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Abstract

Magnetic resonance imaging (MRI) provides high-quality images with excellent contrast
detail of soft tissues and anatomic structures. MR images contain a large amount of
detailed information – some of which is invisible to the human eye. Detailed information
can be analysed with computer-assisted texture analysis (TA), which is based on features
describing the grey level relationships between image pixels.

The aim of this thesis was to assess the information content of textural features based on
the image histogram, grey level co-occurrence matrix, and grey level run-length matrix.
The strengths and limitations of the various textural features in medical MR image
analysis were evaluated. The study was conducted by analysing different clinical data
with TA in the clinical environment, and the results of the learning process were then
gathered in this thesis.

Our results indicated that all textural features have limitations in terms of their discrimi-
nation capacity in medical MR images and their dependence on the size of the region
of interest and MR imaging parameters. By considering these limitations, TA may help
in various MR imaging applications by revealing textural information of the images of
various human organs.
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1 Introduction

Modern medical imaging has undergone major advancements. The ability to obtain
information about the human body is used in diagnostics, treatment planning and follow-
up. Various medical imaging images have been developed, each with its own advantages
and disadvantages. Conventional X-ray, computed tomography (CT), and molecular
imaging methods use ionizing radiation, whereas magnetic resonance imaging (MRI) and
ultrasound imaging do not.

MRI is increasingly favoured, not only due to its advantage in avoiding the use of ionizing
radiation but also due to its excellent soft tissue contrast and constantly improving
imaging techniques. MRI is a sophisticated volumetric imaging method that uses a
powerful magnetic field and radiofrequency pulses to produce detailed images at any
imaging plane. MRI provides high-quality images with excellent contrast detail of soft
tissue and anatomic structures such as grey and white matter in the brain.

Ideally, radiologists can tell the difference between healthy and diseased tissue by inspecting
a clinical image. However, this is not always possible because clinical images currently
contain high levels of detailed information. The human eye has a limited ability to observe
these complex patterns and is occasionally unable to define them. Therefore, quantitative
methods to analyse these patterns are needed. One solution is to use computer-assessed
texture analysis (TA), which is based on features that describe the relationships between
image pixels.

TA is already used for automatic defect detection and quality control (for example, in the
food, paper, metal, textile, and plastic industries) and for automatic pattern recognition
(for example, in remote sensing and mining). In studies of medical images, TA has been
applied to the classification of pathological tissues based on MR images of the brain
(de Oliveira et al., 2011; Fetit et al., 2015; Freeborough and Fox, 1998; Holli et al., 2010;
Kassner et al., 2009; Kjaer et al., 1995; Kovalev et al., 2003; Suoranta et al., 2013), liver
(Bahl et al., 2012; Yu et al., 2001; Zhang et al., 2015), breast (Ko et al., 2016; Pickles
et al., 2016; Teruel et al., 2014), and lungs (Yoon et al., 2016). In addition, TA has
proven able to reveal subtle changes based on MR images of bone (Harrison et al., 2011;
Langenberger et al., 2003; Nikander et al., 2009) and muscle (Herlidou et al., 1999; Nakai
et al., 2008; Nketiah et al., 2015). When quantified, these changes, which are invisible to
the human eye, can be used in the diagnosis, treatment planning and follow-up of diseases.
However, the final step that is needed to apply the TA method in everyday clinical use
has not yet been taken. The TA methods used in other fields should be adapted to meet
the requirements of the medical environment.

In this thesis, we evaluate the technical requirements concerning the TA of medical MR
images from the brain and thigh muscles. For example, the TA parameters that are
employed in industrial applications may not be the most practical for application to

1



2 Chapter 1. Introduction

medical images. The study was conducted by analysing MRI data of using TA in the
clinical environment and then gathering the results of this learning process in this thesis.

The ultimate goal of TA in the clinical environment is to yield quantitative results while
providing an explanation for the obtained numbers. This thesis considers the technical
issues, such as size-dependence of textural features, of clinical TA with the aim of moving
towards this objective.



2 Literature Review

2.1 Magnetic resonance imaging

MRI is a non-invasive tomographic imaging technique based on nuclear magnetic resonance
(NMR) signals. The magnetic resonance phenomenon was discovered by Felix Bloch
and Edward Purcell (Bloch, 1946; Purcell et al., 1946) in 1946. In 1975, Richard Ernst
proposed techniques on which current MRI techniques are based: phase and frequency
encoding, and the Fourier Transform (Kumar et al., 1975). These techniques allowed the
first imaging of the human body in 1980.

MRI is based on the excitation and relaxation of spin systems, usually those in hydrogen
nuclei. In the presence of an external static magnetic field, hydrogen nuclei precess around
an axis in the direction of the external magnetic field and cause longitudinal magnetisation
of these nuclei within the tissue. When the spins are excited to a higher energy level by
the application of radio frequency (RF) pulses, the phase coherence of the spins causes
transverse magnetisation to occur within the tissue. After the RF pulse is switched off,
the spin system recovers to a lower energy level; i.e., it relaxes.

Already in 1971, Damadian (1971) showed that the nuclear magnetic relaxation times of
tissues and tumours differed. MR image contrast is based on the fact that different tissues
have different magnetic relaxation times because of their different chemical compositions
and physical states. The relaxation time constant T1, termed spin-lattice relaxation,
describes the recovery of the longitudinal magnetisation; the time constant T2 describes the
recovery of magnetisation that is flipped into the transverse plane. Due to static magnetic
field inhomogeneities, the loss of phase coherence is more rapid than T2. Therefore,
this decay is described by the effective transverse relaxation time T2*. MR images are
constructed by measuring these tissue-dependent NMR signals that are produced by the
decay of transverse magnetisation. The signal intensity on the MR image is determined by
proton density and relaxation times. The localisation of the NMR signals is selected using
slice selection, phase- and frequency-encoding gradients, and spatially altered magnetic
fields.

2.2 Spin echoes and gradient echoes

The timing and amplitude of RF pulses, gradient fields, and signal recording comprise
an imaging sequence. One of the most conventional imaging sequences is spin echo (SE)
(Farrar, 1970). Here a RF pulse, for example a pulse with flip angle of 90◦, first excites
the spin system and causes transversal magnetization. The transverse magnetization
begins to diphase until a refocusing pulse of 180◦ inverts the phase of the spins producing
spin echo signal at echo time (TE). The whole sequence is repeated after repetition time

3



4 Chapter 2. Literature Review

(TR). The imaging parameters TE and TR may be altered to obtain the desired image
contrast. In clinical practice, SE is used to acquire T1-, T2-, and proton density-weighted
images. However, it is often performed as a fast spin echo (FSE) sequence where multiple
echoes are recorded during one TR. The image contrast can also be modified by adding
an inversion pulse of 180◦ prior to the initial excitation pulse. These inversion recovery
(IR) pulse sequences can be used to produce images with suppression of liquid or fat.
Fluid-attenuated inversion recovery (FLAIR) sequence is used to generate heavily T2-
weighted images with suppression of cerebrospinal fluid whereas short inversion recovery
(STIR) sequence is used heavily T1-weighted images with fat-suppression.

The echo signal can also be produced by gradient fields with different polarities. Instead
of a 180◦ pulse, a negative gradient that destroys the phase coherence of spins is applied.
The gradient is then reversed and the spins rephrase to form an echo. Gradient echo
(GRE) sequences are fast because only one RF pulse with low flip angle is needed. Usually,
GRE images are T2*-weighted, but modifications like magnetization preparation rapid
gradient echo (MPRAGE) have been developed. The speed of the GRE sequences can
be further improved with echo planar imaging (EPI) sequence which enables multislice
imaging. Multi echo data image combination (MEDIC) is a heavily T2*-weighted spoiled
gradient echo sequence with high signal-to-noise ratio. The sequence is based on multiple
echoes that are combined into an image for less artefacts; the early echoes increase the
signal-to-noise level, while later echoes boost the contrast. A fully flow compensated GRE
is used to detect the susceptibility differences between tissues in susceptibility weighted
imaging (SWI). SWI image contrast is highly sensitive to venous blood, haemorrhages
and iron storage and is therefore often used in traumatic brain injuries and for high
resolution brain venographies.

2.3 Diffusion weighted imaging

Diffusion-weighted imaging (DWI) (Merboldt et al., 1985; Taylor and Bushell, 1985) is
an advanced MRI methodology that enables mapping of the diffusion of molecules in
tissues. The diffusion of molecules (mainly water) is driven by thermal agitation and is
highly dependent on the cellular environment; the hypothesis behind medical DWI is
that changes in diffusion may indicate pathologic changes, for example an infarct inside
otherwise normal appearing white matter. The image intensity in a diffusion-weighted
image estimates the rate of water diffusion at that location. Quantitative DW images can
be obtained using the apparent diffusion coefficient (ADC). DWI is mostly applied to the
study and treatment of neurological disorders because it can reveal abnormalities in the
fibre structure of white matter.

Diffusion tensor imaging (DTI) (Filler et al., 1992) is useful when the tissue has an oriented
internal structure, such as the tracts in white matter. Water diffuses more rapidly in the
direction aligned with the tracts and moves more slowly in the perpendicular direction.
The properties of a DTI image voxel are calculated based on vector or tensor calculations,
which are usually based on six or more different diffusion-weighted acquisitions, each of
which is obtained with a different orientation of the diffusion-sensitising gradients. From
the diffusion tensor, diffusion anisotropy measures, such as the fractional anisotropy (FA),
can be computed.
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2.4 Texture analysis

Textures are patterns that are present everywhere and can describe a wide variety
of surface characteristics, such as those of terrains, plants, minerals, fur and human
tissue. Qualitatively, texture can be described by various adjectives, such as fine, coarse,
smooth, rough, regular, or irregular. Nevertheless, texture has no precise definition.
TA is a computer-assessed method for the quantitative analysis of image textures. As
an extension of traditional quantitative image analysis based on pixel intensity, TA
addresses intensity patterns. From the TA standpoint, textures are complex visual
patterns comprising spatially organised entities or sub-patterns. Image texture describes
the spatial arrangement of the visual patterns in an image, i.e., the relationship between
image grey levels. Thus, texture can be considered as similarity grouping in an image
(Hajek et al., 2006). The aim of TA is to calculate texture features as mathematical
parameters that characterise the texture type and thus the underlying structure of the
objects in the image. In other words, one objective of TA can be understood as finding a
way to distinguish two textures. First, this chapter covers a literature review of the used
TA methods. Second, the methodology is reviewed according to the medical applications,
image pre-processing steps, ROI definition, feature calculation and data analysis. A
summary of TA methodology based on reviewed publications in presented in Table 2.1.

2.4.1 Methods
Several methods for TA have been proposed in the literature: structural, statistical,
model-based, and transform methods (Haralick, 1979; Materka and Strzelecki, 1998;
Tuceryan and Jain, 1998). According to Haralick (1979), structural models are based on
the assumption that textures are constructed of primitive elements, which have geometrical
properties (Allen and Mills, 2004); to describe the texture, both the primitives and the
placement rules must be defined. These methods provide a good symbolic description of
the image; however, this feature is more useful for texture synthesis than analysis tasks.

In contrast to structural methods, statistical approaches do not attempt to define the
explicit hierarchical structure of a texture. Instead, they describe texture using properties
concerning the distribution and relationships of grey level values in the image (Haralick,
1979). Local features are computed at each point of the image, and a set of statistics is
derived from the distributions of the features. Statistical methods include features derived
from the histogram, gradient, autocorrelation function, grey level run-length matrix
(GLRLM), and grey level co-occurrence matrix (GLCM). The GLRLM was presented
by Galloway (1975), and the GLCM was described by Haralick (1979). Depending on
the number of pixels defining the local feature, statistical methods can be divided into
first, second, and higher-order statistics. In first-order statistics, image properties depend
solely on individual pixel values, whereas second-order statistics are properties of pixel
pairs (Tuceryan and Jain, 1998). Methods based on second-order statistics tend to obtain
higher discrimination indexes than structural or image transform methods do (Avril et al.,
2001).

