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Abstract

Magnetic resonance imaging (MRI) provides high-quality images with excellent contrast
detail of soft tissues and anatomic structures. MR images contain a large amount of
detailed information — some of which is invisible to the human eye. Detailed information
can be analysed with computer-assisted texture analysis (TA), which is based on features
describing the grey level relationships between image pixels.

The aim of this thesis was to assess the information content of textural features based on
the image histogram, grey level co-occurrence matrix, and grey level run-length matrix.
The strengths and limitations of the various textural features in medical MR image
analysis were evaluated. The study was conducted by analysing different clinical data
with TA in the clinical environment, and the results of the learning process were then
gathered in this thesis.

Our results indicated that all textural features have limitations in terms of their discrimi-
nation capacity in medical MR images and their dependence on the size of the region
of interest and MR imaging parameters. By considering these limitations, TA may help
in various MR imaging applications by revealing textural information of the images of
various human organs.
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1 Introduction

Modern medical imaging has undergone major advancements. The ability to obtain
information about the human body is used in diagnostics, treatment planning and follow-
up. Various medical imaging images have been developed, each with its own advantages
and disadvantages. Conventional X-ray, computed tomography (CT), and molecular
imaging methods use ionizing radiation, whereas magnetic resonance imaging (MRI) and
ultrasound imaging do not.

MRI is increasingly favoured, not only due to its advantage in avoiding the use of ionizing
radiation but also due to its excellent soft tissue contrast and constantly improving
imaging techniques. MRI is a sophisticated volumetric imaging method that uses a
powerful magnetic field and radiofrequency pulses to produce detailed images at any
imaging plane. MRI provides high-quality images with excellent contrast detail of soft
tissue and anatomic structures such as grey and white matter in the brain.

Ideally, radiologists can tell the difference between healthy and diseased tissue by inspecting
a clinical image. However, this is not always possible because clinical images currently
contain high levels of detailed information. The human eye has a limited ability to observe
these complex patterns and is occasionally unable to define them. Therefore, quantitative
methods to analyse these patterns are needed. One solution is to use computer-assessed
texture analysis (TA), which is based on features that describe the relationships between
image pixels.

TA is already used for automatic defect detection and quality control (for example, in the
food, paper, metal, textile, and plastic industries) and for automatic pattern recognition
(for example, in remote sensing and mining). In studies of medical images, TA has been
applied to the classification of pathological tissues based on MR images of the brain
(de Oliveira et al., 2011; Fetit et al., 2015; Freeborough and Fox, 1998; Holli et al., 2010;
Kassner et al., 2009; Kjaer et al., 1995; Kovalev et al., 2003; Suoranta et al., 2013), liver
(Bahl et al., 2012; Yu et al., 2001; Zhang et al., 2015), breast (Ko et al., 2016; Pickles
et al., 2016; Teruel et al., 2014), and lungs (Yoon et al., 2016). In addition, TA has
proven able to reveal subtle changes based on MR images of bone (Harrison et al., 2011;
Langenberger et al., 2003; Nikander et al., 2009) and muscle (Herlidou et al., 1999; Nakai
et al., 2008; Nketiah et al., 2015). When quantified, these changes, which are invisible to
the human eye, can be used in the diagnosis, treatment planning and follow-up of diseases.
However, the final step that is needed to apply the TA method in everyday clinical use
has not yet been taken. The TA methods used in other fields should be adapted to meet
the requirements of the medical environment.

In this thesis, we evaluate the technical requirements concerning the TA of medical MR,
images from the brain and thigh muscles. For example, the TA parameters that are
employed in industrial applications may not be the most practical for application to
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medical images. The study was conducted by analysing MRI data of using TA in the
clinical environment and then gathering the results of this learning process in this thesis.

The ultimate goal of TA in the clinical environment is to yield quantitative results while
providing an explanation for the obtained numbers. This thesis considers the technical
issues, such as size-dependence of textural features, of clinical TA with the aim of moving
towards this objective.



2 Literature Review

2.1 Magnetic resonance imaging

MRI is a non-invasive tomographic imaging technique based on nuclear magnetic resonance
(NMR) signals. The magnetic resonance phenomenon was discovered by Felix Bloch
and Edward Purcell (Bloch, 1946; Purcell et al., 1946) in 1946. In 1975, Richard Ernst
proposed techniques on which current MRI techniques are based: phase and frequency
encoding, and the Fourier Transform (Kumar et al., 1975). These techniques allowed the
first imaging of the human body in 1980.

MRI is based on the excitation and relaxation of spin systems, usually those in hydrogen
nuclei. In the presence of an external static magnetic field, hydrogen nuclei precess around
an axis in the direction of the external magnetic field and cause longitudinal magnetisation
of these nuclei within the tissue. When the spins are excited to a higher energy level by
the application of radio frequency (RF) pulses, the phase coherence of the spins causes
transverse magnetisation to occur within the tissue. After the RF pulse is switched off,
the spin system recovers to a lower energy level; i.e., it relaxes.

Already in 1971, Damadian (1971) showed that the nuclear magnetic relaxation times of
tissues and tumours differed. MR image contrast is based on the fact that different tissues
have different magnetic relaxation times because of their different chemical compositions
and physical states. The relaxation time constant T1, termed spin-lattice relaxation,
describes the recovery of the longitudinal magnetisation; the time constant T2 describes the
recovery of magnetisation that is flipped into the transverse plane. Due to static magnetic
field inhomogeneities, the loss of phase coherence is more rapid than T2. Therefore,
this decay is described by the effective transverse relaxation time T2*. MR images are
constructed by measuring these tissue-dependent NMR signals that are produced by the
decay of transverse magnetisation. The signal intensity on the MR image is determined by
proton density and relaxation times. The localisation of the NMR signals is selected using
slice selection, phase- and frequency-encoding gradients, and spatially altered magnetic
fields.

2.2 Spin echoes and gradient echoes

The timing and amplitude of RF pulses, gradient fields, and signal recording comprise
an imaging sequence. One of the most conventional imaging sequences is spin echo (SE)
(Farrar, 1970). Here a RF pulse, for example a pulse with flip angle of 90°, first excites
the spin system and causes transversal magnetization. The transverse magnetization
begins to diphase until a refocusing pulse of 180° inverts the phase of the spins producing
spin echo signal at echo time (TE). The whole sequence is repeated after repetition time

3
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(TR). The imaging parameters TE and TR may be altered to obtain the desired image
contrast. In clinical practice, SE is used to acquire T'1-, T2-, and proton density-weighted
images. However, it is often performed as a fast spin echo (FSE) sequence where multiple
echoes are recorded during one TR. The image contrast can also be modified by adding
an inversion pulse of 180° prior to the initial excitation pulse. These inversion recovery
(IR) pulse sequences can be used to produce images with suppression of liquid or fat.
Fluid-attenuated inversion recovery (FLAIR) sequence is used to generate heavily T2-
weighted images with suppression of cerebrospinal fluid whereas short inversion recovery
(STIR) sequence is used heavily T1-weighted images with fat-suppression.

The echo signal can also be produced by gradient fields with different polarities. Instead
of a 180° pulse, a negative gradient that destroys the phase coherence of spins is applied.
The gradient is then reversed and the spins rephrase to form an echo. Gradient echo
(GRE) sequences are fast because only one RF pulse with low flip angle is needed. Usually,
GRE images are T2*-weighted, but modifications like magnetization preparation rapid
gradient echo (MPRAGE) have been developed. The speed of the GRE sequences can
be further improved with echo planar imaging (EPT) sequence which enables multislice
imaging. Multi echo data image combination (MEDIC) is a heavily T2*-weighted spoiled
gradient echo sequence with high signal-to-noise ratio. The sequence is based on multiple
echoes that are combined into an image for less artefacts; the early echoes increase the
signal-to-noise level, while later echoes boost the contrast. A fully flow compensated GRE
is used to detect the susceptibility differences between tissues in susceptibility weighted
imaging (SWI). SWI image contrast is highly sensitive to venous blood, haemorrhages
and iron storage and is therefore often used in traumatic brain injuries and for high
resolution brain venographies.

2.3 Diffusion weighted imaging

Diffusion-weighted imaging (DWT) (Merboldt et al., 1985; Taylor and Bushell, 1985) is
an advanced MRI methodology that enables mapping of the diffusion of molecules in
tissues. The diffusion of molecules (mainly water) is driven by thermal agitation and is
highly dependent on the cellular environment; the hypothesis behind medical DWTI is
that changes in diffusion may indicate pathologic changes, for example an infarct inside
otherwise normal appearing white matter. The image intensity in a diffusion-weighted
image estimates the rate of water diffusion at that location. Quantitative DW images can
be obtained using the apparent diffusion coefficient (ADC). DWT is mostly applied to the
study and treatment of neurological disorders because it can reveal abnormalities in the
fibre structure of white matter.

Diffusion tensor imaging (DTI) (Filler et al., 1992) is useful when the tissue has an oriented
internal structure, such as the tracts in white matter. Water diffuses more rapidly in the
direction aligned with the tracts and moves more slowly in the perpendicular direction.
The properties of a DTI image voxel are calculated based on vector or tensor calculations,
which are usually based on six or more different diffusion-weighted acquisitions, each of
which is obtained with a different orientation of the diffusion-sensitising gradients. From
the diffusion tensor, diffusion anisotropy measures, such as the fractional anisotropy (FA),
can be computed.
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2.4 Texture analysis

Textures are patterns that are present everywhere and can describe a wide variety
of surface characteristics, such as those of terrains, plants, minerals, fur and human
tissue. Qualitatively, texture can be described by various adjectives, such as fine, coarse,
smooth, rough, regular, or irregular. Nevertheless, texture has no precise definition.
TA is a computer-assessed method for the quantitative analysis of image textures. As
an extension of traditional quantitative image analysis based on pixel intensity, TA
addresses intensity patterns. From the TA standpoint, textures are complex visual
patterns comprising spatially organised entities or sub-patterns. Image texture describes
the spatial arrangement of the visual patterns in an image, i.e., the relationship between
image grey levels. Thus, texture can be considered as similarity grouping in an image
(Hajek et al., 2006). The aim of TA is to calculate texture features as mathematical
parameters that characterise the texture type and thus the underlying structure of the
objects in the image. In other words, one objective of TA can be understood as finding a
way to distinguish two textures. First, this chapter covers a literature review of the used
TA methods. Second, the methodology is reviewed according to the medical applications,
image pre-processing steps, ROI definition, feature calculation and data analysis. A
summary of TA methodology based on reviewed publications in presented in Table 2.1.

2.4.1 Methods

Several methods for TA have been proposed in the literature: structural, statistical,
model-based, and transform methods (Haralick, 1979; Materka and Strzelecki, 1998;
Tuceryan and Jain, 1998). According to Haralick (1979), structural models are based on
the assumption that textures are constructed of primitive elements, which have geometrical
properties (Allen and Mills, 2004); to describe the texture, both the primitives and the
placement rules must be defined. These methods provide a good symbolic description of
the image; however, this feature is more useful for texture synthesis than analysis tasks.

In contrast to structural methods, statistical approaches do not attempt to define the
explicit hierarchical structure of a texture. Instead, they describe texture using properties
concerning the distribution and relationships of grey level values in the image (Haralick,
1979). Local features are computed at each point of the image, and a set of statistics is
derived from the distributions of the features. Statistical methods include features derived
from the histogram, gradient, autocorrelation function, grey level run-length matrix
(GLRLM), and grey level co-occurrence matrix (GLCM). The GLRLM was presented
by Galloway (1975), and the GLCM was described by Haralick (1979). Depending on
the number of pixels defining the local feature, statistical methods can be divided into
first, second, and higher-order statistics. In first-order statistics, image properties depend
solely on individual pixel values, whereas second-order statistics are properties of pixel
pairs (Tuceryan and Jain, 1998). Methods based on second-order statistics tend to obtain
higher discrimination indexes than structural or image transform methods do (Avril et al.,
2001).

A combination of structural and statistical methods, local binary pattern (LBP) was
introduced in the 1990’s (Ojala et al., 1996; Wang and He, 1990). The LBP method
has properties from both the structural (texture primitives and placement rules) and
the statistical (distributions) analysis methods. The LBP method is based on the LBP
feature vector that can be processed using machine learning algorithms to classify images
and textures.



6 Chapter 2. Literature Review

In model-based methods, the aim is to represent image texture using mathematical
models. Model parameters are estimated and used for image analysis. For example,
fractal features, Markov random field (MRF) and autoregressive (AR) models can be
used. Fractals are shapes or objects that are constructed of smaller copies of themselves.
It has been shown that the fractal model is useful for modelling some natural textures
(Chen et al., 1989). The MRF model assumes that pixel intensity depends only on the
intensities of neighbouring pixels. AR models assume that pixel intensity is a weighted
sum of neighbouring pixel intensities. Texture parameters based on MRF and AR models
are mostly used for image segmentation.

Transform methods derive the texture description parameters from transformations used
in signal processing; for example, Fourier (Bracewell, 1999), Gabor (Qian and Chen, 1993)
and wavelet (Russ, 2002) transforms. The Fourier transform is a well-known frequency
transform, and the Gabor function is performed by windowing a Fourier transform.
Wavelet methods are based on presenting the image as a set of independent frequency
channels. Methods based on the Fourier transform function poorly in practice due
to their lack of spatial localisation. The use of Gabor filters provides better spatial
accuracy. However, the usefulness of these filters is limited in practice because a single
filter resolution at which one can localise a spatial structure does not usually exist in
natural textures. Compared to the Gabor transform, the wavelet transform has several
advantages. For example, varying the spatial resolution enables texture presentation at
the most suitable scale. In addition, a wide range of choices for the wavelet function is
available; therefore, one is able to choose wavelets that are best suited for TA in a specific
application.

The numerical analysis of image texture has been studied since the 1950s (Haralick et al.,
1973). Initial applications covered the quantification of aerial images (Kaizer, 1995), but
the methodology was soon extended to the medical environment. MR images contain a
large amount of information not only about the external shape of large organs but also
about details of the internal tissues; thus, TA is a feasible method for quantitative MR
image analysis (Hajek et al., 2006; Szczypinski et al., 2007). The reason for using TA
is that by examining the values of texture features, one can draw conclusions about a
pathology or disease process. It is assumed that such processes cause changes in tissue
structure that can be measured from the image texture (Bahl et al., 2012).

2.4.2 Examples of medical applications

TA has been used in combination with computed tomography (CT), X-ray imaging and
ultrasonic tissue characterisation for the classification of various tissue types. The first
publications of MR image TA in the 1990s concerned brain tumours (Kjaer et al., 1995;
Lerski et al., 1993). Since then, TA has been applied in several MRI studies. For instance,
structural brain asymmetry has been studied with TA by Kovalev et al. (2003) who
showed male brains more asymmetric than female and asymmetry increases and decreases
with age depending on the brain region. In early studies, the value of MR image texture
was assessed in Alzheimer’s disease (Freeborough and Fox, 1998); furthermore, using TA,
it is possible to detect lesions and abnormalities involving hippocampal sclerosis (Yu et al.,
2001). TA can also provide information that is useful for the diagnosis of skeletal muscle
dystrophy (Herlidou et al., 1999). Currently, research regarding the TA of medical MR
images is ongoing. The application methods and practices vary in terms of, for example,
the pre-processing of MR images before the analyses, the study population, the ROI
setting, the number of TA features calculated, and the data processing and analyses.
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2.4.3 Examples of image preprocessing

Materka et al. (2000) demonstrated that some popular texture descriptors depend not
only on texture but also on other properties inside the region of interest (ROI); in
particular, mean intensity and variance. Thus, normalisation within the ROI is one of
the recommended pre-processing steps, prior to TA feature calculation. Materka and
Strzelecki (2013); Strzelecki and Materka (2014) also commented on the sensitivity of TA
parameters to MR, image nonuniformity and local image intensity and contrast variations.
It has been shown that presence of those artefacts might result in misleading results in
medical MRI TA. Therefore, nonuniformity correction has been recommended, followed
by ROI normalisation, prior to texture analysis. MRI acquisition parameters have also
been shown to affect texture parameter values (Mayerhoefer et al., 2009). Lerski et al.
(1999) scanned reticulated foam test objects in six European centres and showed that
that texture measures are not easily comparable between centres. A recent multicentre
study by Fruehwald-Pallamar et al. (2016) confirmed this imaging parameter dependence
while analysing benign and malignant head and neck masses. The authors concluded that
TA could be used for texture discrimination when performed on one scanner using the
same protocol, but no multicentre studies were recommended when using clinical data.

Variation concerning the pre-processing of medical MR images is as wide as the field of
research, and conventional practices are lacking. A considerable number of studies (Fetit
et al., 2015; Liu et al., 2016) apply the normalisation method described by Collewet et al.
(2004), in which the image intensities are normalised in the range [u + 3 o], where u
refers to the mean and o refers to the standard deviation of the grey levels. The results
of this study demonstrated the influence of the normalisation method on the effectiveness
of the classification and also on the parameters selected for classification. The suggested
method enhanced the differences between the two classes with the used feature selection
and classifier methods (the lowest probability of error and average correlation coefficient
(POE+ACC) and 1-nearest neighbour (1-NN)). However, some TA studies did not report
any pre-processing of MR images and tens of studies described using multiple advanced
pre-processing methods in addition to normalisation, such as motion correction (Teruel
et al., 2014), intensity nonuniformity correction (Yang et al., 2015), and rescaling (Fox
et al., 2016). No method has proved superior to others.

2.4.4 Examples of region of interest definition

The definition of the ROI size, shape, and localisation is an essential part of the TA
process. ROIs may be drawn freehand or ROIs of standard size and shape can be applied.
In addition, the localisation process can be performed manually, semi-automatically, or
automatically. Overall, the ROI should represent the tissue or structure of interest with
minimal overlap and distortion of other tissues or structures.

The two following ROT settings were compared by Li et al. (2015) in a study concerning
the differentiation of brain metastases originating from different types of lung cancers:
the standard ROI, which contained the cancer tissue and was automatically contoured on
each image set using commercially available software (MIMvista, Cleveland, OH, USA)
and the irregular ROI, which was manually contoured by the radiologists. In total, 126
TA features based on GLCM, gradient GLCM, Gabor transform, and intensity-size-zone
were calculated. Few features were sensitive to differences in the contouring, and TA was
shown to relate to the pathological type of the primary lung tumour for brain metastases.
However, no texture feature was able to differentiate among the four types of lung cancer.
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The limitation of ROI-based TA methods is that they require segmentation. The ROI
should represent the tissue of interest without a partial volume effect, and the most
accurate segmentation may be achieved when performed manually by an experienced
specialist; for example, a radiologist. However, this can easily be time consuming, as in the
work of de Oliveira et al. (2011), in which the corpus callosum and thalamus were studied
in MR images of patients with Alzheimer’s disease. A semi-automated routine for ROI
segmentation was used by Teruel et al. (2014) in a study of the pre-treatment prediction
of the clinical (longest tumour diameter) and pathological response (histopathological
analysis of rejected tumour mass) to neoadjuvant chemotherapy in patients with locally
advanced breast cancer. First, a ROI covering all areas of tissue with visible contrast
enhancement that were recognised as tumour was manually drawn. Second, a relative
enhancement ratio threshold was applied to exclude any voxel that did not satisfy the
set requirements. Finally, an opening morphological algorithm was applied to the binary
ROI to avoid the inclusion of enhanced vessels or possible spuriously enhanced voxels.
The study found that various texture features significantly predicted both the clinical
and pathological response. Zhang et al. (2015) used standard-size square ROIs when
comparing the TA of CT and MR images for the staging of liver fibrosis. The MR, images
proved more accurate for staging compared to the CT images, and MRI at 3 T showed
better results at classifying liver fibrosis than did MRI at 1.5 T. The issue of differently
sized freehand ROIs was overcome by de Oliveira et al. (2011) by using the ROI size as
the weight for all calculated TA parameters.

Maani et al. (2015) introduced a novel method that obviates the need for segmentation,
as it performs the analysis on a voxel-by-voxel basis over the whole brain during the
study of neurological disorders in vivo. In the proposed method, the GLCM is computed
in a sphere around each voxel instead of the whole ROI. The output of the method
is a statistical map that is comparable to that of voxel-based morphometry, showing
differences in texture. The method was tested successfully to evaluate artificial lesions
and to demonstrate cerebral changes in an MRI database relating to Alzheimer’s disease.

2.4.5 Histogram-based features

Histogram features originate from the grey scale historgam of an image. The mathematical
formulas and details for the presented histogram features are shown in Appendix I Hajek
et al. (2006); Tuceryan and Jain (1998).

Mean measures the mean of grey level intensities in an image, and variance measures the
wideness of the grey level distribution, i.e., the histogram of an image. Skewness and
kurtosis are measures of the shape of a histogram. Skewness measures the asymmetry
of the histogram, and kurtosis is a measure of whether the data are heavy-tailed or
light-tailed relative to the normal distribution.

2.4.6 Grey level co-occurrence matrix-based features

The GLCM is a second order histogram of an image. It relates to pixel pairs, whereas first
order histogram relates to single pixels. The element of the GLCM is the count of the
pairs whose pixels have particular grey level values in given direction (#) with given pixel
distance (d). When divided by the total number of the pairs in the image, this histogram
becomes the estimate of the joint probability of two pixels. The basics of GLCM matrix
is presented in Figure 2.1. The mathematical formulas for the presented GLCM features
are shown in Appendix I (Hajek et al., 2006; Tuceryan and Jain, 1998).
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Figure 2.1: GLCM and GLRLM of an image in horizontal direction (§ = 0°) with pixel distance
of one pixel (d = 1). GLCM calculates the number of how many times a reference grey level
value is followed by a specific neighbouring grey level value in the given direction. GLRLM
indicates how many runs of given length the specific grey level produces.

Angular second moment, also known as uniformity or energy, is calculated as the sum of
squared elements in the GLCM. Angular second moment is a measure of image uniformity
and takes values from 0 to 1. The parameter obtains its maximum value when a grey level
distribution has either a constant or a periodic form. A homogeneous image contains very
few dominant grey tone transitions; therefore, the GLCM for this image type will have
fewer entries of larger magnitude resulting in a large value for this feature. In contrast,
the value is close to zero in a random texture.

Inverse difference moment measures the closeness of the distribution of GLCM elements
to the GLCM diagonal (where the elements represent pixels that are entirely similar
to their neighbours), i.e., the homogeneity of the image. This moment is maximal in a
uniform image with no variation of grey levels.

Entropy measures the randomness of the elements of the GLCM and achieves its largest
value when all elements in the GLCM are equal, i.e., when the image texture is complex.
When the image is not texturally uniform, many GLCM elements have small values,
which implies that entropy is large, and vice versa.

Contrast is a difference moment of the GLCM and measures the amount of local variations
in an image. Contrast is calculated by squaring the subtraction of the examined pixel
values and takes values between 0 and (maximum grey scale value - 1)2. Thus, the
minimum contrast value of zero is obtained when the pixels have the same grey level
value, and, the maximum value is achieved when squaring the subtraction of white and
black pixels.

Correlation is a measure of how correlated a pixel is with its neighbour over the whole
image. This parameter measures the dependencies between the pixels in the image and
takes values from -1 to 1. Correlation is +1 for perfectly positively or negatively correlated
images and is close to zero for a random pattern.
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Sum of squares is the variance of the GLCM. The values are not equal to but are similar
to the values of the histogram variance. High values are obtained with sudden variation
between neighbouring pixels.

