. 

- All Rosenbrock methods show a similar pattern in the performance plot of Figure 5.15. 

They all show the same ratio (slope) between relative error and number of steps. Per-

formance curve of LSODE shows that this formula is capable of providing higher accu-

racy solutions employing less integration steps than Rosenbrock formulas. On the other 

hand, for lower accuracy demands (tolerances of 10-2 and larger), some of the Rosen-

brock formulas appear to be more computationally efficient than LSODE. 

- As it occurred in the previous numerical test, LSODE formulas suffer again at low ac-

curacy tolerances. Figure 5.16, in its upper plot, shows the numerical solution provided 

by the LSODE integrator for a relative error tolerance of 0.1. When compared to the 

exact solution (plotted in Figure 5.14), it can be seen that the sinusoidal shape of solu-

tion p1 does not show constant amplitude. Furthermore, exceptionally high peaks arise 

randomly. This problem still persists when integrating the numerical test with LSODE 

using a tolerance of 10-2: although the accuracy of the solution improves substantially, 

random pressure peaks (up to 180 bar) are still visible in the solution. Rosenbrock for-

mulas have not shown these problems when solving the test problem with low accuracy 

demands. 

- Explicit formulas ODE23 and DOPRI5, as expected, suffer again due to the stiffness of 

the system. The lower plots of Figure 5.16 display the numerical oscillations of the so-

lution p1. These numerical oscillations still persist for tolerances of 10-2 and finally dis-

appear for tolerances smaller or equal than 10-3. 
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Figure 5.16. Test 2: Numerical integration difficulties found in some of the algorithms 

Test 3  

In this test problem, Circuit #2 described in Figure 5.2 is employed. As stated previ-

ously, this circuit differs from the previous one in that a) its size is relatively much larger 

(dimension 13 versus dimension 2) and b) new non-linearities and discontinuities are intro-

duced (pressure relief valve, control proportional valve, mechanical seal friction). The main 

dimensions and component characteristics of the fluid power circuit were presented in 

Table 5.2. In Figure 5.7 the approximate exact solution of a selected number of variables is 

plotted. 

Due to the different nature of the state variables to be integrated (position, velocity, 

flow, pressure, forces�), special attention is required when imposing error tolerances to 

these variables. Different absolute and relative error tolerances have been employed for 

different variables, depending on their scaling and the numerical magnitude of their solu-

tion. As in the previous tests, four different levels of required accuracy are used. In order to 

keep an analogy with the previous tests, the four levels of error tolerances will be named 

10-1, 10-2, 10-3 and 10-4, from the least to the most accurate tolerance. 
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The plot in Figure 5.17 shows the maximum relative error of the cylinder piston po-

sition for the different numerical formulas and for the four different levels of required accu-

racy. As it can be observed, many numerical formulas have failed to succeed in the numeri-

cal integration of the test problem: ODE23s and ROS4 failed for error tolerance tol = 10-1, 

LSODE failed twice for tol = 10-1 and tol = 10-2. Performance levels of DOPRI5 and 

ODE23 for tol = 10-3 and tol = 10-4 have been omitted in the plot due to the high number 

steps they required (more than 300 000). 
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Figure 5.17. Test 3: Performance of the numerical integration in terms of relative 

error and number of integration steps 

Analysis of Test 3: 

- Figure 5.17 clearly shows that performance pairs (relative error � number of steps) of 

Rosenbrock formulas indicate that these have a clear advantage over LSODE and ex-

plicit formulas, both in terms of computational efficiency and stability. 

- As already stated in previous chapters, multi-step methods (LSODE) are prone to have 

difficulties when dealing with discontinuities. This is the case of the LSODE formula, 

which can complete successfully the numerical integration only in two of the four error 

tolerances, and using approximately ten times more integration steps than some of the 

Rosenbrock formulas. 

- Among the Rosenbrock formulas, higher order formulas (ROS4 and RODAS4) seem to 

be more efficient for high accuracy solutions (small error tolerances). 
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- RODAS3 with tol = 0.1 suffer from numerical oscillations after simulation time t = 4 s. 

As a consequence the relative error rises up to 15% and error predictor formula tries to 

correct this behaviour by reducing the integration step size. This is reflected in the plot, 

where RODAS3 (with tol = 0.1) uses more integration steps than expected. 

- Numerical solutions provided by explicit methods show, as in previous numerical tests, 

the typical numerical oscillations which result from integrating stiff systems. This leads 

(as shown in Figure 5.17) to lower solution accuracies and much larger number of inte-

gration steps. Figure 5.18 plots the numerical solution of the piston position (left-hand 

side plot) and cylinder chamber pressures (right-hand side plot) given by ODE23 when 

using a relative error tolerance of 10-1. 
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Figure 5.18. Test3: Numerical oscillations in the solution. Solver ODE23. Tol = 0.1 

Test 4 (generic numerical test problems from literature) 

In this section the numerical formulas are being tested against two additional nu-

merical tests problems. These numerical tests are commonly used in the literature, among 

many others, to evaluate the efficiency of generic first order differential equations. 

 

Van der Pol�s equation: 

The solution of Van der Pol�s equation (5.2) is a periodic non-linear oscillation 

where small oscillations are amplified (unstable) and large oscillations are damped. The 

rate at which the damping factor changes is defined by the constant μ . 

 ( )2 1 0, 0.y y y yμ μ+ − + = >!! !  (5.2) 

For this numerical test, μ has been chosen to be 610μ = . This value ensures very 

stiff conditions and extremely fast transients in the solution y, as it can be seen in the left-
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hand side plot of Figure 5.19. The performance of the numerical formulas, when integrating 

the problem (5.2), is shown in the right-hand side of Figure 5.19. The vertical axis quanti-

fies the mean value of relative error of solution y from t = 0..12 s. Each numerical integra-

tion formula has computed the solution using four different orders of accuracy, which are 

defined by using both relative error (RTOL) and absolute error (ATOL) tolerances as 

 nTOL ATOL RTOL y= + ⋅ , (5.3) 

where RTOL = 10 n− and ATOL = RTOL, with n = 1, 2, 3, 4. ny  is the numerical so-

lution computed at the previous step. 
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Figure 5.19. Solution of Van der Pol�s equation (left-hand side). Performance of the 

numerical integrators solving Van der Pol�s equation (right-hand side). 

Analysis: 

- Explicit formulas ODE23 and DOPRI5 were not able to integrate such stiff second or-

der system for any of the requested accuracy tolerances. Reducing the constant μ (and 

therefore the stiffness) to a value of μ = 104 made the explicit formulas to succeed. 

- Among Rosenbrock and multi-step formulas, they all completed the numerical integra-

tion except RODAS4, when a level of accuracy of 10-1 was required.  

- High order Rosenbrock formulas (RODAS4 and ROS4) provide better accuracy than 

the lower order ones. 