A combination of structural and statistical methods, local binary pattern (LBP) was
introduced in the 1990’s (Ojala et al., 1996; Wang and He, 1990). The LBP method
has properties from both the structural (texture primitives and placement rules) and
the statistical (distributions) analysis methods. The LBP method is based on the LBP
feature vector that can be processed using machine learning algorithms to classify images
and textures.
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In model-based methods, the aim is to represent image texture using mathematical
models. Model parameters are estimated and used for image analysis. For example,
fractal features, Markov random field (MRF) and autoregressive (AR) models can be
used. Fractals are shapes or objects that are constructed of smaller copies of themselves.
It has been shown that the fractal model is useful for modelling some natural textures
(Chen et al., 1989). The MRF model assumes that pixel intensity depends only on the
intensities of neighbouring pixels. AR models assume that pixel intensity is a weighted
sum of neighbouring pixel intensities. Texture parameters based on MRF and AR models
are mostly used for image segmentation.

Transform methods derive the texture description parameters from transformations used
in signal processing; for example, Fourier (Bracewell, 1999), Gabor (Qian and Chen, 1993)
and wavelet (Russ, 2002) transforms. The Fourier transform is a well-known frequency
transform, and the Gabor function is performed by windowing a Fourier transform.
Wavelet methods are based on presenting the image as a set of independent frequency
channels. Methods based on the Fourier transform function poorly in practice due
to their lack of spatial localisation. The use of Gabor filters provides better spatial
accuracy. However, the usefulness of these filters is limited in practice because a single
filter resolution at which one can localise a spatial structure does not usually exist in
natural textures. Compared to the Gabor transform, the wavelet transform has several
advantages. For example, varying the spatial resolution enables texture presentation at
the most suitable scale. In addition, a wide range of choices for the wavelet function is
available; therefore, one is able to choose wavelets that are best suited for TA in a specific
application.

The numerical analysis of image texture has been studied since the 1950s (Haralick et al.,
1973). Initial applications covered the quantification of aerial images (Kaizer, 1995), but
the methodology was soon extended to the medical environment. MR images contain a
large amount of information not only about the external shape of large organs but also
about details of the internal tissues; thus, TA is a feasible method for quantitative MR
image analysis (Hajek et al., 2006; Szczypinski et al., 2007). The reason for using TA
is that by examining the values of texture features, one can draw conclusions about a
pathology or disease process. It is assumed that such processes cause changes in tissue
structure that can be measured from the image texture (Bahl et al., 2012).

2.4.2 Examples of medical applications
TA has been used in combination with computed tomography (CT), X-ray imaging and
ultrasonic tissue characterisation for the classification of various tissue types. The first
publications of MR image TA in the 1990s concerned brain tumours (Kjaer et al., 1995;
Lerski et al., 1993). Since then, TA has been applied in several MRI studies. For instance,
structural brain asymmetry has been studied with TA by Kovalev et al. (2003) who
showed male brains more asymmetric than female and asymmetry increases and decreases
with age depending on the brain region. In early studies, the value of MR image texture
was assessed in Alzheimer’s disease (Freeborough and Fox, 1998); furthermore, using TA,
it is possible to detect lesions and abnormalities involving hippocampal sclerosis (Yu et al.,
2001). TA can also provide information that is useful for the diagnosis of skeletal muscle
dystrophy (Herlidou et al., 1999). Currently, research regarding the TA of medical MR
images is ongoing. The application methods and practices vary in terms of, for example,
the pre-processing of MR images before the analyses, the study population, the ROI
setting, the number of TA features calculated, and the data processing and analyses.
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2.4.3 Examples of image preprocessing

Materka et al. (2000) demonstrated that some popular texture descriptors depend not
only on texture but also on other properties inside the region of interest (ROI); in
particular, mean intensity and variance. Thus, normalisation within the ROI is one of
the recommended pre-processing steps, prior to TA feature calculation. Materka and
Strzelecki (2013); Strzelecki and Materka (2014) also commented on the sensitivity of TA
parameters to MR image nonuniformity and local image intensity and contrast variations.
It has been shown that presence of those artefacts might result in misleading results in
medical MRI TA. Therefore, nonuniformity correction has been recommended, followed
by ROI normalisation, prior to texture analysis. MRI acquisition parameters have also
been shown to affect texture parameter values (Mayerhoefer et al., 2009). Lerski et al.
(1999) scanned reticulated foam test objects in six European centres and showed that
that texture measures are not easily comparable between centres. A recent multicentre
study by Fruehwald-Pallamar et al. (2016) confirmed this imaging parameter dependence
while analysing benign and malignant head and neck masses. The authors concluded that
TA could be used for texture discrimination when performed on one scanner using the
same protocol, but no multicentre studies were recommended when using clinical data.

Variation concerning the pre-processing of medical MR images is as wide as the field of
research, and conventional practices are lacking. A considerable number of studies (Fetit
et al., 2015; Liu et al., 2016) apply the normalisation method described by Collewet et al.
(2004), in which the image intensities are normalised in the range [µ ± 3 σ], where µ
refers to the mean and σ refers to the standard deviation of the grey levels. The results
of this study demonstrated the influence of the normalisation method on the effectiveness
of the classification and also on the parameters selected for classification. The suggested
method enhanced the differences between the two classes with the used feature selection
and classifier methods (the lowest probability of error and average correlation coefficient
(POE+ACC) and 1-nearest neighbour (1-NN)). However, some TA studies did not report
any pre-processing of MR images and tens of studies described using multiple advanced
pre-processing methods in addition to normalisation, such as motion correction (Teruel
et al., 2014), intensity nonuniformity correction (Yang et al., 2015), and rescaling (Fox
et al., 2016). No method has proved superior to others.

2.4.4 Examples of region of interest definition

The definition of the ROI size, shape, and localisation is an essential part of the TA
process. ROIs may be drawn freehand or ROIs of standard size and shape can be applied.
In addition, the localisation process can be performed manually, semi-automatically, or
automatically. Overall, the ROI should represent the tissue or structure of interest with
minimal overlap and distortion of other tissues or structures.

The two following ROI settings were compared by Li et al. (2015) in a study concerning
the differentiation of brain metastases originating from different types of lung cancers:
the standard ROI, which contained the cancer tissue and was automatically contoured on
each image set using commercially available software (MIMvista, Cleveland, OH, USA)
and the irregular ROI, which was manually contoured by the radiologists. In total, 126
TA features based on GLCM, gradient GLCM, Gabor transform, and intensity-size-zone
were calculated. Few features were sensitive to differences in the contouring, and TA was
shown to relate to the pathological type of the primary lung tumour for brain metastases.
However, no texture feature was able to differentiate among the four types of lung cancer.
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The limitation of ROI-based TA methods is that they require segmentation. The ROI
should represent the tissue of interest without a partial volume effect, and the most
accurate segmentation may be achieved when performed manually by an experienced
specialist; for example, a radiologist. However, this can easily be time consuming, as in the
work of de Oliveira et al. (2011), in which the corpus callosum and thalamus were studied
in MR images of patients with Alzheimer’s disease. A semi-automated routine for ROI
segmentation was used by Teruel et al. (2014) in a study of the pre-treatment prediction
of the clinical (longest tumour diameter) and pathological response (histopathological
analysis of rejected tumour mass) to neoadjuvant chemotherapy in patients with locally
advanced breast cancer. First, a ROI covering all areas of tissue with visible contrast
enhancement that were recognised as tumour was manually drawn. Second, a relative
enhancement ratio threshold was applied to exclude any voxel that did not satisfy the
set requirements. Finally, an opening morphological algorithm was applied to the binary
ROI to avoid the inclusion of enhanced vessels or possible spuriously enhanced voxels.
The study found that various texture features significantly predicted both the clinical
and pathological response. Zhang et al. (2015) used standard-size square ROIs when
comparing the TA of CT and MR images for the staging of liver fibrosis. The MR images
proved more accurate for staging compared to the CT images, and MRI at 3 T showed
better results at classifying liver fibrosis than did MRI at 1.5 T. The issue of differently
sized freehand ROIs was overcome by de Oliveira et al. (2011) by using the ROI size as
the weight for all calculated TA parameters.

Maani et al. (2015) introduced a novel method that obviates the need for segmentation,
as it performs the analysis on a voxel-by-voxel basis over the whole brain during the
study of neurological disorders in vivo. In the proposed method, the GLCM is computed
in a sphere around each voxel instead of the whole ROI. The output of the method
is a statistical map that is comparable to that of voxel-based morphometry, showing
differences in texture. The method was tested successfully to evaluate artificial lesions
and to demonstrate cerebral changes in an MRI database relating to Alzheimer’s disease.

2.4.5 Histogram-based features
Histogram features originate from the grey scale historgam of an image. The mathematical
formulas and details for the presented histogram features are shown in Appendix I Hajek
et al. (2006); Tuceryan and Jain (1998).

Mean measures the mean of grey level intensities in an image, and variance measures the
wideness of the grey level distribution, i.e., the histogram of an image. Skewness and
kurtosis are measures of the shape of a histogram. Skewness measures the asymmetry
of the histogram, and kurtosis is a measure of whether the data are heavy-tailed or
light-tailed relative to the normal distribution.

2.4.6 Grey level co-occurrence matrix-based features
The GLCM is a second order histogram of an image. It relates to pixel pairs, whereas first
order histogram relates to single pixels. The element of the GLCM is the count of the
pairs whose pixels have particular grey level values in given direction (θ) with given pixel
distance (d). When divided by the total number of the pairs in the image, this histogram
becomes the estimate of the joint probability of two pixels. The basics of GLCM matrix
is presented in Figure 2.1. The mathematical formulas for the presented GLCM features
are shown in Appendix I (Hajek et al., 2006; Tuceryan and Jain, 1998).
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Figure 2.1: GLCM and GLRLM of an image in horizontal direction (θ = 0◦) with pixel distance
of one pixel (d = 1). GLCM calculates the number of how many times a reference grey level
value is followed by a specific neighbouring grey level value in the given direction. GLRLM
indicates how many runs of given length the specific grey level produces.

Angular second moment, also known as uniformity or energy, is calculated as the sum of
squared elements in the GLCM. Angular second moment is a measure of image uniformity
and takes values from 0 to 1. The parameter obtains its maximum value when a grey level
distribution has either a constant or a periodic form. A homogeneous image contains very
few dominant grey tone transitions; therefore, the GLCM for this image type will have
fewer entries of larger magnitude resulting in a large value for this feature. In contrast,
the value is close to zero in a random texture.

Inverse difference moment measures the closeness of the distribution of GLCM elements
to the GLCM diagonal (where the elements represent pixels that are entirely similar
to their neighbours), i.e., the homogeneity of the image. This moment is maximal in a
uniform image with no variation of grey levels.

Entropy measures the randomness of the elements of the GLCM and achieves its largest
value when all elements in the GLCM are equal, i.e., when the image texture is complex.
When the image is not texturally uniform, many GLCM elements have small values,
which implies that entropy is large, and vice versa.

Contrast is a difference moment of the GLCM and measures the amount of local variations
in an image. Contrast is calculated by squaring the subtraction of the examined pixel
values and takes values between 0 and (maximum grey scale value - 1)2. Thus, the
minimum contrast value of zero is obtained when the pixels have the same grey level
value, and, the maximum value is achieved when squaring the subtraction of white and
black pixels.