Sum features are calculated based on the sum distribution of the GLCM. Sum average
is calculated by summing two pixel values and averaging the result for the whole image.
The pixel pairs used are those used to calculate the GLCM. Low values are obtained
in low intensity regions, whereas high values are measured in high intensity grey scales.
The average sum is not dependent on the direction or on the pixel distance used in the
calculation. Sum variance is calculated based on the sum average, and the minimum value
is achieved with a uniform image and high values with suddenly varying pixel intensities.
Sum entropy measures the randomness of the sum distribution and also achieves its
minimum value of zero in a uniform image with high values in complex patterns.

Difference variance and difference entropy are calculated based on the difference distri-
bution of the GLCM. The features are zero for a uniform image and for an image with
a symmetrical difference distribution around the mean value. Difference variance takes
high values in an image with highly different neighbouring pixel intensities. Difference
entropy takes high values in randomly distributed patterns.

2.4.7 Grey level run-length matrix-based features

The GLRLM of an image is defined as the number of runs with pixels of particalr grey
level and run length. The basics of GLRLM matrix is presented in Figure 2.1. The
mathematical formulas for the presented GLRLM features are shown in Appendix I
(Hajek et al., 2006; Tuceryan and Jain, 1998).

Run-length nonuniformity measures the absence of equal-length grey level runs in the
texture. The feature takes its lowest values in a texture with equal run-lengths; i.e., the
texture is somehow repeating. More randomly distributed textures provide higher values.
Grey level nonuniformity yields low values if grey levels are equiprobable and high values
where there are no pixels of same grey level value in the direction in which the feature is
calculated.

Long-run emphasis moment achieves high values for images that contain several pixels of
the same grey level in a row. The maximum value is obtained in a uniform image. Small
values are obtained in images with no neighbouring pixels of the same intensity. Short-run
emphasis inverse moment achieves its maximum value of 1 when every consecutive pixel
has a differing grey level value. Uniform textures return low parameter values. Fraction
describes the percentage of image pixels that are part of the runs that are considered for
the matrix calculation. If the runs are of length 1 pixel, then the percentage is 100%, and
the parameter value is 1. Values close to one can be obtained in complex patterns. Small
values are achieved for uniform images.

2.4.8 Examples of data analysis

The number of calculated TA features is usually affected by the post processing of the
TA data. The practice varies between analyses of single feature values to multivariate
analyses of hundreds of TA features or combinations of TA and other measures.

Ko et al. (2016) investigated the potential correlation between the heterogeneity obtained
from TA of MR images and the heterogeneity observed from histopathological findings
in invasive breast cancer. The MRI TA parameters of homogeneity and entropy were



2.5. Clinical background 11

correlated with pathological tumour heterogeneity. Based on a multivariate analysis of
several texture features, Liu et al. (2016) showed that texture parameters derived from
T1-, T2-, and diffusion-weighted MR images combined with supervised machine-learning
algorithms could act as imaging biomarkers for the therapeutic response of nasopharyngeal
carcinoma to chemo-radiotherapy. Pickles et al. (2016) associated pre-treatment MR
image texture features, among other MRI-based metrics (vascular kinetics and shape and
size features), to the survival intervals of breast cancer patients. Promising TA results
have been obtained with several data analysis methods and textural information can
be utilized also among other measures. More studies are needed to find the best data
processing solution for different applications.

2.4.9 Phantom studies

Phantoms are principally used in the quality control of MRI devices. They can also be
utilised for quantitatively comparing MR imaging instruments. Various MR imagers have
been compared based on anatomic tissue and phantoms (Lerski et al., 1999; Mayerhoefer
et al., 2005). As in many other branches of MR imaging, phantoms are used to evaluate
the possibilities of using TA on MR images. As several hundred texture features are
available, it would be important to find the functional features for specific applications
and to understand how they can be used to classify texture.

Tissue-equivalent MRI phantoms have been developed using carrageenan (Yoshimura
et al., 2003), agarose (Kraft et al., 1987; Mitchell et al., 1986), agar (Bucciolini et al.,
1989; Vre et al., 1985), polyvinyl alcohol (Mano et al., 1986), and gelatin (Blechinger
et al., 1988; Madsen and Fullerton, 1982). These gel phantoms usually contain additives
such as paramagnetic ions to control T1 relaxation times, whereas the T2 relaxation times
are primarily a function of the gelling agent concentration. Textural objects have been
added to homogeneous phantoms using reticulated foams embedded in doped agarose gels
(Lerski and Schad, 1998) and solutions of polystyrene spheres and agar gel (Mayerhoefer
et al., 2009). Despite of several phantom studies, there is no conventional solution for TA
feature standardisation, yet.

2.5 Clinical background

2.5.1 Parkinson’s disease

Parkinson’s disease (PD) is a progressive disorder of the central nervous system. Signs
of PD include rest tremor, bradykinesia, rigidity and the loss of postural reflexes (Lees
et al., 2009). Pathophysiologically, PD is characterised by a loss of dopaminergic neurons
in the basal ganglia; the most seriously affected brain area is the substantia nigra
(SN) pars compacta (Davie, 2008; Hornykiewicz, 1973, 1998; Obeso et al., 2008). This
structure participates in controlling voluntary movements, and when information transfer
is disturbed by the loss of the neurotransmitter dopamine, the consequence can be seen
as symptoms of PD (Lees et al., 2009). Positron emission tomography (PET) is a nuclear
imaging technique, which allows in vivo estimations of important physiological parameters
such as, glucose metabolism and neuroreceptor binding enabling greater understanding of
the pathophysiology of PD. However, PET imaging is not available at every clinic and
utilizes ionizing radiation.

Several studies (Antonini et al., 1993; Brar et al., 2009; Dexter et al., 1991; Graham et al.,
2000; Griffiths et al., 1999; Martin et al., 2008; Ryvlin et al., 1995; Vymazal et al., 1999;
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Wallis et al., 2008; Youdim and Riederer, 1993; Zhang et al., 2010) have shown significant
iron accumulation in the SN, and according to Antonini et al. (1993), increased iron levels
may also be present in the caudate nucleus. Studies concerning the iron deposition in the
putamen and globus pallidus have shown conflicting results, with increased (Antonini
et al., 1993; Drayer et al., 1986; Griffiths et al., 1999; Martin et al., 1998), decreased (Kosta
et al., 2006; Ryvlin et al., 1995), and unchanged (Martin et al., 2008; Zhang et al., 2010)
iron levels. Few changes are visible in MR images except for narrowed SN pars compacta
(Graham et al., 2000; Menke et al., 2009). Lee et al. (1995) and Piccini and Brooks (2006)
have proposed diffusion-weighted and heavily T2-weighted MRI experiments to reveal
the brain structure changes. Quantitative analyses of MR images have shown progressive
ventricular enlargement (Camicioli et al., 2011; Huang et al., 2007; Lewis et al., 2009)
and shape changes in the thalami (McKeown et al., 2008). In a longitudinal MRI study
by Ramirez-Ruiz et al. (2005), voxel-based morphometry analysis revealed a significant
loss in grey matter volume during two years of follow-up. The usefulness of SWI in
characterizing iron deposition has been evaluated and demonstrated in several studies
(Rossi et al., 2010; Wu et al., 2014; Zhang et al., 2010, 2009). However, to the best of our
knowledge, our studies (Sikio et al., 2011, 2015) were the first to evaluate the value of TA
in MR images of PD patients.

2.5.2 Cerebral infarction

In the Western world, cerebral infarction (stroke) is a major cause of death and long-term
disability. The signs and symptoms of a stroke include the inability to move or feel on one
side of the body, problems understanding or speaking, feeling like the world is spinning,
or a loss of vision on one side (Donnan et al., 2008). There are two main types of stroke:
ischemic, due to lack of blood flow, and haemorrhagic, due to bleeding. CT imaging is
widely used to diagnose stroke because CT scans are sensitive in detecting mass lesions
and acute haemorrhage. CT is also the first examination in Finnish hospitals because
haemorrhage can be excluded and thrombolytic therapy can be started based on it.

In hemispheric infarction, degenerative changes often occur in the corticospinal tracts
and are deciphered as Wallerian degeneration (WD) (Waller, 1850). According to Waller
(1850) and Kuhn et al. (1989), WD is characterised by the anterograde degeneration of
axons due to injury of the proximal portion of the axon or its cell body. WD can be
detected using conventional MRI within 1 month after the infarction; however, Thomalla
et al. (2004) showed that DTT can reveal WD within the first two weeks after the infarction.
ADC has been shown to decrease at the lesion site in acute ischemic stroke. This decline
is followed by pseudo normalisation and, at the chronic stage, the values increase above
normal levels (Ahlhelm et al., 2002).

Kovalev et al. (2001) and Herlidou-Meme et al. (2003) showed that cerebral tissues can
be classified using TA. In addition, Kassner et al. (2009) studied acute ischemic stroke
and concluded that TA is able to detect significant differences between infarcts that are
vulnerable to haemorrhagic transformation and those that are not.

2.5.3 Tissue adaptation to exercise

Adaptation to exercise training can affect muscle volume, strength and architecture;
muscle-fat distribution; and bone marrow adiposity (Baar et al., 2006; Blazevich et al.,
2003). These changes depend on the exercise type, especially the forces and load patterns,
the specific exercise induces. In response to exercise training, cross-sectional area and
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the strength production of actively involved muscles increase because the number and
cross-sectional area of the individual muscle fibres also increase until the muscle strength
is adjusted to cope with the forces and loads the given muscles and bone are subjected to
(Nakai et al., 2008). Conversely, less-frequent and intense exercise training is associated
with smaller muscle (Bousquet-Santos et al., 2006; Browning et al., 2007; Haddad and
Adams, 2006). Conventionally, the assessment of muscle adaptation to exercise has been
evaluated with muscle volume. However, volume measurement does not reveal structural
variation in muscle tissue or changes in intramuscular fat content. These changes may be
observed with TA.

Textures have been utilized in both ex vivo and in vivo MR studies of skeletal muscles.
Nakai et al. (2008) showed that walking exercise thickens and tightens the muscular fibre
tissues. Mahmoud-Ghoneim et al. (2006) found TA a reproducible and non-destructive
method for rat muscle examination during atrophy and regeneration. In addition, their
investigation of fat structure revealed that MRI texture of subcutaneous adipose tissue
differs between men and women (Mahmoud-Ghoneim et al., 2001). TA has also been
proved to provide useful information contributing the diagnosis of skeletal muscle disease
by Herlidou et al. (1999). TA of bone structure has been shown to give additional
information to routinely measured bone density. Langenberger et al. (2003) were able
to distinguish osteoporotic and nonosteoporotic subjects by means of TA. In athlete
studies, high-impact and odd-impact exercise loading were associated with thicker cortex
around the femoral neck (Nikander et al., 2009); and different trabecular bone (Harrison
et al., 2011) and hip muscle (Nketiah et al., 2015) texture compared with non-athletes.
Depending of the sports, fat tissue thickness and volume can clearly vary between athlete
groups. Also, it was shown that bone marrow density is modulated by exercise loading
(Rantalainen et al., 2013).






3 Aim of the Study

The aim of this thesis was to analyse textural features based on the histogram, grey level
co-occurrence matrix, and grey level run-length matrix applied in medical MR images.
More specific aims were to

1) Indicate of the functionality and limitations of features

2) Evaluate of the robustness of the single features in revealing subtle changes in
Parkinson’s disease, stroke, and healthy adult brains and thigh muscles adapted to
different exercise.
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4 Material and Methods

4.1 Study populations

4.1.1 Healthy adults and artificial noise images

The database comprised brain MR images of 64 healthy adults (age range, 20-60; mean
age, 39.0 & 11.7 years; 27 males, 37 females) (Study I). Exclusion criteria were neurological
problems (including abnormalities on neuroimaging), psychiatric problems, history of
traumatic brain injury, former neurosurgical procedure, problems with hearing or vision,
first language other than Finnish, and MRI contraindications. None of the subjects had
significant structural abnormalities on conventional MRI sequences. All participants gave
their written consent for the study, which was conducted at Tampere University Hospital,
and the study was approved by the Hospital Ethics Committee.

An artificial noise image matrix was generated using Matlab (MathWorks, Natick, MA,
USA) and filled with random pixel intensity values from 0 to 255. The pixel size was set
to match that of the MR images of the healthy controls (Study I).

4.1.2 Parkinson’s disease

At baseline, 51 patients (age range, 40-86; mean age, 68.8 £+ 11.3 years; 25 males, 26
females) with two or more of the following symptoms of PD were included in the study
(Study II): resting tremor, bradykinesia or hypokinesia, rigidity or postural instability.
The exclusion criteria were Alzheimer’s disease or other dementia diagnosed during one
year preceding the study, several general illnesses such as cardiac, lung or gastrointestinal
disease, liver or kidney malfunction, active malignant neoplasm, neurological or psychiatric
disease, contraindications for MRI, alcohol or drug addiction and gravidity. The control
group comprised 20 healthy volunteers (age range, 58-80; mean age, 65.7 & 6.8 years; 4
males, 16 females).

Among the patients with diagnosed PD, 26 (age range, 42-85; mean age, 68.1 + 10.4
years; 13 males, 13 females) were selected for the longitudinal study (Study III). The
control group comprised 19 healthy volunteers (age range, 58-80; mean age 65.0 years +
6.1 years; 4 males, 15 females) with similar exclusion criteria to the patient groups and
was matched by years of education. All participants gave their written consent for the
study, which was conducted at Tampere University Hospital and was approved by the
Hospital Ethics Committee.

19



20 Chapter 4. Material and Methods

4.1.3 Thigh soft tissues

The study group comprised 90 female athletes competing at the national or international
level and 20 nonathletic clinically healthy female referents (Study IV). The athletes
were triple-jumpers (N=9), high-jumpers (N=10), soccer-players (N=10), squash-players
(N=8), power-lifters (N=17), endurance runners (N=18), and swimmers (N=18). The
athletes were recruited through national sports associations and local sport clubs, and the
referents were mainly students of the local University of Applied Sciences. The study was
conducted at Tampere University Hospital in concert with the UKK Institute, Tampere,
Finland.

4.1.4 Cerebral infarction

In total, 1,458 stroke patients were examined and treated at Tampere University Hospital
between July 2005 and April 2008. For the TA study (Study V), 30 patients (age range,
46-79; mean age, 65.5 + 8.9 years; 24 men, 6 women) were selected. The selected
patients had suffered their first ever infarction located on the right hemisphere, and
they had been capable of living independently before the infarction. Exclusion criteria
were cerebral haemorrhage, traumatic brain injury, previous neurological or psychiatric
disorder, substance abuse, lesions in the left hemisphere or previous lesions in the right
hemisphere found in acute CT, remarkable brain atrophy considering patient age, severe
hearing or primary visual impairment, major decline in consciousness, left-handedness,
native language other than Finnish, and age over 80 years. Seven of the selected patients
had received thrombolytic therapy.

4.2 Magnetic resonance imaging

4.2.1 Healthy adults

MR imaging was performed using a 3-T device (Siemens TrioTim, Erlangen, Germany)
equipped with a 12-channel head matrix coil. The sequence used in our study was axial
T2-weighted 2D turbo spin echo (T'SE); the imaging parameters are presented in Table 4.1.

4.2.2 Parkinson’s disease

Imaging was performed using a 3-T MRI device (Siemens TrioTim, Erlangen, Germany)
equipped with a 12-channel head matrix coil following a clinical procedure. Sequences
included in the procedure were axial T2-weighted 3D sampling perfection with application-
optimised contrasts using different flip angle evolution (SPACE), axial 3D T2-weighted
fluid-attenuated inversion recovery SPACE, axial 3D SWI sequence, axial 2D parametric
T2* (Maplt), axial diffusion-weighted 2D EPI, axial T1-weighted 2D SE, and sagittal
T1-weighted 3D MPRAGE. The baseline study of the patients and controls was performed
using SWI and SPACE images; the follow-up study with SPACE images (Table 4.1).
Baseline and follow-up MRI were performed with a time delay of 25.0 4+ 1.5 months.

4.2.3 Thigh soft tissues

Imaging was performed using a 1.5-T MRI system (Siemens Magnetom, Avanto, Siemens
Healthcare Sector, Erlangen, Germany). The thigh region of the dominant side was
imaged using a combination of two 6-channel body matrix coils and a spine matrix coil.
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Table 4.1: Typical acquisition parameters for the MRI sequences used in Studies -V and an
additional phantom study.

Study Field Sequence name TR TE TI Slice/gap  Pixel Flip
strength (ms) (ms) (ms) (mm/mm) spacing angle
(T) (mm/mm) (%)
I 3 T2 2D TSE 5,790 190 - 4.0/1.2 0.49/0.49 120
II 3 3D SWI 27 20 - 1.5/0 0.60/0.60 15
II, IIT 3 T2 3D SPACE 3,200 354 - 3.0/0 0.60/0.60 120
v 1.5 T2* MEDIC 40 17 - 3.0/0 0.81/0.81 12
\% 1.5 T2 2D FLAIR 8,500 100 2,500 5.0/1.5 0.45/0.45 150
\% 1.5 DW 2D EPI 3,500 96 - 5.0/1.5 1.80/1.80 9
Phantoms 3 T1 3D MPR 1,900 2.41 900 0.90/0 0.47/0.47 9
Phantoms 3 T1 2D SE 600 6.8 - 4.0/1.2 0.70/0.70 90
Phantoms 3 T2 3D SPACE 3,200 357 - 3.0/0 0.28/0.28 120
Phantoms 3 T2 3D FLAIR 6,000 394 2,100  3.0/0 0.47/0.47 120
Phantoms 3 3D SWI 27 20 - 1.50/0 0.94/0.94 15

The imaging sequence used in this study was an axial 3D T2*-weighted MEDIC sequence;
the acquisition parameters are shown in Table 4.1.

4.2.4 Cerebral infarction

The patients underwent MRI studies in the chronic phase approximately one and a half
years (mean 18.3 &+ 5.5 months) after infarction. MRI was performed in normal clinical
practice using a 1.5-T MRI scanner (Magnetom Avanto SQ, Siemens Medical Solutions,
Erlangen, Germany) equipped with a conventional 12-channel head matrix coil. The
conventional MRI protocol included sagittal 2D T1-weighted SE, sagittal 3D T2-weighted
SPACE, axial T2-weighted FLAIR, axial T1-weighted SE, and axial T2-weighted GRE
(T2*) sequences. DTI was performed using a single-shot diffusion-weighted EPI, and
diffusion-sensitive gradients were applied along 12 gradient directions. Acquisitions were
repeated 3 times, and the average result was used in the analyses. In the TA study,
we used images from axial T2-weighted FLAIR and diffusion-weighted EPI series with
a b-value of 1,000 s/mm?. Typical acquisition parameters for the used sequences are
presented in Table 4.1.

4.3 Image preprocessing

In all studies, the grey level normalisation of each ROI was performed using a method
that normalises image intensities in the range [ — 30, u 4 30] (i is the mean grey level
value and o is the standard deviation) to minimise the effects of contrast variation and
brightness (Collewet et al., 2004). Eight bits per pixel were used to calculate second-order
feature values; that is, the number of grey level values was 256.

4.4 Regions of interest

All studies contained selections of interesting image slices from the MR image stacks.
DICOM (Digital imaging and communications in medicine) format images were manually
selected using Osiris version 4.19 (The Digital Imaging Unit of the Service for Medical
Computing of the University Hospitals of Geneva, Switzerland) by an operator supervised
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by an experienced radiologist. ROI placement was performed using the TA software
MaZda package version 4.6 (The Technical University of Lodz, Institute of Electronics,
Lodz, Poland) (Strzelecki et al., 2013; Szczypinski et al., 2007, 2009).

4.4.1 Healthy adults

Axial slices representing the centrum semiovale area of each participant were selected.
This location was selected because it presents clear anatomical landmarks and a relatively
wide texturally homogeneous area. First, ten circular ROIs (5, 6, 7, 8, 9, 10, 15, 20, 25,
30, and 35 pixels in diameter) were manually located on the right hemisphere centrum
semiovale in the selected MR slices. The ROI sizes correspond to ROI areas of from 21 to
933 pixels. The same ROI sets were randomly placed in the artificial noise image.

4.4.2 Parkinson’s disease

For texture analysis, seven axial slices from every patient and healthy control were selected.
Image levels were chosen to represent regions of the brain that are clinically significant in
PD. Fixed-size circular ROIs were manually placed on images of both hemispheres by
an operator under the supervision of an experienced radiologist. In the baseline study,
we evaluated the following areas: dentate nucleus, basilar pons, SN pars reticulata, SN
pars compacta, red nucleus, globus pallidus, putamen, anterior and posterior thalamus,
caudate nucleus, anterior and posterior corona radiata, and anterior, medial, and posterior
centrum semiovale on both hemispheres. In the follow-up study, we analysed the dentate
nucleus, basilar pons, SN pars compacta, red nucleus, globus pallidus, putamen, anterior
and posterior thalamus, caudate nucleus, anterior and posterior corona radiata, and
anterior, medial, and posterior centrum semiovale.

4.4.3 Thigh soft tissues

The tissues were analysed at two anatomical levels of thigh that were chosen according to
anatomical landmarks related to the muscles. The proximal level was the image slice just
distal from the trochanter minor, and the distal level was the image slice at the insertion
of the gluteus maximus muscle into the femur. The analysed tissues were thigh muscles
that are actively involved in load-bearing during different exercises, subcutaneous fat,
and the femoral bone marrow of the dominant leg. The muscles comprised major anterior
compartment muscles such as the rectus femoris, vastus lateralis, and vastus intermedius;
and medial compartment muscles such as the adductor longus and adductor magnus.
Fixed-size square ROIs were placed on the central area of the muscle cross section to
avoid a partial volume effect on ROIs caused by contamination with the connective tissue
around the muscle and visible fascicles. In addition, a similar ROI box was placed on
subcutaneous fat tissue surrounding the thigh muscles, and a spherical ROI was set on
the bone marrow inside the femur.

4.4.4 Cerebral infarction

Three axial slices representing vulnerable white matter tract areas and one slice from
the infarction area were selected for the analyses based on the diffusion- and the T2-
weighted series. Fixed-size circular ROIss were manually placed on axial slices in the
cerebral peduncle, thalamus, knee of the internal capsule, and centrum semiovale on both
hemispheres. One set of ROIs was placed in the infarction area on the right and in the
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corresponding areas on the left hemisphere. The ROIs were centred in the target areas,
avoiding border areas and neighbouring tracts.

4.5 Texture and data analyses

Image textures were analysed using the MaZda software, and the data were statistically
analysed using SPSS for Windows version 14.0.2 (Study II) and version 20.0 (Studies I,
III, IV, and V) (SPSS Inc., IBM, IL, USA).

4.5.1 Healthy adults

In Study I, all histogram-, GLCM-, and GLRLM-based features were calculated for each
ROI. The GLCM features were calculated using the distance of one pixel, and GLCM and
GLRLM features were calculated in four directions (6 = 0°,45°,90°, and 135°). The four
directional components of each feature were averaged into one parameter to enhance the
robustness of the method because the exact position of the participants during the MR,
imaging could not be ensured. The same calculations were performed for the phantom
images. The distributions of TA features obtained from MR and random images were
analysed using scatter plots, which were constructed separately for each feature.

4.5.2 Parkinson’s disease

In the baseline study (Study II), all 11 GLCM-based features were considered. The pixel
distances d = 1,2, 3,4, and 5 and the directions 8 = 0°,45°,90°, and 135° were considered;
the parameters calculated in the horizontal (0°) and vertical (90°) directions were treated
as one group, and the parameters calculated in the diagonal directions (45° and 135°) were
treated as another group to examine to direction-dependency of the features. Differences
in texture parameters between the hemispheres in all structures were analysed using the
Mann-Whitney U test.