- Van der Pol�s equation causes difficulties to the LSODE formula, which cannot pro-

vide enough accurate results even though it employs smaller integration steps than the 

Rosenbrock family methods. Error plots for LSODE and ROS4 solutions are shown in 

Figure 5.20: when imposing a relative accuracy of 10-2, the numerical integration per-
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formed by LSODE shows that its accuracy surrounding the fast transients is worsened 

as the integration advances. However, right-hand side plot of the figure shows that the 

accuracy of the numerical solution provided by ROS4 is just affected in the very near 

surrounding of the transient points. 
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Figure 5.20. Accuracy of LSODE and ROS4 formulas in the integration of Van der 

Pol�s equation with tol = 0.01 

Hires� equation: 

This is a stiff system of 8 non-linear ordinary differential equations proposed by 

Schäfer [Schäfer 1975]. The equation describes high irradiance responses of photo-

morphogenesis by means of chemical reaction involving eight reactants. The system is 

formulated in (5.4) and its numerical solution is shown in the left-hand side plot of Figure 

5.21. 

 ( ) ( ) 0, 0 ,y f y y y= =!  (5.4) 
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The performance of the numerical formulas when integrating the problem (5.4) is 

shown in the right-hand side of Figure 5.21. The vertical axis indicates the maximum rela-

tive error found in the integration interval t = 0...370 s. Each numerical integration formula 

has computed the solution successfully using four different orders of accuracy: RTOL = 

10 n− , ATOL = 410 RTOL− , with n = 1, 2, 3, 4. 

 

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y

Time [s]

 

 
Y1

Y2
Y3

Y4

Y5

Y6
Y7

Y8

50 100 150 200 250 300 350
10-5

10-4

10-3

10-2

10-1

100

Number of steps

R
el

ar
iv

e 
er

ro
r

 

 
ODE23s
RODAS3
RODAS4
ROS4
LSODE

Figure 5.21. Solution of Hairer�s equation (left-hand side). Performance of numerical 
integrators solving Hairer�s equations (right-hand side) 

Analysis: 

- Due to the lower stiffness of Hirer�s equations, when compared to the previous tests, all 

explicit and implicit formulas succeed in performing the numerical integration in the 

interval t = 0...370 s. However, performance results of ODE23 and DOPRI5 are not 

shown in Figure 5.21 due to the high number of integration steps employed  by this 

formulas (approx. 5000 and 10000 steps respectively) 

- Among Rosenbrock formulas, RODAS4 and RODAS3 show better performance levels 

than the rest of formulas, especially in the higher accuracy solutions. 

- LSODE shows a poor performance for the two lowest levels of accuracy. This can be 

clearly seen in the right-hand side plot of Figure 5.21, where the relative error of the 

LSODE solution is considerably larger than the other solution errors provided by 

Rosenbrock formulas. 



Performance of Rosenbrock formulas 95 

   

5.2.2 Conclusions of offline integration tests 
The previous tests have shown that popular explicit RK formulas are clearly not the 

best option for the integration of stiff systems or systems with discontinuities. Such formu-

las, with reduced stability properties, need in some cases of extremely small integration 

step sizes in order to keep the integration under stable conditions. 

All Rosenbrock formulas have shown similar behaviour in their performance during 

the tests. Concerning the multi-step LSODE code, the problems announced previously in 

Chapter 4 regarding multi-step BDF formulas have been confirmed, such as the lack of 

accuracy near discontinuities (Test 1 and Test 4) and stability problems for low orders of 

accuracy (Test 2 and Test 3). It has been found that, in general, Rosenbrock formulas have 

provided substantially better results (accuracy, efficiency and stability) in all tests per-

formed. 

5.3 Analytical and numerical Jacobians 
As previously stated, the numerical integration of numerically stiff systems of ODEs 

is better accomplished using implicit integration methods. One of the main differences be-

tween implicit and explicit methods is that the former solver requires the Jacobian matrix of 

the ODE system. The need of a Jacobian evaluation at each integration step (or at sampled 

intervals) raises the following concerns: how the Jacobian matrix is formed? And what are 

the associated computational costs?  

Generally, two different approaches are used to form the Jacobian matrix. Jacobian 

evaluations can either be done numerically (e.g. by finite differences) or symbolically, 

through the analytical expression of the Jacobian. The use of the analytical expression of 

the Jacobian has clear advantages [Esqué 2005]: 

- It evaluates the Jacobian more accurately, leading to better solution accuracies and 

better numerical stability. 

- Evaluation of Jacobian, from its analytical form, is less computationally expensive 

than using numerical techniques. This leads to significantly better simulation per-

formance. 

 

Among the implicit ODE solvers, the Rosenbrock formulas are especially sensitive 

to the accuracy of the Jacobian. This is due to the fact that Rosenbrock formulas only use a 
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single Newton iteration to solve the non-linear set of equations. Although the numerical 

tests presented in this chapter have made use of the analytical Jacobian approach, the same 

tests have been repeated employing a Jacobian evaluation by numerical differentiation (5.5) 

instead. The tests have shown that Rosenbrock formulas, using a numerically-obtained 

Jacobian, are still able to integrate successfully most of the tests. Nonetheless, the accuracy 

of these solutions is in general worsened. In some other cases, the results provided by 

Rosenbrock integration with a numerically-obtained Jacobian were unacceptable. This can 

be seen in Figure 5.22, where numerical integration of the test circuit in Figure 5.2 is per-

formed with RODAS3 using the analytical and the numerical approaches for the Jacobian 

evaluation. Results are compared to the approximate exact solution provided by the code 

RADAU5. The results show that the solver employing the analytical Jacobian provides a 

solution closely matching the exact solution. However, when the same solver evaluates the 

Jacobian numerically, the accuracy of the solution obtained is unacceptable 
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Figure 5.22. Comparison of numerical integrations of Test Circuit #2 when employing 
numerical and analytical Jacobians 

The computational cost (in terms of CPU time) involved in the formation of the 

Jacobian matrix is yet another concern. In general, an evaluation of the Jacobian is needed 

in every integration step of implicit Rosenbrock methods. Among all operations required to 

advance one step with a Rosenbrock formula, only the computation of the Jacobian matrix 

can take up to 40% of the total CPU time [Esqué 2005]. The rest of computation (60 % of 

CPU time) is dedicated to function evaluations, solution of linear systems and other minor 

operations. 
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In terms of computational costs, the use of an analytical expression of the Jacobian 

matrix shows, once again, advantages over the use of numerically-obtained Jacobians. The 

following test confirms the above. In this test, numerical integration of fluid power circuits 

of dimensions N = 5, 10, 15, 20 are performed using different methods to evaluate the 

Jacobian.: 

- Analytical Jacobian: The Jacobian matrix is determined symbolically before the 

integration starts. The Jacobian is then evaluated as a function of the state vari-

ables of the system [Section 4.4]. 