Correlation is a measure of how correlated a pixel is with its neighbour over the whole
image. This parameter measures the dependencies between the pixels in the image and
takes values from -1 to 1. Correlation is ±1 for perfectly positively or negatively correlated
images and is close to zero for a random pattern.
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Sum of squares is the variance of the GLCM. The values are not equal to but are similar
to the values of the histogram variance. High values are obtained with sudden variation
between neighbouring pixels.

Sum features are calculated based on the sum distribution of the GLCM. Sum average
is calculated by summing two pixel values and averaging the result for the whole image.
The pixel pairs used are those used to calculate the GLCM. Low values are obtained
in low intensity regions, whereas high values are measured in high intensity grey scales.
The average sum is not dependent on the direction or on the pixel distance used in the
calculation. Sum variance is calculated based on the sum average, and the minimum value
is achieved with a uniform image and high values with suddenly varying pixel intensities.
Sum entropy measures the randomness of the sum distribution and also achieves its
minimum value of zero in a uniform image with high values in complex patterns.

Difference variance and difference entropy are calculated based on the difference distri-
bution of the GLCM. The features are zero for a uniform image and for an image with
a symmetrical difference distribution around the mean value. Difference variance takes
high values in an image with highly different neighbouring pixel intensities. Difference
entropy takes high values in randomly distributed patterns.

2.4.7 Grey level run-length matrix-based features
The GLRLM of an image is defined as the number of runs with pixels of particalr grey
level and run length. The basics of GLRLM matrix is presented in Figure 2.1. The
mathematical formulas for the presented GLRLM features are shown in Appendix I
(Hajek et al., 2006; Tuceryan and Jain, 1998).

Run-length nonuniformity measures the absence of equal-length grey level runs in the
texture. The feature takes its lowest values in a texture with equal run-lengths; i.e., the
texture is somehow repeating. More randomly distributed textures provide higher values.
Grey level nonuniformity yields low values if grey levels are equiprobable and high values
where there are no pixels of same grey level value in the direction in which the feature is
calculated.

Long-run emphasis moment achieves high values for images that contain several pixels of
the same grey level in a row. The maximum value is obtained in a uniform image. Small
values are obtained in images with no neighbouring pixels of the same intensity. Short-run
emphasis inverse moment achieves its maximum value of 1 when every consecutive pixel
has a differing grey level value. Uniform textures return low parameter values. Fraction
describes the percentage of image pixels that are part of the runs that are considered for
the matrix calculation. If the runs are of length 1 pixel, then the percentage is 100%, and
the parameter value is 1. Values close to one can be obtained in complex patterns. Small
values are achieved for uniform images.

2.4.8 Examples of data analysis
The number of calculated TA features is usually affected by the post processing of the
TA data. The practice varies between analyses of single feature values to multivariate
analyses of hundreds of TA features or combinations of TA and other measures.

Ko et al. (2016) investigated the potential correlation between the heterogeneity obtained
from TA of MR images and the heterogeneity observed from histopathological findings
in invasive breast cancer. The MRI TA parameters of homogeneity and entropy were
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correlated with pathological tumour heterogeneity. Based on a multivariate analysis of
several texture features, Liu et al. (2016) showed that texture parameters derived from
T1-, T2-, and diffusion-weighted MR images combined with supervised machine-learning
algorithms could act as imaging biomarkers for the therapeutic response of nasopharyngeal
carcinoma to chemo-radiotherapy. Pickles et al. (2016) associated pre-treatment MR
image texture features, among other MRI-based metrics (vascular kinetics and shape and
size features), to the survival intervals of breast cancer patients. Promising TA results
have been obtained with several data analysis methods and textural information can
be utilized also among other measures. More studies are needed to find the best data
processing solution for different applications.

2.4.9 Phantom studies
Phantoms are principally used in the quality control of MRI devices. They can also be
utilised for quantitatively comparing MR imaging instruments. Various MR imagers have
been compared based on anatomic tissue and phantoms (Lerski et al., 1999; Mayerhoefer
et al., 2005). As in many other branches of MR imaging, phantoms are used to evaluate
the possibilities of using TA on MR images. As several hundred texture features are
available, it would be important to find the functional features for specific applications
and to understand how they can be used to classify texture.

Tissue-equivalent MRI phantoms have been developed using carrageenan (Yoshimura
et al., 2003), agarose (Kraft et al., 1987; Mitchell et al., 1986), agar (Bucciolini et al.,
1989; Vre et al., 1985), polyvinyl alcohol (Mano et al., 1986), and gelatin (Blechinger
et al., 1988; Madsen and Fullerton, 1982). These gel phantoms usually contain additives
such as paramagnetic ions to control T1 relaxation times, whereas the T2 relaxation times
are primarily a function of the gelling agent concentration. Textural objects have been
added to homogeneous phantoms using reticulated foams embedded in doped agarose gels
(Lerski and Schad, 1998) and solutions of polystyrene spheres and agar gel (Mayerhoefer
et al., 2009). Despite of several phantom studies, there is no conventional solution for TA
feature standardisation, yet.

2.5 Clinical background

2.5.1 Parkinson’s disease
Parkinson’s disease (PD) is a progressive disorder of the central nervous system. Signs
of PD include rest tremor, bradykinesia, rigidity and the loss of postural reflexes (Lees
et al., 2009). Pathophysiologically, PD is characterised by a loss of dopaminergic neurons
in the basal ganglia; the most seriously affected brain area is the substantia nigra
(SN) pars compacta (Davie, 2008; Hornykiewicz, 1973, 1998; Obeso et al., 2008). This
structure participates in controlling voluntary movements, and when information transfer
is disturbed by the loss of the neurotransmitter dopamine, the consequence can be seen
as symptoms of PD (Lees et al., 2009). Positron emission tomography (PET) is a nuclear
imaging technique, which allows in vivo estimations of important physiological parameters
such as, glucose metabolism and neuroreceptor binding enabling greater understanding of
the pathophysiology of PD. However, PET imaging is not available at every clinic and
utilizes ionizing radiation.

Several studies (Antonini et al., 1993; Brar et al., 2009; Dexter et al., 1991; Graham et al.,
2000; Griffiths et al., 1999; Martin et al., 2008; Ryvlin et al., 1995; Vymazal et al., 1999;



Table 2.1: Summary of TA methodology and the main results from reviewed studies.
Publication Medical

application MRI Study
population

ROI/VOI
setting

Number of
TA features

Image pre-
processing

Data
analyses

Main
results

KO 2016 Breast cancer 1.5 T, T1,
T2 75

2D freehand
(visible
tumour)

2 (GLCM) Filtration and
resampling

Statistical
analyses

Disease increased
uniformity and decreased
entropy

LIU 2016 Nasopharyngeal
carcinoma

3.0 T, T1,
T2, DW 53 2D freehand

(lesion)

126 (GLCM,
gradient CM,
Gabor transform,
ISZM)

Normalisation
(µ±3σ),
quantisation

Feature selection,
classification,
machine learning

Parameters from T1
showed better
classification than those
from T2 and DW

FETIT 2015 Childhood brain
tumours

1.5 T, T1,
T2 48

2D/3D semi-
automatic
irregular
(segmented
tumour),
visual check

33 (histogram,
gradient, GLCM,
GLRLM)

Normalisation
(µ±3σ),
quantisation

Feature selection,
machine learning

Better classification results
with 3D than 2D features

LI 2015 Brain metastases
and lung cancers 3.0 T, T1 126 2D automatic

vs. freehand

126 (GLCM,
gradient CM,
Gabor transform
ISZM)

Grey level intensity
clustering and
normalisation

Feature selection,
classification

TA features
differentiated brain
metastases originated
from different type
lung cancers

YANG 2015 Glioblastoma
multiforme T1, T2 82 2D manual

square

976 (fractal,
histogram
gradient, GLRLM,
LBP, GLCM)

Normalisation,
rescaling

Feature selection,
machine learning

Classical subtype best
predicted by GLCM, neural
subtype best predicted by
GLRLM

PICKLES 2016 Breast cancer 3.0 T, T1 112

3D iterative
semi-automatic
irregular
(segmented
tumour)

4 (GLCM) Histogram
equalisation

Multivariate
analysis

GLCM features associated
with survival

FOX 2015 Breast cancer 3.0 T, T1 100
2D semi-
automatic
irregular (lesion)

3 (Minkowski
functionals)

Local thresholding
with normalisation,
rescaling

Polynomial terms
Differences between triple
negative breast cancer and
other subtypes

WIBMER 2015 Prostate cancer 3.0 T, T1,
T2, DW 147 2D freehand

(lesion) 5 (GLCM) Details not
reported

Statistical
analyses

GLCM features showed
differences between non-
cancerous and malignant
prostate tissue

MAANI 2015 Alzheimer’s
disease, method 1.5 T, T1 30/30 +

MRI dataset

3D whole brain
(not ROI-based
method)

8 (3D GLCM)

Normalisation,
nonuniformity
correction, and
intensity
standardisation

Statistical
analyses New method

TERUEL 2014 Breast cancer 3.0 T, T1 58
2D semi-
automatic
irregular (lesion)

16 (GLCM) Motion
correction

Statistical
analyses

GLCM features showed
prediction of both the
clinical and pathological
response

DE OLIVEIRA
2011

Alzheimer’s
disease

2.0 T, T1,
T2 33/16

2D freehand
irregular
(thalamus and
corpus callosum)

44 (averaged and
weighted GLCM) Not reported Statistical

analyses

GLCM features showed
differences among the
groups for corpus
callosum and thalamus



ZHANG 2015 Hepatic
fibrosis

1.5 T,
3.0 T, CT

218 MRI,
149 CT

2D manually
placed standard
square

15 (histogram,
GLCM)

Pre-processing with
and without Sober
filter

Feature selection,
multivariate
analyses,
classification

MRI better than CT, 3.0 T
better than 1.5 T, mean
grey value and entropy are
the most useful features to
classify liver fibrosis

FRUEHWALD-
PALLAMAR
2015

Head and neck
tumours,
multicentre

1.5 T,
3.0 T 100 2D/3D free-

hand (lesion)

(GLCM, GLRLM,
gradient, ARM,
WAV)

Not reported
Feature
extraction,
classification

TA not recommended for
multicentre studies with
clinical data

LERSKI 1999
Reticulated
foam objects,
multicentre

1.0 T, 1.5 T
6 hospitals 4 phantoms 2D manually

placed circle
16 (histogram,
GLCM) Not reported Multivariate

analysis

Texture measures are not
easily comparable between
centres

KOVALEV
2002 Schizophrenia 1.0 T, T2,

PD 21/19
3D irregular
(brain
parenchyma)

3 (anisotropy,
curvature) Not reported Classification

TA is able to detect
changes in sulcal tissue
structure

FREE-
BOROUGH
1998

Alzheimer’s
disease

1.5 T, T2,
PD 40/24

3D semi-
automatic
irregular
(segmented brain)

260 (GLCM) Rescaling Feature selection,
classification

TA can classify patients and
controls (91%)

YU 2001 Temporal lobe
epilepsy

0.28 T, T2,
PD 23/9 2D freehand

(hippocampus)

200 (histogram,
gradient, GLCM,
GLRLM)

Not reported Classification

TA can detect structural
abnormalities on
apparently normal
hippocampi

HERLIDOU
1999

Skeletal muscle
dystrophy 0.5 T, T1 17/14 2D freehand

59 (histogram,
GLCM, gradient,
GLRLM,
morphology)

Not reported Feature selection TA discrimination was more
exact than visual inspection
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Wallis et al., 2008; Youdim and Riederer, 1993; Zhang et al., 2010) have shown significant
iron accumulation in the SN, and according to Antonini et al. (1993), increased iron levels
may also be present in the caudate nucleus. Studies concerning the iron deposition in the
putamen and globus pallidus have shown conflicting results, with increased (Antonini
et al., 1993; Drayer et al., 1986; Griffiths et al., 1999; Martin et al., 1998), decreased (Kosta
et al., 2006; Ryvlin et al., 1995), and unchanged (Martin et al., 2008; Zhang et al., 2010)
iron levels. Few changes are visible in MR images except for narrowed SN pars compacta
(Graham et al., 2000; Menke et al., 2009). Lee et al. (1995) and Piccini and Brooks (2006)
have proposed diffusion-weighted and heavily T2-weighted MRI experiments to reveal
the brain structure changes. Quantitative analyses of MR images have shown progressive
ventricular enlargement (Camicioli et al., 2011; Huang et al., 2007; Lewis et al., 2009)
and shape changes in the thalami (McKeown et al., 2008). In a longitudinal MRI study
by Ramirez-Ruiz et al. (2005), voxel-based morphometry analysis revealed a significant
loss in grey matter volume during two years of follow-up. The usefulness of SWI in
characterizing iron deposition has been evaluated and demonstrated in several studies
(Rossi et al., 2010; Wu et al., 2014; Zhang et al., 2010, 2009). However, to the best of our
knowledge, our studies (Sikio et al., 2011, 2015) were the first to evaluate the value of TA
in MR images of PD patients.