In the follow-up study (Study III), we selected the GLCM method with two homogeneity
(angular second moment and inverse difference moment) and two complexity (entropy
and difference entropy) features. The features calculated using a pixel distance of one
pixel were considered, and the mean value of the four directional parameters was used in
further analyses. The Mann-Whitney U test was used to evaluate whether the differences
between the brain MR image textures of the baseline PD patients and those of the healthy
controls were statistically significant. Changes in brain structure textures between the
baseline and follow-up patient images were studied using the Wilcoxon signed rank test.
In addition, correlations between changes in clinical scores and MR, image textures were
evaluated using Pearson’s correlation coefficient.

4.5.3 Thigh soft tissues

In Study IV, four GLCM-based features (angular second moment, inverse difference
moment, entropy, and difference entropy) were calculated for each ROIL. All features
were calculated in the horizontal (0°), vertical (90°), and two diagonal (45° and 135°)
directions using a pixel distance of one pixel. The direction dependency of the features
was removed by calculating the mean value of the four directions. The group analyses of
muscles, fat, and bone marrow were performed using the Mann-Whitney test.
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4.5.4 Cerebral infarction

In Study V, four GLCM-based features (angular second moment, inverse difference
moment, entropy, and difference entropy) were used in the analyses. The features were
calculated in the horizontal (0°), vertical (90°), and two diagonal (45° and 135°) directions
using a pixel distance of one pixel. The mean values of the four directions were used in
the analyses. The mean diffusivity (MD) and FA values were calculated pixel-by-pixel
based on the diffusion-weighted images. Differences between the infarcted and unaffected
hemisphere were analysed using the paired t-test, and correlations were calculated using
Pearson’s R test.

4.6 Additional materials and methods

In addition to the published results, this thesis contains unpublished material about MRI
phantoms and ROI definition in the TA procedure. The unpublished analyses were used
to strengthen the published results concerning the methodology of medical MR image
TA.

4.6.1 Magnetic resonance imaging phantoms

Homogeneous MRI phantoms were developed for research purposes at the Department
of Biomedical Engineering at Tampere University of Technology. The phantoms were
manufactured according to earlier paper by Yoshimura et al. (2003). The materials
used for the phantoms were agarose (Sigma-Aldrich Finland Oy, Finland), carrageenan
(Sigma-Aldrich Finland Oy, Finland), gadolinium (III) chloride (GdCl3; Sigma-Aldrich
Finland Oy, Finland), sodium azide (NaN3; Tamro Medlab Oy, Finland), and distilled
water. Six phantoms with differing T2 and T1 relaxation times were produced using 7-80
pmol/kg of GdCl3, 0.2-1.2 % of agarose, and 3 % (fixed) of carrageenan. In addition,
0.03 % of NaN3 was added as an antiseptic. Detailed information regarding the phantom
contents is shown in Table 4.2.

The ingredients were mixed, and water was added to bring the total weight up to 100 g.
The mixture was heated in a water bath at 90° and stirred with a magnetic stirrer (Ikamag,
German) to dissolve the agarose. The mixture was then cooled to room temperature in a
plastic container to solidify it.

The phantoms were imaged using a 3-T device (Siemens TrioTim, Erlangen, Germany)
equipped with a body coil. The sequences used in our study are presented in Table 4.1,
and an example image from the T2-weighted SPACE series is presented in Figure 4.1.

MR images performed with different sequences and with different pixel spacing were
downscaled using Osiris to match the resolution of the largest pixel spacing (0.94/0.94

Table 4.2: Composition of the MRI phantoms.

Phantom  Agarose (g) GdCl3 (mg) Carrageenan (g) NaN3 (g) Water bath (°/min)

1 1.200 2.18 2.998 - 96/6
2 0.599 0.18 3.000 0.030 93/7
3 201 0.20 3.000 0.031 96/7
4 0.596 0.52 2.999 0.031 95/7
5 0.200 0.52 3.000 0.031 95/7
6 1.200 2.11 2.999 0.030 95/11
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Figure 4.1: MRI phantoms imaged using the T2-weighted SPACE sequence.

in SWI). Five of each circular ROI (5, 6, 7, 8, 9, 10, 15, 20, 25, 30, and 35 pixels in
diameter) were then manually located in the phantoms. Histograms and averaged GLCM
and GLRLM features were calculated and analysed together with the results obtained
from Study I.

4.6.2 Intra- and inter-observer variability

Intra- and inter-observer analyses concerning the ROI definition were performed for the
data obtained in Study I. Standard circular ROIs of 15 pixels in diameter and freehand
ROIs were manually placed and drawn on the centrum semiovale area in MR images
of 64 healthy controls. Operator #1 performed the ROI definition twice at a two-week
interval, and Operator #2 performed the ROI definition once. The feature distribution
was analysed with box plots and statistically with Mann-Whitney U test. The ROIs are
specified in Figure 4.2.
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Figure 4.2: ROIs for intra- and inter-observer analyses. Left: a standard circular ROI of 15 x
15 pixels in diameter in the area of the centrum semiovale. Right: a freehand ROI at the same
area.



5 Results

5.1 Information regarding textural features based on MR
images of healthy controls and phantoms

The effect of ROI size on texture features was assessed in Study I. In addition, the
information regarding texture features was evaluated with the following textures: the
centrum semiovale from T2-weighted TSE images of healthy adults (Study I), an artificial
noise image comprising a random distribution of 256 grey levels (Study I), an homogeneous
agarose gel MRI phantom (T2-weighted SPACE images), and air from the TSE series of
healthy adults (Study I). The texture feature values of the MRI phantom imaged with
five different imaging sequences are also presented to evaluate the information content
of the features in MRI TA. Moreover, the intra- and inter-observer variabilities in brain
MRI scans with standard-size and freehand ROIs for each feature were evaluated.

Figures representing all three analyses for each histogram-, GLCM,-, and GLRLM-based
feature are presented in Figures 5.1-5.10. The images in the top row show the feature
values for the following textures as scatter plots: the centrum semiovale of healthy adults
(controls), artificial noise (random), an homogeneous MRI phantom (phantom), and air
(background). The images in the middle row show the feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted
imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted
SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). The images in the bottom row show
box-plots for feature values obtained from standard-size circular ROIs and freehand ROIs
placed on the centrum semiovale on MR images of healthy controls (Study I) by Operator
#1 (twice with two-week interval, grey plots) and Operator #2 (once, white plots).

The top row images are summarised in Table 5.1 where the mean and standard deviation
values for all presented textures are presented; the middle row images are summarised in
Table 5.2 where the mean and standard deviation values for phantom textures based on
different sequences are presented; and the bottom row images are summarised in Table 5.3
where p-values based on Mann-Whitney U test for intra- ans inter-observer analyses
are presented. A summary of all analyses concerning the behaviour of TA features is
presented in Table 5.4.

27
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Figure 5.1: Scatter and box plots illustrating the information content and robustness of
histogram mean and variance. Top: Feature values for the following textures using different ROI
sizes: brain (controls — blue), artificial noise image (random — green), homogeneous MRI phantom
(phantom — purple), and air (background — grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.2: Scatter and box plots illustrating the information content and robustness of
histogram skewness and kurtosis. Top: Feature values for the following textures using different
ROI sizes: brain (controls — blue), artificial noise image (random — green), homogeneous MRI
phantom (phantom — purple), and air (background — grey). Middle: Feature values for the
homogeneous MRI phantom imaged with the following five imaging sequences: susceptibility-
weighted imaging (swi), T1-weighted MPRAGE (t1lmpr), T1-weighted spin echo (tlse), T2-
weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer
variation for two ROI types: standard-size circular ROIs and freehand ROIs placed on the
centrum semiovale. Operator #1 performed the ROI definition twice (grey box plots), and
Operator #2 performed the ROI definition once (white box plots).
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Figure 5.3: Scatter and box plots illustrating the information content and robustness of GLCM
angular second moment and inverse difference moment. Top: Feature values for the following
textures using different ROI sizes: brain (controls — blue), artificial noise image (random —
green), homogeneous MRI phantom (phantom — purple), and air (background — grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.4: Scatter and box plots illustrating the information content and robustness of GLCM
entropy and sum entropy. Top: Feature values for the following textures using different ROI sizes:
brain (controls — blue), artificial noise image (random — green), homogeneous MRI phantom
(phantom — purple), and air (background — grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.5: Scatter and box plots illustrating the information content and robustness of GLCM
difference entropy and contrast. Top: Feature values for the following textures using different ROI
sizes: brain (controls — blue), artificial noise image (random — green), homogeneous MRI phantom
(phantom — purple), and air (background — grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1l-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.6: Scatter and box plots illustrating the information content and robustness of
GLCM correlation and difference variance. Top: Feature values for the following textures
using different ROI sizes: brain (controls — blue), artificial noise image (random — green),
homogeneous MRI phantom (phantom — purple), and air (background — grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.7: Scatter and box plots illustrating the information content and robustness of GLCM
sun variance and sum average. Top: Feature values for the following textures using different ROI
sizes: brain (controls — blue), artificial noise image (random — green), homogeneous MRI phantom
(phantom — purple), and air (background — grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1l-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.8: Scatter and box plots illustrating the information content and robustness of GLCM
sum of squares and GLRLM run-length nonuniformity. Top: Feature values for the following
textures using different ROI sizes: brain (controls — blue), artificial noise image (random —
green), homogeneous MRI phantom (phantom — purple), and air (background — grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (tlse), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.9: Scatter and box plots illustrating the information content and robustness of
GLRLM grey level nonuniformity and long-run emphasis moment. Top: Feature values for
the following textures using different ROI sizes: brain (controls — blue), artificial noise image
(random — green), homogeneous MRI phantom (phantom — purple), and air (background —
grey). Middle: Feature values for the homogeneous MRI phantom imaged with the following
five imaging sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr),
T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf).
Bottom: Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and
freehand ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition
twice (grey box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.10: Scatter and box plots illustrating the information content and robustness of
GLRLM short-sun emphasis inverse moment and fraction. Top: Feature values for the following
textures using different ROI sizes: brain (controls — blue), artificial noise image (random —
green), homogeneous MRI phantom (phantom — purple), and air (background — grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (tlse), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey

box plots), and Operator #2 performed the ROI definition once (white box plots).
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5.1.1 Histogram-based features

Figures 5.1 and 5.2 show that the values of histogram-based features are not dependent on
ROI size. The variance (Figure 5.1), skewness (Figure 5.2), and kurtosis (Figure 5.2) of
the MR image background texture were indistinguishable from other textures. Naturally,
the MRI sequence affects the mean (Figure 5.1) values of homogeneous textures because
this feature is related to single pixels and provides information regarding the overall grey
scale distribution within the ROI. It should be noted that the histogram features are not
normalized in MaZda software.

5.1.2 Grey level co-occurrence matrix-based features

Because GLCM-based features relate to pixel pairs, these features seem to carry informa-
tion about the underlying structure of an image. In particular, features describing the
homogeneity or the complexity of the texture: angular second moment (Figure 5.3), in-
verse difference moment (Figure 5.3), entropy (Figure 5.4), sum entropy (Figure 5.4), and
difference entropy (Figure 5.5) were able to distinguish random and background textures
from MR image textures of the centrum semiovale and homogeneous phantom. Angular
second moment and entropy were also quite robust to the choice of imaging sequence.
However, contrast (Figure 5.5), correlation (Figure 5.6), difference variance (Figure 5.6),
and sum variance (Figure 5.7) did not clearly distinguish the MR image texture from
artificial or background textures and were widely distributed for also homogeneous tex-
tures. Background texture was distinguishable based on sum average (Figure 5.7), but
MR image texture was indistinguishable from artificial noise and phantom textures. All
textures overlapped based on sum of squares (Figure 5.8).

5.1.3 Grey level run-length matrix-based features

The linearly size-dependent features run-length (Figure 5.8) and grey level nonuniformity
(Figure 5.9) were able to separate background and random textures from MR image
textures. The MR image brain texture was also distinguishable from the phantom
texture when using larger ROI sizes. Other GLRLM features (long-run emphasis moment
(Figure 5.9), short-run emphasis inverse moment (Figure 5.10), and fraction (Figure 5.10)
were independent of ROI size. The distributions of brain and phantom textures overlapped
but were different from noise textures, at least when using larger ROIs. Among the
GLRLM features, only run-length nonuniformity produced quite similar values for the
homogeneous phantom texture using different imaging sequences.
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Table 5.1: Mean and standard deviation values for texture features obtained from phantoms
imaged with following textures: brain (controls), artificial noise image (random), homogeneous

MRI phantom (phantom), and air in MRI scan (background).

Feature Controls Random Phantom Background
Histogram mean 266 [49] 129 [11] 193 (2] 7 12]
Histogram variance 370 [330] 5800 [700] 0 [10] 8 [4]
Histogram skewness 0.154 [0.508]  -0.006 [0.182] 0.104 [0 212] 0.509 [0.269]
Histogram kurtosis 0.359 [2.688] -1.024 [0.219] -0.234 [0.265] 0.001 [0.730]

] ] ] ]

GLCM angular second mo-
ment

0.0086 [0.0095

0.0205 [0.0124

0.0099 [0.0098

0.0224 [0.0131

GLCM contrast 2490 [630] 3630 [240] 3560 [420] 3420 [510]
GLCM correlation 0.293 [0.169] -0.005 [0.055] 0.016 [0.096] 0.146 [0.113]
GLCM sum of squares 1780 [110] 1810 [60] 1810 [80] 2010 [160]
GLCM inverse difference mo- 0.031 [0.010] 0.109 [0.023] 0.043 [0.012] 0.123 [0.032]
ment

GLCM sum average 254 (3] 256 (3] 251 (3] 224 [11]
GLCM sum variance 4530 [610] 3600 [210] 3670 [350] 4600 [600]
GLCM sum entropy 1.81 [0.32] 1.48 [0.18] 1.60 [0.22] 1.26 [0.15]
GLCM entropy 2.32 [0.46] 1.81 [0.20] 2.22 [0.40] 1.79 [0.24]
GLCM difference variance 890 [220] 1240 [100] 1220 [120] 1260 [200]
GLCM difference entropy 1.58 [0.21] 1.36 [0.15] 1.41 [0.15] 0.99 [0.12]
GLRLM run-length nonuni- 211 [220] 167 [175] 200 [210] 161 [166]
formity

GLRLM grey level nonunifor- 4.4 [3.5] 21.1 [21.2] 8.6 [7.7] 21.5 [21.8]
mity

GLRLM long-run emphasis 1.06 [0.03] 1.33 [0.08] 1.11 [0.03] 1.39 [0.12]
GLRLM short-run emphasis 0.986 [0.006] 0.929 [0.014] 0.973 [0.007] 0.919 [0.022]
GLRLM fraction 0.982 [0.008] 0.908 [0.019] 0.965 [0.010] 0.894 [0.027]




40

Chapter 5. Results

Table 5.2: Mean and standard deviation values for the homogeneous MRI phantom imaged with
the following five imaging sequences: SWI, T1-weighted MPRAGE (T1MPR), T1-weighted SE
(T1SE), and T2-weighted FLAIR (T2SPCDF). The values from T2-weighted SPACE (T2SPC)
sequence are presented in Table 5.1 (phantom).

Feature SWI T1MPR T1SE T2SPCDF
Histogram mean 390 [3] 502 [3] 1120 [8] 164 [1]
Histogram variance 391 [207] 128 [41] 1240 [1160] 10 [1]
Histogram skewness -2.27 [2.61] -0.12 [0.17] -0.17 [0.13] -0.04 [0.14]
Histogram kurtosis 21.2 [26.7] -0.4 [0.3] -0.9 [0.1] -0.3 [0.4]

GLCM angular second mo-
ment

0.0085 [0.0097]

0.0088 [0.0097]

0.0085 [0.0098]

0.0170 [0.0094]

GLCM contrast 2630 [1004] 2880 [610] 540 [460] 3140 [350]
GLCM correlation 0.112 [0.088] 0.192 [0.159] 0.833 [0.144] 0.143 [0.081]
GLCM sum of squares 1460 [470] 1780 [70] 1660 [50] 1830 [110]
GLCM inverse difference mo- 0.043 [0.007] 0.040 [0.007] 0.067 [0.036] 0.102 [0.012]
ment

GLCM sum average 256 (3] 255 (3] 256 (3] 247 (6]
GLCM sum variance 3210 [970] 4230 [510] 6110 [610] 4190 [400]
GLCM sum entropy 1.79 [0.30] 1.72 [0.26] 1.89 [0.37] 1.34 [0.14]
GLCM entropy 2.32 [0.47] 2.29 [0.45] 2.32 [0.47] 1.91 [0.23]
GLCM difference variance 1030 [330] 1000 [200] 190 [150] 1060 [150]
GLCM difference entropy 1.60 [0.20] 1.48 [0.17] 1.38 [0.14] 1.07 [0.10]
GLRLM run-length nonuni- 210 [229] 205 [221] 202 [206] 169 [182]
formity

GLRLM grey level nonunifor- 4.4 [3.7] 5.7 [4.4] 2.6 [1.6] 17.9 [16.7]
mity

GLRLM long-run emphasis 1.08 [0.02] 1.09 [0.02] 1.08 [0.05] 1.32 [0.06]
GLRLM short-run emphasis 0.980 [0.004] 0.977 [0.004] 0.982 [0.010] 0.935 [0.011]
GLRLM fraction 0.975 [0.005] 0.971 [0.005] 0.976 [0.014] 0.913 [0.014]
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Table 5.3: Mann Whitney U-test p-values for intra- and inter-observer tests. First two columns
show p-values for standard ROI setting compared between Operators #1 and #2; and between the
first and second operating rounds by Operator #1 (with two-week interval). Next two columns
show equal values for freehand ROIs and the last column presents p-values when comparing
standard and freehand ROI setting performed by Operator #1.

Feature Standard Freehand Operator #1
Operator Round #1 Operator Round #1 Standard
#1 vs. #2 vs. #2  #1 vs. #2 vs. #2 vs. freehand
Histogram mean 0.205 0.841 0.299 0.905 <0.001
Histogram variance 0.708 0.617 0.059 0.853 0.930
Histogram skewness 0.046 0.640 0.338 0.905 0.406
Histogram kurtosis 0.834 0.864 0.045 0.517 0.361
GLCM angular second 0.713 0.971 0.001 0.269 0.382
moment
GLCM contrast 0.495 0.992 0.001 0.886 0.062
GLCM correlation 0.590 0.982 <0.001 0.932 0.049
GLCM sum of squares 0.482 0.801 0.281 0.890 0.887
GLCM inverse differ- 0.958 0.692 0.023 0.358 0.503
ence moment
GLCM sum average 0.613 0.032 0.134 0.732 0.005
GLCM sum variance 0.622 0.898 <0.001 0.630 0.039
GLCM sum entropy 0.942 0.624 0.002 0.496 0.215
GLCM entropy 0.773 0.883 <0.001 0.303 0.393
GLCM difference vari- 0.224 0.928 <0.001 0.868 0.046
ance
GLCM difference en- 0.875 0.526 0.793 0.768 0.578
tropy
GLRLM run-length 0.880 0.748 <0.001 0.064 0.274
nonuniformity
GLRLM grey level 0.689 0.989 0.237 0.065 0.981
nonuniformity
GLRLM long-run em- 0.890 0.543 0.732 0.345 0.769
phasis
GLRLM short-run em- 0.979 0.531 0.660 0.253 0.696
phasis

GLRLM fraction 0.875 0.654 0.708 0.301 0.700
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Table 5.4: Summary of TA feature behaviour.

Feature ROI Controls vs. Controls vs. Controls vs. Effect
size random phantom background of imag-
depen- ing se-
dence quence

Histogram mean, GLCM No Overlap Overlap Distinguishable High

sum average

Histogram variance No Distinguishable Overlap Overlap High

Histogram skewness and No Overlap Overlap Overlap Low

kurtosis, GLCM sum of

squares

GLCM entropy Yes Distinguishable Distinguishable Distinguishable Low

GLCM sum entropy, differ-  Yes Distinguishable Distinguishable Distinguishable High

ence entropy

GLCM angular second mo- No Distinguishable Overlap Distinguishable Low

ment

GLCM inverse difference No Distinguishable Overlap Distinguishable High

moment

GLCM contrast, correla- No Overlap Overlap Distinguishable Low

tion, sum variancce, differ-

ence variance

GLRLM run-length nonuni-  Yes Distinguishable Overlap Distinguishable Low

formity

GLRLM grey level nonuni-  Yes Distinguishable Overlap Distinguishable High

formity

GLRLM long-run empasis, No Distinguishable Overlap Overlap High

short-sun emphasis inverse
moments, fraction
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5.2 Textural features in Parkinson’s disease, stroke, and muscle
adaptation studies

A selected set of TA features was applied in Parkinson’s disease, stroke, and muscle
adaptation studies to reveal differences and changes that are invisible to the human eye
in MR images. A summary of the results obtained from Studies II-V is presented in

Table 5.5.

Table 5.5: Summary of TA features used as tools in three different medical applications.

Feature Parkinson’s disease  Exercise-load (Study Cerebral infarction
(Studies II, III) 1Vv) (Study V)
GLCM angu- Differences in the brain  Differences in thigh muscles  Differences between the

lar second mo-
ment

stem and mesencephalon
between PD patients and
controls, changes in the
midbrain during the follow-
up of PD patients, and cor-
relation with clinical scores

and subcutaneous fat tissue
between athletes and con-
trols, robust to slice selec-
tion

ipsilateral and unaffected
sides of the brain at the in-
farction site

GLCM
inverse differ-
ence moment

Differences in the midbrain
between PD patients and
controls, changes in the
midbrain during the follow-
up of PD patients

Differences in thigh mus-
cles, bone marrow, and
subcutaneous fat tissue be-
tween athletes and controls,
robust to slice selection

No differences detected

Differences in the brain
stem and mesencephalon
between PD patients and
controls, changes in the
midbrain during the follow-
up of PD patients, correla-
tion with clinical scores

Differences in thigh muscles
and subcutaneous fat tissue
between athletes and con-
trols, robust to slice selec-
tion

Differences between the
ipsilateral and unaffected
sides of the brain at the in-
farction site and centrum
semiovale

GLCM en-
tropy
GLCM differ-

ence entropy

Differences in the brain
stem, mesencephalon, and
midbrain between PD pa-
tients and controls, changes
in the midbrain during
the follow-up of PD pa-
tients, correlation with clin-
ical scores

Differences in thigh mus-
cles, bone marrow, and
subcutaneous fat tissue be-
tween athletes and controls,
robust to slice selection

Differences between the
ipsilateral and unaffected
sides of the brain at the
infarction site, correlation
with DTI parameters

GLCM
contrast,
correlation,
sum variance,
difference
variance

Interhemispheric dif-
ferences in the brain
stem, mesencephalon and
midbrain of PD patients

Not used

Not used







6 Discussion

In medical imaging, TA can be used to recognise, classify, or segment image patterns, such
as pathological tissue alterations, which can be difficult or impossible to observe by human
visual perception. To apply TA in medical applications, the method should be reliable and
repeatable. In a recent paper, Lerski et al. (2015) provided technical recommendations
regarding the use of TA methodology for muscle MRI. The authors emphasised the
importance of performing a quality assessment of the MR imaging system, careful choice
of the imaging sequence, and normalisation of the obtained MR images. They also stated
that textures should be calculated within ROIs that are larger than 100 pixels, and the
dynamic range of the images should be reduced to six or eight bits. They recommended
considering a wide range of TA methods but advised against the over-interpretation
of the texture data due to the large number of texture features. This thesis continues
this valuable work concerning TA methodology by assessing the information yielded by
different features and by evaluating the effects of MRI sequence and ROI definition on
TA features.