- Numerical Jacobian (1): Instantaneous value of the Jacobian matrix J of the sys-

tem ( )y F y=!  is  computed numerically by finite differences as: 

 ( ) ( )( ) /ij i j i jJ F y F y= + Δ − Δ  (5.5) 

- Numerical Jacobian (2): The subroutine NUMJAC, from the MATLAB ODE suite 

is employed to evaluate the Jacobian numerically. NUMJAC is an implementation 

of a robust scheme due to Salane [Salane 1986] for the approximation of partial 

derivatives. 

 

Figure 5.23 plots the pairs (CPU time (t) � system dimension (N)) obtained after 

conducting all the integrations. The purpose of this plot is to show the computational time 

of the RODAS3 Rosenbrock formula as a function of the system dimension and for the 

different Jacobian evaluation techniques described above. From the analysis presented in 

Chapter 4, it is known that the time required to integrate a system of ODEs of order N with 

an implicit formula is aNα , where a is a constant, and the power termα is a function of the 

algebraic formulation of the numerical formula (including the Jacobian computation). As 

shown in Figure 5.23, the power curve t aN bα= + fits reasonably well (with R-square > 

0.99) to all three series of integrations. Computational costs associated to the different 

Jacobian evaluation techniques are given by the exponential termα . The lowest value 

ofα is clearly obtained when the solver uses the analytical form of the Jacobian. 
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Figure 5.23. Determining the costs in evaluating the Jacobian, as a function of the 
system dimension N. 

Because of its better accuracy, stability and computational performance, Jacobian 

evaluation from its analytical expression should be performed, if possible. However there 

are situations where symbolic information of the dynamics of the system is not completely 

available. This is often the case when computer software packages are used to construct the 

model and to perform the simulation employing the software�s own numerical integration 

solvers. Chapter 3 of this thesis has presented a model topology and a systematic formula-

tion of fluid power elements and systems from which the analytical form of the Jacobian 

matrix can be automatically derived by an algorithm, as a pre-process prior the starting of 

the integration, and without the need of any manual symbolic manipulation. 

 



6 CONCLUSIONS 

Numerical problems are commonly present in the numerical simulation of fluid 

power circuits. Such numerical integration difficulties are due to the nature and characteris-

tics of the physics governing fluid power systems, such as a) the highly non-linear behav-

iour of certain physical phenomenon (e.g. fluid compressibility, turbulent flow) or compo-

nents (e.g. cylinder seal friction forces), b) numerically stiffness due to big differences in 

response times of different variables, and c) discontinuities due to digital control signals 

and due to limited displacement of actuators. All these characteristics can certainly cause 

stability and accuracy problems to the numerical integration algorithms. 

Simulation applications (such as virtual prototyping, hardware-in-the-loop, man-in-

the-loop simulators, offline computer-based simulations) are extendedly used in research 

and in industrial fields. Fluid power engineers posses a deep understanding of the physics 

and dynamics linked to fluid power systems. This allows them to mathematically formulate 

the problems and construct simulation models. However, engineers might not be enough 

acquainted with the theory behind the numerical integration of differential equations and, in 

many other cases they might even lack the criteria to choose a proper numerical integration 

formula based on the characteristics of the simulation models to be solved. As a conse-

quence, general-purpose simulation software is often employed in order to numerically in-

tegrate the generated differential equations. A drawback in this practice is that these soft-

ware packages often offer a limited number of numerical integration solvers to choose 

from. The choice of a wrong numerical solver usually leads the engineer to take some cor-

rective actions which, in many cases, degrades the simulation performance. Some of these 

actions are: a) reducing the size of the integration step size in order to correct stability prob-

lems or to gain more accuracy in the solution. Nonetheless, this action also leads to an im-

portant increase of computational time, which can be critical in a real-time application.  b) 

When real-time simulations are not achievable because of the heavy computational times, 
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simulation models are often simplified (compromising the level of accuracy) or the integra-

tion step size is increased (now compromising both the solution accuracy and the numerical 

stability of the method). Poor numerical stability properties of the solver can cause numeri-

cal oscillations in the solution of a stiff system. These oscillations sometimes are wrongly 

interpreted as a physical behaviour. 

From the above exposed, it can be concluded that a general knowledge on the prop-

erties of numerical integration methods is essential for the choice of an appropriate numeri-

cal integrator. The choice will be made based on the characteristics and the estimated be-

haviour of the simulation model. In this thesis, a series of L-stable Rosenbrock formulas, 

derived from the semi-implicit Runge Kutta family, have been proposed for the numerical 

integration of fluid power circuits. The implementation of these Rosenbrock formulas in a 

programming language is simple and straightforward when compared to general implicit or 

multi-steps methods. Rosenbrock formulas are implicit single-step formulas which do not 

require the solution a non-linear algebraic system. Instead, the stages are solved consecu-

tively as unknowns of a linear system. In addition, no special modifications of the code are 

required in order to adapt the formula to systems containing discontinuities. Discontinuities 

can become an issue in the more complex integration methods like the Linear Multi-step 

Formulas. 

Numerical simulations have been conducted in order to evaluate the proposed 

Rosenbrock formulas and to compare their performance to other popular codes. Most of the 

numerical tests have been built employing systems of ODEs originating in fluid power cir-

cuit simulation models due to the special characteristics found in fluid power systems. 

Other test problems popularly used for evaluating generic numerical integrators of ODEs 

have also been employed. 

 

Concerning the real-time simulations, the following conclusion can be extracted: 

- In the real-time simulation of systems with fast dynamics, where a relatively small 

sampling time (i.e. integration step size) is required, explicit formulas are commonly 

employed due to their computational simplicity (no Jacobian evaluations, no need of 

solving linear or non-linear algebraic systems). Nonetheless, explicit formulas show 

very clear limitations when dealing with stiff systems. These limitations have already 

been observed in this thesis when comparing the solution accuracy provided by ex-
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plicit and implicit Rosenbrock formulas. Implicit Rosenbrock formulas have provided 

solutions with much better levels (in most cases several orders of magnitude) of accu-

racy than explicit formulas of the same order and for the same integration step size. 

- Another limitation found in explicit formulas is due to their poor numerical stability. 

This fact has also been clearly observed in the performance tests carried out in Chapter 

5. Numerical stability problems might be solved or partially solved by reducing the 

step size of the explicit integration, although the computational costs of the integration 

are then increased by the same ratio. 

- The stability shown by the tested Rosenbrock formulas is certainly superior: Rosen-

brock formulas have remained still stable even when using integration step sizes up to 

ten times larger than the largest possible step size used in explicit formulas. Rosen-

brock formulas have also provided much better accuracy. In most cases the solution 

accuracy provided by Rosenbrock integration with time step h has been better than the 

one provided by explicit methods using h/10. 