2.5.2 Cerebral infarction
In the Western world, cerebral infarction (stroke) is a major cause of death and long-term
disability. The signs and symptoms of a stroke include the inability to move or feel on one
side of the body, problems understanding or speaking, feeling like the world is spinning,
or a loss of vision on one side (Donnan et al., 2008). There are two main types of stroke:
ischemic, due to lack of blood flow, and haemorrhagic, due to bleeding. CT imaging is
widely used to diagnose stroke because CT scans are sensitive in detecting mass lesions
and acute haemorrhage. CT is also the first examination in Finnish hospitals because
haemorrhage can be excluded and thrombolytic therapy can be started based on it.

In hemispheric infarction, degenerative changes often occur in the corticospinal tracts
and are deciphered as Wallerian degeneration (WD) (Waller, 1850). According to Waller
(1850) and Kuhn et al. (1989), WD is characterised by the anterograde degeneration of
axons due to injury of the proximal portion of the axon or its cell body. WD can be
detected using conventional MRI within 1 month after the infarction; however, Thomalla
et al. (2004) showed that DTI can reveal WD within the first two weeks after the infarction.
ADC has been shown to decrease at the lesion site in acute ischemic stroke. This decline
is followed by pseudo normalisation and, at the chronic stage, the values increase above
normal levels (Ahlhelm et al., 2002).

Kovalev et al. (2001) and Herlidou-Meme et al. (2003) showed that cerebral tissues can
be classified using TA. In addition, Kassner et al. (2009) studied acute ischemic stroke
and concluded that TA is able to detect significant differences between infarcts that are
vulnerable to haemorrhagic transformation and those that are not.

2.5.3 Tissue adaptation to exercise
Adaptation to exercise training can affect muscle volume, strength and architecture;
muscle-fat distribution; and bone marrow adiposity (Baar et al., 2006; Blazevich et al.,
2003). These changes depend on the exercise type, especially the forces and load patterns,
the specific exercise induces. In response to exercise training, cross-sectional area and
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the strength production of actively involved muscles increase because the number and
cross-sectional area of the individual muscle fibres also increase until the muscle strength
is adjusted to cope with the forces and loads the given muscles and bone are subjected to
(Nakai et al., 2008). Conversely, less-frequent and intense exercise training is associated
with smaller muscle (Bousquet-Santos et al., 2006; Browning et al., 2007; Haddad and
Adams, 2006). Conventionally, the assessment of muscle adaptation to exercise has been
evaluated with muscle volume. However, volume measurement does not reveal structural
variation in muscle tissue or changes in intramuscular fat content. These changes may be
observed with TA.

Textures have been utilized in both ex vivo and in vivo MR studies of skeletal muscles.
Nakai et al. (2008) showed that walking exercise thickens and tightens the muscular fibre
tissues. Mahmoud-Ghoneim et al. (2006) found TA a reproducible and non-destructive
method for rat muscle examination during atrophy and regeneration. In addition, their
investigation of fat structure revealed that MRI texture of subcutaneous adipose tissue
differs between men and women (Mahmoud-Ghoneim et al., 2001). TA has also been
proved to provide useful information contributing the diagnosis of skeletal muscle disease
by Herlidou et al. (1999). TA of bone structure has been shown to give additional
information to routinely measured bone density. Langenberger et al. (2003) were able
to distinguish osteoporotic and nonosteoporotic subjects by means of TA. In athlete
studies, high-impact and odd-impact exercise loading were associated with thicker cortex
around the femoral neck (Nikander et al., 2009); and different trabecular bone (Harrison
et al., 2011) and hip muscle (Nketiah et al., 2015) texture compared with non-athletes.
Depending of the sports, fat tissue thickness and volume can clearly vary between athlete
groups. Also, it was shown that bone marrow density is modulated by exercise loading
(Rantalainen et al., 2013).





3 Aim of the Study

The aim of this thesis was to analyse textural features based on the histogram, grey level
co-occurrence matrix, and grey level run-length matrix applied in medical MR images.
More specific aims were to

1) Indicate of the functionality and limitations of features

2) Evaluate of the robustness of the single features in revealing subtle changes in
Parkinson’s disease, stroke, and healthy adult brains and thigh muscles adapted to
different exercise.
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4 Material and Methods

4.1 Study populations

4.1.1 Healthy adults and artificial noise images

The database comprised brain MR images of 64 healthy adults (age range, 20-60; mean
age, 39.0 ± 11.7 years; 27 males, 37 females) (Study I). Exclusion criteria were neurological
problems (including abnormalities on neuroimaging), psychiatric problems, history of
traumatic brain injury, former neurosurgical procedure, problems with hearing or vision,
first language other than Finnish, and MRI contraindications. None of the subjects had
significant structural abnormalities on conventional MRI sequences. All participants gave
their written consent for the study, which was conducted at Tampere University Hospital,
and the study was approved by the Hospital Ethics Committee.

An artificial noise image matrix was generated using Matlab (MathWorks, Natick, MA,
USA) and filled with random pixel intensity values from 0 to 255. The pixel size was set
to match that of the MR images of the healthy controls (Study I).

4.1.2 Parkinson’s disease

At baseline, 51 patients (age range, 40-86; mean age, 68.8 ± 11.3 years; 25 males, 26
females) with two or more of the following symptoms of PD were included in the study
(Study II): resting tremor, bradykinesia or hypokinesia, rigidity or postural instability.
The exclusion criteria were Alzheimer’s disease or other dementia diagnosed during one
year preceding the study, several general illnesses such as cardiac, lung or gastrointestinal
disease, liver or kidney malfunction, active malignant neoplasm, neurological or psychiatric
disease, contraindications for MRI, alcohol or drug addiction and gravidity. The control
group comprised 20 healthy volunteers (age range, 58-80; mean age, 65.7 ± 6.8 years; 4
males, 16 females).

Among the patients with diagnosed PD, 26 (age range, 42-85; mean age, 68.1 ± 10.4
years; 13 males, 13 females) were selected for the longitudinal study (Study III). The
control group comprised 19 healthy volunteers (age range, 58-80; mean age 65.0 years ±
6.1 years; 4 males, 15 females) with similar exclusion criteria to the patient groups and
was matched by years of education. All participants gave their written consent for the
study, which was conducted at Tampere University Hospital and was approved by the
Hospital Ethics Committee.

19
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4.1.3 Thigh soft tissues
The study group comprised 90 female athletes competing at the national or international
level and 20 nonathletic clinically healthy female referents (Study IV). The athletes
were triple-jumpers (N=9), high-jumpers (N=10), soccer-players (N=10), squash-players
(N=8), power-lifters (N=17), endurance runners (N=18), and swimmers (N=18). The
athletes were recruited through national sports associations and local sport clubs, and the
referents were mainly students of the local University of Applied Sciences. The study was
conducted at Tampere University Hospital in concert with the UKK Institute, Tampere,
Finland.

4.1.4 Cerebral infarction
In total, 1,458 stroke patients were examined and treated at Tampere University Hospital
between July 2005 and April 2008. For the TA study (Study V), 30 patients (age range,
46-79; mean age, 65.5 ± 8.9 years; 24 men, 6 women) were selected. The selected
patients had suffered their first ever infarction located on the right hemisphere, and
they had been capable of living independently before the infarction. Exclusion criteria
were cerebral haemorrhage, traumatic brain injury, previous neurological or psychiatric
disorder, substance abuse, lesions in the left hemisphere or previous lesions in the right
hemisphere found in acute CT, remarkable brain atrophy considering patient age, severe
hearing or primary visual impairment, major decline in consciousness, left-handedness,
native language other than Finnish, and age over 80 years. Seven of the selected patients
had received thrombolytic therapy.

4.2 Magnetic resonance imaging

4.2.1 Healthy adults
MR imaging was performed using a 3-T device (Siemens TrioTim, Erlangen, Germany)
equipped with a 12-channel head matrix coil. The sequence used in our study was axial
T2-weighted 2D turbo spin echo (TSE); the imaging parameters are presented in Table 4.1.

4.2.2 Parkinson’s disease
Imaging was performed using a 3-T MRI device (Siemens TrioTim, Erlangen, Germany)
equipped with a 12-channel head matrix coil following a clinical procedure. Sequences
included in the procedure were axial T2-weighted 3D sampling perfection with application-
optimised contrasts using different flip angle evolution (SPACE), axial 3D T2-weighted
fluid-attenuated inversion recovery SPACE, axial 3D SWI sequence, axial 2D parametric
T2* (MapIt), axial diffusion-weighted 2D EPI, axial T1-weighted 2D SE, and sagittal
T1-weighted 3D MPRAGE. The baseline study of the patients and controls was performed
using SWI and SPACE images; the follow-up study with SPACE images (Table 4.1).
Baseline and follow-up MRI were performed with a time delay of 25.0 ± 1.5 months.

4.2.3 Thigh soft tissues
Imaging was performed using a 1.5-T MRI system (Siemens Magnetom, Avanto, Siemens
Healthcare Sector, Erlangen, Germany). The thigh region of the dominant side was
imaged using a combination of two 6-channel body matrix coils and a spine matrix coil.
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Table 4.1: Typical acquisition parameters for the MRI sequences used in Studies I-V and an
additional phantom study.

Study Field
strength
(T)

Sequence name TR
(ms)

TE
(ms)

TI
(ms)

Slice/gap
(mm/mm)

Pixel
spacing
(mm/mm)

Flip
angle
(◦)

I 3 T2 2D TSE 5,790 190 - 4.0/1.2 0.49/0.49 120
II 3 3D SWI 27 20 - 1.5/0 0.60/0.60 15
II, III 3 T2 3D SPACE 3,200 354 - 3.0/0 0.60/0.60 120
IV 1.5 T2* MEDIC 40 17 - 3.0/0 0.81/0.81 12
V 1.5 T2 2D FLAIR 8,500 100 2,500 5.0/1.5 0.45/0.45 150
V 1.5 DW 2D EPI 3,500 96 - 5.0/1.5 1.80/1.80 9
Phantoms 3 T1 3D MPR 1,900 2.41 900 0.90/0 0.47/0.47 9
Phantoms 3 T1 2D SE 600 6.8 - 4.0/1.2 0.70/0.70 90
Phantoms 3 T2 3D SPACE 3,200 357 - 3.0/0 0.28/0.28 120
Phantoms 3 T2 3D FLAIR 6,000 394 2,100 3.0/0 0.47/0.47 120
Phantoms 3 3D SWI 27 20 - 1.50/0 0.94/0.94 15

The imaging sequence used in this study was an axial 3D T2*-weighted MEDIC sequence;
the acquisition parameters are shown in Table 4.1.