6.1 Information regarding textural features

6.1.1 Histogram-based features

First-order histogram features are capable of identifying textures with different grey level
distributions. Textures with differing mean and variance can often be distinguished by
the human eye as dark or light and smooth or coarse, respectively. However, textures with
differing skewness and kurtosis do not always appear different by visual inspection. Our
results indicated their vulnerability to variations in image intensity. In addition, intra-
and inter-observer variability had little effect on the histogram feature values, although
their value ranges were wide, and they produced many outliers.

6.1.2 Grey level co-occurrence matrix-based features

The GLCM method has been widely utilised in MR image TA. An increasing number
of studies considers the behaviour and results for single TA features instead of using
a set of selected features. Although multivariable analyses may also perform well and
distinguish textures one remains unsure of the capability of single feature. Understanding
the behaviour of single features may aid in the development of more specific analyses in
future studies.

Homogeneity and complexity features have shown promising results in various medical
MRI TA studies. According to our results, the information provided by these features
appears to describe the textural structures of the tissues because the MR image background

45
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barely overlapped with brain textures. The values were, however, dependent on ROI size;
thus, care should be taken when calculating these features within ROIs of different sizes.

Mahmoud-Ghoneim et al. (2006) applied TA as a non-invasive method for muscle MRI
investigation to discriminate three muscle conditions in rats: normal, atrophy, and
regeneration. The authors found that GLCM angular second moment and entropy were
the most discriminative features and demonstrated that despite their different microscopic
scales, gastrocnemius muscle fibres yielded results that were statistically consistent with
histological findings during atrophy and regeneration. In a recent lung cancer study by
Yoon et al. (2016), entropy was the strongest independent predictor of survival in patients
with lung cancer. Entropy also yielded the least inter-observer variability among MR
histogram and texture parameters.

Our Studies IT and IIT concentrated on MR images of patients with symptoms of Parkin-
son’s disease. The value of TA in finding differences between patients and controls,
interhemispheric differences, and longitudinal changes in clinically interesting areas of the
brain was evaluated. Based on earlier studies, we assumed that TA could reveal subtle
changes in the MR images caused by PD that are invisible to the human eye and that
asymmetric changes caused by PD may also be present. MR image textures of patients
with PD and the control group differed in these areas in one or more of the following
features: angular second moment, inverse difference moment, entropy, and difference
entropy. These features were also able to reveal subtle changes in MR image textures
during the 2-year follow-up of the PD patients.

GLCM homogeneity and complexity features were also used in our Study IV, where we
identified differences in MR image textures obtained for thigh soft tissues between various
athlete groups and non-athletes. The adaptation to different exercise loads was associated
with the MR image textures of the thigh muscles, bone marrow, and subcutaneous fat.

In Study V, we compared the textures of specific brain areas along the white matter
tracts in the MR images of right-sided stroke patients. We found that angular second
moment values were lower and that both entropy feature values were higher at the lesion
site compared to the reference area on the left hemisphere. The same trend was found
for the centrum semiovale. These results indicate that the brain tissue texture in the
ipsilateral hemisphere is more heterogeneous and complex than that on the contralateral
side. Thus, damaged tissue might appear more coarse and random in texture compared
to healthy tissue. Similar results were obtained in previous MRI studies of mild brain
injuries (Holli et al., 2010) and epilepsy (Suoranta et al., 2013).

In addition to homogeneity and complexity features, our studies IT and III revealed
interhemispheric differences in the brain stem, mesencephalon, and midbrain areas of
the patients with PD for contrast, correlation, sum variance, and difference variance. Yu
et al. (2015) used histogram-, GLCM-, GLRLM, gradient- and Law’s feature-based TA to
analyse proton density maps to quantify hepatic fibrosis in a murine disease model. The
GLCM features correlation and contrast demonstrated moderate-to-strong correlations
with hepatic fibrosis. According to our results obtained from Study I, these features
were less dependent on ROI size, but the values were widely spread, and the MR, image
brain texture overlapped with artificial, homogeneous, and background textures. These
features were more related to the intensity values of the pixels and were also vulnerable
to differences in image intensity and noise levels. The feature values obtained from the
MR image textures varied over such a wide range that they were most likely influenced
by the image intensity variations. Hence, more uniform image normalisation is needed to
fully benefit from the use of these features.
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Our study I showed that the GLCM features sum of squares and sum average appeared
quite independent of ROI size. However, the values of sum of squares and sum average
that were obtained from the MR images overlapped with the values obtained from the
artificial random texture. Thus, these features might not reveal additional information
regarding the underlying texture in this application.

Based on our results, GLCM features, especially features related to homogeneity and
complexity, appeared robust and applicable to clinical MR image analysis concerning at
least brain and muscles. These features appeared to reveal information about the true
tissue structure. In addition, a phantom study of Mayerhoefer et al. (2009) demonstrated
that GLCM features were superior to features derived from the GLRLM, absolute gradient,
autoregressive model, and wavelets. The GLCM features enabled the discrimination of
different patterns that were close to the resolution limits for the smallest structures of
physical texture and functioned even for datasets that were heterogeneous with regard to
various acquisition parameters, including spatial resolution.

6.1.3 Grey level run-length matrix-based features

Our results showed that the GLRLM features run length nonuniformity and grey level
nonuniformity were quite linearly dependent, whereas short-run emphasis, long-run em-
phasis, and fraction were independent of ROI size. The behaviour of the nonuniformity
parameters originates from the definition of the RLM features because run-length nonuni-
formity squares the number of grey levels for each run length, and grey level nonuniformity
squares the number of run lengths for each grey level. Thus, for a larger ROI, there exist
more runs, and the values of the nonuniformity features were dominated by the ROI size.
All GLRLM features, however, provided clearly differing values for the brain MR image
textures compared to the background and random patterns. The range of the samples
was also relatively compact; therefore, these parameters appear robust and valuable for
various TA studies. Our research group found that GLRLM features were capable of
differentiating between aggressive and indolent lymphomas (Wu et al., 2016). Yang et al.
(2015) demonstrated in their TA study that the neural subtype of glioblastoma was best
predicted by GLRLM features. Thus, GLRLM features are appropriate for medical MR
image TA, provided that the ROI size dependence is acknowledged.

6.2 Texture analysis in the medical environment

6.2.1 Imaging sequences

Essentially, the grey level value of an image pixel is determined by the MRI sequence
used. A wide range of imaging sequences has been used in TA studies, and none has
proven superior. This can be considered as strength of the method. However, our results
in this thesis showed that even homogenous phantom textures produce differing feature
values when imaged with differing MR sequences. Mayerhoefer et al. (2009) showed that
texture features derived from the GLCM, GLRLM, gradient, AR model, and wavelets
were increasingly sensitive to acquisition parameter variations with increasing spatial
resolution of the T2-weighted multislice multiecho images. Nevertheless, provided that
the spatial resolution was sufficiently high, variations in TR and TE had little effect on
the results of pattern discrimination. Moreover, our results showed that some features
are more sensitive to sequence variation than others. For example, GLCM angular second
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moment and GLRLM run-length nonuniformity appeared quite robust to the imaging
sequence choice in our phantom study.

Some studies comparing several sequences for MRI TA have been performed, but the results
vary regarding the best option. A texture-based segmentation method applied by Saeed
et al. functioned equally well when distinguishing whole brain from T1- and T2-weighted,
FLAIR, and angio sequence images. Recently, our group studied the differentiation
of lymphoma types based on T1-weighted pre- and post-contrast enhancement images
and T2-weighted images with and without fat suppression (Wu et al., 2016). The best
classification results were obtained from the T1-weighted post-contrast images. However,
all sequences had advantages and disadvantages.

In practice, medical MRI is often performed according to a clinical protocol that includes
diagnostic sequences. These sequences are usually optimised for use by radiologists, i.e.,
by the human eye. Advanced image analysis methods may reveal the most additional
information based on structural sequences rather than heavily T1- or T2-weighted images.
However, despite the weighting of the sequence, attention should be paid to the signal-
to-noise ratio, acquiring sufficient resolution, and the imaging time. Lerski et al. (2015)
discussed this topic in a review of technical recommendations regarding muscle MR
image TA, in which they also emphasised the relevance of sequence selection for studying
histological variations, which change during, e.g., a muscle disease. The selection of a
suitable MRI sequence, therefore, represents a balance between imaging time, image
quality, and the amount of textural information in the image.

6.2.2 Region of interest definition

The selection of a ROI defines the window within which the features are calculated.
It should represent the tissue or structure of interest while avoiding other tissues and
structures. At the same time, the ROI should contain a sufficient number of pixels for
reliable feature calculation. As usual in signal processing, when observing textures from
regions that are too small, the variation between samples increases. This was also seen in
our studies, especially regarding the GLCM homogeneity and complexity features. On
average, circular ROIs containing less than 100 pixels from different images yielded values
in a wide range. In addition, when using ROIs larger than approximately 200 pixels,
the textural information inside the ROI appeared to be lost in the abundance of pixels.
Neither partial volume pixels nor even whole pixels of surrounding structures (which
inevitably appeared in our example of centrum semiovale, on average, in ROIs larger
than 200-300 pixels in diameter) appeared to have much impact on the feature values.
This raises the question as to whether these GLCM parameters carry specific information
after the saturation point. Hence, according to our results, rather than using a ROI as
large as possible, the ROI should be suited to the structure or area under inspection. In
addition, one should prefer standard ROIs of a fixed size and shape or freehand ROIs of
approximately the same size because ROI size affects the values obtained.

6.2.3 Data analysis and interpretation

As reviewed earlier, hundreds of textural features can be calculated for a single ROI.
This thesis has covered features based on the image histogram, GLCM, and GLRLM.
In addition, several possible methods and features based on these methods exist. The
calculated TA features, similar to all measures, may be analysed in various ways, e.g., as
single feature values or as combinations of texture features and possibly other measures.
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According to our results, the averaged second-order textural features are functional in
medical brain and muscle MR image TA. When the information content of the features is
known, the method may offer valuable additional information that is unobtainable by the
human eye. As already stated, Lerski et al. (2015) advised against the over-interpretation
of the texture data due to large number of texture features. This originates to the fact
that if any two images are classified with several hundreds of features, some features will
inevitably differentiate these textures. However, the clinical relevance will be questionable.
Instead, understanding the properties and limitations of single features will help us
combine the information of texture features and tissue properties.

Not every TA study has to be performed with similar data analysis method, and the
data analysis method should not judge the quality of the research. However, based on
our research work in medical MRI environment, the single feature values and conclusions
based on them seem to be preferred to complex multi-parameter analyses. These results
may not be suitable for generalization because of individual variation, but this thesis
offers tools for popularisation of TA methods.






7 Conclusions

On the basis of this study, we recommend to focus on second-order texture features
that relate to more than one pixel and ensure the use of appropriate preprocessing steps
prior to image analysis (Study I). Our results have shown that all textural features have
limitations regarding the discrimination capacity in medical MR images and dependence
on ROI size and MR imaging parameters. However, despite these limitations, it is possible
to perform quantitative analysis on medical MR images (Studies II-V).

)

Our results demonstrate that histogram parameters are highly dependent on varia-
tions in image contrast and brightness, and provide little additional information
to that obtained by visual inspection. Features based on the GLCM and GLRLM
contain information that cannot be evaluated visually. The size-dependence of
specific features should be noted by standardizing the size and shape of the ROL.

When the technical aspects and limitations of texture features are appropriately
considered, some texture features, such as GLCM homogeneity and complexity
features, have high potential for revealing, for example, tissue pathology. Based on
our results these features could detect textural brain stem and midbrain differences
between PD patients and controls and changes in brain structure textures during
disease progress. These features were also capable of revealing textural differences
between ipsilateral and unaffected sides of the brain on stroke patients and correlated
with DT parameters. In addition, these features were associated with thigh muscle
adaptation to exercise.

The second-order features are more robust to variations in image data than histogram
features. However, care must be taken that the observed differences or changes
originate from the texture rather than from variations in intensity that result from
the technical aspects of MRI.
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Histogram-based features

Mean = Zzlil ip(i)

Variance o? = va:l(z — u)*p(i)
Skewness p3 =03 Zf\/ﬂ(l — 1)*p(i)
Kurtosis pa=0""4 Zf\;(l — p)*p(i) =3

where p(i) is a normalised histogram vector (i.e. histogram whose entries are divided by
the number of pixels within the ROI), i = 1,2,..., Ny and N denotes for the number of
intensity levels in an image.

GLCM-based features

The second-order histogram of an image is defined as the GLCM Pyy(i,j) where d
is the distance in pixels and 6 is the angle between two examined pixels. For given
image f(x,y) with N, discrete grey levels, the GLCM is defined such as the (4, j)th
element equals to the number of times that f(z1,y1) = ¢ and f(22,y2) = j where
(x2,y2) = (z1,y1)+(dcosb,sinf). R(d,0) is the total number of neighbouring pixels within
given ROI; and the (4, j)th element of normalised GLCM is, thus, P(4,5)/R = p(i, 7).

Angular  second f1 = vaqu Z;V:gl p(i, )2

moment
Ny—1 N Ny . .
Contrast fo=020 P00 e 2o P(1, )
Ny <Ny .. /. .
.y s 7 p Z’ —_ .~
Correlation b= Doin 2221 4gp(E, 5) — frapy
T2y
g Ny N, 9 1o
um of squares fa=322 X:j:1(Z — pa)p(i, J)

Inverse difference  fs = Zf\fl Z;V:gl To G- 2P
moment +@-J)

(i,4)
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Sum average fe= Ziv:ql Z;V:ql Doty (4)

Sum variance fr= Zf\;gl ;V:‘ql(l — f6)*Paty(i)
Sum entropy fs=— Ef\fl Paty (1) log (pz+y(l))
Entropy fo= = Yo7 pli, 4)log (p(i, 5))

. , Ny—1,. )
Difference  wvari-  fio = Y15 (i — flo—y)*Pa—y()
ance

, N,— . )
Difference entropy  fi1 =Y _;% 1pz+y(z) log (pm+y(z))

where marginal probability matrices p, (i) = Z;v:gl P(i,7) py(j) = vaqu P(i,7); sum
distribution py4 (k) = ZZI-V:gLZ-H:k Z;V:gl p(i,j), k=2,3,...,2N,; and difference distribu-
tion py—, (k) = sz‘vzgl,\i—j\:k Z;V:gl p(i,7), k=0,1,...,N; — 1. Means (u) and standard
deviations (o) of py, py and pyyy, Pz—y aT€ Uz, [y, Oz, 0y AN Uyty, ey, Toty, oy
respectively.

GLRLM-based features

The elements p(i, j) of GLRLM represent the number of times there is a run of length j
having grey level i. N, denotes for the number of grey levels and NV, for the number of
runs.

Run-length fi2 = (Z;V:H (Zi\[:gl P(iaj))2> /C

nonuniformity

Grey level nonuni-  fi3 = (Zfigl (Ejv;l p(i,j))2> /C
formity

N, Ny .9 /. .
Long-run empha-  fia = (32,2 32527, 7%p(i, 7)) /C
sis moment

Short-run em- fis = (va:g1 Zj\f:rl p(Z,QJ))/C

phasis inverse J
moment

. N, Ny oo
Fraction fi6=C/ 32 3252 gl j)

where C = vazgl Zjvz’l p(i, J)
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The Effect of Region of Interest Size on Textural
Parameters

A study with clinical magnetic resonance images and artificial noise images
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Department of Radiology
Medical Imaging Center and Hospital Pharmacy, Tampere
University Hospital
Tampere, Finland

Abstract—Texture analysis provides quantitative information
describing the properties of a digital image. The value of texture
analysis has been tested in various medical applications, using
mostly magnetic resonance images because of the amount of
information the method is capable to provide. However, there
exists no certain practice to define the region of interest (ROI)
within the texture parameters are calculated. Many parameters
seem to be dependent on the ROI size. We studied the effect of
the ROI size with magnetic resonance head images from 64
hcalthy adults and artificial noisc imagcs. According to our
results, ROI size has a significant effect on the computed value of
several second-order texture features. We conclude that
comparisons of different size ROIs will therefore lead to falsely
optimistic classification between analyzed tissues.

Keywords—texture analysis; region of interest; size; magnetic
resonance imaging; random pattern

L BACKGROUND

Magnectic resonance (MR) images may reveal significantly
more detailed information about the underlying tissue than the
human perception is capable to distinguish. Because of the vast
growth of the acquired information from medical images, the
development of new computer-aided systems has become
increasingly important. Computer vision can, for example, be
used to assist radiologists in focusing their attention on
diagnostically relevant information and to provide quantitative
measures for suspicious regions.

Texture analysis (TA) methods evaluate the spatial location
and signal intensity characteristics of the fundamental
structural elements, pixels, of images. TA allows one to
calculate mathematical patterns i.e. texture features which can
be used to characterize and classify the underlying properties of
tissues [1].

Texture analysis exploits a numerous different methods for
calculating texture parameters. Statistical approaches are
widely used in TA of medical images. They analyze the spatial
distribution of grey values, computing local features at each
point in the image, and deriving a set of statistics from the
distributions of thc local fcaturcs. Most commonly uscd

Minna Siki6, Lara Harrison, Hannu Eskola
Department of Electronics and Communications
Engineering
Tampere University of Technology
Tampere, Finland

features are derived from the histogram, co-occurrence matrix
(COM), and run-length matrix (RLM).

TA has been successfully applied in classification of
various pathological tissues from, for example, the liver [2],
brain [3, 4], breast [5, 6] and tumours with variable locations
such as lymphomas [7]. TA has also been applied in numerous
neurological disorders and neurodegenerative diseases [8-11].
Reports of the utility of TA have been ranging from promising
to good depending on the application, patient material, imaging
methods and other technical factors [12-17]. There are many
factors affecting the calculated texture parameters. Since it is
obvious that MRI scquences, patient material and tissuc under
analysis affect the magnitude of texture parameters we have
now concentrated on studying the factors which might affect
the TA result within the same study question and material.

One essential factor in texture analysis is the region of
interest (ROI) size. In the selection of image ROL one has to
balance between the need to capture appropriate textural
information for classification purposes with the desire to avoid
multiple tissue categories. The ROI size and shape vary greatly
between different studies. Unfortunately, the ROl definition
has not always been accurately specified in all reports.

The aim of our study is to determine the effect of ROI size
on histogram, COM, and RLM-based texture parameters.

II.  MATERIAL AND METHODS

A. Study Population

In total, 64 healthy adults (aged between 20 and 60 years,
mean age 39.0 years, standard deviation 11.7 years, 27 males,
37 females) were recruited for the study. Exclusion criteria
were (i) neurological problems (including abnormalities on
ncuroimaging), (il) psychiatric problems, (iii) history of
traumatic brain injury, (iv) former neurosurgical procedure, (v)
problems with hearing or vision, (vi) first language other than
Finnish, (vii) MRI contraindications, and (viii) refusal to
participate. None of the subjects had significant structural
abnormalities on conventional MRI sequences. The study was
conducted at Tampere University Hospital.



B. Study Images

MR imaging was performed using a 3-T device (Siemens
TrioTim, Erlangen, Germany) with a 12-channel head matrix
coil following a clinical procedure. The sequence used in our
study was axial T2-weighted 2D turbo spin echo with the
following imaging parameters: repetition time 5790 ms, echo
time 109 ms, slice thickness 4.0 mm with gap of 1.2 mm,
matrix size 448 x 326 pixels, field of view 230 mm, and flip
angle 120°. Axial slice representing the centrum semiovale
area was selected from every participant. The particular
location was sclected because of clear anatomical landmarks
and a rclatively wide texturally homogencous arca.

The artificial noise image matrices were generated with
Matlab (MathWorks, Natick, Massachusetts, U.S.A.) and filled
with random pixcl intensity valucs from 0 to 255 with uniform
intensity distribution. The pixcl sizc was sct to match with that
of the real MR images. Examples of both MR and noise images
are presented in Fig. 1.

C. T4

The TA software used in the study was MaZda package
version 4.6 (The Technical University of Lodz, Institute of
Electronics, Lodz, Poland) [18-20]. First, ten of each circular
ROIs of 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, and 35 pixels in
diameter were drawn into various locations of the random
images. The ROI sizes correspond to ROl areas from 21 to 933
pixels. Second, the same ROIs were manually placed on the
right hemisphere centrum semiovale in cvery MR image. The
ROI setting is defined in Fig. 1a-b.

Tn total, four histogram-based (mean, variance, kurtosis,
and skewness), 11 COM-bascd (angular second moment,
contrast, correlation, sum of squares, inverse difference
moment, sum average, sum variance, Sum entropy, entropy,
difference variance, and difference entropy), and five RLM-
based (run-length nonuniformity, grey-level nonuniformity,
short-run emphasis moment, long-run emphasis moment, and
fraction) parameters were calculated for each ROl The COM
parameters were calculated with the distance of one pixel and
both COM and RLM parameters were calculated in four
directions (0°, 45°, 90°, and 135°) using eight bits per pixel.
The four dircctional components of cach parameter were
averaged into one parameter in order to enhance the robustness
of the method because the exact position of the participants
during the MR imaging could not be ensured.

The grey level normalization of cach ROT was performed
using method which normalizes image intensities in the range
[u-36, pt30], where p is the mean grey level value and o the
standard deviation, to minimize the influence of contrast
variation and brightness.

III.  RESULTS

A. Histogram Parameters

An example of the behaviour of the histogram parameters
can be seen in Fig. 2a where mean is plotted against ROl area.
The value of mean does not alter as the ROI size increases. The
behaviour of other histogram parameters is the same which

means they are independent on the ROI size. However, the
value range obtained from the MR images is large.

B. COM Parameters

There are three examples of COM parameters presented in
Fig 2: angular second moment (2b), sum of squares (2c), and
contrast (2d).

Entropy parameters (entropy, sum entropy, and difference
entropy) otherwise follow the behaviour of angular second
moment but their value increases along with the ROI size. After
a particular ROI size the value of these parameters seems to
saturate to a certain level. Inverse difference moment and sum
average follow the behaviour of sum of squares as they all
converge towards a limit. Contrast, correlation, sum variance,
and difference variance arc also quitc indcpendent on the ROT
size but the parameter distribution among MR image textures
from the centrum semiovale area appears very wide.

Fig. 1.

Examples of a magnetic resonance image and regions of interest on
the centrum semiovale (a), zoomed regions of interest of size 5, 20,
and 35 pixels in diameter (b), and artificial noise image with random
pattern (c).
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C. RLM Parameters

Fig. 2 shows the scatter plots of RLM parameters run-
length nonuniformity (2e) and short-run emphasis (2f). Both
run-length  nonuniformity and grey-level nonuniformity
incrcase lincarly along with the ROI size. Instcad, short-sun
emphasis, long-run emphasis, and fiaction are quite
independent on the ROI size.

IV. DiSCUSSION

During the past decade TA has gained a footing in medical
image analysis. Advancements on medical imaging systems
have made it possible to obtain texture information which is
not visible to human perception.

Even though TA has proven to be very promising tool in
medical image analysis [1-17], it still has a numerous pitfalls
and problems. Especially TA of MR images has numerous
matters to consider before applying the method, ranging from
MR image sequences and machinery configurations to the
technical factors of actual textural analysis such as the ROI size
and shape definition. For instance, the effect of ROI definition
is not often properly addressed in TA studies. Therefore our
goal in this study was to determine the effect of ROI size on
histogram, COM, and RLM-based texture parameters.