- The outstanding stability and accuracy properties or Rosenbrock formulas can make 

them faster than explicit formulas. As computational costs of explicit formulas grow 

linearly with the dimension N of the system, computational costs associated to implicit 

formulas can be as high as of the order of ( )3O N . Nonetheless, and as it has been 

shown in the numerical tests, the proposed Rosenbrock formulas have shown compu-

tational costs of the order ( )1.15O N . These reduced computational costs are also due to 

the fact that an analytical form of the Jacobian matrix has been used to obtain its nu-

merical evaluation at each integration step. The proposed Rosenbrock formulas are, 

among all implicit formulas, one of the less computationally demanding, in terms of 

the number of operations required to advance one step the integration. 

Conclusions with respect to offline simulations are exposed next: 

- In offline simulations, integration formulas normally make use of an adaptive integra-

tion step size according to an estimation of the local integration error. By means of 

controlling the integration error, the formulas are also implicitly detecting numerical 

instabilities and therefore they can reduce these instabilities by reducing the size of the 

integration step. However, instabilities cannot be always avoided, especially if the 
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numerical formula employed is not suited for the particular characteristics and behav-

iour of system being solved. For example, numerical formulas which are not good at 

detecting discontinuities might turn unstable despite being able to control the local er-

ror. Another case is found in the integration of numerically stiff system by those for-

mulas which do not have L-stability properties. Under these conditions, high fre-

quency oscillations are seen in the numerical solution. The embedded local error esti-

mator in the formula can partially or totally damp these oscillations if smaller error 

tolerances are used. However this leads to an inefficient way of solving the numerical 

problem. 

- Numerical integrators for the offline simulation of fluid power circuits need to have 

excellent stability properties and also need to perform efficiently. The efficiency is 

measured as the rate between the accuracy of the solution and the number of integra-

tion steps. Bad stability properties of the integration formula not only can lead to 

simulation crashes (i.e. error of the solution grows unbounded, causing a computa-

tional overflow) but they can also have an important effect on the overall efficiency of 

the integration. Efficiency is degraded when the error predictor of the formula has to 

reduce the integration step size in order to mitigate numerical instabilities arisen dur-

ing the integration. Formulas perform efficiently when a change in the integration step 

size is solely targeted to control the error of the numerical solution. 

- The proposed family of Rosenbrock formulas have proven, in general, to hold excel-

lent stability properties throughout all the numerical tests performed in this research. 

These numerical tests have been performed on fluid power circuits showing disconti-

nuities, highly non-linear behaviour, and numerical stiffness. 

- As it could be expected, the efficiency shown by explicit Runge-Kutta formulas during 

the offline simulation tests is considerably degraded due to their limited stability under 

numerically stiff conditions. As a consequence, explicit formulas have required ap-

proximately between 100 and 1000 times more integration steps than the implicit for-

mulas. Even employing such small step sizes, numerical oscillations have still been 

visible in many of the provided solutions. Although showing a limited stability, ex-

plicit Runge-Kutta formulas have been able to complete all numerical tests, proving 

that these formulas can detect and handle discontinuities and non-linearities. This can 
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explain why explicit Runge-Kutta formulas are still popular and are commonly used as 

a first choice for solving any type of ordinary differential equation system. 

- As a representative of the multi-step Backward Differentiation Formulas, the code 

LSODE has also proven to be very efficient and stable during those numerical integra-

tion tests containing no discontinuities. Nonetheless, when discontinuities were intro-

duced, some of the tests could not be successfully solved due to stability crashes. 

LSODE also suffered from poor solution accuracy when dealing with highly non-

linear systems. 

- Semi-implicit L-stable Rosenbrock formulas, in special those of order 3 and 4, have 

proved their polyvalence throughout all the numerical tests. Their excellent stability 

properties, not only allowed them to complete successfully all of the integration tests, 

but their stability also awarded them with a very good efficiency rate. These good re-

sults support therefore the theoretical analysis of Rosenbrock formulas carried out in 

Chapter 4. 

- The main drawback of Rosenbrock formulas is that an accurate Jacobian matrix needs 

to be formed at each numerical integration step, while other implicit formulas may just 

require a crude approximation or even might only need a Jacobian evaluation after cer-

tain interval of steps. The supply of a Jacobian at each integration step is sometimes 

necessary in order to guarantee the numerical stability of the formula. This is caused 

by the fact that Rosenbrock formulas only make use of a single Newton iteration for 

solving the non-linear systems at each stage. The need for an accurate Jacobian 

evaluation at each integration step can imply important additional computational costs. 

 

A systematic approach for constructing an analytical Jacobian matrix of the system, 

prior to the numerical integration, has been presented. This has shown the following advan-

tages: 

- The numerical evaluation of a Jacobian matrix from its analytical form requires sig-

nificantly less computational costs than evaluating the Jacobian using numerical ap-

proximations. 
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- The analytical expression of the Jacobian matrix provides an accurate Jacobian evalua-

tion. The Jacobian accuracy contributes positively to the numerical stability of the 

numerical integration formula and also the accuracy of the solution. 

- From a simulation model built according to the topology introduced in Chapter 3, it is 

possible to obtain the Jacobian matrix of the system in its analytical form and without 

the need of any symbolic manipulation by the user. This task can be executed auto-

matically by means of an algorithm, which collects partial Jacobian definitions of each 

component and assembles them into the full Jacobian matrix. 

 

Finally, a modelling topology for the systematic construction of dynamic simulation 

models of fluid power circuits has also been presented in this thesis. With this methodol-

ogy, fluid power elements are interconnected through communication ports, where physical 

variables are exchanged. Elements and subsystems retain modular and hierarchical proper-

ties. During his research, the author has contributed to the development of a fluid power 

library containing more than 30 simulation models of fluid power elements [Esqué 2003b]. 

The construction of a fluid power circuit is easily defined by using a formal description of 

the components and their port interconnections. An algorithm is then used process this for-

mal description and to derive the system of ordinary differential equations and its analytical 

Jacobian matrix. This constitutes the pre-process prior to the numerical integration of the 

system. 

 

6.1 Summary of conclusions 
 

- Explicit integration algorithms are typically used in real-time simulation and implicit 

algorithms in stiff offline simulation. Rosenbrock formulas have shown superior sta-

bility, accuracy and efficiency in both cases. 

- The special characteristics found in fluid power systems require that numerical inte-

gration tests need to be performed in specific fluid power simulation models. This 

provides the optimum conditions to evaluate the different algorithms. 
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- Rosenbrock methods are a special class of implicit integration formulas requiring an 

accurate evaluation of the Jacobian matrix at each integration step. 

- A systematic way to provide an accurate numerical evaluation of Jacobian to the 

Rosenbrock formula employing relatively low computational costs has been presented. 
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APPENDIX A 

FORTRAN routines for the offline numerical integration of fluid power systems.  