4.2.4 Cerebral infarction
The patients underwent MRI studies in the chronic phase approximately one and a half
years (mean 18.3 ± 5.5 months) after infarction. MRI was performed in normal clinical
practice using a 1.5-T MRI scanner (Magnetom Avanto SQ, Siemens Medical Solutions,
Erlangen, Germany) equipped with a conventional 12-channel head matrix coil. The
conventional MRI protocol included sagittal 2D T1-weighted SE, sagittal 3D T2-weighted
SPACE, axial T2-weighted FLAIR, axial T1-weighted SE, and axial T2-weighted GRE
(T2*) sequences. DTI was performed using a single-shot diffusion-weighted EPI, and
diffusion-sensitive gradients were applied along 12 gradient directions. Acquisitions were
repeated 3 times, and the average result was used in the analyses. In the TA study,
we used images from axial T2-weighted FLAIR and diffusion-weighted EPI series with
a b-value of 1,000 s/mm2. Typical acquisition parameters for the used sequences are
presented in Table 4.1.

4.3 Image preprocessing

In all studies, the grey level normalisation of each ROI was performed using a method
that normalises image intensities in the range [µ− 3σ, µ+ 3σ] (µ is the mean grey level
value and σ is the standard deviation) to minimise the effects of contrast variation and
brightness (Collewet et al., 2004). Eight bits per pixel were used to calculate second-order
feature values; that is, the number of grey level values was 256.

4.4 Regions of interest

All studies contained selections of interesting image slices from the MR image stacks.
DICOM (Digital imaging and communications in medicine) format images were manually
selected using Osiris version 4.19 (The Digital Imaging Unit of the Service for Medical
Computing of the University Hospitals of Geneva, Switzerland) by an operator supervised
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by an experienced radiologist. ROI placement was performed using the TA software
MaZda package version 4.6 (The Technical University of Lodz, Institute of Electronics,
Lodz, Poland) (Strzelecki et al., 2013; Szczypinski et al., 2007, 2009).

4.4.1 Healthy adults
Axial slices representing the centrum semiovale area of each participant were selected.
This location was selected because it presents clear anatomical landmarks and a relatively
wide texturally homogeneous area. First, ten circular ROIs (5, 6, 7, 8, 9, 10, 15, 20, 25,
30, and 35 pixels in diameter) were manually located on the right hemisphere centrum
semiovale in the selected MR slices. The ROI sizes correspond to ROI areas of from 21 to
933 pixels. The same ROI sets were randomly placed in the artificial noise image.

4.4.2 Parkinson’s disease
For texture analysis, seven axial slices from every patient and healthy control were selected.
Image levels were chosen to represent regions of the brain that are clinically significant in
PD. Fixed-size circular ROIs were manually placed on images of both hemispheres by
an operator under the supervision of an experienced radiologist. In the baseline study,
we evaluated the following areas: dentate nucleus, basilar pons, SN pars reticulata, SN
pars compacta, red nucleus, globus pallidus, putamen, anterior and posterior thalamus,
caudate nucleus, anterior and posterior corona radiata, and anterior, medial, and posterior
centrum semiovale on both hemispheres. In the follow-up study, we analysed the dentate
nucleus, basilar pons, SN pars compacta, red nucleus, globus pallidus, putamen, anterior
and posterior thalamus, caudate nucleus, anterior and posterior corona radiata, and
anterior, medial, and posterior centrum semiovale.

4.4.3 Thigh soft tissues
The tissues were analysed at two anatomical levels of thigh that were chosen according to
anatomical landmarks related to the muscles. The proximal level was the image slice just
distal from the trochanter minor, and the distal level was the image slice at the insertion
of the gluteus maximus muscle into the femur. The analysed tissues were thigh muscles
that are actively involved in load-bearing during different exercises, subcutaneous fat,
and the femoral bone marrow of the dominant leg. The muscles comprised major anterior
compartment muscles such as the rectus femoris, vastus lateralis, and vastus intermedius;
and medial compartment muscles such as the adductor longus and adductor magnus.
Fixed-size square ROIs were placed on the central area of the muscle cross section to
avoid a partial volume effect on ROIs caused by contamination with the connective tissue
around the muscle and visible fascicles. In addition, a similar ROI box was placed on
subcutaneous fat tissue surrounding the thigh muscles, and a spherical ROI was set on
the bone marrow inside the femur.

4.4.4 Cerebral infarction
Three axial slices representing vulnerable white matter tract areas and one slice from
the infarction area were selected for the analyses based on the diffusion- and the T2-
weighted series. Fixed-size circular ROIss were manually placed on axial slices in the
cerebral peduncle, thalamus, knee of the internal capsule, and centrum semiovale on both
hemispheres. One set of ROIs was placed in the infarction area on the right and in the
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corresponding areas on the left hemisphere. The ROIs were centred in the target areas,
avoiding border areas and neighbouring tracts.

4.5 Texture and data analyses

Image textures were analysed using the MaZda software, and the data were statistically
analysed using SPSS for Windows version 14.0.2 (Study II) and version 20.0 (Studies I,
III, IV, and V) (SPSS Inc., IBM, IL, USA).

4.5.1 Healthy adults

In Study I, all histogram-, GLCM-, and GLRLM-based features were calculated for each
ROI. The GLCM features were calculated using the distance of one pixel, and GLCM and
GLRLM features were calculated in four directions (θ = 0◦, 45◦, 90◦, and 135◦). The four
directional components of each feature were averaged into one parameter to enhance the
robustness of the method because the exact position of the participants during the MR
imaging could not be ensured. The same calculations were performed for the phantom
images. The distributions of TA features obtained from MR and random images were
analysed using scatter plots, which were constructed separately for each feature.

4.5.2 Parkinson’s disease

In the baseline study (Study II), all 11 GLCM-based features were considered. The pixel
distances d = 1, 2, 3, 4, and 5 and the directions θ = 0◦, 45◦, 90◦, and 135◦ were considered;
the parameters calculated in the horizontal (0◦) and vertical (90◦) directions were treated
as one group, and the parameters calculated in the diagonal directions (45◦ and 135◦) were
treated as another group to examine to direction-dependency of the features. Differences
in texture parameters between the hemispheres in all structures were analysed using the
Mann-Whitney U test.

In the follow-up study (Study III), we selected the GLCM method with two homogeneity
(angular second moment and inverse difference moment) and two complexity (entropy
and difference entropy) features. The features calculated using a pixel distance of one
pixel were considered, and the mean value of the four directional parameters was used in
further analyses. The Mann-Whitney U test was used to evaluate whether the differences
between the brain MR image textures of the baseline PD patients and those of the healthy
controls were statistically significant. Changes in brain structure textures between the
baseline and follow-up patient images were studied using the Wilcoxon signed rank test.
In addition, correlations between changes in clinical scores and MR image textures were
evaluated using Pearson’s correlation coefficient.

4.5.3 Thigh soft tissues

In Study IV, four GLCM-based features (angular second moment, inverse difference
moment, entropy, and difference entropy) were calculated for each ROI. All features
were calculated in the horizontal (0◦), vertical (90◦), and two diagonal (45◦ and 135◦)
directions using a pixel distance of one pixel. The direction dependency of the features
was removed by calculating the mean value of the four directions. The group analyses of
muscles, fat, and bone marrow were performed using the Mann-Whitney test.
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4.5.4 Cerebral infarction
In Study V, four GLCM-based features (angular second moment, inverse difference
moment, entropy, and difference entropy) were used in the analyses. The features were
calculated in the horizontal (0◦), vertical (90◦), and two diagonal (45◦ and 135◦) directions
using a pixel distance of one pixel. The mean values of the four directions were used in
the analyses. The mean diffusivity (MD) and FA values were calculated pixel-by-pixel
based on the diffusion-weighted images. Differences between the infarcted and unaffected
hemisphere were analysed using the paired t-test, and correlations were calculated using
Pearson’s R test.

4.6 Additional materials and methods

In addition to the published results, this thesis contains unpublished material about MRI
phantoms and ROI definition in the TA procedure. The unpublished analyses were used
to strengthen the published results concerning the methodology of medical MR image
TA.

4.6.1 Magnetic resonance imaging phantoms
Homogeneous MRI phantoms were developed for research purposes at the Department
of Biomedical Engineering at Tampere University of Technology. The phantoms were
manufactured according to earlier paper by Yoshimura et al. (2003). The materials
used for the phantoms were agarose (Sigma-Aldrich Finland Oy, Finland), carrageenan
(Sigma-Aldrich Finland Oy, Finland), gadolinium (III) chloride (GdCl3; Sigma-Aldrich
Finland Oy, Finland), sodium azide (NaN3; Tamro Medlab Oy, Finland), and distilled
water. Six phantoms with differing T2 and T1 relaxation times were produced using 7-80
µmol/kg of GdCl3, 0.2-1.2 % of agarose, and 3 % (fixed) of carrageenan. In addition,
0.03 % of NaN3 was added as an antiseptic. Detailed information regarding the phantom
contents is shown in Table 4.2.

The ingredients were mixed, and water was added to bring the total weight up to 100 g.
The mixture was heated in a water bath at 90◦ and stirred with a magnetic stirrer (Ikamag,
German) to dissolve the agarose. The mixture was then cooled to room temperature in a
plastic container to solidify it.

The phantoms were imaged using a 3-T device (Siemens TrioTim, Erlangen, Germany)
equipped with a body coil. The sequences used in our study are presented in Table 4.1,
and an example image from the T2-weighted SPACE series is presented in Figure 4.1.

MR images performed with different sequences and with different pixel spacing were
downscaled using Osiris to match the resolution of the largest pixel spacing (0.94/0.94

Table 4.2: Composition of the MRI phantoms.

Phantom Agarose (g) GdCl3 (mg) Carrageenan (g) NaN3 (g) Water bath (◦/min)

1 1.200 2.18 2.998 - 96/6
2 0.599 0.18 3.000 0.030 93/7
3 .201 0.20 3.000 0.031 96/7
4 0.596 0.52 2.999 0.031 95/7
5 0.200 0.52 3.000 0.031 95/7
6 1.200 2.11 2.999 0.030 95/11
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Figure 4.1: MRI phantoms imaged using the T2-weighted SPACE sequence.

in SWI). Five of each circular ROI (5, 6, 7, 8, 9, 10, 15, 20, 25, 30, and 35 pixels in
diameter) were then manually located in the phantoms. Histograms and averaged GLCM
and GLRLM features were calculated and analysed together with the results obtained
from Study I.

4.6.2 Intra- and inter-observer variability
Intra- and inter-observer analyses concerning the ROI definition were performed for the
data obtained in Study I. Standard circular ROIs of 15 pixels in diameter and freehand
ROIs were manually placed and drawn on the centrum semiovale area in MR images
of 64 healthy controls. Operator #1 performed the ROI definition twice at a two-week
interval, and Operator #2 performed the ROI definition once. The feature distribution
was analysed with box plots and statistically with Mann-Whitney U test. The ROIs are
specified in Figure 4.2.
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Figure 4.2: ROIs for intra- and inter-observer analyses. Left: a standard circular ROI of 15 ×
15 pixels in diameter in the area of the centrum semiovale. Right: a freehand ROI at the same
area.



5 Results

5.1 Information regarding textural features based on MR
images of healthy controls and phantoms

The effect of ROI size on texture features was assessed in Study I. In addition, the
information regarding texture features was evaluated with the following textures: the
centrum semiovale from T2-weighted TSE images of healthy adults (Study I), an artificial
noise image comprising a random distribution of 256 grey levels (Study I), an homogeneous
agarose gel MRI phantom (T2-weighted SPACE images), and air from the TSE series of
healthy adults (Study I). The texture feature values of the MRI phantom imaged with
five different imaging sequences are also presented to evaluate the information content
of the features in MRI TA. Moreover, the intra- and inter-observer variabilities in brain
MRI scans with standard-size and freehand ROIs for each feature were evaluated.