Histogram parameters are calculated based on single pixel
values and, therefore, their information content is quite simple
and understandable. Our results show that their values are
independent on the ROI size. However, they provide little
additional information to visual inspection of images. Our
results also demonstrate that histogram parameters are highly
dependent on the image contrast and brightness variation and,
therefore, a wide variation in the magnitude of histogram based
texture features between the MR images was observed. The
variation in histogram parameter mean relates to variation in
sensitivity of the MR machine which is patient-specific. There
can be a large intensity variation between the inspected study
images which may be reduced by various normalizing methods
available in MaZda software. The artificial texture made of 256
different grey scale values gives predictable histogram values:
the mean approaches the value 128 as the ROI gets bigger.

Higher-order parameters relate to several pixels: the COM
is a second-order histogram of image intensity and relates to
pixel pairs. Parameters derived from the COM contain
information that cannot be evaluated visually. Our results show
that COM parameters behave in two different ways: they are
cither dependent on the ROT size and approach a certain limit
or quite independent on the ROI size and converge a certain
value as the ROI size increases. Parameters describing the
image homogeneity and complexity (angular second moment,
entropy, sum entropy, and difference entropy) are examples of
parameters that depend on the ROI size, especially with small
ROI sizes, and approach a limit value. There is some variation
within the ROIs of the same size with smaller ROIs but with
bigger ROIs the values of different samples are quite equal. Tn
addition, the sizc of thc ROI becomes insignificant as all
samplcs saturatc to a certain valuc.

As usual in signal processing, when observing textures
from too small regions the variation between samples

increases. This is visible also in our study, especially with the
COM homogeneity and complexity parameters. In average,
with ROIs smaller than 10 pixels in diameter the samples from
different images perform values in wide range. In addition,
with ROIs larger than approximately 15 pixels in diameter the
textural information inside the ROI seems to be lost in the
abundance of pixels. Neither partial volume pixels nor even
whole pixels of surrounding structures, which inevitably
appeared in average in ROIs larger than 20 pixels in diameter,
seem to have much impact on the parameter values. This raises
a question whether these COM parameters carry specific
information after the saturation point. Hence, rather than using
a ROl as large as possible, the ROI should be fitted according
to the structure or area under inspection. In addition, when
comparing COM paramcters, the valucs should be obtained
from ROTs of the same size because the ROT size has an cffect
on the values.

Our study show that COM parameters sum of squares,
inverse difference moment, and sum average appcarcd quitc
independent on the ROI size. However, the values of sum of
squares and sum average obtained from the MR images
overlap with the values from the artificial random texture.
These parameters might, thus, not reveal any additional
information of the underlying texture in this application.
Inverse difference moment describing the uniformity of the
texture inside the ROIL instead, performed differing values
from the MR image and random textures.

Overall, COM and RLM parameters are not so sensitive to
the variation of intensity level between images as histogram
parameters since their calculation is always based on the
relationships of two image pixels, not only the insensitivity
values of single pixels. However, based on our study, there are
also COM parameters that arc clcarly morc rcsponsive to
image quality aspects: contrast, correlation, sum variance, and
difference variance. These parameters are more related to the
intensity values of the pixels and are also vulnerable to
different image intensity and noise levels. The parameter
values obtained from the MR image textures vary in such a
wide scale that they are most likely influenced by the image
intensity variations. More uniform image normalization is
needed in order to fully benefit from these parameters.

Based on our study, RLM parameters run length
nonuniformity and grey level nonuniformity are linearly
dependent whereas short run emphasis, long run emphasis, and

fraction are independent on the ROT size. The linear behaviour

of the nonuniformity parameters is due to the definition of the
RLM features as the run length nonuniformity squares the
number of grey levels for each run length and the grey level
nonuniformity squares the number of run lengths for each grey
level. Thus, for a larger ROI there will be more runs. When the
functions are multiplied by the normalization factor which is
inversely proportional to ROI size, instead of the texture
appearance the values of the nonuniformity parameters are
dominated by thc ROI size. All RLM paramcters, howcver,
provide clearly differing values from the two different test
image sets, MR images and random pattern. The range of the
samples is also relatively compact and, thus, the RLM
parameters seem robust and valuable in various TA studies.



In conclusion, based on our study we recommend (i) to
focus on texture parameters that relate to more than one pixel
or to ensure proper image normalization, (ii) to use standard
ROIs of size selected according to the application, and (iii) to
clearly report the ROI definition and localization in all TA
studies of MR images.
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Parkinson’s Disease:

Interhemispheric Textural Differences in MR Images
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Rationale and Objectives: Early-stage diagnosis of Parkinson’s disease (PD) is essential in making decisions related to treatment and
prognosis. However, there is no specific diagnostic test for the diagnosis of PD. The aim of this study was to evaluate the role of texture
analysis (TA) of magnetic resonance images in detecting subtle changes between the hemispheres in various brain structures in patients
with early symptoms of parkinsonism. In addition, functional TA parameters for detecting textural changes are presented.

Materials and Methods: Fifty-one patients with symptoms of PD and 20 healthy controls were imaged using a 3-T magnetic resonance
device. Co-occurrence matrix-based TA was applied to detect changes in textures between the hemispheres in the following clinically
interesting areas: dentate nucleus, basilar pons, substantia nigra, globus pallidus, thalamus, putamen, caudate nucleus, corona radiata,
and centrum semiovale. The TA results were statistically evaluated using the Mann-Whitney U test.

Results: The results showed interhemispheric textural differences among the patients, especially in the area of basilar pons and midbrain.
Concentrating on this clinically interesting area, the four most discriminant parameters were defined: co-occurrence matrix correlation,
contrast, difference variance, and sum variance. With these parameters, differences were also detected in the dentate nucleus, globus
pallidus, and corona radiata.

Conclusions: On the basis of this study, interhemispheric differences in the magnetic resonance images of patients with PD can be iden-
tified by the means of co-occurrence matrix-based TA. The detected areas correlate with the current pathophysiologic and neuroanatomic

knowledge of PD.

Key Words: Texture analysis; Parkinson’s disease; co-occurrence matrix.
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arkinson’s disease (PD) is a progressive disorder of the

central nervous system. Signs of PD include rest

tremor, bradykinesia, rigidity, and the loss of postural
reflexes (1). There is no specific diagnostic test for PD, and
therefore the disease is diagnosed on the basis of clinical symp-
toms. Early-stage diagnosis of PD or other degenerative causes
of parkinsonism is essential for deciding on treatment and
prognosis, but early-stage disease may be difficult to recognize
because it usually begins subtly. In addition, diagnosis is
complicated because symptoms of other neurologic condi-
tions resemble those of PD.

Acad Radiol 2011; 18:1217-1224

From the Medical Imaging Center (M.S., KK.H., M.R,, P.R., S.S., H.J.E., P.D.)
and the Department of Neurology and Rehabilitation (H.R., I.E.), Teiskontie 35,
PO Box 2000, Tampere University Hospital, FIN-33521 Tampere, Finland; the
Department of Biomedical Engineering, Tampere University of Technology,
Tampere, Finland (M.S., KK H., L.C.V.H., M.R., H.J.E.); Tampere Medical
School (L.C.V.H., R.P., S.S,, l.E., P.D.) and the Tampere School of Public
Health (M.T.H.), University of Tampere, Tampere, Finland; and the Science
Center, Pirkanmaa Hospital District, Tampere, Finland (M.T.H.). Received
February 17, 2011; accepted June 21, 2011. This research was supported
by grants from City of Tampere, the Pirkanmaa Regional Fund of the Finnish
Cultural Science Foundation, and the Finnish Foundation for Technology
Promotion. Address correspondence to: M.S. e-mail: minna.sikio@iki.fi

©AUR, 2011
doi:10.1016/j.acra.2011.06.007

Among other symptoms, PD is characterized pathophysio-
logically by the loss of dopaminergic neurons in the substantia
nigra (SN) pars compacta (2,3). The structure participates in
controlling voluntary movements, and when information
disturbed by the loss
dopamine, the consequences can be seen as symptoms of
PD (1). The identification of the midbrain dopaminergic
regions is useful for evaluating the structural changes associ-
ated with PD (4).

Significant iron accumulation in the area of SN has been

transfer is of neurotransmitter

shown in scveral studies (5-15). However, few changes arc
visible on magnetic resonance (MR) imaging (MRI),
cxcept for narrowed SN pars compacta (3,16). Incrcased
iron levels may also be present in caudate nucleus (14). Results
from the iron deposition studies concerning the putamen and
globus pallidus are conflicting, as controversies exist over
increased (14,15,17,18), decreased (13,19), and unchanged
(8,9) iron levels. Increased deposition of iron leads to the
generation of reactive oxygen, which plays a major role in
cellular damage and ultimate cellular death (10).

Some neuroimaging technologies, for example, diffusion-
weighted MRI and heavily T2-weighted MRI, have
produced promising results in revealing structural changes in
the brain (20,21). There is stll a need, however, for
a method that is capable of identifying tissue changes that
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are not apparent on MR images with visual inspection.
Moreover, both the iron deposition changes and symptoms
of PD are typically asymmetric (21). Asymmetric changes
have previously been associated, for example, with lateral
ventricles (22,23). On the basis of earlier studies, we assume
that asymmetric changes caused by PD may be also present
in other clinically significant regions of the brain.

In this study, texture analysis (TA) was applied to detect
interhemispheric differences in various brain structures.
Textures are features of 1mages, surfaces, and volumes. TA is
used to quantify the spatial distribution and intensity of gray
levels in an image. Medical applications of TA enable, for
example, the classification and analysis of tissue properties
and physiologic and pathologic stages. This quantitative image
analysis method has shown successful results when studying
other neurologic diseases (24-28), brain tumors (29-32),
liver disease (33), breast cancer (34,35), and lymphomas
(36). To the best of our knowledge, there are no published
results concerning the use of TA in PD available at present.

The aim of this novel study was to evaluate the role of TA in
detecting subtle changes in brain structures in early-stage PD.
First, differences in TA results between hemispheres were
evaluated. Second, we concentrated on the clinically inter-
esting midbrain area, and we present functional TA parameters
for detecting changes in these areas. Finally, we compared our
TA results between patients and healthy controls. The TA
method used in this study is based on the co-occurrence
matrix (COM). The co-occurrence method, first introduced
by Haralick (37), has shown promising results (25,38) and also
performs well for the small regions present in this study.

MATERIALS AND METHODS

Patients and Controls

The study was conducted at Tampere University Hospital. In
total, 51 paticnts (age range, 40-86 ycars; mcan age, 67.8 +
11.3 years; 25 men, 26 women) with symptoms of D were
recruited. Patients who had two or more of the following
symptoms were included in the study: resting tremor, brady-
kinesia or hypokinesia, rigidity, or postural instability. The
exclusion criteria were Alzheimer’s disease or other dementia
diagnosed 1 year preceding the study; several general illnesses
such as cardiac, lung, or gastrointestinal disease, liver or kidney
malfunction, active malignant neoplasm, and neurologic or
psychiatric disease; contraindications to MRI; alcohol or
drug addiction; and gravidity. All participants gave written
consent for the study, which was approved by the hospital
ethics committee.

The control group comprised 20 healthy volunteers (age
range, 58—80 years; mean age, 65.7 £ 6.8 years; four men,
16 women) with no earlier diagnoses of neurologic diseases.

MRI

Imaging was performed using a 3-T MRI device (Siemens
TrioTim; Siemens Medical Systems, Erlangen, Germany)
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with a 12-channel head matrix coil following a clinical proce-
dure. The imaged sequences used in the analyses and imaging
parameters for these sequences are presented in Table 1.

Image Selection

Images used in the study were from axial three-dimensional
susceptibility-weighted imaging (SWI) and T2-weighted
three-dimensional sampling perfection with application-
optimized contrasts using different flip-angle evolutions
(SPACE) series. Example slices from both sequences can be
seen in Figure 1. For TA, seven axial slices were selected
from every patient and healthy control. Image levels were
chosen to represent the clinically significant regions of the
brain in PD. Image selection was performed with the Digital
Imaging and Communications in Medicine viewer Osiris
version 4.19 for Windows (The Digital Imaging Unit of the
Service for Medical Computing of the Radiology Depart-
ment of the University Hospital of Geneva, Geneva,
Switzerland).

Region of Interest (ROI) Localization

ROIs were manually placed on the dentate nucleus, basilar
pons, SN pars reticulata, SN pars compacta, red nucleus,
globus pallidus, putamen, anterior and posterior thalamus,
caudate nucleus, anterior and posterior corona radiata, and
anterior, medial, and posterior centrum semiovale on both
hemispheres. Anatomic levels and ROIs placed on different
image levels can be seen in Figure 2. The ROIs are specified
in Table 2. The ROIs were circular and 5 x 5 pixels (SN
pars compacta and corona radiata), 8 X 8 pixels (dentate
nucleus, SN pars reticulata, and red nucleus), 10 x 10 pixels
(putamen, globus pallidus, thalamus, caudatc nucleus, and
centrum semiovale), and 15 X 15 pixels (basilar pons) in
size. ROT localization was performed by an operator (M.S.)
under the supervision of an experienced radiologist (PD.).

TA

TA for the Digital Imaging and Communications in Medicine
images was performed with MaZda version 4.6 (39). In this
study, only the COM-based parameters were considered.
The 11 COM parameters calculated for all ROIs were as
follows: angular second moment, contrast, correlation, differ-
ence entropy, difference variance, entropy, inverse difference
moment, sum average, sum entropy, sum of squares, and sum
variance. In MaZda, the pixel distances d = 1, 2, 3, 4, and 5
and directions @ = 0°, 45°, 90°, and 135° arc considered. In
this study, we treated parameters calculated in horizontal (0°)
and vertical (90°) directions as one group and parameters calcu-
lated in diagonal directions (45° and 135°) as another group.
To minimize the influence of contrast variation and bright-
ness, the images were normalized using a method that
normalizes the image gray levels between [u — 30, u + 30,
where u is the mean gray level and o is the standard deviation.
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TABLE 1. MRI Sequences and Imaging Parameters for Patients and Controls at 3 T

Slice Thickness (mm)/

Sequence TR(ms) TE(ms) TI(ms) Slice Gap (mm) Matrix Size (Pixels) FOV (mm) Flip Angle (°)
Axial T2-weighted SPACE 3200 354 — 3.0/0 384 x 290 230 120
Axial 3D SWI 27 20 — 1.5/0 256 x 128 230 15

FOV, field of view; MRI, magnetic resonance imaging; SPACE, sampling perfection with application-optimized contrasts using different flip-
angle evolutions; SWI, susceptibility-weighted imaging; TE, echo time; Tl, inversion time; TR, repetition time.

Figure 1. Difference between susceptibility-weighted imaging
(SWI) and sampling perfection with application-optimized contrasts
using different flip-angle evolutions (SPACE) sequences. Example
slices from (a) three-dimensional SWI and (b) T2-weighted three-
dimensional SPACE series.

Among different normalization methods, this method has
been shown to producc the best results in MRT TA tasks (40).

Statistical Analysis

Statistical analyses were run for texture features using SPSS for
Windows version 14.0.2 (SPSS, Inc, Chicago, IL). Because
ROI size varied from 5 X 5 to 15 x 15 pixels depending on
the structure examined, reliable distances for parameter calcu-
lation were defined for all ROI sizes. For ROIs at sizes of 5 X 5
pixels, parameters calculated in horizontal and vertical direc-
tions with pixel distances d = 1 and 2 and parameters calcu-
lated in diagonal directions with pixel distance d = 1 were
considered reliable. For ROIs at sizes of 8 X 8 pixels, all
paramcters in horizontal and vertical dircctions and parame-
ters with pixel distance d = 1, 2, and 3 in diagonal directions
were included. For ROIs at sizes of 10 X 10 and 15 x 15
pixels, all features were analyzed. Differences in texture
paramcters between  hemispheres in - all  structurces  were
analyzed using the Mann-Whitney U test. P values < .01
were considered statistically significant.

RESULTS

Textural Differences Between Hemispheres Using All
COM Parameters

First, all COM-based texture parameters were tested to find
out if there were differences between the hemispheres in

the selected structures. We searched for regions with signifi-
cant differences in texture parameters. The analyzed struc-
tures, the number of tested parameters, and a symbol
describing the relation of significant P values (P < .01) to all
tested parameters for patients are presented in Table 3. The
parameters were examined in two groups: parameters calcu-
lated in horizontal and vertical directions (0° and 90°) and
parameters calculated in diagonal directions (45° and 135°).
The results are presented with a threshold value of 40%.
With this value, we were able to differentiate the structures
with a large and little amount of significant parameters.
Concurrently, we could eliminate the structures with inci-
dental differences.

In horizontal and vertical directions, no area with =40% of
significant P values was found. With parameters calculated in
diagonal directions, one common area, the SN pars compacta,
was found from both sequences. In addition, in SPACE
images, the basilar pons and caudate nucleus and in SWI,
the thalamus anterior showed >40% of significant P values
among all P values calculated from the parameters. In healthy
controls, one area, the caudate nucleus, met this requirement,
with parameters calculated in diagonal directions in SPACE
images.

TA Results From Clinically Significant Areas in Patient
Images

Second, we considered the most interesting areas in PD (the
SN and midbrain) and searched for functional parameters in
finding interthemispheric differences in these areas among
patients. We examined all COM-based parameters separately
to find out if there were major differences in the discrimina-
tion capacity between the parameters. Again, most of the
significant ditterences were found in the diagonal directions.
Therefore, only the diagonal directions were considered in
this analysis. Among all COM parameters, four parameters
were distinguished: correlation, contrast, difference variance,
and sum variance. Analysis results with these parameters for
patients are shown in Table 4. The analyzed areas, number
of tested parameters, and a symbol describing the relation of
significant P values (P < 0.01) to all tested parameters are
presented.

Using the SPACE sequence, all four parameters showed
significant differences between the hemispheres in the areas
of basilar pons, SN pars compacta, thalamus anterior, and
caudate nucleus. In addition, three of the four parameters
had >40% significant P values in the dentate nucleus and
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Figure 2.

Image levels and regions of interest (ROIs). Specific ROI definitions can be found in Table 2. (a) Level 1, dentate nucleus; (b) level 2,
basilar pons; (c) level 3, substantia nigra; (d) magnification of level 3; (e) level 4, putamen, globus pallidus, thalamus anterior and posterior; (f)
level 5, caudate nucleus; (g) level 6, corona radiata; (h) level 7, centrum semiovale.

TABLE 2. Image Levels and ROIs

Level ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 RO17 ROI 8
Axial 1 Dentate Dentate
nucleus dex nucleus sin
Axial 2 Basilar Basilar
pons dex pons sin
Axial 3 SN pars SN pars SN pars SN pars Red nucleus Red nucleus
reticulata dex reticulata sin compacta dex compacta sin dex sin
Axial 4 Putamen dex Putamen sin Globus Globus pallidus Thalamus ant Thalamus Thalamus  Thalamus
pallidus dex sin dex ant sin post dex post sin
Axial 5 Caudate Caudate
nucleus dex nucleus sin
Axial 6 Coronaradiata Coronaradiata Coronaradiata  Corona radiata
ant dex ant sin post dex post sin
Axial 7 Centrum Centrum Centrum Centrum Centrum Centrum
semiovale semiovale semiovale semiovale semiovale semiovale
ant dex ant sin med dex med sin post dex post sin

Ant, anterior; dex, dexter; post, posterior; ROI, region of interest; sin, sinister; SN, substantia nigra.

globus pallidus and two of the four in the SN pars

reticulata.

‘When using the SWI sequence, >40% significant difter-
ences between the hemispheres with all four parameters

1220

were found in the SN pars reticulata, thalamus anterior, and

corona radiata posterior. Three of the four parameters quali-

ficd the terms in the arcas of the SN pars compacta and red
nucleus and two of the four in the basilar pons.
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TABLE 3. Occurrence of Significant P Values (P < .01) When Comparing Tissues Between Hemispheres Using COM Parameters

Calculated in Different Directions Among Patients (n = 51)

SPACE

SWI

Horizontal and Vertical

Diagonals

Horizontal and Vertical Diagonals

Occurrence of

Occurrence of

Occurrence of

Significant Significant Occurrence of Significant Significant
Structure n P Values n P Values n P Values n P Values
Dentate nucleus 110 O 66 O 110 @] 66 ©)
Basilar pons 110 @] 110 [ ] 110 O 110 O
SN pars reticulata 44 O 66 O 110 @] 66 O
SN pars compacta 110 @] 22 [ ] 44 (@) 22 [ ]
Red nucleus 110 @] 66 @] 110 (@) 66 O
Putamen 110 O 110 O 110 O 110 @)
Globus pallidus 110 O 110 O 110 O 110 O
Thalamus ant 110 O 110 O 110 O 110 [ J
Thalamus post 110 @] 110 @] 110 (@] 110 O
Caudate nucleus 110 O 110 [ ] 110 O 110 @]
Corona radiata ant 44 @] 22 @] 44 (@] 22 O
Corona radiata post 44 O 22 O 44 O 22 O
Centrum semiovale ant 110 @] 110 @] 110 (@] 110 O
Centrum semiovale med 110 O 110 ®) 110 @) 110 O
Centrum semiovale post 110 O 110 O 110 (@] 110 (@)

In structures marked with black circles (@), =40% of the evaluated parameters had P values < .01. White circles (O) indicate that <40% of the

parameters showed significant changes in the region.

Ant, anterior; co-occurrence matrix; n, number of analyzed texture parameters; post, posterior; SN, substantia nigra; SPACE, sampling perfec-
tion with application-optimized contrasts using different flip-angle evolutions; SWI, susceptibility-weighted imaging.

TA Results From the Control Group Using the Four Most
Discriminative Parameters

We analyzed the control group with the same paramcters that
proved discriminative among patients. The results are shown
in Table 5. The analyzed arcas, number of tested paramcters,
and a symbol describing the relation of significant P values
(P < .01) to all tested paramcters arc presented. Again, only
diagonal directions were considered because no significant
changes were detected in other directions.

In the control group, >40% of P values were significant in
the areas of the basilar pons, SN pars compacta, and caudate
nucleus with all four parameters when analyzing SPACE
images. COM correlation and sum variance showed signifi-
cant differences also in the corona radiata posterior and
COM contrast in the dentate nucleus. In susceptibility-
weighted images, >40% of all P valucs were found significant
in the SN pars compacta with all four parameters and in thal-
amus antcrior with threc paramcters. In addition, COM
contrast showed differences in SN pars compacta and thalamus
posterior.

DISCUSSION

Patients with symptoms of PD underwent MR studies, and
clinically interesting areas of the brain were analyzed from
the 1mages by means of TA. As a quantitative 1mage analysis
method, TA may provide additional information to the visual

inspection of the MR images. The textures of MIX images
contain a large amount of microscopic information concern-
ing tissuc propertics and changes in them. We detected
textural differences between hemispheres in areas specific to
PD and cvaluated functional paramcters in finding thesc
changes.

TA has been proved to extract valuable information from
MR images of the brain. Previous studies have considered
Alzhcimer’s discasc (20), brain tumors (29,30), multiple
sclerosis (24,28,41), brain infarctions (42), and brain injuries
(43,44). Our research group has also successfully applied TA
in breast cancer (34) and lymphoma (36) studies.