Solvers: RODAS3 and RODAS4 (see Section 5.2 for a description of the solvers) 

 

Driver of the numerical integration using RODAS3 or RODAS4 
 
 
PARAMETER (NVAR=13) ! NVAR = Dimension of the ODE system 
 
REAL*8 X, Y, XEND, RTOL, ATOL, ITOL, H, HMIN, HMAX, HFIX 
EXTERNAL FUN, JAC 
DIMENSION Y(NVAR), ATOL(NVAR), RTOL(NVAR) 
INTEGER nsteps, IJAC, AUTON, i, N 
 
IJAC = 1   ! IJAC = 1 -> Jacobian is provided 
    ! IJAC = 0 -> Jacobian is computed internally by finite differences 
AUTON = 0 ! AUTON = 1 -> Autonomous system of ODEs 
    ! AUTON = 0 -> Non-autonomous system of ODEs 
 
X =0.D0    ! Integration starting time 
XEND = 10.0D0 ! Integration ending time 
H = 1.D-6  ! Initial step size  
HMIN = 1.D-8  ! Minimum integration step size allowed 
HMAX = .1D0  ! Maximum integration step size allowed 
 
i=1 
DO WHILE (i.le.NVAR) 
 RTOL(i) = 1.D-1  ! Num. integration Relative error tolerance 
 ATOL(i) = 1.D-1  ! Num. integration Absloute error tolerance 
 i=i+1 
END DO 
 
N=NVAR 
CALL IC(Y,N) ! Returns initial conditions vector Y(0) of Y'=F(Y) 
 
! Executes the numerical integraion routine by using the integrator RODAS3 or RODAS4 
CALL RODAS3(N,X,Y,XEND,FUN,JAC,H,HMIN,HMAX,HFIX,RTOL,ATOL,ITOL,nsteps,IJAC,AUTON) 
! CALL RODAS4(N,X,Y,XEND,FUN,JAC,H,HMIN,HMAX,HFIX,RTOL,ATOL,ITOL,nsteps,IJAC,AUTON) 
 
! Writes numerical solution vector (Y) in an ASCII file for each integration step 
CALL write_solution(nsteps,N) 
 
STOP 
END 

 

RODAS3 
 
SUBROUTINE RODAS3(N,X,Y,XEND,FUNC,JACOB,H,HMIN,HMAX,HFIX,RTOL, ATOL, ITOL, nsteps,IJAC, 

AUTON) 
 
INTEGER N 
REAL*8 RPAR, FAC, ITOL 
REAL*8 X, Y(N), YNEW(N), Y1(N), Ye(N), E(N,N), DY(N), DFY(N,N) 
REAL*8  H, HMIN, HMAX, XEND, ATOL, RTOL, HFIX 
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REAL*8 er, erk(N), hnew,q, gamma 
REAL*8 a21,a31,a32,a41,a42,a43 
REAL*8 c21,c31,c32,c41,c42,c43 
REAL*8 m1,m2,m3,m4,m5,m6,me1,me2,me3,me4 
REAL*8 C2, C3, C4 
REAL*8 K1(N),K2(N),K3(N),K4(N) 
INTEGER nsteps, rej, rejcount, i, j, IJAC, AUTON 
INTEGER IP(N) 
EXTERNAL FUNC,JACOB 
 
DO I=1,N 
 DO J=1,N 
  DFY(I,J)=0.D0 
  E(I,J) =0.D0 
 END DO 
END DO 
 
! Coefficients (free parameters) of the Rosenbrock formula 
gamma = 0.5D0 
a21 = 0.D0 
a31 = 2.D0 
a32 = 0.D0 
a41 = 2.D0 
a42 = 0.D0 
a43 = 1.D0 
 
c21 = 4.D0 
c31 = 1.D0 
c32 = -1.D0 
c41 = 1.D0 
c42 = -1.D0 
c43 = -2.666666666666667D0 
 
m1 = 2.D0 
m2 = 0.D0 
m3 = 1.D0 
m4 = 1.D0 
 
me1 = 2.D0 
me2 = 0.D0 
me3 = 1.D0 
me4 = 0.D0 
 
IF (AUTON.EQ.0) THEN 
 C2 = 0.D0 
 C3 = 1.D0 
 C4 = 1.D0 
ELSE IF (AUTON .EQ. 1) THEN 
 C2=0.D0 
 C3=0.D0 
 C4=0.D0 
END IF 
 
q=3.D0  ! q is the order accuracy of the Rosenbrock formula 
 
! Initialization of parameters 
nsteps=0 
rej=0 
rejcount=0 
 
DO WHILE (X.LT.XEND) 
  
 IF (rej.eq.0) THEN  
  IF (IJAC .EQ. 0) THEN 
!   JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of 
!  numerical differentiation 
   call JACA(N,X,Y,DFY,FUNC) 
  ELSE IF (IJAC .EQ. 1) THEN 
!  JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its  
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!  analytical form 
   call JACOB(N,X,Y,DFY) 
  END IF 
!  skips jacobian computation for the new solution if step has been rejected (req==1) 
 END IF 
  
 FAC = 1.D0/(h*gamma) 
 DO i = 1,N 
  DO j = 1,N 
   E(i,j) = -DFY(i,j) 
  END DO 
  E(i,i) = E(i,i) + FAC 
 END DO 
! Triangularization of matrix E by Gaussian eliminatiion 
 CALL DEC(N,N,E,IP,INFO) 
 
! Returns DY, the evaluation of function F(Y) at point (X,Y) 
 CALL FUNC(N,X,Y,DY) 
 DO i=1,N 
  K1(i) = DY(i)        
 END DO 
! Solution of linear system E*X = K1. Output: K1 = solution vector X 
 CALL SOL(N,N,E,K1,IP) 
 DO i=1,N 
  K2(i) = DY(i)+c21/h*K1(i) 
 END DO 
 CALL SOL(N,N,E,K2,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a31*K1(i)+a32*K2(i) 
 END DO 
 CALL FUNC(N,X+C3*h,YNEW,DY) 
 DO i=1,N 
  K3(i) = DY(i)+c31/h*K1(i)+c32/h*K2(i) 
 END DO 
 CALL SOL(N,N,E,K3,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a41*K1(i)+a42*K2(i)+a43*K3(i) 
!  Ye = Solution of different order of accuracy for error estimation 
  Ye(i) = YNEW(i)        
 END DO 
 CALL FUNC(N,X+c4*h,YNEW,DY) 
 DO i=1,N 
  K4(i) = DY(i)+c41/h*K1(i)+c42/h*K2(i)+c43/h*K3(i) 
 END DO 
 CALL SOL(N,N,E,K4,IP) 
  