Figures representing all three analyses for each histogram-, GLCM,-, and GLRLM-based
feature are presented in Figures 5.1-5.10. The images in the top row show the feature
values for the following textures as scatter plots: the centrum semiovale of healthy adults
(controls), artificial noise (random), an homogeneous MRI phantom (phantom), and air
(background). The images in the middle row show the feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted
imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted
SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). The images in the bottom row show
box-plots for feature values obtained from standard-size circular ROIs and freehand ROIs
placed on the centrum semiovale on MR images of healthy controls (Study I) by Operator
#1 (twice with two-week interval, grey plots) and Operator #2 (once, white plots).

The top row images are summarised in Table 5.1 where the mean and standard deviation
values for all presented textures are presented; the middle row images are summarised in
Table 5.2 where the mean and standard deviation values for phantom textures based on
different sequences are presented; and the bottom row images are summarised in Table 5.3
where p-values based on Mann-Whitney U test for intra- ans inter-observer analyses
are presented. A summary of all analyses concerning the behaviour of TA features is
presented in Table 5.4.

27



28 Chapter 5. Results

Figure 5.1: Scatter and box plots illustrating the information content and robustness of
histogram mean and variance. Top: Feature values for the following textures using different ROI
sizes: brain (controls – blue), artificial noise image (random – green), homogeneous MRI phantom
(phantom – purple), and air (background – grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.2: Scatter and box plots illustrating the information content and robustness of
histogram skewness and kurtosis. Top: Feature values for the following textures using different
ROI sizes: brain (controls – blue), artificial noise image (random – green), homogeneous MRI
phantom (phantom – purple), and air (background – grey). Middle: Feature values for the
homogeneous MRI phantom imaged with the following five imaging sequences: susceptibility-
weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-
weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer
variation for two ROI types: standard-size circular ROIs and freehand ROIs placed on the
centrum semiovale. Operator #1 performed the ROI definition twice (grey box plots), and
Operator #2 performed the ROI definition once (white box plots).
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Figure 5.3: Scatter and box plots illustrating the information content and robustness of GLCM
angular second moment and inverse difference moment. Top: Feature values for the following
textures using different ROI sizes: brain (controls – blue), artificial noise image (random –
green), homogeneous MRI phantom (phantom – purple), and air (background – grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.4: Scatter and box plots illustrating the information content and robustness of GLCM
entropy and sum entropy. Top: Feature values for the following textures using different ROI sizes:
brain (controls – blue), artificial noise image (random – green), homogeneous MRI phantom
(phantom – purple), and air (background – grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.5: Scatter and box plots illustrating the information content and robustness of GLCM
difference entropy and contrast. Top: Feature values for the following textures using different ROI
sizes: brain (controls – blue), artificial noise image (random – green), homogeneous MRI phantom
(phantom – purple), and air (background – grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.6: Scatter and box plots illustrating the information content and robustness of
GLCM correlation and difference variance. Top: Feature values for the following textures
using different ROI sizes: brain (controls – blue), artificial noise image (random – green),
homogeneous MRI phantom (phantom – purple), and air (background – grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).



34 Chapter 5. Results

Figure 5.7: Scatter and box plots illustrating the information content and robustness of GLCM
sun variance and sum average. Top: Feature values for the following textures using different ROI
sizes: brain (controls – blue), artificial noise image (random – green), homogeneous MRI phantom
(phantom – purple), and air (background – grey). Middle: Feature values for the homogeneous
MRI phantom imaged with the following five imaging sequences: susceptibility-weighted imaging
(swi), T1-weighted MPRAGE (t1mpr), T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc),
and T2-weighted FLAIR (t2spcdf). Bottom: Intra- and inter-observer variation for two ROI
types: standard-size circular ROIs and freehand ROIs placed on the centrum semiovale. Operator
#1 performed the ROI definition twice (grey box plots), and Operator #2 performed the ROI
definition once (white box plots).
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Figure 5.8: Scatter and box plots illustrating the information content and robustness of GLCM
sum of squares and GLRLM run-length nonuniformity. Top: Feature values for the following
textures using different ROI sizes: brain (controls – blue), artificial noise image (random –
green), homogeneous MRI phantom (phantom – purple), and air (background – grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.9: Scatter and box plots illustrating the information content and robustness of
GLRLM grey level nonuniformity and long-run emphasis moment. Top: Feature values for
the following textures using different ROI sizes: brain (controls – blue), artificial noise image
(random – green), homogeneous MRI phantom (phantom – purple), and air (background –
grey). Middle: Feature values for the homogeneous MRI phantom imaged with the following
five imaging sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr),
T1-weighted spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf).
Bottom: Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and
freehand ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition
twice (grey box plots), and Operator #2 performed the ROI definition once (white box plots).
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Figure 5.10: Scatter and box plots illustrating the information content and robustness of
GLRLM short-sun emphasis inverse moment and fraction. Top: Feature values for the following
textures using different ROI sizes: brain (controls – blue), artificial noise image (random –
green), homogeneous MRI phantom (phantom – purple), and air (background – grey). Middle:
Feature values for the homogeneous MRI phantom imaged with the following five imaging
sequences: susceptibility-weighted imaging (swi), T1-weighted MPRAGE (t1mpr), T1-weighted
spin echo (t1se), T2-weighted SPACE (t2spc), and T2-weighted FLAIR (t2spcdf). Bottom:
Intra- and inter-observer variation for two ROI types: standard-size circular ROIs and freehand
ROIs placed on the centrum semiovale. Operator #1 performed the ROI definition twice (grey
box plots), and Operator #2 performed the ROI definition once (white box plots).
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5.1.1 Histogram-based features
Figures 5.1 and 5.2 show that the values of histogram-based features are not dependent on
ROI size. The variance (Figure 5.1), skewness (Figure 5.2), and kurtosis (Figure 5.2) of
the MR image background texture were indistinguishable from other textures. Naturally,
the MRI sequence affects the mean (Figure 5.1) values of homogeneous textures because
this feature is related to single pixels and provides information regarding the overall grey
scale distribution within the ROI. It should be noted that the histogram features are not
normalized in MaZda software.

5.1.2 Grey level co-occurrence matrix-based features
Because GLCM-based features relate to pixel pairs, these features seem to carry informa-
tion about the underlying structure of an image. In particular, features describing the
homogeneity or the complexity of the texture: angular second moment (Figure 5.3), in-
verse difference moment (Figure 5.3), entropy (Figure 5.4), sum entropy (Figure 5.4), and
difference entropy (Figure 5.5) were able to distinguish random and background textures
from MR image textures of the centrum semiovale and homogeneous phantom. Angular
second moment and entropy were also quite robust to the choice of imaging sequence.
However, contrast (Figure 5.5), correlation (Figure 5.6), difference variance (Figure 5.6),
and sum variance (Figure 5.7) did not clearly distinguish the MR image texture from
artificial or background textures and were widely distributed for also homogeneous tex-
tures. Background texture was distinguishable based on sum average (Figure 5.7), but
MR image texture was indistinguishable from artificial noise and phantom textures. All
textures overlapped based on sum of squares (Figure 5.8).

5.1.3 Grey level run-length matrix-based features
The linearly size-dependent features run-length (Figure 5.8) and grey level nonuniformity
(Figure 5.9) were able to separate background and random textures from MR image
textures. The MR image brain texture was also distinguishable from the phantom
texture when using larger ROI sizes. Other GLRLM features (long-run emphasis moment
(Figure 5.9), short-run emphasis inverse moment (Figure 5.10), and fraction (Figure 5.10)
were independent of ROI size. The distributions of brain and phantom textures overlapped
but were different from noise textures, at least when using larger ROIs. Among the
GLRLM features, only run-length nonuniformity produced quite similar values for the
homogeneous phantom texture using different imaging sequences.



5.1. Information regarding textural features based on MR images of healthy controls
and phantoms 39

Table 5.1: Mean and standard deviation values for texture features obtained from phantoms
imaged with following textures: brain (controls), artificial noise image (random), homogeneous
MRI phantom (phantom), and air in MRI scan (background).

Feature Controls Random Phantom Background

Histogram mean 266 [49] 129 [11] 193 [2] 7 [2]
Histogram variance 370 [330] 5800 [700] 60 [10] 8 [4]
Histogram skewness 0.154 [0.508] -0.006 [0.182] 0.104 [0.212] 0.509 [0.269]
Histogram kurtosis 0.359 [2.688] -1.024 [0.219] -0.234 [0.265] 0.001 [0.730]

GLCM angular second mo-
ment

0.0086 [0.0095] 0.0205 [0.0124] 0.0099 [0.0098] 0.0224 [0.0131]

GLCM contrast 2490 [630] 3630 [240] 3560 [420] 3420 [510]
GLCM correlation 0.293 [0.169] -0.005 [0.055] 0.016 [0.096] 0.146 [0.113]
GLCM sum of squares 1780 [110] 1810 [60] 1810 [80] 2010 [160]
GLCM inverse difference mo-
ment

0.031 [0.010] 0.109 [0.023] 0.043 [0.012] 0.123 [0.032]

GLCM sum average 254 [3] 256 [3] 251 [3] 224 [11]
GLCM sum variance 4530 [610] 3600 [210] 3670 [350] 4600 [600]
GLCM sum entropy 1.81 [0.32] 1.48 [0.18] 1.60 [0.22] 1.26 [0.15]
GLCM entropy 2.32 [0.46] 1.81 [0.20] 2.22 [0.40] 1.79 [0.24]
GLCM difference variance 890 [220] 1240 [100] 1220 [120] 1260 [200]
GLCM difference entropy 1.58 [0.21] 1.36 [0.15] 1.41 [0.15] 0.99 [0.12]

GLRLM run-length nonuni-
formity

211 [220] 167 [175] 200 [210] 161 [166]

GLRLM grey level nonunifor-
mity

4.4 [3.5] 21.1 [21.2] 8.6 [7.7] 21.5 [21.8]

GLRLM long-run emphasis 1.06 [0.03] 1.33 [0.08] 1.11 [0.03] 1.39 [0.12]
GLRLM short-run emphasis 0.986 [0.006] 0.929 [0.014] 0.973 [0.007] 0.919 [0.022]
GLRLM fraction 0.982 [0.008] 0.908 [0.019] 0.965 [0.010] 0.894 [0.027]
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Table 5.2: Mean and standard deviation values for the homogeneous MRI phantom imaged with
the following five imaging sequences: SWI, T1-weighted MPRAGE (T1MPR), T1-weighted SE
(T1SE), and T2-weighted FLAIR (T2SPCDF). The values from T2-weighted SPACE (T2SPC)
sequence are presented in Table 5.1 (phantom).