PD associated with pathophysiologic notifications and
complementary tissue characteristics such as volume atrophy,
iron deposition, and microstructural damage can be analyzed
on MRI using segmentation, volumetry, SWI or gradient-
echo sequences, and diffusion tensor imaging (DTI). The
combination of these three markers is sufficient to discrimi-
nate between patients with PD from controls (45), and
difterent MR biomarkers create a new perspective with which
to investigate pathologic changes, disease progression, and the
long-term impact of anti-PD medications.

In our study, the COM-based changes in the texture param-
eters of various brain structures between hemispheres in
patients with symptoms of PD and healthy controls were eval-
uated. On the basis of our analyses with all COM parameters,
significant changes between hemispheres were detected in the
basilar pons, SN pars compacta, and caudate nucleus by means
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TABLE 4. Occurrence of Significant P Values (P < .01) When Comparing Tissues Between Hemispheres Using Selected COM
Parameters Calculated in Diagonal Directions Among Patients (n = 51)

SPACE Swi

Occurrence of Significant P Values

Difference Sum Difference Sum

Structure n Correlation  Contrast Variance Variance Correlation Contrast Variance Variance
Dentate nucleus 6 [ J [ J [ J @] O @] O O
Basilar pons 10 [ ] [ ] [ ] [ o [

SN pars reticulata 6 [ ] [ ] (@] (@) [ ] [ ] [ J [ J
SN pars compacta 2 [ J [} [} [ ] [} O [ J [ J
Red nucleus 6 O (@] (@] @] [ J [ ] O [ J
Putamen 10 O (@] (@] @] O @] O O
Globus pallidus 10 [ ] [ ] (@] [ ] (@] @] O O
Thalamus ant 10 [ ] [ ] [ ] [ ] [ J [ ] [ J [ J
Thalamus post 10 O O O O O @] O O
Caudate nucleus 10 [ ] [ J [ J [ ] O @] O O
Corona radiata ant 2 O O O @] O (@] O O
Corona radiata post 2 @] (@] (@] O [ ] [ ] [ J [ J
Centrum semiovale ant 10 @] (@] O @] O @] O @)
Centrum semiovale med 10 @] O O @] O @] O O
Centrum semiovale post 10 O O O @] O O ©) @)

In structures marked with black circles (@), =40% of the evaluated parameters had P values < .01. White circles (O) indicate that <40% of the
parameters showed significant changes in the region.

Ant, anterior; co-occurrence matrix; n, number of analyzed texture parameters; post, posterior; SN, substantia nigra; SPACE, sampling
perfection with application-optimized contrasts using different flip-angle evolutions; SWI, susceptibility-weighted imaging.

TABLE 5. Occurrence of Significant P Values (P < .01) When Comparing Tissues Between Hemispheres Using Selected COM
Parameters Calculated in Diagonal Directions Among Healthy Controls (n = 20)

SPACE Swi

Occurrence of Significant P Values

Difference Sum Difference Sum
Structure n  Correlation Contrast Variance Variance  Correlation  Contrast Variance Variance
Dentate nucleus 6 O o O O O O @] O
Basilar pons 10 o [ ) [ ] [ ] (@] O @] O
SN pars reticulata 6 O O O (@] (@] [ J @] O
SN pars compacta 2 [ J [ J [ ] [ ] [ ] [ J [ ] [ J
Red nucleus 6 O O O O O O @] O
Putamen 10 O O @] (@] O O @] O
Globus pallidus 10 @] @] ®) @) @) @) @] O
Thalamus ant 10 O @] O O [ J [ J [ ] O
Thalamus post 10 @] @] O O O [ J O @)
Caudate nucleus 10 [ [} [ [ ] o @) O @)
Corona radiata ant 2 @] @] ©) @) @) @) O o
Corona radiata post 2 [ ] @] O [} O @) O @)
Centrum semiovale ant 10 (@) (@) @] O O O @] O
Centrum semiovale med 10 O O @] O O O @] O
Centrum semiovale post 10 (@) (@) @] (@] (@] O @] O

In structures marked with black circles (@), =40% of the evaluated parameters had P values < .01. White circles (O) indicate that <40% of the
parameters showed significant changes in the region.

Ant, anterior; co-occurrence matrix; n, number of analyzed texture parameters; post, posterior; SN, substantia nigra; SPACE, sampling perfec-
tion with application-optimized contrasts using different flip-angle evolutions; SWI, susceptibility-weighted imaging.

of TA in patient images using the 3D SPACE sequence. In ingly, the only noticeable differences were in diagonal param-
susceptibility-weighted images of patients, most changes were cter calculation directions. The direction dependence may
found in the SN pars compacta and thalamus anterior. Interest- originate from the directions of the brain tracts visible on DTT.
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TEXTURE ANALYSIS IN PARKINSON’S DISEASE

Only one area, the caudate nucleus, in SPACE images met
our criteria of significant difterences in brain textures between
hemispheres in the control group with all COM parameters.
This encourages us to believe that the detected interhemi-
spheric differences among patients might be due to PD.

When using the four most discriminative COM parameters
calculated in diagonal directions, some additional areas to
those found with all parameters were detected in patient
images. The basilar pons, SN pars reticulata, SN pars com-
pacta, and thalamus anterior were common structures for
both sequences. In SPACE images, also the dentate nucleus,
globus pallidus, and caudate nucleus had >40% of significant
differences between the hemispheres. Areas detected only
on SWT were the red nucleus and corona radiata posterior.

Areas with the most detectable differences are in line with
carlier studies concerning iron deposition transitions, as
textural tissue differences were found in the SN (5-13),
globus pallidus (10,13.15,17), and caudate nucleus (14).
Moreover, the thalamus has also been associated with PD by
changes in neuronal firing rates (46,47). The detected areas
also represent the structures that are involved in the
pathophysiology of PD (48).

Unlike with the analysis using all COM parameters, when
considering the four most discriminative ones, changes were
also detectable among the control group. Most of the signifi-
cant differences between the hemispheres were found in the
area of the SN pars compacta. These differences may originate
from dopaminergic neuronal loss that is also seen in normal
aging. However, the loss is less severe and concerns different
subpopulations of neurons than in PD (49,50).

The most differing areas between patients and controls
proved to be the globus pallidus and thalamus anterior in
SPACE image series and the SN pars reticulata, red nucleus,
and corona radiata in susceptibility-weighted images. The
difference between the two sequences in the differentiation
of various anatomic structures is based on the property of
the sequence in detecting the mineral deposition in the gray
matter areas. On T2 SPACE sequences, as previously
mentioned in the literature, the differentiation between the
white and gray matter areas is the most optimal of all
sequences. Therefore, the above-mentioned structures are
well delineated on T2 SPACE sequences. The property of
the SWI sequence in differentiating the iron or mineral depo-
sition in various gray matter structures is the reason the SN
pars compacta and red nucleus are best differentiated with
SWI. These structures also represent the areas where the
maximal deposition of iron or mineral occurs in PD.

The limitations of our study were the relatively small study
group and the fact that symptoms of PD may originate from
various neurologic stages. However, we detected considerably
more interhemispheric differences in the patient group than
among the healthy controls. Therefore, it can be assumed
that most of the texture changes detected between the hemi-
spheres are caused by PD.

Future studies at 7 T, in which optimized SWI data are
combined with gradient-echo sequences, may provide further

improvements in accurately delineating these dopaminergic
regions in the midbrain (4). The next step in our project is
to compare our TA results with clinical information, DTI,
and volumetry results and conduct a 2-year follow-up for all
patients.

CONCLUSIONS

On the basis of our study, interhemispheric differences in the
MR images of patients with PD can be found by means of’
COM-based TA. Textural differences appear in clinically
significant structures, the dentate nucleus, basilar pons, SN,
globus pallidus, thalamus, caudate nucleus, and corona radiata.
Among these areas, only the caudate nucleus met our criteria
for significant differences among healthy controls when
analyzed with all COM parameters.

We also defined the four most discriminative textural
features in detecting changes in the midbrain area. When
using the parameters COM correlation, contrast, sum vari-
ance, and difference variance, differences were also present
in the control group, most in the basilar pons, SN pars com-
pacta, and cauadate nucleus. On the basis of our results, there
are more areas with interhemispheric differences in the brains
of patients with PD than in the brains of healthy controls. The
areas with several significant differences follow the brain tracks
vulnerable to PD (5-15,17).

Our findings on TA are similar to those of earlier studies on
volumetry, iron deposition analyses, and DTT analyses. Our
forthcoming studies include comparison of TA to the above-
mentioned modalities. In future, there is a possibility that
TA characterization of PD will act as an additional comple-
mentary examination to access the progression of the disease.
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Abstract

Background: Few of the structural changes caused by Parkinson’s disease (PD) are visible in magnetic resonance
imaging (MRI) with visual inspection but there is a need for a method capable of observing the changes beyond the
human eye. Texture analysis offers a technique that enables the quantification of the image gray-level patterns.
Purpose: To investigate the value of quantitative image texture analysis method in diagnosis and follow-up of PD
patients.

Material and Methods: Twenty-six PD patients underwent MRI at baseline and after 2 years of follow-up. Four
co-occurrence matrix-based texture parameters, describing the image homogeneity and complexity, were calculated
within clinically interesting areas of the brain. In addition, correlations with clinical characteristics (Unified Parkinson’s
Disease Ranking Scales I-lll and Mini-Mental State Examination score) along with a comparison to healthy controls were
evaluated.

Results: Patients at baseline and healthy volunteers differed in their brain MR image textures mostly in the areas of
substantia nigra pars compacta, dentate nucleus, and basilar pons. During the 2-year follow-up of the patients, textural
differences appeared mainly in thalamus and corona radiata. Texture parameters in all the above mentioned areas were
also found to be significantly related to clinical scores describing the severity of PD.

Conclusion: Texture analysis offers a quantitative method for detecting structural changes in brain MR images.
However, the protocol and repeatability of the method must be enhanced before possible clinical use.

Keywords
Parkinson’s disease, magnetic resonance imaging (MRI), texture analysis, image analysis, follow-up
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Introduction

Parkinson’s disease (PD) is a degenerative disorder of
the central nervous system. Pathophysiologically, PD is
characterized by the loss of dopaminergic neurons in
the basal ganglia in which the most seriously affected
brain area is the substantia nigra (SN) pars compacta
(1). Changes in brain pathology caused by PD have
also been reported in areas of thalami (2,3), caudate
nucleus (4), putamen, and globus pallidus (4-9).

The identification of the midbrain dopaminergic
regions is essential also when evaluating the structural
changes associated with PD (10). Magnetic resonance
imaging (MRI) has revealed narrowing in SN pars
compacta (11,12), progressive ventricular enlargement
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(13,14), and shape changes in the thalami (15). In a
longitudinal MRI study, voxel-based morphometry
analysis revealed a significant loss in gray matter
volume during 2 years of follow-up (16). However,
during a 1.4-year follow-up, the morphology method
showed no significant progression of brain atrophy in
PD patients (17).

Few of the structural changes are visible in MR
images with visual inspection. Diffusion-weighted and
heavily T2-weighted (T2W) MRI have produced pro-
mising results in revealing brain structure changes (18)
but there is also need for a method capable of observing
the invisible changes for the human eye. In addition to
morphometry and shape analysis, texture analysis (TA)
may be applied. TA refers to mathematical methods
that describe the gray-level dependence between the
image pixels. Texture parameters are used to character-
ize the underlying structures of the observed tissues.
The hypothesis of TA is that by studying the gray-
level transitions in medical images, we are able to
extract textural features that characterize the pathology
or the disease process of interest. In earlier studies con-
cerning brain MR image texture TA has been proved,
for example, to characterize brain tumors (19) and to
discriminate between active and non-active lesions of
multiple sclerosis patients (20). The co-occurrence
matrix method (21) has proved useful for several clin-
ical study materials and performs well for small regions
present also in this study.

In our previous study, increased amount of inter-
hemispheric textural differences in MR images of PD
patients compared to controls were detected (22).
However, to the best of our knowledge, no studies con-
cerning the longitudinal textural changes caused by PD
exist. Thus, we applied co-occurrence matrix-based TA
method to study the possible MR image texture
changes in vulnerable brain structures during a 2-year
follow-up and compared the patients to a group of
healthy controls. In addition, we evaluated the correl-
ations between co-occurrence based TA parameters and
clinical scores including the Unifled Parkinson’s
Disease Ranking Scales (UPRDS) I-1III measuring the
severity of PD and Mini-Mental State Examination
(MMSE) score estimating the severity of cognitive
impairment.

Material and Methods
Patients and controls

At baseline, 51 patients with two or more of the follow-
ing symptoms were recruited for the study: resting
tremor, bradykinesia or hypokinesia, muscle stiffness,
or postural instability. The exclusion criteria were
Alzheimer’s disease or other dementia, cerebrovascular

attack, several general illnesses such as cardiac, lung or
gastrointestinal disease, liver or kidney malfunction,
active malignant neoplasm, neurological or psychiatric
disease, contraindications for MRI, alcohol or drug
addiction, and gravidity. Among the patients with diag-
nosed PD, 26 patients (age range, 42-85 years; mean
age, 68.1£10.4SD years; 13 men, 13 women) were
selected for this longitudinal study (Table 1).

The control group consisted of 19 healthy volunteers
(age range, 58-80 years; mean age, 65.0 years + 6.1 SD
years; 4 men, 15 women) with similar exclusion criteria
to the patient group and was matched by years of edu-
cation. All participants gave their written consent for
the study that was conducted at Tampere University
Hospital and approved by the Pirkanmaa Hospital
District Ethics Committee.

Clinical examinations

Clinical assessment was performed to patients both at
the baseline and follow-up (Table 1). The Unified
Parkinson’s Disease Rating Scales (UPDRS) I, II,
and 111 were established: UPDRS-1 evaluates the men-
tation, behavior, and mood; UPDRS-II is a self-evalu-
ated measure of the activities of daily living; and
UPDRS-III is a clinician-scored motor examination.
The Mini-Mental State Examination (MMSE) was
used to estimate the severity of cognitive impairment
and exclude dementia and Alzheimer’s disease.

MRI

Imaging was performed using a 3-T MRI device
(Siemens Trio, A Tim System, Siemens Healthcare
Sector, Erlangen, Germany) with a 12-channel head
matrix coil following a clinical procedure. From the
imaging protocol, the images from the T2W three-
dimensional (3D) sampling perfection with applica-
tion-optimized contrasts using different flip angle
evolution (SPACE) series was used in this study
(Table 2). Baseline and follow-up MRI was performed
with a time delay of 25.0 & 1.5 months in PD patients.

Image levels of interest were selected with a DICOM
image viewer Osiris (Windows version 4.19, The Digital
Imaging Unit of the Service for Medical Computing of
the Radiology Department of the University Hospital
of Geneva, Switzerland) (Fig. 1). The selection was per-
formed on the basis of appropriate landmarks in brain
structures.

Image analysis

Regions of interest (ROIs) were the following clinically
interesting brain structures: dentate nucleus, basilar
pons, SN pars compacta, red nucleus, globus pallidus,

Downloaded from acr.sagepub.com at Tampere Univ. Library on April 28, 2016



Sikio et al.

99

Table |. Patient characteristics.

Baseline Follow-up

Age (years) Sex UPDRS-| UPDRS-II UPDRS-II MMSE UPDRS-I UPDRS-II UPDRS-III MMSE
58 M 2 2 12 30 2 7 - 29
80 F 3 7 32 27 3 8 30 27
52 F 3 5 14 30 4 5 22 29
68 F | 3 21 28 - - - 28
73 M 0 I 12 26 2 10 15 29
85 M 2 14 36 26 3 30 45 26
69 F 2 2 15 30 | 3 7 29
84 F 2 5 21 29 2 7 26 28
66 M | | 14 27 0 | 17 27
80 F 4 7 20 29 2 4 12 26
62 F | | 14 30 | 3 22 29
66 M 3 14 27 25 7 10 20 24
42 F 2 21 25 28 4 10 24 27
76 F 2 9 25 29 2 9 25 29
54 M | 4 15 30 | 4 27 28
60 M 4 0 21 29 3 21 32 30
72 F 2 7 20 27 - - - -
60 M 6 I 35 27 2 5 17 28
77 M | 5 35 28 | 4 41 24
71 F 0 3 19 30 3 4 23 28
6l M 2 2 30 27 2 5 33 27
77 M 3 14 26 21 - 23 15 15
63 F 2 2 21 25 - 4 30 27
74 F 3 4 9 29 2 5 19 29
75 M 4 5 13 27 - - 8 -
62 M 3 3 17 29 - - 14 28
MMSE, Mini-Mental State Examination; UPDRS, Unified Parkinson's Disease Rating Scale.
Table 2. MR image sequences and acquisition parameters.

TR TE Tl Slice/gap Matrix FOV Flip
Sequence (ms) (ms) (ms) (mm/mm) size (pixels) (mm) angle (°)
Axial T2W SPACE 3200 354 - 3.0/0 384 x 290 75 120
Axial T2W 3D FLAIR SPACE 6000 383 2100 3.0/0 256 x 194 75 120
Axial 3D SWI 27 20 - 1.5/0 256 x 128 75 15
Axial parametric T2*/(Maplt) 422 25.6 - 4.0/4.8 384 x 384 100 60
Axial MDDW EPI 20dir (b=0, b= 1000) 5100 94 - 3.0/3.9 128 x 128 100 90
Axial TIW SE 600 6.8 - 4.0/5.2 320 x 245 90 90
Sagittal 3D TIW MPRAGE 1900 24 900 1.0/0 256 x 246 100 9

EPI, echo planar imaging; FLAIR, fluid attenuated inversion recovery; FOV, field of view; MDDW, multi-directional diffusion weighting; MPRAGE,
magnetization prepared rapid gradient echo; SE, spin echo; SPACE, sampling perfection with application optimized contrast using different flip-angle

evolution; SWI, susceptibility weighted imaging; TIW, T I-weighted; TE, echo time; Tl, inversion time; TR, repetition time.
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Fig. 1. Image levels. Visualization of MR image levels (a—g) and regions of interest. The regions of interest are marked with numbers

and specified in Table 3.

putamen, anterior and posterior thalamus, caudate
nucleus, anterior and posterior corona radiata, and
anterior, medial, and posterior centrum semiovale
(Fig. 1; Table 3). ROIs were manually placed on both
hemispheres by an operator (MS) under the supervision
of an experienced radiologist (PD).

TA was performed with MaZda software package
(version 4.6) (23). MaZda enables calculation of
almost 300 texture parameters but our goal was to
select specific parameter setting of four parameters in
advance the analyses. Based on earlier studies (24,25),
we selected the co-occurrence method and two homo-
geneity (angular second moment and inverse difference
moment) and two complexity (entropy and difference
entropy) parameters derived from it. In MaZda, the
parameters are calculated in four different directions
(0°, 45°, 90°, and 135°) with pixel distances of one to
five pixels. In our study, only the features calculated
with pixel distance of one pixel were considered and
the mean value of the four directional parameters was
used in the further analyses. The analyses were per-
formed in two-dimensional imaging because of the
small pixel size compared to the 3.0-mm slice thickness.

MaZda offers three options to image normalization
from which we chose the method that normalizes the
image gray-levels between p + 36, where p is the mean
gray-level and o is the standard deviation.

Statistical analysis

Statistical analysis of data was performed using SPSS
(Windows version 20.0, SPSS Inc., Chicago, 1L, USA).
Due to the skewed distributions of the texture param-
eters, the comparisons were run with non-parametric
tests. Mann-Whitney U test was used to evaluate
whether there were statistically significant difference
between the brain MR image textures of the baseline
PD patients and those of the healthy controls.
Differences in brain structure textures between the
baseline and follow-up patient images were studied
with Wilcoxon signed rank test. P values <0.05 were
considered significant.

Correlations between changes in clinical scores and
MR textures were evaluated with Pearson’s correlation.
Correlation coefficients >0.5 with P value <0.05 were
considered significant.

Results
Textural differences

At baseline, most textural differences between patients
and controls were found in areas of dentate nucleus and
basilar pons (Table 4). There areas showed significant
differences in MR image textures in both hemispheres

Downloaded from acr.sagepub.com at Tampere Univ. Library on April 28, 2016



Sikio et al.

101

Table 3. MR image levels and regions of interest (ROI).

ROI 8

ROI 7

ROI 6

ROI 5

ROI 4

ROI 3

ROI 2

ROI |

Level

Dentate nucleus sin

Dentate nucleus dex

(8x8)
Basilar pons sin

(8 x8)
Basilar pons dex

(15 % 15)
SN pars compacta sin

(15 % 15)
SN pars compacta

Red nucleus sin

Red nucleus dex

C

(8x8)
Globus pallidus sin

(8x8)

Globus pallidus dex

8x8)
Putamen sin (10 x 10)

dex (8 x 8)

Putamen dex

Thalamus post sin

Thalamus post

Thalamus ant sin

Thalamus ant dex

(10 10)

dex (10 x 10)

(10 % 10)

(10 x 10) (10 x 10)

(10 % 10)

(10x 10)
Caudate nucleus dex

Caudate nucleus sin

(10 x 10)
Corona radiata ant sin

(10x 10)
Corona radiata ant

Corona radiata post

Corona radiata post

sin (5 x 5)
Centrum semiovale

dex (5 x 5)
Centrum semiovale

(5x5)

Centrum semiovale

dex (5 x 5)
Centrum semiovale

Centrum semio-

Centrum semio-

vale post sin
(10x 10)

vale post dex
(10x 10)

ant sin (10 x 10) med dex (10 x 10) med sin (10 x 10)

ant dex (10 x 10)

The image levels and ROls are specified in Fig. |. ROl sizes in pixels are shown in brackets.

Ant, anterior; dex, dexter; med, medial; post, posterior; sin, sinister.

and with several co-occurrence matrix-based param-
eters. SN pars compacta differed significantly at the
right hemisphere. Significant differences with single
parameters were also found in the areas of posterior
thalamus, putamen, caudate nucleus, and posterior
corona radiata.

Significant differences in MR images of PD patients
between baseline and follow-up appeared in anterior
and posterior thalamus, putamen, caudate nucleus,
and anterior corona radiata (Table 4). Of these above
mentioned areas, posterior thalamus and putamen
showed significant differences in both hemispheres.

Correlations between clinical scores and textures

Significant relations between the change in clinical
scores and in texture parameters appeared during the
2-year period were found (Table 5). Change in the
UPDRS-I score (evaluates the mentation, behavior,
and mood) correlated with the change in entropy and
difference entropy calculated from the area of posterior
corona radiata; and with difference entropy calculated
in the area of SN pars compacta. The shift in UPDRS-
Il score (the self-evaluation of the activities of daily
living) within the 2 years correlated with texture par-
ameters angular second moment, entropy, and differ-
ence entropy in the areas of putamen, dentate nucleus,
and thalamus while UPDRS-III score (clinician-scored
motor examination) correlated with angular second
moment and entropy in the area of basilar pons.
MMSE score showed significant correlation with the
texture parameters in the areas of corona radiata and
putamen. Inverse difference moment showed no correl-
ations with the clinical scores and is, thus, not pre-
sented in the Table.

Discussion

In our study, we assessed the longitudinal differences in
MR image textures of brain structures vulnerable to
PD with a 2-year follow-up of diagnosed PD patients.
We also evaluated the textural differences in brain MR
images of PD patients and healthy controls.

First, textural differences between controls and
PD patients at baseline were found in the areas of
dentate nucleus, basilar pons, and SN pars compacta.
These areas showed the lowest P values with several co-
occurrence matrix-derived parameters. In earlier stu-
dies, especially the area of SN pars compacta
has been associated with neuronal and volume loss
(1,11,12,26,27) and iron deposition transitions (4—
8,11,28) caused by PD. In addition, it has been
proved that the T2-intensity of MR images of PD
patients is lower in dentate nucleus and SN pars com-
pacta compared to controls (29). Our present results
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Table 4. Textural differences® when comparing controls to patients at baseline and patients at baseline to patients after a 2-year

follow-up.