 DO i=1,N 
!  Y1 = Solution of RODAS3 
  Y1(i) = Ye(i) + K4(i) 
 END DO 
 
! Local error estimation and prediction of new integrration step size 
 ER = 0.D0 
 CALL ERROR(N,Y,Y1,YE,H,HMAX,HMIN,ATOL,RTOL,q, er,hnew,erk) 
 IF (er.LE.1.D0) THEN 
  rej=0  ! Integration is accepted 
 ELSE IF  (er.GT.1.D0) THEN 
  rej=1  ! Integration is rejected 
 END IF 
 IF (rej.EQ.0 .OR. rejcount.EQ.100) THEN 
  nsteps = nsteps+1 
  X = X + h 
!  Solution vector Y1 at point X is stored in the memory 
  CALL STORE_SOLUTION(X,Y1,h,er,rejcount,nsteps,N, erk) 
  rejcount=0 
  DO j=1,N 
   Y(j)=Y1(j) 
  END DO 
 ELSE 
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  rejcount=rejcount+1 
 END IF 
 h=hnew 
  
END DO 
  
RETURN 
END 
 
 

RODAS4 
 
SUBROUTINE RODAS4(N,X,Y,XEND,FUNC,JACOB,H,HMIN,HMAX,HFIX,RTOL, ATOL, ITOL, nsteps, 

IJAC, AUTON) 
 
INTEGER N 
REAL*8 RPAR, FAC, ITOL 
REAL*8 X, Y(N), YNEW(N), Y1(N), Ye(N), E(N,N), DY(N), DFY(N,N) 
REAL*8  H, HMIN, HMAX, XEND, ATOL, RTOL, HFIX 
REAL*8 er, erk(N), hnew,q, gamma 
REAL*8 a21,a31,a32,a41,a42,a43,a51,a52,a53,a54,a61,a62,a63,a64,a65 
REAL*8 c21,c31,c32,c41,c42,c43,c51,c52,c53,c54,c61,c62,c63,c64,c65 
REAL*8 m1,m2,m3,m4,m5,m6,me1,me2,me3,me4,me5,me6 
REAL*8 C2, C3, C4, C5, C6 
REAL*8 K1(N),K2(N),K3(N),K4(N),K5(N),K6(N) 
REAL*8 DELT, XDELT, DY1(N), FX(N) 
INTEGER nsteps, rej, rejcount, i, j, IJAC, AUTON 
INTEGER IP(N) 
EXTERNAL FUNC,JACOB 
 
DO I=1,N 
 DO J=1,N 
  DFY(I,J)=0.D0 
  E(I,J) =0.D0 
 END DO 
END DO 
 
! Coefficients (free parameters) of the Rosenbrock formula 
gamma = 0.25D0 
a21 = 0.1544000000D1 
a31 = 0.9466785232D0 
a32 = 0.2557011578D0 
a41 = 0.3314825181D1 
a42 = 0.2896124002D1 
a43 = 0.9986419144D0 
a51 = 0.1221224447D1 
a52 = 0.6019134331D1 
a53 = 0.1253708333D2 
a54 = -0.6878860364D0 
a61 = a51 
a62 = a52 
a63 = a53 
a64 = a54 
a65 = 0.1000000000D1 
c21 = -0.5668800000D1 
c31 = -0.2430093338D1 
c32 = -0.2063598669D0 
c41 = -0.1073528206D0 
c42 = -0.9594562000D1 
c43 = -0.2047028614D2 
c51 = 0.7496443504D1 
c52 = -0.1024680392D2 
c53 = -0.3399990354D2 
c54 = 0.1170890893D2 
c61 = 0.8083246972D1 
c62 = -0.7981132631D1 
c63 = -0.3152159434D2 
c64 = 0.1631930543D2 
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c65 = -0.6058818238D1 
m1 = a61 
m2 = a62 
m3 = a63 
m4 = a64 
m5 = a65 
m6 = 1.D0 
me1 = a61 
me2 = a62 
me3 = a63 
me4 = a64 
me5 = 1.D0 
me6 = 0.D0 
 
IF (AUTON.EQ.0) THEN 
 C2=0.386D0 
 C3=0.21D0  
 C4=0.63D0 
 C5=1.D0 
 C6=1.D0 
ELSE IF (AUTON .EQ. 1) THEN 
 C2=0.D0 
 C3=0.D0 
 C4=0.D0 
 C5=0.D0 
 C6=0.D0 
END IF 
  
 
q=4.D0  ! q is the order accuracy of the Rosenbrock formula 
 
! Initialization of parameters 
nsteps=0 
rej=0 
rejcount=0 
 
DO WHILE (X.LT.XEND) 
  
 IF (rej.eq.0) THEN 
  IF (IJAC .EQ. 0) THEN 
!   JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of 
!  numerical differentiation 
   call JACA(N,X,Y,DFY,FUNC) 
  ELSE IF (IJAC .EQ. 1) THEN 
!  JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its  
!  analytical form 
   call JACOB(N,X,Y,DFY) 
  END IF 
!  skips jacobian computation for the new solution if step has been rejected (req==1) 
 END IF 
  
 FAC = 1.D0/(h*gamma) 
 DO i = 1,N 
  DO j = 1,N 
   E(i,j) = -DFY(i,j) 
  END DO 
  E(i,i) = E(i,i) + FAC 
 END DO 
! Triangularization of matrix E by Gaussian eliminatiion 
 CALL DEC(N,N,E,IP,IER) 
 
! Returns DY, the evaluation of function F(Y) at point (X,Y) 
 CALL FUNC(N,X,Y,DY,RPAR,IPAR) 
 DO i=1,N 
  K1(i) = DY(i) 
 END DO 
! Solution of linear system E*X = K1. Output: K1 = solution vector X 
 CALL SOL(N,N,E,K1,IP) 
 DO i=1,N 
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  YNEW(i) = Y(i)+a21*K1(i) 
 END DO 
 CALL FUNC(N,X+C2*H,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K2(i) = DY(i)+c21/h*K1(i) 
 END DO 
 CALL SOL(N,N,E,K2,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a31*K1(i)+a32*K2(i) 
 END DO 
 CALL FUNC(N,X+C3*H,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K3(i) = DY(i)+c31/h*K1(i)+c32/h*K2(i) 
 END DO 
 CALL SOL(N,N,E,K3,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a41*K1(i)+a42*K2(i)+a43*K3(i) 
 END DO 
 CALL FUNC(N,X+C4*H,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K4(i) = DY(i)+c41/h*K1(i)+c42/h*K2(i)+c43/h*K3(i) 
 END DO 
 CALL SOL(N,N,E,K4,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a51*K1(i)+a52*K2(i)+a53*K3(i)+a54*K4(i) 
 END DO 
 CALL FUNC(N,X+C5*H,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K5(i) = DY(i)+c51/h*K1(i)+c52/h*K2(i)+c53/h*K3(i)+c54/h*K4(i) 
 END DO 
 CALL SOL(N,N,E,K5,IP) 
 DO i=1,N 
  YNEW(i) = YNEW(i)+K5(i)  
 END DO 
 CALL FUNC(N,X+C6*H,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K6(i) = DY(i)+c61/h*K1(i)+c62/h*K2(i)+c63/h*K3(i)+c64/h*K4(i)+c65/h*K5(i) 
 END DO 
 CALL SOL(N,N,E,K6,IP) 
 