Feature SWI T1MPR T1SE T2SPCDF

Histogram mean 390 [3] 502 [3] 1120 [8] 164 [1]
Histogram variance 391 [207] 128 [41] 1240 [1160] 10 [1]
Histogram skewness -2.27 [2.61] -0.12 [0.17] -0.17 [0.13] -0.04 [0.14]
Histogram kurtosis 21.2 [26.7] -0.4 [0.3] -0.9 [0.1] -0.3 [0.4]

GLCM angular second mo-
ment

0.0085 [0.0097] 0.0088 [0.0097] 0.0085 [0.0098] 0.0170 [0.0094]

GLCM contrast 2630 [1004] 2880 [610] 540 [460] 3140 [350]
GLCM correlation 0.112 [0.088] 0.192 [0.159] 0.833 [0.144] 0.143 [0.081]
GLCM sum of squares 1460 [470] 1780 [70] 1660 [50] 1830 [110]
GLCM inverse difference mo-
ment

0.043 [0.007] 0.040 [0.007] 0.067 [0.036] 0.102 [0.012]

GLCM sum average 256 [3] 255 [3] 256 [3] 247 [6]
GLCM sum variance 3210 [970] 4230 [510] 6110 [610] 4190 [400]
GLCM sum entropy 1.79 [0.30] 1.72 [0.26] 1.89 [0.37] 1.34 [0.14]
GLCM entropy 2.32 [0.47] 2.29 [0.45] 2.32 [0.47] 1.91 [0.23]
GLCM difference variance 1030 [330] 1000 [200] 190 [150] 1060 [150]
GLCM difference entropy 1.60 [0.20] 1.48 [0.17] 1.38 [0.14] 1.07 [0.10]

GLRLM run-length nonuni-
formity

210 [229] 205 [221] 202 [206] 169 [182]

GLRLM grey level nonunifor-
mity

4.4 [3.7] 5.7 [4.4] 2.6 [1.6] 17.9 [16.7]

GLRLM long-run emphasis 1.08 [0.02] 1.09 [0.02] 1.08 [0.05] 1.32 [0.06]
GLRLM short-run emphasis 0.980 [0.004] 0.977 [0.004] 0.982 [0.010] 0.935 [0.011]
GLRLM fraction 0.975 [0.005] 0.971 [0.005] 0.976 [0.014] 0.913 [0.014]
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Table 5.3: Mann Whitney U-test p-values for intra- and inter-observer tests. First two columns
show p-values for standard ROI setting compared between Operators #1 and #2; and between the
first and second operating rounds by Operator #1 (with two-week interval). Next two columns
show equal values for freehand ROIs and the last column presents p-values when comparing
standard and freehand ROI setting performed by Operator #1.

Feature Standard Freehand Operator #1

Operator
#1 vs. #2

Round #1
vs. #2

Operator
#1 vs. #2

Round #1
vs. #2

Standard
vs. freehand

Histogram mean 0.205 0.841 0.299 0.905 <0.001
Histogram variance 0.708 0.617 0.059 0.853 0.930
Histogram skewness 0.046 0.640 0.338 0.905 0.406
Histogram kurtosis 0.834 0.864 0.045 0.517 0.361

GLCM angular second
moment

0.713 0.971 0.001 0.269 0.382

GLCM contrast 0.495 0.992 0.001 0.886 0.062
GLCM correlation 0.590 0.982 <0.001 0.932 0.049
GLCM sum of squares 0.482 0.801 0.281 0.890 0.887
GLCM inverse differ-
ence moment

0.958 0.692 0.023 0.358 0.503

GLCM sum average 0.613 0.032 0.134 0.732 0.005
GLCM sum variance 0.622 0.898 <0.001 0.630 0.039
GLCM sum entropy 0.942 0.624 0.002 0.496 0.215
GLCM entropy 0.773 0.883 <0.001 0.303 0.393
GLCM difference vari-
ance

0.224 0.928 <0.001 0.868 0.046

GLCM difference en-
tropy

0.875 0.526 0.793 0.768 0.578

GLRLM run-length
nonuniformity

0.880 0.748 <0.001 0.064 0.274

GLRLM grey level
nonuniformity

0.689 0.989 0.237 0.065 0.981

GLRLM long-run em-
phasis

0.890 0.543 0.732 0.345 0.769

GLRLM short-run em-
phasis

0.979 0.531 0.660 0.253 0.696

GLRLM fraction 0.875 0.654 0.708 0.301 0.700
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Table 5.4: Summary of TA feature behaviour.

Feature ROI
size
depen-
dence

Controls vs.
random

Controls vs.
phantom

Controls vs.
background

Effect
of imag-
ing se-
quence

Histogram mean, GLCM
sum average

No Overlap Overlap Distinguishable High

Histogram variance No Distinguishable Overlap Overlap High

Histogram skewness and
kurtosis, GLCM sum of
squares

No Overlap Overlap Overlap Low

GLCM entropy Yes Distinguishable Distinguishable Distinguishable Low

GLCM sum entropy, differ-
ence entropy

Yes Distinguishable Distinguishable Distinguishable High

GLCM angular second mo-
ment

No Distinguishable Overlap Distinguishable Low

GLCM inverse difference
moment

No Distinguishable Overlap Distinguishable High

GLCM contrast, correla-
tion, sum variancce, differ-
ence variance

No Overlap Overlap Distinguishable Low

GLRLM run-length nonuni-
formity

Yes Distinguishable Overlap Distinguishable Low

GLRLM grey level nonuni-
formity

Yes Distinguishable Overlap Distinguishable High

GLRLM long-run empasis,
short-sun emphasis inverse
moments, fraction

No Distinguishable Overlap Overlap High
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5.2 Textural features in Parkinson’s disease, stroke, and muscle
adaptation studies

A selected set of TA features was applied in Parkinson’s disease, stroke, and muscle
adaptation studies to reveal differences and changes that are invisible to the human eye
in MR images. A summary of the results obtained from Studies II-V is presented in
Table 5.5.

Table 5.5: Summary of TA features used as tools in three different medical applications.

Feature Parkinson’s disease
(Studies II, III)

Exercise-load (Study
IV)

Cerebral infarction
(Study V)

GLCM angu-
lar second mo-
ment

Differences in the brain
stem and mesencephalon
between PD patients and
controls, changes in the
midbrain during the follow-
up of PD patients, and cor-
relation with clinical scores

Differences in thigh muscles
and subcutaneous fat tissue
between athletes and con-
trols, robust to slice selec-
tion

Differences between the
ipsilateral and unaffected
sides of the brain at the in-
farction site

GLCM
inverse differ-
ence moment

Differences in the midbrain
between PD patients and
controls, changes in the
midbrain during the follow-
up of PD patients

Differences in thigh mus-
cles, bone marrow, and
subcutaneous fat tissue be-
tween athletes and controls,
robust to slice selection

No differences detected

GLCM en-
tropy

Differences in the brain
stem and mesencephalon
between PD patients and
controls, changes in the
midbrain during the follow-
up of PD patients, correla-
tion with clinical scores

Differences in thigh muscles
and subcutaneous fat tissue
between athletes and con-
trols, robust to slice selec-
tion

Differences between the
ipsilateral and unaffected
sides of the brain at the in-
farction site and centrum
semiovale

GLCM differ-
ence entropy

Differences in the brain
stem, mesencephalon, and
midbrain between PD pa-
tients and controls, changes
in the midbrain during
the follow-up of PD pa-
tients, correlation with clin-
ical scores

Differences in thigh mus-
cles, bone marrow, and
subcutaneous fat tissue be-
tween athletes and controls,
robust to slice selection

Differences between the
ipsilateral and unaffected
sides of the brain at the
infarction site, correlation
with DTI parameters

GLCM
contrast,
correlation,
sum variance,
difference
variance

Interhemispheric dif-
ferences in the brain
stem, mesencephalon and
midbrain of PD patients

Not used Not used





6 Discussion

In medical imaging, TA can be used to recognise, classify, or segment image patterns, such
as pathological tissue alterations, which can be difficult or impossible to observe by human
visual perception. To apply TA in medical applications, the method should be reliable and
repeatable. In a recent paper, Lerski et al. (2015) provided technical recommendations
regarding the use of TA methodology for muscle MRI. The authors emphasised the
importance of performing a quality assessment of the MR imaging system, careful choice
of the imaging sequence, and normalisation of the obtained MR images. They also stated
that textures should be calculated within ROIs that are larger than 100 pixels, and the
dynamic range of the images should be reduced to six or eight bits. They recommended
considering a wide range of TA methods but advised against the over-interpretation
of the texture data due to the large number of texture features. This thesis continues
this valuable work concerning TA methodology by assessing the information yielded by
different features and by evaluating the effects of MRI sequence and ROI definition on
TA features.

6.1 Information regarding textural features

6.1.1 Histogram-based features
First-order histogram features are capable of identifying textures with different grey level
distributions. Textures with differing mean and variance can often be distinguished by
the human eye as dark or light and smooth or coarse, respectively. However, textures with
differing skewness and kurtosis do not always appear different by visual inspection. Our
results indicated their vulnerability to variations in image intensity. In addition, intra-
and inter-observer variability had little effect on the histogram feature values, although
their value ranges were wide, and they produced many outliers.

6.1.2 Grey level co-occurrence matrix-based features
The GLCM method has been widely utilised in MR image TA. An increasing number
of studies considers the behaviour and results for single TA features instead of using
a set of selected features. Although multivariable analyses may also perform well and
distinguish textures one remains unsure of the capability of single feature. Understanding
the behaviour of single features may aid in the development of more specific analyses in
future studies.

Homogeneity and complexity features have shown promising results in various medical
MRI TA studies. According to our results, the information provided by these features
appears to describe the textural structures of the tissues because the MR image background

45



46 Chapter 6. Discussion

barely overlapped with brain textures. The values were, however, dependent on ROI size;
thus, care should be taken when calculating these features within ROIs of different sizes.
Mahmoud-Ghoneim et al. (2006) applied TA as a non-invasive method for muscle MRI
investigation to discriminate three muscle conditions in rats: normal, atrophy, and
regeneration. The authors found that GLCM angular second moment and entropy were
the most discriminative features and demonstrated that despite their different microscopic
scales, gastrocnemius muscle fibres yielded results that were statistically consistent with
histological findings during atrophy and regeneration. In a recent lung cancer study by
Yoon et al. (2016), entropy was the strongest independent predictor of survival in patients
with lung cancer. Entropy also yielded the least inter-observer variability among MR
histogram and texture parameters.
Our Studies II and III concentrated on MR images of patients with symptoms of Parkin-
son’s disease. The value of TA in finding differences between patients and controls,
interhemispheric differences, and longitudinal changes in clinically interesting areas of the
brain was evaluated. Based on earlier studies, we assumed that TA could reveal subtle
changes in the MR images caused by PD that are invisible to the human eye and that
asymmetric changes caused by PD may also be present. MR image textures of patients
with PD and the control group differed in these areas in one or more of the following
features: angular second moment, inverse difference moment, entropy, and difference
entropy. These features were also able to reveal subtle changes in MR image textures
during the 2-year follow-up of the PD patients.
GLCM homogeneity and complexity features were also used in our Study IV, where we
identified differences in MR image textures obtained for thigh soft tissues between various
athlete groups and non-athletes. The adaptation to different exercise loads was associated
with the MR image textures of the thigh muscles, bone marrow, and subcutaneous fat.
In Study V, we compared the textures of specific brain areas along the white matter
tracts in the MR images of right-sided stroke patients. We found that angular second
moment values were lower and that both entropy feature values were higher at the lesion
site compared to the reference area on the left hemisphere. The same trend was found
for the centrum semiovale. These results indicate that the brain tissue texture in the
ipsilateral hemisphere is more heterogeneous and complex than that on the contralateral
side. Thus, damaged tissue might appear more coarse and random in texture compared
to healthy tissue. Similar results were obtained in previous MRI studies of mild brain
injuries (Holli et al., 2010) and epilepsy (Suoranta et al., 2013).
In addition to homogeneity and complexity features, our studies II and III revealed
interhemispheric differences in the brain stem, mesencephalon, and midbrain areas of
the patients with PD for contrast, correlation, sum variance, and difference variance. Yu
et al. (2015) used histogram-, GLCM-, GLRLM, gradient- and Law’s feature-based TA to
analyse proton density maps to quantify hepatic fibrosis in a murine disease model. The
GLCM features correlation and contrast demonstrated moderate-to-strong correlations
with hepatic fibrosis. According to our results obtained from Study I, these features
were less dependent on ROI size, but the values were widely spread, and the MR image
brain texture overlapped with artificial, homogeneous, and background textures. These
features were more related to the intensity values of the pixels and were also vulnerable
to differences in image intensity and noise levels. The feature values obtained from the
MR image textures varied over such a wide range that they were most likely influenced
by the image intensity variations. Hence, more uniform image normalisation is needed to
fully benefit from the use of these features.
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Our study I showed that the GLCM features sum of squares and sum average appeared
quite independent of ROI size. However, the values of sum of squares and sum average
that were obtained from the MR images overlapped with the values obtained from the
artificial random texture. Thus, these features might not reveal additional information
regarding the underlying texture in this application.