Controls vs.
patients at baseline

Patients at baseline vs.
patients at follow-up

Ang sc Inv dif Ang sc Inv dif
Structure mom mom Ent Dif ent mom mom Ent Dif ent
Right hemisphere Dentate nucleus 0.176 0.080 0.126 0.017 1.000 0.970 0.909 0.395
Basilar pons 0.036 0.859 0.020 0.002 0.439 0.568 0.469 0.638
SN pars compacta 0.004 0.215 0.003 0.006 0.929 0.657 0.849 0.137
Globus pallidus 0.097 o.l'é 0.076 0.258 0.534 0.091 0.469 0.238
Thalamus ant 0.565 0.240 0.535 0.199 0.269 0.829 0.238 0.790
Thalamus post 0.425 0.044 0.451 0.387 0.020 0.770 0.012 0.166
Putamen 0.478 0.451 0.478 0.341 0.012 0.159 0.015 0.151
Caudate nucleus 0.535 0.842 0.520 0.039 0.620 0.454 0.454 0.889
Corona radiata ant 0.120 0.400 0.118 0.166 0.011 0.012 0.018 0.292
Corona radiata post 0.261 0.894 0.201 0912 0.328 0.439 0.303 0.790
Left hemisphere Dentate nucleus 0.006 0.013 0.009 0.025 0.367 0.078 0.454 0.151
Basilar pons 0.005 0.465 0.003 0.005 0.131 0.424 0.096 0.732
SN pars compacta 0.173 0.982 0.176 0.132 0.361 0.603 0316 0.144
Globus pallidus 0.066 0.018 0.076 0.506 0.657 0.869 0.809 0.517
Thalamus ant 0419 0.550 0.425 0.790 0.005 0316 0.006 0.016
Thalamus post 0.947 0.610 0.825 0.690 0.058 0.025 0.046 0.025
Putamen 0.069 0.044 0.097 0.580 0.485 0.751 0.269 0.041
Caudate nucleus 0.492 0.506 0.535 0.520 0.970 0.517 0.657 0.032
Corona radiata ant 0.277 0.658 0.258 0.842 0.316 0.238 0.275 0.354
Corona radiata post 0.991 0.049 0.973 0.176 0.467 0.534 0.346 0.594

*Significant P values (P < 0.05) are given in boldface type.

Ang sc mom, angular second moment; ant, anterior; dif ent, difference entropy; ent, entropy; inv dif mom, inverse difference moment; post, posterior.

Table 5. Areas that showed significant correlation* between changes in clinical scores and local textures from baseline to follow-up

after 2 years.

Clinical score

Texture parameter UPDRS | UPDRS I UPDRS Il MMSE
Angular second moment - Putamen Basilar pons Corona radiata post
Entropy Corona radiata post Putamen Basilar pons Corona radiata post

Difference entropy SN pars compacta

Corona radiata post

Dentate nucleus -

Putamen

Thalamus ant

Thalamus post

*Relations with correlation coefficient >0.5 and P value <0.05.
Ant, anterior; post, posterior.

suggest that the pathophysiological and structural
changes in these areas may also be characterized by
alteration of the local texture.

Second, we studied the PD patients and compared the
MR images at baseline to those obtained after a 2-year
follow-up. Textural differences were detected in thal-
amus, putamen, caudate nucleus, and corona radiata.

Previous studies have shown lowering in neuronal firing
rates in the thalami and iron deposition transitions in
putamen and caudate nucleus (6,8,9,30). Our findings in
the midbrain area also refer to changes in this area caused
by progressing PD. However, more TA studies are needed
to ensure whether the textural differences suggest the dir-
ection of the iron deposition transformation.
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Clinical scores have been correlated with different
disease markers and factors in various studies.
Significant relationship between UPDRS motor score
measuring the severity of PD and different biomarkers
have been shown (31,32). In a longitudinal morphom-
etry study, the progression of brain atrophy was not
correlated with the UPDRS-III score in any brain
region (17). However, a volumetric study showed posi-
tive correlation between ventricular enlargement and
worsening motor function assessed by UPDRS-IIT
score (13). Our study showed correlation between
changes in clinical scores and MR image textures cal-
culated from brain areas vulnerable to PD.

The main drawback of this study is the lack of
follow-up of the control group which was impossible
because of schedule problems during the non-stop
clinical work. The textural changes in aging human
brain are an ongoing research area with, to our know-
ledge, no results yet reported. However, a brain
volume loss study between healthy controls and PD
patients showed no significant loss in the control
group while the patients had significant reduction in
both percentage and absolute annual brain volume
(33). In addition, we found textural differences already
at the baseline status of the patients and, hence, we
assume the changes are due to PD. Also our results
from the clinical score correlations suggest that the
textural changes appeared during the 2-year follow-
up are related to PD. All areas that showed significant
textural differences between healthy controls and
patients at baseline and after 2 years of follow-up
were also found related to clinical scores measuring
the severity of PD.

The strength of our study is the homogeneous
patient material. The patients were carefully selected
among all PD patients treated in Tampere University
Hospital. Our study showed the existence of textural
differences between PD patients and healthy controls
but more studies with larger patient materials are
needed to ensure the pathophysiological significance
of the TA findings. The potential of TA in clinical use
is to be an additional marker that gives information
from clinical images and help the decision making in
diagnosis. Therefore, future studies should also deal
with the development of the TA practices. When con-
sidering TA as a clinical tool, the used manual image
selection and ROI localization are too slow and cum-
bersome. Instead, automatic or semi-automatic ana-
lyses based on clear and appropriate anatomical
landmarks and segmentation of the tissues of interest
would be reasonable in respect to time-consuming and
the need of special expertise. In order to become an
assistive tool in diagnosis and follow-up of medical
conditions, TA needs to be available and usable also
for non-specialists in image analysis.

In conclusion, our study showed that there are tex-
tural differences in MR images of healthy controls and
those of patients with PD. We also found differences in
brain structure textures after a 2-year follow-up of PD
patients and showed that they correlate with clinical
scores measuring the severity of PD. Our study demon-
strated that co-occurrence matrix-based TA method is
able to detect such changes in brain structure textures
that cannot be evaluated visually.
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Adaptation to exercise training can affect bone marrow adiposity; muscle—fat dis-
tribution; and muscle volume, strength and architecture. The objective of this
study was to identify cxercisc-load-associated differences in magnetic resonance
image textures of thigh soft tissues between various athlete groups and non-ath-
letes. Ninety female athletes representing five differently loading sport types (high
impact, odd impact, high magnitude, repetitive low impact and repetitive non-
impact), and 20 non-athletic clinically healthy female controls underwent mag-
netic resonance imaging. Five thigh muscles, subcutaneous fat and femoral bone
marrow were analysed with co-occurrence matrix-based quantitative texture
analysis at two anatomical levels of the dominant leg. Compared with the controls
thigh muscle textures differed especially in high-impact and odd-impact exercise-
loading groups. However, all sports appeared to modulate muscle textures to
some extent. Fat tissue was found different among the low-impact group, and
bone marrow was different in the high-impact group when compared to the
controls. Exercise loading was associated with textural variation in magnetic reso-
nance images of thigh soft tissues. Texture analysis proved a potential method for

detecting apparent structural differences in the muscle, fat and bone marrow.

Introduction

Adaptation (o exercise (raining can lead to changes in bone
marrow adiposity; muscle—fat distribution; and muscle vol-
ume, strength and architecture (Blazevich et al., 2003; Baar
et al., 2006). These changes depend on the exercise Lype,
especially the forces and load patterns, the given exercise
induces. In responsc to cxcrcise training, cross-scctional arca
and the strength production of actively involved muscles
increase because the number and cross-sectional area of the
individual muscle fibres also increase until the muscle strength
is adjusted to cope with the forces and loads the given mus-
cles and bone are subjected to (Nakai et al., 2008). Con-
versely, less-frequent and inlense exercise (raining is
associated with smaller muscle (Bousquet-Santos et al., 2006;
Haddad & Adams, 2006; Browning et al., 2007).
Conventionally, the assessment of muscle adaptation to exer-
cise has been evaluated with muscle volume. However, volume

measurement does not reveal structural variation in muscle

tissue or changes in intramuscular fat content. These changes
can be observed with a quantitative image texture analysis
(TA). TA is capable of detecting differences among tissues that
are not always apparent to the human eye. Especially, magnetic
resonance (MR) images contain such information that cannot
be evaluated visually. Furthermore, MR imaging (MRI) is con-
sidered as the most suitable imaging modality for evaluating
muscle anatomy, morphology and physiology becausc of its
superior soft tissue contrast and spatial resolution.

Image texture is formed by repetitive elements called primi-
tives. The aim of TA is to detect these primitives and subse-
quently characterize the texture type with texture features. In
axial MR images, muscles can be seen as texture which is
comprised by muscle bundles or their groups representing the
primitives. As many skeletal muscles have a longitudinally ori-
cnted structure, thick MR image slices can be  performed
without problems concerning the partial volume effect.
Furthermore, axial slices permit a good delineation of the

adjacent muscles.
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Textures have been utilized in both ex vivo and in vivo MR
studies of skeletal muscles. Nakai et al. (2008) showed that
walking exercise thickens and tightens the muscular fibre tis-
sues. Mahmoud-Ghoneim et dl. (2006) found TA a reproduc-
ible and non-destructive method for rat muscle examination
during atrophy and regeneration. In their ex vivo study, they
also found that MRI TA can discriminate genetics-related mod-
ifications in bovine meat (Mahmoud-Ghoneim et dl., 2005). In
addition, their investigation of fat structure revealed that MRI
texture of subcutancous adiposc tissuc differs between men
and women (Mahmoud-Ghoneim et al., 2001). TA has also
been proved to provide useful information contributing the
diagnosis of skeletal muscle disease by Herlidou et al. (1999).
TA of bone structure has been shown to give additional infor-
mation to routinely measured bone density. Langenberger
et al. (2003) were able to distinguish osteoporotic and non-
osteoporotic subjects by means of TA.

In our previous studics of athletes, high-impact and odd-
impact exercise loading were associated with thicker cortex
around the femoral neck (Nikander et al., 2009) and different
trabecular bone texture compared with non-athletes (Harrison
et al., 2011). Depending of the sports, fat tissue thickness and
volume can clearly vary between athlete groups, but it is not
known whether this is reflected to texture of subcutaneous fat
tissue texture. Also, it was recently shown that bone marrow
density is modulated by cxcrcise loading (Rantalainen et dl.,
2013), but whether this would modulate marrow texture is
not yet known. To the best of our knowledge, there exist no
studies on influence of exercise load on MR image TA of fem-
oral bone marrow and thigh muscle and fat tissues. Therefore,
the aim of this study is to reveal exercise-load-associated dif-
ferences in MR image textures of thigh sofl tissues between

various athlete groups and non-athletes.

Methods

This study employs previously collected MR image data from
a total of 110 female volunteers. Recently, we successfully
applied TA to detect exercise-associated structural differences
in (rabecular bone (Harrison et al, 2011), and here, we
extend our investigation to thigh muscles and fat and femoral
bone marrow. The study protocol was approved by the
Tampere University Hospital District Ethics Committee, and all
participants gave their written informed consent for the study.

The study group comprised 90 female athletes competing at
the national or international level and 20 non-athletic clini-
cally healthy female controls. The athletes were triple jumpers
(n =9), high jumpers (n= 10), soccer players (n = 10),
squash players (n = 8), power lifters (n= 17), endurance
runners (n = 18) and swimmers (n = 18). The athletes were
recruited through national sports associations and local sport
clubs, and the controls were mainly students of the local uni-
versity of applied sciences.

According to our previous classification scheme (Nikander
et al., 2009), the sports were divided into the following five
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categories representing the exercise-load types: high impact
(H-I), odd impact (O-I), high magnitude (H-M), rcpetitive,
low impact (L-I), and repetitive, non-impact (N-I). The H-I
group comprised the triple jumpers and high jumpers, the O-
I group comprised the soccer and squash players, the H-M
group comprised the power lifters, the L-I group comprised
the endurance runners, and the N-I group comprised the

swimmers.

Magnetic resonance image

Imaging was performed with a 1.5-T MRI system (Siemens
Magnetom; Avan(o; Siemens Healthcare Sector, Erlangen, Ger-
many). The thigh region of the dominant side was imaged
using a combination of two 6-channel body matrix coils and
the spine matrix coil. Normalization filter was used to correct
the coil sensitivity profile and in order to minimize inhomo-
geneitics in the image intensity.

The imaging sequence used in this study was axial 3D T2*-
(MEDIC)
sequence. MEDIC is a heavily T2#-weighted spoiled gradient

weighted multi-echo data image combination
echo sequence with high signal-to-noise ratio. The sequence
is based on multiple echoes, three in our case, that are com-
bined into an image for less artefacts; the early echoes increase
the SNR level, while later echoes boost the contrast. The
acquisition parameters were repetition time 40 ms, echo time
17 ms, slice thickness 3-00 mm, pixel size 0-81 mm x
0-84 mm, matrix size 384 x 308, field of view 312 x 260
and flip angle 12°.

Tissues of interest

The analysed soft tissues comprised thigh muscles and subcu-
taneous fat and femoral bone marrow of the dominant leg.
The muscles were major anterior compartment muscles (rectus
femoris, vastus lateralis, and vastus intermedius) and medial
compartment muscles (adductor longus and adductor mag-
nus). These five thigh muscles are actively involved in differ-
ent load-bearing exercises and movements. All analysed tissues
could be clearly distinguished in the MEDIC images (Fig. 1).

Image selection

The tissues were analysed al two anatomical levels of thigh
that were chosen according to anatomical landmarks related to
the muscle attachments. The proximal level was the image
slice just distal from trochanter minor, and the distal level was
the image slice at the insertion of muscle gluteus maximus to
femur (Fig. 1). At these levels, the tissues of interest were
visually distinguishable from each other, and the muscles were
imaged at their contractive cross-section, not at the site of
insertions. The image selection was manually performed with
Osiris (version 4.19; The Digital Imaging Unit of the Service
for Medical Computing of the University Hospitals of Geneva,
Switzerland).

© 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd 34, 5, 370-376
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Texture analysis

Image textures were analysed with MaZda software (version
4.6; Institute of Electronics, Technical University of Lodz, Lodz,
Poland) (Szczypinski el al., 2009; Strzelecki et al., 2013).
Regions of interest (ROI) were predefined squares of 15 x 15
pixels, which were placed on the central area of musce cross-
section to avoid partial volume effect on ROIs caused by con-
tamination with the connective tissue around the muscle and
visible fascicles. In addition, a similar ROI box was placed on
subcutaneous fat tissue surrounding the thigh muscles, and a
spherical ROI of size 15 x 15 pixels was set on the bone mar-
row inside the femur. The ROI locations are depicted in Fig. 1.
Four following co-occurrence parameters were automati-
cally calculated for each ROL: angular second moment, inverse
difference moment, entropy and difference entropy. The first
two describe the image homogeneity, whereas the last two
paramcters arc measurcs of the image complexity. All parame-
ters were calculated in horizontal (0°), vertical (90°) and two
diagonal (45° and 135°) directions with a pixel distance of
one pixel. The direction dependency of the parameters was
removed by calculating the mean value of the four directions.
In order to minimize the influence of contrast and bright-
ness variation, the image intensities were normalized in the
range [pt £ 30] (pt is the mean and o the standard deviation
of the image grey level). This method has shown to provide
the best classification results in the TA of MR images com-
pared with other possible methods (Collewet et dl., 2004).

Statistical analysis

Statistical analyses were run on SPSS (version 20.0; SPSS Inc.,
Chicago, IL, USA). Due to the non-normal distribution of the
texture paramcters, nonparametric tests were used. Both the
group analyses of muscles, fat and bone marrow were per-
formed using the Mann—Whitney test. When comparing the
five athlete groups to the control group, P-values lower than
0-01 were considered statistically significant.

The robustness of the TA method was assessed by compar-
ing the co-occurrence matrix-based TA results between corre-
sponding ROIs from two consecutive slices from both levels.

Figure 1 Tmage levels and regions of inter-
ests. Illustration of the proximal (a) and distal
(b) image levels and their anatomical loca-
tions. Regions of interest arce thigh muscles
rectus femoris (1), vastus lateralis (2), vastus
intermedius (3), adductor longus (4), adduc-
tor magnus (5), subcutaneous fat (6) and
femoral bone marrow (7).

For this analysis, groups were combined and the study popu-
lation was analyzed as a whole. The statistics were performed
with Mann-Whitney test and P-values under 0.05 were
considered significant.

Results

In the robustness analysis, no significant differences in the tex-
ture parameters of any tissue were found (data not shown).

Muscles

The five thigh muscles were compared by means of co-occur-
rence matrix-based TA between the five different athlete
groups and controls. The between-group differences based on
Mann—Whitney tests are shown in Table 1. Figure 2 shows
the distribution of texture parameter difference entropy in va-
stus lateralis muscle at the proximal level and rectus femoris
muscle at the distal level.

When comparing the athlete groups to the controls at the
proximal level, differences in muscle textures were mostly
found in the H-I, O-I and N-I groups. All these groups showed
significant textural difference in vastus lateralis muscle. The O-1
group had different texture in adductor longus muscle
compared with the control group. Single significant differences
werc also found in the H-I group in vastus intermedius, adduc-
tor longus and adductor magnus muscles; and in the L-I group
in adductor magnus compared with the controls. At the distal
level, different texture was especially found in rectus femoris
muscle in the H-1, O-I, H-M and L-I. In addition, some sporadic
differences were found between the H-I group and controls in
vastus intermedius and adductor magnus and between the L-I
group and controls in vastus intermedius.

Subcutaneous fat

Fat tissue texture results between the five athlete groups and
control group are shown in Table 2, and the distribution of
difference entropy is presented in Fig. 2. When compared to
the controls. only the L-I group showed significant difference
in fat texture with all the four parameters.
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Table 1 Textural differences* in five selected thigh muscles between five different athlete groups and control group.
Proximal level Distal level
Groups Muscle Ang sc mom  Inv dif mom  Ent Dif ent Ang sc mom Inv dif mom  Ent Dif ent
H-I versus REF Rectus femoris 0-177 0-025 0-152  0-399 0-002 0-001 0-002  0-004
Vastus intermedius ~ 0-715 0-009 0-694  0-555 0-103 0-009 0087  0-593
Adductor longus 0-249 0-005 0-177 0-092 0-844 0-018 0-888 0-555
Adductor magnus 0-033 0-001 0-018  0-072 0-574 0-001 0-500  0-026
Vastus lateralis 0-008 <0-001 0-013  0-001 0-249 0-011 0216  0-384
O-I versus REF Rectus femoris 0-129 0-177 0-144 0673 0-001 0-002 0-001  0-003
Vastus intermedius 0-757 0-822 0-500 0-800 0-038 0-053 0-049 0-633
Adductor longus 0-008 0-021 0-003 0-004 0238 0-092 0-249 0-015
Adductor magnus 0-026 0-779 0-021 0-196 0-072 0-012 0-053  0-043
Vastus lateralis 0-001 0-025 0-001 0-002 0933 0-555 0-866 0-354
H-M versus REF  Rectus femoris 0-300 0-273 0-266  0-235 0-004 0-010 0-003 0-016
Vastus intermedius 0-446 0-503 0-503 0-879 0017 0-015 0-015 0-055
Adductor longus 0-604 0-563 0-411 0-542 0113 0-072 0-088 0-113
Adductor magnus 0-022 0-273 0-014  0-035 0-259 0951 0-190  0-300
Vastus lateralis 0-120 0-361 0-067  0-067 0670 0-951 0-522 0-563
L-I versus REF Rectus femoris 0-088 0-082 0-067  0-133 0-001 0-002 0-001  0-006
Vastus intermedius 0-583 0-033 0-483 0-077 0012 <0-001 0-011 0-019
Adductor longus 0-152 0-021 0-094 0-010 0-855 0-542 0-879 0-286
Adductor magnus 0-094 0-190 0-048  0-004 0-465 0-927 0-903  0-030
Vastus lateralis 0-377 0-144 0-273  0-026 0-247 0-190 0-170  0-286
N-I versus REF Rectus femoris 0-136 0-152 0-188  0-380 0:096 0-090 0-044  0-035
Vastus intermedius 0-430 0-096 0-483 0-365 0-023 0-128 0:021 0-079
Adductor longus 0-047 0-198 0-017 0-004 0219 0-380 0-169 0-050
Adductor magnus 0-114 0-231 0-096  0-090 0977 0-413 0-861 0-430
Vastus lateralis 0-001 0-047 0-001  0-001 0-380 0-748 0365  0-380

Texture parameter abbreviations: ang s¢ mom, angular second moment; inv dif mom, inverse difference moment; ent, entropy; dif ent, difference

entropy.

Exercise-loading group abbreviations: H-I, high impact; O-I, odd impact; H-M, high magnitude; L-I, low impact; N-I, non-impact.
*P-values were obtained with Mann—Whitney test. Statistically significant (P<0-01) results are given in boldface type.

Bone marrow

Bone marrow texture between the five athlete groups and con-
trol group shown in Table 3 revealed that the H-I group dif-
fered from the controls in marrow texture with two
parameters at the proximal level. The distribution of difference

entropy in bone marrow is shown in Fig. 2.

Discussion

In this study, exercise-loading-associated textural differences
in MR images of five thigh muscles, subcutaneous fat tissue
and bone marrow between athlete groups and non-athletes
were examined by means of co-occurrence matrix-based TA.
Textural differences were detected in all the studied soft
issues.

Compared with the non-athletic controls differences in mus-
cle textures appeared especially in high-impact and odd-impact
exercise-loading groups both at proximal and distal levels along
the thigh. High-magnitude, low-impact and non-impact
groups, in turn, showced less consistent differences compared
with the controls. The fat tissue was found different among the
low-impact group, and the bone marrow was different in the
high-impact group when compared to the controls.

The textural differences detected in the muscles between the
exercise-loading groups are in line with the fact that skeletal
muscles adapt to long-term loading through changes in the
muscle architecture (Caiozzo et al., 1981; Wilson el al., 1993;
Abernethy & Jurimae, 1996). The high-impact-loading sports
represent loading that produce maximal vertical forces at high
rate, whereas odd-impact-loading sports include high accelera-
tion and deceleration forces from unusual directions. In terms
of muscle function, thesc load patterns require high activity and
high rate of force production. Muscle adaptation to these forces
typically leads to increase in cross-sectional area of muscle fibres
(i.e. hypertrophy) and/or increase in the amount of muscle
cells (i.c. hyperplasia). Morcover, the common factor in high-
and odd-impact sports is the existence of short-term contacts to
the ground, whereas in power-lifting or in other high-magni-
tude-loading sports the ground contacts comprise forces pro-
duced at relative low rate. Swimiing, representing the non-
impact loading sports, completely lacks these ground contacts
during (raining. In an earlier study, Abe et al. (2000) showed
significantly greater muscle thickness and fascicle length in va-
stus lateralis of 100-m sprinters than that of distance runners
and controls. Although our study did not specifically involve
sprinters, the loading of high-impact and odd-impact groups is
close to that of short-distance runners and, using TA, we were
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Difference entropy

Difference entropy
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Figure 2 Box plots of difference entropy. Distributions of the co-occurrence matrix-based texture parameter difference entropy for vastus lateralis
and rectus femoris muscles, subcutaneous fat and femoral bone marrow for the following athlete groups and non-athletic referents (REF): high
impact (H-1), odd impact (O-I), high magnitude (H-M), low impact (L-I) and non-impact (N-I). The box-plot diagrams present the median val-
ues, 25th and 75th quartiles, and the whiskers show the 1-5 X interquartile range. The circles represent the outlier values (>1-5 X interquartile

range). Groups marked with stars differ significandy from the control group.