 DO i=1,N 
!  Ye = Solution of different order of accuracy for error estimation 
  Ye(i) = YNEW(i) 
!  Y1 = Solution of RODAS4 
  Y1(i) = Ye(i) + K6(i) 
 END DO 
  
! Local error estimation and prediction of new integrration step size 
 ER = 0.D0 
 CALL ERROR(N,Y,Y1,YE,H,HMAX,HMIN,ATOL,RTOL,Q, er,hnew,erk) 
10 IF (er.LE.1.D0) THEN 
  rej=0  ! Integration is accepted 
 ELSE IF  (er.GT.1.D0) THEN 
  rej=1  ! Integration is rejected 
 END IF 
 IF (rej.EQ.0 .OR. rejcount.EQ.100) THEN 
  nsteps = nsteps+1 
  X = X + h 
!  Solution vector Y1 at point X is stored in the memory 
  CALL STORE_SOLUTION(X,Y1,h,er,rejcount,nsteps,N,erk) 
  rejcount=0 
  DO j=1,N 
   Y(j)=Y1(j) 
  END DO 
 ELSE 
  rejcount=rejcount+1 
 END IF 
 h=hnew 
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END DO 
  
RETURN 
END 
 
 

Linear Algebra subroutines 
 

DEC and SOL are linear algebra routines for the decomposition and back-substitution of 

linear systems. They are public codes available from different sources (e.g. from 

http://www.unige.ch/~hairer/prog/stiff/decsol.f). 

 

Routine DEC performs a matrix triangularization by Gaussian elimination. 

Routine SOL gives the solution of a linear system A*X = B, where A is the triangularized 

matrix obtained from DEC. 

 

Function and Jacobian evaluation Routines 
 
SUBROUTINE FUNC(N,X,Y,F) 
! Subroutine FUNC evaluates the function F from the ODE system Y�=F(X,Y) 
! Analytical form of function F is to be defined by the user below 
! 
! INPUT:  
! N: dimension of the system Y�=F(X,Y) 
! X: independent variable 
! Y: vector of solutions at point X 
! 
! OUTPUT: 
! F: evaluation of function F (Y�=F(X,Y)) at (X,Y) 
 
 
INTEGER N 
REAL*8 X, Y, F 
DIMENSION Y(N),F(N) 
 
! Analytical definition of F as a function of X and Y 
 
F(1) =  
F(2) =  
 
RETURN 
END 
 
 
SUBROUTINE JACOB(N,X,Y,DFY) 
! Subroutine JACOB evaluates the Jacobian matrix of the ODE system Y�=F(X,Y) 
! Analytical form of the Jacobian is to be defined by the user below 
! 
! INPUT:  
! N: dimension of the system Y�=F(X,Y) 
! X: independent variable 
! Y: vector of solutions at point X 
! 
! OUTPUT: 
! DFY: Jacobian evaluation at (X,Y) 
 
INTEGER N 
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REAL*8 X, Y(N), DFY(N,N) 
 
DFY(1,1)=  
DFY(1,2)=  
DFY(2,1)=  
DFY(2,2)=  
 
RETURN 
END 
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APPENDIX B 

FORTRAN routines for the numerical integration in real-time of fluid power systems.  

Solvers: ROS2p and ROS3p (see Section 5.1 for a description of the solvers) 

 

Driver of the numerical integration using ROS2p or ROS3p 
 
 
PARAMETER (NVAR=13) ! NVAR = Dimension of the ODE system 
 
REAL*8 X, Y, XEND, HFIX 
EXTERNAL FUN, JAC 
DIMENSION Y(NVAR) 
INTEGER nsteps, IJAC, AUTON, N 
 
IJAC = 1   ! IJAC = 1 -> Jacobian is provided 
    ! IJAC = 0 -> Jacobian is computed internally by finite differences 
AUTON = 0 ! AUTON = 1 -> Autonomous system of ODEs 
    ! AUTON = 0 -> Non-autonomous system of ODEs 
 
X =0.D0    ! Integration starting time 
XEND = 10.0D0 ! Integration ending time 
HFIX = 1.D-3  ! Integration fix step size 
 
N=NVAR 
CALL IC(Y,N) ! Returns initial conditions vector Y(0) of Y'=F(Y) 
 
! Executes the numerical integraion routine by using the integrator RODAS3 or RODAS4 
CALL ROS2p(N,X,Y,XEND,FUN,JAC,HFIX,nsteps,IJAC,AUTON) 
! CALL ROS3p(N,X,Y,XEND,FUN,JAC,HFIX,nsteps,IJAC,AUTON) 
 
! Writes numerical solution vector (Y) in an ASCII file for each integration step 
CALL write_solution(nsteps,N) 
 
STOP 
END 

 

ROS2p 
 
SUBROUTINE ROS2p(N,X,Y,XEND,FUNC,JACOB,HFIX,nsteps,IJAC,AUTON) 
 
INTEGER N 
REAL*8 X, Y(N), YNEW(N), Y1(N), E(N,N), DY(N), DFY(N,N) 
REAL*8 H, XEND, HFIX, hnew 
REAL*8 gamma, a21, c21, m1, m2, C2 
REAL*8 K1(N),K2(N) 
INTEGER nsteps, i, j, IJAC, AUTON 
INTEGER IP(N) 
EXTERNAL FUNC,JACOB 
 
DO I=1,N 
 DO J=1,N 
  DFY(I,J)=0.D0 
  E(I,J) =0.D0 
 END DO 
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END DO 
 
! Coefficients (free parameters) of the Rosenbrock formula 
gamma = 1.D0-1.D0/DSQRT(2.D0) 
a21 = (DSQRT(2.D0)-1.D0)/2.D0 
c21 = 0.D0 
m1 = 0.D0 
m2 = 1.D0 
 
IF (AUTON.EQ.0) THEN 
 C2=a21 
ELSE IF (AUTON .EQ. 1) THEN 
 C2=0.D0 
END IF 
 
q=2.D0 ! q is the order accuracy of the Rosenbrock formula 
 
! Initialization of parameters 
nsteps=0 
rej=0 
rejcount=0 
 
DO WHILE (X.LT.XEND) 
 
 IF (IJAC .EQ. 0) THEN 
!   JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of 
!  numerical differentiation 
  call JACA(N,X,Y,DFY,FUNC) 
 ELSE IF (IJAC .EQ. 1) THEN 
!  JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its  
!  analytical form 
  call JACOB(N,X,Y,DFY) 
 END IF 
 
 FAC = 1.D0 
 DO i = 1,N 
  DO j = 1,N 
   E(i,j) = -h*gamma*DFY(i,j) 
  END DO 
  E(i,i) = E(i,i) + FAC 
 END DO 
! Triangularization of matrix E by Gaussian eliminatiion 
 CALL DEC(N,N,E,IP,INFO) 
 