Based on our results, GLCM features, especially features related to homogeneity and
complexity, appeared robust and applicable to clinical MR image analysis concerning at
least brain and muscles. These features appeared to reveal information about the true
tissue structure. In addition, a phantom study of Mayerhoefer et al. (2009) demonstrated
that GLCM features were superior to features derived from the GLRLM, absolute gradient,
autoregressive model, and wavelets. The GLCM features enabled the discrimination of
different patterns that were close to the resolution limits for the smallest structures of
physical texture and functioned even for datasets that were heterogeneous with regard to
various acquisition parameters, including spatial resolution.

6.1.3 Grey level run-length matrix-based features

Our results showed that the GLRLM features run length nonuniformity and grey level
nonuniformity were quite linearly dependent, whereas short-run emphasis, long-run em-
phasis, and fraction were independent of ROI size. The behaviour of the nonuniformity
parameters originates from the definition of the RLM features because run-length nonuni-
formity squares the number of grey levels for each run length, and grey level nonuniformity
squares the number of run lengths for each grey level. Thus, for a larger ROI, there exist
more runs, and the values of the nonuniformity features were dominated by the ROI size.
All GLRLM features, however, provided clearly differing values for the brain MR image
textures compared to the background and random patterns. The range of the samples
was also relatively compact; therefore, these parameters appear robust and valuable for
various TA studies. Our research group found that GLRLM features were capable of
differentiating between aggressive and indolent lymphomas (Wu et al., 2016). Yang et al.
(2015) demonstrated in their TA study that the neural subtype of glioblastoma was best
predicted by GLRLM features. Thus, GLRLM features are appropriate for medical MR
image TA, provided that the ROI size dependence is acknowledged.

6.2 Texture analysis in the medical environment

6.2.1 Imaging sequences

Essentially, the grey level value of an image pixel is determined by the MRI sequence
used. A wide range of imaging sequences has been used in TA studies, and none has
proven superior. This can be considered as strength of the method. However, our results
in this thesis showed that even homogenous phantom textures produce differing feature
values when imaged with differing MR sequences. Mayerhoefer et al. (2009) showed that
texture features derived from the GLCM, GLRLM, gradient, AR model, and wavelets
were increasingly sensitive to acquisition parameter variations with increasing spatial
resolution of the T2-weighted multislice multiecho images. Nevertheless, provided that
the spatial resolution was sufficiently high, variations in TR and TE had little effect on
the results of pattern discrimination. Moreover, our results showed that some features
are more sensitive to sequence variation than others. For example, GLCM angular second
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moment and GLRLM run-length nonuniformity appeared quite robust to the imaging
sequence choice in our phantom study.

Some studies comparing several sequences for MRI TA have been performed, but the results
vary regarding the best option. A texture-based segmentation method applied by Saeed
et al. functioned equally well when distinguishing whole brain from T1- and T2-weighted,
FLAIR, and angio sequence images. Recently, our group studied the differentiation
of lymphoma types based on T1-weighted pre- and post-contrast enhancement images
and T2-weighted images with and without fat suppression (Wu et al., 2016). The best
classification results were obtained from the T1-weighted post-contrast images. However,
all sequences had advantages and disadvantages.

In practice, medical MRI is often performed according to a clinical protocol that includes
diagnostic sequences. These sequences are usually optimised for use by radiologists, i.e.,
by the human eye. Advanced image analysis methods may reveal the most additional
information based on structural sequences rather than heavily T1- or T2-weighted images.
However, despite the weighting of the sequence, attention should be paid to the signal-
to-noise ratio, acquiring sufficient resolution, and the imaging time. Lerski et al. (2015)
discussed this topic in a review of technical recommendations regarding muscle MR
image TA, in which they also emphasised the relevance of sequence selection for studying
histological variations, which change during, e.g., a muscle disease. The selection of a
suitable MRI sequence, therefore, represents a balance between imaging time, image
quality, and the amount of textural information in the image.

6.2.2 Region of interest definition
The selection of a ROI defines the window within which the features are calculated.
It should represent the tissue or structure of interest while avoiding other tissues and
structures. At the same time, the ROI should contain a sufficient number of pixels for
reliable feature calculation. As usual in signal processing, when observing textures from
regions that are too small, the variation between samples increases. This was also seen in
our studies, especially regarding the GLCM homogeneity and complexity features. On
average, circular ROIs containing less than 100 pixels from different images yielded values
in a wide range. In addition, when using ROIs larger than approximately 200 pixels,
the textural information inside the ROI appeared to be lost in the abundance of pixels.
Neither partial volume pixels nor even whole pixels of surrounding structures (which
inevitably appeared in our example of centrum semiovale, on average, in ROIs larger
than 200-300 pixels in diameter) appeared to have much impact on the feature values.
This raises the question as to whether these GLCM parameters carry specific information
after the saturation point. Hence, according to our results, rather than using a ROI as
large as possible, the ROI should be suited to the structure or area under inspection. In
addition, one should prefer standard ROIs of a fixed size and shape or freehand ROIs of
approximately the same size because ROI size affects the values obtained.

6.2.3 Data analysis and interpretation
As reviewed earlier, hundreds of textural features can be calculated for a single ROI.
This thesis has covered features based on the image histogram, GLCM, and GLRLM.
In addition, several possible methods and features based on these methods exist. The
calculated TA features, similar to all measures, may be analysed in various ways, e.g., as
single feature values or as combinations of texture features and possibly other measures.
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According to our results, the averaged second-order textural features are functional in
medical brain and muscle MR image TA. When the information content of the features is
known, the method may offer valuable additional information that is unobtainable by the
human eye. As already stated, Lerski et al. (2015) advised against the over-interpretation
of the texture data due to large number of texture features. This originates to the fact
that if any two images are classified with several hundreds of features, some features will
inevitably differentiate these textures. However, the clinical relevance will be questionable.
Instead, understanding the properties and limitations of single features will help us
combine the information of texture features and tissue properties.

Not every TA study has to be performed with similar data analysis method, and the
data analysis method should not judge the quality of the research. However, based on
our research work in medical MRI environment, the single feature values and conclusions
based on them seem to be preferred to complex multi-parameter analyses. These results
may not be suitable for generalization because of individual variation, but this thesis
offers tools for popularisation of TA methods.





7 Conclusions

On the basis of this study, we recommend to focus on second-order texture features
that relate to more than one pixel and ensure the use of appropriate preprocessing steps
prior to image analysis (Study I). Our results have shown that all textural features have
limitations regarding the discrimination capacity in medical MR images and dependence
on ROI size and MR imaging parameters. However, despite these limitations, it is possible
to perform quantitative analysis on medical MR images (Studies II-V).

1) Our results demonstrate that histogram parameters are highly dependent on varia-
tions in image contrast and brightness, and provide little additional information
to that obtained by visual inspection. Features based on the GLCM and GLRLM
contain information that cannot be evaluated visually. The size-dependence of
specific features should be noted by standardizing the size and shape of the ROI.

2) When the technical aspects and limitations of texture features are appropriately
considered, some texture features, such as GLCM homogeneity and complexity
features, have high potential for revealing, for example, tissue pathology. Based on
our results these features could detect textural brain stem and midbrain differences
between PD patients and controls and changes in brain structure textures during
disease progress. These features were also capable of revealing textural differences
between ipsilateral and unaffected sides of the brain on stroke patients and correlated
with DTI parameters. In addition, these features were associated with thigh muscle
adaptation to exercise.
The second-order features are more robust to variations in image data than histogram
features. However, care must be taken that the observed differences or changes
originate from the texture rather than from variations in intensity that result from
the technical aspects of MRI.
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Histogram-based features

Mean µ =
∑N
i=1 ip(i)

Variance σ2 =
∑N
i=1(i− µ)2p(i)

Skewness µ3 = σ−3∑N
i=1(i− µ)3p(i)

Kurtosis µ4 = σ−4∑N
i=1(i− µ)4p(i) − 3

where p(i) is a normalised histogram vector (i.e. histogram whose entries are divided by
the number of pixels within the ROI), i = 1, 2, ..., Ng and N denotes for the number of
intensity levels in an image.

GLCM-based features

The second-order histogram of an image is defined as the GLCM Pdθ(i, j) where d
is the distance in pixels and θ is the angle between two examined pixels. For given
image f(x, y) with Ng discrete grey levels, the GLCM is defined such as the (i, j)th
element equals to the number of times that f(x1, y1) = i and f(x2, y2) = j where
(x2, y2) = (x1, y1)+(d cos θ, sin θ). R(d, θ) is the total number of neighbouring pixels within
given ROI; and the (i, j)th element of normalised GLCM is, thus, P (i, j)/R = p(i, j).

Angular second
moment

f1 =
∑Ng

i=1
∑Ng

j=1 p(i, j)2

Contrast f2 =
∑Ng−1
n=0 n2∑Ng

i=1,|i−j|=n
∑Ng

j=1 p(i, j)2

Correlation f3 =
∑Ng

i=1
∑Ng

j=1 ijp(i, j) − µxµy

σxσy

Sum of squares f4 =
∑Ng

i=1
∑Ng

j=1(i− µx)2p(i, j)

Inverse difference
moment

f5 =
∑Ng

i=1
∑Ng

j=1
1

1 + (i− j)2 p(i, j)
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Sum average f6 =
∑Ng

i=1
∑Ng

j=1 ipx+y(i)

Sum variance f7 =
∑Ng

i=1
∑Ng

j=1(i− f6)2px+y(i)

Sum entropy f8 = −
∑Ng

i=1 px+y(i) log
(
px+y(i)

)
Entropy f9 = −

∑Ng

i=1
∑Ng

j=k p(i, j) log
(
p(i, j)

)
Difference vari-
ance

f10 =
∑Ng−1
i=0 (i− µx−y)2px−y(i)

Difference entropy f11 =
∑Ng−1
i=0 px+y(i) log

(
px+y(i)

)

where marginal probability matrices px(i) =
∑Ng

j=1 P (i, j) py(j) =
∑Ng

i=1 P (i, j); sum
distribution px+y(k) =

∑Ng

i=1,i+j=k
∑Ng

j=1 p(i, j), k = 2, 3, ..., 2Ng; and difference distribu-
tion px−y(k) =

∑Ng

i=1,|i−j|=k
∑Ng

j=1 p(i, j), k = 0, 1, ..., Ng − 1. Means (µ) and standard
deviations (σ) of px, py and px+y, px−y are µx, µy, σx, σy and µx+y, µx−y, σx+y, σx−y
respectively.

GLRLM-based features

The elements p(i, j) of GLRLM represent the number of times there is a run of length j
having grey level i. Ng denotes for the number of grey levels and Nr for the number of
runs.

Run-length
nonuniformity

f12 =
(∑Nr

j=1
(∑Ng

i=1 p(i, j)
)2
)
/C

Grey level nonuni-
formity

f13 =
(∑Ng

i=1
(∑Nr

j=1 p(i, j)
)2
)
/C

Long-run empha-
sis moment

f14 =
(∑Ng

i=1
∑Nr

j=1 j
2p(i, j)

)
/C

Short-run em-
phasis inverse
moment

f15 =
(∑Ng

i=1
∑Nr

j=1
p(i, j)
j2

)
/C

Fraction f16 = C/
∑Ng

i=1
∑Nr

j=1 jp(i, j)

where C =
∑Ng

i=1
∑Nr

j=1 p(i, j)
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