Table 2 Textural differences® in fat tissue between five different athlete groups and control group.

Proximal level Distal level

Groups Ang sc mom Inv dif mom Ent Dif ent Ang sc mom Inv dif mom Ent Dif ent
H-I versus RIF 0-068 0-555 0-049 0673 0-555 0-004 0-500
O-I versus RET 0-206 0-035 0-206 0116 0-049 0-736 0-053
H-M versus REF 0-190 0-026 0-180 0-063 0-088 0-855 0-088
-1 versus REF <0-001 <0-001 <0-001 <0-001 <0-001 0-038 <0-001 <0-001
N-I versus REF 0-293 0-108 0-306 0483 0-136 0-102 0-114

Texture parameter abbreviations: ang sc mom, angular second moment; inv dif mom, inverse difference moment; ent, entropy; dif ent, difference

entropy.
Excrcisce-loading group abbreviations: H-I, high impact; O-I, odd impact; H-M, high magnitudc; L-I, low impact; N-I, non-impact.
#P-values were obtained with Mann-Whitney test. Statistically significant (P<0-01) results are given in boldface type.
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Table 3 Textural differences* in bone marrow between five different athlete groups and control group.

Proximal level

Distal level

Groups Ang sc mom Inv dif mom Ent Dif ent Ang sc mom Inv dif mom Ent Dif ent
H-I versus REF 0-046 0-006 0-049 0-004 0-011 0-021 0-018 0-169
O-I versus REF 0-196 0-177 0-206 0-216 0-833 0-299 0-736 0-122
H-M versus REF 0-784 0-761 0-726 0-583 0-843 0-315 0-927 0-563
L-I versus REF 0-648 0-329 0-692 0-361 0-201 0-180 0-223 0-128
N-I versus REF 0-770 0-619 0-770 1-000 0-038 0-930 0-039 0-179

Texture parameter abbreviations: ang sc mom, angular second moment; inv dif mom, inverse difference moment; ent, entropy; dif ent, difference

entropy.

Excrcise-loading group abbreviations: H-I, high impact; O-I, odd impact; H-M, high magnitude; L-I, low impact; N-I, non-impact.
*P-values were obtained with Mann—Whitmey test. Statistically significant (P<0-01) results are given in boldface type.

also able to detect differences in vastus lateralis when compar-
ing these groups to the controls. Additional differences detected
in the texture of adductor longus detected in the O-I group
compared with the H-T group in adductor longus may be duc
to the powerful accelerations in lateral directions which is char-
acteristic to ball games.

The pennation angle in leg muscles is shown greater in dis-
tance runners than sprinters and controls in a previous study
(Abe et al,, 2000). These changes may also modulate the mus-
cle texture as our results showed significant differences
between the L-I and control groups in four of the five studied
thigh muscles. These textural differences may also be duce to
increased capillary and mitochondrial density originated from
the muscle adaptation to endurance training. Contrary to
expectations, few significant differences in muscle textures of
the H-M group were detected when compared to the non-ath-
letes. However, all the detected differences occurred in rectus
femoris muscle, which is effectively stimulated in exercises
that involve knee extension, such as squats in power-lifting.
The adaptation to this loading may be detectable with TA.

Comparisons of the subcutaneous fat tissue among athletes
and controls showed that the L-I group differed significantly
from the non-athletes. These textural differences most likely
refer to the size of the fat cclls as they swell while storing
body fat, but the amount of the cells remains quite
unchanged. Endurance runners tend to have small body fat
percentage, and fat cells are smaller than those of the other
athletes and controls.

Bone marrow texture in the H-I group differed from that of
the control group. These changes, detected by TA, may be
attributable to increased vascularity caused by high-impact exer-
cisc loading. Similar results were obtained in a recent study of
bone marrow density in tibia where the impact groups (H-I, O-
I and L-I) showed higher bone marrow density suggesting
lower marrow adiposity (Rantalainen et al., 2013). The reason
we found the difference in bone marrow only in the H-I group
might be the fact that the typical vertical impacts in O-1 and L-I
groups are not sufficiently high enough to result in detectable

textural differences in the upper thigh region.

In our study, the femoral tissues were analysed with four
co-occurrence matrix-derived parameters, of which angular
second moment and inverse difference moment are measures
of image homogencity while entropy and difference cntropy
refer to the image complexity (Haralick et dl., 1973; Haralick,
1979; Batchelor & Whelan, 2002). The co-occurrence method
and the parameter setting were selected based on recent stud-
ics of human skcletal muscle, brain, spinal cord, and breast
tissue and rat muscles (Herlidou et al., 1999; Mathias ct dl.,
1999; Mahmoud-Ghoneim et al., 2006; Kassner et al., 2009;
Holli et al., 2010a,b), and parameter properties. These parame-
ters seemed suitable also for analysing muscle tissue, adipose
tissue and bone marrow as the exercise-loading-associated dif-
ferences were detected. Further, these parameters appeared
robust as no parameter showed significant differences between
the two adjacent slices in the large pooled data sct.

Our TA analyses were performed in 2D. Even though 3D
has been found preferable compared with 2D in discrimina-
tion of cerebral tissue, tumour, necrosis and oedema (Mah-
moud-Ghoneim et al., 2003; Georgiadis et al., 2009), the
advantages in muscle application are arguable because of the
longitudinal structure of muscle fibres. In our study, the 2D
approach was chosen because we were interested in the trans-
verse texture of the striated muscle, and within this scope, the
value of 3D analysis might have been trivial. However,
muscles are 3D structures, and the ability of 3D TA to reveal
additional information compared with 2D analysis should be
evaluated in future studies.

In conclusion, exercise load was associated with textural
variation in MR images of thigh sofl tissues. High-impact (tri-
ple and high jump) and odd-impact (soccer and squash) load-
ing sports werc most consistently associated with textural
differences in thigh muscles. However, all sports appeared to
modulate muscle textures to some extent. In addition, low-
impact loading sport (endurance running), involving large
number of repetitive impacts, displayed a different fat tissue
texture compared with non-athlete controls, and high-impact
loading, involving very high vertical loads, was associated
with different bone marrow texture.
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ABSTRACT

BACKGROUND AND PURPOSE

Diffusion tensor imaging (DTI) is shown to reveal changes caused by cerebral infarc-
tion. The aim of this study is to reveal those changes also in the conventional magnetic
resonance (MR) images using a quantitative image analysis method, texture analysis (TA).
METHODS

Thirty patients who had suffered their first ever infarction located on the right hemi-
sphere underwent DTI and conventional MRI studies in the chronic phase. DTI parameters
fractional anisotropy and mean diffusivity, as well as four second-order texture parame-
ters were calculated. Interhemispheric differences and correlations between DTI and TA
parameters were evaluated.

RESULTS

Our DTI findings supported earlier studies as fractional anisotropy values were lowered
and mean diffusivity values elevated in the lesion site, and ipsilateral cerebral peduncle,
thalamus, and centrum semiovale compared to the unaffected side. Textural homogeneity
parameters showed lower and complexity parameters higher values in the lesion site
and ipsilateral centrum semiovale compared to the contralateral hemisphere. Correlation
between the two methods was found in ipsilateral mesencephalon.

CONCLUSIONS

In addition to DTI method, TA could assist in revealing the changes caused by infarction,
also outside the lesion site. Damaged areas were found more heterogeneous and random
in texture compared to unaffected sites.

Keywords: Chronic infarction, magnetic
resonance imaging, texture analysis, dif-
fusion tensor imaging.
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Background and Purpose

In the Western world, cerebral infarction, that is stroke, is a
major cause of death and long-term disability. One-third of
stroke patients die within a next year, one-third of patients
remain permanently disabled, and one-third of patients make a
reasonable recovery.!”

Common physical defects after a right hemisphere ischemic
stroke are left motor and sensory defects as well as various
cognitive deficits, including left-sided neglect, anosognosia,
visuoconstructive and visuospatial disorders, motor imper-
sistence, dysprosody, disorders of body image and dressing,

and visual memory deficits. To diagnose stroke, computed
tomography (CT) imaging is widely used because CT scans
are sensitive in detecting mass lesions and acute hemorrhage.
However, infarction also causes tissue changes outside the
visible infarction area. In hemispheric infarction, degenerative
changes often take place in the corticospinal tracts deciphered
as Wallerian degeneration (WD). WD is characterized by
anterograde degeneration of axons due to injury of the
proximal portion of the axon or its cell body."” WD can
be detected with conventional magnetic resonance imaging
(MRI) within 1 month after the infarction but diffusion tensor
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imaging (DTI) may reveal it within the first 2 weeks after the
infarction.’

DTI is an advanced MRI technique that is based on the
water diffusion in a tissue. The apparent diffusion coefficient
(ADC) describes the average diffusion of the media and varies
depending on the tissue structure. ADC has been shown to
decrease in acute ischemic stroke at lesion site. The decline is
followed by pseudonormalization and, at the chronic stage, the
values increase above normal levels.”

Conventional MR images contain, however, a large amount
of such information that cannot be evaluated visually but could
be detected with image analysis methods. Textures are image
features that correspond to brightness values and locations of
image pixels. Texture analysis (TA) is a quantitative image anal-
ysis method that has been shown to increase the level of diag-
nostic information extracted from several imaging modalities,
such as MRL® CT,Y and ultrasound.!” TA is a mathematical
method that describes the grey level dependence between the
image pixels and texture parameters are used to characterize
the underlying structures of the observed tissues. Earlier studies
have shown that it is possible to classify cerebral tissues with
TA.!12 In acute ischemic stroke, TA has proved to detect sig-
nificant differences between the infarcts that are vulnerable to
hemorrhagic transformation and those that are not.'®

Earlier, we studied chronic right-sided stroke patients with
DTI and found that DTI is able to detect the changes caused by
the infarction." The aim of this novel study is to reveal those
changes also in the conventional MR images using a quanti-
tative image TA method. Interhemispheric differences of DTI
and TA parameters are evaluated. We also evaluate the corre-
lation between the DTI and TA parameters.

Methods
Study Population

In total, 1,458 stroke patients were examined and treated at
Tampere University Hospital between July 2005 and April
2008. For the study, 30 patients (age range, 46-79; mean age,
65.5 £ 8.9 years; 24 men, 6 women) were selected. The selected
patients had suffered their first ever infarction located on the
right hemisphere and they had been capable of living indepen-
dently before the infarction. Exclusion criteria were cerebral
hemorrhage, traumatic brain injury, previous neurological or
psychiatric disorder, substance abuse, lesions in the left hemi-
sphere or previous lesions in the right hemisphere found in
acute CT, remarkable brain atrophy in consideration of the
patient’s age, severe hearing or primary visual impairment, ma-
jor decline in consciousness, left-handedness, native language
other than Finnish, and age over 80 years. Seven of the patients
had received thrombolytic therapy.

MRI

The patients underwent MRI studies in the chronic phase ap-
proximately one and a half year (mean 18.3 & 5.5 months) after
the infarction. MRI was performed in normal clinical practice
with a 1.5-Tesla MRI whole-body scanner (Magnetom Avanto
SQ, Siemens Medical Solutions, Erlangen, Germany) using a
conventional 12-channel head matrix coil.

The conventional MRI protocol included sagittal T1-
weighted (w) spin echo (SE) and 3-dimensional T2-w sampling
perfection with application optimized contrast using different
flip angle evolutions sequences and axial T2-w fluid-attenuated
inversion recovery (FLAIR), T1-w SE, and T2-w gradient echo
(T2*) sequences. The DTI was performed with single-shot
diffusion-weighted echo-planar imaging (EPI) sequence where
diffusion-sensitive gradients were applied along 12 gradient di-
rections. Acquisitions were repeated 3 times and the average
was used in the analyses. In this study, we used images from ax-
ial T2-w FLAIR, and diffusion-weighted EPI series. The typical
acquisition parameters for the used sequences are presented in
Table 1.

Image Analysis

The DTI data were analyzed with Siemens Syngo Neuro3D,
version VE26A (Siemens, Erlangen, Germany). The mean dif-
fusivity (MD) and fractional anisotropy (FA) values were cal-
culated pixel-by-pixel from the diffusion-weighted images. The
circular regions of interest (ROIs) were manually placed on
axial slices in the cerebral peduncle, thalamus, knee of inter-
nal capsule, and centrum semiovale on both hemispheres. One
ROI set was placed in the infarction area on the right and
in corresponding area on the left hemisphere. The ROI sizes
varied from 4 to 16 voxels depending on the target so that
the corresponding areas in all images on both hemispheres
had equal size ROIs. The ROIs were centered in the target
areas avoiding border areas and neighboring tracts. Circular
ROIs were selected as they were proved most repeatable in
a recent DTI study.!® The placement of the ROIs was based
on brain anatomy regardless on the site of the lesion. There-
fore, in centrum semiovale, a ROI of one patient partly over-
lapped with the infarction area. The ROI setting is specified in
Figure 1.

The corresponding areas analyzed with DTI were also eval-
uated with TA (Fig 1). Patient images from the T2-w series were
used because of the good separating capacity of various brain
areas in this particular sequence. The ROIs were circular and
ranged from 5 x 5 to 15 x 15 pixels.

TA was performed using the software package MaZda,
version 4.6 (Technical University of Lodz, Institute of Elec-
tronics, Lodz, Poland).!"S Four second-order co-occurrence
matrix-based parameters were used in the analyses: angular
second moment, inverse difference moment, entropy, and
difference entropy. The selected parameters describe the
image homogeneity (angular second moment and inverse
difference moment) and complexity or randomness (entropy
and difference entropy). The features were calculated in
horizontal (0°), vertical (90°), and two diagonal (45° and 135°)
directions with a pixel distance of one pixel. The mean values
of the four directions were used in the analyses.

The image intensities were normalized in the range (u +
30; w refers to mean and o to standard deviation of the
grey level) to minimize the influence of contrast variation and
brightness. This method was used because of its promising re-
sults in the TA of MRI images compared with other possible
methods.!”
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Table 1. MR Image Sequences Used in the Study and the Acquisition Parameters

Sequence TR TE Tl Slice/Gap Matrix Size FOV Flip Angle b-Value
(ms) (ms) (ms) (mm/mm) (pixels) (mm) ©) (s/mm?)

Axial T2-w FLAIR 8,500 100 2,500 5.0/1.5 256 x 256 230 150 -

Diffusion-w EPI 3,500 96 - 5.0/1.5 128 x 128 230 9 1000

EPT = echo-planar imaging; FLAIR = fluid attenuated inversion recovery; FOV = field of view; TE = echo time; TI = inversion time; TR = repetition time; w =

weighted.

Fig 1. DTI (upper row) and MRI image levels and ROls in cerebral peduncle (1), thalamus (2), internal capsule (3), and centrum

semiovale (4).

Statistical Analysis

Differences between the infarct and unaffected hemisphere
were studied with paired #test and correlations were calculated
with Pearson’s R test. Statistical analyses were run using SPSS
for Windows, version 20.0 (SPSS Inc., Chicago, IL, USA). All
reported P-values were based on 2-tailed tests and P-values
under .05 were considered statistically significant. Bonfer-
roni correction was considered when concerning multiple
comparisons.

Results
Interhemispheric Differences

Mean values and standard deviations for DTI parameters on
infarct and unaffected sides are presented in Table 2. FA values
were significantly lower in the infarction site compared to the
reference area on the unaffected hemisphere. Lower ipsilateral
FA values were also detected in cerebral peduncle. MD values

were significantly higher in the infarct site, cerebral peduncle,
and thalamus compared to the contralateral side.

Mean values and standard deviations for TA homogeneity
parameters presented in Table 3 show that values of angu-
lar second moment were significantly lower in the infarct site.
The other homogeneity parameter, inverse difference moment,
showed no significant difference between the hemispheres.

Table 4 shows the mean values and standard deviations for
TA complexity parameters. Both parameter values were ele-
vated in infarct site compared to the reference area on left
hemisphere. In addition, entropy was higher in ipsilateral cen-
trum semiovale compared to the contralateral side.

Correlations

Correlation coefficients in Table 5 show that both DTT param-
eters, FA and MD, correlate with difference entropy calculated
in mesencephalon of the infracted hemisphere. All other corre-
lation coefficients were under .3.
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Table 2. DTI Parameter Values and Differences” between the Hemispheres in Various Brain Areas

FA MD (x10~3)

Infarct (Right) Side Unaffected (Left) Side P-Value Infarct (Right) Side Unaffected (Left) Side P-Value
Infarct 18 [.10] A3 [.19] <.001 1.83 [.57 .81 [.14] <.001
Cerebral peduncle .75 1.08] .79 |.06] .010 .74 1.07] .70 [.05] 007
Internal capsule .69 [.12] 72 1.07] 069 .72 [.07] .70 [.05] 035
Thalamus .33 [.06] .32 [.05] 469 .87 1.19] .77 1.06] 004
Centrum semiovale .56 [.09] .60 [.09] 035 .72 .03] .70 [.05] .030
" Pvalues under .01 were considered significant and given in boldface.
Table 3. TA Homogeneity Parameter Values and Differences” between the Hemispheres in Various Brain Areas

Angular Second Moment (x10%) Inverse Difference Moment (x102)

Infarct (Right) Side Unaffected (Left) Side P-Value Infarct (Right) Side Unaffected (Left) Side P-Value
Infarct 15.53 [.83] 16.11 [.62] 003 471 [1.64] 161 [L.46] 794
Cerebral peduncle 2.16 [.11] 2.16 [.09] 876 6.22 [1.26] 5.99 [.90] .331
Internal capsule 3.60 [.16] 3.63 [.23] 636 543 [1.11] 5.49 [1.20] .768
Thalamus 3.77 [.19] 3.82[.21] 301 4.99 [.95] 4.98 [1.03] 955
Centrum semiovale 3.83 [.22] 4.07 [.40] 012 5.74 [1.07] 5.51 [1.25] 503
" Pvalues under .01 were considered significant and given in boldface.
Table 4. TA Complexity Parameter Values and Differences” between the Hemispheres in Various Brain Areas

Entropy Difference Entropy

Infarct (Right) Side Unaffected (Left) Side P-Value Infarct (Right) Side Unaffected (Left) Side P-Value
Infarct 1.82 [.01] 1.81 [.01] .001 1.33 [.10] 42 [.19] <.001
Cerebral peduncle 2.69 [.02] 2.69 [.01] 949 1.56 [.05] 1.58 [.05] 197
Internal capsule 2.46 [.01] 2.46 [.02] 556 1.56 [.04] 1.55 [.06] 441
Thalamus 2.45 [.01] 2.44 [.02] 277 1.53 [.04] 1.51 [.05] 335
Centrum semiovale 244 .02] 2.42 .03] 010 1.50 [.06] 1.46 [.07] 063

" Pvalues under .01 were considered significant and given in boldface.

Table 5. Correlations” between DTI and TA Parameters in Ipsilateral

Mesencephalon
FA MD
Angular second moment .181 —.033
Inverse difference moment —.401 408
Entropy —.177 .038
Difference entropy 535 -.531

“Pearson correlations over .5 were considered significant and given in boldface.

Discussion
Our study concerned MR image analysis of chronic right hemi-
sphere infarction patients. DTT analyses included evaluations
of FA and MD values and conventional MR images were an-
alyzed with TA by calculating homogeneity and complexity
parameters. The aim of our study was to compare TA method
to DTT analyses and evaluate the utility of TA in MR image
analysis of stroke patients. DTI results of stroke patients have
been published in previous studies but, to the best of our knowl-
edge, no similar TA study has been reported.

Previous studies have shown that FA values are decreased
and MD values are elevated in infarcted hemisphere compared

to the contralateral side”*'*2! and our DTI findings followed
these logically. We found significant differences with both
parameters in the lesion site and cerebral peduncle. In addition,
MD differed in thalamus.

No reported findings of textural differences after infarction
exist but a previous study showed that with TA it is possible
to detect differences in infarcted brains of rats treated with dif-
ferent stroke therapy.”” The use of TA was essential as the
differences were not visible to the naked eye. Furthermore, it
has been proven that physiological parameters, such as blood
flow, may cause changes in texture pau‘arneters.23

We studied interhemispheric textural differences with four
averaged second-order parameters: angular second moment,
inverse difference moment, entropy, and difference entropy.
The choice was based on earlier studies and assumption that
infarction may change the tissue homogeneity. The features
calculated in four different angles were averaged in order
to eliminate the direction dependency because exact patient
position in MRI could not be assured. Entropy parameters and
angular second moment were proved to reveal differences be-
tween the hemispheres in mild traumatic brain injury patients.*
In addition, averaged texture parameters have been shown to
correlate with changes in ADC values.?? We found angular
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second moment values lower and both entropy parameter val-
ues higher in the lesion site compared to the reference area on
the left hemisphere. Equal trend was found in centrum semio-
vale. These results indicate that the brain tissue texture on ipsi-
lateral hemisphere is more heterogeneous and complex than on
the contralateral side. This refers that damaged tissue might ap-
pear more coarse and random in texture compared to healthy
tissue. Similar results were obtained in previous studies of mild
brain injuries®! and epilepsy.?’

Altogether, both methods, DTT and TA, were capable de-
tecting differences between infarcted and unaffected hemi-
spheres also outside the infarction area. These increases and
decreases in various parameters may refer to changes along
the white matter tracts, that is presence of WD. However, the
only correlation between the parameters was found in ipsi-
lateral mesencephalon. The correlation of difference entropy
with FA and MD was found significant while all other cor-
relations coefficients were low. This indicates that DTI and
TA parameters carry divergent information from the tissue
properties.

It must be noted that our TA study concerned only four av-
eraged co-occurrence matrix-based parameters. Hundreds of
more textural features can be calculated to enhance the re-
sults. However, when developing the protocol of TA toward
a simple and assistive clinical tool, some decisions have to be
made beforehand to reduce the amount of data. Therefore,
we selected four features and improved their robustness by
averaging the different directions. Also, because of schedule
problems our study contained no control group. Instead, we
used the contralateral hemisphere as a point of comparison.
ADC values have been shown to change also in the unaffected
side at acute phase of stroke.” A study of pediatric strokes re-
ported, however, no differences in the FA and MD values be-
tween the contralateral hemisphere and healthy control group
at chronic stage.?® In a TA study of mild traumatic brain injuries,
interhemispheric textural differences among healthy controls
were minimal.?? Furthermore, our patient material consisted
of only patients with first-ever right-sided infarction and the
sample size was relatively small. Nevertheless, we believe the
homogeneity of the patient group is also the strength of this
study.

In conclusion, our study of right-sided stroke patients
showed that DTI parameters revealed interhemispheric dif-
ferences in the lesion site, cerebral peduncle, and thalamus,
which was in line with earlier studies. Our novel TA results
with homogeneity and entropy parameters supported the DTI
findings while interhemispheric variation was found in the in-
farction site and centrum semiovale. Correlations of DTI and
TA parameters showed that the two methods mainly reveal
dissimilar information and could both assist in detecting tissue
damages caused by stroke also outside the infarction area. Ipsi-
lateral structures were found more heterogeneous and random
in texture compared to the reference areas on the contralateral
side.

The authors thank professor Jari Viik for statistical assistance.
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