! Returns DY, the evaluation of function F(Y) at point (X,Y) 
 CALL FUNC(N,X,Y,DY,RPAR,IPAR) 
 DO i=1,N 
  K1(i) = h*DY(i)        
 END DO 
! Solution of linear system E*X = K1. Output: K1 = solution vector X 
 CALL SOL(N,N,E,K1,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a21*K1(i) 
 END DO 
 CALL FUNC(N,X+C2*h,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K2(i) = h*DY(i) 
 END DO 
 CALL SOL(N,N,E,K2,IP) 
 DO i=1,N 
!  Y1 = Solution of ROS2p 
  Y1(i) = Y(i)+m2*K2(i) 
 END DO 
 
 hnew = hfix 
 nsteps = nsteps+1 
 X = X +h 
! Solution vector Y1 at point X is stored in the memory 
 CALL STORE_SOLUTION(X,Y1,h,nsteps,N) 
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 DO j=1,N 
  Y(j)=Y1(j) 
 END DO 
 h=hnew 
 
END DO 
  
RETURN 
END 
 
 
 

ROS3p 
 
SUBROUTINE ROS3p(N,X,Y,XEND,FUNC,JACOB,HFIX,nsteps,IJAC,AUTON) 
 
REAL*8 X, Y(N), YNEW(N), Y1(N), E(N,N), DY(N), DFY(N,N) 
REAL*8  H, XEND, HFIX, hnew 
REAL*8 gamma 
REAL*8 a21,a31,a32 
REAL*8 c21,c31,c32 
REAL*8 m1,m2,m3 
REAL*8 C2, C3 
REAL*8 K1(N),K2(N),K3(N) 
INTEGER nsteps, i, j, IJAC, AUTON 
INTEGER IP(N) 
EXTERNAL FUNC,JACOB 
 
DO I=1,N 
 DO J=1,N 
  DFY(I,J)=0.D0 
  E(I,J) =0.D0 
 END DO 
END DO 
 
! Coefficients (free parameters) of the Rosenbrock formula 
gamma = 7.886751345948129D-1 
a21 = 1.267949192431123D0 
a31 = 1.267949192431123D0 
a32 = 0.D0 
c21  = -1.607695154586736D0 
c31  = -3.464101615137755D0 
c32  = -1.732050807568877D0 
m1 = 2.D0 
m2 = 5.773502691896258D-1 
m3 = 4.226497308103742D-1 
 
IF (AUTON.EQ.0) THEN 
 C2 = 1.D0 
 C3 = 1.D0 
ELSE IF (AUTON .EQ. 1) THEN 
 C2=0.D0 
 C3=0.D0 
END IF 
 
q=3.D0 ! q is the order accuracy of the Rosenbrock formula 
 
! Initialization of parameters 
nsteps=0 
rej=0 
rejcount=0 
 
DO WHILE (X.LT.XEND) 
 
 IF (IJAC .EQ. 0) THEN 
!   JACA returns the Jacobian matrix DFY evaluated at the point Y(X) by means of 
!  numerical differentiation 
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  call JACA(N,X,Y,DFY,FUNC) 
 ELSE IF (IJAC .EQ. 1) THEN 
!  JACOB returns the Jacobian matrix DFY evaluated at the point Y(X) from its  
!  analytical form 
  call JACOB(N,X,Y,DFY) 
 END IF 
 
 FAC = 1.D0/(h*gamma) 
 DO i = 1,N 
  DO j = 1,N 
   E(i,j) = -DFY(i,j) 
  END DO 
  E(i,i) = E(i,i) + FAC 
 END DO 
! Triangularization of matrix E by Gaussian eliminatiion 
 CALL DEC(N,N,E,IP,INFO) 
 
 ! Returns DY, the evaluation of function F(Y) at point (X,Y) 
 CALL FUNC(N,X,Y,DY,RPAR,IPAR) 
 DO i=1,N 
  K1(i) = DY(i)        
 END DO 
! Solution of linear system E*X = K1. Output: K1 = solution vector X 
 CALL SOL(N,N,E,K1,IP) 
 DO i=1,N 
  YNEW(i) = Y(i)+a21*K1(i) 
 END DO 
 CALL FUNC(N,X+h*C2,YNEW,DY,RPAR,IPAR) 
 DO i=1,N 
  K2(i) = DY(i)+c21/h*K1(i) 
 END DO 
 CALL SOL(N,N,E,K2,IP) 
 DO i=1,N 
  K3(i) = DY(i)+c31/h*K1(i)+c32/h*K2(i) 
 END DO 
 CALL SOL(N,N,E,K3,IP) 
 
 DO i=1,N 
!  Y1 = Solution of ROS3p 
  Y1(i) = Y(i)+m1*K1(i)+m2*K2(i)+m3*K3(i) 
 END DO 
 
 hnew = hfix 
 nsteps = nsteps+1 
 X = X +h 
! Solution vector Y1 at point X is stored in the memory 
 CALL STORE_SOLUTION(X,Y1,h,nsteps,N) 
 DO j=1,N 
  Y(j)=Y1(j) 
 END DO 
 h=hnew 
 
END DO 
  
RETURN 
END 
 

 

Linear Algebra subroutines 
 

DEC and SOL are linear algebra routines for the decomposition and back-substitution of 

linear systems. They are public codes available from different sources (e.g. from 

http://www.unige.ch/~hairer/prog/stiff/decsol.f). 
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Routine DEC performs a matrix triangularization by Gaussian elimination. 

Routine SOL gives the solution of a linear system A*X = B, where A is the triangularized 

matrix obtained from DEC. 

 

Function and Jacobian evaluation Routines 
 
SUBROUTINE FUNC(N,X,Y,F) 
! Subroutine FUNC evaluates the function F from the ODE system Y�=F(X,Y) 
! Analytical form of function F is to be defined by the user below 
! 
! INPUT:  
! N: dimension of the system Y�=F(X,Y) 
! X: independent variable 
! Y: vector of solutions at point X 
! 
! OUTPUT: 
! F: evaluation of function F (Y�=F(X,Y)) at (X,Y) 
 
 
INTEGER N 
REAL*8 X, Y, F 
DIMENSION Y(N),F(N) 
 
! Analytical definition of F as a function of X and Y 
 
F(1) =  
F(2) =  
 
RETURN 
END 
 
 
SUBROUTINE JACOB(N,X,Y,DFY) 
! Subroutine JACOB evaluates the Jacobian matrix of the ODE system Y�=F(X,Y) 
! Analytical form of the Jacobian is to be defined by the user below 
! 
! INPUT:  
! N: dimension of the system Y�=F(X,Y) 
! X: independent variable 
! Y: vector of solutions at point X 
! 
! OUTPUT: 
! DFY: Jacobian evaluation at (X,Y) 
 
INTEGER N 
REAL*8 X, Y(N), DFY(N,N) 
 
DFY(1,1)=  
DFY(1,2)=  
DFY(2,1)=  
DFY(2,2)=  
 
RETURN 
END 

 




